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These technicians helped not only with bonding of chips and PCB design and fabrica-
tion but also with lots of very valuable advice.

Furthermore, I would like to express my thanks to all the highly motivated students that I
had the pleasure to supervise during their semester or master project at the Institute of
Neuroinformatics - Andreas Bur, Judith Felder, Stephan Weiss, Roger Jäggi and David
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Abstract

Visual perception - the ability to interpret the environment by sensing light - is an im-
pressive ability of biological organisms. Vision allows animals and human beings to
explore and to interact with their environment. It is a daily task biological organisms
seem to perform with very little effort. Even smallest insects with a body size in the
range of millimeters depend on vision as a main source of feedback for their behavior
control which includes impressive flight and landing skills. Despite the efforts of many
researchers in mimicking these skills in artificial systems, biological vision systems are
still more powerful, versatile and efficient than any artificial systems developed so far.
Nature has evolved integrated and compact solutions where the vision system is well-
adjusted to the properties of the sensory-motor control system and the physical body
of the biological organism - properties that artificial systems still lack.

Optical flow is a major visual sensor cue used by animals in navigating their environ-
ment. Optical flow is due to the relative motion of the vision system and the objects in
its environment. It encodes information about the shape and position of objects as well
as the self-motion of the animal. This information is used extensively in particular by
insects such as flies and bees in flight control.

Because of the impressive properties of biological systems, various groups have de-
signed and implemented sensors in analog Very Large Scale Integrated (aVLSI) tech-
nology that mimic biological optical flow processing on various levels of abstraction. In
parallel with recent efforts to construct miniature aerial platforms, optic flow information
from camera sensors together with gyroscope outputs are used on such platforms to
demonstrate properties such as autonomous flight.

At the EPFL Laboratory of Intelligent Systems, Jean-Christophe Zufferey and others
developed a 10-gram indoor airplane and demonstrated autonomous wall avoidance.
The airplane uses an off-the-shelf one-dimensional image sensor from which optical
flow caused by the relative motion of objects on the left and right side of the airplane is
extracted. Optical flow is computed on a microcontroller that is also running the control
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x Abstract

loops steering the airplane’s behavior.

Analog VLSI optical flow sensors can allow such an airplane to leave the controlled
conditions of a lab environment and to free the microcontroller from the optical flow
computation. These sensors implement circuits both for phototransduction - the con-
version of light into electrical signals - and optical flow processing. At the Institute of
Neuroinformatics several researchers developed monolithic optical flow sensors. Jörg
Kramer for example presented a suite of time-of-travel sensors that extract contrast
edges from the visual stimuli presented to the sensor and successfully extract optical
flow by measuring their time-of-travel - the time these contrast edges require to travel
the distance between adjacent sensor pixels.

This thesis contributes to the evaluation and design of optical flow sensors suitable for
miniature flying platforms, and to investigations into optical flow algorithms and flight
control strategies suitable for control of autonomous robots.

This thesis addresses a major drawback of existing time-of-travel sensors: the sensors
presented so far showed optical flow outputs that depended both on stimulus veloc-
ity and stimulus contrast making the interpretation of these outputs for steering au-
tonomous robots challenging. This contrast dependence is caused because the prop-
erties of the event signals that are generated when contrast edges are detected depend
on stimulus contrast. As a first achievement this thesis presents a novel edge detection
circuit that does not suffer from this problem. The circuit uses two thresholds to trade
the minimum stimulus contrast that is required to emit an edge detection event and the
maximum amplitude of signal noise that is rejected. The novel edge detection circuit
is demonstrated as part of a one-dimensional time-of-travel optical flow sensor imple-
mented in aVLSI technology. The algorithm implemented on this sensor design was
chosen after careful consideration of the existing optical flow sensors and the intended
flying platform. The sensor adapts over 4 orders of background light intensities and due
to the novel edge detection circuit extracts optical flow information for stimulus contrasts
down to 2.5%. Measurements from the sensor are presented when being operated on
a rotating platform. Furthermore, the sensor is demonstrated in a closed-loop control
application for steering a simulated car.

The second achievement is the creation of a miniaturized optical flow sensor mod-
ule. The combination of analog VLSI vision sensors with classical machine vision tech-
niques is challenging but can be beneficial for autonomously flying micro aerial vehicles
(MAV) and autonomous robots in general. This thesis presents a continuous-time cus-
tom aVLSI vision sensor that implements circuits for phototransduction, filtering and
amplification of photoreceptor signals. The sensor is adapting over four orders of back-
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ground light intensities. In combination with a plastic lens a 0.3-gram vision sensor
module for miniature aerial platforms is created which is sufficiently lightweight so that
3 vision sensor modules can be carried by small MAVs like the 10-gram airplane by
Zuffery et. al. Optical flow is computed on a separate microcontroller using the Image
Interpolation Algorithm by M. V. Srinivasan that integrates the optical flow across sensor
pixel. Experiments are presented where similarly as suggested by Zufferey et al. the
optical flow extracted from the output signals of this vision sensor is compared to the
readings from a gyroscope. Comparisons between the outputs of both sensors show
encouraging results suggesting that the adaptive vision sensor is well suited for visual
guidance of autonomous robots.

As a third achievement this thesis presents an analysis of the current state-of-the-art
control strategy where the distance-dependent translational optical flow component is
extracted by measuring the total flow with an optical flow sensor and subtracting the
rotational component estimated by a gyroscope. The analysis concludes that although
the currently used airplanes and control strategy are successful, distance estimation
with optic flow sensors is more efficient when the autonomous robots mimic the flight
behavior demonstrated by flies. These insects show flight behavior that alternates be-
tween periods of straight flight - best suited for extraction of the distance to obstacles
with optical flow - and fast turns - commonly referred to as flight saccades. The repro-
duction of this flight behavior by artificial systems is challenging. MAVs that are capable
of performing saccades need to be used. Such MAVs are typically passively unstable
and thus would need to be actively stabilized but the quality of the distance estimates
extracted from optic flow sensors as well as the maneuverability of the autonomous
systems would largely benefit.

With the presentation of novel optical flow sensor solutions, the analysis of existing
sensors, MAVs and control strategies this thesis provides important steps towards more
powerful optical flow guided autonomous robots.





Zusammenfassung

Biologische Organismen haben die beeindruckende Fähigkeit ihre Umgebung allein auf
Basis von visuellen Reizen wahrnehmen zu können. Sehen erlaubt Tieren und Men-
schen ihre Umgebung zu erforschen und mit ihr zu interagieren. Es ist eine Tätigkeit,
die biologischen Organismen scheinbar ohne nennenswerten Aufwands jeden Tag ver-
richten. Sogar kleine Insekten mit einer Körpergrösse von wenigen Millimetern verwen-
den visuelle Reize zur eigenen Verhaltenssteuerung. Dieses Verhalten schliesst die
beeindrucken Flug- und Ladefähigkeiten der Insekten ein. Trotz des grossen Aufwan-
des, den eine Vielzahl von Wissenschaftlern betreiben, um diese Fähigkeiten mit-
tels künstlicher Systeme zu kopieren, sind biologische visuelle Wahrnehmungssys-
teme immer noch viel leistungsstärker, vielseitiger und effizienter als jedes bisher en-
twickelte künstliche System. Mittels Evolution hat die Natur integrierte und kompakte
Lösungen geschaffen, in denen die visuelle Wahrnehmungssysteme an die Sensor-
Motor-Kontrollsysteme und die physikalischen Körpereigenschaften perfekt angepasst
sind. Diese Anpassung fehlt bei künstlichen Systemen noch immer.

Eine wichtige visuelle Informationquelle, die Tiere verwenden, um sich in einer Umge-
bung zu orientieren ist Optischer Fluss. Dieser entsteht durch die relative Bewegung
des Wahrnehmungssystems zu den Objekten in der Umgebung. Optischer Fluss enthält
Informationen sowohl über die Form und Position der Objekte als auch über die Eigen-
bewegung des Tieres. Diese Informationen werden insbesondere von Insekten wie
Fliegen und Bienen exzessiv für die Flugsteuerung verwertet.

Die beeindruckenden Fähigkeiten von biologischen Systemen haben eine Vielzahl von
Forschungsgruppen dazu veranlasst, Sensoren in Form von hochintegrierten Syste-
men zu kreieren und implementieren, welche die Form der Verarbeitung des Optis-
chen Flusses von biologischen Systemen auf unterschiedlichen Abstraktionsebenen
kopieren. Parallel zu den kürzlich erfolgten Investitionen in die Konstruktion von Miniatur-
flugkörpern, wurde von Kameras generierter Optischer Fluss mit Messungen von einem
Gyroskop kombiniert um autonomen Flug zu demonstrieren.
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xiv Zusammenfassung

Am Labor für Intelligente System des EPFL haben J. C. Zufferey und andere ein 10-
Gramm Innenraumflugzeug entwickelt, dass beim Fliegen selbstständig Zusammen-
stösse mit den Wänden des Raumes vermeidet. Das Flugzeug verwendet dazu eine
eindimensionale Standardkamera aus deren Bildern der von Objekten zur rechten und
linken Seite des Flugzeuges verursachter Optischer Fluss berechnet wird. Die Berech-
nung übernimmt dabei derselbe Mikroprozessor, der auch den Kontrollalgorithmus des
Flugzeuges beherbergt.

Analoge hochintegrierte Sensoren zur Messung des Optischen Flusses könnten es
einem solchen Flugzeug erlauben die kontrollierte Umgebung eines Labors zu ver-
lassen und dazu beitragen den Mikroprozessor von der aufwendigen Aufgabe der Berech-
nung des Optischen Fluss zu befreien. Diese Sensoren integrieren Schaltkreise, die
Licht in elektrische Signale umwandeln und aus diesen den Optischen Fluss berech-
nen. Am Institut für Neuroinformatik haben mehrere Wissenschaftler monolithische
Sensoren zur Messung des Optischen Flusses entwickelt. J. Kramer zum Beispiel hat
eine Vielzahl von sogenannter ”time-of-travel” Sensoren präsentiert, die erfolgreich den
Optischen Fluss bestimmen, indem sie die Zeit messen, die eine Kontraständerung
benötigt um zwei benachbarte Sensorpixel zu passieren.

Diese Doktorarbeit leistet Beträge zur Analyse und zum Design von Sensoren zur Mes-
sung des Optischen Flusses bei Miniaturflugkörpern und zur Untersuchung von Al-
gorithmen zur Messung des Optischen Flusses und zur Steuerung von autonomen
Robotern.

Diese Doktorarbeit befasst sich mit einem wichtigen Nachteil derzeit existierender ”time-
of-travel” Sensoren: Die bisher vorgestellten Sensoren verfügen über einen Messaus-
gang, dessen Wert sowohl von der Geschwindigkeit der visuellen Stimuli als auch
von deren Kontrast abhängt. Diese Abhängigkeit macht die Interpretation der Mess-
werte und die Verwendung der Sensoren zum Ansteuern von autonomen Robotern
schwierig. Die Kontrastabhängigkeit beruht darauf, dass die Eigenschaften der elek-
trischen Signale, die bei Erkennung einer Kontraständerung erzeugt werden, von der
Amplitude der Kontraständerung anhängen. Eine erste Errungenschaft dieser Dok-
torarbeit ist eine neue Schaltung zur Erkennung von Kontraständerungen, die nicht
unter diesem Problem leidet. Die Schaltung verwendet zwei Schwellwerte mit denen
sich die minimale Kontraständerung, die benötigt wird, um ein Änderung am Schal-
tungsausgang zu erzeugen, sowie die maximale Rauschamplitude, die ausgesondert
wird, einstellen lassen. Die Schaltung zur Detektion von Kontraständerungen wird als
Teil eines eindimensionalen hochintegrierten ”time-of-travel” Sensors zur Messung des
Optischen Flusses demonstriert. Der für diesen Sensor verwendete Algorithmus wurde
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nach sorgfältigem Studium bereits existierender Sensoren zur Optischen Fluss Mes-
sung und der fliegenden Plattform, für die der Sensor geplant wurde, ausgewählt. Der
Sensor passt sich an die sich verändernde Hintergrundbeleuchtung über vier Dekaden
an. Dank des neuen Schaltkreises zur Detektion von Kontraständerungen misst der
Sensor Optischen Fluss für Kontraständerungen bis runter zu 2.5%. Sensordaten wer-
den präsentiert, die gemessen wurden, während der Sensor auf einer rotierenden Plat-
tform getestet wurde. Ausserdem wird der Sensor als Teil einer Regelungsschleife zur
Steuerung eines computersimulierten Autos demonstriert.

Die zweite Errungenschaft ist die Erzeugung eines miniaturisierten Sensormodules zur
Messung des Optischen Flusses. Die Kombination von analogen hochintegrierten vi-
suellen Sensoren mit klassischen rechnergestützten Verfahren zur Bildverarbeitung ist
kompliziert aber auch lohnenswert für autonome miniaturisierte Flugmaschinen und au-
tonome Roboter im Allgemeinen. Diese Doktorarbeit präsentiert einen massgefertigten
analogen hochintegrierten Sensor zur visuellen Wahrnehmung, der Schaltkreise für die
Umwandlung von Licht in elektrische Signale sowie deren Filterung und Verstärkung
implementiert. Der Sensor passt sich an die sich verändernde Hintergrundbeleuchtung
über vier Dekaden an. In Kombination mit einer Plastiklinse entsteht ein 0.3 Gramm
Sensor zur visuellen Wahrnehmung für miniaturisierte Flugkörpern. Das geringe Gewicht
des Sensormodules erlaubt eine einfache Integration von mindestens 3 Sensormod-
ulen auf miniaturisierte Flugmaschinen wie dem 10 Gramm Flugzeug von Zufferey und
anderen. Der Optische Fluss wird auf einem separaten Mikroprozessor unter Verwen-
dung des Bildinterpolationsalgorithmus von M. V. Srinivasan berechnet. Dieser Algo-
rithmus integriert den Optischen Fluss über mehrere Sensorpixel. Es werden Experi-
mente präsentiert, in denen - ähnlich wie von J. C. Zufferey und anderen vorgeschlagen
- der vom Sensor extrahierte Optische Fluss mit den von einem Gyroskop gewonnenen
Daten verglichen wird. Der Vergleich liefert ermutigende Resultate, die darauf hin-
deuten, dass der Sensor für die visuelle Steuerung von autonomen Robotern gut geeignet
ist.

Als dritte Errungenschaft präsentiert diese Doktorarbeit eine Analyse der derzeit ak-
tuellen Steuerungsstrategie, bei der die distanzabhängige durch Translation erzeugte
Komponente des Optischen Flusses ermittelt wird, indem mittels eines Optischen Fluss
Sensors der totale Fluss gemessen und anschliessend die durch ein Gyroskop ermit-
telte Komponente des Optischen Flusses, die durch Rotation entsteht, subtrahiert wird.
Die Analyse kommt zu dem Schluss, dass obwohl die derzeit verwendeten Flugzeuge
und Steuerungsstrategie erfolgreich sind, die Distanzbestimmung mit Sensoren zur
Messung des Optischen Flusses effizienter wäre, wenn die autonomen Roboter das
Flugverhalten von Fliegen kopieren würden. Diese Insekten zeigen ein Flugverhalten,
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bei dem sich Zeiten, in denen die Fliege geradeaus bewegt - was optimal zur Dis-
tanzbestimmung mit Optischem Fluss ist -, mit Zeiten abwechseln, in denen die Fliege
schnelle Drehungen - sogenannte Saccaden - ausführt. Die Reproduktion dieses Flug-
verhaltens durch künstliche Systeme ist eine Herausforderung. Es müssten Miniatur-
flugkörper verwendet werden, die zur Ausführung von Saccaden fähig sind. Diese
Flugkörper sind normalerweise passiv instabil und müssen aktiv stabilisiert werden.
Dafür wären die Distanzbestimmungen mit Sensoren zur Messung des Optischen Flusses
von besserer Qualtität und die autonomen Systeme wären wendiger.

Mit der Demonstration von neuartigen Sensorlösungen zur Messung des Optischen
Flusses, der Analyse existierender Sensoren, Miniaturflugkörper und Steuerungsstrate-
gien präsentiert diese Doktorarbeit wichtige Schritte in Richtung leistungsstärkerer au-
tonomer Roboter, die mit Hilfe von Messungen des Optischen Fluss gesteuert werden.
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Chapter 1

Introduction

1.1 The problem at hand

In 1925 Helmholtz described the exciting experience of an observer moving in the
woods:

”Suppose, for instance, that a person is standing in a thick woods, where it is impossible

for him to distinguish, except vaguely and roughly, in the mass of foliage and branches all

around him what belongs to one tree and what to another, or how far apart the separate

trees are, etc.

But the moment he begins to move forward, everything disentangles itself, and immediately

he gets and apperception of the material contents of the woods and their relations to each

other on space, just as of he were looking at a good stereoscopic view of it.

... objects that are at rest by wayside ... appear to glide past us in our field of view in the

opposite direction to that in which we are advancing. More distant objects do the same

way, only more slowly, while very remote bodies like the stars maintain their permanent

positions in the field of view ... Evidently, under these circumstances, the apparent angular

velocities of objects in the field of view will be inversely proportional to their real distances

away; and consequently safe conclusions can be drawn as to the real distance of the body

...” (Helmholtz, 1925)

This description by Helmholtz showing how image motion allows determining the dis-
tance of objects and resolving their shapes in a complex scene was quoted by Gibson
(1950) when he studied and described the richness of information encoded in image
motion or optical flow. While both the observer and the objects in the observer’s envi-
ronment are not moving it is fairly difficult for the observer to obtain a good perception

1
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of the objects surrounding him despite the observer’s ability for stereoscopic vision. But
once the observer moves relative to the objects, the observer’s vision system perceives
image motion or optical flow and the observer experiences a plastic 3-dimensional view
of the scene.

This thesis aims at the development of optical flow sensor solutions that allow au-
tonomous robots exploiting optical flow to gain information about self-motion and the
objects in their environment. The developed optic flow sensors aim especially at improv-
ing the visual guidance of micro aerial vehicles (MAVs). Such MAVs like the 10-gram
airplane by our colleagues from the EPFL Laboratory of Intelligent Systems (Zufferey
et al., 2006, 2007) have been recently developed to demonstrate autonomous flight
control.

1.2 Related work

The phenomena of optical flow, its role in visual guidance of insects as well as its
application in guiding micro aerial vehicles have been widely studied in the literature.
However, the robustness and performance of biological vision systems have never been
met by their engineered counterparts. This section gives a short overview of previously
presented studies on insects, and on optical flow controlled MAVs and aVLSI optic flow
sensors. More detailed descriptions can be found in chapters 3, 4 and 6. A detailed
introduction to the concept of optical flow can be found in chapter 2.

1.2.1 Optical flow in insects

For a long time it is known that optical flow plays a major role in the visual guidance and
flight control of insects like honeybees and flies. For example, honeybees can measure
distances by means of the optical flow perceived during flight and communicate these
distances to other bees as part of their waggle dance (Esch and Burns, 1996; Srini-
vasan et al., 2000a; Esch et al., 2001). Furthermore, honeybees have been shown to
continuously reduce flight velocity during landing by keeping the perceived optical flow
constant (Srinivasan et al., 2000b). When the ground gets closer to the insect, it ap-
pears to move faster. So by regulating optical flow, bees have an efficient mechanism
to control flight speed during landing. It is further known that bees navigate through
small tunnels by balancing the optical flow perceived by the left and right eye. By this
mechanism bees fly in the middle of the tunnel keeping the distance to the walls equal
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(Srinivasan and Zhang, 2004). Krapp and Hengstenberg (1996) have studied the visual
interneurons of flies providing evidence that these cells are most sensitive to optical flow
pattern generated during self-motion of the flies. Tammero and Dickinson (2002b) ana-
lyzed fruit flies flying in a cylindric area showing that flies performed wall avoidance by
turning away from the side of the eye receiving greater optical flow when the absolute
optic flow value was above a certain threshold. Furthermore, David (1982) and Fry et al.
(2009) showed that the flight speed of fruit flies (Drosophila melanogaster) is directly
controlled by the perceived optical flow and is independent of wind speed. In summary,
tiny insects like flies and bees have developed efficient and impressive flight strategies
based on optical flow. These strategies allow them to fly autonomously despite their
rather limited computational resources and rather primitive nervous systems.

1.2.2 Optical flow based control of MAVs

The success of optical flow based flight control in insects has inspired control engi-
neers to model the insects’ sensory-motor control (Rohrseitz and Fry, 2011) and to
mimic flight strategies of insects with MAVs. For example, Green et al. (2003, 2004)
have demonstrated automatic landing and obstacle avoidance with a 30-gram indoor
flying robot based on insect-inspired control. Ruffier and Franceschini (2004, 2005,
2008) and Netter and Francheschini (2002) conducted studies on insect-inspired alti-
tude control, take-off, and landing with tethered helicopters while Chahl et al. (2004)
applied their discoveries about landing behavior in honeybees from (Srinivasan et al.,
2000b) to outdoor unmanned aerial vehicles.

Our colleagues from the Laboratory of Intelligent Systems at EPFL have demonstrated
autonomous flight control based on optic flow indoors and outdoors. For indoor flight,
they used optical flow detected with the help of two linear standard cameras for wall
avoidance on a 30-gram aircraft prototype (Zufferey and Floreano, 2005, 2006) as well
as on a 10-gram airplane (Zufferey et al., 2006, 2007). They presented a novel optic
flow based control algorithm called OptiPilot that they demonstrated on a 400-gram
unmanned aircraft outdoors (Beyeler et al., 2009; Zufferey et al., 2010).

1.2.3 Optical flow and vision sensors for micro aerial vehicles

Although autonomous optical flow based flight control has been demonstrated, the per-
formance of the presented solutions is still far behind those of insects which are also
small, light-weight, consume little power and provide robust flight control under diffi-
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cult light and wind conditions as well as in various terrains. There are many reasons
behind this performance gap which include available materials, fabrication techniques,
and control strategies of MAVs. Another important reason is the lack of optical flow
sensors optimized for MAV flight control.

Designing sensors for optical flow estimation is already a challenge on its own. Vision
sensors that are used on small MAVs furthermore have to be compact and light weight.
Since computational power is limited, these sensors should ideally already compute
optical flow or provide outputs that are well suited for estimating optical flow. Ideally
sensors provide signals that can directly be fed into a controller. When being operated
on MAVs optical flow vision sensors can face scenes where there is only limited texture,
with low contrast, and where the background light varies over several decades.

Various sensors implemented in Very Large Scale Integrated (VLSI) technology which
compute optical flow are described in (Moeckel and Liu, 2009) and chapter 6. The
developed sensors can be roughly divided into three main categories:

1. Optical flow sensors like those presented by Mehta and Etienne-Cummings (2003,
2004, 2006) and Gruev and Etienne-Cummings (2004) combine active pixel sen-
sors (APS) known from standard cameras with additional circuits that support the
optical flow computation off-chip or that directly provide optical flow outputs. The
use of APS allows the inclusion of standard camera on-chip compensation tech-
niques like correlated double sampling providing reduced pixel fabrication mis-
match (see section 5.2 for more details). Furthermore, these sensors typically
have the advantage that they can be used as standard imagers. In fact, optical
flow active pixel sensors inherit many of the properties of standard cameras: They
provide a high spatial resolution but they typically do not feature the high dynamic
range and the adaptation to background light at pixel level like many bio-inspired
sensors of the third category.

2. The second group consists of optical mouse sensors designed to be operated
in optical mouse devices for instance for controlling personal computers. These
sensors can have various architectures including those of active pixel sensors. All
optical mouse sensors have in common that they are typically optimized for mea-
suring global optical flow under low-texture conditions making them interesting for
optical flow based MAV control. The fact that standard optical mouse sensors
can nowadays be purchased off-the-shelf and that they provide direct optical flow
outputs makes them attractive for control of medium sized MAVs. Our colleagues
from the Laboratory of EPFL Intelligent Systems and others have been using op-
tical mouse sensors (Barber et al., 2005; Griffiths et al., 2007; Rodriguez et al.,



1.3. Motivation for VLSI optical flow sensors 5

2007; Beyeler et al., 2009; Zufferey et al., 2010). However, when using optical
mouse sensors one has to keep in mind that these devices are typically designed
to be operated together with a LED that allows for constant and well-defined back-
ground illumination. This is why these sensors are typically lacking the ability
to operate under challenging light conditions with high dynamic range as experi-
enced in flight control indoors and outdoors in natural environments. Furthermore,
when being purchased off-the-shelf there is only little customization possible al-
lowing no access to local optical flow values since optical mouse sensors typically
should provide only a single 2-D flow vector.

