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Abstract

Young stars form from the gravitationally-driven collapse of dense parts of molecular
clouds. A single cloud can form one up to millions of young stars. These stars are initially
bound together by the gravity of the molecular cloud in which they formed. After a few
million years the cloud disperses and leaves a group of young stars behind which might
or might not be bound by the gravity of the stars alone. Most (but not all) older stars
are found spread throughout the galaxy, which implies they escaped the gravitational pull
of the other stars in their birth environment. It is still debated what processes determine
which young stars remain bound together to form an older star cluster and which young
stars disperse into the field population.

The aim of this thesis is to investigate early dynamical evolution of these groups of young
stars by measuring the dynamical state of the stars as they emerge from the molecular
cloud. In particular we study the kinetic and gravitational potential energy of these stellar
groups to determine if they are bound or unbound.

The kinetic energy of some stars will be severely overestimated, because they are in a
close binary orbit around another star, which causes their measured velocity to be very
different than the center-of-mass velocity of the binary system as a whole. I present a
maximum-likelihood procedure, which explicitly includes the velocity offsets due to these
binary orbital motions, which allows the width of a velocity distribution to be accurately
measured using only a single velocity observations per star, instead of multiple velocities
per star measured over a timespan of many years.

As part of the thesis I analyzed high-resolution spectra to retrieve line-of-sight velocities
in the young massive stellar group Westerlund I and the young low-mass stellar group IC
348. Both have recently emerged from their natal molecular cloud. In Westerlund I we
found an upper bound to the velocity dispersion of 2.1+3.3

−2.1 km s−1, implying the cluster is
bound. IC 348 has a velocity dispersion of 0.75± 0.05 km s−1, which also implies that the
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cluster is bound, although the high kinetic energy suggest that it should expand slightly.
However, IC 348 appears to be actually collapsing along the line of sight.

Combined with recent results from other groups for other young stellar groups, we
consistently find that dense, stellar groups are bound. This implies that these stellar groups
are unlikely progenitors of the low-density associations of young stars. It also supports a
scenario where a stellar group is unlikely to become unbound due to the expulsion of the
natal molecular cloud, when the stars have reached a sufficiently high density prior to the
gas expulsion. Although smaller bound stellar clusters will still evaporate on a relatively
short timescale due to two-body relaxation, more massive clusters (> 104 solar masses)
might remain bound for billions of years, if they do not get disrupted by tidal fields of
passing molecular clouds or their host galaxy.
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Kurzfassung

Junge Sterne entstehen durch Gravitationskollaps dichter Teile von Molekülwolken. Eine
einzige Wolke kann zwischen ein und Millionen von jungen Sterne bilden. Diese Sterne
werden durch die Schwerkraft der Molekülwolke, in der sie gebildet werden zusammen
gehalten. Nach ein paar Millionen Jahren löst sich die Wolke auf und hinterlässt eine
Gruppe von jungen Sternen, denen entweder oder auch nicht von der Schwerkraft der
Sterne allein gebunden sind. Die meisten (aber nicht alle) ältere Sterne sind über die ganzen
Galaxie verteilt, was impliziert dass sie der Anziehungskraft der anderen Sterne in ihrer
Geburtumgebung entkommen sind. Es wird noch diskutiert, welche Prozesse bestimmen,
welche junge Sterne miteinander verbunden bleiben um einen älteren Sternhaufen zu bilden
und welche jungen Sterne sich über die Galaxie verteilen.

Das Ziel dieser Doktorarbeit ist es, die frühzeitige dynamische Entwicklung dieser Grup-
pen junger Sterne zu untersuchen indem der dynamische Zustand der Sterne im Moment
gemessen in dem sie aus der Molekülwolke auftauchen. Insbesondere studieren wir die
kinetische und potentielle Energie dieser Sterngruppe um festzustellen, ob sie entweder
gebunden oder ungebunden sind.

Die kinetische Energie einiger Sterne wird stark überschätzt werden, weil sie sich in einen
engen Umlaufbahn um einen anderen Stern bewegen, was bewirkt, dass die gemessene
Geschwindigkeit sich von der Mittelpunktsgeschwindigkeit des ganzes Doppelstern stark
unterscheid. Ich präsentiere eine Maximum-Likelihood-Methode, das explizit die Geschwin-
digkeitskorrekturen aufgrund dieser binären Kreisbewegungen umfasst, womit die Breite
einer Geschwindigkeitsverteilung mit nur ein Geschwindigkeitsmessung pro Stern genau
gemessen werden kann, anstelle von mehreren Geschwindigkeitsmessungen pro Stern über
ein Zeitraum von vielen Jahren.

Im Rahmen der Doktorarbeit habe ich Spektren mit hoher Auflösung analysiert und die
Geschwindigkeiten entlang der Sichtlinie in der jungen massereiche Sterngruppe Wester-
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lund I und den jungen massearmen Sterngruppe IC-348 gemessen. Beide sind vor kurzem
aus ihrer Geburtsmolekülwolke aufgetaucht. In Westerlund I fanden wir eine obere Grenze
für die Geschwindigkeitsdispersion von 2.1+3.3

−2.1 km s−1, was bedeutet, das der Sternhaufen
gebunden ist. IC 348 hat einen Geschwindigkeitsdispersion von 0.75 ± 0.05 km s−1, was
bedeutet, dass auch diesen Sternhaufen gebunden ist. Die hohe kinetische Energie bisst
darauf schliessen, dass IC 348 sich leicht erweitern soll. Im Gegenteil aber, scheint IC 348
entlang der Sichtlinie zu kollabieren.

In Kombination mit den jüngsten Ergebnissen aus anderen Gruppen für andere junge
Sterngruppen, finden wir, dass dichte Sterngruppen konsequent gebunden sind. Dies be-
deutet, dass diese Sterngruppen wahrscheinlich nicht Vorfahren der geringe dichte Bewe-
gungshaufen junger Sterne sind. Dies unterstützt auch ein Szenario, in dem eine die Ab-
stossung der Molekülwolke nicht die gravitationnelle Bindung des Sterngruppe aufheben
kann, wenn die Sterne vor der Gasabstossung eine ausreichende höhe Dichte erreicht haben.
Obwohl kleiner gebunden Sternhaufen immer noch in einem relativ kurzen Zeitsraum durch
Zwei-Körper-Entspannung verdunsten, können massivere Sternhaufen (> 104 Sonnemasse)
für Milliarden von Jahren gebunden bleiben, wenn sie nicht durch die Gezeitenfelder von
andere Molekülwolken oder der beherbegende Galaxie gestört werden.
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1 Introduction

Nearly all visible light in the Universe has been directly emitted from a star or from a
galaxy containing billions of stars. Although their contribution to the total evolution of
the Universe might be minor compared to the gravity of dark matter or the expansive force
called dark energy, star light is still crucial to probe the effect of these forces. Many stars
also host planets and provide the light and energy to make some of those planets habitable.

Despite their central importance to astronomy, many questions remain about how these
stars actually form. Stars are known to form in diffuse, cold, molecular clouds of gas,
which contract under gravity to form stars. Although some clouds appear to form only a
single star (Alves et al. 2001), most star-forming clouds in the solar neighborhood form
tens to thousands of stars (Lada & Lada 2003). Both the massive young clusters observed
in starburst galaxies (Holtzman et al. 1992) and the globular clusters surrounding our
own galaxy imply that sometimes stars form in groups of up to millions of stars. So to
understand star formation, we do not only have to understand the formation of single stars,
but also the formation of groups of stars.

Even though most stars in these molecular clouds form in groups, most older stars are
spread throughout the galaxy like our own Sun, forming the so-called field population. Thus
most of these groups of young stars have to disperse at some point to join the diffuse field
population. Other groups of stars remain bound to form clusters. These bound clusters
are important astronomical laboratories as they can be identified at large distances and
contain a large number of stars with different masses, but the same origin and age. In this
thesis I attempt to advance our understanding of which young stars are likely to remain
together in bound clusters and which are likely to disperse into the field through a detailed
study of the dynamics of these young stellar groups.

Many different definitions for stellar groups and star clusters are used in the literature.
Here we will define a stellar group as any overdensity in the stellar distribution, that is not

1



CHAPTER 1. Introduction

caused by statistical fluctuations (and is not gravitationally dominated by dark matter to
distinguish them from galaxies). Although most known stellar groups are found through
their spatial overdensities, so-called moving groups have an overdensity in velocity space
(i.e. they have more similar velocities than expected by chance). We split stellar groups
in three categories, namely embedded clusters, clusters, and associations. In embedded
clusters the stars are bound by the gravitational potential of the molecular cloud out of
which the stars formed, in clusters the stars are bound by the gravitational potential of
the stars themselves, while in associations the stars are unbound.

This definition and especially the distinction between clusters and associations requires
a detailed knowledge of the dynamical state of the stellar group to determine whether it
is bound. In practice for most groups we do not know the stellar velocities in most stellar
groups, so an alternative classification scheme is required. Low density, diffuse stellar
groups are often assumed to be unbound and are thus classified as association. In practice
this fits the definition above, because even if the stars have such small relative motions to
be formally bound, tidal forces from passing molecular clouds or from the host galaxy itself
would cause these diffuse stellar groups to expand. Compact, high density stellar groups
are often assumed to be bound and are hence classified as clusters. Gieles & Portegies
Zwart (2011) argued that this was reasonable as long as the age of the stellar group is
significantly longer than the dynamical time it would take for the cluster to fly apart,
because they would not have survived for so long if they were unbound. These arguments
allow us to classify diffuse clusters (i.e. larger than the galactic tidal radius) as associations
and dense stellar groups that are older than the dispersal time as clusters. However, to
determine whether a young, dense stellar group with an age comparable to or smaller than
the dispersal time is bound we will actually have to measure the velocities of the stars.

Measuring the velocities in a stellar group allows us to do more than just predicting its
future evolution by determining if it is bound by the gravitational potential1. It allows us
to constrain the dynamical state in which stars form, which can help to clarify the process
of how diffuse gas is converted into stars, which is a critical input to models of galaxy
formation and evolution. Finally we want to understand the dynamics of the environment
in which not only stars form, but also the planets orbiting those stars (Parker & Quanz
2011).

In this introduction I first describe a potential scenario for the formation and evolution
of star clusters in section 1.1, with a description of star and embedded star cluster formation
in section 1.1.1, a description of the early dynamical evolution of an embedded star cluster
and its emergence from the natal molecular cloud in section 1.1.2, and a description of the
longer-term evolution of bound clusters in section 1.1.3. In section 1.2 I discuss the various
observables available to trace the dynamical evolution of a stellar group.

In chapter 2 we discuss how to correct an observed velocity distribution of a stellar

1The boundedness of a cluster does not tell us everything, because globally unbound systems might
still form a bound core of stars (e.g. Baumgardt & Kroupa 2007) and bound systems will still continuously
eject unbound stars.

2



1.1. Star cluster formation and evolution

group for the velocity offsets caused by the orbital motions of binary stars. In chapter 3
we use velocities observed for stars in the massive, young stellar group Westerlund I to
show that it is a bound cluster. Then in chapter 4 we show the same for the much less
massive, young stellar group IC 348. The velocities suggest that this cluster might actually
be collapsing. We finally summarize our work in chapter 5, including an outlook to the
huge observational progress that will be made in this field in the next few years with several
large surveys.

1.1 Star cluster formation and evolution

1.1.1 Stars form in molecular clouds

Molecular clouds form when the interstellar atomic gas becomes dense enough to produce
molecules (e.g H2 and CO) faster than it is destroyed by the ionizing radiation permeat-
ing the Milky Way. These molecules then shield the molecular cloud from the ionizing
interstellar radiation, which allows the gas to cool to ∼ 10 K (Larson 2005; Crapsi et al.
2007). Many scenarios have been proposed to explain the high densities needed to form
these molecular clouds (see Dobbs et al. 2013, for a review). They might form through
converging flows driven either by turbulence in the interstellar gas or supernova explosions.
Alternatively they could form by the convergence caused by the spiral arms seen in many
disk galaxies (such as our own Milky Way). Giant molecular clouds could also form due
to Toomre Q or Parker instabilities in the interstellar medium. Finally giant molecular
clouds could form out of mergers or collisions of previous molecular clouds.

Molecular emission lines observed in molecular clouds are often much broader than
expected from the thermal linewidth, which implies the presence of supersonic turbulent
motions over a wide range of spatial scales (Larson 1981; Heyer & Brunt 2004). The
Herschel Space Telescope has recently found evidence for turbulence in the density structure
of molecular clouds by observing dust emission in the sub-millimeter (André et al. 2010;
Arzoumanian et al. 2011). Many local clouds were observed as part of the Herschel Gould
Belt survey, all of which showed dense filaments surrounded by lower density gas. Although
the detailed formation and evolution of filaments are still not understood (e.g. Arzoumanian
et al. 2013), they show up in all hydrodynamical simulations with turbulence, suggesting
they are a universal feature of the chaotic and often converging flows in such a medium
(see review from André et al. 2013).

If the filaments are too dense, they become unstable, which leads to the formation of
dense gas cores (Inutsuka & Miyama 1997), which are indeed often seen by Herschel along
the filaments (Men’shchikov et al. 2010; Polychroni et al. 2013). The turbulence in many of
these dense cores appears to be subsonic (e.g. Pineda et al. 2010). If these dense cores are
gravitationally bound and lack an identifiable protostar, they are referred to as prestellar
cores, because they are expected to collapse to form a single or a small number of stars as
described by Masunaga et al. (1998) and Masunaga & Inutsuka (2000).
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Figure 2. Grayscale images of the extinction of all the clouds on the same absolute size scale as shown by the 3 pc scale bar. All YSOs are plotted with the following
colors: red (I), green (flat), blue (II), and purple (III). The grayscale is linear from AV = 1 to 25 mag.

using the final data release from the c2d project.16 The infor-
mation in the tables in this paper is a condensed version of
that found in the full c2d catalogs, along with supplementary
information. Briefly, the c2d catalogs provide flux densities, un-
certainties, and various flags for each wavelength from 3.6 to
70 µm, similar information for the 2MASS sources that match
our sources, a source type, and a spectral index. Since the source
type plays an important role in discussing contamination, we
briefly summarize the nomenclature here.

Only sources with detections in at least three bands could
be classified at all. If an object was consistent with a (possibly
reddened) stellar photosphere, it was labeled “star.” Candidates
for YSOs required detections in all four IRAC bands and
MIPS-1; those meeting stringent criteria (see 3.1) are labeled
YSOc, with the “c” emphasizing that they are only candidates.
They may have one or more appended suffixes, such as “red,”
“PAH_em,” or “star+dust.” Sources labeled “red” have flux
densities at 24 µm that are at least 3 times the flux density from
the nearest available IRAC band. Sources labeled “PAH_em”
have colors indicative of a peak in the 8 µm band. The
“star+dust” designation indicates that the SED is consistent
with that of a stellar photosphere for wavelengths shorter
than a particular band but an excess in that band of at least
3σ . This band was appended to make a full name such as

16 Available at http://ssc.spitzer.caltech.edu/legacy/c2dhistory.html with a
thorough description (Evans et al. 2007).

“YSOc_star+dust(MP1)” where MP1 implies the first MIPS
band, at 24 µm. As discussed below, some sources lacked
photometry at enough wavelengths to be classified as YSOc, but
were later added as YSOs based on other information. These
may have source types in Table 12 of “rising,” in which the
available flux densities rise significantly to longer wavelengths
(15 cases), or “red1,” in which the source is detected only in
IRAC-4 or MIPS-1 (3 cases).

In this paper, we refine and standardize the analysis of the
combined data for the five large clouds, discussing issues of
contamination by background sources (Section 3.1) and com-
pleteness (Section 3.2). After describing the standard classifi-
cation tools provided in the catalogs, we describe analysis that
goes beyond that provided in the catalog. We discuss extinction
corrections (Section 3.3) that can be made to the flux densities
and the calculation of bolometric luminosity (Lbol) and bolo-
metric temperature (Tbol). We present in the Appendix the list of
YSOs, including flux densities from 2MASS (1.25–2.17 µm)
and Spitzer (3.6–70 µm). Additional flux densities from ob-
servations with other telescopes, at wavelengths ranging from
0.36 µm to 1.3 mm, are presented in Tables 8–11. This
list of YSOs is improved over the list of YSOc supplied
with our delivery because we have removed some sus-
pect sources, added known sources, added data at other
wavelengths, and calculated additional quantities, provided
in Table 12. We describe this process in the following
subsections.

Fig. 1.1 — Greyscale image of the extinction for several young star-forming regions on the
same spatial scale. All young stellar objects found with a combination of 2MASS (near-
infrared) and Spitzer (mid- and far-infrared) photometry have been overplotted. These
young stellar objects have been classified based on the excess emission observed by Spitzer
in classes from class I (red), flat (green), class II (blue), and class III (purple). This
represents a rough sequence in age from young to old. Figure taken from Evans et al.
(2009)

The filamentary substructure observed in molecular clouds and the distribution of the
prestellar cores along those filaments imply that stars do not form uniformly throughout
the cloud, but rather in dense clumps (as indeed observed in many star-forming regions;
e.g. Figure 1.1 Teixeira et al. 2006; Schmeja et al. 2008). These dense clumps can later
merge to form a larger stellar group. For many stars this initial clump is the densest
environment they will inhabit. So the likelihood of a star closely encountering another
star might be set by the initial density in these clumps. This density depends strongly
on whether every prestellar core only forms a single star or a binary star in which case
the initial stellar density is set by the distance between the prestellar cores and hence the
instability in the filaments (Inutsuka & Miyama 1997). On the other hand if the prestellar
core is efficiently cooled during collapse, it can continue fragmenting into smaller pieces
due to the Jean’s instability, leading to the formation of a (probably unstable) multiple
star system (Sterzik & Durisen 1995; Reipurth & Clarke 2001). This fragmentation could
continue until the gas becomes dense enough to become opaque to its own radiation, which
corresponds to the formation of the so-called first hydrostatic core (Larson 1969), which
is predicted to have a radius of about 5 AU (Masunaga et al. 1998). This implies that in
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such a case stars could form within a few tens of AU from each other, ensuring many close
encounters of these young protostars (Sterzik & Durisen 2003; Umbreit et al. 2005), as
was seen in early hydrodynamical simulations which included only turbulence and gravity,
but no stellar feedback or magnetic fields (Bate et al. 2003). Multiple systems with even
closer separations could later form from fragmentation of the massive circumstellar discs
observed to surround young stars.

As soon as the first stars form, feedback from the stars starts affecting the natal molec-
ular cloud. This feedback is due to both radiation (either ionizing or non-ionizing) or
outflows (either collimated jets or uncollimated stellar winds). The precise effect of this
feedback depends strongly on the type of feedback and how well it couples to the gas
(Krumholz & Thompson 2012), however the two main effects can be summarized as trans-
ferring momentum to the molecular cloud, which can potentially unbind the cloud, and
heating of the surrounding gas (see review from Myers et al. 2014). This heating raises the
thermal support against collapse, which increases the size scale on which fragmentation is
important (Offner et al. 2009; Price & Bate 2009; Peters et al. 2010; Klassen et al. 2012).
If the cloud contains many massive stars, the total feedback can completely disrupt the
cloud as illustrated in Figure 1.2.

Although most of the gas is molecular, there are still enough ions around for the gas
motions to be significantly affected by magnetic fields (see Crutcher 2012, for a review on
the magnetic fields observed in molecular clouds). Observations of magnetic field strengths
and their dependence on density show that while the motions in the atomic interstellar
medium are parallel to the magnetic fields. In molecular clouds turbulence and/or gravity
are able to overcome the magnetic pressure and tension, which allows motions perpendicu-
lar to the field lines (Crutcher et al. 2010). However, magnetic fields still play an essential
role in supporting to cloud against collapse, especially the low-density material. This can
lead to groups of star-formation being better separated, increasing the level of substructure
on large scales (Myers et al. 2014). The extra support provided by magnetic fields can also
reduce fragmentation on smaller scales and delay the onset of star formation (e.g. Price &
Bate 2009; Myers et al. 2014).

These simulations suggest that stellar feedback and magnetic fields might be crucial in
determining whether a prestellar core forms a single star, a binary system, or an unstable
multiple system through fragmentation of the prestellar core. For nearby cloud fragmenta-
tion on these scales can be probed directly through sub-millimeter interferometry, e.g. with
ALMA. Alternatively ejections from unstable multiple systems could be detected in the
dynamical state of protostars in young embedded clusters, providing an indirect constraint
on the importance of stellar feedback and magnetic fields on these small scales.

Besides the substructure, molecular cloud observations provide other important clues
on the initial conditions of stars. Despite being embedded in a turbulent molecular cloud,
many prestellar cores move with very similar velocities with core-to-core radial velocity
dispersions of only 200 - 400 m s−1 (e.g. in the Rho Ophiuchi molecular cloud André
et al. 2007 and the Perseus molecular cloud Kirk et al. 2007). These dispersion are much

5



CHAPTER 1. Introduction

The Astrophysical Journal, 731:91 (15pp), 2011 April 20 Lopez et al.

Figure 2. Three-color image of 30 Doradus: MIPS 8 µm (red), Hα (green), and 0.5–8 keV X-rays (blue). White contours show the 12CO(1–0) emission (Johansson
et al. 1998) in the region. Both large- and small-scale structures are evident. north is up, east is left.

For the area outside the field of Parker (1993), we use the
UBV data of Selman & Melnick (2005). These observations
were taken with the Wide Field Imager on the MPG/ESO 2.2 m
telescope at La Silla, out to half a degree away from R136 with
0.′′238 pixel−1. Thus, the three data sets combined provide a full
coverage of 30 Doradus in the U, B, and V bands.

To illustrate the H ii region structure, we show the Hα
emission of 30 Doradus in Figure 2. This narrowband image
(at 6563 Å, with 30 Å full-width at half-maximum) was
taken with the University of Michigan/CTIO 61 cm Curtis
Schmidt Telescope at CTIO as part of the Magellanic Cloud
Emission Line Survey (Smith & MCELS Team 1998). The
total integration time was 600 s, and the reduced image has
a resolution of 2′′ pixel−1.

2.2. Infrared

Infrared images of 30 Doradus were obtained through the
Spitzer Space Telescope Legacy project Surveying the Agents of
Galaxy Evolution (Meixner et al. 2006) of the LMC. The survey
covered an area of ∼7 × 7 degrees of the LMC with the Infrared
Array Camera (IRAC; Fazio et al. 2004) and the Multiband
Imaging Photometer (MIPS; Rieke et al. 2004). Images were
taken in all bands of IRAC (3.6, 4.5, 5.8, and 7.9 µm) and
of MIPS (24, 70, and 160 µm) at two epochs in 2005. For
our analyses, we used the combined mosaics of both epochs
with 1.′′2 pixel−1 in the 3.6 and 7.9 µm IRAC images and
2.′′49 pixel−1 and 4.′′8 pixel−1 in the MIPS 24 µm and 70 µm
images, respectively.

2.3. Radio

30 Doradus was observed with the Australian Telescope Com-
pact Array (ATCA) as part of a 4.8 GHz and 8.64 GHz survey of

the LMC (Dickel et al. 2005). This program used two array con-
figurations that provided 19 antenna spacings, and these ATCA
observations were combined with the Parkes 64 m telescope
data of Haynes et al. (1991) to account for extended structure
missed by the interferometric observations. For our analyses,
we utilized the resulting ATCA+Parkes 8.64 GHz (3.5 cm) im-
age of 30 Doradus, which had a Gaussian beam of FWHM 22′′

and an average rms noise level of 0.5 mJy beam−1. We note
that higher resolution ATCA observations of 30 Doradus have
been taken by Lazendic et al. (2003), but we have opted to
use the ATCA+Parkes image of Dickel et al. (2005) as the lat-
ter is more sensitive to the low surface-brightness outskirts of
30 Doradus.

2.4. X-ray

30 Doradus was observed using the Chandra Advanced CCD
Imaging Spectrometer (ACIS) in 2006 January for ≈94 ks
total (ObsIDs 5906 [13 ks], 7263 [43 ks], and 7264 [38 ks];
PI: L. Townsley) in the timed-exposure VFaint mode. The
spatial resolution of the Chandra ACIS images is 0.′′492 pixel−1.
Data reduction and analysis was performed using the Chandra
Interactive Analysis of Observations (CIAO) Version 4.1. We
followed the CIAO data preparation thread to reprocess the
Level 2 X-ray data and merge the three observations together.
Figure 3 shows the resulting soft X-ray band (0.5–2.0 keV)
image following these analyses. Seventy-four point sources
were identified in the reprocessed images using the CIAO
command wavdetect (a source detection algorithm using wavelet
analysis; Freeman et al. 2002); we excluded the identified point
sources in our spectral analyses.

To produce a global X-ray spectrum of 30 Doradus, we ex-
tracted Chandra spectra using the CIAO command specextract.

3

Fig. 1.2 — Three-color image of 30 Doradus, which contains the massive compact star
cluster R136, which we will study in more detail in section 2.3.4. Red shows 8 micron
thermal emission from gas heated by non-ionizing radiation, green shows Hα emission
from gas ionized by high-energy radiation, and blue shows 0.5 - 8 keV X-ray emission from
extremely hot (∼ 107 K), adiabatically expanding gas produced by shocks in stellar winds.
Finally the white contours show small pockets of remaining molecular gas as traced by
12CO emission. Figure taken from Lopez et al. (2011).

smaller than the turbulent motions in the molecular cloud, which is possibly caused by the
formation of these dense cores in the converging flows that formed the host filaments. The
stars forming from these prestellar cores inherit these velocities, implying a very low initial
velocity dispersion for the stars (unless the velocity dispersion is immediately pumped up
by ejections from unstable multiple systems within a prestellar core).

These slow-moving cores only contain a small fraction of the total gas mass in a molec-
ular cloud. Even within a prestellar core the star-formation efficiency is on the order of
20-40% (assuming a prestellar core forms only a single star) (Alves et al. 2007). On larger
scales of the whole molecular cloud the star-formation efficiency is even lower: 1.5 - 3% per
million years (Myr) (Evans et al. 2009) and a typical duration of star-formation of only
up to about 3 Myr (Hartmann 2001; Reggiani et al. 2011). This implies that the initial
stellar dynamical evolution will be dominated by the global gravitational potential of the
gas, instead of the other stars.
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1.1. Star cluster formation and evolution

1.1.2 Early cluster evolution

As described above stars form as slow-moving, spatially substructured, and embedded in
the potential well of the molecular gas. Initially all of the light emitted by the star is
absorbed and then re-emitted in the infrared by a dense envelope of gas surrounding the
young protostar. Many such objects have been recently detected and characterized in the
mid-infrared by the space telescope Spitzer (Enoch et al. 2009). Counting the frequency
of these objects suggests that the envelope dissipates in a few 105 years, although large
uncertainties remain in relating the observed infrared fluxes with the physical properties
of the envelope (Evans et al. 2009; Dunham et al. 2014).

Once the envelope dissipates it becomes possible to directly observe the light emitted by
the stellar photosphere (if our line of sight is not blocked by the massive disks surrounding
these young stars; van Kempen et al. 2009). At this point the stars are best observed in the
near-infrared, as they are still deeply embedded within the molecular cloud, which absorbs
and scatters the visible light. When the molecular cloud dissipates, the stars become re-
vealed in the visible. Both in the visible and near-infrared high-resolution spectra allow the
velocities of these young stars to be measured. Here we describe theoretical expectations
on the dynamical evolution of these young stars, with observational constraints on these
dynamics for two young stellar groups being discussed in chapters 3 and 4.

The small velocity dispersion observed for the prestellar cores suggest that newly-formed
stars will initially fall into the potential well of the molecular cloud. The timescale for such
a collapse is given by the free-fall time:

tff =

√
2d

g
≈

√
3

2πGµ 〈n〉
(1.1)

where d is the distance from the star in question to the center of mass, g is the gravitational
acceleration towards this center of mass, µ ≈ 2.3 is the mean molecular weight (for solar
composition) and 〈n〉 is the number density of the cloud within a distance d from the center
of mass, which with the (poor) assumption of spherical symmetry is all the mass we need
to consider when computing the gravitational attraction. For a typical number density of
390 cm−3 for star-forming molecular clouds (Evans et al. 2009) this gives a free-fall time
of 2 Myr, which is the time needed for stars formed all over the cloud to converge into the
center of the cloud, where all the clumps formed in different filaments can merge into a
single, dense stellar group (Goodwin & Whitworth 2004; Allison et al. 2010; Smith et al.
2011a; Parker et al. 2014). This free-fall time is also often referred to as the dynamical
time.

During this collapse the kinetic energy increases as the stars travel into the potential well
of the gas. This will continue until the random motions of the stars suffice to counteract
the gravity. This equilibrium is referred to as the virial equilibrium and is reached when
the kinetic energy T reaches half of the negative gravitational potential energy U :

T = −1

2
U. (1.2)
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This holds both for a self-gravitating systems (like a star cluster without gas) or a system
within an external potential field (like the embedded clusters discussed here). A cluster
with a smaller kinetic energy is referred to as subvirial and will collapse in the free-fall
time to revirialize. Similarly a cluster with a larger kinetic energy is supervirial and will
expand to revirialize (unless T > −U in which case the cluster is unbound and can continue
expanding without ever reaching a new equilibrium).

Rather than considering revirialization as a readjustment of the kinetic and potential
energy, more about the process can be learned by considering the orbital motions of the
stars. In a constant, non-changing potential stars will simply orbit the center of mass 2.
The low initial velocities of the stars imply that they start close to the outer edge of their
orbit. After some orbits the stars will be at random phases within their orbits, which will
be on average closer to the cluster center, so the cluster has collapsed. If the stars have
very similar orbital periods 3, as expected if they start out substructured with correlated
positions and velocities, it will take more orbits for the phases of the stars to become
effectively uncorrelated (i.e. the stars will for the first few orbits be at periastron and
apastron at roughly the same time). This leads to clusters fluctuating between collapse (as
the stars move to periastron) and expansion (as the stars move to apastron) over several
orbital times, before they virialize. Indeed these fluctuations have been observed in N-body
simulations that start with substructured initial conditions (e.g. Goodwin 2009).

In reality the background global gravitational potential is not fixed, but constantly
changes due to both the stellar collapse described above and due to structural variations
in the turbulent molecular cloud. This leads to the family of possible orbits constantly
changing and hence the orbits of the stars themselves will constantly change, leading to
a randomization of the stellar orbits, referred to as violent relaxation (Lynden-Bell 1967;
Sylos Labini 2012). This will have the effect of changing some of the initially very elliptical
orbits (due to the low initial velocities) into more circular orbits. Because stars with
different masses are affected in the same way by the global potential, violent relaxation
does not differentiate between massive and low-mass stars (unless the massive stars are on
different orbits). This distinguishes it from the dynamical friction and relaxation discussed
below.

The early dynamical evolution of an embedded cluster is not only affected by the global
potential of the gas through the initial collapse and violent relaxation, but also by the
local potential. Stars and stellar groups moving through a molecular cloud attract the
surrounding gas, leading to a increased density behind the perturber. This increased
density then attracts the perturber, causing it to slow down (Ostriker 1999). This effect is
referred to as dynamical friction and can decelerate objects to the sound speed (Indulekha
2013). This deceleration can assist in the accumulation of stars and groups of stars at the
center of the potential, if the molecular cloud is sufficiently dense (Indulekha 2013).

2In complex potentials the orbits do not have to be ellipses, but stars can follow paths that orbit the
center of mass many times before returning to their original positions of velocities. Some orbits can even
be chaotic, in which case no return to the original state is expected (Binney & Tremaine 2008).

3These orbital periods of the initially elliptical orbits will be twice the free-fall time (i.e. the time
needed to fall into the cluster center plus the time needed to return to the original position)
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The young stars do not stay embedded inside the molecular cloud. In fact very few
embedded clusters are found older than a few Myr (Leisawitz et al. 1989; Lada & Lada
2003), suggesting that the molecular cloud disperses in the first few Myr of a cluster’s
lifetime. For massive clusters this gas expulsion is likely caused by the stellar radiation
and outflows unbinding the molecular cloud (see Figure 1.2) (e.g. Dale et al. 2012, 2013).
If these forces have not succeeded in unbinding the molecular cloud after a few Myr, the
most massive stars will go supernova, driving away any remnants of the molecular cloud.
For less massive clusters the dispersal mechanism is more uncertain, as the lack of massive
stars in such clusters limits the effects of stellar feedback. Potentially these clouds unbind
due to tidal interactions with other molecular clouds or they might have been globally
unbound all along (which might help explain the small number of stars formed) (Bonnell
et al. 2011; Dobbs et al. 2011).

This dispersal of the molecular cloud significantly reduces the depth of the gravitational
potential well in which the stars reside. This change in the global potential might not only
cause violent relaxation, but could also unbind the cluster depending on (i) the star-
formation efficiency, (ii) whether the stars had already reached virial equilibrium before
the gas expulsion, (iii) the timescale of the gas expulsion, and (iv) the relative distribution
of the stars and the gas. Early analytical approximations (Hills 1980; Elmegreen 1983) and
N-body simulations (Tutukov 1978; Lada et al. 1984; Goodwin & Bastian 2006; Baumgardt
& Kroupa 2007) showed that a gas expulsion faster than the dynamical timescale needed
to revirialize could unbind a cluster with star-formation efficiencies less than 50%, while
clusters could survive with star-formation efficiencies of down to 30% if the gas expulsion
was gradual. The actual star-formation efficiencies in molecular clouds are only on the order
of a few percent, which suggests that star-forming regions will always unbind. However,
these calculations made the simplifying assumptions that the stars were in virial equilibrium
with the potential of the gas and that the gas and stars have the same density distribution
(e.g. Chen & Ko 2009).

