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Abstract

We study an offline interval scheduling problem where every job has exactly one associated
interval on every machine. To schedule a set of jobs, exactly one of the intervals associated
with each job must be selected, and the intervals selected on the same machine must not
intersect. We show that deciding whether all jobs can be scheduled is NP-complete already
in various simple cases. In particular, by showing the NP-completeness for the case when
all the intervals associated with the same job end at the same point in time (also known
as just-in-time jobs), we solve an open problem posed by Sung and Vlach (J. Sched., 2005).
Furthermore, we show NP-completeness for the variant with unit-length intervals where all
intervals associated with the same job have a common point, and for the variant with unit-
length intervals and three machines. We also study the related problem of maximizing the
number of scheduled jobs. We prove that the problem is NP-hard even for two machines
and unit-length intervals. We present a 2/3-approximation algorithm for two machines (and
intervals of arbitrary lengths).

Keywords: Scheduling, Intervals, Complexity, Algorithms, Approximation

1 Introduction

We consider an interval scheduling problem with m machines and n jobs. A job consists of m
open intervals—each associated with exactly one machine. In other words, each job has exactly
one interval on each machine. To schedule a job, exactly one of its intervals must be selected. To
schedule several jobs, no two selected intervals on the same machine may intersect. The goal is to
schedule the maximum number of jobs. We will refer to this problem as IntervalSelection.

The presented problem (much like general interval scheduling problems) is motivated by several
applications, see, e.g., [2, 4, 5]. Our motivation comes from the area of car-sharing where a set
of users (jobs) wish to reserve a car (machine) for a certain amount of time (interval), sufficiently
large to drive to an appointment location (specific to each user) and back. The distance of the
parking place of each car to the destination may vary, and this results, for each user, in various
time intervals for the cars.

In the special case of a single machine, our problem becomes the classical interval scheduling
problem which is solvable in polynomial time by a simple greedy algorithm that considers the
intervals in increasing order of their right end-points. For the case of two machines, it can be
decided in polynomial time whether all jobs can be scheduled (by a reduction to 2-Sat). In
contrast to this, in the present paper we show that the same question is NP-complete for the case
of three machines. Moreover, we show that the problem of maximizing the number of scheduled

∗A conference version appeared in the Proceedings of the Algorithms and Data Structures Symposium
(WADS) 2013 and is available at link.springer.com
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jobs is NP-hard already for two machines. Both results hold even if all the intervals have unit
length.

We also consider variants of IntervalSelection where all intervals of the same job, when
seen on the real line, have a non-empty intersection (e.g., this would be the time around the user’s
appointment in the mentioned car-sharing application). We call such a non-empty intersection a
core of a job. We refer to IntervalSelection where each job has a core as IntervalSelection
with cores. A special case of such a variant is when all intervals of a job have the same end-
point (so called just-in-time jobs [15]). We show that, in this setting, the problem of deciding
whether all jobs can be scheduled is NP-complete. This solves an open problem posed by Sung
and Vlach [13, 15]. If the cores do not have to be at the right-end of the intervals, we show that
deciding whether all jobs can be scheduled is NP-complete already when all intervals have unit
length.

Our problem can be seen as a special case of the job interval selection problem, denoted as
JISPk, where each job has k associated intervals on the real line. To see the relation, consider the
machines of an instance of IntervalSelection in any order, and just concatenate the intervals
for the machines along the real line, thus creating an instance of JISPm. JISPk is APX-hard
for any k ≥ 2, and only a deterministic 1/2-approximation algorithm is known (in fact, a simple
greedy algorithm) [14], and a randomized ≈ e−1

e
-approximation algorithm [4] that gives a 3/4-

approximation for JISP2. We present a simple deterministic 2/3-approximation algorithm for
IntervalSelection with two machines. Thus, our algorithm is the first deterministic algorithm
for a non-trivial special case of JISP2 that beats the barrier of 2.

Table 1 provides an overview of the known (white background) and new (grey background)
complexity results for IntervalSelection and related problems. The columns distinguish three
basic computational goals: scheduling all jobs, the maximum number of jobs, or jobs of maximum
weight. Each row, from top to bottom, is a generalization of the problem in the previous row,
starting with IntervalSelection on a single machine, and ending with JISPk. As can be seen
from the table, the (general) IntervalSelection, denoted as “no core required” in the table, is
closely related to well-known and studied problems: it offers a natural generalization of the setting
“with cores” [13, 15], and it is an interesting special case of JISPk [4, 5, 14]. Previous work left a
gap in the understanding of the complexity of the problems (the grey areas in the table), which
we address and completely close in this paper. To achieve tight hardness results for the boundary
cases of 2 and 3 machines (for the decision variant), or 1 and 2 machines (for the maximization
objective), we devise gadgets that we plug together using known results on a specific graph coloring
problem (solvable in polynomial time), which might be of independent interest. Notably, where
meaningful, the hardness results hold even if all intervals are of unit length.

Related Work.

The general interest in interval scheduling problems dates back to the 1950s. The classical variant,
in which each job has associated an interval and can be scheduled on any of the machines (i.e.,
in our setting, each job has exactly the same interval on every machine) and the goal is to decide
whether all the jobs can be scheduled, is polynomially solvable [1]. The maximization version is
polynomially solvable as well, even if the jobs are weighted [3]. However, Arkin and Silverberg [1]
showed that if each job can only be scheduled on a subset of the m machines, the problem becomes
NP-hard (even in the unweighted case). They also gave a O(nm+1)-time algorithm (i.e., polynomial
for a constant m).

