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A Rate-Splitting Approach
to Fading Multiple-Access Channels
with Imperfect Channel-State Information

Adriano Pastore*, Tobias Koch', Javier R. Fonollosa*
* Universitat Politécnica de Catalunya, Signal Theory and Communications Department, 08034 Barcelona, Spain
Email: {adriano.pastore,javier.fonollosa} @upc.edu
t Universidad Carlos 1II, Signal Theory and Communications Department, 28911 Leganés, Spain
Email: koch@tsc.uc3m.es

Abstract—As shown by Médard, the capacity of fading chan-
nels with imperfect channel-state information (CSI) can be lower-
bounded by assuming a Gaussian channel input and by treating
the unknown portion of the channel multiplied by the channel
input as independent worst-case (Gaussian) noise. Recently, we
have demonstrated that this lower bound can be sharpened by a
rate-splitting approach: by expressing the channel input as the
sum of two independent Gaussian random variables (referred to
as layers), say X = X+ X>, and by applying Médard’s bounding
technique to first lower-bound the capacity of the virtual channel
from X, to the channel output Y (while treating X, as noise),
and then lower-bound the capacity of the virtual channel from
X5 to Y (while assuming X; to be known), one obtains a lower
bound that is strictly larger than Médard’s bound. This rate-
splitting approach is reminiscent of an approach used by Rimoldi
and Urbanke to achieve points on the capacity region of the
Gaussian multiple-access channel (MAC). Here we blend these
two rate-splitting approaches to derive a novel inner bound
on the capacity region of the memoryless fading MAC with
imperfect CSI. Generalizing the above rate-splitting approach
to more than two layers, we show that, irrespective of how we
assign powers to each layer, the supremum of all rate-splitting
bounds is approached as the number of layers tends to infinity,
and we derive an integral expression for this supremum. We
further derive an expression for the vertices of the best inner
bound, maximized over the number of layers and over all power
assignments.

I. INTRODUCTION

Consider a discrete-time, memoryless, fading channel with
imperfect channel-state information (CSI), whose time-k out-
put (k € Z), conditioned on the channel input X [k] = z € C,
is

Y[k] = (H[k] + H[k))z + Z[K] (1)

(with C and Z denoting the set of complex numbers and the
set of integers, respectively). Here, the noise {Z[k]}rez is

A. Pastore and J. R. Fonollosa have been supported by the Ministerio de
Economia y Competitividad of Spain (TEC2010-19171 and CONSOLIDER-
INGENIO 2010 CSD2008-00010 COMONSENS) and the Generalitat de
Catalunya (2009SGR-1236). T. Koch has been supported by the European
Community’s Seventh’s Framework Programme (FP7/2007-2013) under grant
agreement No. 333680 and by the Ministerio de Economia y Compet-
itividad of Spain (TEC2009-14504-C02-01, TEC2012-38800-C03-01, and
CONSOLIDER-INGENIO 2010 CSD2008-00010 COMONSENS).

a sequence of independent and identically distributed (i.i.d.),
zero-mean, circularly-symmetric, complex Gaussian random
variables with variance o2. The fading processes {H [k]}rez
and {H[k]}xecz are both sequences of ii.d. complex random
variables (of arbitrary distribution), the former with mean p
and variance V and the latter with mean zero and variance
V. Assume that the processes {H|[k]}rez, {H[k]}rez, and
{Z[k]}kez are independent of each other and of the input
sequence {X|[k]}rez. Further assume that the receiver is
cognizant of the realization of {H[k]}ez, but the transmitter
is only cognizant of its distribution. Finally assume that both
the transmitter and receiver are cognizant of the distributions
of {H[k]}rez and {Z[k]}rez but not of their realizations.

The fading process { H [k]}rez can be viewed as an estimate
of the channel fading coefficient

HE| 2 Ak + H[k], keZ 2)

and { H[k]}rez can be viewed as the channel estimation error.
The capacity of the above channel (1) under the average-
power constraint P is given by [1]

C(P) = sup I(X;Y|H) 3)

where the supremum is over all distributions of X satisfying
E[|X]?] < P. Here and throughout the paper we omit the
time indices k where they are immaterial. Since (3) is difficult
evaluate, it is common to assess C'(P) using upper and lower
bounds. A well-known lower bound is due to Médard [2]:

|H|*P
log |14+ =——
VP + o2

It is derived by assuming a Gaussian channel input X and
by treating the term HX + Z as independent worst-case
(Gaussian) noise.

In [3], it was demonstrated that (4) can be sharpened by
a rate-splitting and successive decoding approach: writing the
input X = X; + X5 as a sum of two independent Gaussian
random variables (referred to as layers) of respective powers
P, and P, using the chain rule

I(X;Y|H) = I(X;Y[H)+ I(Xo;Y|H, X1)  (5)

C(P) > E @)




International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

and applying Médard’s bound on each term, we obtain a
lower bound that is strictly larger than (4) except in the trivial
cases where P, = 0, P, = 0, or Pr(HV = 0) = 1. This
rate-splitting approach can be generalized to more than two
layers. It was demonstrated that the supremum of all such
rate-splitting bounds is approached as the number of layers
tends to infinity and an integral expression of this supremum
was presented [3, Theorem 4].

The above rate-splitting approach is reminiscent of a rate-
splitting approach proposed by Rimoldi and Urbanke to
achieve points on the capacity region of the Gaussian multiple-
access channel [4]. For example, for the two-user Gaussian
MAC, Rimoldi and Urbanke showed that any point in the ca-
pacity region can be achieved by splitting one user, say User 1,
into two virtual users,” and by decoding first the codeword
of the first virtual user while treating the codewords of the
second virtual user and of User 2 as noise, by then decoding
the codeword of User 2 upon subtracting the contribution of
the first virtual user and treating the codeword of the second
virtual user as noise, and by finally decoding the codeword of
the second virtual user upon subtracting the contributions of
the first virtual user and User 2.

In this paper, we blend the two rate-splitting approaches in
[3] and [4] to derive a novel inner bound on the capacity region
of the memoryless fading MAC with imperfect CSI. We show
that, irrespective of how we assign powers to each layer, the
supremum of all such rate-splitting bounds is approached as
the number of layers tends to infinity, and we derive an integral
expression for this supremum. We further derive an expression
for the best inner bound, maximized over the number of layers
and all power assignments.

II. CHANNEL MODEL AND CAPACITY REGION

We consider the multiple-access generalization of (1): the
time-k output Y'[k], conditioned on the channel inputs X; [k] =
1 € C and Xs[k] = 22 € C corresponding to User 1 and
User 2, respectively, is

Y[k] = (H1[k] + Hi[k])z1 + (H2[k] + Ha[k])z2 + Z[K] (6)
where {Z[k]}rez is as in Section I, and where, for each user
i = 1,2, the fading processes {H;[k]}rez and {H;[k]}rez
are sequences of i.i.d. complex random variables, the former
with mean p; and variance VL, and the latter with mean zero
and variance V;. We assume that the processes {H;[k]} ez,
{H;[k]}rez (i = 1,2) and {Z[k]} rez are independent of each
other and of the input sequences {X;[k]}kez, ¢ = 1,2. As
in Section I, we assume that both transmitter and receiver
are cognizant of the distributions of { H;[k]}rez, {H;[k]}rez
(1 =1,2) and {Z[k]}rez, and that the receiver is, in addition,
cognizant of the realizations of {H;[k]}xez, i = 1,2.

The capacity region of the above channel (6) under the
power constraints P; and P is given by the closure of the

2The virtual users correspond to the layers in [3].

convex hull of all rates (Rq, Rp) satisfying

Ry < I(Xy;Y | X0, H) 2 I (7a)

Ry < I(X9;Y|X1,H) £ Iy, (7b)

Ri+ Ry < I(X1, Xy, Y[H) 2 I (7c)

for some product distributions of (Xi,X5) satisfying

E[|X1‘2] < P1 and EHX2|2] < P2 [5]

In [2, Equations (69)—(71)], an inner bound on the capacity
region was derived by assuming zero-mean real Gaussian
channel inputs and by lower-bounding the mutual informations
L2, Iy; and I using worst-case noise bounds like (4).
In the following, we will derive an improved capacity inner
bound (for complex signalling) by evaluating (7a)—(7c) for
zero-mean, circularly-symmetric, complex Gaussian channel
inputs of respective powers P; and P, and by using Médard’s
lower bound (4) together with the above presented rate-
splitting approaches. Specifically, we follow the approach by
Rimoldi and Urbanke [4] to characterize points (R;, R) on
the dominant face of (7a)—(7c), i.e., points satisfying

Ryl 0 Is — Iy Lo
R oo [P el ) o

for some 0 < o < 1, by single-user constraints for each R;
and Rs. We then follow the rate-splitting approach presented
in [3] to derive evaluable lower bounds on these single-user
constraints.

To illustrate this approach, let us split User 1 into two
virtual users, i.e., let X; = X1 + X2, where X771 and X5
are independent, zero-mean, circularly symmetric, complex
Gaussian random variables of respective powers (1 — 8)P
and S P;. By performing successive decoding of X1, X2 and
X12 (in this order), we can achieve the rates

Ryy = I(X11;Y|H) (9a)
Ry = I(Xlz; Y|H,X117X2) (9b)
R2 :I(XQ,Y‘H,Xll) (9C)
giving rise to the single-user constraints
Ry < I(X11;Y[H) + I(X12;Y[H, X11,X5)  (10a)
Ry < I(Xo; Y[H, X11). (10b)

The mutual informations on the right-hand side (RHS) of
(10a)—(10b) can then be lower-bounded following the rate-
splitting approach presented in [3]. In this example, we first
decode all layers of X1, then all layers of X5, and finally all
layers of X;5. By introducing more than two virtual users, we
can construct different decoding orders that potentially give
rise to sharper inner bounds.

III. POWER ALLOCATIONS AND INNER BOUNDS

The most general rate-splitting scheme on the two-user
MAC can be represented as follows: the transmit signals of
User ¢ = 1,2 are written as sums of independent, zero-
mean, circularly-symmetric, complex Gaussian random vari-
ables X;,, ¢ = 1,...,L with respective powers P;, > 0

10
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summing up to P;, i.e.,

X;=> Xiy and Pi=) Py

lel Lel

an

The signals are decoded in an alternating decoding order

Xl,laXZ,laX1,27X2,27"'7X1,L7X2,L' (12)
This yields the rate pair

Ji=n I(Xs Y | XTL X5 LH) (13

Jo =Yy I(Xo Y | XE, X571 H) (13b)

where X{ stands for the collection X 1,...,X; ;. Note that
this decoding order incurs no loss in generality, since setting
a power P; ¢ to zero effectively suppresses the decoding step.
With the decoding order held fixed, any rate-splitting scheme
is fully described by the power allocations {P; ¢}. However,
we shall find it convenient to define power allocations via so-
called layering functions.

Definition 1. A continuous surjective non-decreasing function
K;: [0;1] — [0;1] is called a layering function for user i. The
set of layering functions is denoted as K.

We shall define a rate-splitting scheme by the pair of
layering functions K = (K, K3) € K% and the number of
layers L. The corresponding power allocations can then be
obtained by

Puo= PKi(f) ~ Ki('F))- (14)
Note that K does not depend on L.
A. Infinite-layer rate region
Upon applying Médard’s bound on each summand

on the RHS of (13a)-(13b), a given rate-splitting
scheme (K,L) yields an  achievable-rate  pair
JK,L) & (J;(K,L),Jo(K,L)). The following theorem

shows that, for any K, the supremum over all rate pairs is
approached as L tends to infinity.

Theorem 1. For every pair of layering functions K, the
supremum of J,(K,L) over the number of layers is given
by the Lebesgue-Stieltjes integral

sup J,(K,L) = hm J,(K, L) / fi(¢) dK( (15)
LeN
with
|Hi[*P; ]
filQ)=E - -~ —
( o2+ 37 [ViPi K (O 25+ (| H; 12+ V) P K5 (C)]

where = and Z5 are two independent unit-mean exponentially
distributed random variables, and K;(¢) £ 1—K;(¢). We shall
denote this infinite-layering limit (15) as J°(K).

Proof outline: The proof is a generalization of the
proof of [3, Theorem 4] and hinges on similar ideas. The
main difference is that, in the single-user setting in [3],
the achievable rate converges to an expression that does not

depend on the layering function. This allows for a simplified
analysis where L-variate power allocations are approximated
by N-variate (for N sufficiently large) equi-power allocations

P
=Py =

In contrast, for the fading MAC, the infinite-layering limit
(15) depends on the pair K of layering functions, so a refined
analysis is required. |

Note that [3, Theorem 4] follows from Theorem 1 by setting
P, =0 and by the change of variable £ = K;(().

P =... 16)

B. Vertices of the rate region

By a change of variable applied to the integral on the RHS
of (15), it can be shown that J:°(K) can be written as

JP (K, Ko) = J2(Ky, K>). (17
where
Ki(Q) 2 ¢+ A©C), ¢el0;1] (18a)
Ky(Q) 2 ¢—AQ), ¢e[0:1] (18b)
for some function A: [0;1] — [—3; 1] satisfying
A(0) = A(1) =0 (19a)
and A A
sup |A(¢2) — A(G)] <1 (19b)
0<¢1<a<1 G2—C

This allows us to write J;°(K) as a functional of one function
(A) instead of two (K7 and Kb»), ie., J;°(K) = J7°(A).

Definition 2. A function A: [0;1] — [—34;1] with border

202
values A(0) = A(1) = 0 satisfying the Lipschitz condition

AG) =A@ _,
G—G

is called a relative layering function. The set of relative

layering functions is denoted as L.

sup (20)

0<¢1<(2<1

—0.5 e

0 0.5 1
¢
Fig. 1. Example of a relative layering function.

Figure 1 shows three examples of relative layering func-
tions. The relative layering function A has the following

11
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interpretation: having decoded a proportion ¢ € [0;1] of the
overall signal power P, + P, the value 24(¢) quantifies the
power by which the first user precedes (or lags behind, if A(()
is negative) the second user.

Writing the infinite-layering limit as a function of a rel-
ative layering function allows us to establish the following
monotonicity result, which will be used later to determine the
vertices of the best achievable-rate region [, maximized over
all number of layers and over all possible layering functions.

Theorem 2. Let the relative layering functions A and A satisfy
A(Q) < AQ), 0<¢<1 Q1)

with the inequality being strict for at least one 0 < ¢ < 1.
Then -
J5°(4) < J57(4)
JP(A) > I (A).
Proof outline: Using a convexity argument, it can be
shown that there exists a partial ordering for the layering
functions according to which K; ~(() < f(l(C) for all 0 <
CS 1 implies ll(Kl,Kg) > ll(Kl,Kg) and 42(K1,K2) <
J 2(f( 1, K2). By an appropriate transformation (using variable
substitutions in the Lebesgue-Stieltjes integral), the property
is carried over to J;°(A), i = 1,2, yielding (22). [ ]
Theorem 2 suggests that successive decoding penalizes
users decoded first, while it benefits users decoded last.
A direct implication of Theorem 2 is that the vertices of the
rate region J are obtained for the extremal functions

(22)

¢ for0< (<3
1-¢ fori<(¢<1
and A~(¢) = —A*(¢), 0 < ¢ < 1.

Corollary 1. The relative layering functions A and A~

AT () = (23)

satisfy
Jo(AT) = sup J3(A) (24a)
AeLl
J1(A7) = sup J3(A). (24b)
AeL

While Theorem 2 provides an easy handle on the vertices
of J, it is difficult to investigate the set of points in J of
maximal sum rate that are not vertices. To better understand
the behavior of these points, we define four families of relative
layering functions A, o, k =1, ..., 4 parametrized by a scalar
o where Ay, o is continuous in « and the extremal functions
AT and A~ are contained in each family. By varying o, we
can move from one vertex point to the other. It is unknown
whether any of these functions achieves the maximal sum rate
for a’s for which Ay,  is neither AJr nor A~

We define Ay, as integrals Ay o fo
their respective derivatives:

2) = (H[O.l/z[(z) —ﬂ[m;l](z)) ael-1;1]

k.a(2)dz over

z) = H[o afUla+(1/2);1 ]( z) — H[a;a+(1/2)[(z)7 a € [0; %]
z) = sgn(a )(H[o;\a\[(z) =T o (Z))y a€[—
)=

z Tjo;a[upi/2;1— a[(z) - ]I[a;l/2[u[1fa;1](z)a «

Lal
2,0(
3.0(
1a(

m [\)\»—-
=)
=

Here, sgn(-) denotes the sign function and T4 denotes the
indicator function of the set A.

Figure 2 shows the sum rates achieved by Ag ., k =
1,...,4 for a symmetric fading MAC with parameters P; =
P, = 10 and 0? = 1, plotted against R;. The channel
components PL—, = 1,2 are both zero-mean, circularly-
symmetric, complex Gaussmn random variables with variance
1 . Moreover, we choose V1 V2 1 . Observe that the sum
rate critically depends on the chosen rate-splitting scheme.
Further observe that A, does not achieve its largest sum
rate at a vertex point. Consequently, there exist rate pairs that
cannot be achieved by time sharing between the vertices.

S 0958 |
2
2
o
~
+
& 0.956 - ,
| | | |
0.4 0.45 0.5 0.55
Ry [bits/c.u.]
Fig. 2. Comparison of different relative layering functions.

IV. CONCLUSION

We have blended the rate-splitting approaches by [3] and [4]
in order to derive a novel inner bound on the capacity region of
the fading MAC with imperfect receiver CSI. We have shown
that, for every pair of layering functions K, the supremum of
this inner bound is approached as the number of layers tends
to infinity, and have derived an integral expression for this
supremum. In addition, we have determined the vertices of
the best inner bound, maximized over the number of layers
and all layering functions. Our analysis has revealed that, in
contrast to the setting with perfect receiver CSI, certain rate
pairs cannot be achieved by time sharing between the vertices.
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Expurgated Random-Coding Ensembles:
Exponents, Refinements and Connections

Jonathan Scarlett!, Li Pengl, Neri Merhav?, Alfonso Martinez® and Albert Guillén i Félbregasw4
1University of Cambridge, 2Technion, LLT., ®Universitat Pompeu Fabra, 4ICREA
e-mail: {jms265,1p327} @cam.ac.uk, merhav@ee.technion.ac.il, {guillen,alfonso.martinez} @ieee.org

Abstract—This paper studies expurgated random-coding
bounds and exponents for channels with maximum-metric de-
coding. A simple non-asymptotic bound is shown to attain an
exponent which coincides with that of Csiszar and Korner
for discrete memoryless channels, while remaining valid for
continuous alphabets. Using an alternative approach based on
statistical-mechanical methods, an exponent for more general
channels and decoding metrics is given.

[. INTRODUCTION

Achievable performance bounds for channel coding are
typically obtained by analyzing the average error probability
of an ensemble of codebooks with independently generated
codewords. At low rates, the error probability of the best code
in the ensemble can be significantly smaller than the average.
In such cases, better performance bounds are obtained by
considering an ensemble in which a subset of the randomly
generated codewords are expurgated from the codebook.

The main approaches to obtaining expurgated bounds and
exponents are those of Gallager [1, Sec. 5.7] and Csiszar-
Korner-Marton [2, Ex. 10.18] [3]. Gallager’s approach is based
on simple inequalities such as Markov’s inequality, and has
the advantage of being simple and applicable to channels with
continuous alphabets. On the other hand, the techniques of
[2], [3] are based on the method of types, and are applicable
to channels with input constraints. While the exponents of
[1]-[3] all coincide after optimizing the input distribution, the
exponents of [2], [3] can be higher than that of [1] for a given
input distribution [4].

In this paper, we provide techniques that attain the best of
each of the above approaches. Our main contributions are as
follows:

1) We give the precise connection between the exponents of
[1]-[3] using Lagrange duality [5], as well as generaliz-
ing the exponents of [1], [2] to the setting of mismatched
decoding [3], [6].

2) We show that variations of Gallager’s techniques can
be used to obtain a simple non-asymptotic bound which
recovers the exponent of [2], [3], as well as a general-
ization to the case of continuous alphabets.

This work has been funded in part by the European Research Council
under ERC grant agreement 259663, by the European Union’s 7th Framework
Programme (PEOPLE-2011-CIG) under grant agreement 303633 and by the
Spanish Ministry of Economy and Competitiveness under grants RYC-2011-
08150 and TEC2012-38800-C03-03. The work of N. Merhav was partially
supported by the Israeli Science Foundation (ISF), grant no. 412/12.

3) We present an alternative analysis technique based on
statistical-mechanical methods (e.g. see [7], [8]), and use
it to derive an achievable exponent for general channels
and metrics (e.g. channels with memory).

Due to space constraints, full proofs of the main results are
omitted; details can be found in [4].

A. Notation

We use bold symbols for vectors (e.g. x), and denote the
corresponding i-th entry using a subscript (e.g. z;). The set
of all empirical distributions (i.e. types [2, Ch. 2]) on a given
alphabet, say X, is denoted by P, (X). For a given type @ €
Pn(X), the type class T™(Q)) is defined to be the set of all
sequences in X™ with type (. For two positive sequences f,
and g,,, we write f,, = g, if lim, o + log g—” =0, and we
write f,, < g, if limsup, %log %
for >. All logarithms have base e, and all rates are in units
of nats. We define [¢]T = max{0, c}, and denote the indicator

function by 1{-}.

< 0, and analogously

B. System Setup

We consider block coding over a memoryless channel
Wn(ylz) £ [, W(yi|z;) with alphabets X' and Y. The
encoder takes as input a message m uniformly distributed on
the set {1, ..., M}, and transmits the corresponding codeword
(™ of length n. Given y, the decoder forms the estimate

M = argmax q"(m(j),y), (1
je{1,...M}
where ¢"(z,y) = [[;—,q(x;,y;) for some non-negative
function ¢(x,y). When gq(z,y) = W (y|z), (1) is the optimal
maximum-likelihood (ML) decoding rule. For other decoding
metrics, this setting is that of mismatched decoding [3], [6],
which is relevant when ML decoding is not feasible.
Except where stated otherwise, we assume that the code-
words are unconstrained. However, in some cases we will
consider input constraints of the form

n

1
- > elw) <T, 2)

i=1

where c(-) is referred to as a cost function, and I' is a constant.
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C. Expurgated Exponents and Duality

We will primarily be interested in the following exponent,
which was derived in [3] for the case of finite alphabets:!

ES(Q,R) & min D(Py~ xQxW)=R, (3)

@R 2, min o DPyry|QxQxW)
Ip(X;X)<R

where

7@ 2 {Pyxy : Px = Q. Px=Q,
Eplloga(X,Y)] = Epfloga(X.V)]} )

and () is an arbitrary input distribution. The following theorem
links this exponent with those given in [1], [2].

Theorem 1. For any input distribution () and rate R, we have

E%(Q,R) =s i
(@, R) A S
Ip(X;X)<R
EP[ds(XaY)] + IP(X7Y) -R (5)
= sup E°(Q, p) — pR, (6)
p=1
where
_ q(l’,y))s
ds(x,T) = —1lo W (y|x (@)
(2 & 1oy Wl (45
EF(Q,p) £ sup
$>0,a(+)
@
—p)_Q@)log ) Q@) _ye =D, ®)

The right-hand side of (§) can be considered a generalization
of the exponent in [2] to the setting of mismatched decoding;
the exponent for ML decoding is recovered by setting s = %
Theorem 1 shows that the exponents of [2] and [3] are
equivalent even when () is fixed; the equivalence for the
optimal @ is well-known [3].

The right-hand side of (8) resembles Gallager’s E'x function,
which can be extended to the mismatched setting to obtain

E(iaid(Q7 R) £ Slil; E)l(ld(Qv p) - pR7 (9)
p>

X

where

BI(Q.p) £ sup—plog 3 Q(x)Q(w)e™=D/7. (10)

We immediately see that ES
under the optimal ) for ML decoding [3], the inequality can
be strict for a suboptimal () and/or a suboptimal decoding rule.

In this paper, we seek alternative derivations of the stronger
exponent ES; which are not sensitive to the assumption of
finite alphabets, and which remain valid for channels with

input constraints.

> Eiid. While equality holds

IThe notation @ x Q x W denotes the distribution Q(z)Q(Z)W (y|z).

II. ANALYSIS USING FINITE-LENGTH BOUNDS

Let pe,m(C) denote the error probability for a given code-
book C given that the m-th codeword was sent, and let p.(C)
max,, pe,m (C). We fix an arbitrary codeword distribution Px
and define

(X,Y,X) ~ Px(x)W"(y|lz) Px (). (11)

Stated in a general form, Gallager’s analysis proves the exis-
tence of a codebook C of size M > M’ ﬁ such that

f(pe(c)) < (1 + n)E[f(pe,m(C))]

for any 7 > 0 and non-negative function f(-), where C is a
random codebook with M’ codewords drawn independently
from the distribution Px. In particular, we obtain

pe(€) < (2E[pem(©)7])"

by choosing 7 = 1 and f(-) = (-)'/#, where C contains 2/ —1
codewords. The following non-asymptotic bound follows from
(13) using the union bound and the inequality

(o) <0 =2,

i
Theorem 2. For any pair (n, M) and codeword distribution
Px, there exists a codebook C with M codewords of length
n whose maximal error probability satisfies

12)

13)

(14)

pe(C) < inf

— 11/ \"”
<4(M - I)E[]P’ [q”(X,Y) > ¢"(X,Y) ‘ X,X} .
(15)

The bound in (15) extends immediately to general channels
and metrics (e.g. channels with memory), and can be con-
sidered an analog of the random-coding union (RCU) bound
given by Polyanskiy et al. [9]. In the remainder of the section,
we present the resulting exponents for various ensembles in
the memoryless case.

i.i.d. ensemble: Choosing the i.i.d. distribution

n
Px(z) = [[ Q). (16)
i=1
we can use Markov’s inequality to weaken (15) and obtain
the exponent E4(Q, R). This approach does not rely on the
alphabets being finite, but it is unsuitable for input-constrained
channels, since in all non-trivial cases there is a non-zero
probability of violating the constraint.
Constant-composition ensemble: Suppose that |X'| and | Y|
are finite, and consider the constant-composition codeword
distribution

Px(CC) )|]1{£B€Tn(Qn)},

B 1

T (@n
where (), is a type with the same support as @ such that
|Qn(z) — Q(z)| < L for all z. By expanding (15) in terms

a7
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of types and applying standard properties [2, Ch. 10], we can
derive the exponent

D(Pysy || Py x W)+ p(Ip(X;X) — R).

(18)
Using the minimax theorem [10], we recover £ in the form
given in (3). This provides a simple alternative proof to the
one given in [3] based on graph decomposition techniques.
Cost-constrained ensemble: In the case of continuous al-
phabets and input constraints (see (2)), we can derive ES;
using the cost-constrained codeword distribution

— L [e@){ze .},
P 5

sup min
p>1 Pxxy €T°(Q)

19)

where

1 n
D, & {ac - E c(z;) < T,
n
i=1

’:L > ai(wi) — ¢
i=1

and where J is a positive constant, {a;(-)}£, are arbitrary
auxiliary cost functions with means ¢; = Eg[a;(X)], and p,,
is a normalizing constant.

One can show that y,, = 1 provided that Eq[c(X)] < T.
Egle(X)?] < oo and Eglai(X)?] < oo forl=1,---,L[11].
Assuming these conditions are satisfied, we can analyze (15)
similarly to the case of random coding without expurgation
[11] to obtain the exponent

gé,l—l,...,L}, (20)
n

ESMNQ, R {a}) & sup ESNQ, p, {a}) — 1)
Pz
where?
ESN(Q, R, {a;}) &  sup
SZO,{T{},{FL}
Sy Tila (@) — i)
— e— —ds () /p
plogZQ Q@) @ © . @)

and the constants {r;} and {7;} are arbitrary. Roughly speak-
ing, the additional factor in (22) compared to (10) is obtained
using the fact that the empirical mean of each auxiliary cost
is close to the true mean.

Finally, we claim that (22) reduces to (8) when L = 2
and a;(+), az(+) are optimized. This is easily shown by setting
rp =7 =1 for | = 1,2, choosing ax(-) such that Jensen’s
inequality holds with equality when __ Q(x) is taken outside
the logarithm, and using the definition of ¢; to write

—ZQ ZQ

In summary, this derivation shows that, under mild technical
assumptions, (6) is an achievable exponent even in the case
of infinite or continuous alphabets, provided that () satisfies
Eg[e(X)] < T in accordance with (2).

—al(w).

)loge (23)

6”‘2 ($) ¢2

’In the case of continuous alphabets, the summations should be replaced
by integrals.

ITII. ANALYSIS USING ENUMERATOR FUNCTIONS

In this section, we present an alternative method for deriving
expurgated exponents which is based on statistical-mechanical
methods (e.g. see [7], [8]). In [4], we provide two variations of
this approach depending on whether the alphabets are discrete
or continuous. We begin here by discussing the discrete case.

Applying the union bound to (13), we obtain

P

e (ol ST 1) )

m#Em " (X(m) ’ Y)
(24)

where { X )} Hj\il Px (29)) are the random code-
words in C. For any codeword distribution Px () depending
only on the type of &, we can perform an exponentially
tight analysis of (24) using type enumerators [7]. For the
constant-composition ensemble (see (17)), we obtain ESS in
the form given in (3). Although the exponent is the same as
that obtained via Theorem 2, the type enumerator approach
guarantees exponential tightness starting from an earlier step.

On the other hand, for the i.i.d. ensemble (see (16)), we
show in [4] that (24) yields an exponent which is strictly higher
in general than that obtained via Theorem 2. It follows that
the inequality in (14) is not exponentially tight in general, thus
motivating the more refined analysis of (24).

In the remainder of the section, we consider a more general
approach which remains applicable in the continuous case. We
assume that each codeword must satisfy (2), and that

2M—1

lim — log log — =0, 25)
=0 7y ()
where
n(y) & min PlY, € E(x, @ 26
(7) (2,2) : c(z)<~v,c(T) <~ [ ( )} ( )
E(x,7) £ {y : q(@,y) > q(z,)}, 27

and in (26) we define Y, ~ W (-|x). This assumption is mild
and generally easily to verify. For example, for the power-
constrained additive white Gaussian noise channel with ML
decoding, 7(-) only decays exponentially in -y, whereas (25)
allows for nearly double-exponential rates of decay. See [4]
for further discussion and examples.

The following theorem follows by applying (12) with a
function of the form f(-) = f.(-) = log(-) + ¢n, where ¢,
is chosen such that f,(pe,m) is non-negative for all values of
Pe,m Which can occur when (25) holds.

Theorem 3. Fix R > 0 and consider a sequence of codebooks
C,, containing M), = |exp(nR)| codewords which are gen-
erated independently according to Px. Under the assumption
in (25), there exists a sequence of codebooks C, with M,
codewords such that

1
lim —logM, =R

n—oo N

(28)
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and

Pe(Cp) < exp (E[logpe,m(cn)})
< exp (pE[logE[pe,m(Cn)l/” | X(m)]D,
where (30) holds for any p > 0.

(29)
(30)

Equation (30) can be thought of as improving on (13) to
the fact that the expectation with respect to the transmitted
codeword is outside the logarithm.

Applying the union bound and Markov’s inequality to (30),
we conclude that there exists a sequence of codebooks C,, of
rate approaching R such that

pe(Cn) < exp (E[IOg An(R, p,X(m))D, @31
where
An(R, p, X™)
_\ler P
Iy E ( Z eid: (X('m))X(?n))) ’X(m) (32)

m#Em

and d”(z,Z) = Y1, ds(w;,T;). We fix § > 0 and write

o0
Z e—d:(m,X(m)) < Z €_7Lk6Nm(]€7 w)’
k=0

(33)

m#Em

where

Ny, (k, x)

(1>

> 1{nks < d (@, X)) < n(k+1)5}.
m#Em

(34
The key observation which permits the subsequent analysis is
that the maximum value of k for which N,,(k,x) # 0 grows
subexponentially in n; this can easily be verified using the
assumption in (25). Applying this observation to (32) multiple
times, we obtain

An(R, p, ) < max (IE [Non (k)" "])pe*”’“‘? (35)
We can further upper bound this expression by removing the
lower inequality in the indicator function in (34). Letting
R(D, ) be any continuous function such that P[d?(z, X) <
nD] < e " (P:2) yniformly in x, it follows by treating the
cases R(D,z) < R and R(D,x) > R separately that

An(R, P, ili) S 6—nmin{E1(R,p,&,m),Eg(R,&,m)}’ (36)
where
Ey(R,p,6x) £ min kOt p(R((k +1)d,2) — R)
(37)
Ey(R,6,x) = min k6 + R((k+1)d,x) — R.
k:R((k+1)d,2)<R
(38)

Finally, we obtain the following by taking § — 0 and p — oc.

Theorem 4. Under the assumption in (25), the exponent

Ex(R)£E inf D+ R(D,X)-R

i (39
D:R(D,X)<R

is achievable for any continuous function R(D,x) such that
P[d?(m,X) < nD] < e "BP®) yniformly in x.

After a suitable modification of the definition of d7(x,Z),
(39) extends immediately to general channels and metrics.
The ability to simplify the exponent (e.g. to a single-letter
expression) depends on the form of R(D,x), which in turn
depends strongly on the codeword distribution Px. In some
cases, Px can be chosen in such a way that R(D, x) is the
same for all « with Px (x) > 0, thus greatly simplifying (39).

Consider the cost-constrained ensemble given in (19) with
L = 1, and assume analogously to Section III that Eq[c(X)] <
I, E[c(X)?] < oo and E[a1(X)?] < oo. Using standard
Chernoff-type bounding techniques, we obtain

1 n
R(D, ) = sup 7y —tD — = Y 0z, 7, 1),

(40)
t>0,7 ne =
where o .
0(x,7,t) £ log Eq[erm (X)tds(=.X)], (41)

Substituting (40) into (39) and performing some manipula-
tions, we obtain EF¢ in the form given in (6), with the
summations replaced by integrals where necessary. In contrast
to Section III, we only require L. = 1 instead of L = 2.
However, this comes at the price of requiring (25) to hold.
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Second-Order Rate of Constant-Composition
Codes for the Gel’fand-Pinsker Channel

Jonathan Scarlett

Abstract—This paper presents an achievable second-order cod-
ing rate for the discrete memoryless Gel’fand-Pinkser channel.
The result is obtained using constant-composition random coding,
and by using an asymptotically negligible fraction of the block
to transmit the type of the state sequence.

I. INTRODUCTION

In this paper, we present an achievable second-order coding
rate [1]-[3] for channel coding with a random state known
non-causally at the encoder, as studied by Gel’ fand and Pinsker
[4]. The alphabets of the input, output and state are denoted
by X, Y and S respectively, and each are assumed to be
finite. The channel transition law is given by W"(y|x, s) =
[T7_, W(yi|xi, s;), where n is the block length. The state
sequence S = (S1,---,Sy,) is assumed to be independent
and identically distributed (i.i.d.) according to a distribution
7(s). The capacity is given by [4]

I(U;Y) - 1(U;9), ¢))

=  max
U,Qus ()

where the mutual informations are with respect to

Psuy (s,u,y) = 7(s)Quys (uls)W (y|é(u, s), s)

and the maximum is over all finite alphabets ¢/, conditional
distributions Qs and functions ¢ : U x § — X.

We say that a triplet (n, M, €) is achievable if there exists
a code with block length n containing at least M messages
and yielding an average error probability not exceeding €, and
we define M*(n,e) = max{M : (n,M,e) is achievable}.
Letting PY‘U, Py, etc. denote the marginals of (2), we define
the information densities

2

i(u,s) £ log Ql;j((z)s) 3)
P
i(u,y) £ log ;58')“) @

with a slight abuse of notation.

Theorem 1. Let U, Quys and ¢(-,-) by any set of capacity-
achieving parameters in (1), and let Psyy, i(u,s) and

J. Scarlett is with the Department of Engineering, University of Cambridge,
Cambridge, CB2 1PZ, U.K. (e-mail: jmscarlett@gmail.com).

This work has been funded in part by the European Research Council
under ERC grant agreement 259663, by the European Union’s 7th Framework
Programme (PEOPLE-2011-CIG) under grant agreement 303633 and by the
Spanish Ministry of Economy and Competitiveness under grant TEC2012-
38800-C03-03.

i(u,y) be as given in (2)—(4) under these parameters. If
E[Var[i(U,Y)|U, S]] > 0, then

log M*(n,€) > nC — VnVQ™*(e) + O(log n),
for e € (0,1), where
V £E[Varli(U,Y) |U, S]] + Var[E[i(U,Y) —i(U, S)| S]]

&)

(©)

= Var[i(U,Y) — i(U, 9)]. @)
Proof: We provide a number of preliminary results in
Section II, and present the proof in Section IIL. |

It should be noted that the equality in (7) holds under
the capacity-achieving parameters, but more generally (7) is
at least as high as (6), with strict inequality possible for
suboptimal choices of Qy|s.

To our knowledge, the only previous result on the second-
order asymptotics for the present problem is that of Watanabe
et al. [5] and Yassaee et al. [6], who used i.i.d. random coding.
In [7], we show that for € < % our second-order term is at least
as good as that of [5], [6], with strict improvement possible.
Furthermore, we show in [7] that Theorem 1 recovers, as a
special case, the dispersion for channels with i.i.d. state known
at both the encoder and decoder, which was derived in [8].

Notation: Bold symbols are used for vectors and matrices
(e.g. x), and the corresponding i-th entry of a vector is denoted
with a subscript (e.g. x;). The marginals of a joint distribution
Pxy are denoted by Px and Py . The empirical distribution
(i.e. type [9, Ch. 2]) of a vector x is denoted by PE. The set of
all types of length n on an alphabet X is denoted by P, (X).
The set of all sequences of length n with a given type Px is
denoted by 7" (Px), and similarly for joint types. We make
use of the standard asymptotic notations O(-) and o(-).

II. PRELIMINARY RESULTS

In this section, we present a number of preliminary results
which will prove useful in the proof of Theorem 1. We assume
that U, Qs and ¢(-,-) achieve the capacity in (1).

A. A Genie-Aided Setting

We prove Theorem 1 by first proving the following result
for a genie-aided setting.

Theorem 2. Theorem 1 holds true in the case that the
empirical distribution Ps of S is known at the decoder.

To see that Theorem 2 implies Theorem 1, we use a
technique which was proposed in [10]. We use the first
g(n) = Kolog(n + 1) symbols of the block to transmit the
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type of the remaining 7 = n— g(n) symbols. Using Gallager’s
random-coding bound [11, Sec. 5.6] and the fact that the
number of such types is upper bounded by (n + 1)'5 =1 it
is easily shown that there exists a choice of K such that
the decoder estimates the state type correctly with probability
O(%). Thus, (n — O(logn), M, e — O(L))-achievability in
the genie-aided setting implies (n, M, €)-achievability in the
absence of the genie. By performing a Taylor expansion of the
square root and Q_1(~) function in (5), we obtain the desired
result.

B. A Typical Set
We define a typical set of state types given by

P, = {Ps € Pu(S) : ||Ps — 7o < ,/loi"}. (8)

We will see the second-order performance is unaffected by
types falling outside P,,, due to the fact that [8, Lemma 22]

P[Ps ¢ P] = 0(%). ©)

C. Approximations of Distributions

For each Py € P, (S), we define an approximation ngp\g)n

of Qus as follows. For each s € S with Ps(s) > 0, let
ngp‘g)n(-b) be a type in P, p,(s)(U) whose probabilities are

@—close to Qu|s in terms of L., norm, and such that
QU e, (uls) = 0 wherever Quis(uls) = 0. If Pg(s) = 0 then

ngpg)n( |s) is arbitrary (e.g. uniform). Assuming without loss
of generality that 7(s) > 0 for all s € S, we have from (8)
that min, nPg(s) grows linearly in n for all Ps € P,,. Thus,

1
Quistuls) = Qs =0(=) a0
uniformly in Ps € P, and (s, u).
We will make use of the following joint distributions:
P (s,u,y) 2 Ps(s)Quis(uls)W (ylo(u,5).5) (1D
PGy (s:u,9) 2 Ps()QL3), (uls) W (g (u, ), 5). (12)
Using (10), we immediately obtain that
1
PR (scuy) = PYGS (s =0()  13)

uniformly in Pg € P,, and (s,u,y).

D. A Taylor Expansion of the Mutual Information
Let I(Ps)(U; S) and I(PS)(U;Y2 denote mutual informa-
tions under the joint distribution PUI;S;/> in (11), and define
I(Ps) £ IP)(U;Y) — IPs)(U; 9).
We observe from (1) that C = I(w). The following Taylor

expansion (about Pg = ) is proved in [7]:

I(Ps) = I(Ps) + A(Ps),

(14)

(15)

where

Z Ps(s Z Quys(uls)

! (ylu) Quis(uls)
< S Wylo(u,s),s)log Y'Z —log <212
(Z P (y) Py (w)
(16)
and
Jmax |A(Ps)| < @ (17

for some constant K.

III. PROOF OF THEOREM 1

As stated above, it suffices to prove Theorem 2. Thus, we
assume that the state type Ps is known at the decoder.

1) Random-Coding Parameters: The parameters are the
auxiliary alphabet {, input distribution Q g, function ¢ :
U xS — X, and number of auxiliary codewords L®Fs) for
each state type Ps € P, (S). We assume that U/, Qu s and ¢
are capacity-achieving.

2) Codebook Generation: For each state type Ps € P, (S)
and each message m, we randomly generate an auxiliary
codebook {U %) (m, )}L( ) where each codeword is drawn
independently accordmg to the uniform distribution on the
type class T" (P, l(]" ) (see (12)). Each auxiliary codebook is
revealed to the encoder and decoder.

3) Encoding and Decoding: Given the state sequence S €
T"(Ps) and message m, the encoder sends

d)n(UvS) £ (d)(UlaSl)a"' 7¢(Unvsn))7 (13)

where U is an auxiliary codeword U " )(m, 1) with [ chosen
such that (S,U) € T"(Pégér)b), with an error declared if no
such auxiliary codeword exists. Given y and the state type Ps,
the decoder estimates m accordlng to the pair () whose
corresponding sequence U (Ps) (m, l) maximizes

n

i) (w,y) £ i (ui, i), (19)
=1
where (Ps)
Py (ylu)
i) (i, i) £ log —{p—— (20)
Py ()

with PSUY defined in (11). It should be noted that PS(JITJ)Y
coincides with the distribution in (2), and hence (™ (u,y)
coincides with (4).

We consider the events

£ 2 {No I yields (S, Us) (m, 1)) e T”(Pgﬁsn)} @1)

&2 {Decoder chooses a message m # m}. (22)

It follows from these definitions and (9) that the overall
random-coding error probability p, satisfies

po< S PlPs =By (2les| P = B
PseP,

P[&2| Ps = Ps, &) + 0(%). 23)

18



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

4) Analysis of £ : We study the probability of &£ con-
ditioned on S having a given type Py € P,. Combining
(13) with a standard property of types [12, Eq. (18)], each
of the auxiliary codewords induces the joint type Pégf‘,,z with
probability at least p(n)~te="L" (Ui where I(F5)(U; S)
is defined in Section II-D, and po(n) is polynomial in n. Since
the codewords are independent, we have

( )—le—nﬂps)(U;S))L(PS)

P[&| Ps = Ps] < (1—po(n (24)

. (Ps)
< exp ( n Po(n)_le_"(I(PS)(U’S)_RL )

(25)
where (25) follows using 1 — a < e~ and defining
R £ %log L(Ps), (26)
Choosing
R = 1P, 8) + K, log" @7

with K5 equal to one plus the degree of the polynomial po(n),
we obtain from (25) that

P[& | Ps] < e (28)

for some ¢ > 0 and sufficiently large n.

5) Analysis of £: We study the probability of £ con-
ditioned on S having a given type Ps € P,, and also
conditioned on &f. By symmetry, all (s,u) € T" (Pégsr)l)
are equally likely, and hence the conditional distribution given
]55 = Pg and &f of the state sequence S, auxiliary codeword
U, and received sequence Y is given by

(S.U,Y) ~ Py (s, u) W"(y|¢" (u, 8),8),  (29)

where Pg;ﬁ is uniform on the type class:

1

P (s,u) 2 711{(3 u) € T"(P(PS))}. (30)
P ’ SUn

| (P, é‘Usg)’

Let Y (y) 2 0, , PYS (u, 5)W" (y[6"(u, 5), 5) be the

corresponding output distribution. Using a standard change of

measure from constant-composition to i.i.d. (e.g. see [9, Ch.

2]), we can easily show that

P(Ps)

) <pi(n €2V

H P (),
where p;(n) is polynomial in n.

Recall that the decoder maximizes 4.} =’ given in (19). Using
a well-known threshold-based non-asymptotic bound [2], we
have for any v("’s) that

P[&:| Ps = Ps, 5] < P[ilP) (U, Y) <17
n ML(PS)IP’[z'ﬁLPS)(ﬁ,Y) > v(PS)], (32)

where U ~ P.}®) independently of (S,U,Y). Using the
change of measure given in (31), we can apply standard
steps (e.g. see [3]) to upper bound the second term in

(Pg)

(32) by pa(n)MLFs)e=7"" where py(n) is polynomial
in n. We can ensure that this term is O(%) by choosing
~(Ps) = log MLFs) + Kslogn, where K3 is one higher
than the degree of po(n). Under this choice, and defining
K, 2 K5 + K5, we obtain from (27) and (32) that

P[&, | Ps = Ps] < IP’[Z’%PS)(U7Y) <log M

+nIPS)(U; S) + Kylog n} + O(%). (33)

6) Application of the Berry-Esseen Theorem: Combining
(28) and (33), we have for all Ps € P, that

P&, U& | Ps = Ps] < P[igfw(my) <log M

+nIP) (U 8) + K, log n} + O(%). (34)

In order to apply the Berry-Esseen theorem to the right-hand
side of (34), we first compute the mean and variance of
Ps) (U,Y), defined according to (19) and (29). The required
third moment can easily be uniformly bounded in terms of the
alphabet sizes [13, Appendix D]. We will use the fact that, by
the symmetry of the constant-composition distribution in (30),
the statistics of z‘SLPS) (U,Y) are unchanged upon conditioning
n (S,U) = (s,u) for some (s,u) € T"(Pélljiz). Using the
joint distribution Pég%gn defined in (12), it follows that

E[i{")(U,Y)] =n > PSR (u, )i (uy)  (35)
u,y
=nIP(U;Y)+0(1), (36)

where (35) follows by expanding the expectation as a sum
from 1 to n, and (36) follows from (13) and the definitions of
i(Ps) (u,y) and I(P)(U;Y). A similar argument yields
Var iU, Y)] = nk [Var {7 (U, )| U, S]] + 0(1)
(37
£ nV(Ps) + O(1). (38)

It should be noted that V(Ps) is bounded away for zero
for Ps € P, and sufficiently large n, since V(7) > 0 by
assumption in Theorem 1. Furthermore, the O(1) terms in
(36) and (38) are uniform in Pg € P,,.

Using the definition of I(Ps) in (14), we choose

log M = nl(r) Bn, (39)

where 3, will be specified later, and will behave as O(y/n).
Combining (34), (36), (38) and (39), we have

P[Slugg‘PS:PS]
<P[iP(U,Y) < nl(m) + nIP)(U;5) - B] *O(%)'

— Kylogn —

(40)
< +0(— 41
- Q( \/nV (Ps) + Kg vn @D
where (41) follows by conditioning on (S,U) = (s,u) for

some (s, u) € T”(Pégsi) (recall that this does not change the
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statistics of i,(v,PS) (U,Y)), applying the Berry-Esseen theorem

for independent and non-identically distributed variables [14,
Sec. XVL5], and introducing the constants K5 and Ky to
represent the uniform O(1) terms in (36) and (38).

7) Averaging Over the State Type: Substituting (41) into
(23), we have

pe < Z P[Ps = Ps|Q

Ps€Pn

<B + nI(:‘iz];S;zI(w))

1
+0 <\/ﬁ) , (42)

where we have factored the constants K5 and Kg into the
remainder term using standard Taylor expansions along with
the assumption 3, = O(y/n); see [7] for details. Analogously
to [8, Lemmas 17-18], we simplify (42) using two lemmas.

Lemma 1. For any 3, = O(y/n), we have
Bn + nl(Ps) —nl(r)

> P[Ps=Ps]Q

- nV(Ps)

Ps€ePy,

< X i ) o
Ps€Pn

(43)

Proof: This follows using standard Taylor expansions
along with the definition of P,, in (8) and the fact that V(Ps)
is continuously differentiable at Ps = m; see [7]. [ |

Lemma 2. For any 3,, we have

<Bn + nf(:‘s}zﬂ nf(ﬂ))

> PlPs=rdQ

Pg 675”

<q-fn +O<10g”), (44)

vnV Vn
where V is defined in (6).
Proof: Using the expansion of I(Ps) in terms of I(Ps)
and A(Pg) given in (15), along with the property given in

(17), we can easily show that the left-hand side of (44) is
upper bounded by

- B — nI(m) + nl(Ps) logn
PSZE;NP[PS = Fsla WV () =)ol NG ):
(45)

Since I(Pg) is written in the form > Ps(s)i(s), a trivial
generalization of [8, Lemma 18] gives

By, +nl(Ps) — nl(r)

> _P[Ps =Ps]Q

e ) o)

where V* () £ Var,[1)(S)]. Using (16), we see that ¢(S) =

E[i(™(U,Y)—i(™) (U, S) | S], and it follows that V ()4 V* ()

is equal to V, defined in (6). The proof is concluded by

expanding the summation in (45) to be over all types, and

substituting (46). |
Using (42) along with Lemmas 1 and 2, we have

_ Bn ) logn
e <Q +0 . 47
p ( — ( NG ) (47)
Setting p, = € and solving for /3,,, we obtain
Bn = VnVQ 1(e) + O(logn). (48)

Consistent with (42) and Lemma 1, we have 3, = O(y/n).
Substituting (48) into (39) yields the desired result with V' of
the form given in (6).

By analyzing the Karush-Kuhn-Tucker (KKT) correspond-
ing to the maximization in (1), it can be shown that the equality
in (7) holds under any Qs which maximizes the objective
for a given pair (U, @) [7]. Since the parameters are capacity-
achieving by assumption, this completes the proof.
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Abstract—This paper considers the problem of coding over t. For any set S, |S| denotes the cardinality of S and S* its
a discrete memoryless channel (DMC) with noiseless feedback. t-fold Cartesian product. All logarithms are in base 2. The
The paper provides a stochastic control view of a variable-length entropy function on a vector p = [p1,p2,...,pum]| € [0, 1]M

version of the posterior matching scheme which is analyzed : M 1 : :
is defined as H =) ; log -, with the convention that
via a recently proposed symmetrized divergence, termed Extrin- () Zz:l pilo8 5

sic Jensen—-Shannon (EJS) divergence. In particular, under the Olog(—l) = 0. We denote the conditional probability P(Y|X =
variable-length posterior matching scheme, the EJS divergence x) by P,.
can be lower bounded by the Shannon capacity of the DMC,

which can be used for a relatively simple proof that the variable- I

. . . . PRELIMINARIES: SYMMETRIC DIVERGENCES
length posterior matching scheme achieves capacity.

We first recall that the Kullback—Leibler (KL) divergence

I. INTRODUCTION between two probability distributions Py and Py, over a ﬁn(it)e
. AN Py (y
In [1], [2], see also [3], a sequential, one-phase scheme set V is defined as D(Py||Py) = Zy@’ Py (y)log Py (y)

for transmission over a BSC with noiseless feedback was pro- ~ With the convention 0 log% = 0 and blog % = oo for
posed. This scheme is briefly explained next. Each message is a,b € [0,1] with b # 0. The KL divergence is not symmetric,
represented as a subinterval of size ﬁ of the unit interval. After ie. in general D(Py | Py) # D(Py || Py).
each transmission and given the channel output, the posterior
probability of all subintervals are updated. In the next time
slot, the transmitter sends O if the true message’s corresponding
subinterval is below the current median, or 1 if it is above. If J(Py, Py) := D(P,||P,) + D(P|| P1), )
the current median lies within the true message’s subinterval, 1 1 1 1
then the transmitter sends O with probability equal to the L(Py, P) := D(P1H—P1 + —Pz) + D(PQH_Pl + —PQ).
fraction of the interval above the median and 1 otherwise. As 2 2 2 2

(@)
the rounds of transmission proceed, the posterior probability
of the true message’s subinterval most likely grows larger than
5, which pushes the median within the message’s subinterval
and thus leads to a randomized encoding. Although this simple
one-phase scheme was believed to achieve the capacity of a
BSC, a rigorous proof remained illusive prior to the work
by Shayevitz and Feder [3]. They generalized the described
scheme to arbitrary DMCs (satisfying some mild conditions)

The J divergence [6] and L divergence [7] symmetrize the
KL divergence:

The Jensen—Shannon (JS) divergence [7], [8] is defined
similarly to the L divergence but for general M > 2
probability distributions. Given M probability distributions
Py, P,..., Py over a set Y and a vector of a priori weights
p = [p1,p2, ... pul. where p € [0,1]M and 31, p; = 1,
the JS divergence is defined as [7], [8]:

and proved that their general scheme, named posterior match- M M

ing scheme, achieves capacity [3]. Recently, Li and El Gamal JS(p;Py,...,Py) = Z p:D ( P Z ;i pj.)
proposed a related scheme [4] with a greatly improved error- =1 =1

exponent, i.e. with exponentially smaller probability of error = 1(0;Y) 3)

than the posterior matching scheme.

where 6 is a random variable that takes valuesin {1,2,..., M}
and has probability mass function p and Y ~ Py (which
implies that Pr(Y =y) = Z,Ai1 piPi(y)).

In [5], we introduced the Extrinsic Jensen—Shannon (EJS)
divergence as a tool to analyze error exponents and achievable
rates for variable-length schemes. In this paper we show that

this tool al}ows for a relatiyely simp}e proof that a yariable— Similarly, one can consider the Extrinsic Jensen—Shannon
length version of the posterior matching scheme achieves the  (EJS) divergence [5] which extends the J divergence to general
capacity of DMCs. M > 2 probability distributions. For distributions Py, ..., Py

We finish this section with some notation. and an M-dimensional weight vector p,

Notation: Let [#]T = max{xz,0}. The i*" element of vector M 0;
v is denoted by v;. The notations A’ and a' stand for the tuples EJS(p; Py, ..., Pur) i= Z piD{ Pl Z 1- 1, Pj ), (42)
[Ao, ..., A:] and [ag, . .., a], respectively, for positive integer i=1 JFi
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when p; <1 forall i € {1,..., M}, and

EJS(p; Pr, ..., Pu) = mng(PiHPj) (4b)
Ve

when p; =1 for some ¢ € {1,...,M}.
III. CODING OVER DMC WITH NOISELESS FEEDBACK

A. The Problem Setup

Consider the problem of variable-length coding over a
discrete memoryless channel (DMC) with noiseless feedback
as depicted in Fig. 1. The DMC is described by finite input

1 ] Y Decoder }—‘0

Y‘t-l

Fig. 1. A noisy memoryless channel with a noiseless causal feedback link.
and output sets X' and ), and a collection of conditional
probabilities P(Y'|X). To simplify notation, and without loss
of generality, we assume that

and
y={0,1,...,|Y| -1} (6)
Let 7 denote the total transmission time (or equivalently the
total length of the code). In this paper, our focus is on variable-
length coding, i.e., the case where 7 is a random stopping time
decided at the receiver as a function of the observed channel
outputs. (A specific stopping rule is described later in this
section.) Thanks to the noiseless feedback, the transmitter is
also informed of the channel outputs and the stopping time.

The transmitter wishes to communicate a message 6 to the
receiver, where the message is uniformly distributed over a
message set

Q:=1{1,2,...,M}. )

To this end, it produces channel inputs X; fort =0,1,...,7—
1, which it can compute as a function of the message 6
and (thanks to the feedback) also of the past channel outputs
Yt_l = [YO7 Yl, ey th—l}:

X, =e(0, YY), t=0,1,...,7—1,

(®)
for some encoding function e;: Q x V! — X.

To describe the encoding process, we shall also use the

functions {v,«-1} for y*~' € Y* and t € {0,1,...,7 — 1}
where

Yyr-1: Q= X (9a)

i e(i,ytTh). (9b)

Where it is clear from the context and to simplify notation,
we omit the subscript *~! and simply write .

We will particularly be interested in randomized encoding
rules. In this case the encoding is described by the random
encoding functions {I',:-1} whose realizations ~,:-1 are of

22

the form in (9). Again, for notational convenience we omit the
subscript y’~1 where it is clear from the context.

After observing the 7 channel outputs Yy, Y7,..., Y, 1, the
receiver performs optimum maximum-likelihood decoding and
produces as its guess the message with the highest posterior:

0 = argmax p;(7), (10)
i€Q
where for each positive ¢ and each i € {2
pi(t) :=Pr(0 =Y 1). (1)
The probability of error is
Pe := Pr(d # ). (12)

For a fixed DMC and for a given ¢ > 0, the goal is to
find an encoding rule as in (8) and a stopping rule 7 such
that combined with the decoding rule in (10) the probability
of error satisfies Pe < € and the expected number of channel
uses [E[7] is minimized.

Throughout the paper we assume that the receiver applies
the following possibly suboptimal stopping rule

T :=min{t: me%xpi(t) >1— €}, (13)

where € > 0 is the desired probability of error.

The main interest in this paper is in achieving the capacity
of DMCs with a variable-length scheme. The capacity is
defined as follows. If for any small numbers 6 > 0,0 <e < 1
and all sufficiently large positive integers ¢ an encoding scheme
7 (or I') can transmit one out of M, equiprobable messages so
that with the ML decoder in (10) and an appropriate stopping
rule T,

Pe <e (14a)
M, > 2tUi=9) (14b)
E[r] <¢, (14¢)

for some positive real number R, then we say that the scheme
achieves rate R. The capacity is the supremum over all
achievable rates and is given by

C:= rr}lDaXI(X;Y), (15)

as in the case of fixed-length coding.

B. Stochastic Control View

The problem of coding with noiseless feedback is a decen-
tralized team problem with two agents (the encoder and the
decoder) and non-classical information structure [9]. Appeal-
ing to [10], the problem can be interpreted as a special case
of active hypothesis testing in which a (fictitious) Bayesian
decision-maker is responsible to enhance his information about
the correct message in a speedy manner by sequentially
sampling from conditionally independent observations at the
output of the channel (given the input). Here the (fictitious)
decision maker has access to the channel output symbols
causally (common observations) and is responsible to control
the conditional distribution of the observations given the true
message (private observation) by selecting encoding functions
for the encoder which map the message # to the input symbols
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Agent 1
]

thl

Agent 2

Yy [ Decoder ]—q

Fictitious
Agent

Fig. 2. Two-agent problem with common and private observations from the
point of view of the fictitious agent.

of the channel. In other words, as also observed in [11], the
problem can be viewed as a (centralized) partially observable
Markov decision problem (POMDP) with (static) state space
) and the observation space ). Let £ := {y(-) : Q — X} be
the set of all mappings from €2 to X’. The action space (for
the fictitious agent) becomes & U {T'} where T' denotes the
termination of the transmission phase, hence the realization of
the stopping time 7.

Casting the problem as a POMDP allows for the struc-
tural characterization of the information state, also known as
sufficient statistics: The decision maker’s posteriors about the
messages collectively,

p(t) = [pl(t)vf)?(t)y”-7P]W(t)]7 (16)

form a sufficient statistics for our (fictitious) Bayesian decision
maker. Furthermore, this (fictitious) decision maker’s posterior
at any time ¢ coincides with the receiver’s posterior and, thanks
to the perfect feedback, is available to the transmitter. In other
words, the selection of encoding and decoding rules as a
function of this posterior incurs no loss of optimality [12].

We also note that the dynamics of the information state, i.e.
the posterior, follows Bayes’ rule. More specifically, given an
encoding function  at time ¢ and an information state p, the
conditional distribution of the next channel output Y;, given
the past observation Y*~!, is

M
Py(y) = Z piP(Y = y|X = ().

Similarly, given also the output symbol Y; = y, according to
Bayes’ rule, the posterior at time ¢ + 1 is:

[Py puPion(y)
p(t—&—l)—{ Py T Poy)

This stochastic control view of the problem, suggests an
achievability analysis which generalizes the approach of [11]
beyond mutual information and is based on symmetric diver-
gence associate with the belief state p and {P,},cx. In the
sections that follow, we utilize this approach with respect to the
EJS divergence induced by the posterior matching. This allows
us to provide a concise achievability analysis for variable-
length posterior matching.

IV. MAIN RESULT

Consider the variable-length version of the posterior match-
ing encoding in [3]:

At each time ¢t = 0,1,...,7 — 1, if # = i and given the
posterior vector p(t), the input X (¢) takes value in the set

Xi(t) == {x e X: i:p,v(t) < Z Zo

' <z
and 3 < Zpi,@};
o' <w i'=1
where each value © € X;(t) is taken with probability

Pr(X(t)=zl0 =4, Y ' =41
. 7 1—1
min{ 3 pu(), ¥ w3 b —max{ T pu(0), 3 7}
i'=1 i'=1

' <z ' <z
pi(t)

We show that the described posterior matching encoding
'™ combined with the ML decoding in (10) and stopping
rule (13) achieves capacity for all DMCs satisfying a mild
condition. Let C; be the KL divergence between the two most
distinguishable inputs of the DMC:

Cr= max D(P(Y|X =)|P(Y|X =2).  (18)

Theorem 1. The described posterior matching encoding T™
combined with the optimal ML decoder (10) and stopping
rule (13) achieve the capacity of any DMC where C' and Cy
are positive and finite.'

Proof: For a fixed encoding rule v and given a sequence
of channel outputs y*~! with corresponding posteriors p(t),
we define E.JS(p(t),~) to be the EJS divergence between the
conditional output distributions P, (1), ..., Py with weight
vector p(t):

For a randomized encoding function I', we use

EJS(p(1),T) =Y Pr(l =+|Y*"" =y )EJS(p(t),7)
ye€

where recall that £ denotes the set of all possible encoding
functions. Let § := 1 — (1 4+ max{log M,log 1})~1.

Our proof is based on the following theorem from [5]:

Theorem 2 (Corollary 2 in [5]). Consider a DMC with C > 0
and Cy < oo and a variable-length encoding I' combined with
the ML decoding in (10) and the stopping rule (13). If for any
time t < T and for any posterior vector p(t),

EJS(p(t),T) > C, (200)

then the scheme achieves the capacity C of the channel.
Furthermore, if also,

EJS(p(t),T) = pC1 if maxp(t) = p, (20b)

then it also achieves the channel’s optimal reliability function.

Notice that C < C7 and C; < oo if, and only if, P(Y = y|X = z) is
positive for all x € X and y € ).

23



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

Theorem 1 can thus be shown by proving that Condi-
tion (20a) is satisfied for the posterior matching encoding
=T

EJS(p(t),T™™) > C. 1)

Fix a time instant t and Y*~! = 3*~!. For ease of notation,
in the following we drop the time index ¢ for p;(t) and simply
write p;. Let

Ay i=PrI™ =4yt =471, ye&.

Define for each 7 € Q) and x € X:

= > AM=Pr(X=2=iY" =y (2
v v(@)=z
and
Piw = pilhip =Pr(X =2,0 =i[Y'"" ' =y (23)

For a fixed posterior distribution, the various messages are
mapped into inputs of the channel independently of each other
and hence, for z,2’ € X and 4, j € 2 where i # j

S A =Aiahj (24)
)=z
T y()=a
Let 7, .. .,7r|*X|71 denote the capacity-achieving input dis-

tribution, i.e., the maximizer of (15). Rearranging terms and
using Jensen’s inequality and the convexity of the KL diver-
Pj
Z 1— pi P’Y(])

gence, we ha\/e

EJS(p(t), FPM)
—zw;;x%

ye€ i=1

_Pj
1_

oY Yonan(R|T i Y m)
i=1 x€X J#i v y(i)=z
:ZZ@JD( Z pj Z 3 [(\"/ Pz,>
i=1 x€X J#i r’eX y(i)= z
T(g)=a’
(a) < Z];ﬁv Zgg rex ijj 2 Py )
; zeZX Pix 1- 1,
M ~
N (W*'Pm' - pZT’P.’I")
= Pix (Pz ' eX\"x ) ) 7
; a;( 1—p;
]\/[ * - D, !l !
gl
i=1 zEX
Zm/ ﬁZ’I"P’I")
+ Pi, 27 <Pz
;; Pi
Syt (Bt
i=1 x€X pi

24

M

(25)

where (a) follows from (24); and where (b) follows from [13,
Theorem 4.5.1] because p; , > 0 only if 7% > 0 and from the

fact that 37, .y A; rD(P | en i Por) = T(X5Y) <
C when X denotes an input with probability mass function
{Ai2}eecx and Y the output produced by the channel. [ ]

FUTURE WORK

In future work, using large-deviation analysis, we plan
to extend our EJS-divergence based proof technique to the
original fixed-length posterior matching scheme.
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Abstract—We show that with perfect feedback and when
restricting to linear-feedback schemes, the regions achieved over
the two-user scalar Gaussian memoryless MAC and over the
two-user scalar Gaussian memoryless BC coincide, if the MAC
and the BC have equal channel coefficients and if the same
(sum-)power constraint P is imposed on their inputs. Since the
achievable region for the MAC is well known (it equals Ozarow’s
perfect-feedback capacity region under a sum-power constraint),
we can characterize the region that is achievable over the scalar
Gaussian BC with linear-feedback schemes.

I. INTRODUCTION

Feedback is known to increase the capacity of multi-user
channels such as the multi-access channel (MAC) and the
broadcast channel (BC). But for most multi-user channels
the exact capacity region is open even with perfect output-
feedback. A notable exception is the two-user memoryless
Gaussian MAC whose capacity was derived by Ozarow [1].
Ozarow’s capacity-achieving scheme is a linear-feedback
scheme, i.e., a scheme where at each time the transmitters
send linear combinations of the past feedback signals and of
code symbols that only depend on their own message. Kramer
extended this scheme to K > 3 users [2]. Under symmetric
power constraints P for all users, Kramer’s scheme achieves
the largest sum-rate among all linear-feedback schemes [3],
and it achieves the sum-capacity when P is sufficiently large
[2]. (It is yet unknown whether the scheme achieves the sum-
capacity also when P is small.)

For the memoryless Gaussian BC the capacity region with
perfect feedback is unknown even with two receivers. Achiev-
able regions based on linear-feedback schemes have been
proposed in [2], [4], [5], [6], [7], [8]. Non-linear feedback
schemes have been proposed in [14], [9], [10]. The best known
achievable regions are due to linear-feedback schemes.

The linear-feedback schemes in [5], [6], [7] are designed
based on control-theoretic considerations. For some setups,
e.g., uncorrelated noises of equal variance [7], these schemes
achieve the same sum-rate over the Gaussian BC under power
constraint P as Ozarow’s scheme achieves over the Gaussian
MAC under a sum-power constraint P. Thus, there is a duality
in terms of sum-rate between the BC-schemes in [5], [6], [7]
and Ozarow’s MAC-scheme [1].

In this paper, we prove a duality between arbitrary linear-
feedback schemes over the two-user scalar Gaussian MAC

Yossef Steinberg
Technion—Israel Inst. of Technology
Haifa, Israel
ysteinbe @ee.technion.ac.il

Michele Wigger
Telecom ParisTech
Paris, France
wigger @telecom-paristech.fr

and BC, similar to the MIMO (nofeedback) MAC-BC duality
in [11], [15]. Specifically, we show that the regions achieved
by linear-feedback schemes over the two-user scalar Gaussian
MAC under sum-power constraint P and over the two-user
scalar Gaussian BC with uncorrelated noises under the same
power constraint P coincide, if the scalar channel coefficients
of the MAC and the BC are equal. Since the set of achievable
regions over the Gaussian MAC using linear-feedback schemes
is known—it equals Ozarow’s achievable region under a sum-
power constraint—our result allows to characterize the region
that is achievable with linear-feedback schemes over the two-
user scalar Gaussian BC with uncorrelated noises. We can
also identify the optimal linear-feedback schemes over the
scalar Gaussian BC and show that for equal noise-variances
the control-theoretic schemes in [5], [6], [7] achieve the largest
sum-rate among all linear-feedback schemes.

II. GAUSSIAN MAC WITH FEEDBACK

Consider the two-user memoryless scalar Gaussian MAC
with perfect output-feedback in Figure 1. At each time ¢ € N,
if z1+ and 2 ; denote the real symbols sent by Transmitters 1
and 2, the receiver observes the real channel output

Yy = hyxy + hoxo s + Zy, (D
where hy and hy are constant nonzero channel coefficients and
{Z:} is a sequence of independent and identically distributed
(i.i.d.) zero-mean unit-variance' Gaussian random variables.
The goal of communication is that Transmitters 1 and 2
convey their independent messages M7 and M to the common
receiver. The messages M; and M, are independent of the
noises {Z;} and uniformly distributed over the sets M; =
{1,..., 2% |} and My = {1,...,|2"%2|}, where R; and
Rs denote the rates of transmission and n the blocklength.
The two transmitters observe perfect feedback from the
channel outputs. Thus, the time-¢ channel input at Transmit-
ter i € {1,2} can depend on all previous channel outputs Y*~1
and its message M;:
Xio = £ (M, Y'Y,

te{l,...,n}, 2)

! Assuming unit-variance entails no loss in generality because otherwise the
receiver can simply scale its outputs appropriately.
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M

[y

1
1
Transmitter 1 !

Receiver | (M, My)

My

1
Transmitter 2| !
1

Fig. 1. Two-user Gaussian MAC with feedback.

for some encoding function fi(?): M; x R™1 — R. The
channel inputs {X;,}7; and {Xo,}}; have to satisfy an
expected average sum-power constraint

1 n
~ > (BIXT ) +EX3,) < P, 3)
t=1

where the expectation is over the messages and the realizations
of the channel. The receiver produces a guess

by means of a decoding function ®(™ : R™ — M; x Ms.
The average probability of error is

Pe(,K/EAC 2 Pr[(Mth) # (M, My)]. )

We say that a rate-pair (R, R2) is achievable over the Gaus-
sian MAC with feedback under a sum-power constraint P, if
there exists a sequence of encoding and decoding functions
{{fl(?}?:l, {fé?5 }roy, @M1 as described above, satisfy-
ing (3) and such that the average probability of error Pe(,nI\/EAC
tends to zero as the blocklength n tends to infinity. The closure
of the union of all achievable regions is called capacity region.

In the present paper we focus on linear-feedback schemes
for the MAC, where the channel inputs can be written as

X, =V, +GCY, i€ {172}, ®)]

where Y £ (Y17 e Yn)T is the channel output vector, C; and
Cy are n-by-n strictly lower-triangular matrices and V; is an
n-dimensional information-carrying vector V; = ¢;(M;). The
mapping @;: M; — R™ as well as the decoder mapping &)
can be arbitrary (also non-linear). The strict-lower-triangularity
of the matrices C; and Cy ensures that the feedback is used
in a strictly causal way. (Notice that any nofeedback scheme
is of the form in (5) with C; = C5 = 0.)

The set of all rate-pairs achieved by linear-feedback
schemes is called linear-feedback capacity region and is
denoted Cyi® (hy, ho; P). The largest sum-rate achieved by a
linear-feedback scheme is called linear-feedback sum-capacity
and is denoted C&'}{%;(hh ha, P). Since Ozarow’s capacity-
achieving scheme [1] is a linear-feedback scheme,? the general
feedback capacity region and the linear-feedback capacity
region coincide. They are both given by

Cuine (R, ho; P) = U U Roy(ha, ha; Pr, o) (6)
Py,Py>0:  pel0,1]
Pi+P;=P

2Notice that also Ozarow’s rate-splitting scheme has the form in (5) because
the feedback signals are combined linearly with code-symbols.

(M17 ]VIQ)

Receiver 1| M,

Transmitter

Receiver 2| M,

Fig. 2. Two-user Gaussian BC with feedback.

where RZ,(hq, ho; P1, P5) is the set of all nonnegative rate-
pairs (R1, R) satisfying

1
Rzgalog (1+h22Pz(1_p2))7 26{172}7

1
Ri+ Ry <5 log (14 hiPy + h3Py + 24/ h3h3 P Pap). (7b)

The linear-feedback sum-capacity is given in Equation (8) on
top of the next page, where p*(hi, ho; P, P2) is the unique
solution in [0, 1] to the following quartic equation in p

(14 hiPy + h3P + 24/ h3h3 P Pap) =

(L+hiP(1 = p*) (A + h3Pa(1 = p?)). (9)

III. GAUSSIAN BC WITH FEEDBACK

(7a)

Consider the two-user scalar Gaussian BC with perfect
output-feedback in Figure 2. We now have one transmitter
and two receivers. At each time ¢ € N, if x; € R denotes the
transmitter’s channel input, Receiver ¢ € {1,2} observes the
real channel output

Yii = hixe + Z; 4, (10)

where hy and ho are constant non-zero channel coefficients
and {Z1;}7; and {Z5+}}_, model the additive noise at Re-
ceivers 1 and 2. The noise sequences {Z1;}7— and {Z5;}}-,
are independent and each consists of i.i.d. centered Gaussian
random variables of unit variance®.