3. The third category comprises bio-inspired aVLSI sensors - optical flow and vi-
sion sensors that take inspiration from the visual system of insects and other
animals with different levels of abstraction. The sensors presented by Harrison
and Koch (1998, 1999), Miller and Borrows (1999), Higgins et al. (2005), and Liu
(2000) that are made to model the visual system of animals like insects belong
to this category. While these sensors are optimized to mimic particular biologi-
cal aspects, they are usually not optimized for simple integration into MAVs. The
sensors presented in this thesis highly take inspiration from previously described
bio-inspired aVLSI sensor designs but are further optimized to allow a more sim-
ple integration into MAVs.

1.3 Motivation for VLSI optical flow sensors

I believe that robotic platforms like micro aerial vehicles can benefit from custom optical
flow sensor implementations in Very Large Scale Integrated (VLSI) technology. This
technology allows for the integration of circuits for both phototransduction - the conver-
sion of light into electrical signals - as well as for the computation of optical flow on the
same chip with dimensions in the range of millimeters. A single VLSI sensor can contain
arrays of several hundred or thousands of pixels each processing optical flow in parallel
and in continuous time. So by using VLSI optical flow sensors on MAVs, limitations of
the on-board computational power in autonomous robots can be reduced. In addition,
it is not necessary to transmit images from a camera on the MAV to an off-board com-
puter to perform the optical flow computation and generation of the necessary control
signals as demonstrated by Zingg et al. (2010) (section 4.3).

For instance the work by Beyeler et al. (2009) (presented in section 4.2) demonstrates
how much MAVs can benefit from VLSI optical flow sensors. Beyeler et al. showed
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that an airplane equipped with an array of seven optical mouse sensors, a differential
pressure sensor for speed control and three rate gyroscopes for extracting the trans-
lational optical flow components can perform autonomous obstacle avoidance and al-
titude control. The ADNS-5050 off-the-shelf optical mouse sensors from Avago used
in this demonstration are VLSI implementations that output two global optical flow out-
puts for the translation in x- and y-direction, respectively. The ADNS-5050 contains an
image acquisition system and a digital signal processor for optical flow computation.

To the best of my knowledge, there has been no demonstration of fully autonomous
flight control with the same autonomy as that shown by Beyeler et al. (2009) using
bio-inspired optical flow sensors. The goal of this study is also to explain why bio-
inspired optical flow sensors have not been so successful so far and how this can
be changed. Autonomous MAVs could benefit from bio-inspired optical flow sensor
implementations because of their properties such as local adaptation to background
light, high bandwidth and low response time due to continuous-time operation of circuits
performing computation in parallel, and low power consumption.

So far Harrison and Koch (1999) and Reichel et al. (2005) demonstrated bio-inspired
optical flow sensors on wheeled robots. Green et al. (2004) mounted a bio-inspired
optical flow detector on a 30-gram indoor airplane. Whenever the optical flow sensor
detected an optical flow value exceeding a preset threshold they made the airplane
turn away by fully deflecting the airplane’s rudder. Furthermore, Green et al. (2003,
2004) demonstrated semi-autonomous landing on a basketball gym floor by keeping
the perceived optical flow constant while reducing the airplanes forward velocity.

The sensor developed as part of this thesis also take inspiration from biology - mim-
icking certain biological principles but whenever there is the choice between modeling
biology more precisely or designing more robust sensors optimized for controlling MAVs
the design decision towards a more robust sensor solution is typically preferred. This
is why the dynamic optic flow sensor (DOFS) presented in chapter 7 as well as the
adaptive vision sensor (aVIS) presented in chapter 9 loosely belong to the category of
bio-inspired aVLSI sensors but include additional circuits to allow a more easy integra-
tion into autonomous robots.

1.4 Original contributions

This thesis contributes to the field of VLSI circuits, optical flow vision sensors and their
application in the control of autonomous robots. It advances the knowledge in the
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following ways:

1. Chapter 6 presents the specification of criteria for optical flow sensors for steering
flying platforms along with a comprehensive evaluation of the properties of existing
optical flow sensors.

2. This thesis presents a novel edge detection circuit for the front-end of token based
vision sensors (chapter 7). From the evaluation of existing flight controllers (chap-
ter 4) and VLSI optical flow sensors (chapter 6) it can be concluded that opti-
cal flow output signals independent from stimulus contrast are preferred for au-
tonomous flight control. However, as presented in chapter 6 many VLSI optical
flow sensors show optical flow outputs that are dependent both on the velocity and
contrast of visual stimuli. The presented edge detection circuit aims at overcoming
this contrast dependence by generating reliable edge detection events.

3. This thesis presents a time-of-travel optical flow sensor for steering MAVs. The
sensor contains the novel edge detection circuits for ensuring proper flow estima-
tion even for low contrast stimuli down to 2.5% (chapter 7). The sensor’s sensitivity
to contast is thus improved by a factor greater than 7 in comparison to previously
published sensors with simular architectures like the ones presented by Kramer
et al. (1995, 1997).

4. We developed an optical flow sensor module suited for ultra-lightweight flying
robots. With a weight of only 0.3-gram it is one of the most lightweight of its
kind. The module combines an adaptive aVLSI vision sensor with the Image In-
terpolation Algorithm (I2A) by Srinivasan (1993, 1994). The I2A extracts extracts
and spatially integrates the optical flow from the adaptive vision sensor. (chapter
9)

5. This thesis provides an analysis on the state-of-the-art optical flow control strategy
where on constant-speed controlled MAVs the distance-dependent translational
optical flow component is extracted by measuring the total flow with an optical
flow sensor and subtracting the rotational component estimated by a gyroscope.
Chapter 10 provides evidence that - although successful - the state-of-the-art con-
trol strategy does not optimally use the optical flow sensors. In contrast to MAVs,
insects like honeybees and flies seem to have developed behavioral controllers
that use optical flow sensors more efficiently by keeping the perceived optical flow
constant instead of flight speed and by actively using flight behavior where periods
of straight flight during which (almost) only translational optical flow is perceived
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alternate with fast turns during which optical flow does not need to be measured
(Schilstra and Hateren, 1999; Tammero and Dickinson, 2002a).

1.5 Thesis organization

This thesis is organized as follows.

Chapter 2 gives a detailed introduction to optical flow. It presents the definition of optical
flow, derives its formal description, and studies the question of which information can
be extracted by a perfect spherical optical flow sensor.

Chapter 3 analyzes how optical flow is used in nature for guiding the behavior of flying
insects like flies and honeybees. It presents several strategies that flies and honeybees
developed to extract information about self-motion and the environment using optical
flow and to deal with possible imperfections in the extracted optical flow field.

Chapter 4 shows existing optical flow controlled flying platforms, their flight properties,
controllers and which challenges these platforms present to optical flow sensors.

Chapter 5 introduces to the analog Very Large Scale Integrated (aVLSI) technology.
It covers both the basic elements of aVLSI technology as well as challenges for the
sensor design like device mismatch and circuit noise.

Chapter 6 specifies criteria for optical flow sensors for visual guidance of autonomous
robots and gives a detailed analysis of existing optical flow sensors. This chapter mo-
tivates several design choices for the optical flow sensors presented in this thesis and
reveals the challenges for the sensor design that arise from its application on micro
aerial vehicles.

Chapter 7 presents the novel edge detection circuit as part of the dynamic optical flow
sensor (DOFS). DOFS combines circuits that implement the facilitate-and-sample al-
gorithm together with an adaptive logarithmic wide-dynamic-range photoreceptor front-
end.

Chapter 8 demonstrates the capabilities and potentials of the dynamic optical flow sen-
sor (DOFS) in a closed-loop application. DOFS is used for steering a simulated car in
a simplified car driving simulation.

Chapter 9 presents the adaptive vision sensor (aVIS) implemented in VLSI technology.
In combination with the Image Interpolation Algorithm (I2A) by Srinivasan (1993, 1994)
a optical flow sensor module for steering micro aerial vehicles is formed.
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Chapter 10 suggests that optical flow sensors can be used more efficiently if micro
aerial vehicles (MAVs) and their controllers mimic the flight behavior found in insects
more closely. It suggests that the performance gap between insects and their artificial
counterparts should be closed from several directions - not only by designing special-
ized sensors but also by using MAVs that use the optical flow sensors as efficient as
possible.

Chapter 11 concludes and describes future work.





Chapter 2

Which information can be extracted
with optical flow?

Abstract

This chapter gives a detailed introduction to optical flow. It presents the definition of
optical flow, derives its formal description, and studies the question of which informa-
tion can be extracted by a perfect spherical optical flow sensor. Understanding the
theoretical properties of a perfect optical flow sensor is important to know what are the
limitations of any physical optical flow sensor and control strategies based on this type
of sensor.

2.1 Definition of optical flow and optical flow sensors

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer (an eye
or a camera) and the scene (Burton and Radford, 1978; Warren and Strelow, 1985;
Wikipedia, 2011). In 1950 James J. Gibson studied and described the effects and
properties of image motion caused by the relative motion of the observer and the scene
and concluded that the image motion is a rich source of information about the observer’s
self-motion and the objects in the scene (Gibson, 1950). The fact that image motion
caused by self-motion of an observer indicates the objects’ distances from the observer
has been known for a long time:

”... objects that are at rest by wayside ... appear to glide past us in our field of view in the

11
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(b) Optical flow field generated during roll motion.

Figure 2.1: During roll motion (here rotation around the x-axis on left image) the flying
spherical camera (black sphere on left image) sees the optical flow velocity field shown
on the (right). p (left) is an arbitrary point in the environment being projected onto the
camera.

opposite direction to that in which we are advancing. More distant objects do the same

way, only more slowly, while very remote bodies like the stars maintain their permanent

positions in the field of view ... Evidently, under these circumstances, the apparent angular

velocities of objects in the field of view will be inversely proportional to their real distances

away; and consequently safe conclusions can be drawn as to the real distance of the body

...” (Helmholtz, 1925).

Imagine a spherical camera like the one shown in figure 2.1a flying in an environment
filled with objects. Each point on the camera image is the result of the projection of these
objects in the 3-dimensional environment onto the 2-dimensional surface of the camera
through an optical system. When the camera is moving relative to the objects, the image
points on the camera image move as well. This image motion can be described by a
velocity or optical flow vector field where each velocity vector points in the direction
of motion of the corresponding image point with a vector length proportional to the
magnitude of the motion velocity. Figure 2.1b depicts an example optical flow field here
generated by roll motion of the spherical camera in figure 2.1a.

With optical flow sensors one seeks to extract the optical flow field from image motion.
However, due to imperfection of the physical sensor - that in contrast to a perfect vision
sensor requires a minimum amount of visual contrast, has limited spatial resolution,
suffers from the aperture problem and noise in its photo-transduction (see chapter 6) -
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as well as due to limitations of the algorithms for optical flow extraction, the estimated
optical flow typically does not perfectly correspond to the theoretically expected optical
flow field.

To gain a better understanding of optical flow in the following section 2.2 all imperfec-
tions will be ignored and the formal description of optical flow perceived by a perfect
spherical sensor during self-motion will be derived. This allows an analysis of the prop-
erties of perfect optical flow as well as of the theoretical limitations of optical flow based
control (section 2.3). The impact of imperfections in the optical flow algorithm and sen-
sor is discussed in chapter 6.

2.2 Formal description of optical flow perceived by a
perfect spherical sensor

To gain a better understanding of what optical flow can provide to a control system, a
formal description of the optical flow perceived during self-motion by a perfect spherical
optical flow sensor is of benefit. A perfect sensor has infinite spatial resolution and
does not suffer from any light intensity or contrast requirements. When the sensor is
moving in a stationary environment, all optical flow is purely induced by the self-motion
of the sensor. To simplify the mathematical equations in the following formal analysis
it is assumed that the sensor is spherical with a radius r = 1 as indicated by the gray
sphere in figure 2.2a.

Under these conditions every point p in the environment of the sensor as well as the
projection of that point onto the spherical surface of the sensor p̂ can be described in
spherical coordinates by the two angles azimuth Θ and elevation Φ and the distance of
the point from the center of the sensor R(p) = ‖p‖ (figure 2.2a). Since R(p̂) = ‖p̂‖ =

r = 1 the relation between the vector p and its projection p̂ is given by

p̂ =
p

‖p‖ (2.1)

2.2.1 Optical flow induced by sensor’s translation

In this section, equations describing the optical flow vector field caused by translation
of the spherical sensor are derived. A Cartesian coordinate frame with its origin at
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Figure 2.2: (a) p̂ is the projection of the point p onto a spherical vision sensor (plotted
as a gray sphere) with radius r = 1. Each point on the sensor can be described by the
two polar coordinates azimuth Θ and elevation Φ. (b) Displacement of the projection
of point p1 due to translation T of the unity sphere sensor. p2 is the point’s position
after translation. p̂1 and p̂2 are the projections of p1 and p2 onto the sensor’s surface,
respectively.

the center of the spherical sensor as shown in figure 2.2b is assumed. If the sensor
translates in space by an amount described by the translation vector T, any arbitrary
point in the environment p1 is shifted to a new position p2 = p1 −T. The projections of
the original point p̂1 and after translation p̂2 are given by

p̂1 =
p1

‖p1‖
(2.2)

p̂2 =
p2

‖p2‖
=

p1 −T

‖p1 −T‖ (2.3)

T̂ = p̂1 − p̂2 is the projection of the point’s translation onto the sensor’s surface. How-
ever, for finding the trajectory that the projected point travels on the sensor’s surface
the precise shape of the sensor’s surface has to be considered. Furthermore, since the
optical flow vector field by definition is a velocity field a formal description of the velocity
of the projected point perpendicular to the surface of the sensor v̂ (figure 2.3) has to be
found.
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Figure 2.3: The translation T of a spherical sensor (gray sphere) causes a relative
motion of the point p in the sensor’s environment that leads to the movement of the
point’s projection p̂ on the sensor’s surface. The optical flow vector v̂ describes the
velocity of the projected point p̂.

The optical flow vector v̂ that describes the velocity of the projected point p̂ can be
derived from the original point’s position p, the sensor’s translation T, and the velocity
component of the point p that is perpendicular to the sensor’s surface. Since both ve-
locity vectors v̂ and v are perpendicular to p̂ and p, one can derive v from the projection
of T onto p̂ that will be called Tp:

v = Tp −T (2.4)

To derive an analytical description of the optical flow vector field v̂, one should first recall
the equations for the projection of vectors. The projection of a vector a onto a vector b
is shown in figure 2.4. The resulting vector c can be found as follows: From geometry it
is known that
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Figure 2.4: Projection of a vector a onto another vector b. The resulting vector c points
in the same direction as b but has the norm ‖c‖. α is the angle between the vectors a

and b.

cos (α) =
‖c‖
‖a‖ (2.5)

The definition of the scalar or dot product of a and b is

a · b = ‖a‖‖b‖ cos (α) (2.6)

By combining equations (2.5) and (2.6) one can find the norm ‖c‖ of vector c

a · b = ‖a‖‖b‖‖c‖‖a‖

‖c‖ =
a · b
‖b‖ (2.7)

Vector c is received by multiplying its norm with a unity vector pointing in the direction
of vector b:

c = ‖c‖ b

‖b‖

c =
a · b
‖b‖2

b (2.8)

Combining (2.8) and (2.4) and taking into account that ‖p̂‖ = r = 1, Tp can be replaced

v = (T · p̂) p̂−T (2.9)

and a general description of the optical flow vector v̂ that is caused purely by translation
of the spherical sensor can be derived:



2.2. Formal description of optical flow perceived by a perfect spherical sensor17

v̂ =
1

‖p‖ [(T · p̂) p̂−T] (2.10)

2.2.2 Optical flow induced by sensor’s rotation
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Figure 2.5: The rotation R of a spherical sensor (gray sphere) causes a relative motion
of the point p in the sensor’s environment with an angular velocity v. The optical flow
vector v̂ describes the velocity of the projection of the point p̂ on the sensor’s surface.

The rotation of a spherical sensor can be described in polar coordinates by the two
angles azimuth Θ and elevation Φ or in Cartesian coordinates by the rotation vector
R that is orthogonal to the plane that describes the sensor’s rotation (figure 2.5). The
velocity or optical flow vector v̂ of the projection p̂ of any arbitrary point p in the sensor’s
environment is then given by
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v̂ = −R× p̂ (2.11)

2.3 Conclusions: theoretical properties and limitations
of optical flow

In conclusion to the derivation of the equations (2.10) and (2.11) several basic obser-
vations or facts on optical flow can be formulated:

Observation 1: The optical flow caused by self-motion of a sensor that is both translat-
ing and rotating is a linear combination of the optical flow fields that
would have been caused by separate translation and rotation. Thus
(2.10) and (2.11) can be combined to (Koenderink and van Doorn,
1987):

v̂ =
1

‖p‖ [(T · p̂) p̂−T]−R× p̂ (2.12)

From (2.12) the optical flow fields v̂(Θ,Φ) that a spherical sensor per-
ceives during translation (figure 2.6) and rotation (figure 2.7) using only
one of its possible six degrees of freedom (DOFs) at a time can be
generated. The left side of the figures 2.6 and 2.7 shows the optical
flow vectors being directly projected onto the sensor’s surface while the
figures’ right sides show the corresponding Mercator projections of the
spherical optical flow fields. The gray line in the plots marks the equator
and the red arrows indicate the direction of egomotion. The gray arrow
in the spherical plots indicates the direction of forwards motion and cor-
responds to the center position in the Mercator projections. Due to the
principle of linear combination, optical flow fields perceived by a sensor
translating in different directions and/or rotating around several axis of
rotation at the same time can be found by linear combination of the opti-
cal flow fields caused by self-motion using the different types of motion
separately.

Observation 2: From (2.12) it can be concluded that only optical flow caused by
translation of the observer is dependent on the distance to the
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Figure 2.6: (left) Simulated 3D optical flow fields that would be measured by spherical
optical flow sensors and (right) their corresponding 2D projections onto Mercator maps
for different types of egomotion of the sensor. The gray line corresponds to the equator
line. The gray arrow indicates the forward direction. The position of this arrow corre-
sponds to the center of the Mercator maps. The red arrow indicates the direction of
translation of the sensor. Optical flow fields as shown that are caused by translation
due to (a),(b) thrust, (c),(d) lift, and (e),(f) slip.
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Figure 2.7: (left) Simulated 3D optical flow fields that would be measured by spherical
optical flow sensors and (right) their corresponding 2D projections onto Mercator maps
for different types of egomotion of the sensor. The gray line corresponds to the equator
line. The gray arrow indicates the forward direction. The position of this arrow corre-
sponds to the center of the Mercator maps. The red arrow indicates the direction of
rotation of the sensor. Optical flow fields as shown that are caused by rotation around
the (a),(b) roll, (c),(d) pitch, and (e),(f) yaw axis.
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objects in the observer’s environment. The amplitude of optical flow
is inversely proportional to the distance between the observer and the
objects. This means that the relative distance of objects that are closer
to the observer can be more easily distinguished than the distance of
objects that are further away. For non-perfect optical flow sensors with
limited resolution, there will a distance from which all objects will ap-
pear to be moving with zero velocity. In flight control this is typically not
of concern since these objects will be considered to be too far away to
be taken into account for the control of the flying platform.

Observation 3: Without additional information translational optical flow can only pro-
vide relative distance information. For instance the optical flow on
the left and right sides can be balanced for an observer to pass through
the middle of a tunnel but without any additional knowledge about the
velocity of the observer, the distance or the size of a known object in the
environment, an estimation of the absolute distance to the walls is not
possible. As described in sections 3.2 and 3.1 relative distance infor-
mation extracted from optical flow is used by insects like bees. By reg-
ulating optical flow, bees for example automatically deccelerate when
approaching the floor or when entering narrow tunnels where there is
less space to maneuver.

Observation 4: Even during pure translation of the observer, objects with the same dis-
tance from the observer will cause different amounts of optical flow
depending on the objects’ positions relative to the forward move-
ment of the observer. This can be best seen from figure 2.6b. This
plot was generated assuming that the observer is moving ”forward” - so
the center of the Mercator map corresponds to the direction in which the
observer is moving. All objects are assumed to have the same distance
from the observer. Under these circumstances a well-known expansion
pattern is detected by an optical flow sensor where the optical flow in
the center of the pattern is zero. As a result if an observer is constantly
moving forward towards a small object, this object cannot be detected
using optical flow and the observer would directly run into the object. In
the control of artificial MAVs this problem is typically solved by simply
not allowing any small objects like wires or sticks in the environment of
the MAV.

Observation 5: A well-known fact and a result of (2.12) is that from image expansion
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one can estimate the time to contact a surface (Srinivasan and Zhang,
2004). When an observer is flying normal to a surface as shown in
figure 2.8 the time to contact the surface tttc when the observer ap-
proaches with a constant speed is given by

tttc =
Θ

Θ̇
(2.13)

where Θ is the angle between the vector pointing in the direction of
motion of the observer and the vector pointing towards a point X on the
surface and Θ̇ is the rate giving how quickly the angle Θ changes per
unit time.

Figure 3 (a) An approach perpendicular to a surface produces expansion of the
image. (b) The time to contact the surface, if the insect were to continue to fly toward
the surface at the same speed, is given by the ratio   , where θ is the direction of a
feature X on the surface relative to the direction of flight and  θ̇ is the rate of increase
of this angle.

C-2 SRINIVASAN  � ZHANG
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Figure 2.8: When an observer like a bee is flying towards a surface, it can estimate its
time to contact from the ratio between angle Θ of a feature X and the temporal derivative
of that angle Θ̇ given that the observer continues moving with the same speed. Figure
is adapted from Srinivasan and Zhang (2004).

Observation 6: The information contained by local patches of the global optical flow
fields is typically ambiguous. See the patches ”I” in the figures 2.6d
and 2.7d and the patches ”II” in figures 2.6f and 2.7f. Although each
pair of patches belongs to optical flow fields caused by different types
of egomotion of the observer, the local patches look very similar and
cannot be distinguished when perceived by a non-perfect optical flow
sensor with limited spatial resolution. The optical flow information from
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other patches or sensors is needed to precisely estimate the observer’s
self-motion.

z

x

y

pA1

pB1

p̂1

pA2p̂A2

pB2

T

−T

−T

−T̂A

p̂B2

−T̂B

r = 1

Figure 2.9: Optical flow caused by translation of an observer is dependent on the dis-
tance between the observer and a point-like object whose projection moves on the
observer’s sensor surface (depicted as gray sphere). At time 1, two points pA1 and pB1

are placed so that pA1 hides pB1 and the projection of both points onto the observer’s
sensor surface is p̂1. However, due to the different distances between the points and
the observer their projections travel a different distance on the observer’s sensor sur-
face when the observer translates by the vector T. As a result after the translation at
time 2, pA2 is not occluded by pB2 and each point has its own projection p̂A2 and p̂B2.
So pB becomes visible in the observer’s field of view.

Observation 7: The fact that distant objects seem to move more slowly than close ob-
jects leads to the observation that objects can appear and disappear
if the observer translates relative to the objects. Figure 2.9 depicts
two points pA and pB in the environment of a spherical sensor (shown
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as gray sphere). If the sensor moves along the translation vector T both
points are shifted relative to the sensor by the vector −T from position 1

to position 2 and their projections on the spherical sensor change from
the same initial position p̂1 to the different positions p̂A2 and p̂B2. So
while pB was initially occluded by pA it becomes visible to the sensor
after the translation. Since the translation can be reversed after the
observer moves by −T, pB would again be hidden behind pA.

Observation 8: In general, the projection of a 3-dimensional world on the 2-dimensional
surface of a sensor causes optical flow fields that are ambiguous.
Their interpretation without prior knowledge or assumptions can be dif-
ficult. If the observer operates in an environment where objects are free
to move the very same optical flow fields can be generated by the ob-
server’s self-motion or by the movement of objects. Without additional
knowledge, it is impossible to distinguish with absolute certainty if the
optical flow pattern was caused by self-motion or motion of the envi-
ronment. In addition, zero optical flow does not mean that the observer
is stationary but could simply mean that the objects in its environment
compensate for the optical flow field by moving at the same speed in
the opposite direction. This phenomena is widely exploited by experi-
mentalists in biology ( David (1982); Srinivasan et al. (1991); Krapp and
Hengstenberg (1996); Krapp et al. (1998); Fry et al. (2009)) to study the
behavior of insects caused by perceived optical flow. To overcome this
problem in the control of aerial vehicles, it is often assumed that other
objects are not moving or at least sufficiently slowly so that they cannot
cause any harm.

From these observations it can be concluded that as stated by Gibson (1950) the optical
flow generated during self-motion of the observer is indeed a rich source of information
about the observer’s self-motion and the objects in the scene, but the interpretation of
the observed optic flow field patterns is not trivial. In the presence of noise local optical
flow patches cannot provide unambiguous information about the observer’s self-motion
and the same optical flow can be generated either by the observer’s self-motion or
by moving objects in the observer’s environment. In the following chapter 3 I present
studies on flight control in flies and honeybees to provide a better understanding on
how these animals extract and use optical flow for behavioral guidance.