The special case of our problem with just-in-time jobs (i.e., where all intervals of a job have the
same right end point) has been studied by Sung and Vlach [15]. They showed that the weighted
version is NP-hard and presented a dynamic programming algorithm that solves the problem in
time O(m · nm+1). Settling the complexity of the problem with unit-weight jobs was posed as an
open problem [15]; this open problem has also been stated in a recent survey on just-in-time job
scheduling [13].

As outlined beforehand, our problem is a special class of JISPk (job interval scheduling problem
on a single machine with k intervals per job). Nakajima and Hakimi [10] showed that the decision
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Table 1: Summary of the complexity of IntervalSelection problems with n jobs, and m ma-
chines. The cells in gray indicate our contribution.

Schedule all jobs Max # jobs Max
∑

weights

single machine O(n log n) O(n log n) O(n log n)

identical intervals per job O(n log n) O(n log n) O(n2 log n)

with cores, any m NP-complete † § NP-hard † § NP-hard † §

O(mnm+1) O(mnm+1) O(mnm+1)

no core required NP-complete † NP-hard † NP-hard †

2 machines O(n2) NP-hard † NP-hard †

≥ 3 machines NP-complete † NP-hard † NP-hard †

JISPk (single machine)
2 intervals per job O(n2) NP-hard† NP-hard†

≥ 3 intervals per job NP-complete† NP-hard† NP-hard†

§ even if † even if all intervals have unit length

– all cores at the end, or

– all cores in the middle

version of JISP3 is NP-complete. Keil [7] showed that this is the case even if the intervals have
the same length, while the general decision version of JISP2 can be solved in polynomial time.
The maximization version has been studied as outlined earlier by Spieksma [14] and Chuzhoy [4].
Erlebach and Spieksma [5] consider the weighted JISPk with more than one machine (every job
has the same set of k intervals on every machine) and they study myopic (single-pass) greedy
algorithms.

JISPk is, in some sense, a discrete variant of the throughput-maximization problem (also known
as the time-constrained scheduling problem, or the real-time scheduling problem), in which each
job has a length, a release time, and a deadline, and a job is associated with the (infinite) set of
intervals of given length lying between the job’s release time and the deadline. Bar-Noy et al. [2]
study this problem and give the currently best approximation algorithms for most of the existing
variants of the problem.

There are many other, for the scope of the paper less relevant variants of scheduling where
intervals “come into play”. We refer to the survey by Kolen et al. [8] for more information on the
topic. We also stress that online variants of the presented problems have been studied as well, see
e.g., the recent paper of Sgall [12] on online throughput maximization.

2 Approximation of Interval Selection on Two Machines

In this section we present a 2/3-approximation algorithm for IntervalSelection with two ma-
chines. We stress that by interval we understand a time interval associated with both a job, and
a machine. Recall that IntervalSelection on one machine is solvable by a simple greedy algo-
rithm that considers all intervals on the machine sorted by the right end-points in the ascending
order and selects each considered interval if it does not intersect any of the previously selected
intervals. We denote this algorithm by A1. We can also apply the greedy algorithm in the setting
with two machines MA and MB. More formally, let A2(MA,MB) be the algorithm that first runs
A1 on machine MA, removes from MB the intervals for jobs whose intervals were selected on
machine MA, and runs A1 on MB. This algorithm gives a 1/2-approximation [14], which is tight
for the algorithm.

Obviously, we can run the greedy algorithm in the other direction, i.e., first on MB and then on
MA (denoted by A2(MB,MA)), which again gives a 1/2-approximation. Perhaps surprisingly, the
algorithm that chooses the better solution of the two provided by A2(MA,MB) and A2(MB,MA)
is a 2/3-approximation. Even though the algorithm, let us call it A3, is extremely simple, the
analysis thereof is more interesting.
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MA MBα1 β1α2 β2α3 β3

β1
β2

β3 α1
α2

α3

Figure 1: Instance where A3 returns exactly 2/3 · |O| jobs: O contains all jobs αi and βi for
i = 1, 2, 3 (in grey), but both A2(MA,MB) and A2(MB,MA) schedule only the jobs α1, α2, β1, β2.

Consider an optimum solution O where OA denotes the intervals selected on MA and OB

the intervals selected on MB. Consider A2(MA,MB) and let SA be the intervals selected by
A2(MA,MB) on MA. Obviously, A2(MA,MB) selects on MA at least |OA| intervals (which follows
from the fact that A1 finds an optimum on a single machine). The only reason that A2 selects
less than |OB | intervals on MB is that it cannot select intervals that correspond to jobs already
scheduled on MA (see Figure 1 for illustration). In fact, every job scheduled on machine MA

prevents selecting one interval on MB (the one that corresponds to the same job) and each such
selected interval on MA can cause that we can select one interval less on MB. We introduce the
following definition to measure how a selection SA on MA reduces the size of the solution on MB

with respect to O. We say that a set I of intervals reduces the selection on MB by k if after
selecting the intervals I on MA the algorithm A1 selects |OB | − k intervals on MB. Note that a
set I can never reduce the selection by more than |I| intervals; in particular, a single interval can
reduce the selection by at most one.

Observe in Figure 1 that the interval for the job β1 on MA reduces the selection on MB by
one, but the interval for the job α1 on MA reduces the selection on MB by one only with the help
of β2 on MA. That is, sometimes we need more than one interval to reduce the selection by one.
Accordingly, we will further distinguish the intervals in SA as follows. SO

A are the intervals that
are both in SA and in OA. Observe that every interval iO ∈ OA \ SA has an interval iA ∈ SA

such that its right end-point intersects iO. For each such iO we place the leftmost such interval
iA in the set S∩

A. We define S∅
A to be the remaining intervals of SA. Note that, by definition,

|SO
A ∪S∩

A| = |OA|. Similarly, we define SB to be the intervals scheduled by the “reverse” algorithm
A2(MB,MA) on MB, and we analogically define the sets SO

B , S∩
B, S

∅
B.