The goal of the communication is that the transmitter
conveys Message M; to Receiver 1 and Message M, to
Receiver 2. The transmitter observes perfect output-feedback
from both receivers. Thus, the time-t channel input X; can
depend on all previous channel outputs Y,/ and Y7~ ' and
the messages M; and Ma:

Xy = g (My, My, YL, VEY, te{1,...,n}, (11)
for some encoding function gt(n) My X Mo xRFLXRITT
R. We impose an expected average block-power constraint

1 n
~3M E[X?] <P, (12)
n

t=1

where the expectation is over the messages and the realizations
of the channel. Each Receiver ¢ € {1,2} produces the guess
M(n) _ (]5(-n) (Yn)

3As for the MAC, assuming Z7: and Z2 ¢ have unit variance entails no
loss in generality.

26



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

(h1,he; P) = sup
P;,P>>0:

Pi+P,=P

linfb
OMac,s

1
3 log (1 +hiPy 4+ h3Py + 24/ h3h3P P; - p*(hl,hg;Pl,Pg))

®)

for some decoding function ¢§n>: R™ — M,.
The average probability of error is

PO 2 Pr[(NL # My) or (M # My)].  (13)

A rate-pair (Rp,Rp) is achievable over the Gaussian
BC with feedback and power constraint P, if there
exists a sequence of encoding and decoding functions
{{gg'“};;l, () én)}zo:1 as described above, satisfying the
power constraint (12) and such that the average probability of
error Pe(,?c tends to zero as n tends to infinity.

Also here we restrict attention to linear-feedback schemes
for the BC where the transmitter’s channel input vector X £
(X1,..., Xn)T can be written as:

X =W +BiZ; +ByZy, (14)

A T .
where Z; £ (Z;1,...,Zin) represents the noise vector at
Receiver i, B; and B, are strictly lower-triangular matrices,
and W is an n-dimensional information-carrying vector

W = ¢(My, Ms) (15)

The mapping £: M; x Mo — R™ and the decoding operations
¢>§’"’> and ¢§’"’> can be arbitrary.

Taking a linear combination of the information-carrying
vector W and the past noise vectors Z; and Zs is equivalent
to taking a (different) linear combination of W and the past
outputs Y; and Y. Thus, the strict lower-triangularity of B
and B, ensures that the feedback is used strictly causally.

Linear-feedback capacity and linear-feedback sum-capacity
for the BC are defined analogously as for the MAC. We denote
them by CEo®(hy, ho; P) and Cg%sz(hl, ha; P).

IV. MAIN RESULTS
We first present multi-letter expressions for CiM.(hy, ho; P)
and CH¥® (R, ho; P). They are used to prove Theorem 1 ahead.

Definition 1. Given n € N and n-by-n matrices Dy and Do,
let Q1 and Qo be the positive square roots of the (positive-
definite) n-by-n matrices
My £ (I, + h1D1)"(l,, + h1D1) + hiD}D;
My £ h2DID; + (I, + hoDa)(l,) + haDy)

(16a)
(16b)

and let Ryac(n, D1, Do, h1, ho; P) denote the (private mes-
sages) nofeedback capacity [12] of the MIMO MAC

YMAC 2 1 QU + heQy ' Vo + Z (17)
when the 1n-by-1 input vectors V1 and Vo have to satisfy
tr(Ky, + Kv,) < max{0,nP — tr(D,D]) — tr(D2D3)}, (18)

where Ky, denotes the covariance matrix of V; and in (17) Z
is a centered Gaussian vector of identity covariance matrix |,.

Proposition 1. The linear-feedback capacity of the scalar
Gaussian MAC under sum-power constraint P satisfies

Clintb

1
MAC(hlv h,Q; P):Cl U ;RMAc(’I], Dl, DQ, hl, }1,2; P) (19)

7,D1,D2

where the union is over all positive integers n and strictly
lower-triangular n-by-n matrices Dy and Do.

Observe that [1] and Proposition 1 imply that the right-hand
sides (RHSs) of (19) and (6) coincide.

Proof: For fixed n, D;, and D, the rate region
%RMAC(% Dy, Da, hy, he; P) is achieved by coding over
blocks of n channel uses. Choose the 7 channel inputs of
Transmitter ¢ for a given block as

X; =Q 'V, +CY, iec{1,2}, (20)

where
G & Di(l;, + hiDy + h2D2)717 2n

and where Y denotes the 7-by-1 vector consisting of the
channel outputs in this block and V; is an 7-by-1 vector that
depends on Message M;, and over which we can code. The
corresponding output vector is

Y = (|n7h1C1*hIQCQ)_l(hllelvl + h2Q51V2 + Z)(22)

By coding over the vectors V; and V, of the different
blocks, we can achieve the capacity of the MIMO MAC
in (22), which equals the capacity of the MIMO MAC in (17).
Algebraic manipulations show that the inputs in a given
block (20) are sum-power constrained to P, if (18) holds and
if nP — tr(D1D]) — tr(D2Dy3) is positive.

More details and the converse are omitted for brevity. H

Definition 2. Given n € N and n-by-n matrices By and Bo, let
Sy and Sy be the positive square roots of the n-by-n matrices

Ar £ (1, + hiB1)(l, + h1B1)" + hiB2BY  (23a)
Ay £ h3BiB] + (I, + haBa)(ly + hoBy)™  (23b)
and let Rpc(n,B1,Ba, hi, hao; P) denote the (private-
messages) nofeedback capacity of the MIMO BC [13]
Y€ £ 1,S7W +Z;, i€ {1,2}, (24)
when the n-by-1 input vector W has to satisfy
tr(Kw) < max{0,nP — tr(B1B}) — tr(B2B})}, (25)

where Kw denotes the covariance matrix of W and where
in (24) Zy1 and Zs denote independent centered Gaussian
vectors of identity covariance matrix |,).

Proposition 2. The linear-feedback capacity region of the
Gaussian BC with feedback is:

. 1
Cae(h1, ho; P)=cl| | ] =Rec(n,B1,Ba, b1, ha; P)| (26)
7,B1,B2
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where the union is over all positive integers 1 and strictly
lower-triangular n-by-n matrices By and Bs.

Proof: For fixed 7, Bj, and By, the rate region
%RB(:(T], By, Ba, h1, ho; P) is achieved by coding over blocks
of 1 channel uses, if the channel inputs in a block are

X =W +BiZ, +ByZ>, 27

where Z; and Z, denote the block’s 7-by-1 noise vectors
at Receivers 1 and 2 and W is an 7-by-1 input vector that
depends on the messages (M;, Ma). Receiver i’s outputs Y
in a block are then given by

Yi = h,ZW + hiBlzl + hiBQZQ + Zi, 1 € {17 2} (28)

By coding over the inputs W of the different blocks, we can
achieve the capacity of the MIMO BC in (28), which coincides
with the capacity of the MIMO BC in (24).

More details and the converse are omitted for brevity. H

Theorem 1. The linear-feedback capacity regions of the scalar
Gaussian BC under power constraint P and of the scalar
Gaussian MAC under sum-power constraint P coincide:

Caiac (1, ho; P) = CRe® (ha, has P). (29)
Corollary 1.
Caine (s hai P) = G (b, hai P). - (30)

Corollary 2. If hy = hy = h, then
. 1
Cp& (h, h; P) = 3 log (14 h*P + h*P - p*(h, h; P, P))31)

and thus the control-theoretic scheme in [7] achieves the
linear-feedback sum-capacity.

Proof: By a symmetry argument. Omitted. |
Proof of Theorem 1: We show that

Rmac (1, D1, D2, hi, ho; P) = Rpc(n, Bi, Ba, hi, ha; P), (32)
coincide if

Bi=D;, i¢c{1,2}, (33)

where for a matrix A, A £ E,AE,, is called its reversed image
and E,, is the exchange matrix which is 0 everywhere except on
the counter-diagonal where it is 1. The theorem then follows
by Propositions 1 and 2, and since the mapping in (33) is
one-to-one over the set of strictly lower-triangular matrices.
Under (33), the RHSs of the power constraints (18) and (25)
coincide. Moreover, under power constraint (18), the MIMO
MAC in (17) has the same capacity as the MIMO MAC*

YMAC £ E YMAC — QI 4 Q) IV + Z, (34)

where Z £ E,,Z and where V; £ E,V; has to satisfy the
power constraint (18) when V; replaces V;. Now, Equal-
ity (32) follows by the MIMO MAC-BC (nofeedback) duality
in [11], [15] and because under (33) the MAC YMAC js dual

4Multiplying YMAC by E;, from the left only reverses the order of receiving
antennas.

to t_he BC in (24). In fact, under (33), th_,)l_l = hls;T and
h2Q2_1 = hQSZ_T. |

Remark 1. The optimal MAC scheme is described in [I].
From this we can deduce the optimal MAC-parameters V1,
Vo, Cy, and Cy describing the block inputs in (20). (A
different set of parameters is required to approach each point
on the boundary of the capacity region.) Now, by (32) and
comparing (21) and (33), from these parameters we can
deduce the optimal BC-parameters By and By describing the
block inputs in (27). Finally, the results in [13] tell us how to
code and decode over the resulting MIMO BC in (28).

Remark 2. Theorem 1 extends to the scalar Gaussian MAC
and BC with K > 3 users.

ACKNOWLEDGEMENTS

The work of S. Belhadj Amor and M. Wigger has been sup-
ported by the city of Paris under the “Emergences” program.
The work of Y. Steinberg has been supported by the Israel
Science Foundation (grant no. 684/11).

REFERENCES

[1] L. Ozarow, “The capacity of the white Gaussian multiple access channel
with feedback,” IEEE Trans. on Inf. Th., vol. 30, no. 4, pp. 623-629,
1984.

[2] G. Kramer, “Feedback strategies for white Gaussian interference net-
works,” IEEE Trans. on Inf. Th., vol. 48, no. 6, pp. 1423-1438, 2002.

[3] E. Ardestanizadeh, M. Wigger, Y.H. Kim, and T. Javidi, “Linear-
feedback sum-capacity for Gaussian multiple access channels,” IEEE
Trans. on Inf. Th., vol. 58, no. 1, pp. 224-236, 2012.

[4] L. Ozarow and S. Leung-Yan-Cheong, “An achievable region and

outer bound for the Gaussian broadcast channel with feedback,” IEEE

Trans. on Inf. Th., vol. 30, no. 4, pp. 667-671, 1984.

N. Elia, “When Bode meets Shannon: control-oriented feedback com-

munication schemes,” IEEE Trans. Automat. Contr., vol. 49, no. 9, 2004.

[6] S. Vishwanath, W. Wu, and A. Arapostathis, “Gaussian interference

networks with feedback: duality, sum capacity and dynamic team

problems,” in Proc. 44th Ann. Allerton Conf. 2005.

E. Ardestanizadeh, P. Minero, and M. Franceschetti, “LQG control

approach to Gaussian broadcast channels with feedback,” IEEE Trans. on

Inf. Th., vol. 58, no. 8, pp. 5267-5278, 2012.

[8] M. Gastpar, A. Lapidoth, Y. Steinberg, and M. Wigger, “New achievable
rates for the Gaussian broadcast channel with feedback,” in Proceedings
of ISWCS 2011, pp. 579-583.

[9] O. Shayevitz and M. Wigger, “On the capacity of the discrete memory-
less broadcast channel with feedback,” IEEE Trans. on Inf. Th., vol. 59,
no. 3, pp. 1329-1345, 2013.

[10] R. Venkataramanan and S.S. Pradhan, “An achievable rate region for the

broadcast channel with feedback,” submitted to IEEE Trans. on Inf. Th.,

May 2011, available at http://arxiv.org/abs/1105.2311.

S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,

and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE

Trans. on Inf. Theory, vol. 49, no. 10, pp. 2658-2668, 2003.

[12] R.S. Cheng and S. Verdu, “Gaussian multiaccess channels with ISI:
capacity region and multiuser water-filling,” IEEE Trans. on Inf. Theory,
vol. 39, no. 3, pp. 773-785, 1993.

[13] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” /EEE
Trans. on Inf. Theory, vol. 52, no. 9, pp. 3936-3964, 2006.

[14] Y. Wu and M. Wigger, “Any positive feedback rate increases the capacity
of strictly less-noisy broadcast channels,” in Proceedings of ITW 2013.

[15] P. Viswanath and D.N.C. Tse, “Sum capacity of the vector Gaussian
broadcast channel and uplink-downlink duality,” IEEE Trans. on Inf.
Theory, vol. 49, no. 8, pp. 1912-1921, 2003.

[5

[7

[11]

28



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

Analysis of Mismatched Estimation Errors Using
Gradients of Partition Functions

Wasim Huleihel and Neri Merhav
Technion - Israel Institute of Technology
Department of Electrical Engineering
Haifa 32000, ISRAEL
E-mail: {wh@tx, merhav@ee}.technion.ac.il

Abstract—We consider the problem of signal estimation (de-
noising) from a statistical-mechanical perspective, in continuation
to a recent work on the analysis of mean-square error (MSE)
estimation using a direct relationship between optimum estima-
tion and certain partition functions. Accordingly, we derive a
single-letter expressions of the MMSE and mismatched MSE of
a codeword (from a randomly selected code), corrupted by a
Gaussian vector channel, and we provide several examples to
demonstrate phase transitions in the behavior of the MSE.

I. INTRODUCTION

The connections and the interplay between information
theory, statistical physics and signal estimation have been
known for several decades, and they are still being studied
from a variety of aspects, see, for example [1-3] and many
references therein.

Recently, in [2], the well known I-MMSE relation [3],
which relates the mutual information and the derivative of
the minimum mean-square error (MMSE), was further ex-
plored using a statistical physics perspective. One of the main
contributions in [2] is the demonstration of the usefulness
of statistical-mechanical tools (in particular, utilizing the fact
that the mutual information can be viewed as the partition
function of a certain physical system) in assessing MMSE
via the I-MMSE relation of [3]. More recently, Merhav [1]
proposed a more flexible method, whose main idea is that,
for the purpose of evaluating the covariance matrix of the
MMSE estimator, one may use other information measures,
which have the form of a partition function and hence can be
analyzed using methods of statistical physics (see, e.g., [4] and
many references therein). The main advantage of the proposed
approach over the I-MMSE relations, is its full generality: Any
joint probability function P (x,y), where « and y designate
the channel input to be estimated and the channel output,
respectively, can be handled (for example, the channel does
not have to be additive or Gaussian). Moreover, using this
approach, any mismatch, both in the source and the channel,
can be considered.

This paper is a further development of [1] in the above
described direction. Particularly, in [1, Section IV. A], the
problem of mismatched estimation of a codeword, transmit-
ted over an additive white Gaussian (AWGN) channel, was
considered. It was shown that the mismatched MSE exhibits
phase transitions at some rate thresholds, which depend upon
the real and the mismatched parameters of the problem, and
the behavior of the receiver. To wit, the mismatched MSE
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acts inherently differently for a pessimistic and optimistic
receivers, where in the example considered in [1, Section IV.
A] pessimism literally means that the estimator assumes that
the channel is worse than it really is (in terms of signal-to-noise
ratio (SNRY)), and the vice versa for optimism. In this paper, we
extend the above described model to a much more general one;
the Gaussian vector channel, which has a plenty of applications
in communications and signal processing. It is important to
emphasize that compared to [1, 2], the mathematical analysis
is much more complicated (consisting of some new concepts),
and the notions of pessimism and optimism described above,
also play a significant role in this model, although their
physical meanings in general are not obvious. Moreover, in
contrast to previous work on mismatched estimation, the case
of channel mismatch is explored, namely, the receiver has a
wrong assumption on the channel.

Let C {xo,...,xp—1} denote a codebook of size
M = e™?, which is selected at random (and then revealed
to the estimator) in the following manner: Each x; is drawn
independently under the uniform distribution over the surface
of the n-dimensional hyperesphere, which is centered at the
origin, and whose radius is /nP,. Finally, let X assume a
uniform distribution over C. We consider the Gaussian vector
channel model

MODEL AND PROBLEM FORMULATION

Y = AX + N, (1)

where Y, X and IN are random vectors in R™, designating
the channel output vector, the transmitted codeword and the
noise vector, respectively. It is assumed that the components
of the noise vector, IV, are i.i.d., zero-mean, Gaussian random
variables with variance 1/3, where /3 is a given positive con-
stant designating the signal-to-noise ratio (SNR) (for P, = 1),
or the inverse temperature in the statistical-mechanical jargon.
We further assume that X and IV are statistically independent.
Finally, the channel matrix, A € R™*", is assumed to be a
given deterministic Toeplitz matrix, whose entries are given
by the coefficients of the impulse response of a given linear
system. Specifically, let {h;} denote the generating sequence
(or impulse response) of A, so that A = {a; ;}, ; = {hi—;}, ;,
and let H (w) designate the frequency response (Fourier trans-
form) of {hy}.

There are several motivations for codeword estimation. One
example is that of a user that, in addition to its desired signal,
receives also a relatively strong interference signal, which
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carries digital information intended to other users, and which
comes from a codebook whose rate exceeds the capacity of this
crosstalk channel between the interferer and our user, so that
the user cannot fully decode this interference. Nevertheless,
our user would like to estimate the interference as accurately
as possible for the purpose of cancellation. Furthermore, we
believe that the tools/concepts developed in this paper for
handling matched and mismatched problems, can be used in
other applications in signal processing and communication.
Such examples are denoising, mismatched decoding, blind
deconvolution, and many other applications. Note that although
the aforementioned examples are radically different (in terms
of their basic models and systematization), they will all suffer
from mismatch when estimating the input signals.

As was mentioned previously, we analyze the problem
of mismatched codeword estimation which is formulated as
follows: Consider a mismatched estimator which is the condi-
tional mean of X given Y, based on an incorrect joint distri-
bution P’ (z,y), whereas the true joint distribution continues
to be P (x,y). Accordingly, the mismatched MSE is defined
as

mse(X |Y) 2 E||X - E{X|Y}|’ @)
where E' {X | Y} is the conditional expectation with respect
to (w.r.t.) the mismatched measure P’. In this paper, the
following mismatch mechanism is assumed: The input measure
is matched, i.e., P(xz) = P’ (x) (namely, the mismatched
estimator knows the true code), both conditional measures
(“channels”) P (- |x) and P’(-|x) are Gaussian, but are
associated with different channel matrices. More precisely,
while the true channel matrix (under P) is A, the assumed
channel matrix (under P’) is A’, another Toeplitz matrix,
generated by the impulse response {h;}, whose frequency
response is H' (w). It should be pointed out, however, that
the analysis in this paper can be easily carried out also for
the case of mismatch in the input distribution, or mismatch
in the noise distribution, which has been already considered
in [1]. In the matched case, P = P’, we use the notation
mmse (X |Y)=mse(X |Y).

A very important function, which is pivotal to the deriva-
tion of both the estimator and the MSE is the partition function,
defined as follows.

Definition 1 (Partition Function) Let A = (Aq,..., A,I,)T be a
column vector of n real-valued parameters. The partition func-
tion w.r.t. the joint distribution P (x,vy), denoted by Z (y, \),
is defined as

Z exp {)\T:c} P(x,y).

xreC

®)

Accordingly, under the above described model, we have
that

1

P’ T
(ylz) 25"

exp -8 lly— A’ 2], @
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and so, the mismatched partition function is given by

7'y N2 Y e {Na ) P (@y) (®)
xrecC
= @n/B) "2 Y e Rexp [<Bly - Alw|| /24 ATa].
xreC
(6)

The role of X in the above partition function is in computing
the conditional mean estimator and the MSE. Indeed, it is easy
to see that the gradient of In Z’ (y, A) w.rt. A, computed at
A = 0, simply gives the conditional mean estimator, i.e.,

E{X|Y =y} =ValnZ' (y. N)|r_ ™

where V' denotes the gradient operator w.r.t. A. Also, in the
matched case, it can be verified that the expectation of the
Hessian of In Z (y, A) w.r.t. A, computed at A = 0, gives the
MMSE, i.e.,

mmse (X |Y) =tr {E(V3InZ(Y,A)|,_,)}- (8

where VQ)\ denotes the Hessian operator w.r.t. A. Using (7),
the mismatched MSE can be calculated as

mse (X | Y) 2 iE{(XZ - E'{X; | Y})z}
_i{E{XE}—FE{[W} }
=1 ) A=0

_QE{ oz (Y, N /\_0}} @

O\
All the above relations (and further) can be found in [1].

O Z (Y, \)
OX;

A=0

In this section, our main results are presented and dis-
cussed. Due to space limitation, the proofs of all the following
results are omitted and can be found in [5]. The asymptotic
MMSE is given in the following theorem.

MAIN RESULT AND DISCUSSION

Theorem 1 (Asymptotic MMSE) Consider the model defined
in Section II, and assume that the sequence {hj} is square
summable. Then, the asymptotic MMSE is given by

P

1 27 .
iy Mmse (X |Y) _ o b0 mmupmsdes B> R
n— oo n O, R S Rc
(10)

where R, = L [7"In (1 + | H (W) Pwﬂ) dw.

From the above result, it can be seen that for R < R,
the MMSE essentially vanishes since the correct codeword
can be reliably decoded, whereas for R > R. the MMSE
is simply the estimation error which results by the Wiener
filter that would have been applied had the input been a zero-
mean, i.i.d. Gaussian process, with variance 1//3. Accordingly,
it can be shown that (as a byproduct of the analysis) the
MMSE estimator is exactly the Wiener filter. In the jargon
of statistical mechanics of spin arrays (see for example [4,
Ch. 6]), the range of rates R < R., correspond to the ordered
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phase (or ferromagnetic phase) in which the partition function
is dominated by the correct codeword (and hence so is the
posterior), while the range of rates R > R. corresponds to
the paramagnetic phase, in which the partition function is
dominated by an exponential number of wrong codewords.

In contrast to the MMSE, unfortunately, the mismatched
MSE does not lend itself to a simple closed-form expression.
This complexity stems from the complicated dependence of
the partition function on A. Nevertheless, despite of the non-
trivial expressions, it should be emphasized that the obtained
MSE expression has a single letter formula, and thus, prac-
tically, it can be easily calculated at least numerically. Due
to the complicated expressions obtained for the MSE, in the
following, we only present the general structure/behavior (in
the sense of phase transitions) of the MSE without presenting
the absolute error itself. It is shown in [5] that the MSE takes
the following form: For R; > 0 the MSE is given by

X|Y 0, R < Rq
im MSEXY) T
n—00 n E1p7 R > Rs
and for R; < 0 it is given by
X1y 0, R <R,
mse
lim mse (X | Y) =< E,, R, <R<R, (12)
n—oo mn
E,, R>R,

where the various parameters (R4, Rs, etc.) in the above
expressions are not presented here due to space limitations, but
can be found in [5]. Thus, it can be seen that in the mismatched
case, there is additional intermediate range (when R; < 0),
which in statistical mechanics jargon is analogous to the glassy
phase (or “frozen” phase), in which the partition function is
dominated by a sub-exponential number of wrong codewords.
Intuitively, in this range, we may have the illusion that there
is relatively little uncertainty about the transmitted codeword,
but this is wrong due to the mismatch (as the main support of
the mismatched posterior belongs to incorrect codewords). In
Section 1V, we will relate each one of the two cases R; > 0
and Ry < 0, to “pessimistic” and “optimistic” behaviors of the
receiver, which were already mentioned in the Introduction.

In the following, we state a few general qualitative proper-
ties of the various quantities appearing in the obtained results.
Similarly to [1], it turns out that the absolute error E, is
independent on R, while E, depends on R non-trivially.
Accordingly, unlike the matched and pessimistic mismatched
cases, the MSE is not piecewise constant in the whole range
of rates when the estimator is optimistic. Also, as the SNR
increases, the absolute errors £, and E, decrease, while the
critical ferromagnetic rate (R, if R4 > 0 and R, otherwise)
increases, as should be expected. Finally, while in the matched
case the MMSE is independent of the filter/channel phase
(readily seen from Theorem 1), in the mismatched case, this
conclusion is not true anymore. This fact is demonstrated in
Section V.

Finally, note that it is tempting to think that there should
not be a range of rates for which the MSE (MMSE) vanishes,
as we deal with an estimation problem rather than a decoding
problem. Nonetheless, since codewords are being estimated,
and there are a finite number of them, for low enough rates
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(up to some critical rate) the posterior is dominated by the
correct codeword, and thus asymptotically, the estimation can
be regarded as a maximum a posteriori probability (MAP)
estimation, and so the error vanishes. In the same breath, note
that this is not the case if mismatch in the input distribution
is considered. For example, if the receiver’s assumption on
the transmitted energy is wrong, then no matter how low the
rate is, there will always be an inherent error which stems
from the fallacious averaging over a hypersphere with wrong
radius (wrong codebook). Precisely, in this case, the estimated
codeword will differ from the real one by an inevitable scaling
of /P! /P,, where P! is the mismatched power.

Remark 1 Although we have assumed that the transmitted
codeword has a flat spectrum, the analysis can readily be
extended to any input spectral density S, (w).

IV. EXAMPLES

In this section, we provide two examples in order to illus-
trate the theoretical results presented in the previous section.
In particular, we present and explore the phase diagrams and
the MSE’s as functions of the rate and some parameters of
the mismatched channel. The main goal in these examples
is further understanding of the role of the true and the
mismatched probability measures in creating phase transitions.
Further examples can be found in [5].

Example 1 Let H (w) be a multiband filter given by

H(w)—{

and let the mismatched filter be given by a band-pass filter

H’(w)—{

with constant bandwidth, wp — w;, = «/8, i.e., smaller than
the real one. In the numerical calculations, we again chose
B = P, = 1. Figures 1 and 2 show, respectively, the phase
diagram and the MSE as functions of R and wy,. First, observe
that for wr < /4, which means that H' (w) and H (w) are
equal to one over non intersecting frequency ranges, there is no
ferromagnetic phase, as expected. Accordingly, for wg > /4,
the ferromagnetic phase begins to play a role, and it can be
seen that for 7/4 + 7/8 < wr < 7/2, which means maximal
intersection between the two filters, the range of rates for
which the ferromagnetic phase dominates the partition function
is maximal. Since the matched filter has two bands, obviously,
the same behavior appears also in the second band. Thus,
in this example, we actually obtain two disjoint glassy (and
ferromagnetic) regions, which correspond to the two bands of
the matched filter. Also, as shown in Fig. 2, in the ranges
where no ferromagnetic phase exists, the MSE within the
paramagnetic phase is larger than the MSE within the regions
where ferromagnetic phase does exists, as one would expect.

™

1, g

0,

< gorfwt <

, o (13)
else

L,
0,

wr < lw| <w
Ll <wn (14)
else

Remark 2 Example 1 essentially demonstrates that there can
be arbitrarily many phase transitions. Generally speaking, for
a matched multiband filter with N disjoint bands, and a
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Fig. 2.

mismatched bandpass filter (with small enough bandwidth),
there are N disjoint glassy and ferromagnetic phases.

Example 2 Let H (z) be given by
H(z)=2z—2cos(0.87) + 2!

- . (1 _ ejo.swzq) (1 _ €7j0.87rzfl) (15)
and let the mismatched filter be given as
H'(z) =H(z)z7¢ (16)

where d € 7 is a mismatched delay. As before, in the
numerical calculations, we chose 5 = P, = 1. Figures 3
and 4 show, respectively, the phase diagram and the MSE as
functions of R and d. First, we see that R, is constant, which
makes sense since it can be shown that R. is independent of
the delay [5]. Also, for all d # 0 there is a glassy phase,
which means that for all d # 0, Ry < 0. More importantly, it
can be observed that the MSE vanishes (or equivalently, the
ferromagnetic phase dominates the partition function) only in
case that d = 0, namely, zero delay. This is a reasonable result,
as a delay of one sample (linear phase) is enough to cause a
serious degradation in the MSE. Actually, for any fixed rate the
error is constant, independently of the delay, due to the fact
that the MSE takes into account all the possible codewords
in the codebook. Finally, note that the MSE is larger in the
glassy region than in the paramagnetic region®. This is also

INote that the MSE, in contrast to the MMSE, must not be monotonically
increasing as a function of the rate.
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Fig. 4. Example 2: Mismatched MSE as a function of R and d.

a reasonable result: As the rate increases, and hence more
codewords are possible, since the MSE estimator is actually
a weighted average (w.r.t. the posterior) over the codewords,
the MSE can only decrease (each codeword in the codebook
contributes approximately the same estimation error). Accord-
ingly, for small codebooks (low rates) the MSE is larger, since
the averaging is performed over “fewer” codewords.
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Abstract—We pose the following extremal conjecture: Let X, Y
be jointly Gaussian random variables with linear correlation p.
For any random variables U,V for which U, XY,V form a
Markov chain, in that order, we conjecture that:

2—2[I(X;V)+I(Y;U)] > (1 o p2)2—21(U;V) +p22—2[I(X;U)+I(Y;V)]'

By letting V' be constant, we see that this inequality generalizes a
well-known extremal result proved by Oohama in his work on the
quadratic Gaussian one-helper problem. If valid, the conjecture
would have some interesting consequences. For example, the
converse for the quadratic Gaussian two-encoder source coding
problem would follow from the converse for multiterminal source
coding under logarithmic loss, thus unifying the two results under
a common framework.

Although the conjecture remains open, we discuss both ana-
lytical and numerical evidence supporting its validity.

I. INTRODUCTION

This paper is a brief exposition on the following conjecture,
its potential applications, and evidence supporting its validity.
To this end, we propose:

Conjecture 1. Suppose X,Y are jointly Gaussian, each with
unit variance and correlation p. Then, for any U,V satisfying
U—- X —-Y —V, the following inequality holds:

92 (YUIHIXGVION] > (1 p2) 4 p2o= 2 (XU)+HT(ViVIU)]
e))

In the statement of Conjecture 1, we employ the conven-
tional notation U — X —Y —V to denote that U, X, Y,V form a
Markov chain, in that order. Throughout this paper, X,Y will
have the distribution given in the statement of the conjecture.

Our interest in Conjecture 1 stems from previous work by
two of the present authors on multiterminal source coding
under logarithmic loss [1]. In order to illustrate the connection
between these problems, define R C R? as follows. Let
(R,I) € R if and only if there exists () independent of XY,
and U,V satisfying

R>I1(X,Y;U,V|Q)
I<I(X;0,VIQ)+1(Y;U,V|Q),

(@)
3

and, conditioned on (), the Markov relation U — X — Y — V.

This work was supported by the NSF Center for Science of Information
under grant agreement CCF-0939370.

Jiantao Jiao and Tsachy Weissman
Stanford University
Department of Electrical Engineering
Email: {jiantao, tsachy} @stanford.edu

Next, let Pxy denote the joint distribution of XY, and
assume (X", Y™) ~ [[i_, Pxy(;,y;). For functions
fr: X" £ (X™) € {1,2,...,2"F}
fy: Y™ £, (V") € {1,2,..., 270},

“
(&)

define
I(n,fy,fy)
S %(I(X”;fw(X”)Jy(Y")) + I(Y”;fx(X”),fy(Y”))),

mmse(X"|f;,fy)

215 e [(n-mxnons0m) ] ©

and mmse(Y™"|f,, f,) in an analogous manner. These quantities
satisfy the inequality

_% log (mmse(X"|fm7fy)) a élog (mmse(Y"|fm,fy))

< I(nfs,fy), @)

which easily follows by convexity, the maximum entropy
property of Gaussian random variables, and the memoryless
property of X" Y™

An immediate consequence of the converse for mul-
titerminal source coding under logarithmic loss is that
(R + Ry, I(n,f;,fy)) € R, which easily follows from [1]
and the corresponding entropy characterization result [2, The-
orem 2].

Now, to show an interesting application of Conjec-
ture 1, assume (1) holds. Combined with the fact that
(R + Ry, I(n,f;,fy)) € R, elementary manipulations on (1)
and (7) would reveal that

1 (1-p*)B(D)
> ~log | PPAE)
R1+RZ_208§[ 5D ) (8)
where we have defined
D2 mmse(X"|fz,fy) x mmse(Y"|f;,f,), and  (9)
A 4p2¢
BE)=1+4/1+ 1 p2)2 (10)
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for notational convenience. We note that (8) is precisely the
sum-rate constraint for the quadratic Gaussian two-encoder
source coding problem first established in the seminal work
[3] by Wagner et al.

Thus, while we have only sketched the argument here, we
hope the reader is convinced that the sum-rate constraint for
the quadratic Gaussian two-encoder source coding problem
would follow in a relatively straightforward manner from
known results on compression under logarithmic loss and the
conjectured extremal inequality (1). In fact, the entire converse
(not only the sum-rate constraint) for the quadratic Gaussian
two-encoder source coding problem would follow from Con-
jecture 1 and the characterization of the rate-distortion region
for compression under log loss. Details are omitted due to
space constraints.

On the term “Data Processing”

As the title suggests, we refer to (1) as a data processing
inequality since it gives the upper bound

I(Y;U)+ I(X;V|U)
S 7%10g |:1 o p2 +p22—2[I(X;U)+I(Y;V‘U)]i| ) (11)

By straightforward calculus, a simple corollary is, for example,
the upper bound

I(Y;U) < p°I(X; V), (12)

which falls into the category of so-called strong data process-
ing inequalities (cf. [4], [5]). Since (1) is met with equality
when U, X, Y,V are jointly Gaussian, (11) would provide the
best possible data processing inequality of the form

I(Y;U) + I(X;VIU) <o(I(X50) + 1Y VD)),  (13)

under our assumptions on U, X, Y, V.

II. OBSERVATIONS ON CONJECTURE 1

There are many equivalent forms of Conjecture 1. It seems
particularly useful to consider dual forms of Conjecture 1. For
instance, one such form is stated as follows:

Conjecture 2. Let X,Y be jointly Gaussian, each with unit
variance and correlation p. For X > 1/p?, the infimum of

HXﬂU+1gngyﬂwnyxm+HXﬂﬂm) (14)

taken over all U,V satisfying U —X =Y —V is attained when
U, X,Y,V are jointly Gaussian.

Note that we only conjecture that the minimum of (14)
is attained by U,V which are jointly Gaussian with X,Y.
Clearly, since mutual information is invariant under one-to-
one transformations, there are minimizers of (14) which are
non-Gaussian.

Let F} be the infimum of the functional (14) for fixed
A\ > 1/p?. If Conjecture 1 were to hold, then straightforward
computations reveal that £y would be given by

o (750) o ()]

Z 12

Ff =
AT 9

It is interesting to note that we also have!

U:Ul—n)f(—Y {](X; U) = MY U)}
1 PPA—1

o (205) o (123 o

Since (14) can be rewritten as

2 1

(unymunU0+waymmxv»

+(A=1)I(U;V) an

by Markovity, the conjecture implies an unexpected conser-
vation property: either U and V' can be optimized jointly in
minimizing (14), or we can set V' to be constant and only
optimize over U (or vice versa). Assuming the conjecture is
valid, both approaches yield the same optimal value, which
suggests one should eliminating one of the variables is a viable
proof strategy. Unfortunately, this has proved difficult to do.
In any case, (16) and (17) yield the lower bound

e (5 (2

2
ra=1) . 12 ﬂ (18)
1—p )
which reveals why we need only consider A > 1/p? in
Conjecture 2: for A < 1/p2, the infimum of (14) is zero.
Moving on, if we were to assume the conjecture were true,
and let optimizing U*, V* be of the form

U* =puX +Z,
V= va + Zy,

19)
(20)

where Z, ~ N(0,1 — p2) and Z, ~ N(0,1 — p2) are
independent additive Gaussian noises, then the parameters
Pu, Pv should satisfy the following equation, which gives
an intuitive sense for the tension between the conjectured
optimizers U* and V*:

(1-p)01 )= A =1)(1 = p2)(1=p3). 2D

In particular, for given p,\, there is a continuously
parametrized family of conjectured optimizers.

— 0 paps

III. ANALYTICAL EVIDENCE SUPPORTING CONJECTURE 1

There are several partial results which suggest the validity
of Conjecture 1. To this end, note that Conjecture 1 generalizes
the following well-known consequence of the conditional
entropy power inequality to a longer Markov chain.

Lemma 1 (From [6]). Suppose X,Y are jointly Gaussian,

each with unit variance and correlation p. For any U satisfying

U — X —Y, the following inequality holds:
9—2(VU) > 1 _ ? Jrp22—2I(X;U)_ (26)

Proof: Consider any U satisfying U — X —Y. Let Y,,, X,
denote the random variables X,Y conditioned on U = u. By
Markovity and definition of X, Y, we have that Y,, = pX,+7,

I'This is a consequence of Lemma 1 in Section IIL.
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Given P\, Py, initialize Py xy = PS)\ PY7, Pxy
for i =1,2,... do
PO (ula) exp {)\fPY|X(y\37) log (Puy (uly)) dy — (A = 1) [ Py|x (v]z) log (Pyjv (ulv)) d”} )
oix (ulr) ==
Jexp {A J Pyx (ylz)log (Pujy (sly)) dy — (A = 1) [ Py |x(v]z) log (Pyjv (s|v)) dv}ds
Pyyxy < P((]i‘)XPVXY (23)
P(i) (oly) exp {)\fPX|Y(I|y) log (PV\X(U|$)) dz — (A —1) fPU\Y(U|Z/) log (PV|U(U‘U)) du} (24)
viv (0ly) =
Jexp {/\fPX|Y($|Z/) log (Py|x (slz)) dz — (A = 1) [ Pujy (uly) log (Pyju(slu)) d“}ds
Pyyxy + P‘(/i‘)yPUXY (25)
Algorithm 1: Iterative procedure for solving the Euler-Lagrange equations (35)-(36).
where Z ~ N(0,1 — p?) is independent of X,. Hence, the The desired inequality (32) follows by convexity of
conditional entropy power inequality implies that ) ) )
—4z
P2(YI0) > 292h(XI0) 4 9e(1 — p?) @7 log [ (1= i) + P2 ™ G
= 21ep?221(X5U) L 9ze(1 — p?). (28) as a function of z. [ |
From here, the lemma easily follows. [ |

Lemma 1 can be applied to prove the following special case
of Conjecture 1. This result subsumes many special cases that
could be analyzed.

Proposition 1. Suppose X, Y are jointly Gaussian, each with
unit variance and correlation p. Let U be a random variable
for which X|{U = u} ~ NE[X|U = u],c?) for all u. If
U—-X-Y =V, then (1) holds.

Proof: Since X|{U = u} ~ N(E[X|U = u],0?), we
have h(X|U) = h(X|u) = 3 log(2mes?), and therefore

1
I(X;U) = —5 log ol (29)

By Markovity, it is easy to see that Var(Y|U = u) = p?0? +
(1 — p?), and hence

I(Y;U) = f% log (p°0” + (1 — p?)).

Let X,,Y,,V, denote the random variables X,Y,V con-
ditioned on U = wu, respectively. Define pxyy, to be the
correlation coefficient between X, and Y,,. It is readily verified
that

(30)

po
VP (=)
which does not depend on the particular value of w. By
plugging (29)-(31) into (1), we see that (1) is equivalent to

2 2OV > (1= ) + Py 2 MOV ()

For every u, X,,Y, are jointly Gaussian with correlation
coefficient pxvy|, and X, — Y, — V,, form a Markov chain,
hence Lemma 1 implies

9—21(Xu;Va) >

3D

PXY|u =

(1 - p%(Y|u) + p%(Y|u272](Yu;VU)' (33)

IV. NUMERICAL EVIDENCE SUPPORTING CONJECTURE 1

Conjecture 2 is amenable to numerical experiments. Dis-
pensing with technicalities in favor of a cleaner exposition,
some insight can be gained by deriving the Euler-Lagrange
equations corresponding to the functional (14) and attempting
to solve them. To this end, the Euler-Lagrange equations are
given by:

log Py x (u|x)
Y / Py x (y|) log (Pujy (uly)) dy

— (1) / Py x (v]) log (Pojy (ulv) dv — g(x), (35)
log Py y (v]y)
= )\/PX|Y(~’9\Z/) log (PV\X(ULT)) dx

— (-1 / Pyjy (uly) log (Py i (v]u)) du — h(y), (6)

where the functions g(z) and h(y) serve for the pur-
pose of normalization so that [ Py x(ulz)du = 1 and
J Pyy (v]y)dv = 1, for each z and y, respectively. Note that
(35) should hold for all x, u, and (36) should hold for all y, v.

Though characterizing the family of solutions to the non-
linear system of equations given by (35) and (36) may be
difficult, it may be possible to compute a particular solution
satisfying (35) and (36). In this case, the iterative procedure
given by Algorithm 1 is a natural candidate for computing
a stationary point. In fact, Algorithm 1 has the desirable
property of monotone convergence, which we discuss in the
next subsection.
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A. Monotone Convergence of Algorithm 1

Let I(X;U), IM(Y;V), etc. be mutual informations
evaluated for the joint distribution PU‘), xy = P(l|)YP( |)X Pxy,
and define the corresponding functional:

F\(i) 2 ID(X;U) = XID(Y;U)

+ IO V|U) = MO(X VIU). (37)

Although a proof is omitted due to space constraints, for any
1 > 1, we have the inequality

Fy(0) — Fa(i)

7
>3 D (PSR | POk ) + p(PY|PYY)
j=1

+0 (PSP )+ D(PP|PEY) | @8

VY

Since F)(i) is bounded from below according to (18), the
sum on the right hand side of (38) must converge (assuming
the initial test channels PI(J\))(7P\(/0|)Y satisfy F(0) < o0). In
particular, (38) implies that £’ () decreases monotonically and
converges to some limit, say F)(c0) 2 lim; o0 Fi\(4).

B. Numerical Experiments

Of course, given the infinite-dimensional nature of the
problem, it is impractical to implement Algorithm 1 as stated.
However, it is a simple matter to quantize the variables
U,X,Y,V to a finite number of values. In this case, the
integrals in updates (22) and (24) become sums over their re-
spective variables, and (35) and (36) become KKT conditions
for the corresponding discretized optimization problem.

The monotone convergence property discussed in the pre-
vious section carries over to the discretized variation of
Algorithm 1. Therefore, by Pinsker’s inequality, there ex-
ists a distribution®: Quvxy = QuixQvy Pxy such that

P((;‘)/ Xy ~T—+ Quvxy and hence, by continuity of mutual
information, F (i) \, Io(X;U)—Xo(Y;U)+Io(Y;VIU)—
Mo(X;V|U), where Ig(-;-) indicates mutual information
evaluated with respect to the distribution Quv xy. Note that
Quvxy will be a stationary point of the KKT conditions.
The plot shown in Figure 1 is a typical example of the
evolution of Fy(¢) when running the discretized variation
of Algorithm 1. In particular, over thousands of trials with
randomly instantiated test channels P! ‘)X and P! ‘)Y, Fy(3)
has always converged to the conjectured minimum value given
by (15). Moreover, this convergence takes place quite rapidly
(usually within a few iterations), as exemplified in Figure 1.
The fact that Algorithm 1 converges monotonically, com-
bined with the empirical observation that it converges to
the conjectured optimum without exception, suggests that
traditional perturbation techniques for proving entropy power
inequalities which construct a monotone path from any starting
point to a global optimum (see, e.g., [7], [8]) could be adapted

2 Abusing notation for simplicity, we use Pxy to represent the distribution
of the jointly Gaussian variables X, Y and their quantized counterparts.

0.6

s Fi(1) |

- - - Conjectured Minimum Value

1 i i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20

Iteration (7)

Fig. 1: Evolution of F\(i) for p = 0.5, A =
variables U, X, Y,V were quantized to 101
values on the interval [—6, 6],
instantiated.

3/p?. The
evenly spaced
and P((](?)X, P! |)Y were randomly

to our setting. Unfortunately, despite several attempts, the
technical issue of preserving the long Markov chain has proven
to be a significant barrier in doing so.

V. CONCLUDING REMARKS

In summary, Conjecture 1 represents an elegant and natural
extension of Lemma 1. Given the widespread use of EPIs in
proving converse results, we believe the conjectured extremal
inequality (1) could be a useful tool with many applications.
As a motivating example, we described an application to the
quadratic Gaussian two-encoder source coding problem.
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The Likelihood Encoder

Paul Cuff
Department of Electrical Engineering
Princeton University

For source coding we demonstrate the use of a
new likelihood encoder by applying it to obtain simple
achievability proofs of rate-distortion theory, distributed
source coding, and source coding for secrecy. The en-
coder selects codewords based on likelihoods with re-
spect to a selected joint distribution. As opposed to other
traditional encoders used for source coding proofs, this
encoder (and proof) does not use an arbitrary threshold,
such as the e that defines a jointly-typical set. The
likelihood encoder is stochastic. It chooses a codeword
proportional to its likelihood. The induced performance
is easily analyzed—so much so that the analysis for rate-
distortion theory does not require defining error events,
multiterminal settings do not require a Markov lemma,
and secrecy can be easily analyzed.

As stated above and in [1], the likelihood encoder is
defined by a codebook and a joint distribution. Let X"
be the source, with C = {u"(m)} the codebook and
PX7U the joint distribution, consistent with the source
distribution. The likelihood encoder selects an index in
the codebook proportional to the likelihood as follows:

Phyixn(mlz") = z%

where

L(mlz") = ]| Pxjp (@ilue(m)).

t=1

The reason for using such an encoder is that it induces
a joint distribution Py~ ;» consistent with a memoryless
channel, where U™ = u"(m) is the reconstruction. That
is, let Qx~ y» be the distribution created by picking
a codeword from the codebook uniformly at random
and passing it through a memoryless channel specified
by PX|U. Then, by the construction of the likelihood
encoder, Pynixn = Qun|xn-

The analysis tool needed to accompany the likelihood
encoder is a soft covering lemma. This lemma states
that an output distribution of a channel is nearly i.i.d. in
total variation if the input is produced by selecting uni-
formly at random from a codebook of rate greater than

the mutual information (in expectation over randomly
generated codebooks). This tool appears in the literature
first by Wyner [2], was popularized by Han and Verdd
as a notion of channel resolvability [3], and is improved
upon in [4].

The soft covering lemma allows us to assert that Q) x=
is approximately i.i.d. if the rate of the source coding
codebook is large enough. For a source distiribution P«
that is also i.id., we find that P and () are nearly identical
as joint distributions according to total variation. This
allows us to replace P with ) for the analysis, and Q)
is very well behaved.

The details of the rate-distortion proof can be found in
[1]. Also, the above steps are the main pieces of the proof
for distributed source coding and for secrecy analysis.
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Abstract—We consider the problem of universal decoding
for arbitrary, finite-alphabet unknown channels in the random
coding regime. For a given random coding distribution and a
given class of metric decoders, we propose a generic universal
decoder whose average error probability is, within a sub—
exponential multiplicative factor, no larger than that of the
best decoder within this class of decoders. Since the optimal,
maximum likelihood (ML) decoder of the underlying channel is
not necessarily assumed to belong to the given class of decoders,
this setting suggests a common generalized framework for: (i)
mismatched decoding, (ii) universal decoding for a given family of
channels, and (iii) universal coding and decoding for deterministic
channels using the individual-sequence approach. The proof of
our universality result is fairly simple, and it is demonstrated how
some earlier results on universal decoding are obtained as special
cases. We also demonstrate how our method extends to more
complicated scenarios, like incorporation of noiseless feedback,
the multiple access channel, and continuous alphabet channels.

[. INTRODUCTION

The topic of universal coding and decoding under chan-
nel uncertainty has received very much attention in the last
four decades. In [5], Goppa offered the maximum mutual
information (MMI) decoder, which decides in favor of the
codeword having the maximum empirical mutual informa-
tion with the channel output sequence. Goppa showed that
for discrete memoryless channels (DMC’s), MMI decoding
achieves capacity. Csiszar and Korner [2] have shown that the
random coding error exponent of the MMI decoder achieves
the optimum random coding error exponent. Csiszar [1] proved
that for any modulo—additive DMC and the uniform random
coding distribution over linear codes, the optimum random
coding error exponent is universally achieved by a decoder that
minimizes the empirical entropy of the difference between the
output sequence and the input sequence. In [10] an analogous
result was derived for a certain parametric class of memoryless
Gaussian channels with an unknown interference signal.

For channels with memory, Ziv [16] studied universal de-
coding problem for finite—alphabe unifilar finite—state channels.
For uniform random coding over a given set, he proved that
a decoder based on the Lempel-Ziv algorithm asymptotically
achieves the error exponent associated with ML decoding. In
[6], Lapidoth and Ziv have extended this result to non—unifilar
finite—state channels. In [3], Feder and Lapidoth furnished
sufficient conditions for families of channels with memory to
have universal decoders in the random coding error exponent
sense. In [4], Feder and Merhav proposed a competitive
minimax criterion, according to which, an optimum decoder

is sought in the quest for minimizing the worst—case regret in
the error exponent sense.

More recently, interesting attempts (see, e.g., [8], [9], [12],
[14]) were made to devise coding and decoding strategies that
avoid any probabilistic assumptions concerning the channel. In
[8], the notion of empirical rate functions has been established
and investigated for a given input distribution and a given
posterior probability function of the channel input sequence
given the output sequence. In [12], porosity—achieving univer-
sal encoders and decoders were devised for modulo additive
channels with deterministic noise sequences and noiseless
feedback.

In this paper, we take a different approach. We consider
universal decoding for arbitrary unknown channels in the
random coding regime. For a given random coding distribution
and a given class of metric decoders, we propose a generic uni-
versal decoder whose average error probability is exponentially
no larger than that of the best decoder in this class. The proof
of our universality result is fairly simple and general, and it is
demonstrated how some earlier mentioned results on universal
decoding are obtained as special cases.

Finally, we demonstrate how our method extends to more
complicated scenarios. The first extension corresponds to in-
corporation of noiseless feedback. This extension is fairly
straightforward, but its main importance is in allowing adapta-
tion of the random coding distribution to the channel statistical
characteristics. The second extension is to the problem of
universal decoding for multiple access channels (MAC’s) with
respect to a given class of decoding metrics. This extension is
not trivial since the universal decoding metric has to confront
three different types of error events. In particular, it turns out
that the resulting universal decoding metric is surprisingly
different from those of earlier works on universal decoding
for the MAC [7], [3, Section VIII], [13], mostly because the
problem setting here is different from those of these earlier
works (in the sense that the universality here is relative to
a given class of decoders while the underlying channel is
arbitrary, and not relative to a given class of channels). A third
possible extension, that refers to the continuous alphabet case,
is discussed briefly along with an example.

II. NOTATION CONVENTIONS

Scalar random variables (RV’s) will be denoted by capital
letters, their sample values are denoted by the respective lower
case letters, and their alphabets are denoted by the respective
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calligraphic letters. A similar convention applies to random
vectors of dimension n and their sample values, which will be
denoted with the same symbols in the bold face font. The set
of all n—vectors with components taking values in a certain
alphabet, will be denoted as the same alphabet superscripted
by n. Channels and sources will be denoted generically by the
letter P and @), respectively. For example, the channel input
probability distribution function will be denoted by Q(x), €
X", and the conditional probability distribution of the channel
output vector y € Y™ given the input vector x € X", will
be denoted by P(y|x). Information theoretic quantities like
entropies and conditional entropies, will be denoted following
the standard conventions of the information theory literature,
e.g., H(X), H(X]Y), etc. The expectation operator will be
denoted by E{-} and the cardinality of a finite set .4 will be
denoted by |A|.

_ For a given sequence * € X, X being a finite alphabet,
Pz denotes the empirical distribution on X extracted from ,
in other words, Py is the vector {Pg(r), € X'}, where
Py () is the relative frequency of the letter z in the vector x.
The type class of x, denoted Ty, is the set of all sequences
x' € X" with Py = Pg. Similarly, for a pair of sequences
(x,y) € A% )", the empirical distribution Py is the matrix
of relative frequencies {I:’wy(@y), x € X, y€ Y} and the
type class Ty is the set of pairs (z',y’) € X™ x Y™ with
Pmryr = Pmy. For a given vy, Tw‘y denotes the conditional
type class of x given y, which is the set of vectors {x’}
such that (z',y) € Tgy. Information measures induced by
empirical distributions, i.e., empirical information measures,
will be denoted with a hat and a subscript that indicates
the sequence(s) from which they are induced. For example,
Hgz(X) is the empirical entropy extracted from x € X™,
namely, the entropy of a random variable X whose distri-
bution is Pg. Similarly, Hgy(X|Y) and Igpy(X;Y) are,
respectively, the empirical conditional entropy of X given
Y, and the empirical mutual information between X and Y,
extracted from (x, y), and so on. For two sequences of positive
numbers, {a,} and {b,}, the notation a, = b, means that

Llog =
lim sup,,_, o %log‘;—: < 0, and so on. The functions log(-)
and exp(+), throughout this paper, will be defined to the base
2, unless otherwise indicated. The operation [-]; will mean

positive clipping, that is [z]+ = max{0, z}.

— 0 as n — oo. Similarly, a,, < b, means that

III. PROBLEM FORMULATION

Consider a random selection of a codebook C
{x1,...,zy} C X", where M = 2"%, R being the coding
rate in bits per channel use. The marginal probability distribu-
tion function of each codeword x; is denoted by Q(x;). It will
be assumed that the various codewords are conditionally pair-
wise independent.! Let P(y|z) be the conditional probability
distribution of the channel output vector y € V" given the
channel input vector € X™". We make no assumptions at all
concerning the channel. We will assume that both the channel
input alphabet X and the channel output alphabet ) are finite.
Finally, we define a class of decoding metrics, as a class of

!By “conditionally pairwise independent”, we mean that for every three
randomly chosen codewords, we have that any two of them are conditionally
independent given the third one.
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real functions, M = {mg(z,y), 0 € ©, x € X", y € Y"},
where O is an index set. The decoder associated with my,
which will be denoted by Dy, decides in favor of the message
i € {1,..., M} which maximizes mg(x;,y). The message i
is assumed to be uniformly distributed over {1,2,...,M}.
It should be emphasized that the ML decoding metric for
the underlying channel P(y|x), may not necessarily belong
to M. The average error probability associated with Dy, is
denoted by P, g(R,n). While the decoder Dy, that minimizes
P, 9(R,n) within M, depends on the unknown underlying
channel, our goal is to devise a universal decoder U/, with
a decoding metric U(x,y), independent of the underlying
channel P(y|xz), whose average error probability would be es-
sentially as small as ming P, ¢(R,n), whatever the underlying
channel may be. By “essentially as small”, we mean that the
average error probability associated with the universal decoder,
denoted P, ,(R,n), would not exceed ming P, o(R, n) in the
exponential sense.

IV. MAIN RESULT

Let us define

T(zly) £ {2': V9O mo(x,y) =mo(z,y)}. (1)
Our universal decoding metric is defined as
A 1
Ulz,y) = —log Q[T (@[y)]- 2

Clearly, {7 (z|y)} are equivalence classes for every y € Y™,
and so A" can be partitioned into a disjoint union of them. Let
K, (y) denote the number of equivalence classes {7 (xz|y)}

for a given y. Also define K, 2 maxyecyn Kn(y) and A, E

e Kn  Our main result is the following theorem (the proof
appears in the full version on the paper [11]):

Theorem 1: Under the above assumptions, the universal
decoding metric defined in eq. (2) satisfies:

P.. < 2.2 . min P, )
e, (Rvn) = 19%18 qg(R/fL) (3)

The theorem is meaningful when A, — 0 as n — oo,
which means that the number of various equivalence classes
{T (x|y)} grows sub-exponentially, uniformly in y. In this
case, whenever mingeg P o(R,n) decays exponentially with
n, then so does P, ,(R,n), and at least as fast. Therefore, a
sufficient condition for the existence of a universal decoder
is lim,_,.0 A, = 0. The behavior of A, for large n is
a measure of the richness of M. The larger is M, the
smaller are the equivalence classes, and then their total number
becomes larger, and so does A,,. Universality is enabled, using
this method, as long as the set © is not too rich, so that
A,, still vanishes as n grows. When () is invariant within
T(z|y) Gee., ' € T(x|y) implies Q(z’) = Q(x)), we have
U(z,y) = —L[log Q(z)+log T (x|y)|]. The choice of Q that
is invariant within T'(x|y) is convenient, because it is easier
to evaluate the log—cardinality of 7 (x|y) than to evaluate its
probability under Q.

Example 1. Let (Q be the uniform distribution across a single
type class, T, and let M be the class of additive decoding
metrics mo(z,y) = Y.y O(wi,y;), where {8(z,y), = €
X, y € Y} are arbitrary real-valued matrices. Here, T (z|y) =



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

Tgx|y, the conditional type class of x given y. Since the
number of conditional type classes is polynomial in n, then
Ay — 0. In this case, U(x,y) = Ipy(X;Y) + o(n). and so,
the proposed universal decoder essentially coincides with the
MMI decoder. If, on the other hand, Q(x ) I, Q(z;), then
U(z,y) = ]my(X Y)+D( PxHQ + o(n), where D(PmHQ)
is the divergence between Py and Q. This concludes Example
1.

One of the elegant points in [16] is that the universality
of the proposed decoding metric is proved without recourse to
an explicit derivation of the random coding error exponent
of the optimum decoder. The proof of Theorem 1 has the
same feature. However, thanks to Shulman’s lower bound [15]
on the probability of a union of events, this proof is both
simpler and more general in several respects: (i) it allows a
general @, not just the uniform distribution, (ii) it requires only
conditionally pairwise independence between codewords, not
mutual independences, and (iii) it assumes nothing concerning
the underlying channel. Indeed, it will be seen shortly how
Ziv’s universal decoding metric is obtained as a special case.

In some situations, it may not be a trivial task to evaluate
Q[T (x|y)]. Suppose, however, that one can uniformly lower

bound Q[T (x|y)] = exp{—nU(z, y)} by exp{—nU'(z, y)},
for some function U’(x,y) which is computable and suppose

that U’ (-, -) satisfies
> Q)

rexn

max
yeyn

27LU/(w,y) < 27LA/n (4)

where A/, — 0. We argue (see [11] for a proof) that in such a
case, U’(+,-) can replace U(+, ) as a universal decoding metric
and Theorem 1 remains valid. The price of passing from U to
U’ might be in a slowdown of the convergence of A/ vs. A,,.
For example, U’ might correspond to more refined equivalence

classes {7 (z|y)}.

Example 2. As an example of the usefulness of this observa-
tion, let us refer to Ziv’s universal decoding metric [16]. In par-
ticular, let M be the class of decoding metrics defined as fol-
lows: For a given © € X™ and y € Y™, let s = ($1,...,8p) €
S™ (S being a finite set), be a sequence generated recursively
according to s;+1 = g(4,¥i, Si)s @ = 1,...,n—1, where s7 is
a fixed initial state and g : X x Y xS — S is a given next—state
function. Now define mg(x,y) = >, 0(xi,ys, s;). Suppose
that @) is the uniform distribution over X™. Then Q[T (z|y)] is
proportional to |7 (x|y)|, but the problem is that here, there is
no apparent single—letter expression for the exponential growth
rate of |7 (x|y)| in general. Fortunately enough, however,
|7 (x]y)|, in this case, can be lower bounded [16, Lemma
1] by |T(x|y)| > 2EZ@IY)=no(n)  where LZ(x|y) denotes
the length of the conditional Lempel-Ziv code of = when
y is given as side information at both encoder and decoder.
Consequently, one can upper bound U(z,y) by U'(z,y) =
log |X| — LZ(m|y) + o(n) as our decoding metric. Indeed,
eq. (4) is satisfied by this choice of U’. This explams why
Ziv’s decoder, which selects the message ¢ with the minimum
of LZ(x;|y), is universally asymptotically optimum in the
random coding exponent sense. Note that the assumption that
@ is uniform is not really essential here. In fact, () can also
be any exchangeable probability distribution. Moreover, if s;
includes a component, say, o5, that is fed merely by {z;} (but
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not {y;}), then it is enough that @) would be invariant within
conditional types of « given o = (o1, ..., 0,). In such a case,
we would have U'(z.y) = —1[log Q(x) + LZ(x|y)].

V. EXTENSIONS

We now demonstrate how our method extends to more
involved scenarios.

A. Feedback

In the paradigm of random coding in the presence of feed-
back, it is convenient to think of an independent random selec-
tion of symbols of X along a tree whose branches are labeled

by {y1},{v1,92},.--,{y1,---,Yn—1}, for all possible out-
comes of these vectors. Accordingly, the random coding distri-

bution Q(x) is replaced by Q(x|y) £ [T, Qa2 =1, yi=h).
Each message i € {1,2,..., M} is represented by a complete
tree of depth n and |Y|"~! leaves. Theorem 1 and its proof
remain intact with Q(-) being replaced by Q(+|y) in all places.
Thus, the universal decoding metric is redefined as U(z,y) =
—Llog Q[T (z|y)y], the relevant expectations are redefined
wrt. P(z,y) = [[[L[Q(zi]a"" v~ ") P(yil2", 5"~ )], and
in condition (4), Q(x) is replaced by Q(x|y). One might
limit the structure of the feedback, for example, by let-
ting each Q(-|z*~%,y*~!) depend on (2*~1,3'~1) only via
a state variable ¢; fed by these two sequences, i.e., t; =
g(ti—1,%i—1,yi—1), that is

HQ Ly Th = HQ(fi\ti)-

In the above example of decoding metrics corresponding to
finite—state channels, one can refine the equivalence classes
to include the information about ¢; and then () would be
invariant within a type class Tl’l st where t = (t1,...,t,).
In this case, the decoding metric U " would become U’ (z, y)
—1llog Q(z|y) + LZ(x|y)], where Q(x|y) is understood to
be defined by (5).

Q(zly) = 6)

B. The Multiple Access Channel

Consider a MAC with two inputs, and xo, and
one output y. User no. 7 generates M; 27 mutu-
ally independent codewords, x;(1),...,x;(M;), using a ran-
dom coding distribution @;, i = 1,2. We define a class
M = {mp(x1,22,y), § € ©}. Decoder Dy picks the pair
of messages (x1(i),x2(j)), maximizes mg(x1(2), 2(7),y).
We assume that the random coding ensemble and the
class of decoders are such that for every given X (i)
€1(i), Xo(j) = @2(j) and Y =y, mo(X1(i'), X2(5'), y)
and my(X1(i"), X2(j”),y) are conditionally independent
whenever (i',5') # (i,)). (i".5") # (i.j) and (i",j") #
(¢, 7). While this requirement is easily satisfied when i’ # i,
i £ a7 £, # 4, §7 # §, and §7 # j' all hold
(as all codewords are assumed to be drawn by independent
random selection), it is less obvious when some of these
indices concide. Still, this requirement is satisfied, for example,
if Xy = & = {0,1,...,K — 1} @1 and Q2 are both
uniform across the alphabet, and mg(xz1,x2,y) depends on
x1 and x5 only via x; ® x5, where @ denotes addition
modulo K. Decoding metrics with this property are moti-
vated by classes of multiple access channels, P(y|x1,x2),
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in which the users interfere with each other additively, i.e.,
P(y|lzi, x2) = W(y|z1 ® z2). Still, the dependence of y on
x1 @ T2 can be arbitrary.

We now define three kinds of equivalence classes:
T (x1,x2|y) is the set of (x],x}) such that V6 € O,
mg(mllaxl%y) = m9($17$2,y), T($1‘$2,y) is the set of
x} such that V8 € O, my(x}, z2,y) == mg(z1,x2,y) and
T (2|1, y) is defined similarly with ‘1’ and ‘2’ swapped. We
also assume, as before, that for every y, the number of different
type classes {7 (a1, z2|y)} is upper bounded by 2"~ Next,
define the following functions:

Ul @ay) = —= log (@1 x Q)T (ws,22ly)]} ©
Ui(z1,®2,y) = —%long[T(:cl\azg,y)] (N
U, w2,y) = - log QalT(wslar, )l ®

Define the universal decoding metric U (1, Z2,y) as the min-
imum among the following three expressions: Uy(x1, T2, y) —
Rl _RQ’ Ul (mlv T2, y)_Rl’ and UQ(wla T2, y)_R2 We argue
that U (a1, x2,y) competes favorably with the best my in a
sense analogous to that asserted in Theorem 1. This decoding
metric is different from the universal decoding metrics used
for the MAC, for example, in [13] and [7], which were based
on the MMI decoder and the minimum empirical conditional
entropy (minimum equivocation) rule, respectively. Similarly
as before, suppose that Uy, U; and Uz can be uniformly upper
bounded by U}, Uj and Uj, respectively, and assume that:

max Z Q1(:Cl)Q2(m2)2"U‘3($l’w2’y> S Lo
Y £L,,L
1,42

Ul (X1, 82Y) & 1 (10

%%;Ql(wl) = (10)

onUs(T1,&2.Y) & 1. (11

51'1311%;@2(371) - an

Then, Uy, U and U} can replace Uy, Uy and Us, respectively,
in the universal decoding metric, denoted in turn by U’, and
the upper and lower bounds continue to hold with U’ replacing
U. The application of this to the LZ decoding metric is a
straightforward extension to the one exercised above in the
single—user case (see [11] for details).

C. Comments on the Continuous Alphabet Case

It is possible to extend Theorem 1 to the case of continuous
alphabets, but this requires more caution. For one thing,
T (x|y) should be redefined by allowing some small tolerance,
i.e., the requirement my(x,y) = my(x,y) should be replaced
by |me(x,y) — me(x,y)| < €, where € > 0 tends to zero
after n — oo. This is to guarantee that 7 (x|y) captures a
positive volume and that K, (y) (now, redefined as the number
of {7 (z|y)} required to cover the set of channel input vectors,
possibly obeying an input constraint) is finite. We will not
delve into the technical details of this extension any further?
Instead, we will merely demonstrate the universal decoding
metric in a certain special case, where the class of decoding

2See [10] where these details have been fully worked out in the context of
universal decoding for the Gaussian channel with a deterministic interference.
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metrics depend on x and y only via second order empirical
statistics extracted from these sequences.

Example 3. Let X = Y = R and let () be an i.i.d. zero—
mean Gaussian density with variance o2. Let § = (61,0s)
and let M be the class of decoding metrics my(x,y)
01> xiyi+02 > o2 Denoting C(z,y) = £ Y70 | 2y,

and bl’(w) = L5 22, then T (z|y) should be Tedefined as

the set of a’, where C(z',y) and S(x’) are within e close to
C(z,y) and S(x), respectively. Using the methods of [10], it

is easy to show that U(z,y) = 5% — 2 In[S(x)(1 - Pyl

— 202
where pgy = C(x,y)/+/S(x)S(y) is the empirical correla-
tion coefficient between x and y, and where we have used
natural logarithms instead of base 2 logarithms.
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Equivalent Formulations of Hypercontractivity Using

Information Measures
Extended Abstract

Chandra Nair

A pair of random variables (X,Y") defined on some probability space (2, F,u), is said to be (p,q)-
hypercontractive for 1 < q < p < oo if the inequality || E[g(Y)|X]|lp, < [lg(Y)]||q holds for every bounded
measurable function g(Y"). For any p > 1 one can define q,(X;Y) = inf{q : (X,Y) is (p, q)-hypercontractive}.
Define the ratio r,(X;Y) = &p;y). Estimating r,(X;Y") leads to the best hypercontractive inequality for a
given p.

Hypercontractive inequalities have found a variety of applications in quantum physics[3], theoretical
computer science[4], analysis[5], and in information theory[l, 2]. In this talk we present the following
alternate characterizations of r,(X;Y") using information measures.

Theorem 1. The hypercontractive ratio ro(X;Y') is also given by any of the following expressions

(a)

sup D (vyllpy)
vxyv<nxy PDkL(Wx yllpxy) — (P —1)Drr(vx||px)

® I(U;Y
sup (U;Y)

v pI(U; X,Y) — (p—1)I(U; X)

(c)
inf{\ : H(Y) — ApH(X,Y) + Ap — VH(X) = 8{H(Y) — \pH(X,Y) + Ap — VH(X)],.},

where R f(-)],, denotes the lower convex envelope of the function f(-) (over joint distributions) evaluated
at the joint distribution pu(X,Y)

Remark: The above result generalizes the result equivalence result in both [1] and [2] which deal with
the limiting case p — oc.
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Capacity of Binary Symmetric POST Channels

Haim H. Permuter Himanshu Asnani Tsachy Weissman
Ben Gurion University Stanford University Stanford University
haimp@bgu.ac.il asnani@stanford.edu tsachy@stanford.edu

Abstract—We consider finite state channels where the state of and wheny; _; = 1 then it behaves as a binary channel with
the channel is its previous output. We refer to these as POST the transition matrix
(Previous Output is the STate) channels. We focus on POST(b) {

(sl

Q Ql

channels. These channels have binary inputs and outputs, ehe
the state determines if the channel behaves as a binary with
parameters (a,b) or (b,a). We show that the non feedback
capacity of the POSTg,b) channel equals its feedback capacity,
despite the memory of the channel. The proof of this surprisig
result is based on showing that the induced output distribuion, Yi-1 =10 Yi-1 =1

when maximizing the directed information in the presence of

feedback, can also be achieved by an input distribution thatloes 0 a 0 0 b 0
not utilize of the feedback. We show that this is a sufficient

condition for the feedback capacity to equal the non feedbdc

} . @)

We refer to this channel as the PQGTb) channel. The

Zi Yi Ti

capacity for any finite state channel. KN i»
Keywords—Causal conditioning, Convex optimization, Channels 1 b 1 1 a 1
with memory, Directed information, Feedback capacity, Finite state
channel, KKT conditions, POST channel. Fig. 1. POSTa, b) channel. Ify;_, = 0 then the channel behaves as DMC

with parameterga,b) and if y;—1 = 1 then the channel behaves as DMC
with parametergb, a).

I. INTRODUCTION . . . . .
POST¢) which was considered in [11] is a special case of

The capacity of a memoryless channel is very well un-POSTa,b), wherea = 1 andb = a. The results in this paper
derstood. There are many simple memoryless channels f@xtends our previouse results in [11]. An extended version ¢
which we know the capacity analytically. These include thethis conference paper that includes all the proofs may bedou
binary symmetric channel, the erasure channel, the additivin [12].
Gaussian channel and th& Channel. Furthermore, using ) .
convex optimization tools, such as the Blahut-Arimoto algo . Without loss of generality, we assume throughout that
rithm [1], [2], we can efficiently compute the capacity of any ? — 1 > 0. It is easy to see that in the case where b — 1 =
memoryless channel with a finite alphabet. However, in the or.,.equwallently, where: = b, the_cap@cny is simply 0.
case of channels with memory, the exact capacities are knowpdditionally, if a +b —1 < 0 thena + b > 1; hence by
for only a few channels, such as additive Gaussian channef§/2Peling t/hellnput$0 < 1) we obtain a new channel (with
(water filling solution) [3], [4] and discrete additive cheals ~Parameten’, b’ rather thar, b) wherea’ = a andb’ = b and
with memory [5]. In cases where feedback is allowed, therdVe havea’ +b" —1> 0.

are only a few more cases where the exact capacity is known, This channel arose in the investigation of controlled feed
such as the modulo-additive noise channel, the additiveenoi 5ck in the setting of “to feed or not to feed back” [13]. The

channel where the noise is a first-order autoregressivengevi posT channel can also be useful in modeling memory affecte
average Gaussian process [6], the trapdoor channel [7}hend .y hast channel outputs, as is the case in flash memory ai
Ising Channel [8]. If the state is known at the decoder, theryiher storage devices.

knowledge of the state at the encoder can be considered as
partial feedback, as considered and solved in [9] and in.[10] In order to prove that feedback does not increase th
) ) ) ) capacity of some families of POST channels, we look a
In this paper we introduce and consider a new family ofywo convex optimization problems: maximizing the directed
channels that we refer to as “POST channels”. These argformation over regular input distributions (non feedbac
simple Finite State Channels (FSCs) where the state of thgase), i.e.P(2") and, secondly, over causal conditioning that
channel is the previous output. In particular, we focus on 3s influenced by the feedback i.&2(z"||y"~1). We show that
family of POST channels that have binary inpffs;};>1 and g necessary and sufficient condition for the solutions ofwite
binary outputs(Y; }>, related as follows: Consider the POST gptimization problems to achieve the same value is that th
channel depicted in Fig. 1 with the foIIowmg behavior. Whef‘induced output distribution®(y™) by the respective optimal
transition matrix B and sufficient condition that we establish, in the genaraift
{ b } @ v finite state channel, follows from the KKT conditions [14
b Ch. 5] for convex optimization problems.

