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Abstract

Today, the Internet allows virtually anytime, anywhereesscto a seemingly
unlimited supply of information and services. Statistiostsas the six-fold
increase of U.S. online retail sales since 2000 illustriateyiowing impor-
tance to the global economy, and fuel our demand for rapichdethe-clock
Internet provision. This growth has created a need for systef control
and management to regulate an increasingly complex infiestre. Unfortu-
nately, the prospect of making fast money from this burgegmdustry has
also started to attract criminals. This has driven an ireéa and profession-
alization of, cyber-crime. As a result, a variety of methbesge been designed
with the intention of better protecting the Internet, iterssand its underlying
infrastructure from both accidental and malicious threBteewalls, which
restrict network access, intrusion detection systemsgchvlucate and pre-
vent unauthorized access, and network monitors, whichseeethe correct
functioning of network infrastructures, have all been deped in order to
detect and avert potential problems. These systems carobdlpdefined as
either reactive or proactive. The reactive approach seeldentify specific
problem patterns. It uses models learnt from theory or &t locate com-
mon dangers as they develop. The number of patterns appbed@s each
new problem is encountered. Proactive methods work diftbreThey start
defining an idealized model of the normal behavior of a giwesiesn. Any
significant deviation from this model is assumed to be anrabee caused
by an external danger. However, this assumption may turtodag incorrect,
having actually not arisen from a disruption or a malicioas Bespite con-
siderable improvements, the development of accurate fiveatetection and
classification methods is still an area of intense reseditais.is particularly
true of methods fit for high speed networks. To cope with thgestamounts of
data at hand, these methods utilize highly aggregated fofrdata. Volume
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measurements and traffic feature distributions such asuimbder of connec-
tions per time unit or the distribution of connection sosréerm their pri-
mary sources of information. Various methods have beenlojesd to detect
anomalous changes in these distributions. Among thempgnbrased meth-
ods have become widely used, and demonstrate considetaigless in both
research and production systems. Nonetheless, thererremaaly challenges
regarding the use of entropy.

In this thesis, we address three of these challenges. Indpghkd net-
works, packet sampling methods are widely employed to rethie amount
of traffic data measured. However, we possess no empiri¢alateout how
this affects the visibility of anomalies when using entr@pyolume metrics.
Another area where additional analysis is required is thevaf entropy with
regard to anomaly detection. A study published by Nyéhial. found that
entropies of common traffic feature distributions corekttongly with sim-
ple volume measurements. The authors use this to suggesieyaherefore
do not contribute much. However, their claims do not matepttactical evi-
dence furnished by the many successful applications ofitethod. The sec-
ond issue is the characterization and visualization of ghatn distributions.
In high-speed networks, the sheer quantity of informatimoived makes the
concise representation of changes in distributions eiséeHowever, many
of the most commonly used methods, such as the Shannon graregam-
pered by their limited descriptive power. This stems from thct that they
capture change using a single number. Other methods, ingldistograms,
suffer by the fact that their optimal use depends on parasetkich differ
across various types of change.

The third problem to consider is the way in which the detecéind classi-
fication capabilities of entropy-based anomaly detectandoe improved. Ex-
isting systems do show good detection rates. They can avan,gxtent, suc-
cessfully classify the largest anomalies. However, theneains scope to re-
fine their performance, specifically when dealing with srt@atedium sized
anomalies. Furthermore, studies on distributed deniafice and port scan
anomalies from malware point out that parameterized ermsofuch as the
Tsallis entropy might be superior to non-parameterizedogigs. However,
how these preliminary results can be linked to arbitraryes/pf anomalies,
as well as appropriate detection and classification systemsins underex-
plored.

In this work we make the following contributions. We analytze robust-
ness of entropy in the presence of packet sampling. Baserhffic traces
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from the outbreak of the Blaster and Witty worm, we find thatrepy is
not only robust but, depending on the traffic mix, might evesud to an im-
provement in the location of anomalies for sampling rategpofo 1:10,000.
Next, we analyze whether the entropy of various traffic featlistributions
provides valuable information for anomaly detection. Weaiteethe findings
of previous work, which reported a supposedly strong cati@h between
different feature entropies. Our core contribution is Thaffic Entropy Spec-
trum (TES) a method for the compact characterization and visuatinadf
traffic feature distributions. We also propose a refinedigarsf the TES,
which hones its capabilities with regard to anomaly classiibn. To demon-
strate the descriptive power of the TES, we use traffic datdagoing real
anomalies. Finally, we build the Entropy telescope, a diete@nd classifica-
tion system based on the TES. We provide a comprehensivestiaal using
three different detection methods, and one classificatietihad. Our evalua-
tion, based on a rich set of artificial anomalies combinet vaal traffic data,
shows that the refined TES outperforms the classical Shagmoopy by up
to 20% in detection accuracy and by up to 27% in classificamouracy.






Kurzfassung

Das heutige Internet ermdglicht jederzeit und praktisaréat Zugriff auf ei-
ne schier endlos erscheinende Menge an Informationen terdsieistungen.
Zahlen wie die Versechsfachung des via Internet erzielteisaizes des US
Einzelhandels seit 2000 weisen deutlich auf dessen zunatei@edeutung
fur die Weltwirtschaft aber auch auf die damit verbundenehsande Abhan-
gigkeit hin. Neben erhdhte Anforderungen an das Managemrehtlberwa-
chung aufgrund der zunehmenden Komplexitéat der Infragirukihrte dies
insbesondere auch zu einer Zunahme und Professionatigieter Cyber-
Kriminalitét. In den letzten Jahren wurden deshalb veesdémste Metho-
den entwickelt, um das Internet, seine Teilnehmer und digunde liegen-
de Infrastruktur besser vor mutwilligen aber auch unbedibisjten Stérun-
gen und Bedrohungen zu schiitzen. Dazu gehdren Systemeraieahis zur
Beschrankung des Netzwerkzugriffs, Systeme zur Erkenoadgverhinde-
rung eines unerlaubten Eindringens oder auch Systeme inenr&berwa-
chung des korrekten Funktionierens einer Netzwerkinfu&str. Zur Erken-
nung und Vermeidung von Stérungen und Bedrohungen gibtueglgétzlich
zwei Ansatze: Erstens, der auf Mustererkennung basieaktive Ansatz, der
die Erkennung von in der Theorie oder Praxis bekannten Bechgen er-
moglicht. Und zweitens, der proaktive Ansatz, der auf den@rme basiert,
dass jegliche Abweichung von einem spezifizierten normeéehalten eines
Systems auf eine Bedrohung oder Stérung hindeutet. In dinalyse der
Abweichung kann sich dann aber durchaus herausstelles gdasich weder
um eine Bedrohung noch um eine Stérung gehandelt hat.

Trotz einiger viel versprechender Ansétze ist eine pr&igennung und
Klassifizierung mit proaktiven Methoden noch immer ein @elimtensiver
Forschung. Dies gilt insbesondere auch fiir Methoden, diddi Einsatz in
Hochgeschwindigkeitsnetzen geeignet sind. Um den riasiz@tenmengen
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Herr zu werden, basieren die meisten dieser Methoden abhfdggregierten
Informationen. Dazu gehdren priméar Volumen- oder Verteginformatio-
nen wie z.B. die Anzahl Verbindungen pro Zeit oder die Véutey der Quell-
und Zieladressen oder auch der Verbindungsdauer von \derbgen. Eine
Klasse von Methoden, die sowohl in der Forschung als auckrinndiustrie
mit Erfolg eingesetzt wird, identifiziert ungewdhnlicherfladerungen mit
Hilfe der aus den Verteilungen der Quell- und Zieladressehder Quell- und
Zielports der beobachteten Verbindungen berechneterjiiatrerte. Trotz
dieses Erfolgs gibt es aber noch viele offene Fragen undudéraderungen.

In dieser Doktorarbeit adressieren wir drei dieser offeResgen und
Herausforderungen. Die erste Herausforderung betrifiadialyse der Aus-
wirkungen von unvollstandigen Messdaten. In Hochgesctiigkeitsnetzen
wird zur Reduktion der Systemlast oft nur ein Teil der effekiber das Netz-
werk fliessenden Datenpackete fiir eine Messung beruckgidBei zufalli-
ger Wahl der gemessenen Datenpakete ist somit die Chansg, glass die
Zahl der nicht erfassten Verbindungen fur Verbindungesndir aus wenigen
Datenpaketen bestehen, grosser ist als fur Verbindungevieteén Datenpa-
keten. Bis anhin ist unklar, wie sich dies bei der VerwendumgEntropie als
Metrik auf die Sichtbarkeit von Anomalien auswirkt. Unkieit besteht auch
beim Nutzen von Entropie-basierten Metriken im Hinbliclk die Erkennung
von Anomalien. Eine von Nychist al. publizierte Studie stellte hierzu fest,
dass Entropie kaum mehr Informationen liefert, als beiritinfachen Vo-
lumenmessungen enthalten ist. Die bisherigen Erfolge mtitdpiemetriken
stehen allerdings im Widerspruch dazu. Eine zweite Heoaidsfung stellt
die Erfassung und Visualisierung von Veranderungen ineiferigen dar. In
Hochgeschwindigkeitsnetzen ist eine kompakte und mit B@kf Verande-
rung informative Erfassung und Darstellung von Verteilemgufgrund der
schieren Menge von Informationen von grosser RelevanheBigerwende-
te Verfahren haben entweder nur eine beschrankte Besuhgskraft, well
sie, wie die Shannon-Entropie, die Veranderung mittelere@inzigen Zahl
beschreiben. Oder deren optimalen Erfassung héngt wie H&togramm
primér von Parametern ab, die von der Veranderung selbéngfidisind. Die
dritte Herausforderung betrifft die Verbesserung der Brkengs- und Klassi-
fizierungsleistung von entropiebasierten Anomalie Deteki. Existierende
Systeme zeigen bei massiven Anomalien gute Detektionstailmekise auch
Klassifikationsleistungen. Fur kleinere Anomalien iseiheistung hingegen
wenig erforscht. Studien zu Distributed Denial of Serviceo/alien und
Portscans von Malware weisen zudem auf die Uberlegenheipacametri-
sierten Entropien wie der Tsallis Entropie hin. Eine Ausweg auf beliebige
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Anomalien sowie die Frage nach passenden Detektions- tassiikations-
systemen bleibt aber unbeantwortet.

In dieser Arbeit machen wir die folgenden Beitrage: Wir gsedren die
Robustheit der Entropie beim Einsatz von Messstrategierf{id die Gene-
rierung der Verbindungsinformationen im Durchschnitt jagtes n-te Paket
berticksichtigen. Basierend auf dem Ausbruch des BlastkiNitty Wurms
zeigen wir, dass Entropiemetriken robust sind und je nackeVesmix und
Anomalie sich deren Sichtbarkeit bis zu Abtastraten voi®,000 sogar ver-
bessern kann. Ein weiterer Beitrag ist eine Analyse deni@ateder Entro-
pie von verschiedenen Verbindungsmerkmalen in Bezug auAdomalie-
detektion. Wir widerlegen dabei eine Studie, die eine st&drrelation zwi-
schen verschiedenen Entropie- und Volumenmerkmalen fander wich-
tigster Beitrag jedoch ist die Entwicklung desffic Entropy Spectrum (TES)
eine auf der Tsallis Entropy basierende Methode zur kongpakharakte-
risierung und Visualisierung von Verteilungen von Verhindsmerkmalen.
Wir ergénzen diesen Beitrag durch eine Verfeinerung des iEBinblick
auf die Klassifizierung von Anomalien. Zur Demonstratiorr &eschrei-
bungskraft des TES verwenden wir Verbindungsdaten mieechhomalien.
Schliesslich bauen wir das Entropie-Teleskop, ein auf d&8 basierendes
System zur Erkennung und Klassifizierung von Anomalien uefin ei-
ne umfangreiche Evaluation basierend auf drei verschexuBetektionsme-
thoden und einer Klassifikationsmethode. Die Auswertungemier grossen
Zahl an kinstlichen Anomalien kombiniert mit realen Venlselaten zeigt,
dass der verfeinerte TES Ansatz der klassischen Shannwopknbei der
Detektion um bis zu 20% und bei der Klassifikation um bis zu 2i8érle-
gen ist.
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Chapter 1

Introduction

The terminternetwas coined in the late 198bwhen it referred to the emerg-
ing network infrastructure which resulted from the inteking of the ARPA-
NET and the NSFNET. Since then, the Internet has morpheddramare re-
search and communications network of around 160’000 h@stoper 1989)
to a key corner stone of contemporary society with aroundr88&n hosts
(January 20123. The Internet provides a multitude of functions. Itis a tigi
library and a source for all sorts of (dis-)information. lfosvs us to commu-
nicate across continents and time zones through the usstahirmessaging,
social network sites and voice or video communication. lrermrnore, its in-
frastructure facilitates the remote control of homes amtiofées, and even
power plants and surveillance systems. The Internet fonm$ackbone of
e-government, e-commerce and online banking. It is cruoialficient in-
dustrial management, the smooth operation of complex pttalhsport sys-
tems, and the supply of necessary goods and services. Aimggting we
do nowadays involves the Internet in some way. It is fundaaigo the
maintenance of our standard of living. A March 2009 repoddoiced by
the European Commission (EC) [6] illustrates its impor&atucthe European
economy: In 2007, “...purchases and sales over electretiganrks amounted
to 11% of total turnover of EU companies”.

1According to Tannenbaum [3], the term Internet - as we undedsit today - emerged
around the time when ARPANET was interlinked with NSFNETwwer, the first confirmed
occurence of this term was in RFC675: Internet Transmis€iontrol Program [4] where it is
used to refer to any network based on the techniques dedénliR-C675.

2Source: Internet Systems Consortium: Internet host caisttiry [5].
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Unfortunately, this comes at a price. Our dependence othessatal reli-
able Internet provision makes us vulnerable to blackmaifdcidental fail-
ures, or to malicious attacks. To complicate matters fuyttie Internet is
a distributed infrastructure managed by a large number tefrhet Service
Provider (ISP). ISPs operate across a variety of differeisiness cultures
and legal frameworks. Their global nature makes it diffitoladdress new
challenges quickly and efficiently. The vulnerability desh by the ever-
increasing expansion of the Internet, coupled with a ddsim@ake money,
have seen the growth and professionalization of cyberecnmrecent years.
On the 27th of April 2007, Estonia was hit by a large-scaleetyditack,
whose source could not be identified. On the 7th of August 20@8Geor-
gian military’s IT systems were similarly crippled by a cytstack, shortly
before the Russian army invaded the country. These instaredrequently
cited examples of a troubling phenomenon; the threat ofighitcyber war.
Modern society’s complete dependence on the Internet doeilexploited.
Both covert and open cyberspace attacks constitute a jaitgntevastating
new way to defeat one’s enemy.

The risk posed by these threats, and their imminence, is toagdess.
In [6], the EC estimates the probability “...that telecontwarks will be hit
by a major breakdown in the next 10 years, with a potentidgleconomic
cost of around 193 billion Euro” to be around 10% to 20%. Thisrmus
prediction is backed up by a consideration of the histogealution of cyber-
attacks between 2000 and 2009. The growth seen in Figurelisatrather
disturbing story: Cyber-attacks have grown in both pravedeand sophisti-
cation. The earlier years were characterized by relatifely attacks, pre-
dominantly Tribal Flood Network (TFN)attacks carried out by hackers for
fun and fame. The past decade has seen this grow to over 7@@8saper
day. These new attacks are now chiefly motivated by moneyaendarried
out by advanced Botnet technologies, such as the ConfickemWbhe only
positive news is that the sizes of the attacks themselvesaapp have tailed
off.

Indeed, there is one further cause for optimism. The lacgéesttacks on
Estonia and Georgia appear to finally have attracted thetetteof political
decision-makers. In [6], the EC proposed a new strategydpgre Europe
for action in case of a major incident. One of the EC’s vowsftdure pol-
icy was to ensure that attack detection and response areagiby “...the

3A network of master/slave programs that coordinate witthesther to launch a SYN flood
against a victim machine.
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development of a European information sharing and aletesy’s
Fortunately, researchers in academia and industry hagelgléollowed
the evolution of the Internet, and its related emergingatasince its earliest
days. As a result, a variety of methods have been designadhatintention
of better protecting the Internet, its users and its undwglynfrastructure
from both accidental and malicious threats.. This has seerciteation of
firewalls to restrict network access, intrusion detectipsteams (IDS) to lo-
cate and prevent unauthorized access, and network mototangersee the
correct functioning of network infrastructures. Both riae and proactive
methods have been proposed as means of detecting and gvsotential
problems. The reactive approach seeks to identify specibiclpm patterns.
It uses models learnt from theory or practice to locate comh@ngers as
they develop. The number of patterns applied grows as eaglpreblem
is encountered. Proactive methods work differently. Theytslefining an
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idealized model of the “normal” behavior of a given systenmy/Aignificant

deviation from this model is assumed to be an aberrance dduysan ex-
ternal danger. Hence, these systems are typically nanethaly detection
systemsConfusingly, this term often refers to more than just systevhich

simply flag up problems. It also is often used as conveniemrtlshnd to de-
scribe systems that also diagnose specific types of problémthis thesis,
to avoid confusion, we only employ this term where the didton between
anomaly detection and anomaly detectamd classificatiorsystems is not
relevant to analysis.

In this thesis, we concentrate on anomaly detection andifiation sys-
tems tailored to operate in high-speed networks. In the imhea of this
chapter, we start by explaining what kind of network we retewhen we
say high-speed networkand the implications this has for systems designed
to operate in such networks. We go on to discuss anomaly ta@te@and
identify the most significant issues which arise from the efsthese detec-
tors. We round off this discussion by presenting our claints@ntributions.
Finally, we briefly introduce the network infrastructureialhn provides the
measurement data used in this thesis before concludinganithwverview of
the different chapters of the thesis.

1.1 High-Speed Networks

As one would expect the teringh-speed netwontefers to a network that al-
lows to transport data in a fast and efficient way. But just fest/is fast? For
traffic inspection in real-time, theoretical limits suchthe bandwidth of the
up and down-link(s) are merely one aspect to consider. Gigects are e.g.,
network topology, sensor placement and the number of hostsnunicating
with each other. We therefore require a more precise definttian simply
that of a network that transports data in a fast and efficient WWe propose
the following alternative description:

Definition - High-speed network: A high-speed network is a network where
traffic monitoring and anomaly detection is typically perfeed on aggregate
views of traffic data. Such networks handle traffic from tlamals or millions
of hosts and rely on technology and equipment expensivegartouprevent
their use if not appropriate or no longer required. Networkffic data is
collected at multiple locations in the network (e.g., bardmiters but also
internal routers or switches).
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Examples of networks conforming to this definition are etlgose of com-
panies such as Amazon or eBay where network quality and Spescthe
core of their business but also those of medium- to largee $6®.

Note that the methods and systems presented in this theisoarestricted
to this type of network. However, in networks where it is ari@pto per-
form network monitoring and anomaly detection on full padkaces®, our
methods and systems could not make full use of the data biaila

1.2 Anomaly Detection and Classification in
High-Speed Networks

The main problem with a high-speed network is that it is alnmgossible
to inspect and analyze all of the network traffic flowing indasut of the
network. There is no hardware fast enough to inspect andlseaery sin-
gle data packet for abnormal patterns as traditional IDSlveradeep packet
inspection (DPI) based systems %A DPI system typically inspects both
the data and header information of each packet to searclextnple, for
protocol violations, malware or for traffic from a specificpdipation. This
is a CPU intensive process. The system must decompose thepr@ocol
layers found in a network packet to identify its content.

At the same time, this large amount of data also constitlteiggest
advantage of systems operating at high-speed network [Ekelr traffic ex-
tends into the thousands or millions of hosts. This allovesrtho identify
anomalies such as a sudden coordinated activity from a sablsests which
would be invisible without a “global” view. Anomaly deteati in high-speed
networks exploits this advantage to focus on changes ificretiaracteris-
tics that could pose a potential threat to the stability availability of a
network. To exploit the benefit of this “birds-eye view”, tf@lowing data
reduction steps are typically involved when operating ghkspeed network
level. The first two steps are generic and produce the bapid idata for
any kind of measurement. The third step is specific to mostnahodetec-
tion and classification approaches, whilst the fourth stegpecific to entropy
based appraches:

¢ Perform packet sampling to reduce the load on the captaenge

4=non-aggregate view
5Such hardware might be built but at a price where the costevaitio is too low.
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» Aggregation of packet data into flow data on the capturingate
» Extraction of traffic feature distributions
* Summarization of feature distributions

We briefly discuss these steps, and a selection of theireklatoblems
and challenges before concluding with a short summary ofctialenges
addressed in this thesis.

1.2.1 Packet Sampling

Most of the sensors used for data collection in high-speédar&s are de-
vices whose primary task is to switch or route packets towlsed destina-
tion. Any other task is considered to be of low priority, asdhus afforded
only a limited share of its precious resources. In practicis, means that
many operators configure them to consider only every tenttkgiaevery
hundredth packet, or sometimes an even smaller fractiorackgis, when
performing network measurements or generating aggregatesfof data.
Clearly, for most applications, sampling removes a sigaificchunk of in-
formation. The impact of this removal therefore needs totbdisd in order
for us to be able to identify information that is more robussampling, or to
quantify the robustness to sampling of a given application.

1.2.2 Aggregation of Packet Data into Flows

In a next step, related (sampled) data packets are aggdegtdea so called
flow. A general definition of a flow can be found in RFC5101 [7], tRé-low

Information Export (IPFIX) Protocol Specification. Accamd to RFC5101,
a flow is a set of Internet Protocol (IP) packets sharing comproperties
and passing an observation point in the network during aicetitme interval.
Properties are the result of applying a function to the \ahfe

1. Oneor more packet header fields (e.g. destination IP sslditeansport
header fields (e.g. destination port number), or applicdteader fields
(e.g. RTP header fields [8]).

2. One or more characteristics of the packet itself (e.g.kgakength,
etc.).

3. One or more of fields derived from packet treatment (e.gt nep IP
address, etc.).
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With this definition, a flow can e.g. consist of all packetshwibhe same
source and destinatidhall packets observed at a specific network interface,
or a single packet between two specific applications. Howavéhis thesis,
we use a more restrictive definition of the teflow. Firstly, a flow contain at
least the following information:

« Source and destination of the packets (IP address and yoither)

 Protocol used

e Time of the first and last packet

e The number of bytes and packets transferred from the sdortee
destination

Note that this requirement is in line with the common usagthisfterm
in related work, as well as with the properties which provédgf high-speed
networks typically use for their flow data.Also note that if packet sam-
pling is used, the information contained in a flow is inactewr&or example,
instead of the true number of bytes and packets transferoed the corre-
sponding source to the destination, only the bytes and psokeéhe packets
that were sampled are reported. Secondly, we use the folgpefinition for
how packets are aggregated into flows (with respect to aesimggivork link):

Definition - Flow: A flow is a summary of all packets with the same 6-tuple
- source IP address and port, destination IP address and, pwotocol and
Type of Service (ToS) fiefdA flow starts with the first packet of a specific 6-
tuple and ends either based on a timeout strategy or protspetific triggers
(e.g., TCP flags). A flow is amidirectionalflow since it accounts only for
packets flowing from the source to the destination. Notetthatspecifica-
tion complies with the traditional definition of a flow by this€b NetFlow [9]
flow format.

6E.g. all packets that share the same (1) source and destin&iaddress, (2) source and
destination port and (3) the same protocol number

"Note that with older flow data formats such as Cisco NetFlojw§@sion 5, there was no
flexibility in the properties that define a flow

8Since 1998, this 8-bit long field has been termed Differéi®ervice Field and consists of
the 6 bit long Differentiated Services Code Point [10] anel tiwo bit long Explicit Congestion
Notification (from 2001 onwards) [11]. Previous definitioji®, 13] as well as the nameoS
field are thus outdated and should no longer be used. See [14] fotaesting discussion of
this field and its use related to flows.
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A consequence of this definition is that a two-way commuincatesults
in two flows? one for each direction. Figure 1.2 illustrates this with an e
ample of a two-way communication between two hosts.

Flow

source IP: 192.168.0.100 source IP: 192.168.0.100 192.168.0.100

desfmaho'; IP: ;;7)2168-012 destination IP:  192.168.0.22 192.168.0.22

o o source port: 80 80

destination port: 15203 s

byles: P 2580 destination port: 15203 15203

packets: 2 bytes: 1120 1460

time first: 1.1.2009 12:00:54.932 fime: 1.1.2009 12:00:54.932  1.1.2009 12:00:54.970

time last: 1.1.2009 12:00:54.970;

sampled sampled
<« - B _ _ DR
Packets
IP:192168022 § ~ "7 TS T T TR TR 1 IP: 192.168.0.100
port: 15203 port: 80
sampled sampled Fiow
source IP: 192.168.0.22 192.168.0.22 source IP: 192.168.0.22
destination IP: 192.168.0.100 192.168.0.100 destination IP:  192.168.0.100
source port: 15203 15203 source port: 15203
destination port: 80 80 destination port: 80
. bytes: 1245
bytes: 1203 42 packets: 2
fime: 1.1.2009 12:00:55.121 1.1.2009 12:00:54.891 time first: 1.1.2009 12:00:54.891
time last: 1.1.2009 12:00:55.121

Figure 1.2: Two-way communication between two hosts: Example of ag-
gregation of packet data into flows. Note that NetFlow flowords contain
relative time stamps based on epoch, not absolute ones hsifigure.

If the data is collected by a device with multiple input andput inter-
faces, both the fields of the 6-tuple and the identifier of tiggass interface
recording the packet must match. Thus, a TCP connectiorgaetiwo com-
puters might be reported by two flows if the packets are roated different
paths arriving at different interfaces of the device. Theaas true if data
is collected by multiple sensors at different locationse Thnnection might
be reported multiple times, either because all packetsttaksame path but

9Note that for IPFIX, RFC5103 [15], also proposes a way to egate and export flow in-
formation for both directions in one single flow. Howeveistis not yet widely used. Also note
that if packets in one direction do not cross the same flow daltactor as those in the other
direction, the collector can report only an unidirectiofiaiv.
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cross multiple devices, or because different packets téfereht paths, or
both. If an application expects a flow to represent, for eXamgne direction
of a TCP connection as closely as possible, it is necessadg-tduplicate
and merge such flows into a single flow. In the case of the bdrdfic of a

stub network, this can be achieved by considering only floasfthe border
interfaces and by merging flows with the same 6-tuple.

1.2.3 Traffic Feature Distributions

The flow data obtained from the previous step is fairly dethiNonetheless,
even more complex analysis is possible. This could involaeking each
host to see which other hosts they contact, when this is dave much data
they exchange, and even more complex behavioral analysis.

However, with traffic from up to several millions of hosts afgaegate
line-speeds of up to hundreds of gigabits per seconds, thigdarequire a
considerable amount of memory and processing power. Sgsieah could
do this on-line (in real-time) would be fairly expensive oigimt no even ex-
ist. As such, anomaly detection and classification systgrasating in high-
speed networks typically fare badly in locating “needlethmhaystack” such
as a single host getting infected by stealthy malware. ldgdeés is a partic-
ular strength associated with systems deployed to proteall :#etworks or
groups of host. Nonetheless, the large amount of data isthésdiggest
advantage of systems which operate at the high-speed neleval. Deal-
ing with traffic in the thousands and millions of hosts allatvem to iden-
tify anomalies, such as a sudden coordinated activity frasulsset of hosts,
which would otherwise be invisible without a “global” viewAnomaly de-
tection in high-speed networks exploits this advantagetwus$ on changes
in traffic characteristics which might pose a potential &r® the stability
and availability of a network. However, the birds-eye vienopded by their
huge amount of traffic allows them to identify anomalies sibvlie at the lo-
cal scale, or problems whose extent and impact is not capageurately
enough at this scale. In the first case, this could constdwtadden coor-
dinated activity from a subset of hosts, where the majoritthe hosts are
located beyond the local scale. In the latter, this couldrred an anomaly
visible at the local scale which affects not only the locaiwak but many
different other networks. Since complex analyses of traffigracteristics are
typically expensive in terms of computational time and mgmite majority
of anomaly detection systems in high-speed networks basedétection on
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an analysis of the number of flows, bytes or packets per titeeval. This is
complemented by an analysis of changesaiffic feature distributionsf dif-
ferent flow features like source and destination port or@@and destination
IP address. Figure 1.3 shows a sample of such a traffic fedistréoution.

Traffic Feature Distribution Analysis and Visualization Tool
Ibasicmetrics-v2-0 900 IN ALL TCP DSTPORTFC
16-Mar-2004 07:45:00
10 T T
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Figure 1.3: Screenshot of our distribution analysis tool showing aficaf
feature distribution for the traffic featursource port The port number is
indicated on the x-axis, with the number of flows with thisseyort noted

on the y-axis in log-scale. Note that only TCP traffic flowinigiour network

is considered. In the 300-second time slot starting at L2034 07:45, port
80 is the port with the most flows (marked) closely followegdry 135.

1.2.4 Summarization of feature distributions

Unfortunately, even traffic feature distributions are pfitefeasible, as several
millions of data points need to be stored and compared inrdodiglentify
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anomalous changes in such distributions. Heagapre compact represen-
tation of information about relevant changes is required

A prominent way of capturing important characteristicsistributions in
a compact form is the use of entropy analysis. Entropy aisa({t$ reduces
the amount of information needed to be kept when charaatgrchangesin a
distribution and (2) allows for a compact visualization o€k changes. How-
ever, other summarization techniques such as histogra®4 7] or Sketch
data structures [18] are also used. Sketch-based appsosaliien a set of
histograms where the elements are assigned to bins usingoé different
hash-functions. Both histogram and sketch-based sumatiarizenables the
tuning of the amount of data to be stored and analyzed. Hatodased
methods can be tuned by choosing an appropriate binningathethd bin
size. Sketch based approaches are tunded by selectingpthary number
of hash functions and the number of bins per Sketch.

While many different forms of entropy exist, only a few hawseh stud-
ied in the context of anomaly detection and classificatiohigh speed net-
works. The most common form is the Shannon entropy. Thistismly used
in research [19-21] but is employed in a variety of other erts, includ-
ing in NetReflex, a commercial anomaly detection and clasdifin system
made by Guavus [22]. However, other forms of entropy suchadJitchener
T-entropy [23, 24] are also used. Nonetheless, most workeeatpat there
are limits to entropy based detection, especially whennie®to detecting
slow worms or small-scale attacks [19]. The strength of fhmaach lies in
its broad scope [19, 23, 24]. These common claims may wedl trake for
entropy based approaches in general. However, studyifeyefit forms of
entropy in detail might allow us to discover a form that casistsn refining
the approach, and help push forward the boundaries reggituir use.

One promising form of entropy is the Tsallis entropy, a paetarized
form of entropy. Two studies, one performed by Ziviatial. [25] and the
other performed by Shafiet al.[26], provide evidence that this form of en-
tropy might be superior to the Shannon entropy. The primaagon as to
why this form of entropy might be superior to the Shannonagtr or in-
deed to any other non-parameterized form of entropy, isitttain focus on
changes in different regions of a distribution, dependimgh@ parameter. As
an example, let us consider the distribution of port numgfsss Figure 1.3).
Changes in entropy caused by rarely used ports could paligrite obscured
by more immediately noticeable change in those ports whesésumore fre-
quent. In [25], Zivianiet al. investigate at which parameter value distributed
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denial of service attacks are best detected. lin [26], Stetfigl. do the

same for port scan anomalies caused by malware. Unfortynide optimal

choice of this parameter seems to depend either on the ap@mtide base-
line traffic, or for both, since they did not report similatwes for the optimal
operation point. Thus, a generalization of these prelinyimasults towards
arbitrary types of anomalies and an appropriate detectiohctassification
systems remains unachieved.

Despite the many positive results noted with regard to teefientropy, a
recent study by Nychist al.[27] questions the usefulness of the entropies of
feature distributions such as source and destination |Reades or source and
destination port numbers. The study found a persistenttrodgcorrelation
between these entropies, which led them to their criticattgsion.

1.2.5 Challenges

In our thesis, we focus on the following challenges, as ohiced in the pre-
vious section:

Robustness and significance of metrics:

Packet sampling methods are widely employed to reduce toeaiof traffic

data measured. It is therefore critical to identify anongsdyection metrics
that are robust in the presence of packet sampling. Additiprthese met-
rics should provide valuable information in the sense thaytdo not show
persistent and strong correlation.

Characterization and visualization of changes in distribdions:

A compact characterization and visualization of changessimibutions is es-
sential for most anomaly detection and classification nmaghor high speed
networks. Many of the most commonly used methods, such aShhanon
entropy, are hampered by their limited descriptive powéis tems from the
fact that they capture change using a single number. Othignads, including
histograms, suffer by that fact that their optimal use dejgesm parameters
which differ across various types of change
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Improving entropy-based detection and classification metbds:

Existing systems show good detection performance. Theg,deean ex-
tent, perform successfully with regards to classificatiblonetheless, there
remains room for improvement with regard to small to mediizacsanoma-
lies. Generalized forms of entropy seem to offer promisenéler, a gener-
alization of preliminary results towards arbitrary typdsanomalies as well
as appropriate detection and classification systems remaiachieved.

1.3 Claims and Contributions

The central claim of this thesis is that entropy is an aceutadl to both
detect and characterize anomalous changes in traffic &dtstributions of
high-speed networks extracted at the network flow level. #&cter and clas-
sifier built on the basis of generalized entropy can detedttassify network
anomalies accurately and outperforms traditional volunf@mnnon entropy
based detectors.

We make the following research and engineering contribstito demon-
strate that our claim holds:

< Astudy into the robustness of entropy features with regard b packet
sampling [28, 29]: Many flow collectors make use of packet sam-
pling to reduce their processing load. It is therefore intgatrto know
whether entropy features are robust with regard to expositggna-
lies in the presence of (random) packet sampling. Our aisa]28]
based on the Blaster worm anomaly showed that the Shannmpgnt
of feature distributions such as IP addresses or port nusribdess
affected by sampling than traditional volume metrics suslyge- or
flow count. We extended our study in [29] using the Blaster \Afiitly
worm to evaluate how different traffic mixes and packet samgpéf-
fect the exposure of anomalies in volume, feature countseairdpy
metrics. Based on traffic recorded by different sensors vesvghat
the traffic mix has a significant impact on the visibility of anomaly
and might even lead to an increase in its visibility for sangpkates
of up to 1:10,000. A comparison of feature codfimnd entropy met-
rics reveals that they should both be used, as both haveréspiective
strengths and weaknesses.

10g g. the number of different ports or the number of differéhaddresses per time window
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» Feature selection: A correlation analysis of various volure and en-
tropy features [30]: We analyze whether commonly used volume- and
Shannon entropy features provide valuable, unbiasednr&ton, and
refute the conclusions of previous work which suggestedaasedly
strong correlation between different feature entropies.

« A method for capturing and visualizing anomalous changes itraf-
fic feature distributions [30, 31]: We introduce the Traffic Entropy
Spectrum (TES) to analyze changes in traffic feature digiobhs and
demonstrate its ability to characterize the structure ohaalies using
traffic traces from a large ISP ([31]). With regard to detectiwe pro-
pose to use the information from the TES to derive pattenngifferent
types of anomalies and present ideas as to how these coukkldeaa
automatically detect and classify anomalies. Furthermeegpropose
a refinement of the TES that mitigates an unwanted effecte@sing
the level of detail exposed [30].

» Design and evaluation of a comprehensive anomaly detectiand
classification framework based on the TES [30]We propose a com-
prehensive anomaly detection and classification systeledctie en-
tropy telescope and provide an extensive evaluation witretdifferent
detection methods, one classification method and a richf setamaly
models and real backbone traffic. Our evaluation demoesttae su-
periority of the refined TES approach over both TES and theertrar
ditional approaches which employed only the Shannon method

* Redesign and implementation of NetFlow data processing irdis-
tructure and libraries and tools: At the start of this thesis, basic tools
for reading, writing and processing NetFlow v5 data wereilalike.
However, many features needed for the thesis were stillingissnd
many tasks involved running a set of different tools. Therefwe re-
designed the existing tools, contributing a significant hemof new
features in the process. Two of the most important featwidecare
the flow’s origin and destination Autonomous System (&Sjumber
and the origin and destination country in which the soura desti-
nation of the flow are located. Both features are derivedraatizally
from the source and destination IP address of the flow and akesfl
time stamp. The time stamp of the flow is required to identifyick

11see 1.4 for a definition of AS.
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lookup table to use since the mapping of IP address to AS nuartbe
country is far from static. It involves setting up an infrasture to col-
lect and process Border Gateway Protocol (BGP) data to gentre
required lookup and developing tools to access and use tfilemeetly.
The same had to be done for the IP address to country looklgstab
provided by MaxMin® GeolP databases [32]. We compiled every-
thing into a comprehensive framework consisting of two mhjodlding
blocks: theNetflowVXlibraries and tools for working with NetFlow v5
and v9 data and a modulbietFlow Processing Framewogkoviding

a customizable abstraction from the different data forraatsa simple
way to assemble a processing chain using basic and customlesod
The basic modules provided include a reader capable ofrrgatid
merging two input streams, a reader and a writer for the rateffow
format and a configurable filter to delete certain flows. Ofttwenrtri-
butions are a large set of largely object oriented MATLABIsoand

a Flow-Level Anomaly Modeling Engine (FLAME) [33] based too
for an automated, efficient and highly parallel injectionsghthetic
anomalies into flow traces. The MATLAB tools are in the arefs o
transparent data access, statistics of time series aneteetion, clas-
sification and visualization of anomalies. A more detailedatiption

of the NetFlow data processing infrastructure and thefibsand tools
can be found in the appendix of this thesis.