Intuitively, if S∩
A or S∩

B is small, then the choice of A2(MA,MB) or A
2(MB,MA) on the first

machine reduces the selection on the second machine only a little (and thus it schedules many
jobs). On the other hand, if both S∩

A and S∩
B are large, we need to select twice as many jobs to

reduce the selection (recall the example from Figure 1). We will show that the trade-off between
these constraints lies at |S∩

A| = 1/3 · |O|. To make this formal, we analyze how much the selection
SA reduces the selection on MB.

Lemma 1. Assume that A2(MA,MB) selects r intervals on MA corresponding to jobs from SO
B ,

s intervals corresponding to jobs from S∩
B, and t intervals corresponding to jobs from OB \ SO

B .
Then the selection on MB is reduced by at most r +min{s, t}.

Proof. Observe that OB and SO
B ∪S∩

B are two selections of size |OB| having exactly SO
B in common.

Now, it is enough to realize that, after removing the intervals corresponding to jobs in SA, we can
select |OB| − r − t intervals from OB , and we can select |OB| − r − s intervals from SO

B ∪ S∩
B.

Theorem 2. A3 is a 2/3-approximation algorithm. This bound is tight for the algorithm.

Proof. Without loss of generality, we assume that |S∩
A| ≤ |S∩

B|. We distinguish two cases. First,
assume that |S∩

A| ≤ 1/3 · |O|. Since SO
A are the intervals from O, they correspond to different

jobs than the jobs to which the intervals in OB correspond. Thus, on MA, at most |S∩
A| + |S∅

A|
intervals corresponding to jobs in OB are selected, and the selection on MB is reduced by at
most this amount. Therefore, among the intervals in OB, algorithm A2(MA,MB) selects at least
|OB | − |S∩

A| − |S∅
A| intervals. In total, algorithm A2(MA,MB) selects at least |S

O
A |+ |S∩

A|+ |S∅
A|+

|OB | − |S∅
A| − 1/3 · |O| = 2/3 · |O| jobs.

Now, assume that |S∩
B| ≥ |S∩

A| > 1/3 · |O|. We analyze how much the intervals SA can reduce
the selection on MB. At most |SO

B | intervals corresponding to jobs in SO
B can be selected on MA.
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By Lemma 1, the selection on MB is reduced at the maximum possible way if in SA there is the
same number of intervals corresponding to jobs in S∩

B as the number of intervals corresponding
to jobs in OB \ SO

B . Thus, the selection on MB will be reduced the most, if |SO
B | intervals in

SA correspond to jobs in SO
B , and the rest of SA is split evenly between S∩

B and OB \ SO
B . The

selection on MB can thus be reduced by at most

|SO
B |+

|SA| − |SO
B |

2
=

|S∅
A|+ |OA|+ |SO

B |

2
=

|S∅
A|+ |O| − |S∩

B|

2
≤

|S∅
A|+ 2/3 · |O|

2
.

Thus, also in this case, algorithm A2(MA,MB) schedules at least |S
O
A |+ |S∩

A|+ |S∅
A|+ |OB |−

|O|
3
−

|S∅
A|
2

≥ |OA|+ |OB | −
|O|
3

= 2

3
|O| jobs.

Therefore, in every case, the algorithm A3 schedules at least 2/3 · |O| jobs. The analysis is
tight, as the example from Figure 1 shows.

As an obvious future work, we want to analyze the natural generalization of the algorithm to
m ≥ 3 machines.

3 Hardness Results

In this section we study the complexity of IntervalSelection and show that most of the natural
variants are NP-complete or NP-hard. We first describe generic gadgets that we will use as building
blocks in our hardness proofs. In the subsequent sections we give the actual hardness proofs.

Recall that by an interval we understand a time interval associated with both a job and a
machine. In the following, we will also use time intervals not associated with a job or a machine.
To avoid confusion, we use the following terminology. When we consider a time interval with
respect to a single machine, but independently of the jobs, we call it a slot. And when considering
a time interval independently of machines and jobs, we call it a window.

We will also use the notion of blocking. We say that an interval i blocks a slot s if i intersects
s and both are associated with the same machine. We say that a set of intervals I blocks window
w on a set of machines M if for each machine M in M there is an interval in I that blocks the
slot corresponding to w on M . We say that a set of intervals I completely blocks a window w if
each slot that intersects the window w is blocked by some interval in I.

We call a schedule in which all jobs are scheduled a complete schedule.
Our hardness results are shown by a reduction from variants of the NP-complete satisfiability

problem (Sat). Sat is the problem of finding, for a given a set of r clauses C = {c1, c2, . . . , cr}
over a set of Boolean variables X = {x1, x2, . . . , xs}, a truth assignment such that every clause
is satisfied, i.e., at least one literal in every clause evaluates to TRUE (see, e.g., [6] for an exact
definition of the problem). Sat is NP-complete, even if every clause is restricted to have at most
three literals (denoted as 3-Sat) [6], and even, if each clause contains at most three literals and
each variable appears in the formula at most three times, once as a negative literal and at most
twice as a positive literal (denoted as (≤3,3)-Sat) [6]. The problem of finding a truth assignment
that maximizes the number of satisfied clauses is NP-hard, even if each clause contains two literals
and each variable appears at most three times in the formula (denoted as (2,3)-MaxSat) [11].