QA
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The remainder of the paper is organized as follows. In  Directed information characterizes the capacity of point-
Section II, we briefly present the definitions of directedbinf to-point channels with feedback [10], [18]-[20]. For chalm
mation and causal conditioning pmfs that we use throughouwhere the state is a function of the output, of which the POS”
the paper. In Section Ill, we show that the optimizationchannel is a special case, it was shown [7], [10] that the
problem of maximizing the directed information over causalfeedback capacity is given by
conditioning pmfs is convex. Additionally, using the KKT 1
conditions, we show that if the output distribution indudsd Cpp= lim — max [(X"—=Y"). 9)
the conditional pmfs that achieve the maximum in the presenc nreo M Pz lyn )
of feedback can also be induced by an input distributionOn the other hand, without feedback the capacity is given b
that does not use feedback, then feedback does not increase 1
the capacity. In Section IV we consider a binary PQS7) C = lim — max I[(X" = Y"), (10)
channel and we show that feedback does not increase capacity noeo N p(zn)
for this considerably larger class of channels. In Section Vsince the channel is indecomposable [21]. In the case whe
we conclude and suggest some directions for further relsearghere is no feedback, namely, the Markov fofp — X! —

on the family of POST channels. Yi~! holds, I(X™ — Y") = I(X™;Y™), as shown in [16].
Il. DIRECTED INFORMATION, CAUSAL CONDITIONING I1l. M AXIMIZATION OF THE DIRECTED INFORMATION AS
AND NOTATIONS A CONVEX OPTIMIZATION PROBLEM

Throughout this paper, we denote random variables by In order to show that feedback does not increase th
capital letters such as(. The probabilityPr{X = =z} is capacity of POST channels, we consider the two optimizatiol
denoted byp(z). We denote the whole vector of probabilities problems:
by capital P, i.e., P(x) is the probability vector of the random max (X" —=Y") (11)
variable X . P(arlyn=1)

I . and
We use thecausal conditioningnotation (-||-) developed max [(X" — Y™, (12)

by Kramer [15]. We denote by(z"||y"~%) the probability P(am)
mass function ofX” = (X,,...,X,), causally conditioned

on Y4 for some integerl > 0, which is defined as In this section, we claim that both problems are convey

optimization problems, and use the KKT condition to state

i L i1 i a necessary and sufficient condition for the two optimizatio
p(z"|ly" ") = Hp(%:\l‘ YY), (3 problems to obtain the same value.
=1

) . o . . A convex optimization problem, as defined in [14, Ch. 4],
By convention, ifi < d, theny’~? is set to null, i.e., ifi<d s g problem of the form

thenp(az; |z, y*=9) is justp(z;|2*~1). In particular, we use

extensively the case$= 0, 1: minimize  fo(x) (13)
n subject to  fi(x) <b; i=1,--- .,k
pla"|ly") = [ [ ol ), (4) gi()=0 j=1,---,1
"Tf where fo(x) and {fi(z)}%_, are convex functions, and
pa™ly" ) = [ [ ol g™ ). G {g(@)}j=, are affine.
i=1

In order to convert the optimization problem in (11) into a
. . . i . convex optimization problem, as presented in (13), we nee

The directed information was defined by Massey [16], in-tg show that the set of conditional pmiB(z"|[y"~1) can
spired by Marko’s work [17] on bidirectional communicatjon pe expressed using inequalities that contains only conve

as n functions and equalities that contains affine functions.
I(X" = Y™) =Y I(X5YYH), (6) Lemma 1 (Causal conditioning is a polyhedrofhe set
i=1 of all causal conditioning distributiolns of the form
The directed information can also be rewritten as P(z"||y"') is a polyhedron irRI*I"IYI"™" and is given by
, a set of linear equalities and inequalities of the form:
I(X" 5 Y") =
|y =LYy (g 7| 0 p(y"lz")
> oy || S S Iy AT p(z™|Jy) > 0, Van, gL,
S o Py~ 1)p(y™||z™) DSt AN
, e ZI?+1p(.1 y"=1) = Vo yi-r, Vo' y"Thi>1, 0 (14)
. - L Y p@"|ly" ) =1, vyt
This is due to the definition of causal conditioning and the
chain rule Note that the two equalities in (14) may be unified into one
P, y™) = p(a™|ly™ Hp(y™||z). ©) if we addi = 0 to the equality cases and we restrict the

correspondingy to be unity. Furthermore, fon = 1 we
We will make use the fact that directed informatibpX™ —  obtain the regular vector probability, i.ea(zz) > 0, Vz and
Y™) is concave inP(z"||y"~!) for a fixed P(y"||z"). >, Plx) =1.
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Note that the optimization problem given in (11) is a
convex optimization one since the set of causal conditgnin
pmfs is a polyhedron (Lemma 1) and the directed information
is concave inP(z"||y"~1) for a fixed P(y"||z") [22, Lemma
2]. Therefore, the KKT conditions [14, Ch 5.5.3] are neces-
sary and sufficient. The next theorem states these conslition
explicitly for our setting.

Theorem 2:A set of necessary and sufficient conditions
for an input probabilityP(z"||y"~!) to maximize the opti-
mization problem in (10) is that for some numbeis.

Fig. 2.
This is also the capacity of the binary DMC with parametgrsb)

( 'IL||:L,7L)

Zp y””‘rn log ( ) = /By”’la If p(m’!LHy’ﬂfl) > 07

Capacity of POSTd, b)

The capacity of the POST,(b) channel with and without feedback.

x o 7(@+b) + %@+ b)? — 4ab
Zp y HSC log (U(” )) _By”*lw if p(l Hy 1) :07 SBS 21—) .
Yn
(15) £y (a+b) ++/(a+b)2 — daby? <%
wherep(y™) = .. p(y"||z")p(z"||y"~'). Furthermore, the 2by b
solution of the optimization problem is _ N N2 iz
Ix ¥ Z P . (16) L3 = {/3 < min(%% @tb) (;bj )" - daby )}
max Y™ = no1+ 1.
Pamlly»=h) = 1 b b D)2 — dab
£4_{ﬂ<min( W”y(a—i— ) ﬂ;(a—k ) a)}
IV. CAPACITY OF THE POSTa,b) CHANNEL WITH AND “ “
WITHOUT FEEDBACK o v(@+b) + /72(@+ b)2 — 4ab <p< by
Before considering the PO%4, b) let us first consider the 0 2a S a
binary DMC with parameter&:, b). The capacity of the binary = —
DMC with parameterga, b) was derived by Ash in [23, Ex Ls = { ma (b7, (a+b) (af b)? ~ 4ab72)
3.7] by applying [23, Theorem 3.3.3] and is given by a 2ary
C = log {zaHbEfl;iff“‘” zg”bfizii’“”} .oan <p< Lottt Vot by - daby? } . (21
2ary
The capacity achieving input distribution is where is defined as
P(x=0)=co (bQ% — 5251({1)1) , y = AOEe (22)
___H(®) H(a)
Pz =1) =c (—02 “FT + a2 “*”*1> ; (18)  In addition, let
wherec is a normalizing coefficient so that the sufi{z = _ . oa by
0) + P(xz = 1) is equal to 1. The induced output distribution Lo=1s8s= mm(zw’ b ) (23)

is

P(y = 0) = co(ab — ab)27 (19)

Lemma 4:If the intersections of the intervals; UL, U L3

with £4 U L5 U Lg and Ly is nonempty then feedback does

not increase the capacity of the PO&T) channel.

Py =1) = colab — ab)27+57 (20)

Lemma 5:The condition in Lemma 4 holds for all POST

channel parameter@:, b). Thus, feedback does not increase

Lemma 3 (Feedback capacity of PG8b)): The
feedback capacity of the POSiI¢) channel is the same as of
the memoryless DMC with parameters, §), which is given
in (17).

We now present sufficient conditions anb implying that
feedback does not increase the capacity of the P@3Y(

capacity of POST{, b).

A. Deriving the sufficient conditions of Lemma 4

Proof of Lemma 4Let P, , and P, ; be defined as

channel. That these conditions are indeed sufficient wébesta Poo= [ ‘f:ﬁ"‘lvo 2:113"‘1*0 } (24)
lish in the next subsection. Define the following intervals: @ n-11 n-ll
- and
a (Zl‘i‘b)— 72(&+b)2—4ab b P _'P
L1 = < max(= - n—1,0 Q- Ip-10
1 { (7 55 ) Poa [ b Pty a Py } (25)
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where Py o = P,1 = 1. Inverting the matrices, we obtain

b -1 b -1

_ —I ~Ya—at
s W I
ba—ab> 0 ba—aa’ 1
_ e 1
o s A S en) M
a—ab~ 0 a—ab~ 1
b b b b 21
Now we computeP; (z") and Py(z") 3]
Py(z") = P Roly™) (28)
[4]
Pi(z") = P, 1 Pi(y") (29)

where Py(2°) = P;(2°) = 1. We can rewriteP,(2") and
Py (™) follows:

[5]

. 1 byPo(z" 1) — bP (2" 1) (6]
P = = ne+ { Aol )+ aPy (@) ]
(30)" [
ny _ 1 aPo(x" 1) —ayPy(a" )
P = T | e )] °
1

—bPy(z" 1) + by Py (2™
3

We need to show that indeed the probability expressions ard®]
valid, namely nonnegative and sum to 1. Showing the non-
negativity of each of the terms in the above expression i?m]
equivalent to showing/n > 1 and for allz" !,

. pa by —1 —1 [11]
_ L P n > P T
min{ =, HRGET 2 A
b
min{—, VP (") > Py(a"b). (32) (2
ay’ b
Forn = 1 this follows from the fact thatin{Z%, %7} e
To prove forn > 1 we use the following lemma. ]

Lemma 6:If the condition in Lemma 4 holds then there

exists,1 < 5 < min{;—,’y, b%} such thatvn, the inequalities 14]

BP(z" 1) > Py(a™h), Va" (5]

BPy(z"" 1) > Py(a" 1), Va" !, (33) g

imply 17
BP(z") > Py(a"), Va",

BPy(a") > Pi(a™), Va". B4 g

V. CONCLUSION AND FURTHER RESEARCH (1]

We have introduced and studied the family of POST
channels and showed, somewhat surprisingly, that feedbad¥l
does not increase the capacity of the gendrélST(a,b)
channel. The proof is based on finding the output probability
that is induced by the input causal conditioning pmf which?!
optimizes the directed information when feedback is alldwe 2]
and then proving that this output pmf can be also be induceg
by an input distribution without feedback. There may be a
more direct way, that has thus far eluded us, for proving thags]
feedback does not increase the capacity of the Simple POST
channel. We hope that the POST channel introduced in this
paper will enhance our understanding of capacity of finigest
channels with and without feedback, and help us to find simple
capacity-achieving codes.
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Abstract—Inspired by the artificial noise technique by Goel
et al., we propose an unshared secret key (USK) cryptosystem,
where the artificial noise is redesigned as a one-time pad
secret key aligned within the null space between transmitter
and legitimate receiver. Unlike previously studied artificial noise
techniques, rather than ensuring non-zero secrecy capacity, the
USK cryptosystem guarantees Shannon’s perfect secrecy without
the need of secret key exchange.

I. INTRODUCTION

Wireless communications provide flexibility and mobility
for users, but equally the ease of access features undermines
user privacy. Research on secure communication falls into
two categories: network layer cryptography and physical layer
security (PLS). The former assumes that the physical layer
provides error-free data links, in which security depends on
a shared secret key. In the latter, the strategy is to use
wiretap codes to protect the secret data from eavesdropping,
while security comes from specific channel limitations for the
eavesdropper. Both categories are rooted in Shannon’s perfect
secrecy [1], defined as the mutual information I(u; y) = 0;
that is, the secret message u and the eavesdropper’s received
message y are mutually independent. Perfect secrecy requires
one-time pad secret key [1].

The PLS scheme, known as artificial noise (AN) [2], is the
basis for our unshared secret key (USK) cryptosystem. In the
AN scheme, the transmitter (Alice) aligns a jamming signal,
called artificial noise, within the null space between itself
and the legitimate receiver (Bob), thus AN only degrades the
eavesdropper’s (Eve’s) channel. The strategy is to use Gaussian
distributed AN to guarantee non-zero secrecy capacity [3].
Given such secrecy capacity, infinite-length wiretap codes can
be used to achieve strong secrecy [4]. More recently, we pro-
posed a variant of AN using a finite M-QAM alphabet, called
practical secrecy (PS) scheme, where instead of increasing the
secrecy rate with AN, the eavesdropper’s error probability is
maximized [5].

In this work, we show that the PS scheme is de facto an
USK, where AN serves as an unshared one-time pad secret
key. The result is a development of our understanding of
the benefits of AN, embracing both coding and cryptographic
dimensions. We show that the USK provides Shannon’s perfect
secrecy, with no secret key exchange, under Goel et al.’s

This work is supported by ARC under Grant Discovery Project No.
DP130100336.

assumptions on the physical channels that enable the use of
the AN scheme.

Our work differs from previous studies of AN [2], because
it puts forward four new aspects that were not previously
accounted for:

1) Perfect secrecy: we aim to achieving Shannon’s perfect
secrecy directly, rather than ensuring non-zero secrecy
capacity.

2) Finite alphabet: we use a finite alphabet (M-QAM) rather
than infinite-length wiretap codes.

3) Artificial noise: we have no requirement of the distribu-
tion of AN; that is, not necessarily Gaussian.

4) Lattice precoding: we introduce lattice precoding to
MIMO wiretap channels, which avoids the diversity loss
caused by conventional singular value decomposition
(SVD) precoding of [2].

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the Hermitian transpose,
inverse, pseudoinverse of a matrix B by BY, B!, and BT,
respectively. Let {X,, X} be defined on the same probability
space. We write X, “3° X if X, converges to X almost
surely or with probability one. I,, denotes the identity matrix
of size n. We write £ for equality in definition. A circularly
symmetric complex Gaussian random variable z with variance
o2 is denoted as = «~ N (0, 02). The real, complex, integer and
complex integer numbers are denoted by R, C, Z and Z|[i],
respectively. H(X), H(X|Y) and I(X;Y) represent entropy,
conditional entropy and mutual information, respectively. We
use the standard asymptotic notation f (z) = O (g (z)) when
lim sup |f(z)/g(z)] < oo. vol(S) denotes the Euclidean vol-

Tr—r00

ume of S.

II. SYSTEM MODEL

We consider a MIMO wiretap system, including a transmit-
ter (Alice), an intended receiver (Bob), and a passive eaves-
dropper (Eve), with N5, Ng, and Ng antennas, respectively.
The signals received by Bob and Eve are given, respectively,
by

z = Hx + ng, (1)

y = Gx +ng, @

where the entries of ng and ng are i.i.d. complex random
variables ~ N (0, o) and N (0, of), respectively. We assume
that the matrices H and G, representing the channels from
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Alice to Bob and Alice to Eve, respectively, are mutually
independent, i.e., Bob and Eve are not co-located. The entries
of H and G are i.i.d. complex random variables ~ N¢(0, 1).

A. Artificial Noise Scheme

We first introduce the AN scheme [2]. Assuming Ng < Ny,
H has a non-trivial null space Z = null(H). Alice transmits

x=Pu+2Zv 3)

where u is the secret data vector and P is the precoding matrix.
The AN v is generated by Alice and is unknown to Eve. In
order to estimate the secrecy rate, both u and v are assumed
to be Gaussian circularly symmetric random vectors.

The AN scheme is based on the channel assumptions below:

1) Alice only knows the realization of H.

2) Eve knows the realizations of H, G, Z and P.

3) Na > N, Ny > Ng and Ng > Ng.

Equations (1) and (2) can then be rewritten as

z = HPu + ng, “)
y = GPu+ GZv + ng. ®)

Thus, v only degrades Eve’s reception, but not Bob’s.
In (3), the transmitted signal x depends on the precoding
matrix P. The AN scheme uses SVD precoding, given by

xsvp= V1iu + Zvgyp, (6)

where P =V and the columns of V = [V, Z] are the right-
singular vectors of H, i.e., H = UAVH,

For the AN scheme, given a positive secrecy rate, infinite-
length wiretap codes can be used to achieve strong secrecy
[4], ie.,

lim I(u;y) =0, @)
n— 00

where n represents the codeword length.

B. Practical Secrecy Scheme

Based on the AN scheme, we proposed the PS scheme,
where the security measure in AN, secrecy capacity, is re-
placed by Eve’s error probability [S]. Although the transmis-
sion model is the same as that given in (4) and (5), u and v
are not required to be Gaussian distributed. The settings of the
PS scheme are given below.

1) Uniform M—QAM signalling, i.e., R(u) and S(u) € ¢™3,

where C ={—v/M +1, —/M +3, ..., VM — 1}, is used.

2) There is no requirement on the distribution of v.

The PS scheme can use either SVD precoding or lattice
precoding [6], in which

xip= H' (u—AW) + Zv, p, (8)
where A = 2v/M, P = H' and
[HT (u — Aw)%. ©)

W = arg min
weZ[i| VB
Compared with the AN scheme, where the achievability of
security is based on an infinite length code, the PS scheme
is designed for practical communication systems, which make

use of a finite alphabet. However, a security scheme based on
error probability may be not safe in the sense of information-
theoretic security.

In this work, we analyze and enhance the security of the
PS scheme under the same channel assumptions as AN. To
simplify our analysis, we unify the notation of u by defining

- » Ju—Aw lattice precoding
v { u SVD precoding (10)
We define the noise-plus-interference term at Eve as
fiv 2 GZv + ng. (1n

III. UNSHARED SECRET KEY CRYPTOSYSTEM

In this section, we first interpret the PS scheme from a
cryptographic perspective, and then prove its security in terms
of perfect secrecy.

A. Encryption

The AN v used in the PS scheme can be treated as a one-
time pad secret key. Alice randomly (without any predefined
distribution) chooses v from the set S defined by

s {verM N v? <P}, (12)

where P represents the transmission power constraint on v.

The message 1 is received by Eve as a lattice point in:
Ac = {GP#, @ € Z[i]V®} (see Fig. 1). The set S can be further
partitioned into D subsets Si, ..., Sp, i.e.,

D
s=U Sk (13)
k=1

where
S = {v: GPu € Ac is the k™ closest lattice point to y}.

Later, we will show that the value of D can be uniquely
characterized by P.

Assuming v € S, 1 < k < D, the PS scheme thus can be
viewed as a cryptosystem that encrypts @ to y using a secret
key v, such that GP1 is the k™ closest lattice point to y (see
Fig. 1).

From Eve’s perspective, we assume that she knows P and
the above encryption process. Since Eve cannot know the
secret key v, she cannot know the distribution of k either.
It means that Eve only knows that GPu is hidden inside the
D closest lattice points to y, but cannot locate it. Moreover,
Eve cannot distinguish which lattice point has the highest
probability of being GP1, thus the probability that Eve obtains
GPu is uniform over all D lattice points. By taking the
codebook size of u into account, for a given GP, we have

1

Pr{GPly} = Priuly} = Toop iy

(14)
or equivalently

H(uly) = log min {D, MNB} . (15)
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Fig. 1.

Achieving perfect secrecy.

Different from Shannon’s one-time pad cryptosystem, the
one-time pad secret key v is not shared between Alice and
Bob. In particular, it is independently generated by Alice, but
not needed by Bob to decipher, while it is fully affecting Eve’s
ability to decipher the original message. We name this kind
cryptosystem as Unshared Secret Key (USK) cryptosystem.

B. Decryption

From (4), Bob can simply run maximum likelihood de-
coding to estimate u. We then show how to increase Eve’s
uncertainty of u, i.e., H(uly).

Based on (15), increasing H (uly) is equivalent to increasing
D. The value of D depends on the channel matrices G and
H. In this work, we assume G and H are not fixed, but are
Gaussian random matrices. In this sense, for a given v and a
positive integer ¢, Pr{D > ¢|G,H} is also a random variable
depending on G and H, and ny is a Gaussian random vector
with i.i.d. entries N (0, 52) where

16)

We recall that the realizations of G of G and H of H are
known at Eve. Note that if we can ensure Pr {D > ¢|G,H} “%'
1, then D > ¢ for almost any realizations G and H (see [7,
Def. 1.3]).

In fact, the idea behind the original PS scheme was to ensure
Pr{D > 1|G,H} “3 1, which is a special case of the USK
with ¢ = 1.

52 = ||v||? + o}

C. Achieving Perfect Secrecy

We now show how large P should be to guarantee perfect
secrecy, i.e.,

I(u;y) = 0. an

From [1, Th.6], the necessary and sufficient condition to
achieve perfect secrecy is

Pr{u} =Pr{uly}. (18)

Since Pr{u} = 1/M™"®, based on (14), a sufficient condition
to achieve perfect secrecy is D > M5,

In what follows, we evaluate the value of D by choosing
[[v]|?> = P, i.e., on the surface of S in (12).

Lemma 1: Let vol(A¢) be the volume of the Voronoi cell
of A(C.
MPMevol(Ac) 4

Np
Pr{DgM \G,H}g PN

A (19)

Proof: See Appendix A. ]
Note that A is a random variable depending on A¢ defined
by the random matrices G and H. From Lemma 1, by sending
A to zero, Pr{D < M™®|G, H} is forced to zero as well, i.e.,
achieving perfect secrecy. In the following theorem, we show
how to ensure A 3" 0.

Lemma 2: Let
w2 NNe/(NE) ) (20)

If P=p?/®>N8/Ne and p > &, then A “3° 0 as Ny — oo, or

equivalently,
p\ Mo p\ N
pfas ()M <o((0)7) e
where ® depends on the precoder, i.e.,
1
_ [ (e — Ng)!' Nx!|2¥s for lattice
Prp = {(NA — Ng)! Ng! precoding (22)
1
_ (NE - NB)' 2Ng for SVD
Psvp - = { Ng! precoding (23)
Proof: Available in the journal version. ]

Lemmas 1 and 2 allow us to deduce our main theorem.

Theorem 1: If P > 12 /®2N8/Ne_perfect secrecy is achieved
almost surely as Ng — oo, where « is given in (20) and @ is
given in (22) or (23).

IV. CONCLUSIONS

We have revisited the role that artificial noise plays in
cryptography, showing that it can be used as unshared one-time
pad secret keys. The proposed unshared secret key cryptosys-
tem provides Shannon’s perfect secrecy, and enjoys exemption
from secret key exchange. Our work has highlighted that USK
is valid for a finite alphabet such as M-QAM and a arbitrarily
distributed artificial noise. Both lattice and SVD precoding are
applicable to USK, significantly enhancing the utility of the
cryptosystem. The basis is now established for future advances
on generalizing USK to other channel.

APPENDIX
A. Proof of Lemma 1

Let S, be a sphere of radius R centered at y, where
vol(Sp) = M Neyol(Ac). Let K be the number of the points in
SpNAc. We have
vol(Sp)
vol(Ac)
M,

(24)

We recall that GP1i is the k™ closest lattice point to y and
D > k. Thus, if GPa ¢Sp, we have D > M™Me.
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Let S) be a sphere with the same radius R centered at GP1.
If GPa ¢S, then y¢S,, and vice versa. Therefore, we have
Pr{D < MN“\G,H}
= Pr{GPacS,}
= Pr {yGSl;}

= / f(fy)diiy
S
MNeyol(Ag)
WNEﬁgNE

MNBvol(Ag)
ﬂ.NE PNe ’

IA

(25)

where f(fy) is the probability density function (pdf) of .
The last inequalities hold since

~ 2
Lo (L)
WNE&\Q,NE 5\2/

_

ﬂNE&?,NF‘

1

Ve (P + 0125) Ne
1

wNe PN

f(iv)

IA

IN

(26)
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Abstract—Codes for distributed storage systems may be seen
as families of m-dimensional subspaces of the vector space F,
where [, is the finite field with ¢ elements, ¢ a prime power. These
subspaces need to intersect, to allow (collaborative) repair. We
consider the Grassmann graph G, (n, m) which has for vertex set
the collection of m-dimensional subspaces of [, and two vertices
are adjacent whenever they intersect in a hyperplane. To obtain
subspaces with regular intersection pattern, we look for cliques
in the Grassmann graph, and obtain preliminary examples of
storage codes, whose parameters we study, in terms of storage
overhead, and repairability.

I. INTRODUCTION

When data is stored across a network of nodes, it is usually
replicated several times and the copies are stored on distinct
nodes, to prevent data loss in case of node failures. From
a coding point of view, this means that the data is encoded
using a repetition code. It is thus natural to replace this code
by a more efficient code, such as a maximal distance separable
(MDS) code, which ensures the maximum reliability, given a
storage overhead (or amount of data stored, versus amount
of actual data). There is however a major difference between
classical coding theory, and the design of codes for distributed
storage systems, that of repairability. When some coefficients
of a codeword are missing, it is desirable to recover these
missing coefficients by downloading data from live nodes,
without having to (necessarily) decode the codeword.

There has been an intense research activity around the
notion of repairability over the past few years, and there is no
complete consensus as of now, of what “good” repairability
is. In [1], the authors propose adaptations of Reed-Solomon
codes, where extra bits of parity are added to allow easy
degraded reads, that is, to allow the data to be read, even
though some coefficients of the codeword are missing. In
[2], [3], repairs are done in a collaborative manner, that is
once several coefficients of a codeword are missing, several
nodes try to reconstruct the missing coefficients, by possibly
exchanging data among each others. The authors focus on
minimizing the amount of data downloaded per repair, called
repair bandwidth. In [4] instead, repairs are optimized by
contacting as little live nodes as possible. A survey of different
design criteria for good repairability, and corresponding code
constructions, is available in [5].

In this paper, we consider a different view point. We do
not try to a priori design codes with respect to one of the

known design criteria - repair bandwidth, degraded reads, or
local repairs. Instead, we abstract codes for distributed storage
systems as families of m-dimensional subspaces of the vector
space Fj; (or subset of the Grassmannian G(m,n)), try to
design these subspaces with regular intersections, and analyze
the preliminary examples obtained in terms of the relevance
of their parameters to storage applications.

A similar formalization of storage codes in terms of linear
subspaces (not in the context of collaborative repair) has been
presented in [6]. The design of subsets of G(m,n) with
particular intersection has also been studied in the context of
constant dimension codes for network coding [7].

We start by describing codes for distributed storage systems
and abstract them in terms of subspaces and their intersection
in Section II. To obtain subspaces whose pairwise intersection
is of a given dimension, we look for cliques in the Grassmann
graph Go(m,n). The graph Ga(n — 1,n) is considered in
Subsection III-A. It is the simplest to understand, gives codes
with minimum repair bandwidth, but unreasonable storage
overhead. We then compute some other examples from other
Grassmann graphs. A clique from the graph G»(5,3) is com-
puted in Subsection III-B, yielding a storage code with a
slightly better overhead than the previous examples. A clique
from the graph G5(6, 3) is reported in Subsection III-C, which
offers different (collaborative) repair options.

II. SYSTEM MODEL

We consider a storage network, composed of N storage
nodes. Leto € Ff be a data object, represented as a row vector
of length B with coefficients in the finite field F,, to be stored
over this network. The object is stored using a linear erasure
code, that is o is mapped to a codeword whose coefficients
are stored over the storage network. Since the erasure code
used for storage is linear, we will represent it as a family of

vectors {v; € FQB, j=1,...,n}, n > B. Every storage node
then contains some codeword coefficients of the form ov;‘-r,
for some j € I C {1,...,n}. Since every node is enabled

of computational power, it can compute linear combinations
of the stored data, that is 03, ajva, a; € F,. This means
that we can model the data stored at each node by a vector
subspace

W, = <Uj7 j e I1> C IFZ

We assume that dimp, (W;) =a,i=1,...,N.
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A. Collaborative Repair

Suppose that a repair process is triggered after ¢ failures,
thus ¢ live nodes will start downloading coefficients ova, B of
them, each from d live nodes. Thus every node participating
in the repair process obtains d subspaces

Wy <W, l€D,, |D)|=d, r=1,...,t

The second index [ tells the provenance of the subspace (the
live node W;), while the first index r tells which node is
being repaired (without loss of generality, and to simplify the
notation, we have reordered the nodes so that W7y, ..., W; are
repaired). We assume that dimp, (W,;) = $, for all r. There
is no point for a node to download redundant data, thus we
may assume that every of the ¢ nodes each gets a subspace
V., r=1,...,t, where

Vi = @1ep, Wri, |Dr| =d,

thus dimp, (V) = dB. Finally these ¢ nodes exchange some
more data among each other, say each of them will receive
some subspaces V,; each of dimension ', where | € T,
indicates the provenance of the data, and |7).| = 7" how many
subspaces are received. Note that 7" may vary from 1 to t —1,
but is the same among the nodes performing the repair. The
case t = 1 corresponds to the repair of one node failure, when
there is no collaboration, while |T'| = ¢ — 1 is the scenario
studied in [2], [3], where every repair node exchanges data
with the others. For a repair of ¢ faults to be successful, it is
necessary that

dim(V;) + Z dim(V;) = a.
IET,

We may indeed assume that the V;; at one node are not
intersecting, since there is no need to transfer redundant data.

Finally, the information stored across the network must be
preserved through the repair process. In the case of exact
repair, every of the ¢ subspaces lost has been reconstructed,
while for functional repair, the ¢ subspaces generated during
the collaborative process might be different from those lost,
but the overall amount of information about the stored object
stays the same.

Consider the case of exact repair. Then we must have

Wi = (v;, j € L) = Vi, ®rer, Vi) = (®iep, Wit, Brer, Vir) s

which forces the subspaces W, to intersect in a specific
manner. For example, if ¢ = 2 nodes cooperate, the node
repairing node 1 will receive Vi from the node repairing node
2, and send V&a;. Thus after the cooperation phase, both nodes
will intersect on (Vi2, V1), a subspace of dimension 2/’

B. Object Recovery

If needed, the data object o should be retrievable, despite
the presence of potential node failures. We may want the
constraint that o can be computed by contacting any choice
of k out of the IV storage nodes that store o (as in [2], [3]).
This is not a necessary condition, one may alternatively prefer
that o can be recover out of many sets of k storage nodes (as
in [4]).

III. SOME EXAMPLES OF CONSTRUCTIONS

Let V' be an n-dimensional vector space over IFy, for ¢ a
prime power.

Definition 1: [8, 9.3] The Grassmann graph G,(n,m) of
the m-subspaces of V has for vertex set the collection of
linear subspaces of V' of dimension m. Two vertices W, W’
are adjacent whenever dim(W NW') = m —1, that is, W and
W' intersect in a hyperplane.

Let [:z be the g-ary Gaussian binomial coefficient

i)

The number of vertices of G,(n,m) is {;ﬂ and every

(" =1)---(¢" ™ =1
(@m=1)---(¢g—1)

6]

vertex has degree

(q7L777L _ 1)(q'ln _ 1)
(q—1)2 '

We recall some well-known formulas about the dimension
of sums of vector subspaces.

Lemma 1: Let Wy, Wy, W3, W, be any m-dimensional
subspaces of Fj. Then

q 2

Similarly for 3 subspaces
lel(Wl + Wso + W3) =
S dim(W;) — dim(Wa N Ws) — dim(Wy N (Wy + W)
“
and for 4 subspaces:
lel(Wl + Wy + W3 + W4)
= S dim(W;) — dim(Wy N Wy) — dim(Ws N W)
— d1m((W1 + Wz) n (W3 + W4))
&)
Proof: The first formula (3) is well-known. The second
is obtained by applying it recursively:
lel(W1 + Wy + Wg)

3
= Y dim(W;) — dim(W, N W) — dim(Wy N (W + W)
i=1

and so is (5):

dim(Wh + Wa + W5 + Wy)
— d1m((W1 + Wg) N (Wg + W4))

4
> dim(W;) — dim(Wy N W)
=1

— dlm(Wg N W4) — dlm((W1 + Wz) N (Wd + W4))

52



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

A. The Graph Ga(n,n — 1)

If m = n — 1, then from (1) the number of vertices of
Ga(n,n —1) is

2" -1
-1 _ .

2-1)
and from (2) the degree of each vertex is

(21 - 1)

SCE

=27 -2

showing that the graph is complete, and any two subspaces
W, W' are intersecting in a subspace of dimension m — 1 =
n — 2. Now from (3)

dim(W+W') = 2m—dim(WNW') = 2n—2—(n—2) = n.

This corresponds to the case kK = 2, where an object may be
recovered from any two nodes. The repair of one failure can
(of course) be done by contacting 2 live nodes (and 2 live
nodes are needed). Indeed, if say W needs to be repaired,
contacting any node W; allows to get Wy; of dimension n—2,
and only one subspace of dimension 1 is missing, which can
obtained from another node W;, i # [: every W; intersects W
in a subspace of dimension n — 2, thus either W, "W, = Wy,
in which case adding W; does not allow to recover Wj, or
Wy C (W;, W;). For the latter to fail, it is needed that all
subspaces intersect in the same subspace Wy;, which is not
possible.

Example 1: The smallest such graph is G(3,2). It is a
complete graph with 7 vertices, given by

Wy = (100,010), Wi = (101,110),
W, = (100,001), Ws = (010, 101),
W3 = (100,011), Wy = (010,001).
W, = (110, 001),

If W, {100,010,110} fails, 100 may be repaired by
contacting Wy or W3, 110 by contacting W, or W5, and 010
by contacting Wg or W7. There are then %(?) (‘11) = 12 ways
of doing this repair, while the maximum would be 15 = (3)
(for d = 2). This is true for each of the 7 nodes. The repair
bandwidth reaches the minimum: two symbols downloaded
to repair two, however a huge amount of storage is used: 14
symbols are stored, for a length 3 data object. This gives a
storage overhead of 14/3 > 9/3 which is the cost of 3-way

replication.

It is possible to get a lesser storage overhead by reducing the
length of the code, and take only 4 nodes, giving 8/3 < 9/3.
However then, 2 failures only can be tolerated.

Example 2: The graph G2(4,3) is a complete graph with

15 vertices.

Wi = (1000,0100,0010), Wy = (0110,0101,1010),
W, = (1110,0001,1000), Wi = (0011,1010,1101),
Wy = (1111,1000,1100), Wy, = (1001,1101,0110),
Wi = (0111,1100,1110), Wi, = (0100,0110,0011),
Ws = (1011,1110,1111),  Wiys = (0010,0011, 1001),
W = (0101,1111,0111), Wiy, = (0001,1001,0100),
Wy =(1010,0111,1011), Wiy = (1000, 0100, 0010),
Ws = (1101,1011,0101),

The storage overhead of 3-way replication is 12/4 = 3,
thus we should keep at most 4 nodes to equate the amount
of storage overhead, and 3 nodes to get less. This makes
the length of the code too short, only two, respectively one
failure(s) can then be tolerated.

This family of graphs clearly suffers from a terrible storage
overhead of

(2" —1)m
n

if all the nodes are used. To number of nodes used should be
(strictly) less than 3n/m to get a reasonable overhead, which
in turn reduces significantly the number of failures tolerated.
This overall behavior is likely to be caused by the fact that
these subspaces share too big an intersection, though this in
turn results in a minimum repair bandwidth.

B. The Graph Go(2m — 1, m)

Consider a clique of the graph G2(2m — 1,m), such that
every pair of subspaces intersect in a subspace of dimension
1. Then

2m —dim(WNW') =n=2m—1

which shows that the object may be recovered from any choice
of kK = 2 nodes. When m = 2, we get the graph G»(3,2)
already considered above. When m = 3, this is the graph
g2(5a3)

Example 3: Consider the following (non-maximal) clique
of Go(5, 3), computed using cliguer [9]:

Wy =(10001,01101,00010), W5 = (10001,01001,00101),
Wy =(10000,01001,00010), W = (10010,00110,00001),
W3 =(11001,00100,00011), W7 = (10101,01101,00011),
Wy =(10000,01010,00110), Wg = (01010, 00100, 00001).

It has the property that every pair of subspaces intersects
in a subspace of dimension 1, and that every triple of
subspaces has trivial intersection. Since k = 2 (the object
is retrievable from any choice of 2 live nodes), we con-
sider the repair of one failure. Suppose for example that
Wh {10001, 01101,00010,11100,10011,01111,11110}
fails. These vectors are available across the network as shown
in Table I. To repair Wi, any two nodes may be contacted.
Since the intersection of any 3 nodes is trivial, this will give
necessarily two distinct vectors, which generate a subspace
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vector | nodes | vector | nodes

10001 5 10011 6

01101 7 01111 8

00010 2 11110 3

11100 4

TABLE 1
VECTORS STORED AT NODE W1 AND THEIR AVAILABILITY ACROSS THE
NETWORK.

of dimension 2. Now the third vector can be anything, as
long as it does not belong to the span of the vectors al-
ready obtained. Thus the number of ways of repairing W,
is 1(0)(8) () = 28 < 35 = (1) (for d = 3

The storage overhead of 3-way replication is 15/5 = 5 so
we may keep up to 5 nodes, which is slightly better than the
code construction of Example 2.

C. The Graph G»(6,3)

Consider the graph G5(6,3), and the following (non-
maximal) clique, computed using cliquer [9]:

Wy = (100010,010100,001110),
W, = (010001, 001000,000101),
W5 = (100101,001101,000011),
W, = (100000,010011,000101),
W5 = (001010, 000100, 000001),
We = (110110,001100,000001),

Every pair of subspaces intersects in a subspace of dimension
1. By (4), for any W, W', W"

dim(W+ W'+ W") =9 —1—dim(Wn (W' + W"))
and for this particular clique
dim(W + W'+ W") =6

which shows that any choice of 3 subspaces allows a data col-
lector to retrieve the object. Some triples have an intersection
of dimension 1, as summarized in Table II. Suppose the node
W fails. There are 4 repair options: (2,3,4), (2,3,6), (2.,4,5)
and (2,5,6), since 3,5 cannot be in a triple together, and 4, 6
cannot either.

If two nodes fail, say W;, W5, then the node that repairs
W1 may get 001110 from W5, 010100 from Ws and 110110
from either Wy or Wg. Then the node that repairs Ws may
get 001101 from Wy, 100101 from W, and either 001110
from W5 or 001101 from Wj. So each has two repair options.
A collaborative repair could also be done: once one node
gets 001110, it may give it directly to the other repair node.
The storage overhead is 18/6 which is the same as 3-way
replication.

IV. CONCLUSION

In this paper, we abstracted codes for distributed storage
systems in terms of subspaces and their intersection. This sug-
gested the design of subspaces with regular intersection, and
we started with pairwise intersection. To find such subspaces,
we computed cliques from Grassmannian graphs, to obtain

vector | nodes W;, W;, Wy,

001110 1,3,5

110110 1,4,6

001101 2,3,6

000101 2,45
TABLE 11

THE TRIPLE W;, W), W}, WHOSE INTERSECTION IS OF DIMENSION 1,
TOGETHER WITH THE VECTOR IN THIS INTERSECTION, ARE COMPUTED.

families of subspaces whose pairwise distance has a given
dimension, and studied the obtained parameters in terms of
storage codes.

The choice of pairwise intersection is also natural, since it is
related to the design of constant dimension codes for network
coding [7]. However, though the examples that we found
have some potential for storage applications, the requirement
of pairwise intersection seems less critical than for network
coding. There are obvious continuations of this preliminary
study:

1) Find a theoretical characterization of (collaborative)

repair in terms of subspace intersection.

2) Find more systematic constructions of such codes, to
get instances with interesting parameters for storage
applications.

3) Move from pairwise intersection to other types of inter-
section patterns.
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Abstract—Based on the lattice Gaussian distribution and the
associated flatness factor, we present a unified view of lattice
coding for achieving the Shannon capacity of the additive white
Gaussian noise (AWGN) channel and for approaching the secrecy
capacity of the Gaussian wiretap channel. In the former scenario,
we apply Gaussian shaping to an AWGN-good lattice; in the latter
scenario, we use a secrecy-good lattice nested with an AWGN-
good lattice. We show that they represent different aspects of the
lattice Gaussian distribution.

I. INTRODUCTION

The lattice Gaussian distribution is emerging as a com-
mon theme in diverse areas. In mathematics, Banaszczyk [1]
firstly used it to prove the transference theorems of lattices.
In cryptography, Micciancio and Regev used it to propose
lattice-based cryptosystems based on the worst-case hardness
assumptions [2], and recently, it has underpinned the fully-
homomorphic encryption for cloud computing [3]. In commu-
nications, Forney applied the lattice Gaussian distribution to
shaping of lattice codes [4] (see also [5]), and studied lattice-
aliased Gaussian noise in [6].

More recently, we defined the flatness factor associated
with the lattice Gaussian distribution and derived its many
properties [7, 8]. With this new tool, we are now able to
answer/address several major open questions in lattice coding.
For example, Erez and Zamir [9] proposed nested lattice
codes achieving the capacity of the power-constrained additive
white Gaussian noise (AWGN) channel, where a quantization-
good lattice serves as the shaping lattice while the AWGN-
good lattice serves as the coding lattice (dithering is also
required). In [8], we proposed lattice Gaussian coding, where
the codebook has a discrete Gaussian distribution over an
AWGN-good lattice. As another example, in [7] we used the
lattice Gaussian distribution to achieve semantic security over
the Gaussian wiretap channel, which led to the notion of
secrecy-good lattices. In both cases, we do not need a shaping
lattice or a dither.

In this review paper, we aim to present a unified view of
lattice Gaussian coding for capacity and secrecy. In Section II,
we review lattice Gaussian distributions and the flatness factor.
Section III describes the lattice Gaussian coding scheme for
the AWGN channel. Section IV gives the scheme for the Gaus-

Jean-Claude Belfiore
Department of Communications and Electronics
Telecom ParisTech
Paris, France
Email: belfiore @telecom-paristech.fr

sian wiretap channel, where the fine code is a Gaussian-shaped
AWGN-good lattice achieving the capacity of the legitimate
channel, and the coarse code is a secrecy-good lattice which
ensures the information leakage on the eavesdropper’s channel
is negligible. We try to shed light on the commonality of the
schemes for capacity and for secrecy [7, 8].

Throughout this paper, we use the natural logarithm, de-
noted by log, and information is measured in nats.

II. LATTICE GAUSSIAN DISTRIBUTION AND FLATNESS
FACTOR

An n-dimensional lattice A in the Euclidean space R" is a
set defined by

A=L(B)={Bx:xe€Z"}

where B is the n-by-n generator matrix. The dual lattice A*
of a lattice A is defined as the set of vectors v € R™ such
that (v, A) € Z, for all A € A.

For 0 > 0 and ¢ € R"”, the usual Gaussian distribution of
2

variance o centered at ¢ € R" is given by
1 lx—c|?

f_ X)= —— ¢ 252
me(X) (V2mo)n ’

for all x € R™. For convenience, we write f,(x) = f,0(X).
Consider the A-periodic function (see Fig. 1(a))

00 = Y frn00 = (e 3

AEA AcA

(I

for all x € R™. Observe that f, A restricted to the fundamental
region R(A) is a probability density.

We define the discrete Gaussian distribution over A centered
at ¢ € R" as the following discrete distribution taking values
in A€ A:

 faed)
foe8)’

where foc(A) £ Y ycn foc(A) = foa(c). Again for
convenience, we write Dy , = Dj 5. Fig. 1(b) illustrates
the discrete Gaussian distribution over Z2. As can be seen,
it resembles a continuous Gaussian distribution, but is only
defined over a lattice.

DA,U,C(A)

VA €A,
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(a) Continuous periodic distribution fi A (x).

Fig. 1.

In some sense, the continuous distribution f, A and the
discrete distribution Dy , are the Fourier dual of each other.
To see this, note that since f, A(x) is A-periodic, it has the
Fourier expansion on the dual lattice A*

_ 1 A *\ _J2m (A" ,x)
fO',A(X) = V(A) A;\* fa'()\ )ej

where
fg(y) = /fg(x)e—j%'(x,y)dx _ 6—27‘—202HyH2 )

is the Fourier transform. Thus, the Fourier coefficients fg()\*)
have a discrete Gaussian distribution over the dual lattice A*
(upon normalization).

The flatness factor of a lattice A quantifies the maximum
variation of f, A(x) for x € R".

Definition 1 (Flatness factor [7]). For a lattice A and for a
parameter o, the flatness factor is defined by:

= V(A fs —1].
ealo) = max |[V(A)fon(x) —1]
In other words, {W((Xg, the ratio between f, A(x) and
the uniform distribution over R(A), is within the range
[1—€r(0),1+en(o)]-

Proposition 1 (Expression of ey (o) [7]). We have:

ERCURNERE

2
where yp (o) = L)

a

is the volume-to-noise ratio (VNR).

The following result guarantees the existence of sequences
of mod-p lattices whose flatness factors can vanish as n — oo.

Theorem 1 ([7]). Yo > 0 and VY& > 0, there exists a sequence
of mod-p lattices A™ such that

exm (o) < (1+6)- (M)a,

oy 3

0.015

(b) Discrete Gaussian distribution Dp ().

Lattice Gaussian distributions.

i.e., the flatness factor can go to zero exponentially for any
fixed VNR v (0) < 2.

The importance of a small flatness factor is two-fold. Firstly,
it assures the “folded" distribution f,, A(x) is flat; secondly, it
implies the discrete Gaussian distribution Dy 4 ¢ is “smooth".
In the following, we collect properties of lattice Gaussian
distributions.

Lemma 1 ([7]). Let A’ C A be a pair of nested lattices such
that ep(0) < % If a is uniformly distributed in A/A' and
b is sampled from Dp: s c_q, then the distribution D,y of
a + b satisfies

2ep (0
V(Dasp, Dage) < —200)
1—ep(o)
Lemma 2 (Variance of lattice Gaussian [7]). Let x ~ Dy 5 c.

Ifsze,\(a/,/ﬁ> <1 for0<t<m, then

2
o] | < 2
where
c N g, t> 1/6;
Pl e, 0<t<1/e

Lemma 3 (Entropy of lattice Gaussian [7]). Let x ~ Dy 5 c.

If e =€y (a/,/ﬁ) < 1 for 0 <t < m, then the entropy
rate of X satisfies

1 1

—H(x) — {log(\/%rea) — =~ log V(A)] ‘ <é,

n n
where ¢/ = —181=c) | _re.

n n(l—e)"
Lemma 4 ([10]). Given any vector ¢ € R", and 05,0 > 0.

Let 5 = % and let 0!, = \/o? + o2. Consider the con-
o240

tinuous distribution g on R™ obtained by adding a continuous
Gaussian of variance o2 to a discrete Gaussian Dp_c o,

1 n
9(x) = mte/\z;chS(t)fU(x —t), xeR"™
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If e =€) () < &, then fg(x)

00 is uniformly close to 1:

9(x)
f o’ (x)
Regev’s lemma leads to an important property, namely, the

discrete Gaussian distribution over a lattice is almost capacity-
achieving if the flatness factor is small [8].

¥x € R",

- 1‘ < 4e. )

III. ACHIEVING CHANNEL CAPACITY
Consider the classic AWGN channel

Y" = X"+ W

where W™ is an n-dimensional Gaussian noise vector with
zero mean and variance o2

In [8], we proposed a new coding scheme based on the
lattice Gaussian distribution with power constraint P. The
SNR is defined by SNR = P/o2. Let A be an AWGN-good
lattice of dimension n. The encoder maps the information bits
to points in A, which obey the lattice Gaussian distribution
(cf. Fig. 1(b))

X ~ DA,0'5~

Since the continuous Gaussian distribution is capacity-
achieving, we want the lattice Gaussian distribution to be-
have like the continuous Gaussian distribution (in particular
P =~ 02). This can be assured by a small flatness factor
EA (US/1 /ﬁ) for 0 < t < . For t — 0, this condition
is essentially ep (05) — 0. Thus, while we are concerned
with the discrete distribution Dp , , we in fact require the
associated periodic distribution f, A to be flat.

Since the lattice points are not equally probable a priori in
the lattice Gaussian coding, we will use maximum-a-posteriori
(MAP) decoding. In [7], it was shown that MAP decoding is
equivalent to Euclidzean lattice decoding of A using a scaling

coefficient a@ = which is asymptotically equal to the

024027
MMSE coefficient %. In fact, the error probability of the
proposed scheme under MMSE lattice decoding admits almost
the same expression as that of Poltyrev [11], with o, replaced
by G, = ‘;2‘1“0 —. To satisfy the sphere bound, we choose

the fundamental volume V(A) such that
V(A" > 2mes? . ©)

Meanwhile, the rate of the scheme is given by the entropy
of the lattice Gaussian distribution. By Lemma 3, we have

1
R — log(V2meos) — —log V(A)
n
ooy _ L &
< log( 27'('60'5) - 5 10g <2ﬂem>

1 o2
— “log(1+ %
2 °g< +aa,)

— —log (1 + SNR).

N | —

In fact, the rate can be arbitrarily close to the channel capacity.
A more careful analysis also shows that the condition SNR > e
is needed.

Theorem 2 (Coding theorem for lattice Gaussian coding [8]).
Consider a lattice code whose codewords are drawn from
the discrete Gaussian distribution Dy o for an AWGN-good
lattice A. If SNR > e, then any rate up to the channel capacity
%log (1 4+ SNR) is achievable, while the error probability of
MMSE lattice decoding vanishes exponentially fast.

IV. APPROACHING SECRECY CAPACITY

Now consider the Gaussian wiretap channel where Alice
and Bob are the legitimate users, while Eve is an eavesdropper.
The outputs Y™ and Z" at Bob and Eve’s ends respectively
are given by

{Yn =X W, ©)

Zr = X" 4 Wr,

where Wy, W7 are n-dimensional Gaussian noise vectors with
zero mean and variance o7, o2 respectively.

For secrecy rate R, we use coset coding induced by a lattice
partition A, C Ay such that

1
—log |Ap/Ac| = R.
n

The fine lattice A is the usual coding lattice for Bob, i.e., it
is an AWGN-good lattice. The coarse lattice A, is new, and
turns out to be a secrecy-good lattice. To encode, Alice uses
the secret bits to select one coset of A, and transmits a random
point inside this coset.

Let us discuss intuitively why this scheme is secure. In-
formally, given message m, Alice samples a lattice point
uniformly at random from a coset A, + A, (this corresponds
to Poltyrev’s setting of infinite lattice coding [11]). Due to the
channel noise, Eve observes the periodic distribution

_lz=2y?

1

- e %7

(V2moe) )\E%-:)\m
If the flatness factor e, (o.) is small, it will be close to
a uniform distribution, regardless of message m. Then Eve
would not be able to distinguish which message Alice has
sent. With a careful design of A., this is possible, because
Eve’s channel is noisier. Of course, the technical difficulty
here is that one cannot really sample a lattice point uniformly
from a lattice or its coset.

Now we describe the wiretap coding scheme more formally.
Consider a message set M, = {1,..., e"R}, and a one-to-one
function ¢ : M, — /&,/Ae which associates each message
m € M, to a coset A,, € Ap/A.. One could choose the
coset representative A, € A, N R(A,) for any fundamental
region R(A.). In order to encode the message m € M, Alice
actually samples X7, from lattice Gaussian distribution

X ~ DA a0
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equivalently, Alice transmits A+, where A ~ Dy _ 5. ..
Let g, = \/% and o), = /o2 + 02. Regev’s Lemma 4

implies that if €5, (G¢) < 3, then:
V (pzem(-|m), for) < 4dea, (Ge).

We see that the received signals converge to the same
Gaussian distribution f,/. This already gives distinguishing
security, which means that, asymptotically, the channel outputs
are indistinguishable for different input messages.

An upper bound on the amount of leaked information then
follows.

Theorem 3 (Information leakage [7]). Suppose that the
wiretap coding scheme described above is employed on the
Gaussian wiretap channel (6), and let £,, = €, (5¢). Assume
that €, < % for all n. Then the mutual information between the
confidential message and the eavesdropper’s signal is bounded
as follows:

I(M; Z™) < 8z,nR — 8¢, log 8¢,,. @)

A wiretap coding scheme is secure in the sense of strong
secrecy if lim,, o, I(M;Z™) = 0. From (7), a flatness factor
En = 0(%) would be enough. In practice, an exponential decay
of the information leakage is desired, and this motivates the

notion of secrecy-good lattices:

Definition 2 (Secrecy-good lattices). A sequence of lattices
A s secrecy-good if
M) Yy (0) < 27 (8)

In the notion of strong secrecy, plaintext messages are often
assumed to be random and uniformly distributed in M. This
assumption is deemed problematic from the cryptographic
perspective, since in many setups plaintext messages are not
random. This issue can be resolved by using the standard
notion of semantic security [12] which means that, asymptoti-
cally, it is impossible to estimate any function of the message
better than to guess it without considering Z™ at all. The
relation between strong secrecy and semantic security was
recently revealed in [7, 13], namely, achieving strong secrecy
for all distributions of the plaintext messages is equivalent to
achieving semantic security. Since in our scheme we make
no a priori assumption on the distribution of m, it achieves
semantic security.

It was shown in [7] that, under mild conditions, the secrecy
rate

eam (o) =e

1 1 1
R < 3 log(1 + SNRy) — 3 log(1 + SNR.) — 5 )

is achievable, which is within a half nat from the secrecy
capacity.

Lastly, let us scrutinize the distribution of Alice’s con-
stellation. For this purpose only, we assume the confidential
message A, € [Ap/A.] is uniformly distributed (or the
secrecy rate will be smaller). By Lemma 1, if ej_(05) < ¢
(which we trivially have, since even €5, (6.) — 0), then

2e
V(pxe, Dayo,) < 1 o

Namely, the density px- is close to the discrete Gaussian
distribution over Aj. This shows that in fact, the fine code
is capacity-achieving for Bob’s channel. In contrast, from (9),
we know that the coarse code has a rate > % log(1+SN Rc)-i-%,
i.e., above the capacity of Eve’s channel.

V. DISCUSSION

In this paper, we have demonstrated the applications of the
lattice Gaussian distribution to coding problems for the AWGN
channel and the Gaussian wiretap channel. For capacity it is
desired that the discrete Gaussian distribution of the lattice
codebook behaves like the continuous Gaussian distribution,
while for secrecy it is required that the aliased Gaussian
distribution of the noise becomes flat. Both scenarios demand
a vanishing flatness factor and thus can be viewed as two sides
of one coin.
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Abstract—Inverse determinant sums appear naturally as a
tool for analyzing performance of space-time codes in Rayleigh
fading channels. This work will analyze the growth of inverse
determinant sums of a family of quasi-orthogonal codes and
will show that the growths are in logarithmic class. This is
considerably lower than that of comparable number field codes.

I. INTRODUCTION

In [5] inverse determinant sums were proposed as a tool
to analyze the performance of algebraic space-time codes
for MIMO fading channels. These sums can be seen as a
generalization of the theta series for the Gaussian channel.
They arise naturally from the union bound on the pairwise
error probability for spherical constellations, but also in the
analysis of fading wiretap channels [4].

In [5] the authors analyzed the growth of the inverse deter-
minant sums of diagonal number field codes and of most well
known division algebra codes. In this work we are going to
extend the analysis to a large class of quasi-orthogonal codes.
Our work will reveal that the growth of inverse determinant
sums of the analyzed codes is considerably smaller than that of
the corresponding diagonal number field codes. This difference
suggest that asymptotically, with growing constellation, quasi-
orthogonal codes are considerably better than number field
codes. This difference can not be captured in the framework
of diversity-multiplexing gain tradeoff.

For related work, we refer the reader to [1] and [3].

II. INVERSE DETERMINANT SUM

We begin by providing basic definitions concerning matrix
lattices and spherical constellations, that are needed in the
sequel.

A. Matrix lattices and spherically shaped coding schemes
Definition 2.1: A space-time lattice code C C M, (C) has
the form
1B, ®ZBy & - - - ® LBy,

where the matrices B, ..., By are linearly independent over
R, i.e., form a lattice basis, and k is called the rank or the
dimension of the lattice.

Laura Luzzi
Laboratoire ETIS, CNRS - ENSEA - UCP
Cergy-Pontoise, France
laura.luzzi @ensea.fr

Definition 2.2: If the minimum determinant of the lattice
L C M,(C) is non-zero, i.e. it satisfies

inf |det(X)| >0,
0#£XeL
we say that the code has a non-vanishing determinant (NVD).
We now consider a coding scheme based on a k-dimensional

lattice L inside M,,(C). For a given positive real number M
we define the finite code

L(M) ={ala € L,|all, < M},

where ||a|| > refers to the Frobenius norm. In the following we
will also use the notation

B(M) ={ala € My(C), |lallp < M},

for the sphere with radius M.
Let L C M, (C) be a k-dimensional lattice. For any fixed

m € Z1 we define
Z :
| det(X)|™
XeL(M)\{0}

S (M) =

Our main goal is to study the growth of this sum as M
increases. Note, however, that in order to have a fair com-
parison between two different space-time codes, these should
be normalized to have the same average energy. Namely, the
volume Vol(L) of the fundamental parallelotope of each lattice
L should be normalized to 1. The normalized version of the
inverse determinant sums problem is then to consider the
growth of the sum

ST (M) = Vol(L)™/* s (M), 1)

where k is the real dimension of the lattice A.

B. Inverse determinant sums and error performance of space-
time lattice codes

Let us now consider the slow Rayleigh fading MIMO
channel with n transmit and n, receive antennas. The channel
equation can then be written as

Y = HX + N,

where H and N are respectively the channel and noise
matrices. We suppose that the transmitted codeword X belongs
to a finite code L(M) C M, (C) carved from a k-dimensional
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NVD lattice L as defined previously. In terms of pairwise error
probability, we have for X # X’

1
P —
= Jdet(X — X722

and the corresponding upper bound on overall error probability

1
2 | det(X)[>mr

X€EL,0<|| X|| p<2M

P(X = X')

P <

Our main goal is now to study the growth of the sum
ST(M) as M increases. In particular, we want to find, if
possible, a function f(M) such that

St (M) ~ f(M).

III. INVERSE DETERMINANT SUMS OF ALGEBRAIC
NUMBER FIELD CODES

In this section we will give and review some results con-
cerning inverse determinant sums of diagonal number field
codes. These results will play an important role in our analysis
of quasi-orthogonal codes. The proofs are analogous to those
given in [5] and we will skip them. Unlike in the rest of the
paper we will state the results in the normalized from S7*(M)
following the general normalization given in [?].

A. Inverse determinant sums of real diagonal number field
codes

Let K be a totally real number field of degree n and let
{01, -+ ,0,} be the Q-embeddings from K to R. We then
have the canonical embedding v : K — M, (R) defined by

P(x) = diag(o1(x), ..., on(x)).

It is a well known result that ¢/(Ok) is an n-dimensional
NVD lattice in M,,(R). Let us now consider the corresponding
inverse determinant sum. The main role in the analysis is
played by the following unit group density result.

Theorem 3.1 ([6]): Let us suppose that [K : Q] = n, we
then have that

[Y(O3) N B(M)| = N(log M)~ + O((log M)"~?),

_ _wn™!
where N = TR RG=DT

Here R is the regulator of the number field K, w the number
of roots of unity in K and ix the index of norm 1 units in
O3

Proposition 3.2: Let us suppose that K is a totally real
number field with [K : Q] = n and that m > 1. Then

$0ne) (M) < Nse(m) (log )™ + O((log 1))

and
N (log M)" ! + O((log M)"~2) < 80,0, (M),
where N = %( |d(K/Q)[)™.

Here d(K/Q) is the discriminant of the field K and (x(m)
is the value of the Dedekind zeta function of the field K at
point m

B. Inverse determinant sums of complex diagonal number field
codes

Let us suppose that we a complex quadratic field F' and
degree n field extension K /F. We then have n F-embeddings
{1, ,0p} from K to C. We can define a relative canonical
embedding from K into M, (C) by

P(x) = diag(o1(x), ...

where x is an element in K.
Proposition 3.3: Let K be an algebraic number field with
[K : F] =n. If n, > 1, we have that

70'71(.’13))7

S5,y (M) < NCxe(ny) (log M)" ™" 4 O((log M)"2)
and
N (log M)~ + O((log M)"~?) < S‘i?éK)(M),

~ w(n n—1 _
where N = Rin)71)1(2 "V Id(E/Q))

Here R is the regulator, w is the number of roots of unity in
K and d(K/Q) is the discriminant.

IV. QUASI-ORTHOGONAL CODES FROM DIVISION
ALGEBRAS

In the following we are considering the Alamouti-like
multiblock codes from [2]. With respect to their complexity
and other properties, all of the codes of this type are quasi-
orthogonal. It is even possible to prove that many of the fully
diverse quasi-orthogonal codes in the literature are unitarily
equivalent to these multi-block codes. In the following we
will use several results and concepts from the theory of central
simple algebras. We refer the reader to [7] for an introduction
to this theory.

Let us consider the field £ = KF that is a compositum
of a complex quadratic field F' and a totally real Galois
extension K/Q of degree k. We suppose that K N F = Q,
Gal(F/Q) =< 0 > and Gal(K/Q) = {71, 72,..., T} Here
o is simply the complex conjugation. We can then write that
Gal(FK/Q) = Gal(K/Q)® < o >.

Let us now consider a cyclic division algebra

D:(E/K,J,’Y)ZE@UE,

where u € D is an auxiliary generating element subject to the
relations zu = ux* for all z € E and u? = v € Ok, where
()* is the complex conjugation. We can consider D as a right
vector space over F and every element a = x1 + uxe € D

maps to
[ T1 T2
- \nas o2i)’

This mapping can then be extended into a multi-block
representation ¢ : D — My (C).

P(a) = diag(mi(¢(a)), 2(d(a)) - .-

¢(a)

s Tr(9(a)))-

@

60



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

Example 4.1: In the case where k = 2 each element a € D
gets mapped as

X ) 0 0

vy ] 0 0
w(a)47 0 0 T(ml) T(xg)
0 0 7(yme)* T7(x1)%

In order to build a space-time lattice code from the division
algebra D we will need the following definition.

Definition 4.1: Let Ok be the ring of integers of K. An
Og-order A in D is a subring of D, having the same identity
element as D, and such that A is a finitely generated module
over Ok and generates D as a linear space over K.

Let us suppose that A is an Og-order in D. We call ¢(A)
an order code. In the rest of this paper, we suppose that the
division algebras under consideration are of the previous type.

Lemma 4.1: If A is an Og-order in D

| det(p(z))| = V/[A : zA], 3)

where z is a non-zero element of A.

Lemma 4.2: Let us suppose that A is a Og-order of a
division algebra D with center K of degree k£ and that ¢ is
a multi-block representation. Then the order code ¢(A) is a
4k-dimensional lattice in the space My, (C) and

detimin (H(A)) = 1.

Let D be an index-n K-central division algebra and A a
Of-order in D. The (right) Hey zeta function of the order A

1S
1
W= 2

VIS N

where $(s) > 1 and I, is the set of right ideals of A. When
R(s) > 1, this series is converging.

The unit group A* of an order A consists of elements € A
such that there exists a y € A with xy = 1 4. Another way to
define this set is A* = {z € A||detvy(z)| = 1}.

A. Inverse determinant sums of quasi-orthogonal codes

Let us suppose that K, D and A are as in the previous
section and that [K : Q] = k. We then have that ¢(A) is a
4k-dimensional NVD lattice in Moy (C) and we can consider
the growth of the sum

1 2n
= §P (M),
2 P S0
P(w) ey (A) (M)

Just as in [5] the previous sum can be analyzed further into

xA*) N B(M
>y [ (xA™) N B(M)|

Sz (M) = ,
W= 2 TaaGu)

WA “

where X (M) is some collection of elements x € A such that
l¥(x)||p < M, each generating a different right ideal.

B. Uniform upper and lower bounds for |{)(xA*) N B(M)]

The key element in the analysis of |¢)(xA*) N B(M)] is the
following.
Lemma 4.3 (Siegel): The unit group A* has a subgroup

O ={z|z e A",z € Ok},

and we have [A* : O3] < .
Let j = [A* : Ok]. By choosing a set {aq, ..
leaders of O} in A*, we have that

.,a;} of coset

J
(@A) N B(M)| < [¢(xa;0f) N B(M)].  (5)
i=1
In order to give an uniform upper bound for |¢(zA*) N
B(M)], it is now enough to give a uniform upper bound for
|(za; 0% )N B(M)|. Before stating our main results we need
few lemmas. We will skip the proofs of some of them.

Lemma 4.4: Let us suppose that A is a diagonal matrix in
M,,(C) with | det A| > 1. We then have that

|AY(OF) N B(M)| < [4(O%) N B(eM)],

where c is a fixed constant, independent of A and M.
Lemma 4.5: Let us suppose that « and y are elements in
Ok r, we then have that

[P () (0% ) N B(M)| < [(O%) N B(cM)],
and

[ (uy)P(Ok) N B(M)| < [¢(OF) N B(cM)],

where c is a real constant independent of x,y and M.
Proof: The first result is simply Lemma 4.4 and the
second follows as 1 (u) is a fixed matrix. O
Lemma 4.6: Let us suppose that « and y are elements in
E. We then have that

14(2) + 9 (uy)l|E = [l @)|IF + ¢ (uy)] -

Proof: By an elementary calculation we see that <

¥(z), ¥ (uy) >= 0 and the claim follows. 0

Proposition 4.7: Let us suppose that z € A, we then have
that

[¥(2)(Ok ) N B(M)| < [$(Ok) N B(cM)],

where c is a constant independent of M and =x.

Proof: Let us suppose first that x = x1 + uzs, where
x; € Op and where u? € Og. According to Lemma 4.6, we
have that

(@) )l = [ @)w )1 + [l (uz2)p )],

for any y € Op.
Therefore if ¥ (z)y(y) € B(M), then also

P(z1)Y(y) € B(M)and(uzz)ip(y) € B(M).

It follows that we can upper bound |¢(z)y(OF) N B(M)]
with

max{[¢)(z1)P(Ok) N B(M)|, [¢(uz2)y(OF ) N B(M)]}.
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According to lemma 4.5 we then have that

¥ ()9 (Ok) N B(

Let us now suppose that A is a general order in D. As t(A)
is finitely generated as an additive group in M, (F), we can
choose an integer d such that diy)(A) C ¥(Og) + ¢Y(uOE).
The result now follows from the previous consideration. [J
Proposition 4.8: Using the previous notation we have

[ (xA™) N B(M)[ < [A

po1 w(k)F! k—2
log M Rir(i= 1)1 + O(log M*72).

Proof: Let j = [A* : Ok]. By choosing a set {a1,...,a;}
of coset leaders of O} in A*, we then have that

M)| < [¢(OF) N B(cM)].

*ZOK]'

J

<2 I

| (zA*) N B(M (za;0%) N B(M)|.

According to Proposition 4.7 we then have that

<A

Applying Theorem 3.1 to this equation, we get the final result.
O

[ (xA™) N B(M " Ok][v(OF) N B(eM).

C. Upper and lower bounds for inverse determinant sums of
quasi-orthogonal codes

Proposition 4.9: Let us suppose that [K : Q] = k and set
n = 2k. We then have that ¢(A) is a 2n-dimensional lattice
in M,,(C) and

(%)71/271

N2/ < 21
Rir(n/2—1)! S

n/2—1
log M N

+ O(log M™/*72) (M)

n—2

2 w(%) 2
: 2
Rig ("5%)!
where n, > 1 and R and w are the regulator and the number
of roots of unity in the center K and iy the index of norm 1
units.

Proof: As previously mentioned, we can imitate [5] to

get
21, _
Syn (M) =

zeX (M)

< Ca(ny)[A" 2 Ok] +O(log M™/*72),

GEAINBOD
| det(¢)(x))[>r

According to Lemma 4.1 we have that |det(¢)(z))|*"" = [A :

xA]". Now

1
Z [A A =

zeX (M)

1
- - <
2 |det((x))|*"" ~

zeX (M)
< CA (nr)

Applying this inequality with Proposition 4.8 to (6) now gives
us the final result. O

V. QUASI-ORTHOGONAL CODES ARE BETTER THAN
DIAGONAL NUMBER FIELD CODES

Let us now suppose we have an n x n,.-MIMO channel,
(for simplicity we assume n, > 1). For the existence of quasi-
orthogonal code we also have to assume that 2 | n. Let us now
compare the growth of determinant sums of quasi-orthogonal
and comparable diagonal number field codes in this n X n,.-
MIMO channel.

In order to build a quasi-orthogonal code %(A) in M,,(C)
the center K of the algebra D must be an n/2-dimensional
totally real number field. For a number field code 1 (Op) C
M, (C), the field L must be an n-dimensional extension of
some complex quadratic field F'.

As we earlier saw, we have that

1
2 |det(X) 2

Xep(A) (M)

([ (M%) N B(M)])

and
[6(A%) 1 BOM)| = 6(1(Of) 0 B(M)|) = 0(log M™/>1).
Therefore

f(log M™/?71).

1
Z | det(X)|2n B

2N,
Xeyp(A) (M) )
On the other hand for the number field code we have that

1
2 Tdet(X) 2 0(|v(03) N B(M)])
XeyY(Or)(M)

= 0(log M™1).

Here the last result follows from [6, Theorem 2].

We can now see that the growth of the inverse determinant
sum for the quasi-orthogonal code is considerably lower than
that of the number field code. This is due to the fact that the
unit group of the order A is essentially that of a low degree real
number field. We note that this difference can not be captured
in the context of DMT as both of these codes have the same
DMT curve.
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Abstract—We study the secrecy capacity in the vicinity of
colluding eavesdroppers. Contrary to the perfect collusion as-
sumption in previous works, our new information-theoretic model
considers constraints in collusion. We derive the achievable secure
rates (lower bounds on the perfect secrecy capacity), for the
discrete memoryless channel and the Gaussian channel. We also
compare the proposed rates to the non-colluding and perfect
colluding cases.

I. INTRODUCTION

Wyner [1] introduced the information-theoretic model for
confidentiality in noisy communications, called wiretap chan-
nel, where a legitimate transmitter wishes to transmit a con-
fidential message to a legitimate receiver while keeping it
hidden from an eavesdropper (wiretapper). The eavesdropper
is assumed to have unlimited computation power, to know the
coding scheme of the legitimate user, and to only listen to the
channel. When the channel to the eavesdropper is a degraded
version of the channel to the legitimate receiver, Wyner [1]
proposed the secrecy capacity achieving scheme, known also
as Wyner’s wiretap channel coding, which comprises multicod-
ing and randomized encoding [2, Section 22.1.1]. This result
is extended to the broadcast channel with confidential message
and to the general wiretap channel (not necessarily degraded)
by Csiszar and Korner [3].

Recently, different legitimate-wiretapper user combinations
were studied [4]-[8]. In this line of works, scenarios with
multiple eavesdroppers considered only non-colluding ones.
This implies that information leakage of a certain message to
all eavesdroppers is computed as the maximum of the leakages
(to each one). In some applications, this assumption may
underestimate the eavesdroppers’ power: they can collude,
i.e., share their channel outputs (observations), and render
the attack more effective [9]. Hence, combating colluding
eavesdroppers, especially in wireless networks, has been a
significant challenge [9]-[14]. To the best of our knowledge,
all previous works modeled % colluding eavesdroppers as one
eavesdropper with k£ antennas; we term these perfect colluding
eavesdroppers. Using the equivalent Single-Input Multiple-
Output (SIMO) Gaussian wiretap channel, the information
leakage is determined by the aggregate Signal to Noise Ratio
(SNR) of all eavesdroppers; compared to the maximum SNR in
the non-colluding case [9]. This assumption significantly over-
estimates the eavesdropping capability, forcing a legitimate
user to increase its power linearly with the number of eaves-
droppers to achieve a positive secure rate. However, collusion

(esp. in the wireless networks) necessitates communication
resources and power consumption. This, in fact, restricts the
collusion channel capacity and thus improves the achievable
secure rate by the legitimate user. Hence, the problem at hand
is to find an appropriate model and to analyze the effect of
these constraints on the secrecy capacity.

In this paper, we model constrained collusion with an
equivalent wiretap channel, called Wiretap Channel with
Constrained Colluding Eavesdroppers (WTC-CCE). For our
general WTC-CCE, we assume that colluding eavesdroppers
communicate (by defining their channel inputs) over a virtual
collusion channel, in addition to the main channel. The higher
the collusion channel capacity, the more leaked information
can be exchanged. Our model captures previously studied
models as special cases: non-colluding eavesdroppers with
zero collusion rates and perfect colluding ones with infinite
collusion rates. We also propose a special case, the orthogonal
WTC-CCE: the collusion channel is orthogonal to the main
one (unlike the general WTC-CCE where the eavesdroppers
share the same channel with the legitimate transmitter). First,
we derive an achievable secure rate (a lower bound on the
perfect secrecy capacity) for the general discrete memoryless
WTC-CCE. The idea is to let the eavesdroppers do their best
in colluding. Hence, the information leakage rate is derived
by considering the outer bound on the capacity region of the
collusion channel; this resembles the cut-set upper bound for
the relay channel [2]. Next, we extend our result to the general
Gaussian WTC-CCE and its orthogonal version. The main
difference is that, in the general model, the eavesdroppers may
use jamming techniques to confuse the legitimate receiver; but
this way they could be exposed (to the legitimate user). In the
orthogonal model, beyond the increased required resources,
the eavesdroppers may loose some information leakage rate
because they cannot send jamming signals. However, the or-
thogonality may serve eavesdroppers in hiding themselves. We
provide numerical examples to analyze the achievable secure
rate and evaluate the overestimation amount (by comparing to
perfect colluding case) in different scenarios.

II. CHANNEL MODEL AND PRELIMINARIES

Upper-case letters (e.g., X) denote Random Variables (RVs)
and lower-case letters (e.g., x) their realizations. The proba-
bility mass function (p.m.f) of a RV X with alphabet set X is
denoted by px(x); occasionally, the subscript X is omitted.
X7 indicates a sequence of RVs (X;, X;11,..., X;); we use
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Fig. 1. General Wiretap Channel with Constrained Colluding Eavesdroppers
(WTC-CCE).

X7 instead of X7 for brevity. NV'(0,02) denotes a zero-mean
Gaussian distribution with variance o2.

Consider the WTC-CCE in Fig. 1: a four termi-
nal discrete channel (one transmitter, one legitimate re-
ceiver and two eavesdroppers), denoted by (A; x Xj. X
Ko, (P, Yl 3|27 27, 25,), Vi X Vie x Vic). X € &) and
Xje € Xj. are the channel inputs of the legitimate transmitter
and eavesdropper j and Y; € ), and Y, € Y. are the
channel outputs at the legitimate receiver and eavesdropper 7,
for j € {1,2}. p(yl, yiL, y5. |2}, ., 25,) is the channel
transition probability distribution. We also assume that the
channel is memoryless. In n channel uses, the legitimate
transmitter desires to send the message M to the legitimate
receiver using the following code.