In reality the free-fall time of ∼ 2 Myr is on the same timescale as the gas removal time,
suggesting that the stars might still be in collapse at the time the gas is removed (Goodwin
2009). This could increase the likelihood of a bound cluster forming afterwards. Further-
more due to the collapse and the dynamical friction described above the stars will typically
be much more compact than the gas, which means the contribution of the gas at the scale
of these young stars might be much less than the star-formation efficiency computed over
the whole cloud suggests. This effect could be amplified, if the stars efficiently accrete the
remaining gas in these embedded star clusters. This formation of a gas-poor, dense stellar
group is also seen in recent smoothed-particle hydrodynamics (SPH) simulations (Moeckel
& Bate 2010; Kruijssen et al. 2012).

From this analysis we might expect that bound clusters are most likely to be formed
out of star-forming regions which efficiently undergo collapse before the gas is removed,
either because of small initial velocities or due to dynamical friction. In such a condition
the stars can reach a dense state, where locally the stellar potential overwhelms the gas
potential, minimizing the effect of gas expulsion. This high star to gas mass ratio can
be further enhanced by efficient accretion onto the stars. On the other hand associations
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are more likely to form in star-forming regions where the global collapse is too slow to
merge the small groups of stars or the collapse is prevented altogether due to large initial
stellar velocities (possibly pumped up by ejections from unstable multiple systems formed
in prestellar cores). When the gas is expelled, these clumps of stars will be unbound with
respect to each other and move apart forming an association. Even if some clumps are
internally bound (as observed for Gamma 2 Vel by Jeffries et al. 2014), they will quickly
dissolve due to two-body relaxation (Moeckel et al. 2012).

1.1.3 Long-term cluster evolution

If the stellar group survives the gas expulsion and becomes a bound cluster, it will revirialize
in a few dynamical times. The evolution of the cluster does not end at that point, but
continues due to relaxation. Relaxation is similar to the violent relaxation discussed above
in that it alters the orbits of the stars around the center of mass. However, the orbit
now doesn’t change due to changes in the global potential, but due to changes in the
local potential, because the density distribution is not continuous, but discretized into
individual stars. So at small scales the potential keeps changing as stars move around.
In other words, if stars come too close to each other their orbits get deflected due to the
gravitation of the other star. The timescale on which this effect is important (i.e. the
relaxation timescale) can be estimated by multiplying the frequency of these interactions
by the number of interactions needed to completely randomize the orientation of a stellar
velocity, which gives (Binney & Tremaine 2008):

trelax ≈
0.1N

lnN
tdyn, (1.3)

where N is the number of particles and tdyn is the dynamical time (i.e. the free-fall time).
For stellar groups with few stars (N < 100) the relaxation time is very comparable to the
dynamical time (or gas dispersal time), making this an important effect to consider in the
early dynamical evolution. For larger stellar groups relaxation will only become important
for older clusters that remain bound.

Relaxation causes a net transfer of energy from the hot stars in the center to the cooler
stars in the outskirts (Lynden-Bell & Eggleton 1980; Gieles et al. 2011). This transfer
causes the central stars to collapse and form a dense core, while the cooler stars expand
and form a halo. Despite the energy transfer to the halo the core only heats up as it
revirializes, so the transfer of energy only increases the kinetic energy difference between
the core and the halo (i.e. the core has a negative heat capacity). Similarly the halo
actually cools down, while energy is transferred to it from the core. This cooling is further
increased by the escape of any fast-moving halo stars. These negative heat capacities cause
the collapse of the core to continue, until a central energy source prevents further collapse.
This energy is often assumed to come from star-binary interactions in which energy is
transferred from the binary orbit to the star (e.g. Kim et al. 2002; Heggie et al. 2006;
Converse & Stahler 2011), however for some clusters mass loss due to stellar evolution
might provide sufficient energy (Applegate 1986; Gieles et al. 2010a). Alternative heating
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sources have been proposed, such as the velocity kicks received by white dwarfs at formation
(Heyl 2008) and interactions with an intermediate mass black-hole (e.g. Trenti et al. 2007).
As the halo expands it will eventually reach the tidal radius beyond which the tidal field
from the host galaxy can strip of the stars (see Heggie 2001, for a review on the resulting
mass loss). An analytic approximation based on N-body simulations of the effect of this
evaporation and the mass loss due to stellar evolution (i.e. stellar winds, supernovas,
etc.) on the stellar content of the cluster is given by Lamers et al. (2005, 2013). Low-
density clusters in the Galactic plane giant molecular clouds can also be disrupted by tidal
interactions with molecular clouds on a disruption timescale, which depends on the density
of the cluster and the environment of the cluster (Gieles et al. 2006).

These stellar encounters also have the net effect to transfer energy from massive stars
to low-mass stars, so the massive stars sink to the center and are preferentially found in
the core. This process is called dynamical mass segregation. Equipartition (where the
kinetic energies of the massive and low-mass stars are equal) is never reached, because
the highest-energy low-mass stars are consistently ejected from the cluster and the core of
massive stars in the core develops a negative heat capacity, as discussed above.

1.2 Tracers of dynamical evolution

In section 1.1 we discussed how the dynamical evolution of a stellar group can be influ-
enced by many processes: revirialization (with possibly fluctuations), violent relaxation,
dynamical friction in the molecular cloud, the dispersal of the molecular cloud, and due to
relaxation both evaporation and dynamical mass segregation. To determine the relative
contribution of all of these processes we need observational constraints on the dynamical
state and evolution of stellar groups. Here I will discuss several tracers that can be used
to constrain this dynamical evolution.

1.2.1 Mass segregation

Mass segregation refers to the spatial separation of stars based on mass, with massive stars
having sunk to the center of the cluster. Many young clusters, but not all, do show mass
segregation (Schmeja et al. 2008; Parker et al. 2012). The advantage of mass segregation
as a tool of studying the dynamical state of a cluster is that there appears to be no way to
desegregate a cluster, so this implies that an unsegregated cluster has not yet undergone
any of the processes required to get mass segregation.

However, if mass segregation is found, there are many scenarios to explain it. The mass
segregation could have been primordial, due to a higher mass accretion rate in the center
of the stellar cluster (e.g. Bonnell & Bate 2006). Alternatively dynamical friction has a
larger effect on more massive objects, so it can cause more massive stars to sink to the
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center of an embedded cluster (Pelupessy & Portegies Zwart 2012; Indulekha 2013). Finally
an older cluster will undergo dynamical mass segregation on the relaxation timescale due
to the transfer of energy from high-mass to low-mass stars. Because the relaxation time
is much shorter in the small-N clumps in which stars form, these small-N clumps can
undergo dynamical mass segregate before global collapse and this mass segregation is then
conserved when these subclusters merge (McMillan et al. 2008; Allison et al. 2010). This
wide variety of possible causes of mass segregation makes it difficult to interpret the origin
of any observed mass segregation.

1.2.2 Spatial substructure

All local (relatively low-mass) molecular clouds show a large amount of substructure (André
et al. 2013), which appears to imprint substructure on the spatial distribution of young
stars (Evans et al. 2009). The level of substructure is often measured by the Q-parameter,
which is given by the ratio of the mean distance between stars and the mean distance in a
minimum spanning tree connecting all stars (Cartwright & Whitworth 2004, 2009). If the
stars are organized in several clumps, the distance between these clumps will only enter
once in the minimum spanning tree, but many times in distances between individual stars,
so the mean distance between stars will increase much more than the mean distance in the
minimum spanning tree.

As described above an initial collapse can cause these subclusters to merge, which leads
to a wiping out of the substructure as measured by the Q-parameter on a dynamical
timescale (Parker et al. 2014), so the retainment of substructure in stellar groups is a clear
sign of the youth of the system (or at least of a very recent merger).

On the other hand expanding associations can retain their substructure for much longer
(Parker et al. 2014), assuming the clumps did not merge before the expansions started.
So any observed substructure in associations suggests that the star-forming region has
started to expand (presumably due to gas expulsion) before the subclusters merged. This
argument was used by Wright et al. (2014) to argue that the substructure they observed in
the association Cygnus OB2 showed that the association had never gone through a dense
phase.

1.2.3 Binary properties

Close stellar encounters can affect the orbits of binary stars and should leave their imprint
on the binary star population. Analytical approximations and simulations of star-binary
encounters suggest that wide binaries with orbital velocities less than the typical encounter
velocities get preferentially destroyed, while for close binaries interactions preferentially
decrease the separation (Hills 1975). To observationally separate these dynamical effects
on the binary population from the initial distribution of orbital parameters, requires the
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study of a wide variety of different stellar groups at various ages and densities (see review
from Goodwin 2010). Recently Parker & Reggiani (2013) showed that the distribution of
the secondary to primary mass ratios in binaries is not strongly affected by dynamics and
could be used as a probe for the initial conditions of binary stars and hence to understand
binary formation.

Unfortunately at present only the field stars in the solar neighborhood allow the orbital
properties to be studied in great detail (Raghavan et al. 2010; Janson et al. 2012). These
stars show a wide range of orbital separations over 6 orders of magnitude from a few stellar
radii to 0.5 parsec (i.e. comparable to the size of a typical star cluster). This wide range
of orbital separations means that a wide variety of different techniques are required to
retrieve the full set of binary properties, from radial velocity surveys to find the orbital
motions of the closest binaries, to high-resolution direct imaging to find visual binaries at
intermediate separations, to common proper motion pairs to distinguish the widest binaries
from random alignments with background stars. Even with all these different techniques,
surveys of binaries will only be complete for the closest stars (and most massive secondary
stars). Even for the closest clusters there is be a gap in separation between stars observable
through radial velocity surveys and those that can be detected through direct imaging.
The current observational constraints for many different primary stellar masses and stellar
environments is reviewed by Duchêne & Kraus (2013).

Over limited ranges in separation and mass ratio, binaries have been observed in star-
forming regions. King et al. (2012b,a) collected the information on visual binaries in five
local star-forming regions with a variety of stellar densities. They showed that over the
separation ranges that the surveys had in common, there was no significant differences in
the binary fraction with density, although the lowest-density star-forming region Taurus
did show a somewhat higher binary fraction (King et al. 2012b). Some statistically sig-
nificant differences were found in the separation distribution between stars in these young
regions and the field population (King et al. 2012a). However, Parker & Goodwin (2012)
caution that these statistically significant offset could be due to random fluctuations in the
initial substructured conditions of these stellar groups, rather than signify a real physical
difference between the origin of stars in the field and these star-forming regions.

1.2.4 Virial equilibrium

So far, the discussed tracers have not required the measurement of the present dynamical
state of the cluster. Although these indirect tracers can tell us a lot about the dynamical
evolution of a stellar group, ideally the velocities of the stars are also measured to get
the current dynamical state. Measuring these velocities and using them to constrain the
dynamical state of stellar groups is the major focus on the thesis. The first goal is often
to determine whether a cluster is in virial equilibrium in which the random motions of the
stars are balanced by the gravitational attraction between them.

According to equation 1.2 this requires the calculations of both the potential and the
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kinetic energy. For the potential energy we need a model of the density distribution in the
stellar group, including both the star and any gas mass. Stellar masses are often computed
from the stellar temperatures, which themselves are ideally derived from spectra, but are
often derived from photometric colors instead. Stellar mass are poorly constrained with
only the masses for our own Sun and double-lined, eclipsing binaries known from first
principles (e.g. Feiden & Chaboyer 2012; Torres et al. 2013). For young, still contracting
stars observed in these young stellar groups, the masses are even more uncertain with very
few eclipsing binaries available at these young ages (see Morales-Calderón et al. 2012, and
references therein). So stellar masses often are computed from stellar evolution models,
which can be calibrated to the eclipsing binary masses (Hillenbrand & White 2004). The
uncertainties in the gas mass are also large, because the dominant component in mass,
molecular hydrogen, can not be observed directly. Instead alternative tracers (i.e. molec-
ular lines, dust continuum emission, interstellar reddening) are measured, which then are
extrapolated to a total mass based on assumptions about the interstellar medium.

Further uncertainties in the potential energy are added because we see a two-dimensional
projection of a three-dimensional density distribution. As long as the observed density dis-
tribution is circularly symmetric, assuming spherical symmetry seems reasonable. The
expected velocity dispersion has been computed for many commonly observed circularly
symmetric density distributions (e.g. Portegies Zwart et al. 2010), leading to a more ob-
servationally accessible form for computing virial equilibrium:

α = η
σ2rhm

GM
, (1.4)

where α is the virial ratio, which is one in virial equilibrium, η is a constant depending on
the observed circular density distribution, σ is the one-dimensional velocity dispersion, rhm

is the half-mass radius (i.e. the radius containing half of the mass), G is the gravitational
constant, and M is the total mass of the region. However, in a substructured density
distribution, any deprojection becomes extremely arbitrary, prohibiting the computation
of an accurate gravitational potential. Similarly if the gas mass is significant, assumptions
have to be made about the distributions of this gas with respect to the stars. Although it
might be possible to base the assumed distribution along the line of sight on the spatial
distribution on the plane of the sky, this can still cause large systematic uncertainties, es-
pecially considering recent suggestions that most of the observed gas might be surrounding
relative gas-poor stellar groups (Kruijssen et al. 2012).

Given a mass and density distribution, the last parameter needed to measure the virial
ratio is the velocity dispersion. This requires either measuring the velocity along the line of
sight through Doppler shifts in high-resolution spectra (i.e. radial or line-of-sight velocities)
or measuring the velocities along the plane of the sky due to astrometric shifts with respect
to the background stars (i.e. proper motions). Radial velocities can be obtained for any
target, as long as it is bright enough to get high-resolution spectra. However the radial
velocity distribution might be greatly affected by binary orbital motions (see chapter 2).
On the other hand, proper motions require the stars to be close enough (or fast enough)
to shift a detectable amount over the available observational baseline 4

4For a precision of 1 km s−1 a shift in the stellar position of about 0.2 AU over 1 year has to be

14



1.2. Tracers of dynamical evolution

In general the velocity dispersion will only be measured for a subset of stars in a stellar
group and these stars might not be representative of the whole population. A very common
bias is to only observe the brightest (i.e. most massive) stars in a stellar group. If these
stars are on similar orbits as the lower-mass stars this will not affect the measured velocity
dispersion. However if the stellar group is mass segregated, the massive stars are not
representative of the full population of stars. In that case the observed velocity dispersion
will have to be compared with the gravitational energy for the population of more massive
stars, rather than the gravitational energy of the whole stellar group (see chapter 3 for an
example).

Another common bias is to observe a higher fraction of stars in the denser center of
the stellar group than in the low-density outskirts. This could be, because the outskirts
are outside of the field of view of the telescope, or that confusion with the background
populations makes memberships more difficult to determine in the low-density regions.
Such a bias can lead to an overestimate of the velocity dispersion of a cluster (because the
velocity dispersion is higher in the center), leading to an erroneous conclusion on the virial
ratio. This bias can also be understood by considering that virial equilibrium is reached,
when all stars are in a random position in their orbits. If only the stars in the center are
observed, this will lead the observer to conclude that stars are preferentially located in
the inner parts of their orbit, leading to the conclusion that the cluster will expand. This
bias can be resolved by computing the radial dependence of the velocity dispersion and fit
this to the observed velocities. For a spherical cluster in virial equilibrium this velocity
dispersion can be found with the Jeans equation (Binney & Tremaine 2008):

d(nσ2
r )

dr
+ 2

β

r
nσ2

r = −ndΦ

dr
, (1.5)

where n is the density of tracer particles, r is the distance from the cluster center, σr is the
velocity dispersion along r, β is the ratio of the velocity dispersion perpendicular and the
velocity dispersion parallel to r, and Φ is the gravitational potential. Solving the Jean’s
equation requires knowledge of the gravitational potential, just as when computing the
virial equilibrium from the total energetics. However, the Jean’s equation depends on an
additional variable, namely the anisotropy ratio β. In the same potential well tangential
velocities (i.e. circular orbits) will contribute more the line-of-sight velocity dispersion at
large projected radii, while a cluster with more radial velocities (i.e. elliptical orbits) will
have a more centrally concentrated velocity dispersion profile. Clusters are often assumed
to be transiting from an isotropic in the center to tangentially anisotropic at the outskirts
(e.g. Michie & Bodenheimer 1963; van de Ven et al. 2006; Breddels & Helmi 2013), which
leads to a flatter velocity dispersion profile with projected radius than expected for a cluster
with a purely isotropic velocity distribution.

observed. For a distance d this corresponds to a proper motion of 0.2
(
kpc
d

)
milli-arcseconds per year. Gaia

(http://sci.esa.int/gaia/) will reach a precision of several micro-arcseconds per year.
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1.2.5 Collapse or expansion

Although the virial ratio does give a prediction of whether a stellar group will expand or
collapse, it does not give any information of whether the cluster is already expanding or
collapsing. Furthermore, there are often large systematic uncertainties in the computation
of the virial ratio, as discussed in section 1.2.4. So, ideally one would want to have a more
direct tracer of the collapse or expansion of a stellar group.

Detecting collapse or expansion directly requires measuring the velocities and spatial
positions along the same dimension. This is easy with proper motions, where one can check
for a preferential orientation of the proper motions towards or away from the center of the
stellar group. With radial velocities a proxy has to be used for distance along the line
of sight. For embedded clusters one possibility is to use the interstellar extinction, which
increases with column depth into the cloud (see chapter 4).

1.2.6 Cluster rotation

Measuring the velocities in a cluster can also tell us whether a cluster as a whole is rotating.
Because angular momentum is conserved, this quantity should be roughly conserved over
the lifetime of a cluster, except for angular momentum carried away by stellar ejections.
Even if a large fraction of the total mass and angular momentum of a cluster is lost, the
specific angular momentum (i.e. angular momentum per unit of mass) might be reasonably
conserved, as long as ejected stars have a similar angular momentum as the bound stars.
In embedded clusters the specific angular momentum could change significantly due to
angular momentum exchange with the gas, but the specific angular momentum measured
for older clusters should often be representative of the specific angular momentum at the
time the cluster emerged from the molecular cloud.

Unfortunately, velocity gradients observed in young stellar groups do not necessarily
indicate rotation. For example, the velocity gradient might just reflect a shear in the
velocities, rather than a circular motion, as Fűrész et al. (2006) suggested for the velocity
gradient they observed in Orion. Alternatively this gradient can be caused by non-spherical
collapse or expansion (Proszkow et al. 2009; Tobin et al. 2009). Proper motions should be
able to distinguish these scenarios, allowing the specific angular momentum of young stellar
systems to be determined. Both shearing and aspherical collapse or expansion should not
affect older clusters, so these can also be used to determine the specific angular momentum
distribution with which they leave their natal molecular cloud.
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2 Correcting the radial velocity distri-
bution for binary orbital motions

Abstract

Radial velocity measurements can be used to constrain the dynamical state of a stellar
group. However, for stellar groups with a velocity dispersion smaller than a few km s−1 the
observed radial velocity distribution is broadened by the orbital motions of binary stars,
which can lead to erroneous conclusions about the dynamical state of a system. Here
I present a procedure to characterize the intrinsic velocity distribution of a cluster from
either single or multi-epoch radial velocities even for a velocity dispersion of a fraction of
a km s−1. I investigate a maximum likelihood procedure, which was pioneered separately
by Odenkirchen et al. (2002), Kleyna et al. (2002), and Martinez et al. (2011). Assuming
a period, mass ratio, and eccentricity distribution for the binaries in the observed cluster
this procedure fits a dynamical model describing the velocity distribution for the single
stars and center of masses of the binaries, simultaneously with the radial velocities caused
by binary orbital motions, using all the information available in the observed velocity
distribution. I test the capability of this procedure to reproduce the velocity dispersion of
an observed stellar group, using single-epoch radial velocity data of an open cluster NGC
188, both single- and multi-epoch data for a young massive cluster R136, and Monte Carlo
simulations.

We find that if the binary properties are well characterized as for solar-type stars, the
procedure can successfully reproduce a velocity dispersion of only 0.5 km s−1 observed in
NGC 188 with a single epoch of radial velocity data. However, if the binary properties
are less well known like for OB stars, the method can only just distinguish between an
unbound stellar group and a group in virial equilibrium for typical velocity dispersions of
young massive stellar groups (& 4 km s−1). By extending the maximum-likelihood method
to multi-epoch data, we show that the systematic uncertainties on the fitted velocity dis-
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CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

persion can be improved to only a few percent by using only two epochs of radial velocities.
This procedure offers a promising method to reproduce the width of a velocity distribution
corrected for the binary orbital motions.

The results (and most of the text and figures) presented here have already been pub-
lished in Cottaar et al. (2012b) and Cottaar & Hénault-Brunet (2014).

2.1 Introduction

A crucial part of determining the virial state of a stellar group (i.e. whether it is in virial
equilibrium or will expand or collapse) is to measure its velocity dispersion (see section
1.2.4). If the radial velocities of a large number of stars is available a more sophisticated
dynamical model based on the potential energy and density profile of the stellar group can
be tested. In such a model the velocity distribution is not characterized by a single velocity
dispersion, but by a velocity distribution which varies with mass and/or distance from the
center and this velocity distribution could be non-Gaussian. In the old, massive globular
clusters, measurements of the radial dependence of the velocity dispersion have been used
to for example show consistency of the stellar dynamics with the King (1965) thermal
equilibrium model (Gunn & Griffin 1979), to constrain the anisotropy of the cluster (e.g.
van de Ven et al. 2006; Sollima et al. 2012) and even to check for deviations from Newtonian
gravity (e.g. Baumgardt et al. 2005; Sollima et al. 2012). These studies were aided by the
relatively high velocity dispersions and the relatively low binary fractions (e.g. Gunn &
Griffin 1979; Davis et al. 2008) of most globular clusters.

These studies can not be simply extended to lower mass stellar groups because these
tend to have smaller velocity dispersions. For small velocity dispersion (i.e. less than
a few km s−1) the radial velocities from binary orbital motions can inflate the measured
velocity dispersion of a stellar group by many km s−1 (e.g. Kouwenhoven & de Grijs 2008,
2009; Gieles et al. 2010b; McConnachie & Côté 2010). The importance of these binary
orbital motions depends on the original velocity dispersion, the binary fraction and the pe-
riod, mass ratio, and eccentricity distributions of the binaries in the stellar group. These
velocities induced by binary orbital motions completely mask the very small velocity dis-
persions (< 1 km s−1) expected in open clusters (e.g. Geller et al. 2008, 2010) and possibly
in ultra-faint dwarf spheroidals (e.g. McConnachie & Côté 2010). Even the larger velocity
dispersions of young massive clusters (e.g. Bosch et al. 2009; Gieles et al. 2010b; Cottaar
et al. 2012a; Hénault-Brunet et al. 2012a), local star-forming regions (e.g. Tobin et al.
2009), and some low-mass globular clusters (e.g. Odenkirchen et al. 2002; Blecha et al.
2004; Sollima et al. 2012) can be inflated by binaries.

In Figure 2.1 we have illustrated the effect of binary orbital motions on the probability
density function and cumulative distribution of a single epoch of radial velocity data. The
dotted line traces a Gaussian with a width of 1 km s−1, representing the velocity distribution
of single stars and the center of masses of binaries in the observed cluster. The dashed line
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Fig. 2.1 — Probability distribution function (left) and cumulative distribution function
(right) for radial velocity offsets from the mean velocity for velocities drawn from a Gaus-
sian distribution with a dispersion of 1 km s−1 (dotted, equation 2.2), the velocity offsets
expected due to binary orbital motions (dashed, equations 2.3 and 2.4), and the velocity
distribution for a cluster with a velocity dispersion of 1 km s−1 and a 100% binary fraction
(solid), which is the convolution of the dotted and dashed distribution (equation 2.1). Note
that the binary orbital motions have a significant probability of giving a velocity offset on
the order of tens of m s−1, leading to a very high central peak in the probability density
function, which has been cut off in the left panel.

shows the probability distribution of radial velocity offsets induced by binary orbits under
several assumptions about the binary properties discussed in 2.2.2. The solid line finally
shows the convolution of these distributions, representing the distribution from which the
observed radial velocities will be drawn, assuming a binary fraction of 100%. The binary
orbital motions both broaden the Gaussian distribution and add a high-velocity tail to
the distribution. The goal in this chapter is to present a procedure which can be used
after measuring a single epoch of radial velocities (having a distribution similar to the
solid line) to characterize the intrinsic velocity distribution (dotted), assuming the binary
period, mass ratio, and eccentricity distributions, which corresponds to fixing the shape of
the dashed line. This fitting can accurately reproduce the intrinsic velocity distribution,
because the velocities added due to binary orbital motions will generally have a very
different velocity distribution from the intrinsic velocity distribution.

An often used method to deal with the binary contamination is to obtain multi-epoch
observations, which can be used to distinguish between single and binary stars (e.g. Geller
et al. 2008; Tobin et al. 2009; Geller et al. 2010; Cottaar et al. 2012a). The single stars
(in this context generally defined as stars for which no significant radial velocity variations
were found) as well as any binaries for which the velocity of the center of mass has been
measured, can then be used to determine the velocity distribution of the cluster. However
even after a large number of observations, there might still be undetected binaries, which
broaden the measured velocity distribution. For example a circular solar equal-mass binary
with a period of a 1000 years, still has a velocity amplitude of 2 km s−1.
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In absence of multi-epoch data or to correct for any remaining undetected binaries Monte
Carlo simulations can be used to estimate for which velocity dispersion the broadening due
to an assumed binary population would lead to the observed width of the distribution (e.g.
Gieles et al. 2010b; McConnachie & Côté 2010; Sollima et al. 2012). These methods tend
to focus on reproducing only the width of the distribution, rather than the full velocity
distribution observed.

We investigate here an alternative strategy, which was used separately by Odenkirchen
et al. (2002), Kleyna et al. (2002), and Martinez et al. (2011). If the binary period, mass
ratio, and eccentricity distributions are roughly known for the type of cluster being studied,
this can be used to simultaneously fit the intrinsic velocity distribution and the fraction of
binaries. The high-velocity tail caused by the orbital motions of close binaries can be used
to determine the binary fraction in the observed cluster, with the distribution of velocities
in the tail acting as a test on the assumed binary properties. From the high-velocity tail
the effect of these binaries can then be extrapolated to lower velocities to quantify the
degree with which the velocity distribution has been broadened by binaries.

It is not obvious that the same method can be applied to successfully recover the
intrinsic velocity dispersion of young massive clusters because (1) the OB stars dominating
the light of these systems have a high spectroscopic binary fraction (e.g. Sana et al. 2012,
and references therein), (2) the distributions of orbital parameters of massive binaries
are relatively loosely constrained compared to solar-type stars, (3) higher masses imply
more contaminations to the velocity dispersion because the orbital velocity scales with
the mass of the primary as vorb ∝ M1/3, (4) the period distribution of massive binaries
generally appears skewed towards shorter periods (see section 2.3.2), which also implies
more contaminations, and (5) the accuracy of radial velocity measurements is generally
lower for OB stars (typically a few km s−1 or more) due to rotational broadening of their
spectral lines. Dedicated tests of the method using tailored Monte Carlo experiments are
therefore needed. It is also desirable to perform tests on a young massive cluster for which
the intrinsic velocity dispersion was measured from an intensive dataset of multi-epoch
radial velocities (i.e. after selecting out spectroscopic binaries).

In section 2.2 we discuss the proposed method for single-epoch data and test the method
by using Monte Carlo simulations as well as by showing that it can reproduce the velocity
dispersion of 0.5 km s−1 observed in the old, open cluster NGC 188 over a 13-year baseline
by Geller et al. (2008). This section is based on Cottaar et al. (2012b). Then we will
discuss in section 2.3 (published in Cottaar & Hénault-Brunet 2014) an extension to include
multiple epochs and how this helps to get accurate velocity dispersion for regions, where
the binary properties are poorly constrained. Here we take advantage of the unique dataset
provided by the VLT-FLAMES Tarantula Survey (VFTS; Evans et al. 2011). From multi-
epoch spectroscopic data of massive stars in the 30 Doradus region of the Large Magellanic
Cloud, Hénault-Brunet et al. (2012a) measured the intrinsic velocity dispersion of the
young massive cluster R136 (M ∼ 105 M� - e.g. Andersen et al. 2009; age ∼ 2 Myr - e.g.
Crowther et al. 2010, de Koter et al. 1998), corrected for the orbital motions of binaries.
Sana et al. (2013) studied the spectroscopic binary fraction and distributions of orbital
parameters (period and mass ratio) of the O-type stars in the broader 30 Doradus region.
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We will use Monte Carlo simulations and the R136 dataset to illustrate the accuracy of
the procedure, even when binary properties are poorly constrained. We also provide the
necessary python code 1 for calculating the likelihood to reproduce the observed radial
velocities given an intrinsic velocity distribution, measurement uncertainties, and a set of
binary orbital parameter distributions for both single- and multi-epoch datasets.

2.2 Single-epoch radial velocities

In section 2.2.1 we describe the maximum-likelihood analysis we use to fit the intrinsic
velocity distribution and the binary orbital velocity distribution. The adopted binary
properties based on solar-type field stars are discussed in section 2.2.2. In section 2.2.3
we use Monte Carlo simulations to explore the accuracy of the method, computing the
statistical uncertainty as a function of the velocity dispersion, binary fraction, and number
of observed stars, as well as the systematic offsets that can be introduced by differences
between the assumed and true binary properties. Here we will also provide a tool to
estimate the sample size needed to measure the dynamical state or binary fraction of a
cluster with a desired precision prior to the observations. We test our model on the old
open cluster NGC 188 in section 2.2.4. Geller et al. (2008, 2009); Geller & Mathieu (2011)
present multi-epoch radial velocity data for a large number of stars in this cluster and
found that the single stars in their data set had a velocity dispersion of 0.49+0.07

−0.08 km s−1.
We show that we can reproduce their measured velocity dispersion using only a single
epoch of their data. We discuss the limitations of the method in section 2.2.5.

2.2.1 Method

We consider a single epoch of Nobs radial velocity observations vobs, i with measurement
uncertainties of σobs, i of stars with mass estimates mi. Our goal is to fit a dynamical
model to the binary-corrected velocity distribution of the stars in the cluster for a set of
assumptions about the binary period, mass ratio, and eccentricity distributions. As free
parameters in this fit we will use the binary fraction in the cluster as well as any parameters
used in the dynamical model (e.g. mean velocity, velocity dispersion).

First we calculate the likelihood function, which gives the likelihood of reproducing the
observations given the parameters. This likelihood function is unique for every star, as
it depends on the measurement error, the mass estimate of the star, and possibly other
stellar properties taken into account in the dynamical model (section 2.2.1.1). Then we use
the maximum likelihood estimator to convert the likelihood to reproduce the observations
as a function of the parameters into a probability distribution of the parameters given the
observed radial velocities (section 2.2.1.2).

1https://github.com/MichielCottaar/velbin
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2.2.1.1 Incorporating binaries

The observed velocities can be seen as randomly drawn from the dynamical model (vdyn)
describing the intrinsic velocity distribution. We will take the measurement uncertainty
into account directly in this dynamical model. So for the single stars this velocity will match
the observed velocity. For a random subset of stars (the binaries) we add an additional
velocity due to binary orbital motions (vbin). The probability for each star to be a binary
depends on the binary fraction of the cluster and the distribution of the added velocities
depends on the assumed period, mass ratio, and eccentricity distribution as well as the
mass of the star. To calculate the probability of observing a certain velocity (vobs) for
a star in a binary, we have to integrate over the probability of any combination of vdyn

and vbin, for which vdyn = vobs − vbin. This corresponds to taking the convolution of the
distributions of vdyn and vbin. The full velocity distribution is given by the sum of the
distributions for single and binary stars:

Li(vobs, i) = (1− fbin)Ldyn, i(vobs, i)+

fbin

∫ +∞

−∞
Ldyn, i(vobs, i − vbin) · Lbin, i(vbin) dvbin,

(2.1)

which gives the likelihood of measuring a velocity vobs, i as a function of the binary fraction
(fbin) and any other free parameters in the dynamical model. The subscript i is added
to the likelihood function (Li) to emphasize that this likelihood function is different for
every star due to its dependence on the measurement error and the mass of the star.
We note that in the derivation of equation 2.1 we assumed that the single stars and the
center of masses of the binaries have the same dynamical distribution. Mathematically
this assumptions is unnecessary and for some dynamical models it might be useful to drop
this assumption (e.g. dynamical models that include mass segregation, where the velocity
distribution depends on the total mass of a binary).

In equation 2.1 we have not taken any triple or higher-order systems into account. For
solar mass these higher-order systems are rare (Raghavan et al. 2010). However, for more
massive primaries the fraction of triple and higher-order system is higher (Zinnecker &
Yorke 2007; Raghavan et al. 2010). For the system to be stable the radial velocity of any
star will still be dominated by a single (generally the closest) companion, which could be
either a single star or a multiple system with a much smaller semi-major axis. This implies
that the radial velocity offsets expected for a star in triple and higher-order systems can
to first order still be approximated by that of a binary.