Building Blocks for Hardness Proofs.

In order to simplify the explanation of the hardness proofs, we define the following two gadgets
(specific sets of jobs) and use them as building blocks in our reductions.

The purpose of the blocking gadget is to completely block a certain window w, i.e., to make sure
that in any complete schedule no interval that intersects w is ever scheduled, with the exception
of the intervals of the jobs that constitute the gadget itself. Let w be a window (that we want
to completely block). The gadget consists of m jobs, each having w as their interval on every
machine. We visually depict a blocking gadget as in Figure 2.
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window w

M1

M2

M3

j0j1j2
j0j1j2
j0j1j2

+slot

+slot

−slot

w

M0

M1

M2

Q+ = {M0,M1}
Q− = {M2}

j0
j1

j1
j2

j2
j0

+slot

−slot

+slot

w

M0

M1

M2

Q+ = {M0,M2}
Q− = {M1}

j0
j1

j1
j2

j2
j0

−slot

+slot

+slot

w

M0

M1

M2

Q+ = {M1,M2}
Q− = {M0}

j0
j1

j1
j2

j2
j0

Figure 2: The first drawing illustrates how we depict a blocking gadget for a window w. The
last three drawings illustrate decision gadgets on three machines M0, M1, and M2. Each of the
decision gadgets has two positive slots on machines in Q+ and one negative slot on the machine in
Q−. The crucial intervals constituting the gadget are depicted by the shaded boxes (always one
interval spans the respective box). The associated jobs of the intervals are indicated on the sides.
The remaining intervals of the jobs are blocked by a blocking gadget, and thus never selected.
These intervals and the blocking gadget are for simplicity not displayed. The two different shades
in the boxes depict the only two possibilities how to select the intervals in the decision gadget.

Lemma 3. In any complete schedule for an instance of IntervalSelection that contains the
blocking gadget B for window w, no selected interval outside B intersects w.

Proof. In any complete schedule all the jobs have to be scheduled, including all the jobs of the
blocking gadget. Each of these jobs can only be scheduled onto w and there are as many jobs as
machines, so there is no other way than to schedule exactly one of the jobs onto the window w on
each machine. Thus, the selected intervals of these jobs completely block window w and no other
interval intersecting w can be selected in the schedule.

The purpose of the decision gadget is to mimic a truth assignment to a variable in a boolean
formula of 3-Sat. This is done by blocking a certain window either on one set of machines or
on another disjoint set. Given a window w and two disjoint subsets Q−, Q+ of machines, we will
call the window w on the machines in Q+ the positive slots and w on Q− the negative slots of the
gadget (cf. Figure 2). With our gadget we want to achieve that in any complete schedule either
all the positive slots of the gadget are free and all the negative slots are blocked by the schedule,
or vice versa. Let us refer to the former situation as the positive decision of the gadget and to
the latter as the negative decision. Intuitively, we achieve this effect by using jobs with intervals
placed so that we have exactly two ways how to schedule all jobs. To ensure that there is no other
way to schedule the jobs of the gadget, we may need to block some intervals of these jobs. For
this purpose we use a blocking gadget.

Formally, we construct the decision gadget as follows. We denote by Q the union of Q−, Q+,
by k the size of Q, and by M0,M1, . . . ,Mk−1 the machines in Q. Without loss of generality, we
assume that w has unit length. We use k jobs j0, j1, . . . , jk−1, one job per machine in Q. The
intervals for all these jobs have unit length |w|. There is a blocking gadget B such that all intervals
of the decision gadget except for intervals of ji on Mi,Mi−1 intersect B (we write Mi−1 instead
of Mi−1 mod k for simplicity). The exact placement of ji and ji+1 on Mi depends on whether the
window w is supposed to be a positive or a negative slot on Mi. In particular, if Mi is in Q− (w
is a negative slot on Mi), the interval for ji is placed directly to the right of w and the interval for
ji+1 is placed so that its left end is at the center of w. Otherwise, if Mi is in Q+, the left end of
the interval for ji is at the center of w and the interval for ji+1 is directly to the right of w. Note
that the intervals constituting the gadget occupy a window of length 2 (excluding the intervals
that are blocked by the blocking gadget).

Lemma 4. In any complete schedule for an instance of IntervalSelection that contains the
decision gadget D for window w and subsets Q−, Q+ of machines, either D blocks w on all ma-
chines in Q− and leaves it free on all machines in Q+, or vice versa.

Proof. We observe that the interval for job ji intersects with the interval for job ji+1 on machine
Mi and with the interval for job ji−1 on machine Mi−1. Furthermore, because of the blocking
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Figure 3: Example of the construction of IntervalSelection with cores at the end for an
instance Φ of the 3-Sat problem (each figure shows the intervals on a single machine), where
Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4).

gadget, ji cannot be scheduled on any other than these two machines. First, let us assume that
in a complete schedule S job ji is scheduled on machine Mi. The schedule S needs to schedule
job ji+1, which can only be scheduled on machine Mi+1. A similar situation occurs for job ji+2.
In fact, since S is a complete schedule, the initial decision is propagated over all the jobs of the
gadget. Conversely, if we assume that a complete schedule S schedules a job ji on machine Mi−1,
then each job ji′ must be scheduled on machine Mi′−1. Finally, note that the case where each ji
is scheduled on Mi corresponds to the negative decision, i.e., the situation where w is blocked on
machines in Q+. Whereas, each ji being scheduled on Mi−1 corresponds to the positive decision,
i.e., window w is blocked on machines in Q−.