Definition 1: A (2", n, Pe(")) code for WTC-CCE consists
of: (i) A message set M = [1 : 2"], where m is uniformly
distributed over M. (ii) A randomized encoding function,
fn, at the legitimate transmitter that maps a message m to
a codeword z7 € A". (iii) Two sets of encoding functions
at the eavesdroppers: {fje:}7; : R"™' — R such that
Tjeq = fiea(yis '), for j € {1,2} and 1 < ¢ < n. (iv) A
decoding function at the legitimate receiver g : V' — M.
(v) Probability of error for this code is defined as: Pén) =
2,% > Pr(g(yy") # m|m sent). (vi) The information leak-

meM

age rate at eavesdropper j € {1,2} is defined as:
1
Ry = ~I(M: YY), (1)

All codewords are revealed to the eavesdroppers. However, the
eavesdroppers’ mappings are not known to the legitimate user.

Remark 1: The mutual information term in (1) is the same
as in the non-colluding case, compared to I(M;Y7%, Y5) in
the perfect colluding scenario. The difference here comes from
the channel distribution and the fact that Y7, and Y|} given
X are not independent (due to X, and Xs.).

Definition 2: A rate-leakage tuple (R, Ry, 1, Ry, 2) is achiev-
able if there exists a sequence of (2" n, Pe(”)) codes such

that P’ — 0 as n — oo and limsup RS{L; < Rp; for
n—roo

j € {1,2}. The secrecy capacity Cs is the supremum of all
achievable rates R such that perfect secrecy is achieved, i.e.,
Ry ;=0 for j e {1,2}.

Motivated by the fact that the eavesdroppers prefer to
avoid exposure, we also consider a special case of the WTC-
CCE. We assume that the collusion channel (used by the
eavesdroppers) is decoupled from the main channel and we
consider the orthogonal WTC-CCE in Fig. 2. Here, Y;. =

(ijg»}/jce) for ] € {172} and p(ylayle)yZE‘xlaxlme‘Ze) =
Py, y1e, Yse|l2)P(YSe, Yse|T1e, T2e), where the variables re-
lating to the main and the collusion channels are indicated
with the superscripts m and c respectively. Substituting X, =
Xse = () results in the non-colluding case; Y&, = Y37, Yy, =
Y7 results in the perfect colluding case. To simplify notation,
let j be the complement of j in {1,2}. Now, consider
the general Gaussian WTC-CCE at time ¢t = 1,...,n for
j € 11,2}, modeled as:

Yie =Xy +hl Xies +hh, Xoes + Z14
Yijer=hiXps + h%ZXge,t + Zjer )

where h¥ is a known channel gain from transmitter i to re-
ceiver k. We assume perfect echo cancellation at eavesdroppers
(hi¢ = h3¢ = 0). X, is an input signal with average power

n
constraint %Z |zyt|? < P, and Z,, is an independent

and identicalfy 1distributed (ii.d) zero-mean Gaussian noise
component with power N,, for u € {I, le,2e}. In practice,
hl, and hl, may be small. The Gaussian counterpart of the
orthogonal WTC-CCE for j € {1,2} can be shown as:

Yy =X+ Zy, 3)
chﬂt = hijl,t + Z;Tclt ) chet = hchEe,t + Z]C'e,t

where hj,, and h;. are known channel gains received at
eavesdropper j from the main channel and the collusion
channel, respectively; power constraints of Pj, P, Ps. apply
for input signals; Z77 , and Z7, , are i.i.d zero-mean Gaussian

. ¢ m . .
noise components with powers N;¢ and N7, at eavesdropper j

from the main channel and the collusion channel, respectively.

III. DISCRETE MEMORYLESS CHANNEL

Our first result establishes an achievable secure rate for the
general discrete memoryless WTC-CCE.

Theorem 1: For the general discrete memoryless WTC-CCE,
the secrecy capacity is lower-bounded by:

RPM — supinf I(X;;Y;) — min{I(X;; Yie, Yoo | X1e, X2e),
maX{I(leXlevXZE;Yle)aI(Xthe»XZe;YZe)}} (4)

where the supremum and infimum are taken over all joint
p.m.fs of the form p(xl |£L‘1€, x2e)p(yl: Yte, y26|$17 Tie, xQe)
and p(z1., x2.) respectively.

Proof: The proof is based on the random coding scheme,
which uses Wyner wiretap coding at the legitimate user. For
the eavesdroppers, the idea is to let them do their best in
colluding. Hence, the coding strategy of the eavesdroppers is

e,
SV Y

n
Xle

n
Xoe

mn ycn
?YZe Yoo :—J—

Fig. 2. Orthogonal WTC-CCE.

p(}’lce' yzcelxle'xZe)
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oG h‘l B 2 h%m hlmPl h%cPQE h%mh‘%c}:’lPQP h’%mlgl h%cple h’%mh’%cplple
REC=0() — min{O(P(a + o) manc{o( Tt + Pt 4 Bagie ), (et 4 Sty SR he ) )
RG: min e(hl H + P1 (hle) Ple + p% (hl2€)2P26 + 2hlhl1epl V PlPIe + 2hlhl2ep2 V PlPZe)
® p1p2.p12 (hL)2P1e(1 — p2) + (hb,)2Poc(1 — p3) + 2R WL, p12V/Pre Pae + Ny
2 p2 2 2 2 2e2
. _ p1Pie + paPse + 2p1p2p12Pre Poe (hi®) (hl )
min{max{A(1), A(2)},0(P,(1 PrPr(l— %) )( N Ny N} (8)

not determined in the scheme. As a result, the information
leakage rate is derived by considering the outer bound on the
capacity region of the collusion channel and it looks like the
cut-set upper bound for the relay channel [2].

Codebook Generation: Generate on(B+E) jid ap se-

quences, each with probability H p(z1¢). Index them as

x}(m, s), where m € [1 : 2" and s € [1:2n8],

Encoding: To send message m € [1 : 2"F], the stochas-
tic encoder at the legitimate transmitter uniformly randomly
chooses s and transmits x}'(m, s).

Decoding: The decoder at the legitimate receiver wants to
correctly recover m,s and seeks a unique message 1 and
some 5 such that (z}'(mn, §),y;*) are jointly typical. Applying
the packing lemma [2], with arbitrarily high probability m =
m if n is large enough and

R+ R <I(Xy;; V7). 5)

Analysis of the information leakage rate: To simplify the
notation, let X, = (Xi.,X2.) and Y. = (Y1, Y2e).
We derive two bounds for the randomness index rate,
R,. First, we obtain the second term of information
leakage rates in the min term in (4), ie., Rpo =
maX{I(Xla Xlev X2e§ Yle)7 I(Xl, Xle7 XQe; Y2e)}-

Now, consider the leaked information to Y7} averaged over
the random codebook C.

I(M;Ye|C) = H(MIC) — H(M[YYe, C)

in
=nR— H(M, Y., X;", X'|C) + H(X]", XZ'|M, Y/¢,C) + H(Y1|C)

=nR—H(X]", X'|C) — H(M, Y{|X[", X, C)

+H (X[, Xe'|M, YT, C) + H(Y{e|C)

<nR— H(X['|C) — H(Y{|X{", X', C)

+H(X]", XC'|M, Y, C) + H(Y{e|C)

=nR—n(R+ Ry) + (X", X5 Y IC) + H(X[", X['|M, Y1, C)

(@) (®)
< —nRs +nl(Xy, Xe; Yie) + H(X{', XO M, Y(:,C) < néa

(a) holds because the channel is memoryless; (b) follows from
[2, Lemma 22.1]: if Ry > I(X), X1¢, Xoc; Yie), then H(X],
Xinea XZTLelMa Yl”é? C) < nRs - ’I’LI(Xh Xle> XZS; Yle) + n(51.
Following similar steps, one can show that if Ry > I(X;, X1,
Xoe; Yae), then I(M;Y5|C) < d2. Considering (1), combining
(5) and these constraints on R, gives RSD M with Rys.

Now, to derive the first term of information leakage rates in
min in (4), i.e., Rp1 = I(X1; Yie, Y2e | X1e, X2 ), We evaluate
the leaked information to both Y}? and Y5}, averaged over the
random codebook C.

I(M;Y|C) = H(MIC) — HM|Y,C)
=nR — H(M7 YE”,XZ"\C) + H(XZ”|M, Ye”,C) + H(Ye”|C)

@ nR - H(X['|C) — H(M,Y|X[",C)

+H(XP|M, Y, X2,C) + H(YIC)

(b)

< nR-— n(R + Ro) 4+ I(X];Y(C) + H(XT'|M, Y., X!, C)

© _uR, + ZI(X[L; Yol ViT' Xes,C) + H(X]|M, Y, X", C)

i=1
d) (e)
< —nRy 4+ nl(Xy; Ye|Xo) + H(XP|M, Y, X2,C) < nds  (6)

(a) and (c) follow because xj.; = f]-eﬁt(y;gl), for j €
{1,2} and 1 < ¢ < mn; (b) is due to the fact that
conditioning does not increase the entropy; (d) holds due
to the memoryless property of the channel; (e) follows
from [2, Lemma 22.1]: if Ry > I(X;Yie, Yoo | Xie, Xoe),
then H(X['|M, Y., Y3, X7, X5.,C) < nRy — nl(X;;Yie,
Yoe|X1e, Xoe) + nds. Note that (6) implies I(M; Je|C)<n53
for j € {1,2} (for the individual leakage rates). Now,
combining (5) and this constraint on R, gives RPM with
Rp1. This completes the proof. [ |

Remark 2: Substituting Y;e = (YjI,Y)) for j €
{1,2} in (4) results in an achievable secure rate (RYPM)
for the orthogonal discrete memoryless WTC-CCE, where
the supremum is taken over all joint p.m.fs of the form

m m

p(xl |‘T1€7 wQE)p(yh yle’ y2e|xl)p(yfe’ y§e|x1€ﬂ x2€)'
Remark 3: By setting X1, = Xo. = 0 in (4), RPM reduces

to sup I(X;;V;) — max{I(X;; Y1e), I(X;; Yae)} for the non-
colluding case. Furthermore, redefining Y|, = Y37, Yy, = Y7
ROPM results in the achievable secure rate for the perfect
colluding case, i.e., sup I(X;; V) — I(Xy; Yie, Yoo ).

IV. GAUSSIAN CHANNEL

We study the Gaussian WTC-CCE. First, we consider the
orthogonal Gaussian WTC-CCE. Let 6(z) = 1 log(1 + ).

Theorem 2: RYC in (7), shown at the top of the page, is
an achievable secure rate for orthogonal Gaussian WTC-CCE
(defined in (3)).

Proof: We can extend the achievable secrecy rate in
Theorem 1 (after applying Remark 2) to the Gaussian case
with continuous alphabets using standard arguments [15]. As
we do not know the optimal distribution p(x;|z1.,%2.) that
maximizes ’R?D M we use a Gaussian input distribution (at
the legitimate transmitter) to achieve a lower bound. Let
X; ~ N(0, P,). Note that the leakage rates in RYPM (ie.,
Ry, and Ryp,) are Multiple Access Channel (MAC) type
bounds. From the maximum-entropy theorem [15] (or [2,
P. 21]), these bounds are largest (or equivalently ROPM
is minimized over p(%i.,w2.)) for Gaussian inputs at the
eavesdroppers. Hence, set X;. ~ N (0, Pj) for j € {1,2}
and define —1 < p; < 1 as the correlation coefficient between
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—#— Non—colluding
Perfect Colluding
—&— Orthogonal Constrained Colluding (RY®)

—— Non-Jamming Constrained Colluding (R}”)|
—&— General Constrained Colluding (RS) ¢

)

s
=22

Achievable secure rate, R_(bits)

3 “ B 3 7
Legetimitate transmitter power, P,

(a) hd¢ = h2¢ = h;c =0.1,5 € {1,2}.
Fig. 3. Achievable secure rates Rs for Pjo = 1, hlj

Xje and Xy, ie., E(X; = pj\/Pje P for j € {1,2} and
P12 = w After calculatlng the mutual information

terms in (4), one can easily show that the leakage rate is max-
imized (or secure rate in minimized) for p1o = p1 = p2 = 0.
This means that in the orthogonal setup the best strategy for the
eavesdroppers is to use independent codewords. This achieves

RO in (7). ]
Remark 4: To achieve the non-colluding rate, i.e., G(hl P’)
max{@(h}\}’;f’), (hwpl} set P = Py, = 0 in ROC.

Moreover, it is enough to set Py, Py — 0o in RYC to derive
the perfect colluding rate: 0(h2 Pl) —0(R, (hl’" h2’" ),
Next, we obtain the secure rate for the general Gauss1an WTC-
CCE. The proof is similar to Theorem 2.

Theorem 3: RS in (8), shown at top of the previous page, is
an achievable secure rate for Gau§§1an WquEEE (1r113 (Ig)) For
j € (1,25 A(j) = (LI B S e P

N;.
Remark 5: Channel gains h!,

and h), make jamming
possible for the eavesdroppers. However, they also increase the
probability of exposure. In order to compare the two strategies
(through numerical examples), we define the non-jamming rate
RNJE by setting hY, = h, = 01in RE. In addition, by setting
Pie, Poe — 00 in Rf, the secure rate is zero, which is less
than (or equal to) the perfect colluding rate. This is due to
jamming and it is achieved by pi12 = p1 = p2 = 0.

Fig. 3 compares the secure rates for the Gaussian WTC-
CCE, ie., R¢,R9% RN/E  to the non-colluding and perfect
colluding scenarios in two different collusion channel con-
ditions. It can be seen that the perfect collusion assumption
significantly overestimates the eavesdroppers. Recall that the
WTC-CCE rates consider the best possible strategy for the
eavesdroppers; which may not be achievable for them. In
Fig. 3a (a weak collusion channel), using the orthogonal col-
lusion channel for eavesdroppers is worse than using the non-
orthogonal one (because RY > RYN7), In fact, with weak
direct collusion links, eavesdroppers may benefit from the
main channel by relaying (transmitting correlated codewords).
Hence, the optimal p1, ps for Riv JG are not zero; but they are
zero for RYY. However, for an improved collusion channel
(in Fig. 3b), using an orthogonal collusion channel is better if

=02, kI =hjm =1, N, =

2014

07
—#— Non-—colluding
Perfect Colluding
o.6| =©— Orthogonal Constrained Colluding RO%) 1
—f— Non-Jamming Constrained Colluding (R}”)|

= —&O— General Constrained Colluding (RS) r
£ osf e
s
g
8 oaf e
2
5
3
8
2 osf 4
@
2
S
z
£ ool
=1
2 D

oal P!

= R AM ‘ ‘
Y Y kg 4 5 6 7 8 9 10

Legetimitate transmitter power, P,

(b) R3¢ = h3¢ = hj. =0.6,5 € {1,2}.
Nje=Njz=Nf, =1,j€ {1,2}.

one cannot use jamming (or does not want to use jamming,
to avoid exposure). To evaluate R , one should note the
effect of jamming in addition to collusmn, which enables the
eavesdroppers (Or, now, jammers) to make the secure rate zero.

V. CONCLUSION

We proposed WTC-CCE, a wiretap-based channel model to
capture collusion constraints and derived the achievable secure
rates. Our results showed that, indeed, the perfect collusion
model overestimates the eavesdroppers if they choose to be
unexposed. With no exposure constraint, they can jam to
further reduce the secure rate in some cases.
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Abstract—In this paper, we study the problem of secure M,

communication over the broadcast channel with receiver side l

information, under the lens of individual secrecy constraints vy .

—{ Receiver M,y

. on | i

is made vanishing). Several coding schemes are proposed by Transmittel— Py, 12, 2|7)

extending known results in broadcast channels to this secrecy | e

setting. In particular, individual secrecy provided via one-time

result, we obtain a general achievable region together with a T

characterization of the capacity region for the case of a degraded —

eavesdropper. n 5
|

(i.e., information leakage from each message to an eavesdropper
Yy s
P
pad signal is utilized in the coding schemes. As a preliminary
. INTRODUCTION

The broadcast channel is a fundamental communication F19- 1: Wiretap channel with receiver side information.

model that involves transmission of independent messages

to d|ﬁe_rept USErs. In this paper, we consider the SeCU{c?receiverl,Q, respectively. Supposeé® is the channel input
transmission of independent messages to two receivers w st y" (at receiver 1),y7 (at receiver 2) and:" (at
have, respectively, the desired message of the other receyg\yesdrépper), are the chanQneI outputs. Besidegavailable

as side mf_ormatlon. The model is shown_ n Fig. 1'. Th receiver 1) andn; (available at receiver 2), serve also
problem (without an eavesdropper) was originally motivat de information that may help to decode the desired mess

bydthe conr::ept of the b|d|rec§|onal rlelay cZaan]fetlhwhelre nless otherwise specified, we use capital letters for ran
nodes exchange messages via a reiay node. e relay n Qﬁables and corresponding small cases for their realizatic

decodes both messages, then .it can.broadcast a COMMQ[anote the average probability of decoding error at rece
codeword to both nodes each having their own message as $i¢e o p . The rate paif Ry, Ry) is said to beachievable
e, ) 3

information. In [1], the broadcasting capacity region (WithOL”

an eavesdropper) has been completely characterized. 1
The model of the broadcast channel with receiver side —H(M;) >R; — ¢ (1)

information (BC-RSI) with an external eavesdropper has been n

studied in [2]. The authors proposed achievable rate regions Pei ze @)

and_outer b_ounds for a joint secrecy constraint, whereby l](hfi;zn) <e, 3)

the information leakage fronboth messages to the eaves- n

dropper is made vanishing. Differently from [2], we reviewor ¢ = 1,2 and for sufficiently largen. Equation (3) corre-

the problem undemmdividual secrecy constraints that aim tosponds tdndividual secrecy constraints. If the coding schet

minimize the information leakage fromach message to the fulfills a stronger condition that

eavesdropper. Although individual secrecy constraints are by 1 N

definition weaker than the joint one, they nevertheless provide gI(Ml’ My; Z2") < ¢, (4)

an acceptable security strength that keeps each legitimgign it is said to satisfy thppint secrecy constraint.
receiver away from an invasion of secrecy. In addition, a joint we recall the capacity region of the discrete memoryl
secrecy constraint can be difficult or even ImpOSSIb|e to fulﬂHroadcast channel with receiver side information, when n

in certain cases. So, in this paper, our main concern is §@the secrecy constraints are taken into account.
characterize the fundamental limits of secure communications

under the individual secrecy constraints for the BC-RSI moddineorem 1. ([1, Theorem 1]) The capacity region of the dis-
crete memoryless broadcast channel p(y1, y2|x) with receiver

Il. SYSTEM MODEL side information is the set of the rate pairs (R;, R2) such that
Consider ad_iscrete memoryless brqadcast channel give_n by R <I(X;V:) and R, <I(X;Ys) (5)
p(y1,y2, z|x) with two legitimate receivers and one passive .
eavesdropper. The transmitter aims to send messages., Over all possible pmf p(x).

for any ¢ > 0, there exists an encoder-decoder such tha

67



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

I1l. I NDIVIDUAL -SECRECY RATE REGION
A. Secret key approach
Consider the symmetric secret rate region wh&e =

Ry = R, i.e.,, M; and M, are of the same entropy. One can
apply a one-time pad approach as proposed in [2]. With this

scheme, the following rate region is achievable.
Proposition 2. Any (R, R;) € R™ satisfying
Ry =Ry < min{I(X;Y1),1(X;Y2)} (6)

for any p(x) is achievable.

Proof: Randomly generat™? codewordst™ according
to [T, p(z;). Given (mq,m2), sendz™(my) with my, =

™ and index them as” (ixs, ixs, i1s) With ix = (igs, ixs) €
[1:2nU(X52)=)] x [1 : 2n(F2=1(X52)+6)) - Correspondingly,
split My, = (M, Mys). We have
H (Mg, Mys| Z7)

=H(Ms, M5, X™|Z") — H(X"|M1s, Mys, Z"™)

(@)
> H (Mg, Mys, X", Z") — H(Z™) — ney

=H(X")+ H(Z"|X")— H(Z") — ne;
®)

>nRy +nH(Z|X)—nH(Z) — ne;

(©

> H(Mis, Mys) —nd(e),

where (a) follows asH (X"|Mys, Mys, Z") < mne; due

my @ mg to the channel. Both receivers can decode reliabtyg Fano’s inequality and that the eavesdropper can dec
by utilizing their side information to extract intended message§™ reliably, given (Mg, M1, Z™); (b) is due to the fact

if R1 = R2 S min{I(X; Yl), I(X, Yz)}
For the secrecy constraint, we have ot 1, 2,
I(M;; Z™) < I(M;; Z™, M) = I(M;; M) = 0, @)

where the 1st equality is due to Markov chadify — M —
Z™; and the 2nd is sincé/; is a one-time pad of\/;. [ |

that H(X") = nRy; H(Z"X"™) = nH(Z|X) since the
channel is memoryless; all (Z") = Y°i, H(Zi|Z7!) <
Sr,H(Z) = nH(Z); (c) is due to the fact that
H(M,, Mys) = n(Ry — Ry) +n(Ry — I(X; Z) +¢).

Above inequality impliesI(Mi,;Z™) < nd(e). In addi-
tion, we boundl (Miy; Z™|Mis) < I(Mig; Z™, Mig, My) =

Note that the above achievable region is limited by the wordéMux; My, Mis) = 0 due to Markov chainMy, —
channel. In the following, we consider other coding scheméd/x, M1s) — Z". Therefore, we obtain
to enlarge the achievable region beyond the one stated above](Ml; Z") = (Mg Z") + I(Myy; Z"|Myy) < nd(e).

B. Secrecy coding approach

Consider those channel inputéz) such thatl(X;Z) <
min{I(X;Y1),1(X;Y3)}. Assume thaf (X;Y5) < I(X;Y}).
For such cases, we split/;

nl(X;Y,) which is secured by capsuling with/; in a one-

time pad (thus\/, is also secured). We obtain the following.

Proposition 3. Any (Ry, Rs) € RT satisfying
I(X;Z) < Ry < I(X;Y1); I(X;Z) < Ry < I(X;Y2) (8)

for p(x) such that I(X;Z7) < min{l(X;Y7),1(X;Y3)} is
achievable.

Proof: Assume thaR?, < R;. We splitM; into two parts,
i.e., My = (Mig, M1s) with My, of entropynR,, the same
as Ms; whilst M, of entropyn(R; — Rs).

Randomly generate2”® codewords z” according to
[T, p(z;). Throw them into2"(#1~2) bins [3] and index
2" ik, 1) With (ig,i1s) € [1: 27F2] x [1: 2n(Fa=R2)],

Given (mq, ms), sendx™(my, mis) With my = my, @
mqy to the channel. Receiver 2 can decodg reliably using
typical set decoding iRy < I(X;Y2) with the help ofm.,
and thus extractn,. Receiver 1 can decode bathy, andm
if Ry < I(X;Y1), and extracin;; from the former givenn.

At the eavesdropper, for the secrecy/db, we have

I(M3; ") < I(M2; Z™, My, Mys) = I(Mg; My, Mis) = 0,

Further, the secrecy af/; is shown as follows. Sinc&, >

This concludes the individual secrecy proof. [ ]

Proposition 4. If the channel to the eavesdropper is degraded
with respect to the channels of both legitimate receivers, then

into two parts: one of entropy the individual-secrecy capacity region is given by the union of
n(I(X;Y1) — I(X;Y2)) which is secured by using secrec oCy capacy reg g y

YRy, Ry) € RT pairs satisfyin
coding for classical wiretap channels; and the other of entroéa 1 Re) P siying

Y Ry < min{I(X; Y1) — I(X; Z) + Ro, I(X; Y1)}:
Ry < min{I(X;Ys) — I(X;Z) + Ry, I(X;Ys)},
where the union is taken over p(x).

Proof: With the degraded condition, we havd (X; Z) <
min{I(X;Y7),I(X;Y>2)} for anyp(z). DenoteR, to be the
region achievable by Proposition 3, as defined in (8) . Furt!
denOte’R,Q = {(Rl,Rz) Ry = 07R2 < I(X7}/2)7I(X7Z)}
andRs = {(Rl,Rg) R < I(X,Yl) — I(X,Z),RQ = O},
which are achievable by employing Wyner’s secrecy codi
The achievability of the region in (9) follows from the conve
hull of R; U Rs U R3. The converse follows directly fromr
Theorem 1 together with Proposition 7 provided below.m

(9)

C. Superposition coding

Consider a degraded broadcast channel whére> Y| —
Y, forms a Markov chain. Then, one can utilize superposit
coding to transmit a cloud center to the weak receiver :
both the cloud center and satellite codewords to the str
receiver [3]. By utilizing the one-time pad message as
cloud center, one can readily achieve the following region

Proposition 5. The individual-secrecy rate region for BC-RS
is achievable for the set of the rate pairs (R;, R2) such that

I(X; Z), for a fixed iy, one can further bin the codewords R; = I(U;Y:); Ry < I(V;Y;|U) - I(V; Z|U) + R, (10)
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over all p(u)p(viu)p(z|v), where ¢ = argiéx{llig}{l(U;E)}
and 7 = {1,21\{t}. ’

Proof: Assume thatR, < R;. (This corresponds to the

caset = 2 in which I(U;Y2) < I(U;Y7), sinceV can
be always chosen such thatV; Y;|U) — I(V; Z|U) is non-
negative). Represedt; by (M, M), with My, of entropy
nRs, the same as that dff; and M; s of entropyn(R; — R2).

Codebook generation: Fix p(u),p(v|u). First, randomly
generate2"?2 i.i.d sequences”(k), k € [1 : 2"2], accord-
ing to [];", p(u;). Secondly, for each.”(k), according to
[T, p(vs|u;), randomly generate i.i.d sequences(k, s, r)
with (s,7) € [1: 2n(Fa=Ra)] 5 [1 : 2nU(V3ZIU)=0)],

Encoding: To send message&ni,ms), chooseu™(k),
wherek = my, £ my;, @ my. Givenu™(k), randomly choose
r € [1:2nUV3ZIU)=9] and findv™(k, mis, 7). Generater™
according to[ [, p(z;|v;), and transmit it to the channel.

Decoding: Receiver 2, upon receivingy, findsu" (k) such
that (u”(k),y7) is jointly typical. (It is necessary thak, <
I(U;Y>).) With the knowledge ofn;, decodens = mq; D k.

Receiver 1, upon receiving?, finds «"(k) such that
(u”(l%),y?) is jointly typical. (This is possible sinc&, <
I(U;Y,) < I(U;Y7).) Corresponding ta:™(k), further find
v™(k, s, 7) which is jointly typical with 7. With the
knowledge ofmg, decoderin, = (ma @ k,m1s).

Analysis of the probability error: Similar to the analysis
of the superposition coding for general discrete memoryl
broadcast channels, we ha¥ge;,P.» — 0 asn — oo if
Ry < I(U;Ys)—eandR; < I(V;Y1|U)—I(V; Z|U)+ Ry —e.

Analysis of individual secrecy: For the secrecy of\/z, due
to the Markov chailMly — (M, M) — Z™, we have
I(My; Z2™) < I(Ma; Z™, My, Mys) = I(Ma; My, M) = 0,
where the last equality is due to the fact tAdf = Myd My,
is independent ofi/; as its one-time pad encryption.

For the secrecy of/;, we have

I(]Wl;Z") :I(M/lk,Mls; Z") (12)
:I(Aflk,Zn) +I(M15,Zn|M1k) (12)

Wr(Myg; 27| My) (13)
SI(Z\/Ils;ZTL7M1kaMk) (14)

=] Mls;Z",]V[k)+I(]Wls;M1k\Z",]V[k) (15)

Or(Myy; 27, M) (16)

=H (M) — H(Mys| My, Z"™) a7

:n(Rl - RZ) - H(M15|Mka Zn): (18)

where (a) is due to the fact that(Mi;;Z") = 0 by

following a similar proof ofI(My; Z™) = 0; (b) follows that
I(Mys; Myg|Z™, My) > 0 and thatH (M| Z™, My, Mis)
H (M| My, My,) = H(Myy) > H(M|Z™, My).

To complete the proof thak(My; Z™) < nd(e), we show
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in the following thatH (M| My, Z™) > n(R1 — R2) —nd(e).
©

H(M; | My, 2") CH(M, U™, 27)
=H(Mys, Z"|U") = H(Z"|U")
=H(Mi,, 2", V"|U")

~ H(V"U", My, Z") — H(Z"|U")
=H(V"|U™) + H(Z"|U"™, V")

— H(V"|U", My, Z") = H(Z"|U")

@
>n(R1 — Rz) —nd(e),

where (c) is due to the fact thal/™ is uniquely deter-
mined by My; (d) follows as H(V™|U™) n(Ry —
Ry) + n(I(V;Z|U) — € by codebook construction
H(Z"|U™, V™) = Y H(Z|U;, V;) = nH(Z|U, V) since the
=1

channel is discrete memoryless,(V"|U", M5, Z") < ne
due to Fano’s inequality and that the eavesdropper can
code V™ reliably, given (U™, My, Z™); and H(Z"|U™)
STH(Z)|ZL U™ < S H(Z:|U) = nH(Z|U).
=1 =1
D. Marton’'s coding

A universal approach is to apply Marton’s coding for tl

general broadcast channels, utilizing the one-time pad mes
as common message to transmit secure messages to both

Proposition 6. The rate region is given by (R = Ry +
Rés, Ry = Ry, + Ros) pairs such that (Rg, Ri1s, Ras) belongs

€& the region given by the union of rate tuples

Ry <min{I(U;Y1),I(U;Y2)}

Ris <min{I(V4, V2; Y1|U) — Ro, I(V1; Y1, Va|U)}

Ry <min{I(V1,Va;Ya|U) — Ro, I(Va; Yo, Vi|U)}
Ris + Ros <I(V1; Y1, V2|U) + I(V2; Y2, Vi|U) — Ry

over any pmf p(u)p(vi,ve|u)p(z|vi,v2), where Rg
I(Vi; VolU) + 1(V1, Va; Z|U).

Proof: RepresentM;, My by M; = (My, M;s) and
Mo (Mag, Mag) with My, Moy of entropy nRy; whilst
M of entropynRs and M, of entropynRa;.

Codebook generation: Fix p(u), p(vi|u), p(va|u) and
p(z|vy,vo). First, randomly generat@™?* i.i.d sequences
u"(k), k € [1:2"%] according to[ [\, p(u;).

For eachu™(k), randomly generat@"(firs+fictFir) jjd
sequences? (k, s1,c1,r1) With (s1,c1,7m) € [1 : 2nfs] x
1 : 2nfhe] x [1 ¢ 27fv] according to T, p(viilus);
and similarly generate2n(f2s+i2ct+Rar) jjd  sequences
0B (k, s2,c2,72), (S2,¢2,72) € [1: onfas) 5 [1: 27F2e] % [1 ¢
2nf2r] according to[ [, p(va;|u;). For a fixed(k, s1, s2), we
denote the produdt; x V> codebook to b€y, v, v (k, s1,52).

Encoding: To send messageéni, ms), chooseu™(k),
where k my mir © meg. Given u"(k), find in
the product codebooKy, v, (k,mis,m2s) @ jointly typi-
cal (v} (k,mis,c1,71), 05 (k, mas, c2,72)) pair. (This is pos-
sible if Ri. + Re. > I(V1;V2|U)). Generate and transmi
z" (v}, vy) according to [\, p(x;|v1s, va;).
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Decoding: Receiver 1, upon receiving, finds u”(fc)
such that(u"(l%),y{’) is jointly typical. (It is necessary that
Ry < I(U;Y1)). With the knowledge ofn, andu” (k), further
find (v} (k,7s, é1,71), 08 (k, mas, é2,72)), which is jointly
typical with y7'. Decoderin; = (ma ® k, Mmys).

Receiver 2, upon receiving, finds «"(k) such that
(u™(k),ym) is jointly typical. (It is necessary thaR;, <
I(U;Y2)). With the knowledge ofm; and u"(k), further
find (U?(’C,mls,61,’f‘l)),UgL(k,TArLQS,éQ,TA‘Q)), which is ]0|nt|y
typical with y%. Decoderng = (mqj, @ l%, Mas).

Analysis of decoding error: For P.; (similar for P.5), a
decoding error happens iff 1 of the following events occur:

e ={ (" (k),91) & T},

Ery ={(v] (k,mus, c1,m1), 08 (K, mas, c2,72)) & T3,
513 :{(U?(]%m15701,7’1)avg(k>m25, CZar2)7y{L) ¢ 7—6(n))}7
E1a :{(v?(kj7mlls7cllir/1):v;(l@st: 0/2774/2)7?/?) € 7—5(”)7

mlls 7é mls}'
The probability of errorP, ; is upper bounded a®.; <
Pr(511)+Pr(512|5f1)+Pr(513|5f1,5f2)+Pr(514\5f1). By the
LLN, Pr(&1) andPr(&13|€5, £Y,) tend to zero as — oo;

(U™, Mys, Mag, Wi, Wa., Z™); (c) follows thatH (Z™|U™) <
nH(Z|U) and H(Z™|\U™,V;*, V") = nH(Z|U,Vi,Vs) and
additionally by the rate choicB;, + Ra, = [(V1, Va; Z|U)—e.

Adding those conditions such that ;, P.» — 0 asn — oo
to the rate choice?y, + Ry, = I(V1, Va; Z|U) — €, we have

Ry <min{I(U;Y1),I(U;Y2)}
Ric + Roe 21(Vi; B|U)

Ris + Ric + Rac + Ry + Roy SI(‘/lv ‘/27K|U) for i = 1, 2

Ris+ Ric + Ry <I(V13Y1,V3|U)

Rys + Roc + Rop <I(Va;Y2,V1|U)
Eliminating Ry, Ra., R1,, Ro, by applying Fourier-Motzkin
procedure [3], we get the desired region(&f;, R1s, R2s). B

Remark: Setting U, Y2, Vo = (), the region coincides with

the secrecy capacity region of the wiretap channel [4]; If '
let U = 0, it reduces to an achievable region under the jo
secrecy constraint (indicated by the above secrecy proof).
E. Upper bounds

For the individual secrecy capacity region of BC-RSI,
obvious upper bound is the capacity region of the BC-F
without an eavesdropper as given in Theorem 1. Another uf

Pr(&12|€7,), by the mutual covering lemma [3] , tends to zerg,nq follows directly the work of wiretap channel with shar

asn — oo since Ri. + Rae > I(V1;V3|U) + ¢ The 4th
term,Pr(&£:14|5;), by the packing lemma [3], tends to zero a
n — o0 if Ris+Ric+ Rac+ Rir+ Rar < I(V1, Va; Y1|U) —e,
andRis + Ri. + Rir < I(Vl;Yl, VQ|U) — €.

Analysis of individual secrecy: For the secrecy ofM;

(similar for Ms), we follow the steps in (11)-(17) and obtainU—Vv—X—(Y1,2)

I(My1;Z™) < nRys — H(Mys| My, Z™). (29)

In the following, we show thatH (Mis, Mas| My, Z™) >
n(Ris + Ras) — nd’(e) holds if we take Ry, + Ra,. =
I(Vi,Va; Z|U) — e. This implies thatH(Ms| My, Z™) >

nRis — nd(e); and by (19) we obtaid (M1; Z™) < nd(e).
H(M157M25|]\/fkvzn)

=H(Mys, Mas, Z™"|\U™) — H(Z"|U")

(a)

> H(Mys, Mas, Z"|Wie, Wa, U™) — H(Z"|U™)

:H(]‘/[157A[257 va ‘/1n7 ‘/27L|ch7 W2Ca Un) - H(Zn|Un)
- H(V1n7 ‘/Qn‘chv W207 Uny ]\/[157 M257 Zn)

(gH(]\/[157Z\/[2572n7‘/1n7‘/2n|W107W2c7 ur)
—H(Z™"U™) — ne

—H (Mg, Mag, Vi, V' |Wie, Woe, U™) — H(Z™|U™) — ne
+ H(Z"|\Wie, Wae, U™, Mis, Mag, VI*, V35?)

=n(Ris + Ras + Rir + Rop) + H(Z"|U™, V", V3")
— H(Z™U™) —ne

()
zn(Rls =+ Rgs) — TL(SI(G)

where (a) follows by introducing random variallé, ., W,
for the covering indicescy, co; (b) follows from the fact
that the eavesdropper can decodf¢’, V;* reliably given
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key [5], as stated in the following proposition.
s

Proposition 7. For any R, in the achievable region, R; is
upper bounded by

max min{I(V;Y1|U)-I(V; Z|U)+ R, I1(V;Y1)}.
If the channel is degraded such that X — Y; — Z, then for
any R in the achievable region, R; is upper bounded by

_min{I(X; Y1) = I(X; Z) + Ro, I(X; Y1)}

max
X—Y—

Smilar results hold for interchanging 1 and 2 above.

IV. CONCLUSION

In this paper, we studied the problem of secure commt
cation over BC-RSI under the individual secrecy constrair
Compared to the joint secrecy constraint, this relaxed set
allows for higher secure communication rates at the expens
having a weaker notion of security. We provide some spe
case results together with several achievable schemes; w

the characterization for the general case still remains as

open problem.
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Abstract—Modern message-passing error control decoders are
studied in regards to the processing energy required to extract
digital information from a noisy received signal. It is shown
that fundamental charge-based computational models, together
with limits of error-free message passing along the processors’
communications network, imply a lower limit to the energy
efficiency achievable for such decoders in modern and future
VLSI implementation technologies. The limiting energy of node
processing is estimated for belief propagation decoding of LDPC
codes, using estimates of nodes’ internal processing activity. The
limiting energy of message passing is estimated by using an
energy-annotated density evolution procedure. For the class of
decoders studied, the minimum energy is found to be on the
order of 0.4f] per bit for node processing, and 9.86aJ per bit
for message passing.

I. INTRODUCTION

As the miniaturization of very large scale integrated cir-
cuits continues to advance at an exponential pace, the power
consumed by these circuits is becoming an ever more limiting
problem, even as the computational resources — i.e. the
density and number of switching devices — are becoming ever
more available to accommodate even the most complex digital
algorithms.

Integrated circuits (chips) with more than one billion
transistors are now quite commonplace, and that growth is
projected to continue at least for the next decade. The Inter-
national Technology Roadmap for Semiconductors illustrates
the exponential empirical law, known as Moore’s Law, that
appears to be underlying this progress.

The process is driven largely by the decreasing feature sizes
of integrated circuits. Subsequent generations of fabrication
technologies are known collectively as process nodes. Current
leading-edge technology has arrived at the 22nm process node,
and further miniaturization towards single digit nano-meter
scales appears assured. Clearly there are immense challenges
that are facing the industry in pushing this miniaturization
forward, and we will not further concern ourselves with these,
but accept this trend.

Instead, we will concentrate on the minimum power that
is required to operate circuits of any size, in particular those
at the most advanced nodes. In order to lead this discussion,
we need to have a suitably general computational model
of switching devices and the energy dissipated during an
operation. The ubiquitous complementary metal-oxide semi-
conductor (CMOS) technology uses two complementary de-
vices as shown in Fig. 1. This CMOS gate operates as a basic
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switch and thus is capable of processing binary information.
The switch operates by charging and discharging a holding
capacitance (usually the interconnect capacitance combined
with the input capacitance of the next gate(s)).

Well Diameter: 1.5nm

““

4

3

w: width

a: width po

w width of barrier

m
Gate 1 CL

gate or line

capacitance

ofwell

= Single-Electron

Transistor

CMOS Circuit Single-Particle Model

Fig. 1. Generic structure of a CMOS logic gate, and the evolution from MOS
technologies toward single charge-based switching devices.

When the gate switches states it moves charge between the
supply reservoir (Vyq) and ground. At each such transition,
an amount of energy equal to C;V?2, is dissipated into heat.
When considering the future evolution of digital technologies
to the quantum scale, as illustrated in Fig. 1, the energy of
transition may be described as the work done when moving
a particle across a potential barrier. The evolution toward
single charge switches is inevitable, particularly since single-
electron transistors and other quantum-scale devices have been
demonstrated in the laboratory (e.g. [1]).

One can ask the question what the limits are of such
a charge-based computational model. This is precisely the
exercise that Zhirnov et al. [2] conducted, using the Landauer
limit for irreversible computing [3], which postulates that
the minimum amount of energy released in the (irreversible)
processing of one bit of information is bounded by
E>FE; =kpTIn2=0.017 eV, (1)
where T = 300 K and 1 eV = 1.602 x 10~ V. Applying
Heisenberg’s uncertainty principle Zhirnov computed minimal
size and switching times for such an £ = E;, minimum-energy
switch as

h/2m
2m.F

h/2m

Tmin =

E

= 1.5nm; tyi, = =0.04ps (2)
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These figures in turn imply a maximum integration density
Vmax Of such minimum size switches, and a maximum power
density Ppax of

Vinax = 4.7 x 10" devices/cm?; Pyax = 3.7 x 105 W/em?
3)
The Landauer limit applies to a single charge storage model
shown in Fig. 1, where a charged particle is in one of two wells,
separated by an energy barrier. The minimum energy needed
to move the charge is precisely E. Meindl also showed that
the Landauer limit can be obtained when considering only
the operation of an “ideal” MOSFET device operating in its
subthreshold region [4]. Hence the Landauer model is quite
applicable to the CMOS structure from Fig. 1.

Since the Landauer limit (1) is applicable to irreversible
operations, one might speculate that it can be circumvented
by using reversible or adiabatic computational circuits. Meindl
and Davis [4] disposed of this possibility by showing that the
Landauer limit can also be obtained by solving the Shannon
capacity of an interconnect wire in the presence of thermal
noise, and hence can be interpreted as a limit on signalling
between gates and modules, one that cannot be circumvented
by technology choices.

In the sequel we will study the two main aspects of
energy consumption that affect an error control decoder, in
particular a decoder for low-density parity check (LDPC)
codes. LDPC codes are among a class of very powerful error
control codes which can achieve the theoretical limits on
communications, known as the Shannon limit. They have a
low-complexity iterative decoding algorithm, which not only
allows the construction of decoders for very large codes, but
also has made these codes the de-facto standard in many
communications applications. With error control coding now
applied to very high speed applications, such as the 802.3
10Gbit/s modems, or optical communications systems at even
larger rates, their power consumption has become a targeted
concern that appears to be limiting future applications.

Fig. 2 shows the processing structure of an LDPC code.
The two processes that need to be executed are local com-
putation, summarized in the figure, and communication to
connected nodes. These will be analyzed from a power con-
sumption viewpoint.

Processing: p;_,; = Zjevh B

Processing: 3j_,; = 2tanh™! (Hieci\j tanh ()\1/2)>

Fig. 2. Network of an LDPC code. Their typical size is 1000—10,000 nodes.

II. NODE PROCESSING

Without going into the full implementation details of the
local processing operations at the nodes, it can be shown
that the computational complexity of each node is O(W),

where W is the number of binary digits used in the number
representation of a digital decoder. W is typically between 6—
12 bits, and has a subtle impact on the performance of the
code — see [8]. More specifically, activity simulations showed
that there were on the average 2.7 digital transitions per bit
and message line at the variable nodes (top nodes in Fig. 2),
and 3.3 digital transitions per outgoing message in the check
nodes (bottom nodes).

We approach the computational power limit in the follow-
ing way: for each transition that occurs during decoding, a
minimal amount of energy proportional to Ey, is dissipated.
The problem now is that if the barrier is set at the mini-
mum energy E7, there is a significant over-barrier probability
P = e~ Bvarmier/kT ywhich makes such a cell very unreliable. In
fact, the over-barrier probability reaches 50% at Er, making
the cell quite useless for computation. To keep our nodes
operating at acceptable levels of reliability, the barrier energy
needs to exceed Ej. We somewhat arbitrarily assume that a
factor K = 10, which leads to an over-barrier probability of
10~%, can both be realized in the future, and is acceptable in
the algorithm.

With these assumptions, the node processing per informa-
tion bit is lower bounded by

Ey, > KELIW (2.7d, + 3.3(d. — 1)) (4)

where I is the number of iterations in the code network,
usually on the order of 5-20. Clearly, varying W, I, and the
code parameters d,,d. can move this number by an order of
magnitude or so, and the limit is to be seen as that for an
average code. With K = 20, = 10,d, = 3,d. = 6, W =8,
we obtain Ej > 0.11].

Expressed in kT, the processing requirements are on the
order of 25,000 k7T per bit. In the next section we will
argue that transporting the messages between the local nodes
will incur an energy effort that is comparable to the energy
expended in the computations themselves, thus arriving at a
lower energy limit for a charge-based error control decoder.

III. NETWORK COMMUNICATION

In this section we address the second power-intensive
portion of a message-passing error control decoder, which is
the communication of the node messages along branches of
the code network (see Fig. 2), by evaluating the minimum
energy cost associated with transporting messages. The de-
coder is parameterized by the traditional degree distribution, by
symbol and check node update algorithms, and by the message
representation used for transmitting messages between check
and symbol nodes. The message representation is defined as
the mapping from possible messages to a set of corresponding
physical signals. A similar approach has been taken previously
to minimize activity in digital LDPC decoders (e.g. by Gaudet
and Crowley [5], [6]).

The density evolution method is modified to examine the
effects of internal signalling near the k7" noise limit in electri-
cal interconnects. By considering the physical signals passed
between nodes, we obtain technology-independent conclusions
about the minimum energy associated with error-free decoding.
Low-energy signals are subject to upsets from k7 noise, but
a decoder is able to self-correct many such upsets.

In order to evaluate signalling energy limits in message
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(617 Aﬁl)
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(ﬁZa Aﬁ2)
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Fig. 3. Illustration of the density estimation procedure for a symbol node
with d,, = 3. The incoming messages (3;, AB;) are generated from the joint
distribution. The 3 messages are used to compute outgoing message j. Then
the 8+ AS messages are used to compute p+ Ap. The energy is a function
of AB and Ap.

passing, we consider that each signal wire is affected by
Gaussian white thermal noise with energy k7' Joules per
sample. Physical signals are assumed to be voltages, specified
in units of (kT)l/ % The normalized energy of physical signals
is estimated by assuming unit interconnect capacitance, so
that Eggna = aV3, where « is the activity defined as the
wire’s frequency of transitions. The unknown capacitance C7 is
treated as a technology-dependent scale constant. The precise
value of C7 has no influence on the energy calculations,
since Vjq can be varied proportional to C;l/ 2 (we could
equivalently say that Vgq has units (KT'/ C’I)l/ 2).

Based on this model, each signal wire is represented as
an additive white Gaussian noise channel with zero mean and
unit variance. For example, suppose a binary value z € {0, 1}
is transmitted as part of the message from a symbol node to
a check node. The value is represented as a voltage v, €
{0, Vaa}, and transmitted across the unit-variance AWGN
channel, which adds a noise sample n. At the channel’s output,
the received signal v, = v, + n is resolved to a binary value
y € {0, 1} by applying a threshold at Vaq/2.

In order to account for the energy per message in a fully-
parallel LDPC decoder, it is necessary to track the joint
distributions of messages and their transitions, as shown in
Fig. 3. The detailed procedure was described by Gaudet [5],
and is only briefly summarized here. The symbols 3 (¢) and
ApB (t + 1) refer to messages passed from a check to symbol
nodes, and the changes in those messages, respectively, during
iteration ¢. Similarly, the symbols x (¢) and Ap (¢t + 1) refer
to messages passed from symbol to check nodes and their
changes during iteration ¢. Note that the dependence on ¢ is
dropped when there is no ambiguity.

To estimate the energy required for message passing,
density evolution is performed as usual while tracking the
joint distributions for (8, AB) and (u, Ap). The symbol
node estimation is performed as follows. Random samples
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are generated jointly for both 8 and AS3. The symbol node
update equations are used to obtain 4 and Ap. To compute the
sample’s transition energy, both i and p + Ay are mapped to
their corresponding message representations. If a wire’s signal
value at iteration ¢ is v, (¢), then the wire’s normalized transi-
tion energy during iteration ¢ is equal to (v, (¢ + 1) — v, (£))°.
The sample’s total energy is the sum over all wire transition
energies.

The same procedure is used to estimate the energy of sam-
ple check-to-symbol messages. The samples are accumulated
to compute the mean energy per symbol message and check
message, &£, and £, respectively. Finally the average energy
per message is

dy £ 4 d.
dy +d. " dy,+d,

IV. RESULTS

Simulations were performed across 30 iterations using the
modified density evolution procedure described in Sec. III. The
channel noise parameter ¢ was varied following the procedure
described by Richardson [7]. Regular (3,6) code ensembles
were considered. The message representation is a WW/-bit word
with sign-magnitude encoding and uniform quantization in the
interval [—Lmax, +Lmax|. The maximum LLR magnitude for
each simulation was calculated as (d, + 1) % 4.0/Ny, where
Ny = 202 is the power spectral density of channel noise.

Em = Es.

Fig. 4 shows the message error rate (MER) as a function
of both o and Vyq for the case W = 8. Fig. 5 shows the
MER plotted against the corresponding &,,, for W = 8. Figs. 6
and 7 show the MER vs Vyq and &,,, respectively, for the
case W = 10. The average &,, was calculated from the mean
transition activity averaged over 30 iterations. The MER was
calculated as the average rate of messages with erroneous sign
during the final six iterations (time steps 26 to 30). Fig. 5 shows
that the MER is a function of Vg4 and decreases below our
measurement threshold (i.e. MER < 107%) when Vgq > 10,
which we consider to be successful convergence.

Counting the number of messages that need to be ex-
changed during the course of a decoding cycle normalized per
bit, we obtain a bound for the minimum energy per symbol to
drive the interconnect network as

E, > 2Id,&n (&)

Using the thresholds evaluated in Figs. 5 and 7 of approx-
imately 40 KT, we obtain F,, > 2400kT for I = 10 and
dy = 3.

V. CONCLUSIONS

We have used fundamental physical and information the-
oretic limits to bound the minimal energy required to operate
a (large) message passing error control decoder. Based on
average switching activity within a simulated decoder design,
the limiting energy per bit is on the order of 30,000kT,
which equals 0.1 femto Joules per bit. This bound may
even be an overestimate because the decoder may be able
to tolerate some noise-induced errors if the barrier parameter
K is lowered. Additionally, the average switching activity
tends to diminish across iterations when the decoder converges.
Adiabatic circuit techniques could conceivably be employed
to reduce the irreversible information loss. In that case, the
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energy in the communications network would be limiting and
density evolution would provide an inescapable lower bound
on the energy required for message passing, approximately
2400kT or 10 atto Joules per bit. The results in this analysis
represent only a single class of codes and decoding algorithms.
The methods presented here can conceivably be extended and
applied to other codes and algorithms as a subject for future
research.
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Abstract—Classical trellis-coded modulation (TCM) as intro-
duced by Ungerboeck in 1976/1983 uses a signal constellation of
twice the cardinality compared to an uncoded transmission with
one bit of redundancy per PAM symbol, i.e., application of codes
with rates "~ when 2" denotes the cardinality of the signal
constellation. The original approach therefore only comprises
integer transmission rates, i.e., R = {2, 3, 4 ...}, additionally,
when transmitting over an intersymbol interference (ISI) channel
an optimum decoding scheme would perform equalization and
decoding of the channel code jointly.

In this paper, we allow rate adjustment for TCM by means of
puncturing the convolutional code (CC) on which a TCM scheme
is based on. In this case a nontrivial mapping of the output
symbols of the CC to signal points results in a time-variant trellis.
We propose an efficient technique to integrate an ISI-channel
into this trellis and show that the computational complexity can
be significantly reduced by means of a reduced state sequence
estimation (RSSE) algorithm for time-variant trellises.

Index Terms—trellis-coded modulation (TCM); punctured con-
volutional codes; Viterbi-Algorithm (VA); ISI-channel;

I. INTRODUCTION

Ungerboeck’s trellis-coded modulation (TCM) [1] is a band-
width efficient digital transmission scheme when very low
overall latency is desired. Low latency is ensured by the use
of convolutional codes instead of block codes (cf. [2]) and the
dispense with interleaving (as opposed to conventional bit-
interleaved coded modulation [3]).

Ungerboeck showed that a significant increase in the
Asymptotic Coding Gain (ACG) can be achieved when con-
sidering channel coding and modulation jointly. By expanding
the constellation from 2" ! to 2" signal points and employing
a rzlte:—”‘7—_L1 convolutional encoder one can improve the robust-
ness of the transmission against noise by up to 6 dB without
any further costs besides some computational effort. However,
TCM is strictly limited to integer transmission rates.

Our approach applies punctured TCM (P-TCM) with an
arbitrary rate. We extend P-TCM to intersymbol interference
(ISI)-channel scenarios. In this case, ML-decoding can be
performed by efficiently incorporating the ISI-channel into the
trellis.

We show that reduced-state sequence estimation (RSSE) can
be applied in order to reduce computational complexity. We
were able to show in [4], [5] that for minimum phase channels,
the number of states to decode must not be significantly higher
than the number of states in the channel encoder. In this
paper we will describe the application of RSSE to P-TCM

and discuss the partitioning of the time-variant trellis into
hyperstates.

This paper is structured as follows: In Sec. II we first
introduce notation and present the system model. Sec. III
briefly recapitulates a presentation technique that enables
the implementation of punctured encoding. The application
of RSSE for P-TCM is given in Sec. IV. Final results of
numerical simulation and conclusions are given in Sec. V and
Sec. VI, respectively.

II. SYSTEM MODEL

This paper deals with convolutionally encoded pulse-
amplitude modulated (PAM) transmission as depicted in Fig. 1.
(Here, the term PAM is used for complex-valued signal con-
stellations A as well including amplitude-shift keying (ASK),
phase-shift keying (PSK) or quadrature-amplitude modulation
(QAM).) A binary data sequence (u) is encoded using a rate-

c[k] 2[k)
i "

Fig. 1. Concatenation of a rate-2 convolutional encoder C and puncturing
P with labeling and modulation (ny = 0, nc = 2).

";—71 binary convolutional encoder C with generator polyno-
mials 9i(D), 1 <i<ng;1 < j < nc—1, with delay operator
D, n.—1 parallel binary-input symbols and n. parallel output
symbols at each time instant.

At each output of the encoder, the symbols traverse through
a puncturing system with puncturing matrix P = [P;;], P;; €
{0,1}; 1 < i < ne; 1 < j < Q and period 2. For each
(n¢)-tuple of encoder output symbols the puncturing scheme
cyclically advances by one step. Where F;; is zero, the current
symbol at the output is discarded, accordingly.

The punctured encoded output symbols c[k] are labeled to
£[k] before being mapped to the M = 2™+ = 2™.ary signal
constellation A.

The modulated (possibly complex-valued) transmit signal
traverses through a memory-L discrete-time ISI-channel with
L + 1 channel coefficients h[k] with k denoting the discrete
time index.

The task of the receiver is to estimate for the information
bits given the transmit signal y[k] plus additive noise. Here,
we focus on perfect channel knowledge at the receiver-side.
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III. PUNCTURED TRELLIS-CODED MODULATION

In the following, we will briefly recapitulate punctured
convolutional trellis coded transmission over ISI-channel sce-
narios as introduced in [5].

In contrast to classical TCM, our approach using punctured
convolutional codes results in nontrivial mapping of coded bits
to modulation symbols. As a consequence, the trellis is time-
variant as already described in [5]-[7].

In order to briefly recapitulate decoding concept for punc-
tured trellis coded modulation, we focus on 4-ary ASK-
modulation, a memory-2 convolutional code, and a short
puncturing scheme namely P = [(1 nTo l)T]. Note that,
whenever the number of erased bits in one period of the punc-
turing scheme is not dividable by log, (M), the puncturing
scheme has to be repeated until this condition is fulfilled.
This restriction ensures that entire modulation symbols can be
constructed by the finite state machine (FSM). In our example,
the puncturing period (e.g., [ (11)" (01)T ]) has to be applied
twice. As can be seen from the encoding process in Fig. 2, the
third and the seventh encoded symbol are punctured and do
not contribute to the labeling and modulation process. Thus,
the second symbol, i.e., a[k + 1], contains information about
u[l+1] and u[l+2] and the third symbol, i.e., a[k+2], contains
information about u[l 4+ 2] and u[l + 3].

P - < P
u[l + 1] ull + 2] ull + 3]
e AL AL P AL
¥
[msB]: [LsB] [MsB] [LsB]|
o[k + 1] [k + 2]
v v
alk] alk + 1] alk + 2]

Fig. 2. Encoding process for a rate—% punctured convolutional code and
natural labeling. Overall transmission rate R = %.

When decoding the second symbol (e.g., a[k+1]), a decision
can be made for u[l + 1] but not for u[l + 2], as a portion of
information will be received in the consecutive symbol. Thus,
the trellis has to be expanded in order to use the symbols
alk + 1] and a[k + 2] when decoding u[l + 2]. As sample
trellis is given in Fig. 3.

Fig. 3. Time-variant trellis for a punctured rate-2/3 convolutional code. In
the first to VA steps, two transitions arrive at each state, i.e., one bit can be
estimate, whereas the third step allows an estimation for two bits.

To algorithmically handle the time-variant mapping we in-
troduced a set of so-called generator offsets 7; which describe,
depending on the puncturing scheme, modulation size, and
time instant, the relations between generator polynomials,
input value, FSM state, and mapping to MSB or LSB, respec-
tively. For each new generator offset 7; a new trellis segment

k+3k+2k+1 k k—-1k—-2k-3k—-4

I 1
7o | |
T2 — B D
L ]
T — I
1 1
To : 0D
T I
T t | Ql[l]\w
 — — 5%
Fig. 4. State transitions of the transmitter FSM with R = 4/3 and the

relations between generator polynomials, FSM-state/input and channel state
for a memory-1 ISI-channel.

arises, e.g., the number of generator offsets equals the number
of trellis segments in one trellis period.

When transmitting over an ISI-channel, several symbols are
stored in the memory of the ISI-channel independently from
the encoding and puncturing process. Thus, multiple generator
offsets 7; have to be considered simultaneously. This can be
seen from Fig. 4 for a memory-1 channel. There, the resulting
sequence of used generator offsets is depicted. This scheme
can easily be extended to arbitrary lengths of the ISI-channel.
A detailed description as well as an algorithm to construct
such trellises will be given in a separate full-length paper.

IV. REDUCED-STATE SEQUENCE ESTIMATION

Reduced-state sequence estimation (RSSE) [8] is proposed
to reduce the number of states at the cost of small loss in
Euclidean distance. In order to introduce RSSE for P-TCM, we
first briefly recapitulate delayed decision-feedback sequence
estimation (DFSE) [9].

A. Delayed Decision Feedback Sequence Estimation

When equalizing (uncoded) digital PAM signaling over a
discrete-time ISI-channel with L+ 1 tabs using DFSE (i.e., no
decoding), the trellis is constructed from the first L < L tabs
only. Thus, the number of states is reduced from M~ to ML,

The remaining L + 1 — L channel tabs are considered
in a delayed decision-feedback equalization (DFE) that is
performed in each trellis state using the delayed path register
of the corresponding state.

The main difference to full state equalization appears in the
metric computation for each time instant. From (1) it becomes
clear that the state specific path register pycg [k, s] is delayed by
L and its elements are multiplied by the subsequent channel
coefficients hqg.[h] which have not been considered in the
trellis. The branch metric A(s,u) (e.g., Euclidean distance of
the received symbol y[k] to the hypotheses h(s,u) for the
states s and bits u) thus includes the correction factor d:

0= Zpreg[k - f/ + K, S] : hdfse["i] (1)
A(s,u) = ‘y[k:] — h(s,u) — 5’2

B. Reduced State Sequence Estimation

For our coded transmission over ISI-channel we consider
RSSE instead. Here, Z arbitrary MLSE states, each with
M = 2% possible branches to adjacent states, are combined
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into Zx = Z; J € N hyperstates [10] each having 27
substates and 2% -2 branches. A certain assignment of states
to hyperstates is called a partitioning [10].

Instead of having 2% arriving branches at each of the Z
MLSE states we get a set of 2% . 27/ branches at each of
the Zr hyperstates. The total number of available branches
remains 2% - Z. However, when using RSSE only 2% branches
are possible (i.e., enabled) from each state, at a given time
instant. The availability of branches is determined by the path
registers, and thus form a decision-feedback.

The metric computation in this case can be implemented
as depicted in Algorithm 1. Note that with line 6 only M
branches are activated. Thus, the VA has to decide between M
survivor branches at each state giving an estimate for log, (M)
bits.

Algorithm 1 Metric calculations for RSSE

. L + log,(nr. hyperstates)/ log, (M)
: £ < log,(nr. substates)/logy (M)
: for all s € S do
forallue A- K do
forall xk=1— /¢ do
C[’%] = preg(end — L+ &, S)
end for
As,u) + [ylk] — h(¢, w)”
A(s,u) < A(s,u) +T'(s)
end for
: end for

> active branches

> branch metric
> acc. path metric

Yoo R RN

_ =
- e

For time-variant trellises some modifications to the under-
lying VA are necessary, which are described in [5].

The main difference to MLSE is, that we decide for a
surviving path prematurely resulting in a truncation of error
events. A loss in Euclidean distance appears if an error event
with minimum Euclidean distance gets truncated. Therefore
the performance of RSSE strongly depends on the partitioning
of the states into hyperstates. Instead of exhaustively search
for the optimum state partitioning, which maximizes the
intra-hyperstate distance [10], we exploit the minimum phase
characteristics of the ISI-channel which is, as described above,
fully integrated into our trellis.

For a minimum phase channel impulse response the prior
channel input symbols are weighted less than more recent ones
and, thus, affect the metric less. The elder the symbols, the fur-
ther back it is stored in the vector presentation of a particular
trellis state. Hence, the intra-hyperstate distance is maximized
when states are combined with respect to elder positions in
the state number. This particular partitioning is equivalent to
DFSE for ISI-channels (which is the optimum partitioning for
equalization of minimum phase ISI-channels [10]) and will
in the latter be called DFSE partitioning. As the minimum
phase ISI-channel is the last element to affect the transmitted
symbols and is also fully integrated into the trellis, we can
apply the DFSE partitioning to use RSSE for P-TCM over ISI-
channels. An implementation of this set partitioning for the J®
level exploiting the minimum phase characteristics is shown
in Algorithm 2. The columns in the resulting matrix p(z, 1)
define the states that have to be grouped into hyperstates.

Algorithm 2 DFSE Partitioning for RSSE
I 4,z 1

2. for {=1— Z do

3: if fmod J = 0 then
4: z+z+1

5. end if

6: p(z,i) =14

7. 1+ 1+1

8: end for

In the following we will focus on our state design and
two possibilities to apply DFSE partitioning to time-variant
trellises.

C. State Design

In Fig. 5 a single trellis state in the VA is depicted as a
FIFO. Input values to the FSM are represented by the branches
at the left-hand side, whereas values that drop of the FIFO
are stored within the state-specific path register prco(k,s) at
the right-hand side. During decoding when entering a trellis
path register

MLSE states

e T T T " Il
1 700002
— —1

| | MLSE states ., path register

I T 1
| i RSSE states ,, path register }
4 eventually enable —t
punctured branch
bit

Fig. 5. Graphical representation of our state design for punctured convolu-

tional coding with and without reduced-state sequence estimation.

segment that is split, i.e., has an increased number of states,
the two possibilities for the punctured bit are tracked using an
additional delay element, indicated by the hatched block (£7).

When DFSE partitioning is performed, the states can be
reduced as shown in Fig. 5. There, fewer FIFO elements are
used to define the trellis state, while the remaining ones are
used as feedback to enable branches for the next trellis step
for that particular state.

An implementation of this algorithm needs to ensure that
when entering a split trellis segment, i.e., increased number
of states, the right path register is chosen as source for the
decision feedback.

D. State Partitioning

As already mentioned, a DFSE partitioning of the first order,
i.e., reducing the number of states in each trellis segment
by a factor of two, combining states that differ in the eldest
position, into hyperstates. Hence, when applied to a punctured
TCM, each trellis segment undergoes the same partitioning.
A resulting reduced-state trellis is depicted on the left-hand
side of Fig. 6 for J =1 and J = 2. As a consequence, non-
existing states from the original trellis are also partitioned (cf.,
first trellis segment).
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uniform segment-dependent

X o e o
Fig. 6. [llustration of uniform and segment-dependent partitioning for
J={1,2}.

Due to the reduction of non-existing states, and hence
reduced minimum Euclidean distance, we propose to partition
those segments first that are split and keeping the others unpar-
titioned. As can be seen from the first-level state reduction in
Fig. 6 (right-hand side, above), the first segment contains two
transitions in each state, and thus is not partitioned, whereas
in segment two and three, each state has four transitions, due
to the state partitioning.

Apparently, the first segment may be handled with a full
state VA, while the other two segments need to be decoded
via RSSE using the path register in each state.

The right-hand side of Fig. 6 show the segment-depending
partitioning and state reduction for J = 1 and J = 2. The
segments for J = 1 show four, and eight transitions per state,
respectively. At this point RSSE has to consider a different
amount of information in the path register for each segment.

The resulting trellis shows a less decreased minimum Eu-
clidean distance when compared to the uniform partitioning
but has a slightly higher computational complexity because
of the extra states. Thus, the segment-dependent partitioning
technique enables an even more flexible way to trade between
complexity and performance.

V. NUMERICAL RESULTS

In this section we will give numerical simulation results
and investigate several ISI-channels for punctured TCM. We
analyse the decoder complexity as number of branch metric
calculations per information bit and show that this approach
enables a flexible trade-off between computational complexity
and performance.

Due to the minimum phase characteristics of the ISI-channel
the partitioning of the trellis states into hyperstates leads to
the smallest possible loss in Euclidean distance. Hence, if,
for instance, the ISI-channel is an equal tab delay line, the
loss in Euclidean distance is higher than for an exponentially
decaying channel because of the premature decisions for a
surviving path.

To see this effect we conducted simulations over different
ISI-channels of unit energy and plotted the complexity number
over the required % to achieve a bit error probability of less
than 1073, The unit energy channels are defined as:

1
hexp["i} =" e(=n/r0) for0< k<L
/22 [hexp[K][?
hiin[K] = ! Lortl for0< k<L
> lhi[s]2 L +1

K

4
: :
_ o) partitioning
% % % % o uniform
g, 400 - 545 5 * segment dependent [
< N
g 202
£ 200 e
s g
] £
£
@]
0 [ BER =103
| | | | |

6 8 10 12 14 16 18 20
10log,, ( B, ) in dB

Fig. 7. Decoding complexity for a P-TCM transmission scheme with gener-
ator polynomials [1315] ., puncturing scheme [ (11)7 (01)T ] (Rate: %)
natural labeling and 4-ASK signaling over three different ISI-channels
hexplk] (Ko = 1), hinlk], hequ[k] (solid: Uniform partitioning, dashed:
Segment-dependent partitioning).

_ 1 _ b
; zﬁ:|hequ[’f]|2 a VL

The results can be seen in Fig. 7. As should be clear to
the reader, the loss in Euclidean distance is smallest for an
exponentially decaying ISI-channel.

hequ [R] for 0 <k< L

VI. CONCLUSION

It has been shown that TCM can be extended by puncturing.
Furthermore, an efficient MLSE decoder for P-TCM over ISI-
channels was proposed and investigated.

The numerical simulation results clearly show that we can
achieve a soft trade-off between spectral and power efficiency
easier and more flexibly than by means of traditional TCM.
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Abstract—We improve the method in [1] for increasing the
finite-lengh performance of polar codes by protecting specific,
less reliable symbols with simple outer repetition codes. Decoding
of the scheme integrates easily in the known successive decoding
algorithms for polar codes. Overall rate and block length remain
unchanged, the decoding complexity is at most doubled. A
comparison to related methods for performance improvement of
polar codes is drawn.

I. INTRODUCTION

Polar coding is known as a channel coding construction
that is able to achieve the capacity of many symmetric discrete
memoryless channels under low-complexity O(N log N) en-
coding and successive decoding [2]. Unfortunately, the error
performance of polar codes for finite block lengths is quite
moderate. The key feature of polar coding — when compared
to other existing channel block coding schemes — clearly lies in
its low decoding complexity. Therefore, the trade-off between
computational complexity and error performance for polar
codes is of interest, i.e., the development of efficient meth-
ods that allow for better performance at moderate additional
complexity.

Optimizing the decoding algorithm for polar codes has
been the subject of various work, e.g. [3], [4] and has led
to substantial improvements. Though, apart from the decoder,
the code itself leaves room for improvement as well.

To this end, we propose a modified polar code construction
by means of a serial concatenated scheme with the polar
code used as an inner code. In contrast to many existing
concatenation schemes based on polar codes as inner codes
(as considered, e.g., in [5], [6], [7]), we focus here on coding
schemes that do not change overall rate and block length,
thus facilitating a pure trade-off of complexity and error
performance. The approach is based on our prior attempt [1]
where block codes of small dimension were chosen as outer
codes. In this paper we show that — by an efficient and
systematic design — an equivalent, significant performance gain
is achieved by protecting an inner polar code with only one-
dimensional outer codes, i.e., repetition codes, resulting in an
quite smaller increase of complexity. Furthermore, we relate
the results to methods where the decoder is modified instead
of the code.

The paper is organized as follows: After a brief review on
polar codes and their decoding strategies in Sec. II, we describe
our concatenated code construction in Sec. III, followed by

simulation results in Sec. IV and some conclusive remarks in
Sec. V.

II. POLAR CODES AND THEIR DECODING
A. Code Construction

Since the concept of polar coding is widely known, we only
give a brief overview, focussing on the aspects of importance
for this paper. We follow the original approach in [2] where
the generator matrix is chosen as a subset (indexed by A) of
the rows of the binary matrix

Gy = Fo" F:B ‘1’} M

with n = log, N and ®n denoting the n-th Kronecker power.

Under successive decoding, the transmission of the partic-
ular source symbols u; may be described by their own binary-
input channels (bit channels) which show a polarization effect
in the sense that their capacities are almost all either near 0 or
near 1. These capacities — or equivalently, the corresponding
failure probabilities pe(7)) — can be easily determined. The
channels with high capacities are chosen to form the set A
whereas the residual channels (frozen channels) transmit fixed
values that are known to the decoder.

B. Successive Decoding

In the successive cancellation (SC) decoding approach [2],
estimates ; on the source symbols u; (i € A) are calculated
successively, according to the recursion formula

U; := argmax {Pr(U,- =Y, Ug--- U,;,l)} . 2)
be{0,1}

Thus, in each step ¢ the decoder checks which of the possible
two values for u; is more likely, given the received vector y as
well as the sequence 1 - - - 4;—1 of data symbols already de-
cided in the previous steps. Due to the special structure of G,
the calculation of the probabilities in (2) can be implemented
in an FFT-like fashion, resulting in a low O(N log N) overall
decoding complexity. With increasing SNR, the performance
of the SC algorithm is known to converge to that of an
optimum Maximum-Likelihood (ML) decoder. The decoding
process as a path search is illustrated in Fig. 1a).

The word error performance under SC decoding can be
precisely determined. It is given by the term

WERsc =1 - [[(1 = pe(d)) 3)
i€ A
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Fig. 1. a) SC decoding. b) Successive list decoding (list size L = 2).
Bold face lines: Inspected (and tentatively selected) paths in the SC decoding
process. Dashed lines: Inspected but discarded paths. Thin lines: Never
inspected paths.

where p.(i) denotes the probability of a wrong decision at
stage ¢ of the decoder provided that all previous decisions have
been correct. From (3) it is clear that for an optimal code
construction, A should consist of the bit channels with lowest
failure probabilities p.(4).

C. Successive List Decoding

As an improved version of the SC decoder for increased
performance in the low-SNR regime, list decoding for polar
codes has been proposed [3]. The successive list decoder does
not take hard decisions on the u; immediately. Instead, both
possible values are examined in separate decoding branches,
and the corresponding likelihood values are determined. If
the number of branches exceeds a certain design parameter
L (the list size), the least probable branches are discarded, as
examplary visualized in Fig. 1b) for L = 2. The complexity
of decoding scales linearly with the list size L and is of order
O(LNlog N). Note that only the decoder is modified here
while the code does not change.

In an extended version of the above-mentioned paper [8],
the authors propose a serial concatenation scheme with an
inner polar code and a very high-rate outer CRC (cyclic redun-
dancy check) code. Decoding for this scheme is accomplished
in two steps: First, the successive list decoder generates a list
of L possible codewords. After that, the CRC sums for each
entry of the list are calculated in order to check for the correct
codeword. By this means, correct decoding is possible in
principle even when another polar codeword in the list belongs
to a more likely path, enabling successful decoding beyond the
performance of an ML decoder for the inner polar code alone —
as long as the correct codeword is part of the output list. It has
been shown [8] that by this means, a significant performance
gain is achieved.

III. CONCATENATED CODE CONSTRUCTION

Here, we follow a different approach based on the varying
bit channel capacities under successive decoding. The pro-
posed coding scheme follows the conventional serial concate-
nation principle where the source symbols are first encoded by
an outer code, followed by an inner encoding. Thus, the overall
rate is given as R = R, R; with R, and R; being the rate of
outer and inner code, respectively. In our approach, outer and
inner code are decoded jointly by a single algorithm.