1.4 SWITCH Network

Our research- and engineering contributions all depench&way or the
other on the availability of network flow data from high-sgeetworks. Un-
fortunately, there are several problems (see 2.6.1) whieligmt the ready
availability of such data. Among them include practicaliss caused by the
huge amount of data to be collected and stored, legal isandshe privacy
concerns of potential data providers. We are therefore threagkful to our
partner SWITCH [34] from whom we receive and archive flow dedan all
of its border routers since 2003.

SWITCH is the operator and also the name of the Swiss natresabrch
and education network. This network connects all Swissarsities and var-
ious research labs such as the IBM Zurich Research LabgratoEERN
to the Internet. Universities and research labs are notihegites it links.
Other sites such as VSnet, a network in the canton of Valdflsiwany mem-
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SWITCH

Serving Swiss Universities

Figure 1.4: The SWITCH backbone and its various points of presence.

bers from the scientific community, education, culture arfdrimation, and
Skyguide, the country’s air navigation service provides,also attached to it.
We believe that this makes SWITCH traffic fairly represemtain the sense
that it includes many different types of traffic. Traffic fraesidential (broad-
band) networks or a company network usually lacks grid camguraffic or
other "special” types of traffic.

Figure 1.4 shows the SWITCH backbone and its various poifhpses-
ence (customers), external peerings in Geneva, Basel anchZzand other
exchange points with research and education networks (BEGMRR). The
border routers from which we get the flow data have the follgwviames and
locations:

* Router 1: Located in Zurich (Telia, Equinix).
+ Router 2: Located in Geneva (GEANT2, GBLX, CIXP).
¢ Router 3: Located in Basel (Swisslx).
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+ Router 4: Located in Geneva (GEAN#2 Swisscom, AMS-IX).
* Router 5: Located in Zurich (Swisslx, Swisscom). AddedriAp008.
* Router 6: Located in Kreuzlingen (BelWu). Added: Febru20p9.

These border routers export flow data in the Cisco NetFloyffi@at3
which is neither anonymized nor sampled. We therefore veaeicomplete
view of the traffic flowing in and out of this netwotk

The above network is also known as Autonomous System AS5%9. A
cording to section three of RFC 1930 [36], an Autonomouseyss a col-
lection of connected IP routing prefixes under the controbiwé or more
network operators that presents a common, clearly defingthgppolicy to
the Internet. Itis considered to be a connected segmentetirork topology
controlled by a single operations and maintenance orgtmizaresenting a
consistent picture of the destinations reachable throbghréspective AS.
Note that this refers either to destinations that are patefespective AS or
destinations located in another AS for which this AS acts @arssit.

In the case of the SWITCH network, the largest portion of reknraf-
fic originates from hosts inside AS559 to a destination det#iS559 - de-
noted by IN-OUT or its shortcutOUT - and the opposite - denoted by
OUT—IN or its shortcutiN. Transit traffic (OUTF-OUT) is limited to traffic
from one research network or site (e.g., BelWu) to anothegaech network
(e.g. GEANT2). In our thesis, we only look at network traffiedéng or
originating in AS559 and ignore other traffic.

Itis clear that since 2003, when we started to collect thia,dhe network
has undergone several structural and technological clsangkile the num-
ber of IP addresses remained more or less constant - roudt8yn@llion in
2003 and 2.4 million in 2010, with a peak of 2.5 million in 20Q6e network
load did not. Table 1.4 lists the median number of flows, bgtes packets
per 15 minute bin on weekdays in August 2003 and August 2088ults are
listed for routers one to four considering the transporeigyrotocols UDP
and TCP as well as the direction of the traffic. With the exicepof router 3,
most flow, byte and packet counts increase by a factor of tvdotben com-
paring the data from 2003 with that 2009. With a median of adbt6 million

12Backup only

13From 2003 to 2008, they exported NetFlow version 5 (NFvSadaind from 2009 NetFlow
version 9 (NFv9) data.

14We are aware of the fact that this does not hold in times wherfltiw table is full or the
CPU load on the router is very high. Fortunately, these ¢mrdi rarely affect us, and we rarely
lose information because of them.
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08/03

#Flows

08/09

#Bytes

08/03

08/09

#Packets

08/03

08/09

R1 | 9.40E+05
R2 | 1.70E+05
R3 | 1.30E+05
R4 | 6.40E+05

2.60E+06
2.60E+06
2.90E+03
7.10E+05

8.80E+09
4.70E+09
9.00E+08
5.90E+09

3.30E+10
6.30E+10
5.60E+07
2.30E+10

2.30E+07
6.60E+06
1.60E+06
9.50E+06

6.60E+07
8.50E+07
8.60E+04
2.40E+07

R1 | 7.80E+05
R2 | 1.50E+05
R3 | 4.10E+04
R4 | 2.20E+05

ouT

9.80E+05
7.10E+05
1.60E+03
6.50E+05

2.50E+10
9.30E+09
5.10E+08
3.90E+09

5.30E+10
5.30E+10
1.60E+07
1.60E+10

2.80E+07
9.80E+06
9.00E+05
5.80E+06

5.80E+07
5.70E+07
5.40E+04
2.30E+07

TCP

R1 | 4.40E+05
R2 | 7.90E+04
R3 | 5.80E+04
R4 | 5.20E+05

2.80E+06
2.90E+06
1.10E+04
7.40E+05

2.30E+08
5.60E+07
2.70E+07
1.70E+08

1.80E+09
2.00E+09
8.60E+05
3.50E+08

1.30E+06
1.90E+05
1.20E+05
9.50E+05

8.00E+06
8.00E+06
1.10E+04
1.70E+06

R1 | 3.30E+05
R2 | 8.30E+04
R3 | 1.10E+04
R4 | 2.10E+05

ouT

1.10E+06
2.30E+06
8.70E+03
1.00E+06

1.40E+08
3.70E+07
5.90E+06
6.70E+07

3.10E+09
2.30E+09
1.20E+06
1.50E+09

8.80E+05
2.60E+05
4.90E+04
5.30E+05

5.60E+06
6.10E+06
8.90E+03
3.50E+06

uUDP

Table 1.1: Median of the number of flows, packets and bytes per 15 minutes
on weekdays in August 2003 and 2009 for routers 1 to 4, doestN and

OUT and transport layer protocols TCP and UDIR! refers to traffic flowing

into AS559 (IN: OUTIN) and OUT to traffic flowing out of AS559 (OUT:

IN—OUT).

flows, 102 bytes® and 14 10° packets per hour, the SWITCH network is
indeed a high-speed network. This is also reflected in theessid growth rate
of our flow data archive. On the 28th of October 2010, it coredi76 TiB of
bzip2 compressed Cisco NetFlow data and showed a growtlofaeund

400 GiB per week.

1.5 Thesis Overview

The remainder of this thesis is structured as follows. Iptéia2 we review
related work in the field of anomaly detection and classificat We start
by reviewing the different meanings associated with thentanomaly and
define how it is used in this thesis. We then continue with aftmeview

of taxonomies of network anomalies and discuss related \wéstigating

the different types of network anomalies. Next, we preselatted work on
anomaly detection and classification in high-speed netsvarkd conclude

15Corresponding to medianbandwidth usage of around 2.2 Gbps.
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the chapter with a brief review of the literature concernimg evaluation of
anomaly detection systems.

Chapters 3 and 4 investigate the robustness and usefulinemsaus en-
tropy and volume metrics. In chapter 3, we study the impagtacket sam-
pling on the visibility of anomalies in various entropy anoliwume metrics
and shed some light on the role of traffic mix. In chapter 4 waticoie
our assessment by analyzing whether commonly used voluche@tnopy
metrics provide valuable, unbiased information. We preaad discuss the
results of our analysis and discuss why our analysis rethigindings of
previous work which reported a supposedly strong coraidietween dif-
ferent entropy metrics. Furthermore, we introduce new icgeteflecting the
geographical structure of traffic and show that they addrerdayer of po-
tentially useful information.

In chapter 5 we present and discuss Tmaffic Entropy Spectrumour
method for a compact characterization and visualizatidradfic feature dis-
tributions based on a parameterized form of entropy. Afti&oducing the
concept and properties of the TES, we demonstrate its giserpower us-
ing traffic data from different massive real world anomalies

Finally, in chapter 6 we introduce the entropy telescope, anomaly
detection and classification system. We provide evidenceupclaim that a
detector and classifier built around this tool can detectdaskify network
anomalies accurately, outperforming traditional volumé&bannon entropy
based detectors.

Chapter 7 summarizes the results and contributions fronttesis and
discusses directions for future work.






Chapter 2

Related Work

The field of network anomaly detection and classificationosnmew. A con-
siderable amount of related work which analyzes and adesebe various
aspects of the problem already exists. This chapter revaemsmber of key
publications which cover the field of anomaly detection ardclv focus on
anomaly detection and classification in high-speed network

The chapter is structured as follows. Starting from commemegal def-
initions of the termanomaly we review its interpretation by the networking
community and explain how it is used in this thesis. Next, wseuss related
work on the identification and characterization of commoaonraaly types.
We examine notable publications on anomaly detection naisthend subse-
qguently focus on works concerning anomaly classificatioe. ddhclude the
section with a short review of investigations into the usgeaferalized forms
of entropy in other domains.

2.1 Anomaly: A Definition

Events as diverse as a massive DDoS attack, a network sepsoting incor-
rect information, a host not following a given communicatgotocol, or the
network bandwidth used at 12:00am being twice as high as #&xénum seen
in the last seven days can all be said to be some sort of anoN@hetheless,
despite the potential different meanings associated Wélerm anomaly, the
following common generic definitions are used [37—40]: Aomaly is (1)
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a rare or infrequent event with a frequency below a certaiesttiold? (2) an
unexpected result, (3) a deviation from a normal form or,rale(4) a state
outside the usual range of variations.

In anomaly detection in network traffic, these definitions aften used
interchangeably, even though there might be significafiérdinces. A rare
event might actually just be the normal behavior of a systdrithvhas not
been seen often and therefore has been difficult or impesgbihclude in
models which define normal behavior. Nassim N. Taleb coihedt¢rms
Black Swan and Grey Swan to refer to exactly this problem. daisk [41]
gained a lot of interest, mainly because of its crucial r@tee in light of
the crash of the financial markets in 2008. However, Taledéas are not
entirely new. The logical roots of his Black Swan theory letlhe Knight-
ian uncertainty, which refers to an immeasurable risk. In contrast to Taleb’s
formulation, thedragon-kingg43] concept claims that black swans are prac-
tically non-existent, and that the notion of black swansargély unhelpful
when studying real systems. In [43], Sornette defines dr&kigs as ex-
treme events which cannot be classified in the same way asedtbets. The
hypothesis, articulated in [43] and elaborated in [44]dsdhat dragon-kings
appear as a result of a set of amplifying mechanisms whiclairertbsent
or inactive for other sets of events. This gives rise to dmeproperties and
typologies that may be unique characteristics of dragogski Sornette and
Ouillon [44] explore the theory and practical applicatidntos concept, find-
ing significant relevance for the natural, biological andiabsciences.

As a consequence, many researchers measure deviationsafoaiseling
rather than from a pre-determined “norm” [40]. Others avibid problem
by designing and evaluating detectors for a set of prevaleamaly types
identified and specified in advance. In doing so, they fotfedtability to de-
tect new types of anomalies. Another underappreciated issthat deciding
whether something is anomalyis not a simple or objective zero-sum deci-
sion [40]. Do we require 50, 500 or 5000 clients connectingp@ute to an
otherwise unpopular web server to trigger an alert? Fronpanational point
of view, the policies of the operator specify what is consédean anomaly.
They may define some sort of minimum size or even decide tor@some
types of anomalies entirely because they do not pose a torthat operator’s

ITypically from 5% to less than 0.01%, depending on the apfibo.

°Named after Frank Knight (1885-1972), an economist from Wmiversity of Chicago.
In [42, p.19], Frank Knight writes about the need to distisfuisk and uncertainty: “But Un-
certainty must be taken in a sense radically distinct froefémiliar notion of Risk, from which
it has never been properly separated”.
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infrastructure. However, since a policy-based view carcglfy be obtained
from any detection and classification system by tuning timsisieity of the
detector and by filtering anomalies of certain classes usiadgabels from a
classifier, such a perspective is rarely found in research.

In this thesis, we use the teramomalyin two ways. When discussing
anomaly detection, we use the teanomalyto refer to deviations from a
baselinederived from a large number of measurements. When disa@ussin
anomaly classification, the teramomalyis mainly used to refer to a specific
set of anomaly types or classes. See Figure 2.1 for an alistr of this rela-
tionship. The reason for using the term in this way is thatievitiis possible
to detect as of yet unknown anomalies, it is generally diffi€mot impossi-
ble to classify theni.Note that the termanomaly typ@ndanomaly classre
often used interchangeably. However, in the context of alpriassification
systems, the terrmanomaly typenight also be used to refer to anomalies that
share certain properties independent of the classificatistem. Meanwhile,
the termanomaly classnight be used to refer to the label attributed to an
anomaly by the anomaly classification systém.

type 1

anomaly étype 2
—_—> classifier .
\ pe .

Figure 2.1: When discussing anomaly classification, the temomalyis
mainly used to refer to a specific set of anomaly types or ekass

2.2 Anomaly Types

As mentioned in the previous section, our thesis focuses set af well-
known anomaly types, as it is generally difficult if not imgise to classify
unknown anomalies. The following review of related work emdnomies
gives an overview of the well-known anomaly types we can sedoom. In

3Note that approaches like unsupervised clustering mighbleto find similarities between
unknown anomalies and assign them to different clustemufrg). However, the main problem
is then to identify what kind of anomalies these clustersepeesenting.

4ldeally, the anomaly type and anomaly class are the saméf 8dlassification system uses,
for example, classes that include several anomaly typegs th no one-to-one relationship.
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our thesis, we make use of a subset of them oRlsabing/ScanningDoS
DDoSandWorms where the DDoS type also includes the sub-typéector
DDoSandFlash Crowd Clearly, we could have included more anomaly types
and then evaluated our system with a labeled trace of captiore data with
a few anomalies per anomaly type at fixed times only. Howevepreferred
to use a smaller set of anomaly types and to instead spendnuaimtith a
thorough evaluation taking the many different forms andrisities of these
anomalies into account as well as their time of occurréndeother reason
for not extending our set further was that the two most premiranomaly
types not included in our set are tkiutageand Heavy Hitter (ora-flow)
types. Both of theses are already relatively easy to spaguslume-based
anomaly detectors onfy.

In addition to these considerations, our choice of anomghes was
guided by the following two criteria: (1) the prevalence abanalies of this
type and (2) evidence that this type can be detected with adsthpplica-
ble to high-speed networks. The review of related work onpirevalence
of selected anomaly types which concludes this section stibat they all
meet the first criteria. The review of related work on anontidtection and
classification shows the same for the second criteria. Nhatethe review of
related work on the prevalence of selected anomaly typesiattudes the
Flash Crowd anomaly type, to help shed some light on a typgediganerally
considered to be difficult to distinguish from anomaliestué DDoS type.
Due to their similarity to the DDoS type, they are sometimessidered to
be a subtype of the DDoS type.

2.2.1 Anomaly Types: Taxonomy

In [2] Plonka and Barford propose a taxonomy of network an@sadased
on the system used at the University of Wisconsin to log adiesiaTheir
taxonomy includes the following generalc anomaly typesnial of Service
(DoS) Probing/ScanningPopular Content Exchange (Flash Crowdjain-
tenanceNetwork (Failure)landAnomalousr Faulty Measuremerds well as
Prohibited Content Exchange (Flash Crow@he taxonomy is shown in Fig-
ure 2.2 as a tree rooted at tAaomalynode. Note that bottiRopular Content

5A volume anomaly might be easier to spot where the expecteane is small.

6Note that depending on the actual size of the anomaly, andlythamics of the normal
traffic, the same might be but is not necessarily true for aii@s of the types included in our
set. Itis only when doing classification, that these typeghtrprofit from additional information
provided by the entropy features.
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ExchangendProhibited Content Exchangee considered to be of tiidash
Crowd type. Imagine, for example, that a hacker manages to breakain
protected area of a webserver, removing its security measurd sharing its
private information in a manner that makes it publicly aablé to a wide au-
dience. It would be impossible to distinguish this attadadraFlash Crowd
caused byPopular Content Exchandevithout first knowing that the content
had been shared in this malicious way.

When we ignore the gray nodes and dashed lines, the tree dxpan
five general anomaly types and continues to more specificesaarsd char-
acteristics that further define and differentiate the anm®.a Other works
subdivide these broad anomaly types into a set of more spégifes. The
taxonomy provided by Hussagt al. [45] splits denial of service anomalies
into single-source, multi-source and reflector anomaliEsese anomalies
are also known as DoS, DDoS and reflector DDoS. Even morel ek taix-
onomies also exist, although they are rarely used with sysfer high-speed
networks. This is chiefly due to the fact that the collectimgl @rocessing
of the required information does not scale. An example ohsutaxonomy
is presented in [46]. The authors define a large set of pammencluding
the attack dynamics, the impact of the attack, and the vigtpa, in order to
distinguish various types of DDoS anomalies.

Other important anomaly types that do not have their own moéonka
and Barford’s taxonomy include alpha flows-flows), Worms and botnet ac-
tivity and anomalous activities from Peer-to-Peer (P2R)oeks. a-flowsare
a small number of flows that have a very large quantity of paosebytes or
that represent an unusually high rate of point to point byedfer. Note that
a-flowsare sometimes also calléteavy Hitters Examples of publications
using these types include [47-49] fmflows [19,48-50] folWorms [51,52]
for botnet activity and [27] for anomalous P2P network attivFigure 2.2
shows the possible integration of these types into PlonklaBanford’s tax-
onomy. a-flowscould be inserted as an additional node to the Anomalous
Measurement type while worms could be seen as new form okadmising
from a combination oProhibited Content ExchangendProbing/Scanning
Botnet activity is more difficult to integrate as it includastivity such as
Probing/ScanningProhibited Content Exchangetc. To differentiate be-
tween anomalies in real and virtual networks (e.g. P2P)Ntstsvork node
might be replaced with one for each virtual network type.

“As an example, when breaking news published on a news siéetata massive number of
visitors in a short time frame.
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2.2 Anomaly Types 27

2.2.2 Prevalence of Anomaly Types
Probing/Scanning and Worms:

The root causes of probing and scan traffic are manifold. Tigit originate
from attackers looking for a target to attack and comprontikavever, they
can also arise from productive, non-vindictive activitygluding monitoring
services such as pingddhar web crawlers from search engines like Google.

Another source of scan traffic is network service worris. contrast to
viruses and other types of malware, worms are completefycsetained.
They can modify, copy, execute and propagate themselvaswiitiser inter-
vention. Whenever a worm tries to propagate and infect amatyistem, it
starts to scan for appropriate targets. If it finds a vulnlertdrget, it quickly
attacks the target and copies itself to it. Since the wha@esing and spread-
ing process is fully automated, a worm can rapidly infect tndsnot all,
vulnerable and reachable hosts. Consequently, a wormsdistmctive pat-
terns of scan traffic. Its volume and spatial distributiommarkedly different
from the scan traffic caused by other attackers looking farget to attack
and compromise, or from monitoring activity and other formfigroductive
scanning activity.

In [54], Yegneswaraet al. study the prevalence and distribution of dif-
ferent categories of anomaly. Based on a large set of firdagdlfrom more
than 1,600 networks, they analyzed the quantity and vaoietiyeir data be-
fore extrapolating the results to the Internet as a wholeeyTihvestigated
different kinds of worm activity along with four categorie$ port scans?
They identified a significant estimated prevalence of 2%dnilanomalies per
day. Furthermore, their in-depth investigation revealet {1) worm traffic
is visible long after the original release of the worm andtfjt the sources
responsible for the anomalies are spread uniformly acrossmdmous Sys-
tems, whereas a significant share of them can be attributecttatively small
number of sources exhibiting a correlated on/off behav@&milar findings
about the prevalence of scanners are presented in [55] wAllenan et al.
studied the behavior of scanners between 1995 and 2007.

While the findings of [54] regarding the persistence of woraffic are

8ht t ps: // www. pi ngdom com A service to monitor, for example, the uptime and response
time of web servers.

9See [53] for a more detailed definition of different types afrms and other types of mal-
ware.

1%Horizontal, vertical, coordinated and stealth port scans
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confirmed by several sources (e.g. [56,57]), many belielvat] having seen

a significant decline in the volume of network worms from 2(8&#¢ e.qg., [58,
59]), the days of wornis would soon be over. In September 2006, Symantec
wrote in its Internet Security Threat Report [58, p.2] that:

“ Since thatfirst report? much has changed. Large Internet worms target-
ing everything and everyone have given way to smaller, meogeted attacks
focusing on fraud ...”

However, the Conficker worm, which appeared in November 7603
61], was a wake-up call to those who thought that these kihdsoms had
been rendered obsolete. In its Internet Threat Report {68 201, p.7] pub-
lished in April 2009, Symantec wrote that:

Previous editions of the Symantec Internet Security ThReat

port noted that there has been a decrease in the volume of net-
work worms, partly due to a lack of easily exploitable remote
vulnerabilities in default operating system componentsaniyl
network worms exploited such vulnerabilities in order togpr
agate. Highly successful worms such as CodeRed, Nimda, and
Slammer all exploited high-severity vulnerabilities imrately
accessible services to spread. These worms prompted change
in security measures, such as the inclusion of personalditew
applications in operating systems that are turned on byuttefa
This helped protect users from most network worms, even if
the vulnerability being exploited was not immediately |atd.

... Soon after [the discovery of a high-severity vulnerigpih

the Microsoft® Windows® Server® Service RPC Handling com-
ponent], a new worm called Downadup (also known as Con-
ficker) emerged that exploited this vulnerability.

Hence, while worms might no longer be the biggest threat hwels keep
them on our radar because (1) recent worms like the Confickemy2008),
the Stuxnet [62§° worm (2010) or the Morto [63] worm (2011) demonstrated
that worms still pose a very realistic threat and (2) becawen traffic from
past worms is still around.

11This mainly referred to self-spreading and/or fast-spreadorms.

12The first Symantec Internet Security Threat Report was ghieti in 2002.

13Note that this worm was found to chiefly use self-generatemhniques in the local area
network, where it sought out and infected SCADA systems.
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DoS and DDoS:

A first quantitative estimate and characterization of deofeservice anoma-
lies is presented in [64] and refined in [65], where Moeftral. analyzed a set
of 22 traces of at least a week long between 2001 and 2004.uthera pro-
pose and employ an analysis technique called backscatsein order to
capture denial-of-service anomalies originating fronaekers spoofing the
source addresses of attack packets at rantfoBy. monitoring the traffic to
a \8 network, they can search for response packets from vidtiatsdo not
have a corresponding request originating from the mordtaetwork. Their
methodology allows them to account for DoS and DDoS anomafeHow-
ever, it ultimately causes them to underestimate theirritueber, as they do
not account for anomalies caused by attackers who applgrdiit spoofing
schemes, or who employ techniques which involve no spoofimgtsoever.
Moore et al. observed over 68,000 attacks to over 34,000 distinct vitim
addresses. In all of their traces, they found around at [EH230 anomalies
per week, or roughly 125 anomalies per day. While their datsadot allow
them to identify whether anomalies of this type are on the, ttisey do pro-
vide evidence that they are prevalent. The yearly Worldwideastructure
Security Reports from Arbor Networks [67—72] show similasults for the
years 2005 to 2010. The evaluation of a questionnaire cdrtbley a num-
bert® of Tier 1, Tier 2 and other IP network operators from aroureliorld
confirms that (1) (D)DoS attacks were among the top threa#dl iof these
years and (2) the bandwidth consumed by the largest attacksden a sig-
nificant increase from 10 to 100 Gigabit per second. [72] ats@tains some
guantitative information about the number of attacks. 47%he survey’s
participants experienced 1 to 10 attacks per month, 41%®aff10 to 500
attacks per month and another 6% endured more than 500sfiacknonth.
Only 6% reported that they did not suffer from any DDoS attack

14This is considered to be the origin of the tebackscattereferring to background radiation
resulting from denial-of-service attacks using multipposfed addresses. According to [66],
a paper co-authored by Vern Paxson, background radiatioetvgork traffic directed to unused
addresses which is either malicious traffic (backscattansing or worm traffic) or benign traffic
(misconfigurations).

15The anomaly looks like it is a DDoS anomaly since it appearbedriggered by many
(spoofed) sources, but without tracing the anomaly backsttrie source(s) it remains unclear
whether it is a DoS or DDoS anomaly.

162005: 36, 2006: 55, 2007: 70, 2008: 66, 2009: 132, 2010: 111.
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Flash Crowds

The flash crowd is an anomaly type which looks very similar tbeaial of
service attack at the network level. During a flash crowd niln@ber of ma-
chines accessing a specific resource in the network ingeaggificantly,
until reaching an abnormal level. Events that trigger tmeraaly are typi-
cally high-profile events, such as the FIFA World Cup finaésidential elec-
tions or the release of a new version of a popular type of s¥#wThis sug-
gests that flash crowds are prevalent and that distingwsham from DDoS
anomalies is important. [73] summarizes results from wergtudies on flash
crowds including [74] where Jungf al. present an analysis of flash crowds
and (D)DoS attacks on web servers. They pay special attetttioharacter-
istics which distinguish the two. They find that during flasbveds the client
population has a significant overlap with the normal popaitatThis stands
in contrast to (D)DoS attacks. Furthermore, their restitssthat with flash
crowds, the request per client rate is lower than usual aechse¢o adapt to
the current performance of the server. In (D)DoS attacksdtees stable and
higher than usual. Based on these findings, [48] labelsdraiffierging from
topologically clustered hosts and directed to well-knowrvice ports (e.g.
port 80 for web servers) as flash crowd events. However, ashmethod
and other promising approaches (e.g. [75,76]) tend to &flpiclepend on
behavioral aspects which are expensive to track in higlegpetworks.

2.3 Anomaly Detection Methods

Since the first attempts at detecting outliers or anomaliegrtaken by Edge-
worth in the 19th century [77], a vast amount of anomaly d&iaanethods
have been developed and used. An overview of the most imganethods in
different application domains, including intrusion deteg, fraud detection,
medical and public health anomaly detection, industriahdge detection,
and anomaly detection in text data or sensor networks ipted in [38].
Other surveys take a narrower focus [78, 79], with [78] conicding on the
field of network intrusion detection in general and [79] aediing a separate
section to flow-based detection methods. The tutorial bye@ati [80] as
well as [39] provide an overview of the most prominent methaded for
detecting anomalies in network traffic, namely:

« Change-Point detection
» Kalman filter
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* Principle Component analysis

* Wavelet analysis

* Markovian models

¢ Clustering

e Histograms

o Sketches

* Entropy
The first six items refer to techniques operating on timeesasr other forms
of input data. They either report anomalies directly or atitesidual signals
to be used with a simple threshold detector. The last thesasit however,
are not anomaly detection methods in a strict sense. Thgyrarprocessing
tools which help to summarize distribution-based features

Feature distributions provide a more detailed view of neknactivity
than traditional counter-based features, whilst still agring lightweight en-
ough to translate to large-scale and high-speed netwotis.igtypically not
the case for methods which rely on detailed behavioral mé&dion of single
hosts or groups of hosts.

We now review related work on approaches based on countestabd-
tion information, before switching our discussion to ammioes which rely
on entropy information.

2.3.1 Counter and Distribution-Based Methods
Counter Based Methods

Initially, most anomaly detection methods relied on feasisuch as the num-
ber of forwarded packets, fragmented packets, discardedsor bytes per
time bin. These can be derived from the counters found irerswr other net-
worked devices. In [81], Barford and Plonka present a ptdj@ca precise
characterization of anomalous network traffic behaviomfroetwork flow
data. They propose to look at the number of flows, packets wted Iper sec-
ond. In [82], they refine their approach, proposing a wavatetlysis based
detector. In their refined approach, they use both netwovk iod Simple
Network Management Protocol (SNMP) data to extract the iptesvcount
metrics, whilst also adding new count metrics such as theageepacket
size. They carry out a true positive analysis using a trama ttheir campus
network. They find that they can detect up to 95% of anomadikected from
a larger set of anomalies, where there is sufficient eviddratghey are true
anomalies.
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In [83] Souleet al. make use of traffic matrices to capture the traffic
volume exchanged between different points of presencey fitst apply a
Kalman filter to filter out the contribution of the normal tiiaf The remaining
signal is then inspected and analyzed for anomalies baseuliple charac-
teristics and methods. They enact a thorough evaluaticeth@s a combina-
tion of realistic workloads from a backbone network and kgtit anomalies.
They find that the conventional generalized likelihoodadGLR) test [84]
method performs best with a true positive rate of 100% andse faositive
rate of 7%.

In [85] Leeet al. present a traffic collection algorithm for frequent col-
lection of SNMP data that does not degrade (server) perflocmalo assess
whether or not the algorithm can retain relevant informattbey check how
it impacts on the detection of volume anomalies. The detected for this
purpose is a threshold-based detector measuring the idevfedm a mean
value. A comparison of the detection results when using tiggnal traffic
collection algorithm and their new algorithm shows only gominor differ-
ences.

Distribution-Based Methods

Most approaches for anomaly detection in large scale néswety (to some
extent) on traffic-feature distributions. Some operatediy on empirical
distributions, whilst others use summarization technigieech as histograms
[16, 17] or Sketch data structures [18, 21, 86, 87]. Sketasel approaches
rely on a set of histograms where the elements are assigrikd bins using
a set of different hash-functions. Both histogram and $kétrsed summa-
rization allows for the tuning of the amount of data to beetisind analyzed.
Histogram-based methods do this by choosing an appropiraierg method
and bin size, whilst sketch-based approaches select theenohhash func-
tions and the number of bins per sketch. For the detectionbobmamnal
changes, most methods rely either on entropy or distribufistance met-
rics. Prominent examples of approaches using distanceosetre [16, 88]
where the authors make use of the Kullback-Leibler distafce

1"Note that the Kullback-Leibler distance actually corremmto the Kullback-Leibler en-
tropy or Rényi distance of order & & 1) [89].
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2.3.2 Entropy-Based Anomaly Detection Methods

Approaches that rely on entropy use Shannon entropy [2@8 52, 90, 91],
an approximation of Shannon entropy based on compresgjoritaims [19],
the Titchener’s entropy (T-Entropy) [23, 24] or some othenegralized form
of entropy [25, 26]. In [25], Zivianet al. propose to use Tsallis entropy, a
generalized form of entropy with parametgrfor the detection of network
anomalies. By injecting DoS attacks into several trafficeésathey search for
the optimalg-value for detecting the injected attacks. While Ziviaial.
found that ag-value of around 0.9 is best for detecting DoS attacks, Sleafig
al. [26] found that they could optimize the detection of portrscaf malware
by using ag-value equal to 0.5. A different application of entropy isgented
in [92], where the authors introduce an approach based oimmiaxentropy
estimation and relative entropy. The distribution of bertigffic is estimated
with respect to a set of packet classes and is used as th@ledseldetecting
anomalies.

2.4 Anomaly Classification

There are basically two fundamental approaches to claasifynalies. The
first one is based on how an anomaly affects a system whenateist An
analogy from medicine would be the classification of dissdsesed on the
symptoms they cause. In practice, this might be more coenérian the
second approach which classifies according to the mecharsprocesses
involved. This is because symptoms are typically straaiatérd to observe
or measure, whilst underlying mechanisms or processescdreé-nr exam-
ple, similar symptoms might be found to actually have verffedent root
causes when examined from a mechanism or process pergpdetiamples
of two network anomalies with similar symptoms, but difierenderlying
mechanisms, are flash crowds and DDoS attacks. Classificaticording
to mechanisms and processes is more accurate. However,nasdigine,
the method actually used is ultimately decided by the qoestf cost and
benefit. The extra analysis and measurement required ttifiddre mech-
anism or process is only undergone when deemed necessdortuhately,
this same approach generally does not work for network atiesia high-
speed networks. The processes and measurements (e.gadkéitpraces)
required for this form of analysis are either prohibitivekpensive or simply
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not availablé®.

As a consequence, even though the mechanisms and procéssesto
network anomalies are quite well understood, network ampuotassification
in high-speed networks is almost always based on symptorasugh, the
following discussion of anomaly classification focuses loese approaches
only.

However, note that while the classification itself is basadgspmptoms,
the different categirues used in the classification arectllyi mechanism or
process driven. Hence, the symptom based classificatiohtrbig seen to
wrongly class an anomaly considered from a mechanism oepsjuerspec-
tive (e.g. DDoS instead of distributed scanning, if the scaensity is high
enough), even though this cassification would technicalgdrrect from the
symptom perspective’

Broadly, there are two fundamentally different approadoesymptoms
based anomaly classification. The first approach is to ex#&réiagerprint
of an anomaly and to compare it to a series of other known fprges. The
other method theoretically does not require a priori knolgks It applies data
mining and unsupervised learning technologies to idetthiéycharacteristics
of a yet unknown anomaly, and to subsequently generateeslatanomalies
with similar characteristics.

In the first case, a fingerprint typically consists of a comakion of mea-
surements such as “the bandwidth usage on the link to serie88%”, and
observations such as “server X provides live TV streams”.eibompar-
ing this sample fingerprint to other fingerprints, we mightfihey match
one with the label DDoS attack, but also one labeled “highfife TV event
(UEFA Champions League final, FIFA World Cup final ...)”. Ndkat the
termspattern fingerprintandsignatureare often used synonymously to refer
to some sort of description of an arbitrary item. These dpsons are then
used by systems that try to find and/or classify such itemsreNpoecisely,
in computer security the term pattern is typically used wtatking about a
description which specifies a characteristic sequenca®fbid bytes in data
streams (e.g. described by regular expressions). Theftegerprintis used
to refer to a description which specifies the parameters lagid Yalues, or
the required value ranges of a predefined parameter spacelfe.parame-

18How do you measure the difference between a flash crowd andaSDifiack on a web
server when the only difference might be the intent of the(s¥2

19Because a specific set of symptoms has been associated yermachine learning mecha-
nisms) with a specific mechanism or process driven class.
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ters measured when doing an operating system fingerpriofiaghost) and
the termsignatureis used mainly when talking about the descriptions used
by anti-virus software or intrusion detection systems.

In the second case, where unsupervised learning techieslage applied
to identify the characteristics of a yet unknown anomalg,¢bncepts of pat-
terns, signatures or fingerprints do not exist. Howeveg tivat if we do not
repeat the unsupervised learning for each new classificédigk and instead
map the attribute vectors to clusters generated earliesetitlusters could
also be seen as a signature of a signature based classifispsiem.

2.4.1 Anomaly Signature Based Methods

At a first glance, the term signature might be confusing wheedun the
context of anomaly classification. After all, the main ademe of anomaly
detection is that it can detect both known problems and thiaad as of yet
unknown ones. How can we have signatures for the unknowr® diviious
contradiction can be resolved in two ways. We use a systetratiayzes
anomalies and tries to find groups of similar anomalies bypamng them
with each other and then outputting descriptions for thesas. These de-
scriptions are then analyzed by an expert in order to idemiliether they
reflect a known or unknown anomaly, or whether they in factaloepresent
anything useful at all. Such systems are discussed in thesnbzection. The
other way to resolve this contradiction is to only use angnsanatures to
identify anomalies that are already known. Anomaly clasaifon based on
signatures does exactly that.