Corollary 5. Given a window w and subsets Q−, Q+ of machines, in any complete schedule,
the intervals of the decision gadget as constructed above enforce the following. Either on all the
positive slots of the gadget intervals can be scheduled and all the negative slots are blocked, or vice
versa.

3.1 Interval Selection with Shared Cores

In this section we analyze the complexity of IntervalSelection with cores. We study two
variants. First, we consider the case when every job has a core at the end, i.e., all intervals of a
job end at the same point in time. We show that deciding whether there is a complete schedule for
this variant is NP-complete. By this we resolve an open problem posed by Sung and Vlach [13, 15].
Afterwards, we consider the case where every job has a core at an arbitrary position and show
that this variant is NP-complete even if all intervals have unit length. We note that both variants
are solvable in time O(m · nm+1), and thus in polynomial time if m is constant [15].

Theorem 6. The problem of deciding whether there exists a complete schedule in IntervalSe-
lection with cores at the end is NP-complete.

Proof. The problem is in NP, since the completeness of a given schedule can be checked in linear
time. To show the hardness, we present a reduction from 3-Sat.

Construction. Let us consider an arbitrary instance Φ of 3-Sat given by a set of clauses C =
{c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}. We construct the following
instance S of the IntervalSelection problem (cf. Figure 3 along with the construction). We use
two machines for each variable xi, denoted by Mxi,+ and Mxi,−. The machine Mxi,+ corresponds
to the positive literal of xi, whereas Mxi,− corresponds to the negative literal of xi. On the
machines we consider a window of r + 1 units and we denote the unit windows constituting it
by w0, w1, w2, . . . , wr. We place a blocking gadget over all machines on the window w0. Next,
for each variable xi we add a job αxi

with two possible ways of scheduling it (in any complete
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schedule). This mimics a truth assignment to the variable xi. We call these jobs the variable jobs.
We place the intervals of a variable job αxi

as follows. On Mxi,+ and Mxi,− we place an interval
such that it covers w1, w2, . . . , wr, and on every other machine we place an interval such that it
covers w0, w1, w2, . . . , wr. Note that the blocking gadget ensures that in any complete schedule
each job αxi

is scheduled on one of the machines Mxi,+, Mxi,−, and no other job is scheduled on
that machine on any window w1, w2, . . . , wr. Intuitively, by scheduling αxi

, one of the two literals
of xi is selected and thus set to FALSE, implicitly setting a truth assignment for variable xi. Lastly,
we add r jobs linked to the clauses so that the actual scheduling of these jobs is related to the
way how the clauses of Φ are satisfied. For each clause cj we have one clause job denoted by βcj .
We place the intervals for the job βcj on window wj on those machines that correspond to literals
that appear in the clause cj , and on the windows w0, w1, . . . , wj on the other machines. In other
words, in any complete schedule, a job βcj can only be scheduled on a machine that corresponds
to a literal that appears in clause cj , since on all other machines the intervals for βcj intersect
the blocking gadget. Moreover, if the same literal appears in clauses cj and cj′ , j 6= j′, then the
intervals for jobs βcj and βcj′

do not intersect on the machine that corresponds to this literal.
Note that the constructed instance of IntervalSelection has the property that all the

intervals corresponding to one job have at their end a unit window in common. Obviously, the
above construction can be done in polynomial time.

Correctness. We now show that Φ is satisfiable if and only if there exists a complete schedule
for S. First, given a complete schedule S for S, we construct a satisfying truth assignment A
for Φ as follows. The blocking gadget ensures that no selected interval for a variable or clause job
intersects window w0. Since S is a complete schedule, all the variable jobs are scheduled. Due to
the blocking gadget, each variable job αxi

can only be scheduled on Mxi,+, or Mxi,−; and we set
the variable xi in A to FALSE or TRUE, respectively. We argue that all clauses are satisfied by A.
Let cj be any clause of Φ. As S is a complete schedule, the clause job βcj that corresponds to
cj is scheduled on Mxi,+, or Mxi,− for some variable xi appearing in cj . Assume xi appears as a
positive literal in cj . Then βcj must be scheduled on Mxi,+. Also, the variable job αxi

has to be
scheduled on Mxi,−, since the intervals for both jobs on Mxi,+ overlap. But this means that A
sets xi to TRUE and hence satisfies cj . Analogously, A satisfies cj also if xi appears as a negative
literal in cj .

Conversely, we can construct a complete schedule from a truth assignment A that satisfies Φ
as follows. We schedule all the jobs that form the blocking gadget on w0 in any order. Then,
we schedule all variable jobs according to A: If a variable xi is set to TRUE, we schedule αxi

on
machine Mxi,−, otherwise on machine Mxi,+. Lastly, as all the clauses are satisfied by assignment
A, each clause cj is satisfied by some variable xi. Either xi appears in cj as a positive literal, or
as a negative literal. In the former case, xi is set to TRUE in A and machine Mxi,+ is not occupied
by αxi

, so the clause job βcj can be scheduled on machine Mxi,+. In the latter case, the clause
job βcj can be scheduled on Mxi,−. We can construct a complete schedule since no two scheduled
clause jobs overlap.

The presented hardness implies the hardness of other variants of IntervalSelection, such
as that of cores at arbitrary positions, or with no required core at all. Similarly, the presented
hardness implies the hardness of the maximization versions of these variants.

Unit Interval Selection with Shared Cores

We show that this variant of the IntervalSelection problem with cores is NP-complete even if
we require all the intervals to have unit length.