Chapter 3

Optical flow based control in flies and
honeybees

Abstract

This review chapter analyzes how optical flow is used in nature for guiding the behavior
of flying insects like flies and honeybees. There is a large amount of literature about
flight control and vision systems of insects as well as on the vision systems of higher
vertebrates. However, it is still not completely understood how insects’ brains, vision
systems and bodies allow for their amazing flight skills. From the large amount of in-
formation in the literature this chapter concentrates on the following well-known facts
about the vision system and flight control of insects: (1) Flies and bees regulate flight
speed with optical flow. (2) Honeybees measure flight distances with optical flow. (3) In-
sects use compound eyes that are optimized for the perception of optical flow.(4) Visual
interneurons in blowflies estimate self-motion. From the examples it can be concluded
that flies and honeybees developed several strategies to extract information about self-
motion and the environment using optical flow and to deal with possible imperfections
in the extracted optical flow field.

3.1 Flies and bees regulate flight speed and wall dis-
tance through optical flow

There is an extensive literature that describes how flies and honeybees regulate their
flight behavior based on optical flow (Srinivasan et al., 2000b; Srinivasan and Zhang,

25
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2004; Tammero and Dickinson, 2002a,b; David, 1982; Fry et al., 2009). This section
presents two experiments by Srinivasan et al. (1991, 1996) which describe the behavior
of bees when flying through tunnels.

In the first set of experiments (figure 3.1) Srinivasan et al. (1991) studied the flight
behavior of honeybees when flying in tunnels. The flanking walls of the 40 cm
long, 12 cm wide, and 20 cm high tunnel (figure 3.1a) were covered with stationary
and moving black-and-white gratings. From recordings of more than hundred of
flight trajectories of bees, Srinivasan et al. found that bees tend to fly in the middle
of the tunnel when both walls are stationary (figure 3.1b), closer to walls where the
grating moved in the same direction as the bee (figure 3.1c), and further away from
gratings moving in the opposite direction (figure 3.1d). Srinivasan et al. concluded
that bees do not measure the absolute distance of the walls but instead balance the
amount of optical flow perceived by their left and right eyes (Srinivasan et al., 1991;
Srinivasan and Zhang, 2004). Furthermore, similarly to the results published by Si
et al. (2003), Srinivasan et al. found that this optical flow balancing mechanism works
robustly independent of contrast and spatial frequency of the tunnel gratings.

In 1996 Srinivasan et al. presented a second set of experiments on speed regu-
lation of honeybees in narrow tunnels (Srinivasan et al., 1996). Srinivasan et al.
trained honeybees to fly through a tunnel covered with stationary black-and-white grat-
ings and variable distance between its walls (figure 3.2). Figure 3.2b shows a top view
of the tunnel together with a typical flight trajectory of a bee. The trajectory indicates
that similarly to the results from the first set of experiments by Srinivasan et al. (1991)
bees try to fly approximately in the middle of the tunnel. Figure 3.2c presents a speed
profile from 18 flights in the tunnel. Error bars indicate the mean and standard deviation
of flight speeds at different positions in the tunnel. The speed profiles indicate that bees
try to control their own speed to perceive a constant amount of optical flow by both
eyes corresponding to an angular velocity of images perceived from the walls of 320◦/s
(dashed line in figure 3.2c). Using this mechanism, bees slow down when the distance
between walls becomes smaller, and accelerate when the distance increases.

3.2 Honeybees use optical flow to measure flight dis-
tances

Honeybees can perform nearly acrobatic flight movements and demonstrate impressive
landing skills when for instance landing on flowers moving in the wind and due to the
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Figure 1 Experiment investigating the centering response of bees. Bees are trained
to fly through a tunnel 40 cm long, 12 cm wide, and 20 cm high to collect a reward
placed at the far end. The flanking walls of the tunnel are lined with vertical black-and-
white gratings of period 5 cm. The flight trajectories of bees, as recorded by a video
camera positioned above the tunnel, are shown (a–c). In each panel, the shaded area
represents the mean and standard deviation of the positions of the flight trajectories,
analyzed from recordings of several hundred flights. The dark bars represent the black
stripes of the patterns on the walls. The small arrow indicates the direction of bee
flight, and the large arrow represents the direction of pattern movement, if any. When
the patterns on the walls are stationary, bees tend to fly close to the midline of the
tunnel (a). When the pattern on one of the walls is in motion, however, bees tend to fly
closer to that wall if the pattern moves in the same direction as the bee (b) and farther
away from that wall if the pattern moves in the opposite direction (c). These results
indicate that bees balance the distances to the walls of the tunnel by balancing the
speeds of image motion that are experienced by their eyes. Adapted from Srinivasan
et al. 1991.
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Figure 1 Experiment investigating the centering response of bees. Bees are trained
to fly through a tunnel 40 cm long, 12 cm wide, and 20 cm high to collect a reward
placed at the far end. The flanking walls of the tunnel are lined with vertical black-and-
white gratings of period 5 cm. The flight trajectories of bees, as recorded by a video
camera positioned above the tunnel, are shown (a–c). In each panel, the shaded area
represents the mean and standard deviation of the positions of the flight trajectories,
analyzed from recordings of several hundred flights. The dark bars represent the black
stripes of the patterns on the walls. The small arrow indicates the direction of bee
flight, and the large arrow represents the direction of pattern movement, if any. When
the patterns on the walls are stationary, bees tend to fly close to the midline of the
tunnel (a). When the pattern on one of the walls is in motion, however, bees tend to fly
closer to that wall if the pattern moves in the same direction as the bee (b) and farther
away from that wall if the pattern moves in the opposite direction (c). These results
indicate that bees balance the distances to the walls of the tunnel by balancing the
speeds of image motion that are experienced by their eyes. Adapted from Srinivasan
et al. 1991.
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Figure 1 Experiment investigating the centering response of bees. Bees are trained
to fly through a tunnel 40 cm long, 12 cm wide, and 20 cm high to collect a reward
placed at the far end. The flanking walls of the tunnel are lined with vertical black-and-
white gratings of period 5 cm. The flight trajectories of bees, as recorded by a video
camera positioned above the tunnel, are shown (a–c). In each panel, the shaded area
represents the mean and standard deviation of the positions of the flight trajectories,
analyzed from recordings of several hundred flights. The dark bars represent the black
stripes of the patterns on the walls. The small arrow indicates the direction of bee
flight, and the large arrow represents the direction of pattern movement, if any. When
the patterns on the walls are stationary, bees tend to fly close to the midline of the
tunnel (a). When the pattern on one of the walls is in motion, however, bees tend to fly
closer to that wall if the pattern moves in the same direction as the bee (b) and farther
away from that wall if the pattern moves in the opposite direction (c). These results
indicate that bees balance the distances to the walls of the tunnel by balancing the
speeds of image motion that are experienced by their eyes. Adapted from Srinivasan
et al. 1991.
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Figure 1 Experiment investigating the centering response of bees. Bees are trained
to fly through a tunnel 40 cm long, 12 cm wide, and 20 cm high to collect a reward
placed at the far end. The flanking walls of the tunnel are lined with vertical black-and-
white gratings of period 5 cm. The flight trajectories of bees, as recorded by a video
camera positioned above the tunnel, are shown (a–c). In each panel, the shaded area
represents the mean and standard deviation of the positions of the flight trajectories,
analyzed from recordings of several hundred flights. The dark bars represent the black
stripes of the patterns on the walls. The small arrow indicates the direction of bee
flight, and the large arrow represents the direction of pattern movement, if any. When
the patterns on the walls are stationary, bees tend to fly close to the midline of the
tunnel (a). When the pattern on one of the walls is in motion, however, bees tend to fly
closer to that wall if the pattern moves in the same direction as the bee (b) and farther
away from that wall if the pattern moves in the opposite direction (c). These results
indicate that bees balance the distances to the walls of the tunnel by balancing the
speeds of image motion that are experienced by their eyes. Adapted from Srinivasan
et al. 1991.
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(d)

Figure 3.1: Figures (b) - (d) show the mean and standard deviation (gray areas) of
more than 100 flight trajectories of bees flying through a tunnel with black-and-white
gratings (figure a). Small arrow indicate the flight direction of bees. Big arrow show the
direction of pattern movement. Bees tend to fly in the middle of the tunnel when the
grating on the walls are not moving (b), closer to gratings moving in the same direction
(b), and further away from gratings moving in the opposite direction. Figures (a) - (d)
are adapted from Srinivasan et al. (1991).

bees weight. To explore new food sources, bees travel several kilometers. After return-
ing to the hive, bees perform a waggle dance (Von Frisch, 1967) with which they share
their knowledge about food sources with other bees - giving precise instructions about
how to reach a food source.

Srinivasan et al. (2000a) have been studying the question of how honeybees measure
the distance to a food source. At the time of their experiments there had been two
major theories: (1) Theory 1 stated that bees might measure of how much energy they
use during their flight to the food source (Heran, 1956). Communicating this energy
measurement to other bees might be useful since it encodes both the distance traveled
and allows other bees to estimate if the flight is worth given the amount of food that
can be found and brought back to the hive. However, when wind conditions change,
the amount of energy spent on a flight varies and thus leads to a unreliable distance
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Figure 2 Experiment investigating visual control of flight speed. (a) Bees are
trained to fly through a tapered tunnel to collect a reward placed at the far end. The
walls of the tunnel are lined with vertical black-and-white gratings of period 6 cm.
(b) A typical flight trajectory, as filmed from above by a video camera, where the
bee’s position and orientation are shown every 50 msec. (c) Mean and standard devi-
ation of flight speeds measured at various locations along the tunnel (data from 18
flights). The dashed line represents the theoretically expected flight speed profile if
the bees hold the angular velocity of the images of the walls constant at 320°/s as
they fly through the tunnel. The data indicate that bees control flight speed by hold-
ing constant the angular velocity of the image of the environment. Adapted from
Srinivasan et al. 1996.
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(a) Tunnel schematic.

VISUAL MOTOR COMPUTATIONS IN INSECTS C-1

Figure 2 Experiment investigating visual control of flight speed. (a) Bees are
trained to fly through a tapered tunnel to collect a reward placed at the far end. The
walls of the tunnel are lined with vertical black-and-white gratings of period 6 cm.
(b) A typical flight trajectory, as filmed from above by a video camera, where the
bee’s position and orientation are shown every 50 msec. (c) Mean and standard devi-
ation of flight speeds measured at various locations along the tunnel (data from 18
flights). The dashed line represents the theoretically expected flight speed profile if
the bees hold the angular velocity of the images of the walls constant at 320°/s as
they fly through the tunnel. The data indicate that bees control flight speed by hold-
ing constant the angular velocity of the image of the environment. Adapted from
Srinivasan et al. 1996.
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(b) Tunnel top view.

VISUAL MOTOR COMPUTATIONS IN INSECTS C-1

Figure 2 Experiment investigating visual control of flight speed. (a) Bees are
trained to fly through a tapered tunnel to collect a reward placed at the far end. The
walls of the tunnel are lined with vertical black-and-white gratings of period 6 cm.
(b) A typical flight trajectory, as filmed from above by a video camera, where the
bee’s position and orientation are shown every 50 msec. (c) Mean and standard devi-
ation of flight speeds measured at various locations along the tunnel (data from 18
flights). The dashed line represents the theoretically expected flight speed profile if
the bees hold the angular velocity of the images of the walls constant at 320°/s as
they fly through the tunnel. The data indicate that bees control flight speed by hold-
ing constant the angular velocity of the image of the environment. Adapted from
Srinivasan et al. 1996.
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(c) Speed profile.

Figure 3.2: Recordings of flight velocities of honeybees (c) flying through a tunnel with
with black-and-white gratings (a). The tunnel has its narrows point in the middle (see
the tunnel’s top view in (b)). The dashed line in (b) presents a typical flight trajectory.
Error bars in (c) show the mean and standard deviation of flight speeds at different
positions in the tunnel (data from 18 flights). The measurements indicate that bees
automatically slow down when the distance between tunnel walls decreases and accel-
erate again once the tunnel becomes wider again. The dashed line in (c) represents the
theoretically predicted speed profile if bees try to receive a constant optical flow with an
angular velocity of 320◦/s. Figures (a) - (c) are adapted from Srinivasan et al. (1996).
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estimate. (2) Theory 2 which was supported by the results found by Srinivasan et al.
(2000a) stated that bees measure the accumulated amount of optical flow perceived
during the flight which they also communicate during the waggle dance:

To evaluate the role of optical flow in the bees’ perception of the distance between a
hive and a food source, Srinivasan et al. trained bees to collect from a food source
that they placed in an artificial tunnel whose walls are covered with patterns of different
texture. Four experiments have been made as depicted in figure 3.3a:

Experiment 1: A food source was placed at the entrance of an artificial tunnel whose
walls were covered with a random visual texture. The tunnel was placed
35 meters away from the hive.

Experiment 2: The food source was placed in the same tunnel as in experiment 1 but
this time at the end of the tunnel. The tunnel was closed at its end so that
bees had to travel 6 meters inside the tunnel to reach the food source.

Experiment 3: This experiment had the same conditions as in experiment 2 except that
the tunnel wall was covered with a pattern texture that did not lead to
any high optical flow measured in the bees’ visual system.

Experiment 4: The same conditions as in experiment 2 were chosen except that the
tunnel was placed only 6 meters away from the hive.

Srinivasan et al. found that under the conditions of the first and third experiments, more
than 85% of the bees performed round dances (see figure 3.3b). It is known from Boch
(1957) that the honeybees (Apis mellifica L.) used in the experiments typically perform
round dances when the food sources are within the range of 50 meters of the hive -
otherwise the bees prefer to perform a waggle dance. Interestingly more than 85%
of the bees performed such a waggle dance under the conditions of experiments two
and four although in both experiments the food source was clearly a distance below 50
meters from the hive. Srinivasan et al. concluded that the narrow tunnel in experiments
two and four caused bees to perceive a large amount of optical flow which lead to
an overestimate of the actual distance between the hive and the food source. This
overestimate lead them to change their style of dance. This theory was supported by
the fact that the bees mostly did not perform a waggle dance in experiment 3 although
they were forced to travel the same distance along the same tunnel as in experiment 2
except for the fact that the different texture on the walls of the tunnel in experiment 3
did not cause a large optical flow.
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icking the effect of a long flight in natural
outdoor conditions. The distances to the walls
and the floor would typically be much small-
er than those to nearby objects or the ground
during free flight in an open environment.
Therefore, if the bee moves forward by, say,
1 cm, it would experience a greater angular

motion of the image when flying in the tunnel
than when flying outdoors. The magnified
image motion in the tunnel might cause the
bees to infer a journey considerably longer
than 6 m.

The possibility that image motion is in-
deed the cue for estimating flight distance

was tested in experiment 3 (Fig. 1A). Here
the tunnel and the feeder were positioned as
in experiment 2, but the walls and floor were
lined with axially oriented stripes (10). This
tunnel provided negligible image motion
cues, because the stripes were parallel to the
direction of flight. Bees returning from this
tunnel produced predominantly round danc-
es: The probability of a round dance was
86.7% (Fig. 1B), even though these bees had
flown exactly the same physical distance—
41 m—as those in experiment 2. Evidently,
the lack of image motion in the axial-striped
tunnel caused the bees to infer that they had
flown a very short distance.

In a further experiment (experiment 4), the
tunnel carried a random texture, as in experi-
ments 1 and 2, but was positioned such that the
entrance was only 6 m from the hive exit (Fig.
1A). The tunnel was pointed toward the hive,
and the feeder was placed 6 m inside the tunnel.
Bees returning from this tunnel performed
mainly waggle dances: The probability of a
waggle dance was 87.5% (Fig. 1B), even
though the feeder was now only 12 m from the
hive. We conclude from these experiments that
distance flown is inferred on a visual basis, the
primary cue being the extent of image motion
experienced by the eye.

How is image motion translated into a per-
cept of distance flown? To examine this ques-
tion, we carried out another series of experi-
ments in which we recorded the dances of
marked bees returning to our hive from feeders
placed at various locations in the outdoor envi-
ronment of the campus of the Australian Na-
tional University. The feeders were positioned
at distances of 60, 110, 150, 190, 225, 340, and
350 m from the hive (11). Data were obtained
from two different hives, H1 and H2, each at a
different location on campus, to check for pos-
sible colony-specific or route-specific differ-
ences (12). Bees returning from these feeders
performed primarily waggle dances at all of the
distances tested. The mean durations of the
waggle phases (13) of the dances for each of
these feeder distances are plotted in Fig. 2 [see
Table 1 and (14)]. The waggle duration increas-
es approximately linearly with distance flown,
as is well known for distances up to 1 km (15).
Linear regression on the data yields a correla-
tion coefficient of 0.998. The slope of the re-
gression line is 1.88 ms of waggle duration per
meter of distance traveled. This value is in close
agreement with classical published data for
comparable flight distances (15). For any given
distance, there were no significant differences
between the durations of the waggle phases
recorded from the two colonies. We infer from
this that the bees from the two hives flew
through essentially similar outdoor environ-
ments (see below).

How do the dances of bees returning from
the tunnels in experiments 2 and 4 compare
with those of bees flying in the open outdoor

Fig. 1. (A) Layout for experi-
ments using tunnels. Each tunnel
represents a separate experiment
(1, 2, 3, or 4). The dot in the
tunnel shows the position of the
feeder in each case. (B) Probabil-
ity of waggle (W) round (R)
dance for experiments 1 to 4. N
and n represent the numbers of
bees and dances analyzed, re-
spectively, in each experiment.

Fig. 2. Mean waggle durations of dances
elicited by outdoor feeders at various dis-
tances d. The straight line is a linear regres-
sion on the data, defined by the expression
t 5 95.91 1 1.88d. Also shown are the
mean waggle durations measured in the
tunnel experiments (experiments 2 and 4)
and their equivalent outdoor flight distanc-
es as read off from the regression line.

Table 1. Details of measurements of waggle dances in various experiments. SD, standard deviation of
mean waggle durations measured for different bees.

Experiment Hive
Waggle

duration (ms)
(mean 6 SD)

Number of
bees

analyzed

Number of
dances

analyzed

Number of
waggle phases

analyzed

Outdoor feeder at 60 m H1 217.5 6 65.2 3 10 92
Outdoor feeder at 110 m H1 283.0 6 66.0 5 10 93
Outdoor feeder at 110 m H2 312.4 6 44.4 6 14 181
Outdoor feeder at 150 m H1 390.9 6 62.5 3 10 92
Outdoor feeder at 190 m H1 441.2 6 60.0 6 7 65
Outdoor feeder at 225 m H2 514.4 6 74.8 8 21 345
Outdoor feeder at 340 m H2 733.3 6 116.4 10 23 222
Outdoor feeder at 350 m H1 762.6 6 129.4 5 9 87
Tunnel experiment 2 H2 528.8 6 67.6 4 9 216
Tunnel experiment 4 H2 441.2 6 57.0 7 16 138
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tunnel provided negligible image motion
cues, because the stripes were parallel to the
direction of flight. Bees returning from this
tunnel produced predominantly round danc-
es: The probability of a round dance was
86.7% (Fig. 1B), even though these bees had
flown exactly the same physical distance—
41 m—as those in experiment 2. Evidently,
the lack of image motion in the axial-striped
tunnel caused the bees to infer that they had
flown a very short distance.

In a further experiment (experiment 4), the
tunnel carried a random texture, as in experi-
ments 1 and 2, but was positioned such that the
entrance was only 6 m from the hive exit (Fig.
1A). The tunnel was pointed toward the hive,
and the feeder was placed 6 m inside the tunnel.
Bees returning from this tunnel performed
mainly waggle dances: The probability of a
waggle dance was 87.5% (Fig. 1B), even
though the feeder was now only 12 m from the
hive. We conclude from these experiments that
distance flown is inferred on a visual basis, the
primary cue being the extent of image motion
experienced by the eye.

How is image motion translated into a per-
cept of distance flown? To examine this ques-
tion, we carried out another series of experi-
ments in which we recorded the dances of
marked bees returning to our hive from feeders
placed at various locations in the outdoor envi-
ronment of the campus of the Australian Na-
tional University. The feeders were positioned
at distances of 60, 110, 150, 190, 225, 340, and
350 m from the hive (11). Data were obtained
from two different hives, H1 and H2, each at a
different location on campus, to check for pos-
sible colony-specific or route-specific differ-
ences (12). Bees returning from these feeders
performed primarily waggle dances at all of the
distances tested. The mean durations of the
waggle phases (13) of the dances for each of
these feeder distances are plotted in Fig. 2 [see
Table 1 and (14)]. The waggle duration increas-
es approximately linearly with distance flown,
as is well known for distances up to 1 km (15).
Linear regression on the data yields a correla-
tion coefficient of 0.998. The slope of the re-
gression line is 1.88 ms of waggle duration per
meter of distance traveled. This value is in close
agreement with classical published data for
comparable flight distances (15). For any given
distance, there were no significant differences
between the durations of the waggle phases
recorded from the two colonies. We infer from
this that the bees from the two hives flew
through essentially similar outdoor environ-
ments (see below).

How do the dances of bees returning from
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represents a separate experiment
(1, 2, 3, or 4). The dot in the
tunnel shows the position of the
feeder in each case. (B) Probabil-
ity of waggle (W) round (R)
dance for experiments 1 to 4. N
and n represent the numbers of
bees and dances analyzed, re-
spectively, in each experiment.

Fig. 2. Mean waggle durations of dances
elicited by outdoor feeders at various dis-
tances d. The straight line is a linear regres-
sion on the data, defined by the expression
t 5 95.91 1 1.88d. Also shown are the
mean waggle durations measured in the
tunnel experiments (experiments 2 and 4)
and their equivalent outdoor flight distanc-
es as read off from the regression line.

Table 1. Details of measurements of waggle dances in various experiments. SD, standard deviation of
mean waggle durations measured for different bees.

Experiment Hive
Waggle

duration (ms)
(mean 6 SD)

Number of
bees

analyzed

Number of
dances

analyzed

Number of
waggle phases

analyzed

Outdoor feeder at 60 m H1 217.5 6 65.2 3 10 92
Outdoor feeder at 110 m H1 283.0 6 66.0 5 10 93
Outdoor feeder at 110 m H2 312.4 6 44.4 6 14 181
Outdoor feeder at 150 m H1 390.9 6 62.5 3 10 92
Outdoor feeder at 190 m H1 441.2 6 60.0 6 7 65
Outdoor feeder at 225 m H2 514.4 6 74.8 8 21 345
Outdoor feeder at 340 m H2 733.3 6 116.4 10 23 222
Outdoor feeder at 350 m H1 762.6 6 129.4 5 9 87
Tunnel experiment 2 H2 528.8 6 67.6 4 9 216
Tunnel experiment 4 H2 441.2 6 57.0 7 16 138
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(b) Results

Figure 3.3: (a) For experiments 1-4, food sources indicated as blue dots are placed
at different positions in a tunnel. (b) The results indicate that the probability of a bee
performing a waggle (W) or a round (R) dance varies with the amount of optical flow that
the bee perceived during the flight. N and n respectively represent the numbers of bees
and dances that have been analyzed. Figures (a) and (b) are taken from Srinivasan
et al. (2000a).
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In a second set of experiments, Srinivasan et al. found that for bees traveling a distance
over 50 meters, the duration of their waggle dance is proportional to the amount of
optical flow the bees perceived during their flight.

3.3 Insects’ compound eyes are optimized for percep-
tion of optical flow

The eyes of most insects are different from those of human beings. Human have two
mobile eyes each of them with a single lens with controllable focal length and a retina
with several millions of photoreceptors. The strong overlap between the visual fields of
the two eyes supports the stereo vision that vertebrates are know to use for distance
estimation of surrounding objects (Srinivasan and Zhang, 2004).

Since stereo vision requires a sufficient distance between two eyes, this mechanism
cannot be exploited by small insects for a reliable estimation of distances (Rossel, 1983;
Horridge, 1987). Instead insects evolved a vision system based on an array of a few
thousand facets or ommatidia that form compound eyes like those shown in figure 3.4.
Each ommatidium contains a fixed-focus lens with a field of view of a few degrees that
focuses light on a small group of photoreceptors (Srinivasan and Zhang, 2004). The
arrangement of ommatidia allows no big overlap of receptive fields but instead nearly
panoramic vision (Wehner, 1981) supporting the perception of panoramic optical flow.

3.4 Visual interneurons in blowflies estimate self-motion

Since it is know that insects’ flight control might be based on optical flow, researchers
have studied the responses of motion-sensitive neurons in insects (Hausen, 1993;
Krapp and Hengstenberg, 1996; Krapp, 1999). Reviews have for instance been pub-
lished by Hausen and Egelhaaf (1989); Hausen (1993) and Egelhaaf and Borst (1993b).
This section describes two selected publications by Krapp and Hengstenberg (1996)
and Krapp et al. (1998) who found that the visual interneurons of flies estimate the
self-motion of the fly by using optical flow.