In this chapter we will focus on measuring the velocity dispersion of a cluster. Using
the maximum likelihood estimator the standard deviation and mean of a set of observed
velocities can be derived by maximizing the likelihood that the observations were drawn
from a Gaussian distribution (Pryor & Meylan 1993). So in order to measure the mean
velocity and velocity dispersion corrected for orbital motions of the stars in a cluster, we
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will use a Gaussian model to fit the intrinsic velocity dispersion

Ldyn, i(vdyn) =
1√

2π(σ2
i + σ2

c )
exp

(
−

(vdyn − µc)2

2(σ2
i + σ2

c )

)
, (2.2)

which gives the likelihood for a velocity vdyn given a measurement error σi and the mean
velocity µc and velocity dispersion σc of the cluster.

If the observed stars have not been drawn randomly from the cluster, the velocity
dispersion of the observed stars is no longer representative for the velocity dispersion of the
whole cluster. As most spectroscopic observations will focus on the brightest stars, there
will generally be a deviation between the observed velocity dispersion of these stars and
the velocity dispersion of the cluster, if the cluster is mass segregated. When the observed
stars are not representative of the whole population, a more realistic model could still be
fitted. In this case the velocity dispersion (σc) should no longer taken to be a constant for
all stars, but the dependence of the velocity dispersion on the distance from the cluster
center or the mass of the star should be modeled. Another possible extension would be
to model rotation, by allowing µc to vary across the cluster. In our efforts to calculate
the accuracy with which the intrinsic velocity distribution can be retrieved (section 2.2.3)
we will focus on the simple case with only a Gaussian intrinsic velocity distribution and
hence on the accuracy with which we can measure a single velocity dispersion. In section
2.2.4 we will have to adjust the model for the intrinsic velocity distribution when fitting
the radial velocity data from NGC 188 to take into account the contamination of fore- and
background stars in the observed sample.

Given a set of assumptions about the binary period, mass ratio, and eccentricity distri-
butions, we numerically calculate the distribution of radial velocity offsets due to binary
orbital motions. We start by randomly drawing a large number (∼ 105) of binaries with
period Pj , mass ratio qj and eccentricity ej from the assumed distributions. In addition
to these we draw for every binary a random time tj since the last passing of periastron.
To minimize the time of the computation, we have pre-computed a dense two-dimensional
grid giving the relative velocity between the binary components for various eccentricities
(0 ≤ ej < 1) and phases (0 ≤ tj/Pj < 1) for a period of 1 year and a semi-major axis of 1
AU. The velocity taken from this grid can be used to calculate the velocity of the observed
star through

vj =

(
mi

M�

) 1
3
(

yr

Pj

) 1
3 qj

(1 + qj)
2
3

vgrid(ej , tj/Pj), (2.3)

where mi is the mass of the observed star, and vgrid is the velocity calculated for the closest
match in eccentricity and phase from the table.

In order to calculate the distribution of velocity offsets, we still have to take into account
the projection of the binary motions along the line of sight. Such a projection for a star with
an absolute velocity offset vj in three dimensions will give a uniform probability between
−vj and +vj to get a certain velocity offset along the line of sight. This flat distribution
implies that in the calculation of the total probability to have a velocity offset due to binary
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CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

motions of vbin, the contribution of all binaries with vj < |vbin| is zero, while all binaries
with vj > |vbin| contribute a probability of 1

2vj
. For the list of primary velocities obtained

(eq. 2.3) this gives for the likelihood of binary-induced motions to produce a radial velocity
offset vbin

Lbin, i(vbin) =
∑

j;vj>|vbin|

1

2vj
, (2.4)

where we sum the 1
2vj

for all vj > |vbin|. The velocity distribution obtained using equations
2.3 and 2.4 for the solar-type field star binary property distributions discussed above has
been shown in Figure 2.1 as a dashed line for a primary mass of 1M�.

In practice we calculate the likelihood velocity distribution for binary-induced motions
only for a single primary mass for a dense grid of possible radial velocity offsets. If the mass
of an observed star is known, the likelihood distribution can be easily converted to this new

primary mass by multiplying the grid of radial velocity offsets with
(
m1
M�

) 1
3 and dividing

the computed probabilities by the same amount (keeping the normalization intact). If the
period, mass ratio, or eccentricity distribution are known to change as a function of mass
or some other observable (e.g. distance from the cluster center), we have to recalculate the
likelihood function for binary orbital motions (equations 2.3 and 2.4) for every observed
star.

2.2.1.2 Fitting parameters

Using equation 2.1 we can combine the intrinsic velocity distribution predicted by the
dynamical model (e.g. equation 2.2) with the distribution of velocities due to binary orbital
motions (equation 2.3 and 2.4) to calculate the likelihood of observing a given velocity as
a function of the binary fraction and any parameters describing the dynamical model of
the intrinsic velocity distribution. In its most general form this can be written as Li(vi|x),
where vi is the observed velocity, x is the set of free parameters, and Li is the likelihood
function, which will be different for every star, because it depends on the measurement
error of the observation, the mass of the star, and any other observables included in the
dynamical model. The total likelihood of reproducing all observed velocities is then given
by L(v|x) =

∏
i Li(vi|x). For a large number of observed stars this number will generally

get too small for computers to compute (even for a well fitting model), so in practice we
calculate the logarithm of the likelihood given by ln(L(v|x)) =

∑
i ln(Li(vi|x)).

The likelihood distribution of reproducing the observation given the parameters (L(v|x)),
which has been computed above, has to be converted to the probability distribution of
the free parameters given the observations (P (x|v)). Without any prior information on
the probability distribution of the parameters, Bayesian inference states that L(v|x) and
P (x|v) have the same distribution, with the only difference being is that P (x|v) has been
normalized

P (x|v) =
L(v|x)∫

x L(v|x) dx
. (2.5)
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Fig. 2.2 — The distribution of absolute velocities (i.e. not projected along the line of
sight) due to binary orbital motions calculated for the period, mass ratio, and eccentricity
distributions of the solar-type field stars (see text; Raghavan et al. 2010; Reggiani & Meyer
2011) calculated from equation 2.3 in blue and the best-fit log-normal in green. The log-
normal has a width of 0.84 log10(km s−1) and a mean of 0.08 log10(km s−1).

Because the two distributions have the same shape, the set of parameters which maximize
the likelihood of reproducing the observations will be the best-fit parameters.

As the number of fitted parameters increases, calculating the normalization in equation
2.5 becomes increasingly computationally expensive. An efficient way to explore the prob-
ability distribution of the parameters is through a Markov Chain Monte Carlo simulation.
This procedure will take a constrained random walk through the parameter space, produc-
ing a chain of parameters, whose distribution follows the probability distribution. So the
distribution of the values of a single parameter in this chain, will provide the probability
distribution for this parameter, which will be automatically properly marginalized over all
the other free parameters.

2.2.2 Solar-type binary properties

Because there is a degeneracy between the effects of the period distribution, mass ratio
distribution, eccentricity distribution and binary fraction on the observed single-epoch
velocity distribution, it is not possible to fully constrain the binary properties using only
a single epoch of radial velocity data. So a set of assumptions about these properties will
have to be made to model the velocity distribution due to the orbital motions as described
in section 2.2.3. Because the binary properties have been shown to significantly change
with mass (Burgasser et al. 2007; Raghavan et al. 2010; Chini et al. 2012), the choice of a
period, mass ratio, and eccentricity distribution will generally depend on the mass range
of the observed stars.
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CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

In many clusters the observed stars will tend to be solar-type due to either the evolution
of the more massive stars in dwarf spheroidals or low-mass globular clusters or due to the
lack of massive stars in low-mass local star-forming regions. So throughout this chapter we
will use the well observed binary properties for the solar-type field stars. For the period
distribution we use the log-normal distribution with a mean period of 5.03 and a dispersion
of 2.28 in log10 days, which was found by Raghavan et al. (2010). For the secondary to
primary mass ratio (q) we use the power-law from Reggiani & Meyer (2011) of dN

dq ∼ q
−0.5

for 0.1 < q < 1. By setting the maximum q to one we make the assumption that the
observed (brightest) star in a binary will always be the most massive one. Raghavan et al.
(2010) found a lack of high eccentricities for binaries with low periods. We take this into
account be drawing the eccentricities from a flat probability distribution between 0 and
emax with

emax =
1

2
[0.95 + tanh(0.6 log10

P

days
− 1.7)], (2.6)

as proposed in Parker & Goodwin (2009). For these binary properties the distribution of
the sizes of the three-dimensional velocity differences between the primary star and the
center of mass of the binaries (calculated with eq. 2.3) can be very well approximated by
a log-normal with a mean of 0.08 log10 km s−1 and a dispersion of 0.84 log10 km s−1 (see
Figure 2.2).

An important caveat with using the binary properties of the field population is that the
solar-type binary properties might not be universal. The field star binary population might
simply be a superposition of the binary properties in a large range of different star-forming
regions with different binary properties. Furthermore we expect dynamical evolution to
have altered the initial binary properties in older clusters (e.g. Marks et al. 2011).

Despite these caveats we show in section 2.2.4 that we can accurately describe the single-
epoch velocity distribution of the dynamically old open cluster NGC 188 using the binary
properties of the solar-type field stars. In section 2.2.3.2 we will discuss the systematic
offsets in the measured velocity dispersion and binary fraction induced, when the binary
properties in the observed cluster do not match these assumptions.

2.2.3 Monte Carlo simulations

Besides the statistical (random) uncertainty, which can be calculated through the Markov
Chain Monte Carlo simulations, there might be an additional systematic error in the best-
fit intrinsic velocity distribution if the assumed binary properties do not accurately describe
the binaries in the cluster. Here we study the behavior of both the statistical and systematic
uncertainty through a large suite of Monte Carlo simulations, where we create fake sets of
radial velocity data and fit these with the procedure described in section 2.2.1.

In the Monte Carlo simulations described in section 2.2.3.1 we ensure that there is no
systematic error by using the same binary properties to create the radial velocity data
sets as we use to fit them, so we can focus purely on the statistical uncertainty and its
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2.2. Single-epoch radial velocities

dependence on the binary fraction, velocity dispersion, and number of observed stars. In
section 2.2.3.2 on the other hand we greatly increase the number of observed stars to
minimize the statistical uncertainty, so that we can focus on the effect on the measured
velocity dispersion if we use different binary properties to create the data sets as we use
to fit them.

Throughout this section we will ignore the effect of the measurement errors of the ob-
served radial velocities. For a normally distributed measurement error and a Gaussian
intrinsic velocity distribution, the measurement error and the velocity dispersion are ef-
fectively indistinguishable (equation 2.2). As long as the measurement error is sufficiently
small that σ2

c ≈ σ2
c + σ2

i , the effect of the measurement error on the observed velocity dis-
tribution is indeed negligible. For a larger measurement error we can still use the results
from this section, however the velocity dispersion should be replaced with the quadratic
sum of the velocity dispersion and the measurement error. In this case the measurement
error will have to be well quantified in order to retrieve the velocity dispersion.

2.2.3.1 Statistical uncertainties

After the velocities have been measured the statistical uncertainty can always be calculated
through Markov Chain Monte Carlo simulations. When preparing for observations it is
often useful to have an estimate of the accuracies that can be reached based only on the
number of stars that will be observed and the expected properties of the cluster prior to
any radial velocity measurements.

With this goal in mind we ran Monte Carlo simulations on a large number of fake sets
of radial velocities with solar type binary properties (section 2.2.2) with varying binary
fractions, velocity dispersions, and sample sizes. These data sets were created for stars
with random primary masses between 0.1 and 1M� following the Chabrier (2005) IMF,
which is an update of the IMF presented in Chabrier (2003). For every star we calculated
a random radial velocity from a normal distribution with the chosen velocity dispersion
(equation 2.2). Every star has a probability set by the binary fraction to be part of
a binary system, in which case an additional velocity due to the binary orbital motion is
added. The binary properties are randomly chosen from the period, mass ratio, eccentricity
and phase distributions and the binary is randomly orientated with respect to the line of
sight. The radial velocity dataset created in this way is then fitted using the procedure
described in section 2.2.1. Because we used the same assumptions about the intrinsic
velocity distribution and the binary properties to create and to fit the radial velocities,
there are no systematic offsets in the measured velocity dispersion, mean velocity, and
binary fraction with respect to the input velocity dispersion, mean velocity, and binary
fraction. For every simulation the uncertainties on the best-fit parameters were calculated
through Markov Chain Monte Carlo simulations.

To first order (i.e. ignoring binaries) the uncertainty in the mean velocity is given by
the standard deviation of the mean δµc = σc√

Nobs
, where σc is the velocity dispersion and
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Fig. 2.3 — From left to right the second-order corrections of the uncertainties of the binary
fraction (δfbin)corr, the velocity dispersion (δσc)corr, and the mean velocity (δµc)corr. The
top panels show the dependency of these corrections on the velocity dispersion of the cluster
(σc) and the lower panels show their dependency the sample size (Nobs). These corrections
have been computed for the a binary fraction of 0% (blue), 50% (green), and 100% (red).
They can be used to calculate the one-sigma uncertainties using equations 2.7a - 2.7c. This
allows for the estimation of the accuracy with which the intrinsic velocity distribution can
be measured before any radial velocity data has been taken, as long as an estimate for
the velocity dispersion and binary fraction are available. The cyan lines in the left panels
show the lines with δfbin = 0.34, which is the expected uncertainty if the binary fraction
is unconstrained (i.e. a flat probability distribution between 0 and 1).

Nobs is the sample size. Similarly we expect the velocity dispersion to go as δσc ∼ σc√
Nobs

and finally the uncertainty in the binary fraction to go with δfbin ∼ 1√
Nobs

.

Using these first-order effects we can write the uncertainty in the binary fraction, ve-
locity dispersion, and mean velocity as

δfbin =
(δfbin)corr√

Nobs
, (2.7a)

δσc =
(δσc)corr σc√

Nobs
, (2.7b)

δµc =
(δµc)corr σc√

Nobs
, (2.7c)

where the corrections for the second-order effects due to binaries are given by (δfbin)corr,
(δσc)corr, and (δµc)corr. Figure 2.3 shows the dependence of these quantities on the velocity
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2.2. Single-epoch radial velocities

dispersion of the cluster (for Nobs = 300) and the number of observed stars (for σc =
1 km s−1) for a binary fraction of 0% (blue, long dashes), 50% (green, solid line), and 100%
(red, short dashes).

The bottom panels in Figure 2.3 show on the number of observed stars (Nobs) for a fixed
velocity dispersion of 1 km s−1. We find that the second-order corrections on the velocity
dispersion and mean velocity becomes independent of Nobs for Nobs > 50. This means
that the accuracy of the velocity dispersion and mean velocity can be well approximated
to go with 1/

√
Nobs. This dependence becomes unreliable for Nobs < 50, because the

measurement errors themselves vary greatly for small Nobs and the uncertainty in the
velocity dispersion becomes strongly non-Gaussian.

The uncertainty in the binary fraction (bottom left panel) shows a similar behavior, as
long as the binary fraction is not too low. For a binary fraction of 50% (green) and velocity
dispersion of 1 km s−1 the binary fraction becomes effectively unconstrained between 0 and
100% for Nobs < 100. For a binary fraction of 0% we find that (δfbin)corr declines as the
sample size increases, implying that the measurement error in the best-fit binary fraction
decrease more steeply than 1/

√
Nobs over the full range of tested Nobs.

Because the second-order corrections (δfbin)corr, (δσc)corr, and (δµc)corr are constant
over a broad range of Nobs it is possible to calculate the accuracy expected for future
measurements from the top panels in Figure 2.3 using equations 2.7a - 2.7c not only for
Nobs = 300 for which the figure was calculated, but for anyNobs > 50 given a prior estimate
of the velocity dispersion and binary fraction. To fit more complicated dynamical models
with more free parameters more stars will of course need to be observed to reach the same
accuracy.

For smaller sample sizes these estimates should be taken with caution. For small Nobs

the uncertainties themselves become statistical quantities, which might randomly be much
larger (or smaller) than expected. Furthermore the probability distribution of the param-
eters become non-Gaussian for small sample sizes.

Keeping in mind these caveats equations 2.7a - 2.7c and the top panels in Figure 2.3
can be used to estimate the sample size needed to reach a certain accuracy on the ob-
served velocity dispersion. For example if we consider a local star-forming regions with an
expected velocity dispersion of about 2 km s−1 and solar-type field star binary properties
with a binary fraction of roughly 50%, we find from the upper center panel in Figure 2.3
(δσc)corr = 1.1. To reach an accuracy of 10% on the velocity dispersion (i.e. δσc

σc
= 0.1),

we find from equation 2.7b that Nobs =
(

1.1
0.1

)2
= 121 stars would need to be observed to

reach the desired accuracy.

The calculations above were done assuming that the measurement uncertainty is sig-
nificantly smaller than the velocity dispersion, so that the measurement uncertainty has a
negligible effect on the observed velocity dispersion (effectively replacing σ2

c + σ2
i ≈ σ2

c in
equation 2.2). Actual observations will sometimes include stars for which the measurement
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Fig. 2.4 — The ratio between the measured and input velocity dispersion resulting from
fits of artificial datasets with varying input velocity dispersions. These datasets were fitted
assuming the binary properties of solar-type field star, but were created using different
binary period and mass ratio distributions. For the blue ’+’-signs the binary population
used to create the velocity distribution follows the same field solar-type binary properties
used to fit the distribution, except that the mass ratio distribution is flat rather than
falling. For the green dots the massive stars follow the solar-type binary properties, while
the binary properties of the low mass stars are set by the most likely binary fraction,
period distribution, and mass ratio distribution observed for very low mass binaries from
Burgasser et al. (2007).

uncertainty is comparable or even larger than the velocity dispersion. These velocities will
have a broader likelihood function with the width set by the quadratic sum of the mea-
surement uncertainty and the velocity dispersion (equation 2.2). As seen in Figure 2.3 and
equations 2.7a - 2.7c the uncertainty in observed parameters increases for broader distribu-
tions, so these measurements will contribute less to the accuracy with which the intrinsic
velocity dispersion and binary fraction are measured. However, as the measurement un-
certainties are included in the model, these observations can be safely kept in the dataset
as long as the measurement uncertainty is well measured. If the measurement uncertainty
is only a rough estimate it might be better to remove the observations with the largest
measurement uncertainties from the dataset, as an overestimate of the measurement error
might cause the velocity dispersion to be systematically underestimated and vice versa.

2.2.3.2 Systematic uncertainties

To fit an observed velocity distribution, we have to model the binary orbital motions.
This requires assumptions for the binary period, mass ratio, and eccentricity distributions.
If our assumed distributions do not match the actual binary properties in the observed
cluster, there will be a systematic error in the measured velocity dispersion.
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2.2. Single-epoch radial velocities

Here we investigate the size of this systematic error by running a set of Monte Carlo
simulations. In these simulations we create artificial radial velocity datasets for a given
input velocity dispersion and a set of binary properties, which are different than those
described for the solar-type field stars discussed in section 2.2.2. We fit these artificial radial
velocity data sets assuming the binary period, mass ratio, and eccentricity distribution from
the solar-type field stars discussed in section 2.2.2. We then compare the measured velocity
dispersion with the input velocity dispersion used to build the artificial dataset and check
for a systematic offset between the two.

The measured velocity dispersion will differ from the input velocity dispersion with a
random offset due to the statistical noise discussed above as well as a systematic offset due
to the discrepancy between the binary properties used to create the artificial dataset and
the binary properties used to fit the dataset. Because we are interested here in studying
the systematic offset, we minimize the statistical noise by building a very large dataset of
105 radial velocities. Even with 105 observed stars there will still be some random scatter
in the measured velocity dispersion and binary fraction.

The procedure to build the artificial dataset is the same as for the statistical uncertain-
ties. We briefly summarize it again. We draw the masses of the ‘observed’ stars following
the Chabrier (2005) IMF between 0.1 and 1M�. For every star a radial velocity is then
drawn from a Gaussian distribution with a given input velocity dispersion. For the ran-
domly assigned binaries a velocity offset due to the binary orbital motions is added.

2.2.3.2.1 Flat mass ratio distribution To characterize the distribution of binary
orbital motions we assumed a mass ratio distribution of dN

dq ∼ q−0.5 (Reggiani & Meyer
2011). However, Reggiani & Meyer (2011) found an uncertainty on this power-law slope of
dN
dq ∼ q−0.5±0.29. This implies that the observed mass ratio distribution is still consistent
with being flat at the two sigma level. If the mass ratio distribution were in fact flat, this
would cause a systematic offset in the measured velocity dispersion given our assumption
of a power-law mass ratio distribution.

To explore this effect we ran a set of Monte Carlo simulations, where we create an
artificial ‘observed’ radial velocity dataset assuming a flat mass ratio distributions between
q = 0.1 and q = 1 for several input velocity dispersions ranging from 0.1 to 10 km s−1. To
create these datasets we use the period and eccentricity distributions of the solar-type field
stars and fix the binary fraction to the solar-type field star binary fraction (46%: Raghavan
et al. 2010). These artificial datasets are then fitted assuming the (correct) solar-type field
star period and eccentricity distributions, but with the (here incorrect) power-law slope
for the mass ratio distribution. The velocity dispersion measured in this way have been
plotted as blue ‘+’-signs in Figure 2.4 for values of the input velocity dispersion between
0.1 and 10 km s−1.

The flat mass ratio distribution has a higher fraction of near equal-mass binaries, so
every individual binary has a larger probability of creating a significant velocity offset than

31



CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

for the power law mass ratio distribution. So to reproduce the number of high velocity
outliers in the artificial data set created with the flat mass ratio distribution, the fitted
binary fraction will be higher than 46% for the power-law mass ratio distribution. We find
that the best-fit binary fraction is indeed higher than 46% and increases from 48% for an
input velocity dispersion of 0.1 km s−1 to 55% for an input velocity dispersion of 10 km s−1.

The effect of the flat mass ratio distribution is much smaller on the measured velocity
dispersion than on the binary fraction. Figure 2.4 shows the ratio of the measured and
input velocity dispersion as blue ‘+’-signs. If the assumed binary properties would perfectly
match those of the observed cluster this would always be one (except for some random
scatter due to the statistical uncertainty discussed in section 2.2.3.1). We see that the
difference between the flat and power-law slope for the mass ratio distribution causes an
offset of < 1% to almost 2%. This offset increases for lower input velocity dispersion,
because the effect of binary orbital motions become more important for narrower velocity
distributions.

2.2.3.2.2 Mass-dependent binary properties We also consider the case, where the
low-mass binaries (primary mass between 0.1 and 0.2 M�) in our artificial cluster do not
have the same properties as the solar-type field stars, but rather the period distribution,
mass ratio distribution, and binary fraction found by Burgasser et al. (2007) for very low
mass binaries. The binary properties for these stars are still highly uncertain, but Burgasser
et al. (2007) found that the observed binary properties for binaries with primary masses
lower than 0.1 M� could be fitted by a log-normal period distribution with a mean at
7 AU and a width of 0.24 log(AU), a power-law mass ratio distribution with dN

dq ∼ q4.8

(for q < 0.6) and a binary fraction of 22%. This binary fraction is much lower than that
observed for solar-type stars in the field, although the effect per binary on the velocity
distribution is much larger, because they tend to be on closer orbits and tend to be equal-
mass.

In our simulations the masses range from 0.1 to 1M�. Although recent results (Janson
et al. 2012) suggest a smooth transition between the binary properties of the very low
mass and solar-type stars, we will use a sharp transition between these regimes for this
numerical test. For the low mass stars (< 0.2 M�, ∼ 34% of all stars) we use the semi-
major axis log-normal distribution, the mass ratio power-law distribution (for q between
0.1 and 1), and the binary fraction found by Burgasser et al. (2007). For the higher mass
stars we use the binary properties observed for the solar-type field stars (section 2.2.2) with
a binary fraction of 46%. We once again fit these radial velocities under the (inaccurate)
assumption that all stars still have the same binary fraction and follow the solar-type field
binary period, mass ratio, and eccentricity distributions. These simulations are repeated
for a broad range of input velocity dispersions.

The measured velocity dispersion is shown in Figure 2.4 as green dots. Although the
assumed solar-type field binary properties are inaccurate for a third of the ‘observed’ stars,
the offset between the measured and input velocity dispersion is still at most 4%.
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These two examples (i.e. sections 2.2.3.2.1 and 2.2.3.2.2) are meant to illustrate the
effect of incorrect binary assumptions on the measured intrinsic velocity distribution. For
reasonable differences between the true and assumed binary properties, the effect on the
intrinsic velocity dispersion turns out to be fairly small. For the cases discussed above only
a few percent. It would require observations of thousands of stars, before this systematic
offset becomes significant compared to the statistical error. However, if the binary prop-
erties are very uncertain, it might still be useful to check how much the intrinsic velocity
distribution might vary for several reasonable assumptions about the binary properties
(Odenkirchen et al. 2002).

2.2.4 NGC 188

As a test for the procedure described above, we will here consider the case of the old (7±0.5
Gyr; Sarajedini et al. 1999) open cluster NGC 188. The dynamical state of the cluster
was extensively studied by Geller et al. (2008, 2009) and Geller & Mathieu (2011). Based
on 9166 radial velocity measurements of 1108 stars in the direction of this cluster, Geller
et al. (2008) identified a large number of stars with significant radial velocity variations.
Based on the remaining (seemingly single) 640 stars, they derive a velocity dispersion of
0.64± 0.04 km s−1. This value is still inflated by unidentified binaries. Geller & Mathieu
(2011) found that these unidentified binaries would inflate an intrinsic velocity dispersion
of 0.49+0.07

−0.08 km s−1 to the observed 0.64 ± 0.04 km s−1. In this section we will show that
we can reproduce their intrinsic radial velocity distribution using only a single epoch of
their data.

We estimate the masses of the observed stars to be given by the closest point on the
7 Gyr Padova isochrone (Marigo et al. 2008) with E(B − V) = 0.09 and DM= 11.44
(following the photometric fit of Sarajedini et al. 1999). The masses of the observed stars
estimated in this manner vary between 0.8 and 1.1M�. The sample of observed stars
contains a significant contamination from fore- and background stars. For these stars we
do not expect the computed masses to be accurate. Fortunately in our model the masses
only affect the binary orbital motions, which have a negligible effect on the very broad
velocity distribution of the fore- and background stars.

These fore- and background stars will affect the intrinsic velocity distribution. Following
Geller et al. (2008) we model the radial velocity distribution of the field star population
with a Gaussian. Choosing the same distribution to fit the field stars allows us to make
direct comparison with the results from Geller et al. (2008). We can add this Gaussian to
the model for the intrinsic velocity distribution (equation 2.2) to get

Ldyn, i(vdyn) =fc
1√

2π(σ2
i + σ2

c )
exp

(
−

(vdyn − µc)2

2(σ2
i + σ2

c )

)
+

(1− fc)
1√

2π(σ2
i + σ2

f )
exp

(
−

(vdyn − µf)
2

2(σ2
i + σ2

f )

)
,

(2.8)
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Fig. 2.5 — Histograms of the three single-epoch radial velocity distribution from NGC
188 we consider in the top left, top right and bottom left panels, with the probability
distribution of the best fitting model overplotted as the solid line for a star of 1M� and
a measurement error of 0.4 km s−1. The intrinsic velocity distributions (equation 2.8) are
plotted as dashed lines. In the bottom right the histogram of the velocities of the single stars
identified in Geller et al. (2008) is plotted. The intrinsic velocity distributions (renormalized
to the smaller population) computed from the three data sets have been overplotted. All
three of these intrinsic velocity distributions are consistent with the velocity distribution
of the single stars from Geller et al. (2008) according to a KS-test (see text). In all panels
the fraction of every bin expected to consist of non-members (Platais et al. 2003) have
been made yellow. The color coding of the lines corresponds to the data set used to fit the
model. The first observed epoch has been shown in blue, the second epoch in green, and
the last epoch in red.

where fc is the probability of an observed stars to be a cluster member (i.e. the fraction of
cluster members) and σf and µf are respectively the velocity dispersion and mean velocity
of the non-members. These three parameters will be fitted in addition to the binary fraction
(fbin), the cluster velocity dispersion (σc), and the mean velocity (µc) of the cluster.

Because multiple epochs of data are available for nearly all of the 1108 stars we are
able to run the procedure on three single-epoch radial velocity data sets with only minimal
duplication between the data sets. The radial velocities and measurement errors were taken
from Geller et al. (2009).

The first three panels in Figure 2.5 show the histograms of the radial velocities in these
three data sets with the velocity distribution for the best-fit model overplotted as solid
lines. In principle there is no single best-fit distribution, because the velocity distribution
depends on the mass of the star and the measurement error. The distributions plotted in
Figure 2.5 are for a star of 1M� and a measurement error of 0.4 km s−1, which is typical
for the vast majority of observed stars. We note that the model has been fitted to the
individual observed velocities and is independent of the bin size chosen in Figure 2.5.
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2.2. Single-epoch radial velocities

The velocity distribution of single stars identified in the multi-epoch data by Geller
et al. (2008) is shown in the bottom right panel in Figure 2.5, where we have overplot-
ted the intrinsic velocity distributions found for the first data set (blue), the second data
set (green), and the third data set (red). We check whether the observed radial velocity
distribution of the single stars is consistent with being drawn from the predicted intrinsic
velocity distributions from the single epoch datasets using the Kolmogrov-Smirnov test.
The KS test computes the largest deviation between the measured and predicted cumula-
tive distributions and calculates the probability that this deviation or a larger one can be
created by chance when drawing random samples from the predicted distribution. If this
probability is small, the hypothesis that the measured and predicted distributions are the
same can be rejected.

Before we can compare the observed single star velocity distribution with the intrinsic
velocity distribution predicted from the single-epoch data, we have to correct for a selection
effect. Because priority was given during the observations to proper motion members, the
fraction of cluster members in the subset of observed stars with at least three epoch of
observations over a baseline of one year is higher than in all observed stars. Because Geller
et al. (2008) require stars to have been observed for at least three epochs over at least
one year before classifying them as single stars, the fraction of members among the stars
identified as single is also higher. Based on the proper motions membership probabilities
(Platais et al. 2003) we find the fraction of members among stars classified as single to be
53%, significantly higher than the 44% among all stars.

After correcting for this selection effect by increasing fc to 53% the KS test finds that
the observed velocity distribution of the seemingly single stars is consistent with being
drawn from the predicted intrinsic velocity distribution. The probabilities of drawing a
distribution with at least the same offset in the cumulative distribution by chance is 17%
for the first data set, 29% for the second data set, and 2% for the last data set. We note
that even in the unlikely case that the assumptions going into the model (i.e. Gaussian
distribution, field solar-like binary properties) are perfect descriptions of NGC 188, the
distributions are still expected to be slightly different, because the observed distribution
of stars identified as single might still be inflated by unidentified binaries.

In Figure 2.6 we show the probability distributions for the six parameters we fit in our
model. For comparison the literature values for these parameters from Platais et al. (2003);
Geller et al. (2008); Geller & Mathieu (2011) have been overplotted. Taking the average of
all membership probabilities for all observed stars (Platais et al. 2003), we find that 44%
of observed stars should be members. This is fully consistent with the results we find for
the three individual data sets (top left panel of Figure 2.6).

For all three datasets we find a binary fraction consistent with being 100% (Fig. 2.6).
This high binary fraction should be interpreted with great caution, as we are only sensitive
to the close binaries in NGC 188, which affect the observed velocity distribution. If a
larger fraction of all binaries in NGC 188 is close compared to the solar-type field binaries,
the total binary fraction might be significantly lower. Such a deviation from the binary
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Fig. 2.6 — Posterior probability distributions of the free parameters in the model, enclosing
68.2%, 95.4%, and 99.7% (i.e. 1, 2, and 3 σ) of the total probability. The six free parameters
are the binary fraction (fbin), the fraction of cluster members (fc), the cluster velocity
dispersion (σc), the cluster mean velocity (µc), the field velocity dispersion (σf) and the
field mean velocity (µf). The different colors refer to the three different single-epoch radial
velocity distributions with the same color coding as in Figure 2.5. The literature values
for these parameters, derived from a proper motion analysis (Platais et al. 2003) and the
multi-epoch radial velocity data (Geller et al. 2008; Geller & Mathieu 2011) have been
plotted as black dots. If the error bars are given, they have been plotted.

properties of the solar-type field stars might be caused by dynamical evolution, which
decreases the period of the hard binaries (P < 106 days in the case of NGC 188, Geller
& Mathieu 2011). Evidence for significant dynamical evolution in NGC 188 was found by
von Hippel & Sarajedini (1998) and Bonatto et al. (2005).

Irrespective of whether there are wide orbit counterparts to the identified spectroscopic
binaries, we can compare the binary fraction found to the spectroscopic binary fraction
from the multi-epoch data. Geller & Mathieu (2011) found that 29± 3% of observed stars
in NGC 188 are binaries with periods smaller than 104 days and q > 0.2, which makes
these type of binaries 2.4 ± 0.2 times as frequent in NGC 188 as in the field. Under our
assumptions that the binaries in NGC 188 have the same properties as those in the field,
the total binary fraction would then also be 2.4±0.2 times as high. This would lead to the
unphysical conclusion that 110±10% of stars in NGC 188 are binaries, which is consistent
with the very high binary fractions found from the single-epoch data. The estimate of a
total binary fraction above the 100% implies that the ratio of spectroscopic binaries to
wider binaries is higher in NGC 188 than in the field.

We finally compare the results of our Gaussian fits. Geller et al. (2008) measured a
mean velocity of -35.31 km s−1 and a dispersion of 38.01 km s−1 for the non-members.
The cluster members have a mean velocity of -42.43 km s−1 (Geller et al. 2008) and a
velocity dispersion of 0.49+0.07

−0.08 km s−1 (Geller & Mathieu 2011). All of the mean velocities
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and velocity dispersions measured for our three single-epoch datasets, except possibly the
velocity dispersion of the field population for which Geller et al. (2008) do not give an
uncertainty, are consistent with the literature values within one to two sigma.