The generator matrix G of a (N, K) polar code constructed
in the conventional way may be represented as

G=P, Gy “

s ] e
= 17 %] :
3 * + + *
10 7 F + o + & 4
+ +% + @
# + te e b
* ¢
107 v * f
+ + N
+ *y
. + + .t
<10
32 64 96 128 160 192 224 256

bit channel index ¢ —

Fig. 2. Failure probabilities pe (%) for a polar code (R = 1/2, N = 256, BI-
AWGN channel at Es/No = —0.5 dB). Gray circles: original code. Markers:
concatenated code. Red lines: Repetition blocks of outer code.

where P4 is a (K x N) projection matrix with rows built
from the i-th unit vectors of length N (i € A, |A| = K). We
now aim to construct an optimized generator matrix of equal
dimensions by a serial concatenation of the form

G =G, (Py -Gy) ©)

based on an enlarged set of channel indices A* with K <
|A*| < N. The (K x |A*|) matrix G, serves as a generator
matrix of a suitably chosen outer code !.

In the following, we demonstrate the code construction by
means of an example considering a rate-1/2, length-256 polar
code.

A. Inner Code Design

The gray circles in Fig. 2 show the failure probabilities
pe(i) of the bit channels after transmission over a binary-
input AWGN channel at E5;/Ng = —0.5 dB. The black line
corresponds to the design rate R = 1/2 of the original code.
The indices i with pe(i) below this threshold form the set A.

For construction of a concatenated code with equal rate
and block length from a given (N, K) polar code, we choose
the inner code as a polar code with same length N but
with a higher rate R; > R. This is easily accomplished
by enlarging the set A of information symbols, i.e., using
additional (previously frozen) bit channels for transmission to
form the set A*.

B. Outer Code Design

As can be derived from (3) and Fig. 2, the word error rate
is dominated by a comparatively small fraction of bit channels
close to the threshold. We now aim to protect these least-
reliable bit channels by a suited outer code including some

'"While the code is designed to operate inside the successive decoding
process, from the encoding procedure (5) it becomes clear that it serves in
fact as an outer code. In our prior paper [1], the denotation “inner code* had
been used from the decoding perspective which indeed is misleading.
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additional (formerly frozen) channels that are provided by the
inner enlarged polar code.

In contrast to our previous approach [1], in this paper we
aim to minimize the additional complexity introduced by outer
decoding which imposes a number of constraints on the code
construction that are explained in the following:

First, we focus on simple one-dimensional codes, i.e., repe-
tition codes. Thus, the outer coding actually consists in setting
some of the source symbols to the same value and building
small sets of combined channel indices from A* (repetition
blocks). For further complexity reduction, we require that these
blocks do not overlap (in the sense that the contained indices
do not overlap).

The use of more than one bit channel for transmitting
a single bit of information may be represented by a single
equivalent bit channel (red markers in Fig. 2). We found that
protecting (merging) two channels in this way always leads
to an improvement w.r.t. the first-positioned channel, but not
necessarily when compared to the second one. This is due to
the successive decoding strategy: The decision on a repetition
block is made at reaching the end of the block, like explained
in detail in the next subsection. If already at the first index
of a block a wrong codeword corresponds to the more likely
path, decoding of the following symbols (that are in general
not protected by the outer code) is quite likely to fail, even
when both possible values for the first symbol are pursued.
Therefore, a high misdecoding probability at the first index of
a repetition block has a more fatal influence than an unreliable
decision at the end. Consequently, a repetition block should
always start with the most reliable bit channel. Blocks of
larger length are built in an analog fashion. Here, also the
most reliable bit channel should be put in front.

Finally, the rate of the original code has to be preserved,
which leads to further obvious restrictions on the number of
possible repetition blocks. Finding the optimum from the re-
maining possible outer coding schemes is easily accomplished
by an exhaustive search.

Fig. 2 shows an example of an outer coding scheme
constructed according to the above-mentioned constraints. The
markers represent the bit channels used by the concatenated
code. Here, the repetition blocks are visualized by red lines, the
red markers denote the corresponding equivalent bit channels
while the black markers stand for the unmodified bit channels
of the concatenated code. We remark that further increasing
the rate R; of the inner code has no significant effect on the
performance.

Clearly, the proposed scheme can easily be extended to
using higher-dimensional outer codes for increased perfor-
mance, as considered in [1], though at the cost of an increased
complexity. Moreover, the results from [1] indicate that the
possible additional gain will not be large.

C. Decoding

For joint decoding of inner and outer code, we apply
the original SC algorithm with a slight modification, only.
Decoding of a received vector starts as usual. Assume now
that two source bits u; and u; are protected by a repetition
code, i.e., u; = u; for some j > ¢. On reaching stage 1,
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Fig. 3. SC decoding of an outer repetition code operating on ug and
u3. Bold face lines: Inspected (and tentatively selected) paths in the SC
decoding process. Dashed lines: Inspected but discarded paths. Thin lines:
Never inspected paths.

instead of taking a hard decision on wu;, the decoder creates
a new branch and tests both possibilities by determining the
sequences

s0 = (0, 4o i41 - -~ Uo,j—1,0) ,
s1= (L, 1541 U1,5-1,1) .

For decisions on the symbols g it1,...,%0,j—1 and
1,441, --.,U1,j—1, the conventional SC decision rule (2) is
applied. Afterwards, the more likely of the two sequences is
selected:

(- (6)

) 1= Sp
where

b* = argmax

{Pr(Sy = silY. Ug--- Uiy S0) b )
be{0,1}

The other path is discarded. The decoding scheme is visualized
in Fig. 3 for a simple example code with uy = u3. Repetition
codes of larger length are decoded in an analog fashion.
Clearly, the decoding complexity is at most doubled since
we exclude overlapping blocks. Furthermore, the decoding of
outer repetition codes in this way can easily be integrated into
improved versions of the SC decoder, e.g., list decoding.

IV. SIMULATION RESULTS

Fig. 4 shows simulation results for polar coding schemes
of block length N = 256 and N = 1024 transmitted over
a BPSK-AWGN channel. The shorter and longer code have
been optimized (according to (3)) for E,/No = 2.5 dB and
Ey/No = 2.0 dB, respectively.

Compared to the original, SC-decoded polar codes (blue),
the use of an improved decoder like the successive list decoder
(green) shows an SNR-dependent effect: In the low-SNR
region, significant gains are achieved while for increasing
SNR the performance advantage vanishes. Here, both decoders
perform close to ML decoding.

The proposed scheme (red) leads to an improved perfor-
mance in a similarly efficient way with a complexity compara-
ble to that of a list decoder with L = 2. However, in contrast
to an optimized decoder, it achieves a constant coding gain
of approx. 0.3 dB (0.2 dB for the longer code) over the SC-
decoded code at all SNR regimes. Therefore, at high SNR it
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Fig. 4. Simulation results: BPSK-AWGN channel, polar code block length
N = 256,1024, rate R = 1/2. Blue: SC decoding. Green: successive list
decoding (list size L = 2,4). Red: proposed concatenation scheme.

is able to outperform even a list decoder with large list size or
an ML decoder, but with much lower complexity, because the
rate- and length-preserving concatenation yields an improved
code.

V. CONCLUSION

The proposed concatenation scheme may be seen as a
method to overcome the quantization effect when constructing
a polar code that is caused by a hard selection of the bit chan-
nels (each channel is either used for information transmission
or frozen).

As this quantization vanishes with increasing block length
and polarization, the scheme is certainly restricted to polar
codes of short to moderate length. Although the achievable
performance gain is not too large, it comes at very small
additional costs. When used together with an improved polar
decoder, the beneficial effects of both approaches are com-
bined. Furthermore, the proposed scheme can itself be used as
an inner code in other concatenation approaches — at least if
inner and outer decoding are performed separately there like
in [6]. In this case, the coding gain in error performance is
preserved.
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Abstract—Sierpinski prefactors are introduced, a concept
that exploits the fact that many binomial coefficients in the
Hasse derivative that appears in the Guruswami-Sudan inter-
polation step are zero modulo the base field characteristic. A
reduced Guruswami-Sudan interpolation step for generalized
Reed-Solomon codes with significantly fewer unknowns than the
original interpolation step is formulated.

I. INTRODUCTION

The re-encoding projection [1], [2] is a well-known method
to reduce the complexity of the Guruswami—Sudan interpola-
tion step for decoding generalized Reed—Solomon codes. It
is based on projecting received vectors to a subspace with
beneficial properties, which allows useful predictions about
the solution space of the interpolation step to be made. The
computational overhead of the projection is negligible, as it
basically consists of one additional erasures-only decoding
step. We show in this paper that similar predictions about
the solution space can be made by exploiting an inherent
property of finite fields, namely, that all multiples of the field
characteristic are zero.

II. PRELIMINARIES

Definition 1. For a prime power ¢ and n,k € N\ {0} with
E<n<gqlet A= {ap,...,a,_1} be an ordered set of
distinct elements from the finite field F, with ¢ elements and
let B = {Bo,...,Bn-1} be an ordered set of nonzero (not
necessarily distinct) elements from IF,. Then the set of vectors

GRS a5 (Fyin, k) = {(Bou(a), - - -, Bo—1u(an_1)) :
u(z) € Fylz], deglu(z)] < k}

constitutes a generalized Reed—Solomon (GRS) code over F,.

When possible, we write GRS for GRS 4,5 (Fg;n, k).
Conventional Reed—Solomon (RS) codes are special cases
of GRS codes with A = {l,a,...,a" '} and B =
{1,ab,...,a(= D}, where a € F, is primitive and b € N.

The Guruswami—Sudan algorithm (GSA) [3] for decoding
GRS codes can be divided into two steps: the interpolation
step (Problem 1) and the factorization step (which is not the
focus of this paper). Let ¢ € GRS be a codeword, e € Fy
be an error vector of Hamming weight wty [e] = ¢, and y =
c + e be the corresponding received vector obtained from the
transmission channel. Furthermore, let Z = {0,...,n—1} and
let 7, ¢ € N\ {0} be two parameters of the GSA with r < /.
We associate the polynomial Pr(z) £ [[,.7(z — ;) with Z.

Problem 1 (GSA Interpolation Step). Given a received vector
y and ¢y € N, find a nonzero bivariate polynomial Q(z,z) =
Qo(7) + Q1(2)z + -+ - + Qu(x)2* € Fy[z, 2] such that

deg[Qu (@)] < r(n — 20) — vk — 1) — 1 2 dq,

for v =0,...,¢ and
VieZVs,t e N:s+1t<rand

‘ y dq, r
Z (t)zyit Z <8>$H75Qu,u
pn=s

v=t

=0, (D

(z,2)=(ai,y:)

where Q, (z) = foi"o Qu pt.

The nested sum in (1) is called the (s, t)th mixed partial
Hasse derivative of Q(z,z). The condition that all (s,t)th
Hasse derivatives with s+t < r evaluate to zero for all tuples
(i, i), € Z, means that these tuples are zeros of multiplicity
r of Q(x, z). For that reason, we refer to the parameter r as
the multiplicity of the GSA. The parameter /¢ is called the list
size. The linear system of equations associated with Problem 1
has a nonzero solution Q(z, z) as long as

e n2t—r+1) Lk-1) .

200 +1) 2r

Naively solving the system with Gaussian elimination in order
to obtain a solution is in O [(°n?], however, accelerated
algorithms can be found in the literature, e.g., Kotter inter-
polation in [4]. Without loss of generality we assume in the
following that the columns of the coefficient matrix (from
left to right) are associated with the unknown coefficients

Q0,07 .. '7Q07dQ07Q1,07 .. "Ql,dQl PR '7Ql,07 .. '7Qe’dQ£'

>

III. SIERPINSKI PREFACTORS

In this section, we introduce a new technique that results
in structured solutions of Problem 1. In contrast to the well-
known re-encoding projection [1], [2], this approach does not
require any additional computations, it simply exploits basic
properties of the GRS code’s base field IF,. The main idea is
to exploit the fact that many of the binomial coefficients in (1)
are zero modulo the characteristic of F,.

To see this, let us consider the left-aligned Pascal triangle in
Fig. 1, where the entries are calculated modulo 3. Obviously,
the zero entries of the triangle follow regular patterns. The
triangle resembles variants of the left-aligned Sierpinski gasket,
one of the most basic examples of a self-similar set. In the
following, we will refer to a Pascal triangle with entries
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Fig. 1. Sierpinski triangle &3, where the binomial coefficients are calculated

modulo 3. Pale boxes represent zero entries, the actual values of the nonzero
entries are irrelevant for our purposes which is why they are represented by
generic bold boxes. Column ¢y = 8 is a zero column for £ € {9,...,16}
and ¢1 = 7 is a zero column with resolvable spoiler (?) for € {9,...,15}.

modulo any positive integer p as a Sierpinski triangle and we
denote it by S,,.

The summands of the outer sum in (1) are weighted by
the binomial coefficients (%), v =t,..., (. These are exactly
the binomial coefficients that appear at the first { — ¢ + 1
entries in column ¢ of a Sierpinski triangle. For any 8 € I,
pB =0, where p £ char[F,] is the characteristic of F,. Thus,
summands for which ('Z) is a multiple of p are zero.

For given ¢, let us assume a column ¢y in &,, with

to+1 l — 0 mod
tO ) tO - p?

i.e., all entries except the first one (which is (ﬁg) =1 mod p)
are zero. We refer to such columns as zero columns. Fig. 1
shows that zero columns actually exist, e.g., column 5 = 8
for £ € {9,...,16} in G3.

Assume that Q(z,z) is a solution of Problem 1 for a
received vector y and consider (1) for zero column ¢y. This
equation simplifies to

VieZIVseN:s<r—tgand

day,
tO to—to H =S
—0, @
<to>z Z:: ) L TR @
—— P

=1
since all summands of the outer sum except the first one are
annihilated by the zero binomial weights. This means that the
Oth to 7 —to — 1th Hasse derivatives of Qy,(x) evaluate to zero
at all «;, ¢ € Z. But then, these «; are roots of multiplicity
r—to of Qy, () and thus Q¢,(x) can be factored as Q,(z) =
Vi, (@) Pz ()" ", where deg[Vi, (2)] < dg,, — n(r — to).

The following lemma, whose proof is based on Lucas’
Theorem [5], specifies the conditions for the existence of a
zero column ¢ and its location.

Lemma 1. Ler r,{ € N\ {0}, r < . If ¢ <p or
Jaec{l,....,p—1},jeEN:r<ap’ —1<¢

then a zero column does not exist. Otherwise, find the least
significant base-p digit ; of { such that {; < p — 1. Then,

_|.r i+1
o=t

is a zero column. In particular, to is the maximal zero column.

We will now generalize the concept to zero columns
with resolvable spoilers. This will reveal additional structure
in solutions Q(z,z) of Problem 1, i.e., to factorizations of
additional univariate polynomials @, (z) besides Q¢, ().

Assume there exists a zero column Z, in &,. Further
assume there is a column ¢4, t; < tg, in &,, such that

t
(to) % 0 mod p and
1
v
Yw=t1+1,....0,vFty: (t ) = 0 mod p.
1
We refer to such a column as zero column with spoiler at (i‘;)

an example is shown in Fig. 1.

If Q(z, ) is a solution of Problem 1 for a received vector
y then (1) for column ¢4, t; < tg, becomes

Vie IVse N:s<r—tgand

t 9o,
1 — M —s
(t1>zt1 t1 Z <8>$H Qtl,u"r
=1 e
dq,
to\ to—t : (ﬂ) -
g~ 0Q ~0, @
(tl) ; S to. (z,2)=(vi,yi)

since all summands except the ones for v = ¢; and v = ¢ are
annihilated. But, according to (2), the second sum evaluates to
zero at all o™, @ € Z, since t is by assumption a zero column.

We refer to (i‘;) as a resolvable spoiler for t; because the sum

associated with (i(l’) vanishes. As a result, we obtain

VieZIVseN:s<r—tgand

de,l

> (M)eaual =0

u=s

i.e., the v, © € Z, are roots of multiplicity r—¢o of Q¢, () and
thus it can be factored as Q, (z) = V4, (z)Pr(z) ", where
deg[V, (2)] < dg, = n(r — to).

It is easy to see that if (i;) is a spoiler for t9, to < 11,
then it is also resolvable. Furthermore, it is easy to see that
the concept generalizes to multiple spoilers. This leads to the
following recursive definition:
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Definition 2. Consider &, and r,¢ € N\ {0}. For v < ¢ let

RO 2 {teN:v<t<t,
t is a zero column with resolvable spoilers}

t
S® 2 {t €EN: ( ) is a spoiler for 1/} )
14

Then v is a zero column with resolvable spoilers if and only
if 8 € RY. The basic case is RE? = {to} if to exists.

and

Note that zero columns are special cases of zero columns
with resolvable spoilers where S = 0. The sets of zero
columns with resolvable spoilers are non-increasing with v,

e., R(fll - RYY). We stress that Ré() contains all zero
columns with resolvable spoilers in &,, i.e., it is the set that
we are interested in.

Lemma 2. Let ¢ € N\ {0}, » < L. If according to Lemma 1
a maximal zero column to of &, exists then the set of zero
columns with resolvable spoilers of &), is

-y ((esr) -0}

otherwise it is ’R((f) = 0.
Example 1. Consider the conventional RS code
GRS 4 8(F27;26,16). The characteristic of the code’s
base field is p 3. Lemma 1 yields maximal zero
column ty = 8. Fig. 1 shows that for ¢t; = 7 we have
(13) = {8} = R(l?’), ie, t1 = 7 is a zero column with
resolvable spoilers and we can set R(l?’) = {7,8}. For t; =6
we have 8(13) ={7,8} = ’R613) and thus it is a Zero column
with resolvable spoilers as well. This gives R( = {6,7,8}.
For t3 = 5 we have 8(13) {8} C R(13 and thus it is a
zero column with resolvable spoilers as well It turns out that
for all t; < t3 holds S ¢ {5,6,7,8} = R{!* and thus
the only zero columns with resolvable spoilers in &3 with
respect to { = 13 are tg = 8, t1 = 7, to = 6, and t3 = 5. It
can be readily checked that Lemma 2 confirms this result and
delivers R\ = {5,6,7,8}.

¢
teN:t<rand Z
O=to+1

The following map will turn out to be useful in the
following, it returns either v itself or its greatest spoiler:

N — N
() ()
max{Sy Sy 0

Theorem 1. Let GRS 4 53 (Fy;n, k) be a GRS code and r,(
such that the GSA can correct at most g errors. Let further
c € GRS, e € Fy with wty [e] < g9 and y = ¢ + e. When
the GSA is applied to y it yields a bivariate result polynomial
Q(7,2) = Qo(z) + Q1(z)z + - - - + Qu(z)2* € Fyz, 2] whose
constituent univariate polynomials Q,(x), v € ’Roe, can be

factored as
Qu() =V, (2) Pr(x) o),
where deg[V,,(z)] < dg, —n (r — g[v]) £ dv,.

“

v

(&)
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Proof: Let v € R([) Since v 1s a zero column with
resolvable spoilers, all (V) with t € S,, are resolvable, i.e.,

Vte SVieIVseN:s<r—tand

dq, u
()eud
S =y

H=s
Since by definition all terms except the ones weighted by the
spoilers vanish, we can write (1) as'

=0. (6)

VieIVseN:s<r—vand

dy
t —V /’L L— S
> (1) ()
tES,(,e) H=Ss
dq, 1
x,u—SQV —
2 (s) @2 =)

u=s

In order to let the sum over ¢ vanish in the case S,Ee) # 0 (.e.,
to exploit (6)), we must guarantee s < r —t for all ¢t € S(Z)

ie,s<r-— max{S } In case SY”) = () the sum over ¢ is
empty and thus it is sufficient to guarantee s < r — v. Due to
the definition (4) of g[v] we have s < r — g[v] in both cases
and thus

VieZIVseN:s<r—g,and
dq,

>

pu=s

=0

=y

()

and the «;, ¢ € Z, are roots of multiplicity » — g[v] of
@, (z) and thus it can be factored as in (5). The bound on
the degrees of the V,(z) follows from a comparison of the
involved polynomial degrees. |

We stress that the Sierpinski prefactors Pr(z)" 9, v €

Rge), are fixed a-priori and do not depend on the received
vector y. This justifies the term prefactor.

Example 2. From Example 1 we have R(I?’) = {5,6,7,8},
i.e., Theorem 1 guarantees factorizations of Qs(x), QG( ),
Q?(SC), and Qs(z). They are Qs( ) Vs(x) Pr(z)?,
Qs () = Vi(2) Pr(2)2, Q=(x) = Vi (2) Pr(a)?, and Qs(x) =
Vs(z)Pr(x)?, with dvs = 72, dy, = 57, dy, = 42, and
dy, = 27, respectively, because g[5] = g[6] = ¢[7] = g[8] = 8,
dg, = 124, dg, = 109, dg, = 94, and dg, = 79.

Theorem 1 states that some of the univariate constituent
polynomials of the GSA interpolation step (Problem 1) have
certain prefactors. We will now show how this knowledge can
be exploited in order to simplify solving the interpolation step.
More premsely, we show that the associated linear system of
equations in Z., o(dg, + 1) unknowns can be reduced to a
linear system of smaller size.

As noted before, GSA interpolation (Problem 1) amounts
to finding the solution of a linear system of equations. This
can be done naively using Gaussian elimination. Several faster
methods have been developed, all of which exploit the struc-
ture of the involved coefficient matrix. Such methods can be

Note that this is the generalization of (3) to multiple spoilers.
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applied to a reduced linear system of equations, which can be
obtained using Sierpinski prefactors. The key idea here is to
exploit the a-priori known structure of the solutions.

In the following, it will be convenient to have the sets

F 2 {v:0<v</(Q,(r)has prefactor} and
FeE{v:0<v<tlve¢Fh

Let us consider the factorization of a univariate con-
stituent polynomial @, (x), v € F, into a Sierpinski prefactor
Pz ()"~ 9" and the corresponding quotient polynomial V;, ().
For simplicity, let us denote the Pr(z)"~9% by F,(z) =
s deglF (@) F, ,xt. This gives Q,(x) V. (x)F,(x) for

pw=0 .
v € F with coefficients

I
Quu = Vou-iFris n=0,....dg,, @)
=0

where we implicitly used that the ith coefficient of a polyno-
mial with 7 < 0 or ¢ greater than the degree of the polynomial
is zero. In order to simplify the following description, let us
agree on trivial prefactors F, (x) = 1 for all Q,(z), v € F°.
In these cases, the quotient polynomials are V,(z) = Q,(z).
Note that the constant term [, o of any prefactor is nonzero.
This allows us to write

Qv,u - 27=1 Vv,u—iFv,i
FU,O

_ Qu,,u _
FV,O

Vi =

%
Fl/,’iVl/,[l.f’i
)
FV,O

0,...,dg,, (8)

i=1

which shows that V,, , is a linear combination of the V, ;,
i=0,...,0—1,and Q, .

We can exploit (8) for ¢ = 0,...,dy, in order to ob-
tain a solvable linear system whose solution comprises the
coefficients of V,,(x) (preparation) and then exploit (7) for
i =dy, +1,...,dg, in order to dispose of the redundant
columns of the coefficient matrix (reduction). Both steps —
preparation and reduction — are based on applying a simple
lemma from linear algebra with certain parameters.

As a result of this process, the original coefficient matrix
associated with (1), whose Zi:o(dQu + 1) columns are
associated with Qo,0, - .., Qo,dg, @1,0,- -, Q1,dg,» - - -» Q1,0
e Qg,ng is converted into a reduced matrix, whose
Z;;é(dvv +1) + Zfzr(de + 1) columns are associated
Wlth ‘/0,07 sty ‘/O,dQO7‘/1,07 LRI} ‘/i’dQl ] w,()a LR} VZ,dQe .
This allows the following reformulation of a reduced GSA
interpolation step:

Problem 2 (Reduced GSA Interpolation Step). Given a
received vector y with Sierpinski prefactors F,(z)
Pz(m)“g[”], v € F, find a nonzero bivariate polynomial

@(xa z) = Z Vi (z)y” + Z Qu(2)y” € Fylz, 2]

veF veFe

such that deg [V, (z)] < dy, and deg[Q,(x)] < dg, and
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VieZIVs,teN:s+t<rand

dv, [dq,—dv,
Z (I:) Lv—t Z (/'L ': A) $#+A_SFV,A Vl/,/j.
Vuez]f: n=0 A=0

ALUT[s,i,v,u
v dq, ’

v—t H—s _

' uéc (t>z ; (S)x Ot oy =
vt N——

ALUT[s,i,v,4)

The sums with summation index p are independent of the

received vector y and thus their addends can be pre-calculated
and stored in a lookup table LUT(s, 4, v/, 1]. A solution Q(, z)
of Problem 1 can easily be recovered from a solution Q(z, 2)
of Problem 2 using the prefactors. Q(x, z) can then be used
as input to the GSA factorization step in order to complete the
decoding. A reduced GSA factorization step that can operate
directly on Q(z,z) in order to construct the result list was
proposed in [1], [2].
Example 3. Sierpinski prefactors work particularly well for
the two conventional RS codes GRS (Fas5; 255,191, 65) and
GRS2(Fas5; 255,144, 112) considered by Kotter and Vardy in
[6]. The GSA for GRS can correct up to g = 34 errors with
multiplicity » = 16 and list size £ = 18. This requires solving a
linear system in 34694 unknowns. Sierpinski prefactors reduce
the system to 31379 unknowns. The GSA withr =4 and ¢ = 5
for GRS> can correct up to 9 = 59 errors. The associated
linear system has 2559 unknowns, which can be diminished
to 2049 unknowns using Sierpinski prefactors.

We emphasize that Sierpinski prefactors can easily be com-
bined with the re-encoding projection, resulting in a significant
reduction of the Guruswami—Sudan interpolation step beyond
the reduction enabled by re-encoding alone. More details and
the missing proofs are provided in [7].
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Abstract—An existing bounded minimum distance decoding
algorithm for Partial Unit Memory codes is improved by using
list decoding of Reed—Solomon codes. Furthermore, a sufficient
decoding condition is given and upper bounds on the complexity
and error probability are derived.

Index Terms—Convolutional codes, Partial Unit Memory
Codes, Reed—Solomon codes, list decoding

[. INTRODUCTION

(Partial) Unit Memory (P)UM) codes are special convolu-
tional codes with memory m = 1 and were introduced by
Lee [1] and Lauer [2] in the 1970s. Their construction is
based on block codes, providing a better algebraic structure
than general convolutional codes. In the 1990s, Dettmar and
Sorger [3] introduced a bounded minimum distance (BMD)
decoding algorithm for (P)UM codes that guarantees to correct
up to an error bound that can be derived from the minimum
distances of the used block codes. This decoding method can
decode a (P)UM code sequence polynomially in the field size,
whereas the Viterbi algorithm [4] might not be able to find the
Maximum Likelihood (ML) sequence in sufficiently short time,
because (P)UM codes are usually defined over large fields.

Reed—Solomon (RS) codes were discovered in 1960 and are
commonly used in a broad spectrum of applications due to
the existence of fast and efficient decoding algorithms. Some
of these algorithms, like the Guruswami—Sudan algorithm, are
able to decode beyond half the minimum distance.

This paper combines the advantages of both, (P)UM codes
and list decoding of RS codes. We introduce an improved
version of the BMD algorithm given by Dettmar and Sorger
[3] for (P)UM codes based on RS codes using Guruswami—
Sudan list decoders instead of BMD block decoders. We also
state a sufficient decoding condition for this algorithm and
derive upper bounds on the error probability and complexity.

Section II provides basic notations, defines RS and (P)UM
codes and outlines the Guruswami—Sudan algorithm. In Sec-
tion III, we introduce the improved algorithm and prove that
the stated condition is indeed a sufficient decoding condition.
Upper bounds on the error probability and complexity are
shown in Section IV and Section V illustrates simulation
results. Finally, Section VI gives a conclusion.

Due to space restrictions, some of the proofs are skipped,
but can be found in the long version of this paper [5].

This work was supported by the German Research Council “Deutsche
Forschungsgemeinschaft” (DFG) under Grant No. Bo 867/21-2.

II. DEFINITIONS AND NOTATIONS
A. Notations

Let g be a power of a prime, let ' denote the finite field
of order ¢, let F[z] denote the polynomial ring over F and
Flx,y] the bivariate polynomial ring over F. We denote by
F* = F1X" the set of all row vectors of length n over I and the
elements of a vector a; € F" by a; = (a§0 ,a§1)7 ... ,a;"_n).
Furthermore, we introduce a helpful notation to use parts of a
vector a;, namely ay’l’h] — (a(/[lo) ’[]a(_[l‘(‘l)’ L ,a§€271)) for

all 0 < 64 <l <nand ) :=al™ forall 0 < ¢ <n.

B. Reed-Solomon Codes

Let ag, a1, ..., a1 be distinct elements of F with n < q.
A Reed-Solomon (RS) code RS(n, k) of length n and dimen-
sion k over F with n < ¢ is given by

RS(n, k) = { (f(c0) .- flan-1)) : f(x) € Fla],deg f(x) < k}.

RS codes are Maximum Distance Seperable (MDS) codes,
i.e., their minimum Hamming distance is d =n — k + 1.

C. The Guruswami—Sudan Algorithm

The Guruswami—-Sudan list decoding algorithm solves the
following problem.

Problem 1 Given r € TF", find a bivariate polynomial
Q(z,y) € Flz,y] of the form Q(x,y) = 32i_o Q;(a)y’. such
that for given integers s, T and {:
1) (ag,7;) are zeros of Q(x,y) of multiplicity s, Vi =
1,...,n,
2) degQj(z) <s(n—71)—1—j(k—1),¥j=0,...,¢,
3) Qz,y) #0.

The Guruswami—Sudan algorithm returns a list of poly-
nomials that are y-roots of Q(x,y), i.e., they satisfy (y —
F(@)|Q(z,y). It was proven in [6] that these polynomials
include all evaluation polynomials f(x), which generate code-
words of Hamming distance less than or equal to 7 to r. The
maximum value of 7 for given s and ¢ can be found in [7,
page 131], and is greater than half the minimum distance for
sufficiently large s and /.

Due to the restriction of the y-degree, the list size is upper
bounded by ¢. However, it turns out that for most parameters
the average list size is notably smaller than this parameter, see
e.g., McEliece [8].
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D. (Partial) Unit Memory Codes

The encoding rule for a code block of a (P)UM code of
length n is given by C; = iJ . G0+ij,1 ’Gl, for ij7 ij,1 € Fk
and Gg and Gy are k X n matrices. Both matrices have full
rank if we construct an (n,k) UM code. For an (n,k | ki)
PUM code, rank(Gy) = k and rank(Gy) = k1 < k hold,
such that Gy = (gg‘;) and Gy = (S0) ,where Ggo and
G are k; x n matrices and Go; is a (k — k1) X n-matrix.
As notation, let the generator matrices

Guo Goo
Go, %), Goy and G, = | Gos
Go: Guo

define the block codes Cy, C1, Co1 and C, and 79, 71, To1
and 7, the decoding radii of corresponding block decoding
algorithms. In this paper, we assume that these codes are
RS codes and the decoders realize the Guruswami—Sudan
algorithm with the parameters (7y,s;,4;), ¢ € {0,1,01,a}.
A concrete construction scheme for these codes can be found
in [9, page 30]. We denote such codes as (n, k | k1) RS PUM
codes.

III. DECODING ALGORITHM
A. Decoding Condition

Let the received sequence r = ¢ + e = (rg,r1,...,In—_1)
be given, where r,, = ¢, + e, h =0,...,N — 1 is in F7?,
¢ = (co,C1,...,cn_1) is a codeword of the (n,k | k1) RS
PUM code as in Section II-D, with i; =0 for all j > N —1,
and ey, is an error block of Hamming weight wt(ey). In the
following, we assume that for each of the underlying RS block
codes Cy, Cy, C, and Cy1, we have a list decoder, which can
correct up to 7y, Ty, T, and 7py errors respectively. In order
to give a sufficient decoding condition for RS PUM codes we
need the following definition.

Definition 1 We define the following integers:

e JTon Jj=1
J o+ —2)Ta+7, J>1,
=T+ - Ve § 21,
=G -Drat+n j2>1

Section III-C shows that the first one of the following
conditions is sufficient that the reduced trellis contains the
ML path after decoding step 3 of the improved algorithm

k+j—1
Y wte; <7/, Vik M
i=k

and that the block of the ML sequence in block r; is in the
reduced trellis after step 4 if
k+j—1
Y owtei <7, Vikwithk<t<jt+k-1 (2
i=k

B. Algorithm

Our algorithm is an improved version of the BMD PUM
decoding method by Dettmar and Sorger [3] using list decod-
ing of RS codes. It first constructs a reduced trellis and then
applies the Viterbi Algorithm to it.

We show that if Condition 1 is satisfied for a received
sequence r, then the ML path is contained in the reduced
trellis and thus, can be found by the Viterbi algorithm.

In the following, the algorithm for decoding a received
sequence r = (rg,...,ry—1) of length N is presented in
detail.

In the first step of the algorithm all received words r; for
j =20,...,N —1 are decoded individually in C,. Actually,
ro can be decoded in Cy and ry_; in Cig because we know
that i_; = iy_; = 0. If decoding does not fail, we obtain a
(L)

list of information word tuples and trellis edges

&5 with € {1,...,¢;} for each level j of the trellis, where
{; is upper bounded by the maximum list size ¢, of the list
decoder of C,. Moreover, we define a metric

(@) Ta + 1,
M5 = Y max {d(r;, é;‘)} , else.
o

if decoding fails,

Step two of the algorithm uses the results of step one for
decoding in forward and backward direction. In particular, that

means that we take all “left nodes” I;‘_U;l] of step one and

decode lg) steps in C; in backward direction:

vy — i Gy = (ijeg;);[llcﬂj;%),[kl,kl) (g;ﬁ e,

where the left side of the equation is known and the informa-

(0[] 30(0), e K]

tion words <1j7 NS P! ) are the result of decoding

I 'i‘p,

it in C;. Furthermore, we take all “right nodes ’ and decode

lg) steps in Cg in forward direction:

ALY _ ww(p)
Tjtq — 1j+i—1G10 =Ly Go +ej44,

where lg) and lg) are defined as follows:

i
lg) = min{i : Z(QTa +1-— mﬁ)t) > TZC} ,

t=1

i
lg) = min {z : Z (2T +1— m§i)t) > Tf} .
t=1

The following Step three of the algorithm makes sure that
even a certain class of error patterns with scattered peaks of
error blocks with up to 791 errors can be decoded. For every

block j we have to take all nodes ij,l and iyﬂ] from Steps 1
and 2. Then we calculate ig-kl’k] by decoding in Cp;:

rj — ;Llcj]lGlo — ig—kl]Goo = ig—kl’k] Go1 + €;
The fourth step is needed to ensure correct decoding of

a certain block r; that satisfies Condition (2) if the entire
sequence does not fulfill (1). We have to define an erasure
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node for every level j of the reduced trellis and link it to
every node in the levels j — 1 and j + 1 (including erasure
nodes) using the designed edge costs of Definition 2.
Finally, Step 5 applies the Viterbi algorithm (cf. [4]) to the
reduced trellis in order to obtain the ML sequence.
Step 4 of the algorithm needs the following designed edge
costs.

Definition 2 (Designed edge costs for Step 4) The edge
. i(e) ; ;

cost between an erasure node i, at level j of the trellis and
information words i;_1 and i;11 at levels j — 1 and j + 1,
which are found in Steps 1 and 2 are defined as follows:

1) The edge cost m;ef ) between every information word

ij_1 and the erasure node 1( °

e
J

is given by
=max (19 + 1,270 + 1 — (r)

where (p is defined as the smallest Hamming distance
between received block and estimated codeblock of all
edges which connect i;_1 with any node of the reduced

trellis at level j. ©
e

2) The edge cost mg-eb) between the erasure node i;" and
every information word i;1 is given by
m;eb) = maX(Tl + 1,2 +1— CB)
where (p is defined as the smallest estimated number
of errors of all edges which connect any node of the
reduced trellis at level j with i 1.
3) The edge cost m(ee) between the erasure nodes i;e) and

i )1 is given by

if 3i;,i;41 which are
connected through an edge,
else,

(ee) 27 +1 - Cow
m; =

Ta +1,

where (, is defined as the smallest estimated number of
errors of all edges which connect any two nodes i; and
tj41 of the reduced trellis.

C. Proof of Correctness

Lemma 1 If (1) is satsified, then the gap between two ad-
jacent correctly decoded blocks in Step 1 is smaller than
L:=min{Lp,Lr}, where

} ) 3)

Lm = mln{
Lm—mm{ )>7{},

Proof: If Step 1 cannot decode a block successfully,
there occured more than (27, + 1 —m$) errors in this block.
Suppose that block r; was decoded correctly and decoding in

all following L blocks failed Then,
t+L

Z Wtej>z 2T +1 —

j=t+1

i

2(27' +1-— <l1>)>TZ
t=1

i

> @rat1l-m

t=1

(o)
UD R

(C))

(3)&(4)
) TL

OI

Mg

in contradiction to (1).

Lemma 2 Step 2 is able to find the correct path between two
adjacent correct decoding decisions from Step 1 (ry and v ;)
if (1) holds and

Wt(ej)gmin{To,Tl} VjE{t+1,...7t—|—i—1},

is satsified.

Lemma 3 If (1) is satisfied between two adjacent correct
decisions from Step 1 (r; and ry;), the following holds

wt(e;) + wt(ex) < 19+ 11,
Vike{t+1,... t+i—1},j#k

Theorem 1 If (1) is satisfied, the ML sequence is in the
reduced trellis.

Proof: Note that there are always at least two correctly
decoded blocks found in Step 1, namely c_; cy = 0,
and from Lemma 1 it is clear that it is sufficient that Step 2
corrects only Zg) steps in forward and lg) steps in backward
direction.

From Lemmas 2 and 3, we know that after Step 2 there is
at most a gap of one block between two correctly decoded
blocks from Step 1, in which decoding both in forward and
in backward direction fails.

Since wt(e;) < 791 for every block j, if (1) is satisfied, we
are able to close this gap in Step 3 and the complete ML path
is in the reduced trellis. |

Lemma 4 If Condition (2) is satisfied for block ry, the most
likely code block c; is in the reduced trellis.

Theorem 2 If Condition (2) is satisfied for block r, the
Viterbi Algorithm finds the most likely code block c.

IV. ERROR PROBABILITY AND COMPLEXITY ANALYSIS
A. Error Probability

By proceeding in the same way as Dettmar in [9], page 74,
and redefining p, := 7] + 1, we obtain the following upper
bound on the block error probability of the code for a binary
symmetric channel with crossover probability p:

()

By counting the maximum number of necessary block
decoding iterations, we can derive an upper bound on the
decoding complexity, which holds under the assumption of
Condition 2.

A detailed proof of the following theorem can be found in
the long version of this paper [5].

00 pr+1—1

P‘S;D)U]\f Z Z
v=1  i=p,

B. Complexity Analysis
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Theorem 3 If Condition 2 is satisfied for a certain block r
of a RS (P)UM code sequence, the decoding complexity of this
block is upper bounded by

4
C < L(TQ_T[1+1)(TQ+3)—1O
(PUM S T B,

where Cp is the maximum of the complexities of the decoders
used in Steps 1-3 and L denotes the maximum size of the lists
of code words which are the results of the decoders of each
step of the algorithm.

There are two important cases which we want to discuss.
Theorem 3 shows that in general, the decoding complexity of
a RS (P)UM code list decoder is exponential in 79 and 7.

1) In the worst case, the list size L is always the maximum

list size of all block decoders.
However, McEliece [8] showed that for almost every RS
code and its Guruswami—Sudan decoder, the average list
size is close to 1. In average case, we can replace L by
the upper bound

L<1 +Z0(TB) =1+ i (q _ ]_)sfnJrk (n)

S
s=0

2)

for the average list size (cf. [8]), where we define 75 :=
max {7, To, T1, T01 }-
Hence, the decoding complexity is notably smaller in the av-
erage case than in the worst case. Taking the limit of C’( PYUM
for L — 14 helps to illustrate the average complexity:

Lli>n11+ C(P)UM < [1 +4Q2r0+ 711 + 70 (T0 — Ta — 2))]037

which is polynomial in 7,, 79 and 7. The derivation of this
limit can be found in the long version of this paper [5].

V. SIMULATION RESULTS

We now illustrate the improvements of the algorithm by
simulation results. A (31,11 | 6) RS PUM sequence over Fys
of length N = 50 is sent via BPSK modulation over an AWGN
channel. Figure 1 shows the block error probability over
the signal-to-noise ratio. The plot illustrates the differences
between the actual decoding capability, the decoding condition
and the equivalent block-by-block decoding performance of
both, the BMD decoding algorithm by Dettmar and Sorger
[3] and the improved (P)UM decoder.

Since the improved algorithm is able to correct more error
patterns than those fulfilling condition 2, there is a difference
between considering only the sufficient decoding condition and
evaluating the actual decoding capability.

One can notice that the Ej,/Ny-gain between the actual
BMD PUM decoder and the improved PUM algorithm at an
error probability of 10~% is about 1.2 dB.

VI. CONCLUSION

We presented an improved version of the (P)UM decoding
algorithm of Dettmar and Sorger [3] and introduced a sufficient
decoding condition. Moreover, we derived upper bounds on the
complexity and error probability and illustrated the improve-
ments with simulation results.

100 X T I I I E|
X —O— Impr. (P)UM decoder (actual) 1
N X - -O — Impr. (P)UM decoder (only condition) ||
[ \‘ O Single Block List Decoder
N —— BMD (P)UM decoder (actual)
10-11 N - —x- — BMD (P)UM decoder (only condition) ||
F X - Single Block Decoder B
10—2 = =
» = 1
ot L ]
=]
< N ]
Ay . B
1073 = =
104 = =
10) B
105 ‘ ‘
3 3.5 4 4.5 5 5.5 6
Eu/Ny [dB]
Fig. 1. Error probability simulation result of a (31,11|6) PUM code

The decoding condition as well as the simulation results
show a significant improvement compared to the original
algorithm.

A possible further modification of the algorithm could use
the Kotter-Vardy soft-decision list decoding algorithm [10]
instead of the Guruswami—Sudan algorithm as block decoders.
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Abstract—Let [, be the prime field with p elements. We derive
the homogeneous weight on the Frobenius matrix ring M2 (F})
in terms of the generating character. We also give a generalization
of the Lee weight on the finite chain ring [,z +ulF 2 where u® =
0. A non-commutative ring, denoted by F,2> + vpF,2, vp an
involution in M> (IF;,), that is isomorphic to M (F,) and is a left
[F,2-vector space, is constructed through a unital embedding T
from [F > to M2 (IF,). The elements of F,> come from M (IF;)

such that 7(F,2) = F,2. The irreducible polynomial f(x) =

x® +x + (p — 1) € Fp[z] required in 7 restricts our study of
cyclic codes over M2 (F,) endowed with the Bachoc weight to
the case p = 2 or 3 mod 5. The images of these codes via a left
Fy-module isometry are additive cyclic codes over F,2 + ulF,2
endowed with the Lee weight. New examples of such codes are
given.

Index Terms—Frobenius matrix ring, finite chain ring, homo-
geneous weight, cyclic codes.

I. INTRODUCTION

The theory of codes over finite rings has gained much
attention since the significant result in [8] showed that several
well-known families of good nonlinear binary codes can be
identified as Gray images of linear codes over the quaternary
ring Z, of integers modulo 4. Several recent papers dealt with
codes over finite Frobenius rings. These rings are considered
the most appropriate coding alphabet since the two classical
theorems, namely the extension theorem and the MacWilliams
identities, generalize neatly in the case of finite Frobenius
rings.

Let p be a prime and 7 > 1 an integer. We denote by [F,-
the Galois field of order p” and characteristic p. In this study
we restrict ourselves to a small class of finite Frobenius rings,
the matrix rings over a finite field, in particular the ring of
2x 2 matrices over IF,,, denoted by M(IF,). The multiplicative
group GL(2,p) of invertible matrices in M5 (FF,) will be of
much use in the ensuing discussion as well. Until now very
few publications on codes over non-commutative rings have
been seen. It was only in 2012 that the theory of cyclic codes
over M>(FF3) was developed [1]. The idea for the construction
of cyclic codes over My (IFy) came from [2] in which was
defined an isometric map ¢ from F2 onto My (F5) where

a+d b+c
o((a+bw,c+ dw)) = (b+c+d a+b+d)

using the usual Hamming weight wy., on F4 extended
component-wise, and the Bachoc weight wg on My (F2) such
that wyan () = ws(p(a)) for all o in F2. Here w is a root of
the monic irreducible polynomial z? +z+1 € Fy[z] such that
F, is seen as an extension of Fy by w. The Bachoc weight on
M, (F,) as given in [2] is defined as follows.

0 ifA=0
wg(A) =<1 if Ae GL(2,p)
p  otherwise

The study of codes over Z, and Ms(FF3) reveals the impor-
tance of weight functions that are different from the Hamming
weight. Here we derive the homogeneous weight on Ms([F},)
using the formula introduced by T. Honold for arbitrary finite
Frobenius rings [9]. Likewise we extend the definition of
the Lee weight on Fy + uFs, u?> = 0 given in [4] to
the finite chain ring Fp> + ulF, w2 = 0. The connection
between the minimal left ideals and the idempotent elements
of M;(F,) is used to generalize the homogeneous weight on
M (F,). We also employ the well known representation of
the field by matrices by giving a unital embedding 7 from
F,2 to M>(FF,) to construct a non-commutative ring that is
isomorphic to M>(F,) and is a left IF,.-vector space. This
ring is denoted by F,: + v,F,> where v, is an involution
in M5(F,) and the elements of F,2> come from M(IF,) such
that 7(F,2) = F,2. The unital embedding 7 comes from a
characterization of ), in terms of an irreducible polynomial
f(=x) 22 + 2 + (p — 1) € F,[z]. The property of this
polynomial restricts our study to the case where p = 2 or
3 mod 5. As a consequence certain structural properties of
cyclic codes over My (IF,) that are similar to those of cyclic
codes over Ms(IF3) are derived. The structure theorems used
the transformation of the non-commutative ring JF,2 + v, Fp2
to Fp2 + u,Fp2 by introducing a matrix i, € M3(F,) such
that u, = i, +v),, where uf) is the zero matrix. Also we define
a left F;,-module isometry from M5 (F,) to Fp2 4 ulF,> using
their respective Bachoc weight and Lee weight.

IT. HOMOGENEOUS WEIGHT ON M5 ([F,)

Let R be a finite ring and R the set of real numbers.
A weight function w: R — R is called left homogeneous
provided w(0) = 0 and the following hold:
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(H1) If Rz = Ry for z,y € R, then w(z) = w(y).
(H2) There exists I' > 0 such that for every nonzero x € R

there holds
> w(y) =T|Ral.
yERx

The definition for a right homogeneous weight follows anal-
ogously, and we say that w is homogeneous if it is both left
homogeneous and right homogeneous. The number I" is called
the average value of w. The weight w is said to be normalized
if I' = 1. It is well known that the normalized homogeneous
weight on F,, ¢ = p", is given by

0 if x=0
if x#0.

Wnhom (z) - 4
q—
This idea comes from the generalization of the homogeneous
weight on a finite chain ring [7]. But our goal is to give a
generalization of the homogeneous weight on A5 (F,) which
is not a finite chain ring but is a finite (non-commutative)
Frobenius ring. We shall use the generating character instead
of the Mobius inversion formula for homogeneous weight that
was employed in [5].
For a finite Frobenius ring R, Honold [9] observed that
every homogeneous weight on R with generating character x
must have the form

w:R —Rz—T

1
1-— i Z X(u.%‘):|

ueRX

where R* is the group of units of R. Note that every finite
Frobenius ring has a generating character [12]. The generating
character of M, (F,) is

(4) = exp{ 2mi - tr(Tr(A)) }

p
where ¢r is the trace map from I, down to IF,,, that is, tr(a) =
a+af + -+ oa? " for a € Fgy, and T'r is the classical

trace of the matrix A € M, (F,). The homogeneous weight
on M, (F,) is given by

x(uA)

1
w: M,(F,) —mRA—-T|1-—rr
Fo) [ GL(n.q) EGZL(
w n,q)

where GL(n,q) is the group of nonsingular matrices in
M,,(F,). Itis known that |GL(n, q)| = ¢~ V/2T]""_, (¢*~1)
[3].

The main concern in this section is to derive the homoge-
neous weight on M(F,). First we discuss the structure of
Ms(F,).

Remark 2.1: The matrix ring M,,(IF,) has no proper ideals
but it has proper left ideals [10]. In particular M5 (F,) has
p + 1 minimal left ideals [2]. This is essential in this section
so we take it as a theorem.

Theorem 2.2: My(F,) has p + 1 minimal left ideals and
each minimal left ideal contains p? elements.

Proof: Let A € My(F,) where A = (Zg Z;). Note

that (1) 6) and 8 (1J are nonzero nonunit idempotents
of My(F,) where r € F,. Thus the proper left ideals are of
ag Tag 0
as Tas 0
minimal left ideals in M5 (IF,,) since the intersection of any two
minimal left ideals of My (F),) is the zero matrix. It follows
immediately that every minimal left ideal of Mz (F,) has p?
elements. O
In order to generalize the homogeneous weight on M (F),)
we need to get the value of the sum >, /(o ) X(uA) where
A € M>(F,). The case when A is the zero matrix is obvious.
Theorem 2.3 below deals with the invertible matrices while
Theorem 2.4 involves the zero divisors.
Theorem 2.3: 3 e 2. X(0) = 2ucariap X(uA) =p
where A € GL(2,p).
Proof: Let D be the set of all the zero divisors in M»(IF,).

We have ZAGM;(FP) x(A) =0 [9]. So,

> x(w) ==Y x(B)—x(0) (1)

wEGL(2,p) BeD

the form Zl) Hence there are p + 1
3

and since M>(F,) has p + 1 minimal left ideals, xr, (A) =
x(A) for all A € Ij, and Xy, (0) = 1 in [9], where x;, is a
character of the minimal left ideal I, of My(IF,). Hence,

> > oxnB) -1 @

u€EGL(2,p) BeI \{0}
=-(+1)(-1)-1
:p.

x(u)=—(p+1)

OJ
Theorem 2.4: ZukEGL(Z,p) x(uxB) = p — p? for all B €

I \{0}.
Proof: — ZukEGL(Zp) x(ugB)

= [ > x(Bj) > x(wB) ©)
B;elr\{0} ur €GL(2,p)

= 3 3 xwBNX(®B) 4)
B; eI \{0} ur€GL(2,p)

= Z Z x(urB + Bj) 5)
B; eI \{0} up €GL(2,p)

= Y > x(wB+ B)) (©6)

ur€GL(2,p) Bj eI \{0}
For each u, € GL(2,p), there exists By € I \{0} such that
u,.B 4+ Bs = 0 (Note: By is not unique for every u,). So,
- ZukEGL(Q,p) x(urB)

= 2

u,€EGL(2,p)

PP

ur €GL(2,p) B;€I\{0}

X(u,B + By) 7

x(ukB + Bj) ®)
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where ui B + B; # 0

= Y. xO0+ > > x(uB+ B))
ur,€GL(2,p) ur €GL(2,p) B;€IL\{0}
)
where ui B + B; # 0
=|GL2.p)+ ). > x(wB+Bj) (10)

ur €GL(2,p) B;€1L\{0}

where ui B + B; # 0.

For every B; € I;\{0,Bs} we have u.B + B; €
I:\{0,u,.B} (i.e.By + {I.\{0, Bs}}=I.\{0,u,B}) and for
fixed B; and u, we can always find [ such that u; # u, and
u.B + B; = u, B. Thus, we can collect all the elements of
I:\{0}. And since |I;\{0}| divides |GL(2,p)|,

— 2upecr(ap) X(uB)

=|GL(2,p)| 11
|GL(2,p)|[IL\{0}| — |GL(2, p)]
B;) (12
I\ {0} BJGIELJ\{O}X( )
=P -p@E*-1)+ @ -p > -2)(-1) (13)
=p’ —p. (14)
Thus,
> x(wB)=p-p° (15)
ur EGL(2,p)
0

Theorem 2.5: The homogeneous weight on My (F,) is
given by

0 itA=0

rf1- if AeGL(2,p)

. r
(P*-1Dp-1)

p2
p*—1

Proof: The proof is straightforward from the two preced-
ing theorems. U

Whom (A) =

otherwise.

III. LEE WEIGHT ON F 2 + uF 2, u? = 0

In [4] the Lee weight wy, of z = (x4, ..., x,) € (FotulF2)"
is defined as nj(x) + 2ny(x), where no(z) and ny(z) are,
respectively, the number of u symbols and the number of 1
or 1 + u symbols present in 2. So when n = 1, w.(0) = 0,
wr(l) =wr(l 4+ u) =1 and wi(u) = 2.

Consider the finite chain ring F5 +uF3, u? = 0 then we can
define wy,(z) = n1(z) + 3na(z), for all z € Fs + ulF3, where
na(x) and nq(z) are, respectively, the number of u symbols
and the number of 1 or 1+« symbols present in x, as can be
seen in Table II.

Now consider the subset By of Fy + uFy, u? = 0 where

By = {(aay +abiw) +u(fay +hiw)|a = 1,a1,b1, 8 € Fa}.

TABLE I
BACHOC WEIGHT AND NORMALIZED HOMOGENEOUS WEIGHT ON
Ms(F3)
M>(F2) | ws | Wohon Mo(F2) | ws | wohon
0 O 0 1
0 0 0 0 0 1 2 4/3
1 0 P 1 1 .
o 1 1| 2/3 o o) | 2] s
0 1 0 O
Do) | e o 1)l 2] s
1 1 1 0
1 0 1 2/3 0 0 2 4/3
1 0 . 1 1
DY) ] s Do) 2| s
1 1 0 O
o 1)1 1] s Ll 2 ] s
0 1 1 0
1 0 1 2/3 1 0 2 4/3
0 O 0 1
1 0 2 4/3 0 0 2 4/3
TABLE II
LEE WEIGHT ON 3 + ulF3, w2 =0
Fg + u]FS wL
0 0
1 1
2 1
1+u 1
24 2u=2(1+u) 1
u 3
2+4+u 3
2u 3
1+ 2u 3

Similarly we can define the Lee weight on Fy + ulFy, u? =0
to be wr.(x) = n1 4 2ns(x) where again na(x) and nq(z) are,
respectively, the number of « symbols and the number of 1 or
1 + u symbols present in .

0 ifz=0
=41 if Ae B\{0}

2 otherwise

w(z)

This can also be seen in Table III. In general we can define the

Lee weight on Fp2 + uF 2, u? = 0 as wi(z) = ny + pna(z).
0 ifz=0
wr(z) =41 if AeB\{0}

p  otherwise

where

B, = {(aa+abw)+u(Bai+Bbiw)|o € F, a1, b1, 8 € Fp}.

IV. F,2-LINEAR MAP

In this section we give the conditions on the finite field I,
for the polynomial f(z) = 2%+ x + (p — 1) to be irreducible
over F,. Using the well known representation of fields by
matrices, Theorem 4.2 shows the corresponding cyclic algebra
that is isomorphic to M»(FF,) and is a left F 2-vector space.
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TABLE III
LEE WEIGHT ON [Fy + wF4, w2 =0

Fy+ulFy

0
1
w

1+w

1+u

w+ uw = w(l +u)
I+w +ul+w) =1+w)(l+u)

u

g
&

w+u

1+w)+u
uw

14+ uw
1+ w)+uw

u(l 4+ w)
14+ u(l+4+w)
w~+ u(l+ w)

NNNNNNNNDNFRRRRRO

Lemma 4.1: Let p = 2 or 3 (mod 5) then the polynomial
f(z) =2%+ 2+ (p—1) is irreducible over F,,.

Proof: The case when p = 2 is trivial. Note that the
discriminant of the polynomial f(x) is equal to 5 € F,,. Then
f(z) is reducible over T, if there exists y € F,, such that y* =
5 (mod p). By the Law of Quadratic Reciprocity of elementary
number theory, when p is odd, y?> = 5 (mod p) is solvable if
and only if p =1 or -1 (mod 5). O

Theorem 4.2: Let f(z) = Y. jax' € TFylz] be a
monic irreducible polynomial. Then the mapping 7: Fy[z] —
M,(F,), g(z) — ¢g(X) induces a unital embedding of
F,lx]/(f) into M, (F,) where

0 0 0 —ap

1 0 0 —ai
x—|0 1 0 —a»

0 0 1 —an—1

Remark 4.3: The matrix X is known as the companion
matrix.

Corollary 4.4: Let Fp2 = Fp[w] where w?+w+(p—1) =0
then 7: Fp2 — M, (F,,) defined by

a+ bw “ b
b a+(p—1)b

is an embedding.

Proof: The proof follows immediately from Lemma 4.1
and Theorem 4.2. O

Theorem 4.5: 1f w is a root of f(z) = 22 +z + (p— 1)
then w? = (p — 1w + (p — 1)(mod (w? + w + (p — 1)).

Proof: First we show that (p — 1)w + (p — 1) is also a
root of f(x), that is,

fllp=Dw+(p—1)]
=[p-Dw+E-DP+[p-Dw+E-1+@-1)

=[lp -1’ + 2w+ 1 +[(p~Dw+ (p -]+ (p— 1)

=4 w+l-—w-2

=’ +w+(-1)

=0.

Now, let h(x) = zP. By the Division Algorithm, there exist
g(x) and iz + 7o such that h(z) = g(z)f(z) + rax + ro
where 12z + ro is the remainder when h(z) is divided by
f(z). Since w and (p — 1)w + (p — 1) are roots of f(x) then
we have wP = ryw + ro and

[(p=Dw+ =D =nrlp-Dw+ -1+
or equivalently,
p—1DuwP+(p—-1)=rp—-Dw+r(p—1)+re.

Since the characteristic of F,, is p, then

[(p=Dw+(p=1)]" = [(p—Dwl’+(p—1)" = [(p—1)"w’]+(p—1)".

By Fermat’s Little Theorem,

[(p = DP’]+(p = 1P = (p = D’ + (p = 1).
Adding equations w? = rqw + 17 and (p — L)w? + (p—1) =
r1(p— Dw+r1(p — 1) + ro modulo p, the resulting equation
is (p—1)=ri(p—1)+2ry or simply 71 + (p — 2)ry = 1.

Note that ged(1,p—2) = 1. And we have 1 = (p—1)—(p—
2)=(p-1)+{pP—-2)(p—1).So,r1 =p—1landry =p—1.
Thus, w? = (p — Dw + (p — 1)(mod (w? +w+ (p—1)). O

oy (P11 =1
Theorem 4.6: 7P (w) p—1 0

Proof: Since 7 is a homomorphism we have

T(WP) = 7(ww - - -w)

=71(Ww)T(w) - 7(w)
p T(w)'s
= 7P(w)
P (w) = 7(wP)
=7[(p—-Dw+(p-1)]
=7[(p-Dw]+7(p—-1)
Tp—-Dr(w)+7(p—1)
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Theorem 4.7: Let F, be the set of all scalar matrices in
My(F,), p = 2 or 3mod 5, 7(Fp2) = Fpe and v, =
1 0
p—1 p- 1). Then v,7(w) = TP (w) vy, Fp[T(w)] = Fpe
and MQ(FP) = }—pz —+ Vp}—p2.
Proof: 1t is easy to show that v, 7(w) = 7P(w)v, and

Folr(w)] = Fyp since 72(w) + (w) +7(p— 1) = <8 8) .

MQ(FP) = .7:112 + Vp.7:p2

— a+c b+d
{(b—c—d a—b—C)) “’b’c’der}.

O

V. CycLIC CODES OVER M, (F,)

Structure theorems for cyclic codes over A = Msy(Fs)
were established in [1] by introducing two matrices 7(w)

and v in Ay satisfying the relation vr(w) = 72(w)v. A
possible choice would be those given by Bachoc [2] which are
v = 01 and 7(w) = L
10 11

such that Ay = Fo[r(w)] + vFe[r(w)] where Fo[r(w)] =
Fy =2 Fy and v # va. Setting u = 7(1) + v gives
u? = 8 8 and Ay = F4 + uF4. Alamadhi et.al. [1] used
the ring F4 + ufy to develop structure theorems for cyclic
codes over Ms(FF3) by simply extending from cyclic codes
over Fy + uFs, u? =0 [4].

It seems that a construction of cyclic codes over Fj, + ulF,,
u? = 0, will result in the construction of cyclic codes over
A, = M5(F,). Fortunately, Qian, Zhang and Zhu [11] solved
an open-ended question given in [4], that is, to extend the
cyclic codes over Fo+uF2, u? = 0 to Fp+uF,+- - -+u*~1F,,
u® = 0. Thus, the case when k = 2 gives the cyclic codes
over [F), + ulf,, u? =0.

Fp2 + U]sz

quz
|
(0)

Fig. 1. Lattice of ideals of F 2 + ulF 2,u? =0

Let p =2 or 3 (mod 5), i, = <p51 (1)) and u, = v, +i,.

0 0
Then uf, = <0 O) and

.Ap = ]'_p2 + up}_pz

a b
:{<bc abd>|a7b7c,dEFP}.

Let A,[X] be the ring of polynomials over A,. We have a
natural homomorphic mapping from A, to its field F,2. For
any a € A, let G denote the polynomial reduction modulo u,,.

fp2 + u,,]-'pz
|
(0)

Fig. 2. Lattice of ideals of ]—'pz + up]-'pg,uf, is the zero matrix

Now define a polynomial reduction mapping p: A,[X] —
Fp2[X] such that

=0 =0

A monic polynomial f over A,[X] is said to be a basic
irreducible polynomial if its projection u(f) is irreducible
over Fp2[X]. An A,-linear code C' of length n is an Ap-
submodule of Aj. As left modules we have the expansion
Rpn = Apla]/(z™ = 1) = GBE.ZIAM, where the A, ; =
Ay[z]/(f;) are quotient A,-modules and 2™ — 1 = H;:1 1
where f;’s are irreducible polynomials over J2.

We shall prove the lemma and the theorem below using the
same techniques in [1] and [11] given the condition that p is
not divisible by n.

Lemma 5.1: If f is an irreducible polynomial over F,:
the only left . A-modules of R,(f) = A,[X]/(f) are (7(0)),
(up) and (7(1)). In particular this quotient ring is a non-
commutative chain ring.

Proof: Let I # (7(0)) be an ideal of R,(f). Pick g
in A,[X] such that g + (f) € I, but g ¢ (f). Because
f is irreducible the gcd of pg and f can only take two
values, 7(1) and f. In the first case ¢ is invertible mod
fand I = (7(1)) = R,(f). If this does not happen,
I C up, + (f). To show the reverse inclusion, let g = u,r
with uw,r + (f) C I and u,r+(f) # 7(0). We can assume by
the latter condition that ur ¢ (f). Hence by the irreducibility
of f we have that ged(pr, f) = 7(1). This entails the existence
of a,b, c € Ap[X] such that ra+ fb = 7(1)+u,c. Multiplying
both sides by u, we get u,ra = u, + u, fb. The left hand
side is in [, a right sided ideal. Thus the reverse inclusion
follows. O

Theorem 5.2: Suppose C' is a cyclic code of length n over
A, = Fp2 +u,F,2 where p is not divisible by n. Then
there are unique monic polynomials Fy, Fy, F5 such that C' =
(F1,u,Fy), where FoFi Fy = X" — ((1) (1)) Fy = FyFy,
Fy = FyFy, and |C| = p?* where s = 2deg Fy + deg Fy.

Proof: Let X" — (1) (1) = fifa... fr be the unique
factorization of X" — (1) (1) into a product of monic basic

irreducible pairwise coprime polynomials. Note that C' is a
direct sum of right .A,,-modules of the form (u{, fl) 0<5<1,
0 <i<r where f; = [1j=. ji f;- After reordering, we can
assume that C' is a direct sum of any of the following

(ft1+1)7 (ft1+2)7 LR (ft1+t2)’ (upft1+tz+1)a ) (upfr)~
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That is,
C= <f1f2f3 o fafaatarr e S upf1f2f3

o Syt frytatts)-
Let

Fy=fifofs. . fofristarr - fro
Fy = fifafs. .. feoqta frittatts-

where t1,to > 0and t; +to +1 <.

Then

1 ti+1 =0

F =
tiv1 # 0,

Jrortittir1 - Frottit ot
where tp =0, 0 <7 <2,

Then by our construction, it is clear that C = <F1, upﬁ’2>

10
and X" — <0 1> = FQF1F2 = f1f2 .. -fr-

To prove uniqueness, we assume that Gg,G1,Go are
pairwise coprime monic polynomials in A,[X] such that

GoGng = X" — (é (1) and C = <Gl,upég>. Thus,

C = (G1) + (u,Gs). Now there exist nonnegative integers
mo = 0,mq,...,mgy1 with mg +m1 + -+ + mgy1 =
r, and a permutation of {fi, fo,..., fr} such that G;
Smo+-tmi+1 -+ fmo+-+miy, for i =0,1,2. Hence,

C= (fm1+1)@' : '@(fm1+mz)@(upf7n1+7n2+l) o '@(upfr)-

It follows that m; t; for 1 0,1,2. Further-
more, (fmo+-tmatis---»fmot-+mas,) 1S @ permutation of
{ftn+"'+td+17 ceey ft0+~~~+td+1}~ Therefore, FZ = G»L for 1 =
0,1,2. To calculate the order of C, note that

C = (Fi,upky) = (1) ® (upFh).

C| — (p2)2(n7deg13‘1)(pQ)nfdegﬁg — pZS.

Hence, O

VI. LEFT [F,-MODULE ISOMETRY
Recall that M>(F,) = Fp2 + upFy2 and B, = {(aa; +
abiw) +u(far + Bbiw)la € F a1,b1, 8 € Fp} is a subset
of Fp2 + ulF > Consider the mapping ®,, defined as
O, Mo(Fy) — Fpo + ulF )2
where

b
a—0b—d)

a
©p (b—c

It is easy to show that ®, is a left IF,,-module isomorphism.
Now let D, be the set of matrices in My (F,) with entries
a = aay, b= ab, ¢ = fa; and d = Bb; where a € F, and
ar.bi B € F, then @, (B\{0}) = D0} = GL(2,p).
Therefore, ®,, is a left IF,- module isometry such that wg(A)
w,(®,(A)) for all A € My(F,). Thus, if C' is a cyclic
code over My(IF,) with minimum Bachoc distance dg(C'),
the image ®,(C) is an additive cyclic code over F,2 + ulF 2,
u? = 0 with minimum Lee distance di(®,(C)) = dg(C).

> = (a + bw) + u(c + dw).

VII. EXAMPLES

For the following examples, MAGMA routines were created
to construct cyclic codes over M,(F,) and their isometric
images.

Example 7.1: Let p=2 and n = 3. Then 2> — (1) (1) =
FOF1F2 where FO = ((1) ?), F1 = (2 1) and F2 =

G (1)) Then C; = (Fy,usf%) is cyclic code of length 3

with |Cy] = 2° = 64, minimum normalized homogeneous
distance dgnon = 2, minimum Bachoc distance dg 3 and
minimum Hamming distance dga, = 2. The image ®2(C1) is
an additive cyclic code over Fy + ulFy of length 3, order 64,
and minimum Lee distance d;, = 3.

Example 7.2: Let p = 3 and n = 4. Then z* — (1) (1) =
1 0 1 0
fifafsfa where f1 =2 — (O 1>,f2=9ﬂ+ (O 1>,f3=
2 1 1 2
:c+<1 1) andf4:33—i-<2 2>.IfweletF0:f2f4,

F f3 and Fy = f; then Cy = <F1,U3F2> is a cyclic
code of length 4 of order |C2| = 93 = 729 with minimum
normalized homogeneous distance dpnon = 27/8, minimum
Bachoc distance dg = 4 and minimum Hamming distance
dyan = 3. The image ®3(C5) is an additive cyclic code over
Fy + ulFg with length 4, cardinality 729 and minimum Lee
distance d; = 4.
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ABSTRACT

In this lecture we consider databases that are used in
biometric identification settings. We assume that the biometric
sequences describing the individuals consist of independent
and identically distributed variables. It is our objective to find
the fundamental limits that characterize such systems.

First we consider an unprotected database. We determine
the so-called identification capacity, i.e., the maximum rate of
individuals that makes reliable identification of the individual
based on a noisy observation of the corresponding enrolled
sequence possible [1],[2].

Next we focus on search complexity. Since the database
contains randomly generated enrollment sequences, exhaustive
search procedures seem to be required to achieve the identifica-
tion capacity. To find out whether smaller search complexities
can be achieved, we investigate a clustering approach, in which
a first decoder determines a clustering index and a second
decoder does the identification, based on this index. The first
decoder is unaware of the enrolled sequences, the second one
has access to these sequences. For this setting we determine
the fundamental limits. These limits give us an idea about the
trade-off between search and memory complexity. Although
the first encoder is ignorant of the enrolled sequences, it could
use structured methods to form an index [6]. We also discuss
a more advanced setting in which a first decoder sends a list
of indices to a second one [12].

In the second part of the lecture we discuss protected
databases, that are used for identification as well as for
authentication. Each individual, by enrolling in the database,
obtains a secret. Moreover helper data is stored in the database
for each individual. During identification in addition to the
identity index, this secret has to be reconstructed, from the
noisy observation of the enrolled sequence and the helper data
[9],[11]. We assume that the database does not leak informa-
tion about the secrets and consider also the so-called privacy
leakage, i.e. the information that the database contains about
the biometric enrollment sequences [7],[10]. We investigate the
fundamental limits for this setting and discuss the connections
to earlier work, e.g. that of Westover and O’Sullivan [4] and
Tuncel [5].

Collaborators: Tanya Ignatenko, Eindhoven University of
Technology, and Farzad Farhadzadeh, University Geneva.

REFERENCES

[1] J. A. O’Sullivan and N.A. Schmid, “Large deviations performance anal-

ysis for biometrics recognition.” Proc. 40th Annual Allerton Conference

on Communication, Control, and Computing, Allerton House, Monticello,

IL, Oct. 2-4, 2002.

F. Willems, T. Kalker, J. Goseling, and J.-P. Linnartz, “On the Capacity

of A Biometrical System,” Proc. 2003 IEEE Int. Symp. Inform. Theory,

Yokohama, Japan, June 29 - July 4, 2003, p. 82.

E. Tuncel, P. Koulgi, and K. Rose, “Rate-Distortion Approach to

Databases: Storage and Content-Based Retrieval,” IEEE Trans. Inform.

Th., Vol. IT - 50, No. 6, pp. 953 - 967, June 2004.

[4] M. B. Westover and J. A. O’Sullivan, “Achievable rates for pattern

recognition,” IEEE Trans. Inform. Theory, vol. 54, no. 1, pp. 299-320,

Jan. 2008.

E. Tuncel, “Capacity/Storage Tradeoff in High-Dimensional Identification

Systems,” IEEE Trans. Inform. Theory, Vol. 55, No. 5, May 2009, pp.

2097 - 2106.

[6] EM.J. Willems, “Searching Methods for Biometric Identification Sys-
tems: Fundamental Limits,” Proc. 2009 IEEE Int. Symp. Information
Theory, pp. 2241 - 2245, June 28 - July 3, 2009, Seoul, South Korea.

[7]1 T. Ignatenko and FM.J. Willems, “Biometric Systems: Privacy and
Secrecy Aspects,” IEEE Trans. Information Forensics and Security, Vol.
4, No. 4, pp. 956 - 973, Part 2, Dec. 2009.

[8] E. Tuncel and D. Gunduz, “Identification and Lossy Reconstruction in
Noisy Databases, 2010 IEEE Int. Symp. Inform. Theory, Austin Texas,
June 13-18, 2010, pp. 191 - 195.

[9] EM.J. Willems and T. Ignatenko, “Identification and Secret-Key Gener-
ation in Biometric Systems with Protected Templates,” Proc. 2010 ACM
SIGMM Multimedia and Security Workshop, pp. 63 - 66, Sept. 9 - 10,
Roma, Italy.

[10] T. Ignatenko and FEM.J. Willems, "Fundamental Limits for Biometric
Identification with a Database Containing Protected Templates,” Int.
Symp. Information Theory and its Applications (ISITA), pp. 54 - 59, Oct.
17 - 20, 2010, Taichung, Taiwan.

[11] EM.J. Willems and T. Ignatenko, “Identification and Secret-Key Binding
in Binary-Symmetric Template-Protected Biometric Systems, 2010 IEEE
International Workshop on Information Forensics and Security (WIFS),
pp. 1 - 5, Dec. 12 - 15, 2010, Seattle, USA.

[12] F. Farhadzadeh, FM.J. Willems and S. Voloshynovskiy, “Fundamental
Limits of Identification: Identification Rate, Search and Memory Com-
plexity Trade - Off”, 2013 IEEE Int. Symp. Inform. Theory, Istanbul,
Turkey, July 7 - 12, 2013.

2

—

3

—

[5

—

97



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

Information Theoretic Analysis of Storage, Identification, and
Reconstruction in Noisy Data Management Systems
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1. INTRODUCTION

High-dimensional data such as biometric features or behav-
ioral patterns are replacing classical identification documents
for increased security. This replacement naturally brings about
the need for huge disk storage space, and more importantly,
the need for fast search algorithms for reliable identification
of the entries in the database when queried by a user. Ob-
servation of biometric features is typically a noisy process
in both the enrollment and the identification stages, making
identification challenging even without storage constraints.
The noise significantly limits the ability of the search engine
to distinguish database entries, and therefore, reduces the
identification performance.