It is known that insects contain large arrays of elementary motion detections (EMDs)
each with a small field of view and a preferred direction of motion (Reichardt, 1987;
Krapp et al., 1998). Krapp and Hengstenberg (1996) and Krapp et al. (1998) studied
interneurons in blowflies with large receptive fields that are known to directly or indi-
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(a) Picture of compound eye.

(b) Schematic of compound eye

Figure 3.4: (a) Picture of the head and compound eyes of a hover-fly (Volucella pellu-
cens) taken from Bartz (2011). (b) Schematic of an insect’s compound eye taken from
LIS (2011). Several thousands of ommatidia or facets form a compound eye. Each
ommatidium contains a lens that focuses light on a small number of photoreceptors.
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(b)H. G. KRAPP, B. HENGSTENBERG, AND R. HENGSTENBERG1912

FIG. 7. Anatomy and response fields of the neurons VS8–VS10. A : the main dendrites of VS8 lie near the proximal
margin of the lobula plate. The narrow ventral dendrites lie in the posterior neuropil layers, but the broad dorsal arborization
(∗) invades the anterior layers. The response field clearly shows a rotatory structure with a singularity at c Å 457, U Å
0157, and a belt of downward sensitivity at c Å 1357. The responses to front-to-back motions in the dorsolateral field may
be mediated by the broad dorsal dendrite, but the responses to upward motions in the frontal visual field cannot simply be
reconciled with the anatomy of VS8 (see DISCUSSION). B : VS9 is similar to VS8 in its placement in the lobula plate. Its
dorsal dendrite (*) , although less broad, extends distally and invades the anterior layers of the neuropil. The response field
is very similar to that of VS8 except that the peak of downward sensitivity is shifted to c Å 1507. Here again, the dendritic
structure does not explain off-hand the responses to upward motions in the frontal visual field. C : VS10 has thin dendrites
close to the proximal margin of the lobula plate. The branching pattern is similar to that of VS9. The response field clearly
shows a rotatory structure with a singularity at about c Å 607, U Å 07 and correspondingly the largest responses to downward
motion at c Å 1507. Again, the sizeable responses to upward motion in the dorsofrontal field are not obvious from the
dendritic structure of VS10. As in the other VS neurons, the sensitivity of VS8–VS10 is larger in the dorsal than in the
ventral visual field. Scale bars, 150 mm.

terization of receptive-field areas with low responsiveness encountered so far in the lobula plate had a spontaneous
activity high enough (¢10 spikes/s) to reveal even smallmay therefore be difficult. For example, descending neurons

in the cervical connective, eliciting the landing response, local responses (e.g., Fig. 9) (Krapp 1995). The VS neurons
respond to visual stimuli with graded membrane potentialwere found to respond only if both eyes were stimulated

simultaneously (Borst 1991). However, all spiking neurons modulations. Therefore in these cases the problem of sub-
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FIG. 7. Anatomy and response fields of the neurons VS8–VS10. A : the main dendrites of VS8 lie near the proximal
margin of the lobula plate. The narrow ventral dendrites lie in the posterior neuropil layers, but the broad dorsal arborization
(∗) invades the anterior layers. The response field clearly shows a rotatory structure with a singularity at c Å 457, U Å
0157, and a belt of downward sensitivity at c Å 1357. The responses to front-to-back motions in the dorsolateral field may
be mediated by the broad dorsal dendrite, but the responses to upward motions in the frontal visual field cannot simply be
reconciled with the anatomy of VS8 (see DISCUSSION). B : VS9 is similar to VS8 in its placement in the lobula plate. Its
dorsal dendrite (*) , although less broad, extends distally and invades the anterior layers of the neuropil. The response field
is very similar to that of VS8 except that the peak of downward sensitivity is shifted to c Å 1507. Here again, the dendritic
structure does not explain off-hand the responses to upward motions in the frontal visual field. C : VS10 has thin dendrites
close to the proximal margin of the lobula plate. The branching pattern is similar to that of VS9. The response field clearly
shows a rotatory structure with a singularity at about c Å 607, U Å 07 and correspondingly the largest responses to downward
motion at c Å 1507. Again, the sizeable responses to upward motion in the dorsofrontal field are not obvious from the
dendritic structure of VS10. As in the other VS neurons, the sensitivity of VS8–VS10 is larger in the dorsal than in the
ventral visual field. Scale bars, 150 mm.

terization of receptive-field areas with low responsiveness encountered so far in the lobula plate had a spontaneous
activity high enough (¢10 spikes/s) to reveal even smallmay therefore be difficult. For example, descending neurons

in the cervical connective, eliciting the landing response, local responses (e.g., Fig. 9) (Krapp 1995). The VS neurons
respond to visual stimuli with graded membrane potentialwere found to respond only if both eyes were stimulated

simultaneously (Borst 1991). However, all spiking neurons modulations. Therefore in these cases the problem of sub-
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OPTIC FLOW PROCESSING IN SINGLE VISUAL INTERNEURONS 1915

sponse fields might also be explained if the VS neurons were
incompletely stained in our experiments. But neither in the
best stainings of this study nor in previous studies with dif-
ferent staining procedures have much farther reaching arbo-
rizations been observed in VS neurons (Bishop and Bishop
1981; Eckert and Bishop 1978; Hausen 1984; Hengstenberg
et al. 1982; Strausfeld and Seyan 1985). An alternative pos-
sibility is that these unexpected responses may indicate an
input additional to the direct ipsilateral small-field inputs of
VS neurons. 1) The presumed small-field units could have
far-reaching lateral interactions importing specific motion
information from remote areas of the visual field. 2) Simi-
larly, such transfer may be achieved by amacrine cells of
the lobula complex (cf. Hausen 1993; Strausfeld 1976). 3)
Finally, VS neurons may not be completely isolated from
one another. There may be either dendrodendritic contacts
in the lobula plate neuropil, as in case of the figure/ground
discrimination circuit (Egelhaaf et al. 1993; Warzecha et al.
1993), or contacts in the region of the axon terminals. This
problem needs further clarification by specific investigations.

Are VS neurons matched filters to sense self-motions?

The uneven distributions of LPD and LMS in the response
fields of all VS neurons show a striking similarity to rotatory
optic flow fields (Fig. 1C) . This is most obvious for VS6
(Fig. 6C) , whose axis of rotation nearly coincides with that
of the theoretical example (Fig. 1C) . The tangential align-
ment of the LPDs around the singularities of the response
fields, i.e., around the presumed axis of rotation, can be
easily seen in the response fields of VS1 (Fig. 5A) and VS8–
VS10 (Fig. 7, A–C) . The same arrangement is present in
the response fields of VS4–VS7 (Fig. 6, A–D) , but, because

FIG. 9. Anatomy and response field of the neuron Hx. A : the dendritic of the characteristic distortions of the Mercator projection,
arborization of this neuron extends over almost the whole area of the lobula it is graphically not as obvious. Very clearly, the response
plate. Its thin axon passes across the sagittal midline to the contralateral fields of VS neurons do not have the characteristic features ofprotocerebrum and terminates in the vicinity of the HS and VS axon termi-

a purely translatory optic flow field (Fig. 1B) . We concludenals. B : in keeping with its structure, the response field of Hx comprises the
therefore that the 10 VS neurons are specific neural filters,entire ipsilateral hemisphere and includes the contralateral zone of binocular

overlap along c Å 0157. Hx responds maximally to horizontal back-to- in the sense of Fig. 2, for simultaneously extracting from the
front motion at azimuths of c Å 457, and minimally near c Å 1357, U Å ongoing optic flow the rotatory motion components around
07. All LPDs are arranged radially around this singularity. This global

different, approximately horizontal axes.structure is very similar to that of a translatory optic flow field. Note also
The response fields of VS neurons, however, show inthat in contrast to the VS neurons, the overall motion sensitivity of the Hx

neuron is higher in the ventral half than in the dorsal half of the visual common two interesting deviations from the mathematical
field. structure of pure rotatory optic flow fields. 1) All VS re-

sponse fields have a general dorsoventral gradient of motion
sensitivity (Figs. 5–7), which is, of course, not present inzontal motions in the dorsofrontal and dorsocaudal visual field

(Fig. 6, A–D). Most notably, VS8–VS10 respond signifi- the corresponding rotatory optic flow field (e.g., Fig. 1C) .
This may reflect an adaptation to the vertical asymmetry ofcantly to upward motion in the anterior visual field, even in

the contralateral hemisphere (Fig. 7, A–C). the real world and its unequal distribution of contrast. 2)
The response fields of VS1–VS3 and VS8–VS10 show aSpurious responses in ‘‘remote’’ areas of the receptive

field might be caused by stray light or reflections of the concentration of motion sensitivity near the roll axis (Fig.
1; c Å 1807, U Å 07 to c Å 07, U Å 07) but much lowermoving stimulus. This possibility seems very unlikely be-

cause of the following reasons. 1) The whole setup was sensitivities at the top (c Å 907, U Å 757) of the visual
field. In an optic flow field for rotation around the transverselined with dull black cloth. 2) Artifacts of this kind should

be similar in different neurons for the same stimulus posi- axis (c Å 907, U Å 07) , the flow velocity would be equal
all around the equator of rotation connecting the positionstion. This we did not observe. 3) Stray light responses should

be reduced at increased ambient illumination, but the unex- mentioned above. This difference between optic flow fields
and neuronal response fields probably reflects an adaptationpected local responses persisted under normal room light

conditions. We are therefore confident that the response to the fact that flies usually move forward while they rotate.
Pitch and yaw turns (Fig. 1A) can be sensed best wherefields of VS neurons reflect the true functional organization

of these cells. the corresponding rotatory flow is least disturbed by the
translatory flow of forward motion, i.e., straight ahead andThe lack of congruence between dendritic fields and re-
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sponse fields might also be explained if the VS neurons were
incompletely stained in our experiments. But neither in the
best stainings of this study nor in previous studies with dif-
ferent staining procedures have much farther reaching arbo-
rizations been observed in VS neurons (Bishop and Bishop
1981; Eckert and Bishop 1978; Hausen 1984; Hengstenberg
et al. 1982; Strausfeld and Seyan 1985). An alternative pos-
sibility is that these unexpected responses may indicate an
input additional to the direct ipsilateral small-field inputs of
VS neurons. 1) The presumed small-field units could have
far-reaching lateral interactions importing specific motion
information from remote areas of the visual field. 2) Simi-
larly, such transfer may be achieved by amacrine cells of
the lobula complex (cf. Hausen 1993; Strausfeld 1976). 3)
Finally, VS neurons may not be completely isolated from
one another. There may be either dendrodendritic contacts
in the lobula plate neuropil, as in case of the figure/ground
discrimination circuit (Egelhaaf et al. 1993; Warzecha et al.
1993), or contacts in the region of the axon terminals. This
problem needs further clarification by specific investigations.

Are VS neurons matched filters to sense self-motions?

The uneven distributions of LPD and LMS in the response
fields of all VS neurons show a striking similarity to rotatory
optic flow fields (Fig. 1C) . This is most obvious for VS6
(Fig. 6C) , whose axis of rotation nearly coincides with that
of the theoretical example (Fig. 1C) . The tangential align-
ment of the LPDs around the singularities of the response
fields, i.e., around the presumed axis of rotation, can be
easily seen in the response fields of VS1 (Fig. 5A) and VS8–
VS10 (Fig. 7, A–C) . The same arrangement is present in
the response fields of VS4–VS7 (Fig. 6, A–D) , but, because

FIG. 9. Anatomy and response field of the neuron Hx. A : the dendritic of the characteristic distortions of the Mercator projection,
arborization of this neuron extends over almost the whole area of the lobula it is graphically not as obvious. Very clearly, the response
plate. Its thin axon passes across the sagittal midline to the contralateral fields of VS neurons do not have the characteristic features ofprotocerebrum and terminates in the vicinity of the HS and VS axon termi-

a purely translatory optic flow field (Fig. 1B) . We concludenals. B : in keeping with its structure, the response field of Hx comprises the
therefore that the 10 VS neurons are specific neural filters,entire ipsilateral hemisphere and includes the contralateral zone of binocular

overlap along c Å 0157. Hx responds maximally to horizontal back-to- in the sense of Fig. 2, for simultaneously extracting from the
front motion at azimuths of c Å 457, and minimally near c Å 1357, U Å ongoing optic flow the rotatory motion components around
07. All LPDs are arranged radially around this singularity. This global

different, approximately horizontal axes.structure is very similar to that of a translatory optic flow field. Note also
The response fields of VS neurons, however, show inthat in contrast to the VS neurons, the overall motion sensitivity of the Hx

neuron is higher in the ventral half than in the dorsal half of the visual common two interesting deviations from the mathematical
field. structure of pure rotatory optic flow fields. 1) All VS re-

sponse fields have a general dorsoventral gradient of motion
sensitivity (Figs. 5–7), which is, of course, not present inzontal motions in the dorsofrontal and dorsocaudal visual field

(Fig. 6, A–D). Most notably, VS8–VS10 respond signifi- the corresponding rotatory optic flow field (e.g., Fig. 1C) .
This may reflect an adaptation to the vertical asymmetry ofcantly to upward motion in the anterior visual field, even in

the contralateral hemisphere (Fig. 7, A–C). the real world and its unequal distribution of contrast. 2)
The response fields of VS1–VS3 and VS8–VS10 show aSpurious responses in ‘‘remote’’ areas of the receptive

field might be caused by stray light or reflections of the concentration of motion sensitivity near the roll axis (Fig.
1; c Å 1807, U Å 07 to c Å 07, U Å 07) but much lowermoving stimulus. This possibility seems very unlikely be-

cause of the following reasons. 1) The whole setup was sensitivities at the top (c Å 907, U Å 757) of the visual
field. In an optic flow field for rotation around the transverselined with dull black cloth. 2) Artifacts of this kind should

be similar in different neurons for the same stimulus posi- axis (c Å 907, U Å 07) , the flow velocity would be equal
all around the equator of rotation connecting the positionstion. This we did not observe. 3) Stray light responses should

be reduced at increased ambient illumination, but the unex- mentioned above. This difference between optic flow fields
and neuronal response fields probably reflects an adaptationpected local responses persisted under normal room light

conditions. We are therefore confident that the response to the fact that flies usually move forward while they rotate.
Pitch and yaw turns (Fig. 1A) can be sensed best wherefields of VS neurons reflect the true functional organization

of these cells. the corresponding rotatory flow is least disturbed by the
translatory flow of forward motion, i.e., straight ahead andThe lack of congruence between dendritic fields and re-
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Figure 3.5: Anatomy (a,c,e) and optical flow response fields (b,d,f) of interneurons in
blowflies. Figures (a) - (f) are adapted from Krapp et al. (1998).
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rectly receive input from these large arrays of EMDs. By mapping the receptive field
of these interneurons, and presenting complex visual motion stimuli while recording in-
tracellularly from the cells they found that some of the interneurons’ motion response
fields were remarkably similar to optical flow fields. During their evaluation of so-called
giant vertical cells (or VS cells) (Hengstenberg, 1982; Hengstenberg et al., 1982) Krapp
and Hengstenberg (1996) and Krapp et al. (1998) found that some neurons preferred
pitch-rotation (VS1-VS3) while a second and third group of neurons was tuned to roll-
rotation (VS4-VS7) and a mix of pitch and roll rotation (VS8-VS10), respectively. So
by reading the signals of all VS neurons a reliable measure of body rotation is pro-
vided. Furthermore, Krapp and Hengstenberg (1996) found a neuron that they labeled
Hx which prefers stimuli similar to optical flow fields generated during translation of the
fly. Pictures of the neurons as well as their optical flow response fields are shown in
figure 3.5. The response fields on the right side of figure 3.5 look very similar to the
theoretically generated optical flow fields shown in figures 2.6 and 2.7 in section 2.3

3.5 Conclusions

Although in the scope of this thesis it is not possible to analyze all material on insects’
vision systems and flight control this chapter presents several fact that indicate that
insects like flies and honeybees have evolved control and vision systems that exploit
optical flow for behavioral guidance and flight control. Optical flow is a main stimulus
for controlling behavior in insects like flies and honeybees that actively use optical flow
for flight control and distance estimation (Srinivasan and Zhang, 2004). The knowledge
about how insects exploit optical flow and how their vision and control systems as well
as their body properties have been adapted to gain maximum information from optical
flow is crucial for understanding how to build better visually guided micro aerial vehicles
and optical flow sensors.

It is further important to understand how insects deal with the imperfect information
that - as predicted from the perfect optical flow sensor model presented in the previous
chapter 2.3 - can only be extracted from the optical flow field as well as with imperfec-
tions in their vision system that has to deal with limited stimulus contrast and noise.

• The two sets of experiments presented by Srinivasan et al. (1991, 1996) show how
honeybees use optical flow for steering close to obstacles but also how valuable
optical flow can be for the control of flying vehicles. The fact that optical flow
does not allow for an absolute measure of distance (observation 3, section 2.3)
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does not need to be a disadvantage. The behavior of bees proves that a measure
like optical flow that directly relates flight speed and distance of objects in the
environment indeed can be of benefit. Optical flow allows for automatically slowing
down when stationary objects come closer thus the space for maneuvering is
decreased. This is a desirable behavior for MAVs. Balancing the optical flow
perceived on the left and the right sides when passing through a tunnel does not
only allow to keep the position of the MAVs in the middle of a tunnel but as well
makes them avoid objects moving towards the MAVs that are typically a greater
threat and risk for collision than objects moving with or away from the MAV. So in
summary the lack of an absolute distance measure might require a rethinking of
the control strategy for MAVs but in the end can prove to be an advantage rather
than a problem.

• The experimental results presented by Srinivasan et al. (2000a) show that based
on optical flow honeybees are capable of providing an absolute distance mea-
sures between the hive and a food source. Accumulating the amount of optical
flow perceived during a flight gives a distance measure that is independent from
flight speed. Communicating the amount of optical flow perceived during a flight
as a measure of a distance rather than the amount of energy spend during that
flight is of advantage. Conditions like the direction and amount of wind can change
rapidly and often during and in between flights affecting the measure of the en-
ergy being spend for a flight. So wind effects would make a distance measure
based on consumed energy noisy and unreliable. However, wind does not af-
fect the amount of optical flow perceived during the flight. It is very unlikely that
the environment changes so rapidly that the optical flow measurements become
unreliable.

An phenomena that is not fully understood yet is how bees deal with different
altitudes during the flight. As shown in observation 2 (section 2.3) the absolute
magnitude of translational optical flow is inversely proportional to the distance to
the objects. So the amount of optical flow perceived during the flight by a bee de-
pends on its altitude (Esch and Burns, 1995, 1996) and on the distance to vertical
surfaces (Srinivasan et al., 1996, 1997; Si et al., 2003). Indeed studies show that
when bees are forced to fly at a high altitude these bees perform a waggle dance
with a shorter mean duration indicating a lower amount of optical flow being re-
ceived during the flight (Esch and Burns, 1996). The key to an absolute distance
measure might be that bees try to keep the average optical flow perceived during
a given amount of time constant and thus automatically select a high altitude when
flying fast and slowing down when flying close to the ground or a vertical surface
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- similarly as bees slow down in narrow tunnels. In any case the fact that bees
only communicate the amount of perceived optical flow and direction to a food
source during their waggle dance and not the precise nature of the environment
between the hive and food source (Esch et al., 2001) indicates that bees must
have some standard behavior that allows for reliable distance estimation based
on optical flow.

• In the presence of noise local optical flow patches cannot provide unambiguous
information about the observer’s self-motion (observation 6, section 2.3). To over-
come these ambiguities in local optical flow patches insects evolved a panoramic
vision system. The results by Krapp and Hengstenberg (1996) and Krapp et al.
(1998) present evidence that insects spatially integrate the local optical flow sig-
nals gained from local elementary motion detectors and use global optical flow to
estimate self-motion on the neuronal level. This spatial integration allows not only
to resolve locally ambiguous optical flow information but also to reduce noise. So
a similar set of global optical flow filters could as well be useful for the control of
MAVs.

• Despite the ambiguities in optical flow interpretation insects like bees and flies
demonstrate successful flight control, landing skills and escape from enemies
by fusing the optical flow perceived through their compound eyes as the main
source of information for behavioral control with additional information for instance
from relative airflow and inertia sensors (Srinivasan and Zhang, 2004; Taylor and
Krapp, 2007). It is known that course control and stabilization is supported by
halteres. Halteres are small hind-wings that oscillate in antiphase with the main
wings (Dickinson, 1999; Nalbach, 1993; Nalbach and Hengstenberg, 1994; Srini-
vasan and Zhang, 2004). They measure forces normal to their plane of oscillation
that are generated during turns. But it is not entirely clear how they feed back into
the fly’s control system. From an excessive study of the existing literature Taylor
and Krapp (2007) concluded that ”it appears that halteres do measure angular ve-
locity, but as an emergent property of the control system of which they are a part.”
So one can imagine that halteres act like miniature rate gyroscopes that mea-
sure the angular velocity of the fly’s body (Srinivasan and Zhang, 2004). There is
evidence that halteres are used to compensate for rapid rotations while optomo-
tor reflexes control slower turns (Hengstenberg, 1993; Sherman and Dickinson,
2003; Srinivasan and Zhang, 2004).

• To acknowledge the fact that only optical flow generated by translation contains
information about the distance to objects (observation 2, section 2.3), flies and
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honeybees show a flight behavior where periods of straight flights and rapid turns
alternate (Collett and Land, 1975; Wagner, 1986; Schilstra and Hateren, 1999;
Tammero and Dickinson, 2002a). During the straight flights only translational op-
tical flow is perceived that can be used for relative distance estimation.

• Spontaneous turning maneuvers found in the flight behavior of flies (Heide, 1983)
might help to overcome the problem that small objects in the line of flight do
not generate a lot of optical flow (observation 4, section 2.3). By spontaneously
changing flight direction objects are seen at a different angle and those objects
that before the change of flight direction did not generate sufficient optical flow
for a detection can be detected afterwards.The spontaneous turning maneuvers
also make it more difficult for a predator to approach a prey by performing some
motion camouflage where the predator uses the fact that objects moving with the
observer do not cause optical flow.

• However, it seems that the ambiguity that the same optical flow can be gener-
ated either by the observer’s self-motion or by moving objects in the observer’s
environment (observation 8, section 2.3) cannot be resolved by insects and is
consequently used by experimentalist to study the visual system and behavior
of those insects (David, 1982; Srinivasan et al., 1991; Krapp and Hengstenberg,
1996; Krapp et al., 1998; Fry et al., 2009). By stimulating insects with visual
pattern similar to those they would perceive during self-motion the insects’ flight
behavior can be manipulated and studied.

What remains to be understood is how insect can provide such robust optical flow mea-
sures in the presence of low-contrast stimuli. Si et al. in 2003 characterized the effect
of stimulus contrast and spatial frequency on the distance measure by honeybees. To
their surprise they found that the bees’ distance measures are ”relatively unaffected by
variations in the contrast and spatial frequency of the visual patterns” presented to the
bees. A strong signal for the distance measure was ”generated even when the walls
or the floor of the tunnel provided only low-contrast optical-flow cues” (Si et al., 2003).
This robustness of the optical flow sensor system of honeybees is a key property to
achieve reliable and robust behavioral control. Information about how flies and bees
achieve this robustness is limited.

However, providing such robust optic flow output signals that are independent from
stimulus contrast and spatial frequency is also a key property of optical flow sensors to
be attractive for MAV control. However, as described in chapter 6, this robustness is not
supported by many aVLSI implementations.





Chapter 4

Optical flow based guidance of micro
aerial vehicles

Abstract

This chapter presents three examples of optical flow based guided MAVs. The chap-
ter’s goal is to gain a deeper understanding of the existing flying platforms, their flight
properties, controllers and which challenges these platforms present to optical flow sen-
sors. Furthermore it defines the target platform for the sensors developed in this thesis.
From the many existing optical flow controlled MAVs in the literature (Green et al., 2003,
2004; Ruffier and Franceschini, 2004, 2005, 2008; Chahl et al., 2004; Srinivasan et al.,
2009, 2011) the 10-gram indoor airplane by Zufferey et al. (2007), the outdoor airplane
equipped with commercial optical mouse sensors by Beyeler et al. (2009), and the
quadcopter by Zingg et al. (2010) that uses a commercial camera with a fish-eye lens
have been selected for presentation.

4.1 Wall-avoidance with 10-gram indoor airplane and
single linear camera

From 2001 until 2007 the Laboratory of Intelligent Systems, EPFL, published a series
of papers on light-weight indoor airplanes (Nicoud and Zufferey, 2002; Zufferey and
Floreano, 2005, 2006; Zufferey et al., 2006). So far, the most advanced prototype is the
10-gram indoor airplane (Zufferey et al., 2007) shown in figure 4.1a. This airplane is
equipped with two cameras - one pointing downwards and one forward that is used for
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autonomous wall-avoidance based on optical flow. The airplane is furthermore capable
of automatic take-off and speed regulation.