One of the first proposals to use anomaly signatures for m&tarmomaly
detection can be found in [93]. In their pag&ult Detection In an Ethernet
Network Using Anomaly Signature Matchirgatheret al. propose to take
the anomaly detection signals from anomaly detection done per feature
basig® and to compare the resulting anomaly signal vector to a seccBhult
Feature Vector. The Fault Feature Vector specifies the padioce parame-
ters and the corresponding value or value range requirecahtohma specific
fault. Performance parameters include the number of packet network
load, the number of collisions or the number of new sourceestes. The
signatures used by Feattedral. are at least partially an example of signatures
built on expert knowledge and based around and experieromamhon faults
and their manifestations. However, since they also usefireereent strategy

20For anomaly detection, they use statistical methods (PAMB2ADS) described in [94].
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after the initial definitions were tested with real data,ytladso depend on
observations made in training data. Another example of tesyshat uses
signatures that are to some extent constructed using ekpewnledge and
practical experience is [20]. In [20], Lakhired al. use volume features and
the Shannon entropy of the source and destination port anddRress traffic
feature distributions to identify and classify anomali€sey argue that many
anomaly types cause either a concentration or a dispersabpécific traf-
fic feature distribution and propose to use these charatiterio identify the
type of anomaly in question. They first turn to an unsupedidastering ap-
proach as it could potentially reveal as of yet unknown anm®saln the next
step, they analyze the clusters produced by the clustelgagitom finding
that the resulting clusters do indeed represent diffeneairealy types. They
assign labels to them accordingly. Finally, they proposesi these labeled
clusters (i.e. signatures) for automated classification.

With the increasing popularity and sophistication of daBaing methods,
the automated extraction of signatures based on trainitegiies become the
primary choice of most anomaly classification systems. Aangxe of a
specialized classification system which solely handlesmbien anomaly is
described in [95]. An example of a signature-based anomnlalsifier for
anomalies found in the Border Gateway Protocol (BGP) rgutipdate mes-
sages is presented in [96]. Here, Detual. use decision trees to learn the
signatures of the impact of network anomalies such as wonu®atages on
BGP data.

A more recent example of decision tree based anomaly clzetiiin is [97],
where Paredes-Olivet al. make use of the descriptive power of these data
structures to classify different types of network anonslifo classify an
anomaly, they first apply the FPmax* algorithm to mine fraguéemsets
in flow data collected in a time interval of length T. Thesegfrent itemsets
are then fed into the classifier which uses the decision teeassign one of
the following types to each item set: (D)DoS, port scan, oetvscan, un-
knowr?! and no anomaly. To construct the decision tree, the authmigea
the C5.0 machine learning algoritRfrand fed it a set of labeled anomalies
found in the GEANT backbone network. Note that since theissifier can
assign the label “no anomaly” to an itemset, it could bakida¢ used for
both anomaly detection and anomaly classification.

21This refers to anomalies in the training data which couldb®assigned one of the other
labels.

22The C5.0 algorithm was developed by RuleQuest Researchaf98h improvement to the
C4.5 algorithm [99].
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If we include the waste literature from the area of intrugietection, we
can identify many approaches which rely on the use of legrtéchniques
to automatically generate signatures from labeled an@snalAn early ex-
ample is [100], where the authors both compare and emplop@&tpector
Machine (SVM) based machine learning and neuronal netwiorldentify
normal traffic, and four types of malicious activity foundthre Knowledge
Discovery and Data Mining competition 1999 (Knowledge Digery and
Data Mining competition 1999 (KDD99)) dataset.

2.4.2 Unsupervised Learning Based Methods

To overcome the limitations of signature based methodsdaatonly clas-
sify anomalies whose properties we already know or have keanfiqr, a sig-

nificant number of anomaly classification systems classifynaalies using
unsupervised machine learning techniques. These teamdpinot require
a priori knowledge on anomalies. They typically attempt teate clusters
(groups) of similar items by looking at the data that is fedhe classifica-
tion system. These clusters can then be analyzed by an expind out

what kind of anomaly each of them represents (if any) and et is an

already known or an as yet unknown anomaly. This final steggically

not required when one only wants to perform anomaly detectther than
anomaly classification. Separation of normal and abnormat & possible
if the following two assumptions about the data hold. Fydthe amount of
normal data must be far bigger than the amount of anomaldas 8acond,
the abnormal data must be statistically different from rardata [101]. Un-
supervised learning methods do not require this experterlanalysis pro-
cess. This is the most likely reason why they are far moreuteatly used
in anomaly detection systems (e.g. [101, 102]) than in ampoiassification

systems. In actual fact, publications which employ unsuped learning
methods for anomaly classification mainly use them as a mefamsilding

the “signatures” required for the anomaly classificatiomponent. One ex-
ample of such usage is presented by Laklginhal.[20], which we discussed
previously in the section on signature based approachesth&nexample of
such a usage is [103] where Filho presents a system thaeagpérarchical
clustering to map sets of anomalous flows extracted by an alyodetec-

tion system to anomaly classes. More precisely, this dlegsbn algorithm

works as follows. Firstly, the anomalous flow set is addechtoftow sets
that have already been labeled. Next, these flow sets arei@dausing the
following features as coordinates of the input vector: therage flow size
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in packets, the average packet size in bytes, the entrofedistribution of
packets, and the fraction of feature values in the full liaific?? that also ap-
pear in the anomalous traffic for ten different flow featid®Fhe clustering
process then outputs a taxonomy tree T, where each anontagsponds to
a leaf. If the leaves in the smallest sub-tree containinghellsiblings of the
new anomalous flow set all possess the same label, then thanmawalous
flow set is considered to have the same label too. If they hiffezeht labels,
an expert must analyze the new flow set and assign a labelAgjitaph-like

visualization method reflecting the structure of the flowshis flow set is
provided to help with this process.

2.5 Applications of Generalized Entropy in
Other Fields

Generalized entropy has many applications in fields sucloasmnication
systems, physics, and biomedical engineering as well dseivitoader con-
text of complex systems.

An example from biomedical engineering can be seen in [1@hgre
Torreset al. exploit the ability of multi-resolution entropies to sholight
changes in a parameter of the law that governs the nonlingendics of
complex biomedical signals. To do so, they first apply a cattus wavelet
transform to the signal and calculate the time evolutiohefwavelet coeffi-
cients’ Tsallis entropy in a sliding temporal window. Netktey analyze the
principal component of the resulting multi-dimensionair&l and apply the
CUSUM [105] algorithm to identify abrupt changes in its mean

However, since applications in fields other than anomalgct&n are
not the focus of this thesis, we refer the reader to Constanisallis’ In-
troduction to Nonextensive Statistical Mechanics: Apploag a Complex
World [106] which presents and discusses a selection of paradigapli-
cations in various sciences. [107] also offers a compreaherdbliography
of Tsallis entropy related publications.

23Not just the anomalous flows extracted by the detector bof tile flows seen in the interval
where the anomaly was detected.

2450urce and destination port and IP address, previous andopAS numbers, source and
destination AS numbers and input and output router interfac
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2.6 Evaluation of Anomaly Detection Systems

As pointed out by Gatest al. [37], Ringberget al. [108] and Sommer and
Paxson [40], anomaly detection, and more specifically thkation of anom-

aly detection systems, is full of pitfalls and thus might eele fully accom-
plished. Gateset al. discuss nine assumptions often made in the domain of
anomaly detection which they consider to be problematic:

« attacks differ from the norm

* attacks are rare

¢ anomalous activity is malicious

« attack-free data is available

« simulated data is representative
 network traffic is static

« false alarm rates- 1% are acceptable

« the definition of malicious is universal
< administrators can interpret anomalies

The first three assumptions are mainly an issue if the anodection
system is expected to report attacks instead of anomaligsf dhe attack
to be detected by the anomaly detector might be tuned to likeknlormal
activity. In the domain of anomaly detection in high-speetinorks, these
assumptions are rarely made. This is because the omnipesérattack
traffic from activity such as network or port scans is a knoact fas is the
existence of benign anomalous activity such as flash crowdhs is also
the reason why most approaches do exactly what the authfr8@jfrecom-
mend. They begin by seeking to determine what maliciousitie8 should
be detected. Next, they check which (if any) charactegsif¢chese activities
appear anomalous. Finally, they design the system to dibterct.

Another problematic assumption is that attack-free dadgaslable. More
precisely, it is problematic i&n attackandan anomalyare considered to be
equivalent; attack traffic such as scan traffic is typicallynipresent. This
is why this assumption is often modified to “anomaly-freeadatavailable”.
Although it is probably still impossible to guarantee thos dlata collected in
a high-speed network, more confidence can be placed in tlagityeof this
modified assumption. After all, an anomaly is something tleatiates from
the normal, whilst an attack does not necessarily have thidoNMoreover, if
a system focuses on anomalies of a certain “size” - e.g. mg@f number of
packets or flows involved - data which is free of such anorsatight be eas-
ier to find. Another solution to get attack-free (or anomfze) data would
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be to use simulated data. However, Gateal. argue that there is evidence
that an accurate simulation of real network data is probihossible.

Another issue raised by Gatesal. is that authors often forget that low
false positive percentages do not necessarily imply theasyistem is actually
useful in practice. The false positive percentage doeswhide information
on how many false positives per time interval are to be exgaectf 1% is
equal to five anomalies per day, an operator might find thisbermaccept-
able. However, this would prove less palatable in a systeerevih% is equal
to tens or hundreds of anomalies per day. Hence, a falsevegosite should
always be accompanied by information on the number of fabsitipes per
time interval.

Finally, the authors point out that an anomaly detectioriesysshould
also provide some form of labeling component since the adtnators can-
not be assumed to be able to (or to have the time to) interp@nalies.
Furthermore, this component could also be used to make #tersyreport
only anomalies in which the operator is interested. Thislditlereby also
address the problem that the definition of what is anomalmadi¢ious) is
not universal.

Ringberget al. discuss a less pessimistic view, but stress the need for sim-
ulation in evaluating anomaly detectors. Evaluation stitwl based on simu-
lation, not on real data with some known anomalies in thene mhin thrust
of their argument is that real data typically only contain$eav instances”
of a certain anomaly at a specific time of day. Simply conéidea few in-
stances makes it difficult to account for the fact that déferinstances of a
certain type of anomaly can differ significantly (in voluntening or other
features). Furthermore, the highly dynamic backgrounffid¢ralso plays an
important role in the detection process.

Simulation is a way of accounting for this problem. Anomsbian be pa-
rameterized with their many variants injected into backgubtraffic that is
either simulated or taken from virtually anomaly-free mts of real network
traces. Unfortunately, comprehensive studies on how tamaterize anoma-
lies are still lacking [33,46]. Nonetheless, a few studieprbvide fragments
of analysis which can still prove useful [48,64-66, 74, &], §hese studies
discuss parameters such as the distribution of the IP asklkad both at-
tacker(s) and victim(s), the protocol(s) or the transpayel (L4) ports used,
and the timing etc. for a broad set of volume anomalies. Whigy do not
provide statistics detailed enough to compile a rigorousireifor the pa-
rameterization of these anomalies, they do provide vatuatdights which
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prove constructive when setting up one’s own simulation ef®end param-
eters. In [33], Brauckhofét al. go further, presenting three anomaly models
which they derive from real anomalies found in their netwtselces. They
also present FLAME which can be used to model and inject ahiesnato
flow traces.

Sommer and Paxson discuss why applying machine learningtio-i
sion detectiof? is harder than in other domains. They do so with focus on
network-based systems reliant on algorithms which aretfagted with ref-
erence input so as to learn its specifics (threshold(s), g)detc.), before
being exposed to input for the actual detection processrdédson why they
consider this area to be more difficult is the premise thabtaaip detection is
generally good at finding novel attacks. More precisely, 8@mand Paxson
state that the main strength of machine learning lies inflig@ictivity which
bears similarity to something previously observed, butwhich a precise a
priori description is not held. Since novel attacks are ardyel if they have
not previously been seen, the authors conclude that thisipeeis not well
aligned with the strength of machine learning.

However, this premise is not the only characteristic of aalyrdetection
that does not fit the requirements of machine-learning. Tdleg list the
following additional characteristics:

e avery high cost of errors

« lack of training data

* a semantic gap between results and their operationapirtztion

e enormous variability in input data

« fundamental difficulties in conducting sound evaluation

In summary, Sommer and Paxson state that it is safer to orlynashine
learning to find something that has previously been seeripbuthich a pre-
cise a priori description does not exist. Other requiresenich as sufficient
training data and a sound evaluation methodology, remaiblpmatic.

2.6.1 Data Sets

The problem of the non-availability of network traces is nhadue to privacy
laws. Network traces typically contain privacy-sensiiivioermation such as
packet payload and/or IP addresses. Packet payloads casetigaibuild
full-fledged user profiles. IP addresses are also highlyithendf a user’s IP

25Here, intrusion detection is probably too general. Whay thetually mean is anomaly
detection based intrusion detection.
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address is known, packets or flows can be linked to the userdastipn. This
again could be exploited to build profiles of who communisatéh whom.

Anonymization of network traces could resolve these issttmwvever,
the vast amount of methods and tools addressing networkashataymiza-
tion [110-112] and/or privacy-protected network data stgaf113,114] do
not seem to foster public access to network traces. The eagtecfor this
situation might be twofold. On the one hand, it has been shHad/6-118]
that it is very difficult to anonymize traces so as to prevbeant from leaking
valuable information. On the other hand, it is difficult toeaify the impact
of anonymization on the utility of the data. Brauckheffal.[119, 120] stud-
ied this impact in regards to anomaly detection. They folwad &anonymiza-
tion significantly degrades anomaly detection performamcethe strength
of anonymization increases, more and more informatiorvagieto the de-
tection process is removed. Hence, using anonymized nktinaes is not
an option if we want to assess the performance of an anomgdgtoe with
respect to non-anonymized data.

Another problem, especially with network flow traces, isttineorder to
reduce the load on componetftsnvolved in the traffic capturing process,
some sort of filtering or sampling is applied. Most networlegtors config-
ure their capturing devices to apply packet sampling witesaf 1 out of 100
packets or lower. In our thesis, we investigate the impagpiacket sampling
on anomaly detection metrics in more detail. Our findingssarglar to those
presented by the authors of [121,122].

Some notable sources of network traces are:

e The packet traces published and maintained by the MAWI] V&3 k-
ing Group of the WIDE [124] project. Among other traces, tipeg-
vide daily packet header traces for different, mostly trRasific lines
with link speeds of up to 150Mbps. Per sampling point and dap-
proximately 15 minute-long trace is made available to thiglipu The
data is anonymized using a prefix-preserving anonymizatbeme.’

¢ The Simpleweb/University of Twente traffic traces dataosory [125].
The repository contains a series of six packet header #afresn rel-
atively small sized stub networks and a NetFlow v5 trace fAargust
2007 captured in a /16 university network. The IP addrestésese

26E.g. a router. The primary task of a router is to route packetsto generate flow data.

2TThey use the toolide-tcpdprivwith the options-A50 -C4 -M99 -P99 The tool and the
parameters used can be found in tbgd-toolssource code package available from the MAWI
Working Group Traffic Archive homepadet p: // mawi . wi de. ad. j p/ mawi / .

280ne from 2002, two from 2003 and 2004 and one from 2007.
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traces have been anonymized using a prefix-preserving arpaton
strategy

« The NetFlow data repository of the Internet2 backbone agk126]
(formerly Abilene). This repository provides flow data agonized by
zeroing the last 11 bits of any non-multicast IPv4 addfésdoreover,
the flow collectors perform packet sampling at a rate of orteod000
packets. Internet2 offers access to their NetFlow data querst.

 NetFlow data from the GEANT [128] backbone network. GEANT
grants access to flow data on request. Its flow traces are aoyarized.
However, since their flow collectors perform packet sangpéiha rate
of 1 out of 1000 packets, a lot of potentially useful inforioatis dis-
carded.

Unfortunately, almost all of these traces are unlabelefdrimation about
the anomalies they contain is not available. This is by faiiggest problem.
A notable exception are the daily packet traces publishdd@aintained by
the MAWI [123] Working Group. In [86], Dewaelet al. made a first attempt
at labeling the traces from 2001 to 2006. Firstly, they psguband employed
a sketch-based anomaly detection approach to locate aoosnahffic pat-
terns. Following on from this, they performed a manual insipeC of the
anomalous traffic to confirm and label it, or to discard it.

In [129], a second attempt at providing labels for this dettas made.
In this case, the anomalies are located and labeled basdte@mutputs of
four different anomaly detectofs. The labels are accessible through MAW-
ILab [130] 32 a database that helps researchers to evaluate their tradficay
detection methods.

An alternative way of addressing the problem of unlabelecks is to take
a community-based approach. In [131], Gaesl. discussed requirements
for evaluating data and proposed a community-based appfoathe label-
ing of released traffic traces. A similar proposal can be toarf132], where
Ringberget al. present WebClass, a tool to store and compare labels that hav
been assigned to a trace by different domain experts. Mereagcording to
the MAWILab [130] homepage, MAWILab people also ask for héipm

29As of August 2012, IPv6 addresses are anonymized by zerbiast 80 bits [127].
30They did so by looking at the traffic features associated with detection. Onlyflows
carrying more than 1% of the total volume of the traffic arekimbinto by manual inspection of

the traces by a network expert.

31principal Component Analysis, the Gamma distribution, Khélback-Leibler divergence
and the Hough transform.

32http: /| www. f ukuda- | ab. or g/ mawi | ab/
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the community. They encourage researchers to submit bethatvn results
and their detectors. However, the proposed collaboragiseem designed to
simplify and automate contributions has not yet been impleted.

In this thesis, we use network traces captured at the boftlee SWITCH
network. These traces contain unsampled and non-anongliiet&low data.
Since this data contains sensitive information, the datzsenot be shared
with third parties, unless they visit us to work with it ortesunder a non-
disclosure agreement. Interested third parties can appliig authors for
such a visit.

Synthetic Datasets

As pointed out by Ringbergt al, synthetic datasets and simulation tools
should play an important role in the evaluation of anomalieci#on sys-
tems. The DARPA data sets from 1998, 1999 and 2000 [133] - Soree
also called the Lincoln Lab data sets - are probably amon§jrgtesynthetic
datasets released to the research community. It mighdligiappear surpris-
ing that the DARPA data set from, for example 1998, still glayole in intru-
sion detection research (see: [134,135]). After all, ndy does it lack recent
attacks, but it has also been criticized for its unrealistiéfic (see: [136])°
However, better options are so scarce that researcherstarally forced to
still use it. According to [137] these data have providedsigant contri-
butions to research on anomaly detection. Of 276 reseaundiestpublished
between 2000 and 2008, the LL data and its derivative, the iBfaset, have
been used in over 50% of these studies. Another 15% usedamddiattack
data.

An alternative to ready-made traces are tools which cardhiktom
traces by generating either synthetic background traffitthetic attack traf-
fic, or both. Whilst a number of tools for generating suchesaat packet
level exist (e.g. [138-141]), Harpoon [142] and FLAME [33kahe only
notable tools that do the same at flow le¥el.

In [143, p.1], the authors of Harpoon write that

...Harpoon is a flow-level traffic generator. It uses a setisf d

33Both, the synthetic background traffic and the attack traéfimrded in a testbed have been
criticized.

34Note that packet traces could be converted to flow tracesfigyiag them versus a (virtual)
flow meter. However, the generation and conversion of pattiees does not scale for traces
representing traffic in high speed networks.
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tributional parameters that can be automatically extchértem
NetFlow traces to generate flows that exhibit the same statis
qualities present in measured Internet traces, includingporal
and spatial characteristics. Harpoon can be used to gerrefat
resentative background traffic for application or protdesting,
or for testing network switching hardware.

The newer of theses two tools, FLAME, offers additional fbélidy. It can
be used to generate flow traces from traffic models, but alsaheacapacity
to take these models as a basis for the injection (or remaVdlpws into
existing network traces. Furthermore, FLAME comes withta$predefined
network traffic models extracted from real world networkces: DoS attacks,
scans from several scan tools and spam.

In our work, we make use of FLAME to generate synthetic an@aalnd
to inject them into captured network traces. The capturégaoré traces also
serve a second purpose. Similar to [33, 140, 141], we use thextract our
models. However, our focus is different from those of [140,]1 Our models
reflect flow-level rather than packet-level traffic charastes and we do not
restrict ourselves to DoS attacks.

2.6.2 Evaluation Metrics

The task of an anomaly detection system is to detect anosnalihen per-
forming this task, there are four possible outcomes wheétector decides
whether or not the data under scrutiny contains an anomshpitld report:

e True Positive (TP): The data contains an anomaly and thectistre-

ports it.

 False Positive (FP): The detector reports an anomaly leudi#iia does

not contain one.

« False Negative (FN): The detector says everything is nbbutthe

data does contain an anomaly.

e True Negative (TN): The detector says everything is nonvian ev-

erything is normal.

Hence, an ideal anomaly detection system should only pedicand
TN outcomes. To rate and compare all non-ideal anomaly tietesystems,
one could simply measure their False Positive Rate (FPRJrals# Negative
Rate (FNR). The FPR corresponds to the share of benigntisimistakenly
reported as anomalous and the FNR denotes the share of ae®médsed
by the detector.
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Precision and recall are two related measures. Precisidefined as
#rPrars» Which refers to the proportion of anomalies reported bydestector
which turn out to be true anomalies. Hence, a high precisieam that
an operator wastes less time on following up detections evkiegre is no
anomaly, and can spend more time investigating true anemakecall, on
the other hand, is defined %%% which is the share of true anomalies
detected compared to the total number of anomalies an ideataly detector
would detect. To assess the influence of the sensitivityrpeierS (e.g. the
threshold of a threshold-based detector), these measwwedtan compiled
into Precision-Recall (PR) curves. These curves are aiddiy plotting the
precision versus the recall value for each valu8.ddased on this graph, one

can then select the “besP’operation point for the detector.

Another means to find the “best” operation point of an anoralgctor
is through using Receiver Operating Characteristic (RQ@Yes [144, 145].
Instead of plotting precision versus recall, ROC curvestble True Positive
Rate (TPR) versus the FPR for different valuesSoflf the axes are of the
same scale and if the costs for FNs and FPs are the same, trapbesting
point is tangent to a line with a slope of 45 degree. Note tt@CRurves
and PR curves are closely related. In [146] Davis and Goladtiow that the
fact that the ROC curve and PR curve for a given algorithmaiarthe same
points for any dataset leads to the theorem that a curve ddesifin ROC
space if and only if it dominates in PR space. Moreover, Danis Goadrich
show the existence of the PR space analog to the convex RO space.
The convex hull is of interest since all points on it are achlde. If we
have two neighbouring points; and p; reflecting two different classifiets
¢y andc; with (FPR,,, TPRy,) and (FPR;,, TPR,,), then it is possible to
construct astochastic classifiethat interpolates between them by selecting
classifiercy with probability p and classifiec, with probability (1 — p). The
resulting classifier has an expected false positive rape«6fPRy, + (1 — p) *
FPRp, and an expected true positive rateld?R,, + (1— p) * TPR,,. When
verifying whether a similar form of simple interpolationists also in the PR
space, Davis and Goadrich found that this is not the case.

S5Typically based on the estimated cost of a false negati@d@nt handling costs, reputa-
tional damage etc.) vs. those of a false positive (e.g. oodb forensics etc.).

36According to [147], one curve dominates another curve | ibtler curves are beneath it or
equal to it.

37E.g. from two detectors using the same detection algoritbidistinct parameters, but
also two detectors using distinct algorithms and the samdifferent) parametes.
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Another analytical tool relaté to ROC curves is the error diagram.
In [149] Molchan introduces the error diagram as a means @fsowéng the
success of earthquake prediction strategies. While a RO plots the TPR

versus the FPR, an error diagram plots the missnate =y versus the
alarm rater = i In the time series context, the miss rate is

HT PH#FPAHATNAAEN |
the number of time slots in which an anomaly was present bule was

raised. The alarm rate corresponds to the share of timefshatdich the sys-
tem reports alarms. For an ideal detector, the alarm ratécdwomurespond to
the anomaly rate and the miss rate would be zero. In cont&DC curves,
error diagrams provide a view of system performance whiatranlgy cen-
tered on economics. Missing true alarms and investigatitsgfalarms costs
money. Hence, minimizing both of the components of the adiagram is
directly related to saving money. Furthermore, in [150],|6hanet al. de-
scribe how the error diagrams can be used to find an optimaatpe point
that minimizes an arbitrary cost functiagin,t). However, their approach
does not seem to be able to handle cases where the cost ofrmmalan FN
depends on the type of the event.

While ROC curves are a convenient tool to display key pertoroe pa-
rameters of anomaly detectors in a clean and compact waystiaild nev-
ertheless be used with caution. The following issues haee b&ised in the
past:

» Facett [151]: Detector performance and, as a result, ROC curves them-
selves can vary significantly across different datasetis fdms two im-
plications: (1) a direct comparison of detection perforoehbased on
ROC curves should only be carried out if the ROC curves arweatbr
from the same dataset and (2) to draw a more general conclalamut
detector superiority, one should use a series of represantiata sets.

* McHugh [136]: Different detectors use different units of measure and
follow different strategies to match detection resultd@dground truth.
Examples of different units of measure include differeaesiof data
aggregation intervals or different bases for input metriesr exam-
ple, one detector might log the number of packets seen pengteni
interval, while another does the same but for a 4 minutevatelOne
detector might calculate the entropy of source IP addrdsassd on
the number of packets per source IP address, whilst the dtesr the
same based on the number of flows. To avoid bias, the detesttoutd

38According to [148], the FPR and the alarm ratere of similar size, and the ROC curve is
almost a mirror image of the error diagram.
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use the same units of measure. McHugh argued that the stnased
to match the detection results to the ground tdftmust be chosen
with care.

« Axelsson [152]:Anomalies to be detected by the detector (TP or FN)
are much less frequent than normal activity. Intrusion céia may
require FPRs much smaller than 0.1% to be effective.

¢ ROC curves do not consider the notion of costs. While it rhig
easy to find the optimal operating point where the costs fos Bhd
FPs are identical and fixéd identifying where they are not is far from
straight-forward. Solutions mitigating this problem inde cost-based
modeling approaches [153], transformations of ROC curaeititaiting
cost-related comparison [154] or explicit computationhe expected
costs of each detector operating point [155].

In this thesis, we use ROC curves for the comparison of diffeconfig-
urations of the anomaly detection component of our entrel@stope. More
precisely, we use them to compare different anomaly detectigorithms
and also different sets of input metrics. To avoid bias, wethe same unit of
measure (5-minute intervals) for all measurements and wsider consecu-
tive detections as a single event.

39E.g. do consecutive detections of an anomaly lasting meltime intervals count as one
TP or as multiple TPs?

40If the axes of the ROC plot have the same scale, the best oyepmtint is tangent to a line
with a slope of 45 degree.









Chapter 3

Impact of Packet Sampling

In high-speed networks, packet sampling methods are wielelgloyed as
a means of reducing the amount of traffic data measured. S@grgitate-
gies can vary significantly depending on the traffic data mmesas i.e. packet
traces or flow traces, and the purpose of the measurementmfmoa sam-
pling strategy to measure the application mix based on padaes is to per-
form deep packet inspection on the first fepackets of a connection only.
With respect to flow data collection, the most popular sgigeare random
packet sampling and the sampling of evefth packet. Flow meters employ-
ing these strategies generate flow data based on the sangukdt® only.
Hence, devices such as Cisco routers first apply packet segripgfore they
forward the sampled packets to the flow metering part of thiéero The flow
metering part of the router then simply generates flows Wafig the same
strategy and flow definition (see 1.2.2) as before but basedimpled pack-
ets only.

Packet sampling has several benefits including smaller tioVes? fewer
loads on the flow processing device and less flow data to berexpand
stored. However, there are also several drawbacks. A keyqroof packet
sampling is that it is an inherently lossy process. It resmtan incomplete
and, more significantly, biased approximation of the undiegl traffic trace.
For example, if we apply one of the popular sampling strateguch asan-

1For the Protocol and Application Classification Engine fipague this is e.g., 1-3 packets
for unencrypted traffic and 1-20 packets for encrypted t&tfb6].

2A flow table has one entry per active flow. It is used to store @pdate the information
relating to this flow, such as the number of packets and bysscated with it.
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dom packet samplingr every n-th packetsmall flows consisting of a few
packets only are likely to be missed entirely. The more pcadlow con-

tains, the higher the chance that at least one of its packéiteensampled.

As a consequence, the bias of the approximation does latgglgnd on the
underlying traffic mix.

As a consequence, sampling can also have a significant inopatite
entropy or volume time series which serves as input to maynaty de-
tection systems in high-speed networks. To shed some lighhis issue,
we performed an empirical evaluation of the impact of pasketpling and
traffic characteristics on various entropy and volume rogtriThis chapter
presents the motivation, methodology and detailed resfiltisis study. Our
most important finding with regard to anomaly detection iglemce which
shows that entropy is less affected by sampling and thdictrafx character-
istics can compensate or even boost anomaly visibility mpad views up
to sampling rates of 1 out of 10,000 packets.

3.1 Introduction

Traffic sampling has emerged as the dominant means of sumintthe
vast amount of traffic data continuously collected for nekmmonitoring.
The most prevalent and widely-deployed method of sampiiffj¢ is packet
sampling where a router inspects only a subset of packets and reitofda-
tures such as source and destination IP address and poremsjrpbotocol,
and flags. Depending on the sampling strategy, the subs#tés eonstructed
by selecting every-th packet (one out af sampling) or by selecting every
n-th packet on average (uniform random sampling). Packepbagnis at-
tractive because it is computationally efficient, requjrminimal state and
counters, and is implemented in most high-end routers téelgy with Net-
Flow [35]). As such, many providers of high-speed netwonkesreow using
packet sampling to obtain rich viewsf the traffic directly from their routers.
Nonetheless, whilst it is attractive because of its efficyeand availabil-
ity, sampling is an inherently lossy process. It discardayrzackets without
inspection. As such, sampled traffic is incomplete. Moreadngmtly, it of-
fers a biased approximation of the underlying traffic traze,small flows
are likely to be missed entirely. Previous work has largelgused on an-

3Flow formats such as Cisco NetFlow or IPFIX support a richo$diow features which can
be used to compose different views of the traffic.
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alyzing this bias, devising better sampling strategieg],1&nd recovering
statistics (moments and distribution) of the underlyiradfic trace using in-
ference [158-160].

It might therefore be surprising that sampled traffic viewsébeen used
for anomaly detection with considerable success (see:1gA]). Since this
appears counter-intuitive, it is important to understaod and why it is pos-
sible. Is it because if an anomaly is of a certain size, itodistthe measure
ments from sampled data enough to remain detectable? Hosvwlesize of
an anomaly or the choice of metrics impact on these results? ¢cdmplete
are the detections revealed by these methods on sampléd?raind what
impact on traffic mix can be seen when no anomaly is present® i is
likely to be quite different when we compare the characdiiegseported from
sensors placed on a link interconnecting two research mkswvath those re-
ported from sensors placed on a link connecting a residergtaork to the
Internet. In contrast to the second case, we might seeditti® web traffic on
the link between the research networks, as research netwygrically have
their own Internet uplinks. Instead, we might see a lot afddfile transfers
from distributed infrastructures such as compute gridstierotraffic to and
from services located inside of the research networks.

Unfortunately, when we started to look into this topic, hesas little pre-
vious work on how sampling impacts network monitoring apgiions and,
in particular, anomaly detection. The publications whidth idvestigate the
impact of packet sampling focused on a wide variety of diffgraspects.
In [162] Duffield et al. study the problem of estimating flow distributions
from sampled flow statistics. In [163], Estan and Varghesé& lato the ac-
curacy of sampling with regard to accounting. Two notableligts related
to the impact of sampling with respect to anomaly detectiabliphed at the
same time as our work [28] are [164] and [121]. In [164], M&al. analyzed
how packet sampling impacts three specific portscan detentethods, TR-
WSYN [165], TAPS [166] and entropy-based profiling methodasf, 167].
This work was extended to analyze the impact of other sam@ohemes
in [121]. Both studies conclude that packet sampling sigaiftly degrades
detection performance using these detection methods. ewis is in line
with our intuition, the studies do not answer a more basicstioe: How
does packet sampling impact timput datato the detectors? If we look at the
impact of sampling on thmput datainstead of the detection results of a spe-
cific detector, we remove any dependency from specific detetgchniques.

In contrast to the impact of sampling, the impact of the tcaffix has
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largely been ignored so far. The only notable study covetfiegimpact of
traffic mix characteristics on anomaly detection on sampleds is [122].
Based on sampled views from routers of two large scale nésydine au-
thors inspect the propagation of several anomalies fromarés with differ-
ent traffic mix characteristics. Their findings suggest theffic mix charac-
teristics can be an important factor. However, becausedftegot have the
unsampled traffic traces, they lacked information aboubtiginal structure
of the baseline and the anomalous traffic. It was therefotepaossible to
guantify the impact, nor investigate it at different samglrates. We address
these issues with an empirical evaluation of the impact okesampling and
traffic characteristics on various volume and entropy rogtused by many
detection methods [19, 20, 82,90, 168]. Starting with floaorels collected
during the Blaster and Witty worm outbreak, we reconstrhetunderlying
packet trace and simulate packet sampling at increasieg.ratle then use
our knowledge of the Blaster anomaly to build a baseline afrad traffic
(without Blaster or Witty), against which we can measureghemaly size
at various sampling rates. This approach allows us to eteatha impact of
packet sampling on anomaly detection without being rdstlito (or biased
by) a particular anomaly detection method.

As a starting point, we investigate how packet sampling ictptne three
principal volume metrics; number of bytes, packets and flpaistime bin.
We find that anomalies that impact heavily on packet and bytenve will
stand out even in sampled traffic. Whilst this is ultimatebod news, byte
and packet volume metrics remain highly variable which nsakeery diffi-
cult or even impossible to use them to identify small and medscale events.
This is even truer of anomalies which mainly impact flow caustich as dis-
tributed scans, or several forms of denial of service atadlo detect these
types of anomalies, detection schemes based on the numib@mwvsiper time
bin would be best. However, we found that this metric is hgaafluenced
by sampling, limiting its usefulness with sampled flow data.

Next, we study the impact of packet sampling on entropy roeby eval-
uating how effective entropy is at exposing worm-like anbesaat increas-
ing sampling rates. Our results here are surprising: we fiatiwhile vol-
ume metrics are significantly affected by packet samplimgropy metrics
are relatively undisturbed. In particular, our data showreat the Blaster
worm is heavily dwarfed by sampling when measured in flow tebot re-
mains largely unaffected when looking at entropy metricar findings un-
derline that even though packet sampling produces imperédtic views for
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anomaly detection, there are metrics (such as entropyatioat us to harness
useful information in sampled traces. Finally, we make ds$eages collected
at different collection points to analyze the role of thdficanix. We measure
the size of the Blaster and Witty worm anomaly at various dargpates and
collection points and find that at some collection points, rilegative impact
of packet sampling is compensated by, and can even boostadyeisibil-
ity in sampled views. For some of the traffic features andectibn points,
sampled views outperform unsampled views even at sammieg 0f 1 out
of 10,000 packets.

The remainder of this chapter is organized as follows. Rivetprovide an
overview of our methodology. We introduce our dataset, @rghow we de-
rive both packet traces and corresponding flow data for seargohd unsam-
pled views, discuss the set of traffic features used for caluetion and con-
clude with a description of how we measured the visibilitaofanomaly in-
dependent of a specific anomaly detection method. Nextid®e®13 presents
our evaluation of the impact of packet sampling which is tertended by a
study of the impact of the traffic mix in Section 3.4. Finalle conclude and
outline directions for future work in Section 3.5.

3.2 Methodology

Our study is based on the following building blocks:
¢ A dataset containing well known anomalies.
« A method to apply packet sampling to data described by flagets.
« A measure to quantify the impact of packet sampling and rth#ic
mix on an anomaly.

3.2.1 Dataset

For this study, we use two week-long extracts from our coimgnsive set
of NetFlow traces collected by the border routers of the S&iducation and
Research Network (SWITCH) [34]. Since the traces were ctdléfrom alf
border gateway routers of the SWITCH backbone and since ttoegers do
not apply any sampling technique, we have a complete viewl dhternet
traffic that enters and leaves the network. Furthermorg jihportant to note

4ln 2003 and 2004, the SWITCH Network had four border gateveagers. See 1.4 for an
overview of the SWITCH network.
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that the networks to which the border routers are attacheduite different:
private peering with an international research networly,gmeering with in-
ternational carriers only, or combinations of the two. Thihe traffic mix
seen by each of them differs significantly.

One problem with the collection of flow information is thateevif the
routers do not apply sampling, we need to be sure that narrdetistic data
loss due to CPU overload, overfull flow tables or line protdesnegligible.
Our analysis of the CPU load, fill-level of the router flow bland the se-
guence numbers of the exported NetFlow packets showedhilsatriteria is
met (loss rates < 1%).

The first week-long extract was collected between the 8th 15t of
August 2003 and contains the well-knoBlasterworm. The Blaster worm
is one of the most extensively analyzed Internet worms.t lBibserved on
August 11, 2003, Blaster uses a TCP random scanning stratiglgyfixed
destination and variable source port to identify potenti&ction targets.
Specifically, the infected host tries to connect to TCP p88 &n the target
machine. When trying to connect, Blaster selects eithendawm IP address
(with a probability of around 60%) or an IP address derivedfthe local IP
(with a probability of around 40%) and then scans a block o$@fsequent
IP addresses in the chosen network. With respect to the netwaler obser-
vation, Blaster reached its peak activity on August 11, 2688veen 20:00
and 21:00 UTC. In this hour, around 5500 external IP addsess#nned (and
eventually attacked) up to 1.2 Mio. IP addresses in the SWITi€twork.