2.2.5 Discussion

Above we have shown that the presented likelihood procedure can accurately describe
the intrinsic velocity distribution of NGC 188 and find an intrinsic velocity dispersion
consistent with that the 0.49+0.07

−0.08 km s−1 from multi-epoch data (Geller & Mathieu 2011).
This dispersion is accurately found, even though NGC 188 has a large spectroscopic binary
fraction and there is a large contamination of fore- and background stars.

In our analysis of NGC 188 we have attempted to use as little prior information about
the cluster as possible in order to illustrate the accuracy of the procedure based only on the
observed single-epoch radial velocity and the mass estimated of the stars. The accuracy
of the procedure could of course be improved by taking constraints from other sources
into account. For example one could use the spectroscopic binary properties which Geller
& Mathieu (2011) found for NGC 188 instead of the solar-type field binary properties.
Furthermore one could set the probability for a star to be a cluster member fc to the
membership probabilities derived from the proper motion analysis of Platais et al. (2003).
Finally one could use a model for the Milky Way (e.g. Robin et al. 2003) to predict the
velocity distribution of the fore- and background star instead of fitting a Guassian to this
distribution.

Although we have tested the procedure here on an open cluster, it should be applicable
to a broad range of stellar systems where the velocity distribution is significantly inflated
due binary orbital motions, such as faint Milky Way companion dwarf galaxies, young
massive clusters, local star-forming regions, and some low-mass globular clusters. As long
as there is a dynamical model for the velocity distribution of single stars and the center of
masses of binaries and a rough approximation of the binary properties, a single epoch of
radial velocity data can be used to constrain the dynamical state of the cluster. If enough
velocity data is available it can serve as a test on the assumed binary properties for the
observed cluster.

2.2.5.1 Limitations

The power of this procedure lies in the difference between the Gaussian intrinsic velocity
distribution assumed and the high velocity outliers caused by the binary orbital motions.
This implies that if a dynamical model is fitted, where the intrinsic velocity distribution is
more similar to the distribution caused by binary orbital motions (i.e. has stronger wings),
the accuracy of the procedure would decrease. An example would be a model, which
includes the possibility of stars ejected at a high velocity. To distinguish these ejected
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CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

stars from velocity outliers caused by binary orbital motions, multiple epochs of radial
velocity data will still be required.

We have a similar problem in our analysis of the radial velocity data of NGC 188
(section 2.2.4) where the nature of the high-velocity outliers is unclear. They could either
be members, whose velocity is offset due to its orbital motion, or they could be non-
members. Due to this confusion the accuracy with which the binary fraction could be
measured, was much lower as expected for such a large set of radial velocity data. From
the top left panel of Figure 2.3 we find that (δfbin)corr for a cluster with a binary fraction
of roughly 100% and a velocity dispersion of 0.5 km s−1 is about 0.6. For the N ≈ 500
members in NGC 188 equation 2.7a gives an accuracy of 3%. This is much lower than the
actual precision with which we could measure the binary fraction of ∼ 15%.

In addition to distinguishing between velocity outliers due to binary orbital motions and
those caused by ejections or non-members, multi-epoch data has the advantage that it can
be used to constrain the binary properties of the cluster. In principle the distribution of the
high-velocity tail in the observed velocity distribution puts some constraints on the binary
properties. If enough radial velocity data is available, this might be sufficient to reject a
given set of binary assumptions. However the degeneracy between the effects of the period,
mass ratio, and eccentricity distributions and the binary fraction on this high-velocity tail
means that these distributions can not actually be fitted.

2.3 Multi-epoch radial velocites

In section 2.3.1 we introduce an extension of this procedure that is applicable to multi-
epoch data, and discuss available constraints on the binary properties of OB stars in section
2.3.2. We describe Monte Carlo simulations used to test the procedure for single- and two-
epoch datasets in section 2.3.3. We then present the R136 dataset and the results obtained
when applying the maximum-likelihood method to these data in section 2.3.4. We discuss
the implications of these results in section 2.3.5.

2.3.1 Method

For a single epoch of radial velocity data, the maximum-likelihood procedure described in
section 2.2.1 gives the intrinsic velocity dispersion of a cluster corrected for the effect of
binary orbital motions. This works well for stellar populations for which the binary orbital
parameter distributions are well constrained (e.g. solar-type stars, Cottaar et al. 2012b).
When these are more loosely constrained (e.g. for OB stars), multiple epochs can be used
to identify and remove from the sample some spectroscopic binaries, thereby improving the
accuracy of the final velocity dispersion determination. However, there will always remain
undetected spectroscopic binaries that significantly affect the radial velocity distribution.
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We describe below four adjustments to the likelihood procedure that make it possible to
accurately estimate the intrinsic velocity dispersion of a cluster from a multi-epoch dataset
corrected for the effect of these undetected spectroscopic binaries.

First, we identified as many spectroscopic binaries as possible and removed them from
the sample. To identify these binaries, we used a χ2-test to assess whether the radial
velocity observations are consistent with coming from a single star without radial velocity
variations. For each star, we computed

χ2 =
∑
i

(vi − v̄)2

σ2
i

, (2.9)

where v̄ is the weighted mean velocity over all the observed epochs i, and vi and σi are
the velocities at individual epochs and their uncertainties. By comparing this with the
χ2-distribution (with the number of degrees of freedom equal to the number of epochs
minus one), we compute the probability that a value as high as the computed χ2 can be
due to measurement uncertainties alone. If this probability was low, we identified the star
as a radial velocity variable and removed it from the sample. In line with previous work
on R136 (Hénault-Brunet et al. 2012a), we rejected stars with a probability p < 10−4 of
not being a radial velocity variable.

In principle, completely removing these radial velocity variables from the sample is
waste of information. However, including this information would require solving the radial
velocity orbit of the binary. This is computationally very expensive when only a few epochs
are available. Even if it is computed, the uncertainty in the systemic velocity of the binary
will tend to be very weakly constrained, therefore it will provide little useful information
about the intrinsic velocity dispersion or even the mean velocity of the cluster. Of course
the systemic velocity of the binary should be included in the fit of the velocity dispersion
(with its appropriate uncertainty), if enough epochs have been observed to solve the binary
orbit.

Secondly, we computed for the remaining and apparently single stars the effect of possi-
ble unidentified binary on the observed radial velocity distribution. For this, we generated
a large population of binaries sampled from the adopted binary orbital parameter distri-
butions and assumed that these systems have random phases and orientations. Using the
same χ2-test as for the actual data, we then determined which binaries would have been
detected given the timing of the observations and the measurement uncertainties. Elimi-
nating these systems left us with a sample of binaries that would not be detected given the
observational constraints. We computed the radial velocity offset distribution due to the
orbital motions of these binaries, which gave us pdfoffset for binaries which are undetected
in the multi-epoch dataset. This was recomputed for every star, because the detectability
of binaries strongly depends on the time sampling of the observations and the measurement
uncertainties.

Our proposed method differs substantially from the multi-epoch fit from Martinez et al.
(2011). These authors used a very similar likelihood procedure to fit their multi-epoch
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CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

radial velocity data of the dwarf spheroidal galaxy Segue 1, but they made no explicit
distinction between radial velocity variables and seemingly single stars. This distinction
allowed us to reach a higher precision, because the systemic velocities of the seemingly
single stars have much smaller uncertainties than the systemic velocities of the radial
velocity variables. By not distinguishing these populations, Martinez et al. (2011) combined
the probability distribution of the systemic velocity for seemingly single stars and radial
velocity variables, which led them to underestimate the constraints that the seemingly
single stars can put on the intrinsic radial velocity distribution.

After computing the radial velocity offsets due to binary orbital motions for the appar-
ently single stars, we convolved this with an assumed intrinsic velocity distribution and
added the contribution from truly single stars (equation 2.1), when using equation 2.1 we
kept in mind that the binary fraction among the apparently single stars (f ′bin) is lower than
among the population as a whole

f ′bin = fbin
1− fdet

1− fbinfdet
, (2.10)

where fdet is the fraction of binaries that would have been detected given the timing of the
observations and the measurement uncertainties, as estimated from the random sample of
binaries generated in the previous step.

Finally, we added an additional constraint on the binary fraction to match the observed
fraction of binaries. This is given by a binomial distribution:

L =
∏

variable

(fbinfdet)
∏

not variable

(1− fbinfdet), (2.11)

where we multiplied the probability of detecting a radial velocity variability for all stars
with radial velocity variability (

∏
variable(fbinfdet)) and the probability for detecting no

radial velocity variability for all apparently single stars (
∏

not variable(1− fbinfdet)).

Here we briefly summarize this approach to fitting multi-epoch radial velocity data.
Before performing the fit, four preparatory steps should be taken:

1. Separate the observed stars into radial velocity variables and seemingly single stars
based on whether the radial velocity over the multiple epochs is consistent with being
constant (see equation 2.9).

2. Draw a random population (N ∼ 105 − 106) of binaries from the assumed period,
mass ratio, and eccentricity distribution and with a random phase and orientation.

3. For every observed seemingly single star, select a subsample of the simulated binary
population by removing all simulated binaries that would have been detected as a
radial velocity variable given the time sampling and measurement uncertainty of that
observed star. The fraction of radial velocity variables in the simulated population
sets fdet, which can be used to compute the probability that the observed seemingly
single star is still a binary (f ′bin) with equation 2.10.
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4. For every observed seemingly single star, compute the distribution of orbital velocities
projected onto the line of sight for the pruned simulated binary population from step
3 to derive pdfoffset(vi − v′).

We then used the distribution of radial velocity offsets due to binary orbital motions to
compute the likelihood of the data being drawn from a given intrinsic velocity distribution
(e.g. parameterized by the mean velocity and velocity dispersion) and binary fraction by
following the steps below. These steps needed to be repeated for every evaluation of the
likelihood as part of the maximization procedure and associated analysis of the parameter
uncertainties (e.g. from a MCMC simulation).

5. For every observed seemingly single star, use the distribution from step 4, the proba-
bility of the star being a binary f ′bin from step 3, and an assumed underlying velocity
distribution to compute the likelihood of reproducing the observed radial velocity of
that star using equation 2.1.

6. Compute the total likelihood to reproduce the observed velocity distribution of seem-
ingly single stars by multiplying the likelihoods to observe the radial velocities for
all the observed seemingly single stars (or adding the log-likelihood).

7. Finally, multiply this likelihood from step 6 with the likelihood of detecting the
observed fraction of radial velocity variables from equation 2.11 using the fdet from
step 3.

When only a single epoch of radial velocity data is available, steps 3-4 simplify to
computing equation 2.4 for the binary population from step 2. As in this case no radial
velocity variables can be detected (fdet = 0), the probability of a star to be a binary
becomes the binary fraction (i.e. f ′bin = fbin) and the likelihood from equation 2.11 will
be equal to one for any binary fraction.

A possible extension of this procedure would be to perform a Bayesian analysis and
allow the parameterization of the period, mass ratio, and eccentricity distributions to vary
within the uncertainties set by previous observations. Although this would in principle
accurately deal with the effect on the fitted velocity dispersion of the uncertainties in the
binary orbital parameter distributions, it would require recomputing the preparatory steps
1-4 for every step in the optimization and subsequent MCMC simulation. Unfortunately,
this is currently prohibitively slow, especially when multi-epoch data are considered.

2.3.2 OB binary properties

Below we focus on the orbital parameter distributions of short-period close binaries, that
is those with the largest orbital velocities, the strongest impact on the fitted line of sight
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Fig. 2.7 — Assumed period distribution (upper left) and mass ratio distribution (upper
right), as well as the unprojected logarithmic velocity distribution (lower left) and the
projected velocity distribution (lower right). The extrapolation of the period distribution
from the observed range to an upper limit of 300 years is plotted as a dashed line. This
extrapolation has been taken into account in the lower panels that show the velocity
distributions. The blue lines show the distributions from Sana et al. (2012), the green
lines those from Sana et al. (2013), and the red lines the distributions from Kiminki &
Kobulnicky (2012), as detailed in Table 2.1.

velocity dispersion, and that are probed efficiently by Doppler shifts of spectral lines.
There is now ample evidence that massive stars are preferentially found in binary systems,
in particular in these close spectroscopic binary systems.

Unfortunately, the orbital parameter distributions of these binaries are still relatively
poorly constrained, despite their fundamental importance to star formation, stellar evo-
lution, and the early dynamical evolution of massive star clusters. Even when studies of
massive binaries include a relatively large number of systems (e.g. Garmany et al. 1980; Ma-
son et al. 2009), often only a small fraction of the identified binaries have well-constrained
orbital properties (see Sana & Evans 2011). A few recent studies, which we discuss below,
have achieved a better completeness in characterizing the identified binaries, in addition
to correcting for observational biases in a more systematic way through Monte Carlo sim-
ulations (e.g. to translate the observed binary fraction into an intrinsic binary fraction).

Kobulnicky & Fryer (2007) attempted to constrain the distributions of orbital parame-
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2.3. Multi-epoch radial velocites

ters of massive binaries by using a sample of 900 radial velocity measurements of 32 O-type
and 88 B-type stars in the Cyg OB2 association and comparing the raw velocities with the
expectations of Monte Carlo simulations. They were forced to make several simplifying
assumptions about the orbital parameter distributions however. Building upon this work
and taking advantage of an extended dataset, Kiminki & Kobulnicky (2012) used 12 years
of spectroscopic observations of 114 massive stars (B3–O5 primary stars) in Cyg OB2 and
modeled the observed mass ratio, orbital period, and eccentricity distributions composed
of the well-constrained orbital properties of 24 known binaries in the association (22 of
which have periods shorter than 30 days).

Sana et al. (2013) analyzed the multiplicity properties of the O-type star population
of 30 Doradus through multi-epoch spectroscopy obtained as part of the VLT-FLAMES
Tarantula Survey. With 360 O-type stars surveyed, this is the largest homogeneous sample
of massive stars analyzed to date. However, given the limited number of epochs obtained
(typically six), the orbital parameters could not be determined for individual binary sys-
tems. The intrinsic binary fraction and period and mass ratio distributions in this case
were therefore constrained using Monte Carlo simulations to simultaneously reproduce the
observed binary fraction, the distribution of the amplitudes of radial velocity variations,
and the distribution of the timescales of these variations.

Sana et al. (2012) homogeneously analyzed the O-type star population of six nearby
Galactic open clusters and simultaneously fitted all the relevant intrinsic multiplicity prop-
erties. The larger average number of epochs allowed for a more complete binary detection
than in other studies. Over 75% of the 40 binaries identified in this sample have measured
orbital properties, which also made it possible for the authors to directly model and fit the
orbital parameter distributions.

The distributions of binary orbital parameters from the three main studies discussed
above are illustrated in Figure 2.7 and summarized in Table 2.1 along with the intrinsic
spectroscopic binary fractions. The domains for which the period, mass ratio, and eccen-
tricity have been considered and to which the quoted intrinsic binary fractions apply are
also listed. These studies used power laws to describe the probability density functions
of orbital periods (in log10 space), mass ratios and eccentricities with exponents π, κ,
and η, respectively. In the following sections, we explore how sensitive the fitted velocity
dispersion and binary fraction are to the adopted binary orbital parameter distribution
by considering the differences between these orbital parameter distributions (which are
consistent with each other at the two-sigma level).

We focus on the binary properties from the three papers listed in Table 2.1 because these
studies are based on large samples and corrected for observational biases in a systematic
way through Monte Carlo simulations. In contrast to some other studies, they also have
the advantage that they do not a priori assume a fixed distribution for the periods or mass
ratios (apart from assuming a power-law functional form). Moreover, they sample different
combinations of period and mass ratio distributions, cover a relatively wide range of values
of π and κ, and together are therefore representative of the current uncertainties on the
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Fig. 2.8 — Probability distribution (dNdv ) for the radial velocity difference between the
primary star in a binary and its center of mass. Every line represents a binary with a fixed
period and primary mass of 20 M�, but random mass ratios, eccentricities, and phases
drawn from flat distributions as well as a random orientation. The periods increase by
factors of 10 and are labeled in the figure in units of years. The vertical dashed line marks
the intrinsic velocity dispersion within 10 pc of R136 (∼ 6 km s−1; Hénault-Brunet et al.
2012a).

binary properties of massive stars. These studies also each sample a different environment
in terms of cluster mass and density. The clusters considered by Sana et al. (2012) have
relatively low masses (1 000− 5 000 M�), and it is currently unknown whether the binary
fraction and orbital parameter distributions are affected in the more energetic environment
around a ∼ 105 M� cluster like the 30 Doradus region, where the stars in the sample of
Sana et al. (2013) are located. Thus, while we may not expect all the scenarios presented in
Table 2.1 to be applicable to the young massive cluster R136, it is interesting to test how
the maximum-likelihood method behaves under different assumptions about the binary
properties.

In the studies discussed above, only binaries with a period of up to ∼ 10 years could be
detected due to the limited baselines of the observations. However, wider binaries still cause
velocity offsets comparable to or larger than the velocity dispersion and hence significantly
alter the observed velocity distribution. Figure 2.8 illustrates that large velocity offsets are
likely to be caused by close binaries and small velocity offsets are more likely to be caused
by wider binaries, as expected. Velocity offsets comparable to the velocity dispersion of
R136 (∼ 6 km s−1, Hénault-Brunet et al. 2012a, see also section 2.3.4) are caused by
binaries with periods between ∼ 1 and ∼ 100 years, thus extending beyond the period
range covered by spectroscopic surveys. To account for all the relevant binaries in our
fits of the R136 data, we extrapolated the orbital period distribution to an upper limit
of 300 years. We also increased the binary fraction to match the intrinsic binary fraction
determined over the period range covered by the observations (last row in Table 2.1).
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2.3.3 Monte Carlo simulations

2.3.3.1 Data generation

We used Monte Carlo simulations to

1. show the self-consistency of the method (i.e. ensure that it gives the correct result
within the statistical uncertainties if all assumptions are met),

2. determine how the accuracy is limited due to the uncertainties on the orbital param-
eter distributions of massive binaries (see section 2.3.2),

3. and determine how the precision is limited due to small-number statistics.

In these simulations, we created a mock dataset of radial velocities through a two-step
procedure. First, we assigned every star a systemic radial velocity from a Gaussian dis-
tribution with given mean velocity and intrinsic velocity dispersion. Then we assigned an
additional velocity representing the effect of the binary orbital motions to a subset of these
stars (where the probability to be a binary is set by the binary fraction). These additional
velocities were computed using binary orbital parameters randomly drawn from one of the
period, mass ratio, and eccentricity distributions listed in Table 2.1. In all cases we used
the extrapolated period distribution out to 300 years and the corresponding binary fraction
(last row in Table 2.1). In these simulations, we did not consider the effect that measure-
ment uncertainties or a non-Gaussian velocity distribution have on the best-fit parameters.
The provided python code can be used to generate these radial velocity distributions and
reproduce the Monte Carlo experiments performed in this chapter.

These mock radial velocity datasets were fitted using our maximum-likelihood proce-
dure, assuming one of the three sets of binary orbital parameter distributions listed in
Table 2.1. This was either the same set of orbital parameter distributions used to generate
the data, allowing to test for self-consistency and constrain the precision of the method
(goals 1 and 3 above), or a different set of orbital parameter distributions, allowing to
test the accuracy of the procedure when the orbital parameter distributions in the cluster
do not match those assumed (goal 2 above). We repeated these experiments for various
sample sizes and intrinsic velocity distributions in the cluster.

In addition to these single-epoch Monte Carlo simulations, we ran a number of simu-
lations where two epochs of radial velocity data were sampled for every star. The radial
velocity of the second epoch was generated by increasing the phase of the binary orbit
with the ratio of the observational baseline b and the binary period P and recomputing
the radial velocity offset from the center of mass. The systematic center-of-mass velocity
of the binary was kept constant.

Although in the single-epoch case we could safely ignore the measurement uncertainty
(as long because it is sufficiently lower than the velocity dispersion such that it has a negligi-
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ble effect on the observed velocity distribution2), in the multi-epoch case the measurement
uncertainty is crucial as it determines whether a specific binary can be spectroscopically
detected. Thus, in this case, we added an additional (Gaussian) measurement uncertainty
to every observation. For simplicity we adopted the same measurement uncertainty for all
stars and epochs.

2.3.3.2 Results

The uncertainties in the orbital parameter distributions of OB stars, encapsulated by the
differences in the sets of distributions we considered, induces systematic offsets in the
fitted velocity dispersion (and binary fraction) when an assumption about the underlying
binary properties is made to fit the observed velocity distribution. We first considered this
systematic offset in the velocity dispersion for single-epoch data and then considered how
it changes for multi-epoch data. Figure 2.9 shows the systematic offset in the fitted velocity
dispersion induced when we fit the randomly generated radial velocity datasets assuming
each of the sets of binary orbital parameter distributions listed in Table 2.1.

In Figure 2.9, we marked with a cross the simulations for which we found a best-fit
binary fraction of 100%. Such a high best-fit binary fraction indicates that there are more
high-velocity outliers in the dataset than can be explained by the assumed binary or-
bital parameter distributions. These high-velocity outliers could have many causes in real
datasets, such as ejected stars, contaminating field stars, or poor radial velocity measure-
ments. For the top panel of Figure 2.9, the radial velocity datasets were generated using
the binary properties from Sana et al. (2012), which includes a relatively large propor-
tion of close and similar-mass binaries. This leads to many high-velocity outliers in these
datasets, which cannot be matched by the other orbital parameter distributions considered
here (even for a binary fraction of 100%). This situation, where the assumed orbital pa-
rameter distributions cannot explain the large number of high-velocity outliers, will cause
the fitted velocity dispersion to be systematically overestimated, because this reduces the
number of outliers. Accordingly irrespective of the nature of the high-velocity outliers,
when a binary fraction of 100% is found the fitted velocity dispersion will tend to be in-
flated and be unreliable. Therefore, below we only considered the cases where we found a
best-fit binary fraction below 100%.

When we used the same orbital parameter distributions to fit the data as we used to
generate the data, no systematic offset between the input and retrieved velocity dispersion
were found (Figure 2.9). From this we conclude that the procedure is self-consistent (i.e.
it yields the correct result if the assumptions made for the fit match the properties of the
generated dataset). Significant systematic offsets were found when different orbital param-
eter distributions were used to generate the data than to fit the data. These systematic
biases in the fitted velocity dispersion range from up to 60% for low input velocity disper-

2Even the case where the measurement uncertainty is too large for this approximation to be valid can
be viewed as the measurement of a higher velocity dispersion σ′2v = σ2

v+σ
2
meas with negligible measurement

uncertainties, from which the (hopefully well-defined) measurement uncertainties are later subtracted.
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Fig. 2.9 — Systematic offset between the best-fit velocity dispersion (σfitted) and the input
velocity dispersion (σinp) relative to the input velocity dispersion due to the uncertainties
in the orbital parameter distributions of OB stars for a single epoch of radial velocity data.
From top to bottom we have generated the radial velocity data using the orbital parameter
distributions from Sana et al. (2012), Sana et al. (2013), and Kiminki & Kobulnicky (2012).
The colors of the lines indicate the set of orbital parameter distributions assumed for the
fit: blue line for Sana et al. (2012); green line for Sana et al. (2013); red line for Kiminki &
Kobulnicky (2012). The error bars represent the uncertainty on the systematic offset after
∼ 30 Monte Carlo simulations, each of which included a sample of 2 000 radial velocities.
The simulations for which we find a best-fit binary fraction of 100% in the majority of
cases are marked with a black cross.

sions (∼ 2 km s−1) to as low as 25% for velocity dispersions of 10 km s−1 (Figure 2.9) for
the sets of orbital parameter distributions under study here. This suggests that without
precise knowledge of the binary properties of massive stars in a given environment, we
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Fig. 2.10 — One-sigma statistical uncertainties due to small-number statistics in the fitted
velocity dispersion as a function of the sample size N for single-epoch observations of
a cluster with a velocity dispersion of 5 km s−1. The colors indicate the set of orbital
parameter distributions used to generate the data and assumed for the fit: blue line for
Sana et al. (2012); green line for Sana et al. (2013); red line for Kiminki & Kobulnicky
(2012). The color-coding is the same as in Figure 2.9. The statistical uncertainties are
given relative to the input velocity dispersion of 5 km s−1. Every point in this graph
represents the average statistical uncertainty (as measured by the MCMC) in 60 Monte
Carlo simulations, except for sample sizes smaller than or equal to 30, where 200 Monte
Carlo simulations were averaged.

are limited to an accuracy of tens of percent when determining the line of sight velocity
dispersion using a single epoch of radial velocities from OB stars. Most OB stars will form
in massive clusters, whose virial velocity dispersion is generally expected to be higher than
4 km s−1. In this range the velocity dispersion can be fitted to an accuracy better than
∼ 40%, which allows a cluster in virial equilibrium to be just barely distinguished from an
unbound cluster from a single epoch of data.

If it is larger than the statistical uncertainties due to small-number statistics, this sys-
tematic offset of ∼ 40% will limit the accuracy on the velocity dispersion. Figure 2.10
shows how the statistical uncertainties of the fitted velocity dispersion depends on the
sample size. From this figure we find that a 2σ statistical uncertainty of ∼ 40% is reached
for a sample size of ∼ 100 stars (for a cluster with a velocity dispersion of 5 km s−1).
For a larger sample size the systematic offset due to the loosely constrained binary orbital
parameter distributions will dominate the uncertainty on the velocity dispersion.

One option to decrease the systematic offset in the fitted velocity dispersion is to de-
tect the spectroscopic binaries that alter the observed velocity distribution. This requires
multiple epochs of data. The largest systematic offset was found when radial velocity data
generated using the binary orbital parameter distributions from Kiminki & Kobulnicky
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Fig. 2.11 — Systematic offset in the fitted velocity dispersion for radial velocity data
generated using the Kiminki & Kobulnicky (2012) binary orbital parameter distribution
and fitted assuming the Sana et al. (2012) binary orbital parameter distribution, plotted
against the baseline between two epochs of observations. As the baseline between the
two epochs of observations increases, more spectroscopic binaries are detected, leading to
a decrease in the systematic offset of the velocity dispersion. We show the results from
Monte Carlo simulations for clusters with a velocity dispersion of 2 km s−1 (upper panel)
and 6 km s−1 (lower panel), as well as for measurement uncertainties of 0.1 km s−1 (solid),
0.5 km s−1 (dashed), and 1 km s−1 (dotted).

(2012) was fitted using the distributions from Sana et al. (2012) (blue line in the lower
panel of Figure 2.9). For this specific case, we explored whether the systematic offset in the
fitted velocity dispersion could be resolved by using two epochs of radial velocity data. The
results of these Monte Carlo simulations are shown in Figures 2.11 and 2.12 for clusters
with a velocity dispersion of 2 km s−1 and 6 km s−1, for measurement uncertainties σmeas

of 0.1, 0.5, and 1 km s−1 and a broad range of baselines between a few hours and hundreds
of years.

A larger fraction of the spectroscopic binaries can be detected when the baseline is
longer or the measurement uncertainties are smaller. As expected, this leads to a smaller
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systematic offset in the fitted velocity dispersion. From Figure 2.12 we find that for a broad
range of intermediate baselines the systematic offset decreases linearly with log(σmeas/b),
such that the systematic offset decreases by the same amount for every doubling of the
baseline or halving of the measurement uncertainties. The size of the offset and the rate of
decline depend on the exact binary properties assumed to compute the offset. This relation
breaks down both for low σmeas/b, when only very close binaries can be identified (whose
large velocity offsets already marked them as binaries in single-epoch data), and for high
baselines b, when the baseline becomes comparable to the period of the widest binaries
that have a significant radial velocity offset.

In section 2.3.6, we analyze these relations in more detail. Here we note that for the
typical measurement uncertainties of 4 km s−1 and the total baseline of one year of the
radial velocity observations in R136, we obtain σmeas/b ≈ 4 km s−1yr−1. Accordingly from
these Monte Carlo simulations we expect a significant systematic offset in the fitted velocity
dispersion of ∼ 40% depending on the adopted binary orbital parameter distribution when
analyzing a single epoch of the R136 radial velocity data. This systematic offset should be
significantly reduced to ∼ 20% when considering the full baseline of one year of the radial
velocity observations (see lower panel of Figure 2.12 for σmeas/b ≈ 4 km s−1yr−1).

2.3.4 R136

2.3.4.1 Data

The dataset we used to test the maximum-likelihood method outlined in section 2.3.1 con-
sists of multiple epochs (at least five) of radial velocity measurements for 81 O-type systems
in the inner 10 pc (in projection) of R136, all obtained with the FLAMES instrument on
the VLT as part of the VLT-FLAMES Tarantula Survey (VFTS). These 81 systems include
both apparently single stars and objects showing radial velocity variability. Most of the
stars in the inner 5 pc have been observed with the ARGUS integral-field unit coupled to
the Giraffe spectrograph, while for the vast majority of stars between 5 pc and 10 pc the
Medusa fiber-feed to Giraffe has been used (for more details on the VFTS data, see Evans
et al. 2011). In both cases, the radial velocities were measured by fitting Gaussians to
helium absorption lines using a similar approach and the same rest wavelengths (Hénault-
Brunet et al. 2012a; Sana et al. 2013). This sample of 81 objects excludes the B-type and
emission-line stars observed by the VFTS in the inner 10 pc of R136, but it includes a few
supergiants (or supergiant candidates) for which the absolute radial velocities might be
inaccurate because of the effect of stellar winds on the line profiles. However these were
shown to have a negligible impact on the measured velocity dispersion of the apparently
single stars of the sample (see Hénault-Brunet et al. 2012a). The radial velocity measure-
ments for individual epochs are listed in Hénault-Brunet et al. (2012a) and Sana et al.
(2013). The median radial velocity uncertainty of the single-epoch measurements for the
objects of our sample is ∼ 4 km s−1. Note that we did not include stars observed by the
VFTS farther out than 10 pc to limit possible contamination from nearby clusters or other
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Fig. 2.12 — Same as Figure 2.11, but with measurement uncertainty over the baseline
(σmeas/b), rather than the baseline on the x-axis. Note that for a broad region of interme-
diate baselines, all the curves overlap.

star formation events in the surroundings of R136.

Mackey & Gilmore (2003) found that the light profile of R136 is best fitted with a double-
component EFF profile (Elson et al. 1987), suggesting that the cluster is superimposed
on an OB association, that contributes a significant fraction of its total integrated light
(Maíz-Apellániz 2001). In this double-component EFF fit, the projected radius within
which the two components contribute equally is at about 5 pc, as illustrated in Figure 2.13
(top panel). To decide whether the velocity distributions of these two potentially distinct
components should be considered separately, we also show in Figure 2.13 (bottom panel)
the velocity distribution of the stars more likely to be part of the inner component (i.e.
the cluster) compared to the velocity distribution of the stars more likely to be part of
the outer component (i.e. the OB association). We see no evidence for a difference in
the velocity distribution between the two components. Similarly, Hénault-Brunet et al.
(2012a) found the measured velocity dispersion profile to be relatively flat between 1 and
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Fig. 2.13 — Top: Two-component EFF fit to the surface brightness profile of R136 as in
Mackey & Gilmore (2003). The data points shown are Mackey and Gilmore’s recalibrated
surface brightnesses from McLaughlin & van der Marel (2005). Stars that are farther out
than ∼ 5 pc (marked by the dotted line) from the cluster center are more likely to be
part of the OB association. Within this radius stars are more likely to belong to the R136
cluster itself. Bottom: Normalized histograms showing the velocity distribution of the 32
stars within 5 pc in blue (211 velocities), and the 49 stars between 5 and 10 pc in red (327
velocities).

10 pc from the center of R1363. Because the two components appear to be indistinguishable
(at least kinematically) in the inner 10 pc, we conclude that it is justified to try to fit a
single velocity dispersion for all the stars of our sample.

Note that Sabbi et al. (2012) found a dual structure in the density of low-mass stars
in R136, hinting at a merger event between the main core of R136 and a second cluster.
Because only a very small fraction our targets are expected to be associated with this
second clump, we treated all the stars within 10 pc as one population.

3Even though only the inner ∼ 5− 6 pc are more than a dynamical time old and can be considered to
be bound, and thus strictly speaking as part of the cluster according to the definition of Gieles & Portegies
Zwart (2011).
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2.3.4.2 Results

Hénault-Brunet et al. (2012a) determined a velocity dispersion of ∼ 6 km s−1 for the O-
type stars within 10 pc in projection from the center of R1364 after selecting out identified
binaries and estimating the effect of undetected binaries. To test our procedure, we fit
single-epoch radial velocity datasets extracted from the full multi-epoch dataset presented
in section 2.3.4.1. One such fit is shown in Figure 2.14.

We extracted five single-epoch radial velocity datasets without any overlap because
every star in the sample was observed for at least five epochs. These datasets are not
independent, because they all include observations of the same stars, albeit at different
epochs.