An airplane that should flying indoors in small rooms without the capability to hover like
a helicopter has to be slow-flying - ideally flying at a speed of only a few meters per
second. Such a slow-flying airplane needs to be light-weight to provide sufficient lift
for take-off and altitude stabilization at such low speeds. So building and controlling
an autonomous 10-gram airplane flying at around 1.5m/s like the one presented by
Zufferey et al. (2007) is challenging.

To meet the weight requirements the airplane by Zufferey et al. (2007) is mainly made
out of carbon fiber rods and thin Mylar plastic films. A picture of the airplane as well as a
top view schematic is shown in figure 4.1. Despite its small weight, the airplane contains
the necessary sensors and microcontroller for autonomous speed control and obstacle
avoidance. A schematic of the implemented controller can be found in figure 4.2a.
An on-board anemometer measures the airflow and is used to regulate the airplane’s
propeller velocity to keep the flight speed constant. Wall avoidance is implemented
through the front camera module shown in figure 4.2c. This module contains a standard
linear camera with 80 pixels from which as shown in figure 4.1b only the 20 pixels
with a visual field of view between -30◦and -60◦(left side of airplane) and those 20
pixels between 30◦and 60◦(right side of airplane) are read by the microcontroller. The
microcontroller which is running as well the flight controllers, computes two separate
optical flow values OFR and OFL for the camera pixels pointing to the left and right
using a linear version of the image interpolation algorithm by Srinivasan (1993, 1994).
From the observations in section 2.3 we know that only the translational component of
the total optical flow detected by the camera will contain information about wall distance.
So Zufferey et al. (2007) subtracted the measurements of a rate gyroscope attached to
the camera module as shown in figure 4.2c from the two optical flow values OFR and
OFL. The difference of the remaining translational optical flow components TOFR and
TOFL called OFDiv is then used to control the airplane’s rudder. The implemented
controller leads to the following behavior: If the translational optical flow detected on
one side of the airplane which due to the constant speed of the airplane is inversely
proportional to wall distance (see section 2.3) is above a threshold the airplane will
steer towards the opposite direction and turn away from the wall.

I found this airplane by Zufferey et al. (2007) very impressive to work with. For a long
time it seemed technically too difficult to allow such a low-weight flying platform to be
equipped with sufficient sensors to perform automatic wall avoidance. Autonomous
flight of this airplane has been demonstrated in a 7m x 6m room with random high-
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Figure 1: MC2 microflyer. The on-board electronics consists of (a) a 4mm geared motor with a

lightweight carbon fiber propeller, (b) two magnet-in-a-coil actuators controlling the rudder and the

elevator, (c) a microcontroller board with a Bluetooth module and a ventral camera with its pitch rate

gyro, (d) a frontal camera with its yaw rate gyro, (e) an anemometer, and (f) a Lithium-polymer battery.

to rate gyros, and different types of hairs all around the body enabling airflow sensing [16–19]. Therefore,
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(b) Top view schematic.

Figure 4.1: (a) Picture of the airplane by Zufferey et al. (2007) and (b) a top view
schematic. Figures (a) - (b) are adapted from Zufferey et al. (2007).
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Figure 5: Control scheme currently implemented on the MC2. Airspeed is regulated by means of

a proportional controller with an experimentally tuned anemometer set point and gain labelled Kv.

Steering control is based on the yaw rate gyro and OFDiv, which is provided by a vision processing

routine (see text for more details). Ks allows to adjust the gain of the steering regulator, whereas

Kd is intended for tuning the effect of OFDiv on the steering behaviour and thereby regulating how

far the MC2 flies from the surrounding obstacles. The parameters (set point and 3 gains) have been

experimentally adjusted.

3 In-flight Experiments

3.1 Control Strategy

At this early stage, the goal was to enable the MC2 to fly in a textured room, regulate its own airspeed

and avoid crashing into the surrounding walls. This is achieved without relying on off-board resources

7

(a) Controller.

Figure 6: Our 7x6-m experimentation room for indoor aerial vision-based navigation. Left: Arrangement

of the 8 projectors hanging from the ceiling, each projecting on the opposite half-wall. Note the dashed

pyramidal outline showing as an example the zone illuminated by the left-back projector. Right: Picture

of the interior of this room with a random checkerboard pattern being projected.

3.3 In-flight Experiments and Results

We present two experiments where the MC2 fitted with the control strategy previously described is

started from the ground of our experimentation room and must steer autonomously while regulating its

airspeed. The only difference between the two experiments is the type of projected texture. In the first

experiment, randomly distributed black and white stripes are used, whereas in the second one a random

black and white checkerboard pattern is projected (Fig. 7). This latter texture is more difficult from

the perspective of OF estimation because rolling and pitching movements of the plane can dramatically

change the visual content from one image acquisition to the next. However, at this preliminary stage,

the goal of these two experiments is not to systematically investigate effects of different visual textures

or control parameters, but rather to demonstrate partially autonomous operation of the MC2 as a proof-

of-concept. A video clip corresponding to these experiments is available for download from the project

website (http://lis.epfl.ch/microflyers).

These experiments were carried out several times with the same control strategy and the MC2

demonstrated good robustness with both kinds of visual textures meaning that it could fly for up to 10

minutes without crashing. Fig. 7 shows a subset of flight data recorded during the first 25 s of the flight

when the robot takes off, climbs, and levels off. During those 25 s, the MC2 travels approximately 4

times around the room.

The bottom graphs of each experiment (Fig. 7) show the motor power settings and anemometer

readings over time. At the beginning, one can easily distinguish when autonomous control is initiated

since it corresponds to the moment when the motor power rises from 0% to 100%. The anemometer then

reacts to the plane’s acceleration. After one or two seconds the plane reaches its cruising altitude and

the human pilot levels it off with a slight push on the joystick. The motor power is then automatically

adapted according to the anemometer readings.

Fig. 7 also shows the signals related to steering control, i.e., OFDiv and yaw rate gyro. A quick

inspection of the gyro signal indicates that the MC2 is flying in leftward circles and continuously adapts
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(b) Experimental room.
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Figure 2: The 0.9-gram camera module with integrated piezo rate gyro. Left: The entire module,

viewed from the lens side, with the rate gyro (Analog Devices, Inc. ADXRS150) soldered underneath

the 0.3-mm printed circuit board (PCB). Right: The same module is shown, but without its black

plastic cover, in order to highlight the underlying 1D CMOS camera (TAOS, Inc. TSL3301) that has

been significantly machined to reduce size and allow vertical soldering on the PCB.

by the fly’s eyes), two rate gyros for yaw and pitch rotational velocity measurements and an anemometer

for airspeed estimation.

As further described in Section 3, vision is a prerequisite for computing image velocity - the so-called

optic flow (OF) - and together with the gyroscopic information enables rough estimations of distances

from surrounding obstacles. Therefore, we developed miniature camera modules each equipped with a

piezo rate gyro. In order to fit the limited amount of available computational resources and be capable

of acquiring images at high speed (>20 Hz), we selected 1D black-and-white CMOS cameras (Fig. 2)

instead of more conventional 2D color cameras that require significantly greater amounts of memory

and relatively complex interfaces.

One of these camera modules is oriented forward with its rate gyro measuring yaw rotations1. The

second camera module is oriented downward, looking longitudinally at the ground, while its rate gyro

measures rotation about the pitch axis. Each of the cameras have 80 active pixels spanning a total FOV

of 120◦. Only the 20 pixels close to either side of the image are used by the control system at this stage

(see Section 3 for further details).

The MC2 is also equipped with a custom-developed anemometer (Fig. 3) consisting of a free-

rotating propeller driving a small magnet in front of a hall-effect sensor in order to estimate airspeed.

This anemometer is placed in a region that is not blown by the main propeller. The frequency of the

pulsed signal output by the hall-effect sensor is computed by the microcontroller and mapped into an
1Note that in previous experiments with a larger airplane [7], we used two 1D cameras looking forward, each one

oriented at 45◦ off the forward direction. The new vision module has a wider FOV so that only one camera is required to

span the same regions that were previously covered by these two cameras. This has been made possible by changing the

optical diaphragm while using the same low-cost plastic lens [20].

5

(c) Camera module.

Figure 4.2: (a) Controller implemented on the airplane for speed control and wall avoid-
ance. (b) Experiments have been carried out in a 7m x 6m room equipped with 8
projectors that can project arbitrary pictures at the walls. (c) 0.9-gram camera module
containing an off-the-shelf linear image sensor (TSL3301 from TAOS, Inc) in a custom
plastic package and a rate gyroscope (ADXRS150 from Analog Devices Inc) for com-
pensation of rotational optical flow. Figures (a) - (c) are adapted from Zufferey et al.
(2007).

contrast black and white checkerboard patterns being projected onto the walls (see
figure 4.2b). Maneuvering in such a small space is challenging with an airplane that
cannot hover like a helicopter. The airplane successfully autonomously turns away
from walls that are too close but still requires a human-in-the-loop for altitude control.
This is because airplanes typically tend to roll when turning - by this loosing altitude
during the maneuver that needs to be regained after each turn. With its limited sens-
ing capabilities, the airplane by Zufferey et al. (2007) is not able to control its altitude
autonomously and thus requires a human for altitude correction.

A drawback of the light-weight construction is that the airplane can only carry little
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payload and is relatively fragile - making it difficult to use in scientific experiments.
During experiments I found that the airplane breaks easily when crashing into walls -
requiring repair -, needs quite some training to be controlled by a human and can only
fly when there is very little air turbulences like wind.

A further limitation is the used camera module. Due to its limited capabilities the air-
plane performs well only with high-contrast stimuli and good background illumination.
So I believe that the airplane could take great benefit from replacing the linear camera
a custom aVLSI optical flow sensor that works with low-contrast stimuli, under a variety
of background illuminations and that frees the microcontroller from the computationally
expensive task of reading local pixel values from the camera and computing the optical
flow values.

Nevertheless, the presented level of autonomy and the successful demonstration of wall
avoidance with such minimalistic control and light-weight sensors make the airplane a
great success.

4.2 Obstacle avoidance with outdoor airplane and 7 op-
tical mouse sensors

In 2009 our colleagues from the Laboratory of Intelligent Systems at EPFL presented a
fully autonomous outdoor airplane that only relied on gyroscopic information and optical
flow extracted by seven off-the-shelf optical mouse sensors (Beyeler et al., 2009).

The airplane presented by Beyeler et al. (2009) is a modified flying Swift wing shown in
figure 4.3a (Leven et al., 2009). The flyer has a wing span of 80cm and a total weight
of 407g. What makes the flyer interesting for flight control is that it is neutrally stable in
roll and pitch. After a disturbance around the roll or pitch axis the flyer will not continue
rotating but continue translating in the direction reached due to the disturbance.

To keep the airplane’s velocity close to 14m/s, Beyeler et al. used a differential pres-
sure sensor (MPXV5004DP from Freescale) for speed control. Furthermore, three rate
gyroscopes (ADXRS610 from Analog Devices Inc.) were mounted for derotation of the
optical flow estimated by the optical mouse sensors to extract only the translational
distant-depended component of the total optical flow. All computation was done on-
board with a 40MIPS dsPIC microcontroller from Microchip. For optical flow estimation
Beyeler et al. added an array of seven optical mouse sensors. See figure 4.3b for a
picture of a single 0.8-gram optical flow sensor based on the ADNS-5050 off-the-shelf
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(a) Airplane.

(b) Optical mouse
sensor.
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Fig. 17 Altitude profiles of the simulated platform. The platform was
released at various altitudes with zero speed and level attitude. Eleven
profiles are represented for flights starting at altitudes ranging from 10
to 60 m, with intervals of 5 m. After an initial altitude drop of approx-
imately 5 s, occurring while gaining speed, the control strategy steers
the aircraft to a stable altitude of approximately 40 m irrespective of
the initial starting height.

of 40 m irrespective of the initial height. Note that this cruise
altitude is not explicitly regulated. Rather, it results from the
equilibrium between the nose-down trim and the tendency
to avoid the ground. The resulting cruise altitude can be ad-
justed by tuning the pitch control gain and the pitch bias.

It is important to notice that the accurate regulation of
both attitude and altitude implicitly derives from a control
strategy originally designed for obstacle avoidance. Neither
attitude angles nor altitude are explicitly estimated nor mea-
sured. Rather, flight stabilisation emerges from the interac-
tion between the ground and the avoidance behaviour that
strives to keep obstacles in the ventral region of the aircraft.
This contrasts with the typical regulation strategies used by
classical autopilots that require explicit estimation of the 6
degree-of-freedom state of the aircraft, at the cost of expen-
sive sensing and processing systems. Contrary to classical
autopilots, optiPilot regulates altitude with respects to the
ground. On irregular terrain, the resulting behaviour corre-
sponds to ground following, as illustrated by the videos in-
cluded in the supplementary material.

5.3 Flight stability with the real platform

As an initial set of validation experiments with the real air-
craft, we tested the ability of the control strategy to stabilise
flight and reject disturbances when flying over flat terrain.
Due to technical constraints (limitations of the I/O on the
current embedded electronics), we could only implement 7
optic flow sensors. We chose to keep the eccentricity and
inter-azimuthal angles to the value of θ̂ = 45° and ψ̂ = 30°,
which lead to the best performance in the simulated urban-
link environment (section 5.1), and implemented only the
bottom half of the sampling circle. This means that the 7 op-

Fig. 18 Close-up view of the vision system made of 7 optic flow sen-
sors (see Fig. 10). The viewing directions are pointing to each side as
well as below the aircraft, with an eccentricity angle of θ̂ = 45° and
azimuthal angles of ψk = 90°, 120°, 150°, 180°, 210°, 240° and 270°
(ψ̂ = 30°).

Table 2 Parameter values used in the experiments with the real plat-
form.

Parameter Value

pitch gain ξ P 8.1

roll gain ξ R 8.1

pitch weights wP
k according to (4), k = 3 to 9

roll weights wR
k according to (5), k = 3 to 9

pitch bias -25%

airspeed set-point 14 m/s

tic flow detectors were pointing towards each side as well
as below the aircraft, as shown in Fig. 18. Natural outdoor
environments typically display a strong anisotropy as obsta-
cles are mostly on the sides and below a flying agent such
as our test platform. The lack of viewing direction pointing
above the aircraft should therefore not impair its ability to
stabilise flight. The other parameters used during the exper-
iments with the real platform were manually tuned in-flight
and are summarised in Table 2.

Fig. 19 illustrates how our control strategy rejects per-
turbations of the pitch angle during autonomous flight over
flat terrain. It shows data from several flights that were per-
turbed, at time t = 0, by applying a predefined sequence
of commands on the elevator (grey zone). In all cases, our
control strategy managed to recover to a stable pitch angle
within about 2 s, with variations of altitude below ±5 m.
Fig. 19 also shows the average optic flow perceived during
the experiments. In level flight, more optic flow is perceived
below the aircraft than on the sides, which is expected when
flying over a flat terrain. When perturbed upwards, the mag-
nitude of optic flow slightly decreases as the aircraft pitches
up and gains altitude. Inversely, when perturbed downward,
the magnitude of optic flow strongly increases, resulting in
a quick pitch-up reaction.

OptiPilot regulates the roll angle equally well. Fig. 20
shows data from several flights that were perturbed by ap-
plying, at time t = 0, full deflection of ailerons, leading to

(c) Sensor array.

Figure 4.3: (a) Modified Swift wing flyer with optical flow sensor array. (b) Single 0.8-
gram optical flow sensor consisting of off-the-shelf optical mouse sensor (ADNS-5050
from Avago) and custom optics based on the Philips CAX 100 collimator lens (f =
10mm). (c) Optical flow sensor array composed of seven sensors from (b) mounted on
wing flyer. Figures (a) - (c) are adapted from Beyeler et al. (2009).

optical mouse sensor from Avago and the Philips CAX 100 collimator lens and figure
4.3c for a picture of the sensor array.

The optical mouse sensors were arranged as shown in figure 4.4 so that two weighted
sums of the individual optical flow signals could be used for controlling the pitch and roll
of the airplane. The directions in which the optical mouse sensors were pointing were
chosen to roughly mimic the wide field of view and function of the vertical cells in flies
that are believed to estimate self-motion (see section 3.4 and Krapp et al. (1998)). For
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Fig. 3 A large field-of-view is desirable to detect potentially dangerous obstacles in front of the aircraft. (left) An example image taken with a
fisheye lens covering most of the frontal field-of-view. (centre) The image-plane coordinate system used throughout this paper. ψ ∈ [0;2π] is the
azimuth angle, with ψ = 0 corresponding to the dorsal part of the visual field and positive extending leftward. θ ∈ [0;π] is the polar angle. (right)
Perspective sketch of the spherical vision system. Note that ψ and θ completely define a viewing direction with respect to the optical and the
aircraft main axis.

taken, and how to combine them to generate control signals
for the aircraft. In order to reduce the sensory and compu-
tational requirements, it is desirable to keep the number of
measurements as low as possible. It also turns out that not
all the viewing directions in the visual field have the same
relevance for flight control. Directions pointing at θ > 90°
correspond to obstacles that are behind the aircraft and thus
do not require avoidance. For θ values close to 0 (i.e. close
to the centre of the visual field), the magnitude of the optic
flow measurements tends to zero because of the sin(θ) fac-
tor. Since the resolution of the vision system limits the pos-
sibility of measuring small amounts of optic flow, proximity
estimation is not reliable for small eccentricities. These two
limits (θ < 90° and θ > 0°) suggest that the area of interest
lies around θ = 45° (Fig. 4) where optic flow measurements
are relevant and reliable for controlling the course of an air-
craft.

To sample this domain of interest, we propose to mea-
sure µ according to (2) in N viewing directions along the
specific polar angle θ = θ̂ and with an inter-azimuthal an-
gle ψ̂ , as shown in Fig. 5. Formally, these viewing direc-
tions can be described by {(θk;ψk) | θk = θ̂ ,ψk = k · ψ̂,k =
0,1, ...,N−1}.

poor proximity
measurements

due to small optic-
flow amplitude

non-dangerous obstacles

non-dangerous obstacles

Fig. 4 Representation of the region where proximity estimates are both
reliable and relevant for obstacle avoidance. The original fisheye image
is faded to white outside this region.

Fig. 5 Possible sampling of the visual field by an hypothetical vision
system. N viewing directions are uniformly spaced on a circle at the
specific polar angle θ̂ . Each viewing direction is separated by an inter-
azimuthal angle ψ̂ . On this illustration, N = 12, θ̂ = 45° and ψ̂ = 30°.

Figure 4.4: Relevance of regions of the field of view for optical-flow based control of
the airplane. During normal flight the airplane is expected to generate translational
optical flow fields forming expansion patterns. Optical-flow estimates in directions with
an angle Θ̂ relative to the flight direction (center of the field of view) much smaller than
45◦ are thus expected to be of small amplitude. Obstacles in directions much greater
than 45◦ mean no threat to the airplane and are thus not relevant for the flight controller.
So Beyeler et al. placed seven optical mouse sensors pointing in the directions depicted
as black circles with Θ̂ = 45◦. The figure is adapted from Beyeler et al. (2009).

choosing the number of optical mouse sensors to be used Beyeler et al. (2009) had
to do a trade-off between the accuracy of the optical flow estimation and the payload
created by the additional sensors. As few sensors as possible were desired. Beyeler
et al. decided to place seven optical mouse sensors pointing in the directions depicted
as black circles in figure 4.4. Optical mouse sensors point in the direction with a polar
angle Θ̂ = 45◦ relative to the flight direction of the airplane which corresponds to the
center of the figure 4.4. As we know from the expansion patterns shown in figures
2.6a and 2.6b in section 2.3, we can expect the optical flow close to the center of the
field of view to be of small amplitude. This is why no optical mouse sensor pointed in
this direction. Since the aircraft typically only creates thrust it is very unlikely to expect
anything except expansion patterns after the derotation of the optical flow if only the
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aircraft is allowed to move but not the objects in its environment. Obstacles detected
at large angles Θ̂ relative to the direction of flight are considered to be irrelevant for
control since they would be no threat to the airplane. So Beyeler et al. found the angle
of Θ̂ = 45◦to be a good trade-off for placing the optical mouse sensors. Sensors were
only placed to look towards the ground and not towards the ceiling since the airplane is
flying outside and the sky is considered to generate only translational optical flow close
to zero.

When I had the chance to manually steer the wing flyer used by Beyeler et al. (2009)
I found it very stable and impressive to fly. The fact that it is neutrally stable and very
robust to external perturbations makes it very user friendly. After changing the airplane’s
pitch or roll angle the airplane stably proceeds flying on its new course. The OptiPilot
controller presented by Beyeler et al. (2009) successfully restores the pitch and roll
angles as well as the flight altitude after a manually caused perturbation to a given set-
point. Furthermore, the airplane was demonstrated to autonomously avoid sufficiently
big obstacle. I thus believe that this airplane is currently the state-of-the art in its field.

Beyeler et al. furthermore extensively tested the OptiPilot in simulation and generated
only 16 collisions in 7 hours flight. Fully autonomous long term flight experiments like
those in simulation have not been presented yet with the real platform. This might be
since it is technically challenging but also since the optical mouse sensors could easily
fail outside when confronted by non-ideal textures and lighting conditions which are not
tested yet. Since optical mouse sensors are typically optimized to deal with low contrast
under constant lighting conditions, they seem to be well suited to fly over low contrast
areas in daylight. From my experience the optical mouse sensors e.g. perform well
when looking at grass or trees.

4.3 Passing corridors with quadcopter and single cam-
era with fish-eye lens

Zingg et al. (2010) the presented an optical-flow based approach for safely maneuvering
a quadcopter through a corridor. The demonstration was not fully autonomous but
showed a different approach that the ones presented before in this chapter using a
camera with a wide field of view.

Zingg et al. (2010) modified the Hummingbird quadcopter by Ascending Technologies
(figure 4.5a) by adding a downward pointing µEye camera from IDS as shown in figure
4.5b at the bottom of the platform. Due to a fisheye lens the camera with a spatial
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II. RELATED WORK

The use of optical flow for obstacle avoidance is a

widespread approach. Many different obstacle avoidance

strategies rely on this phenomenon, which is often presented

as biologically inspired. Tammero et al. [4] showed that fruit

flies avoid obstacles when turning away from regions with

high optical flow, while Srinivasan et al. [5] found out that

honeybees flying through a tunnel try to balance the amount

of optical flow on both sides in order to maintain equidistance

to the flanking walls. Adapting these behaviors, Serres et al.

[6] developed an autopilot for lateral obstacle avoidance of

a hovercraft. Two linear cameras pointing ± 90° to the side

provided optical flow. By balancing the optical flow on both

sides, they made the hovercraft navigate in the middle of a

corridor.

Hrabar [7] used a similar method for lateral obstacle avoid-

ance of a rotorcraft flying in an urban environment. For depth

estimation, stereo cameras were used. However, stereo cameras

require heavier payload to the MAV, which actually should be

prevented. Nevertheless, single camera collision avoidance for

frontal obstacle is possible. Zufferey et al. [8], [9] implemented

such a system on a 10g microflyer. Using two linear cameras

for measuring optical flow, he computed the divergence of the

optical flow on the left and right side of the direction of travel.

Increasing divergence indicates a frontal obstacle which can

be safely avoided with proportional rudder deflection. This

system was successfully tested in an indoor environment that

was properly modified by adding bare-code-like texture on the

walls.

Similarly, Muratet et al. [10] used the optical flow field of

a perspective camera facing the direction of travel. In case of

a divergence of the field from one point, a frontal obstacle

could be detected. The point of divergence is called focus of

expansion. This situation allows us to compute the time to

impact onto the obstacle. If the time to impact falls below a

threshold, the controlled helicopter stops and executes a 180°

turn.

Besides lateral and frontal obstacle avoidance, altitude

control is another application of optical flow for controlling

MAVs. Ruffier and Franceschini [11] regulated the altitude of

a helicopter using two downward optical flow sensors. Similar

implementations have been done by Zufferey [9] and Green et

al. [12] who additionally implemented an autonomous landing

strategy. While keeping optical flow constant, speed is reduced

successively, causing the MAV to approach the ground and

finally touch down.

All the above mentioned approaches use optical flow as a

primary input. However, it is possible to use optical flow for

computing a depth map containing obstacles surrounding the

MAV. Based on this map, the desired waypath of the MAV

can be planned taking the detected obstacles into account.

Call et al. [13], [14] presented a method to detect obstacles

using a forward looking onboard camera. Distances were

measured based on optical flow amplitude and GPS data. A

three dimensional map provided a rough estimation of the

Fig. 1. The Hummingbird quadrotor helicopter provided by Ascending
Technologies.

Fig. 2. The µEye camera with a 190° lens recording monochrome pictures
from the surrounding of the helicopter. It is pointing downwards onto the
ground.

obstacle locations. The fixed wing MAV then used a sliding

mode control law to avoid obstacles.