The primary reason to use the Blaster data as basis for osurezaents
is that this anomaly is well understood. Moreover, it is esantative of the
many anomalies which are visible in the number of flows peetinn, a
metric that is biased significantly by packet sampling, tbardly visible in
the other volume metrics. The Blaster worm is therefore aalidandidate
for our analysis of the effect of packet sampling on anomatgction metrics
in Section 3.3.

The second week-long data set was collected between thadd il st of
March 2004, during the outbreak of tkiétty worm. It is used to complement
the first trace in our analysis of the impact of the traffic mxSection 3.4.
The reason for selecting the Witty worm is that its charasties are both
well-known and very different from those of the Blaster worm

1. Witty uses UDP random scanning for target identificatitwievBlaster
uses TCP.
2. Witty infected only about 15,000 hosts while Blaster atézl between
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200,000 and 500,000 hosts worldwide.
3. Witty uses a fixed source port and variable destinatiotvploite Blaster
uses a variable source port and fixed destination port.

3.2.2 Reconstructing Packet Traces

A prerequisite to studying the impact of packet sampling isave unsampled
packet traces. Unfortunately, packet traces from higledpetworks rarely
exist. They consume hundreds of gigabytes of storage sgad¢®pr making

them difficult to collect and hard to store.

As an alternative, we reconstruct packet traces from flow.dake claim
that this reconstruction is fairly accurate if things sushfae packet content
or inter arrival times of packets are not of interest. Indt@aprimary in-
terst is focused on aggregate information such as the nuoflsackets to
port 80 in a time window of lengti with T in the range of several minutes
and where most flows have a duration significantly smallem tha then the
reconstruction is hghly useful. In this case, the problerdistributing the
packets of a flow to the correct time windowis less relevant, as there is a
high chance that all packets of the flow fall into the same tivirelow.

In our study, the aggregation interval size is equal to thgimam flow
durationL of 15 minutes. We can confirm that most flows last less than one
minute (more than 99% of the total number of flows). Therefdeviations
from measurements with real packet traces occur only if a mgses the
border of an aggregation interval and its packets have taogbetdited to two
different intervals.

By choosing the following packet-trace reconstructioroéliym, we pre-
serve (on average) the often assumed (see: [169], [74]}aatrthroughput
property of flows to reduce errors in case of splitting a flowoas interval
boundaries:

5By “correct time window” we refer to the time window in whichdy would have appeared
in the real packet trace.
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Algorithm 1 PACKET-TRACE RECONSTRUCTION
1: forall f in flowtracedo

2: packetsize= | f.fbk;%tf;

3 reminder= f.bytes— packetsizef.packets

4: packet = get_packet_from_flow(f);

5: for i =0 to f.packetslo

6: packet.time = get_random_time_in_interdadtart, f.end);
7 if i < reminderthen

8: packet.size++;

9: end if

10: write(packet);

11: end for

12: end for

The additional byte foreminderpackets is due to the fact that the number
of bytes of a packet is an integer, whereas the number of hiytasflow
divided by its number of packets is not necessariliy so.

Note that the constant throughput assumption is suppoytEi®] where
the authors present empirical evidence that the constesughput property
is a good approximation of the behavior of large flows (heaiteh ele-
phant flows) while still being a reasonable approximatiagrsfoall ones (mice
flows).

3.2.3 Packet Sampling

Having reconstructed the packet traces from our NetFlow, dlaé next step is
to apply packet sampling to those traces. For our study, wehesfollowing
five sampling rates:

e 1outof10

e 1 outof 100

* 1 out of 250

* 1 out of 1000

» 1 out of 10000
With these sampling rates, we include sampling rates tylgitaund in pro-
duction or research networks such as the GEANT [128] netwattka sam-
pling rate of 1 out of 1000 or the Abilene network (now partfod internet2
network [171]) with a sampling rate of 1 out of 100. Howevextenthat we
use the sampling rates 1 out of 250 only in the first part, andtb10,000
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only in the second part of our study. The reason for this iswafound that
we needed higher sampling for the second part of the studydierdo iden-
tify up to which sampling rate packet sampling can improwe\sibility of
anomalies in sampled traces.

The sampling method used is random probabilistic packepbag There-
fore when sampling at a rate pfwe independently select each packet with a
probability of p or discard it with a probability of + p.

With the sampled traces constructed in this way, we could &bain-
vestigate the impact of packet sampling on volume and pekgbdeature
entropies. But since we also want to investigate the impagiay flow fea-
ture entropies, we need to get the flow data correspondifgtodw sampled
packet trace. One way to achieve this would be to emulate dhedenera-
tion as is done by, for example, NetFlow exporting routersifdttunately,
the process of how routers construct flows is not entirelgmeinistic® This
makes reconstruction carried out in this way problemafic Therefore, in-
stead of trying to emulate a certain router behavior for ¢gel window, we
simply aggregate all packets with the same five-tuple (solPcdestination
IP, source port, destination port, protocol) into a single/flWhile this might
introduce some error, we believe the chance that two hostexactly the
same ports for two or more connections within several mmtebe small.
Operating systems do not reuse ports immediately but idstedt for some
time before doing so. Even if they were reused within a sitigie window,
it is not at all certain that the port would be used for a cotinado the same
host.

3.2.4 Feature Set

For our analysis, we compiled a set of 15 metrics, of whichr&lfrequently
used as input to anomaly detection systems. All of theseesetre computed
on a per time window basis with a window of lendgtrequal to 15 minutes:

- Volume metrics:

+ number of flows— Fcnt

+ number of packets» Pcnt

Swell, actually it is. However, this depends on many factarshsas timeouts or the fill level
of the flow table, which are impossible to simulate in retexpvithout having more information
than just the flow level data.
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number of bytes— Bcnt

number of unique source IP addresseSrclP4cnt
number of unique destination IP addresse®stIiP4cnt
number of unique source port numbessSrcPcnt

+ + 4+ o+ o+

number of unique destination port numbessDstPcnt
- Entropy metrics: The Shannon entropy of...

source IP address distributions of flowsSrclP4e
destination IP address distributions of flowsDstIP4e
source port number distributions of flows SrcPe
destination port number distributions of flows DstPe
source IP address distributions of packet®-SrclP4e
destination IP address distributions of packetp-DstIP4e
source port number distributions of packetsp-SrcPe

+ + 4+ o+ 4+ o+ + o+

destination port number distributions of packetg-DstPe

The four metrics rarely seen in such systems are entropyigadtased on
packets. Our evaluation will provide some insight as to wbt/using them
makes sense.

For our study of entropy metrics, we selected the most popaten of
entropy: the Shannon entropy. The Shannon entropy is dedimé&allows for
a probability distributiorP(X):

SX) = =5 plog(n) G

whereX is a random variable over a range of valugs...,x, and p(x) =
p(X = xi). Since we do not have true probability distributions, onlgan
surements of the number of occurrenceadtvity g of x; in a specific time
window of length T,p(x;) needs to be replaced by the sample probability
derived from the sample activity distribution as follows:
e
pX) = —— (3.2)
I DALY

In our context, if we calculate, for example, the Shannonogytof a source
IP address distributiorg; would refer to the number of occurrences of IP
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address. Note tha,t for the sake of brevity, we do not repeat the fact
that the distributions are actually sample distributioée refer to them as
probability- and activity distributions.

We calculated these metrics on a géectionand perprotocolbasis. We
distinguish the directionfN andOUT and the protocol3CP andUDP re-
sulting in a total number of four sets of these 15 metrics.

Direction IN refers to flows (or packets) from sources located outsidaef t
SWITCH network to destinations inside of this network.

Direction OUT refers to flows (or packets) from sources located inside the
SWITCH network to destinations outside of this network.

Because of this large number of metrics, we shall not disallssf the re-
sults. We instead choose to focus on the metrics which rekieahost rel-
evant or most surprising results. More specifically, whestassing results
from the dataset around the Blaster worm, we focus on the Tef® gl and
flows with direction IN. When discussing results from theadsét around the
Witty worm, we focus on the UDP protocol and flows with directiN. The
reason for this is that the worms used these protocols tofecéor to attack)
vulnerable hosts. There were almost no Blaster or Wittyditefé hosts inside
the SWITCH network.

3.2.5 Baseline

Before we can start with our analysis of the effect of sangptim volume
and entropy metrics with focus on anomaly detection, we reeedethod
to quantify and measure the factor by which an anomaly disttliem. In
anomaly detection systems, this is typically done by coingea predicted
value, whose prediction is based on a model of the so-ca#ledlime or “nor-
mal” behavior of a specific metric, to the true value. Unfostely, the base-
line behavior cannot be modeled entirely accuratelgndering an accurate
measurement of the disturbance caused by an anomaly irbfsos§b com-
pensate for this inaccuracy, most detection systems defimigimmum size of
the distortion (threshold) required to raise an aldr& bigger the distortion,
the safer it is to assume that it is truly caused by an anomaly
For our study, we have the advantage that we know the BlasteWatty

worm anomaly used in our trace very well. We are therefore tbtonstruct

"For reasons discussed in 2.2
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an “ideal” baseline by removing the traffic that constitutesanomaly.

Blaster baseline

To obtain the baseline for the Blaster worm, we removed dyinitial con-
nection attempt and left the remaining worm traffic in thee¢raWe did this
for two reasons. Firstly, removing the initial connectidtempt can be done
with rather basic rules. Secondly, the share of the remginiarm traffic
is less than 1%.0f the total worm traffic. The rule used to reenthe ini-
tial scan packet is simple: remove all TCP packets with dastin port 135
and packet sizes of 40, 44, or 48. We are aware that this tieurst only
removes packets from connection attempts from the Blastemvbut also
removes a share of packets of non-Blaster port scans to TER3®. How-
ever, before the Blaster outbreak, this number was ver{.|®eciding not to
make this distinction therefore seems reasonable. A @etaihalysis of the
Blaster worm with respect to the flow traces used in this statybe found
in[172].

Witty baseline

To obtain the baseline for the Witty worm, we removed all UDdtkets
matching the following heuristic definition: a packet siztveen 796 and
1307 bytes, and source port of 4000. Since the Witty wornctida attempt
consisted of a single packet only and the packet size isfgigntly different
from the sizes of typical scan packets, this heuristic shbelmore accurate
than those for the Blaster worm.

An alternative approach for determining the baselines dibalve been to
use the average over a specific historic time period. Thignfas to what
anomaly detection methods with a baseline model based obhglaavior do.
However, our approach has two advantages: (1) it produeestst accu-
rate “best-case” baseline model than any anomaly deteatiethod could
achieve, and (2) it is more general and is independent ofetection meth-
ods applied.

A brief assessment of how well these heuristics work is dised at the
end of the next subsection.

8Typically much less than 10,000 flows. During the outbrehk,iumber was in the range of
10° flows.
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3.2.6  Anomaly Visibility

Having constructed the baselines and packet traces faereiff sampling
rates and metrics, we can now measure how much an anomalytdishese
metrics. We do so by calculating the absolute and relatstadce or anomaly
visibility between a sampled viewandx, the corresponding sampled base-
line:

« the absolute distance or anomaly visibility, defined(as: X)

« the relative distance or anomaly visibility, defined s+ X) /X

By comparing the distances for different sampling ratescame analyze
if, and by how much, sampling boosts or attenuates thisrtista

Note that while absolute distan¢e— X) is a result of adding the anomaly
to the baseline, the distance is often not equal to the vdltieeometric ob-
tained for the anomalous traffic only. Such a direct relatiop requires the
metric to be an additive metric. In our set of metrics, the flpacket and
byte count metrics are additive metrics. For entropy metitise sum of the
two sample entropies from the baseline traffic and the anaunsataffic is not
equal to the sample entropy from both the baseline and thmaloas traffic.

3.3 Impact of Sampling on Entropy and Volume
Metrics

The first step in our analysis was to sample our one-week @atarsund
the Blaster worm outbreak at four different sampling rate4 out of 10,
100, 250 and 1000. We then computed the time series of volmhertropy
metrics as described previously.

To illustrate the following discussion on sampling effe@sselection of
the most meaningful time series are depicted in Figure 3d2FRagure 3.1:
namely packet counts, flow counts, packet destination IResddentropy,
and flow destination IP address entropy. Figure 3.1 showsukgut for the
baseline and the original traffic while Figure 3.2 displdys butput for the
original traffic at different sampling rates.

As expected, Figure 3.2(a) shows that packet counts arestatlied by
packet sampling. The unsampled values can simply be estihbgtmultiply-
ing the sampled value by a factor of L. Likewise, byte counts (not shown)
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Figure 3.1: Blaster flow trace: Plots of selected metrics for flows (p#ske
with direction IN and protocol TCP. The plots show resultstf@ traces both
with- and without the Blaster anomaly.

are not impacted by packet sampling. This is due to the fattttie varia-
tion of packet sizes by a factor of 100 (between 40 and 15085y very
small compared to the overall number of BytesX0'°) within one interval
of 15 minutes. However, as depicted in Figure 3.1(a), packants only
show a minor increase in distance before and after the Blastbreak. The
other three metrics in Figure 3.1 indicate a more drasticwasitlle change.
Packet (and Byte counts) might therefore not be a good clioraetecting
anomalies other than volume anomalies.

On the contrary, flow counts are heavily disturbed by pacaeting,

even at a sampling rate as low as 1 out of 10 (see Figure 3.2{this is
because flow counts are typically dominated by flows with fawkets only
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Figure 3.2: Blaster flow trace: Impact of sampling on time series of deléc
metrics for flows (packets) with direction IN and protocolH Glote that in
Figure 3.2(a) and 3.2(b) the y-axis is log scale.

(e.g. scan-traffic or other background radiation). Few p&ciknply a smaller
probability of being sampled in comparison to larger flonsq[L

More interestingly, packet entropy metrics (Fig. 3.2(e),well as flow
entropy metrics (Fig. 3.2(d)) are well preserved even digrigampling rates.
Though we see that packet sampling disturbs entropy mgthiesunsam-
pled value cannot easily be computed from the sampled valée dyte and
packet counts), the main traffic pattern is still visible lre tsampled trace.
This result was a crucial intellectual motivation for intigating the use of
entropy metrics in more detail when the research for ourystvas initiated.
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3.3.1 Anomaly Size

In Figure 3.3 we plot the sampling rate vs. tilesolute distancénormalized
to the respective value of each metric in the unsampled)texevell as the
sampling rate vs. theslative distancdor packet counts, flow counts, flow
destination IP entropy, and packet destination IP entrdpge Figure shows
four curves, one for each metric under investigation, ahsampling rate for
one interval. We selected the first interval after the Blastebreak around
17:00 UTC as a representative interval.

Let us consider the results for volume metrics first. For tbe ftount
metrics the absolute as well as the relative distance deedrastically when
sampling is applied. Thus, we confirm the results of previwagk, namely
that flow counts, whilst effective in exposing Blaster in thiesampled data,
are not a suitable metric for detecting flow-based anomaiie=n packet sam-
pling is used. In contrast, packet counts are not impactegdarket sam-
pling. Consequently, the relative difference for packeairds remains con-
stant. However, as can be seen in Figure 3.1, the problenpaitket counts
is that Blaster-type anomalies, which usually represelytamery small frac-
tion of all packets (less than 1% in our trace), are not vesibié even in the
unsampled data traces.

The flow and the packet entropy curves stand in sharp contrdkiw
counts. The absolute as well as the relative distance deerealy very
slightly, even for sampling rates as high as 1 out of 1000 fithldthe en-
tropy metrics, implying that the size of the Blaster worm eéms largely
unaffected when viewed using entropy. For other intervaddé §hown here)
we find that entropy metrics can even emphasize Blasterdypenalies in
sampled views. Possible root causes as well as the root ichargdied in our
data are discussed in more detail in section 3.4.

To summarize, our results demonstrate that entropy-basddcs)have
two key benefits over volume-based metrics: (1) they are rafieetive at
capturing the Blaster worm in unsampled traffic, even thotighBlaster
worm is not clearly visible in packet and byte counts and,emimportantly:
(2) they are impacted negligibly by sampling when compaoeitbtv counts.
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Figure 3.3: Blaster flow trace: Anomaly visibility vs. sampling rates fo

four selected metrics for flows (packets) with direction INdgprotocol
TCP [packet counts (Pcnt), flow counts (Fcnt), flow destoratP entropy

(DstlP4e), and packet destination IP entropy (p-DstIP4é)he plot shows

the mean and 95% confidence interval over 12 sampling runshioifirst

interval after the Blaster outbreak around 17:00 UTC.
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3.3.2 Anomaly Intensity

Now that we have studied the effect of packet sampling on tast8 anomaly
within our data, we evaluate how effective entropy is at gapy Blaster-like
anomalies of varying intensities. We utilize the given é&aand attenuate
or amplify the strength of the Blaster anomaly accordingtyorder to am-
plify the Blaster anomaly, for each observed Blaster-pagkeansert a second
packet with the same source IP and a destination IP randatdgted from
the SWITCH IP address range. To simulate an attenuatedckattackeep
only 50%, 20%, and 10% of the attack packets in the packet trac

[ ] DstiPde
[ Fent

08

06

0.4

relative difference

0.2

1000

100 250

1 Osa mp\'\“g rate

Figure 3.4: Blaster flow trace: Relative distance from the baseline fowfl
counts and flow destination IP address entropy for flows witbction IN
and protocol TCP across increasing sampling rates and @iffeintensities.

Figure 3.4 presents the relative difference for the flow ¢e(dark gray)
and flow entropy (light gray) metrics, across increasing®arg rates and
different intensitie$. It provides considerable insight into the efficacy of flow
counts and the flow destination IP address entropy in expdbi@ Blaster
anomaly at various intensities and at various samplingrate

As expected, the stronger the anomaly, the larger the veldtfference

9For presentation purposes, we normalized each surfacebyakimum size for that metric,
so that the size of the anomaly for each metric falls betweandOl.
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for both metrics. However, flow counts decrease sharplya8taster worm
is attenuated, even with unsampled traffic. Moreover, teisrelase in flow
counts is even sharper as the sampling rate increases. tiaspflow desti-
nation IP address entropy decreases remarkably slowlk, it increased
sampling rate and for varying intensities of the Blasteachtt

From this figure we conclude that in the case of Blaster-likeraalies,
entropy metrics are far more robust to packet sampling timapls flow count
based summaries.

Furthermore, although our study focuses on the Blaster wairamaly,
we argue that our results are not specific to the Blaster woromaly, but
are relevant for any anomaly with the following properti€k) the anomaly
causes a notable dispersion (or concentration) of one oe mnaffic feature
distributions in the unsampled trace and (2) most distidiouelements (such
as an IP address in the source IP address distribution) axtdeddified by
the anomaly are referenced by more than one flow each. Theréasprop-
erty (1) is simple: if unmet, traffic feature distributionseanot meaningful
for this type of anomaly. The intuition behind property (}hat entropy de-
pends on both the number of distribution elements and tegiity.'° Thus if
an anomalous flow referencing a specific distribution eldrnsemot sampled,
there is a chance that other anomalous flows referencingthe slement are
sampled, keeping the element’s influence active. In contiteere is no such
indirect impact in the case of the flow count metric. If a flowmet sampled,
it no longer contributes to this metric.

Fortunately, if we look at the definition and the models of eimemalies
discussed and referenced in Section 2.2, properties (1(Paede expected to
be met by DDoS, reflector DDoS or various types of (largeegcatanning.
Furthermore, the successful application of entropy basedhaly detection
in combination with sampled traces (e.g. in [20]) with maiiffedent types
of anomalies support our claim.

Having said this, it is clear that how well an anomaly is Visitwith re-
spect to our set of metrics also depends on the baselinectraffiwell as
anomalous traffic. The next section discusses this in mdeglde

10By how many flows an element is referenced, see Equation 3.1.
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3.4 Impact of the Traffic Mix

In the previous section, we analyzed and compared the inoppeicket sam-
pling on various packet- and flow based feature entropiesvahane met-

rics. Even though our results suggest that feature ens@peemore resilient
to sampling than volume metrics, the role of the traffic mixiué baseline
traffic is still unclear. We therefore need to investigaie th more detail.

The traffic from the four routers from which we acquire our fldata
appears to have quite differing characteristics, esdgomhien comparing
traffic from routers 2 and 3 to routers 1 and 4. We thereforenéxed the dif-
ferences in exposure of the Witty and Blaster worm for eachese routers.
Details on the characteristics of the traffic of the four evatcan be found in
our technical report [173].

Our results might appear surprising at first. Intuitivelgcget sampling
reduces the amount of information contained in our trace® Would expect
that the visibility of an anomaly decreases with an incrdasampling rate.
Our evaluation tells a different story. We provide evidetitat, for some
of the border routers, the impact of packet sampling on ahpwisibility is
contrary to the expected result. For two of the routers, tienaly visibil-
ity is highest with unsampled data. For two other routerss highest with
sampled data and outperforms the unsampled trace up to isgmates of
1:10,000.

3.4.1 Results

Interestingly, each of these routers shows different iligilmf the anomalies.
This difference illustrates the impact of the traffic mix tie tnomaly visibil-
ity. In order to uncover this, we have a closer look at thedsaaf router 2 and
4. Figure 3.6 shows the relative difference for flow count o destination
IP address entropy for these selected routers.

A comparison of the flow count plots (on the left side) revehi the
anomaly visibility on router 4 is approximately twice asosty as on router
2. This indicates that router 4 has received much more Bldlstes than
router 2. However, the impact of packet sampling is simitairifoth routers.
The anomaly visibility is decreased significantly when gofrom unsam-
pled traffic to traffic sampled at a rate of 1:10,000. Furthenenthe basic
structure of the relative distance curves for the unsamipédfic is very well
preserved by the curves for the sampled traffic. Howevergitempare the
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Figure 3.5: Relative difference of flow count, unique destination IPradsl
count, flow destination IP address entropy and flow destimgpiort entropy
metric on our four border routers vs. date and time (UTC). mpling.

flow destination IP address entropy metric (on the right)side can see that
the impact of sampling is totally different: Packet samplimcrease®laster
visibility on router 4, while itdecreaseshe visibility on router 2.

Another example is shown in Figure 3.7. This figure presér@sihomaly
visibility of the destination port count during the outbkez the Witty worm
for all four routers. A comparison of the four plots showstttine impact of
sampling is similar for the traces of router 1 and 3 and forttaees of router
2 and 4. However, the impact on the traces of router 1 and 3rplaiely
different from the impact on the traces of router 2 and 4.
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Figure 3.6: Relative difference of flow count and flow destination IP addr
entropy metrics on routers 2 and 4 vs. date and time (UTC)rdutihe out-
break of the Blaster worm.

3.4.2 Discussion

The increase in visibility for sampled traffic is significawhich may initially
appear counter-intuitive. It is particularly surprisirigat the increase is big
enough to preserve the visibility of the Blaster (Figure(@)6Router 4) and
Witty (Figure 3.7(b) and 3.7(d)) worm up to sampling rate @fut of 10,000.

What are the possible reasons that cause sampling to bansbinvisi-
bility? Or, in mathematical terms, what is the reason for:

(Xp —Xp) /Xp

R 1 (3.3)

for sample probabilityp?
To understand this effect, we first need to discuss the ctaairstics of
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Figure 3.7: Relative difference of destination port count on the fourdeo
routers vs. date and time (UTC) during the Witty worm outkrea

the baseline and anomalous traffic that determine the ingfaetmpling, and
how they do this.

With regard to our set of metrics, the following two distritouns capture
the characteristics relevant to the impact of samplingnilmaber of packets
per flow and the number of packets per distribution elemeBtepending on
the metric under scrutiny, only one of them or both matter:

Flow count: We want to decide whether the number of flows per time
window of size T of the baseline or the anomalous traffic iseradfected by
sampling. To do so, it is sufficient to analyze the distribotdf the number of
packets per flow in the baseline traffic and in the anomal@fBdr For this
analysis, we can plot the share of flows with less thpackets versus If
the line of the plot for the baseline is always below the limethe anomalous

11For example, a specific source port number.
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traffic, the baseline is expected to be less affected. In piposite case, the
same is true for the anomalous traffic.

If the lines cross each other at least once, it will depenchersampling
rate whether the flow count of the baseline or the anomaleiifictis more
affected. For a sampling probability or the expected number of flows after
sampling expressed as a shadd the original number of flows is

_ N, fix (1= (1—p))
SN

with n; as the number of flows withpackets.

Since flow countis an additive metric, it can be shown thad)(3.simply:
%\ with sa and sz as the expected share of anomalous and baseline-flows
remaining after sampling.

It follows that there is no easy way to formulate a rule of thwsuch as “if
the average number of packets per anomalous flow is smadleittie average
number of packets per baseline flow” the anomaly visibiliggitases for all
sampling probabilities. However, in practice we see margnaadies, such
as different forms of scan-traffic and DDoS attacks, whicloive flows with
only one packet per flow. We also observe anomalies such ascflaads or
application-layer DDoS attacks where the number of pagatfiow remains
in a specific, narrow range. In the first case, we can expecatioenaly
visibility to either decrease or to remain the saffidn the second case, we
can expect to see an increase in anomaly visibility for setesampling rates,
considering that the distribution of the number of packeds fiow of the
baseline is typically heavy-tailed.

However, note that because of the variability introduced&mypling, if
the increase or decrease of anomaly visibility is smallpglsi or just a few
sampling runs are unlikely to provide the same trend or eveacteresult
as the theoretical results derived from the true packet per distributions.
This is clearly a general problem with sampling. It is theicadly possible
that if we are really unlucky, we might not see an anomalyl iintonsists of
morethan the total number of packets minus the number of samlekigps.
Hence, the exact same anomaly might be found in one case ivmight be
missed in another. This will be the case when using one of dpellar sam-
pling strategies such amiform random packet samplirog every n-th packet
If possible, sampling should therefore not be used in sgcregiated applica-

S

12f the baseline also consists mainly of one packet flows.



3.4 Impact of the Traffic Mix 75

tions. Unfortunately this is not always the case, as thedggplication of
sampling in high-speed networks suggests.

Unique count: To understand a boost in anomaly visibility for metrics
capturing the number of unique elements (e.g. source parbeus) per time
window of size T, it is sufficient to look at the number of paskper distri-
bution element. However, unlike for the flow count metrig thistributions
of the baseline and anomalous traffic are not independetiiedatersection
of the distribution elements is typically not empty.

Let X be the set of unique elementsandny(X ) the number of base-
line packets andia(X ) the number of anomalous packets with this element.
Furthermore, let us consider the following (simplified) saeos:

e Thex; in the anomalous traffic do not appear in the baseline traffic.
Hence, if we look at the number of unique source IP addresses t
anomalous traffic is originating from different source IRlsgbses than
the traffic in the baseline. In this case, an anomaly wouldasem-
crease in its visibility if and only if the number of in the baseline
traffic decreases faster than the numbex;af the anomalous traffic.

If there are a lot ok; with just one packet contributing to them in the
baseline but not in the anomalous traffic, the visibility lné tanomaly
increases until the sampling rates reach a point where tiaruof;
removed from the baseline again become smaller than the enaofib
X removed from the anomalous traffic. Since today’s “normiaffic
contains a significant amount of backscatter or scan trafialting in

a large number of flows with just one or a few packets, any ahoma
consisting of many flows with more than one packetxyehould see
an increase in its visibility, up to a certain sampling rate.

¢ Thex; in the anomalous traffic and the baseline traffic are idehtfes
a result, the anomaly is not visible in the unsampled traffiowever,
if we apply sampling, the anomaly should become visible sThibe-
cause if we have the same setgfthe anomalous traffic contributes at
least one packet to eagh If we now sample the baseline and the full
traffic trace at the same sampling rate, the numbey of the baseline
should decrease faster than the numbex®in the full traffic traces.
Thex; in the full traffic trace have more packets perFurthermore, if
the baseline contains also somevith a considerably larger number of
packets from the baseline traffic, the increase in visibilitll at some
point again turn into a decrease.

* A mix of disjoint and commotx; in the baseline and anomalous traffic.
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In practice, we expect most anomalies to match this kind latios-
sship to thex in the baseline traffic. This is basically a combination
of two portions of the traffic, one containing the flows rethtex; ap-
pearing in both baseline and anomalous traffic, and one stomgiof
the flows related to appearing in either the anomalous or baseline
traffic only. Whether or not the visibility of an anomaly iscieased
at a certain sampling rate now depends on the combined inopatie
separate portions of the traffic. The visibility may be iraged if we
look at the portion related to the disjoirt only, but the decrease in
visibility in the other portion more than compensates for it

Entropy: For entropy metrics, it also matters how packets are digeib
into flows. For example, if the baseline contributes a sirighe with 100
packets to a specific item and the anomaly contributes the sarmber of
packets but all from different single-packet flows, the citmition (number of
flows) of the anomalous flows to this item decreases with asirgy sampling
rates. Accordingly, the opposite would be true, if the caseaweversed.

Hence, we now have the means to explain the increases in &nvisa
ibilty for increasing sampling rates in Figures 3.6 and 3L&t us start by
explaining the impact of sampling shown in Figure 3.7. Fiettus consider
the differences in the visibility of the anomaly in unsantpteaffic. In order
to get a relative difference of around 20, router 3 shouldisgtc of roughly
3000 ports per 15 minutes bin. This is based on the considertiat Witty
used random destination ports for its attack. For routeshauld be around
11,000 ports, for router 2 around 6000 ports and for routedrad 16,000
ports. We can confirm these assumptions by extracting tfasnration from
our data. With this finding, and the fact that Witty used ramddestina-
tion ports for its attack, we can conclude that the set ofgpoontributed by
the anomaly is largely disjoint from the set of ports conttéd by the base-
line. As long as the number of ports contributed by the basdliecreases
faster than the ports contributed by the anomaly, we canatgpeincrease in
anomaly visibility for the port count metric. By looking dte distribution of
the number of packets per port with and without the anomadyfound that
while the baseline for routers 2 and 4 contain a significamlper of ports
with less than three packets per port, there were almost abthese in the
Witty traffic. Most ports here were hit by around 5 packets.n§amuently,
until the decrease in ports is dominated by these ports,abelime port count
decreases much faster than the port count of the full pae tIn contrast,
on router 1 and 3 Witty traffic contributes a large number atgthat occur
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only once or twice compared to the number of ports with theeselnaracter-
istics in the baseline traffic. Hence, the number of portdridouted by the
Witty worm decreases faster than those of the baselinedraffi

The increases in anomaly visibility for sampling rates oftapne out
of 100 packets, shown in Figure 3.6, remains harder to explahis time,
we consider not a unique count metric but an entropy metrar. elftropy
metrics, both the number of flows and the number of packetdiptibution
element are important. However, since the Blaster anonaigists mainly
of one packet flows, flows and packets can (almost) be corsidbe same.
An inspection of the Blaster traffic seen by router 4 showet ih contrast to
other routers and the baseline traffic of router 4, it corstaiany IP addresses
which are hit by more than one attack source. The increaséheagfore be
explained along the same lines as the Witty case.

3.5 Conclusion

In this section, we presented an empirical evaluation ofrtipact of packet
sampling on anomaly detection metrics. Starting with a wleek dataset
of unsampled NetFlow traces containing the Blaster worm agslked how
packet sampling impacts volume metrics such as the numbwgrte$, pack-
ets, and flows that have been commonly used in anomaly datedm answer
this question, we employed a unique and general methodoWbiph treats
anomalies as deviation from an idealized baseline. We ussdd evalu-
ate the fidelity of sampled traffic in exposing anomalies. @nst finding
is expected. We found that packet sampling produces aecastimates of
byte and packet counts, when compared to the underlying.trelowever,
packet sampling produces grossly inaccurate estimateswfdbunts. In-
deed, the Blaster worm, which was prominent in the unsamipédfic view
of flow counts, disappears entirely at higher sampling raléss is because,
as shown in previous work, small, single packet flows are edismntirely.
Therefore, anomalies that impact only packet counts or tyteits are likely
to be visible in sampled views, but anomalies that impact ffownts (such
as the Blaster worm in our data) will not be visible.

We subsequently evaluated the effect of packet samplingatuife en-
tropy. Surprisingly, we found that while the Blaster worniardly visible in
flow counts of sampled traces, it remains visible in entrogtrios. While
sampled traffic views are inherently incomplete and impzffiney are not
completely useless. In fact, we provided evidence that gedhipaffic can be
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of use if analyzed using the appropriate metrics, such asgnt
Finally, we extended our study to include the impact of tladficr mix.

Starting with two week-long datasets of unsampled traffiords from four
border routers, we ask how traffic mix affects anomaly metiic combi-
nation with packet sampling. By comparing the 15 metricsféar border
routers at different sampling rates, we found that the iligilof certain met-
rics, for example flow destination IP entropy, was even mooapunced by
packet sampling up to sampling rates of one out of 10,000. Weexjuently
elaborated on possible root causes. In retrospect, ounfisdiertainly were
surprising even though potential explanations are maifellowever, in or-
der to observe this effect both the anomaly and the basehffectmust be
shaped accordingly. As a result, we do not expect them to Ibeam to a
larger number of anomalies and real-world baseline traffies Neverthe-
less, our findings remind us that we cannot simplisticalyuarthat sampling
is an inherently lossy process.









Chapter 4

Analysis of Feature
Correlation

Having discussed the impact of sampling and the traffic mixamious vol-
ume and entropy features in the last chapter, we continuassgssment of
these features with regard to their use with anomaly detedt high-speed
communication networks. We perform a detailed correlatioalysis of a
broad set of volume- and entropy features to analyze whetieiof these
features are redundant. In contrast to the analysis in y27Hid not find per-
sistent and strong correlations in entropy features. Orcdimérary, we show
that extending the classical feature set with featuresatéflgthe geographi-
cal structure of the traffic adds another layer of potemntiatieful information.
Finally, we discuss why we think that the different appreschsed to build
the traffic feature distributions are the real reason fordifferent findings.

Whilst Nychiset al. measure the number of packets per feature instance, we

measure the number of flows per feature instance.

4.1 Introduction

One of the key challenges with anomaly detection systems iaihimize
the size of the input vector while at the same time maximizisgnforma-

LIn practice, packet-based approaches are hard to find. Mmdtswise a flow-based ap-
proach [19, 20, 31,48, 91].
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tion content. Any input that does not contribute toward advedetection
performance should not be fed to the detector. Doing so helpgtimize re-
source usage and limits potential sources of errors andhforsnation. This
problem is typically addressed by a feature selection m®aewhich either
the performance of the system with different subsets of tipeiti vector is
analyzed or in which a correlation analysis on the full inpettor reveals
which components of the vector are likely to carry only rediamt informa-
tion. From these approaches, the firstis likely to resulthieaed selection of
the input vector if the set of anomalies does not include @ijralar number
of anomalies of each type and (2) anomalies from all possibtenaly types
and variations. This is particularly a problem if the deteshould also detect
rare or yet unknown anomalies. The second approach, theésatrrelation
analysis, does not suffer from this problem. It providesinfation about the
“similarity” of each pair of components of the input vectaven a series of
observations of the input vector. Hence, if we feed a seri@bservations
where most observations are not anomafous, can locate the components
relevant to capturing and describing the current state @tcttimmunication
network. The drawback of this approach is that not all congpdsirelevant to
the current state must also be relevant to detecting an doagstate. Some
might never be affected by anomalies. However, since weatatetide this
without knowing all past, current and feature anomalieis, dpproach might
be a better choice with regard to the problem of grey and Hacns®

A recent analysis of the pairwise correlation of differegdtiure entropies
by Nychiset al. [27] raised some concern regarding the usefulness of these
features. Nychi®t al. found that port entropy, address entropy and traffic
volume (packets/s) are highly correlated. Therefore, glsifeature, such
as traffic volume, would already provide enough informafamthe reliable
detection of DDoS-like events. Consequently, the use otiplelfeatures
would not provide additional information to improve the amady detection
rate.

Motivated by our own experience in the field, which contréslibe results
reported by Nychigt al.,, we performed our own correlation analysis of traffic
features. This analysis confirmed what we suspected. ThHgsimdid not
expose any persistent strong correlation between traffitufes, except for
one: a strong and persistent correlation of the flow sizeopgitand the bytes

2Which is relatively easy to do if the assumption that anoesadire typically rare holds for
the data under scrutiny.

3The problem of detecting rare and yet unknown anomalies 2Sefor more details on this
topic.
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per packet entropy. To aid detection and especially claasifin of network
anomalies, we therefore suggest the use of a wide rangetafésao capture
different aspects of traffic dynamics.