The best-fit binary fraction, velocity dispersion and mean velocity for each of these five
datasets are shown at the left side of each panel in Figure 2.15. The three different colors
again represent the three sets of orbital parameter distributions assumed. The 1σ error
bars are somewhat larger than predicted from the Monte Carlo simulations for a sample
of 81 radial velocities (see Figure 2.10), because the effective sample size is smaller than
81. A significant subset of the observed radial velocities in R136 have a measurement
uncertainty comparable to or larger than the velocity dispersion. These radial velocities

4The velocity dispersion was slightly lower (∼ 5 km s−1) when we only considered the stars within 5 pc
from the center. We ignored the small potential contribution (∼ 0.5 km s−1) to the velocity dispersion
from cluster rotation (Hénault-Brunet et al. 2012b).
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Fig. 2.14 — Blue line: The observed radial velocity distribution for a single epoch drawn
from the multi-epoch radial velocity dataset of R136 (Hénault-Brunet et al. 2012a; Sana
et al. 2013, see section 2.3.4.1 for details). Red dashed line: the best-fit radial velocity
distribution, including the effect of the orbital motions of spectroscopic binaries. Green
line: The intrinsic velocity distribution of the cluster, corrected for the orbital motions of
binaries. This intrinsic distribution is assumed to be a Gaussian whose width and mean
have been optimized to fit the data (see section 2.3.1).
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Fig. 2.15 — Best-fit binary fraction, velocity dispersion, and mean velocity and the log-
likelihood of the best fit for five single-epoch radial velocity datasets (labeled A-E) of the
O-type stars in R136, and two datasets with two epochs with a baseline of roughly one
month and one year. The colors indicate the set of orbital parameter distributions assumed
in the fit: blue line from Sana et al. (2012); green line from Sana et al. (2013) ; and red line
from Kiminki & Kobulnicky (2012). The error bars show the 1σ uncertainties on the best-
fit values, estimated with MCMC simulations. The dashed lines in the upper-right and
lower-left panels show the values found after removing the spectroscopic binaries identified
from the full multi-epoch dataset (Hénault-Brunet et al. 2012a).

provide (nearly) no information about the velocity dispersion of the clusters, leading to a
smaller effective sample size.

We found lower binary fractions for the orbital parameter distributions where an indi-
vidual binary has a higher likelihood of causing a significant radial velocity offset. This
explains the low binary fraction found for the parameters from Sana et al. (2012, blue in
Figure 2.15), which has relatively many close and similar-mass binaries (see Table 2.1 and
Figure 2.7). In contrast, the best-fit mass-ratio distribution of Sana et al. (2013) has more
low-mass binary companions, while the period distribution favored by Kiminki & Kobul-
nicky (2012) has a larger proportion of wide binaries and hence requires a larger binary
fraction to reproduce the same number of high-velocity outliers.
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The fitted velocity dispersion is less sensitive to the exact parameters assumed than the
binary fraction, although we did still find variations of ∼ 3 km s−1 (see central panel in
Figure 2.15) for the single-epoch fits, which is comparable to the ∼ 40% systematic offset
found from Monte Carlo simulations (section 2.3.3). The intrinsic velocity dispersion of
R136 fitted from single-epoch radial velocities is consistent with the 6 km s−1 from the
multi-epoch approach (Hénault-Brunet et al. 2012a).

Finally, the best-fit mean velocity is barely sensitive to the assumed orbital parameter
distributions (see Figure 2.15), because as long as the projections of the binaries on the sky
are random, the velocities from the binary orbital motions will be symmetrically distributed
around the mean velocity. This means that the systematic uncertainties induced from
an assumed binary population do not significantly affect the measurements of the mean
velocity, which in turn means that parameters depending on the mean velocity (e.g. cluster
rotation) can be accurately fitted.

The best-fit parameters obtained when using two epochs of data are shown at the right
side of each panel of Figure 2.15. As we saw from the Monte Carlo simulations of section
2.3.3, the systematic offset in the fitted velocity dispersion induced when different binary
orbital parameter distributions are used decreases significantly with multi-epoch data.
For the single-epoch data, we found typical variations in the fitted velocity dispersion
of ∼ 3 km s−1, which decreases to only ∼ 2 km s−1 when using two epochs that are
approximately one month apart. For a baseline of one year, the systematic offset decreases
even more to about 1 km s−1.

Although the fitted velocity dispersions show smaller systematic offsets between the
adopted binary orbital parameter distributions when multi-epoch data are used, the fitted
binary fraction is roughly the same for single- and multi-epoch data. This is consistent
with a scenario where the fitted binary fraction depends on the proportion of close and
similar-mass binaries. When assuming a high proportion of such systems, the fitted binary
fraction will be lower, irrespective of whether these stars appear as high-velocity outliers
(as in the single-epoch case) or as radial velocity variables (as in the multi-epoch case).

From inspecting the log-likelihood of the best-fit models for R136 (Figure 2.15), no set of
orbital parameter distributions (Sana et al. 2012; Kiminki & Kobulnicky 2012; Sana et al.
2013) consistently fits the data better than the others. This does not imply that there is
insufficient information in the dataset to distinguish between the orbital parameter distri-
butions. After all, our method ignores some information (e.g. the observed distribution of
radial velocity offsets between epochs) in the log-likelihood, which could have been used
to constrain the binary orbital parameter distributions (e.g. Sana et al. 2013), but not the
intrinsic velocity dispersion.
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2.3.5 Discussion

We were able to fit the intrinsic velocity dispersion from a single epoch of radial velocity
data with an accuracy ranging from ∼ 60% for a cluster velocity dispersion of ∼ 2 km s−1

to ∼ 25% for σv ∼ 10 km s−1, given the present-day uncertainties on the orbital parameter
distributions of OB spectroscopic binaries (e.g. Table 2.1 and Figure 2.7). For typical ve-
locity dispersions of young massive clusters (& 4 km s−1) we found that an accuracy better
than 40% can be reached, which is sufficient to distinguish a cluster in virial equilibrium
from an unbound cluster. This systematic offset will dominate over the statistical uncer-
tainties from small-number statistics for a sample size larger than about 100 stars. This
means that after observing 100 stars for a single epoch, the accuracy of the fitted velocity
dispersion will in principle no longer increase when more stars are observed due to the un-
certainties in the binary orbital parameter distributions of OB stars. Observing the same
stars for multiple epochs makes it possible to reduce the systematic offset. For example,
a ratio of the measurement uncertainty over the baseline of 1 km s−1yr−1 is required to
reduce the systematics below 15% for an intrinsic velocity dispersion of 6 km s−1,

To understand the systematic offsets, we directly compared the fits of the single-epoch
R136 data for the orbital parameter distributions of Sana et al. (2012) and Kiminki &
Kobulnicky (2012). In the case of Sana et al., the binaries typically orbit each other with
tens of km s−1, an order of magnitude larger than for Kiminki & Kobulnicky (Figure 2.7).
Thus, an individual binary in the former case will have a much higher probability of causing
a high-velocity outlier. To reproduce the high-velocity outliers in the R136 data we thus
need a lower binary fraction for the binary orbital parameter distribution of Sana et al.
(2012) than for Kiminki & Kobulnicky (2012), which explains the difference in the binary
fraction found for the R136 data (left panel in Figure 2.15).

On the other hand, the fitted velocity dispersion is affected by the abundance of wider
binaries with orbital velocities comparable to the intrinsic velocity dispersion of the cluster
(∼ 6 km s−1), because these binaries are more likely to really broaden the observed peak in
the velocity distribution, instead of just creating a high-velocity tail. We can see in Figure
2.7 that these binaries are much more common for the orbital parameter distributions of
Kiminki & Kobulnicky (2012) than for those of Sana et al. (2012), even before we take into
account the fact that we find a lower overall binary fraction for Sana et al. (2012). This
much higher fraction of wide binaries broadening the observed velocity distribution when
assuming the binary orbital parameter distributions of Kiminki & Kobulnicky (2012) leads
to a significantly lower fitted velocity dispersion (central panel in Figure 2.15) than in Sana
et al. (2012). Still, it is remarkable that the systematic offset in the velocity dispersion is
smaller than a factor of 2 given that the peaks in the orbital velocity distributions differ
by an order of magnitude (see lower left panel in Figure 2.7).

Note that the differences between the sets of binary properties listed in Table 2.1 might
be real to some extent (i.e. not only reflect uncertainties in our knowledge of these proper-
ties). There are reasons to assume that the binary properties of massive stars may depend
on the environment and the age of the region in which they are located. For example, the
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intrinsic fraction of O-type spectroscopic binaries seems lower in 30 Doradus than in the
relatively low-density Galactic clusters (see Table 2.1), although the two results still agree
within 2σ. As discussed by Sana et al. (2013), this may suggest that the binary properties
in the 30 Doradus region have already been significantly affected by dynamical and/or
stellar evolution, which would induce merger events or binary disruption and decrease the
observed number of binaries. This is to be expected given the presence of different popu-
lations in the region, some already quite old, and considering that a fraction of the O-star
population consists of runaways. For the Galactic open cluster sample, cluster dynamics
and stellar evolution are not expected to have significantly altered the orbital properties
of the binaries (Sana et al. 2012). Given the young age of the clusters in this sample, the
parameters reported in this case are probably a good representation of the properties of
massive binaries at birth.

A wide variety of possible period, mass ratio, and eccentricity distributions for OB bina-
ries have been considered in the literature. We chose to limit our analysis to the three sets
of orbital parameter distributions in Table 2.1, which we felt were the most representative
of our present-day knowledge about these distributions. However, we offer the provided
python code5 for use, which can be used to fit an observed radial velocity distribution,
and to create and fit mock radial velocity distributions, using either the orbital parameter
distributions described in this work or any other orbital parameter distributions. This
code can thus be used to calculate the systematic offsets in the fitted velocity dispersion
between any orbital parameter distributions (as in Figure 2.9) or to determine the accuracy
with which the velocity dispersion can be fitted as a function of sample size when planning
observations (as in Figure 2.10).

2.3.6 Effectiveness of multi-epoch radial velocities

Multi-epoch data are required to reduce the systematic offsets in the fitted velocity dis-
persion due to uncertainties in the adopted binary orbital parameter distributions. In
particular, one needs to identify and remove from the sample the spectroscopic binaries
with radial velocity offsets comparable to the intrinsic velocity dispersion. Binaries causing
a larger velocity offset are easily identified in single-epoch data as high-velocity outliers
and hence have little effect on the fitted velocity dispersion. Binaries causing a velocity
offset smaller than the velocity dispersion have a negligible impact on the observed veloc-
ity distribution. Below, we therefore consider the properties of the critical binaries with
velocity offsets similar to the intrinsic velocity dispersion, and we investigate under which
conditions they can be identified as radial velocity variables in multi-epoch data.

For most of the binary orbit, the radial velocity offset is smaller but of the same order of
magnitude as the radial velocity semi-amplitude K. This is illustrated in the central panel
of Figure 2.16, where we plot the distribution of the radial velocity semi-amplitude over
the velocity offset (K/voff) at a random point in time for a random set of binaries. The

5https://github.com/MichielCottaar/velbin
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distribution plotted here is independent of the period and mass ratio distribution and only
depends on the eccentricity distribution. For both eccentricity distributions considered
(flat and only circular), the distribution is strongly peaked at one and decreases quickly
with increasing K/voff . Only for eccentric orbits can the radial velocity offset exceed the
semi-amplitude.
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Fig. 2.16 — Left: the period distribution with respect to the longest period needed to obtain
a given velocity offset for a circular orbit (Pmax; equation 2.12) for a flat distribution of mass
ratios (blue) or only equal-mass binaries (green). Middle: the distribution of the radial
velocity semi-amplitude (K) relative to the velocity offset (voff) for a flat distribution of
eccentricities and circular orbits. Right: the distribution of the velocity gradient (dv/dt)
relative to the velocity offset (voff) divided by the orbital period (P ) for a flat distribution
of mass ratios (blue) or only equal-mass binaries (green). These plots are independent
of the period distribution of the binaries, and only weakly depend on the mass ratio and
eccentricity distributions.

If the time between radial velocity observations is sufficiently longer than the period
of the binary, the phases of these observations become independent of each other. Radial
velocities are drawn from a distribution set only by the radial velocity semi-amplitude
K and eccentricity e, independent of the orbital period or mass ratio (except for their
contribution to K). To allow identification as a binary under this long-baseline condition,
the measurement uncertainty should be at least smaller than the radial velocity semi-
amplitude of the binaries. Thus, to identify the critical binaries with velocity offsets
comparable to the intrinsic velocity dispersion, measurement uncertainties lower than the
velocity dispersion are required. This is not really an additional requirement, because
measurement uncertainties lower than the velocity dispersion help to accurately fit the
velocity dispersion even when the effect of binaries is ignored. The detection rate of
binaries will increase as the measurement uncertainties decrease or the number of epochs
increases (by decreasing the probability that the observations are in phase with the binary
orbit), but it does not depend on the baseline of the observations as long as it remains
significantly longer than the period of the binary. This explains why, in our Monte Carlo
simulations of the systematic offset of the fitted velocity dispersion for two-epoch data
(Figure 2.11), the systematic velocity offset depends on the measurement uncertainty and
not on the baseline once this baseline becomes comparable to the widest binaries in the
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Monte Carlo simulations (i.e. 300 years).

For a reasonable baseline, there will be many binaries causing radial velocity offsets
comparable to the intrinsic velocity dispersion with periods much longer than the baseline,
in which case the argument above does not hold. To illustrate this, we computed from
Kepler’s third law the longest period needed to create a given velocity offset for circular
orbits:

Pmax = P (K = voff , e = 0, sin i = 1, q = 1) =
1

4

2πGm1

v3
off

= 2.6× 104 yr
m1

M�

(
voff

km s−1

)−3

.

(2.12)

Projection effects and unequal mass ratios will result in the typical period of the binary
causing a given velocity offset to be lower. We found from randomly sampling a large
number of binaries with a flat eccentricity distribution that even for equal-mass binaries
the typical period is 0.5 dex shorter (green line in the left panel of Figure 2.16). For a flat
mass ratio distribution (blue line in the left panel of Figure 2.16), the period distribution
of stars that cause a given velocity offset is even 1.5 dex shorter than the longest period
given in equation 2.12. The distributions plotted in Figure 2.16 are independent of the
period distribution of binaries, because they are plotted relative to Pmax. For the R136
data (σv ∼ 6 km s−1; m1 ∼ 30 M�), Pmax is about 4 000 years. Most of the binaries
that cause a velocity offset comparable to the intrinsic velocity dispersion of the cluster
will therefore have periods longer than a baseline of even a few years, although there is a
significant minority of binaries with P < 10−3Pmax < 4 years (left panel in Figure 2.16)
whose period may be shorter than the baseline.

Long-period binaries will be detected when the measurement uncertainty is significantly
smaller than the velocity change between the first and last epoch6, which we assumed
below to be separated in time by a baseline b. The velocity change is given by dv

dt b, where
dv
dt is the velocity gradient of the binary, which is roughly constant over the observed
time under the condition considered here (P >> b). Therefore the detection of a long-
period binary depends on whether the velocity gradient is sufficiently steeper than the
ratio of the measurement uncertainty and baseline (σmeas/b). In the two-epoch Monte
Carlo simulations (Figures 2.11 and 2.12), we indeed find that the systematic offset in
the fitted velocity dispersion mainly depends on σmeas/b for baselines shorter than a few
years. For these baselines, most of the binaries causing velocity offsets comparable to the
intrinsic velocity dispersion are in the regime discussed here (P >> b). Because these
binaries need to be detected to reduce the systematic offset, the systematic offset is to first
order a function of σmeas/b (see Figure 2.12), until the baseline becomes comparable to the
widest binaries (with periods of ∼ Pmax).

6Intermediate epochs contribute less to the capability of observing shallow velocity gradients than the
first and last epoch, suggesting that it is better to focus on just two deep epochs than on many less deep
epochs with the same total baseline. However, intermediate epochs can still be important in confirming
whether the velocity differences measured between the first and last epoch, are real and they are crucial
in solving binary orbits, which allows the binary population to be characterized.
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To quantify this further, we computed the velocity gradients for a large sample of
binaries with flat eccentricity distributions. For binaries causing a given velocity offset voff

with orbital period P , we found that the velocity gradients follow a roughly log-normal
distribution with a peak at 8voff/P and a width of about 0.5 dex (right panel in Figure
2.16). To detect the widest binaries causing a velocity offset comparable to the velocity
distribution (i.e. with P ∼ Pmax) in R136 (σv ∼ 6km s−1; Pmax ∼ 4 000 years) would
hence require the detection of a velocity gradient of 8σv/Pmax ≈ 12 ms−1 yr−1, which is
virtually impossible. However, with typical periods being 0.5 - 3 dex shorter (left panel in
Figure 2.16), a significant proportion of the critical binaries can actually be detected for
the typical measurement uncertainty of 1 km s−1 and a baseline of one year. This explains
the drop in the systematic offset between the velocity dispersion fitted assuming different
binary orbital parameter distributions (which are represented by different colors in Figure
2.16) when multi-epoch data are used.

For many lower-mass clusters, the intrinsic velocity dispersion is much lower (often at
the sub-km s−1 level), leading to an increase in the longest period due to its dependence
on the third power of the velocity offset (equation 2.12). Even though the light of these
generally older clusters will be dominated by lower-mass stars (lowering m1 in equation
2.12), Pmax is still likely to occur at roughly 105 − 107 years, such that the broadening of
the velocity distribution is dominated by binaries with periods of 103 − 105 years. These
are virtually impossible to detect by spectroscopic means (and will only be detectable in
direct-imaging surveys for the most nearby clusters). Therefore, although a multi-epoch
strategy with a baseline of a few years works well for the high velocity dispersions of young
massive clusters, it has little effect on the accuracy with which clusters with a much lower
velocity dispersion can be measured, because this would require the detection of binaries
with periods of many thousands of years. This is quite fortunate because the need for a
multi-epoch strategy is much lower for lower-mass clusters, whose light is dominated by
solar-type stars with much better constrained binary properties.

2.4 Conclusions

We investigate here a maximum likelihood method to simultaneously fit an intrinsic velocity
distribution with the velocity offsets induced due to binary orbital motions to a single epoch
of observed radial velocities. The procedure was pioneered separately by Odenkirchen et al.
(2002), Kleyna et al. (2002), and Martinez et al. (2011). It enables a proper treatment of
the effect of binary orbital motions on the radial velocities observed in surveys of single-
epoch high-resolution spectra.

This procedure requires assumptions about the period, mass ratio, and eccentricity
distribution for the binaries in the observed stars, although we show that reasonable un-
certainties in the assumed binary properties do not significantly affect the intrinsic velocity
distribution we find (sections 2.2.3.2).
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Assuming a binary period, mass ratio, and eccentricity distribution found for solar-type
stars in the field (Raghavan et al. 2010) the precision with which the binary fraction,
velocity dispersion, and mean velocity can be measured as a function of the number of
observed stars, the velocity dispersion, and the binary fraction can be determined using
equations 2.7a - 2.7c and Figure 2.3. These results can be used to get a prior estimate
of the number of stars that should be observed to reach a given accuracy. Although we
calculate the accuracy with which the velocity dispersion can be measured, we emphasize
that the procedure can be trivially expanded to test complicated dynamical models, where
for example the velocity dispersion and the mean velocity depend on the position of the
observed star in the cluster and/or its mass.

As a test case we apply this procedure to three different sets of single epoch radial
velocity data from 1108 stars in NGC 188 (Geller et al. 2009). Assuming the period, mass
ratio, and eccentricity distribution from the field solar-type stars we are able to reproduce
the velocity dispersion of ∼ 0.5 km s−1 for a single epoch of data, consistent with the value
Geller & Mathieu (2011) derived from many epochs of radial velocity data, even though
about half of the observed stars are fore- and background stars.

For an assumed binary period, mass ratio, and eccentricity distribution this maximum
likelihood procedure can be used to characterize the intrinsic velocity distribution for any
set of observed radial velocities, where the observed distribution has been significantly
broadened by binary orbital motions. This will happen in almost any clusters where the
velocity dispersion is lower than several km s−1 such as open clusters, faint Milky Way
companion dwarf galaxies, young massive clusters, local star-forming regions, and some
low-mass globular clusters. Determining the intrinsic velocity distribution will allow us to
constrain the dynamical state of these clusters from a single epoch of radial velocity data,
which gives a useful test on our understanding of the current state and evolution of these
type of clusters.

We explored the applicability of this procedure to recover the intrinsic velocity dispersion
of massive stars in young clusters from a single epoch of radial velocity data. By using
Monte Carlo simulations and multi-epoch stellar radial velocity data of the young massive
cluster R136 as a test case, we showed that the method works reasonably well, the main
limitation being uncertainties in the binary properties of OB stars which can lead to a
systematic offset of tens of percent in the fitted velocity dispersion (< 40% for typical
young massive cluster velocity dispersions, i.e. & 4 km s−1).

This systematic offset can be greatly reduced by directly detecting the spectroscopic
binaries through radial velocity variations in multi-epoch data. Specifically, the spectro-
scopic binaries with velocity offsets comparable to the intrinsic velocity dispersion need to
be detected to increase the accuracy of the fitted velocity dispersion. For a typical young
massive cluster, these periods range from 10−2 to 104 years, meaning that many can be
detected with typical baselines of observations of a few years. Indeed, we found that the
accuracy of a fitted velocity dispersion of 6 km s−1 improves to better than 15% for a
typical ratio of the measurement uncertainty over the baseline of 1 km s−1 yr−1. However,
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CHAPTER 2. Correcting the radial velocity distribution for binary orbital motions

there will always remain undetected binaries that affect the observed velocity distribution
for any reasonable baseline and measurement uncertainty, which will have to be corrected
for (see section 2.3.1). Because the orbital period scales with the orbital velocity to the
third power (Kepler’s third law), multi-epoch data are far less useful in improving the
accuracy of the fitted velocity dispersion of lower-mass clusters (with sub-km s−1 velocity
dispersions) than of young massive clusters.

Unlike the velocity dispersion, the binary fraction fitted with the method tested in
this chapter is very sensitive to the assumed binary properties. In general, the method
can therefore not reliably recover the binary fraction from a radial velocity dataset if the
distributions of orbital parameters of the binaries are poorly constrained.

Although we have tested the method on a sample of radial velocities of O-type stars
in R136 and considered binary properties that were derived mainly from spectroscopic
surveys of O-type stars7, it should also be applicable to samples of B-type stars because
they appear to have similar binary properties (Dunstall et al., in preparation). This means
that one may only have to use one or two epochs of radial velocities to estimate the velocity
dispersion of the massive star population in a large number of young Galactic open clusters
that may contain a few O-type stars at most but a much larger number of B-type stars.

We may even speculate that this method may eventually be used to study the dynamics
of massive stars in systems where this has been almost impossible up to now. There
has been an increasing interest in near-infrared spectroscopy of massive stars in recent
years (e.g. Hanson et al. 2005). This wavelength regime offers the possibility of analyzing
these stars in embedded regions and near the Galactic center because of the substantially
lower extinction than in the optical, and quantitative atmospheric analysis of early-type
stars from near-infrared spectral lines is now providing promising results (e.g. Stap et al.
2011). Provided that precise radial velocities can be obtained from near-infrared spectra in
reasonable exposure times, then the results presented in this chapter offer a promising and
efficient way of studying the dynamics of massive embedded clusters, or even the dynamics
of the significant number of Galactic young massive clusters (e.g. Davies et al. 2012), which
are strongly affected by extinction and for which we currently have very little kinematic
information.

7Early B-type stars were also included in the study of Kiminki & Kobulnicky (2012).
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3 Westerlund I: stability of a young,
massive cluster

Abstract

Westerlund I is the richest young cluster currently known in our Galaxy, making it one
of the most massive clusters for which we can resolve the individual stars even in the
crowded centre. This makes it an ideal target to assess whether massive clusters formed
currently will remain bound or will disperse and contribute significantly to the stellar
field population. We measure the radial velocity dispersion of Westerlund I to explore
whether the cluster is either currently in virial equilibrium, in the process of collapse, or
expanding and dispersing into the field. We obtained MIKE/Magellan high resolution
optical spectra of 22 post main-sequence stars in Westerlund I for 2 or 3 epochs with a
maximum baseline of about one year. Radial velocities variations between these spectra
are measured by means of cross-correlation. We calculate the velocity dispersion from the
cross-correlation of five yellow hypergiants and one luminous blue variable, that show little
radial velocity variations between epochs and have many spectral features in common.
After taking into account the effect of small number statistics and undetected binaries, we
estimate the velocity dispersion for the massive stars in Westerlund I to be 2.1+3.3

−2.1 km s−1.
For several different assumptions concerning possible mass segregation and the elongation
of the cluster, we find that Westerlund I is subvirial at the 90% confidence level. We can
rule out that the cluster is significantly supervirial at the 97% confidence level, indicating
that Westerlund I is currently bound. This implies that Westerlund I has survived past
the point where any gas expulsion has taken place and is expected to survive for billions
of years. This chapter has been published in Cottaar et al. (2012a).
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3.1 Introduction

Soon after its launch about twenty years ago, the Hubble Space Telescope identified many
massive young star clusters in starburst and merging galaxies (Holtzman et al. 1992).
These clusters are so massive that they appear unlikely to disperse in a Hubble time owing
to tidal stripping (Lamers et al. 2005), which means they could possibly become globular
clusters. However, violent internal or external events could cause the cluster to become
unbound, in which case the cluster will dissolve into the field, contributing significantly to
the stellar populations of their host galaxy. A likely process behind such an event would be
the expulsion by stellar winds or the first supernovas of the remainder of the gas cloud out
of which the cluster formed. This scenario has been extensively studied both analytically
(Hills 1980; Mathieu 1983; Elmegreen 1983) and with N-body simulations (Lada et al.
1984; Goodwin & Bastian 2006). These studies have found that the expulsion of gas
lowers the potential well in which the stars reside, causing a previously virial cluster to
expand. The efficacy of the gas expulsion to disrupt clusters depends on several variables,
including the star formation efficiency, the timescale of the expulsion (Hills 1980; Mathieu
1983), the spatial distribution of the stars relative to the gas (Chen & Ko 2009; Kruijssen
et al. 2012), and whether the stars have achieved virial equilibrium with the potential
of the surrounding gas before the gas is ejected (Goodwin 2009). Without studying the
dynamical state of these clusters, we do not know which fraction of them would survive to
become future globular cluster analogues and which will disperse into the field.

The only information that we have about the dynamic state of these distant massive
clusters, that we can currently measure is the radial velocity dispersion (e.g. Bastian et al.
2006). Under the assumption of virial equilibrium the one-dimensional velocity dispersion
can be used to estimate the mass of the cluster, if its size is resolved. This mass estimate is
called the dynamical mass. The dynamical mass can then be compared to the mass derived
from the luminosity of the cluster, assuming a universal IMF. Many clusters have been
found to have a significantly higher velocity dispersion, than expected from the luminosity
(Bastian et al. 2006). Several explanations of this have been proposed, including that:
(i) the IMF might actually be different under extreme star forming conditions (Mengel
et al. 2002); (ii) the velocity dispersion might be significantly higher owing to binaries
(Kouwenhoven & de Grijs 2008; Gieles et al. 2010b); or (iii) the cluster might be supervirial,
for example owing to a recent expulsion of gas from the cluster (Goodwin & Bastian 2006;
Baumgardt & Kroupa 2007). These scenarios can be distinguished through observations
of a cluster for which we can resolve the individual stars and thus measure the binary
properties and the IMF.

Westerlund I is the most massive young cluster currently known in our Galaxy (Portegies
Zwart et al. 2010). An analysis of photometric observations with the NTT/SOFI in the
JHKS bands (Brandner et al. 2008; Gennaro et al. 2011) reveals an elongated cluster with
a mass of 4.9+1.8

−0.5× 104 M�, a half-mass radius rhm = 1.0 pc, and a distance of 4± 0.2 kpc.
This distance was also found by comparing the radial velocity of the H II gas in Westerlund
I with the rotation curve of the Galaxy (Kothes & Dougherty 2007). At this distance from
the Galactic center, stellar evolution and Galactic tidal stripping are expected to disperse

66



3.2. Observations & data reduction

Westerlund I over ∼ 9 Gyr, if it is currently in virial equilibrium (Baumgardt & Makino
2003). Thus, Westerlund I might represent a precursor of a future low-mass, metal-rich
“globular cluster”. However, at an age of 4.5-5 Myr (Crowther et al. 2006; Gennaro et al.
2011) we expect that Westerlund I might be out of virial equilibrium because of a recent
expulsion of gas, that has not been converted into stars (Goodwin & Bastian 2006). In this
chapter, we describe our measurements of the radial velocity dispersion in Westerlund I to
explore whether the cluster is likely to be bound. If Westerlund I is in virial equilibrium,
we expect a one-dimensional velocity dispersion of ∼ 4.6 km s−1 (see section 3.4) for the
mass and radius measured by Brandner et al. (2008) and Gennaro et al. (2011).

Mengel & Tacconi-Garman (2007, 2009) previously measured the radial velocity disper-
sion of Westerlund I using K-band spectra. They found a velocity dispersion of 9.2 ± 2.5
km s−1 based on a sample of ten stars. This value could be severely inflated owing to the
presence of binaries (Kouwenhoven & de Grijs 2008; Gieles et al. 2010b). Ritchie et al.
(2009a,b) also measured the radial velocities for a large sample of members and candidate
members of Westerlund I using VLT/FLAMES+GIRAFFE spectra from 8350Å to 9000Å
over multiple epochs to check for variability and investigate the binary properties of these
massive stars.

In this chapter, we present multi-epoch high-resolution spectroscopy to find the velocity
dispersion corrected for binaries of Westerlund I and thus constrain the dynamical state of
Westerlund I. In section 3.2, we present the observations and discuss the data reduction. In
section 3.3, we present the radial velocity variations between epochs caused by binaries or
atmospheric instabilities in the target stars, and calculate the velocity dispersion using stars
of low variability. The implications of the measured velocity dispersion for the dynamical
state of Westerlund I are discussed in section 3.4. Finally we present our conclusions in
section 3.5.

3.2 Observations & data reduction

Observations were made using the MIKE spectrograph (Bernstein et al. 2003) located
on the Magellan Clay telescope at the Las Campanas Observatory in June 2009, August
2009, and July 2010. MIKE has a red and a blue arm, providing two echelle spectra with
a combined wavelength coverage from 3200 Å to 9000 Å. A slit of 0.7 arcseconds was used,
corresponding to a resolution of 53.000 (∼ 6 km s−1 per resolution element). Owing to the
large interstellar reddening towards Westerlund I (AV = 9.6−12.3 Negueruela et al. 2010),
usable spectra are only obtained red-wards of 5000 Å. We observed 22 of the brightest
spectroscopically confirmed members (I < 14.7 mag) selected from Clark et al. (2005).
These stars include two of the four red supergiants, all six yellow hypergiants, a sgB[e]
star, a LBV in its cool phase, and 12 OB-supergiants. All of these targets were observed
for two or three epochs.
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The spectra were reduced with the MIKE Redux pipeline1 with some minor adjust-
ments. All images were bias subtracted using the overscan regions. Flat field images were
derived from internal quartz lamp frames. The slit was in place during these measure-
ments to ensure that the variation in wavelengths with the location on the CCD is similar
to that in the observations. To obtain the flat field in the dark area between the orders,
a diffusing glass was positioned in the optical path just downstream of the slit illuminat-
ing the area between the orders. After flat fielding we still found spurious low frequency
spatial variations in the illumination of the detector above ∼ 8200 Å for all spectra taken
on August 2009 and July 2010, including the internal quartz lamp spectra. These features
are slightly weaker for the internal quartz lamp and are spread out by the diffusing glass,
suggesting that these features are created in the optical path of the telescope. To correct
these variations, we calculated a smoothed flat field, which no longer contains the high fre-
quency pixel-to-pixel variations, but only these low frequency spatial features. Although
these spurious features are weaker in the flat field than in the science images, we found
that they can still be roughly corrected for by dividing the flat fielded image twice by this
smoothed flat field.

The curvature of the orders along the CCD is fitted using traces along the edge of the
orders obtained from internal quartz lamp images. The scattered light was fitted from the
dark areas between the orders by a B-spline with ten knots and this fit was then subtracted.
The long slit of MIKE (five arcseconds) allowed us to identify the sky emission lines in the
part of the order not illuminated by the star and subtract these emission lines. Regularly
during the nights, ThAr images were taken for wavelength calibration. Two ThAr lamp
images were taken at different exposure times to maximize the range of lamp line strengths
that could be used in the wavelength calibration. Combined with the position of the orders
on the CCD, these ThAr images were used to calculate a wavelength for every pixel on the
image. The spectra were optimally extracted onto a common wavelength frame, allowing
us to add the subsequent exposures of the same target. The noise was estimated at every
pixel as the sum of the Poisson error in the observed flux and the readout noise. This
calculated noise is consistent with the variations between multiple subsequent observations
of the same target and corresponds to a S/N of over 100 in the red part of the spectra.
The flux was normalized using a cubic spline fit with two knots.

To correct for possible off-center placement of the source star along the slit, we checked
for zero-point shifts of the wavelength solution in every observed spectrum. To this end, we
measured the shift of the telluric absorption lines in our stellar target spectra compared to
a National Solar Observatory (NSO) telluric spectrum convolved to the resolution of our
spectra. We selected sixteen wavelength ranges that have either no or only very weak con-
tamination from stellar spectral lines or diffuse interstellar bands and that contain strong
telluric lines. Over these wavelength ranges we calculated the peak of the cross0correlation
between the NSO spectrum and the observed spectra. The shift of the zero-point of the
wavelength for every spectrum is the average of the shifts calculated for the sixteen indi-
vidual wavelength ranges. Figure 3.1 shows the difference between the individual measure-

1The MIKE Redux pipeline was written by S. M. Burles, J. X. Prochaska and R. Bernstein in IDL
(http://web.mit.edu/ burles/www/).
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3.3. Results

Fig. 3.1 — The offset of the velocity zero point measured for the individual telluric lines
from the averaged velocity zero point for sixteen wavelength regions containing strong
telluric lines. On the x-axis the central wavelength of these regions is given. On the right,
the histogram of all these offsets is plotted. The standard deviation in this distribution is
about 230m s−1.

ments and the average offset. The distribution of these variations is quite sharply peaked
(σ = 0.23 km s−1). These offsets are smaller than the precision we achieved in measuring
the radial velocity variations of our target stars, implying that we are not limited by the
accuracy of the wavelength calibration.