We address some of the important problems that can be
posed in this setting: What is the maximum number of entries
that can be reliable identified when the entries are to be com-
pressed at a certain rate? Obviously, the more we compress,
the less we can identify, but what is the precise trade-off? If we
are also to reconstruct the data from its compressed features,
how does the reconstruction quality requirement affect this
tradeoff? How can we leverage the correlation between the
query and the identified data in this reconstruction?

Our analysis is information theoretic in the sense that
expressions such as “number” or “speed” above all become
exponential rates as the dimensionality of the data approaches
infinity. “Reliability,” on the other hand, gets translated into the
well-known vanishing probability of identification probability.
Classical tools of information theory gives us interesting
performance bounds in these problems.

The data management system is assumed to operate in three
phases:

1) Enrollment phase: Noisy vectors Y"(m), m =
1,2,...,M, are observed. It is assumed that the un-
derlying feature vectors X"(m) are independent and
identically distributed (i.i.d.) with a known distribution
Py, and pass through a memoryless channel Py x to
produce Y (m). Depending on the specific problem, the
vectors Y (m) are either directly recorded or compressed
before being recorded.

2) Identification phase: Nature chooses W uniformly from
1,2,...,M, and the corresponding X"(W) passes
through another memoryless channel Pz x, producing the
query vector Z". The goal is then to identify W with
high probability by using only the query Z™ and the data
stored in the system.

3) Reconstruction phase: Once W is successfully identified,
X™(W) is estimated with the help of Z™. It is desired
that this estimation is has as little distortion as possible.

II. IMPORTANT RESULTS

It was shown in [1] and [2] that if the observed vectors
Y™ (m) are stored directly, then for large n, M ~ 2" objects
can be reliably identified if and only if R* < C, where C has
a single-letter characterization given by

C=I1Y:2).

If, on the other hand, Y"(m) are to be compressed be-
fore recording, there will be a tradeoff between the iden-
tification capacity and the compression rate. This tradeoff
was independently characterized in [3] and [4]: A compres-
sion/identification rate pair (R®, R?) is achievable if and only
if there exists an auxiliary random variable U such that
Z — X =Y — U forms a Markov chain and

I(Y;U) < R°
I(Z;U) > R',

where U is distributed over some discrete alphabet ¢/ satisfying
U < V] +1.

If, in addition, one wants to reconstruct X" (W) after
successfully identifying W, then as shown in [?], the compres-
sion/identification/distortion triplet (R°, R?, D) is achievable if
and only if there exist an auxiliary random variable U € U
with joint distribution pyy x z and a function ¢ : U X Z — X
such that U — Y — X — Z forms a Markov chain and

R < I(U;2)

R°—R' > I(U;Y|Z)
D > E[d(X,¢U 2))].

REFERENCES

[1] J. A. O’Sullivan and N. A. Schmid, “Large deviations performance
analysis for biometrics recognition,” Proc. of Allerton Conf. on Comm.,
Control, and Computing, Oct. 2002, Monticello, IL.

[2] F. Willems, T. Kalker, J. Goseling and J.-P. Linnartz, “On the capacity
of a biometrical identification system,” Proc. IEEE Int’l Symp. Inform.
Theory, Yokohama, Japan, July 2003.

[3] M. B. Westover and J. A. O’Sullivan, “Achievable rates for pattern
recognition,” IEEE Trans. Inform. Theory, vol. 54, no. 1, pp. 299-320,
Jan. 2008.

[4] E. Tuncel, “Capacity/storage tradeoff in high-dimensional identification
systems,” IEEE Trans. Inform. Theory, vol. 55, no. 5, pp. 2097-2106,
May 2009.

[5] E. Tuncel and D. Gunduz “Identification and lossy reconstruction in
noisy databases,” to appear in IEEE Trans. Inform. Theory.

98



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

Compression for Similarity Queries

Amir Ingber, Thomas Courtade, Idoia Ochoa and Tsachy Weissman

Traditionally, data compression deals with the problem of concisely representing a data source, e.g. a
sequence of letters, for the purpose of eventual reproduction (either exact or approximate). In this work we
are interested in the case where the goal is to answer similarity queries about the compressed sequence,
i.e. to identify whether or not the original sequence is similar to a given query sequence.

We study the fundamental tradeoff between the compression rate and the reliability of the queries
performed on compressed data. For i.i.d. sequences, we characterize the minimal compression rate that
allows query answers, that are reliable in the sense of having a vanishing false-positive probability, when
false negatives are not allowed. We term this fundamental limit the identification rate of the source. Our
results for the case of Gaussian sources with quadratic distortion [1][2] are based on high-dimensional
geometry of the Euclidean space. For general discrete memoryless sources (DMS’s) and arbitrary distortion
measures, our results [3] are partially based on the work of Ahlswede et al. [4], and their “inherently
typical subset lemma” plays a key role in the converse proof. For compression rates above the identification
rate, we show that the false positive probability vanishes exponentially, and we characterize this exponent
(see [2] for Gaussian sources, [S5] for the general DMS case and [6] for the special case of exact match
identification).

We then study the relationship between classical lossy compression and compression for queries. In
general, lossy compressors can be used as building blocks for constructing a scheme for compression
for queries, but this should be done carefully. While the naive usage of lossy compressors is optimal
in some cases (see [3]), it is not optimal in general. Nevertheless, such schemes can be constructed in
practice. In [7], lossy compressors are successfully used in order to compress equiprobable sources, and
are also applied for the task of compressing DNA sequences (taken from the Biozon database [8]) for
similarity identification. In [9], an improved scheme is described, which is based on a lossy compressor that
minimizes a distortion measure that differs from the one that measures the similarity between sequences.
This approach forces the lossy compressor to match reconstruction sequences to source sequences, with
a joint type that is carefully chosen in order to minimize the false positive probability and - by that - the
identification rate.
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Abstract—In this paper we quantify upper and lower bounds
on the reliability function for the problem of content identification
from a large database based on noisy queries.

I. INTRODUCTION

We consider the problem of content identification from a
database. The database houses quantized representations of
onkr length-n “enrollment” vectors, where R; > 0 is what
we call the identification rate (we will not worry about integer
effects in this paper). When presented with a noisy observation
of one of the (non-quantized) enrollment vectors, the goal is
to identify (using only this observation and the stored data)
which enrollment vector generated the noisy observation (or
the “query”)

The information-theoretic limits of this problem were found
in [1] (see also [2] for related problem formulations) under
the following model. The enrollment vectors, X,, for m =
1,...,2" are chosen in an i.i.d. manner according to px.
An index of a codeword in a pre-defined rate-Rc codebook
C is used to represent each of these vectors in a database,
where Rc > 0 is what we call the compression rate. As it
takes nR¢ bits to store the index of the representation of each
enrollment, and 2"F: representations are stored, the entire
database is of size nRc2™" bits. The query Y presented
during the identification phase is a length-n observation of one
of the 27 (unquantized) enrollment vectors observed via the
discrete memoryless channel (DMC) py|x (-|-). The decoder’s
objective is to identify reliably the codeword corresponding to
the enrollment vector from which the query was generated.

In [1], the capacity region of this problem was shown to
be parameterized by a (rate-distortion) test channel py|x.
Given the joint distribution py|x (u|z)px (z)py|x (y|z), the
“compression/identification” rate pair (R¢, Ry) is achievable
if

RC>I(U;X) R1<I(U;Y).

The achievable rate region is the convex hull of the union of
achievable rate pairs over all test channels. The achievability
is closely related the the Wynzer-Ziv problem. The codebook
C needs to have good covering properties (R¢c > I(U; X)) to
ensure reliable encoding. The union of codewords stored in
the database (which is a subset of C) needs to form a code
that has good packing properties (R; < I(U; Z)) for reliable
decoding.

Stark C. Draper
Electrical and Computer Engineering
University of Toronto
stark.draper@Qutoronto.ca

In a previous paper [3], we quantified an achievable error
exponent tradeoff for a particular encoding and decoding
strategy, in other words, we derived a lower bound on the
reliability function for the content identification problem. Our
results used a novel lemma [3, Lemma 2] that characterized
the end-to-end statistical relationship between the codeword
and the channel output. In this paper, we will first quantify an
upper bound on the error exponent over all encoding/decoding
strategies. This upper bound can be shown to be strictly tighter
than the naive sphere packing upper bound. We also derive a
modification of the lower bound from [3] whose form parallels
the upper bound expression obtained here

II. PROBLEM FORMULATION

In this section we formally state the problem setting and
define the notation that we will use throughout the paper.

Environment: We suppose that there are M = 2% items
to be represented in the database. To each item is associated a
length-n “feature vector” or “enrollment vector” X(m) € X",
m =1,2,..., M which are drawn independently from px in
an i.i.d manner where & is a finite alphabet.

Enrollment Phase: In the enrollment phase, each feature
vector is mapped to a codeword selected from a pre-defined
rate-Rc codebook C = {u(1),u(2),...,u(2"%c)} ignoring
integer effects. The codewords are made up of symbols from
the finite alphabet U{. We represent the operation of assign-
ing a codeword u to the feature vector x by the function
f X" — {1,2,...,L}, where we define L = 2nfic,
The notation J(m) will be used to denote the (random)
quantity f(X(m)). Observe that the codeword that gets as-
signed to object m is u(J(m)). The set of all (possibly
non-distinct) codewords corresponding to the enrolled items
{u(J(1)),u(J(2)),...,u(J(M))} will henceforth be called
the database and will be denoted as D. The database D C C
can be thought of as an analogue to the random bin of
codewords in the Wyner-Ziv problem.

Identification Phase: An index W is selected uniformly at
random from {1,2,..., M}. This corresponds to the item that
the user wishes to query for. A noisy version of X"(WW),
Y™ € Y™ is then observed at the database where the
conditional distribution of Y™ is given by Pr[Y = y|X =
x| = [T;—, pv|x (yil@;), i.e., we model the noise as a DMC
Py|x ¢ X — ), where ) is also assumed to be a finite

100



International Zurich Seminar on Communications (IZS), February 26 - 28, 2014

alphabet. The objective at the identification phase is to produce
an estimate W from the observed random vector Y and the
stored sequences D. This estimation operation, which we will
call decoding, is denoted by the function g : Y™ X urM
{1,2,..., M}. Our aim is to design an encoding function f(-)
and a decoding function g(-) such that, with high probability,
g(-) returns the correct value of W.

Given a finite alphabet S, we write II(S) to denote the set
of all distributions on S. For other notation, we mainly follow

[4].

III. MAIN RESULTS

We will now state the main results of our paper. Given some
joint distribution pxy € II(X x V), let P.(f, g,pxy) denote
the probability that a particular choice (f, g) of encoding and
decoding function does not estimate W correctly. Then, we can
define the content identification reliability function as follows

p(pXY7R17RC)

- 1 .
limlim sup — - log |\min P (f,9,pxv)| ,
where the minimization is over all encoding and decoding
function pairs (f,g) such that logM < n(R; — €) and
log L < n(R¢ +¢€).

The following theorem provides an upper bound for the
reliability function p. That is, it gives us a lower bound on
the probability of error over all choices of valid encoding and
decoding functions for the problem.

Theorem 1. Given pxy € I1 (X x Y) and Ry, Rc > 0, the
reliability function p(pxvy, Rr, Rc) is upper bounded by

pu(pxy,Rr, Rc) = inf  sup inf D (gxv|pxy)-

ax  qs|x: ay |
I(X;S)<R¢c I(Y3S)<Rp

(H
Here Y, X, S have the joint distribution qy qx|yqs|x and the
cardinality of S satisfies

S| <[X[- [V + [X] +2

Next, we will state a theorem that provides a lower bound
to the reliability function p and therefore upper bounds the
probability of error over all choices of encoders and decoders.

Theorem 2. Given pxy € II(X x )) and Ry, Rc > 0, the
reliability function p(pxy, Ry, Rc) is lower bounded by the
quantity

pL =
inf  sup inf D(gxvulpxyauix)+ (U, Y) - Ry|*,
ax qu|x: 9y | x,U

I(X,U)<Rc

where the joint distribution of X,Y,U is qxqu|xqy|x.u-

The rest of the paper will be devoted to proving these two
results.

IV. PROOFS
A. Proof of Theorem 1

In order to prove Theorem 1, we begin by picking an
arbitrary encoder-decoder pair f, g that satisfies the rate con-
straints. That is, f and g are such that

log M < nR; log L < nRc. )

Let us define the “error set”

E€={x1),....x(M),w,y) : g(y,x(1),...,x(M)) # w} .
3)
Our proof will follow these steps:

(A) We will first fix a bad joint distribution gxy such that
(Y, f(X)) < n(R; —¢). We will then show that
q%v (&) is bounded away from zero.

We will then use this fact to bound the probability of
error from below over all valid encoder/decoder pairs.
Notice that probability of error is the quantity p'y (€).
We will next work to “single letterize” the expressions
in the above bound. This will involve introducing the
right auxiliary random variable and then ensuring that
the corresponding alphabet size does not grow with n.
Since this step is somewhat standard, we will only sketch
the argument here.

Finally, we use continuity arguments to show that we
can take ¢ — 0, the details of which we will omit in
this short manuscript.

Step (A): Let gxy € II(X x )) be a distribution such that
I(Y, f(X)) < n(R;—¢). Recall that g is an estimator for the
random variable W and it has access to the random variables
{J(i)};e(ar) and Y. Therefore, Fano’s inequality (see e.g., [5])

tells us that

B)

©

D)

HW |J1),...,J(M),Y)—1

log M ’

Notice here that the conditional entropy is computed with

respect to the joint distribution g'y-.

To get a lower bound on ¢% (£), we will lower bound the
conditional entropy term above.
HW | J(1),...,J(M),Y)

= H(W) — I(W; J(1),..., J(M),Y)

W WY - I(W:Y | J(1),.... J(M))
®)

O W) - HY | JQ),...,J(M))
FH(Y | J(),.... J(M),W)

Ixy (€) = 4

(2) HW)—H(Y)+ H(Y | JW))
nR; — I(f(X);Y)
> ne

In (a), we have used the definition of conditional mutual
information and that fact that [(W;J(1),...,J(M)) = 0
since these quantities are independent. In (b) we expand out
the conditional mutual information term and in (¢) we use
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the fact that conditioning cannot increase entropy (i.e., H (Y |
{J(@)}ican) < H(Y)) and that Y only depends on J(W)
and therefore H(Y | {J(i)}icn, W) = H(Y | J(W)).
Finally, in (d) we use the fact that W is a uniform random
variable over a set of size M = 2"71 and the fact that, by
definition, J(W) = f(X). The final step follows from our
assumption on ¢xy . Let us assume that n. > 2¢~!. Substituting
this lower bound back in (4), we have

ne —1 €
>
nRr — 2Ry

Ixy(€) = ®)

Step (B): In order to lower bound the probability of error,
Py (€), we will use the so-called “change of measure”
argument typically used in establishing large deviation rate
functions (see e.g., [6] and [4, Page 268, Problem 13] for
a version that is more applicable to an information theoretic
setting). The idea is to lower bound the mass of a set (in this
case &) under one measure (in this case p'yy-) using the mass
of the same set under a different measure (in this case ¢%+-).
For § > 0, let us define the set of all (¢xy,pxy ) — divergence
typical sequences as follows
< 5} .

(D°)
. E, log = .
is no greater than —>* [msg rxy ] Assuming that pxy > 0,

this quantity can be uniformly upper bounded by some A >
0 over all gxy when X and ) are finite. Of course, one
could obtain a tighter bound for ¢’y (D€) using, for instance,
Chernoff bounds. However, this weaker bound suffices for our
current purpose. We can now proceed to bound the probability

of error as follows for n > 4ZIZA,

1 ' )(7
D=1(xy):|-log M — D(gxv|pxy)
n Py (%,¥)

Notice that by Chebyshev’s inequality, we have that g%

2 ‘IXY]

Plerror] = py (€)

y(END) = Z axy (X, Y)W

x,y€END XY(X: y)

(@)

> g%y (END)ePlaxy lIpxy)+o]

(Q L _ A 677L[D<QXYHPXY)+5]
~ \2R; no?

(c) €

—€

> —n[D(gxy llpxvy)+9]
~ 4Ry

In (a) we use the definition of the divergence typical set D

and in (b) we use the fact that P(ANB) > |P(A) — P(B°)|".
Finally in (¢) we use our assumption that n > 455’2A. Since this

bound holds for any gxy such that I(f(X),Y) < n(R;—e), it
has to hold even if we take the supremum over all such gxy’s.
Also, since we want our lower bound to hold irrespective of
the quality of the encoder/decoder pair picked, we can take the
infimum of right side with respect to all valid coding functions.
Therefore, the probability of error can be lower bounded by

the following quantity

eexp ( —n[D(gxvyllpxy) + 9] )

4Ry

inf sup
f: dxy:
log L<n(Ro+e)I(Y;f(X))<n(Rr—¢)
(6)
Step (C): Before we proceed, let us restrict our attention to
the exponent. Notice that our objective will now be to upper
bound the subsequent quantities.

sup qi)?f: D (gxvllpxvy)
log L<h (o 4y (X)) <n(Rr =)
(a)
< inf sup inf D (gxv|lpxy)
ax qy|x*

I(f(X) X)<n(Rc+e)I(Y F(X))<n(Rr—e)

®) .
< inf sup inf
ax qu|x ay|x:
I(U; X)<71(RC+E)I(Y U)<n(R;—e)

D (¢xv|lpxvy) @)

In (a) we changed the order of minimization and maxi-
mization, and we used the fact that log L = H(f(X)) >
I(f(X); X). In (b), we are replacing the deterministic map-
ping f(X) by a random variable U (whose alphabet has
cardinality no less than the range of f(X)). Since deterministic
functions are a special case of such random mappings, we
are increasing the domain of maximization, and hence the
inequality (this does not affect the inner infimization since
the domain of that infimum is over gy x). Towards “single-
letterizing” the arguments of the optimizations above, we do
the following two calculations. First, we observe that

-3 ) -

(@)

< ZH
O S 1y vi) &
i=1

where (a) follows from observing that H(Y; | Y{™") < H(Y;)
and that H(Y; | U, X{" ") = H(Y; | U, X{ ", Y{™ ") < H(Y; |
U,Y{ ™) because of the Markov chain Y; — (U XZ Dyt
In (b), we set V; 2 (U, X;™!) and in (c) we merely introduce
a random variable T that is uniformly distributed in [1, ..., n]
(this is the so called “time sharing” random variable.) Second,
using a similar calculation, we have

H(Y; |U Y7
H(Y; |U,X{7) = 1Y U, X{)
=1

I(Yp; Vp,T),

n

> I(X; X{7hU)

i=1

IX;U0) = i[(XﬁU | Xih) =

n
=Y (X Vi) = I(X7; Vi, T)
i=1
Using these two calculations and defining W £ (Vi, T), we
can upper bound (7) as
inf sup inf
ax qu|x qy|x*
I(X1,W )<(RC+E) I(Yr;W)<(Rr—e¢)

D (QXY HpXY)
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(Technically, since we are decreasing the size, the domain
of infimization here might turn out to be empty. So, we
will use the standard convention that an infimum over an
empty set is oo to maintain consistency.) Now, notice that
since X has the same distribution as X and that H(Xr |
W) = HX7 | U XI71,T) = H(X | W), we have that
I(Xp; W) = HXp) — HXp | W) = I(X;W). Similarly,
I(Yp; W) = I(Y; W). Finally, we define the auxiliary random
variable S so that (X, W) = (X,X{ ', T,U) has the
same distribution as (X, S). Of course, this also implies that
(Yr, W) has the same distribution as (Y, S). Therefore, we
obtain the upper bound

A

pv (pxy,Rc + € Rr+¢)

inf sup inf
qx gs|x: dy|x*
1(X;8)<(Roe) I(YV3S)<(Ri—e)

D (gxv|pxy). (®)

In order to conclude, we must next show that the auxiliary
random variable that we introduced has an alphabet size that
does not grow with n.

We will only sketch the rest of the argument since the
techniques are somewhat standard. Let py be the same
expression as (8) but with an extra cardinality constraint
|S] < |X[||Y]4|X|+2. Our goal will be to show that oy = pp.
It is of course easy to see that py < py. In order to show the
other direction, notice that it suffices to show that for each
gx and ggx such that I(X;S) < Rc + e, there exists a
ds|x such that (a) it satisfies the same mutual information
constraints, (b) it has |S| < |X|-|Y|+ |X|+ 2 and (c) if one
defines the function

flax,qsx) = inf  D(gxvy|pxy), 9)

qy | x*
I(X;8)<Rc+e

then f(gx,qsx) < f(gx,qds|x)-

Since pxy > 0 and the optimization problem above has
a convex bounded objective over a compact set, a minimizer
qg‘/l  exists such that

flax,asix) = D(gxay x pxy). (10

Also, since the optimization problem is convex, we know
that q;‘,l  satisfies the KKT conditions [7]. To conclude this
step, we use the fact that the KKT conditions are essentially
|X] - || linear equalities involving 4y x (Which correspond
to the gradient condition) and a set of |X| linear equalities
corresponding to the mutual information constraint. There-
fore, by Caratheodory’s theorem, we have that the cardinality
|S| < [X]- Y] +|X[+2 and that gy satisfies the necessary
constraints.

Step (D): Finally, using continuity arguments, we can show
that lim¢ o puv(pxy, Rr + €, Rc + €) = pu(pxy, R, Ro).
This concludes the proof.

B. Proof of Theorem 2

In [3], we show, using an important lemma about the end-
to-end behavior across a Markov chain, that the reliability

function p of the problem is lower bounded by
oL =
inf  sup

qx gs|x:
I(X;8)<Rc

inf D(qx [px) + D (5, g ax a1 | a5)

qy|s
+I(S;Y) = Ry[*
(11
where qs(-) = >, cxax(2)gsx(- | x) is the distribution
induced on § by gx and gg|x, J : § = & x Y is a stochastic

matrix defined as J(z,y | s) = Mpyp((y | z), for

_ as(s)
all (s,z,y) € S x X x ), and ng‘sﬁqx,qsm S X xVis
a stochastic matrix defined as
Tovisaxasix = gmin DU [gs),  (12)
J€EE(qys)
where E(ay|s) is defined as the set

{J: Sacn @y |s) =avisly| ), ¥(s,) € S x V1.

It can be shown that this error exponent is positive in the
capacity region indicated in [1]. We will now show that py,
equals pr, so that the expression matches py; more closely.

Towards this end, consider the first two terms in the expres-
sion for p;, and observe that.

Dgxlpx) +D (J*7|as)

(a)

= D(¢x|lpx) + D <QXQS|xq§3|X,sHQXQS|XQ§|X,S)
(b) * *

= D(ax4sx 9y x,sPxasixav|x,s)

+D (QX(]S\XQ;\X,SHquS\Xq;;\X,S>
= D(gxs/x %y x,sllpxvas x),

where (a) follows from the definition of the conditional KL
divergence, (b) follows from multiplying and dividing the
appropriate term in the first KL divergence term, and the last
line is a simple algebraic simplification of (b). Finally we
note that every choice of ¢x, gy |x, and gy |x s fixes the gy |s
distribution and therefore, one can equivalently optimize over
qy|s,x in the inner most infimum of (11). This concludes the
proof.
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Abstract—In this paper, we study the fluctuation of mutual ~ for ergodic mutual information was derived in [8] for double
information in th_e presence of double-s_qattering MIMO chame!s. scattering channel. Moreover, the authors in [9-11] derive
Based on techniques from free probability theory, the asymtic  the ergodic mutual information for finite dimensional chahn
variance of the mutual information is obtained. Using the deived matrices. However, all the above results are valid for eigod
results, WebC%r.‘l.S”“CNt a G.aUSISia” f‘pprﬁ"imaﬁo” rt10 the chandl o annels, where each codeword has infinite length. In many
outage probability. Numerical results show that the asympotic o -

. - A C ractical cases, each codeword only sees finitely many ehann
analysis provides close approximations for realistic MIMO con- lpealizations In these cases. the gr odic mutli/al inf)(;rmati
figurations. i U ’ 9 i

_ N ‘ has no physical significance, whereas the outage probabilit
~ Keywords—Double scattering, free probability theory, multi-  js a more relevant performance metric [12]. Despite the
input multl—outp_ut, mutual information, outage probability, product importance to understand the channel outage probability, i
of random matrices. remains a challenging issue in the case of double-scaiterin

channels.

I. INTRODUCTION . . .
To address this issue, we derive a compact expression

In recent years, multi-input multi-output (MIMO) wireless for the asymptotic variance of mutual information of the
communication systems have received considerable aftenti considered channel model. The result is formally valid if
since MIMO is seen as the most credible way to increaselimensions of channel matrices grow to infinity. Yet, the
link level capacity. Extensive works have focused on thenumerical simulations show that the result is served as a
performance of MIMO channels with the assumption of agood approximation for practical antenna configuratiortee T
rich scattering environment. Therein, the presumed cHann@resented analysis is enabled by adopting a recent result of
models are full rank Rayleigh or Rician MIMO channels. higher order freeness in free probability theory [13]. The
However, measurements show that signal propagations assymptotic variance is then used to construct a Gaussian
subject to rank deficiency caused by insufficient scattering approximation to the outage probability.
certain outdoor [1, 2] as well as indoor environments [3]isTh
leads to degradation of both multiplexing gain and divgrsit . SYSTEM MODEL
gain [4]. Motivated by these facts, a double-scattering ehod
or the so-called multi-keyhole model was proposed in [1,5], Consider a MIMO communication channel withtransmit
which explicitly encompasses the above described saagteri and R receive antennas. The channel output vegtaz C%,
structure. For multi-antenna transceivers, the douldétesing ~ at a given time instance, reads
channel consists of two stage fading modeled as a product of
two MIMO channel matrices.

There are a number of studies concerning the informationwherex € C” is the transmit vector and follows the com-
theoretic quantities of the double-scattering channelsPlex Gaussian distributio6 (0, ) with covariance matrix
Shinet. al. derived an upper bound to ergodic mutual > = E[xx']. The additive noism € C* is modeled as.i.d.
information for the double scattering channel [6, Th. [I.3 complex Gaussian variables with~ CN(0,1r). The channel
and an exact expression for the single keyhole channel [gNatrix H is given by the double-scattering model [5]

Th. 1lIl.4]. The authors in [7] investigated the asymptotic 1

Rayleigh-limit when the matrix dimension approaches itini H=—v'e, ()
In such a limit, the double-scattering model reduces to an RS

equivalent Rayleigh MIMO channel. With all matrices where S denotes the number of scatterefs, ¢ C5*% and

dimensions being large, the ergodic mutual information of@ ¢ C5*7 describe the propagation between the scattering
the double-scattering channels has been obtained in [5] via

numerical integrations. Recently, a closed-form expogssi  !(:)! denotes conjugate transpose.

y = Hx+n, D
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objects and antenna arrays in the receiver and transnritter,
spectively. The entries oF and® arei.i.d. complex Gaussian
distributed with zero-mean and unit variance. NamHyis the
product of two complex Gaussian random matrices.

We assume that the channel state information is only known

by the receiver. In this cas&[xx'] = Iz with v being

Furthermore, according to [5, Eq. (29)], the Cauchy tramsfo
of Q is uniquely determined by the cubic equation

22pPG{(2) — 2 (1 + p = 2p) G (2)
+((p¢ = 1)(¢ —1) = 2)Gq(2) —1=0. (10)
It is noted that in [5] the implicit eigenvalue distribution

the SNR per receive antenna. The mutual information of théunction Fq(x) of Q is numerically obtained by q(z) using

channel (1) in nats/s/Hz is defined as

T
7 =logdet (Iy + yH'H) = Zg(/\i)’

=1

®3)

where g(\) log(l1+~X) and \;, @ = 1,...,T, are
eigenvalues of) = H'H. The outage probability, for a given
ratec, is

Poui(c) =Pr(Z < ¢) = Fr(c), 4)

where Fz(c) is the cumulative distribution function d.

I1l.  ASYMPTOTIC VARIANCE OF MUTUAL INFORMATION

In this section, we consider the limiting variance of mutual

information in the asymptotic limit

T, S, and R — oo such thatp = % and¢ = %

®)

are fixed. In literature, the ratip is known as richness of the
channel [5]. Under the condition (5), the asymptotic expéct
value ofZ is studied in [5, 8]. In the following, we derive the
asymptotic variance of with the free probability machinery.

The results are then used to construct an approximatioreto th

channel outage probability. In particular, we need the sdco
order Cauchy transform of), denoted as7q(z,y). Define
the first order Cauchy transform of mati@ as

Gq(2) dFq(N),

(6)

A—z

Whereﬁ(;(/\) is the empirical eigenvalue distribution @f. An
explicit expression ofiq (z, y) is summarized in the following
lemma.

Lemma 1. Let P = @@T/S. Then the second order Cauchy
transform of Q is given by

Gq(r,y) = Go(r)Gq(y) H(-Gq(z), ~Gq(y))

o2 Gq (z) — Gq (v)
920y log Ty ., M
where
o Gl (1/2)Gl(1/y) o1
H(x,y) = 22y2(Gp(1/x) — Gp(1/y))? (J;—y)2~ (8)

The proof of Lemma 1, which relies on the results
from [13, 14], is omitted due to page limitation.

The limit eigenvalue distribution oP is the well-known

the inverse Cauchy transform.

By following the same procedures as those in [15], the
asymptotic variance of under the condition (5) is expressed
as
1

) (11)

7=~ b o@awGatey)dedy,
where the contourg, andC, are closed and taken in the
positive direction in the complex plane, each enclosing the
support of Fg(z) but not the pointz = —1/~. Substituting
(7) and (8) into (11) with the change of variablgs= Gp (—
1/Gq(x)), t2 = Gp( — 1/Gq(y)), now (11) becomes

g(Rh(t1))g(h(tz))
cico  (tn—t2)?

Here, h(t) = Gg'(— 1/Gp'(t)) and the inverse ofip and
Gq can be solved using (9) and (10) as

1
02 = e dty dis. (12)

Gel() =1+ 1o (13
_ 1421+ p)t+ (1 — p)2¢2t2
GQl (t) == \/ ( 2222# P
1+C(12:‘<§t; QPC)t. (14)

It is difficult to further simplify the double integral (12).
However, when the transmitter and receiver have equal numb
of antennas, i.ep 1/¢ in (5), we obtain an explicit
expression forZ. The results are summarized in the following
proposition.

Proposition 1. When p = 1/¢, the asymptotic variance of 7
is given by

wgwg(wl + 1)2

a% = log @ —wn) (@1 — wa)’ (15)
where
2 —1-3v+3 u
“’1:‘5‘35—@)%7 % (16)
oy 220 =34 3/p) (- iV3)u(v) 17)
3 3(1 —iv/3)u(y) 6 '
oy — 2 2(-1-3v+3y/p)  (1+iv3)u(y) (18)
3 3(1+iv3)u(y) 6 ’

and u(v) is given on top of the next page.

Proof: The proof of Proposition 1 is in the Appendim

Marchenko-Pastur distribution and its Cauchy transform is

given by [5, eq. (14)] as

1 1+¢ 1-¢
\/Zi 2z +422

1

1-¢
5 .

Gp(z)

©)

The asymptotic variance? is obtained with the assump-
tion that matrices dimensions are large. However, as will bt
shown in the next sectiom;2 serves as a good approximation
for the variance of mutual information even when the matrix
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1/3

9y 9 3 s 9 9y’
u(y) = 1+1+1+\/(l—37—1) +(1+1+1)
2 p 2 p

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 10°

Analytic (15)
*  Simulation |
4x 4 Rayleigh channel [17
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Fig. 1. Variance of mutual information whefl = R = 4. Solid line:  Fig. 2. Cumulative distribution of mutual information wiBNRy = 5 dB
asymptotic variance calculated from (15); markers: sitiuta dotted line: andT = R = 4. Solid line: Gaussian approximation; markers: simulation
variance of the mutual information of 4x 4 Rayleigh channel [16].

dimensions are small. As the matrix dimensions grow to
infinity, the mutual information of MIMO Rayleigh channels
are shown to be asymptotic Gaussian when the matrix entries
are independent [16] and correlated [12,17, 18]. We empbasi
that the channel model considered in [12, 18] is differeoirfr
(2), where both and® are random. We are recently hinted
by [19] that the Gaussian behavior of mutual information
may be valid for a wide class of channel matrix ensembles,
including the double-scattering channel. Motivated bys,thi
we propose a Gaussian approximation to the distribution of
mutual information with meamz given by [8, Coroll. 2] and
variancesZ given by (15). Namely, the outage probability can
be approximated as’z(z) ~ ®,, ,2 (), where®,, s ()
denotes the distribution function of a Gaussian randonatséei
with meanuz and variancerz.

10% outage rate (nats/s/Hz)

Fig. 3. 10% outage rate whefl' = R = 4.
IV. NUMERICAL RESULTS

A. Variance of mutual information B. Outage probability

Fig. 1 depicts the variance of mutual informati@dnas Fig. 2 shows the distribution of mutual information with
a function of the number of scatteret$. The transmit- SNR~ =5 dB andT = R = 4. We compare the Gaussian
ter and receiver are equipped with equal number of anterapproximation against Monte Carlo simulations with =
nasT = R = 4. We compare the asymptotic variance (15)2, 4, 8, and16 scattering objects. In all cases, approximations
with Monte Carlo simulations for various SNR values. Forshow good agreement with simulations for the whole range o
comparison purposes, we also plot the variance of the mutualutage rate. Particularly, when outage probability is @&idy,
information for a4 x 4 Rayleigh channel derived in [16]. approximations accurately predict the outage rate. InFige
From Fig. 1, we can see that the asymptotic variance achievggot the 10% outage rate as a function of SNRand number
a good agreement with the simulations even for the appliedf scatterersS. As expected, the outage rate is improved as
small matrix dimensions. As the number of scatterers irsgga the SNR increases. Meanwhile, whéhis smaller than the
or equivalently the channel richnegsncreases, the variance number of antennas, the outage rate is improved dramatical
decreases and approaches the limit set by the Rayleigh MIM®ince the additional scatterers increase the channelsitiver
channel. This observation is in line with the result in [7], When S is larger than the number of antennas, outage rate
where a multi-keyhole channel converges to a Rayleigh MIMGare quickly saturated since in this case the channel diyassi
channel for large number of scatterers. limited by the number of antennas.
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V. CONCLUSION

We considered the variance of mutual information in the
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expression. Based on the asymptotic variance, we proposed
a Gaussian approximation to the channel outage probability
Numerical results show that the approximations are aceurat

> h : 1
even when the dimensions of channel matrices are small. [1]

APPENDIX [2]
PROOF OFPROPOSITION1

We choose the contout, located inside’, such that both
cross real-axis in the intervals-1/~,0) and (r,00). Here,r [l
denotes the right end-point of the supportf(x). Therefore,
the transformed contours and62 in (12) cross the real-axis [4]
in the mtervals( Y=1/9),h7107)) = (h71(=1/7), )

and (h=1(r),h~Y(c0)) = (h~1(r),0), where
RTH0T) = lim RNz), h7'(oco) = lim (). )

Now we can rewrite the integration ovéry in (12) as

1 [ log(1+~h(t) Y
]Cinner(t2) = % fél w dt
1 YH (1) (8]
" omi 5’% (t — t2) (1 + 7h(1))
oy f DT - 1/p)t? 43t + 1) " (9]

T 2mi Jo t(t —ta2)(t — wi)(t — wo)(t —ws)
19) o

wherew;, i = 1,2, 3, are the three roots of the cubic equation

t°+2t + (v/p—+1)t —y = 0 and solved in (16)-(18) via |1y
Cardano’s formula.

Observing thatv; = h=1(—1/~), then the integrand of [12]
(19) has simple poles d@t= 0 andt = w; within C;. After
applying the residue theorem, the integf@},..(t2) becomes

1 1 [13]
inner t =T . 20
Kinner(t2) = £ = ——= (20)
[14]

Substituting (20) into (12), the varianeé can be therefore

expressed as (15]
) 1 1
05 = — log (1 +~h()) P dt [16]
_i (t*&}z t*UJg 17 di
T omi Jo, (t+1)2 t t—w1 (171
1 t— w1 1

+ﬁ log m (Eit—w ) dt. (21)
(18]

wy )2
1) [19]

which is single-valued ovef, and therefore vanlshes due to
Cauchy’s theorem. Applying the residue theorem for the first
integral of (21), we obtain (15).
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Abstract—We compare analytically the maximum
achievable rates of reliable communication in single-
carrier and OFDM modulation schemes, under the prac-
tical assumptions of i.i.d. finite alphabet inputs and linear
ISI with additive Gaussian noise. Our results indicate
that single-carrier schemes tend to offer a superior
rate. In particular, it is shown that the Shamai-Laroia
approximation for the single-carrier achievable rate is,
under general conditions, an upper bound on the OFDM
achievable rate. Information-Estimation relations and
novel estimation-theoretic bounds are applied in order
to rigorously establish these conditions.

I. INTRODUCTION AND PRELIMINARIES

We consider a complex-valued, discrete-time inter-
symbol interference (ISI) channel model,

yk = Y hiwe_i + ny, Q)
where {zj} is the channel input sequence,
{ho,...;hp—1} are arbitrary complex-valued ISI

taps and {nx} is a circularly symmetric white
Gaussian process independent on the input, with
Elni?> = 1. Let H(0) = >, hpe 7% be the ISI
channel transfer function. Throughout this paper we
assume Fz; = 0 and E |z;)* = 1.

This model is relevant for a large variety of com-
munication and data storage scenarios of practical im-
portance [1]. Techniques of information transmission
over ISI channels can be roughly divided into two
types: single-carrier (SC) modulation and orthogonal
frequency-division multiplexing (OFDM) modulation.

In SC modulation, every channel input zj is a sym-
bol drawn from a complex-valued alphabet also known
as a signal constellation. Conventional constellations,
such as BPSK and 16-QAM, are composed of 2™ reg-
ularly spaced values, each representing m data bits [1].
In this paper we assume that the input symbols form an
1.i.d. process. This assumption tends to hold in practice,

Tsachy Weissman
Stanford University
Email: tsachy @stanford.edu

as channel coding schemes are typically designed for
memoryless channels, and therefore induce i.i.d. input
distributions. As discussed in [2], the assumption is
further justified by the fact that our results carry over to
the case where linear precoding of the input is allowed.

The maximum achievable rate for reliable commu-
nication under these assumptions is given by the input-
output Average Mutual Information:

T({z—ky i} 5 {Y—ky s Uk })
2k + 1

For general (non-Gaussian) input distributions, no
closed-form expression for Zgc is known and it must
be approximated either analytically or by Monte-Carlo
simulations, see [3] and references therein.

Given a unit-variance RV &, let

Ie (v) £ 1(&5 VA€ +v) 3)

where v is circularly symmetric Gaussian RV with
E|v|* =1 and independent of £, and ~ stand for the
SNR. A simple and often-used approximation for Zgc
was first proposed by Shamai and Laroia [4],

2

ZSC e lim
k—o0

Tsc = Ts. = I, (SNRpge) )
where z is distributed as a single channel input x;, and
SNRppg; = e2+ /7= 108(IHHOF)d0 _q (5

is the output SNR of the minimum mean-square error
(MMSE) unbiased linear estimator of xy given x:éo
and y>°_ [5]. The results of [3] indicate that Zg;
is not always a lower bound on Zgc. Nonetheless,
extensive experimentation has shown that Zg tightly
lower bounds Zgc for essentially any ISI channel and
SNR, as long as conventional input distributions are
used [4].

In OFDM [6], information is transmitted in inde-
pendent blocks of NV 4+ Ngp channel inputs, where
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the first Nop elements of each block constitute a
“cyclic prefix” (CP) identical to the last Nop elements
of the block. The last N channel inputs in a block
are given by the elements of x = W™!X, where
Wk = e—2mimk/N is the DFT matrix of order N and
X is a column vector of N data symbols, commonly
referred to as “subcarriers”, as they each correspond to
a different orthogonal carrier frequency.

The OFDM receiver discards the first Nop channel
outputs in each block. If the cyclic prefix is longer
than the channel memory (L. < Ngp), the remaining
N channel outputs are described by y = Hx + n
with H a square circulant matrix of order N, and
n a white Gaussian noise vector. Letting y = Wy
yields the equivalent channel y = HIX + n, with
HY = WHW ! a diagonal matrix and n distributed
identically to n. Thus, the ISI channel is transformed
into N parallel memoryless channels.

As in SC modulation, we assume that all subcarriers
(i.e. elements of x) are i.i.d., zero-mean and unit
power. This is usually the case in wireless links, where
the communication overhead of coordinating different
powers and constellations for different subcarriers of-
ten makes doing so undesirable. Under the scheme and
assumptions described above, the maximum achievable
rate is Ty 2 wrver Yot Lo ([HE[?), with I, ()
as defined in (3) and z distributed as a single sub-
carrier . Applying the Toeplitz Distribution Theorem
(assuming Nop = o(NN)) we find that in the limit of
large block size:

2

s L (7

ToroMm L, (|H(0)|?) do (6)

—Tr

Today, OFDM is the predominant modulation tech-
nique in high-bandwidth communications over chan-
nels with significant ISI, and is featured in a large
number of standards. This is mainly due to the fact that
the OFDM optimal receiver admits a low-complexity
implementation using the FFT algorithm. However,
since SC waveforms have a lower peak to average
power ratio than OFDM, and due to the introduction of
efficient frequency-domain decision feedback equaliza-
tion techniques [7], SC schemes have become a viable
alternative to OFDM in certain settings. It is therefore
interesting to determine which of the two methods
offers the higher rate of reliable communication, given
optimal receivers.

This paper aims to answer the above question, under
the assumption of a fixed i.i.d. input distribution. Our

findings indicate that generally, Zoppm < Zsc. In par-
ticular we show that for some common constellations,
Torpm < Zgp regardless of the ISI channel. For general
inputs, we prove the same result in the low- and high-
SNR regimes. We provide an exact characterization of
the maximum value of Zorpym — Zsr, and demonstrate
numerically that it tends to be very small.

Our results stem from the concavity properties of the
input-output mutual information in a scalar Gaussian
channel, as a function of a rescaled SNR variable
that we call the “log-SNR”. In order to investigate
these properties, we combine Information-Estimation
results [8] with bounds on optimal estimation in the
scalar Gaussian channel [2]. These bounds may be of
independent interest.

There is previous work on the comparison of SC
and OFDM from a fundamental limits perspective. In
[9] the cut-off rates are compared analytically, and the
SC rate is shown to exceed the OFDM rate in several
scenarios. In [10] the achievable rates are compared
numerically for particular inputs and ISI channels, and
SC is found superior. In a recent report [11], the au-
thors independently found that concavity with respect
to log-SNR yields an inequality between the OFDM
achievable rate and the Shamai-Laroia approximation.
However, our central results remain exclusive to this
work, including the analytic proofs of concavity, the
study of the concave envelope and the application
of Information-Estimation tools. Additional relevant
literature appears in [2].

The rest of this paper is organized as follows.
Section II introduces the key concavity concepts at
the root of our results. Section III states our results
precisely, and section IV briefly outlines their proofs.

II. LOG-SNR AND CONCAVITY PROPERTIES

Central to our results is the study of the function

I8 (() & L(eS — 1) (7)

with I, (-) defined in (3), and = a zero-mean RV
satisfying E |z|> = 1. Since setting ¢ = log (1 + 7)
yields I'°¢ (¢) = I, (v), it is natural to interpret ¢
as a “log-SNR” variable and measure it in units of
information. For a complex Gaussian input g, we have
I}°2 (¢) = ¢, and thus I} (¢) is sub-linear in ¢ for
any other input distribution. For finite-entropy inputs,
I!°8 (¢) is nearly linear for low ¢ and nearly constant
for high , with the shoulder occurring at ¢ values
around the input entropy.
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Let [lo8 denote the concave envelope of 1°2 i.e.
xT p T

02

(€= ) I¥5 (G) + (G2 = O I¥5 ()

sup
C1,¢2s.t.
¢1<¢<¢2

G—G
®)

Clearly, I!°% < oo, since I'°% is increasing and sub-
linear. As the name implies, fglgog > I'°8 is a concave
function of ¢. Since I'°¢ is real-analytic, fglzog is con-
tinuous and has a continuous derivative. We make the
following additional definitions,

Definition 1. Let A, denote that maximum difference
between I1°% and its concave envelope.

Definition 2. Let ¢ 0 (Co) be the maximal (minimal)
for which I°% (¢) is concave for every ¢ < (o (( >
o). Similarly, Let ¢ . (C2) be the maximal (minimal)
¢, for which 1198 (¢) = I'°& (¢) for every ¢ < (o (¢ >
Ca)- Let Yy Vgr Y0 and 75 denote the corresponding
linear-scale SNR values.

The following propositions characterize the quanti-
ties defined above,

Proposition 1. If A, # 0 then Yo >0 and 7y < 0.

Proof: Setting v = e¢ — 1 and differentiating 71°%
twice, we find that

e~¢1°8" (¢) = mmse, (7) + (1 +~) mmsel, () (9)

where we have used the Guo-Shamai-Verdd Theo-
rem [8] I’ (y) = mmse,(y), with mmse, () =
E |z — E [z|\/qz +n] ‘2 the MMSE in estimating
channel input z from its Gaussian noise corrupted
version at SNR 7.

Let dni, denote the minimum distance between
any two symbols in the input alphabet. By a stan-
dard probability of error upper bound , mmse, () <
D2e~(dmin/2°Y for some D > 0. Moreover, it can
be shown that mmse/, () < —C’e*(dmi“/g)%/\ﬁ for
sufficiently large v and some C' > 0. A derivation
of this bound is given in [2]. Substituting the above
bounds into (9), it is clear that I&”(¢) < 0 for
sufficiently large ¢ and hence that 4y < oo.

The equality (9) may be rewritten as e‘clglcog”(( ) =
' (), where r, (y) = (1+7)mmse, (y) denotes
the ratio between the MMSE’s of the non-linear and
linear optimal estimators of = given ,/yx + n. Clearly,
rz (v) <1, and r, (0) = 1, so by continuity there must
be a neighborhood of 0 in which r, is decreasing and
therefore I'°¢ is concave, showing that Y > 0 [ |

1% () [bit]
95

— = —Iee(Q) [bit]

0.85

— 1 Alos
ASA/IA‘/
4

4.74 475 4.76
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W

O kN W A O ® N @ ©

Figure 1. Ilzog

to ¢ (left), for 256-QAM input.

and 7'°® (right), and their derivatives with respect

Proposition 2. If A, # 0 then 0 < 7 < and
Yo < 72 < 0.

Proposition 2 follows straightforwardly from Propo-
sition 1 and the properties of the concave envelope
fglcog. A detailed proof is provided in [2].

Figure 1 illustrates the quantities discussed in this
section, for uniformly distributed 256-QAM input.

III. STATEMENT OF RESULTS

Our main result provides a connection between
Zorpm and Zgp,

Theorem 1. For any ISI channel and any i.i.d. input
process with single-letter distribution ,

Torom < Zsi, + Ay (10)

Where A, is given in Definition 1 . Additionally,
Torom < Zgy if the channel satisfies at least one of
the following conditions:

1) SNRpgg € [0,11] U [:}’2,00)

2) [H(0)]> <, for every § € (—m,m)

3) [H(0)]> > 7o for every 6 € (—m, )
where 7, < Yo < Ao < A9 are given in Definition 2.

The following results sharpen Theorem 1 for specific
input distributions,

Theorem 2. For BPSK and QPSK constellations,
Torpm < Zsy for every ISI channel.

Theorem 3. For M-PAM and square M?-QAM con-
stellations, (dmin/2)2 Y < 1, where dy;, is the
minimum distance between input symbols.

Further numerical study indicates that A, = 0
for 4-PAM, 8-PSK, 16-QAM and 32-QAM inputs,
extending Theorem 2. Table I lists the quantities that
were presented in Theorem 1 for inputs with A, > 0.
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Table 1
SUMMARY OF THE QUANTITIES APPEARING IN THEOREM 1

| |

(dmin/2)” - {7,:7,,70,72} [dB] | A [bits] |

64-QAM -5.54 | -5.25 | -4.49 -4.23 1.86-10—F
256-QAM | -17.0 | -13.3 | -3.09 -1.27 0.0202
1024-QAM | -24.7 | -19.5 | -3.17 -0.851 0.0585
4096-QAM | -31.8 | -25.6 | -3.40 -0.739 0.0987

Note: All values are rounded to three significant digits.

It is seen that A, is quite small even in very high-
order constellations such as 4096-QAM. Additionally,
Table I indicates that the general bound provided by
Theorem 3 is slack by an approximate factor of 2 —
i.e., for higher-order QAM, (dpmin/2)” 70 ~ 1/2.

IV. OUTLINE OF PROOFS

Proof of Theorem 1: From the definitions of Zg.,
IOFDMa I;Og, I}fg and Ami

1

IOFDM = % I;Og (lOg (1 + |H(9)|2)) d(g

<Il°s <217r/ log (1 + [H(0)[?) de)

—11°% (log (1 4+ SNRpgg)) < Zsp + A, (11)

where in moving to the second we used I'°8 < fglcog
and then invoked Jensen’s inequality based on the con-
cavity of I log With 7, and 72 according to Definition
2, it is clear that if condition 1 holds, then

I}Og (log (1 —|—SNRDFE)) :ISL (12)

and therefore Zorpm < Zs1.. Moreover, if either condi-
tion 2 or conditions 3 hold, then I!°¢ is a concave
function for every value of |H(6)|?, and we may
therefore exchange I}Og with I'°% in (11), yielding
Torpm < Zg1, once more. |

Proof of Theorem 2: Let b and ¢ be unit-power
BPSK and QPSK inputs, respectively. In [2] it is shown

_ -
that mmse,(y) < e and mmse;(y) < —\/211767.

Substituting these bounds into (9), we find that Iéog
is concave. Using mmse,(y) = mmsey(y/2) and
repeating the derivation used for BPSK proves that

1 . . .
1,02 (C) is concave for ¢ > e — 1. Switching to thi:

linear estimator upper bound mmse,(y) < (14 7)~
shows that [, }Iog (¢) is concave for { < e—1, completing
the proof. [ ]

Proof of Theorem 3: Let b and m be unit-power
BPSK and M-PAM inputs, respectively. In [2] the

following bounds are derived,

d? _
mmse,, () < ,u% [mmse;, (p) + B (p)]  (13)
dt. ~
mumser, () < p—g* [mmsef, (p) + C(p)] - (14)
with @ = 2(M—1)/M, p = (dwin/2)"7.

C(7) = 32¢7Q (1/32) and B (7) = 16Q (V&) +
4507, (2k+1)Q (kyv/87), where Q (+) is the error
function. These bounds are based on novel “point-
wise” bounds for estimation of M-ary PAM inputs in
Gaussian noise [2]. Substituting (13) and (14) into (9),
it follows that (dmn/2)° 7, < 1 for any M-PAM and
M?-QAM input. |
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Abstract—In this paper, a noncoherent approach to decision-
feedback equalization (DFE) in multi-user massive MIMO sys-
tems is presented. Thereby, the contradicting principles of DFE,
where interference of already detected symbols is canceled using
actual channel knowledge, and noncoherent reception, where the
symbols are detected without any channel-state information, are
combined. Based on an analysis of the statistics of the interference
terms in autocorrelation-based noncoherent receivers, DFE is
proposed and optimized. In combination with decision-feedback
differential detection of the individual users, a low-complexity
high-performance scheme is established.

I. INTRODUCTION

Multiple-input/multiple-output (MIMO) systems, where the
base station is equipped with a very large number of receive
antennas, so-called massive MIMO, gain more and more at-
tention, e.g., [8], [9]. As the number of channel coefficients
is extremely large, one of the main challenges is to acquire
accurate channel estimates. One solution to overcome the
problem of requiring a large amount of pilot symbols and the
need to perform channel estimation is to resort to noncoherent
detection.

In [11], based on the similarities between the huge number
of temporal echos in ultra-wideband (UWB) systems and
the huge number of spatial “echos” in the present setting,
noncoherent detection schemes for massive MIMO have been
proposed and optimized. In order to overcome the poor perfor-
mance of conventional differential detection, block-wise joint
processing based on the idea of multiple-symbol differential
detection (MSDD) [2] may be applied. Of special interest
are low-complexity but well-performing methods, in particular
decision-feedback differential detection (DFDD) [12]. Here,
the decision-feedback principle—use already available deci-
sions for the equalization/detection of the other symbols—is
applied over a temporal block for one particular user.

In multi-user systems, (sorted) decision-feedback equal-
ization (DFE) over the users (aka successive interference
cancellation) is very attractive; in the context of MIMO
systems sorted DFE is known as Bell Labs Layered Space-
Time (BLAST) [4]. However, on first glance, DFE—cancel
interference of already detected symbols using actual chan-
nel knowledge—and noncoherent reception—detect symbols
without actual, but only based on statistical channel-state
information—contradict each other.

In this paper, we present a noncoherent approach to DFE
over the users for use in massive MIMO systems. We analyze
the statistics of the interference and noise terms when using
autocorrelation receivers. Employing these insights, DFE based
on statistical channel knowledge is proposed and optimized. As
in H-BLAST [4], on the one hand, the users are successively

detected; an optimum decision order is derived. On the other
hand, the detection of each user is done block-wise over a
temporal block (transmission burst) utilizing DFDD. Hence,
two DFE procedures (temporal/spatial) are combined to estab-
lish low-complexity high-performance noncoherent multi-user
detection schemes.

The paper is organized as follows. In Sec. II, the sys-
tem model is introduced and noncoherent (single-user) detec-
tion is briefly reviewed. Sec. III studies the interference in
autocorrelation-based detectors and derives noncoherent DFE.
Numerical results on the performance of noncoherent DFE are
presented in Sec. IV. Sec. V gives some conclusions.

II. SYSTEM MODEL AND NONCOHERENT DETECTION

Throughout the paper we consider the multi-user uplink sce-
nario depicted in Fig. 1. N, users, each equipped with a single

RX

Fig. 1. TIllustration of the multi-user massive MIMO uplink system.
transmit antenna, transmit to a central base station equipped
with a very large number, N, > 1, of receive antennas.

In each time step (discrete index k), user w transmits
symbols by, ,, drawn from an M-ary PSK constellation M e
{e?mi/M | =0,1,...,M —1}. In view of the noncoherent
reception based on the autocorrelation principle, differential
encoding is performed at the transmitter, i.e., the transmit
symbols are computed via b, 1, = @y kbu k-1, bu,0 = 1, where
the information symbols ay, ,, to be transmitted are drawn from
the M-ary PSK constellation, too.

A. Massive MIMO Channel Model

We assume flat-fading channels—coefficients hy, ,, in com-
plex baseband notation—from user u to receive antenna m.
They are characterized by the user-specific power-space profile
(PSP), which describes the average receive power induced by
user v at receive antenna m. If the users are placed in front
of a uniform linear antenna array (antenna spacing d,) and a
pure path loss model (exponent ) is studied, the PSP is given
by (for details see [11])

Im—my |2

21 = const.-e 2, (1)

Pm,u = E{‘hm,u
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where m,, is the antenna element closest (distance d,,) to user
w and (2 = d2/(d?y). The channel coefficients hy,, are
then randomly drawn from a zero-mean, circular-symmetric
complex Gaussian distribution, independently of each other,
with a variance according to the power-space profile and are
expected to be constant during a transmission burst.

Since the application of multiple-symbol differential detec-
tion (MSDD) [2] improves the performance of noncoherent
receivers significantly, we consider the received signal over
the entire burst of IV time steps.! In vector/matrix notation, the
block of all N, receive signals over IV time steps (N X N
matrix) can be written as’

Ny
R = Zu:l h,b, + N, )

where h, 2 [P1us---»hn,u|T collects the channel coeffi-
o .y bn—1,4] contains

cients for user u and b, = [bgy, b1y, -

. . . def
the transmit symbols of user w. The noise matrix N = [n,, x |
gathers the circular-symmetric (zero-mean) complex Gaussian
noise 7y, j with variance af.

B. Noncoherent Detection

It is well known, e.g., [5], [10], that the differential
detection of the symbols of user u can be based on the N x N
correlation matrix

Z, = R"W,R, 3

with a user-specific diagonal weighting matrix W,,. In view
of the PSP (1), a suited choice is [11]

_lm=ma)?

W, = diag(wl,u7 .. 7rix,u) ,  Wmu = € 2 P (4)
where the parameter (,,, may be optimized for each user u
individually.

Based on the correlation matrix, the optimum (block-wise,
MSDD) detection scheme for user u calculates [6], [11]

~MSDD _  _H
b, = argmax bZ,b . 5)
beEMN  by=1
For N = 2 the simplest noncoherent detection scheme—

symbol-wise differential detection—results.

The high computational complexity of MSDD can signif-
icantly be reduced with only a marginal loss by applying the
principle of decision-feedback differential detection [1], [3],
[12]. In [11] this strategy has been adapted to the massive
MIMO setting and an optimum decision order within the
temporal block (based on the actual receive symbols) has been
derived. A pseudo-code description of sorted DFDD (operating
over the temporal dimension) is given in [11, Fig. 3].

In the final step, estimates for the information-carrying

*

symbols are calculated via a,, = b, -b;_;, k=1,...,N.

III. NONCOHERENT DECISION-FEEDBACK
EQUALIZATION

Employing DFDD, the detection is done for each user indi-
vidually (in parallel) over a temporal block of N symbols.
Thereby, the decision-feedback principle is utilized in temporal

time k —
DFDD
c
w
e )
S T
J, m
DFDD
— >

Fig. 2. Tllustration of the dimensions over which DFDD and nDFE operate.

direction. Since a central receiver is assumed, the feedback of
decisions may also be applied over the users, cf. Fig. 2.

However, classical DFE requires channel knowledge for the
coherent subtraction of the interference of the already decided
symbols. Subsequently, we discuss how known symbols of
already detected users may be used in the present correlation-
based differential detection of not yet detected users. An
optimized sorting over the users for this noncoherent DFE
(nDFE) is derived.

A. Correlation Matrix and Interference Terms

Assuming a system with N, users, the receive matrix is
given in (2). Since h,t' W, h,, is scalar, the correlation matrix
(3) for the detection of a particular user u calculates to

Z,= (3 RN WY hb, v N) ©

= hi'w, h, bllb, ()
Ny

+§ o h"W h, bb, (ii)
v#u

Nu H H H HY e

+ > (REW R, BB+ REIW R, b,bY) i)

v<p

Mo HH H No DHiH
> BRI W,N £ NYW, YT bR (i)
+ N'wW, N .

Term (i) contains the desired correlation coefficients for the
detection of user w; (ii) and (iii) are interferences due to the
other users, and (iv) are “noise x signal” and “noise X noise”
terms.

For the further analysis, the statistics of the interference and
noise terms have to be known (cf. also [10]). The quadratic
form in (i), (ii) calculates to

. Nuc
§u,y = h:quhV = Zm:l W ,u |hm,u‘2 . @)

Since h,, ~ CN(0, Py,.), the sum &, is approximately
real-valued Gaussian® with mean and variance (cf. [7])

o Nix
nu,u = E{gu,y} = Zm:l wm,qu,V 5 (8)
o Nix
0-121,1/ = E{(&u,v — nu,u)Q} = Zm:l w?n,upgl,u )]
The terms in (iii) are given by =, ,,, = Suvp b#bf,I +

St bl,b/t', where the definition

def 4 H N *
o S MWL R, =3 " wy B By, (10)

'W.l.0.g. we consider the block with time indices k =0,..., N — 1.

2Note: h,, is a column vector over the receive antennas, whereas b,, is a
row vector over the time.

3Due to the individual scaling and the different powers of hy, ., the quantity
Eu,v is not X2 distributed with 2Ny« degrees of freedom.
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has been used. §,, ,, , is the sum over products of independent,
zero-mean complex Gaussians and is well approximated by
a zero-mean comglex Gaussian distribution. Moreover, since
the elements of b, b,, are drawn from the }/-PSK set /\/l the
entrles of the hermltlan matrix =, ,,, have the form ol 5F (§+
& * 3 ) The term in brackets lies on a line in the complex
plane with direction el77!, hence the elements of Hu,v,p are
real-valued Gaussian distributed along the lines with direction
el7rl, 1 =0,...,M — 1, and variance

Oupu = m=1

Finally, the elements of the sum of noise terms (iv) are
zero-mean complex Gaussian distributed with variance

\M22erwmuz Pmu"'UZ

B. Decision-Feedback Equalization

P, P

TIL uT m,yT my (11)

_Wmu - (12)

The main principle of decision-feedback equalization (suc-
cessive interference cancellation) is the subtraction of the
interference caused by already detected users. To this end,
both, the data symbols of the users and the channel coefficients,
via which the respective data symbols interfere, have to be
known.

In the present situation of noncoherent detection, the chan-
nel coefficients are not known—only their statistics is available
via the PSP. However, with this knowledge and assuming a
given receive weighting W, the statistics of the interference
terms (ii) and (iii) can be calculated. All terms in (iii) are zero-
mean Gaussian and no knowledge can be exploited. However,
the means 7),,,, of the terms in (ii) contributed by the already
detected users can be utilized.

When D denotes the index set of the already detected
users and b, is the estimated vector of differentially encoded
symbols of user v, the correlation matrix for detection of user
u hence should be calculated according to

~HA
ZVED Nu,w * bel/ ) (13)

. 18 the conventional correlation matrix (3).

Z; =Z,—
where Z

C. Optimization and Sorting

We assume that the data vectors b, of users v € D are
already (error-freely) detected and that the receiver knows the
PSPs of all user.* Then it is able to calculate the signal-
to-noise-plus-interference ratio (SINR) of user v ¢ D for
correlation-based detection, when the mean interference term
in the correlation matrix is canceled according to (13). Com-
bining the above results it reads

SINR i + i (14)
“ Z O‘U l/ + Z nu l/ + Z 0-714 v, /L 2 l, '
v#u p;éu

Based on this analytic solutions two optimization tasks are
carried out: On the one hand, as in the BLAST sorting strategy
[4], in each step the user with the highest SINR should be
detected (greedy approach). In a successive way—calculating
the SINR of all not yet detected users, thereby taking the

4At the receiver side, only knowledge of the PSP is expected—not actual
channel knowledge, hm,w, but only statistical one is assumed. The estimation
of the PSP is much easier than that of the actual channel coefficients.

Algorithm 1 Pseudocode of sorted noncoherent DFE.
B = nDFE(R, P, 0?)
D = {},_5 ={1,...,Ny}
: while [D]| > 0 {
. [SINRy, (w.u] = optSINR(u

1
2
3 ,P,c2 D), ucD
4: U = argmax,cp SINR,

5. set W acc. to (4) with (w4
6 Zi=RW,R-Y,cpnay b,
7. by = DFDD(Z})

8 D=Du{u}, D:="D\{u}

9

b,

: )
[SINR.,, (w.u] = optSINR(u, P,0Z, D)
1: [SINRy, Cw,u) = max/argmaxcw }

SINR,,, acc. to (14)

interference reduction due to the already detected ones into
account and deciding for the best one—the optimum decision
order is found.

Please note, as in H-BLAST [4], the users are successively
detected; the sorting is based on the SINR (14) which is
derived from statistical channel knowledge. For each user,
block-wise detection over the temporal dimension is used (the
entire block is decided). When, particularly, applying DFDD,
for each user the detection order over this temporal block is
optimized individually (based on the actual receive symbols).
Hence, two DFE procedures (temporal DFDD; nDFE over the
users) with two different (and separated) sorting strategies are
present.

On the other hand, as all interference terms in (14) depend
on the weighting matrix W, this matrix can be optimized for
each user and each detectlon step individually. Choosing W,,
according to (4), the only free parameter is (y .. Via numencal
optimization the SINR-maximizing value can be found.

In summary, based on (13), noncoherent DFE can be
performed. The optimum receive weighting and the optimum
decision order can be determined based on the SINRs (14).
Noteworthy, this optimization depends only on the PSPs of
the users (statistical channel knowledge) and has only to
be carried out when the configuration changes. Given the
interference-reduced correlation matrix Z; (13), estimates on
the data symbols of user u are obtained by DFDD. However,
in principle, any noncoherent detection scheme utilizing the
correlation matrix can be employed at this step.

Alg. 1 summarizes this procedure—P is a matrix con-
taining all PSPs; B row-wise contains the estimated transmit
symbol vectors b,,. In Line 7Athe subroutine for detecting the
respective user is denoted as b, := DFDD(Z,). A pseudocode
description of this DFDD algorithm (with inherent optimal
sorting over the temporal dimension, cf. Fig 2) can be found
in [11, Fig. 3]. In Line 4, based on the SINRs of the not
yet detected users, the optimum decision order over the users
(vertical dimension in Fig 2) is determined.

IV. NUMERICAL RESULTS

The performance of the proposed scheme is now assessed by
means of numerical simulations. To this end, a uniform linear
array with N, = 100 antennas is expected, e.g., covering a
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Fig. 3. Symbol error rate vs. FEs/Ng (in dB). Ny = 3; m; = 20 (m),

mo = 50 (m), m3 = 85 (m); colors corresponding to users. Uniform linear
array with N = 100 antenna elements. Power-space profile according to (1),
Cu = 20, Vu. Burst length N = 200. M = 4-ary DPSK.

long hallway. Transmission bursts of length N = 200 (equal to
the DFDD block) are used; the block-fading channel changes
after each burst. The results are averaged over 250 000 channel
realizations. N, = 3 users are active—one is located at mq, =
20 (marked M), the next at mo = 50 (M), and the last at m3 =
85 (M). The power-space profile (1) with ¢, = 20, Vu, is used;
it is normalized to ) .\, Pp = 1, Yu. All users employ
quaternary (M = 4) DPSK.

In Fig. 3, the symbol error rates (uncoded symbols ay, ,,)
of the three users (via the respective color) are depicted over
the signal-to-noise ratio Es/Ng = 1/02; the darker curves
correspond to individual detection of the users (fixed receive
windowing with (., = 15, Yu). Conventional DD, which does
not perform well, is shown for comparison. Using nDFE, for
the “middle” user (M) significant gains can be achieved. The
other users (M, W) slightly profit from the optimization of Gy .

For reference, the performance of coherent BLAST detec-
tion with perfect channel knowledge is shown; here all users
perform nearly the same. When taking some degradation due
to non-perfect actual channel knowledge into account, nonco-
herent reception with nDFE (over the users) and DFDD (over
the temporal dimension) will perform almost comparable.

The variation of the optimum parameters in nDFE when
user 2 (M) moves along the hallway is shown in the top plot
of Fig. 4 (E5/Ny =14 dB). In the bottom plot, the optimized
receive window width ¢, ., is depicted. For my < 53 user 3
(W) is detected first, then user 1 (M), and finally user 2 (M). For
mg > 53 users 1 and 3 exchange their role. If the users are
close to each other, they cannot be separated based only on the
PSPs. Here, coherent detection, where the phase of the channel
coefficients is utilized, too, is clearly superior. However, if a
sufficient spacing of the users with moderate overlap of the
PSPs is present, nDFE/DFDD is attractive and is able to lower
the SER of the middle user significantly.

V. CONCLUSIONS

In conclusion, it can be stated that noncoherent detection in
massive MIMO systems is an attractive alternative to coherent
schemes. By combining two DFE procedures low-complexity
high-performance noncoherent multi-user detection schemes
are enabled. First, DFE over the users utilizing statistical

T E—E—n m—u—n

20f

3

G ——————
40 45 50 55 60

Fig. 4. Top: symbol error rate vs. the position of user 2 (m). Bottom: optimized
receive window width (w, .. The decision order is indicated. Es/No =14 dB.
Ny = 3; m; = 20 (m), m3 = 85 (m); colors corresponding to users. Uniform
linear array with N = 100 antenna elements. Power-space profile according
to (1), Cu = 20, Vu. Burst length N = 200. M = 4-ary DPSK.

channel knowledge is present. Optimized parameters (sorting,
weighting) can be derived purely from the statistical knowl-
edge (PSP). Second, DFE over the temporal direction (block-
wise processing) employing DFDD for each user individually
is active. Here, an optimized processing order is obtained from
the actual receive signal [11]. A joint spatial/temporal DFE
with optimum global ordering would be possible, too.
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Abstract—We propose new coding schemes for secrecy over a
two-link compound channel. Firstly, a non-stochastic scheme is
developed based on diversity-deficient LDPC ensembles and a
source splitter. Secondly, a stochastic scheme is built from the
same splitter with the adjunction of a random sequence. These
coding structures achieve perfect secrecy in the algebraic and the
information-theoretic sense respectively.

[. INTRODUCTION AND NOTATIONS

While the applications of Wyner’s wiretap channel model
[1] to physical-layer security have attracted much interest, see
for instance [2][3] and references therein, few constructive
and low complexity coding schemes have been developed [4].
Recent efforts exploiting powerful families of error-control
codes have nevertheless met some success in certain cases.
For instance, low-density parity check codes (LDPC) have
been shown to provide secrecy over erasure channels [5][6][7],
while Polar codes [8] and invertible extractors [9] have been
proven to ensure secrecy over some symmetric channels.
Several results also suggest the usefulness of LDPC codes and
lattice codes over the Gaussian wiretap channel [10][11][12].
However, all the aforementioned constructions only apply to
memoryless wiretap channels with full statistical knowledge
of the eavesdropper’s channel, which limits their scope of
applications. In this paper, we provide a first step towards more
robust designs by developing a coding scheme that provides
secrecy over a compound wiretap channel [13] in which the
eavesdropper gets to observe one of two channels.

Our compound channel has two identical links defined
by their transition probabilities py|x (y1|v) and py|x (y2|w)
respectively, as depicted in Figure 1. These two links can
be any binary memoryless symmetric (BMS) channel,
v,w € Fé\’/2 and y,y2 € YN/2, where ) is the output
alphabet as observed by the legitimate receiver. It is assumed
that a uniform binary source produces K binary elements.
The length-N codeword generated by a rate-K/N binary
encoder is divided into parts v and w to be transmitted in
parallel. For the sake of simplifying the notations, we decided
to use a unique letter to denote a random variable and any
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given value taken by that random variable. We apologize for
not keeping the notation rigour as Grimmett and Stirzaker.
The reader should figure out easily from the context whether
we are referring to a random variable or to a given value.

Regarding the eavesdropper, our study considers the worst
case scenario. Let the channel between Alice and Eve have
output z € Fév/ %, Eve is reading a noiseless copy of one
of the two links, i.e. 2z = v or z = w. While assuring
that Bob has excellent performance, our aim is to prevent
Eve from determining the source bits, part of the source
bits, or any information derived from the source bits. Let
M = (ay,as2,...,ax) € Fﬁ( be the source message. In the
upcoming sections, two types of security are studied:

o Algebraic security. Given z, Eve must not be able to
find the value of an individual binary element a;, Vi =
1... K. This algebraic security is achieved by the means
of a non-stochastic LDPC encoder and a weight-2 splitter
as described in Section II.

o Information theoretic security. The system design must
guarantee a zero leakage, i.e. zero mutual information
I(M;z) = 0 or equivalently H(M|z) = H(M). This
perfect secrecy is achieved via a stochastic encoding
including a random sequence as described in Section IV.

v Y1
Rate K/N = pyix (y1|v) Legitimate
Encoder Receiver
: w Y2
(Alice) ™ pyix(y2|w) (Bob)
( 77 e ! P Illegitimate
| \'—:—> Receiver
Loom oo ! (EVG)
Figure 1. Model of the two-link compound channel. The two links defined

by py|x are identical. Eve has access to the input of one link only.

II. ANTI-DIVERSITY LDPC ENCODING

The reader is assumed to be familiar with LDPC codes
[14] and diversity methods for fading channels [15][16]. The
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compound channel with two parallel links is very similar to
block fading channels considered in [17][18]. On a double
diversity fading channel, channel coding is supposed to exhibit
an error rate performance P, proportional to 1/4% at high
signal-to-noise ratio 7. In such a case, the channel code is
said to be a full-diversity code. An example of full-diversity
code ensemble is the Root-LDPC ensemble [17][18].

In coding for double diversity on block fading channels,
three fundamental rules should be satisfied [17]:

o The coding rate R must satisfy R < %

o Let the parity-check matrix be divided into two equal
size sub-matrices, H = [H;|Hs]. Under Maximum-
Likelihood decoding, H; and H, must have full rank.

o Under iterative message-passing decoding, information
bits must be connected to root checknodes of order one
or higher.

Security cannot be achieved with a full-diversity code on
the two-link compound channel. Double diversity would let
Eve determine the missing link and hence all source bits will
be revealed. The LDPC code design for security should not
satisfy the rules listed above.

Definition 1: The anti-diversity concept refers to a code
design where the three fundamental diversity rules are inten-
tionally violated.