4.2 Methodology

For our correlation analysis of feature entropies, we setkthe following set
of traffic features:

* Flow size in bytes (Fsize)

» Bytes per packet (BytesPP)

e Source and destination port (Dp,Sp)

» Source and destination IP address (Sip,Dip)

e Autonomous System (AS)

e Country code (Country)

From these features, the source and destination port ancesand desti-
nation IP address features can be found in virtually allapytbased anomaly
detection approaches. The flow size (in bytes or packets}tenbtlytes per
packet are less frequently used in the entropy context leutaite popular
features in anomaly detection in general [174-177].

Concerning the last two features, we do not know of any (@ytbmsed)
anomaly detection system making use of them. For now, we @glynstate
that these features may expose certain anomalies that otlggrivise simply
vanish into the background noise. More details can be foorzhapters 5
and 6.

As in the previous chapter, we compute the Shannon entroplyesie
features as follows. Firstly, we count the number of ocawesa; of all
instancesg; of a specific traffic feature in a time window of length T. More
specifically, if we take the featurgource port we count the numbes; of
flows containing a specific source partand do this for alk;'s found in the
flows. Next, we calculate the Shannon entropy according ¢dfdiowing
equation:

HOX) = =3 plx)logz ). @.1)

g
i) = — 4.2
P = S (4.2)
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We then repeat this procedure for all time windows and dfieréeatures
and compare the resulting entropy time series. Note that digiting the
contribution of each instanog of a traffic feature with the number of flows
containing it, we mightintroduce a correlation with theaiaiumber of flows
(Fent) in the respective time window. To analyze this, welde this metric
in our analysis.

4.2.1 Correlation Metrics

A possible correlation metric for two time seri¥sandY consisting oh data
points is the Pearson product-moment correlatipas used by [27]. The
Pearson correlation coefficien, is defined as

_ Zin:].(xi —)Z)(yi —)_/) ) (43)

v (n—1)0x0y

wherex andy are the sample meansXfandY, andoy andoy are the sample
standard deviations of andY. In particular, Nychist al. measured Pearson
correlation scores bigger than 95 for port and addressilaisions, where
score 1 means maximum correlation. An alternative coiiglanetric is the
Spearman’s rank correlation:

By, df

) (4.4)

p=1
di = x; —V; is the difference between the ranks of corresponding va{uasd
Yi. Whereas Pearson only captures linear correlation, Sggeconsiders any
correlation described by a monotone function, includingéir correlation. A
comparison of the two correlation metrics on our data setvelddhat Spear-
man correlation was consistently higher than Pearson letioe, hinting at
considerable non-linear correlation. Therefore, we ugesh8nan’s correla-
tion for our analysis.

4.2.2 Data Set

To evaluate the feature correlation, we used 10 differees summarized
in Table 4.1 from the SWITCH backbone.
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- Days 75p Fent
ID  Description Start TCP UDP
1 Blaster worm 08/01/03 22 567K 146K
2 DNS attack 02/04/04 6 919K 793K
3 Witty worm 03/16/04 6 1,095K 304K
4 Sasser worm 04/26/04 9 1,068K 276K
5 YouTube outage 08/07/06 13 544K 468K
6  Teliafiber cut 08/12/07 26 877K 921K
7 Géant anomaly 10/17/07 6 954K  1,456K
8 YouTube outage Il 02/01/08 25 895K  1,404K
9 Reflector DDoS 03/31/08 14 954K  1,479K
10a 4 months (router 1) 02/29/08 120 930K 1,520K
10b " (router 2) " 442K 618K
10c " (router 3) 206K 82K
10d " (router 4) 547K 623K

Table 4.1: Overview of traces used. To indicate the size of traces,stvéhie
75-percentile (75p) of flow counts computed in 5-minute oxivsd

Traces 1-9 were captured on the largest exchange poine(rbuaround
major anomalies, such as global worm outbreaks, outage®&res attack
using internal hosts as reflectors. On average, roughly 5@B&i duration is
considered anomalous. Trace number 10 is a continuousdvaceél months
from all exchange points with no major anomaly. In total, treces cover
247 days from 5 years.

4.3 Results

The absolute values of the Spearman coefficients as a pageeate pre-
sented in the tables 4.2, 4.3, and 4.4. A value of 100 denotesnmim
correlation where on the other hand 0 means no correlation.
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Table 4.2: Correlation of different feature entropies for traces 1s&@¢ Ta-
ble 4.1) as absolute values of the Spearman coefficients examqage. The
table shows maximum, minimum, average, and standard davifatr corre-

lation of H(X) for TCP traffic.
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Table 4.2 shows correlation statistics for traces 1-9, aisimy several
anomalousntervals from a range of 5 years. Strong correlation80Q) are
highlighted. For each feature pair, we compute the corcglaif the respec-
tive time series for each of the nine traces. Then the maximmimimum, and
average correlation is selected for each feature pair. @éyecorrelation of
the different features is low. For some feature pairs, daticn is high in cer-
tain traces, but low in general. This is, for instance, treedar (Sip, Dip). It
has a maximum correlation of 90 but an average correlatiamlyf40. Only
the pair (BytesPP, Fsize) has a very strong average coorelzftalmost 100.
This is not unexpected, since the bytes per packet valueilboted by a flow
is calculated by dividing the flow size in bytes by the numbepackets of
this flow. Hence, if the number of packets of a flow correlatthits size in
bytes? we should also see a correlation of the Fsize and the Byte=sR&Yé.

The next highly correlated feature pairs are (Sip, Fsizé&) 88 and (Sip,
BytePP) with an average correlation of 81. All other pairgehan average
correlation of less than 80. Summing up, almost all of théuflesapairs defy
the allocation of a fixed correlation value. If we look at thenimum and
maximum of the correlation values for each pair, we see tigt span quite
a large range of values.

Table 4.3 and 4.4 show correlation statistics for tracesdL.OBhis charts
the correlation between different routers during a 4-memtériod of rela-
tively normaltraffic containing no major anomaly. Table 4.3 shows the cor-
relation for TCP traffic and Table 4.4 for UDP traffic respeely. For TCP
correlation is again in general very low. The only except&(Sp, Dp), with
correlations between 96 and 98. Surprisingly, the three carselated pairs
from table 4.2 are not at all correlated in traces 10a-dpalgh both tables
show statistics for TCP traffic. This suggests that cori@iatan vary sig-
nificantly with time and between normal or anomalous trafinditions. In
other words, we cannot assume that a specific feature pairislated but
neither can we assume that it is uncorrelated. For UDP, ter@ number
of pairs with high maximum correlations. However, this isialty not stable
over all routers, as the minimum correlation is quite weaknfiost of them.
The only pair with constant strong correlation is again (Bp). However,
while (Sp, Dp) is strongly correlated in normal traffic (tesc10a-d), it is
only moderately correlated in anomalous traffic (trace9.17he summary
for the results for the 4-months trace is therefore simiahte summary for

4Intuitively, this correlation is expected. For longer flgiitsis even (partially) enforced be
the size limit of packets.
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the 9 traces before. For almost all feature pairs, no fixecetation value that
can be attributed.

Altogether, our findings suggest that in some situatioresdifferent fea-
ture entropies do contribute information not yet includedne or more of
the other feature entropies. However, in others, they nright

Sp Dp | AS | Sip | Dip |Country|BytesPR Fsize

8 |3 g|s g3 gld < g3 £|3 <

E E|E E|E E|E E|E E|E E|E E|lE E

Fcnt|94 51|93 38|70 46|61 26/45 7|61 19/67 36/43 5
Sp| - -|98 96|63 28165 38/57 36|76 43|26 4/35 7

Dp| - -| - -|68 19166 32|58 32|73 3422 3137 7

AS| - -| - -| - -|8562|45 14{29 1843 9|44 23

Sip| - -| - -| - -] - -|64 5870 42123 1527 12
Dip{ - -| - -| - -| - -| - -|93 54|58 7167 7
Country| - - - -| - -| - -| - -| - -154 14|56 22
BytesPR - -| - -| - -| - -| - -| - - - -139 5
Fsize| - -| - -| - | - -| - - - - - -] - -

Table 4.3: Correlation of different feature entropies for traces 104TCP)
as absolute values of the Spearman coefficients as a pegeenide table
shows the maximum and minimum of 4 different routers fof H

Sp Dp | AS | Sip | Dip |Country|BytesPR Fsize

3 c|d3cld3c|d3c|d3els g3 gld <

E E|E E|E E|E E| E E| E E| E E| E E

Fcnt|82 73|80 64|95 63|86 7(84 13|83 14|78 13|86 12
Sp| - -|96 93|79 65/79 29|70 27|78 42|64 1{76 6

Dp| - -| - -|78 4979 46|72 18/64 3963 2|74 2

AS| - -| - -| - -[8911|94 16|84 19|79 22|96 8

Sip| - -| - -| - -| - -|8920{79 0|87 21|9121
Dip| - -| - -| - -| - -| - -|92 27|70 14|94 53
Country| - -| - -| - | - -| - -| - -147 1|88 8
BytesPR - -| - -| - -| - | - - - - - -|78 4
Fsize| - -| - -| - | - -| - -| - - - -l - -

Table 4.4: Correlation of different feature entropies for traces 104uUDP)
as absolute values of the Spearman coefficients as a pegeenide table
shows the maximum and minimum of 4 different routers fof H
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4.4 Discussion

Besides a strong correlation of (Sp, Dp) in normal traffia; @sults do not
confirm the very strong correlation between src/dst port liBhdddress en-
tropies in normal and anomalous traffic found by Nyao#tisl. [27]. In our
results, the pairwise correlations tend to be weaker bataige variable. We
think that these differences can largely be explained bywethea; (num-
ber of occurrences of ite) are calculated for equation (4.2). Nyclesal.
computeg; by counting the number gfacketscontaining elementwhereas
we count the number dlows Clearly, the number of packets is highly corre-
lated with overall traffic volume, whereas a high volume fiasfer is usually
summarized in a single flow. Thus, by computing #hesing packet counts,
one introduces a potentially strong correlation with tcafdlume. This con-
sideration might also have been the reason why most appedctentropy
based anomaly detection [19,20,31,48,91] choose to usaithber of flows
to calculate they instead of the number of packets.

Another interesting observation can be made when lookitigeatesults
which Nychiset al. found regarding their flow size distribution feature. This
feature is based on a distribution constructed on a per fladvremt a per
packet basis. Its correlation with their packet-basedufeatis very weak.
While this might solely be due to the fact that these feataresndeed more
or less independent, it might also come from the fact thaténe constructed
differently: one on a per flow and the other on a per packesbasi

45 Conclusion

We revisited the results of Nychét al.[27] regarding a persistent and strong
correlation between traffic feature entropies. We did tiiipdrforming an ex-
tensive correlation analysis of traffic feature entropiesdarge data set con-
taining traffic from a diverse set of customers. In contradiychiset al., we
did not find a strong, persistent correlation between trédfdure entropies.
Our analysis did not expostrong pairwise correlationgvhich are invariant
over time, different routers, and normal/anomalous traffieditions. We ar-
gued that the differences between our results and the findih§lychiset
al. can largely be explained by the way the distributions arestanted, by
either flow or packet based approach. Our results suggesf tha use the
flow based method to construct the distributions from whiuh éntropy is
calculated, the pairwise correlation of the selected trédfatures tends to be
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weaker than when using the packet based method. Howeveglu varies
quite significantly for traffic traces from different timesllected at different
locations, or containing mainly normal traffic or anomaltnadfic. Hence, if
we drop one of these features, we might lose relevant infoom#o detect
and classify an anomaly in some but not all situations. Tédaos, we make
use ofall of these features in our entropy telescope.









Chapter 5

Traffic Entropy Spectrum

In the previous two chapters, we presented and discusseidiemhpvidence
for the first two claims made by this thesis. Firstly, thatrepy is robust

to packet sampling techniques often used with measurem&asiructures

in high speed networks. Secondly, that volume and entrogiyifes provide
largely independent information. In this chapter, we pnésad discuss the
Traffic Entropy Spectrum (TES) method for a compact characterization and
visualization of traffic feature distributions based on eapaeterized form of
entropy; the Tsallis entropy. After introducing the contcleghind the TES,
and its properties, we demonstrate its descriptive powegusaffic data from
different real world anomalies.

5.1 Introduction

Fast and accurate detection of network traffic anomaliesksyafactor in
providing a reliable and stable network infrastructurerdcent years, a wide
variety of advanced methods and tools have been developatptove ex-
isting alerting and visualization systems. Some of thesthaus and tools
focus on analyzing anomalies based on volume metrics, ssittaffic vol-
ume, connection count or packet count [82]. Others look ahgks in traffic
feature distributions [178] such as IP address or flow siggidutions, or ap-
ply methods involving the analysis of content or the behewfeach host or
group of hosts [50]. However, content inspection or stostage information
on a per host basis is usually limited to small and mediuntestatworks.
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Most approaches designed for large-scale networks tloeeehiave two
things in common. Firstly, they reduce the amount of inpu&dey looking
at flow-level information only (e.g. Cisco NetFlow [35] orRFRX [179]).
Secondly, they use on-the-fly methods that do not rely ongelamount of
stored state information. As a consequence, using thehistdraffic feature
distributions to detect relevant changes over time is ragtifde since they can
consist of millions of data points. A related problem arigd®n one wants
to visualize the evolution of these distributions; a contfamm containing
information about relevant changes is required.

A prominent way of capturing important characteristics witributions
in a compact form is the use of entropy analysis. Entropyyesial1) re-
duces the amount of information needed to be kept for detgdistributional
changes and (2) allows for a compact visualization of sue@mnghs. A pop-
ular form of entropy is Shannon entropy. Its success whenu@sd with an
anomaly detection system might be the main reason why mastmrbased
systems adopted this form of entropy [19-21].

However, the good detection and, to a lesser extent, cleetsifin perfor-
mance of these systems is mainly reached with regard to veassomalies
only. For us, a massive anomaly is an anomalie which is wisibe in one or
multiple volume time seriés There is some empirical evidence which sug-
gests that parameterized forms of entropy such as the §ealtiopy might be
superior to Shannon entropy. In [25], Ziviagti al.[25] investigate at which
value of the parameteyof the Tsallis entropy DDoS attacks are detected best.
In [26], Shafiget al. do the same for port scan anomalies from malware. They
then use this optimaj value with their detection system. Unfortunately, the
optimal value ofg seems to depend somehow on the anomaly, or the base-
line traffic, or both, since they did not report similar vaduer the optimal
g. Therefore, a generalization of these preliminary redoltgards arbitrary
types of anomalies as well as appropriate detection andifitagion systems
remains unachieved.

To address these issues, we propose a method integratiagatieed en-
tropy metrics in a new and more general way. More precisetymake the
following contributions:

* We define the TES for capturing and visualizing relevaninges in
traffic feature distributions requiring little or no tuning specific at-
tacks.

* We demonstrate that the TES can be used for both anomalgtidete

1Flows, packets or bytes per time bin
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and classification as well as for visualization of their etaeristics.
« We confirm the findings of [25, 26] for a broader set of anosxali

Furthermore, we propose to add Autonomous System (AS) @ntocthe set
of commonly used traffic features. We provide evidence thiata valuable
addition.

The remainder of this chapter is organized as follows. IntiSed.2,
we start with a review of the Tsallis entropy, introduce intpat terms and
definitions and discuss the advantage of the Tsallis entwopythe Shannon
entropy. Next, we introduce the TES and explain how it is usedapture
and visualize distributional changes. Section 5.4 propasefinement of the
TES, addressing a problem that makes characterizationlassifecation of
anomalies difficult under certain conditions. In Sectio, 5ve discuss the
concept ofSpectrum Patternand outline how such patterns could be used
to classify anomalies. We continue with Section 5.6, distugsimportant
aspects of our evaluation before presenting our resultsdtié® 5.7. Finally,
we conclude this chapter with Section 5.8.

5.2 Shannon and Tsallis Entropy

The Shannon entropy [180]

S0 =~ p-logs(p) (5.1

can be seen adagarithm momenas it is just the expectation of the logarithm
of the measure (with a minus sign to get a positive quantitgjven that
differentmomentseveal different clues into distribution, it is clear thaing
other generalized entropies may reveal different aspétheaata. Two such
generalized entropies relying omomentdifferent from thelog-momentre
the Rényi and Tsallis entropies, the latter being an exparnsithe former. A
comprehensive introduction to entropy in general, and ¢oTiballis entropy
more specifically, can be found in Constantino Tsallis’ béakoduction to
Nonextensive Statistical Mechanics: Approaching a Corylerld [106].

The Tsallis entropy is defined as follows [181]: Létbe a random vari-
able over the range of values,...,xn and p(xi)) = p(X = x). Then, the
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Tsallis entropy§;(X) is equal to

SO0 = gg(1- 3 pe) (5.2
a
p(xi) = STa (5.3)

whereq is a parameter specific to the Tsallis entropy anid the number of
occurrences oactivity of x; in a time window of lengti. In our context, the
X are the feature elements, e.g. specific IP addresses oryratiers. Note
that only elements occurring at least once contribute toetiteopy S, of a
specific time window.

For g equal to 0 and 1, the Tsallis entropy has a special meaning. Fo
g — 1, § recovers the Shannon entropy (up to a multiplicative cortsta
And forg= 0, it corresponds ta— 1, the number of unique feature elements
minus one.

5.2.1 Terms and Definitions

Before we take a closer look at the meaning of the parametes summarize
important terms and definitions used in the reminder of thesis:

« systemn A (set of) network(s) described by an ensemble of network
flows

« feature Any flow property that takes on different values and whose
characterization using a distribution is potentially usef~low prop-
erties used in this thesis are: source and destination IRessidsource
and destination port number, origin and destination ASjinand des-
tination country code, flow size and average bytes per packet

« (feature) element: i A specific instance of a feature (e.g., source IP
addres40.0.0.1)

« activity §: The number of occurrences of elememtithin a time win-
dow of size T.

« feature distribution The sample probability distributioR[l = i] =
p(x) of e.g., the featursource portwith p(x;) as in Equation (5.3).
Note thatp(x;) can also be interpreted edative activityof element.
These feature distributions serve as input for the Tsatlisopy calcu-
lation.
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5.2.2 The parameterq

In the literature,q is referred to as a measure for the non-extensitivity of
a property of the system of interest. In physics, an extengioperty is a
property that is additive for independent, non-interagubsystems. It is
directly proportionalto the “size” of the systems. Exangmésuch properties
are the mass and volume of systems. In contrast, an intepiperty does
not depend on the “size” of the system; it is scale invarigdénsity is a
good example of such a property. With respect to entropygifweasure the
entropy of a system consisting of two subsystems descriggtdorandom
variables X and Y, the entropy of an extensive system is drpeo satisfy
Equation (5.4), whereas a non-extensive system shousdysEtjuation (5.5).

SX,Y) = SX)+S(Y) (5.4)
S(X.Y) = SX)+SY) +(1-9)- H(X) - (Y) (5.5)

However,we do not use Tsallis entropy in an information-theoretitsse
but rather in an operational sense. We use it as a metric miegsvhether a
distribution is concentrated or dispersed. The main diffiee to approaches
which use Shannon entropy in the same manner is that Tsatlispy can
concentrate on different regions of the distribution.

In use, the Tsallis entropy offers many possible choicegjfoEachq
reveals different aspects of distributions used to chareet the system under
study. First, it is essential to stress that bqts 0 andg = 1 have a special
meaning. Forg = 0, we getn— 1, the number of elements in the feature
distribution minus one. Fog = 1, the Tsallis entropy corresponds to the
Shannon entropy. This correspondence can be derived byiagpHopital's
rule to (5.2) forg — 1. For the interpretation of the othgrvalues, let us
consider the following example. In a time window of sikewe observed
that IP address A was the source of 1000 connections and esslB was
the source of 10 connections. In total, we observed 2000exdiums. If we
chooseg = 2, the contribution of IP address A to the s@is pz = 0.25 and
that of IP address B3 = 0.000025. If, on the other hand, we choage —2,
the contributions ar@,2 = 4 andpg2 = 40000. Whereas the contribution of
A was clearly dominant witly = 2, the contribution of B is dominant with
q=—2.

Hence, for &g other than 0 or 1, we see that (5.2) puts more emphasis on
those elements which show high (low) activity fipr- 1 (g < 1). Hence, by
adaptingg, we are able to highlight anomalies that
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1. increase or decrease the activity of elements with littl@o activity
forq<1,
2. affect the activity of a large share of elementsda@around 1,
3. increase or decrease the activity of a elements with hagkity for
g>1.
In other words, it is possible to focus, for instance, on Idradses that we
see often, occasionally, or rarely in a specific time intervVae main advan-
tages of this filter-like property are (1) that changes wladaly affect parts
of the distribution are more pronounced and (2) that theraadse detailed
information for the classification of different anomalies.

5.3 The Traffic Entropy Spectrum

To leverage the full capabilities of Tsallis entropy, werdntuce a new char-
acterization and visualization method called the Traffi¢r&oy Spectrum
(TES). The TES is a three axis plot that plots the entropyevalter time (first

axis) and for several values gf(second axis). For convenient 2D presenta-

tion, the third axis (showing the normalized entropy vajuzs be mapped
on to a color range. Hence, the TES illustrates the tempgremics of fea-
ture distributions in various regions of activity, rangiingm very low activity
elements for negativgto high activity elements fog > 1. Figure 5.1 shows
a sample of such a Traffic Entropy Spectrum.
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08/28 08/29 08/30 08/31 09/01 09/02 09/03

Figure 5.1: Example of a Traffic Entropy Spectrum (TES) of the Autonomous
System activity in the incoming traffic around a DDoS attackd07. The plot
shows how the Tsallis entropy values for different valugb@fparameter q
change over time. During the day, entropy is higher thanmyithe night. On

the weekend (01/09, 02/09), the difference between dayightlia smaller.

On the y-axis, we see the set of g-values for which the Tsaitiopy values

are plotted as colored rectangles versus the time on theix-a{ence, a
rectangle(x,y,c) color-encodes the (normalized) Tsallis entropy foeq

and time T= x. The color scale used ranges from black for the minimym S
to white for the maximumgS
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5.3.1 Selection of they-Vector

However, what values should be used for the parang?erAnd do they
need to be tuned to the characteristics of the network trafficspecific sen-
sor? By experimenting with traces from different sensosfaom different
years (2003 to 2008) which showed largely differing trafficauacteristics,
we found that the selectiop= —2,—1.75,...,1.75, 2 gives sufficient infor-
mation to detect network anomalies in all of these tracesgd-galuesy > 2

or smaller valueg| < —2 did not provide notable gains. We consider this
conclusion as strong empirical evidence towards the caddth parameters
of the TES require little or no tuning to different traffic chateristics.

TES for iteration from baseline to target ~ TES for iteration from baseline to target TES for iteration from baseline to target

distribution for low activity region distribution for medium activity region distribution for high activity region
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Figure 5.2: Impact of changes to different regions of the distributi@ut-
tom: Baseline distribution. Center: Visualization of theskline distribution
(at T = 0) which is then iteratively transformed into the distritartishown at
T = MAX for low, medium and high activity regions. We call therihisition
at T = MAX the target distribution because it is the one we desigrtridns-
formations to stop at after a certain number of iterationspTResulting TES
when altering the distribution in the respective regiomirthe baseline to the
target distribution in multiple, evenly sized, steps.
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To illustrate the impact of the parametgin the TES, we make use of an
artificial feature distributiofP[l = i] of elements (see Figure 5.2) where we
identify exactly three different regions. Each region @m$ elements that
showlow, medium or high activity Note that for simplicity, all elements
in a region have the same absolute activity. We first look atitmpact of
modifications that are (1) limited to one of those regions @)dhat do not
affect the total contribution of this region §op; = 1. To see how the TES re-
acts to such changes, we iteratively transform the digtahwof each region,
starting from the baseline distributions in time slot= 0 until it looks like
the distribution afl = MAX. We call the distribution af = MAX the target
distribution since it is the one we design the transfornmetim obtain after a
certain number of iterations. Figure 5.2 shows both thelbesét T = 0)
and the target distribution (a&t= MAX) for each region.

For each of the iterations from the baseline to the targétilligion, we
calculate the entropy for the different valuegjafthich we then divide by the
corresponding entropy value of the baselifie{ 0). Hence, a value less than
one denotes a decrease and a value greater than one anenicreasropy
compared to the baseline. The topmost plots in Figure 5ialighe relative
increase or decrease on the way from the baseline to thet @iggebution
for all of the three different regions. Inspecting the TES thee different
modifications reveals that they behave as expected:

« high activity: reducing the number of elements decreas&®y for

g>1

¢ medium activity: reducing the number of elements decreas¢ropy

for-1<qg<1

* low activity: reducing the activity of some elements irases entropy

forg< —1

5.3.2 Visualizing Anomalies by Normalization

To compensate for the large absolute difference of the pigtsdor different
g's, we can apply different normalization methods:

¢ Global normalization using the maximumaxand minimummin en-

tropy value for a giverm during a training period as follows:
S—min

max— min
This maps all entropy values to the range [0,1]. Figure 5dwshan
example of a TES plotted using this method.

Snormq =
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¢ Normalization using the maximum and minimum entropy for\aeg
g during a training period, for instance from just before tmemaly
under scrutiny. Here, we map entropy values between themmimi
and maximum of the training day to [0,1]. Other values atesgiabove
1 or below 0. Figure 5.6(a) shows an example of a TES plottatyus
this method.

* Normalization using the inter-quartile range: For thipeyof normal-
ization, we calculate the first quartil@; and the third quartil€s of a
given set of training data points. The first (third) quartdelefined as
the value that cuts off the lowest 25% (75%) of these datatpoirthe
interquartile range or IQR is a measure of statistical disipa. It is
defined a3dQR = Qs — Q;. The IQR can be used to detect outliers by
defining a normal range of valug®; — k- IQR, Q3 + k- IQR] for some
constank. Everything above (below) this range is then colored in red
(blue).

The TES based on global normalization is used to identify idatmg
changes. If such a dominating change is present, it starids the cost of a
decreased visibility of non-dominating changes. The sea@wrthird normal-
ization method is used to assess whether changes stay Withivariations
of the training day. Using these normalization methods é@asy to develop
a simple anomaly detector. Values going below the minimurabmve the
maximum of the training day expose only the anomalous pdritSeoTES.
Even though this detection procedure is very straightfodwaur evaluation
shows that this simple method is already sufficient for detgand classify-
ing critical anomalies in network traces.

5.4 The Refined Traffic Entropy Spectrum:
TES

To directly infer the state of a specific activity region, ibwd be most use-
ful if the differentS; were largely independent from each other. Then, an
increase or decrease of one or multifiefrom two different time intervals
would imply a change of activity pattern in the respectivgioa. For in-
stance, a significant change of tigfor g > 1 would imply a change in the
high activity region. Unfortunately, this is usually noti¢r if one compares
traffic feature distributions from real network traffic temc To understand
this, we must appreciate the problem of inter-region depraog and why
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this problem affects applications of the TES to traffic featdistributions
from real network traffic traces.

5.4.1 Inter-Region Dependency

In Section 5.3.1, we looked at the impact of modification$ thaet the fol-
lowing criteria:

« The modifications are limited to one of the three activitgioms: low,

medium or high.

« The modifications do not affect the overall contributioraagion
In other words, if, for example, the activig; of an element in the high
activity region is increased b&a;, the activitya; of another elemenj? in
the same region must be decreasedbysuch that the total activity|_, a;
remains constant.

However, what now happens if a modification does affect tlegail/con-
tribution of a region? Figure 5.3 and 5.5 illustrate thisdzhen the following
scenario. Let us assume that we want to detect changes intthiéysof TCP
port numbers in the interva), from those in the next intervah 1. Let us fur-
ther assume that the activity of the top port increases bytarfaf 1.5 from
interval T, to interval T, 1. The activity of the other ports remains the same.
The left hand plot in Figure 5.3 shows the activity plots fustscenario. The
original distribution at interval, corresponds to the activity distribution of
the destination ports of the TCP traffic flowing into the SWH @etwork in
the time from 09:45 to 10:00 on the 31st of July 2008. The ithistion in
interval T, 1 is a modified version of this distribution, as specified befor
Note that the ports are sorted according to their activityrt BO is the port
with the highest activity in both intervals.

If we now calculate the Tsallis entropy for the differeptalues for both
intervals and then compare them to those obtained for tlangdnterval, we
get the relative difference in Tsallis entropy shown on filgatrhand side in
Figure 5.3. The relative difference of the two Tsallis eptes of the intervals
Ty andT,. 1 is defined as follows:

S(XT,.) — Sy(%1,)
S(%1,)

Figure 5.3 illustrates the inter-region dependency quét. it shows that
this change has a strong impact on both, the entropy valug®§itive AND

(5.6)

20r the sum of the activities of other elements in this region.
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Figure 5.3: A change in the high-activity region of a distribution shabohly
affect the TES for positive q values (strongest for &). Therefore, a plot
of the relative difference between the TES before and dfeeclhange should
show no difference for negative q. However, this is not torehe relative
difference plot on the right even though the only differendie underlying
distributions is the activity of the most active element.sAswn in the plot
on the left, its activity is 1.5 times the activity of the amigj distribution. The
original distribution corresponds to the activity disttition of the destination
ports of the TCP traffic flowing into the SWITCH network betw@@:45 and
10:00 on the 31st of July 2008.

negativeg-values. It does not just decrease the entropyfealues stressing
changes in high activity region. Why does this happen? Whwdmsee a
result that reports a change in multiple regions even thevgghnly modified
the activity of a port in the high activity region?

The reason for this is that the sample probabilifi¢g) of the elements
i contributing toS; are computed by dividing their activitg; by the total
activity ZT:laj. In our example, the increased overall activity - caused by a
host in the high activity region - led to a decrease in the dampmbabilities
which in turn led to a significant increase in entropydor. —0.5.

A similar result is obtained when the overall activity is degsed. In this
case the overall normalization factpf_, aj is smaller and the sample prob-
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abilities get bigger, even though the activity of the eletmaight not have
changed. With respect to entropy, this implies that theogiytfor negative
g-values decreases compared to the entropy in the first alterv

An important insight gained from this is that if our goal isfiod abnor-
mal changes in activity distributions based on the TES, itteecf thenormal
fluctuations of the total activity dictates the change resflito start consid-
ering ag-entropy to be abnormal. The problem with this is that, delemn
on the actual activity distributions, it might result in bals dominated by
the overall changes in one activity region only. For examiplaost changes
to the overall activity are due to changes in the high agtikégion then the
minimum change required to start considering a Tsallisogytvalue to be
abnormal might reflect reality quite well @ > 1. However, it would be far
too pessimistic to accurately describe othemlues.

To decide whether or not this problem is relevant when weyeiyg TES
to traffic feature distributions from real network traffiates, we briefly dis-
cuss two important characteristics of network traffic reditb this problem.

5.4.2 Inter-Region Dependency: Relevance

Based on insights into characteristics of network traffingd from both, our
own NetFlow data and literature, we claim that the inteigeglependency
is indeed a problem which should be addressed. Our claimsischan the
following observations:

e Compensation of activity changes is rarelt is unlikely that the de-
crease in activity of some elements is compensated by aadserin
activity of other elements in the same region. We can takenamaly
as an example. A typical impact of an anomaly is that the gtdf
a single element, and of multiple elements, is increasectoredsed
while the activity of other elements in the correspondingjoe does
not change significantly.

« Heavy-tailedness of traffic feature distributions: Most distributions
show some sort of heavy-tailedness. Heavy-tailed digidha amplify
the problem related to the impact of change in the overalliacas it
means that there are some elements which clearly “domiriatse
changes. In our example in Section 5.4.1, the element witthidphest
activity (port 80) accounts for more than 15% of the totahdtgt As
a consequence, if its activity doubles, the probabifityof all other
elements is decreased by more than 10%
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54.3 TheTES,

The pruned Traffic Entropy SpectruE §) mitigates unwanted normaliza-
tion effects by computing prunedentropy in a two-step approach. For each
time interval, we start by calculating the TES consistinthefentropy values

S, for a set ofg-values. We then zoom in on the elements most responsible
for p percentage of the value &, for a giveng. In the second step, we
calculate the pruned entropy for the selected elements dehoted byg; p.

With this procedure, we make sure that the changes of elemémit con-
tribute almost nothing to the sul.; p(x ) have no impact on the fin&, ,,
neither through direct contribution nor through normdiiza.

More formally, let the original distribution of activitid®eA= {a;,...,an}.
Then we first comput&;(A) as defined by 5.2. Now |& = ¢; be the set of
element contributions, that&s = (a/ 31 aj)%. Then we leC’ be the sorted
version ofC such that > c’jJrl and store the mapping of indices betwe&zn
andC' in a tableg. Thus, ifcy is mapped to elemewt, we havep(k) =1. Let
o(x) be the partial entropy computed by summing up all contréngiofC’
up to elemenk, that iso(x) := yj_; ¢j. Further, lei’be the smallest index
x for which o(x) > p/100- §(A) holds. From this we construct the set of
selected activitied' = ulea(p_l(j). Finally, the pruned entropy is computed

by Syp i= S(A).

The prunedl ES,, is now simply the values d&,, for the given set of
g-values. It can therefore be plotted in the same way as tlggnati TES.
Note that the original TES correspondsit& S go.

Figure 5.4 illustrates the effect GTIES,. The top figure shows a desti-
nation port activity distribution with the ports on the xisvordered by as-
cending activity. That is, the leftmost port with index 1 letrarest and the
rightmost port is the top port (port 80 in this case). Thewtgtiof a port is
plotted on the y-axis (i) during an anomaly and during noracdivity.

For both distributions there is one plot below, which sholes selected
elements for different values gfand p. At a specific coordinate (x,q) there
is a grey dot where elemertwas selected for the pruned entrofy,. For
instance, looking at the regions for the anomalous portidigion, we see
that forq = —3 andp = 80, only about 10,000 ports on the left (i.e., the
low activity ports) are selected. Looking at the regionstfed normal port
distribution, we see thaj = —3 kept the low activity region in focus even
though there are now around 28,000 low activity ports. Sinvbservations
can be made for othgrandp-values, with smallep values tending to capture
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Figure 5.4: Destination port activity distributions (top) and selegtegions
for TES, (bottom). On the x-axis all ports are ordered by rank, i.ethwi
increasing activity to the right.

the different activity levels more tightly at the cost of pedly being too tight:
g= —3, p= 80 fails to select the full range of low activity ports in thermal
port activity distribution.

To check whether this selection process is indeed able tovethe inter-
region dependency, let us turn back to the example used whéntwduced
the inter-region dependency problem. However, this timecampute the
relative difference plot for th& ES, instead of thél ES The result is shown
in Figure 5.5: the inter-region dependency which led to ifiggmt changes
in the entropies capturing changes in the low activity redsee Figure 5.5)
is no longer visible. The only change affects entropieswamy changes in
the high activity region. Additional examples of comparis@f the TES and
TES can be found in Section 5.6.
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Figure 5.5: Left: Two activity distributions differing only in the acitly of
the most active element: activity in the modified distribatis 1.5 times that
of the original distribution. The original distribution ceesponds to the ac-
tivity distribution of the destination ports of the TCP fiafflowing into the
SWITCH network between 09:45 and 10:00 on the 31st of Julg.2R@ht:
Relative difference of both, the TES and the | B&he original distribution
and the modified distribution.

5.5 Spectrum Patterns

Malicious attacks often exhibit very specific traffic chaeaistics that induce
changes in feature distributions known to be heavy-tailadoarticular, the
set of involved values per feature (IP addresses or portdjes found to be
either very small or very large. In a DDoS attack, for insgrtbe victim is
usually a single entity, such as a host or a router. The attg¢iosts, on the
other hand, are large in numbers, especially if source addseare spoofed.
Similarly, if a specific service is targeted by an attackngka destination port
is used, whereas source ports are usually selected randondgneral, the
specific selection of victims or services leadsctincentrationon a feature
and, in turn, to a change in the high activity domain. In casiy random
feature selection results iispersionand impacts the low activity domain
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(e.g. spoofed IP addresses only occur once in the trace)wikgahis, it is
possible to profile an attack based on the affected actieigyons for each
feature.

When describing these patterns we use a shorthand notapoasenting
the state ofS; with respect to some upper- and lower thresh®l@, ypper
andT hgjower. Note that the thresholds do not have to be constant but might
depend on time and other factors in a more general case:

1 if S5 > Thgupper
Cq = -1 if § < Thq,lower
‘0’ else (normal conditions)

By aSpectrum Patterme denote the consecutiegs for a representative
set of values of). This set might include all of thg values used in the Traffic
Entropy Spectrum but might also be sampled to simplify thitepas at the
cost of coarse graining the result. A modified version of thecept of the
Spectrum Pattern is used later in this thesis when we irteg¢ina TES into
a fully automated anomaly detection and classificationesystThere, we do
not sample the set of values@fo get a more compact form of the Spectrum
Pattern but rather aggregate &é of multiple q values.