From this brief literature review we can see that many

different techniques for obstacle avoidance based on optical

flow have been realized so far. The focus is laid on approaches

using optical flow as control input. Such systems can be

applied in special environments only. Whereas, depth map

based navigation would allow to navigate flying robots in a

more complex indoor environment.

III. EQUIPMENT

A. Flying Platform

Our MAV is the Ascending Technologies Humming-

bird1(see Fig. 1), a quadrotor helicopter having an overall di-

ameter of 53 cm and a payload of 200 grams. The operational

flying time varies between 23 minutes without payload and 12

minutes with full payload. Additionally, the MAV is equipped

with a fully working Inertial and Measurement Unit (IMU)

providing information about the pitch, roll, and yaw angle

of the helicopter. Furthermore, its built-in controller allows

us to regulate the overall thrust, angular positions of pitch

and roll angles, and the angular speed of the yaw angle. For

communication purposes, a ZigB communication board allows

us to send control inputs to the helicopter and to grab IMU

data.

B. Camera

As for the camera, we used the µEye camera (see Fig. 2)

from IDS2. The resolution of this monochrome camera is

1http://www.asctec.de
2http://www.ids-imaging.com/
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(b) Camera. 6

Fig. 8. The MAV within the corridor. Depth estimation is done on both sides. Based on this, the error towards the corridor’s center is calculated. On each

side approximately 250 distances are estimated. ~DR indicates all distance vectors pointing right, while ~DL indicates all distance vectors pointing left.

Fig. 9. Comparing the error of the MAV towards the center of the corridor (marked with a thin black line), computed by the depth map based algorithm
and using ground truth measurements.The walls of the corridor are marked with thick black lines.
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Fig. 10. Flow chard of the algorithm.

V. EXPERIMENTS

To check the functionality of the introduced error estima-

tion, tests have been performed using real data.

A. Test Setup

Since the algorithm is optimized for use in a corridor, the

chosen test-area is an indoor corridor having a width of 2.5m
and a height of 3m. The walls were already heavily textured.

No additional features or special illumination were used to

improve the performance of feature tracking and optical flow

calculation.

The helicopter was flown manually by remote control,

while the proposed algorithm was used for successive error

estimation. The estimated error, computed by our algorithm,

was then compared with the real ground truth error.

B. Test Results

C. Controller Simulation

The error based on ground truth measurements and cal-

culated by our algorithm can be seen in Fig. 9. At a first

glance, we can notice a correlation between the ground truth

error and the error based on depth map calculation. However,

the computed error seems to be very noisy and can have a

deviation of up to a quarter of the corridor width.

Having a closer look, the following parameters can be

observed:

• average deviation: 0.146 ≈ 7.3%

(c) Schematic of quadcopter flying in corridor.

Figure 4.5: (a) Hummingbird quadcopter by Ascending Technologies used during the
experiments. (b) µEye camera from IDS mounted on quadcopter. (c) Schematic of the
quadcopter flying through a tunnel. For optical flow computation Zingg et al. (2010) only
used two 80◦-patches from the overall camera’s field of view pointing to the left and the
right of the quadcopter. Figures (a) - (c) are adapted from Zingg et al. (2010).

resolution of 752 x 480 pixels and a frame rate of 87 frames per second had a field of
view of 190◦. For extraction of optical flow Zingg et al. (2010) used two 80◦-patches
from the total field of view that were used to estimate the wall distance of the corridor
on the left and right side of the quadcopter. Due to the high computational cost of the
optical flow calculation from the camera images, images from the patches were send to
an external computer with a 2-GHz CPU via a wireless ZigBee communication link.

Zingg et al. (2010) computed optical flow from consecutive camera frames at 20 Hz
using Shi and Tomasi’s corner finder (Shi and Tomasi, 1994) for selecting pixels in frame
1 and the Lucas-Kanade method (Lukas and Kanade, 1981; Bouguet, 2001) for finding
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the corresponding pixels in frame 2. On average 250 optical flow component have been
calculated for the left and right 80◦-patches and for each pair of frames. An on-board
Inertial Measurement Unit (IMU) was used to remove the rotational component of the
computed total optical flow and to form two relative depth maps from the translational
optical flow extracted from the left and right side of the quadcopter. For conversion of the
deformed images due to the fish-eye lens Zingg et al. used a self-developed toolbox
for calibrating omni-directional cameras (Scaramuzza et al., 2006). Furthermore, the
calculated optical flow components are inspected for outliers to remove wrong matches
in the Lucas-Kanade method.

Zingg et al. (2010) did not demonstrate autonomous optical-flow based flight control but
instead showed data where they manually made the quadcopter fly through a corridor
and compared the estimated to the actual externally measured wall distances. The
computed error of the estimated distance was very noisy and could have a maximum
deviation from the ground truth of about a quarter of the corridor width. The fact that
Zingg et al. (2010) used a fisheye lens to generate an optical flow sensor with a wide
field of view corresponding to a virtual array of on average 500 optical flow sensors
made the publication interesting to present and to compare with.

4.4 Conclusion

An overview of properties of the presented optical-flow controlled MAVs can be found in
table 4.1. In summary one can state that the so far most successful implementations of
optical-flow based control have been presented on airplanes but attempts and demon-
strations of optical-flow based altitude control have been shown as well on helicopters
(Netter and Francheschini, 2002; Ruffier and Franceschini, 2004, 2005, 2008). More re-
cently quadcopters have as well become popular research demonstration tools (Zingg
et al., 2010). The success of airplanes is to some extend due to their well understood
flight properties with limited amount of degrees of freedom. It is for example easier to
control an already passively stable airplane where only thrust, roll and pitch need to be
controlled than a passively unstable quadcopter that typically drifts and has six degrees
of freedom (thrust, slip, lift, roll, pitch, yaw). Nevertheless when the stability problem
is solved helicopters and quadcopters are interesting research platforms that can fly
both very slowly and fast indoors and outdoors and that are capable of carrying lots
of payload. An example for a commercially available quadcopter with inertia sensors,
ultra-sonic distance sensors and image processing is the AR.Drone from Parrot. Due
to multi-sensor fusion the AR.Drone is actively stabilized. Especially due to its image
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Table 4.1: Comparison of properties of optical-flow controlled MAVs presented in this
section.

Indoor airplane by Outdoor airplane by Quadcopter by
Zufferey et al. (2007) Beyeler et al. (2009) Zingg et al. (2010)

Optical flow linear camera array of 7 optical camera with
sensor mouse sensors fisheye lens

Total size 37 x 36cm 80cm wingspan Ø53cm

Total weight 10.3g 407g unknown

Payload <2g >50g 200g

Sensor weight 0.8g 7 x 0.8g = 5.6g >20g

Flight speed 1.5m/s 14m/s unknown for experi-
ment (50km/h max)

Optical flow Image Interpolation unknown/integrated in Lucas-Kanade
algorithm Algorithm optical mouse sensor method

Processor 32MHz/10MIPS 80MHz/40MIPS 2GHz dual core
on-board on-board off-board

Wireless Bluetooth 2.4 GHz Digi XBee- ZigBee
interface PRO radio-link

processing that as well involves optical flow estimation the AR.Drone is relatively sta-
ble and especially works well when its bottom camera sees high contrast patterns and
when it is operated on flat terrain. However, when flying over uneven terrain in terms of
stability the wing flyer used by Beyeler et al. (2009) is still outperforming.

For the measurement of optical flow standard cameras are still the most dominant
the presented examples have been selected because they demonstrate tree different
techniques to gather the necessary global optical flow measurements for successful
control of the MAV. The most minimalistic approach so far is the estimation of two optical
flow measure for obstacle avoidance on the left and right side of the airplane with a
single linear camera presented by Zufferey et al. (2007). However, this approach does
not allow for autonomous altitude control. More typical approaches involve a standard
camera in combination with a wide-angle fisheye lens like presented by Zingg et al.
(2010). Due to the typically more heavy optics of fisheye lenses this approach cannot
be taken by very light-weight MAVs but in terms of space and weight there is a certain
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trade-off between the use of a wide-angle lens and several cameras with small-angle
optics. In 2007 Soccol et al. presented another approach to measure global optical
flow with a standard camera and a specially shaped mirror that projects the perceived
images onto the camera in a way that is advantageous for estimation of optical flow.
The mirror approach is the most heaviest presented in this section and so far it was
shown that optical flow could be measured on an outside airplane but no autonomous
control has been presented (Srinivasan et al., 2009, 2011). The most autonomous
optical flow controlled MAV presented so far is the wing flyer by Beyeler et al. (2009)
since it performs both obstacle avoidance and altitude control.

This thesis is part of a project founded by the Swiss National Science Foundation (grant
number: 200021-105545/1) in collaboration with the Laboratory of Intelligent Systems.
As part of this project the indoor airplane by Zufferey et al. (2007) had been selected
as the reference target flying platform for the development of the optical flow sensors
presented in this thesis since it was the most autonomous optical flow controlled MAV
at that time. The presented optical flow sensor modules (chapters 9 and 7) have been
optimized for operation on this airplane.

Zufferey et al. (2007) have successfully demonstrated that for such airplanes linear
cameras or optical flow sensors can be sufficient. Two-dimensional sensors are
not necessary. Also the airplane by Beyeler et al. (2009) could be operated with linear
sensors. As presented in chapters 9 and 7 such linear sensor arrangements are of
advantage for the design of the sensors’ layout since one can place a one-dimensional
array of narrowly spaced photodiodes supporting good spatial resolution of the sensor
with the circuits for optical flow computation on the side.

Non-negligible remains for optical-flow based MAV control the high computational
cost for optical flow computation. This cost forces MAV designers still to preform
the computation of optical flow off-board on an external PC when using cameras of
higher resolution as for example presented by Zingg et al. (2010) or when using more
demanding flight controllers. The minimalistic approach by Zufferey et al. (2007) stays
an exception in the literature. The use of several dedicated optical flow sensors like the
optical mouse sensors presented by Beyeler et al. (2009) has the advantage that these
optical mouse sensors already take care of the full image processing directly outputting
the optical flow estimates. However, using fixed optical mouse sensors can be very
limiting since customization is almost impossible. This is why this thesis is targeting
at the design of custom optical flow sensors that partially or fully handle the image
processing, thus reducing the need for additional computational resources - allowing
for the integration of the entire control and vision system on the MAV.
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An advantage of the specialized optical flow sensor modules is their design aiming
at applications in low contrast environments with a large deviation of background
light intensity. This combination is not typical for standard camera or standard optical
mouse sensors but is one of the limiting factors for the application of MAVs in a variety
of challenging natural and indoor environments which so far has not been demonstrated
by autonomously flying MAVs. In fact artificial high contrast pattern like those presented
by Zufferey et al. (2007) or simple black-and-white stripes are the most dominant stimuli
used in the literature so far. The airplane by Beyeler et al. (2009) flying outside while
using natural stimuli is still an exception.





Chapter 5

A short introduction to analog VLSI
technology

Abstract

This chapter gives a short introduction to analog Very Large Scale Integrated (aVLSI)
technology to allow a non-chip designer to understand the circuits described in the
following chapters and to give some insights into the challenges of aVLSI chip design in
general. aVLSI technology allows the integration of several million devices on a single
chip within a few square millimeters and thus for the design of small, light weight, highly
integrated sensors and computing devices. The term ”analog” in aVLSI refers to the fact
that one is not using circuits to only form digital systems but that one uses the analog
transfer function of the basic devices in this technology.

This chapter is not intended to be a complete handbook for chip design. For more
detailed information about aVLSI chip design, see for example, the book ”Analog VLSI:
Circuits and Principles” by Liu et al. (2002).

Section 5.1 gives a short introduction into the basic elements used for chip design:
transistors, capacitors and resistors. Section 5.2 discusses techniques to deal with
device mismatch caused by imperfections in the fabrication process of aVLSI chips
while section 5.3 discusses different types of circuit noise. Section 5.4 concludes this
chapter.
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Addressed questions

This chapter addresses the following questions:

1. What are the basic elements used in aVLSI technology and what are their prop-
erties? (section 5.1)

2. What is circuit mismatch and how can it be reduced or compensated? (section
5.2)

3. What are the types of noise in circuits? (section 5.3)

5.1 The basic elements for chip design: transistors, ca-
pacitors, resistors

This section introduces the three major devices in aVLSI circuits: transistors, resistors
and capacitors. The understanding of their basic properties is crucial for the design of
aVLSI sensor like optic flow sensors.

5.1.1 CMOS field effect transistors

”Transistor” is a generic term describing a solid-state device with three or more termi-
nals. In the circuits described in this thesis, I use so-called Metal Oxide Semiconduc-
tor Field Effect Transistors (MOSFET). The MOSFETs’ layout structure and schematic
symbols are shown in figure 5.1. MOSFETs are devices with four terminals: source,
drain, gate and bulk.

The term ”Semiconductor” in MOSFET stands for the fact that MOSFETs electrically
can both behave like conductors and insulators. The term ”Field-Effect Transistor” (FET)
refers to the MOSFETs’ property that the electric field between the MOSFETs’ gate (G)
and source (S) terminal modulates the amount of current that is flowing from the source
(S) terminal through the MOSFETs’ channel to the drain (D) terminal. For a small gate-
to-source voltage (VGS) only a small current (IDS) in the range of femto to microamperes
flows between source and drain. For high VGS, a channel is formed between source and
drain and IDS can be in the range of several hundred microamperes.

The term ”Metal Oxide” in MOSFET describes the thin insulation layer composed of a
metal oxide that insulates the MOSFET’s gate from its channel. In contrast to bipolar
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a.) top view

b.) sectional drawing

c.) symbol
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Figure 5.1: Layout, structure and symbol of nFET and pFET.
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nFET pFET

n well

gate gate

p− substrate

oxid

Figure 5.2: 3D schematic of nFET and pFET layout integrated on same substrate in
CMOS technology.

transistors in MOSFETs, no current flows into the MOSFET’s gate. This is one of
the reasons why MOSFETs consume much less power than bipolar transistors making
MOSFETs suitable for very large scale integrated systems. The term ”Metal Oxide” is
nowadays not fully correct anymore since in more modern fabrication processes like
the ones being used for chips described in this thesis the metal oxide insulator is being
replaced by an insulator composed of silicon dioxide (SiO2). The term ”Metal Oxide”
refers to the time of the first MOSFETs where the insulator was still fabricated from
aluminum.

FETs were first conceived by Lilienfeld who filed a patent in October 1926 which was
granted in 1930 (Lilienfeld, 1930). However, it took until 1959 when Atalla and Kahng
built the first working insulated-gate field-effect transistor at Bell Labs. Kahng filed a
patent describing their invention in 1960 which was issued in August 1963 (Kahng,
1963). Several implementations of MOS transistors followed like the MOS-controlled
tetrode by Sah (1961) and a 16-transistor integrated device by Hofstein and Heiman
(1963).

A reason why mass production of VLSI chips became feasible was the development
of the Complementary Metal Oxide Semiconductor (CMOS) technology (Wanlass and
Sah, 1963; Wanlass, 1967) that allowed the design and fabrication of digital circuits
that consume power close to zero in standby mode. The term ”Complementary” in
CMOS refers to the fact that the technology allows the fabrication of two different kinds
of complementary transistors on the same chip: n-channel FETs (nFET) and p-channel
FETs (pFET) . In nFETs the majority carriers are negatively charged electrons that flow
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from most negative terminal (source of nFET) to most positive terminal (drain of nFET)
through the nFET’s channel. The majority carriers of pFETs are positively charged
holes that flow from most positive terminal (source of pFET) to most negative terminal
(drain of pFET) through the pFET’s channel. Figure 5.1 shows layout, structure and
symbols for both nFET and pFET. Figure 5.2 shows a 3-dimensional view of an nFET
and pFET integrated on the same substrate. The graphics visualizing the transistors’
structures show that the transistors’ drain and source terminals are physically equal.
Just the potential that the terminals are connected to during the operation of the tran-
sistor defines which side of the transistors’ channel is called the source and which is
referred to as the transistors’ drain. The integration of both nFETs and pFETs onto
the same VLSI chip became possible by the fabrication step of wells that separate the
different FETs.

While in digital CMOS designs the MOS transistors are used as binary switches, analog
circuit designers make use of the analog properties of the MOS transistors. This is the
reason for the variety of analog functions that can be implemented with these devices.

Figure 5.3 shows simulation results of an nFET’s drain-to-source current IDS for chang-
ing gate-to-source voltages VGS while the drain-to-source voltage VDS of the transistor
is kept constant. Figure 5.4 shows how IDS varies with changing VDS for several con-
stant VGS values. The simulation was performed with a SPICE (Simulation Program
With Integrated Circuit Emphasis) simulator. The nFET’s simulation parameters were
chosen according to the AMS 0.35µm process that was used for the adaptive vision
sensor presented in chapter 9.

While the SPICE simulation software uses a more complex and accurate model of the
transistors’ behavior, we first consider a more simple first order model for the analytical
description of the circuits presented in this thesis. The derived circuit behavior from the
simple model is then verified through the SPICE simulations.

To first order, four different operating regimes of transistor can be distinguished. We
first distinguish between the subthreshold regime where the transistor current, IDS, is
due to diffusion of carriers from source to drain. This current is exponentially dependent
on VGS. In the above threshold regime, IDS is due to drift of carriers. This current is
quadratic in VGS. For both subthreshold and above threshold regimes, the operating
regime can be subdivided again into a triode / linear region where IDS is dependent
on both VGS and VDS, and a saturation region where IDS is independent of VDS and
dependent only on VGS.

Equations describing the first-order behavior of nFETs and pFETs in the four regimes
are shown in tables 5.1 and 5.2, respectively.
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(b) Dependence of drain current on gate voltage of nFET (logarithmic plot)
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(c) Dependence of drain current on gate voltage of nFET (square root plot)
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Figure 5.3: Characteristic curve of an nFET for changing gate voltage VGS and different
drain voltages VDS. The transistors width and length are 0.6 µm. Data taken from
SPICE simulations with Tanner Tools.
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Figure 5.4: Characteristic curve of an nFET for changing drain voltage VDS and different
gate voltages VGS. The transistors width and length are 0.6 µm. Data taken from spice
simulations with Tanner Tools.

Equations (5.1) and (5.3) describe the nFET’s transfer function in the triode / linear and
saturation region of the subthreshold regime, respectively, where
I0 is the off-current and can be extracted from the place where the interpolated

exponential intersects the current axis in the IDS-VGS plot,
κ is a parameter describing the efficiency of the gate voltage VG in driving the chan-

nel and
UT is the thermal voltage.

The subthreshold regime is the linear part of the transfer function in the logarithmic plot
shown in figure 5.3b.
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Table 5.1: Regimes of transistor operation: nFET

Subthreshold /
Weak inversion

Above threshold /
Strong inversion

Triode/ Linear
region

IDS = I0e
κVG−VS
UT

(
1− e−

VDS
UT

)
(5.1)

IDS = β (VGS − VT )VDS (5.2)

Saturation
region

IDS = I0e
κVG−VS
UT (5.3) IDS =

β

2
(VGS − VT )2 (5.4)

Table 5.2: Regimes of transistor operation: pFET

Subthreshold /
Weak inversion

Above threshold /
Strong inversion

Triode/ Linear
region

IDS = I0e
−κVG+VS

UT

(
1− e+

VDS
UT

)
(5.5)

IDS = β (VGS − VT )VDS (5.6)

Saturation
region

IDS = I0e
−κVG+VS

UT (5.7) IDS =
β

2
(VGS − VT )2 (5.8)

The nFET’s transfer function in the triode / linear and saturation regions in the above
threshold regime can be described by the equations (5.2) and (5.4), respectively, where
VT is the threshold voltage, and
β is a parameter that relates the applied voltages to the drain-to-source current and

that can be calculated from the transistor’s width W , length L, oxide capacitance
COX and the charge mobility µ according to
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β = µCOX
W

L
(5.9)

The current is approximately a linear function of the gate and drain voltages in the triode
region as shown in figure 5.3a. In the saturation region, the current follows a square
law as shown in the linear part of the plot in figure 5.3c.

Although the equations for the nFET and pFET in the tables 5.1 and 5.2 are similar,
the parameters of the nFET and pFET are typically different for a fabrication process.
The mobility of the major carriers of pFETs is, for example, typically smaller than that
of nFETs.

Figure 5.3b shows the separation between subthreshold and above threshold opera-
tion. As can be seen in the figure for normal transistors, there is a smooth transition
between the two regimes of operation that is not reproduced by the first order model
that assumes an abrupt change at the threshold voltage. This threshold voltage can be
defined as the VGS value where the measured IDS is half of the current IDS extrapolated
from the exponential description in equation (5.3) (figure 5.3b). A model that includes
the transition between the two regimes is the EKV model (cite Enz, Vittoz’s paper).

The separation of the linear and saturation regions in the above threshold regime can be
seen in figure 5.4a. Note that the boundary between both regions is not only dependent
on VDS but also on VGS. One can roughly say that the transistor is operated in the linear
region when VDS < VGS − VT .

This variety of operation regimes of MOSFETs is the reason why analog circuit design-
ers are able to build a variety of circuits like analog multipliers, adders, subtractors,
linear and nonlinear filters, synapse circuits and integrate-and-fire neurons.

5.1.2 Capacitors

Capacitors are analog storage devices for charge. They can be physically implemented
by two conducting materials that are separated by an insulator. The fabrication pro-
cesses used for the aVLSI chips presented in this thesis allow for the implementation of
two types of capacitors: poly1-to-poly2 and MOS capacitors. Poly1-to-poly2 capacitors
are formed out of two polysilicon plates separated by oxide while MOS capacitors use
the insulation layer of the gate oxide. The two plates consist of the gate of the MOSFET
and the shorted source and drain of the transistor.

In general the capacitance C of any capacitor can be described as
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C =
Q

V
(5.10)

where Q is the amount of charge that is stored on the capacitor when a voltage differ-
ence V is applied to its terminals. From (5.10) one can derive an equation describing
the amount of current I flowing into or out of a capacitor as a function of V .

I(t) = C · dV (t)

dt
(5.11)

The capacitance C of a capacitor composed of two plane plates can be calculated as

C = ε · A
D

(5.12)

where ε is the permittivity of the insulator, A is the area and D is the distance between
the two plates.

Table 5.3: Capacitance of poly1-to-poly2 and MOS capacitors for AMS 0.35µm process.

Poly1-to-poly2 capacitor MOS capacitor
Capacitance [fF/(µm)2] 0.86 4.54

Table 5.3 shows the approximate capacitance per unit area values for poly1-to-poly2
and MOS capacitors in the AMS 0.35µm process that is used for the fabrication of
the sensor presented in chapter 9. The table shows that with the same area one can
achieve more than 5 times bigger capacitance by implementing the capacitor as a MOS-
FET instead of a poly1-to-poly2 capacitor. However, capacitors are better matched
by at least 1-2 decades over MOS capacitors (Minch et al., 1996). So the choice of
which technique is used to implement a capacitor is a trade-off between layout area
and matching requirements.

5.1.3 Resistors

Well-controlled resistors with high resistance are difficult to implement. They usually
occupy a large chip area and have high parasitic capacitance which limits their applica-
tion in high-frequency circuits. The AMS 0.35µm process supports the implementation
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of high resistance polysilicon structures with 1.2kΩ/Area. This structure is used in the
programmable bias-current generator circuit described in chapter 9.

There are various techniques to implement tunable resistors in the order of MΩ or GΩ

through the use of MOS transistor circuits that are for e.g. operated in the linear region
of the above threshold regime or translinear current mode circuits (Banu and Tsividis,
1982; Nay and Budak, 1983; Han and Park, 1984; Tsividis, 1986; Nagaraj, 1986; Singh
et al., 1989; Wang, 1990a,b; Wang and Guggenbuhl, 1990; Vavelidis and Tsividis, 1992,
1993; Sakurai and Ismail, 1993; Takagi et al., 1994; Sellami, 1997; Vavelidis et al.,
1997; Osa et al., 1998; Papazoglou and Karybakas, 1999; Tran and Wilamowski, 2001;
Ramirez-Angulo et al., 2005; Popa, 2007; Wee and Sarpeshkar, 2008). Unfortunately,
circuits emulating linear resistors can comprise ten and more transistors while lower
transistor count circuits that emulate resistors tend to suffer from nonlinear effects. Fur-
thermore, some MOS preudo-resistors do not work over the full voltage range of a
fabrication process and are limited to smaller voltage ranges (in the order of less than
2V in a 3.3V power supply process).

5.2 Mismatch in analog VLSI circuits

Copies of the same device or circuit on the same chip exhibits differences in their prop-
erties. These differences in properties are generated by slight variations in the fabrica-
tion process. The result is that if no compensation techniques are applied two circuits
having the same layout will generate different output signals for the same input sig-
nals. Fabrication mismatch can become a major challenge for the design of optic flow
sensors that are discussed in this thesis.