3.3 Results

3.3.1 Radial velocity variations

Radial velocity variations caused by either binary stars or activity in the stellar atmospheres
can inflate our measurement of the velocity dispersion of Westerlund I. To identify the
variable stars, we searched for radial velocity variations between epochs over our about
one year baseline. We calculated the velocity difference between epochs on a line-by-line
basis, by cross-correlating the spectra around selected spectral lines. To determine the
peak of the cross-correlation on a sub-pixel level we then fit a Gaussian to the 21 points
closest to the peak.

For every spectral line, the procedure described above, provided the spectral shift be-
tween any two epochs. We denote this measured spectral shift between epoch i and epoch
j as ∆Vij . When we had data for more than two epochs, then the optimal estimate of
the line shift between two epochs was not only measured by the direct cross-correlation
between these two spectra (∆Vij), but also through the difference in the velocities mea-
sured relative to any other epoch k (∆Vik −∆Vkj). These different determinations of the
spectral shifts are not be the same in general (i.e. ∆Vij 6= ∆Vik −∆Vkj). Allende Prieto
(2007) showed that it is possible to combine information about the spectral shift from both
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CHAPTER 3. Westerlund I: stability of a young, massive cluster

Tab. 3.1 — The observed stars with the id of the star from Westerlund (1987) , updated
by Clark et al. (2005) (Col. 1), its spectral type (Negueruela et al. 2010; Clark et al.
2010) (Col. 2), the deviation in the velocities measured for a single epoch from the average
velocity of that star (Cols. 3-5), and the maximum velocity difference between two epochs
(Col. 6). All velocities are in km s−1. The relative velocities have been plotted in Figure
3.2.

id sp. type 13/14-06-2009 10-08-2009 09-07-2010 10-07-2010 ∆vmax

W56 B0 Ia −2.6± 1.3 - 0.1± 0.8 2.5± 1.7 5.1± 2.9
W13 B0.5 Ia spectroscopic binaryb

W238 B1 Iab 1.2± 1.5 - −1.4± 0.5 0.2± 1.1 2.6± 2.0
W23a B2 Ia 0.6± 0.8 - 1.9± 0.7 −2.5± 1.3 4.4± 1.9
W2a B2 Ia −5.2± 1.1 −1.1± 0.6 - 6.3± 1.2 11.5± 2.3
W11 B2 Ia 4.6± 0.8 - −6.5± 0.4 1.9± 0.8 11.1± 1.0
W28 B2 Ia 5.7± 0.8 −5.7± 0.8 - - 11.3± 1.7
W71 B2.5 Ia −5.9± 0.5 5.9± 0.5 - - 11.8± 1.0
W70 B3 Ia −6.2± 0.8 6.2± 0.8 - - 12.3± 1.5
W57a B4 Ia 0.4± 0.2 −3.3± 0.4 1.1± 0.5 1.8± 0.4 5.1± 0.5
W33 B5 Ia+ 6.4± 0.8 1.2± 1.1 −7.6± 0.6 - 14.1± 0.8
W7 B5 Ia+ −4.0± 0.5 2.7± 0.9 - 1.3± 0.6 6.7± 1.3

W16a A5 Ia+ 4.7± 0.2 −1.4± 0.4 - −3.3± 0.5 8.0± 0.6
W243a LBV −0.5± 0.3 −0.5± 0.2 1.0± 0.3 - 1.6± 0.6
W12aa F1 Ia+ −0.7± 0.4 1.2± 0.2 - −0.4± 0.4 1.9± 0.5
W4a F3 Ia+ −2.4± 0.2 2.4± 0.2 - −0.1± 0.2 4.8± 0.4
W265a F1-5 Ia+ −1.2± 0.3 2.0± 0.2 - −0.8± 0.2 3.2± 0.5
W32a F5 Ia+ −1.8± 0.1 1.8± 0.1 - - 3.6± 0.3
W8aa F8 Ia+ −0.8± 0.1 −0.4± 0.1 1.1± 0.1 - 1.9± 0.2
W237 M3 Ia 0.7± 0.6 −1.0± 0.5 0.3± 1.0 - 1.7± 0.5
W26 M5-6 Ia 0.6± 0.2 −0.2± 0.1 −0.5± 0.3 - 1.1± 0.5
W9 sgB[e] 0.5± 0.4 - −0.4± 0.4 −0.1± 0.2 0.9± 0.7

a These stars were been included in our sample to calculate the radial velocity disper-
sion (see section 3.3.2).

b See Ritchie et al. (2010) for a discussion of the spectroscopic binary W13.

the direct cross-correlation and the spectral shifts measured relative to any other epoch,
to get a more accurate estimate of the actual spectral shift, called ∆V ′ij (their equation
3). These estimates obey the relation ∆V ′ij = ∆V ′ik − ∆V ′kj , and hence can be used to
assign a unique velocity to every epoch, relative to some arbitrary zero-point. We set this
zero-point to the mean of the relative velocities.

Using the method from Allende Prieto (2007) we can thus estimate the relative velocities
between the epochs for every spectral line. Figure 3.2 shows this relative velocity averaged
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Fig. 3.2 — The radial velocity of an epoch relative to the mean of the velocities of all
epochs that the star was observed in km s−1 with 1σ uncertainties. These relative velocities
have also been listed in Table 3.1. The vertical dotted lines delineate from left to right, the
B-supergiants, the yellow hypergiants (and the LBV W243), the M supergiants, and the
sgB[e] star W9. Only the stars W56, W238 and W9 are consistent with having no radial
velocity variations.

over all spectral lines for every star, except for the spectroscopic binary W13 (Ritchie
et al. 2010). The error bars are given by the standard deviation in the mean, which are
an accurate representation of the uncertainty when this is dominated by random Gaussian
errors as expected when the noise in the spectra is the main source of uncertainty. These
velocity shifts have also been listed in Table 3.1, together with the largest velocity difference
measured between two epochs. Only three stars (W56, W238, and W9) are consistent with
having no spectral line shifts at the 2σ level. All four of these stars tend to have large
uncertainties of a few km s−1. For all the other stars the radial velocity variations between
the epochs are much larger than the quoted error bars, which mean that the same spectral
shift is found consistently along multiple spectral lines. A similar analysis of our radial
velocity standards reveals a discrepancy between our estimates and the published values
(Udry et al. 1999) of about 0.4 km s−1. Although this is much smaller than the radial
velocity changes that we measured in our target stars, it is still slightly larger than our
error estimate, indicating that we might have underestimated our errors. We note that
radial velocity changes in our target stars do not have to be caused by a binary star. They
may instead be related to stellar activity, such as large-scale super-granulation or changes
in the stellar winds. That atmospheric activity can lead to radial velocity variations of
many km s−1 for these massive post-main sequence stars has been well-established (e.g. de
Jager 1998; Lobel et al. 1998).

That these spectral line shifts might have an atmospheric as well as a binary origin, is
illustrated by the evolution of the spectrum of the M3 supergiant W237 shown in Figure
3.3. Over time, the Ca II line at 8663Å is seen to evolve differently from most other lines.
While the Ca II line was blueshifted in the last epoch (red line in Fig 3.3) relative to the
earlier observations, the other lines are clearly redshifted. These inconsistent line shifts
occur repeatedly throughout the spectrum and are the cause of the relatively large errors
in the relative velocity measurements of W237 relative to the other red supergiant W26
and the yellow hypergiants in Figure 3.2.
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CHAPTER 3. Westerlund I: stability of a young, massive cluster

Fig. 3.3 — Part of the spectra of the three epochs of Wd1 237 (M3 Ia) with blue corre-
sponding to June 2009, green to August 2009, and red to July 2010. The Ca II line at
8663Å is slightly blueshifted in July 2010 relative to the other epochs, while the other lines
are clearly redshifted.

Another argument for the importance of stellar activity can be made for W11, W23a,
and to a lesser extent W56. These stars show a significant shift in their spectral lines over a
one day baseline in July 2010. Although this could be explained by a short-period binary,
such short-period binaries are expected to have a velocity amplitude of about 100 km s−1.
Such a large velocity shift is not found relative to the other epoch of these stars, which were
observed on June 2010, which could be a coincidence or caused by either a large inclination
or a low mass companion. It is unlikely that these scenarios can explain the observations
for all stars, suggesting that the spectral line shifts are likely to be caused by atmospheric
variability. For the other stars, distinguishing between the spectral line shifts caused by
binaries or stellar activity, is difficult. However, given the large observed binary fraction
among massive stars, we do expect a significant portion of the radial velocity variations to
be caused by binary companions (Sana et al. 2011).

The stars in Table 3.1 and along the x-axis of Figure 3.2 have been roughly sorted by
spectral type. The LBV is currently in a cool phase and has many lines in common with
the A/F hypergiants. Figure 3.2 displays two trends with spectral type. The first trend
is a decrease in the error bars towards later spectral types, which is caused by the far
larger sample of spectral lines (most of which are less broad) available for the later type
stars. The main exception on this trend is W237, which has been discussed above (see
Fig 3.3). The other trend is that the yellow hypergiants and the red supergiants tend
to have smaller radial velocity variations than the B-supergiants. This variation is much
larger than the error bars, which means that this trend is found consistently for many
different spectral lines. This might be because we are sensitive to relatively close binaries
with periods of at most a few years. Eldridge et al. (2008) showed that yellow hypergiants
and red supergiants in close binaries evolve more quickly into a Wolf-Rayett star, because
they lose their hydrogen atmosphere more effectively in binary-induced mass loss. Hence
yellow hypergiants and red supergiants in close binaries spend less time in these extended
phases before becoming a Wolf-Rayett star than when these stars were in wide binaries
or in isolation (Clark et al. 2011). This creates a selection effect, where observed yellow
hypergiants or red supergiants tend to have a small fraction of close binaries.
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Fig. 3.4 — The velocities of all epochs of the yellow hypergiants and the luminous blue
variable relative to each other. The horizontal dashed lines show the mean velocity for
every star. The zero-point of the y-axis has been arbitrarily set to the mean of all the
velocities.

3.3.2 Radial velocity dispersion

We calculate the velocity dispersion of the cluster using only the yellow hypergiants and
the LBV. This sample was chosen because these stars in general have small radial velocity
variations relative to most other stars and they have a large number of spectral lines
in common with each other. The large number of lines in common means that we can
measure the velocity dispersion based on the cross-correlation without having to deal with
the systematics, which complicate the measurement of the absolute radial velocity. When
trying to include more low variability stars in this sample, we find that the extra noise
caused by having to place the radial velocities on an absolute scale offsets the advantage
that we gain by having a larger sample size. The choice to base our measurement of the
velocity dispersion on the cross-correlation implies that a direct comparison with previous
radial velocity measurements of the stars in Westerlund I is impossible (Mengel & Tacconi-
Garman 2007, 2009; Ritchie et al. 2009a,b).

Using the same method as in our search for radial velocity variations, we used cross-
correlations to calculate the relative velocities between the different stars in our sample.
The relative velocities for all the epochs of the yellow hypergiants is shown in Figure
3.4 with the mean relative velocity for every star marked as a dashed line. We can see
that the velocity variations between epochs of the same star is of the same order as the
velocity differences between stars. This implies that Westerlund I has a very small intrinsic
velocity dispersion. On the basis of the outlying average velocity and the large velocity
change between epochs, we identified W16a as a binary star (or as having a very active
atmosphere) and excluded it from our calculation of the velocity dispersion. Below we
calculate the velocity dispersion based on the other six stars.

Owing to the small number of stars in our sample, we have a large statistical uncertainty
in the measured velocity dispersion. To calculate this statistical uncertainty, we evaluated
the likelihood that the observed distribution would have been drawn from a cluster with a
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Fig. 3.5 — Our estimate of the probability distribution of the velocity dispersion for the
massive stars in Westerlund I. The blue dashed line shows the case where the measure-
ment error is set by the variation in the radial velocity between epochs. The red dotted
line shows the limit, where we assume no measurement errors. The vertical lines mark the
velocity dispersion expected in virial equilibrium under several assumptions explained in
section 3.4. From the highest to lowest estimates, we have the velocity dispersion calcu-
lated for a spherical, non-mass-segregated cluster for the mass estimates from Negueruela
et al. (2010) (black, long dashed) and Gennaro et al. (2011) (cyan, dotted). For the mass
estimate of Gennaro et al. (2011) we also show the expected velocity dispersion taking into
account the velocity anisotropy, which is consistent with the elongation of Westerlund I
(yellow, dashed), and the case where we take into account both the velocity anisotropy
and the possible mass segregation (green, dash-dot). The error bars represent the quoted
uncertainty in the photometric mass of Gennaro et al. (2011).

Gaussian radial velocity distribution of standard deviation σv and mean µ
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v + σ2

i )

)
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where vi is the observed mean velocity of the star and σi is the uncertainty in the measured
velocity. The likelihood that the observations were drawn from a distribution with a given
velocity dispersion is calculated by integrating over µ. With only two-three epochs over a
one year baseline and most, if not all, stars being variable the uncertainties on the measured
radial velocities of the stars (σi) are not well-determined. Owing to this, we considered two
cases. In the first case, we set σ2

i to the variance of the velocity spread between epochs.
This leads to the probability distribution shown as the blue dashed line in Figure 3.5 and
corresponds to an intrinsic velocity dispersion of σ = 1.7+3.1

−1.7 km s−1, where the errors give
the 95% confidence limits. Alternatively, we set σi to zero, leading to a velocity dispersion
of σ = 2.1+3.4

−0.9 km s−1. This case is shown as the red dotted line in Figure 3.5. We note that
the peak in the second case overlaps exactly with the standard deviation in the measured
stellar velocities (2.14 km s−1).

The second case, with σi = 0, can be seen as an “upper-limit estimate” of the probability
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distribution of the true velocity dispersion of Westerlund I. This velocity dispersion would
be accurate, if the errors were much smaller than 1 km s−1. Given the large radial velocity
variations measured between epochs, as well as the possibility of undetected binaries with
a period of longer than five years and a velocity amplitude of tens of km s−1, it is very
unlikely that the uncertainties in our estimate of the systematic radial velocity are smaller
than 1 km s−1. However, including more accurate measurement errors would only decrease
the measured velocity dispersion, as illustrated by the case where we set the measurement
errors to the variance of the velocity variations between epochs (blue dashed line in Figure
3.5). Increasing σi does not change the probability at the larger velocity dispersions sig-
nificantly, i.e. the upper bound of the 95% confidence limit remains around 5 km s−1.Since
the uncertainties are not well-defined, we conservatively focus on the case with σi = 0.

3.4 Discussion

To explore the virial state of the cluster, we compared our measurement of the velocity
dispersion with the velocity dispersion expected in virial equilibrium for the photometric
mass of Westerlund I. We calculated a first estimate of the velocity dispersion expected in
virial equilibrium assuming that Westerlund I is not mass segregated and that the velocities
are isotropic. In virial equilibrium, the photometric mass is equal to the dynamical mass,
which under these assumptions is given by:

Mdyn = η
σ2

radrhm

G
, (3.2)

where η ≈ 10 is appropriate for the density profile found by Brandner et al. (2008), σrad

is the radial velocity dispersion, and rhm ≈ 1.0 pc (Brandner et al. 2008) is the half mass
radius. On the basis of an extrapolation from the number of massive stars in Westerlund
I, Negueruela et al. (2010) estimated a stellar mass of about 105 M�. In virial equilibrium,
this corresponds to a velocity dispersion of ∼ 6.5 km s−1. This is far larger than our
measured velocity dispersion, implying that Westerlund I is subvirial at the 98% confidence
level. An alternative photometric mass estimate was given by Gennaro et al. (2011). On
the basis of an extrapolation of the measured IMF for the intermediate mass stars between
3.5M� and 27M�, these authors found a lower stellar mass of 4.9+1.8

−0.5 × 104 M�. In virial
equilibrium, we would then expect a velocity dispersion of 4.6+0.8

−0.3 km s−1. For this velocity
dispersion, our measurements are consistent with a subvirial cluster at the 91% confidence
level.

In the conversions from the photometric mass to the velocity dispersion calculated
above, we have assumed that the cluster has an isotropic velocity distribution and is not
mass-segregated. Both of these assumptions are unlikely to be valid for Westerlund I. An
isotropic velocity distribution would generally lead to a spherical cluster (except if the clus-
ter is rapidly rotating). However, Westerlund I is observed to be elongated, with surfaces
of constant density lying on ellipses rather than circles (Gennaro et al. 2011). The exact
implications of this elongation on the expected velocity dispersion depend on its origins.
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CHAPTER 3. Westerlund I: stability of a young, massive cluster

Under the assumption that this elongation is supported by a velocity anisotropy and thus
is not a transient on the dynamical timescale and is not caused by rapid rotation, which
is seldomly seen in older massive clusters, we calculated in Appendix 3.A the expected
velocity dispersion. We found that the dynamical mass is given by equation 3.10, which is
reproduced here

Mdyn = ηellipsη
σ2

radr
′
hm

G
, (3.3)

where r′hm is the half mass radius, assuming that the density profile in all dimensions is
the same as along the observed semi-major axis. r′hm can be estimated from the half-mass
radius of 1.0 pc (Brandner et al. 2008) and the ellipticity of Westerlund I of 0.75 (Gennaro
et al. 2011) to be roughly 1.2 pc. The correction factor for the ellipticity of the cluster
ηellips is approximately 0.85, if the axis along the line of sight is not much shorter than
the observed axes. The other parameters in the equation are the same as in equation
3.2. For the photometric mass estimate of 4.9+1.8

−0.5 × 104 M� (Gennaro et al. 2011), taking
into account the elongation leads to a only slightly smaller expected velocity dispersion of
4.5+0.8
−0.2 km s−1.

Owing to the tendency of massive stars to reside at the center of massive clusters (i.e.
mass segregation), the velocity dispersion of the massive stars that we measured might not
be representative of the cluster as a whole (Fleck et al. 2006). To calculate the effect of
mass segregation on the difference between the measured and expected velocity dispersion,
we separate the cluster into two populations. The first population represents the massive
post-main sequence stars from which our sample was drawn, with a half-mass radius of
0.44 pc and a mass of 6× 103 M� (Clark et al. 2005; Negueruela et al. 2010). The second
population contains the remaining low and intermediate mass stars in the cluster, with a
half-mass radius of 1.0 pc and a much higher total mass of 4.3× 104 M� (Brandner et al.
2008). For a cluster whose stellar volume density is well-represented by a Plummer sphere,
we compute the velocity dispersions of both populations, taking into account that they
are embedded in the potential well of the other population (equation 7.158 in Binney &
Tremaine 2008). We found that in virial equilibrium the velocity dispersion of the total
population is about 10% larger than for the subset of massive stars using this two-fluid
approximation. This would lead us to expect to measure a velocity dispersion of roughly
4.1+0.7
−0.2 km s−1 for a mass-segregated, elongated cluster.

The estimated effect of the mass segregation is small, because the degree of mass seg-
regation is relatively small and the population containing the post-main sequence star is
massive enough to nearly become self-gravitating. If our population of observed stars is
better represented by a population with both a smaller radius and a lower total mass (to
prevent self-gravitation), the ratio of the low-mass to high-mass velocity dispersion could
be much higher. Although equipartition is never reached the low-mass stars could have
a velocity dispersion up to about a factor of 2 higher after long relaxation (Trenti & van
der Marel 2013). However, there is no evidence of such a strong mass segregation in the
observed distribution of stars.

Besides showing the probability distribution of the velocity dispersion of the massive
stars in Westerlund I implied by our observations, Figure 3.5 also illustrates the veloc-

76



3.5. Conclusions

ity dispersions expected in virial equilibrium based on the various assumptions discussed
above. Even for the lowest estimate, our observations still imply that Westerlund I is either
subvirial or virial. For the probability distribution including a rough estimate of our mea-
surement errors, we inferred a 91% probability of the observed velocity dispersion being
smaller than the smallest estimate of 4.1 km s−1. For the more conservative probability
distribution, which assumes no measurement errors, we found a 87% probability.

For the cluster to be unbound, the kinetic energy has to be higher than the binding
energy, which would correspond to a velocity dispersion

√
2 larger than expected in virial

equilibrium. This can be excluded with at least 97% confidence from our measurements,
with the exact percentage depending on the assumptions made. This implies that Wester-
lund I is bound and has survived any recent gas expulsion. To survive the gas expulsion,
Westerlund I should either have had a high star-formation efficiency, which would cause
the cluster to remain close to virial equilibrium or the stars in the cluster should have
been dynamically cold at the moment the gas was expelled (Goodwin 2009). If the case of
Westerlund I were typical of a massive cluster, the excessive velocity dispersion measured
for extragalactic clusters would not automatically be indicative of a supervirial cluster, but
have another origin, for example in binaries (Gieles et al. 2010b). In any case, Westerlund
I itself will not disperse into the field quickly and likely persist for billions of years.

3.5 Conclusions

We have presented multi-epoch high resolution spectra of 22 massive post main-sequence
stars in the young, massive, Galactic cluster Westerlund I. For 21 of these 22 stars, the ve-
locity variations have been measured between multiple epochs by means of cross-correlation
(see Table 3.1 or Fig. 3.2). Many of these stars seem to show radial velocity variations
at the one to ten km s−1 level. Some of these variations might be explained by an un-
derestimate of our uncertainties. Alternatively, these variations could be caused by either
binaries or instabilities/waves in the complex atmospheres of these super- and hypergiants.

Using the five least variable yellow hypergiants and the LBV, we have measured a
velocity dispersion for the massive stars in Westerlund I of σ = 2.1+3.4

−0.9 km s−1 with a
confidence limit of 95%, assuming no significant errors in the measured radial velocity
differences between the stars. In reality, even these least variable stars have displayed
radial velocity variations between epochs of a few km s−1, implying that the quoted velocity
dispersion is only an upper limit to the true velocity dispersion.

In Figure 3.5, the probability distribution of the velocity dispersion from our measure-
ments have been compared to several estimates of the velocity dispersion that we expect
in virial equilibrium. These estimates have been calculated using different estimates of the
total mass of Westerlund I, as well as different rough approximations of the effects of both
possible mass segregation and a velocity anisotropy, as suggested by the observed spatial
elongation of Westerlund I. For all of these cases the observations are consistent with those
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of a subvirial cluster. For the lower photometric mass estimate of Gennaro et al. (2011),
the observations are also consistent with the cluster in virial equilibrium. In all cases, we
have excluded that Westerlund I is significantly supervirial, implying that the cluster is
bound, and that it has survived any recent gas expulsion. Barring any violent interactions
with other clusters or molecular clouds, Westerlund I, which might be the most massive
young cluster in our Galaxy, is expected to survive for billions of years.
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3.A Appendix: Velocity dispersion in ellipsoidal cluster

The density distribution of both the massive and intermediate mass stars in Westerlund
I has been shown to be elongated (Negueruela et al. 2010; Gennaro et al. 2011). We
calculated the effect of this elongation on the dynamical mass calculation of Westerlund
I, under the assumption of an ellipsoidal density profile, as suggested by Gennaro et al.
(2011), who fitted a density profile to their stellar density distribution of Westerlund I,
where the lines of constant densities lie along ellipses instead of circles. To limit the
number of free parameters as well as greatly simplify the equations, we assumed that one
of the axis of the ellipsoid lies along the line of sight. The other two axes are then the
axes found by Gennaro et al. (2011) in the plane of the sky. We defined the length of the
semi-major axis found by Gennaro et al. (2011) as a1, the length of the semi-minor axis
as a2, and the length along the line of sight as a3, the last of which is unconstrained by
observations.

For an ellipsoidal cluster in virial equilibrium, an elongation implies a velocity anisotropy,
which is given by the tensor form of the virial theorem

2Kjj +Wjj = 0, (3.4)

where 2Kjj = Mdynσ
2
j is the tensor form of the kinetic energy along the axis j and Wjj

is the potential energy tensor. For an ellipsoidal system, this potential can be represented
as the in a product of two factors (see eq 2.144 in Binney & Tremaine 2008), one that
depends only on the axial ratios of the cluster, and another that is independent of either
the clusters ellipticity or the axis along which the potential energy tensor is calculated and
depends only on the density dropoff along a single axis, which we take to be the observed
semi-major axis. In functional form, this corresponds to

Wjj = −fj(a1, a2, a3) ∗ g(ρalong semi−major axis), (3.5)
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Fig. 3.6 — The correction factor ηellips needed to take into account the spheroidal shape of
the cluster plotted against the ratio of the length of the axis along the line of sight to the
length of the observed semi-major axis for an observed ellipticity of 0.75 (a2/a1 ≈ 0.66).
The cases where the density dropoff along the line of sight is the same as the semi-major
axis (dashed) and the same as the minor axis (dotted) are shown.

with

fj(a1, a2, a3) =
3

2

a2a3

a2
1

(
aj
a1

)2

Aj , (3.6)

where the Aj are a complex function of the axial ratios given by Table 2.1 in Binney &
Tremaine (2008). We note that the equations in this table assume that a1 > a2 > a3,
which will make it necessary to rearrange the indices, if the axis along the line of sight is
not the shortest.

Since g does not depend on both a2 and a3, we can calculate this term for the spher-
ical case, where we set a2 and a3 to a1. For a spherical cluster we have Aj = 2/3, so
fj(a1, a2, a3) = 1 and Wjj = 1

3W , where W is the total potential energy. Using the equa-
tion for the dynamical mass of a spherical cluster (e.g. Portegies Zwart et al. 2010), we
get

Wjj,circ = −g = −1

η

GM ′2dyn

r′hm

, (3.7)

where η ≈ 10 (Portegies Zwart et al. 2010) for the density profiles fitted by Brandner et al.
(2008) and Gennaro et al. (2011), M ′dyn is the mass of this circular cluster, and r′hm is the
half-mass radius of this cluster. The dynamical mass of this artificial spherical cluster is
related to the mass of the spheroidal cluster with

M ′dyn

Mdyn
=

a3
1

a1a2a3
. (3.8)

Entering equations 3.6-3.8 into the equation for the ellipsoidal potential energy tensor
gives

Wjj = −3

2

a2
j

a2a3
Aj

1

η

GM2
dyn

r′hm

. (3.9)
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Combined with the virial equation (Eq. 3.4) for the radial velocity dispersion (j = 3) this
can be converted as

Mdyn = ηellipsη
σ2

radr
′
hm

G
, (3.10)

where the correction for the ellipsoidal structure has been completely integrated in ηellips,
which is defined as

ηellips ≡
2

3

a2

a3

1

A3
. (3.11)

This correction factor depends only on the axial ratios. For an ellipticity along the line of
sight of 0.75 (a2/a1 ≈ 0.66) (Gennaro et al. 2011), we plot the dependence of this correction
factor on a3/a1 in Fig. 3.6. This figure shows that there is only a small dependence of the
correction factor on the actual length of the axis along the line of sight for a3/a1 > 0.5. In
this range, an increase in the length of the axis causes the total potential and thus the total
kinetic energy to drop. However, this sharp decline in kinetic energy mostly corresponds
to a lowering of the velocity dispersion in the plane of the sky, with the radial velocity
dispersion staying roughly constant. This interplay between the change in the total kinetic
energy and the division of this kinetic energy over the three axes produces the curve shown
in Fig. 3.6.
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4 IC 348

Abstract

How stellar groups emerge from their molecular clouds is still very uncertain. Here I present
the spectral analysis based on forward modeling of high-resolution, near-infrared spectra
from APOGEE of the Sloan Digital Sky Survey III as part of the IN-SYNC collaboration. I
show that for cool stars (temperature < 4500 K) the radial velocities, effective temperature,
and surface gravities can be reproduced with a precision of respectively roughly 300 m s−1,
100 K, and 0.1 dex, while the precision degrades for hotter stars. The precision in the
spectroscopic surface gravities suffices to confirm its luminosity spread in the young cluster
IC 348 and the precision in the radial velocity suffices to resolve the velocity distribution
of these young stellar groups. We find that IC 348 is likely supervirial (but bound) and
that the more deeply embedded stars in cluster are blueshifted with respect to less deeply
embedded stars, indicative of collapse. These measurements can be reconciled if the cluster
is regaining virial equilibrium after a major disruption. Finally we report a tentative
detection of a velocity gradient in IC 348.

4.1 Introduction

Studies tracing molecular gas in dense prestellar cores have found that they have very
similar velocities. Despite being embedded in a turbulent molecular cloud with velocity
dispersions of over 1 km s−1 (Larson 1981), they have core-to-core radial velocity disper-
sions of only 200 - 400 m s−1 in the Rho Ophiuchi molecular cloud (André et al. 2007) and
the Perseus molecular cloud (Kirk et al. 2007). These motions seem to be insufficient to
prevent collapse due to gravity (e.g. Kirk et al. 2007), which suggests that newly-formed
stars will fall into the potential well of the molecular cloud. The kinetic energy gained by
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the stars during this collapse might also be important in the dispersal of the stellar cluster
after the molecular cloud disperses.

We need detailed kinetic information of young, embedded and recently exposed clusters
to learn more about this potential initial collapse, and which embedded clusters will remain
bound and which will dissolve into the field population. With this goal in mind the multi-
object, high-resolution, near-infrared spectrograph APOGEE targeted hundreds of stars
in several nearby star-forming regions as part of the IN-SYNC ancillary science program
of the Sloan Digital Sky Survey III (SDSS-III) (Eisenstein et al. 2011). At the time of
this writing over 4000 spectra were taken of pre-main sequence stars in the star-forming
regions IC 348, NGC 1333, NGC 2264, and Orion. In this work we present the analysis of
all of the spectra taken from these young pre-main sequence stars in section 4.3.

In addition we present here the first scientific results from this dataset on the dynamical
state of the young cluster IC 348 at the edge of the Perseus molecular cloud. This cluster
contains more than 400 stars (Luhman et al. 2003; Muench et al. 2007; Luhman 2008), 339
of which have been targeted by APOGEE. Estimates of the age vary from 2-3 Myr (e.g.
Luhman et al. 2003) to 6 Myr (Bell et al. 2013), which makes it one of the youngest known
clusters that is already optically revealed. The spherical rather than substructured stellar
distribution in IC 348 suggests that the cluster has already dynamically evolved somewhat
at this time. This might also explain the mass segregation observed in IC 348 (Schmeja
et al. 2008). Previous studies of the dynamics of IC 348 have been limited to one proper
motion study from Scholz et al. (1999), which at a precision of 4 km s−1 was unable to
resolve the velocity dispersion of the cluster.

In section 4.2 we discuss the target selection, observations, and data reduction for the
APOGEE IC 348 spectroscopic sample. In section 4.3 we present our spectral analysis
techniques, with detailed estimates of the precision and accuracy of the resulting stellar
parameters. We use these stellar parameters to estimate the extinction and luminosities
of the observed stars in section 4.4, leading to a confirmation of a luminosity spread in IC
348 in section 4.4.2. The kinematics of IC 348 are derived in section 2.3.3.2 and discussed
in section 2.2.5. Finally our conclusions are presented in section 2.4.

4.2 Observations

4.2.1 Target selection

Likely IC 348/Perseus members was selected from a catalog of confirmed and candidate IC
348 members compiled by August Muench (private communication), supplemented with
mid-IR excess sources identified by the cores-to-discs (c2d) Spitzer survey team (Jørgensen
et al. 2006; Rebull et al. 2007). The Muench catalog includes 449 confirmed and candidate
IC 348 members; the majority of these sources were drawn from previously published
catalogs of photometrically selected, and often spectroscopically confirmed, members (e.g.
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Luhman et al. 1998; Luhman 1999; Luhman et al. 2003; Muench et al. 2003; Luhman et al.
2005; Muench et al. 2007). With candidates selected on the basis of deep X-ray observations
of the cluster center (i.e. Preibisch & Zinnecker 2001; Preibisch et al. 2003), this catalog
is likely highly complete in the cluster center, as verified by our independent analysis of
source counts in the region (see Figure 2, below). The Muench et al. catalog does include
additional candidates selected via an R vs. R-J color-magnitude cut performed utilizing
photometry from the USNO NOMAD catalog, however; these candidates are less secure,
particularly at early types, where member selection via the R vs. R-J CMD becomes less
efficient due to the steep cluster sequence, and at large radii, where source contamination
from members of the background Per OB2 association is expected to become significant.

We provide evidence for the completeness of the target catalogue in the cluster core by
studying the distribution of the 2MASS sources that are not in our target catalogue in a
similar manner as Cambrésy et al. (2006). If the target catalogue is complete, all of these
stars should be background and hence should have the same brightness distribution and
spatial density as background stars in an off-cluster field (after correcting for extinction).
The upper panel in Figure 4.1 shows the H-band distribution of these untargeted 2MASS
sources in the cluster core (blue) and the 2MASS sources in an off-cluster field covering
1200 arcseconds to 1 degree from the cluster center (cyan). In the magnitude range covered
by our spectroscopic observations, the distributions are consistent, suggesting that the
targeting catalogue is (mostly) complete. This is confirmed in the spatial distribution of
non-targeted 2MASS sources with H < 14 (lower panel of Figure 4.1), which shows no
remaining overdensity of sources at the location of IC 348.