Theorem 7. The problem of deciding whether there exists a complete schedule in IntervalSe-
lection with cores is NP-complete even if all intervals have unit length.

Proof. The problem is obviously in NP. To show NP-hardness, we present a reduction from (≤3,3)-
Sat.
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Figure 4: Instance S of our problem corresponding to an instance Φ of (≤3,3)-Sat where Φ =
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3). For simplification, the intervals that intersect the blocking
gadgets are not shown.

Construction. Let Φ be an arbitrary instance of (≤3,3)-Sat given by a set of clauses C =
{c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}, where each variable appears
in Φ at most three times, once as a negative literal and once or twice as a positive one.

We construct an instance S of the scheduling problem as follows (cf. Figure 4 along with
the construction). We introduce three machines for each variable xi, denoted by Mxi,1,Mxi,2,
and Mxi,3. On the machines we consider a window of four units and denote the unit windows
constituting it by w1, w2, w3, w4. We introduce jobs as follows, using unit length intervals only. We
place two blocking gadgets spanning all machines, one on the window w1 and the other on w4. For
each variable xi, we place a decision gadgetDxi

on machinesMxi,1,Mxi,2,Mxi,3, such that Dxi
has

positive slots on w2 on Mxi,1,Mxi,2, and a negative slot on w2 on Mxi,3 (i.e., Q+ = {Mxi,1,Mxi,2},
Q− = {Mxi,3}) and occupies the windows w2 and w3. Recall that each decision gadget requires
a blocking gadget—we use the blocking gadget on w4 for this purpose. We place the intervals of
Dxi

that need to be blocked in such a way that they cover three quarters of the window w3 and
one quarter of w4. By this, we achieve that they are never selected in any complete schedule and,
at the same time, all the intervals for a single job of Dxi

have a window in common (the second
quarter of w3). The decision of Dxi

in a complete schedule will correspond to a truth assignment to
variable xi: A positive decision will correspond to a TRUE assignment and a negative decision will
correspond to a FALSE assignment. Note that the positive/negative decision of Dxi

is independent
of the decisions of the other gadgets constructed the same way. Finally, we introduce a clause
job βcj for each clause cj . Recall that each variable appears in Φ at most three times, once as a
negative literal and once or twice as a positive literal. For each appearance of a variable xi as a
positive literal in cj we place an interval βcj on an unoccupied positive slot of the gadget Dxi

.
Similarly, if xi appears in cj′ as a negative literal, we place an interval for βcj′

on the negative
slot of Dxi

. Note that we can place the clause jobs on the slots so that no slot is used twice, since
each xi appears at most twice as a positive literal and once as a negative literal and Dxi

has two
positive slots and one negative. We place all the remaining intervals for clause jobs in a way that
they cover half of the window w1 and half of w2. Because of the blocking gadget at w1, none of
these intervals can be selected in any complete schedule. Observe also that each clause job has
a core (the first half of w2), all intervals have the same length, and that the construction can be
done in polynomial time.

Correctness. First, suppose that there is a complete schedule S for S. We construct a satis-
fying truth assignment A for Φ as follows. For each variable xi we look at the schedule for the
corresponding decision gadget Dxi

: If it decides positively, we set the value of xi in A to TRUE,
otherwise to FALSE. We show that every clause cj of Φ is satisfied by the resulting assignment
A. The completeness of S ensures that βcj is scheduled on some machine, say Mxi,k. Either it
is scheduled on one of the two positive slots of Dxi

and xi appears in cj as a positive literal, or
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it is scheduled on the negative slot of Dxi
and xi appears in cj as a negative literal. The former

case implies a positive decision of the gadget Dxi
, and hence xi is TRUE in A by construction. The

latter case implies a negative decision of Dxi
and xi being set to FALSE in A. In both cases the

clause cj is satisfied by xi in A.
Conversely, given a truth assignment A that satisfies Φ, we construct a complete schedule for

S as follows. We schedule all the jobs of the blocking gadgets in any order. We schedule all the
jobs constituting a decision gadget Dxi

so that if the variable xi is TRUE in A, we make a positive
decision for Dxi

, and if xi is FALSE in A, we make a negative decision for Dxi
. We schedule the

clause job for each clause cj as follows. Since A satisfies Φ, cj is satisfied by some variable xi.
Either xi appears in cj as a positive literal, in which case we schedule βcj on its positive slot of
Dxi

, or it appears as a negative literal, in which case we schedule it on the negative slot of Dxi
.

In the former case xi is set to TRUE in A which implies the positive decision of Dxi
, in the latter

case xi is set to FALSE implying the negative decision of Dxi
. In both cases, βcj can be scheduled

on the specified slot of Dxi
without overlapping with the scheduled jobs comprising Dxi

. Since
no two scheduled clause jobs overlap, we can schedule them all in this way and obtain a complete
schedule for S.

3.2 Interval Selection with Restricted Number of Machines

In this section we consider the complexity of non-restricted IntervalSelection. We show that,
in contrast to IntervalSelection with cores, the problem is NP-hard even if the number of
machines is constant. In particular, we prove that deciding whether there is a complete schedule
is NP-complete already for three machines. In contrast, the problem is polynomially solvable for
two machines [7]. We show that the problem of maximizing the number of scheduled intervals,
on the other hand, is NP-hard already for two machines (while polynomially solvable for one
machine). Moreover, all these hardness results hold even when all intervals have the same length.

We believe that the techniques used in the proofs may be of independent interest. The deci-
sion gadgets capture the relation between a schedule and an assignment. However, we also use
properties of edge coloring that provide us with a mapping that lets us put the pieces together and
finalize the construction of a scheduling problem under the required, rather restrictive conditions.