This section discusses the impact and causes of device mismatch in aVLSI (section
5.2.1) and shows strategies for mismatch compensation and reduction (section 5.2.2).

5.2.1 Impact, classification and causes of device mismatch in aVLSI

Device mismatch can cause implementations of optic flow algorithms in aVLSI tech-
nology to fail. Since the impact of device mismatch is not typically included in circuit
simulations (unless the designer carries out more simulations for e.g. using the Monte-
Carlo method), an implemented algorithm that works correctly in simulation can fail
when tested on the physical chip. Many of the optic flow algorithms that I discuss in
chapter 6 assume that all pixels of an optic flow sensor show the same behavior. With
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the presence of mismatch, these algorithms can - depending on the amount of circuit
mismatch - provide measurements that are not useable.

Mismatch is not only a problem for the circuits that compute optic flow but also for those
circuits that implement the phototransduction or imaging process where mismatch is
known as the so-called fixed-pattern noise (FPN) . In imagers FPN is typically mainly
caused by the mismatch of the local readout transistors in each pixel (Fry et al., 1970).

Mismatch models that allow the prediction of mismatch before fabrication can be found
in the literature (Shyu et al., 1982, 1984; Lakshmikumar et al., 1986; Pelgrom et al.,
1989; Forti, 1994; Pavasovic et al., 1994; Minch et al., 1996; Bastos et al., 1997;
Serrano-Gotarredona and Linares-Barranco, 1999a,b, 2000). The results of these in-
vestigations show that there are four different categories of mismatch:

1. The striation effect is a mismatch type that shows itself as a low-frequency sinu-
soidal variation of transistors properties in space.

2. The gradient effect is like the striation effect a spatial variation of device proper-
ties but of even lower frequency.

3. Random variations due to changes in transistor length, width, and other transis-
tor parameters during fabrication. These random effects are inversely proportional
to the square root of the transistors’ area (Pavasovic et al., 1994).

4. Edge effects form a class of mismatch that caused by differences in the edges
of a device. A long and skinny transistor might be less affected by random vari-
ations due to its large area. However the small width still makes it susceptible to
mismatch caused by deviations in the fabrication of the edges of its gate along.

To understand the causes for device mismatch one has to remember that the fea-
ture sizes of these devices are only in the order of nanometers to micrometers. These
devices are fabricated during a process containing several steps of photolithography,
etching, doping - a process used to form the nFETs and pFETs where impurities are
intentionally introduced into the silicon substrate through diffusion or ion implantation -,
and deposition. Since none of these process steps can be perfectly controlled at sub-
micrometer scales and since the fabricated structures undergo stress that can create
slight deformations and changes in material properties, imperfections in the fabricated
devices cannot be completely avoided. Furthermore, after fabrications due to parasitic
effects the elements influence each other through undesired electric coupling effects
such as parasitic capacitances at each node. Not all causes for device mismatch are
understood to an extent that would allow their precise prediction.
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5.2.2 Mismatch compensation and avoidance in aVLSI

Designers use various strategies to minimize these mismatch errors in VLSI circuits.
These strategies can be divided into two classes: static and dynamic approaches.

1. Static approaches try to minimize device mismatch by applying proper layout
rules during design. The mismatch effects can also be reduced through a one-
time calibration of the circuits after fabrication. These values are stored in an off-
chip look-up table and are subtracted from the pixel values during chip operation.

2. Dynamic approaches try to remove mismatch during operation by constantly
running feedback loops or by periodically interrupting normal device operation to
measure and store mismatch error values like offset errors or they try to avoid
mismatch by reusing one and the same device for different operations. A gen-
eral disadvantage of dynamic approaches is that they require the generation of a
clock signal that can cause additional noise. Furthermore, dynamic approaches
can limit the bandwidth of circuits. On the other hand they allow for constant
adaptation to circuit variations.

In the following sections I introduce a variety of static and dynamic approaches for
handling mismatch errors.

Layout considerations

There are several layout techniques that have been developed to reduce device mis-
match. I only give five examples. Many more approaches can be found in standard
textbooks.

1. The absolute value of the random mismatch error depends on the square root
of the transistors’ area (Pavasovic et al., 1994). So a static approach to reduce
the effect of mismatch is to increase the transistors’ width and length. How-
ever, since fabrication costs are closely linked to the layout area occupied by the
circuitry, this approach is costly especially for high-volume chip production.

2. To improve matching between devices that can be closely placed together, there
are additional layout techniques. If for example the transistors of a differential pair
should be well-matched, it is advantageous to place these transistors close to
each other using the same orientation (Liu et al., 2002) so that scatter effects
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during fabrication affect both transistors in a similar way. This approach is clearly
limited to circuits whose matched devices that can be placed closely in space.
This approach is not suitable for circuits whose transistors are distributed over the
whole chip like the pixel array of an optic flow sensor.

3. If one device should for example have twice the width of another device it is typ-
ically wise to create unity-size devices and make the bigger device from two of
that unity-size devices. Although this leads to an increase of layout space, that
way one can make sure that the one device really has twice the width of the other.

4. To avoid edge and surround effects the chip designer should try to make the sur-
round of the devices the same by placing so-called dummy devices. A dummy
device is a device that has the same shape and properties as the devices in the
array. Dummy devices can be single transistors or capacitors but also complete
pixels. For example the pixel array of my linear optic flow sensors is surrounded
by dummy pixels that have the same layout as the normal pixels but that are not
used as part of the optic flow computation. That way I ensure that all function-
ally used pixels are surrounded by neighboring pixels and suffer less from edge
effects.

5. Finally, better device matching can also be achieved by a proper choice of the
fabrication process and material for the implementation of a device. As mentioned
earlier, poly1-to-poly2 capacitors have better matching than MOS capacitors.

Proper layout considerations are usually the minimum of what should be considered to
reduce device mismatch.

Calibration with off-chip lookup tables

One approach for chip calibration is to measure the chip’s outputs Ô for a test set of
inputs I one time after fabrication. The measured outputs Ô can then be stored together
with the desired mismatch-free outputs O in a static lookup table. A lookup table is a
data structure that is widely used in computer science to replace a complex runtime
computation by simply retrieving a value from memory.

In theory, after building the lookup table the corrected desired chip output can be re-
trieved while operating the chip by searching for the stored output value O in the lookup
table for the measured error-prone chip output Ô. Practically, to limit the number of
data sets in the table one often cannot store values of O for all possible chip outputs
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Ô. Thus one would have to either find the closest entry for Ô or to perform some linear
interpolation between the closest entries.

The following conditions have to be fulfilled so that a lookup table can be applied for
mismatch compensation:

1. The lookup table approach is limited to bijective transformations between the mea-
sured chip outputs Ô and desired error-free output value O.

2. Ô is only allowed to be dependent on the current chip input I and not on previous
inputs or an internally unknown chip state.

Since the chip can usually not be operated during the calibration process the lookup
table is typically generated only once. However, if the chip changes its behavior over
time, for eg from aging, the calibration procedure has to be repeated periodically. In
any case the creation of the lookup table can be a time-consuming process when many
Ô - O pairs need to be tested. On the other hand if the chip’s output behavior is not
too complex using a lookup table for mismatch compensation is probably the technique
with the lowest overhead since it does not require additional on-chip circuitry.

Look-up tables are widely used for calibration of analog VLSI circuits. If the analog
circuits are integrated together with a microprocessor and the necessary analog-to-
digital converters in a so-called system-on-chip (SoC) on the same chip, the lookup
table can be stored in the flash memory or EPROM of that microprocessor and the
calibration can even be performed on-chip.

I use external look-up tables for the calibration of the dynamic optic flow sensor de-
scribed in chapter 7.

Mismatch compensation with on-chip nonvolatile memories

Another approach to compensate for device mismatch in aVLSI technology is the appli-
cation of on-chip nonvolatile memories like those available through floating gate tech-
nology. The goal of this technique is to cancel device mismatch by trimming the circuit’s
behavior after fabrication and storing mismatch compensation values on-chip.

In the 1980s Alspector and Allen (1987) suggested the use of floating-gate devices
for storing the analog weights of neural network devices. Floating-gate memories
were also used for storing analog weights in learning arrays (Diorio et al., 1997), for
cancellation of fixed pattern noise and compensation of background illumination in
CMOS imagers (Aslam-Siddiqi et al., 1998), for trimming digital-to-analog converters
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(Figueroa et al., 2001), for auto-zeroing input offsets in operational amplifiers (Hasler
et al., 2001) and for on-chip compensation of mismatch effects in analog VLSI neural
networks (Figueroa et al., 2004). We have used floating-gate memories for the calibra-
tion and nonvolatile storage of analog synaptic weights of aVLSI neural network circuits
(Moeckel, 2005; Liu and Moeckel, 2008).

On-chip nonvolatile memories have the advantage that they allow for local compensa-
tion of mismatch errors. This local compensation has the advantage that the errors do
not combine within the path of computation in a way that would make them impossible
to be removed afterwards because the precondition of a bijective transformation be-
tween error-prone and error-free output values is not fulfilled after the combination of
multiple errors.

The on-chip storage of compensation values can be implemented through memory
transistors that comprise a floating gate - a gate that is completely surrounded by an
insulator ensuring that no charge can leave the transistor’s gate during normal operation
of the transistor. The charge stored on the floating gate is updated taking advantage of
the two physical processes ”Fowler-Nordheim tunneling” (Lenzinger and Snow, 1969)
and ”Impact ionized hot-electron injection” (Sanchez and DeMassa, 1991).

Floating gate memory transistors can be implemented in standard CMOS technology
but they require some overhead: Both Fowler-Nordheim tunneling and impact ionized
hot-electron injection require supply voltages that are above those usually used during
normal operation of the circuits. Providing and working with these high voltages re-
quires great care during the design of the chip’s layout. The necessary infrastructure
to control the tunneling and injection process typically increases the required chip area
and thus reduces the fill factor of an optic sensor but it also causes additional overhead
in terms of off-chip electronics to generate the additional power supplies and control
signals. This overhead is the reason why we decided not to make use of floating-gate
transistors for the optic flow sensors and imagers presented in this thesis.

Correlated double sampling

Correlated double sampling (CDS) is a popular approach for the removal of undesired
offsets. CDS techniques are widely used in imagers but also in optic flow sensors for
removing fixed-pattern noise (FPN) (Mehta and Etienne-Cummings, 2003, 2004; Gruev
and Etienne-Cummings, 2004; Yang et al., 2006; Han and Yoon, 2006) as well as for
the removal of offset errors in operational amplifiers (Enz and Temes, 1996). The idea
behind CDS is to measure the output of a sensor twice in the same read cycle: First,
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the pixel output is measured right after reset. Then a second measurement after an
integration period of the pixel. The mismatch due to the readout transistor in the pixel
can be removed by subtracting the two measurements.

The fixed-pattern noise in active pixel imagers are mainly caused by the mismatch
between the local readout transistors of the individual pixels (Fry et al., 1970). One can
remove these offset errors through correlated double sampling as discussed above.

The circuit overhead for the CDS scheme in an active pixel imager is relatively low.
Since all pixels have to be reset anyway every time before a new image is taken, the
overall overhead is only the CDS circuit that does the subtraction of VOUT1 and VOUT2

as well as one single analog memory that stores VOUT1 of the pixel that is currently read
while VOUT2 is measured. If the pixels are read sequentially only one CDS circuit has
to be implemented for each column of a pixel array thus making this technique very
attractive for the removal of fixed-pattern noise in imagers and optic flow sensors. One
disadvantage of CDS lies in the fact that the whole pixel array needs to be read twice.
This reduces the imager’s bandwidth but does not need to cause a substantial decrease
of the frame rate when the readout time is much smaller than the exposure time - the
time that the pixels need to take an image.

Beside the particular voltage-mode CDS scheme described in the previous example,
other voltage-mode and current-mode CDS techniques have been described each hav-
ing their particular advantages and disadvantages. See the publication by Yang et al.
(2006) for a comparison between voltage and current-mode CDS schemes in aVLSI
CMOS imagers.

Time multiplexing

Sharing circuits through time multiplexing is another approach to avoid mismatch. The
idea behind time multiplexing is that if the circuits for two operations have to be well-
matched, then one could simply reuse one and the same circuit to perform the opera-
tions one after another. Since the same circuit is reused, the operations should not be
affected by circuit mismatch.

Time multiplexing techniques come with the additional requirement for switches, mem-
ory circuits and clock signals. However, they have the advantage that they allow to trade
off the circuit’s bandwidth against the chip area. If circuits that require a lot of layout
space are necessary on-chip, it can be advantageous to use only one such circuit and
to share this circuit by multiplexing in time at the expense of additional overhead in the
control circuitry.
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5.3 Noise

Besides mismatch, circuit noise has main impact on the quality of the outputs of any
aVLSI sensor. In comparison to mismatch, noise leads to variations in the current and
voltage outputs not only between two circuits of the same type but also in the output
of the very same circuit. Noise affects the outputs of a circuit in an unpredictable way
even when the inputs to the circuit do not change. There are different types of noise and
ways to deal with them. Some examples of noise that can be found in aVLSI circuits
are:

• Thermal noise can be observed in any conducting material including MOSFETs
and resistors. It is generated by thermal agitation of the charge carriers inside an
electrical conductor at equilibrium (Wikipedia, 2012a). Thermal noise is generated
even if no voltage is applied to the conductor. In an ideal resistor thermal noise
is approximately white. The root mean square voltage due to thermal noise vn,
generated in a resistance R over bandwidth ∆f , is given by

vn =
√

4kBTR∆f (5.13)

where kB is Boltzmann’s constant and T is the resistor’s absolute temperature in
kelvin (Wikipedia, 2012a). The thermal noise of an RC filter is given by

vn =
√
kBT/C (5.14)

where C is the capacitance of the RC filter. Interestingly, the value of the resis-
tance is removed in (5.14) since it is canceled when substituting the bandwidth in
(5.13) by the expression for the RC circuit - ∆fRC = 1/(4RC). This allows to re-
duce the effect of thermal noise in a circuit by adding a sufficiently large capacitor.

• Shot noise is a form of noise that is explained by the discrete nature of electric
charge carriers and photons (Wikipedia, 2012b). When light is collected by the
photodiode of an optical sensor, photons generate charge carriers in the photodi-
ode. If the number of photons per unit time is relatively small the current formed
by the charge carriers appears to be noisy following a Poisson distribution. This is
the case when the optical sensor is operated at low light intensities. At higher in-
tensities due to the large number of photons being collected the shot noise follows
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a Gaussian distribution. Similarly as thermal noise, shot noise can be observed
in any conductor but it requires a voltage to be applied that generates a stream of
electrically charged carriers.

• Any two conducting materials that are separated by an insulator form a (parasitic)
capacitor on an aVLSI chip. For examples two metal wires running on top of each
other or any metal wire running on top of the gate of an MOSFET form a capacitor.
If one electrode of a parasitic capacitor carries a signal of high frequency and
amplitude the signal on the other electrode will be affected by cross talk due to
capacitive coupling. To avoid coupling effects a chip designer typically tries to
minimize the area of overlapping wires and gates. Furthermore, separating digital
circuits and analog circuits has proven to be effective to reduce coupling effects.
Finally one should use low resistance metal wires connected to the power supply
to shield against capacitive couplings.

• Analog VLSI chips like optic flow sensors are typically designed with the assump-
tion that the power supply of the circuits remains constant and noise-free. Noise
on the power supplies has major impact on all circuits since it affects the oper-
ation of all MOSFETs. So special care has to be taken to supply all MOSFETs
on the chip with power using wires of low resistance. Furthermore, it is common
practice to split the power supply of MOSFETs being operated as digital switches
and those used for analog circuits and to place filters off-chip on the printed circuit
board that carries the chip. Nevertheless, a certain amount of noise on the power
supply - typically a few millivolt on a 3.3V supply - cannot be avoided.

In summary, special care has to be taken so that the implementation of an optic flow
algorithm in aVLSI technology does not fail because of circuit noise. Similarly as for
mismatch a circuit designer can apply several techniques to minimize the effect of circuit
noise but it is of great benefit if the chosen algorithm already shows some robustness
against noise.

5.4 Conclusion

This chapter gives a short introduction into the properties of basic devices in analog
Very Large Scale Integrated circuits. The chapter highlights the challenges for the
design of aVLSI chips such as device mismatch and circuit noise. Both effects can
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prevent a successful implementation of an optical flow algorithm into aVLSI technology.
The chapter describes several design techniques for dealing with these challenges.



Chapter 6

Evaluation of optical flow sensors for
autonomous robots

Abstract

This chapter presents evaluation criteria for VLSI optical flow sensors and algorithms for
autonomous robotic platforms - especially micro aerial vehicles (MAVs). Such platforms
require small, light-weight, and low power sensor modules and electronics and provide
limited computational power for processing sensory signals in real-time. This chapter
also presents an evaluation of existing VLSI optical flow sensors and their implemented
optical flow algorithms to identify promising candidates of optical flow algorithms for
VLSI sensors that can be used for micro aerial vehicles.

6.1 Sensor optics, pixel size, and fill-factor

The human eye can constantly adjust the focal length of its lens as well as the size
of its aperture and thus the distance at which objects are optimally projected onto its
photoreceptors in form of a sharp image.

In contrast to the human eye, bees and flies cannot vary the aperture and focal length
of their compound eyes. MAVs typically share this fixed optics constraints with insects
since they as well can only carry light weight optics which are usually of fixed focal
length. For these MAVs the distance at which the best quality optical flow is generated
has to be set before flight by selecting a lens that suits the optical flow sensor, the flight
controller and the MAVs flight properties. The MAVs controller and flight properties

73
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determine the object distance at which an MAV has to turn away from an object to
avoid a collision. Around this distance the optical flow has to be measured with best
reliability to avoid collisions with obstacles.
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Figure 6.1: (a) A thin lens generates a real image at the distance v that is a projection of
an object at the distance s. In this lens model the focal length of the lens, f , is the main
parameter that determines at which distance the image is sharply projected. (b) A lens
with fixed focal length f can only optimally focus objects at one fixed distance s. Points
closer or further away from the lens will not be projected in form of a sharp image point
but as a blurred spot with a diameter c - the so-called circle of confusion. The depth of
field gives the difference between the maximum (SF ) and minimum (SN ) object distance
that still leads to an acceptable c. The aperture d of a lens allows regulating the depth
of field for a lens with fixed focal length.

The distance where the sharpest image is generated on the surface of the sensor is set
by the focal length f of a lens. Figure 6.1a depicts the generation of an image from an
object by a thin lens. According to the well-known model of a thin lens a sharp image is
generated at the distance v from an object at distance s according to the law

1

s
+

1

v
=

1

f
(6.1)

from which can be concluded that all objects at a distance s much greater than f will
lead to images that are sharply projected at the distance v = f .
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A lens with a fixed focal length can only optimally focus objects at one fixed distance
while the image sharpness gradually decreases when objects at this optimal distance
move closer or further away from the lens (see figure 6.1b). The depth of field gives
the distance between the nearest (at distance SN ) and farthest (at distance SF ) objects
that still produces an acceptably sharp image. The depth of field of a visual sensor
system is influenced by the focal length, and f-number , F , of the lens

F =
f

d
(6.2)

- which decreases with the size of the lens’ aperture d increasing. The depth of field
furthermore depends on the maximum circle of confusion or image blur c that should
be allowed. A large depth of field is of advantage when objects at a large range of
distances should generate optical flow on the vision sensor. Under constant-speed
MAV control and in a stationary environment, a large depth of field is often not required
nor desired. Objects at distances that are too close to be avoided do not need to be
detected. Objects that are far away need not be detected so as to simplify the MAV’s
controller that should deal only with objects that are behaviorally relevant. MAVs that
vary their velocities or that do not fly in stationary environments require a larger depth-
of-field since the distance at which the MAV has to turn away from an obstacle varies
with the relative speed between the MAV and the obstacle that should be avoided.

Sensor

x

v = f

α

Figure 6.2: The field of view of a sensor pixel or entire sensor FOV = α depends on
the focal length of the lens as well as on the pixel or sensor size.

Besides the depth of field and optimal focal distance, the focal length of a lens also
influences the field of view of a vision sensor system (illustrated in figure 6.2). The
field of view can be defined both for a single pixel and the entire sensor area covered
with photoreceptors. The field of view of a single pixel sets the minimum size of a texture
feature that can still be resolved. The field of view of the entire sensor determines the
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maximum angle at which objects are still - but not necessarily sharply - projected onto
the surface of the photosensing area of the vision sensor. Since in MAV control the
focal length is typically set by other requirements, the field of view can only be further
adjusted by the sensor area covered with photoreceptors and the size of the individual
photoreceptors. The field of view, FOV , of a single pixel or entire sensor is

FOV = α = 2 · arctan
x

2f
(6.3)

where x is the size of the pixel or of the photosensing area of the sensor, respectively.

The weight of a vision sensor module increases with the diameter and focal length
of the lens. Since the distance between the vision sensor and the lens should be about
the focal length to allow sharp projections onto the sensor’s surface, a lens with a larger
focal length requires as well a larger and thus heavier mechanical lens holder. As a
result on MAVs the focal length cannot be chosen freely but is restricted also by the
maximum payload the MAV can carry. Only the lens’ aperture remains to set the depth
of field and thus the distances at which objects can still be detected. The weight of the
sensor module - the combination of vision sensor, lens and lens holder - furthermore
depends on the material of the lens. Typically for MAVs light weight plastic lenses are
preferred.

To allow the creation of a small and light weight optical flow sensor module for the
airplane by Zufferey et al. (2007) (see section 4.1 for a detailed description) a plastic
lens with a focal length of 2.43mm was chosen for the adaptive vision sensor presented
in this thesis (for detailed lens and sensor specification see section 9.1). The choice
was also motivated by the lens’ weight of 0.18g that led to a total weight for an optical
flow sensor module of about 0.3g.

For the desired properties of the optical flow or vision sensors suitable for flight control
of MAVs the restriction to lenses with small focal length and diameter lead to the fact
that sensors with small pixel size and high fill-factor (ratio of area occupied by the
photodiode to the total pixel area) are required to resolve small texture features. Sen-
sors with larger pixels require lenses with larger focal length to achieve a small field of
view for single pixels (which is essential to resolve small texture features) and lenses
with larger diameter to gain the same total field of view like a sensor with small pixel
size. Thus sensors with big pixel size lead to heavier sensor modules not only because
of the increased sensor size but also because they require larger lenses and lens hold-
ers. A large pixel field of view is not acceptable since the spatial resolution is a key
feature of optical sensor modules for allowing MAVs to leave well-controlled lab envi-
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ronments where walls and objects are covered with artificial high contrast patterns with
low spatial frequencies.

With the chosen lens the adaptive vision sensor presented in chapter 9 has a pixel field
of view of about 0.4◦. The sensor covers a field of view of about 66.7◦.

The pixel size requirements impact the choice of the sensor architecture and optical
flow algorithm. Since the circuits on a sensor are distributed on a 2-dimensional plane,
the implementation of complex optical flow algorithms can result in pixels with a small
fill-factor and large total area which then limits the number of pixels that can be placed in
a fixed chip area. Optical flow sensors found in the literature typical show pixel fill-factor
that vary between 2.5% to 10%.

Figure 6.3 depicts several options to increase a sensor’s spatial resolution for pixels
with a low fill factor at different costs by rearranging the sensor’s layout:

1. Pixels can be arranged in form of a linear array with the photosensing area of
neighboring pixels placed close to each other and the processing circuits be
placed at the side of the photosensing area (figure 6.3b). In this arrangement
optical flow outputs can only be computed in one dimension along the array of
photoreceptors.

2. Optical flow in two dimensions can be measured when pixels are arranged in form
of two linear arrays that face each other as shown in figure 6.3c. However, in this
configuration the sensor’s field of view in the direction orthogonal to the orientation
of the linear array remains small in comparison to a regular 2-dimensional pixel
array layout as the one shown in figure 6.3a.

3. Finally, the circuits for optical flow calculation can be spatially separated from the
photoreceptor stage as depicted in figure 6.3d. This way only circuits for the read-
out of the photoreceptors need to be placed inside the photoreceptor array. The
result can be a classical imager spatially separated from the processing circuits
that are still placed on the same sensor. A good spatial resolution and estimation
of optical flow components in two dimensions can be achieved. However, this
layout technique either leads to irregular pixel layouts that are more vulnerable to
circuit noise and mismatch when the photoreceptors have to be connected to the
circuits for optical flow calculation with individual wires. If the data from individ-
ual pixels is transmitted to the circuits outside the photoreceptor array via a bus
system mismatch effects can be better controlled but a reduction of temporal res-
olution has to be accepted since the photoreceptor outputs have to be transmitted
sequentially via the bus system.
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Figure 6.3: By changing the arrangement of photoreceptors and circuits for optical flow
computation on the focal plane a sensor’s spatial resolution can be adjusted while keep-
ing the fill factor of the pixels constant. Pixels can be organized (a) in form of a regular
2-dimensional array, (b) a linear array that is only sensitive to optical flow in one direc-
tion, (c) in from of two 1-dimensional arrays where photoreceptors are facing each other
or (d) the circuits for optical flow computation can be separated from the photoreceptor
array. (a-c) Fill-factor equals 16%. (d) If the circuits for optical flow computation are
placed on the side of the photoreceptor array and data is sequentially read from the
photoreceptors, part of the circuits for optical flow computations can be shared and the
total sensor area can be reduced.