5.6 Evaluation

To get an idea whether or not the TES is a suitable tool to cajghe char-
acteristics of anomalies, we check its descriptive powén waspect to a set
of anomalies whose characteristics and time of occurrem@air traces is
known. Since we started out with the original TES and refinexhly later,
the results published in [31] do still contain significanteinregion depen-
dencies. To show the impact of tAeES, - especially how it simplifies the
interpretation of the TES -, we put the original results digeside with the
results obtained with th€ES,.

5.6.1 Feature Set

For our evaluation, we analyzed the TES for the followingéétaffic feature
distributions:

 source IP address (SrclP) and destination IP addresR(Dstl

30r more precisely, the anomaly scores related thealues.
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* source port number (SrcPort) and destination port nunibsiRort)
e AS number

Note that since we observe the traffic to and from the SWITCH th& AS
traffic feature is the origin AS for incoming traffic and thestieation AS for
outgoing traffic.

Hence, for each of these features the corresponding TE SoHzel thuilt.
We did this on a per protocol basis for the TCP, UDP, ICMP antHBRS'
protocols.

5.6.2 Set of Anomalies

Our evaluation focuses on the following set of well-knowoaalies®

« Refl. DDoS:Areflector DDoS attack involving 30,000 reflectors within
the SWITCH network, used to attack a web server. Two weeksbf t
fic were analyzed including some preliminary scanning &gtApril
2008). Figure 5.6(a) shows the TES for incoming DstIPs. Tteckis
clearly visible around 04/11 and lasts for almost one dayuié 5.6(b)
shows the effective activity of the reflectors during a tweek period.
The sustained activity on 04/04 and 04/05 without attackglsuggests
that attackers are scanning the network for potential reftec

* DDoS 1: A short 10 minute DDoS attack on a router and a host with
8 million spoofed source addresses (Sept. 2007). DstPOIC 80.
Figure 5.8(a) plots the TES for incoming AS numbers. Thecatia
clearly visible forg < 0 on the 09/01. Although the covered period is
8 days, the attack is visible with an excellent signal to eoatio and
no false alarms Note that for Shannon entropyg &€ 1) the peak is
insignificant.

* DDoS 2:Along 13 hour DDoS attack on a host with 5 million spoofed
source addresses (Dec. 2007/Jan. 2008). DstPort is TCP 80.

« Blaster Worm: Massive global worm outbreak caused by random se-
lection/infection of new hosts, exploiting a RPC vulneliaypon TCP
DstPort 135 (Aug. 2003).

o Witty Worm: Fast spreading worm exploiting a vulnerability in ISS
network security products. Uses UDP SrcPort 4000 and raridsim
Port (March 2004).

4Includes traffic for all protocols except TCP, UDP and ICMP.
5They are well-known either because we or other researclaeessiudied them in detail.
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log2(#attack flows to reflectors)  log2(number of active reflectors)

(a) TES of DstIP addresses for flows into our(b) The effective number of active reflectors
network during the reflector attack. Alerts (top) and the effective number of attack flows
are shown in red (resp. blue) above (below)toward (candidate) reflectors in our network
threshold of a normal training day. (bottom)

Figure 5.6: Reflector DDoS attack.

5.6.3 Compiling the TES

Since we know the characteristics and time of occurrencefforemen-
tioned anomalies, compiling the TES for the correspondimigigns of our
network trace archivis all we need to do.

For this purpose, we extended our NetFlow processing framéwvith
a module that compiles the TES (and alsoTHeS;) in a two stage approach.
Firstly, the module reads incoming flows, determining thternval to which
they belong in order to update the traffic feature distrimsiof this interval.
Next, if no more flows are expected to arrive for an intervataiculates the
Tsallis entropy for the differer-values according to the procedure described
in 5.3 and 5.4.3. Note that with our selectiongsf(see 5.3.1), we need to do
this for a set of 17 values per interval and traffic featurérithistion. The
results are then written to a Comma Separated Values (C&Mhfiborm leg-
ible to a human observer. More precisely, the results argenrto either one
or multiple files, depending on whether or not the tool is qqunfed to com-
pile the TES for different lengths of the aggregation ingsimultaneously.
Simultaneous computation is possible, if the lengths oftipgregation inter-
vals are a multiple of the smallest interval. For this evatig we configured
the tool to output results for interval lengths of 5, 10 andviiButes.

6A general description of the network traces and the networkhich they are captured can
be found in Section 1.4.
A brief description of this framework can be found in Secti2.2.
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Another feature that we make use of in our evaluation is thedn also
output the actual activity distributions. This can be doiteeg in binary,
which saves space, or in conventional written form.

5.6.4 Data Analysis

To now gain an idea whether or not the TES is a suitable tochfdure the
characteristics of anomalies, we analyzed the TES infoaomatroduced in
the previous step as follows. Firstly, we browsed throughrttore than 600
TES® to check whether we can spot anomalies simply by looking enth
We then derived the spectrum patterns from what we found badked (1)
whether they are different for different anomalies and (Bether they cap-
ture the known key characteristics of our anomalies.

To speed up the process of browsing through the output of etiFlbwv
processing framework module, we implemented a tool calledtaffic En-
tropy Spectrum Visualization & Anomaly Detection Todwo of the most
important features for our analysis were the GUI-basedahibical selec-
tion of the TES and controls for the selection and configuration of différen
normalization methods (see 5.3.2).

Figure 5.7 shows a screenshot of this tool. The plot at thedigplays
time series data of the selected time series: the Tsallisgntorq= 1.0 for
the AS traffic feature. The plot at the bottom displays theesponding TES.
More details on this tool can be found in Section A.2.3.

80ne TES for each of the 5 traffic features for all of the 4 rafer both, incoming and
outgoing traffic for all of the five anomalies and three timeeival sizes.

9Flow exporter {ALL, router 1 to 4}— protocol {TCP, UDP, ICMP, OTHER}- direction
of the traffic {IN, OUT} — traffic feature.
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Traffic Entropy Spectrum Visualization & Anomaly Detection Tool

Data source: E:/Thesis/sqlits3_TESp0c95.db
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Figure 5.7: Screenshot of the Traffic Entropy Spectrum Visualization &
Anomaly Detection Tool. The plot at the top displays timeesedata of
the selected time series: the Tsallis entropy fet 4.0 for the Autonomous
System traffic feature. The plot at the bottom displays thesponding TES.

5.7 Results

5.7.1 Spotting the anomalies

Our analysis of the 600 TES confirmed what we expected. Wealceasily
spot all of the anomalies. Figures 5.8(b), 5.8(a),5.9(a{h and 5.6(a) show
a sample TES for each of the five anomalies. In all of these dgyuthe
respective anomaly is clearly visible.

Note that we also checked how the different lengths of theegggion in-
tervals (5, 10 and 15 minutes) impact what we see in the TER,ldar obser-
vations can be summarized as follows. While the resultgusia 15 minutes
interval are much smoother, shorter intervals are betiggdsto pointing out
anomalies that last only tens of seconds or a few minutes.
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(b) TES of SrcPort numbers for flows into our network during DDoS 2 attack. The TES is
normalized using the inter-quartile range approach. Ameasd (resp. blue) represent locations
where the TES is above (resp. below) the threshold.

Figure 5.8: TES snapshots from the DDoS 1 and DDoS2
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(a) TES of DstPort numbers for flows into our network during Witty worm outbreak. The TES
is normalized using the inter-quartile range approachaéie red (resp. blue) represent locations
where the TES is above (resp. below) the threshold.
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(b) TES of DstPort numbers for flows into our network during Blaster worm outbreak. The
TES is normalized using the inter-quartile range approakteas in red (resp. blue) represent
locations where the TES is above (resp. below) the threshold

Figure 5.9: TES snapshots from the Witty and Blaster anomaly



116 5 Traffic Entropy Spectrum

5.7.2 Spectrum Patterns

In this section we analyze the spectrum patterns exhibiyetid attacks de-
scribed above. The following table shows the spectrum pettr the five
anomalies, the five traffic featurésand for both the incoming and outgoing
traffic. Furthermore, we also added the spectrum pattermdugsed by the
modified version of the TES, thEES,. These will be used to show that in-
terpreting the spectrum patterns produced byTifS, is easier than those
produced by the TES.

SrclP DstIP SrcPort DstPort
2 % 0 % 42|12 % 0 % +2)2 % 0 % +2|2 % 0 % +2
TES|{+ + 0 - -|+ 0 0 0 +]- - O + OJ+ + O -
IN TES|o o o0 - -]o o o + +]+ - 0o + 0Jo o o -
TEs|#70 0% 0|+ 0 - |+ 0 - |- -0+ 0]
Refl.DDos OUTTESsJ0 0 0 + +|0 0 o0 - 00 0 [ 0+
TES|+ + + + O]+ + 0 - -1+ + O -]0 0 O
N TES|+ + + + 0olo o 0o - -Jo 0 O +]jo o0 o -
Tes [+ % 0 - |+ ¥ + % o0 o0 - |+ ¥ o0 - 0
DDos1 OUTTES|0 0 0 - -]+ + + + 0000 -|lo oo +
TES|+ + + + 0|+ + O -1+ + 0 + +|+ + O
IN TESf+ + + + oJo o 0o - -]- - 0o + +|o 0 o
Tes|0 0 0+ 0]0 0 0 0 0o + 0 0 0JO0 0 0 - -]
DDos2 ouT1E%|0o o o + oflo o o o oJo + o o oJo o o
TES|+ + + - O]+ + + + O+ + 0 - O+ + -
N TES|+ + + - o]+ + + + ol+ + o o o|lO0o 0 O
Tes|+ * 0 0 O+ + + + O+ + 0 - 0|+ + 0 - -]
Blaster W. OUT "ES|+ + o0 o ofl+ + + + 0o]Jo 0 o +Jo 0o o -
TES|0 0 O - + + + + 0]+ + O -1+ + + + 0
IN TES;Jo o o + + + + 0]J0 0 O -1+ + + + 0
Tes|0 0 0 0 0/0 0 0 0/ -]0o 0 0 0 0J0 0 0 0 0]
wittyw. ouT TE%| 0 0 0 o ofo o 0 o 0000 0|0 O0OT 0O

Note that the spectrum patterns are expressed in both caflowatten form.
The- sign and the coldbluedenote a significant decrease, no color andthe
sign denote no change and red and-tsgn stand for a significant increase
of the entropy of the corresponding traffic feature and égtiegion.

Let us now have a closer look at the spectrum patterns of taafiema-
lies. Note that we do not discuss all of the spectrum patteraketail. In-
stead, we select a number of illustrative examples to shawthe TES (and
the TES)) capture the characteristics of our five anomalies.

Refl DDoS The servers used as reflectors in the Refl. DDoS attack appear
in the incoming destination IP addresses as requests fremretl attackers.

10Note that our traffic is recorded at a single stub AS. Consettyyesource AS are shown for
incoming and destination AS for outgoing traffic, respesdtiv
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The targets of this attack were mainly existing servers tvhiould respond to
incoming requests. Many of these machines could therefarady be found
in the medium to high activity region prior to the attack. Tdteack led to
more machines being part of the high activity region, but &ddess diversity
in the activity of these hosts. Both of these effects led tigiaiicant increase
in the high activity region{2). Furthermore, we can see that the TES also
seems to report an increase in the destination IP addrespgiior negative
gs. However, the Refl. DDoS attack hardly contributed to thiwiacof the IP
addresses attributed to this region. The reason for thisreason is that the
attack led to a considerable increase in total activity. déethe inter-region
dependency led to an increase in the entropy of the low activity regidn. |
we compare the spectrum pattern of the TES andrtB&,, we can see that
theT ES, does not suffer from this effect. It reports the change imtleelium
to high activity region only.

The victim, being a single high activity host, had a contraxfjuence
on the outgoing DstIPs and AS. Because the attackers spdodesource
IP address of the requests sent to the reflectors to matctdtiress of the
victim, the reflectors sent their replies to the victim irsteof back to the
attackers. This turned the IP address of the victim into drieeomost active
IP addressés seen in the outgoing traffic. Consequently, the high-agtivi
region becomes more concentrated. This is reflected by ttrease in the
entropy of this region. As in the case of the destination IBresks spectrum
pattern for the incoming traffic, the change in the totahatgtiis again large
enough for the inter-region dependency effect to triggégmificant increase
of the entropy in the low activity region. Note that th& S, once more does
not suffer from this problem.

A similar effect can be observed in the spectrum patternHferistPorts
for incoming traffic. Here, the concentration is relatedhe attack traffic
being sent to destination port 80.

In contrast, the spectrum patterns for the SrcPorts lootedlifferent.
The reason for this is that the attackers used more or ledsnaly distributed
source ports in their requests to the reflectors. As a comeseg,the more
or less uniform distribution of the source ports in the anlmus traffic now
dominates the distribution of the rare ports. This leadstinarease in the

1IRemember that the activities of the elements are normaligetie total activity to get the
sample probabilities for entropy calculation. A signifitarcrease in the total activity decreases
the sample probabilities of the elements in the low actiwdyion, even though their activity did
not change.

12Most of the time, it was the top IP address.
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entropy for the low activity region, at least in the case & TES,. In the
TES, we can only see an increase in the entropy of the uppaumesttivity
region. Here, a few source ports which were seen significantre often
in the attack traffic caused the upper medium activity re¢pdmecome more
uniform too.

Figure 5.10: 3D TES for incoming SrcPorts before and during refl. DDoS at-
tack for g= —2...2. Diagonal axis: date (10 days), vertical axis: normalized
entropy. Transparent layers: Minimum and maximum of noizedl entropy

at normal week days.

In case of the TES, the modification to the low activity reg®again hid-
den by the inter-region dependency. The increase in tot®itgcmainly at-
tributed to the medium activity region, more than compesstir the change
inflicted by the actual changes in activity in this regiongutie 5.7.2 nicely
illustrates the observed pattern0¢0) for the TES. Note that the patterns
are symmetric with respect to the diagonal. That is, chaingé&scoming
SrclP/SrcPort columns are reflected in outgoing DstIP/Bs$t€olumns and
vice versa. This indicates that the reflectors actually gadao reply to most
requests (no egress filter was in place).

DDoS 1 The main difference between the Refl. DDoS and the ordinary
DDoS attacks is that the former uses real hosts (the refctohereas the
latter uses massively spoofed source IP addresses. Foatiatks, the in-
coming SrclP TES was affected over a wide ranget{0), including the
SrclP count@ = 0). Itis important to note that in this case, there is no diffe
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ence between the TES and fh&S,. The reason for this is that, in this case,
the increase in the total activity is not mainly attributedite medium or high
activity region, but also to the low activity region. A lot t? addresses with
just a few occurrences are responsible for a large shareeafttange in the
total activity.

DDoS 2 With respect to the spectrum patterns for the incominditraf
the DDoS 2 anomaly is quite similar to the DDoS 1 anomaly. Thenm
differences lie in the spectrum pattern for the SrcPort TEGthose for the
outgoing traffic. To understand what happens in the caseedbtbPort TES,
we have to look at the actual activity distribution of the szmuports before
and during the attack. Figure 5.7.2 shows the two activigyritiutions in a
log-log plot. According to the TES, we see an increase in ttieopy in both
the high and low activity regions. According to tii& S, this is not true. If
we now check the actual activity distributions, we see thafltE S, is right.
The medium to high activity region becomes more “uniform&aning that
it contains more source ports with a similar activity leviéleanwhile, the
low activity region becomes more concentrated, since itaios fewer ports
with a similar activity level; the activity of the ports inglactivity distribution
during the attack increases much faster for ports with lotividg Again, the
TES captures the change in the medium to high activity reggowe would
expect it to. Unfortunately, since the major part of the dwm the total
activity is again attributed to the medium to high activiggion, the inter-
region dependency prevents us from seeing the expecteibrefar the low
activity region.

The patterns for the outgoing traffic are different becatsevictim did
not send a noticeable number of responses. However, tharguie notable
change in the TES for the AS traffic feature. A closer look & #ttual
distribution revealed that between the 29th of Decembe820@ the 2nd of
January 2009, the outgoing traffic concentrated on fewemh@a8 before and
after. One possible explanation for this is that during timse, most people
spent their time on something other than browsing the web.

Blaster and Witty: In both the Blaster and the Witty worm destination
addresses for the spreading of attack traffic were generateldmly, in much
the same way as sources were spoofed during the DDoS attackact,
the pattern exhibited by incoming worm DstIPs is exactly shene as the
pattern for incoming DDoS SrclPs. The pattern produced hyaoan feature
selection ¢+++0) is also visible in incoming DstPort for the Witty worm.
On the other hand, the pattern specific to feature concéeonrirét+0- ) is for
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Figure 5.11: Log-log plot of the source port activity distribution bedoaind
during the DDoS 2 attack. The source ports, sorted accorttirtigeir activity,
are on the y-axis.

instance visible in incoming Witty SrcPort (fixed to UDP 400ihcoming
refl. DDoS DstPort (fixed to TCP 80) or incoming DstIPs for DDb&nd 2.
Moreover, if we compare the TES with tAeES,, we can again see that the
TES, removes inter-region dependencies if the change of theaotiaity is
mainly attributed to one of the activity regions only (e.da®er, IN, SrcPort
or Witty, IN, SrcPort).

Random feature selection can have a different impact ors fiban on
IP addresses. Whereas incoming DstPort for Witty demaestthe typical
pattern, the one for incoming SrcPorts of the refl. DDoS lapkite different
(- 0+0). Random selection of IP addresses leads to many addredbasvy
low activity because the range of potential addresses is bag ports, the
range is limited to 65,535 values. Thus, if intensive rangbamrt scanning is
performed, all ports are repeatedly revisited and becoewufnt, basically
replacing the low activity area. This is what happened inrdfile DDoS case.
We conclude that for ports, the strength (volume) of thechtfdays a crucial
role. For low volume attacks, the random port pattern lotkesthe random
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IP pattern. However, increasing attack volume shifts thtepatoward 0+0.

Summing up, we see that fundamental distribution changes &sl con-
centration or dispersion of features are well reflected Iffgtint TES pat-
terns and can therefore be used to infer underlying trafficgire. In future
work, we will consider the effect of attack volume as well dsgliional pat-
terns, such as the distribution of flow sizes and duratiohs.ultimate goal is
to develop a comprehensive and diverse set of TES patteriteh ke to accu-
rately detect and classify network anomalies. For this, eedrto do a more
in-depth evaluation to prove that the improved detectiorsiiwity does not
operate with a high ratio of false positives. Because ouimieary results
suggest that TES is very robust (e.g. 8 days without a faksenain 5.8(a))
even when using our trivial detection approach, we are pedtat this will
not be the case.

5.7.3 The TES in action: Anomaly drill-down

Until now, we used the TES only with anomalies for which we Wribe
characteristics and location in the trace quite well. Tacklvehether the TES,
or more precisely, th& ES, with p = 95, can pinpoint and characterize other
anomalies in our trace, we selected four arbitrary intartagllooking at just
oneTES, per anomaly to be selected. From th@deS, we then selected the
time bins that looked suspicious. Note that we usedltE&, related to TCP
traffic only. Using the following drill-down procedure, wieen either confirm
or reject our hypothesis that the interval contains an ampmatching the
characteristics hinted at by tHeES,. We apply the same procedure for all of
the drill-down work done in the context of our thesis.

* Inspect theT ES, to identify thoseT ES, showing abnormal activity.

 Determine which regions of thEE S, (which g-values) are affected.

¢ Check the affected regions and determine whether the ehianthis
region hints at a concentration (increase in entropy) quatsion (de-
crease in entropy).

« Use the information from the previous step to guide ourysialof the
actual traffic feature distributions. The result of thislges should be
a series of specific values of traffic features which flows ved in the
attack should match: e.g. one could find that incoming flovesukh
match destination port 80 and target a single IP addresdwdaes not
seem to respond to most flows.

« If the type of the anomaly cannot yet be identified, filter fotlvat do
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not match the identified values or patterns to get the catalittawvs
and analyze the candidate flows using frequent itemset ginin

To illustrate this process, we take one of the four anomalnesdiscuss how
we performed the drill down. For the remaining anomalies pnavide the
results only.

26.08.2012 at 06:00The anomaly used for our discussion of the drill-down
process is one occurring on the 26th of August 2008 at aro6r@D0 Using
our Traffic Entropy Spectrum Visualization & Anomaly Detectiwol, we
browsed through the variodsE S, to determine those showing abnormal ac-
tivity for this time bin. First, we inspected theE S, for the incoming traffic.

Source ports: The TES, shows a decrease in the entropies of the
medium activity region. This is quite unusual since it hiatenoma-
lous traffic from just a small set of source ports and a moderamber
of attack flows.

Destination ports: From our first observation, we would have ex-
pected thél ES, to show an increase in the entropies for the low activ-
ity activity region. After all, a TCP connection typicallyak the source
port at the initiator side of the connection selected by therating sys-
tem. Seeing concentration for both the source and the ddistinport

is therefore rather unlikely. Nonetheless, TheS, exposed a decrease
in the entropies of the high-activity region.

Autonomous SystemsOur subsequent inspection of th& S, for the
AS traffic feature shed some light on whether or not the anprimal
volves traffic from many or just a few AS. A very pronouncedease
of the entropies in the low and medium-activity region hihtg an
attack involving quite a lot of AS from which we do not see mticti-

fic under normal circumstances. Hence, the attack traffihitregher
come from hosts all around the world or from someone spoofieg t
source IP addresses used.

Source IP address:Here, we see an impact on tA& S, similar to
that with the AS traffic feature. We see an increase in theopigs of
the low-activity region. However, this time the increassoatxtends to

g values up tay = 1.25.

Destination IP address: In this TES,, we found a sharp decrease in
the entropies of the high-activity region hinting at an elttan a single
IP address only. If it were not for the strange behavior offtheS, with
respect to the source ports, we now would have said that thealy
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might be because of a DDoS attack on a single port and hoselbca
inside the SWITCH network.

» Country code: TheTES, for the country code traffic feature was dis-
turbed only slightly for the medium activity region. Hereewaw an
increase in the entropies of the medium-activity regionisTdaused
us to believe that the attack probably did not involve randonmrce 1P
addresses. As we will see later on, we were wrong.

» Flow size:InthisTES,, we observed a slight decrease in the entropies
in the upper medium activity region. However, this decreaas not
as pronounced as, for example, the changes ifT g, for the AS or
the destination ports. Nevertheless, the change led udievd¢hat the
flows causing this anomaly are probably all of the same siz# jurst
a few different sizes.

» Bytes per packet: The TES, for the average bytes per packet sup-
ported our hypothesis on the size of the flows. It showed aedserin
the entropies of the high-activity region.

Next, we inspected th€ ES, for the outgoing traffic. In thes€ES,, we
found the same as for the incoming traffic but with source agstidation
switched. Hence, the location of the source of the anomahanes unclear.
To shed some light on this question, we looked at the flow cmattic and
saw that the number of incoming flows jumped from 1.3 in thecpding
interval to 1.8 million flows in the anomalous interval. Inntrast, the same
metric for outgoing flows showed an increase from 1 milliomBdo only 1.3
million flows. Based on this observation, our guess was tiatifference in
the increase of those metrics is attributed to the victinb@hg unable to
answer all of the incoming attack traffic. Note that fluctoas in the flow
count metric for incoming flows of about 300,000 flows happeitegoften.
This still makes it difficult to spot an increase of around BOO flows simply
by looking at a plot of the flow count metric.

Hence, what we have now is a guess about the type of the anavealy
see in this interval. If it were not for the strange behavibthe TES, for
the source port traffic feature, our first guess would be a D&w@B8naly with
a single victim located inside the SWITCH network. Furthere) since the
victim appears to send replies back to the attackers, thervis likely to
be a server meant to answer such requests. We therefore etlsatrithe
destination port used by the attacker is either the portd bgea web server
(80 or 443) or one of the other popular service ports such assgsl for mail
servers or 22, often used for remote access to computetinftasres.
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To confirm or reject our guesses, we consulted the full tréfture dis-
tributions for those metrics. With the help of otraffic Feature Distribution
Analysis and Visualization Todsee A.2.3 for details), and our guess from
the information provided by th€ ES,, we simply had to check whether our
guess was reflected in the full traffic feature distributioRer this analysis,
we looked at the distributions for the incoming traffic only.

Source ports: Comparing the distribution of subsequent intervals, we
found a significant absolute increase in the number of flowvils sdurce
ports 1,024 and 3,072. If the anomaly involved other pohis,distor-
tions to the distribution were not big enough. The numberaf$l to
the other top 100 ports showed no abnormal behavior. Thirowed
our guess, that the anomaly involved just a few source ports.
Destination ports: In this distribution, we found a clear increase in the
number of flows with port 22 as their target. While the sharéavfs
with this port as their destination around 6 o’clock in thermnog is
around 1%, it suddenly reached a share of around 14%. Wilsltare,

it reached the second rank (after port 80) in the ranking efrtiost
active ports. Again, if the anomaly involved other port® thistortion

of the distribution is not big enough to stand out.

Autonomous SystemsHere, we could verify that our guess based on
the TES, was right: we could observe that the number of distinct AS
responsible for less than 10 flows increased significamtynfroughly
4000 to 8000. Furthermore, the number of flows from the top AS w
comparable to those from previous intervals.

Source IP address: Comparing the distribution of subsequent inter-
vals, we found a significant absolute increase in the numbl? ad-
dresses occurring in less than 10 flows. From a total of 1@0IBO
addresses matching these criteria in intervals prior t@ttwamaly, this
number increased to around 400,000 IP addresses in the fmona
terval.

Destination IP address: In this distribution, we observed a signifi-
cant increase in the number of flows directed to the top |Pesidf
Furthermore, the increase in the number of flows to the topltRess
matched the increase expected from the increase in the float aget-

ric.

Country code: A closer look at the distribution of the flows with re-

13From the distribution we do not know whether this is the saom®IP address as in the
previous interval since we do not store or show this inforomat
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spect to their country of origin did not reveal anything gaufarly note-
worthy. The only thing which is slightly different is the &dthumber
of countries represented in this distribution: 218. Thisber is typ-
ically a bit lower (around 210). However, not finding anytithat
stands out is also itself a finding. It tells us that the flowstdbuting
to the anomaly might still come from spoofed IP addresseghdy
were, say, originating from a botnet, the change in the egwistribu-
tion would reflect the distribution of the bots with respextountries.
This distribution is likely to be quite focused on those ciigs with a
lot of vulnerable hosts.

* Flow size: This distribution showed a clear absolute increase in the
number of flows with a size of 48 bytes. The increase matched th
increase expected from the increase in the flow count metric.

» Bytes per packet: This distribution confirms what we see in the distri-
bution of the flow sizes.

Having analyzed the distributions, we already have quite eflevidence
that our guesses based on THeS, are correct. Moreover, we now have some
numbers which are likely to characterize the anomaly unciettisiy:

* Flow size: 48 bytes

e Source ports: 1,024 and 3,072

« Destination ports: 22

 Victim: 1 (inside the SWITCH network)

« Attackers: Unknown (IP spoofing)

e Countries: Unknown (IP spoofing)

* Autonomous Systems involved: Unknown (IP spoofing)

We could now go and look at the traffic directly. To do this, wewhd
extract and inspect flows with different combinations of #imve charac-
teristics. However, in this case we first browsed the Intefae similar
observations, since the source port behavior is reallyeggtiange. After
some searching, we found a thread on the WebHosting TALK@&p&nom
2001 [182] describing this pattern and relating it to the [Sadtack toojuno
whose code can be found here [183]. The reason for the stporteelated
behavior is that the code selecting the source port is broketeast, this is
what we assume, as the code makes use ofath@om()function but comes
to reside in only port 1024 or 3072. Since this tool is only grating flows
with the characteristics identified and no others, we carlest suré* that

14There is always the possibility that someone wanted thelattalook like it is generated by
thejunotool. However, it is impossible to tell this based on flow datane.
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we have found the true root cause for this anomaly.
The results of the remaining three anomalies are as follows:

» 03.08.2012 at 02:45The SrclP and SrcPoRES, for incoming TCP
traffic expose abnormal activity. The SrcTFES, showed an abnormal
increase in the entropies for< 1 and the SrcPorf ES, for g < 0.
While we do not know the root cause of the anomaly, we fountittiea
abnormall ES, is caused by roughly 150,000 hosts sending one or two
packets to port 6,501 of a host in the SWITCH network. Thers mat
a single reply to these packets.

» 17.08.2012 at 16:45The SrclP, DstIP, AS and DstPGFES, for in-
coming TCP traffic expose abnormal activity hinting at a sitam a
small number of sources to a large number of destinationmsog a
small number of ports only. Our investigation confirmed tharac-
teristics hinted at by th& ES,. The anomaly is caused by incoming
TCP traffic from a single source to roughly 700,000 destoretiin the
SWITCH network. Almost all flows were directed to port 14331an
consisted of a single packet with a size of 46 bytes. Note fait
1,433 is typically used for remote access to Microsoft SQkv&es
for which several remotely-exploitable vulnerabilitiesje been docu-
mented. The massive scan could therefore have been trijggsmme
malware such as the Gaobot faniiyf worms.

* 29.08.2012 at 18:25Here, the onlyT ES, exposing an abnormal ac-
tivity is the DstIPTES, for incoming TCP traffic. The otheTES
and the count metrics all looked normal. Hence, our only tbuiénd
out more about this anomaly was that it involved flows to IPradses
inside the SWITCH network showing low activity only. Unfortately,
our search did not reveal anything conclusive. We assuniéthaum-
ber of flows involved in this anomaly was simply too small. Hwer,
we cannot prove this assumption.

5.8 Conclusion

The characterization and visualization of changes in featistributions in-
volves the analysis and storage of millions of data pointsovercome this
constraint, we propose a new method called Traffic Entromc8pm. Using

15This family of worms include exploit code for several reniptexploitable Microsoft SQL
Server vulnerabilities.
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a series of anomalies whose characteristics are well-kihows, we evaluate
whether the TES is a suitable tool for capturing changesifi¢rfeature dis-
tributions. Our evaluation provides evidence that the T&i8deed a suitable
tool for this purpose. However, our evaluation also expasgsakness of the
TES: the inter-region dependency. We address this problgmasmodified
version of the TES, th& ES,, and show that th& ES, captures changes in
a more effective and efficient way. Furthermore, we dematethat we can
capture changes introduced by different types of anomebegy just a few
Tsallis entropy values. Our method does not require adaptaf its param-
eters even though the network and the underlying trafficfeadistributions
change significantly. On the detection side, we proposedadhesinformation
fromthe TES (ol ES) to derive patterns for different types of anomalies. To
characterize anomalies in a compact form, we introducedheeapt of spec-
trum patterns and provide evidence that spectrum patteamsdeed be used
to characterize and distinguish anomalies. However, whieresults of our
evaluation are promising, a more general statement aboethehor not the
TES is a suitable tool for anomaly detection and classificatvould be too
optimistic. For such a statement, the set of anomalies usedrievaluation
is simply too small and specific. Moreover, visual inspattioight not be a
suitable anomaly detection approach: inspecting the wariieS is not con-
venient in practice. Hence, we need to integrate the corafepe TES and
the spectrum patterns in a full-fledged anomaly detectiahcassification
approach.






Chapter 6

Entropy Telescope

In the previous chapter, we presented evidence that suggpbour claim that
generalized entropy is an accurate tool to characterizenaltus changes

in traffic feature distributions of high-speed networksragted at the net-
work flow level. We introduced the Traffic Entropy SpectruntE@) and its
refined versior ES, and demonstrated its ability to characterize the struc-
ture of anomalies using traffic traces from the border reauéthe SWITCH
network. While these results derived from visual inspettopported by dif-
ferent coloring schemes are clearly promising, we lack amrealy detection
system which integrates the TES in a fully automated way.

In this chapter, we propose a comprehensive anomaly dereatid clas-
sification system called the entropy telescope. We alsoigecvidence for
our claim that a detector and classifier built around thid t@m detect and
classify network anomalies accurately, outperformingitranal volume or
Shannon entropy based detectors.

Existing systems show good detection, and reasonabléfidatien per-
formance with regard to massive anomalies. Nonethelem® thmains room
for improvement with regard to small to medium sized anoezaliOur ex-
tensive evaluation uses three different detection methmus classification
method, a rich set of anomaly models and real backbone traffishows
that the TES successfully addresses this challenge by tégtiteg small to
medium sized anomalies by up to 20% more accuracy and (2) psowing
classification accuracy by up to 27%.
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6.1 Introduction

The attractiveness of entropy metrics stems from theirtgltd condense an
entire feature distribution into a single number, whilshsitaneously retain-
ing important information about the overall state of dtattion. This makes
it possible to detect the concentration and dispersal dtifeadistributions
typical for certain types of attacks, such as DDoS attacksosm outbreaks.

Compared to simply detecting an anomalous state, it isfgignily harder
to classifyan on-going anomaly and identify its root cause. Attemptio-
bine changes in multiple features in order to establish atpmatterns are
very promising (e.g. [20]), but the accurate automaticsifastion of anoma-
lies is still a major challenge, especially where anomatgsiand affected
host populations vary. The TES method introduced in theipuswchapter is
able to focus on specific areas of distributions; for instaion heavy-hitters,
or on rare elements. It thus retains the general advantdgastropy met-
rics, but also provides additional information about theur@of the changes,
which help in distinguishing anomalies. Specifically, tHeSTevaluates the
Tsallis entropy of the traffic feature distribution aggresghover intervals of
length T for different values of its characteristic paragnegt Our evaluation
in chapter 5 showed how the TES could be used to visually natchrring
patterns against known patterns to identify different sypEanomalies. We
provided evidence for the descriptive power of the so capdctrum Pat-
terns based on a selection of real anomalies. However, ttabgity of TES
for large-scale automatic detection and classificatiomioabeen evaluated.

In this chapter, we build and extensively evaluate a cora@abmaly de-
tection and classification system, which we calléinéropy telescopéelhe en-
tropy telescope integrates several components, such 3&E®eSVM based
pattern-matching, and several detection approaches sutttea&alman fil-
ter [83], PCA [48], and KLE [91] (see Figure 6.1).

We rigorously evaluated the entropy telescope with a coatlzin of sim-
ulated and real background traffic. As we outlined in Sec8dh we share
the concerns regarding AD evaluation practice expressgd] and avoid
ground truth identification by manual labeling. Instead,degeloped a rich
set of diverse flow-level anomaly models inspired by realnaalges. These
models allow to vary parameters and to abstract from a specgftance of
an anomaly to a broader class, e.g. DDoS attacks of a ceyjaén tJsing
FLAME [33], it is possible to inject our anomalies to arbityarace files.
Ease of reproduction and fair comparison of methods areaitfiec scientific
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Figure 6.1: Entropy Telescope building blocks.

progress. For these reasons, and to foster further resedtsh direction, we
have made the set of anomaly models designed for this stualicjyuavail-
able [184]. Furthermore, we provide access (on requeshetdatbeled time
series data along with a MATLAB toolset to process them. Winaiuating
the entropy telescope, we found that when switching froom8ba to the re-
fined TES approach, the PCA method detects small to mediwed sizoma-
lies up to 20% more accurately. The classification accuacyproved by up
to 19% when switching from Shannon-only to TES and by andPemwhen
switching from TES to the refined TES approach. Finally, taapement
the evaluation with injected anomalies, we ran the entrefstope on a 34
days trace from a backbone network and reported on the presabf traffic
anomalies. The most prevalent anomalies found in this tnare different
types of scanning (69%-84%) and reflector DDoS attacks (29%).

The remainder of this chapter is organized as follows. IrtiSe®.3 we
describe our data set, the traffic features we use, and theayponodels we
designed. In Section 6.2, we describe the different compisrad the entropy
telescope in detail before evaluating the detection arsbiflaation accuracy
of several techniques in Section 6.4. Section 6.5 concltideshapter.

6.2 Entropy Telescope

In this section we describe the entropy telescope, whiclsistmnof Wide
Angle Lenses (6.2.1), Zoom Lenses (6.2.2), Image Procge$6dt.3) and a
Scene Classifier (6.2.4). Figure 6.1 gives an overview ofifferent com-
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ponents. The Wide Angle Lenses capture the big picture ieraainform

the Zoom Lenses which region they should focus on. The ImageeBsors
then take the signals from the zoom lenses and check therméonalies. If
the composed image is considered anomalous, it is condéerieedso-called
Spectrum Pattern and fed to the Scene Analyzer for iderttdita

6.2.1 Wide Angle: Using Generalized Entropy

The task of the Wide Angle Lenses is to calculate the TES floardifferent

traffic feature distributions fed to the detector. As we d&sed in chapter 5,
the TES suffers from inter-region dependency. Changesémregion might

affect other regions. The reason for this problem is theligldfocus of the

TES. The calculation of region-specific entropies encorsgasotal activity

in all of the regions. To mitigate this problem, the TES arede over to the
Zoom Lenses.