Unit Interval Selection with Three Machines.

We consider IntervalSelectionwith three machines and unit length intervals, with the objective
of deciding whether there is a complete schedule. We will present a reduction from (≤3,3)-Sat.

Lemma 8. Let Φ be an instance of (≤3,3)-Sat, given by a set of clauses C over a set of Boolean
variables X. Then, there exists a mapping p from E = {(x, c) ∈ X × C | x ∈ c} to the set
{M1,M2,M3}, such that p(x, c) 6= p(x, c′) for c 6= c′ and p(x, c) 6= p(x′, c) for x 6= x′. Moreover,
such a mapping p can be found in polynomial time.

Proof. We prove the statement by edge-coloring the bipartite graphG = (X∪C,E). The structure
of (≤3,3)-Sat implies that all vertices of the constructed graph G have a degree at most 3. A
bipartite graph is ∆-edge-colorable in polynomial time, where ∆ is the maximum degree [9].
Therefore, the graph G is 3-edge-colorable, with colors from {M1,M2,M3}. This coloring gives us
the desired mapping from E to {M1,M2,M3}.

Theorem 9. The problem of deciding whether there exists a complete schedule in IntervalSe-
lection is NP-complete even for three machines and unit length intervals.

Proof. The problem is obviously in NP. To show the hardness, we reduce (≤3,3)-Sat to it.
Construction. Let Φ be an instance of (≤3,3)-Sat, given by a set of clauses C = {c1, c2, . . . , cr}

over a set of Boolean variables X = {x1, x2, . . . , xs}. We construct from Φ the following instance
S of the IntervalSelection problem (cf. Figure 5 along with the construction), using three
machines M1,M2,M3. We use a window of 2s+1 units, and denote the unit windows constituting

10



βc1

βc2

βc3

βc2

βc1

βc3

βc1 βc2

M1

M2

M3

w0
w1,1 w1,2 w2,1 w2,2 w3,1 w3,2 w4,1 w4,2

Figure 5: Instance Φ = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3) of (≤3,3)-Sat and the corresponding
instance of IntervalSelection with three machines. Intervals intersecting the blocking gadget
are not shown in the figure.

it by w0, w1,1, w1,2, w2,1, w2,2, . . . , ws,1, ws,2. We introduce jobs with unit length intervals as
follows. We place a blocking gadget on window w0 over all machines. For each variable xi we
place a decision gadget Dxi

on the machines such that it has two positive and one negative slot
on window wi,1, in an arrangement that we will specify later. The gadget Dxi

occupies windows
wi,1 and wi,2 and uses internally the blocking gadget on w0. The positive/negative decision of
gadget Dxi

corresponds to the truth assignment of the variable xi and the decision of Dxi
is

independent of the other decision gadgets. We introduce a clause job βcj for each clause cj . To
place the intervals for βcj , we look at the literals that appear in cj. For each appearance of a
positive literal of some variable xi in cj we place an interval for βcj on a positive slot of Dxi

, and
for each appearance of a negative literal of xi′ in cj we place an interval for βcj on the negative
slot of Dxi′

. If cj contains only two literals, we place one interval for βcj on the window w0 so
that it intersects the blocking gadget and cannot be selected in any complete schedule.

To obtain a valid construction, we need to ensure that all the intervals for each clause job βcj

are placed on different machines, and at the same time, we require that each positive/negative slot
of the decision gadgets is occupied by at most one interval. We now explain the exact placement
of the positive/negative slots, as well as the distribution of the clause jobs over the slots that
achieve this. We have three machines and we need to place each decision gadget so that it has its
negative slot on some machine and its positive slots on the other two machines. Finding a way
to arrange the decision gadgets and distribute their slots is equivalent to finding a mapping from
a set of pairs (variable x, clause c containing x) to the set {M1,M2,M3} that assigns different
machines to the variables in each clause and different machines to the clauses containing a fixed
variable. Such a mapping can be efficiently constructed due to Lemma 8.

Correctness. The correctness of the construction can be showed by a similar argument as in
the proof of Theorem 7. In short, first we suppose that there is a complete schedule S for S and
we derive the truth assignment for each variable from the decisions of the corresponding decision
gadget. Our construction ensures that this assignment satisfies every clause, since the correspond-
ing clause job needs to be scheduled in S. Conversely, we explain how to construct a complete
schedule S from a satisfying truth assignment A: First we schedule the jobs of the blocking gadget
in any order. Then we schedule the jobs constituting each decision gadget according to the truth
assignment of the corresponding variable in A. Finally, for each clause, we pick one literal that
satisfies it in A and schedule its clause job on the corresponding slot of a decision gadget. By
construction, no two intervals of clause jobs placed on slots of decision gadgets overlap (Lemma 8),
hence all clause jobs can be scheduled in this way.

Unit Interval Selection with Two Machines.

We consider IntervalSelection with two machines and unit intervals and show that the problem
of maximizing the number of scheduled intervals is NP-hard. The proof is similar to that of
Theorem 9, but uses a reduction from (2,3)-MaxSat. We state the following lemma, similar to
Lemma 8.

Lemma 10. Let Φ be an instance of (2,3)-MaxSat, given by a set of clauses C over a set
of Boolean variables X. Then, there exists a mapping p from E = {(x, c) ∈ X × C | x ap-
pears in c as a positive literal} to the set of machines {M1,M2}, such that p(x, c) 6= p(x, c′) for
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Figure 6: Example instance Φ = (x1∨x2)∧(x1∨x4)∧(x2∨x4)∧(x1∨x3)∧(x2∨x3) of (≤3,3)-Sat
and the corresponding instance of IntervalSelection with two machines.
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Figure 7: The decision gadget used in the construction.

c 6= c′ and p(x, c) 6= p(x′, c) for x 6= x′. Moreover, such a mapping p can be found in polynomial
time.