The LDPC code constructed via an anti-diversity concept
will be called an anti-root LDPC. We briefly describe the
structure of an anti-root LDPC. Let % be the design rate (R is
the effective rate), then % < % < R < 1. The N binary digits
of a codeword are divided into four families. A family of K/2
information digits 14 and a family of (N — K)/2 parity digits
1p to be sent on the first link. Similarly, the two families 2¢

and 2p are to be sent on the second link. The design rate %
is taken in the range [1,1). In the special case & = 1, a

deficient diversity is assured by the last two rules.
Let Hy, the left half part of H, be written as a block matrix

AL By
ol d o)

The submatrix Ay of size (N — K)/2 x K /2 corresponds to
edges connecting bitnodes 17 to a first type of checknodes 1c.
The submatrix B; of square size (N — K)/2 x (N — K)/2
corresponds to edges connecting bitnodes 1p to the first type
of checknodes lc. In a similar fashion, C; and S; have the
same size as A; and Bj respectively. Cy and S7 define edges
from 2i and 2p to the second type of checknodes 2¢. Now, the
third rule is violated by taking By = I, where [ is the identity
matrix of size (N — K)/2. In the special case & = 1, A; and
I commute, then

(M

det(Hl) = det(C’1 + SlAl). 2)

Forcing the equality C; = S;A; makes H; rank deficient,
i.e. now the second fundamental rule is violated. The general
structure of the anti-root LDPC ensemble is shown in Figure
2. The algebraic security is proved for a scrambler S; of any
column and row weight greater than or equal to 1.

52 le

AQI %

Figure 2. Parity-check matrix of an anti-root LDPC code for violating double
diversity. Design rate is %, where % < % < 1.

K/2 (N - K)/2

Our system model is symmetric with respect to the LDPC
code and to the two-link channel. Thus, the right half part H»
has a structure identical to H; after switching checknodes 1c
and 2c¢. The expressions of C'; and C5 are maintained for any
design rate %

Definition 2: The anti-root LDPC ensemble is defined by
its low-density parity-check matrix in Figure 2 where

Cl = SlAl and CQ = SQA;). (3)

The anti-root LDPC is systematic. Eve should not have
direct access to source digits [10]. Hence, a source splitter
S is placed between the source and the LDPC encoder. The
matrix S is K X K, non-singular, and sparse. Suppose that
S is regular with degree ds, i.e. the Hamming weight of all
rows and columns is ds. Let u = (u1,ug,...,ux) € ]Fé( be
the LDPC encoder input. Then u = MS~!, or equivalently
M = uS. The latter is an operation that splits each source digit
into dg digits [19][20]. In this paper, we restrict the splitter to
have a degree ds = 2, except for one row and one column in
S that have a degree equal to 1.

Lemma 1: Consider a quasi-regular weight-2 non-singular
splitter S, except for one row and one column whose degree
is 1. Then, S is equivalent to a double diagonal splitter .Sy,

S=1I-8-1I, 4)

where IT and 1T are K x K permutation matrices.
In the sequel, we assume that S = Sy, i.e. we have

a; = Ui + Uiy1, (%)

fori = 1...K — 1 and axg = ug. We force to zero the
last source bit, ax = ux = 0. The exact message entropy is
H(M) = K — 1 bits instead of K. The structure of the non-
stochastic coding scheme is shown in Figure 3. The splitter
K-bit output u = (14 & 2i) is dispatched at the LDPC encoder
input such that the K /2 bits at odd positions go to 17 and the
K /2 bits at even positions go to 2i. Thus, Eve must know both
family of bits 17 and 2¢ in order to find the source message
M. When z = v, Eve knows all bits 17 but the bits 27 are
all missing. The anti-root LDPC does not allow Eve to find
any of the missing bits 2¢. Similarly, when z = w, the anti-
root LDPC does not allow Eve to find 1:. The proof of the
following theorem is based on (3) and (5).
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u=(1i & 2i)
o 1 17 . .
M Splitter S ey Anti—Root ~(1i,1p) = v
— M =uS | » LDPC
.| even positions| .
S sparse [ 9 ] Encoder [—*(2i,2p) = w
Figure 3. The non-stochastic encoder converts the source message M into

half codewords v and w to be sent on each link. M € IFIQK, v, w € IF;V/Q.

Theorem 2: The anti-root LDPC ensemble of design rate
£ € [4,1) guarantees the algebraic security of the communi-
cation system between Alice and Bob.

Given the non-stochastic scheme which is algebraically
secure for any block length N, the next section studies the
asymptotic performance of Bob for N sufficiently large.

III. LEGITIMATE RECEIVER’S PERFORMANCE

Many anti-root LDPC ensembles can be defined, a given
ensemble depends on how the submatrices A, Si, Az, and
So are constructed. Due to the lack of space, we restrict
this section to a design rate % = % and to A; = II; and
Ay =TIy, where I1; and IIy are uniformly chosen in the set
of % X % binary permutation matrices.

The asymptotic performance of Bob under iterative message
passing is found via density evolution (DE) [14]. The anti-root
LDPC defined by its parity-check matrix H in Figure 2 and
by (3) is a multi-edge type code on graphs. As in [17][18],
an extra difficulty arises because only the performance on
information bits is relevant. Hence, we define the following
polynomials to be used by DE at bitnodes and checknodes.
The global degree distribution of H from an edge perspective,
at bitnodes and checknodes respectively, is [14]:

dy

dc
Aa)=> Xa'™', and p(z) =D pia?~t. (6)
=2 j=2

In this section, it is assumed that p; = 0 for j odd. We
introduce an edge-perspective polynomial A() when one edge
is missing [18] and a node-perspective polynomial \(x),

dp—1 - dy—1
< Ny d _ . i
Mo)= > '™ = T i - > i d/i+1) 2 (D)
=1 =1
db db
Ma) = Na ™t =dy, D Nfia' ! (8)
=2 1=2

where dj, is the average degree of bitnodes. The polynomials
p(x) and p(z) are defined in a similar manner for checknodes.
Finally, two bivariate polynomials are necessary due to the
separation of a checknode into two parts for information and
parity bits on the same side of H,

de
plz,y) = Zp°]-1'(7_2)/2y(J—2)/27 )

=2

(d.=2)/2
plry)= > pal Tty =
s

(de—2)/2 2
J_ =1,

; T3 (10)
For a general anti-root ensemble with two distinct links in the
compound channel, density evolution may involve up to eight
message densities. In this section, due to the identical links
and to the LDPC code symmetry, DE equations require two
densities only: a- f is the probability density function of log-
ratio messages from bitnode 17 to checknode 2¢, from 1p to 2c,
from 27 to 1c¢, and from 2p to 1c. b- g is the probability density
function of log-ratio messages from bitnode 17 to checknode
lc, from 1p to lc, from 2i to 2¢, and from 2p to 2c. After
drawing the local neighborhood of each type of bitnodes (tree
representations omitted due to lack of space), we find the
following DE equations at decoding iteration m + 1:

" =pe X (B ™ @ (@™)?)
Fr = e (" © A ) @A (U ) © ()

where g is the density at the channel output, ® and ® denote
convolution at bitnode and checknode levels.

Theorem 3: Consider a rate-1/2 anti-root LDPC ensemble.
If the ensemble is regular then DE reduces to one equation
™t = @ Ap(f™)), i.e. the anti-root LDPC has the same
decoding threshold as a regular fully-random LDPC ensemble.

In the regular case, the constraint in (3) did not weaken
the LDPC code. For irregular ensembles, thresholds can be
optimized by a judicious choice of A\(x) and p(x).

IV. STOCHASTIC ENCODING FOR TWO LINKS

A non-stochastic algebraically-secure encoding scheme has
been described in the previous sections and its performance
analyzed via density evolution. Now, we would like to re-
place algebraic security by perfect secrecy in the information-
theoretic sense. A perfectly secure stochastic encoding struc-
ture is proposed in this section.

In the non-stochastic case, we had H(M) = K (we omit
ax = 0 in order to simplify the notations). The conditional
message entropy was given by

H(M|z =v) = H(li|]z = v) + H(2i|z = v, 1i) = H(2i[v).

The information leakage between v and 2:¢ is unknown and
may depend on the particular choice of submatrices inside H.
Nevertheless, we always have 0 < H(2i|v) < K/2. Similar
arguments can be made for z = w and H (1i|w). In summary,
the non-stochastic coding scheme satisfies

(11

Our stochastic scheme will sacrifice K/2 bits in the message
by reducing the entropy of the message to H(M) = K/2 to
achieve perfect secrecy in the information theoretic sense after
satisfying H(M|z) = H(M) = K/2.

The splitter input is modified to include both M =
(a1,as2,...,a5/2) and a zero sequence of length K/2. Let
r = (ri,ra,...,TK/2) be a random sequence of K/2 in-
dependent uniform binary digits. r is added to both splitter

H(M|z) < g < K =H(M).
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u=(1i & 2i) r
5 T 17
M —/—= Splitter S (v1, 02, .. VK /2)
0 —fm (M,0) = uS ﬁ( war. . wksa)
2 ) 3
r

Figure 4. The K x K splitter in the stochastic scheme reads a message M
of K /2 bits and a zero sequence of K/2 bits. A random sequence of K /2
bits is applied at the splitter output before channel transmission.

AA

Rl
s

s

M, 21

T

Figure 5. Splitter structure for stochasting encoding for two and three links
respectively. The sparse graph represents the expression (M, 0) = uS where
S is sparse with degree 2.

Sl

ol

outputs. The stochastic structure is shown in Figure 4 where
the splitter output fills K/2 bits in v and K/2 bits in w. The
remaining N — K bits in v and w will be equal to parity bits
of an LDPC encoder. The analysis below is valid for a two-
link anti-root LDPC and for two separate length-N/2 LDPC
codes. The splitter structure is also illustrated in Figure 5. In
a straightforward manner, Theorem 4 can be generalized to an
eavesdropper reading one link out of L links, for any L > 2.

Theorem 4: The stochastic encoding scheme yields
H(M|z) = £ = H(M) on a two-link compound channel,
i.e. it is perfectly secure in the information-theoretic sense.

Proof. A sketch of the proof is given. Notice that the zero
sequence at the splitter input makes 2¢ a permuted version
of 1¢. So H(2i|z,1i) = 0. The equivocation is H(M|z) =
H(14,2i|z) = H(li|z) + H(2i|z,1i) = H(1i|z). Consider
z = v. For the case of two separate length-N/2 codes, we
have H(1ilv) = H(1i|1i +r) = H(1i) = K/2. For an anti-
root LDPC, H(1liv) = H(1i|1i 4, 1p), the latter is equal to
H(1i|li +r) = K/2 because 1p is a function of 17 + r only
thanks to the splitter. Similar proof is made for z = w. OJ.

V. CONCLUSION

We proposed two original coding schemes for secure
communication over a two-link compound channel. A non-
stochastic scheme has been developed based on diversity-
deficient LDPC ensembles and a source splitter. The anti-
root LDPC code guarantees perfect algebraic security. Its joint
structure makes it twice longer than two separate LDPC codes
for each link and forbids Eve from correcting channel errors
when z = y; or z = y,. The second scheme is stochastic and
attains perfect information-theoretic secrecy. It is built from a

splitter with the adjunction of a random sequence.

Our work is related to methods in secret sharing such as the
material found in [21][22][23], but our channel model does not
include feedback and our aim is to increase the information
rate rather than finding the worst channel conditions.
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Almost Linear Complexity Methods for Delay-Doppler
Channel Estimation

Alexander Fish and Shamgar Gurevich

Abstract—A fundamental task in wireless communication is channel
estimation: Compute the channel parameters of a medium between a
transmitter and a receiver. In the case of delay-Doppler channel, i.e., a
signal undergoes only delay and Doppler shifts, a widely used method
to compute delay-Doppler parameters is the pseudo-random method. It
uses a pseudo-random sequence of length N, and, in case of non-trivial
relative velocity between transmitter and receiver, its computational
complexity is O(N? log N) arithmetic operations. In [1] the flag method
was introduced to provide a faster algorithm for delay-Doppler channel
estimation. It uses specially designed flag sequences and its complexity
is O(rNlog N) for channels of sparsity r. In these notes, we introduce
the incidence and cross methods for channel estimation. They use triple-
chirp and double-chirp sequences of length N, correspondingly. These
sequences are closely related to chirp sequences widely used in radar
systems. The arithmetic complexity of the incidence and cross methods
is O(Nlog N +r3), and O(N log N + 72), respectively.

I. INTRODUCTION

BASIC building block in many wireless communication proto-

cols is channel estimation: learning the channel parameters of
the medium between a transmitter and a receiver [6]. In these notes
we develop efficient algorithms for delay-Doppler (also called time-
frequency) channel estimation. Throughout these notes we denote by
Zn the set of integers {0,1,..., N — 1} equipped with addition and
multiplication modulo N. We will assume, for simplicity, that N
is an odd prime. We denote by H = C(Zy) the vector space of
complex valued functions on Zy, and refer to it as the Hilbert space
of sequences.

A. Channel Model

We describe the discrete channel model which was derived in [1].
We assume that a transmitter uses a sequence S € #H to generate
an analog waveform S4 € L?(R) with bandwidth W and a carrier
frequency f. > W. Transmitting S4, the receiver obtains the analog
waveform R4 € L?(R). We make the sparsity assumption on the
number of paths for propagation of the waveform S4. As a result,
we have'

Ra(t) = By - exp(2mifit) - Sa(t —te) + W(t),  (-A.1)
k=1

where r—called the sparsity of the channel—denotes the number of
paths, 3, € C is the attenuation coefficient, fr € R is the Doppler
shift along the k-th path, t; € Ry is the delay associated with the
k-th path, and VW denotes a random white noise. We assume the
normalization Y ;_, |3 > < 1. The Doppler shift depends on the
relative velocity, and the delay encodes the distance along a path,
between the transmitter and the receiver. We will call

(ﬁkatk,fk)a k= 1a w1y

channel parameters, and the main objective of channel detection is
to estimate them.

(I-A.2)
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n these notes 4 denotes /—1.

B. Channel Estimation Problem

Sampling the waveform R4 at the receiver side, with sampling
rate 1/W, we obtain a sequence R € H. It satisfies

R[n] = H(S)[n] + W[n], (I-B.1)
where H, called the channel operator, acts on S € H by2
H(S)[n] = Z are(wgn)S[n — i), n € Zn, (I-B.2)

k=1

with a;’s are the complex-valued (digital) attenuation coefficients,
>k |ak|2 <1, 7 € Zn is the (digital) delay associated with the
path k, wy € Zn is the (digital) Doppler shift associated with path
k, and YV denotes the random white noise. We will assume that all
the coordinates of WV are independent identically distributed random
variables of expectation zero.

Remark I-B.1: The relation between the physical (I-A.2) and the
discrete channel parameters is as follows (see Section L.A. in [1]
and references therein): If a standard method suggested by sampling
theorem is used for the discretization, and S 4 has bandwidth W, then
Tr = txW modulo N, and wi = N fi,/W modulo N, provided that
ty € %Z, and fi € %Z, k = 1,...,r. In particular, we note that
the integer /N determines the frequency resolution of the channel
detection, i.e., the resolution is of order W/N.

The objective of delay-Doppler channel estimation is:

Problem I-B.2 (Channel Estimation): Design S € 7H, and an
effective method for extracting the channel parameters (oz;€7 Tk, wk),
k=1,...,r, using S and R satisfying (I-B.1).

0,
Pl s
er Delay

Fig. 1. Profile of A(y, ¢) for ¢ pseudo-random sequence.

C. Ambiguity Function and Pseudo-Random Method

A classical method to estimate the channel parameters in (I-B.1)
is the pseudo-random method [2], [3], [4], [6], [7]. It uses two
ingredients - the ambiguity function, and a pseudo-random sequence.

2We denote e(t) = exp(2mit/N).
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1) Ambiguity Function: In order to reduce the noise component in
(I-B.1), it is common to use the ambiguity function that we are going
to describe now. We consider the Heisenberg operators m(T,w),
T,w € Zn, which act on f € H by

[7(r,w)f][n] = e(=2"'7w) - e(wn) - fln — 7], (I-C.1)
where 271 denotes (N + 1)/2, the inverse of 2 mod N. Finally,
the ambiguity function of two sequences f,g € H is defined® as the
N x N matrix

.A(f,g)['r,w] = <7r(7',w)f, g> , T,w € ZN» (I'CZ)

where ( , ) denotes the standard inner product on H.

Remark I-C.1 (Fast Computation of Ambiguity Function): The
restriction of the ambiguity function to a line in the delay-Doppler
plane, can be computed in O(N log N) arithmetic operations using
fast Fourier transform [5]. For more details, including explicit
formulas, see Section V of [1]. Overall, we can compute the entire
ambiguity function in O(N? log N) operations.

For R and S satisfying (I-B.1), the law of the iterated logarithm
implies that, with probability going to one, as N goes to infinity, we
have

A(S, R)[r,w] = A(S, H(S))[r,w] + en, (I-C.3)
where |en| < /2loglog N/V N - SNR, with SNR denotes the
signal-to-noise ratio”.

2) Pseudo-Random Sequences: We will say that a norm-one
sequence ¢ € H is B-pseudo-random, B € R—see Figure 1 for
illustration—if for every (7,w) # (0,0) we have

[A(p, @)[r,w]| < B/VN. (I-C4)
There are several constructions of families of pseudo-random (PR)
sequences in the literature (see [2], [3] and references therein).

3) Pseudo-Random Method: Consider a pseudo-random sequence
o, and assume for simplicity that B = 1 in (I-C.4). Then we have

A(p, H())[r,w] (1-C.5)
ar+ >, &j/\/ﬁ, if (t,w)=(Tk,wr), 1<k<m

_ 7k

S a;/VN, otherwise,

J
where @;, a;, 1 < j < r, are certain multiples of the a;’s
by complex numbers of absolute value less or equal to one. In
particular, we can compute the delay-Doppler parameter (7x,ws)
if the associated attenuation coefficient «y, is sufficiently large. It
appears as a peak of A(p, H(¢p)). Finding the peaks of A(p, H())
constitutes the pseudo-random method. Notice that the arithmetic
complexity of the pseudo-random method is O(N?log N), using
Remark I-C.1. For applications to sensing, that require sufficiently
high frequency resolution, we will need to use sequences of large
length N. Hence, the following is a natural problem.

Problem I-C.2 (Arithmetic Complexity): Solve Problem I-B.2,
with method for extracting the channel parameters which requires
almost linear arithmetic complexity.

3For our purposes it will be convenient to use this definition of the
ambiguity function. The standard definition appearing in the literature is
A(f, 9)lr, w] = {e(wn)fln — 7], g[n]) -

4We define SNR = (S, S) / (W, W).

Fig. 2. Profile of A(fr,H(fr)) for flag fr, L = {(0,w)}, N = 199,
and channel parameters (0.7, 50, 150), (0.7, 100, 100).

D. Flag Method

In [1] the flag method was introduced in order to deal with
the complexity problem. It computes the r channel parameters in
O(rNlog N) arithmetic operations. For a given line L in the plane
Zn X Z N, one construct a sequence fr—called flag—with ambiguity
function A(fr, H(fr)) having special profile—see Figure 2 for
illustration. It is essentially supported on shifted lines parallel to L,
that pass through the delay-Doppler shifts of H, and have peaks there.
This suggests a simple algorithm to extract the channel parameters.
First compute A(fr, H(fr)) on a line M transversal to L, and find
the shifted lines on which A(fr, H(fL)) is supported. Then compute
A(fr,H(fr)) on each of the shifted lines and find the peaks. The
overall complexity of the flag algorithm is therefore O(rN log N),
using Remark I-C.1. If r is large, it might be computationally
insufficient.

E. Incidence and Cross Methods

In these notes we suggest two new schemes for channel estimation
that have much better arithmetic complexity than previously known
methods. The schemes are based on the use of double and triple chirp
sequences.

1) Incidence Method: We propose to use triple-chirp sequences
for channel estimation. We associate with three distinct lines
L,M, and M° in Zn X Zn, passing through the origin, a se-
quence Cp arme € H. This sequence has ambiguity function
essentially supported on the union of L, M, and M°. As a
consequence—see Figure 3 for illustration—the ambiguity func-
tion A(Cr a,me, H(Cr,m,me)) is essentially supported on the
shifted lines {(7p,wr) + (LU M U M°)|k = 1,...,r}. This
observation, which constitutes the bulk of the incidence method,
enables a computation in O(Nlog N + r3) arithmetic operations
of all the time-frequency shifts (see Section III). In addition, the
estimation of the corresponding r attenuation coefficients takes O(r)
operations. Hence, the overall complexity of incidence method is
O(N log N + r®) operations.

2) Cross Method: We propose to use double-chirp sequences for
channel estimation. For two distinct lines L and M in Zn X Zn,
passing through the origin, we introduce a sequence Cr v € H
with ambiguity function supported on L, and M. Under genericity
assumptions—see Figure 4 for illustration—the essential support of
A(Cr, v, H(CpL,m)) lies on r xr grid generated by shifts of the lines
L, and M. Denote by v;; = l;+m;, l; € Lym; € M; 1 <14,5 <,
the intersection points of the lines in the grid. Using Remark I-C.1
we find all the points v;;,1 < 4,5 < r, in O(N log N) operations.
The following matching problem arises: Find the 7 points from v;;,
1 <4, 5 < r, which belong to the support of H. To suggest a solution,
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Fig. 3. Essential ~ support of the ambiguity function
A(Cr m,mo, H(Cp voare)), where Lois the delay line, M is the
Doppler line, and M® is a diagonal line, and the support of H consists two
parameters. Points of Zy X Zp through them pass three lines are the true
delay-Doppler parameters of H.

we use the values of the ambiguity function to define a certain simple
hypothesis function h : L x M — C (see Section IV). We obtain:

Theorem I-E.1 (Matching): Suppose v;; = l; + m; is a delay-
Doppler shift of H, then h(l;,m;) = 0.

Fig. 4. Essential support of the ambiguity function A(Cr ar, H(CrL ar))s
where L is the delay line, M is the Doppler line, and the support of H
consists two parameters.

The cross method makes use of Theorem I-E.1 and checks the
values h(l;,m;), 1 < 4,57 < r. If a value is less than a priori
chosen threshold, then the algorithm returns v;; = {; +m; as one of
the delay-Doppler parameters. To estimate the attenuation coefficient
corresponding to v;; takes O(1) arithmetic operations (see details in
Section IV). Overall, the cross method enables channel estimation in
O(Nlog N + r?) arithmetic operations.

II. CHIRP, DOUBLE-CHIRP, AND TRIPLE-CHIRP SEQUENCES
In this section we introduce the chirp, double-chirp, and triple-chirp
sequences, and discuss their correlation properties.
A. Definition of the Chirp Sequences

We have N + 1 lines® in the discrete delay-Doppler plane V =
ZN X Zn . For each a € Zn we denote by L, = {(7,a7);T7 € Zn}
the line of finite slope a, and we denote by Loc = {(0,w); w € Zn}
the line of infinite slope. To every line L,, it corresponds the
orthonormal basis for H:

Br, = {CLa,b§ b € ZN},
of chirp sequences associated with Lo, where

Cr,,[nl =e(2 'an® —bn)/VN,n € Zy.

SIn these notes by a line L C V/, we mean a line through (0, 0).

To the line L it corresponds the orthonormal basis
B, ={CL_,:b €Zn},
of chirp sequences associated with L., where
CrL_ , = b,

denotes the Dirac delta sequence supported at b.

Fig. 5. Plot (real part) of A(CL,,,CL,,), for chirp CLl,l[”] =
e[271n? — n), associated with the line L1 = {(7,7)}.

B. Chirps as Eigenfunctions of Heisenberg Operators

The Heisenberg operators (I-C.1) satisfy the commutation relations

m(r,w)r(r’ W) = e(wr’ — 10" - w(r, W )T (T,w),  (II-B.1)

for every (7,w), (7',w’) € V. In particular, for a given line L C V,
we have the family of commuting operators 7(l), [ € L. Hence they
admit an orthonormal basis By, for H of common eigenfunctions.
Important property of the chirp sequences is that for every chirp
sequence Cr, € By, there exists a character® Y, L - C*, ie.

G+ 1) =, (), ('), LI € L, such that
7(1)Cr = ¢ (1)CL, for every | € L.

This implies—see Figure 5—that for every C, € B, we have

P (v) ifve L

0 ifvegL. (II-B.2)

A el = {
It is not hard to see [4] that for distinct lines L, and M, and two
chirps Cr € Br,Cu € By we have

|A(CL, Car)[v]| = 1/V/N,  for every v € V. (II-B.3)

C. Double-Chirp Sequences

For any two distinct lines L, M € V, and two characters ¢, ¢,
on them, respectively, denote by C the chirp corresponding to L
and 1, and by C)ps the chirp corresponding to M, and ,,. We
define the double-chirp sequence

Cr = (O + Car) V2.

It follows from (II-B.2) and (II-B.3) that for the line K = L, or M,
we have

A(Ci, Coan)fo] ~ { gm)/ﬂ if v € K

ifve K.

®We denote by C* the set of non-zero complex numbers
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D. Triple-Chirp Sequences

Consider three distinct lines L, M, M° € V, and three characters
Y1, ¥, Yaso on them, respectively. Denote by Cr, Cy and Chzo
the chirps corresponding to L, M and M°, and ¢, ,,, and ¥ 0,
respectively. We define the triple-chirp sequence

Cr.arare = (Cr 4+ Cy + Curo)/ V3.

It follows from (II-B.2) and (II-B.3) that for the line K = L, M or
M?°, we have

~ Vi ()/V3  ifveK;

A(Ck,Cr, v, mo)[v] = { 0 it v ¢ K.

III. INCIDENCE METHOD

We describe—see Figure 3 for illustration—the incidence algo-
rithm.

Incidence Algorithm

Input: Randomly chosen lines L, M, and M°, and characters
Y1, ¥, Yo on them, respectively. Echo Ry as e of the
triple-chirp Cr ar, a0, threshold 7' > 0, and value of SN R.

Output: Channel parameters.

1) Compute A(Car, Rr,nm,ar0) on L, obtain peaks’ at I1, ...
A(Cr,Rp,mme) on M,

Mg

I lTl N
2) Compute
mi, ...

obtain peaks at

3) Compute A(Chro, Rr ar,are) on L, obtain peaks at I7, ..., l7,.

4) Find v;; = l;-+m; which solve l;+mj; € M°+I3, 1 <i < rq,
1<j<ry1<k<rs

5) For every delay-Doppler parameter v;; = [; + m;y
found in the previous step, compute aw,; =
V3A(CL, Ri,v,mo)[mjl,(I;). Return  the  parameter

(aﬂij ) Uij)'

IV. CROSS METHOD

Let Cr ar be the double-chirp sequence associated with the lines
L,M C V, and the characters ¢;, and v¢,;, on L, and M,
correspondingly. We define hypothesis function h : L x M — C

by

h(l,m) = A(C’L,RL,M)[m] QZJL[Z] (IV—.I)

_A(Cﬂ/fv RL,]VI)U] ’ G(Q[l7 m]) : ¢NI [m]’
where® Q : VXV — Zy is given by Q[(7,w), (7', w")] = 70’ —wr’.

Below we describe—see Figure 4—the Cross Algorithm.

V. CONCLUSIONS

In these notes we present the incidence and cross methods for
efficient channel estimation. These methods, in particular, suggest
solutions to the arithmetic complexity problem. Low arithmetic
complexity enables working with sequences of larger length N, and
hence higher velocity resolution of channel parameters is plausible.
We summarize these important features in Figure 6, and putting them
in comparison with the pseudo-random (PR) and Flag methods.

"We say that at v € V the ambiguity function of f and g has peak, if
lA(f, g)[v]| > T+/2Toglog N/v/N - SNR.

8In linear algebra Q is called symplectic form.

“We say that at v € V' the ambiguity function of f and g has peak, if

|A(f, 9)[v]| > T1v/2loglog N/vV'N - SNR.

Cross Algorithm

Input: Randomly chosen lines L, M, and characters v, ,, on
them, respectively. Echo Rz as of the double-chirp Cr ar;
thresholds 74, T> > 0, and the value of SNR.

Output: Channel parameters.

1) Compute A(Car, Rr,m) on L, and take the 71 peaks® located
at points [;, 1 <i < rq.

2) Compute A(Cr, Rr,m) on M, and take the ro peaks located
at the points m;,1 < j < ra.

3) Find Vij = I + m; which solve |h(ll,m])\ <
TQ\/QlOgIOg(N)/\/N'SNR, where 1 <7< 7,1 <5<
T2.

4) For every delay-Doppler parameter v;; = [; +m; found in the
previous step, compute a,,;; = \@A(C’L, R m)[mjly L (1G).
Return the parameter (v, ;, vij)-

Method Complexity
PR O(N?logN)
Flag O(rNlogN)
Incidence O(NlogN+r3)
Cross O(NlogN+r?)

Fig. 6. Comparing methods, with respect to arithmetic complexity, for
channels with r parameters.

Remark V-.1: Both new methods are robust to a certain degree of
noise since they use the values of the ambiguity functions, which is
a sort of averaging.

Acknowledgements. We are grateful to our collaborators A.
Sayeed, and O. Schwartz, for many discussions related to the research
reported in these notes.
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Abstract—We consider an analytically tractable class of time-
variant stochastic radio channel models. All models in this class
are designed such that individual multipath components emerge
and vanish according to a temporal birth-death process L(-). This
birth-death process is governed by two facilitating assumptions:
1) stationary emergence times, and i7) i.i.d. lifetimes. Multipath
channel models with such temporal birth-death dynamics have
appeared in the literature several times. More specifically, such
channel models have appeared with assumption i) specialized
to that of a Poisson point process and with assumption i)
specialized to that of i.i.d. exponentials. So far, these two special-
case assumptions have seemingly been invoked by default without
justification or clarification for their necessity. Here, we establish
and justify their essential necessity from a simulation practical
point of view. Specifically, we obtain a tractable and exact (non-
approximate) Markovian simulation recipe for drawing realiza-
tions of time-variant stochastic radio channels with temporal
birth-death dynamics.

I. INTRODUCTION AND PRELIMINARIES

A simple, flexible, and commonly used stochastic model for
time-variant channel transfer functions is given by [1]

L()

H(tvf):Zae(t)exp<_j27rf7—z(t))' (H
(=1

The integer-valued random variable L(t) gives the instanta-
neous number of path components at time ¢, «,(t) is the
random complex-valued gain of the ¢’th path, and T,(¢) is
the associated random propagation delay. Time- and space-
varying multipath propagation phenomena, e.g. path compo-
nents which emerge and vanish, occur partially due to the
movements of transmitter, receiver, and surrounding scatterers
[1]. Transitions of the random process L(-) reflect when
different path components emerge and vanish. The random
process L(-) can be generated in numerous ways, for instance
according to the following tractable assumptions:

i) Stationary emergences: The collection of time instances
where new path components emerge forms a stationary
point process on the real line.

i1) ii.d. lifetimes: The non-negative lifetimes (or periods)

of individual path components are i.i.d.

In [2] we show how the assumptions i) and i) can be conve-
niently incorporated using an approach based on spatial point
processes' [3]. Specifically, denote by Y the one-dimensional
point process from i) and denote by {p, : y € Y} the
collection of non-negative periods from 7). The subscript y on
each period p, serves as an identifier for its underlying point.

'The spatial point process approach used in [2] serves to bypass the
enumeration issue in (1) which occurs since every transition of L(-) leaves the
need for a non-trivial reordering or bookkeeping of all ¢-indexed quantities.

By construction, the random collection {(y,p,) : y € Y} is
a marked point process [3] with (stationary) points in R and
(i.i.d.) marks in R . Alternatively, this marked point process
can be viewed as a two-dimensional point process

X :={(y,py) :y €Y}, 2)

i.e. as an unmarked point process with points in R xR . Then,
each two-dimensional point = (y,p) € X has components
y and p interpreted as “birth time” and “lifetime”, respectively,
and a subscript identifier on p is no longer needed.

In terms of the two-dimensional point process X, the
channel model in (1) can now be reformulated as [2]

H(t,f) =Y Uz € Blog(t)e 7> /=0 (3)
rxeX
L{t)=|XNB| =Y 1llwe By, teR, 4)
xcX

where | - | denotes set cardinality while 1[-] denotes a generic
indicator function taking value one if the logical statement
in brackets is fulfilled and zero otherwise. The time-indexed
quantity B; in (3) and (4) is the triangular-shaped region

By :={(y,p):y<t,y+p>t} CRxRy. 5)

The relationship in (4) states that L(¢) is equal to the random
number of points from X falling in the region By, see Fig. 1.
An arbitrary point = (y,p) € X contributes to the value of
the sum in (4) when it emerges before time t (i.e. y < t) and
vanishes after time t (i.e. y + p > t). As a consequence of
i) and i), the (continuous-time) temporal birth-death process
L(+) is strict-sense stationary [2], [4].

Notice how the collections {c,(-)} and {7,(:)} of random
processes from (1) have been “substituted” in (3) by the
collections {a(-)} and {7(-)}. The previous collections
are now conveniently indexed using the points from X as
proposed in [2]. The representation in (3) inherits several
analytical benefits compared to the traditional representation
in (1), especially in terms of the ability to “track” individual
path components across time due to the point process-based
indexing technique, see Fig. 1.

In the literature [5]-[8], assumptions i) and i:) were origi-
nally introduced in more restrictive versions:

i)t Special-case of i): Poisson point process [9].

ii)!  Special-case of 4i): Exponential distribution.

In the rest of this paper we restrict to the special-case as-
sumptions ¢)7 and 44)T and treat these in detail. In the earliest
channel modeling contribution by S. J. Papantoniou [5], the
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Figure 1. Each black bullet represents a point from the two-dimensional
point process X . Points falling within the region B; indicate path components
which are active in the radio channel (3) at time ¢. Those falling in By N B/
are contributing to (3) at time instances ', ¢, and everywhere in-between.

construct via i)' and i)t is identified’> as an M/M/occo
queue [4, Sec. 16-2]. Accordingly, all known properties of this
particular queue apply directly to the temporal birth-death
process L(-), e.g. that L(t) is Poisson distributed for each
fixed ¢t € R. The original motivation for using )" and i) is
(quoting Papantoniou [5, Sec. 2.2.6]): “that these assumptions
endow the model with simple mathematics”.

Later contributions such as [7] and [8] have seemingly
employed the special-case assumptions 7)f and )" by de-
fault. In addition, [8] proposes cumbersome implementation
guidelines for computer simulation, e.g. a heuristic channel
initialization scheme as well as a procedure for approximating
the continuous-time process L(-) on a discrete sampling grid.
Yet, both of these approximate simulation guidelines can be
circumvented and substituted by exact procedures upon taking
direct advantage of the facilitating aspects of the point process
perspective in (4). As opposed to [8], the earlier contributions
[5]-[7] entirely omit discussions related to computer simula-
tion of their proposed (birth-death) channel models.

This paper presents three main contributions. Firstly, we
justify and clarify Papantoniou’s claim from the point of view
of computer simulation. As shown in [2], 4)' and 4i)" are
indeed analytically tractable in general, but as shown here
they prove as well highly facilitating for simulation purposes.
Secondly, we show the utility of the point process view in (4)
with respect to the actual implementation of the temporal birth-
death process L(-), especially in the context of radio channel
modeling. Knowing that L(-) can be seen from a queuing
theory perspective does not straightforwardly aid in being
able to track the individual path components in (1). Thirdly,
we show how the memoryless property of the exponential
distribution can be exploited to represent the continuous-time
birth-death process L(-) on an arbitrary discrete sampling grid
(which is needed in practice). Compared to [8, Sec. III-C] our
representation is exact, i.e. it does not rely on approximations
such as disregarding “tiny” probabilities of multiple jump
events within “tiny” intervals of time.

ZMore precisely, [S] presents a space-varying approach which simplifies
to a time-varying model like (1) and (3) upon assuming a receiver trajectory
with constant velocity vector.

II. SIMULATION OF THE TEMPORAL BIRTH-DEATH
PROCESS L(-) IN TIME-VARYING RADIO CHANNELS

Under the special-case assumptions i)t and 4i)" there are
several (equivalent) ways to view the birth-death process
L(-). The process can be seen as an M /M /co queue, as a
continuous-time Markov chain [10, Sec. 7.4], as generalized
shot-noise, but it can also be seen via the point process per-
spective in (4). Specifically, it can be seen as the “time-sliding”
region count displayed in Fig. 1. All of the aforementioned
views have their individual advantages and drawbacks.

In queuing theory it is usually the queue itself which is
of primary interest, not the individual customers (they just
temporally alter the length of the queue). When considering
the channel models in (1) and (3) the situation is different. It
makes a crucial difference when we need to be able to track
the individual path components across time. In radio channel
characterization we often wish to “correlate” the channel
with itself at different time-frequency instances. Hence, it is
important to be able to identify and track if path components
are still present, if new ones have emerged, or if some have
vanished in-between any two time instances ¢’ and ¢. In Fig. 1
the instantaneous counts are L(t') = 5 and L(t) = 3 but only
one path component is shared. Due to this readily accessible
(graphical) insight, the point process-based representation in
(3) is beneficial for channel modeling purposes [2].

A. Notation and Properties of Poisson Point Processes

Under assumption i)Jr the random collection Y in (2) is
a stationary Poisson point process with constant intensity
Sunction o, (). Thus, o0, (y) = A for all y € R, for some
positive constant A. (subscript abbreviating “emerge”).

By i)' the collection of periods {p, : y € Y} is such that

iid.

Dy ~ fperiod(’)7 fperiod(p) = I[[p Z 0]>\v EXP(*)\vP%

for some positive rate parameter A, (subscript abbreviating
“vanish”). Since the periods are mutually independent it fol-
lows that the two-dimensional point process X in (2) is also
a Poisson point process (by the Marking Theorem for Poisson
point processes [9, Sec. 5.2]). The Poisson point process X is
inhomogeneous with intensity function given by [9, Sec. 5.2]

:Qx(a:) = :Qx(y:p) = Qy(y)fperiod(p) = )\e)\v GXP(*)\vp)a

i.e. this intensity function is constant with y and decays
exponentially with p. By the equality in (4) and the fact that X
is a Poisson point process, it follows immediately that L(¢) is
a Poisson distributed random variable for any fixed ¢ € R. The
mean of L(t) is obtained by integrating the intensity function
0 (+) across the region B, i.e.

BL0) 2| 3 1l e b = [ ovfan =5

zeX

which does not depend on time ¢, in accordance with L(-) be-
ing strict-sense stationary. The property of L(t) being Poisson
distributed with mean \./A, was obtained by Papantoniou [5]
using arguments from queuing theory. In [2], this property is
readily obtained as a result of the point process perspective.
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B. Initialization of L(-) at Time t'

Suppose we wish to initialize the channel model in (3) at
some time instance ¢’ € R, e.g. ¥ = 0. In particular, we
then have to initialize the temporal birth-death process L(-)
at this particular time instance. Since L(¢') follows a Poisson
distribution with mean A./\, we can indeed generate L(t')
accordingly. Conditioned on L(t'), the points
xrw)} =X NBy, x¢=(yo,pe), (6)

are to be drawn i.i.d. according to the (conditional) joint pdf

{:1}1,.'1327...,

[(y,p) € Brlox(y,p)

// 0x (7, p)dydp

—110<t —y <pAexp(=A\p), (7

fly,p;t') =

i.e. according to a truncated and normalized version of the
intensity function o, (-), see [3] and [9]. We stress that the
integer-labeling employed in (6) does not indicate any ordering
of the points whatsoever. Notice also that the set X N By in
(6) can potentially be empty since L(¢') was drawn from a
Poisson distribution. The individual components 3, and p, of
each two-dimensional point x; are obviously dependent due to
the triangular shape of the region By . The intuitive argument
is of course that we have conditioned on the points in (6) to
be “active” at time ¢’ (i.e. they have not yet vanished).

By a change of variables and by marginalizing the (condi-
tional) joint pdf in (7) we readily find that

t' —ye ~Exp(A\), ye+pe—t ~Exp(\), ®)

i.e. the lifespan which has already elapsed (from the past)
and the lifespan which remains (in the future) are both
exponentially distributed, and in fact they are independent!
Thus, the (conditional) marginal distribution of the lifetime
pe is not exponential, rather its distribution is that of the
sum of the two independent exponentials in (8) and hence
pe ~ T'(2, ), namely a gamma distribution®. This fact can
also be verified by direct marginalization in (7). Conditioned
on the lifetime py, the corresponding emergence time y, has a
uniform distribution (into the past), i.e. ye|pe ~ U(t' — pe,t').
This is not surprising since by 4)T, the collection of emergence
times originates from a stationary Poisson point process.

The above procedure describes how to correctly initialize
the non-negative integer L(t’) together with the individual
components in (6). For comparison, [8, Sec. II-C] always
initializes L(t') = 0 followed by a temporal “burn-in/forerun”
to allow the birth-death process to evolve and stabilize before
running the actual simulation. The procedure outlined in this
paper allows for instantaneous and exact initialization of the
channel in (3).

C. Temporal Evolution of L(-) in the Interval [t',t"]

Suppose that the birth-death process L(-) has been ini-
tialized at time ¢’ in a state of equilibrium as described
in the previous subsection. We can now arbitrarily select a

3Compare this “conditional pro erty” to that of the lifetime of a newly
emerged path component. By )7, the lifetime of a newly emerged path
component should be assigned trom an exponential distribution.

stopping time ¢’ > ' and then generate a realization of
the point process X restricted to the unbounded rectangular
strip [t/,t"] x R4, see Fig. 2. To generate this restricted
realization of X we draw a Poisson distributed number with
mean E[|X N ([t',¢"] x Ry)|] = Ae(t” — '), and then we
distribute this amount of points inside [t/,¢”] x R according
to ii.d. draws from a truncated and normalized version
of the intensity function ¢ (). Essentially, this means that
we need to generate pairs of uniformly and exponentially
distributed random variables (all mutually independent). Then,
to calculate the corresponding realization of the temporal birth-
death process L(-), we simply count points while “sliding” the
triangular region By in (5) from ¢ = ¢’ until ¢ = t”, see Fig. 2.

The procedure above is suitable if we know in advance
the necessary duration of our simulation. Lengthy simulations
require in general a vast amount of numbers to be stored. How-
ever, due to Markovian properties of L(-), there is a practically
useful alternative to the above simulation procedure.

D. Markovian Temporal Evolution of L(-) in [t', o0)

Suppose that the birth-death process L(-) has been initial-
ized at time ¢’ such that L(¢') has been drawn from a Poisson
distribution. Now we do not explicitly generate the individual
points in (6) anymore. Instead, we make use of the property in
(8), namely that the remaining lifespan yy+py—t’ of each path
component has an exponential distribution. What occurred in
the past is no longer relevant, i.e. we are not interested in
knowing when individual path components emerged. In fact,
we are now concerned only with the next transition of L(-)
which occurs sometime in the future. We then maintain this
concern one single transition at a time. There are only two
possibilities for the next transition since the point process
X in (2) has almost surely no repetitions of points. Either
a new path component emerges or a single of the existing
ones vanishes. Thus, the birth-death process L(-) experiences
a random “increment” from the set {—1,+1} at a random
time instance in the future. Once this increment has been
assigned we wait yet another random time instance until the
next increment from {—1,+1} arrives, and so on.

If the random “waiting times” between consecutive transi-
tions are exclusively exponentially distributed, it means that
L(-) forms a continuous-time Markov chain [10, Sec. 7.4]. This
is indeed the case (and we already know that). After initializa-
tion at time #’, the first transition of L(-) occurs either when
a new path component emerges (after a random time FE), or
when one of the existing components vanish (their remaining
lifetimes can conveniently be denoted by Vi, Va, ..., Viw)).
Accordingly, after initialization at time #', the first transition
of L(-) occurs at time ¢’ +min{V1, V3, ..., Vi), E}, where

Ve ~Exp(\y), £=1,2,...,L(t), E~Exp(X). )

The L(¢')+1 random variables in (9) are mutually independent
and it is well-known that the minimum of a fixed number of
independent exponentials again has an exponential distribution
[10, Sec. 3.10.1]. Thus, conditioned on L(t) and now for an
arbitrary time instance ¢, we conveniently define a waiting-
time random variable

Tr@y :=min{V1,Va,..., Viu), E} ~ Exp(L(t)/\V + )\e)
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as well as the indicator I1,;) := 1[E < min{Vi,..., Vi }].
Then one can readily verify that
. A
Pr(IL(t) = 1) = Pr(E < Inln{‘/g}) = m,

and in fact, Ty and Iy are independent! Hence, we
generate the random variable 77 with its distribution de-
pending on L(t). The associated increment from {—1,1} is
independently determined from the realization of Iy ;). The
larger the value of L(t) the smaller the expected waiting-time
E[T, ()] until transition. Additionally, the more components
currently attending in the channel, the more likely it is that
one of the existing path components will soon vanish. In case
the increment is minus one, i.e. Iy = 0, then we simply
remove an arbitrary component uniformly at random (since
V1,Va,..., Vi) are iid.). Overall, instead of simulating
L(t) + 1 random variables we can always do with simulating
only two random variables. Thus, we sequentially generate the
transition times and increments of the process L(-).

In practical simulation studies we often need to represent the
channel in (3) on a grid discretized in time and in frequency.
Suppose we want to simulate the temporal birth-death process
L(-) on some regular or irregular sampling grid (¢, : n € INg)
with ¢ty = ¢ (initialization time) and ¢, < t,4; for all n.
Doing so yields the sequence

L(to), L(t1), ..., L(tn),...,

and in case of a regular sampling grid, the fixed time-step
parameter t,41 — t, = At > 0 could for instance be
dictated by the signalling or the sampling period of a particular
communication system (e.g. OFDM-based). In any case, the
transitions of L(-) occur in continuous time and not on the
discrete sampling grid (tn 'n e ]NO). Yet, by the memoryless
property of the exponential distribution we can repeatedly
“reset the clock” and sequentially (step-by-step) simulate the
sequence in (10). Pseudo-code instructions read as follows:

(10)

Initialization:
Define Ae > 0, Ay > 0, and ¢,, for all n;
L ~ Poisson(Ac/\); (count variable)
t=to; L(t) = L; (assign initial count)
Temporal evolution across the sampling grid:
forn=20,1,2,...

Tcumulale - 0;

while (Tz:umulate < tn+1 - tn){

T ~ Exp(LA + Ae);

(parameters)

(reset the clock)
(trivially satisfied at first)
(time until next event)

ﬂumulale = Tcumulate + Ta (time accumulator)
if (Teumutae > tnt1 — tn){break;} (exit while-loop)
else{ (revisit while-loop)
U~U,1); (a probability)
if (U < ﬁ){L =L+ 1;} (new emergence)
else{L=L—-1;} (one component vanished)
}
end while;
t=1tnt1; (move one time-step ahead)
L(t)y=L; (assign count)
end for;

The while-loop in the pseudo-code is present to account for
the fact that multiple transition events can occur between two
consecutive sampling points ¢,, and ¢,4;. The approximate
approach in [8, Sec. II-C] is based on a regular sampling grid
with time-step parameter At > 0 sufficiently small so that in

I
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Figure 2. The unbounded rectangular strip [¢/,¢"'] x Ry from Sec. II-C.

each step the probability of multiple transition events can be
neglected in practice. The approach in this paper is exact (non-
approximate) and valid for both regular and irregular sampling
grids. Hence, the simulation procedure described here can also
be used for block-wise burst communications with long empty
(or silent) gaps in-between consecutive transmission bursts.

E. Remarks on Generalization Attempts

The key feature of assumption i) is that the distribution of
L(t) = |XNBy| is known to be Poisson, even without assump-
tion i7)T (this is the so-called M /G /oo queue). In this case we
still know how to generate the points in (6) since these belong
to the Poisson point process X, see [2]. Hence, assumption
i)t is effectively indispensable since the distribution of L(t) is
(in general) intractable for more sophisticated types of point
processes. The key feature of assumption ii)" is expressed in
(8), namely that each remaining lifespan has an exponential
distribution no matter the current age of the considered path
component (inherited from the memoryless property of the
exponential distribution). If a different lifetime distribution
is employed the remaining lifespan of each “active” path
component will inevitably depend on age.
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Abstract—We present a modified compute-and-forward scheme
which utilizes Channel State Information at the Transmitters
(CSIT) in a natural way. The modified scheme allows different
users to have different coding rates, and use CSIT to achieve
larger rate region. This idea is applicable to all systems which
use the compute-and-forward technique and can be arbitrarily
better than the regular scheme in some settings.

I. INTRODUCTION

The compute-and-forward scheme [1] is a novel coding
scheme for Gaussian networks which takes advantage of the
linear structure of lattice codes and the additive nature of
Gaussian interference networks. The main idea of compute-
and-forward is to decode linear combinations of messages
rather than the messages themselves at the receivers. One nice
feature of this scheme is that the Channel State Information is
not explicitly required at the transmitters, making this scheme
attractive to practical considerations. But on the other hand,
it is not clear how CSI can be used at the transmitters if the
compute-and-forward idea is to be applied. Furthermore, the
same lattice code is used for every user, preventing the scheme
from exploiting asymmetries of the networks.

In this work we present a modified compute-and-forward
scheme with asymmetric message rates which makes CSIT
useful. This scheme also extends the concept of the compu-
tation rate to a more general definition of the computation
rate tuple, which allows flexibility in controlling the individual
message rates of different users. The main idea relies on
the observation, roughly speaking, that the transmitted lattice
codeword does not have to lie in the lattice which is used for
lattice coding at the transmitters.

We use the notation [a : b] to denote a set of increasing
integers {a,a + 1,...,b}, log to denote log, and log™ (x)to
denote the function max{log(z),0}. We also use z1.x to
denote a set of numbers {z1,z2,...,Tx}.

II. PROBLEM STATEMENT

We consider a interference network with K transmitters and
M relays. The discrete-time real Gaussian channel has the
following vector representation

K
Ym = thkxk +2,, mel[l:M]
k=1

This work was supported in part by the European ERC Starting Grant
259530-ComCom.

with y,, € R*",x; € R® hpx € R denoting the channel
output of relay m, channel input of transmitter k£ and the
channel gain, respectively. The Gaussian white noise with unit
variance is denoted by z,, € R"™. We impose the same power
constraint E{|[x;||*} < nP on all the transmitters.

The message of user k is represented by a point in R"
denoted by tj, which is an element of the codebook Cj of
user k with message rate Ry, := Llog |Cy|.

Each transmitter is equipped with an encoder &, which maps
its message into the channel input as x;, = & (ty). Each relay
m has a decoder D,, which uses the channel output y,, to
decode a function of all the messages ty,k € [1 : K] as
Jm(t11:5]) = Din(ym). Here we only consider the function
of the form fp,(tp.x]) = Zszl amiti with integer a,,y for
allm e [1: M],k € [1: K. We use a,, to denote the column
vector a1, - - Gmi]T.

We say a computation rate tuple (Ry, ..., Rx) with respect
to the function f,, is achievable, if the relay m can decode the
function f,,, reliably, namely Pr (Dm(ym) # fm (b1 K])) <4
for any 6 > 0, with Ry, being the message rate of the user k. In
the network, we require all the relays to decode their desired
functions. We say a computation rate tuple (Ry,...,Rx) w.
I t. the set of functions fn,,m € [1 : M] is achievable, if
Pr (Do (ym) # fm(tp.x)), forall m e [1: M]) < & holds
for any § > 0 with Ry, being the message rate of user k. In the
following we will study the computation rate tuple achieved
by a modified compute-and-forward scheme.

III. LATTICE CODES CONSTRUCTION

A lattice A is a discrete subgroup of R™ with the property
that if t1,to € A, then t; + to € A. More details about
lattice and lattice codes can be found in [2]. Define the lattice
quantizer Q@ : R® — A as Qa(x) = argmin, ||t — x||
and define the fundamental Voronoi region of the lattice to be
V= {x € R" : Qa(x) = 0}. The modulo operation gives
the quantization error: [xJmod A = x — Qa(x). Two lattices
A and A’ are said to be nested if A’ C A.

Let Aq,...,Ap be M nested lattice codes constituting a
nested lattice chain in which all lattices are simultaneously
good in the sense of [2]. This chain can be constructed as
shown in [3] and the order of the chain will be determined
later. Relay m will perform the lattice decoding with respect
to the lattice A,,.

Let 31,...,8k be K positive numbers. We can construct
K nested lattices such that Aj C A, for all £ where
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A. denotes the coarsest lattice among Aj,...,Ap. We let
A} to be simultaneously good and with second moment
1 ij |[x]|* dx = B2P where V; denotes the Voronoi region
of the lattice Aj for k € [1 : K]. The lattice Aj is used as the
shaping region for the codebook of user k.

For each transmitter k, we construct the codebook

Cr = Ay N Vi 1)

where m(k) € {1,..., M} hence A, () is the decoding lattice
at one of the M relays. We will determine which decoding
lattice to choose for transmitter k, i.e., the expression of m(k),
in the next section. The message rate of user & is
Vol (V)
Vol (Vm(k:))

where V(1) is the Voronoi region of the fine lattice Am(k>.

1 1
R = —log|Cx| = —log 2
n n

IV. A MODIFIED COMPUTE-AND-FORWARD SCHEME

When the message (codeword) tj, is given to encoder k, it
forms its channel input as follows

where dy is called a dither which is a random vector uniformly
distributed in the scaled Voronoi region V} /3. As pointed out
in [2], x}, is independent from t, and also uniformly in A% /S
hence has average power P for all k.

To demonstrate the proposed approach, we first assume
there is only one relay, m = M = 1. For now there is only
one decoding lattice hence the codebooks of all the users are
constructed using the same fine lattice and we denote it as
Ay = A for all k.

Theorem 1: Assume there is only one relay m. For any
given set of positive numbers fi,..., Sk, there exists lat-
tice codes Ci,...,Cx such that the achievable computation
rate tuple (Ri,...,Rg) with respect to the function f,, =
>k amity at relay m is given by

Rk <71 (h'rru Ay, BI:K)
+

-1
1 - .2 Pmra,)? 1 )

= |=1o a - ——m + - logBi| 3
B g( MH 1+PHhm||2 9 g Pk

for all k& with &,, := [B1am1, ..., Bxamk] and amg € Z for

all ke [1: K.
Proof: At the decoder we form

Ym = Omy¥Ym — amkﬁkdk

¥
= Z Ak (Bk(tk/ﬁk +di) — BiQa; /s, (tr/Br + dk))
K
= tmiBrdy + Zm
k
@ G + D ami(tr — Qag (tr + Brdy))
k

= Zp + Z amkfk
k

with ty := t — QAZ (tx + Brdy) and the equivalent noise

Zm = Z(amhmk - amkﬁk’)xk + A Zim,
k

which is independept of >, amity since all x; are inde-
pendent of >, amits thanks to the dithers dj. The step ()
follows because it holds Qa(Sx) = BQ%(X) for any 3 # 0.

Notice we have t € A since t; € A and Af C A due to the
code construction. Hence the linear combination Zk Amibe
along belongs to the decoding lattice A.

The relay uses lattice decoding to decode & amrts with
respect to the decoding lattice A by quantizing y,, to its
nearest neighbor in A. The decoding error probability is
equal to the probability that the equivalent noise z,, leaves
the Voronoi region surrounding the lattice point representing
Zk ampte. If the fine lattice A used for decoding is good
for AWGN channel, as it is shown in [2], the probability
Pr(z,, ¢ V) goes to zero exponentially if

Vol (V)?/n

N e )

where N, := E||Zyn||> /n = ||amh — &, ][> P+ a2, denotes
the average power per dimension of the equivalent noise.
Recall that the shaping lattice Aj is good for quantization
hence we have

2P n/2
Bl ) Q)

with G(Aj)2me < (1 +6) for any § > 0 if n is large enough
[2]. Together with the message rate expression in (2) (here
Ay = A for all k) we can see that lattice decoding is
successful if BZP272f /G(A]) > 2meN,, for every k or
equivalently

Ry < %log (N—i) + %logﬁi — %log(l +9)
By choosing § arbitrarily small and optimizing over a,, we
conclude that under the rate constraints in (3) the lattice
decoding of >, apty, will be successful. Finally, since there
is a one-to-one mapping between t; and t; when the dithers
dj, are known, we can also recover »_, aity. It is easy to see
from the expression of the computation rate tuple in (3), that
multiplying all 8 with a same constant will not change the
result. |
We see the main difference to the regular compute-and-
forward scheme is that here the transmitted signal x;, contains
the scaled version, ty /8, of the codeword while the receivers
still perform the lattice decoding w. r. t. the lattice A in which
t; lies. We should choose (; appropriately according to the
function a and the channel h to obtain the best rate region.
Now we extend the result to allow all relays to be able to
decode their desired linear functions.
Theorem 2: For any given set
b1, - .., Bk, there exist lattice codes Cy, ..
achievable computation rate tuple (R, ...

of positive numbers
.,Ck such that the
, Ri) with respect
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to the set of functions fp, = >, amits, m € [1 : M], where
fm 1s desired by relay m with a,,,; € Z, is given by

Rk < min rk(hmaamaﬂlzK)
me([1:M]

where 7, (hy,, an, 81.x) is defined in (3).

Proof: Relay m decodes the function f,, with its de-
coding lattice A,,. The nested structure of fine lattices A,
ensures that the sum of codewords seen at relay m lies in the
decoding lattice A,,. As in Theorem 1, the lattice decoding
is successful if the volume-to-noise ratio of the decoding
lattice satisfies equation (4). Hence each relay imposes a
constraint on the individual message rate, i.e., for all &k, we
have Ry < ri(hy,,,an, f1.x) for all m. If all relays want
to decode successfully, each transmitter has to construct its
codebook such that it meets the above constraints at all relays.
Therefore when the codebook is constructed as in (1), the
fine lattice A,,(x) for Cj should be such that the message
rate R, does not exceed min,,ei.as) 7k (Wm, am, B1.x). ie.,
m(k) = argminme[l:M]rk(hm,am, B1.x). The noise variance
N, at each relay determines the order of the lattice chain
involving A,,: larger N,, corresponds to a coarser lattice. M

Remark 1: The original scheme in [1] is a special case of
this modified scheme with 3 = 1 for all k. In [1], all message
rates are forced to be the same, called computation rate at
this relay. The modified scheme allows for different message
rates among users and leads to the more general definition
computation rate tuple. We shall see that this asymmetry on
message rates can be beneficial in various scenarios.

Remark 2: The modified scheme extends naturally to the
case when transmitters have different power constraints, and
in general achieves larger computation rate region.

V. EXAMPLES

Example 1: The multiple access channel (MAC).

We consider a 2-user Gaussian MAC where the receiver
wants to decode a linear function of the two messages. Figure
1 shows the achievable rate regions.

Example 2: Transmitters with different powers.

We consider the Gaussian two-way relay channel shown
in Figure 2, which is studied in [3], [4]. Two encoders have
different power constraints P; and P, and the channel gain
from both transmitters is 1. The relay has power constraint
Pgr. All noises are Gaussian with unit variance.

Already shown in [3], [4], it can be beneficial for the relay
to decode a linear combination of the two messages rather
than decoding the two messages individually. They give the
following achievable rate for this network

1 Py 1
<min{ =log" [ =——+ P —log(l1+ P
lemm{2 og <P1+P2+ 1),2 og(1+ R)}
(6a)

1 P 1
Ry <min{ =log" | =—=—+ P, ), =log(1+ P,
2 _mln{2 og <P1-|—P2 + 2) ' og(1+ R)}
(6b)
where the relay decodes the function t; + to and broadcasts
it to two decoders. With the modified compute-and-forward

scheme we also ask the relay to decode a linear combination
of the form Zizl aitr where aq,as # 0, with which each
decoder can solve for the desired message. We can show the
following achievable rate region:

1 P g2 1
Ry < min{ilog+ (1—51) , = log(1+ PR)}

N(ﬁl:Q) 2
.1 P35 1
Ry < mln{— log™ (N— , = log(1+ Pgr)
2 N(ﬁl:Q) 2
where
- _ PiPy(a1B1 — az2)? + (a151)* P14 (a2f2)* Py
N(BI:Z) =
P +P+1
for any positive (31, 82. Figure 3 shows the achievable rate
region.

Example 3: The MIMO integer-forcing linear receiver.

We now apply the same idea to the MIMO system with an
integer-forcing linear receiver [5]. We consider a point-to-point
MIMO system with channel matrix H € RM*X which is full
rank. It is shown in [5] that the following rate is achievable
using integer-forcing receiver

1
Rir < min K(—-loga? VDV7'a,,)
me([1:k] 2

Computation rate pair for a 2—-User MAC

2.5 \ T T \
a= 1,1
A [1,1]
a=[1,2]
1.5¢
8
g
N
o« 1 /a=[1,3]
=[1,4]
0.5 e
0 i i i i
0 0.1 0.2 03 0.4 0.5
R, /bits
Fig. 1. We consider a 2-user Gaussian MAC with channel coefficients h =

[1,5] and power P = 1 where the receiver decodes one linear function. Here
we show four achievable computational rate pair regions (R1, R2) of four
different linear functions marked in the plot. For each function, by adjusting
parameters 31 and B2 we can achieve different points on the curve. The red
dot indicates the equal rate pair achieved with the best coefficients (a = [1, 2]
in this case) using the regular compute-and-forward, given in [1, Thm. 4].

b B A’i — 2 to
Enc/Dec |y, Enc/Dec
: s 2 N

Zl Z2

Fig. 2. A Gaussian two-way relay channel.
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Achievable rate region for a Gaussian two-way relay

2 | |
Regular Scheme Sum-rate Optimal
1.5} 1
@ a=[1,2] a=[1,1]
5
m(\l
1 | |
a=[1,3]
3
0.5f 1
a=[1,4]
0
0 0.1 0.3 0.4 0.5
R1 /bits
Fig. 3. Achievable rate region for the Gaussian two-way relay in Figure 2

with unequal power constraints P; = 1, P» = 20 and equal channel gain
h = [1,1]. The relay has power Pr = 20. Color curves show different
achievable rate region when the relay decodes different linear functions as
marked in the plot. The red dot denotes the achievable rate pair given in
(6) when relay decodes t1 + t2 using regular compute-and-forward (other
function will give worse rate pair). Notice this point is not sum-rate optimal.
The achievable rate region given by the black convex hull is strictly larger
than the regular scheme since the CSI can be used at the transmitters.

for any full rank integer matrix A € ZX*¥ with its m-th
row as a,, and V € RE*K is composed of the eigenvectors
of HTH. The matrix D € R¥*X is diagonal with element
Dy x = 1/(PX2 +1) and )y is the k-th singular value of H.

Applying the modified compute-and-forward to the integer-
forcing receiver gives the following result. We note that a
similar idea also appears in [6] where a pre-coding matrix
is used at the encoder.

Theorem 3: For a K x M real MIMO system with full rank
channel matrix H € RM*K  the following rate is achievable

using an integer-forcing linear receiver for any (i, ..., Bk
K ~ -
1 ar’'vDbvTa
R < min ——logT»— - T 7
mIE = ;mE[I:K] 2 & BI% @)

for any full rank A € ZK*X with its m-th row being a,,.
We have a,, := [$1am1, ..., Bxamk] form = 1,... K and
V., D defined as above.
In Figure 4 we compare the achievable rates of two schemes.
We give another example where the modified scheme per-
forms arbitrarily better than the regular scheme. Consider the

2 x 2 MIMO channel with channel matrix H = (1)

0 < € < 1. It has been shown in [5, Section V, C] that
the achievable rate of integer forcing is upper bounded as
R;r < log(e2P) which is of order O(1) if € ~ # while the
joint ML decoding can achieve a rate at least %log(l +2P).
With the modified scheme we can show the following result.

1} where
€

10 : : ;

— Asymmetric Compute-and-Forward
Regular Compute-and-Forward

gl |— Capacity with CSIT

Achievable Rate (bits/s/Hz)

0 ; ; ;

1 10 30 40

20
SNR(dB)

Fig. 4. Achievable rates for a 2 X 2 MIMO system H = [0.7,1.3; 0.8, 1.5].
At SNR = 40dB, the best coefficients for regular scheme are a; = [1, 2] and
a = [7,13], while for the modified scheme we have the best parameters as
B1=1,82 = 4.887,a; = [8,3] and ag = [13,5].

Lemma 1: For the channel H above, R,,,;r in (7) scales as
log P for any € > 0.
To see this, we can show (assuming w. 1. 0. g. 51 = 1)

1 P

R, rF > min flong( )

m m=1,2 2 afnl + (amgﬁg — aml)ze%

1 2P

+ min flog+(2 B2 21)

m=122 A1 + (am262 - aml) =
Based on the standard results on simultaneous Diophantine
approximation [7], for any given a,,2 and () > 0 there exists
B2 < Q and a,,; such that |amefs — ami| < QY2 for
m =1, 2. Hence the we have the achievable rate

p3P

in L log™ P + mi L log™
min — 10 - S— min — - S——
m=1,2 2 & a%nl + Q_leiz m=1,2 2 & a%nl —+ Q_lfiz

If we choose Q ~ €72, and notice that we also have S35, Gy,1 ~
@, then the second term above scales as %logP for P large.
Consequently R,,;r also scales as %logP for any ¢, hence
can be arbitrarily better than the regular scheme.
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Abstract—Interference management in a three-user interfer-
ence channel with alternating connectivity with only topological
knowledge at the transmitters is considered. The network has
a Wyner-type channel flavor, i.e., for each connectivity state the
receivers observe at most one interference signal in addition to
their desired signal. Degrees of freedom (DoF) upper bounds and
lower bounds are derived. The lower bounds are obtained from
a scheme based on joint encoding across the alternating states.
Given a uniform distribution among the connectivity states, it is
shown that the channel has 2+ 1/9 DoF. This provides an increase
in the DoF as compared to encoding over each state separately,
which achieves 2 DoF only.

I. INTRODUCTION

The smart management of interference beyond the classical
approaches of avoidance and suppression is nowadays the
focus of research on wireless networks. The means to apply
smart management depend certainly (among other things) on
the information available at the transmitting nodes, such as
channel states. Often it is assumed that comprehensive chan-
nel state information is available at the transmitters (CSIT).
However, providing comprehensive (or perfect) CSIT is a
challenging issue in wireless networks, especially for networks
with high mobility and size. It is thus of interest to study
networks based on the assumption of limited or imperfect
CSIT.

The case of completely stale CSIT (using the so-called ret-
rospective interference alignment (IA)) was considered in [1]
for the broadcast channel with two antennas at the base station
and single-antennas at the users. It was shown that a degrees
of freedom (DoF) of 4/3 are achievable. Note that this is less
than the DoF of 2 in the perfect CSIT case, however, more
than the DoF of 1 in the case of completely absent CSIT. The
approach was generalized to other networks in [2]. Naturally,
it might occur that a mixture of CSIT quality is available at
the transmitters. This issue was addressed in [3] and [4] in
which the DoF is studied under the assumption of delayed as
well as imperfect current CSIT. As most wireless networks are
rather heterogeneous in terms of node mobility and capability,
the CSI quality at the transmitters is not the same for all users.
This was considered in [5], in which users have either perfect,
delayed, or no CSIT at all. Similarly, the capacity region of
the two-user binary fading channel was characterized in [6]
for different models of availability of CSIT.

A paradigm shift towards interference management with
minimal CSIT has been pursued in [7]. The main assumption

of [7] is restricting the CSI feedback to 1 bit only; which pro-
vides information about presence or absence of a link. A link is
assumed to be absent if its corresponding interference to noise
ratio (INR) is lower than 1. Clearly, by this assumption the
CSIT cannot exceed the topology of the network. Therefore,
this problem is called “topological interference management".
It is shown in [7] that the “topological" interference man-
agement problem for the linear wired and wireless network
reduces to a single problem. In other words, solving one of
these problems leads to the solution for the other one, in such
a way that the DoF of a linear wireless network leads to the
capacity of the corresponding linear wired channel, or vice
versa. For more details, the interested reader is referred to [7].

Note that in [7] the channels are assumed to be time-
invariant, which leads to a fixed connectivity within the net-
work. In [8], the alternating connectivity was considered for the
two-user interference channel (IC). It was shown that a DoF of
4/3 can only be achieved by jointly encoding across alternating
topologies. A natural question which arises is whether this gain
is preserved in larger networks.

In this work, we characterize the DoF of a three user inter-
ference channel in which each receiving node is either free of
interference or is interfered solely by one transmitter. The main
motivation for considering such a network is to investigate
whether the gain in [8] is preserved in larger networks given
that interference is still caused by at most one user as in the two
user IC in [8]. The analysis is focused on the corresponding
wired network with equiprobable topologies, for which the
capacity is characterized. This capacity characterization of the
wired network leads then (as mentioned before) to the DoF
characterization of the wireless network.

II. MOTIVATION

Consider three adjacent cells in a wireless network. In each
cell, a base station wants to send a message to one desired
receiver. Suppose that a signal is received under the noise level
if the distance between the transmitter (Tx) and the receiver
(Rx) is less than the radius of the cell. Therefore, all receivers
receive their desired signal over the noise level. However, there
are some cases in which the receivers observe one interference
signal over the noise level in addition to their desired signal.
This can be seen in Fig. 1 which shows the circular coverage
area of three adjacent cells. The area which is allocated to a
base station is shown as a hexagon inside a circle. Therefore,
there are some areas close to the edges of each cell in which
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Tx1 Rx1

cell 2

Tx3 o——0Rx3

Fig. 1. Each base station serves the users located in its cell. However, its
signal can be received over the noise level in some areas of the adjacent
cells. For example, the users in cell 2 and 3 receive an interference signal
from the base stations in cell 1 and 2, respectively. On the right, the topology
of this network is shown. Note that each receiver experiences at most one
interference.

the receiver experiences one interference signal in addition to
its own desired signal. As an example, Rx 2 and Rx 3 in Fig. 1
observe an interference from undesired base stations Tx 1 and
Tx 2, respectively. Since an interferer which is weaker than
noise does not have an impact on the DoF of the network; the
corresponding link to that interferer is assumed to be absent in
the topology of the network (see the topology of the wireless
network in Fig. 1).

III. SYSTEM MODEL

As it is shown in [7], the capacity of a noiseless wired
network normalized by the capacity of a single link gives
us the degrees of freedom for the corresponding wireless
network with additive white Gaussian noise. For simplicity,
and in order to avoid the unnecessary treatment of noise in
the wireless network which does not have an impact on the
DoF of the network, we study the wired noiseless network.
Consider three Tx’s which want to communicate with their
desired Rx’s. Txi, ¢ € {1,2,3} wants to send a message
W; to Rx . It encodes this message into a length-n sequence
X, = (X;(1),...,X;(n)) and sends this sequence. The
received symbol at Rx j in kth channel use is given by

3
Yj(k) =) hu(k)Xi(k), Vje{1,2,3} (1

where X;(k) and h;;(k) denote the transmitted symbol by Tx ¢
and the channel coefficient corresponding to the link between
Tx+4 and Rxj. All symbols are chosen from a Galois Field
GF. Moreover, the linear operations are performed over this
GF. The capacity of each channel is log|GF|, where |GF|
represents the cardinality of GF. Therefore, only one symbol
can be transmitted over a link per channel use.

In our model, CSIT is restricted only to the topology of
the network. Therefore, the only information available to the
transmitters is about the presence or absence of links but not
about the channel coefficients. However, both the local channel
coefficients and the topology of the network are known at the
receivers.

Since the channel coefficients change, the topology of
the network varies during the transmission. Following the
motivation in Fig. 1, the desired channels always exist and
each receiver is disturbed by at most one interferer. Therefore,
the network has a total of 27 topologies as shown in Fig. 2.

It is worth to note that the receivers have an infinite
memory and they start the decoding after receiving a complete
sequence Y ;. Therefore, the order of the occurrence of the
states is not important. Let A be a set of states shown in Fig.
2 and X; 4 be the sequence of transmitted symbols by Tx ¢
in all states in .A. Assuming a length-n sequence X, in which
n is sufficiently large, the length of X; 4 is nA4, where A4
denotes the sum of the probabilities of the states in A.

The goal of this work is to study the DoF gain obtained
by jointly encoding across the alternating topologies, when all
states occur with the same probability.

IV. MAIN RESULT

The following theorem provides the main result of this
work.

Theorem 1. The three user interference channel with alter-
nating connectivity and equiprobable states with at most one
interferer per receiver has DoF=2 +1/9.

Proof: We establish Theorem 1 by showing that the
sum capacity of the corresponding wired network is (2 +
+)1log |GF|. In order to do this, we need to find an optimal
achievability scheme. The optimality of the scheme is shown
by comparing it with a tight upper bound of the sum capacity.
We start by proposing an achievability scheme leading to a
DoF lower bound denoted DoF.

Achievability:

The achievability is based on the joint encoding over the
sates [8]. To this end, consider states By, Cy, Dy, and H; in
Fig. 2. It can be seen that all interference links in states Bj,
C1, and D; are present in state H;. Therefore, we can utilize
state H; to resolve the interferences in these states. As it is
shown in Fig. 3, the symbols by, co, and d3 cannot be decoded
at the desired receivers in states By, C1, and D;. However, by
using the state H7, the transmitters provide the symbols which
cause interference in states B;, Cp, and D; to the receivers.
Therefore, in total 9 symbols are decoded correctly at the
desired receivers by combining these four states. Similarly,
the same joint encoding scheme can be used for By, Cs, Ds,
and Hy due to symmetry. The remaining states are encoded
individually. In all these states except in state A, we achieve
DoF=2 by choosing two active transmitters. For instance, in
state 11, DoF=2 is achievable when Tx 2 and Tx 3 send while
Tx 1 is silent. Overall, the following DoF is achievable

9/4 for BlLJClUDlUHl
9/4 for Bo UCy U Dy U Hy
3 for A

2 in all remaining 18 states

DoF =

Since, all states occur with equal probability, we can transmit
57 symbols reliably in 27 channel uses in average. Since every
symbol is chosen from GF with the entropy log|GF|, the
achievable sum rate is

1
Ry, < <2 + 5) log |GF|. 2)
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Fig. 2. All possible states for the three users interference channel, when each receiver observes at most one interferer. The desired links are always present.
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Fig. 3. By combining these four states, we can recover 9 symbols. However,
by considering them separately, we cannot exceed 15/2 symbols.