6.2.2 Zooming in: Separating Activity Regions

The task of the Zoom Lenses is to now use the TES from the WidgeAn
Lenses to determine, which elements (e.g. which IP addgseseatribute
most to the respective entropy value, for each of the Tsaeflii®pies. The
Zoom Lens then recalculates the TES using only those elanémtdoing
so, the Zoom Lens shifts from a global focus and zooms in orelbi®ments
most relevant for the Tsallis entropies for the differedtiea ofq. The only
parameter of the Zoom Lens is the cut-off condition It defines the per-
centage of the original entropy value that must be reachettiéaZoom Lens
to stop adding elements to the set used when re-calculdtengES. In our
evaluation, we experiment with the following values for80, 95, and 99. A
detailed description of the calculation of th& S, and the role of the param-
eterp can be found in chapter 5.

6.2.3 Image processing: Anomaly Detection

In this section we describe how anomaly detection is peréaron the various
entropy signals for different metrics amgvalues. Specifically, we use 20
different values foq:

qe {-3}U{-2,-175,...,1.752}.
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Experiments with traces from different years and contgjrdifferent
known and unknown anomalies suggested that including biggemaller
values is of limited useS; is already very much dominated by the biggest
heavy-hitter ands_3 by the rarest elements, respectively. With 8 feature en-
tropies!, 3 volume metrics and two directions, this yields a total number of
2+ (34 8% 20) = 326 different metrics fof ES,. Note that this component
is not limited to working with the full set of metrics. It caisa be used with
other sets like the Shannon classst{N\:) or the Shannon extende8KIN,)
set used in our evaluation (see 6.3.2). These sets contlyia subset of the
aforementioned metrics. Shannon clasSiEl (&) consists of 2 (3+4) = 14
metrics, and Shannon extend&HN, ) of 2x (3+ 8) = 22 metrics.

The computational overhead is already dominated by therggoe of
element distributions. Whether we compute a single entk@bye or draw
multiple values from a distribution does not make a big défece in terms of
running time or memory consumption.

From the list of available statistical anomaly detectiorimés, including
wavelet transformation [82], Kalman filter [83], Princig@mponent Analy-
sis (PCA) [20], and Karhunen-Loeve Expansion (KLE) [91], sedected the
Kalman filter due to its simplicity as well as the PCA and theEinethod
because they reflect the most advanced methods currentlgtdea

¢ The Kalman filter models normal traffic as a measurement-corrected
AR(1) auto-regressive process plus zero-mean Gaussiae.ndihe
difference between this model and the actually measuragevalthe
residual, a zero-mean signal without the diurnal pattevosd in orig-
inal time series. We calculate this residual for all inputei series
separately.

e The Principal Component Analysis (PCA)condenses the informa-
tion of all input time series to a single output time seridkeding how
closely the current input matches the model built from somhemin-
put. The output signal reflecting the difference betweemtbeel and
the actually measured values is the residual. PCA has a p&zakn
determining how many of the components are used for modétiag
normal activity. We discuss the impactloin our evaluation section.

1Source and destination port number, source and destin@iaddress, AS number, country
code, flow size in bytes and bytes per packet.
2Flow, packet, and byte count.
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e The Karhunen-Loeve Expansion (KLE) is based on the Karhunen-
Loeve Transform and an extension of the PCA method whichwatso
for temporal correlation in the data. The output signal @sidgual)
reflects the difference between the model and the actualpsored
values. The only important difference is that KLE has an tholofl
parametem stating how many time bins should be included when ac-
counting for temporal correlations.

Our goal is not the optimization of the detection step, btlieato demon-
strate that the extended set of Tsallis entropy values ivgsrthe detection
accuracy using existing methods.

On the residual(s) we detect anomalies using a quartileebagproach.
The first quartileQs of a sample of values corresponds to the 25th percentile
and is defined as the value that cuts off the lowest 25% of galidat is,
one fourth of the values are smaller th@p Similarly, Q> (the median) and
Qs are defined as the 50th and 75th percentile, respectivelyintarquartile
range IQR is a measure of statistical dispersion and is dkfiye QR =
Q3 — Q1. The IQR can be used to detect outliers by defining a normaleran
of values[Q; — k- 1QR, Q3+ k- IQR] for some constark. We choos& = 1
and define the normalized anomaly scé&) for a residual valuex by the
ratio of the distance ok from the normal band and the size of the normal
band, which is BQR:

QiR > Qz+IQR

3IQR
A= AR i x< Q- IQR (6.1)
0 else (signal is normal)

For each output time series, we compute the anomaly scoreahitl a
voteif the signal is exceeding a thresha|dhat is,|A(x)| > t.

In the case of PCA and KLE, we have only one output time seAssa
consequence, one vote is enough to trigger an anomaly artdrésihold is
the main parameter to tune the sensitivity of a specific detecHowever,
in the case of the Kalman filter, we have one residual per itimé series.
Detection is done using a two parameter approach. Firsgydathe same
as in the case of PCA and KLE for each of the output time seifés.put

SNote that there are other tuning parameters such as the g for PCA andk andm
for KLE as described before.
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a threshold on all of the anomaly scores A(X) of their residuals. Next, we
perform the detection by setting a minimum numbeaf votes required to
trigger analarm for the current time interval. In practice, determining doo
values for the thresholdand votess is done by measuring the performance
of the detector for different combinations ofandv. Ideally, this is done
using training data containing a representative set of afiesm The same
holds for determininds for PCA andk andm for KLE or any other anomaly
detection system having one or more tuning parameters nmimguy, we need

to sweep the following tuning parameters to fully assesgp#réormance of
the different algorithms:

» Kalman: Threshold and number of minimum votes

* PCA: Threshold and the numbek of components used for modeling
the normal activity.

e KLE: Threshold, the numbek of components and the numbmrof
time bins used for modeling the normal activity.

Note that all of the three approaches require training datiwo reasons:
(1) for defining a conservative normal band to derive the radimad anomaly
score A(X) and (2) to get training data for training the made$ed by the
Kalman, PCA and KLE methods. While the first training problisneasy to
solve, the second one is more difficult. The reason for thtkas our IQR
based normalization is based on the first and third quartiksch do not
depend on the 25% smallest and biggest values in the dasahkiefore not
affected by outliers. Unfortunately, to solve the secoaihing problem, we
need all of the data points. To ensure that the training dzttaably reflects
normal behavior, we selected it based on manual analysisedime series
using box plots and raw time series plots. While there remaimuncertainty
over whether our selection of training data really is clead eepresentative,
we mitigated this by confirming our findings using differenaiming samples.
However, we can not omit this problem entirely when workirithweal traces
containing millions of flows per hour.

In our evaluation, we focus on those configurations showegy“best”
performance for a specific method. We are aware of the fattdiffarent
sets of anomalies and/or other background traffic chaliatiter might result
in a different choice for these values. Worse, they mightltes a different
rating for the different methods. However, we believe that comparison
is fair for two reasons: (1) the selection of the “best” pagtens is based
on a large set of different anomaly types and intensitieds T@moves any
potential bias caused by certain anomalies appearing megedntly than
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others, as is typically the case with real world traces. AR ¢ur traffic
trace used as background traffic originates from a large Atilwith fairly
complex and dynamic traffic mix characteristics.

6.2.4 Scene Analysis: Classifying Anomaly Patterns

The basic idea behind the scene analysis component is tlenraftSpec-
trum Patternsintroduced in the previous chapter and in [31]. The assump-
tion underlying our anomaly classification is that each aalyrolass leaves
a characteristic and (to some extent) invariant footprindifferent features
and activity regions. As a consequence, the input to thisparmant must be
one signal per count or feature entropy. While the inputaligoould be the
original time series signals of these features, we want tadathis for two
reasons. Firstly, removing trend and daily patterns froendignals is diffi-
cult but has to be done for most supervised pattern recogréipproaches.
Secondly, we are not interested in the exact amplitude o$ithreals. Rather
we seek a conservative estimate as to whether they are aahanah, if so,
by how much.

An obvious choice for the input of the classification compans there-
fore the output of the Kalman detector, as it outputs a coasige anomaly
score per input time series. To reduce the volume of dataiged\by this
detection component, we aggregate anomaly scores in tlhidets corre-
sponding to the low/medium/high activity regions. We do gachlculating
the weighted sum of the scores for givalues in a region. The low activity
region is defined by < —1, medium by—1 < q < 1, and high byg > 1.
That is, we calculate three values for each metric, meagtii@ abnormal-
ity of the specific region, denoted I8y (low), Ay (medium), andd, (high).
While different weights might be used to tune our classificatpproach in
future work, we found that the simplest choice of settingnaights to one is
enough to achieve a classification accuracy of around 8®perc

Next, the Scene Analyzer scans the valdgsAmn, andAy, of each traffic
feature and decides whether they signal an increase, deweao change of
entropy of the corresponding regions. This transformateombe summarized
as follows:

‘1" if Aj > upper threshold
C =< ‘O otherwise
1" if A <lower threshold
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An example of such a pattern is shown in Figure 6.6 of the ex@in
section. For the upper and lower threshold, we use the val&esnd—0.5
respectively. A value of = 0.5 is obtained, if each metric contributing to
A exceeds its 75th percentile value by arourQR*. Another situation
resulting inA; = 0.5 is when one of the metrics contributing £p has an
anomaly score of 0.5 and all others an anomaly score of zerom 6.1)
it follows that for an anomaly score of 0.5, the metric excete 75th per-
centile value by 5« IQR. Note that a deviation of .5 IQR is typically
attributed tomild outlierswhile a deviation of at least:8|QRis attributed to
extreme outliers

The main reason for transforming the continuous valie®\,, andAy
of each traffic feature into discrete (tri-state) valueistoid the pitfall of
over-fitting our classifier to specific amplitudes. Desgite good results pro-
duced by this approach, we need to investigate the impabifjtiantization
in more detail. However, not using quantization should fyaimprove the
classification quality in cases where the input signals atenell-behaved,
in the sense that the IQR is not meaningful for separatinghaband abnor-
mal values. An example of such a signal is where a signal hasre an less
bi-modal distribution of its values during normal activity

Lastly, the Scene Analyzer feeds the discretized spectaitan to a sup-
port vector machine (SVM) trained with different trainingts, discussed in
the evaluation section. Our Scene Analyzer makes use oflB®&\UM [185],

a popular SVM with very good performance and a wide range aflavie
interfaces. For each of the different training sets, weofe#d the basic strat-
egy outlined in [186]. First, we split the full dataset intwee parts containing
approximately the same amount of anomalies of each anoyadyand size.
Next, we take two parts of the split for training and one partvalidation.
By doing this, we get three different training and validatset combinations.
On the training set, we then perform a grid search and 3-falsiszvalidation
to identify the best parameters for the SVM’'s RBF kernel. Tlassification
result reported in the evaluation section is the averagssifieation accuracy
obtained from the three training and validation set comtimna. Note that
the output of the SVM - the label of the anomaly - is at the same the final
result and output of our Entropy telescope.

4With 5 metrics as in the high activity region, we ¢fgt= 0.5 if all metrics have an anomaly
score of 0.1. It follows from (6.1) that an anomaly score dfi8.the same as exceeding the 75th
percentile by 2« I1QR.



138 6 Entropy Telescope

6.3 Methodology

6.3.1 Data Set

For our evaluation, we again use NetFlow data captured frdafTE€H [34].
For our analysis of the prevalence of real-world anomaliespuse a period
of 34 days from 07/31/2008 until 09/02/2008 (see Sec. 6.#@&)evaluating
the entropy telescope with injected anomalies, we use ok afdhe month-
long trace from 08/09/2008 0:00am to 08/15/2008 11:59pm.

oshoce [ S T % ) ) ) T )

Figure 6.2: The number of flows per 5min bin of our baseline trace with
injected anomalies of intensity 75K and 200K.

6.3.2 Entropy Features

In addition to packet, flow, and byte count, we compute theopytof dif-
ferent traffic feature distributions. We define the follogrimasic set of traffic
features:

e Shannon classic (SHN:): The Shannon entropy of the source/destina-
tion port and the source/destination IP address distohuti
e Shannon+ (SHN,): The same traffic features as3t N; but extended
with the Shannon entropy of the following additional featdiistribu-
tions:
— AS distribution
— country code distribution
— average packet size per flow distribution
— flow size distribution
 Tsallissets (TESy): Based on the same feature distributionSatN, .

For AS numbers and country codes, the distribution is alwaysputed from
external addresses only, as we have data from a single stub AS
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To justify the selection of these features, we performedailéel analysis
of whether it is necessary and/or useful to use all of the 7 {@atures in
SHN: (SHN,). This analysis can be found in chapter 4 and [30] where we
discuss this issue based on a comprehensive pairwise atosrehnalysis.
Our results suggest that different feature entrogesndeed provide useful
information

6.3.3 Anomaly Models and Injection

To evaluate the accuracy and sensitivity of the anomalycti@teand the
anomaly classifier component, we injected artificial ana@sahto one week
of real background traffic using FLAME [33]. This approactsiao main
advantages. First, it provides well-defined ground trutiependent of an ex-
pert labeling the events. Second, it is able to inject theesiype of anomaly
in different scales, with different parameters, and atedéht offsets. Thus,
the evaluation is not biased by the very set of anomalieslantilly present
in a collected trace [108]. However, for background traffie, chose to use
real instead of simulated traffic to get more realistic rssurhe main prob-
lem with real background traffic is that it potentially cointeanomalies for
which we do not know the ground truth. Therefore, we first éetpd the
background traces for existing anomalies by searching éaxy outliers in
each traffic feature using a robust statistical outlier digdim [187] based on
the interquartile range. Where obvious anomalies weredpwe labeled the
traces accordingly and did not consider the correspondimglbins for injec-
tion and validation. To mitigate the effect of smaller andiegstill present
in the trace, we injected each anomaly at different randaations.

Previous work argues that concentrated activity on few elgm(e.g. the
victim of a DDoS attack) leads to a decrease in entropy, whgpersed ac-
tivity (e.g. the spoofed source addresses of the same DDa&kpteads to
an increase in entropy [20, 25, 31]. However, this is not sgaely true. The
precise effect on the entropy metric depends on whetherlémeesat set in-
volved in a change was already present in the traffic befoteir{sic event)
or not (extrinsic event). Therefore, we explicitly consider instance, sets
of active and inactive IP addresses.

The 20 base anomalies listed in Table 6.1 are variations af®attacks,
worm outbreaks, scans and P2P outages. Each combinatiasefimomaly
and intensity was injected in at least 42 different (randtméslots.
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Table 6.1: Overview of 20 base anomaly models used. HAR/LAR denotes

high/low activity region.
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For each injection, the flow parameters, such as the so@st@idtion |P
address or the source/destination port are drawn from dtaredistribution
defined by the models. Furthermore, depending on the baseaymodel,
the feature distributions for some of the flow parameterseweodified ac-
cording to the schemes described below. As a consequerde,rgacted
anomaly is uniquely parameterized. For more details, wer tefthe model
description files for FLAME which we make available on [184h total,
we injected 8064 anomalies into our baseline trace. Or maFeigely, we
injected 42 anomalies in each of the 192 copies of our bastfite.

Anomaly Intensity

Each base anomaly is injected with various intensitiespddfby the num-
ber of injected flows per 5min. Chosen intensities are 50(60&), 75,000
(75K), 100,000 (100K), 200,000 (200K), 500,000 (500K), amz: million
(1M) flows. Note that the actual number can vary a bit sinceirnfertion
decision is probabilistic. The motivation for this choisglat the intensities
should be (1) realistic and (2) small enough that for mosteifit the anomaly
is invisible when using simple metrics, such as flow couny.owe verified
these criteria by analyzing the intensities of a set of Wwalbwn anomalies
and checked that most intensity values are hard to spot wdresidering the
variability and the average number of flows per 5min bin ciom@ in our
traffic traces. We illustrate this with Figure 6.2 showinglat jof the number
of flows per 5min bin of our baseline trace into which we ingetseveral
anomalies of intensities 75K and 200K. While the anomalféstensity 75K
do not cause a significant change in the flow count signalgtbbitensity
200K start to become visible. However, most of the time thepat stand out
clearly, instead vanishing in the normal variability of fl@v count signal.

IP addresses

As our traffic traces are collected from a stub AS, we distisigaddresses
from the internal address space (IN) and external addré&8d$). In our
anomaly models, the victims are located inside our stub A8emt for the
case of the reflector DDoS | and Scan Ill model. We observedlieachar-
acteristics of the traffic flowing into the network show a heéghariability than
those of the traffic leaving our network. Hence, if we plaee\fctims inside
our AS, and if the anomalous traffic to the victim(s) is morerunced than
the response traffic, the more pronounced share would beoptre traffic
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with higher variability and therefore be more difficult twiate. Previous
work, as well as intuition, confirms this imbalance for masb@alies. Most
victims of scans do not reply because the scan is blocked bgwdil, and
victims of a DDoS attack do not reply to (all) requests beeah&y have
crashed or are simply too busy to serve all requests.

Another important aspect is whether the hosts acting asotives and/or
destination of normal and abnormal traffic are mostly froisjaint sets of
hosts or not, and whether they target hosts that show raitjeoh low activ-
ity.

To take this into account, we defined and constructed vat®wegldress
sets based on an analysis of the persistence and activify afltiresses in
our baseline trace and draw IP addresses from many conrisadf activity
regions and set sizes. The source and destination IP addifes®ne instance
of an anomaly of the base anomaly types described in Tabler. then
determined as follows. For each flow, the source and destmi® address
are drawn from a set of IP addresses assigned to this andifimalyltiple sets
are assigned, only one is used for a specific anomaly instdBuein total,
all sets are used the same number of times.

The sets used for our evaluation are the following:

e IP: A single fixed IP measured from real attacks.

e IP-LA/IP-HA: An IP with low/high activity.

¢ IPS: IPs from all activity ranges.

* IPS-HA: IPs with high activity.

e IPS-LA: IPs with low activity.

* IPS-Pxx: IPs with activity on port xx.

e IPS-Pxx-HA: IPs with high activity on port xx.

e IPS-Pxx-LA: IPs with low activity on port xx.

¢ IPS-RAND: Randomly chosen IPs. They might or might not be present
in the base trace.

An IP address shows low activity (LA) if it occurs on a more esd reg-
ular basis but is not the source/destination of a significambber of flows
(typically less than 10 flows per protocol and 5 minutes). ARnaddress
showing high activity (HA) is one that occurs on a regularibasd is the
source/destination of a significant number of flows (tygicaiore than 100
flows per protocol and 5 minutes). To indicate the size of #is,sve ap-
pend the number of IP addresses to the set name. Also, thege&fiT and
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EXT denote whether IP addresses were chosen from the ihtareaternal
address range. For instance, the set INT-IPS-HA-5000 swnD00 IP ad-
dresses randomly chosen from highly active internal adesed ikewise, the
set EXT-IPS-RAND-2.5MIO contains 2.5 million random adskes from the
external range. Table 6.2 shows which sets were used fortwdriomaly

type.

ID | Attacker IPs Victim IPs Reflector IPs

1|EXT-IP EXT-IP INT-IPS-P80-LA-{500,2000},
INT-IPS-P80-5000

2| EXT-IP EXT-IP INT-IPS-HA-{500,2000,5000},
INT-IPS-P25-HA-{500,2000}

3| EXT-IP INT-IP-{LA/HA} EXT-IPS-P25-LA-2000,
EXT-IPS-LA-500

4|EXT-IP INT-IP-LA EXT-IPS-P25-HA-500,
EXT-IPS-HA-{2000, 5000}

5| EXT-IP INT-IP-HA EXT-IPS-P25-HA-500,
EXT-IPS-HA-{2000, 5000}

6| EXT-IPS-LA-{5000,10000} INT-IP-HA n/a

7| EXT-IPS-LA-{5000,10000} INT-IP-HA n/a

8| EXT-IPS-RAND-2.5MIO  INT-IP-HA n/a

9| EXT-IPS-RAND-2.5MIO  INT-IPS-RAND-0.5MIO n/a

10| EXT-IPS-RAND-2.5MIO  INT-IPS-RAND-0.5MIO n/a

11| INT-IPS-1000 EXT-IPS-20 n/a

12| EXT-IP INT-IP-LA n/a

13| EXT-IP INT-IP-LA-1200 n/a

14| EXT-IP INT-IP-LA-1200 n/a

15| EXT-IPS-LA-2000 INT-IP-LA n/a

16| EXT-IPS-LA-2000 INT-IP-LA-1200 n/a

17| EXT-IPS-LA-2000 INT-IP-LA-1200 n/a

18| INT-IP EXT-IP n/a

19| INT-IP EXT-IPS-2000 n/a

20| EXT-IP INT-IP n/a

Table 6.2: IP address sets used to customize anomaly models. The IBicolu
corresponds to the anomaly ID in table 6.1.

Ports

For application specific attacks and worm outbreaks exptpiulnerabili-

ties, we selected fixed ports. For instance the HTTP GET stgquesed in
DDoS attacks are targeted at port 80. Otherwise we assigionarports

(i.i.d.) from these sets: all ports, ports above/below 102dected set of
application ports, and a dynamic port range (1024-4999).
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Packet Sizes

Depending on the attack, we modeled different stages of-tha3TCP hand-
shake with differentresponse probabilities fr¢@0001 0.02,0.05,0.2,0.8}.
For HTTP requests and flash crowds, we modeled a percentatgdivared
web pages of size 0.5KB and 20KB, distributed over severeketa. For
worm attacks we used characteristic packet sizes known $tadies of the
Blaster [50] and Witty [188,189] worm. For the reflector DDo& measured
the actual flow and packet size distributions during a reat&tfound in our
traffic traces and used these distributions for modeling.

6.4 Evaluation

In this Section, we evaluate the entropy telescope usinigtiare setSHN:,
SHN,, TES TESg99, TES9, TESs, andT ESo. We show that the biggest
improvement in detection accuracy can be achieved wherctswg from
Shannon entropy based feature sets toltke&Sset. The novel ES, makes
another significant step in classification accuracy andvipés detection for
some anomaly categories.

After discussing our detection and classification restitsdughly, we
conclude the section with an analysis of anomaly prevalémee 34-days
trace of real traffic.

6.4.1 Detection

In Section 6.2.3 we defined a metric as anomalous, denotedvbieaf its
anomaly score is bigger than a threshplde., |A(x)| > t. Moreover, for an
anomaly alarm to be raised in a time slot, a numbey gbtes need to be
present. For the PCA and KLE methads equal to one since they have only
one output time series. Naturally, high thresholdstferand in the case of
the Kalman filter also fow - will lead to low true/false positives while low
thresholds lead to high true/false positives. The prefeageration point,
however, has a high true positive (TP) and a low false p&s{fiP) rate. To
assess detector performance, we use ROC curves [190, H D¢ the TP
rate versus the FP rate for a range of threshold values. loasa, we vary
between 0 and 100. Note that for ease of readability, we p®ROC curves
using a logarithmic scale for the FP axis and display theltefor FP rates
of 0.4% to 10%. With our time bins of 5 minutes, this corresg®to roughly
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one false positive per day for an FP rate of 0.04% to one falséipe per 50
minutes if the FP rate is 10%.

Issues with KLE

The following discussion focuses on the evaluation redoltshe Kalman
and the PCA methods only. The reason for this is that ourteful KLE are
somewhat ambivalent. For intensities larger than 100K, KhBws a worse
performance than PCA for all feature sets. The same holdhédeature sets
TESor TES, and anomalies of intensity up to 100K. However, &N and
SHN; and anomalies of intensity up to 100K, we see an improvennea
tection quality of up to 15%. While the improvement f8H N is consistent
with the finding in [91], we are not quite sure about the roaiseafor the
results with other feature sets. More research is requirbétter understand
the performance of the KLE method with different featuressenomalies
and network characteristics.

Shannon versus TES feature sets

Figure 6.3 shows the ROC plots for the Kalman and PCA methoithfensi-
ties 50K and 75K as well as the PCA method with 100K and 200k. dibts
show the detection accuracy for the best configuration dééidint detectors
for the feature sets. To find the best configurations, we padd an exten-
sive parameter sweep for both the Kalman and PCA detectorPEd, the
parameter is the number of componektssed to build the model of normal
activity. For Kalman, the parameter is the number of vetesquired to trig-
ger an alert. Doing these sweeps, we found that while thectieteaccuracy
changes quickly for the feature s&bIN- andSHN,, there is a clear peak for
one specific value df. In contrast, this is not true foFESor TES,. After
reaching the optimal detection accuracy, it remained ahgemable level for
a wide range ok values. One interpretation of this is that the additiomakti
series in thel E Sfeature sets make the detectors more robust with regard to
the selection of the parameter

From the plots in Figure 6.3 we can see that a switch to TESaugs
the detection accuracy for PCA by up to 20%. However, for taéman filter
approach, the gain is rather small and lies around 5% for Te&a8ufe sets
other tharl ESor TE . It seems that while the TES adds features carrying
valuable information, it also adds noise with which the dienper feature
detection and voting scheme of the Kalman detector doesopat well.
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Figure 6.3: ROC curves for different feature sets and detection meth@jls
Anomalies of intensity 50K and 75K, Kalman filter method. Abhpmalies
of intensity 50K and 75K, PCA method (c) Anomalies of intgri$i0K and
200K, PCA method.
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Unlike PCA, our Kalman detector does not make use of intatfe rela-
tions. That this is the main reason for the poorer perforragmsupported by
the Kalman filter’s very poor performance foE Sbut significantly improved
performance fol ES,. As explained in section 6.2, the features reflecting the
high and low activity area can be strongly correlated@ S but are not cor-
related inT ES,. As a comparison of the different plots in Figure 6.4 shows,
the improvement in detection accuracy can also be confirntexhvooking
at the detection accuracy per anomaly type. Switching f&iN or SHN,
to TESimproves detection accuracy for most types for FP ratesG8f6q=1
alert per 14 hours) and above.

SHN: versusSHN;

Another observation we can make based on Figure 6.3 is thaxtension of

the traditional feature s&HN: to SHN, improves detection results by up to
10%. This, as well as the increase fréra:- 6 tok = 9 components required

to achieve the best detection accuracy with PCA, confirmistieafeatures
added toSHN: carry relevant information. Nevertheless, as can be seen in
Figure 6.4, the better overall detection accuracy comdsavitecrease for the
anomaly types Worms 1&I1, DDoS Il and Scan Il while most difet other
types show an increase in detection accuracy.

Kalman versus PCA

However, the most surprising result is exposed when comg@ahie perfor-
mance of the different detection methods for the featur&sd% andSHN.

in Figures 6.3(a) and 6.3(b): The Kalman filter method dstacbmalies up
to 10% more accurately than the PCA method. ConsideringRi# has
been used with the feature s®HN: in the past, this is an interesting find-
ing. However, since it only holds for anomalies with inteiesi less than
100K, PCA might still be the best choice f8HN: in general. The effect
disappears when the feature set is extendedE&,. There, we found that
the PCA method provided consistently better results tharkhiiman filter
method.
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Figure 6.4: ROC curves for anomalies with small intensities (50K and)75K
and PCA detection method.

Relations between parameter&

Afinal observation from Figure 6.3 is that the optirk&hlue for both Kalman
and PCA increases when switching from Shannon to TES. Theadse is
even of comparable size. However, this is not true for TeS,. This is
because the Kalman method does not make use of inter-featat®nships
such as the correlations between high and low activity regio the TES.

In summary, the shift from Shannon-based feature sets telies8d sets
can improve detection accuracy up to 20%. The reason whyftreimn TES
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to a refined version of the TES leads to only minor improvemenight be

the fact that the main difference between TES &, is the decorrelation
of the HIGH/LOW intensity parts of the distribution. Intiviely, we are not

concerned whether an anomaly is seen in two (correlatedjaset just one

(uncorrelated) metric for detection. For PCA and KLE, whadtount for

correlations between metrics, this makes no big differene believe that
the minor gains are most likely due to the better signal te@aatio for

anomalies affecting the low activity region only. In the TE8ch anomalies
could be concealed by large (but not yet anomalous) chamgieioverall

activity.

6.4.2 Classification

It is important that detection and classification rely on eledhat are robust
with respect to varying intensities. That is, if we train aviNbwith DDoS
models of a certain intensity, we do not want to miss the sataeks simply
because the real attack size differs slightly from the trgjisize. Therefore,
we trained the SVM with different intensities and evaluatieel models on
varying intensities. We always trained all of the 20 base et®ffom Ta-
ble 6.1. For measuring classification accuracy, we couritedoercentage
of anomaly instances that were assigned to the correct bagelmThus,
if anomaly #16 was classified as anomaly #17, this is consitlercorrect,
even though both belong to the same base anomaly type (Scdioilas-
sessing classification quality we assumed a perfect deteldtat is, the true
anomalous intervals are considered for classification. reaaenvironment,
classification would only be run on those instances that wetected by an
anomaly detector in the first place. The consequence ofghisait the dif-
ference between classification accuracy using Shannoopgntr Tsallis en-
tropy would be even bigger in practice because a detectedo@s Shannon
entropy would feed more false positives to the classifier.

Table 6.3 summarizes the classification accuracies foeréifit anomaly
intensities and feature sets. The columns labeled withwer(e>) show the
performance difference between the feature sets on theneftright side.
The use ofSHN, over SHI\: yields a gain in classification accuracy of be-
tween 7.14% and 14.21% across all intensities. Using THSYog) gives an
additional gain of 7.84% to 9.38% for small intensities ie thp three rows.
For training and classification with bigger anomalies, thaéngs generally
smaller. Although accuracy witf ESis already quite high, the introduc-



150 6 Entropy Telescope

[Train|EvaluatiofSHNc] = [SHN,| = [TESioo] = |TESeas]TESos|TESso]
50K [ 55.13[10.47 65.55|9.38] 74.93]7.14] 80.58 | 82.07]80.95
>50K | 54.73) 8.78| 63.51|7.84) 71.35|7.16] 74.26 | 78.51| 77.35
<200K | 49.38| 8.04| 57.42[9.13] 66.54 |8.43 72.82 | 74.98[73.83
200K| 200K | 66.07|14.06 80.13|2.16) 82.29 5.21] 86.53 | 87.50] 87.72
>200K | 64.69|14.21] 78.91|1.49 80.39 |4.09] 80.95 | 84.49| 84.34
<200k | 60.91] 7.14 68.06|8.85 76.91 |7.04| 80.95 | 83.95 86.46
ALL [ 200K |68.30[11.68 79.99|3.65 83.63 |4.17| 85.27 | 87.80|87.80
>200K | 67.4913.36 80.84]1.75 82.59 |3.50| 83.15 | 86.09] 82.96

50K

Table 6.3: Average classification accuracy as a percentage, for diffesets
of features and for different training and validation datet sonstraints.

tion of the prunedl ESs adds another 5.8% on average. While choices of
p=99.9 andp = 80 also improve ovef ES p = 95 works best in our set-
ting. The average aggregated gainld S5 overSHN: is 22.3%, leading to
an average classification accuracy of 83.17%. The improueisgenerally
bigger for low-intensity anomalies.

SHN: andSHN. often misclassified anomalies of types 3-5 and 13-18.
As expected, the classification accuracy with regard totgpbs of the broader
anomaly types increases when switching frerMNto T E Sfeature sets. This
is expected sinc€& E Sprovides a more detailed view on the changes in a dis-
tribution. For a broad classification, these details arartfdess important.
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Figure 6.5: Base anomaly classification matrix. The plots show which in-
jected base anomaly types (y-axis) were classified as wypes {(x-axis) with
what probability (color code). Models were trained usingaralies of ALL
intensities. Classification is performed on anomalies witBnsity<200K.
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We illustrate the learne&HN, and TESs anomaly patterns for base
anomaly #10 (Worm II) in Fig. 6.6. Grey areas indicate mstwithin normal
range, red areas (+) represent metrics with a positive alydimaper thresh-
old was exceeded), and blue areas (-) show negative anamidbéched areas
indicate information not available BHN, patterns. Foil ESs, each feature
is represented by the three regions low, medium, and highitsgctvhereas
for SHN,, only a single valueq = 1) is available. In both direction§HN.
misses important information about changes in variousifeat including IP
addresses. For direction #tNOUT, the bytes per packet (BytesPP) distribu-
tion shows that, whil&SHN, detects a decrease in entropyg Ss has more
detailed information about the change. In particular, iveh that the de-
crease occurred in the high activity region, while in the medregion there
was actually an increase of entropy.

\ OUT -> IN "‘ IN > OUT ‘ no data, Shannon is g=1 only
'

ID: 10, SHA \%\ T \;\&

@75000 flows 4 % /

ID: 10, TESp
@ 75000 flows

®9
TG
X3
e
o2
I=

Q3N daseikg
HOIH ddsalig
MO 8zZIS4
Q3N ezisy
HOIH zis4

Figure 6.6: Comparison of anomaly patterns for SHMind TESs. Evi-
dently, SHN misses crucial information captured by T&S

To give a graphical intuition of cluster centers and bouiedsfor differ-
ent anomaly types, we show Fisher’s LDA (Linear discriminamalysis) in
Figure 6.7. LDA is typically used in machine learning to fintireear com-
bination of features which characterize or separate two arenclasses of
objects. The resulting combination may be used as a linaasifier or, more
commonly, for dimensionality reduction before later cifisation. The plots
show that for intensity 50K, Shannon yields no clear clsst@herea3 ESys
is capable of separatirigef. DDoS Hrom DDoS + WormandScans With
intensity 200K, the situation improves for both sets of nesirbut clusters
are still better distinguished farE Ss.
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Figure 6.7: Fisher's LDA plots of SHN versus TE&.

6.4.3 Prevalence of Anomalies in Real Backbone Traffic

The final stage of our evaluation is to report and discuss ékalts from
applying our entropy telescope to a 34-day flow trace calbtly one of the
border routers of the SWITCH network in August 2008.

Figure 6.8 shows four pie charts representing the detectechalies for
different detection thresholds. From subfigure (a) to (,detection thresh-
old is lowered successively, resulting in alert rates o#®fér (a), 1% for (b),
3% for (c), and 10% for (d). An alert rate of 0.5% means that 200 times-
lots of 5 minutes is considered anomalous, i.e. one anoreagpiorted every
16.7 hours. A high alert rate of 10% as in subfigure (d) resaoltsne alert
every 50 minutes and is certainly not desirable for dailyrapens. It is only
shown to give an idea of the behavior of the classifier for Jevy thresh-
olds. This is interesting since we expected a larger numbiaise positives
for this setting and were interested to see whether thisleadlassifications
of anomalies as events that are presumably not present itram&: worm
outbreaks.

For all thresholds, scans are predominant, accountingofaghly 2/3 to
3/4 of all anomalies. This result is consistent with the thet scanning has
become omnipresent in today’s networks [55] and is oftenewet consid-
ered to be of special interest anymore. Among scans, typsciB ©f a subnet
from a single host) has by far the biggest share. Type 1lrifalistd scan-
ning) increases from 2% to 23% when going from (a) to (b). Télatively
high threshold in (a) was most likely not sensitive enougbetect the dis-
tributed n-to-m scanning modeled with type 11. Therefdrie,only reported
with lower thresholds as in (b) to (d). Regarding worm atfivio alerts were
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(d) Alert rate: 10% (=1 alert every 50 min-
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Figure 6.8: Detection and Classification results for a 34-day flow traoé c
lected by one of the border routers of the SWITCH network iguati2008.
Results are for TEgg with a PCA [k=36] detector. Each anomaly type is
assigned a color, enabling easy comparison of its sharesscadl four pie-

charts.

triggered and the network operator is also not aware of arigémts. There is
only one worm alert in subfigure (d), which we consider to balsef-positive.

DDoS-type anomalies have a share between 23% and 31% far (@) t
Translated into number of incidents, this means betweennti>4d DDoS
events for the measured period of one month. Note that thesdsemay also
contain flash crowd events, as these are generally very badistinguish
from DDoS attacks. Or in the case of the type Refl.DDoS II, imassoor-
dinated password guessing attacks. It is difficult to coraplaese figures to
external numbers, primarily due to the difficulty of quawitiig global DDoS
activity. Furthermore, it is not clear how global numbers broken down
to an individual network for comparison. Mooe¢ al. estimate 2,000-3,000
global DDoS attacks per week already for 2001-2004 [65]iSign, drawing
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from different sources, estimates between 1000 and 10,0@8attacks per
day in 2008 [192]. The CSI computer crime and security SUR@Y8 [193]
states that of the 522 respondents, 21% were affected by ax&sin 2008.
Of course, the reported incidents are only those that hadgénionpact to be
recognized by operations.