Although most targets in the outskirts were observed, only about half of the targets in
cluster center were observed (Figure 4.2), because APOGEE is unable to simultaneously
target stars within ∼ 71.5 arcseconds of each other due to a collision through fiber assign-
ment. This meant that even though 7 separate plates were drilled to cover IC 348, many
stars in the dense cluster center could still not be targeted.

The priority of the targets was based on the H-band magnitude. The highest priority
was given to stars with 7 < H < 12.5. For these high priority target we are mostly complete
(∼ 90%), even in the cluster center (upper panel in Figure 4.1). For fainter targets the
priority was assigned based on the H-band magnitude after correction of the background
extinction. Brighter stars were targeted first.

4.2.2 APOGEE

APOGEE is a multi-object, high-resolution (R ∼ 20, 000) spectrograph, whose spectra
cover most of the H-band in the near-infrared from 1.52 to 1.69 microns. In this work we
analyze the spectra in the ApVisit files 1, which have already been corrected for telluric
emission and absorption lines, as well as wavelength calibrated (based on ThArNe and UNe

1The data reduction pipeline to produce these files is described at
http://www.sdss3.org/dr10/irspec/apred.php
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Fig. 4.1 — The upper panel shows the stellar density distribution per bin of H-band,
corrected for the background extinction as estimated from the sub-millimeter continuum
observed by Herschel. The various histogram show the stellar density of potential targets
(green), the stars actually observed (red), the 2MASS sources classified as background
within the cluster center (within 400 arcseconds; blue), and 2MASS sources outside of
the cluster (further than 1200 arcseconds; cyan). The bottom panels shows the density
distribution of all 2MASS sources not classified as potential members with H< 14. The
two circles are at 400 (dotted) and 1200 (dashed) arcseconds from the cluster center (same
as in Figure 4.2). The lack of an overdensity of 2MASS sources classified as background
at the position of IC 348 provides evidence for the completeness of the adopted targeting
catalog.

lamps). A complete description of the data reduction leading to these spectra is described
in Nidever et al. (in prep).

The total dataset analyzed consists of 12,957 APOGEE spectra of 4773 young pre-main
sequence stars. Exposure times varied from 500 to 3000 seconds, with a typical value of
2000 seconds. This led to a wide variety of signal-to-noise ratios with 90/% lying between
20 and 300 and a median of 66. The number of observations per star differs greatly per
star-forming regions, with up to 13 spectra per star in IC 348. The spectra were taken
over a total baseline of 1 year.
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Fig. 4.2 — Map of potential targets in green. Stars circled in cyan have been observed.
Additional background stars observed to fill up the APOGEE fibers have not been marked.
The lower panel shows a zoom-in of the center of the upper panel, illustrating the lower
coverage in the cluster center. For comparison with Figure 4.1 we added two circles at 400
(dotted) and 1200 (dashed) arcseconds from the cluster center.

4.3 Spectral analysis

We apply a forward modeling approach to derive stellar parameters from the observed
spectra, similar to Blake et al. (2007, 2010). In section 4.3.1.1 we summarize this approach,
with more details on the spectroscopic model given in section 4.3.1.2 and more details on
the fitting procedure in section 4.3.1.3. In section 4.3.2 we discuss in more detail the
precision and accuracy of the derived stellar parameters.
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4.3.1 Forward modeling

4.3.1.1 Overview

We model the observed spectra with synthetic spectra with five degrees of freedom: the ef-
fective temperature, surface gravity, radial velocity, rotational velocity, and H-band veiling
due to possible flux from an inner disc. These synthetic spectra are then compared with the
observed spectra and the χ2-offset between them is minimized. Finally the uncertainties
on the best-fit stellar parameters are computed by a Markov chain Monte Carlo (MCMC)
simulation. Sample fits have been shown in Figure 4.3.

For most stars in our sample we have obtained multiple spectra. Rather than fitting
each spectrum individually, we simultaneously fit all spectra obtained for a single star.
This allows us to fit a single effective temperature, surface gravity, and rotational velocity
to each star, while allowing the radial velocity and veiling to vary between epochs.

4.3.1.2 The model

First we prepared a grid of synthetic spectra. As a basis for our forward modeling approach,
we adopt the grid of synthetic spectra from BT-Settl (Allard et al. 2011) at solar metallicity
for the solar abundances from Caffau et al. (2011). These spectra cover the complete visible
and near-infrared wavelength range with very high resolution, and accurately reproduce
interferometrically determined bolometric effective temperatures when fit to low-resolution
visible and near-infrared spectra of calibrator stars (Mann et al. 2013).

We first degraded the BT-Settl spectra to match APOGEE’s resolution of ∼ 22, 500.
To do this efficiently we resampled the spectra onto a wavelength grid covering the H-band
with a sampling resolution of 700,000. The spectra were then convolved with a Gaussian,
whose full width at half maximum is set to 700,000 / 22,500 = 31.1 pixels. Then we down-
sampled the spectra to a sampling resolution of 300,000. This sampling resolution was
chosen to minimize the computational time needed to rotationally broaden and interpolate
the spectra, while still being sufficiently dense so that the spectrum can be accurately
interpolated to the observed wavelength grid.

During the fitting procedure we vary the effective temperature and surface gravity as
continuous variables. We use cubic interpolation to extract spectra at arbitrary effective
temperatures and surface gravities between the grid points. These extracted spectra are
then post-processed to produce synthetic spectra with different radial velocities, rotational
velocities and levels of veiling:

1. The wavelength grid is Doppler-shifted by a given radial velocity.

2. The spectral lines are rotationally broadened by convolving the flux array with the
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Fig. 4.3 — Sample fits of pre-main sequence stars in IC 348 for effective temperatures
around 3000, 3500, 4500, and 6000 K. The blue lines show the observed spectrum in a
single epoch and the green lines the best-fit spectrum. Residual sky emission lines and
bad pixels have been masked out. The horizontal black lines in the bottom show the
typical extent of this masking. The two gaps in every spectra separate the three CCDs of
APOGEE.

rotational profile from equation 17.12 in Gray (1992):

kernel(vi) ∝ 2(1− ε)
√

1−
( vi
v sin i

)2
+
πε

2

(
1−

( vi
v sin i

)2
)
, (4.1)

where ε = 0.6 is a parameter describing the limb darkening, v sin i is a variable
representing the projected rotational velocity, and vi is the pixel offset in units of
velocity.

3. A flat featureless flux is added to represent the veiling of the spectral lines due to
flux from the inner part of the discs. This veiling flux is parameterized by RH, the
ratio of the non-stellar and stellar flux in the H-band.
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Before comparing the fluxes from the synthetic and observed spectrum, we fit the con-
tinua, so that the χ2 is determined by how well the spectral lines match and is not domi-
nated by the slope of the continuum. For this purpose we multiply the synthetic spectrum
with a polynomial. This polynomial is recomputed for every synthetic spectrum to mini-
mize χ2 of that fit. It is computed separately for the three chips of the APOGEE spectra.
The degree of the polynomial is varied according to the optimization scheme described
below.

4.3.1.3 The fitting

After matching the continua, the χ2 is computed for that synthetic spectrum. During this
process any pixels covered by telluric emission lines or marked by the APOGEE pipeline
as bad are masked: a typical spectrum has 20% of its pixels masked (Figure 4.3).

The procedure described above allows us to efficiently compute the χ2 between the
synthetic and observed spectra for a set of stellar parameters. We minimize this χ2 using
a three-step procedure:

1. First an initial set of best-fit parameters are found by a global minimization of the χ2

by varying the radial velocities and veiling in every epoch and varying a single effective
temperature, surface gravity, and rotational velocity per star. At this stage a second-
order polynomial is used for every chip in every spectrum to match the continuum of
the observed spectrum. To find the global minimum we use the differential evolution
routine implemented by Stepan Hlushak as part of the OpenOpt python library
(Kroshko 2007). This routine alters a set of initially random candidate solutions by
proposing for every candidate a new set of parameters by moving it in the direction
of other candidate solutions. The proposed solution will replace the original solution,
only if it is an improvement in a χ2-sense. This optimization is run over the whole
range of effective temperatures (100 - 7000 K) and surface gravities (0-5.5) covered
by the BT-Settl grid, as well as a wide range in veiling (0 - 103), rotational velocity
(0 - 103 km s−1), and radial velocity (-103 - 103 km s−1).

2. For the initial best-fit stellar parameters the degree of the polynomial used to match
the continuum is optimized using Bayes Information Criterion (BIC). According to
BIC another parameter should only be added (by increasing the order of the poly-
nomial) if it decreases the χ2 with at least the natural logarithm of the number of
data points (lnn ≈ 8 for the APOGEE spectrum on a single chip). The optimum
polynomial degree found in this step is typically between two and five and is kept
fixed throughout the rest of the minimization and the MCMC simulation.

3. Finally the χ2 is minimized locally using a Nelder-Mead downhill routine to adjust
the parameters in response to the change in the polynomial degree. During this
final optimization the stellar parameters are only bounded by the limits in effective
temperature and surface gravity of the grid of synthetic spectra, as well as the physical
requirements of non-negative veiling and rotational velocity.
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Starting from the global χ2 minimum we aim to compute the uncertainties on the best-
fit stellar parameters. For this we use the MCMC routine “emcee” (Foreman-Mackey et al.
2013), which is based on the affine-invariant sampler from Goodman & Weare (2010). In
this routine multiple walkers (200 in our case) make a constrained random walk through
the parameter space, where the direction of the next step is informed by the positions of
the other walkers. The distribution of walker positions after the burn-in phase is used
to compute a first estimate of the uncertainties on the stellar parameters (which is later
corrected in section 4.3.2.1).

Although the quoted parameters depend only on the Markov chain, it is still important
to first minimize the χ2 to provide a starting point for the MCMC. Starting at (or close to)
the χ2 minimum greatly shortens the burn-in time (i.e. convergence) of the MCMC. This
burn-in phase can be very long for a routine like “emcee”, because every walker will have
to reach the global minimum before their distribution start reflecting the uncertainties on
the stellar parameters.

4.3.2 Precision and accuracy

4.3.2.1 Statistical uncertainties on stellar parameters

Statistical uncertainties should measure the precision of the observed stellar parameters; in
other words they describe how much variation we would expect in the observed value if the
measurement was repeated. Given an accurate error array for the observed spectrum, these
statistical uncertainties are estimated by the MCMC. Here we check these estimates of the
statistical uncertainties by checking the variations in best-fit stellar parameters between
multiple epochs and looking at the best-fit reduced χ2.

The distribution in reduced χ2 should peak at one for a good fit. However, the observed
distribution peaks at two to four rather than at one (upper row in Figure 4.4) for all
stars fitted in preparation of this chapter (i.e. hundreds of pre-main sequence stars in
IC 348, NGC 1333, NGC 2264, Orion, and the Pleiades and several hundred field stars).
This implies either a poor fit or an underestimation of the error array. To distinguish
between these scenarios we check whether the variability in the radial velocity and veiling
between epochs is consistent with the noise levels. We expect some real variability in
these parameters (e.g. due to spectroscopic binaries), however the variability between
multiple epochs is consistently several times higher than expected from the noise array in
each spectrum (lower two rows in Figure 4.4). Combined this strongly suggests that the
noise in the spectra is underestimated by a factor of two to four, which might be partly
due to a correlation introduced in the errors of neighboring pixels during the resampling.
Irrespective of the origin, we take this apparent underestimation of the uncertainties in our
derived parameters into account by tripling the uncertainties on the stellar parameters.
These tripled uncertainties will be used throughout this chapter.
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Fig. 4.4 — The reduced-χ2 distribution (upper row) and the external over internal uncer-
tainties for the radial velocity (center row) and the veiling (lower row). In every row the
left panel shows the dependence on effective temperature with the histogram of the dis-
tribution in the right panel. Only stars for which two or more epochs have been observed
are included in the lower row, while all stars are included upper row. The low external
uncertainties for the veiling around 5000 K are due to the best-fit veiling for stars at these
temperatures to be typically negative, which is below the lower limit of zero.

4.3.2.2 Velocity zero-point

To compare with previous radial velocity observations, as well as measurements of the gas
velocity in IC 348 we need to characterize the accuracy of the zero-point of the observed
radial velocities. Furthermore, to measure the velocity dispersion of a cluster the velocity
zero-point should be independent of stellar parameters.

We find a systematic offset of a few km s−1 for the coolest stars (Teff < 3500 K) with
respect to the hotter stars in the same cluster. Figure 4.5 shows this trend for three
young clusters observed with APOGEE, namely IC 348 (blue squared), the Pleiades (cyan
diamonds), and NGC 1333 (red circles). If this offset was real the low-mass stars with
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Teff < 3000 K would separate from the cluster containing the hotter stars in less than a
few Myr. Because such a translational separation based on mass has never been observed,
we conclude that the trend of the mean radial velocity with temperature is unphysical and
is caused by a systematic error in the measured radial velocities.
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Fig. 4.5 — The trend of the radial velocity zero-point with effective temperature. For all
stars with an RV precision better than 1 km s−1 in IC 348 (blue squares), the Pleiades
(cyan diamonds), and NGC 1333 (red circles) the weighted means of the radial velocities
measured over all observable epochs are plotted relative to the median radial velocity for
stars hotter than 4000 K. In black the radial velocities derived from NIRSPEC H-band
spectra of RV standards from Prato (2007) are plotted relative to their literature values.
Finally the green trend line is computed by median-filtering the individual radial velocity
offsets and the magenta line shows the best-fit cubic spline through this trend line.

We are able to reproduce this systematic offset with effective temperatures under a
wide variety of conditions. The same systematic offset was found in the SYNTHVHE-
LIO radial velocities measured for cool dwarves by the APOGEE radial velocity pipeline.
The APOGEE RV pipeline measures SYNTHVHELIO values by cross-correlating, not χ2-
minimizing, each APOGEE spectrum against its best-fitting synthetic template from the
APOGEE RV mini-grid. The APOGEE RV mini-grid is primarily drawn from a set of
synthetic spectra calculated by the APOGEE/ASPCAP team from a custom line list and
Kurucz model atmospheres for warmer stars (Teff > 3500 K), but also includes BT-Settl
models for Teff < 3500 K to extend the grid to better cover the coolest dwarfs. The pres-
ence of a similar systematic offset in the SYNTHVHELIO values measured for the coolest
dwarfs in IC 348, NGC 1333, and the Pleiades suggest that the offset is related to the
shared usage of the BT-Settl model grid as an RV zero-point, rather than the distinct and
independent RV measurement algorithms incorporated into the main APOGEE and the
IN-SYNC specific analysis pipelines.

To rule out instrumental effects as a potential cause for this apparent RV trend with
stellar effective temperature, we first measured multiple independent RV values for each
APOGEE spectrum, treating portions of the spectrum sampled by different detectors inde-
pendently. These independent RVmeasurements showed the same RV-Teff trend, indicating
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that the cause was not isolated to one or two prominent features, but rather affected all
parts of the spectra of the coolest stars equally. As a second check on potential instru-
mental effects that could be causing this trend, we also applied our fitting procedure to
NIRSPEC H-band spectra of well-established RV standards obtained and made publicly
available by Prato (2007). The RV offsets we measure with respect to these star’s known
RVs, which were determined using empirical templates, are included in Figure 5, and show
the same trend with effective temperature as the APOGEE spectra, indicating that the
RV trend is not an artifact of a particular instrument or reduction procedure.

Having ruled out potential instrumental and algorithmic causes for this RV-Teff trend,
we then investigated the model spectra themselves as a potential cause of this effect. Re-
fitting the APOGEE spectra with synthetic spectra from the Gaia-ESO grid (Husser et al.
2013), we found again the same RV-Teff trend, indicating that the cause of this affect is
not specific to a single model grid. With the RV-Teff seemingly related to multiple model
grids, most prominent at cool temperatures, and prevalent throughout the full H-band
spectrum, we suggest molecular line-lists as a potential cause of the RV offset.

To compute the velocity dispersion of any of our target clusters we subtract out this
systematic offset for all the velocities measured from the APOGEE spectra. We charac-
terize the offset by fitting a cubic spline to the median-filtered trend of radial velocity
with effective temperature (magenta and green lines in Figure 4.5 respectively). We then
use this spline to assign a radial velocity correction to every star based on its effective
temperature. No radial velocity correction is applied for stars hotter than 4000 K, where
the correction is comparable to the statistical uncertainties.

This correction homogenizes the velocity zero-point at all temperatures to that of the
stars hotter than 4000 K, however it does not guarantee that this velocity zero-point is
accurate. On the one hand we measure radial velocities 450 ± 120 m s−1 systematically
lower than the RV standards from Prato (2007) from their NIRSPEC H-band spectra
(Figure 4.5). On the other hand in the Pleiades we measure radial velocities 400 ± 60
m s−1 systematically higher than the radial velocities measured for the same stars with
CORAVEL (Mermilliod et al. 2009). The latter offset is consistent at the 2 sigma level with
the radial velocity offset of 602 ± 116 m s−1 found between the APOGEE radial velocity
measurements and the CORAVEL velocity measurements for the same stars in Coma Ber
(Terrien et al. 2014). We decided not to calibrate our radial velocities to either one of
these systems, because of the different directions of the zero-point offsets with respect to
the radial-velocity standards from Prato (2007) and Mermilliod et al. (2009). From these
analyses we estimate a systematic uncertainty in the velocity zero-point on the order of
0.5 km s−1.

4.3.2.3 Further systematic uncertainties

Here we study the accuracy of our fit to the effective temperatures and surface gravities
from the APOGEE spectra. The offset between these effective temperatures and the ef-
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fective temperature values from several literature sources are plotted in Figure 4.6. The
literature effective temperatures are mostly derived from visible spectroscopy and pho-
tometry, although a few are based on near-infrared spectral types. We will discuss the
accuracy of the effective temperature for stars in three temperature ranges: cool stars
with Teff < 3800 K, intermediate stars with 3800 K < Teff < 5500 K and hot stars with
Teff > 5500K

For the coolest stars (Teff < 3800K) we find a temperature-dependent systematic offset
ranging from -300 K to +300 K, when comparing our effective temperatures with the
effective temperatures derived from visible and near-infrared spectral types in IC 348 by
Luhman et al. (2003) and with the effective temperatures from dedicated red medium-
band filters sensitive to TiO lines in Orion (Da Rio et al. 2012) (Figure 4.6). The strong
agreement in the systematic offset in the effective temperatures relative to both Luhman
et al. (2003) and Da Rio et al. (2012) implies that the effective temperature scale obtained
from the APOGEE observations in the H-band using the BT-Settl grid disagrees with
the conversion from spectral type to effective temperature from Luhman (1999). This
conversion was both used in Luhman et al. (2003, except for a small change for Teff < 2700
K) and to calibrate the photometry to effective temperatures in Da Rio et al. (2012).
The spectral types themselves are an unlikely origin of the systematic offset as they come
from a wide variety of literature sources and have been derived from both visible and
near-infrared spectra. Ignoring the systematic offset a scatter remains of only ∼ 80K over
this temperature range, which is in line with the precision of half of a spectral subtype
claimed by Luhman et al. (2003) and Da Rio & Robberto (2012). A likely cause of this
remaining scatter is the tendency of the best-fit effective temperatures to cluster around
every other BT-Settl grid point in effective temperature (Figure 4.7). The APOGEE
effective temperatures can be converted to the effective temperature scale from Luhman
(1999) by:

TLuhman (1999) = TAPOGEE − 0.5(TAPOGEE − 3200K), (4.2)

where TAPOGEE is the measured effective temperature and TLuhman (1999) is according to
the temperature scale from Luhman (1999).

For hotter stars (Teff > 3800K) the systematic offset becomes more loosely constrained.
Although we seem to overestimate the effective temperature with ∼ 300K with respect
to literature values from the visible for a majority of stars at intermediate temperatures
(3800K < Teff < 5500K), the scatter greatly increases in this temperature range. From
this scatter we estimate uncertainties on the order of 300-500 K. For even hotter stars
(Teff > 5500K) the scatter with respect to literature values decreases somewhat, suggesting
uncertainties of 100 - 200 K. The upper limit of the BT-Settl grid at 7000 K sets an upper
limit to the effective temperature measured.

Finally we determine the accuracy of the measured surface gravities by comparing the
observed effective temperature vs. surface gravity diagrams with those expected from
isochrones (Figure 4.7). For the cooler stars (Teff < 4500 K) the stars in the different
clusters clearly differ in their surface gravity and agree reasonably well with the Dartmouth
isochrones at their respective ages. The increased spread and offset from the isochrones
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Fig. 4.6 — A comparison of the measured APOGEE/BT-Settl effective temperatures with
literature values. Every dot represents the effective temperature of a star observed with
APOGEE and a previous survey. Blue dots compare with the effective temperature in IC
348 derived from both visible and NIR spectral types from a variety of sources collected
by Luhman et al. (2003). The green dots compare with the effective temperature in the
Pleiades from visible echelle spectra from the Hamilton spectrograph on the Lick Observa-
tory (Soderblom et al. 1993) and the red dots compare with similar data for solar-like stars
in the Pleiades from Soderblom et al. (2009). The magenta dots compare with the effective
temperatures in Orion A from deep visible photometry with dedicated medium-band filters
(Da Rio et al. 2012). Finally the cyan dots compare with the effective temperatures in
Orion collected by Nicola Da Rio from Hillenbrand (1997) and Hsu et al. (2012).

in surface gravities for hotter stars (Teff > 4500 K) again suggest a lower precision and
accuracy for the hotter stars, although the older pre-main sequence stars in the Pleiades
retain a higher surface gravity than those in the younger clusters.

4.4 Stellar luminosities and masses

To study the dynamical state of IC 348, we need to determine the gravitational potential
well, caused by the stars and gas in the young cluster. Before we can calculate the total
mass we need to measure the interstellar extinction towards the stars observed in IC 348
(section 4.4.1), so that we can compute the stellar luminosities in section 4.4.2. We then use
the Dartmouth pre-main sequence tracks (Dotter et al. 2008) to convert the spectroscopic
temperatures and luminosities into stellar masses, which are combined with the gas mass
in section 4.4.3 to compute the total mass distribution in IC 348.
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Fig. 4.7 — The distribution of spectroscopic effective temperatures and surface gravities
(blue squares for IC 348; red circles for NGC 1333, and cyan diamonds for the Pleiades)
with trend lines overplotted in the same color between 3000 and 4500 K. Only stars with
σTeff < 100 and σlog(g) < 0.1 have been included for clarity. Overplotted in magenta are
the Dartmouth isochrones (Dotter et al. 2008) at 2 Myr (dotted), 6 Myr (solid), and 100
Myr (dashed). The BT-Settl grid contains a model spectrum at every intersection of the
black dotted lines and extends to lower effective temperatures and lower surface gravities
than plotted here.

4.4.1 Extinction

The extinctions to the observed young pre-main sequence stars have been derived from
the excess redness in J-H with respect to a star in the Pleiades with the same effective
temperature. Although the Pleiades at an age of ∼ 110 Myr is significantly older than the
1 - 5 Myr old clusters targeted in this survey, the cluster serves as an excellent calibra-
tor due to its very low overall extinction and the targeting of the cluster by APOGEE,
which means we can calibrate the colors in the Pleiades to the temperature scale found by
APOGEE. For every Pleiades member with APOGEE spectra, we find the point on the
single-star photometric locus for the Pleiades defined by Bell et al. (2012) with the smallest
unweighted residuals in their visible and near-infrared photometry. These stars are then
used to calibrate the spectroscopic effective temperature scale in this work to the colors
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of the Bell et al. single-star photometric locus. The extinction towards every star in the
younger clusters is computed from the excess J-H color with respect to the J-H color of
the Pleiades single-star locus at the same spectroscopic effective temperature (Figure 4.8).
An additional reddening of E(J-H) = 0.013 is added to correct for the mean extinction of
E(B-V) = 0.044 in the Pleiades (e.g. Breger 1986)2, where we used the extinction law from
Rieke & Lebofsky (1985).
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Fig. 4.8 — The reddening in J-H with respect to the Pleiades as a function of effective
temperature in IC 348 (blue squares) and the Pleiades (cyan diamonds).

We test the accuracy of this procedure by considering a subset of spectroscopically
observed stars in IC 348, which have visible photometry from Bell et al. (2013). Bell
et al. (2013) observed many young clusters, including IC 348 and the Pleiades, using the
visible griZ filters of the Wide Field Camera on the Isaac Newton Telescope (INT-WFC)
(additional u-band photometry is available for some clusters). The single-star photometric
locus from Bell et al. (2012), which we calibrated to our spectroscopic effective temperature
above, contains the stellar magnitudes in the four griZ visible bands and the 2MASS JHKs
bands. We can thus define the excess magnitude in all seven visible and near-infrared bands
after extinction-correction for the subset of stars in IC 348 with both visible photometry
from Bell et al. (2013) and APOGEE spectra. Figure 4.9 shows the resulting excess
magnitude using the extinction estimates from the E(J-H) (i.e. how much brighter are
the stars in IC 348 in apparent magnitude after extinction correction with respect to the
stars with the same effective temperature in the Pleiades). The excesses in the visible
and the J-band typically agree within several hundredth to tenths of a magnitude at least
for stars with AJ < 1 (red in Figure 4.9), suggesting that these photometric excesses are
caused by changes in the solid angle that these stars cover on the sky, and not uncertainties

2The differential extinction in the Pleiades (AV ∼ 1.3) caused by a CO cloud covering the southwest
region of the cluster Breger (1987) is not taken into account in this analysis, because it only covers a very
small part of the cloud.
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in extinction. The scatter around the ∆I = ∆J line in Figure 4.9 puts an upper limit on
the uncertainty in the extinction of 0.16 mag in AJ.
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Fig. 4.9 — The excess magnitudes in various bands in IC 348 with respect to a single star
with the same temperature in the Pleiades after extinction correction. We only include
stars with the INT-WFC visible photometry in griZ from Bell et al. (2013). The black
lines in each panel show perfect one-to-one agreement between the excess in the J-band
and in the visible. The excess J-band magnitude with respect to the Pleiades correlates
very well with the excesses in the visible bands, implying that the excess magnitude is
color-independent. The stars have been separated by color into those stars with AJ > 1
(blue) and AJ < 1 (red).

4.4.2 Stellar luminosities

After extinction-correction and adopting a distance modulus of 6.98 to IC 348 (Ripepi
et al. 2014), we can derive the absolute magnitudes of the stars in IC 348. Figure 4.10
shows a J-band magnitude-temperature diagram. Similarly to Figure 4.7 we overplot the
Dartmouth isochrones (Dotter et al. 2008). The spread in absolute magnitudes of the star
suggest a somewhat younger age (1-10 Myr) than the surface gravities (2-10 Myr), which
might be partly explained by an excess brightness due to binarity or a systematic offset in
the surface gravities.

As previously pointed out by Luhman et al. (2003) and Muench et al. (2007), at any
given effective temperature the stars in IC 348 show a broad spread in extinction-corrected
J-band magnitude relative to the trend line with a standard deviation of 1 mag (Figure
4.10). Such a spread can be caused by a wide variety of sources, including photometric
uncertainties (∼ 0.02 mag), errors in the extinction (∼ 0.16 mag), unresolved binary com-
panions, differences in distance, contamination of background stars, and a real luminosity
differences between the stars (Hartmann 2001; Reggiani et al. 2011). However, we find
that each of these (as well as them all combined) is insufficient to explain the observed
luminosity spread with photometric uncertainties of only about 0.02 mag in the 2MASS
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Fig. 4.10 — The absolute J-band magnitude as a function of spectroscopic effective tem-
perature in IC 348 after extinction-correction, assuming a distance modulus of 6.98 with a
trend line added in red. Overplotted are the same Dartmouth isochrones as in Figure 4.7
with the 2MASS J-band magnitude derived from PHOENIX synthetic fluxes (Dotter et al.
2008). From top to bottom the ages of the isochrones are 2 Myr (dotted), 6 Myr (solid),
and 100 Myr (dashed).

J-band, uncertainties in AJ of ∼ 0.16 mag (see above), and a spread of 1 pc (twice the
half-mass radius) in distance to the stars corresponding only to a shift in magnitude of
0.01 mag. The contribution of the binaries is larger, but even if 100% of the stars had
unresolved binaries with a flat mass ratio distribution, this would only add 0.22 mag to
the dispersion in J-band magnitudes. This suggests that the vast majority of the observed
spread is caused by real luminosity differences (and hence radius differences) between stars
of the same temperature, which could be caused by an age difference or differences in
accretion history (e.g. Dunham & Vorobyov 2012; Baraffe et al. 2012).

If this luminosity spread is real, the brighter stars at any effective temperature should
have a lower surface gravity due to their larger radius. To confirm this we plot in Figure
4.11 the extinction-corrected J-band magnitude and the surface gravity relative to other
stars in IC 348 of the same effective temperature for stars hotter than 3000 K and cooler
than 5000 K. Except for a single outlier with a measured surface gravity of -0.3, these
parameters are strongly correlated (Pearson r = 0.59 with a p-value of ≈ 10−19 rejecting
the null-hypothesis that the parameters are uncorrelated if the outlying star is ignored; the
p-value increases to ≈ 10−3 if the outlying star is included). Cooler and hotter stars do
not appear to follow this correlation, which probably illustrates the larger uncertainties in
the stellar parameters for these stars (see section 4.3.2.3). This correlation at intermediate
temperatures (which contains most stars) indicates that brighter stars have a lower surface
gravity, confirming that the excess brightness is indeed caused by a larger stellar size.

98



4.4. Stellar luminosities and masses

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
log(g) with respect to locus

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

m
J
 w

it
h
 r

e
sp

e
ct

 t
o
 l
o
cu

s

3200

3400

3600

3800

4000

4200

4400

4600

4800

e
ff

e
ct

iv
e
 t

e
m

p
e
ra

tu
re

 (
K

)

Fig. 4.11 — The J-band magnitude and in log(g) relative to the trend lines plotted in
Figure 4.7 and 4.10. Only stars with precise parameters (σTeff < 100 and σlog(g) < 0.1)
between 3000 and 5000 K have been included. A single star with very low surface gravity
lies outside of this plot. The color coding indicates the spectroscopic effective temperature
of the star. The black line illustrates ∆J ∝ 2.5∆ log(g) as expected for a single mass at
every effective temperature.

4.4.3 IC 348 cluster mass

We need an estimate of the stellar and gas mass of IC 348 to determine its virial state.
In this section we derive the stellar mass in IC 348. We will only consider stars more
massive than 0.25 M� (i.e. hotter than ∼ 3300 K), because these are typically brighter
than H=13 for which are target catalogue of potential members seems to be complete (see
completeness analysis in section 4.2.1 and Figure 4.1).

First we derive the stellar mass of the stars with APOGEE spectra using the spectro-
scopic effective temperature and extinction-corrected absolute J-band magnitude from the
Dartmouth isochrones (see Figure 4.10). For the stars with a spectroscopic masses above
0.25 M� the total mass adds up to about 125± 20 M�, where the uncertainty comes from
an assumed systematic uncertainty of 200 K on the effective temperature.

We then extend this mass estimate to the unobserved stars in the target catalogue.
We assume that these unobserved stars have the same properties as the observed stars at
the same apparent H-band magnitude, because the priority in the targeting was based on
this magnitude. For every unobserved star we select the 20 stars with the most similar
apparent H-band magnitude and randomly assign one of their masses to the unobserved
star. On average this leads to an additional mass of 35± 6 M� for cluster members with a
mass above the 0.25 M�. Hence we estimate the total cluster mass for stars more massive
than 0.25 M� to be 160± 25 M�.

Finally we estimate how much of the total cluster mass we missed by assigning a min-
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imum stellar mass of 0.25 M�. For this we use the initial mass function (IMF) from
Maschberger (2013), which has been designed to match the classical IMFs from Kroupa
(2001) and Chabrier (2003, 2005), but has the advantage of consisting of a single contin-
uous function. By integrating this IMF with the default parameters from Maschberger
(2013) we find that stars with masses below 0.25 M� contribute 17% of the initial total
mass. Correcting for this implies a final total stellar mass in IC 348 of 192± 31 M�. The
distribution of this mass has been plotted in Figure 4.12 together with the mass contribu-
tion from several gas tracers. Throughout this work we will use the mass estimate of the
dust emission from Herschel.
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Fig. 4.12 — The enclosed stellar and gas mass in IC 348 as a function of distance from the
cluster center. For the gas mass estimates from the Herschel dust emission maps, 12CO
maps, and 13CO maps have been included. The core and halo radius of Herbst (2008) have
been marked together with the half-mass radius at 300 arcseconds. The dense gas clump
called the southwestern ridge extends from 500 to 700 arcseconds to the south of IC 348.