Upper bound:

We establish the upper bound as follows

3
nRy, :ZH(WZ
_ZH )+ H(W;|Y ;) — HW;|Y )
%ZI(Wi;Yi) + 3nen, 3)

i=1

where (a) follows from Fano’s inequality and ¢, — 0 when
n — oco. By multiplying the inequality in (3) by 2, every mu-
tual information appears twice which corresponds to creating
(virtually) three additional receivers. In the next step, we give
side information to the actual receivers. The side information
equals to the undesired messages at those receivers. Therefore,
we write

2nRy <I(Wy; Y 1, W, W3) + I(Wa; Yo, Wi, Wa) 4
3
+ I(Wg; Y,g7 Wl, WQ) + Z I(WZ, Y7) —+ 6716”‘
i=1
By using the chain rule and since the messages of three
transmitters are independent from each other, we write

2nRy < I(W1; Y 1|[Wa, W3) + I(Wa; Yo|Wy, W)
3
I(W3; Y 3|Wy, Wa) + ZI(Wi; Y,) + 6ne,.

i=1
(5)

By expressing the mutual information as entropy terms, (5) is
restated as

2nRy, < H(Y 1|Wa, W3) — H(Y 1|W2, W3, W)
+ H(Y 2| W1, W3) — H(Y 2|[W1, W3, W2)
+ H(Y 3|Wy, Wy) — H(Y 3|W1, Wy, Ws)
3
+ ) I(Wi Y5) + 6ney,. (©6)
i=1
Note that knowing all messages, Y ; can be reconstructed.

Therefore, H(Y ;|Wy1, Wy, W3) = 0. The first term in (6)
reduces to

H(Y1|Wa, W3) = H(X ),

as X1 is independent of W5 and W3 and the fact that scaling
a discrete random variable by a constant does not influence
entropy [9]. Similar treatment applies to H (Y o|W7, W3) and
H(Y 3|W;,Ws) in (6). Next, we rewrite (6) as shown in (7)
on the top of next page. The parameters A;, I';, and ©,, i €
{1,2,3} are defined as follows

Ay = {Dl,F17G1,H1,I17K1,K27D3}
'y ={Ba, E2, G2, Ha, I, B3}

01 ={Es}UA UT,

Ay ={B1,E1,G1,H1, 11, 1,12, B3}
Iy = {Cy, Ey, F3, Hy, J2,C3}

Oy = {F3} UAUT,

As = {Cy,E, Fy,Hy, J1, K1, Jo,Cs}
I's = {Ds, F3, G2, Ha, Ko, D3}

O3 = {Gs}UA; UTs3.

The notation A denotes the complement set of A. By using
the chain rule, together with the facts that conditioning does
not increase entropy, and that the messages of the users are
independent of each other, the individual terms in (7) can be
rewritten as in (8)-(16) on the top of next page. We can see
that by substituting (8)-(16) into (7) many terms will cancel
out and we can rewrite (7) as

3
2nRy <Y H(X
i=1
+ H(YZE‘XQ’FI‘) + H(Y37G*3|X37G3) + 67’1671.

ie.) + HY  51X1,8;) a7
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Ry <H(X1,py, X1.0,, X111, X1,0,) + H( X2 p,, Xon,, Xor,, X20,) + H( X364, X3.04, X315, X3,0,)
+ H(X 1,6, Y, 5;) — H(X 2,5y, Xon,, X365 X305, X350, X3.0,)
+ H(XZ,Fga YZE) - H(X?),Gs? X3,A3a Xl,E37 Xl,F1,X1,11,X1.,K2)

+ H(X3,65Y35;) — H(X 1,5, X1,0,, X2 5y, Xor,, X2, Xo 1) + 616y, @)

HX g, X120, X111, X10,) HX1,g,) + HX 12| X1,5,) + HX 11| X1,5,) + HX10,) (8
H(X2r, X2.n,, Xor,, X20,) <H(Xop,)+ H(Xo 0, | X2 p,) + HX o1, | Xor) + HX2e,) )
H(X3,a,, X3,0,, X355, X30,) < H(X3,0,) + H(X3,2,| X3,6,) + H( X371,/ X3,0,) + HX30,) (10)
H(X17E37Y1,E3)SH(X1E3)+H( 1E3|X1,E3) Y

H(X 2,5y, Xo.0, X365, X305, X351, X3,0,) > H(Xop) + HX20,| Xo.p,) + HX3,6,) + H X310, X3,6,)  (12)
H(Xopy, Yy m) S H(Xom) + H(Y , 71X 2.1y (13)

H(X36,, X320, X158, X110, X115, X1,K,) 2 HX3,0,) + H(X3,0,| X3,¢,) + HX1,5,) + HX 10, | X1,8,) (14)
H(X356,,Y3q,) < H(Xs.6,) + HY 3 5,1 X5,65) (15)

H(X1,85 X100 X255, X015, X005, Xo1,) > HX1,5,) + HX 1,0, | X1,5,) + H X2 p,) + HXor,|Xo.p) (16)

The inequality (17) can be further upper bounded by

2nRy, <log|GF|[nAe, + nAe, + nle, +n(l — Ag,)
+n(l = Ap,) +n(l — Ag,y)] + 6ne,, (18)

where we used the chain rule, the fact that conditioning does
not increase the entropy, and that the entropy of discrete
random variable in GF is upper bounded by log |(GIF‘| [9].

Since the set O, consists of 12 states, Ao, = 27 2 if all states
are equiprobable. Next, we divide the inequality in (18) by 2n,
and let n — oo to obtain

RZS(Q

This agrees with the lower bound in (2). Normalizing the result
by log |GF|, we get the DoF for the wireless case which proves
Theorem 1. |

+ %) log |GF]. (19)

We observe from Theorem 1 that no joint processing is
necessary for { By, C1, D1, Hy, By, Co, Do, Hy }. However, for
{B1,C1, D1, Hy1, B2,C5, Do, Ho}, we need joint encoding to
achieve the optimal DoF. The alternative approach would be
to treat these states separately as well. This would result in
a DoF=3/2 and DoF=2 for the states {H;,H>} (as shown
in [10]) and { By, C4, D1, B2, C2, D2} (as shown in [11]), re-
spectively. Therefore, the overall DoF=2 for separate encoding
while by using joint encoding across the alternating topologies
2+ é is the optimal achievable DoF. Therefore, the gain of
jointly encoding is é in a three user IC with at most one
interferer. This gain is smaller than the attained gain in a two
user IC which is i for the equiprobable case [8].

V. CONCLUSION

We studied the DoF of the three users interference channel
with an alternating connectivity with only topological knowl-
edge at the transmitters. To do this, we proposed a new joint
encoding across the alternating topologies. Moreover, a new
genie aided upper bound is established to verify the optimality
of the joint encoding scheme. The upper bound is tight for the
equiprobable case. As future work, the non-equiprobable case

will be addressed. However, this extension is non-trivial due to
the increase in the number of possible combination of states.
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Abstract - We proposed a new physical layer technique thaate towards the eavesdropper. Hereafter, the proposedsch
can enhance the security of cooperative relay communitstiowill be referred to asnodify-and-forward MF).
The proposed approach modifies the decoded message at tWe present a practical method for securely sharing th
relay according to the unique channel state between thg rethfference X’ — X (or modification rule in general) by ex-
and the destination such that the destination can utiliee thloiting the unique physical channel state between the-legi
modified message to its advantage while the eavesdroppeate partners. We characterize the security level in aiquas
cannot. We present a practical method for securely shanimg static fading environment by computing the secrecy outag
modification rule between the legitimate partners and mtesgrobability that provides the fraction of fading realizais for
the secrecy outage probability in a quasi-static fadingqiobl which the wireless channel cannot support a target sectee ra
It is demonstrated that the proposed scheme can provid&Va compare the secrecy outage probability of the propose
significant improvement over other schemes when the relagheme with that of direct transmission (DT), decode-and
can successfully decode the source message. forward (DF), and CJ under different system setups.

Il. SYSTEM MODEL

We consider the cooperative relay communication syster

In recent years, there have been considerable effortsebvathown in Fig. 1 in which a source (S) communicates with &
to using the channel to provide security in wireless commurflestination (D) with the help of a relay (R) in the presence
cations. It is shown in [1] that fading alone guarantees th@t @ eavesdropper (E). We assume that each node carries
information-theoretic security is achievable, even whea tSingle omnidirectional antenna. Channels between allspair
eavesdropper has a better average SNR than the legitin@ftérodes are modeled as independent quasi-static Raylei¢
receiver. A traditional approach to enhancing the secraty rfading channels: fading coefficients remain constant durin
is to introduce interference (jamming) into the channelsta the transmission of an entire codeword but they change fror
harm the eavesdropper’s ability to eavesdrop while strengfne codeword to another according to a complex Gaussie
ening the ability for legitimate entities to communicatéig distribution.
idea has appeared in the literature under the name of atifici
noise [2], cooperative jamming (CJ) [3], [4], [5], [6], [7®r
noise forwarding (NF) [8], [9].

In this paper we propose a new physical layer technique that
can enhance the security of cooperative relay communitstio
Unlike traditional approaches in which no context (mesy&ge
sent by the relay, in the proposed scheme the relay decoeles th
source messag®& and forwards anodifiedmessageX”’ to the
destination such that the intended destination can utifiz¢o
its advantage while the eavesdropper cannot. The basidsdeBig- 1.  Cooperative relay communication model for modifgdorward
to exploit the unique physical channel state between tragy re[©1YIN:
and the destination as the inherent shared secret in sharin
X’ — X without exchanging any information aboft’ — X.

Once the differenceX’ — X is known at the destination, it o
can be canceled from the modified messageto get the PY S modifies the decoder output %' and broadcastst’

original messageX, while the eavesdropper without knowingIO D and E. We require the relay to ﬂ.my deche the source
the differencé cannot extractX from X’. The additional MessageX and the source to remain silent during the seconc
phase. We assume that and X' are of lengthn and are

information aboutX provided by the relay can improve the! d dently ch ¢ G . q debook
rate towards the intended destination without improving t ndependently chosen from a Gaussian random codebook
1 codewords. We also assume that each codeword is chos

with | pr ili nd thatl[X| = N =
1The eavesdropper cannot determine the physical chantelstwveen the th equal probability and 1 aE[ ] E[X} 0 and

legitimate nodes as long as the former is more than half ofwtheelength E[HX||2V” = E[HX/||2]/” = P. Thus the total transmission
away from the latter. power iS2P.

I. INTRODUCTION

ﬁ1 the first phase, S broadcasts the mess¥ge D and E.
In the second phase, the relay decodes the message traasmit
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The received signals at the destination that are originatethere the factoi /2 accounts for the two-phase transmission.

from the source and relay are, respectively, given by Similarly, the maximum rate at which E can reliably decode
the messagel is
Yoo = haX +Nu () J 1
Y;~d = h'r'Xm + Nr'd (2) Ce = 5 10g2 (1 + |hse|2P/O—T2L) (7)

whereh,; is the channel gain between the nadand nodej,
andN;; is white Gaussian noise with mean zero and varian
o2. 0OnceX'—X is known at the destination, it can be remove
from Y,.4 to get

(? cause the eavesdropper cannot utilize the modified nesse
ich is sent by the relay. Then, the instantaneous secres

Capacity between S and D is [14]

Y, = Yea—hpa(X' —X) ®3) Cs = max(Cy — Ce, 0) 8)

rd

hraX + Npg 4) Communication is secure if the instantaneous secrecy ci
pacity C; is higher than the target secrecy ratg(b/s/Hz). If

and X can be decoded based dfy; andY,. I :
We assume that the eavesdropper knows that the mess;ch(;;re< R, then security is compromised and secrecy outage o¢

is modified by the relay. However, without knowing the 8. The secrecy outage probability for the proposed sehen

differenceX’ — X, it has to discard the signal received fromcan be shown to be

the relayY,. = h,.X’ + N,. and decodeX based on the P,(R) = P(C,<R) 9)
signal received from the source only: o 1 (1 . M) 67(22,371)(7.{1*7;)
1/se = hseX + Nse (5) Yrd — Vsd Vsr

where h,. is the channel gain between the source and the « 1 B 1
eavesdropper and/,. is the noise. This is becausé. does T L T
not provide any information abouf unlessX’ — X is known. er Tt Tee D e d

The question is how to achieve the agreements on message +# (1 + M) e‘””‘”(éﬁ{ﬁ
modification secretly between the relay and the destination Yrd = Vsd Ysr
Only when two nodes share the same modification rule they [ 1 1 |
can achieve high secrecy rate. Our approach is based on X3 T L F 1 1 (10)
the uniqueness and reciprocity of wireless fading channel. R L

The reciprocity theory demonstrates that bidirectionaéleiss where v,y = Ellhea|?1P/02, Ya = El|hva?|P/02, Yse =
channel states should be identical between two transeeivgrlhse‘zug/gzl and~,, — HEH}LW‘Z]P/O'Q. Proof of (10) is
during the channel’'s coherence time [10]. We use this unqu vided in ,&lppendix A "

channel state as the inherent shared secret between tlge rela

and the destination for message modification and restora- o

tion. As long as the eavesdropper is more than half of tfe Direct Transmission

wavelength away from legitimate communicators, the chinne For the direct transmission (DT), within a transmissiort,slo
states he observed should be independent to the chanreel sta&é source transmits its encoded symbols directly to the
between the legitimate ones [11]. This means the eavesedropgestination using the available transmit power 20?. The
can never eavesdrop the sect8t — X shared between secrecy outage probability with the DT is given by [1]
legitimate communicators. Since the legitimate commubisa

R
do not exchange any information aboXit — X, our approach P,(R) = 1- Ysd exp (_2 - 1) (11)
provides a strong security. The uniqueness of the wireless Ysd + 2Byse 2%sd
channel between two locations has also been utilized \\phere the facto? in front of v, accounts for the total transmit
authenticating legitimate users [12]. power of2P.

IlIl. SECRECY OUTAGE PROBABILITY

In this section we derive the secrecy outage probabiIiE/' Decode-and-Forward
which provides the fraction of fading realizations for winihe ~ Like MF, decode-and-forward (DF) is also a two-phase
wireless channel cannot support a target secrecy rafe. ¢f Sscheme. The first phase is the same as in the MF scheme. Int
provides a security metric for the situation where the seuréecond phase, the relay decodes the information transimitte
and destination have no channel state information about e the source and re-encodes it using the same codeword

eavesdropper. the source to transmit the information to D. Thus the tota
transmission power i8P. The secrecy outage probability with
A. Modify-and-Forward the DF is given by [7]
The maximum rate at which the relay and the destination P(R) — a(Yre) — a(Vse)
can reliably decode the messageis given by [13] o(R) = Yre — Vse
1 sr272R "\ I'se h sey |s - h sey Ir
c, - min{ilo& (1+|hor PP/02). ! a(vse) (h(Vses Vsd) = P(Vses Yra))

(
(’Yre - 755)(’71‘(1 - ’st)
(
)

1 s-r2_2R re) (R(Yres Ysd) = R(Vres Vr
~ log, (1 + (‘h/sd|2 + |hrd|2)P/0'721)} (6) 7 a(yre) (M(Yre, Vsd) Vres Vi d))(].Z)
2 ('Yre - 'Yse)(’YTd — Vsd
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where
hzy) = Tor (13)
7 z(1 +7m‘/y) + ysr2728
22 9—2R _ q ”
) = — 14
o) = —pmew (-2 )

D. Cooperative Jamming

Various cooperative jamming (CJ) schemes that involve t
transmission of jamming signals from different nodes ha
been prqpo;ed [3_], [4], [6]. In this paper we considgr th 103 — i - = e
cooperative jamming scheme where, while S transmits, Average SNR between source and eavesdropper.y, , (d8)
relay transmits a jamming signal that is independent of the
source message with the purpose of confounding E. THig. 2. Secrecy outage probapility?o(R), versus average SNR between
jamming signal, white Gaussian noise, causes interferancezgggeva:d:%%‘aegd;‘:fpj”fgé(é?)’ R = 0.10/s/Hz, 75q = 1008, 7sr =
both D and E. The total transmission potés 2P as the ne e
source and relay transmits with powBr The secrecy outage
probability for the CJ is given by [3]

Secrecy Outage Probability, P (R)

such that the relay can decode the source message, then

92—k Yre can provide additional information to the destination, ethi
Py(R) = 1- P T increases the secrecy capacity. At sufficiently high, the
e (“ o WE) secrecy outage probability for DF and MF remains constan
9—K 1 B\ 2 because all other channel gains are assumed to be constan
ol Gt
YrdYre Vrd Tre
1 1 e’
XMH _Ml)g( “3)
Yrd VYre Vre

0

+ (Fa + ! b _ /3)
Yrd VTre

(P e

Secrecy Outage Probability, P (R)

where = (227 — 1)y, § = 27y, 7,4, and Q) = e
e Ey(x) whereEy(z) = u” e "du. ---
1(2) @)=/, o
1072 i i i i
(o] 10 20 30 40 50
E Numerlcal Results Average SNR between source and relay,y,, (dB)

Fig. 2 ShOWS_ the secre_cy OUt_age prObabIUfy(R), Versus Fig. 3. Secrecy outage probability?,(R), versus average SNR between
the average signal-to-noise ratio (SNR) between the sougg@rce and relayys, (dB); R = 0.1b/s/Hz, voq = 10dB, vsc = 10dB,

and the eavesdroppet,.. As expected the secrecy outagerd = 20dB, yre = 15dB.

probability increases with increasing,. because the rate

at which the eavesdropper can reliably decode the messagkig. 4 shows the secrecy outage probability(?), versus
increases as the channel condition between the source Hiritarget secrecy rat&. It can be seen that the improvement
itself improves. It can also be seen that the improvemettat MF provides over the traditional approaches is more
provided by MF over DF is more significant at lowet.. Significant when the target secrecy rdtes smaller. However,
This is because the eavesdropper relies sorely on the charihd? is above a threshold, DT provides the smallest secrec
between the source and eavesdropper in MF, while in DEtage probability, although the secrecy outage prokglii
the eavesdropper can rely on the channel between the relfagt rate region is unacceptably high. It can also be seen fro
and itself wheny,, is low. Similarly, in DT the eavesdropperFigs. 2-4 that MF can always provide a lower secrecy outag
relies sorely on the channel between the source and itself griobability than DF under any channel conditions and rates.
therefore the secrecy outage probability depends heavily o

Vse- IV. CONCLUSION

Fig. 3 shows the secrecy outage probabiliy(R), versus . .
the average SNR between the source and the relay,For We proposed a new physical layer technique that ca

DF and MF schemes, the relay has to decode the Sou%r'_‘gwance the security of cooperative relay communications
message in order to provide any additional information t e proposed approach modifies the decoded message at |

the destination. Therefore, ifs,. is low, the secrecy outagerelay according to the unique channel state _between th.? rele_
probability for DF and MF’isbf]igh beéause the relay cann d the destination such that the destination can utilize i

e 0 its advantage while the eavesdropper cannot. We derive
decode the source message. Howeverjfis high enough the secrecy outage probability in quasi-static fading clegn

2The total transmission power of CJ schemes in [4], [6]i3because each and com_par_ed Wif[h direct transmiSSionv dECOde'and'fQj’We_‘r
of three nodes (source, relay, and destination) transnitts power P. cooperative jamming under different system setups. Nwakri
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Fig. 4. Secrecy outage probabilit},(R) versus rateR (b/s/Hz); vsq =
10dB, vsr = 20dB, 7,4 = 20dB, vse = 10dB, v, = 15dB

results reveal that each scheme provides an advantage over

the others depending on the channel gains and secrecy rates, ’
although the proposed scheme can always provide a lower (
secrecy outage probability than decode-and-forward sehem
The proposed approach can provide a significant improvement
over other schemes when the relay can successfully decede th
source message.

27)
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Abstract—In this paper, we provide an improved lower bound
on the rate achieved by noisy network coding in arbitrary
Gaussian relay networks, whose gap to the cutset upper bound
depends on the network not only through the total number
of nodes but also through the degrees of freedom of the min
cut of the network. We illustrate that for many networks this
refined lower bound can lead to a better approximation of the
capacity. The improvement is based on a judicious choice of the
quantization resolutions at the relays.

I. INTRODUCTION

Characterizing the capacity of Gaussian relay networks has
been of interest for long time. Recently, significant progress
has been made in [1], [2], [3], [4] which show that compress-
forward based strategies (such as noisy network coding) can
achieve the capacity of any Gaussian relay network within a
gap that is independent of the topology of the network, the
SNR and the channel coefficients. However, the gap depends
linearly on the number of nodes in the network. This limits the
applicability of these results to small networks with few relays.

A natural question is whether the gap to capacity can be
made smaller than linear in the number of nodes. In this paper,
we provide an improved lower bound on the rate achieved by
noisy network coding in arbitrary Gaussian relay networks,
which for many networks can lead to an approximation
gap which is significantly better than the linear gap in [1],
[2], [3], [4]. The improvement is based on the observation
that in the compress-and-forward based strategies (such as
quantize-map-and-forward in [1] and noisy network coding in
[2]) there is a fundamental trade-off involved in the choice of
the quantization (or compression) resolutions at the relays. If
relays quantize their received signals finely, they introduce less
quantization noise to the communication. If they quantize more
coarsely however, there is a smaller number of quantization
indices that need to be communicated to the destination on
top of the desired message. This trade-off is not immediately
evident from the development of these strategies in [1] and [2],
since the employed decoder does not require the quantization
indices of the relays to be uniquely decoded. Therefore it is not
clear if the quantization indices are indeed decoded at, and thus
communicated to the destination, and therefore whether there
is a penalty involved in communicating these indices. Based
on the work of [5], we argue that in the optimal distribution
for the quantization indices, the quantization indices of all
relays can be uniquely decoded at the destination. Moreover,
an optimal choice of the quantization indices requires much
coarser quantization than the noise level. We then apply the

new lower bound to a class of layered networks with fixed
channel coefficients of unit magnitude and arbitrary phases
(i.e. each channel coefficient is of the form e’? for some
arbitrary 6 € [0, 27]) and show that it leads to a capacity gap
that is logarithmic in the number of nodes rather than linear.

A similar insight was used earlier in [6], [7] and [8] to
obtain improved capacity approximations for other classes of
Gaussian relay networks. [6] and [7] provide an approximation
for the capacity of the diamond network which is logarithmic
in the number of nodes, while [8] considers a layered
network with i.i.d. fast-fading links and shows that the gap to
capacity increases logarithmically in the depth of the network.
However, in both settings there are other strategies which
can yield similar performance. For the diamond network,
[6] shows that a partial-decode-and-forward strategy also
achieves the logarithmic dependence on the number of nodes,
and for the fast fading layered network, ergodic computation-
alignment over independent realizations of the fading
distribution [9] achieves a gap that does not increase with the
number of layers. (Note that both these alternative schemes
require increased CSI at the relays and the source nodes.)
However, for the layered network with fixed channel gains
considered in this paper, these schemes are not applicable
and we know of no scheme other than compress-forward that
can give a constant gap capacity approximation.

II. GAP TO CAPACITY WITH NOISY NETWORK CODING

In this section, we discuss the elements of the gap between
the rate achieved by noisy network coding (NNC) and the
cutset-upper bound and identify a trade-off between different
elements of the gap. Our main result in the next section builds
on the understanding of this trade-off.

Consider an arbitrary discrete memoryless network with a
set of nodes A where a source node s wants to communicate
to a destination node d with the help of the remaining nodes
acting as relays. NNC can achieve a communication rate [2,
Theorem 1]:!

Xoo) — I(Yo; YolXn, Yoo) (D)

in I(Xq; Yo
moin (Xa; Yo

for any distribution of the form [[, oy p(zr)p(Yk|yk, Tx);
where for brevity of expressions of, Yqe is assumed to
include Yy. Comparing this with the information-theoretic

'In this paper, we need to consider only s — d cuts, which means s €
Q,d € Q°. Hence we do not state this explicitly.
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cutset upper bound on the capacity of the network given by
[10, Theorem 15.10.1]

C = s;ﬁ glg% I(Xq; Yae | Xac) )

we observe the following differences. First, while the
maximization in (2) is over all possible input distributions,
only independent input distributions are admissible in (1).
The gap corresponds to a potential beamforming gain that
is allowed in the upper bound but not exploited by NNC.
Second, the first term in (1) is similar to (2) but with Yge
in (2) replaced by Y'Qc in (1). The difference corresponds
to a rate loss due to the quantization noise introduced by
the relays. Third, there is the extra term I(Yo; Yo X, Yor)
reducing the rate in (1). One way to potentially interpret this
term would be as the rate penalty for communicating the
quantized (compressed) observations Yg to the destination on
top of the desired message. Note that this is the rate required
to describe the observations Yq, at the resolution of YQ to a
decoder that already knows (or has decoded) X, Yae.
However, it is not completely clear if this interpretation is
precise because the non-unique decoder employed by NNC
does not require the quantization indices to be explicitly
decoded. The non-unique decoder of NNC searches for the
unique source codeword that is jointly typical with a (not
necessarily unique) set of quantization indices at the relays and
the received signal at the destination. The following example
in Figure (1) illustrates that in certain cases the decoder can
indeed recover the transmitted message even if it can not
uniquely recover the quantization index of the relay.?

r

ha
Fig. 1: Example

Consider the classical relay channel with a very weak link
from the relay to the destination. Clearly, as long as the source
uses a codebook of rate less than the capacity of the direct link,
no matter what the operation at the relay is, the destination
can always decode the source message by performing a joint
typicality test between its received signal and the source
codebook (which is subsumed by the non-unique typicality
test of NNC). In particular, if the relay quantizes too finely,
then there is no way for the destination to recover the relay’s
quantization index, even though the source message can still
be recovered.

On the other hand, this example reveals the following
strange property of the expression in (1). While the above
discussion reveals that in the setup of Fig. 1, the rate achieved
by NNC is equal to the capacity of the direct link independent
of the relay’s operation (i.e. what Y, is), the rate in (1) is
decreasing with increasing resolution for the quantization at
the relay (due to the subtractive term [ (YQ;YQ|X N,ch)).

2Even though we focus on the extremal case where the » — d link is zero,
the discussion extends to the case where this link is sufficiently weak.

This suggests a more careful analysis of the rate achieved by
NNC which leads to the following improved rate:

j{}llgj\(/&lj{l/l I(X; Yoo | Xao) — I(Ya; Yol X, Yao).  (3)

Here only a subset M C A of the relays is considered
in the non-unique typicality decoding, while the other relay
transmissions are treated as noise.

It has been shown in [5] that if M™ is the subset that
maximizes (3) for a given [];.\ p(x:)p(¥ilys, x:), then the
quantization indices of the relays in M* can be uniquely
decoded at the destination, while the quantization indices of
the relays in A/ \ M* cannot be decoded and in fact, it is
optimal to treat the transmissions from these relays as noise.
Since the transmissions from A\ M* are treated as noise in
(3), the rate can be further improved if these relays are shut
down. Hence, we can conclude that in the optimal distribution
[Licn 2(xi)p(Yilyi, x:), some relays can be off (not utilized
or equivalently always quantizing their received signals to
zero) and some relays can be active, but the quantization
indices of all relays can be uniquely decoded at the destination.
Thus, I (YQ;Y/Q‘X M,f/gc) can indeed be interpreted as the
associated rate penalty for communicating these indices.

The above discussion reveals that NNC communicates not
only the source message but also the quantization indices to the
destination; and while making quantizations finer introduces
less quantization noise in the communication, it leads to a
larger rate penalty for communicating the quantization indices.
This tradeoff is made explicit in the following section.

III. MAIN RESULT

Consider a Gaussian relay network where a source node s
communicates to a destination node d with the help of a set
of relay nodes. The signal received by node i is given by

Y, =Y HyX;+Z
J#i
where H;; is the N; x M; channel matrix from node j
equipped with M transmit antennas to node 7 equipped with
N, receive antennas. We assume that each node is subject to an
average power constraint P per antenna and Z; ~ CN (0, o21),
independent across time and across different receive antennas.
Let N be the total number of receive antennas and M be the
total number of transmit antennas in the network. Also, define

. P
C&zd(ﬂ) £ log det (I + WHQ%Q“HSTZ—>96> ’

which is the mutual information across the cut €2 if the channel
input distribution at node j is i.i.d. CA (0, PI) and the noise
is ii.d. CN(0,(Q + 1)o?). The matrix Ho_,qc denotes the
induced MIMO matrix from {2 to Q¢ and log denotes the
natural logarithm. The main result of this paper is given in
the following theorem.

Theorem 1. The rate achieved by noisy network coding in
this network can be lower bounded by

_ M\ N
C >C —djlog (1+—*) — — —dglog(Q + 1),
ds Q
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for any non-negative Q where C'is the cutset upper bound on
the capacity of the network given in (2) and dg, is the degrees-
of-freedom (DOF) of the MIMO channel corresponding to the

cut Qf, that minimizes C’ad(ﬂ) denoted succinctly as

di, = DOF (arg mg%n C&,Zd(ﬂ)> .

The proof of Theorem 1 is presented in Section IV.

Remark 1. The result can be extended to the case of multiple
multicast, i.e. when multiple sources are multicasting their
information to a common group of destination nodes.

Note that () in the theorem is a free parameter that can be
optimized for a given network to minimize the gap between the
achieved rate and the cutset upper bound. Qo2 corresponds to
the variance of the quantization noise introduced at the relays;
larger () corresponds to coarser quantization. In previous
works [1], [2], @ is chosen to be constant independent of
the number of nodes (or antennas) N (i.e. Q ~ 1 and the
quantization noise Qo? is of the order of the Gaussian noise
variance o2). This results in an overall gap that is linear in
N. Note that both djj and d, can be trivially upper bounded
by N. However, in many cases, the min cut of the network
can have much smaller DOF than M and N and in such cases
allowing @ to depend on IV can result in a much smaller gap.

For example, in the diamond network with single antenna
at each node it is clear a priori that any cut of the network
has at most two degrees of freedom, regardless of the number
of relays, and therefore d, < 2 for any . It can be seen
immediately from the above theorem that choosing ) = N
in this case results in a gap logarithmic in N [6], [7], which
compares favorably with a gap that is linear in N. Similarly,
for the fast-fading layered network with K single antenna
nodes per layer considered in [8], it is the case that df;, < K
for any Q. If there are D layers in the network so that
N = M = KD, the above expression tells us that choosing
(@ to be proportional to D gives a gap that is logarithmic in D
instead of linear in D. In Section V, we demonstrate another
setting in which applying Theorem 1 with ) increasing with
the number of layers in the network allows us to obtain an
improved gap. This demonstrates that the rule of thumb in the
current literature to quantize received signals at the noise level
(Q =~ 1) can be highly suboptimal.

IV. PROOF OF THEOREM 1

We know that the rate in (1) is achievable in the Gaussian
network for any ], »(2x)p(Uk|yk, xr) that satisfies the
power constraint. We choose the channel input vector at each
node j as X; ~ CN (0, PI) and Y}, for each receive antenna
in the network is chosen such that

Yy = Yi + Z;, where Z;, ~ CN(0,Q0?),

independent of everything else.
Consider the achievable rate exHression in (1). We first
show that maxacy I (Yo; Yo|Xar, Yoe) < g This follows

on similar lines as [8, Lemma 1].
I(Yo; YolXar, Yor) < h(YalXx) — h(Yo|Ya, Xy)
1 N
— (e (14 ) < 3 @
JEQ
We now lower bound the first term in (1). Let sz denote
arg min C'ég'i‘d' (€2). Then,

min I(Xeo; Yo |Xae) = min CE(Q) = ()

(@ .
> Cy"h(Qg) — di log(Q +1)
> Oyt () — diy log(Q + 1)

(b) M
> H}?/XI(XQ;;Y(QW | X(az)e) — dg log (1 + dﬁ) —dglog(Q +1)
0

M
> max m&nI(XQ; Yoo | Xqc) — dj log (1 + CTS) —dglog(Q +1)
al * M *
=C —djlog <1+d7> —dglog(Q + 1), 5)
0
where
(a) is justified by the following:

P
J— — * * o3 T
= log det (I—I— RS HQQA»(QQ)LH aﬁ(ﬂa)c>

P
T
> log det (I+ EHQZ)%(Q&)CHQZ?%(QZ?)C)
N —dglog(Q +1)
= OGP (Qg) — dHlog(Q +1),  and

(b) follows from [1, Lemma 6.6] equation (144).
The proof of Theorem 1 follows from (4) and (5). |

Remark 2. If there exists a class of cuts A such that
s i, . vidld.
Q) > Q) —

for all Q, where k is a constant, then the gap in Theorem 1
can be possibly improved to

~ M N -
dlog (1 + d’*) +5 +d5log(Q+1) +x,  (6)
0

where
Tx AL DOF | : . i.4.d. Q .
dg 0] (arg Inin Cs " (Q) 7

This can be seen by modifying the proof of the lower bound
(5) slightly as:

in I(Xa; Yoe|Xae) = min C5*%(Q
min I(Xo; Yo- | Xoe) = min C5"(82)
R CaT e
2 min Gy (Q) —dg log(Q@ +1) — &

. M -
>C —djlog <Hd*) —dglog(Q +1) — k.
0
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Fig. 2: The cut §2 depicted here ¢ A since the crossing links
come from 4 layers, and 4 > K — 1 = 2.

V. LAYERED NETWORK WITH MULTIPLE RELAYS

In this section, we apply Theorem 1 to obtain an improved
approximation for the capacity of a layered network in which
a source node with K transmit antennas communicates to a
destination node with K receive antennas over D — 1 layers of
relays each containing K single-antenna nodes (see Figure 2).
Since the network is layered, for 0 < i < D — 1, the received
signal at nodes in V;y; (or antennas if + = D — 1) depends
only on the transmit signals of nodes in V; and at time ¢ is
given by

YV&,+1 [ﬂ = HV7,*>V1,+1XV¢ [ﬂ + ZV1+1 [t]v

where Yy, and Xy, are vectors containing the received
and transmitted signals at nodes in V;y; and V; respectively;
and Zy, , ~ CN(0,0%I). The (k,l)’th entry of the matrix
Hy, ,y,., denotes the channel coefficient from I’th relay in
V; to k’th relay in V;4; at time ¢ and we assume that it is
an arbitrary fixed complex number with unit magnitude, i.e.,
of the form e7%t for some 0y, € [0,2n]. The phases 6, are
arbitrary for different links. All transmitting nodes are subject
to an average power constraint P. We can assume that Yy, =0
and X; = 0. Note that N = M = K D. We have the following
lower bound on the capacity C' of this network.

Theorem 2. For K > 2 and D > 2,

C>C—-2K?logD - KlogK — K. ®)

This theorem shows that for a fixed number of nodes K per
layer, the gap to capacity grows only logarithmically with the
number of layers D. We note that the constants in the gap can
be carefully optimized for, however to maintain brevity we do
not worry about getting the best constants.

VI. PROOF OF THEOREM 2

We first show that for any @, ming C§*% () can be
approximated upto an additive constant by restricting the
minimization to cuts in a particular class. Then, Theorem 2
follows immediately from Remark 2.

For convenience, we call the K2 entries in Hy, .y, , as the
links in layer 4. With this convention in mind, let A denote
the set of s — d cuts  for which the links crossing from (2
to 2° come from at most K — 1 layers, e.g. see Figure 2.

Lemma 1. We have

i () < min CE4 Q) < min Clid ().
sr?éﬂ% (Q)—KlogK < ngnCQ Q) < srznelBtCQ Q)

Proof: The upper bound is immediate. The lower bound
can be proved as follows. For any cut Q ¢ A,

D
Céél'd'(Q) = Z%%Mo (Hw,ne)=vqan00)

i=1

(@) P
ZKlog 1+W

®

> CH (Vo) — Klog K

> : szd Q) — Klog K
> min O™ () og K,

where (a) follows since for any cut ¢ A, at least K terms
in the summation are non-zero, each lower-bounded by the
point-to-point AWGN capacity; and (b) follows by Lemma 2.
This concludes the proof of the lemma. |

Lemma 2. We have

C& (Vo) < Klog (1 + ) + Klog K.

_r
(Q+1)o?

o P
Proof: og;-d(vo) = logdet (I + WHVU—)VI H\ton)

(@)

a P
< log(14+ ——"—_h;h!
- Zg( CESEE )

< Klog<1+ )—I—KlogK,

P
(@Q+1)o?
where (a) follows by using Hadamard’s inequality; h; denotes
the ith row of Hy,_,y,. |

The desired result (8) follows from (6) by setting Q@ = D—1
and noting that the DOF (7) of the MIMO channel created by
any cut in A is trivially upper-bounded by K?2. |
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Abstract—We study the sequential coding of a Markov source Problems involving sequential coding and compression
process under error propagation and decoding delay consttats. have been studied from many different perspectives in tae i
The source sequence at each time is sampled i.i.d. along the ature. Our present work builds upon the problem of sequentia
spatial dimension and from a first order Markov process along coding of correlated sources introduced by Viswanathan ant
the temporal dimension. The channel can introduce a single Berger [3]. In this setup, a set of correlated sources must b
erasure burst of maximum length B starting at any arbitrary sequentially Compressed by the encoder, whereas the decod

time. The encoder must operate in a causal fashion, whereabd at each stage is required to reconstruct the correspondin
decoder must losslessly reconstruct each source sequencéhw g q P

a delay of T, except those sequences that occur in a window of SOUrce sequence, given all the encoder outputs up to that tim
length B + W following the erasure burst. We study the minimum It is noted in [3] that the correlated source sequences catemo

achievable compression rate as a function oB, W and 7. When ~ consecutive video frames and each stage at the decodermaps
specialized toT = 0, we recover our earlier results for the case  sequential reconstruction of a particular source framevéter

of zero decoding delay. We also treat an extension where the the setup considered in [3] and followup works assumes tha
channel introduces multiple erasure bursts, separated by guard  the channel is an ideal bit-pipe and does not consider tleeteff
interval of a certain minimum duration. Finally we present a  of packet losses over the channel. In this work we considel

speplal source_model_ for which an exact characterization ofthe such a setup when the channel introduces burst erasures.
minimum rate is obtained.

I. INTRODUCTION Il. PROBLEM STATEMENT

There exists a fundamental tradeoff between the compres- We consider a semi-infinite stationary vector source proces
sion rate and error propagation at the receiver in any videdsi }i=o Whose symbols (defined over some finite alphafjet
compression scheme. At one extreme stands the predicti@® drawn independently across the spatial dimension anu fr
coding that attains the minimum possible rate when the adlann first-order Markov chain across the temporal dimension:
is an ideal bit pipe. However it is very sensitive to packet
losses. At the other extreme is the still image coding that
is robust to the channel losses but requires high transonissi - .
rates. Many practical systems involve a combination ofghes = Hpsﬁsv(si’ﬂs’i*l’j)’ Vi 2 0. @)
schemes to strike a balance between the compression rate and J=1

error propagation. We assume that the underlying random varialfle$ consti-
In earlier works [1], [2] we introduced the information tute a time-invariant, stationary and a first-order Markbain

theoretic framework to characterize the tradeoff betweeore With @& common marginal distribution denoted by(-). We
propagation and compression rate. We studied the sequentf&mark that the results may also generalize when the sourc
transmission of a spatially i.i.d. temporally first orderiday ~ Sequence is a stationary process (not necessarily i.irdthei
source process, over a burst erasure channel model that iaPatial dimension. The sequensg,, as a synchronization
troduces a single erasure burst of maximum lengthThe frame, is revealed to both the encoder and decoder before tr

encoder must operate in a causal fashion, whereas the decodart of the communication.

must reconstruct each source sequence \(vith zero d_elay iN" A rate-R causal encoder maps the sequefije},; >, to an
a lossless fashion. However the decoder is not required chdexﬁ € [1,27%] according to some function
reconstruct those source sequences that belong to a window
of length B + W following the start of an erasure burst. We fi = F; (55, .y 8, 8™1) 2)
studied the minimum required compression rate in this setup

and defined it to be thete-recovery functionin this work we  for each: > 0. The channel introduces an erasure burst of size
consider the case when the decoder must recover each soutBei.e. for some particulaf > 0, it introduces an erasure burst
sequence within a delay @f in a lossless fashion. Our results such thaty; = x fori € {j,j+1,...,5 + B —1} andg; = f;
reduce to the results of [1, Theorem 1] for the cd5se- 0. otherwise.

n__.n n _.n n _.n
Pr( s =s] | sy =501, S;"0=8i"2,...)

This work was supported by a Natural Science Engineeringe&eh Upon observing _the S_unenc‘{gi}izo the delay-
Council (NSERC) discovery grant and the Canada ResearchisQftagram.  constrained decoder is required to perfectly recover al th
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source sequences using decoding functions
3

fori ¢ {j,...,7 + B+ W — 1}, wherej denotes the time
at which the erasure burst starts. It is however not requoed
produce the source sequences in the window of leftythiv’
following the start of an erasure burst.

57 =Gi(s"1,90,91,- -, GitT)-

A rate R(B,W,T) is feasible if there exists a sequence
of encoding and decoding functions and a sequencé¢hat
approaches zero as — oo such that,Pr(s? # §") < €,
forall i ¢ {j,...j + B+ W — 1}. We seek the minimum
feasible rateR(B, W, T), which we define to be thbssless
rate-recovenfunction fordelay-constrainedecoder. For com-
pactness throughout the paper, we refer to this functioplgim
asrate-recoveryfunction.

IIl. M AIN RESULTS

In this paper we consider the case where the chann%l

introduces an isolated erasure burst of length u@tduring
the transmission duration. The following theorem charazs
the upper and lower bounds on rate-recovery function

Theorem 1. The rate-recovery function of discrete Markov
sources with delay-constrained decoders satisfies

R™(B,W,T) < R(B,W,T) < R*(B,W,T)

where
_ 1
R™(B,W.T) = H(si|s0) + y— 71 (s53 sp4w1ls0)
(4)
1
R+(B, WT) = H(51|SO) + m[(53;53+1|50) (5)

O

********** 1

I
Ss ‘ Sg ‘510 511‘512 513‘514‘515‘

LI

1T

fiz fla fis)

Fig. 1. Periodic burst erasure channel considered in prbeboverse.

Corollary 1. The upper bound ir{5) can also be expressed
as

H(SB+1,5B+42,- - > SB+W+T+1|50)

RY(B,W,T) = : 6
(B,W,T) A (6)
for the first order Markov source process. O

Note that the upper and lower bounds of Theorem 1
oincide for some special cases which establishes theeksssl|
rate-recovery function.

— WhenW =0, i.e. the decoder is interested in recovering all
the source sequences with non-erased channel outputs witt
delay of T, the lossless rate-recovery is as follows.

R(B,W =0,T) = H(s1|sp) +
1
O T+1

()
(8)

1(sp;sB+1]50)

1
T+1

H(spy1,5B+42;---,SB+T+1|%)

— When each or both of the variabl&8 andT become very
large, i.e.W or T — oo, the lossless rate-recovery function
reduces to the rate required for predictive coding.

Note also that Theorem 1 can be viewed as a generalizatic
of the zero-delay results of [1, Theorem 1] as the uppe
and lower bounds wheff’ = 0 reduce to the results of [1,
Theorem 1].

It can be observed from Theorem 1 that both the upper
and lower bounds consists of an entropy term plus another

mutual information term inversely scaled by + 7 +1). We
can interpret the terni/ (s;|sp) as the amount of uncertainty

IV. PROOF OFTHEOREM1

in s; when the past sources are perfectly known. This term ié\. Achievability

equivalent to the rate associated with ideal predictiveérapth

absence of any erasures. The second term in both (4) and (5) is

the additional penalty that arises due to the recovery cainst
following an erasure burst. Note that the mutual informmatio
term associated with the lower bound 1$sg; sp+w+1]%)
while that in the upper bound Esg; sp11|s0). Intuitively this
difference arises because in the lower bound we only consid
the reconstruction oé3 ,,, following an erasure bust in
[1, B] while, as explained below in Corollary 1 the upper

The achievability of the rate expression (5) is based or
random binning technique. A Slepian-Wolf codebook is con-
structed by partitioning the space of all typical sequence
sP € T"(s) into 2"F bins and the bin indexX; is transmitted
at time:. The decoder is required to outpijt in one of two

vays. If it has access tgf' ; then it finds a sequence jointly

typical with 57 , in the bin index off;. This succeeds with
high probability if R > H(s1]sp) which is clearly satisfied

bound involves a binning based scheme that reconstructs dit -

sequencessy ..., Sp ) attimet =B+ W +T + 1.

Next suppose that there is an erasure burst spannir

The proof of Theorem 1 is discussed in Sec. IV. The lowert € {J = B,....j — 1}-WTh7? receiver has access 4p 5,
bound is based on the idea of considering a periodic bureind needs to uséfl?*" ™" to recovers?, . It simulta-

erasure channel rather than single burst erasure chanmel. Tneously attempts to decode all

af,.. ST using

upper bound is based on random-binning coding scheme. Thg, ..., f; w7 ands ;. This succeeds ifW +7'+1)R >

following proposition provides an alternative expression

H(sj,...,sj+w+r|sj—s—1) Which in turn holds via (5) ac-

the achievable rate. The proof is omitted due to the lack otording to Corollary 1. This completes the proof of the

space.

achievability.
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B. Converse Using this, the entropy term in (13) can be lower bounded a
follows.
To derive the lower bound on rate-recovery, we consider
a periodic erasure channel with peridti= B + W + T + H([F13, [F17° -, [FI3 0N 1) 12(8121) (15)

o
1. The intuition behind considering periodic erasure channe 115 710 5N 0y _
is as follows. Because of the first-order Markov property of > H(ss, [f]3 [fl7 v [f]5(N71>+2|[r5]71) nen (16)
the source process, whenever the decoder recovers thessourc = nH (ss|so) + H([f]3, [f13°,.. ., [f}gﬁv,1>+2|[s}g1,53)
sequence at a particular time, sgyit is expected to become ~ ne, (17)
oblivious to the channel erasures before titnét this point
if a new erasure burst is introduced, the decoder can treahere (16) follows from (14) and the first term in (17) follows
it is as the only erasure burst during the whole transmissioffom the properties of the source sequences.
period. As a result, one simple way to lower bound the rate-
recovery function is consideringy periods of the periodic
erasure channels as follows. To keep the notation simple
only focus on the simple example &f =W =1 andT = 2

Step 2: In this step, based on the fact that conditioning
reduces the entropy, we further lower bound the second ter
Wi (17) by revealing the erased codewords as follows.

where the period” = 5. Generalization to any3, 7 and W H([f13, [F17% -, [FI3 0N 1) 22|12 1, 83) >
is analogous and will be treated in the full paper. The péciod H(F, [FL (72N, ]! 71) (18)
erasure channel model is illustrated in Fig. 1. Note thatahe 22 7o sy —1) 4211811583, 7o

period4 out of 5 channel inputs are observed by the decoder After revealing the erased codewords of the first period, th

while 3 source sequences are recovered. In particular in theource sequences, can be recovered. Thus the following

k-th period,k > 0, 4 channel inputs{[f]2; 75} are observed inequality holds.

and3 source sequence$s|2; |, ss,43} are recovered Thus

we can write H(so|[f]5,5-1) < ey (19)
5k 5 Now the entropy term in (18) can be written as.
4nR 2 H([f515) 2 H(sBioy ssnaslssi—z) — (9) TR 1 )
= 2nH (s1|s9) + nH (s3]sp) (20) H([f]3, [f]77, - [Fl5 (v 1y +2ll8] 1, 83, [Flo) (20)
> H(sy, [f]3, [F13%, ... [FI30L ! flo) — nen
and the rate has to satisfy 2 H(sz, [fl2, [fl77 - - [Fl5(v—1)2ll8] 21,83, [lo) nEZl)

> H(sz|s1,83)+

H([fI3, 112 [FB0v— 1) 2 8121, [F5) —men (22)
Note that the lower bound on rate in (11) is weaker than (4) > 2nH(s|sp) — nH (s3|s1)

since 5 5
X +H(F3 1, [FI30 1ol 8120, [F15) — nen (23)
R™(B,W,T) = H(s1|s0) + ZI(Sl; s3|s0) Note that (21) follows from (19).

R > H(si|s0) + i (H(ss|so) — 2H(s1]s0)) (11

Step 3: In this step we exploit the fact that the source
sequences in the intervgl, 5] can also be recovered according
to the following inequality.

= Hisilso) + 1 (H(sslso) — H(s2ls)

> H(S1|S()) + i (H(53|50) - H(Sl, 52‘50))

1 H([S}i'[f]g, f77 5_1) S 2nen (24)
= Hisilso) + 4 (H (ssls0) = 2H s1%0)) - (12) (24) can be used to lower bound the last entropy term in (22
as follows.
We are able to improve on the simple lower bound in (11) 5 1110 [£115 NP 3 3
to derive the lower bound on rate-recovery function in (4). H([f]4, [f]7, [fli2: - - [(Flsv—1)12118]21, [£]0) (25)
To this end, we consideN periods of the periodic erasure > H([sl3, [F13, [f1:", [F115, -, [FI3(N_1)1l[s]21, [F15)
channel explained before. Raeshould satisfy the following — %ne, (26)
constraint. 5
= H([s]i]s3)+
ANnR > H(F3, (R, 13, - (A3 1y ) H(FR, 715, IFI3 1 all81200 [F19) — 206, (27)
> H([f]g [f}%ov [f]%gv RN [f]gé\][\f—l)-m”s}(il) (13) = 2nH(51‘50)+

10 15 5N 5 5
where (13) follows from the fact that conditioning redudes t H({f177 [F1z - [Fls(v -1y 2l l81%4, [Flo) — 2nen (28)
entropy. We provide the proof of the lower bound in four steps where (26) follows from (24).

Step 1:First consider the first period in Fig. 1. According Step 4: The last step is considering all th¥ periods
to Fano's inequality and based on the fact tegtcan be simultaneously and repeatedly exploiting the same methrods

recovered from{fy, [f]3,s_1}, we can write steps1 to 3. In particular by combining (17), (23) and (28)
(salfo [F13.5-1) azy "
H S3(70, 3,571 < ne, 14
4NnR > H([f]3, [f1;°, [f]15, . ., mgé\zfv71>+2|[51g1) (29)
!Bold fonts indicate ther-length source sequences, isg.2 s?. > 4nH (s1]s0) + nl(s1;s3]%)
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+H([F17°, 1135, - [F130N _1y 4o l[8121, [F5) — 4ney, upper bound is based on random binning scheme and reve:
(30) that if T > L — W — 1 there is no benefit of delay more than
. . . L —W — 1. These bounds indicate that restricting the decode
By (IV — 1) times repeating the same methods used in stepg, perform within the delay of. — W — 1 may not affect
1-3 for (N — 1) periods and leaving the entropy terms of the capacity.

N-tfhl{oeriod, the entropy term in (30) can be lower boundeds. " piagonally Correlated Deterministic Sources
as follows.
As stated so far, the upper and lower bounds of Theorem

ANnR > H([f]3, [F13% [f113, .-, [F13{N_1)42ls1%1)  (31)  do not coincide in general. A natural question arises as t
> dn(N — 1) H (s1]s0) + n(N — 1)I(s1; s3|s0) whether the binning based scheme is always optimal in th
SN B(N—1) streaming setup or whether it can be improved. Clearly on

+ H([fl5(n_1)42l8127 ) — 4N — Den (32)  feature of the binning scheme is that it forces siraultaneous

recovery of all the sources in the recovery window whose
bin indices are used by the decoder. We show that such
simultaneous recovery within a specific delay in general is
This completes the proof of the lower bound for this suboptimal at least for a class of sources. In fact for oucispe

example. The proof of general case is similar and is omittedlass of sources, the lower bound is tight and the binningdbas
due to the lack of space. upper bound is loose. This counterexample shows that tke ra

V. ADDITIONAL RESULTS recovery function does not coincide with the binning basec
upper bound in general.

In this section we provide two additional results. The psoof . . N
are omitted here. P P Definition 1. (Diagonally Correlated Deterministic Sources)

The alphabet of aliagonally correlated deterministic source

A. Rate-Recovery for Sliding-Window Burst Erasure Channetonsists ofK + 1 sub-symbols i.e.,
In order to investigate the effect of channels with multiple e ]

erasures, we consider the sliding-window burst erasurereia 8i = (i, 8iK) € 8o X 81 X ... x Sk, (35)
model. In this model the channel can introduce multiplewhere eachS; = {0,1}" is a binary sequence. Suppose
erasure bursts each of length upRoduring the transmission that the sub-sequendg; o}:>o is an i.i.d. sequence sampled
period, however there is a guaranteed guard interval oftteng uniformly overS, and for1 < j < K, the sub-symbd; ; is
at leastL. between each consecutive erasure bursts. The restlinear deterministic functiohofs;_; ;1 i.e.,
of the set up is similar to single erasure case. Note that in T .
our settingl > W, i.e. the guard between the erasures hasto Si.d N Rij=1-Si-14-1, I<js k. (36)
be larger than the waiting non-recovery period. The foltayi for fixed matricesR: 9, Ra,1 ..., Rk k-1 each of full row-
theorem characterizes the upper and lower bounds on ratéank i.e.,rank(R; ;—1) = N;.

recovery function for sliding-window burst erasure chdnne )
model denoted a&ye(B, W, T, L). For such a class of sources we establish that the lowe

. o . bound in Theorem 1 is tight and the binning based scheme
Theorem 2. The rate-recovery function for sliding-window gyp-gptimal.

burst erasure channel satisfies

Finally by dividing (32) by4Nn and takingn — oo and
thereafterN — oo we recover (4).

Proposition 1. For the class of Diagonally Correlated Deter-

Rye(B,W,L,T) < Rve(B,W,T, L) < Rye(B,W, L,T) ministic Sources in Def. 1 the rate-recovery function isoals
where given by:
_ R(B,W,T) = R~ (B,W,T)

Rye(B,W,L,T) )
1 = H(s1|s0) + =—=————1I(sB;SB+w+1/80) (37)

£ H(s|so) + I(sB;s so) (33 W4+T+1 ’

(s1l5) min{L, T+ W + 1} (spi sp+w1s0) (33) ! min{[K—-W|T,B}

Ryje(B, W, L,T) = No+ —— Nw k. 38

. 1 T WHT+1 ; Wk (38)

£ H(s1|s0) + (34) =

- I(sB;sB+1ls0)
LT+W+1 . . .
min{L, T+ W+ 1} Our coding scheme exploits the special structure of suc

U0 sources and achieves a rate that is strictly lower than th
binning based scheme.
It can be observed from Theorem 2 that oK L—W -1, REFERENCES
the results of Theorem 1 for rate-recovery funct_io_n of s’mgl (1] F. Etezadi, A Khis, and M. Trot, “Zero-delay sequiaht
burst erasure channel model also hold for the sliding-windo transmission of markov sources over burst erasure chahnels
burst erasure model. The main intuition behind this fact is To Appear, IEEE Trans. on Info. Theory. available at
that as soon as the decoder recovers the source sequences athttp://www.comm.utoronto.ca/akhisti/eks.pdf.
a specific time, because of the Markov property of the sourcé&] A. Khisti, F. Etezadi, and M. Trott, “Real-time coding ofarkov sources
model, it becomes oblivious to the erasure bursts happened i  Over erasure channels: When is binning optimal” Inteonali Zurich
. . Seminar on Communications, 2012.

the past. Thus it treats the new burst erasure as a single buLg. i " 4T B .S iial coding of elated .,
erasure as if there has been no previous erasures. On tie ot 2 EEE Trars, it T'he%;gysgll 26 mo 1 pc; 236 246 jasc’z‘ggg‘?"
hand whenl" > L — W — 1 our lower and upper bounds in
Theorem 2 does not depend on the delay parani€teFhe 2All multiplication is over the binary field.
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Abstract—This work investigates the information loss in a
decimation system, i.e., in a downsampler preceded by an anti-
aliasing filter. It is shown that, without a specific signal model in
mind, the anti-aliasing filter cannot reduce information loss, while
for a simple signal-plus-noise model it can. For the Gaussian
case, the optimal anti-aliasing filter is shown to coincide with the
one obtained from energetic considerations. For a non-Gaussian
signal corrupted by Gaussian noise, the Gaussian assumption
yields an upper bound on the information loss, suggesting filter
design principles based on second-order statistics.

I. INTRODUCTION

Multi-rate systems are ubiquitously used in digital systems
to increase (upsample) or decrease (downsample) the rate at
which a signal is processed. Especially downsampling is a
critical operation since it can introduce aliasing, like sampling,
and thus can cause information loss. Standard textbooks on
signal processing deal with this issue by recommending an
anti-aliasing filter prior to downsampling — resulting in a
cascade which is commonly known as a decimator [1, Ch. 4.6].
In these books, this anti-aliasing filter is usually an ideal low-
pass filter with a cut-off frequency of 7/M, for an M-fold
decimation system (cf. Fig. 1). Unser showed that this choice
is optimal in terms of the mean-squared reconstruction error
(MSE) only if the input process is such that the passband
portion of its power spectral density (PSD) exceeds all aliased
components [2]. Similarly, it was shown by Tsatsanis and
Giannakis [3], that the filter minimizing the MSE is piecewise
constant, M -aliasing-free (i.e., the aliased components of the
M -fold downsampled frequency response do not overlap), and
has a passband depending on the PSD of the input process.
Specifically, the filter which permits most of the energy to pass
aliasing-free is optimal in the MSE sense.

In this paper we consider a design objective vastly different
from the MSE: information. The fact that information, com-
pared to energy, can yield more successful system designs has
long been recognized, e.g., for (non-linear) adaptive filters [4]
or for state estimation using linear filters [5]. In information
theory, transceiver filter design based on mutual information
is covered in, e.g., [6], [7]. That information-theoretic design
seems to become a trend recently is understandable: After
all, it is information one wants to transmit, not energy.
Finally, quantifying information relieves us from having to
specify a reconstruction procedure: The information lost in the
decimation system is independent from signal reconstruction,
therefore a separate design of these two system components

X

X H M Y

Fig. 1. Simple decimation system consisting of a linear filter H and an
M -fold downsampler.

should be possible.

Our first result is surprising: Given mild assumptions on the
input process of the decimation system, the information loss
can be bounded independently of the anti-aliasing filter (see
Section III). The reason is that under these assumptions every
bit of the input process is treated equivalently, regardless of
the amount of energy by which it is represented. In order to
remedy this counter-intuitivity, Section IV considers Gaussian
processes with a specific signal model in mind: The input to
the decimation system is a relevant data signal corrupted by
noise. As a corollary to a more general result, we show that for
white noise the anti-aliasing filter minimizing the information
loss coincides with the optimal filter of [3]. Since in most
cases the Gaussian assumption is too restrictive, we let the
signal process have arbitrary distribution in Section V, but
keep the noise Gaussian. Following the approach of Plumbley
in [8], we prove that the Gaussian assumption for the signal
process yields an upper bound on the information loss in
the general case. In other words, designing a filter based
on the PSDs of the signal and noise processes guarantees
a minimum information transfer over the decimation system.
This justifies a filter design based on second-order statistics,
i.e., on energetic considerations, also from an information-
theoretic perspective. In Section VI we illustrate our results in
a simple toy example.

Due to the lack of space, we only give an outline of our
proofs. An extended version of this manuscript is currently in
preparation.

II. PRELIMINARIES AND NOTATION

Throughout this work we adopt the following notation:
Z is a real-valued random process, whose n-th sample
is the random variable (RV) Z,. We abbreviate Zf =
{Zi; Ziya,. .., Z;}. The differential entropy [9, Ch. 8] and
the Rényi information dimension [10] of Z/ are h(Z]) and
d(Z]), respectively, provided these quantities exist and are
finite. Finally, we define the M-fold blocking Z(M) of Z
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as the sequence of M-dimensional RVs ZM) .= zZM
Z(M) = Z%}_IH, and so on.

In this work, we often consider a process Z satisfying

Assumption 1. Z is stationary, has finite marginal differential
entropy h(Z,), finite Shannon entropy of the quantized RV
| Z, ], and finite differential entropy rate

h(Z):= lim h(Zl) = lim h(Z,|2}~ Do
n—oo N
As a direct consequence of Assumption 1, the information
dimension satisfies d(Z}') = n for all n, and the mutual
information rate with a process W jointly stationary with Z
exists and equals [11, Thm. 8.3]

H(Z; W) := nlgglo EI(ZI s WT). @)

We introduce two measures of information loss for sta-

tionary stochastic processes: The first is an extension of the

relative information loss' [(Z — g(Z)) to stochastic processes
(cf. [12], [13]):

UZ — 9(2)) = lim (2] — g(Z})) 3)
where we abused notation by applying g coordinate-wise. The
second notion is an extension of [14], where we introduced
the relevant information loss. Let W be a process statistically
related to and jointly stationary with Z, representing the
relevant information content of Z; for example, W might be
the sign of Z, or Z might be a noisy observation of W. Then,
the information loss rate relevant w.r.t. W is

Lw(Z — g(Z)) :=1(W;Z) —1(W;g(Z)) 4)

provided the quantities exists.

III. RELATIVE INFORMATION LOSS IN A DOWNSAMPLER

Consider the scenario depicted in Fig. 1, where X satisfies
Assumption 1. It can be shown that if the linear filter H
is stable and causal, also the output process X satisfies
Assumption 1. Moreover, such a filter has no effect on the
information content of the stochastic process in the sense that,
for S jointly stationary with X, I(X;S) =1(X;8).

To analyze the information loss rate in the downsampling
device, we employ the relative information loss rate,

I(XM - Y) = lim [(XP)? - v (5)

n—oo
where we applied M-fold blocking to ensure that the mapping
between (XM))2 and Y7 is static. Downsampling, Y;, :=
X, 1s now a projection to a single coordinate, hence [12]

d((X* M)) )
d((XD)7)

n(M -1

(XM =) = 7

(6)

'Roughly speaking, [(Z — g(Z)) captures the percentage of information
lost by applying the function g to the RV Z.

Since the filter H 1is stable and causal and, thus, has no
influence on the information content of the stochastic process,
we abuse notation in (a) below and combine (3) with (6) to
M 1. o

M
The amount of information lost in the decimation system in
Fig. 1 is the same for all stable, causal filters H.

The question remains whether an ideal anti-aliasing filter
can prevent information loss, since it guarantees that the
downsampling operation is invertible. To show that the answer
to this question is negative, take, for example,

R

(X vy @ yxn L y) =

(®)
else

We decompose X in an M-channel filterbank: The k-th
channel is characterized by analysis and synthesis filters being
constant in the frequency band (k — 1)/M < |0| < k/M
and zero elsewhere. Let Y (1 be the (M-fold downsampled)
process in the k-th channel — clearly, Y = Y ;). It can be
shown that every Y () satisfies Assumption 1 if X is Gaussian.
Thus we obtain

M-1

o)
where the information is again lost in a projection and where
we abused notation in (a) since the filterbank decomposition
is invertible. The ideal anti-aliasing low-pass filter prevents
information from being lost in the downsampler by destroying
information itself.

If the filter H is a cascade of a causal, stable filter and of one
with a piecewise-constant transfer function (with less trivial
intervals as pass-bands), the analysis still holds; Information
is either lost in the filter or in the downsampler:

y (a)
XM 5 y) & Yy, Yoy = Yy) =

Theorem 1. For a Gaussian process X satisfying Assump-
tion 1, the relative information loss rate in the decimation
system depicted in Fig. 1 satisfies

M-1
M

for every anti-aliasing filter H with finitely many pass-band
intervals.

Sketch of the proof: The inequality is trivial, since H
can destroy an arbitrarily large amount of information. We
sketch the proof for H being piecewise constant with passband
intervals having rational endpoints, i.e., being integer multiples
of 1/L with L sufficiently large. As before, we apply a filter-
bank decomposition of X, this time with LM channels. The
cascade of H and the filters of the filterbank is either identical
to zero or to one. Using polyphase decomposition, it can
be shown that M-fold downsampling amounts to adding M
bands, some of which are set to zero by the filter. Summation
is a memoryless operation, hence the information loss depends
on the information dimension of the random sums. Since the
information dimension of a scalar cannot exceed one, the
bound is obtained. [ ]

(XM 5 v) >

10)
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The reason for this seemingly counter-intuitive result is that,
without a specific signal model, the amount of information
is not necessarily proportional to the amount of energy by
which it is represented: There is no reason to prefer a specific
frequency band over another. This in some sense parallels our
result on the relative information loss in principal components
analysis (PCA), where we showed that PCA cannot reduce the
amount of information being lost in reducing the dimension-
ality of the data [12].

IV. RELEVANT INFORMATION LOSS: GAUSSIAN CASE

To remove the counter-intuitivity of the previous section,
we adapt the signal model: Let X be a noisy observation
of a signal process S, i.e., X, = S, + N,, where S and
N are independent, jointly stationary Gaussian processes with
smooth PSDs Sg(e??) and Sy (e??), respectively, and which
satisfy Assumption 1. The information loss rate relevant w.r.t.
S is given by

Lgan (XM = Y) :=T(SM), XMy _ (s y) (11)

and measures how much of the information X conveys about
S is lost in each time step due to downsampling.

While in the general case the filter which minimizes
Lgon (XM) 5 Y) is hard to find, for this particular signal
model the solution is surprisingly intuitive:

Theorem 2. Let S and N be jointly stationary Gaussian
processes with smooth PSDs Ss(e’) and Sy (e??) and which
satisfy Assumption 1. Let X, = S, + N,. Then, the M-
aliasing-free energy compaction filter for Sg(e’%)/Sy(e’?)
minimizes the relevant information loss rate in the decimation
system depicted in Fig. I.

The energy compaction filter for a given PSD can be
constructed easily: The M-fold downsampled PSD consists
of M aliased components; for each frequency point 6§ €
[—7/M, 7 /M], at least one of them is maximal. The passbands
of the energy compaction filter correspond to exactly these
maximal components [2], [3]. See also (12) below.

In particular, since for white Gaussian noise N the energy
compaction filter for Sg(e’?)/Sn(e??) coincides with the
energy compaction filter for Sg(e’?), the filter that lets most of
the signal’s energy pass aliasing-free is also optimal in terms
of information.

Sketch of the proof:
Lgon (XM) —Y) we maximize

Instead of minimizing

TS, Y) = fim © () — 137
n—oo N
with S being S filtered by H. But 2(Y7") = h(Xar, . .., Xnar)
and h(Y"|SIM) = h(Nay, ..., Nuar), where N is the noise
process filtered by H. By Gaussianity, the mutual information
rate reads

M—1 Sg(e?%)
o 1 7 Do ~H.(0)
T(EUD,y) = 7/ In | 14 S Swle)

4T J_4 no Hi(0)

where 0y = =257 and Hy(0) := Sn(e?)|H/(e?%)|2.

Maximizing the integral is done by maximizing the fraction
inside the logarithm, which is, essentially, a weighted average
of the ratios Sg(e’?*)/Sy(e’*). The maximum is obtained if

Hy(0) = {1’

0, else

Ss(e?1) Ss(e?k)
Sn(e?) = Sn(e?k)

for smallest [ s.t. Vk :

12)
ie., if H is related to the energy compaction filter via
Hy,(0) = Sy (e?%)|H (e?%)|2. Since | (N) | < oo, a filter H’
with [H'(e’?)|? = 1/Sn(e??) does not change the information
content; thus, H can be chosen as the energy compaction filter.

]

V. RELEVANT INFORMATION LOSS: GENERAL CASE

Although the result for Gaussian processes is interesting due
to its closed form, it is of little practical relevance. In many
cases, at least the relevant part of X, the signal process S,
will be non-Gaussian. We thus drop the restriction that S is
Gaussian, but we still assume Gaussianity of N.

One can expect that in this more general case a closed-form
solution for H will not be available. However, assuming that
S is Gaussian, yields an upper bound on the information rate
I(S™);Y). It can also be shown that the Gaussian assumption
provides an upper bound on the relevant information loss rate.
To this end, we employ the approach of Plumbley [8], who
showed that, with a specific signal model, PCA can be justified
from an information-theoretic perspective (cf. also [14]).

Theorem 3. Let H be stable and causal, let S and N be
Jointly stationary and satisfy Assumption 1, and let X,, = S,,+
N,,. N is Gaussian, and S¢ is Gaussian with the same PSD as
S. Let Xg . = Sg,n + Np, and let Y g be the corresponding
output processes of the decimation system, respectively. Then,

M) (13)

Zs(]w) (X(M) — Y) < ES(I\l) (X(G — Yg).
G

Sketch of the proof: We start from
Es(J\/I) (X(M) — Y)
1 Y < M -
= lim - (h(X{‘M) — R(NTM) —}L(YI”)+}L(Y1"|S{‘M))

n—oo N
where we exploited the fact that the filter does not
change the information content of the process. We then
apply h(Y*|STM) = h(Nar,...,Nny) and A(Y]) =
h(Xpr, ..., Xnar). Then, the only term depending on non-
Gaussian RVs is the conditional differential entropy

WEM1L L XM o)

(n—1)M+1

which is positive in above equation for the relevant information
loss rate. This differential entropy is upper bounded by the
one of Gaussian RVs (X )7 with the same first and second
moments. The bound is achieved by replacing S by Sz. H

A consequence of this theorem is that filter design by
energetic considerations, i.e., by considering the PSDs of the
signal only, has performance guarantees also in information-
theoretic terms. One has to consider, though, that the filter H

|X]\4, .
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Fig. 3. Upper bounds on the relevant information loss rate in nats as a

function of the noise variance o2 for various filter options.

optimal in the sense of the upper bound might not coincide
with the filter optimal w.r.t. Lgor (XM — Y).

VI. EXAMPLE

We now illustrate our results with an example: Let the
PSD of S be given by Ss(e”’) = 1 + cosf and let N
be independent white Gaussian noise with variance o2 ie.,
Sn(e??) = o2 The PSD of X is depicted in Fig. 2. We
consider downsampling by a factor of M = 2. Were S
Gaussian too, the optimal filter would be an ideal low-pass
filter with cut-off frequency /2 (cf. Theorem 2).

If we assume that S is non-Gaussian, Theorem 3 allows
us to design a finite-order filter which minimizes an upper
bound on the relevant information loss rate. In particular,
it can be shown that among all first-order FIR filters with
impulse response h[n] = d[n]+ cd[n — 1], the filter with ¢ =1
minimizes the Gaussian bound.

Fig. 3 shows the upper bound on the relevant information
loss rate as a function of the noise variance o2 for the ideal
low-pass filter and the optimal first-order FIR filter compared
to the case where no filter is used. In addition, the available
information f(X(G%);S(GQ)) = 2I(Xq;Sg) is plotted, which
decreases with increasing noise variance. Indeed, filtering
can reduce the relevant information loss rate compared to
omitting the filter. This is in stark contrast with the results of
Section III, in which we showed that the relative information
loss rate equals 1/2 regardless of the filter. The reason is
that in Section III we did not have a signal model in mind,
treating every bit of information equally. As soon as one
knows which aspect of a stochastic process is relevant, one
can successfully apply signal processing methods to retrieve
as much information as possible (or to remove as much of the
irrelevant information as possible, cf. [14]).

Interestingly, as Fig. 3 shows, the improvement of a first-
order FIR filter over direct downsampling is significant. Us-

ing low-order filters is beneficial also from a computational
perspective: To the best of our knowledge, the optimization
problem does not permit a closed-form solution for the filter
coefficients in general. Thus, numerical procedures will benefit
from the fact that the number of coefficients can be kept
small. Moreover, while the optimal first-order FIR filter is
independent of the noise variance o2, numerical calculations
suggest that the optimal second-order FIR with impulse re-

sponse h[n| = d[n] + cd[n — 1] + d[n — 2] has a coefficient ¢

depending on o2,

VII. CONCLUSION

In this work we analyzed the information loss in a decima-
tion system as a function of its constituting anti-aliasing filter.
In particular, we showed that without a signal model in mind,
anti-aliasing filtering is futile since it cannot reduce the in-
formation loss even if ideal filters are permitted. The situation
changes for a simple signal-plus-Gaussian-noise model, where
the information loss w.r.t. the signal process can be reduced
by properly choosing the filter. As a direct consequence, we
concluded that filter design based on second-order statistics
of the process can be justified from an information-theoretic
perspective.
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Constrained Entropy Maximisation
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Abstract—A fundamental problem in designing distributed
storage networks is to determine the optimal tradeoffs among
various design parameters, including storage cost, repair cost,
and reliability. Such a problem can be formulated as an entropy
maximisation problem subject to functional a set of dependency
constraints. In fact, many problems in network coding and error
correcting codes can also be formulated as the same entropy
maximisation problem.

Unfortunately, solving such an optimisation problem can be
extremely difficult in general. To reduce the complexity, various
relaxations have been considered, which are based on techniques
in association schemes, information inequalities, and functional
dependency bounds (a generalisation of cut-set bounds). This
paper compares these relaxations and showed that both linear
programming bounds (derived from association schemes and
information inequalities) are at least better than the functional
dependency bounds.
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