Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations

Metadata Label Value
Autor(en): Urech, Auguste
Verlag: Leemann
Zitierweise:

Urech, Auguste. Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations. Leemann (1925). http://dx.doi.org/10.3929/ethz-a-000088971

Dokumententyp: Dissertationen und Habilitationen  
Dokumente: Fulltext (2.60MB)
Import to Mendeley

Detailansicht

Metadaten Beschreibung
Title Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations
Author(s) Urech, Auguste
Publication Place Zürich
Publisher Leemann
Publication Date 1925
Notes Diss. Math. ETH Zürich, Nr. 392, 0000. Ref.: Kollros, L. ; Korref.: Weyl, H.
Language French
DOI http://dx.doi.org/10.3929/ethz-a-000088971
Subject(s) Reine Mathematik (Algebra, Geometrie, Topologie, Zahlentheorie)
Keyword(s) GEOMETRISCHE TRANSFORMATIONEN
POLYTOPE
Beschreibung Dateiname MIME Type Grösse
Fulltext   eth-20114-01.pdf application/pdf 2.60MB
Abstract Views und Downloads
Views 47  abstracts
Downloads 184  downloads

Abstract Views und Downloads nach Land
France Views abstracts
Downloads 77  downloads
Views 21  abstracts
Downloads 46  downloads
Switzerland Views abstracts
Downloads 12  downloads
Belgium Views abstracts
Downloads downloads
Morocco Views abstracts
Downloads downloads
Algeria Views abstracts
Downloads downloads
Germany Views abstracts
Downloads downloads
United States Views abstracts
Downloads downloads
Madagascar Views abstracts
Downloads downloads
Tunisia Views abstracts
Downloads downloads
Korea, Republic of Views abstracts
Downloads downloads
United Kingdom Views abstracts
Downloads downloads
Canada Views abstracts
Downloads downloads
China Views abstracts
Downloads downloads
Haiti Views abstracts
Downloads downloads
Italy Views abstracts
Downloads downloads
Netherlands Views abstracts
Downloads downloads
Portugal Views abstracts
Downloads downloads
Russian Federation Views abstracts
Downloads downloads
Spain Views abstracts
Downloads downloads
Saudi Arabia Views abstracts
Downloads downloads


E-Collection record created: Fri, 18 Apr 2008, 17:46:41 CET