4.5 Results

Here we analyze the radial velocities observed in IC 348 to constrain the clusters dynamical
state. In section 4.5.1 we find a velocity dispersion of 0.75 ± 0.05 km s−1 in IC 348 after
correction for the radial velocity offsets due to binary orbital motions. In section 4.5.2 we
show a trend between stellar extinction and radial velocity, which suggests that IC 348
might be collapsing. In section 4.5.3 we search for trends of the velocity distribution with
the position in the cluster. Finally in section 4.5.4 we discuss whether the velocities in IC
348 are spatially correlated. Unless otherwise noted we will only consider stars that do not
show radial velocity variability (see section 4.5.1), have an uncertainty on the mean radial
velocity of less than 500 m s−1, and are within 800 arcseconds (i.e. two half-mass radii)
from the cluster center. The velocities used throughout this section are those corrected for
the unphysical radial velocity offset at low effective temperatures (see section 4.3.2.2). In
the current fits a significant fraction of the stars is rejected as RV variable, because the
radial velocity failed to converge. This will be fixed in Cottaar et al. (in prep).
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4.5.1 Global velocity dispersion

The observed radial velocity distribution is not only influenced by the stellar motions
through the cluster’s potential, but also by orbital motions of members of a binary. The
multiple epochs over which APOGEE spectra were taken allows the binaries with short
periods to be detected through their radial velocity variations. However, many binaries
with velocity amplitudes comparable to or larger than the velocity dispersion of IC 348
remain undetected, broadening the observed radial velocity distribution.

We statistically correct for the effect of these binary orbital motions using the procedure
outlined in Cottaar et al. (2012b) and Cottaar & Hénault-Brunet (2014). In short, we
exclude from the analysis all stars with variable radial velocities (i.e. inconsistent with
being single at the p < 10−4 level according to a χ2-test). For the remaining stars we
compute the distribution of radial velocity offsets due to binary orbital motions by (1)
drawing in a Monte Carlo like fashion a large number of binary orbits, (2) discarding those
binary orbits that would have been detected given the observational details of that star,
and (3) computing the distribution of radial velocity offsets between the observed and
systematic velocities for the remaining binaries. This radial velocity offset distribution
due to binary orbital motions is then convolved with the intrinsic velocity distribution of
the cluster (assumed to be Gaussian in this work) and used to compute the likelihood
of the observed velocity of that star. The best-fit parameters are found by maximizing
the total likelihood of reproducing all observed velocities. All quoted uncertainties in the
mean velocity and velocity dispersion of the cluster have been computed using an MCMC
simulation.

For this procedure to work we need to draw many random binary orbits and hence
we need to assume a period, mass ratio, and eccentricity distribution for the observed
stars. We are mainly interested in the number of binaries with periods between tens and
thousands of years, whose binary orbital motions cause velocity offsets on the order of the
velocity dispersion of IC 348. The binary distribution in this period range has only been
extensively characterized in the solar neighbourhood (see review from Duchêne & Kraus
2013), so we will use these results to inform our assumed orbital parameter distributions.
First we assign to every star an age and a mass based on the Dartmouth tracks and its
position in the temperature-magnitude diagram (see Figure 4.10). The binary fraction, the
peak of the semi-major axis distribution, and the width of semi-major axis distribution all
decrease towards lower masses (e.g. Lada 2006; Janson et al. 2012). For brown dwarves we
set the binary fraction to 22% (Burgasser et al. 2007). Above the hydrogen burning limit
we let the binary fraction increase linearly, so that the binary fraction at one solar mass is
44% (Raghavan et al. 2010). We implement the period distribution as three log-normals,
with a mean of log a0 = 0.86 and a width of σlog a = 0.24 below 0.2 M� (Burgasser et al.
2007), with log a0 = 1.2 and σlog a = 0.8 between 0.2 M� and 0.8 M� (Janson et al. 2012),
and with log a0 = 1.64 and σlog a = 1.52 above 0.8 M� (Raghavan et al. 2010). We adopt
a flat mass ratio distribution (Reggiani & Meyer 2013) and flat eccentricity distribution
(Duchêne & Kraus 2013).

101



CHAPTER 4. IC 348

10 12 14 16 18 20

radial velocity (km s−1 )

0

2

4

6

8

10

12

14

16

18

N

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

velocity dispersion (km s−1 )

0
1
2
3
4
5
6
7

P
ro

b
a
b
ili

ty

15.0 15.2 15.4 15.6 15.8

mean velocity (km s−1 )

0

1

2

3

4

5

P
ro

b
a
b
ili

ty

Fig. 4.13 — Upper panel: the radial velocity distribution of stars that are not RV variable,
are within 0.2 deg from the cluster center, and have a radial velocity precision of < 0.5 km
s−1 (histogram), with an approximation of the best-fit radial velocity distribution including
the effect of binary orbital motions (green solid line) and the best-fit underlying Gaussian
velocity distribution corrected for binary orbital motions (red dashed line). Lower panels:
posterior probability distributions in the velocity dispersion and the mean velocity.

Figure 4.13 shows a histogram of the observed velocity distribution with an approxima-
tion of the best-fit distribution including the velocity offsets due to binary orbital motions.
This best-fit distribution is only an approximation appropriate for a typical star, because
the probability distribution varies for every star in the maximum-likelihood analysis, be-
cause it depends on the velocity uncertainty and on the timescale over which the star was
observed. The Gaussian underlying velocity distribution corresponding to this best-fit is
also overplotted in Figure 4.13 (and is the same for all stars). A MCMC simulation gives
a velocity dispersion of 0.75± 0.05 km s−1 and mean velocity of 15.40± 0.08 km s−1.

4.5.2 Velocity gradient with extinction

Ignoring for a moment local circumstellar material, the extinction measures how deep a star
is embedded within the gas in IC 348, and if the gas is roughly uniformly distributed it gives
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us an indication of which stars are closer and further away from us along the line of sight.
This would suggest that collapse or expansion of IC 348 might be directly detected through
a correlation between the radial velocity and extinction of a star. To test this scenario we
divide the population of IC 348 into three subpopulations. One subpopulation contains
all stars with reddening in J-H corresponding to AJ > 1, which is a higher extinction as
expected for the background stars based on extinction maps or the Herschel dust maps.
This implies that these stars either have excess extinction due to dense gas surrounding
the star along the line of sight (e.g. envelope or circumstellar disc) or they might have an
other source of reddening in their J-H color, such as emission from an inner protoplanetary
disc. Either way, the reddening observed for these stars is likely to be unrelated to the
position within the cluster and hence no correlation with radial velocities is expected. The
remaining low-extinction stars are divided into two roughly equal-size subpopulations (with
AJ < 0.65 and AJ > 0.65). The radial velocity distributions of these three populations
have been plotted in the upper panel in Figure 4.14. The radial velocity distributions
for the low-extinction and intermediate-extinction populations are significantly different
(p = 10−4). In the same manner as for the global velocity dispersion (section 4.5.1) we
derive a mean velocity and velocity dispersion for the three subpopulations corrected for
binary orbital motions. The resulting probability distributions on the mean velocity and
velocity dispersion are shown in Figure 4.14. We find that the stars with intermediate
extinction are more blue-shifted at the 3-sigma level than the low-extinction sample. This
implies that the stars in the cluster are moving towards each other along the line of sight,
which corresponds to collapse along this dimension. The stars with high extinction have an
intermediate mean velocity and velocity dispersion, suggesting that they are a mixture of
the two other subpopulations, which is expected if the extinction for these stars is indeed
uncorrelated with the location in the cluster.

4.5.3 Spatial dependence of the velocity distribution

In globular clusters the radial velocity dispersion is often found to drop steeply with in-
creasing cluster radius (e.g. Watkins et al. 2013) as expected from the Jean’s equation. We
use the same method used to test the velocity gradient with the extinction (section 4.5.2)
to find if such a trend with radius is also present in IC 348.

The upper panel in Figure 4.15 shows the velocity distribution as a function of distance
from the cluster center, separated into those stars within a half-mass radius (≈ 0.1 deg),
between one and two half-mass radii, and those stars beyond two half-mass radii. There is
a suggestive drop in the velocity dispersion towards the edge of the cluster, although it is
not statistically significant (Figure 4.15). Neither is the apparent blueshift for the cluster
at the edge.

The cluster does not show any obvious rotation (upper panel of Figure 4.16), although
a small rotation is found with the mean velocity slightly increasing from the northeast to
the southwest (middle panel of Figure 4.16). To determine the significance of this trend,
we add the possibility of a velocity gradient to the assumed Gaussian velocity distribution
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Fig. 4.14 — (upper) Scatter plot of the radial velocity distribution versus stellar extinction
with their histograms. The stars have been split into three subpopulations based on stellar
extinction (AJ < 0.65 in blue; 0.65 < AJ < 1 in green; and AJ > 1 in red). (lower)
The probability distribution of the velocity dispersion and mean velocity of the three
subpopulations. We find a significant offset between the stars with AJ < 0.65 (blue) and
0.65 < AJ < 1 (green).

(see section 4.5.1) through the replacement of the global mean velocity with a different
mean velocity for every star given by:

µi = vrot
ri
rhm

cos(θi − α) + µ, (4.3)

where ri and θi are the positions for star i in circular coordinates around the cluster center,
vrot is the change in the mean velocity across a half-mass radius rhm = 0.1 deg, α is the
angle of the rotation axis, and µ is the global mean velocity.

The lower panel in Figure 4.16 illustrates the distribution of the MCMC, when fitting
such a velocity gradient. Although the uncertainties on both the rotational velocity and
the angle of rotation are large, in 93% of the simulations in the Markov chain there is a
positive velocity gradient from the northeast to the southwest, suggesting that there is a
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Fig. 4.15 — (upper) Scatter plot of the radial velocity distribution versus the distance from
the cluster center with their histograms. The stars have been split into three subpopula-
tions based on distance from the cluster center (d < 0.1 deg in blue; 0.1 deg < d < 0.2
deg in green; and d > 0.2 deg in red). (lower) The probability distribution of the velocity
dispersion and mean velocity of the three subpopulations. We do not detect a significant
shift in the mean radial velocity or velocity dispersion as a function of distance from the
cluster center.

real gradient in this direction.

4.5.4 Spatially correlated velocities

In the statistical analysis of the significance of the spatial trends of the velocity distri-
bution discussed above, an implicit assumption was made that every star represented a
random, independent draw of the velocity distribution. However, stars form from a tur-
bulent molecular cloud in which the velocities are strongly spatially correlated (Larson
1981; Heyer & Brunt 2004). Here we check whether the stellar velocities in IC 348 are still
spatially correlated, even though most stars will probably have completed some orbits.
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Fig. 4.16 — Spatial distribution of stars in IC 348, colored by their radial velocity (upper
panel); the best-fit velocity gradient along a rotation axis from the northeast to the south-
west (middle panel); and the probability distribution of the angle of rotation and the size
of the velocity gradient (lower panel).

We test this correlation by computing the velocity differences between all stars and
sorting them into equal-sized bins based on the projected distances between the stars.
Figure 4.17 shows for every bin the dispersion in velocity differences after cutting any
velocity differences bigger than 4 km s−1 to minimize the effect of binary orbital motions.
The dispersions are significantly higher than the global velocity dispersion (see section
4.5.1), because the dispersion is not properly corrected for binary stars and the dispersion
is computed for the velocity differences rather than the velocities, leading to an increase
of
√

2. Although the dispersion in molecular clouds increases by a factor of 4.5 as the
distance scale goes up by a factor of 10 (Heyer & Brunt 2004), we find that over the same
increase in distance scale the stars show barely any increase in the velocity dispersion with
an upper limit of ∼ 10% suggested by the scatter. From this we conclude that there is no
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significant correlation left in the velocities between neighboring stars in IC 348.
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Fig. 4.17 — The dispersion of the velocity differences of stars with a projected separation
in the range given by the length of the lines along the x-axis after cutting all velocity
differences bigger than 4 km s−1 showing no obvious trend. Every bin contains about 3270
velocity differences between stars.

4.6 Discussion

4.6.1 Virial equilibrium

Although IC 348 is not deeply embedded in the Perseus molecular cloud, its young age
suggests that the molecular gas in the cluster has only recently dissipated. The loss of the
molecular gas causes the gravitational potential to decrease, which can cause the stellar
cluster to unbind (e.g. Hills 1980; Lada et al. 1984; Goodwin & Bastian 2006). Even though
the low star-formation efficiency in molecular clouds implies that a large fraction of the
total gravitational potential is lost during the dispersal of the molecular cloud, the effect
on the boundedness of the stars might be limited if they reside in regions with relatively
little gas due to stellar accretion and contraction of the star cluster (e.g. Kruijssen et al.
2012).

To determine whether IC 348 is expected to expand we compare the measured velocity
dispersion of 0.75 ± 0.05 km s−1 to the velocity dispersion needed for virial equilibrium
(assuming spherical symmetry), which is given by:

σdyn =

√
GM

ηrhm
, (4.4)

where G is the gravitational constant, M is the total stellar plus gas mass, which adds up
to about 350 M� within the cluster’s outer radius of about 700 arcseconds (Figure 4.12),
rhm is the half-mass radius, which for a distance of 270 pc (Ripepi et al. 2014) is 0.4 pc, and
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η ≈ 10 is a structural parameter that depends on the density distribution (e.g. Portegies
Zwart et al. 2010). Entering these values in equation 4.4 we find a velocity dispersion of 0.6
km s−1 for Virial equilibrium, while a cluster with a velocity dispersion

√
2 higher (i.e. 0.85

km s−1) would have enough energy to unbind. The measured velocity dispersion represents
a convolution of both random and the structured motions of the observed velocity gradient
with extinction and across the cluster. We do not attempt to remove these structured
motions, as they contribute to the total velocity dispersion and need to be included in
the calculation of virial equilibrium in an equal manner as the random motions (Binney &
Tremaine 2008).

We can reject a velocity dispersion of 600 m s−1 or lower at the 98% level, implying
that IC 348 is supervirial. On the other hand an unbound state (> 0.85 km s−1) is rejected
at the 90% level, so IC 348 should be able to regain virial equilibrium through expansion.
At present the stellar mass (244 M�) is likely to be insufficient to keep the cluster bound,
so if the cluster were to lose a large fraction of its gas (or stellar) mass before it is able to
revirialize, the cluster would likely become unbound and disperse.

4.6.2 Signature of collapse

Up to AJ = 1 the stars more deeply embedded in IC 348 seem to be preferentially
blueshifted with respect to the less embedded stars (see section 4.5.2). Because the spatial
information we get through the stellar extinction is in the same direction as the radial
velocity, this implies that the more deeply embedded stars in the back of the cluster are
moving towards the less deeply embedded stars in the front of the cluster, which indicates
that the cluster is collapsing along the line of sight. Here we will discuss several scenarios
to explain this trend, focusing on (1) IC 348 being in global collapse along all three dimen-
sions, (2) two clumps of stars with correlated velocities are moving towards each other,
and (3) the trend is caused by a systematic offset in the observed radial velocities.

The first scenario for the radial velocity trend we discuss is that the cluster is actually
collapsing. This is very unlikely to be the remnants of an initial collapse, because at an
age of 3 to 6 Myr (Luhman et al. 2003; Bell et al. 2013) the cluster is already many
free-fall times (≈ 2 × 105 yr) old. However, instigating collapse at a later stage seems
unlikely, because the gas mass binding the cluster together is constantly decreasing, which
should lead to expansion. The velocity dispersion also suggests a slightly supervirial state.
A possible scenario to explain all these observations is that the cluster is currently re-
virializing after a large departure from virial equilibrium a few dynamical times ago (i.e.
within ∼ 1 Myr), which could be caused by a large ejection of gas. N-body simulations
show that such clusters often show dampened fluctuations around virial equilibrium, with
alternate phases of expansion and contraction (e.g. Goodwin & Bastian 2006). IC 348
could be in a contracting phase, which is currently transitioning to an expanding phase
due to its supervirial state. A more detailed comparison with N-body simulations are
required to test whether the speed of contraction and the size of the supervirial state are
consistent with the simulations, but that is beyond the scope of this chapter.
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Alternatively the radial velocity trend could not be a sign of global collapse, but merely
reflective of two (or more) clumps of stars with correlated velocities with the more deeply
embedded clump blueshifted with respect to the less deeply embedded clump of stars.
This scenario would require a very high spatial overlap of these clumps when projected
on the sky to explain the small size of any velocity trends in the plane of the sky (see
section 4.5.3). This scenario also seems inconsistent with the lack of correlation seen in
the velocities along the plane of the sky (see section 4.5.4), which suggests that IC 348 is
already well mixed.

Finally we consider whether the radial velocity offset could be caused by the spectral
analysis, potentially caused by diffuse interstellar bands biasing the radial velocities or a
bias towards lower mass stars only being observed at low extinctions. This seems unlikely
as the same trend is not observed in the other young clusters. This might be partly related
to the smaller sample size in NGC 1333, the lack of highly extincted stars in the Pleiades,
and the larger velocity dispersion in Orion and NGC 2264.

Every scenario proposed here requires some finetuning, either temporal if the cluster
is revirializing, or in the angle of observations if the trend reflects the relative velocity
between two clumps of stars. The former scenario seems more likely, especially because
large deviations from virial equilibrium could have happened in the recent past due to
the dispersal of the molecular cloud out of which IC 348 formed. Future proper motion
observations should be able to distinguish between these scenarios by looking for collapse
in the plane of the sky.

In reality the correlation between extinction and distance along the line of sight is
expected to be weak, due to the non-uniform, filamentary nature of molecular clouds
(André et al. 2010). This suggests that the correlation between line-of-sight position and
line-of-sight velocity might be even stronger than found between the extinction and the
line-of-sight velocity, as the scatter increases, when line-of-sight positions are converted
into extinction measurements.

4.7 Conclusions

Here we present the spectral analysis of young stars observed in the clusters IC 348, NGC
1333, NGC 2264, Orion, and the Pleiades with the high-resolution, multi-object spectro-
graph APOGEE. Tables with the stellar properties for IC 348 and the Pleiades have been
included electronically. Radial velocities have been found with a typical precision of a few
100 m s−1, although a systematic offset was found for the coolest stars (Teff < 3500 K) in
the sample, for which we correct. For these cool stars the effective temperatures also show
a systematic offset with respect to the effective temperature scales from low-resolution
spectra in IC 348 (Luhman et al. 2003) and visible medium-band photometry in Orion
(Da Rio et al. 2012). Once corrected the effective temperatures agree with the previous
estimates within ∼ 100 K for stars cooler than 4500 K, although larger offsets of up to
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300 K are found for hotter stars. Finally the surface gravities agree reasonably well with
the isochrones with again a better agreement for the cooler stars. The precision in surface
gravities suffices to confirm the luminosity spread in the young cluster IC 348.

In addition we discuss the dynamical state of IC 348. When compared with the gravi-
tional mass we find that IC 348 is slightly supervirial, but most likely bound, although
the stellar mass is insufficient to keep the cluster bound if it does not revirialize before
expelling the rest of the gas. We also find a blueshift for more deeply embedded stars
compared to less deeply embedded stars, suggestive of a collapse in IC 348. We propose
that this could be reconciled with the supervirial state of IC 348 if the cluster is currently
revirializing, as expected if it recently ejected a significant portion of the molecular cloud
out of which the cluster formed.
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5 Conclusions

5.1 Summary

In this thesis we probed the dynamical state of young star clusters using their radial veloc-
ities in an effort to determine their dynamical evolution. A crucial step towards this goal
was the development of a statistical tool to correct the observed radial velocity distribution
for binary orbital motions. This was achieved by fitting a model distribution including the
effects of binary orbital motions to the observed velocity distribution (chapter 2). Although
the main advantage of this procedure lies in the possibility of reproducing the velocity dis-
persion with only a single epoch of radial velocities (Cottaar et al. 2012b), we also show that
the accuracy of the measured velocity dispersion can benefit from multi-epoch radial veloc-
ities, if the binary properties are poorly charecterized (Cottaar & Hénault-Brunet 2014).
However, multi-epoch observations only noticably increase the accuracy of the measured
velocity dispersion, if the ratio of the measurement uncertainties and the baseline is small
enough to detect the velocity gradients of the spectroscopic binaries, whose binary orbital
motions cause velocity offsets similar to the velocity dispersion.

In chapter 3 we showed using the multi-epoch radial velocities of only five yellow hy-
pergiants and one luminous blue variable, that the young massive cluster Westerlund I has
an upper bound to the velocity dispersion of σ = 2.1+3.4

−0.9 km s−1 (Cottaar et al. 2012a).
This velocity dispersion was surprisingly low given the mass of the cluster, suggesting that
Westerlund I is subvirial, although the velocity dispersion is also consistent with virial
equilibrium. We can rule out that the cluster is unbound. Due to the small sample size,
we could not study the dynamics in Westerlund I in more detail.

The situation was very different for IC 348, where the Sloan Digital Sky Survey took
thousands of H-band high-resolution spectra of 339 young pre-main sequence stars, many
of which have as many as 13 spectra taken (only 10 of which have been analyzed at the
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time of this writing) over a baseline of more than a year. These spectra were analyzed
together with spectra taken in four other young stellar groups, to retrieve highly accurate
estimates of the stellar parameters using a custom spectral analysis pipeline. The surface
gravities, for instance, were measured precisely enough to detect a spread in stellar sizes in
IC 348. IC 348 showed a much smaller velocity dispersion than Westerlund I of 0.75±0.05
km s−1. However, because this cluster is much smaller than Westerlund I, this still only
implies that the cluster is barely supervirial, but still bound. This velocity dispersion is not
caused purely by random motions, but also by structured motions. We report a tentative
detection of a small velocity gradient across the cluster, and a larger velocity gradient as
a function of extinction. The orientation of the latter gradient suggest the stars in IC 348
are moving towards each other along the line of sight, which implies collapse.

5.2 Are young massive stellar groups bound?

Using these results, we can now address the first question asked in the introduction: do
dense, young stellar groups emerge bound from their natal cloud? We will first address
the dynamical state of young massive stellar groups. Unresolved stellar groups in other
galaxies often appeared to have large velocity dispersions compared to their masses and
hence appeared to be unbound, even if they are dense like a cluster (e.g. Bastian et al.
2006; Goodwin & Bastian 2006), which makes the result of a bound state of Westerlund I
seem suprising. Over the past few years, several more studies have reported that resolved
young massive clusters are bound. Hénault-Brunet et al. (2012a) used multi-epoch radial
velocities to argue that the velocity dispersion in the young massive cluster R136 is only
about 5 km s−1 (see also Cottaar & Hénault-Brunet 2014), which suggests that this cluster
is also bound. Clarkson et al. (2012) similarly used proper motions for the young massive
cluster Arches finding a velocity dispersion of only 5.4± 0.4 km s−1, a factor of two lower
than expected from their mass estimate of (4− 6)× 104 M�. Finally Rochau et al. (2010)
measured a velocity dispersion of 4.5 ± 0.8 km s−1 in NGC 3603, somewhat larger than
expected from the photometric mass of 10,000 to 16,000 M�, however the data is consistent
with being in virial equilibrium.

All four of these clusters are very young (only a few Myr old with Westerlund I being the
oldest), very massive (containing more than 104 M� of stars), and appear to be (mostly)
bound, as opposed to the unresolved clusters in other galaxies. The most likely reason for
this difference is that the velocity dispersion observed in unresolved clusters is inflated by
binary orbital motions (Kouwenhoven & de Grijs 2008; Gieles et al. 2010b) or the strong
spectral variability caused by large-scale motions in the atmospheres of massive stars. In
the resolved clusters these effects can be corrected for, either by multiple epochs of radial
velocity observations used to identify the RV-stable stars (as for Westerlund I and R136)
or by proper motions, which are less sensitive to binaries and not sensitive to the spectral
variability (as for NGC 3603 and Arches). Alternatively Mengel et al. (2002) suggested
that the unresolved clusters could be more massive than suggested by their brightness, if
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they contained an excess of low-mass stars1. However, so far no direct evidence of such
variations in the distribution of stellar masses has been found (Bastian et al. 2010) and
this overabundance of low-mass stars is the exact opposite of what Clarkson et al. (2012)
proposed to explain the low velocity dispersion they measured in the Arches cluster.

As argued in the introduction for a stellar group to remain bound after expulsion of
the stellar cluster, either requires a high local star-formation efficiency (Kruijssen et al.
2012) or a dynamically cold stellar group at the time of the ejection (Goodwin 2009).
This could be caused by massive, dense clouds either having a much higher star-formation
efficiency than local clouds or by having stars form subvirially in these clouds, which will
allow them to collapse to a relatively star-rich region in the center of the cloud or even still
be dynamically cold at the time of the gas expulsion.

5.3 Are low-mass young stellar groups bound?

We now turn our attention to low-mass stellar groups forming in the solar neighbourhood.
In addition to the results for IC 348 (chapter 4) we will here also add results from the Gaia-
ESO large public spectroscopic survey. This survey aims to retrieve high-resolution visible
spectra of more than 105 stars in order to understand the chemodynamical evolution of our
own galaxy (Gilmore et al. 2012). Many different stellar components of our Galaxy have
been targeted and will be targeted over the coming years, including some young, dense
stellar groups. As part of our involvement in this collaboration, we analysed the dynamics
of two of these young regions.

Chamaeleon I is a well-studied local star-forming region with an age of ∼ 2 Myr and
more than 300 stars (Luhman 2008; Lopez Martí et al. 2013). Radial velocities for 34
stars and brown dwarfs had been previous measured in Chamaeleon I (e.g. Dubath et al.
1996; Joergens & Guenther 2001; Joergens 2006) and have been collected and analysed
by Joergens (2006), who found a velocity dispersion of about 0.9 km s−1 for the very low
mass stars and brown dwarfs and 1.3 km s−1 for the more massive pre-main sequence stars.
Corrected for binary orbital motions, the Gaia-ESO radial velocities in Chamaeleon I have
a velocity dispersion of 1.0± 0.2 km s−1 (Figure 5.1B) in agreement with previous results.
In Figure 5.1A we see the spatial distribution of confirmed cluster members (Luhman 2008)
targeted by the Gaia-ESO large spectroscopic survey, which show a clear separation into
two clumps of stars in the northern and southern part of the cluster 2. Both subclusters
show similar velocity dispersions of 0.9± 0.3 and 1.0± 0.3 km s−1 (Figure 5.1C and 5.1D)
and only have a difference in the mean velocity of 0.7 ± 0.4 km s−1. These low velocity
dispersions suggest that Chamaeleon I is bound by the molecular gas mass of 3600 M�
still present within the cluster (Mizuno et al. 1998). The full results for this cluster will
be discussed in detail by Sacco et al. (in prep).

1Low-mass stars (around 0.5 - 1 M�) dominate the mass of a cluster due to their sheer abundance, the
light emitted by young stellar groups is still dominated by the few much more massive stars.

2This separation is also seen in the complete population of confirmed members (e.g. Luhman 2008)
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A B

C D

Fig. 5.1 — Radial velocity distribution for stars in star-forming region Chamaeleon I, which
were already confirmed as members in the Luhman (2008) catalogue. A: Spatial distri-
bution of spectroscopically observed cluster members (blue) with in the background an
extinction map from Dobashi (2011). The stellar group is split into two clumps (North
and South), whose extent is approximated by the green circles. B: Observed radial veloc-
ity distribution (blue) with best-fit Gaussian velocity distribution including the effects of
binary orbital motions (red) and excluding the effects of binary orbital motions (green).
C and D: The same as panel B, but only for the Northern and Southern clump of stars
respectively. See Sacco et al. (in prep) for a detailed analysis of this dataset.

Another young stellar group, for which the Gaia-ESO high-resolution spectra have al-
ready been reduced is Gamma 2 Velorum, which is an overdensity of stars surrounding the
massive star γ2 Vel in the Vela OB2 association (Jeffries et al. 2009). Figure 5.2AB shows
the radial velocity distribution of a nearly complete sample of young stars with V < 19
aroung the massive star γ2 Vel, where the young stars have been identified based on their
equivalent width of the Lithium spectral line (Jeffries et al. 2014). The radial velocity
distribution is fitted much better by two Gaussians, than a single one, suggesting that
there are two dynamically distinct populations. One population has a very broad velocity
distribution and is probably related to the Vela OB2 assocations, while the other has a
narrower velocity distribution, consistent with being a bound cluster (Jeffries et al. 2014).

Large radial velocity datasets were also collected by Fűrész et al. (2008) and Tobin et al.
(2009) in Orion and by Fűrész et al. (2006) in NGC 2264. Tobin et al. (2009) found that
the velocity dispersion in Orion varies between 1 and 3 km s−1 with a higher dispersion in
regions with more gas. Fűrész et al. (2006) found very non-Gaussian velocity distribution
in NGC 2264 with a dispersion of about 3.5 km s−1. Both of these stellar groups are still
embedded within their molecular cloud, making a conclusion about their dynamical state
more difficult, because it depends on the spatial correlation between the stars and the gas.
These surveys used high-resolution spectra in the visible, so they are biased towards the
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Fig. 5.2 — Radial velocity distribution and best-fit for Gamma 2 Velorum. The young
stars in the direction of Gamma 2 Velorum show a bimodal velocity distribution (blue
histogram in left two panels). The solution space also shows a bimodality with the fits
of the two local maxima shown in the first two panels (red: with binary orbital motions;
green: without binary orbital motions). The right panel shows the radial velocities versus
the declination. The high-probability members to the population with the broad velocity
dispersion are shown in red. These have a velocity gradient, which can be interpeted as
shearing, if solution 2 (central panel) is correct. A detailed analysis of the Gamma 2
Velorum dataset is provided by Jeffries et al. (2014).

surface population. Combined with the radial velocities from the near-infrared APOGEE
spectograph (chapter 4), it should be possible to study the dynamical evolution of these
young embedded clusters in detail.

A final conclusion for the boundedness of the low-mass clusters is more difficult to reach
as for the high-mass cluster, as Chamaeleon I, Orion, and NGC 2264 are still embedded in
large amounts of molecular gas, whose gravity binds the stars. Gamma 2 Velorum and IC
348 do appear to be bound, although the former is so low-mass that it will likely dissipate
due to two-body relaxation on a short timescale.

The analyses presented in this thesis might give the impression that most stars emerge
bound. This is clearly not the case, as only 10% of stars formed in embedded clusters
are still found to be bound after 10 Myr (Lada & Lada 2003). In this thesis we focused
on the high-density, young stellar groups, showing them to be bound. However, plenty of
young stars are not in such high-density cluster, but in low-density assocations, which are
unbound. These low-density assocations could either have formed in that state or could
be the result of high-density clusters that become unbound. The lack of unbound dense
stellar groups suggest that the former is a more likely scenario. This was confirmed at least
for the assocation Cygnus OB2 by Wright et al. (2014), who showed that this assocation
showed plenty of substructure in the positions and proper motions (i.e. close stars had
similar motions), which suggests that the cluster formed in this way and has not passed
through a dense state, which would have wiped out this substructure.
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5.4 Outlook

The study by Wright et al. (2014) of Cygnus OB2 provides an excellent preview of the type
of science that will become possible in the near future due to the launch of the Gaia sattelite
(http://sci.esa.int/gaia/). This sattelite was recently (December 19) succesfully launched
by the European Space Agency (ESA) and has reached its destination at L2 on January
8. Over the next decade it will scan the complete night sky, mapping to high precision the
brightness, prositions, and proper motions of about 1 billion stars. Many of these stars
will belong to known associations or dense stellar groups, allowing their dynamical state
to be characterized in great detail. For the brighter and closest stars Gaia will also provide
both radial velocities and paralactic distances, providing for the first time six-dimensional
phase-space information for the closest stellar groups. The unbiased mapping of the whole
sky should also allow many new low-density stellar groups (especially moving groups) to
be found. This will provide a huge census of the dynamical states of stellar groups in the
solar neighbourhood, allowing for example the origins of many associations to be studied
in detail by looking for locally correlated velocities and whether the stars can be traced
back to a single, dense state (Wright et al. 2014). This science will be further enhanced by
the binary systems and variable, young stars that Gaia will be able to detect.

However, Gaia is limited to the visible and so will be mostly sensitive to stellar groups,
that have already emerged from their natal molecular cloud. For deeply embedded clusters
Gaia will only be able to observe the surface population. Still many questions about
star cluster formation and evolution require knowledge of stars at these very young ages.
For example, the pre-main sequence stars discussed in chapter 4 and section 5.3 typically
show velocity dispersions of about 1 km s−1, much larger than the core-to-core velocity
dispersion observed for prestellar cores (André et al. 2007; Kirk et al. 2007). This increase
in kinetic energy could either come from global collapse, which can only take place if the
initial free-fall time is short enough (corresponding to a high enough mass density) to
allow the stars to collapse before gas expulsion is capable of removing the gas potential.
Alternatively the kinetic energy could come from the evaporation of the initial stellar
clumps (Smith et al. 2011b), which could be powered by the decay of unstable, multiple
systems formed within a single pre-main sequence core. This would lead to the stars being
more spread out throughout the molecular cloud, increasing the effect of gas expulsion,
which may lead to an unbound association. This suggests that bound clusters might only
form if both the global density is high enough to allow free-fall collapse before the gas is
removed (as expected in richer clusters) and the local density is low enough to prevent
the velocity dispersion to be pumped up by stellar scattering. These early stages could
be probed by near-infrared spectrographs, such as APOGEE from the Sloan Digital Sky
Survey (see chapter 4). Covey et al. (2006) attempted to constrain the velocity differences
between the gas and extremely young (∼ 0.5 Myr) class I protostars in several star-forming
regions. Unfortunately their upper bound on the velocity dispersion of 2.5 km s−1 (which
I confirmed using a fit including binary orbital motions) was insufficient to determine,
whether the stellar velocity dispersion had significantly increased over the first ∼ 0.5 Myr of
an embedded cluster’s lifetime. Alternatively more about the initial state of the stars could
be obtained by instruments like ALMA, whose high resolution might suffice to determine
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until which spatial scale fragmentation continues. Its high sensitivity is also crucial in
characterizing the progenitor molecular clouds of young massive cluster like Westerlund I
in other galaxies (e.g. Longmore et al. 2014).
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