Proof. As in the proof of Lemma 8, it is enough to realize that bipartite graph G = (X ∪C,E) is
2-edge-colorable.

Theorem 11. Maximizing the number of scheduled intervals in IntervalSelection is NP-hard,
even for two machines and unit length intervals.

Proof. To show the hardness of this IntervalSelection problem, we provide a reduction from
(2,3)-MaxSat. The construction is similar to the construction for Theorem 9, but we use refined
decision gadgets.

Construction. Let Φ be an instance of (2,3)-MaxSat, given by a set of clauses C = {c1, c2, . . . , cr}
over a set of Boolean variables X = {x1, x2, . . . , xs}. We construct from Φ the following instance
S of the IntervalSelection with two machines M1 and M2 (consider Figure 6 along with the
construction). On the machines we consider a window of 3s units and we denote the unit windows
constituting it by w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, . . . , ws,1, ws,2, ws,3.

Before we introduce the jobs, we refine the decision gadgets that we use in the construction.
Each decision gadget is for the two machines M1,M2, has two positive slots on some window and,
additionally, two negative slots on another window, in such a way that if the jobs of the gadget
are scheduled, either both positive slots are blocked and the negative slots are free, or vice versa.
More precisely, we use a decision gadget D for machines M1,M2 with two positive slots on some
window w and introduce two negative slots on both machines on the unit length window w′ that
begins half a unit after the end of w (see Figure 7). Recall that a decision gadget is made up of
two jobs j0 and j1 with an interval for j0 placed on M1 so that its left end is at the center of w and
an interval for j1 on M1 placed so that its left end touches the right end of w. The intervals for j0
and j1 on M2 are in the opposite arrangement. Therefore, if both j0 and j1 are scheduled, either
w is blocked on both machines and w′ is free (negative decision) or w is free on both machines
and w′ is blocked (positive decision).

We proceed with the actual construction. For each variable xi we place a refined decision gadget
Dxi

on the machines M1,M2 with positive slots on window wi,1 and negative slots on the unit
window consisting of the second half of wi,2 and the first half of wi,3. Again, a positive/negative
decision of the gadget Dxi

is in correspondence with a truth assignment of the variable xi, and
the decisions of different decision gadgets do not interfere.

For each clause cj we introduce a clause job βcj . In order to place intervals for clause jobs,
we first look at all positive literals that appear in Φ. For each xi that appears in cj as a positive
literal, we place an interval for βcj on a positive slot of Dxi

. For now, we assume that we can
place clause jobs on positive slots in a way that no two intervals for a clause job are placed on the
same machine and that at most one interval is placed on on each positive slot. If xi appears in
cj as a negative literal, we place an interval for βcj on a negative slot of Dxi

in such a way that
the two intervals of a job βcj are placed on different machines. This can be achieved since only
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exactly one negative slot is used in each gadget, and we are thus free to choose which machine to
place the interval on.

We now show that the intervals for clause jobs can be placed on positive slots so that no clause
job has two intervals on the same machine and no positive slot is occupied twice. This is equivalent
to requiring that there is a mapping fromX×C to the set {M1,M2} that assigns different machines
to two positive literals appearing in the same clause and assigns different machines to the same
positive literals in different clauses. Lemma 10 ensures the existence of such a mapping. Thus, we
can obtain a valid placement for interval of clause jobs such that no two of them overlap.

The above construction for an instance S of IntervalSelection has two machines and 2s+r
jobs. All intervals have unit length and we can construct the presented reduction from (2,3)-
MaxSat in linear time. We conclude the proof by showing that there is a schedule for S that
schedules at least 2s+ k jobs if an only if there is a truth assignment for Φ that satisfies at least
k clauses.

Correctness. We can prove the correctness by a similar argument as in the proof of Theorem 9.
First we suppose there is a maximum schedule S for S that schedules at least 2s + k jobs and
we derive a truth assignment for Φ that satisfies at least k clauses. As the first step, we show
that there exists a schedule S′ that schedules also at least 2s + k jobs but in which all jobs of
the decision gadgets are scheduled. Each interval of a job of a decision gadget intersects with
exactly one positive/negative slot and therefore it intersects with at most one scheduled interval
of a clause job in S. Therefore, we can modify S by scheduling each not yet scheduled job of
a decision gadget instead of a scheduled clause job. We obtain S′ that schedules all 2s jobs of
decision gadgets and at least k clause jobs. We construct a truth assignment A of the variables in
Φ according to the decisions of decision gadgets in S′. At least k clauses are satisfied by A in Φ,
due to the fact that k clause jobs are scheduled in S′, with a similar argument as in the proof of
Theorem 9.

Conversely, we suppose there is a truth assignment A that satisfies at least k clauses of Φ and
construct a schedule S that schedules at least 2s + k jobs. We schedule the 2s decision gadgets’
jobs according to the truth assignment of the variables in A. For each clause cj that is satisfied
by A we schedule the clause job βcj on a slot of decision gadget that corresponds to a literal that
satisfies the cj in A. The construction (together with Lemma 10) ensures that no two intervals
of clause jobs overlap and thus at least k clause jobs can be scheduled in this way. Therefore, we
can construct a schedule S that contains at least 2s+ k jobs.
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