Considering that our traces contain traffic from around 4vidual or-
ganizations, we think our numbers are realistic. That isafmedium alert
rate, we expect around 1 DDoS alert per day. However, notehibaentropy
telescope cannot classify anoamlies it does not know. Tdmsifler labeles
such anomalies with the anomaly which "“matches best". réfae, if we
an anomaly type occuring often in the observed time period

6.5 Conclusion

In this chapter, we improved network anomaly classificabgrintroducing
the pruned TES (Traffic Entropy Spectrum) feature set, whexds the non-
extensive Tsallis entropy to focus on specific regions dfufieadistributions.
We built an integrated anomaly detection and classificatistem called the
entropy telescopand compared the performance of different well-known de-
tectors, such as the Kalman filter, PCA, and KLE. We extehsiealuated
the entropy telescope with a rich set of artificial anomedies real backbone
traffic. We showed that using the pruned TES instead of it Shannon
only approaches improves detection accuracy by up to 20%lassification
accuracy by 22.3% on averaygen particular, the pruned TES is much more
sensitive for small anomalies and established anomalgnpatare very robust
with respect to varying anomaly intensities. A run of therepy telescope
on one month of backbone traffic shows that the most prevaleomalies
are different types of scanning (69%-84%) and reflector DBi&ks (15%-
29%).

SMinimum was 19.6%, maximum was 27%






Chapter 7

Conclusions

In this chapter, we conclude our work on the detection, fiaaton and vi-
sualization of anomalies using generalized entropy meetie first offer a
review of the main contributions made in this thesis. Nexd,mention pos-
sible shortcomings and weaknesses of our work. Finallydestify and dis-
cuss open research issues in the field of anomaly detecttbolassification
that deserve further attention.

7.1 Review of Contributions
In this thesis we presented three core contributions dészlibelow.

A study of the robustness of entropy features with regard to pcket sam-
pling

The first part of our work was devoted to the problem of how pacam-
pling impacts on the visibility of anomalies with respecthtoth count and
entropy metrics. Starting from NetFlow data generateddhaseunsampled
packet streams, we simulated the impact of packet samplivgrimus sam-
pling rates. To get flow traces from sampled packet tracefirsteeconstruct
packet traces from our flow traces and then sample them prieetling them
to a (virtual) flow generator. We then argued that possitds bi this method
is practically non-existent since our count and entropyriceaire aggregate
metrics with a granularity in the range of minutes. Using timethodology,
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we then generated various sampled views from the Blastek\ttgd worm
anomaly. We compared measurements obtained from the titaee\the re-
spective anomaly had been removed with those from the tinateding them.
This revealed that entropy metrics are more robust thanteoatrics. More-
over, we found that under certain circumstances, samphingegen increase
the visibility of an anomaly. We discussed situations whiigcould happen.
One case where packet sampling increased the visibilityeodhomaly up to
a sampling rate of one out of 10,000 was when the baselirfectcahtributes
many elements (e.g. an IP address) with a support of just otveogackets,
but where the anomaly mostly contributes elements with amtarger sup-
port. However, since this effect requires specific baselimtanomaly traffic
characteristics, in practice, its relevance is probablglsm

A method for capturing and visualizing anomalous changes itraffic fea-
ture distributions

In the second part of our work, we introduced the Traffic Epyr8pectrum
as means of analyzing and visualizing changes in traffiafeatistributions.
We analyzed its properties using both artificial and redfitréeature distri-
butions. Moreover, we found and discussed a shortcominigeoT ES which
hinders the interpretation of the TES in certain situatioiis called this prob-
lem the inter-region dependency since a change in one refibe TES, i.e.
the high-activity region, can have a strong influence on wiesee in other
regions of the TES, i.e. the low-activity region. We thengemreted a modifi-
cation to the TES called tHEE S, that allowed us to mitigate the inter-region
dependency problem. Next, we introduced the concept oftspagatterns,
which enabled us to capture the impact of an anomaly on tHeuaTES
under scrutiny in a compact form. An anomaly classifier caudé these
patterns to identify different types of anomalies. Our eatibn of both the
descriptive power of the spectrum patterns and the capabilithe TES to
expose anomalies in the traffic traces provided evidendebibth of these
tools can do what we expected them to do. However, since alu&ion
was performed with just a few well-known anomalies, we codeH that we
need to perform a more in-depth evaluation.

Design and evaluation of a comprehensive anomaly detectiand clas-
sification framework based on the TES

In the third part of our work we focused on a thorough evabratf our
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work. Since visual inspection is not a suitable anomaly at&tr approach
for more in-depth evaluation, we designed a comprehensigenaly detec-
tion and classification framework which integrates the epts of the TES
and spectrum patterns. We then used this framework to pediorextensive
evaluation of the TES. We made use of three different deteatiethods,
one classification method and a rich set of anomaly modedstiegl into real
backbone traffic. Our evaluation demonstrated the supiriofrthe refined
TES (TES) approach over TES and the classical Shannon-only appeeach
with respect to both, anomaly detection and classification.

7.2 Critical Assessment

The goal of this thesis was to find answers to two broad questiére en-
tropies a useful tool in the context of anomaly detection™ ,Acean gener-
alized entropy metrics help to improve on results obtainedmusing non-
parameterized forms of entropy only? In the following disgion, we assess
the extent to which we answered these questions.

We addressed the first question in the first part. We showedakttieopy
metrics are more robust to sampling than traditional flontebwr packet
count metrics. However, our evaluation was based on datadrdy one net-
work and two specific anomalies. In an attempt to compensa&tscaled one
of the anomalies and considered flow data collected at difteneasurement
points in our network. Nevertheless, a more extensive atialn would help
to show whether this finding is applicable in other settinfise only reason
we did not follow up on these results was because anotherdgéeaearchers
published similar results for their setting at the same @ @e published our
work.

In the second part, we addressed whether or not generalizenpg met-
rics are a useful tool to use for anomaly detection and dlaason. While
we did show that the concept of the TES does indeed have tleatmitto
achieve this, our evaluation has several limitations. tFirss largely based
on synthetic anomalies injected into real background traffhis is now con-
sidered mandatory for any sound evaluation of anomaly tleteand clas-
sification systems. However, it is unclear whether or notdifferent vari-
ations of these anomalies could truly be observed in the, eién though
we extracted most of the basic parameters for these ananfiadia real traf-
fic traces. And while we did look into the performance of theST®ith
respect to well-known anomalies in our trace, we considerdg a small
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set of anomalies. Moreover, although our drill-down worlecks whether
what the TES detects is truly an anomaly, we cannot provigiérdarmation
about what the TES does not expose. For this, multiple labesees with
a large and diverse set of real world anomalies would be requHowever,
these limitations are probably impossible to overcomethaumore, our set
of anomalies is far from complete. There are so many diffeskapes of, for
example, something as simple as a DDoS anomaly, that it t teamodel
them all. Nevertheless, our set of anomalies was relatigetgnsive when
compared to rival evaluations.

7.3 Future Work

Flow-based anomaly detection is a research field which hesctdd quite a
lot of attention recently. The reasons for this are manifdltie number of
networked devices and network bandwidths are still growivith seemingly

no end in sight. To cope with this growth, we cannot rely ongdloat require

a finely-grained view on the data. Such tools are likely todveédo expensive
for widespread use. Flow data, however, provides an altistmaghich proves

good enough for things such as accounting or capacity ptgnriincreased
attention also arises from the fact that anomaly detectased on flow data
is a challenging research field. Many research questionairemmanswered.
Two issues that should receive attention from the reseavaimwinity are

discussed in the following.

The first issue is the non-availability of recent, standegdidata sets for
the evaluation of anomaly detection and classificatioresyst Without such
data sets for networks of various sizes and purposes (ecgbbae networks
and different residential, company or military networksomparison of the
many different anomaly detection systems is very hard. Apamison with
respect to the traffic in one network only does not guaramhtaesults would
be the same for another network. However, this truly is alehging topic.
Creating traces using, for example, a combination of deegatanspection
and manual labeling is not enough. Real world traces oftertato many
anomalies of the same type and similar stagkich prejudices evaluation. To
overcome this problem, researchers should develop a digetsof anomaly
models accessible to the research community which can #hasdd to inject
such anomalies into real or artificial background traffic.thbut such stan-

1E.g. in terms of the number of flows, packets or bytes invalved
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dardized models, it is difficult to compare, for example, degection quality
related to DDoS attacks. Whilst some might use a model qooreting to
the juno attack tool,nothers might model the characteristics ofltmeCan-
nontool.

The second issue we want to discuss is the problem of the xisterce
of anomaly-free traffic traces. Apart from in networks nobgected to the
Internet or traces collected in testbeds, anomaly-fréédteaces do not exist.
Problems arise with the very definition of the teamomaly Is backscatter
traffic an anomaly? Is it an anomaly if we see more of it tharalsénd how
much is “more”? The same holds for things like regular pasdvguessing
attacks on remotely accessible machines. Do we consider ‘thermal” or
“abnormal”? In order to get sound and comparable resuleselyuestions
should be addressed in a standardized way, possibly thipolghies which
define what we consider anomalous, and what not. Until naw,ghestion
has largely been left unanswered.
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Appendix A

Appendix

In this chapter, we briefly describe our contributions toNte¢~low collection
and processing infrastructure and the various softwais tteveloped in the
context of this thesis.

A.1 NetFlow Collection and Processing
Infrastructure

When we started our thesis, a fully operational NetFloweatibn and pro-
cessing infrastructure, built in 2002/2003, was alreadplate. A detailed
description can be found in [194]. However, in the proceshefthesis, we
had to update both its hardware and software several tinaslér to keep up
with the functional, performance and space requirementdvad in manag-
ing and processing the NetFlow data. We first provide a briefdew of the

NetFlow collection and processing infrastructure put iacel in June 2012.
We subsequently discuss the hardware costs and manpowe@eregnts, the
past and current NetFlow data volume to be handled and soynédiges

with regard to processing power and memory. Finally, we batewith a

summary of our main contributions to the construction anéhteaance of
this infrastructure.
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Figure A.1: The NetFlow collection and processing infrastructure ryrtloe
Communication Systems Group (CSG) at ETH Zurich as of Jub2.20

A.1.1 Overview

Figure A.1 shows the setup of the NetFlow collection and gssmg infras-
tructure run by the Communication Systems Group (CSG) at Ed@itith in
June 2012. It consists of the following hardware- and sa#ve@mponents:

¢ Flow Data Collector (FDC): This component is responsible for col-
lecting and buffering incoming NetFlow data streams. lidgfly needs
to be placed in a data center of the data provider. The FDCsofts
ware to capture the data and store it in files. For this taskuseea
script written in Perl that awaits UDP packets on a specified and
writes the packet content to a file named:
<PORT>_<FI LE_COUNTER>_<TI MESTAMP>. dat .
The script also generates the metadata files named:
<PORT>_<FI LE_COUNTER>_<TI NESTAWP>. st at
containing the source IP address of each data packet recanckin-
formation such as the timestamp and sequence number, antioeily 0
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things. Since the script creates new files every hour and esive
data on two different ports, we get a set of four files per hotie
FDC buffers the generated files (e.g. hour files), comprebsedata
files and makes them available for download. If the FDC exppees
performance problems for any reason, compression is peedonly
after downloading the data from the FDC. However, this apipnately
triples the network load.

e Secure Flow Processing Infrastructure:This component is used for
three things:

— Downloading the flow data from the FDC and pushing it to the
tape library.

— Collecting and maintaining repositories of data neededtak
flows with meta information such as the country and AS of the
source and destination of the flow.

— Performing analysis on the incoming or archived flow data to
keep, for example, a database with information on the files on
the tape library which covers things like size and whetheyth
are missing, corrupt or up to date.

— Custom flow data processing.

For research or non out-of-the-box analysis, a flexiblensoi frame-
work is required to parse and work with the data. A near rigad-t
analysis (processing one hour of flow data in less than an lodtlow
data can only be achieved through massive parallelizasomgunulti-
ple processing nodes.

« Backup Server: If the Secure Flow Processing Infrastructure suffers
downtime (e.g. cooling system or power system failure)s gafer to
have a backup machine in a different location to make surétiffer
on the FDC does not fill up. This is especially true if, as in case,
there is no 24/7 admin for this infrastructure.

e Disk Array / Tape Library: If the NetFlow data should be available
for more than a few days or months, a large disk array or téperly is
required to store the huge amount of data. We implementethaioa-
tion of Network Attached Storage devices to store data atigreised
for research and a tape library for long term storage of the-INe
data.

A major issue with NetFlow data is that it contains privacysive data.

As such, securing the infrastructure that handles this dataucial to pre-
vent privacy violations. To achieve this, the Flow Procegdnfrastructure is
used exclusively for flow data processing and provides d tigbess control
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at both the technical and the management level. Furtherntlogeinfras-
tructure further limits the attack surface by providingagie access method
and by allowing access from specific locations only. Morecizay, the in-
frastructure can only be accessed via a Secure Shell (SSection using
pre-shared key (PPK) authentication and access is restriothosts in the
ETH (or partner) networks.

A.1.2 Costs

The estimated costs involved in building and maintaining iWetFlow col-
lection and processing infrastructure are shown in Table2A.

Hardware approx. costs in
Swiss Francs
Secure Flow Processing Infrastructure: 105,000

e 1x 16 AMD Opteron 8350 HE, 64 GBytes RAM, b
TBytes RAID-10
e 5x 4 AMD Opteron 275, 16 GBytes RAM, 4 TBytes
RAID-6
e 2x extensible storage servers: currently 50 TBytes of
net disk space

Flow Data Collector 3000

Backup Server 2500

(Tape Library ) n/a

Manpower person months
Administration and support: 1-4 (per year)

* User management

* Management of local repositories of 3rd party data
(GeolP, Routeviews,...)

» Hardware/Software acquisition and updates

¢ Incident handling and support

NetFlow data processing: Initial overhead 3-6
NetFlow Tools development 36

Table A.1: The estimated cost of building and maintaining our NetFlol ¢
lection and processing infrastructure.

According to this table, two of the most significant cost ¢astare the ini-
tial overheads needed to build up the knowledge and to detk&software



A.1 NetFlow Collection and Processing Infrastructure 169

base to process and work with the NetFlow data. While thexeraany free
and non-free tools for standard tasks such as monitoringamnaly detection,
trying out new ideas and performing new kinds of measuresngpically
require the development of custom software. Section A.2flgrdiscusses
some of the software and tools developed for this thesis.

A.1.3 Data Volume

Until the end of 2012, our archive of bzip2 compressed CisetFhdw will
most likely break the 120 TBytes barrier. Table A.1.3 shdwesdmount of
data for each of the years from 2003 to 2012.

2003'| 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012
30| 60| 51| 61| 98] 126 169 20.1| 203 | 20.3

1 Starting from March 2003.
2 Based on a linear projection based on data collected ustéid of August 2012.

Table A.2: Amount of bzip2 compressed Cisco NetFlow data for each of the
years from 2003 to 2012.

One major challenge with this huge amount of data is that thiglcurrent
storage servers (with a net capacity of roughly 40 TiB), we lcardly store
the last two years of NetFlow data. At a first glance, this rhggem conve-
nient, but if we consider that (1) different researchershiitged to look at
different parts of the data set for their research and theth@y do not just
need the raw data but also require a large amount of analsists or pre-
processed data optimized for doing things like forensittds soon becomes
a challenge problem. As a consequence, most things havedorseon de-
mand: only results and data from often used events (e.g. $pmuial events
such as major attacks or network failures) are kept on thrag#oservers.

A.1.4 Processing Power and Memory Requirements

Decompression of an hour of NetFlow data from 2012 typidalkes between
20 and 40 minutes (night/day) using a single core of our AMDRebgn 275
systems. bzip2 decompresses our data at approximately 2. Mfghe data

1The problem with data formats optimized for fast search fmcific characteristics is that
most of these formats require two to ten times the storageesplethe raw NetFlow data
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is enriched with additional information such as the coumtirprigin of the
flow or the origin AS, it takes up to 30% longer. As a conseqgeeifithe data
comes from our tape library with approximately 20 MB/s expddransfer
rate, we can decompress and parse 10 hours of data in appitekrd hours
if at least 10 CPUs are available. More CPUs are required ifentioan a
simple parsing of the data is required. Memory is typicdily imiting factor
regarding analysis that requires tracking, for example hpst information,
or more complex behavioral patterns over longer time psriodith up to
200 million flows per houand up toseveral millions of hosts (IP addresses)
per hour, such an analysis is difficult to perform. Since memory reguents
depend heavily on the task to be performed, it must be andlyzea task-by-
task basis.

A.1.5 Contributions

« Design, and setup of a new secure flow processing infrasteibased
on off-the-shelf rack components: compute nodes and Né&tor
tached Storage (NAS) devices).

¢ Administration and management of infrastructure.

« Design and implementation of tools to build and autométiagpdate
data repositories required to do time dependant IP addvessuntry
and IP address to AS lookups.

» Design and implementation of tools to automaticaly indexiletFlow
files stored on the tape library and to check whether newlyrdoaded
.Statfiles are corrupt.

« Modifications to the flow data collector (hardware and saf@®y to
meet the requirements for data compression and extendedifitayv
buffering in case of any problem with the secure flow processi-
frastructure.

A.2 NetFlow Tools

In this section, we briefly present the NetFlow tools devetbim the context
of this thesis and discuss our contributions to them.
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A.2.1 NetflowVX Library

The NetflowVX library is a library providing NetFlow v5 and v8arsing
capabilities as well as some specialized data structukesalicustom hash
table and linked list. Note that the spezialized data stinestare only there
because the NetflowVX library is basically a NetFlow v9 exted, a refac-
tored and well-documented version of a NetFlow processbrgry written
by Arno Wagner [194]. The library is tailored to parse the Meiv data as

it is stored by our capturing infrastructure: raw NetFlowtecol Data Unit
(PDU) stored indatfiles and the corresponding metadata (such as the IP of
the device that sent the PDU) istatfiles. Furthermore, it can be used to
enrich the flow data with the origin and destination AS numierdo so, the
library looks at the source and destination IP address ofvadlud resolves
the corresponding AS system number using the AS informatpository
maintained on the compute cluster (see A.1.1). The Netflodikbary was
first developed by David Benninger and Loris Siegenthaleteurthe direc-
tion of the author of this thesis. We later added the parsfripe.statfiles
and the enrichment with AS information since they were noluded in the
initial version. The library exists in two versions: a versiwritten in C and

a version written in C++. However, the C version was left giititial state
since no new tools were written in C once the C++ version becavailable.

Performance

Performance is an important criterion for a NetFlow pardibiary intended

for parsing huge amounts of flow data. A parsing library stiailleast be
able to parse data in near realtime. Hence, it should pr@selssur of data in

less than an hour. Table A.2.1 shows the results from pedooc@measure-
ments in terms of flows per second for three different confiions and with

either NetFlow v5 or v9 data in both, compressed and uncosspteform as
input. The three different configurations of the library:are

+ (no optionsy: PDU parsing fromdatfiles.

» .statt PDU parsing fromdat files and PDU meta-info parsing from
.Statfiles.

°Note that this may not produce the expected results ifdaéfiles contain PDUs from dif-
ferent NetFlow export devices. The reason for this is thatéimplate identifiers of the templates
used to parse the v9 data can only be unique per NetFlow edpaite. Without knowing from
which device a PDU originates, the library assumes that@lU$come from the same device.
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» AS+.stat PDU parsing fromdat files, PDU meta-info parsing from
.statfiles and enrichment of flow data with origin and destinatid® A
numbers.

The measurements are carried out using a simple programmtias use
of the C++ version of the NetFlowVX library to iterate ovet #idbws con-
tained in a single NetFlow data file. All measurements aréopered using a
single core of an AMD Opteron 275 on a system with 16 GBytesAifRind
4 TBytes of Redundant Array of Independent Disks, origin&kedundant
Array of Inexpensive Disks (RAID) six disk storage. Notettkach result
reflects the average performance from a series of five maasuis with five
different file sets. The relative standard deviation of treasurement series
is lower than 5% for all of the results.

performance in flows per second
(no options) .Stat | AS + .stat
NetFlow v5, bzip2 1.94E+05| 1.71E+05| 7.80E+04
NetFlow v5, uncompresse 2.03E+06 | 1.51E+06| 5.98E+05
NetFlow v9, bzip2 - | 1.78E+05| 7.91E+04
NetFlow v9, uncompressed - | 9.96E+05| 1.57E+05

Table A.3: Performance of the NetflowVX library in terms of flows per selco
for different configurations and NetFlow versions for botmpressed and
uncompressed flow data.

As the results in Table A.2.1 show, the worst performanceoghly 280
million flows per hou?, is obtained for thé\S + .statconfiguration for com-
pressed NetFlow v5 data. Hence, our library easily meetadiae real-time
processing requirement: it can handle the up to 200 milliowdl per hour
that we see in our flow data in less than an hour. In order togsobigher
flow rates in the not-too-distant future, the load can beritisted to mul-
tiple cores by, for example, distributing the incoming floata to multiple
reader processes. Or we could try to optimize the code thest thee enrich-
ment of the flow data with AS numbers; without AS numbers, ity can
process up to 615 flows per hour. What is somewhat unexpestbat the
performance for compressed NetFlow v5 data is slightly etinan those for
compressed NetFlow v9 data. After all, NetFlow v5 data is Imsicnpler
to parse than NetFlow v9 data. Only when comparing the padioces for
uncompressed input data do we get the expected result. Thigests that

378,000 flows/sec * 3600 sec = 280 million flows
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our sample of files containing NetFlow v9 data can be decosseckfaster
than those containing NetFlow v5 data. Whether or not thightnbe true in
general was not investigated further.

A.2.2 NetFlow Processing Framework

The NetFlow Processing Framework is a C++ framework fornaingaddi-
tional abstraction layer to the NetflowVX library. The frawmk provides
the basis for writing modules that perform different praieg tasks such as
NetFlow filtering according to user-defined rules which daentbe re-used
by others once they have been implemented. These moduléserabe put
together to form a chain of modules where the first modulepeeted to gen-
erate some sort of data. This data is then handed over to #tenoelule’s
by calling the next moduleprocessmethod. A module checks whether it
understands the data that is passed to it by checking thertfgrenation en-
coded in the envelope used to pass data from module to mdeae. though
the chain can hand over arbitrary data, it is typically adistlows which is
passed from module to module. Figure A.2 shows a sample &f swhain
on the module layer.

However, the type of flows in the list might depend on the dgitacess-
ing job: there is an internal flow formaEfowCompac) which is optimized
for space but contains only selected fields of the flow recardsa format
which contains all informationNetFlow interna) in Figure A.2, including
the information in the PDU header. Modules must be aware efriternal
flow format and are usually designed to operate with one fipéaimat only.
An input/output (I0) abstraction layer allows the extensid the framework
to handle new input flow formats such as IPFIX without chagginything,
except to write a new specialized Flow 10 class. Currerttlgre are two spe-
cialized Flow IO classes: one for tiidowCompactformat and one for the
NetFlow internalformat. Both can read NetFlow data from the disk using
the NetflowVX library, but can also read and write files withifkocontaining
serialized versions of the flows in the internal flow formalisTarchitecture
is displayed on the IO layer in Figure A.2.

After passing the data to the next module, the module has ioundl
theprocessnethod returns, since we do not use thréaleur modules. The
reason for not using threads is that they are not strictlgedeand we worked

4With one exception: the parallel reader module can read twwo flata streams in parallel
while it waits for the next module in the chain to return framgrocessmethod.
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Sample module chain:

Data (ist of Data (iist of
FlowCompact FlowCompact
objects) objects)

MODULE

B
rer

Reader Filter Traffic Entropy | LAYER
call procesg call process
(e.g., from NetFlow to [=roa—3>  (e.g., all except method > Spectrum
FlowCompact) TCP traffic) Extractor Data

(TES data)
|«

er]

Flow 10 ‘

write

‘ Flow 10::NetFlow (int.) H Flow 10::FlowCompact ‘

10
LAYER

read/write J

read/write ‘ read.  NetflowVX library read

\l
—
PHYSICAL
Disk Storage LAYER

Figure A.2: Outline of the design of our NetFlow processing framework.

NET ented)

\“o‘ P

to the principle that software should be kept as simple asiples Most of
our use cases are offline NetFlow data processing where wparatielize
the processing of the data of the time interval (e.g. two wgtkbe processed
by dividing it into multiple pieces (e.g. one day per procgsore) which we
then process on different cluster nodes.

While we designed and implemented most of the NetFlow Psicgs
Framework, fruitful discussions and comments from DomiBthatzmann
as well as his Interface lookup module helped to turn it into@ that was
used by both students and staff members for their work wittiFldey data.
The framework now contains the following modules:

« Reader modules One single- and one multi-threaded module for read-
ing and forwarding flow data in an arbitrary internal flow fanusing
a Flow 1O class.

« Writer module : A module to serialize flow data to disk using the in-
ternal flow data format.

« Basic metrics module A module to extract count, volume, and en-
tropy time series and traffic feature distributions on a petqxol (TCP,
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UDP, ICMP, other) and direction basis for different time bires.

* Interface lookup module: A module that is intended to filter flows
that are reported by multiple flow exporters. The module dbissby
identifying those interfaces on the flow exporters that é@teee up- or
downlink interfaces to or from the network under supervisiad filters
flows from other interfaces. Unfortunately, this is not eglosince a
flow entering the network under supervision and leavingdiatransit
traffic) would still be reported twice. Therefore, the maglwlorks only
if we look at traffic originating in or destined to the netwankder
supervision. Hence, subsequent modules should filter angitrtraffic
(and internal traffic) that might be present.

* Filter module: A module that performs flow filtering based on rules
specified in a configuration file. It allows for basic AND and @lker-
ing rules on values or value ranges of one or multiple flowfies.

¢ Timing analysis module A module to output information on NetFlow
time stamps. This module is related to [195] where we desexiprob-
lem with the NetFlow v9 data format resulting in inaccurattMow
time stamps.

¢ FlowToText module: A module that outputs the flows in human read-
able form to the standard output.

Note that this list is incomplete. The modules contributg@®bminik Schatz-
mann and several students are not listed here.

Performance

Since the NetFlow Processing Framework is a framework btianappli-
cation by itself, we do not provide performance measuremgmtit. The
performance of an application built using this frameworkyvily depends on
the number and type of modules (and filter settings) used #dsawen the
input flow format and the internal flow format.

One example of such an application is the application taekthe infor-
mation to build the TES. It is built based on a chain of thedwihg modules:
the parallel reader module, the interface lookup modulethadasic met-
rics module. Experience from many hours of data procesdiogved that
this application can process up to 200 million flows in lesmtln hour on
an AMD Opteron 275 system with 16 GBytes RAM and 4 TBytes of BAI
six disk storage to write the extracted information to. Heritis capable of
processing our flow data in near real-time.
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A.2.3 Data Analysis and Processing Tools for MATLAB

The data analysis and processing tools for MATLAB are togksduto post-
process the count, volume, and entropy time series as weahesraffic
feature distributions output by the basic metrics moduée (A.2.2). The
toolset is implemented in the MATLAB language in an objed¢oted way?
Our MATLAB tools consist of three GUI-based applicationslanlarge set
of helper classes, MATLAB functions and scripts to automddéa post-
processing tasks.

Before we discuss our three interactive Graphical Userfinte (GUI)
applications designed with the help of the GUI Design Enwinent (GUIDE),
we first provide an overview of the building blocks of our teetl. Note that
while most building blocks might be useful to other researshvorking with
time series data, the first building block is too specific touse case:

» Basic metrics data processing This building block consists of mul-
tiple post-processing tools for the data produced by thé&bmastrics
module (see A.2.2). Among them are three GUI-based toolsaioum
ally inspect and analyze this data and a set of classes deditathe
management and handling of the entropy telescope evatuatitcess
(data management, detection runs with parameter sweeps &twe
three GUI-based tools are discussed in more detail latdigrsection.

e Data access A set of classes and MATLAB functions that provide
transparent and optionally cached access to table and netuianted
time series data sources that meet the following requirésnéh) Time
series data is organized in rows. Each row contains the merasmt
data for a specific point in time. (2) All tables contain a ecolunamed
time consisting of time stamps in Unix seconds. An abstract data a
cess class implements data source independent parts ohthead
cess task and defines methods to be implemented by its Spatiaais.
The toolset comes with two implementations of the abstratzt dccess
class: one for data stored in SQLite databases and one fistated
in CSV files® In the case of CSV files, the “tables” are the different
CSV files in a directory and the data source is the directolyeia
data source identifier string and data access credentialgata access

SNote that until release R2008a, only very few MATLAB codeesaled on the web was
object oriented. Many MATLAB users did not even know thatsitpossible to write object
oriented MATLAB code. With release R2008a, MATLAB added maew features for defining
classes of objects much like with other object oriented Umggs.

6Actually, the separator can be provided as parameter. & doehave to be a comma.
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class establishes a connection to the data source and alwwsn-
name and time interval based access to this data. This isreltne
using the data source selection GUI that comes with this corapt or
by manually constructing the data access object with theired pa-
rameters. Adding other data sources (e.g. MySQL databasss)jple:
One just has to provide an appropriate implementation oatistract
data access class and register it with the data sourceisal&tl. If

an application needs to access the same data multiple tinaei$ ¢ne

time series accessed with this data access object havenietsae
stamp vector, they should use the provided proxy class.

« Data profiling: This building block provides classes to construct mean,
percentile and/or standard deviation based week profilémefseries
data. To do so, they take time series as input and build Stedileéri-
butions for all weekdays and time bins by assigning, for eplandata
points from Mondays between 11:15 and 11:20 to a distrilbdfidon-
day, 11:15 to 11:20", etc. These profiles can be used to datertine
expected (or “normal”) value ranges for each day and timefoim a
statistical point of view.

» Date/Time tools MATLAB functions to convert Unix seconds to MAT-
LAB time and vice versa.

« Anomaly detectors This building block provides an abstract anomaly
detector class for anomaly detection on time series and thrglemen-
tations of this class. The first implements an algorithm tawe the
Karhunen-Loeve Expansion (KL&Ejnethod, the second implements a
Kalman filter based method and the third a Haar wavelet bastiad.
The abstract anomaly detector class provides a deteaepéendentin-
terface so that applications using it can switch detectdtsont chang-
ing the code.

e Support Vector Machine: This building block provides an easy to
use MATLAB interface to LibSVM [185], a library implementna
support vector machine. It implements and automates tasiksas n-
fold cross-validation and the plotting of classificationtrices as for
example, Figure 6.5 in chapter 6.

« Utilities: Some MATLAB functions to help with plotting, figure ex-
port and hierarchical sorting of vectors of strutt®lotting functions

FixedIntervalTimeSeriesCache

8And therewith also the Principal Component Analysis (PCA)

9E.g. start with sorting the vector according to field X, themt £ntries with identical X
values according to field Y etc.
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include e.g. a function to plot labeled pie-charts of thediéhown in
Figure 6.8 in chapter 6 or ROC plots of the same kind as thase di
played in Figure 6.4.

Traffic Entropy Spectrum Visualization & Anomaly Detection Tool

The TES visualization and anomaly detection tool can be tsbdowse and
process the raw count and entropy time series produced Beatsie Metrics
Module of the NetFlow Processing Framework. Using the datass classes,
it reads this data from either CSV files or from a SQLite dasab&igure A.3
shows a screenshot of the graphical user interface of tois to

Traffic Entropy Spectrum Visualization & Anomaly Detection Tool

Data source: E:/Thesis/sqlite3_TESp0c95.db

TCP-Ase-Qp1c0 (Norm) Y17 Overlay daiabase

T T
Tsalis entropy

TCP-Ase-QpLco (Norm)

N @ s @ o N w

I I I I I I
o 03:57:52 o 115752 o 19,5753 o 9 11:57:54 o 19:5754

TES for TCP-Ase (Norm)

15
175
-2
Open New Database
g 115752 1g-2008 19:57:53 035753 1g-2008 11:57:54
Intilization iterval Plot Detection Fiter
©) Residusl © TES Metrics:  (((w(pB))+(Qlnpld+cidthormB)iiwent)) @] fstop: 0.2 | fpass| 0.25
Start 312008 Normalzeion 6T stop a0 apass|_1
< @ Interquartie || 1.5
) Kalman | 14 o1 FlMovavg  =od 3 Iag| 20

[} U
Opercertie L] 8 |L:] 1 min. voles i (min. a score)

©) MinMax @ KLE 1 5 3
m(PCA:m=1)  k  th(min ascore)

Stop: | 01-Aug-2008 00:55 00

Figure A.3: Screenshot of the traffic entropy spectrum visualizatiod an
anomaly detection tool.

With the selectors on the right, one can select the time s¢oide dis-
played in the upper plot window. Choosing a time series csif selecting:
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1. An export device, or any aggregates (e.g. ALL for all explewvices),
for which the Basic Metrics module outputs measurements.
. The direction of the traffic. In our setup: IN or OUT.
3. The protocol or any aggregates output by the Basic Meinigdule.
For example, the OTHER “protocol” includes all traffic ext8iCP,
UDP and ICMP traffic.

4. The count or entropy metric.

5. For entropy metrics, thgvalue and the type of the metric (TEBES,).
The lower plot window displays the locations of anomalied,dor entropy
metrics, also the TES. Which anomaly detector is used witlthvimetrics
and training data is configured using the knobs and dialseabttttom. Fi-
nally, various coloring schemes make focusing on diffeaspects of the data
easier. For example, a black-white scheme with the globaimam mark-
ing the top end and the global minimum marking the bottom dridecolor
scale exposes, at a single glance, whether or not the datait®®extreme
anomalies. Figure 5.8(a) shows a plot using this colorimgste.

N

Week Profile & Statistical Parameter Analysis Tool

From a data input and data selection point of view, the weeklprand statis-
tical parameter analysis tool is basically identical toTES visualization and
analysis tool. However, that is the only thing they have imomn. As can
be seen in Figure A.4, the upper plot window shows the sealdotee series,
for example the number of flows per time bin. Furthermorejdplys the
upper and lower thresholds calculated from data points iidang window
of sizen time bins and marks data points above or below these thréshol
If the data spans multiple weeks, the threshold is calcdlaging the data
in the same sliding window, for example Monday 12:00, fromoélthose
weeks. For threshold calculation, the tool supports dffiémethods such as
taking a multiple of the standard deviation or a multiple fud interquartile
range. It also comes with support for percentile based fiezHfig and other
filters such as a moving average filter. Note that this tookeipthe data
used to build the profiles to contain little to no anomalieghédwise, one
might get a profile as shown in Figure A.5. Here, several atiesen one of
the weeks lead to “anomalous thresholds”. If the data coataifew outliers
only, pre-filtering with a percentile-based filter might fixd issue.
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Basic Metrics Week Profile & Statiscal Parameter Analysis Tool
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Screenshot of the week profile and statistical parametelyaisa
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Basic Metrics Week Profile & Statiscal Parameter Analysis Tool
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Traffic Feature Distribution Analysis and Visualization Tool

The last of the tree tools is the traffic feature distributzoralysis and visu-
alization tool. The purpose of this tool is to make the rawviritigtion infor-
mation output by the Basic Metrics module browsable. Figdu&shows a
screenshot of the graphical user interface of this tool.

Traffic Feature Distribution Analysis and Visualization Tool
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Figure A.6: Screenshot of the traffic feature distribution analysis sisdal-
ization tool. Histogram plot of the destination port distition for incoming
TCP traffic from all flow capturing devices. Activity (#flovisshown on the
y-axis and port numbers on the x-axis.

To display a distribution, the following three things mustdelected: an
export device, a protocol and the traffic feaffréor which the distribution
should be plotted. The tool offers various ways to plot argpéct the full

10Note that the Basic Metrics module outputs distributionstfoee different activity mea-
sures: the number of flows (FC), bytes (BC) or packets (PCit@erand time bin.
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traffic feature distribution data. For example, log-loge($&gure A.7) or
linear-log activity plots or histograms (see Figure A.6)urtRermore, the
tool reports the 20 most active items along with how much t@ytribute
to the overall activity in the form of a list. Finally, we camsually compare
distributions by overlaying them or by creating a movie agrig how they
evolve over time.

Traffic Feature Distribution Analysis and Visualization Tool
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TCP traffic from all flow capturing devices. Activity (#flows)shown on
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Acronyms

AS Autonomous System

BGP Border Gateway Protocol

Csv Comma Separated Values

FDC Flow Data Collector

FLAME Flow-Level Anomaly Modeling Engine
FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

GUI Graphical User Interface

GUIDE  GUI Design Environment

IPFIX IP Flow Information Export
ISP Internet Service Provider

KDD99 Knowledge Discovery and Data Mining
competition 1999

KLE Karhunen-Loeve Expansion
NAS Network Attached Storage
PCA Principal Component Analysis

PDU Protocol Data Unit
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Acronyms

PR

RAID

ROC

SVM

TES
TN
ToS
TP
TPR

Precision-Recall

Redundant Array of Independent Disks,
originally Redundant Array of Inexpen-
sive Disks

Receiver Operating Characteristic

Support Vector Machine

Traffic Entropy Spectrum
True Negative

Type of Service

True Positive

True Positive Rate
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