Option 1 was selected for the design of the optical flow sensors presented in this thesis
(chapters 7 and 9). As discussed in section 4.4 the restriction that with a linear photore-
ceptor arrangement optical flow can only be measured in one dimension is acceptable
for the reference MAV by Zufferey et al. (2007).
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6.2 Evaluation criteria for optical flow algorithms and
sensors

As presented in chapter 4, there is a variety of flying platforms including airplanes,
helicopters, quadcopters and flappers each having different flight properties that require
different controllers. Different sensor arrangements include minimalistic configurations
with only one or two sensors and a medium field of view of 30◦ like presented by Zufferey
et al. (2007) (section 4.1), configurations that use an array of several sensors each with
a small field of view (see Beyeler et al. (2009) or section 4.2) and arrangements that use
only a single sensor in combination with a fish-eye lens that can provide a field of view
of up to 360◦. Each sensor arrangement requires a different controller and different
specifications of the optical flow sensors. Also the MAV’s flight controller and flight
properties affect the required properties of the sensors. For successful autonomous
flight control, the optical flow algorithm, its implementation as part of the VLSI sensor,
the optics, MAV flight properties as well as the flight controller need to be chosen so
that all components work together efficiently and effectively.

The variety of possible MAV properties, flight controllers, and sensors arrangements
make it difficult to find a general metric showing the minimum requirements for an optical
flow sensor in addition to the criteria that arise from the limited choice of optics (see
section 6.1). Still this section provides a list of properties that an ideal optical flow
sensor system should have:

Robustness and reliability of optical flow outputs

To be useful for MAV control VLSI optical flow sensor should provide robust and reliable
optical flow outputs over a large range of stimulus velocities. Optical flow outputs must
be independent of background light intensity and stimulus properties.

• The range of background light intensities an optical flow sensor is confronted
with is set by the environment in which the MAV should be operated. In indoors
environments, the background lighting can be well controlled so that the sensor
does not need to adapt to a large range of lighting intensities. In outdoor environ-
ments however light intensities can vary from 10−4 lux at starlight, to 0.27 lux at
full moon, to 300 − 500 lux office lightning, to 10, 000 − 25, 000 lux daylight, to up
to 130, 000 lux when sunlight is directly shining on a surface. The human eye is
capable of working under all these conditions - most optical flow sensors are not.
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• Providing a reliable optical flow output independent of the contrast of the visual
stimuli is challenging but crucial for optical flow sensors. The challenge is that
stimuli with low spatial contrast typically generate signals with small amplitude that
suffer most from circuit noise.

• All physical circuit implementations suffer from parasitic capacitance and resis-
tance effects that lead to a limited bandwidth of these circuits and thus of a limita-
tion of temporal frequencies of the signals that can be processed. Care has to
be taken during the circuit design to avoid unwanted limitations.

• Circuit noise (discussed in in more detail in section 5.3) corrupts the optical flow
outputs of a sensor. So algorithms and their implementations that suffer less from
noise and those that support the reduction of noise should be preferred.

• Analog circuit sensor designers have to tackle the effect of device mismatch on
the optical flow pixel responses. Unlike computer simulations, any two pixels on
the same chip will not produce exactly the same analog output response to the
same stimulus. As presented in section 5.2 there are different circuit techniques
to reduce the effect of device mismatch. Algorithms that do not expect the same
flow output from each pixel are of advantage because they are less susceptible to
device mismatch when implemented in aVLSI optical flow sensors.

Besides having access to reliable and robust optical flow output signals, a flight con-
troller can benefit from the on-chip generation of a reliability signal. This signal can,
for example, indicate the number of visual features that have been detected or the con-
trast of the stimulus that generated the current flow signal. The reliability signal gives
information about the quality of the optical flow signal. This information is useful for the
further processing of the optical flow signals since it allows a flight controller to identify
outliers and to ignore a set of optical flow measurements that are not reliable.

Spatial integration and motion segmentation

Besides circuit noise (discussed in section 5.3) the aperture problem leads to noisy
and incorrect optical flow outputs of individual sensor pixels. The aperture problem
arises from the fact that the individual pixels of a sensor have only a limited field of
view leading to an ambiguity in determining the two veloctity componets of an optical
flow vector. Spatial integration of optical flow outputs from individual pixels allows
for a correction of individual optical flow outputs. Spatial optical flow integration can



6.2. Evaluation criteria for optical flow algorithms and sensors 81

act as a spatial low pass filter that reduces circuit noise. It furthermore can help to
generate the correct optical flow values at pixels that are confronted with stimuli of too
low contrast and thus cannot compute a local optical flow output without information
from other pixels.

Spatial integration does not just mean averaging the local optical flow outputs of
individual pixels. For example, a measured optical flow value of zero optical flow can
mean either the relative velocity of the stimulus is zero or that there is no stimulus or
that the stimulus contrast was too low to generate a finite flow value. A good integration
algorithm has to distinguish between these cases and for instance weights the individ-
ual optical flow outputs according to the contrast of the stimuli that generated the optical
flow. The addition of a smoothness constraint for optical flow estimation has for example
been proposed by Horn and Schunk (1981). VLSI sensors that implement spatial inte-
gration have been presented by Tanner and Mead (1986); Stocker and Douglas (1999)
and Stocker (2002).

Algorithms for spatial integration and motion segmentation can be complex and typically
require additional circuits on the optical flow sensor - thus increasing the sensor’s pixel
size and making it more vulnerable to circuit mismatch. This is why the optical flow sen-
sors presented in this thesis do not include on-chip mechanisms for spatial integration
and motion segmentation. For calculating optical flow from the adaptive vision sensor
(chapter 9) we use the image interpolation algorithm by Srinivasan (1993, 1994). As
presented in section 9.3 this algorithm implements spatial integration but is currently
executed on a microcontroller.

When flying in natural environments motion segmentation can be used to distinguish
different objects in the surround. Because translational optical flow is dependent on the
distance between the sensor and objects in the environment (see observaton 2 in sec-
tion 2.3) objects at different distances will generate different flow fields on the sensor.
Thus abrupt changes in the measured flow field indicate the boundaries of objects. If
spatial interation is applied accross these boundaries corrupted optical flow outputs can
be generated. This is why Stocker (2002) integrated thresholds into their VLSI sensor
that allow to break the smoothing across local optical flow outputs at motion boundaries.
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6.3 Evaluation of algorithms for optical flow sensors
and their VLSI counterpart

This section expounds on the various algorithms implemented on the analog VLSI opti-
cal flow sensors and the trade-offs that have to be made in these implementations. The
presented analysis has been published as part of a book chapter (Moeckel and Liu,
2009).

Challenges of evaluation

The comparison of existing optical flow sensors in the literature is challenging because
of the following reasons:

• In scientific publications, the novelties of a sensor design are emphasized but not
all chip specifications are given as it would be the case for commercial sensor
that come with datasheets. This makes a judgment that includes all my evaluation
criteria difficult and often impossible. For commercially available sensors on the
other hand details of the implemented optical flow algorithm are typically not
given because of proprietary information.

• The same optical flow algorithm can be implemented with very different cir-
cuits. The state and value of a variable for example can be encoded as analog
voltage, analog current, analog time delay or as a digital number.

• As shown in section 6.1 pixel form and arrangement have a major impact on
sensor properties like spatial resolution.

• Finally, the available VLSI fabrication processes have evolved over time. Fab-
rication processes highly influence sensor properties including the power con-
sumption, size and bandwidth of single transistors, efficiency of photodiodes and
the types of available capacitors. The result is that sensor parameters like fill fac-
tor, pixel size, power consumption, the minimum and maximum spatial frequency
and velocity of detectable stimuli as well as the minimum amount of light that a
photoreceptor requires to operate reliably can vary with the specific process in
which the circuits have been fabricated.

Because of the different circuit techniques used by the individual circuit designers and
the variety of fabrication processes for the reported optical flow sensors, I have refrained
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from making explicit comparisons between the different implementations in figure 6.4. I
concentrate instead on a comparison between the implemented optical flow algorithms
and show their corresponding limitations in the implemented aVLSI form.

Categories of VLSI optical flow sensors

Since the first aVLSI motion chip which was designed for use in the Xerox optical mouse
in 1981 by Lyon (1981), more than 50 different motion chip implementations have been
published. Some major contributions are shown in the timeline chart of figure 6.4. For
my evaluation I focus on optical flow sensors that implement both the phototransduction
circuits as well as the circuits for optical flow computation on a single chip. Solutions that
combine a vision sensor together with a separate device for optical flow computation are
not included in the survey. The list of sensors in figure 6.4 is not meant to be complete.
Figure 6.4 reflects my personal view on which single-chip optical flow sensors fall in a
specific category.

As shown in Figure 6.5, the algorithms implemented on-chip can be divided into two
primary groups: (1) intensity-based algorithms and (2) token-based algorithms.

• Intensity-based algorithms estimate optical flow directly from the image bright-
ness. Optical flow is estimated based on either (1a) the gradient of the image
brightness or (1b) the correlation of the image brightness of neighboring pixels.
The image brightness in the implementations could be the equivalent of the out-
put of some pre-processing on the visual input: for example, the absolute intensity,
ore the log intensity.

• Token-based algorithms estimate optical flow by tracking detected features or
tokens across space and time. The term token comes from the field of computer
vision where tokens are defined either as low-level features like edges or corners
or high-level features like objects Ullman (1981). On the optical flow sensors,
the token often consist of a binary pulse which is generated when the contrast
of an edge exceeds a threshold. These algorithms can be further divided into
two major sub-categories: (2a) Optical flow is estimated through the correlation
of edge patterns. (2b) Optical flow is estimated by measuring the time taken for
a feature to travel between two adjacent pixels. The latter are also called time-of-
travel algorithms.

Intensity-based versus token-based: The advantage of intensity-based algorithms
is that the motion computation is continuous whereas token-based algorithms update
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Figure 6.4: Timeline of single-chip VLSI optical flow sensor implementations. I show
only major contributions of different authors. For example, publications based on one
design are represented using the date of the first publication.
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Figure 6.5: Overview of motion algorithms implemented in aVLSI.

the motion values only if a pre-defined feature is detected in the image. The different
update dynamics mean that the host system which regularly samples the motion values
will always receive the instantaneous motion value from an intensity-based motion chip
but will most likely receive a motion value that was computed sometime in the past from
a token-based motion chip. However, the readout of token-based motion chips could be
an advantage if the feature detection signal or token is used to signal the host system
when a new value is computed.

Token-based algorithms can be more robust against noise since only reliable detected
features are used to determine the local image speeds. Their disadvantage lies in the
fact that the accuracy of the computed motion is determined by the accuracy of the fea-
ture detectors. For example, if a feature is detected in a particular pixel but not detected
in the neighboring pixel, token-based algorithms will produce an incorrect motion value.
Hence, the interpretation of the motion value by the host system is more challenging.
The last updated motion value can either be allowed to decay slowly over time at a
predefined rate, or is reset after a set time interval. Token-based algorithms also have
the advantage during implementation that the algorithms allow easy partitioning into the
phototransduction, feature detection and motion detection blocks. This partitioning can
simplify the design of the subsequent aVLSI circuits since each circuit can be optimized
for its particular task.

A different way of categorization is to separate sensor designs into the groups of bio-
inspired and classical industrial implementations of machine vision algorithms.

• Many of the various optical flow sensors from the past 20 years are based on
biological models of optical flow processing, for example, the optical flow esti-
mate extracted by cells in the insect visual pathway Egelhaaf and Borst (1993a).
These implementations often make use of the photoreceptor circuit by Delbrück
and Mead (1994) that operates in continuous time.

• The implementation of these bio-inspired algorithms should be contrasted with
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machine vision implementations of optical flow algorithms on many mobile plat-
forms. The latter use primarily outputs of clocked frame-based imagers from
which optical flow is extracted. The frame-based computation methods lead to
optical flow outputs that are only available at discrete sampling times in contrast
to the continuous-time analog motion outputs that are available from many bio-
inspired optical flow sensors.

In the literature many hybrid solutions can be found that combine bio-inspired circuits
with classical industrial implementations.

In this evaluation I categorized the solutions into intensity-based algorithms described
in sections 6.3.1 and 6.3.2 and the token-based algorithms described in sections 6.3.3
and 6.3.4.

6.3.1 Gradient-based intensity algorithm

The gradient-based algorithm for computing optical flow was one of the first algo-
rithms implemented on an aVLSI chip. This algorithm is also often used in the com-
puter/machine vision community. The optical flow equation is derived from the bright-
ness constancy assumption that the image brightness, I, at a point (x, y) and at a time
t stays constant. Taking the derivative of I with respect to time leads to d

dt
I(x, y, t) = 0.

Using the chain rule for differentiation one receives an expression that relates the im-
age flow components in the x- and y-direction vx = dx/dt and vy = dy/dt and the partial
change of the brightness ∂I:

Ixvx + Iyvy + It = 0 (6.4)

where Ix = ∂I/∂x, Iy = ∂I/∂y and It = ∂I/∂t.

Equation 6.4 is underconstrained since only one independent measure of the image
brightness I(x, y, t) at a point in time and space is available while the optical flow ve-
locity has two components vx and vy. By combining estimated flows spatially across
pixels, one can arrive at a unique solution of the equation. Two main implementations
of optical flow models have been proposed in the literature:

True flow: Horn and Schunk (1981) proposed a smoothness constraint for the optical
flow field such that the flow field varies smoothly across space. Using both constraints,
the local optical flow vectors v = (vx, vy) can be combined to arrive at an optimal solution
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for the optical flow estimate by minimizing the cost function:

HOF (v) =
∑
ij

[(Ixvx + Iyvy + It)
2

+ ρ((∆xvx)2) + (∆xvy)
2) + ρ((∆yvx)2) + (∆yvy)

2)] (6.5)

where the global constant ρ describes the amount of spatial smoothing, and ∆x and
∆y represent the discrete derivative operators in the x and y directions respectively for
each i,jth pixel in the array.

The first optical flow sensor that implemented an energy minimization equation was
proposed by Tanner and Mead (1986) with a subsequent higher performance version
described by Stocker and Douglas (1999). The Tanner and Mead chip is one of the first
aVLSI optical flow sensors and is often cited as the first single-chip optical flow sensor
which did not depend on a specific visual pattern environment. The chip contained
an array of 8 by 8 pixels and produced a global velocity value over a limited range of
input contrasts. It did not implement the smoothness constraint term in (6.5). The chip
by Stocker and Douglas (1999) implements this term and provides smooth optical flow
values. However, the smoothness constraint term does not take into account object
boundaries, thus it blurs the motion values around the object boundaries.

To overcome the constant smoothing across the whole chip, a second chip by Stocker
(2002) implements a network which locally breaks the smoothness constraint at ob-
ject boundaries. Motion segmentation is included in the computation by minimizing a
modified cost function:

HOF (v) =
∑
ij

[(Ixvx + Iyvy + It)
2

+ ρxij((∆
xvx)2) + (∆xvy)

2) + ρyij((∆
yvx)2) + (∆yvy)

2)

+ σ((vx − vxref )2) + (vy − vyref )2))] (6.6)

where ρxij and ρyij are local variables that set the amount of smoothing. These variables
are allowed to adapt locally or are set to zero in the case of an object boundary. The
additional bias term in (6.6) allows components of the local optical flow vectors vx and
vy to be compared against known motion priors vxref and vyref , respectively.

The advantage of the combination of the brightness constancy and spatial smoothness
constraints lies in the robustness of the algorithm against noisy perturbations in the im-
age. The smoothing operation across local motion outputs can average out this noise.
The minimization of energy equations are attractive for aVLSI implementation because
they do not require division circuits and no threshold operation is needed to avoid the
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zero-division case. However, they do require high-precision multipliers with a wide lin-
ear input range as well as linear resistive networks with variable resistance that perform
the smoothing operation. Since these circuits are difficult to implement in VLSI, both the
implementations by Tanner and Mead (1986) and Stocker and Douglas (1999) showed
a strong dependence of the motion output on stimulus contrast and can only produce
reliable measurements with high-contrast stimuli.

Normal optical flow: Another way of estimating optical flow with gradient-based inten-
sity algorithms is to compute normal flow. This computation is based on the assumption
that of all possible optical flow vectors measured at a pixel, the correct flow is the one
that is perpendicular to the edge orientation at each pixel. Circuits for implementing
the normal flow model are proposed by Deutschmann and Koch (1998b); Mehta and
Etienne-Cummings (2003) and Gruev and Etienne-Cummings (2004).

Mathematically, this constraint is set up as

Ix
vx

=
Iy
vy
. (6.7)

Substituting this constraint equation into (6.4) leads to:

vx = − IxIt
I2
x + I2

y

, vy = − IyIt
I2
x + I2

y

. (6.8)

The implementation of these equations in aVLSI circuits is challenging because the
denominator in (6.8) includes partial derivatives of local brightness which are highly de-
pendent on contrast. Especially for low contrast images one has to divide a small value
in the numerator by another small number in the denominator. This division process
is very susceptible to noisy estimates of the numerator and the denominator. Many
aVLSI optical flow sensors include a threshold for Ix or Iy so that the optical flow is
not computed when Ix or Iy are below this threshold. To avoid the zero-division prob-
lem, one implementation did not include the denominator term Deutschmann and Koch
(1998b). Although this simplification reduces the complexity of the circuits, the optical
flow output of the chip can be ambiguous and is highly dependent on contrast. Imple-
mentations of simplified forms of the normal optical flow equations vx = − It

Ix
, vy = − It

Iy

decrease the complexity of the necessary circuits (Deutschmann and Koch, 1998b;
Mehta and Etienne-Cummings, 2003). However, this simplification does not solve
the zero-division problem. To avoid solving the zero-division problem on-chip, Gruev
and Etienne-Cummings (2004) decided to compute only the local spatial and temporal
derivatives Ix, Iy, and It on-chip and to perform the division off-chip.
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6.3.2 Intensity-based correlation

The intensity-based correlation algorithms are based on spatio-temporal frequency-
based models of motion processing in flies as described by Reichardt (1961) and pri-
mates (Schiller et al., 1976). The primary spatio-temporal frequency-based motion al-
gorithms that have been implemented in aVLSI are the Hassenstein-Reichardt model
(Hassenstein and Reichardt, 1956), the Barlow-Levick model (Barlow and Levick,
1965) and the Adelson-Bergen motion energy model (Adelson and Bergen, 1985).

Many implementations of spatio-temporal frequency optical flow algorithms in single-
chip aVLSI systems have been reported, for example, by Andreou et al. (1991), Gottardi
and Yang (1993), Delbruck (1993), Meitzler et al. (1995), Harrison et al. (Harrison,
2005; Harrison and Koch, 1999), Liu (2000), and Higgins et al. (Higgins and Korrapti,
2000; Higgins et al., 2005; Pant and Higgins, 2007).

Intensity-based correlation algorithms work off the image brightness values unlike token-
based algorithms that compute motion from detected features in the image. The motion
outputs of the former algorithms have a profile that depends on the spatial and tempo-
ral frequency components of the local image patches in the field of view. Although the
motion output amplitude is dependent on the square of the contrast of the input signals,
these algorithms provide a motion output even for low-contrast inputs that fall below the
threshold of a token-based algorithm.

The fact that the outputs of these models are dependent on both contrast and temporal
frequency means that the readout is ambiguous. Thus it becomes impossible to deter-
mine the speed of a visual patch from a single filter. To solve this ambiguity problem,
elaborated versions of these models use a bank of filters with different time constants
(Santen and Sperling, 1984). These versions use a place code where the activation of
a filter output codes for the presence of a particular spatio-temporal frequency compo-
nent in the image patch instead of the value code used for gradient and time-of-travel
algorithms. The place code helps for example, in situations where transparent objects
are moving on top of one another; thus allowing several spatio-temporal frequency fil-
ters to be activated at the same time. A value code would have to decide for a particular
movement or would just give an average response to the movements in the scene.

The place coding of optical flow using several filter banks is an advantage of spatio-
temporal frequency-based motion algorithms but is also a drawback if implemented in
aVLSI because of the following reasons: (a) Since several filters are needed for each
motion pixel, the pixel fill-factor will be greatly reduced. (b) The readout and integration
of the filter outputs is non-trivial even without considering mismatch. Mismatch between
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the filter circuits in different pixels makes the readout very difficult because the time
constants of the filters across pixels will not match.

6.3.3 Token-based correlation

Token-based correlation algorithms include an initial step of detecting a particular to-
ken or feature in the image. Common to all implementations is the use of a non-linear
thresholding circuit for extracting local temporal contrast edges and/or spatial contrast
edges. Contrast edges exceeding a threshold produce binary pulses. I only discuss
two of the many correlation algorithms described in the literature: (a) The correlation
is performed between a detected edge at one pixel with a delayed version of this edge
at an adjacent pixel with the help of delay lines. (b) The correlation is performed be-
tween adjacent pixels using binary correlation filters that were inspired by the original
Reichardt correlator.

Delay-line based correlation: Optical flow sensors that perform correlation based on
delay lines (see the sensor by Horiuchi et al. (1991) for an example implementation)
are inspired by the coincidence detector model in the auditory system of the barn owl.
A temporal ON edge triggers a binary pulse of fixed width at each pixel. By propagat-
ing the pulses from neighboring pixels through two parallel delay lines from opposite
directions optical flow can be determined from the intersection point of the pulses. The
optical flow sensor by Horiuchi et al. (1991) highlights the following concerns: (a) aVLSI
implementations of delay lines are generally costly in silicon area; (b) only a limited
range of velocities can be detected for a particular delay setting.

Binary Reichardt correlator: The binary correlator chip by Sarpeshkar et al. (1993)
is inspired by the Hassenstein-Reichardt correlator. Each edge that is detected by a
optical flow pixel triggers a pulse of fixed width. This pulse is correlated with the delayed
pulse of the neighboring pixel. The correlation circuit is very simple since the output is
determined by the overlap of the two pulses. However, the pulse width determines the
range of detected speeds, and the edge detection circuit by Sarpeshkar et al. (1993) is
not sensitive to low-contrast stimuli.

Similar to the intensity-based correlation algorithms, the performance of the token-
based implementations is limited by the fixed time constants of the correlation filters. To
detect a wider range of stimulus velocities, filter banks with different time constants or
correlation filters with self-adjustable delays would be necessary. These solutions would
lead to even less compact designs and lower pixel fill factors. The clear advantage of
token-based over intensity-based correlation algorithms lies in the non-linear edge de-
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tection circuits that make them less dependent on contrast because each edge is simply
represented by a binary event independent of contrast. However, where token-based
correlation algorithms fail because the signal is below the threshold, intensity-based
correlation implementations are often still able to report at least the correct direction of
motion.

6.3.4 Time-of-travel

Time-of-travel algorithms directly measure the time taken by a contrast edge to travel
between two adjacent pixels. Five major algorithms have been reported in the liter-
ature: facilitate-and-inhibit, facilitate-and-trigger, facilitate-trigger-and-inhibit, facilitate-
and-sample, and facilitate-and compare. An overview of the different algorithms is given
in figure 6.6.

One general advantage of time-of-travel motion detection chips is that they do not re-
quire any high precision dividers, multipliers and differentiators. Thus they do not suffer
from zero-division problems like the gradient algorithms and allow for more compact de-
signs than many correlation algorithms. The time-of-travel of a contrast edge is usually
measured by using voltage or current pulses which are robust against noise perturba-
tions. Due to the non-linear high-gain stages in the edge detection circuits, the motion
outputs are dependent only on the stimulus speed and independent of the stimulus
contrast down to very low contrast values.

All time-of-travel algorithms except the facilitate-and-sample algorithm that uses a log
code (figure 6.6e), show a linear relationship between the time-of-travel ttof of a contrast
edge and their optical flow outputs. Thus the computed outputs are inversely propor-
tional to the edge velocity v, that is, v = ∆x

ttof
, where ∆x corresponds to the inter-pixel

distance. This inverse relationship means that the sensitivity of the algorithm to different
velocity ranges is non-uniform. This property is common to all time-of-travel algorithms.
As I show in chapter 7, it does not necessarily mean that these algorithms are at a
disadvantage because the sensors can be tuned so that the sensitivity is approximately
linear in the expected optical flow range.

Facilitate-and-inhibit: In the facilitate-and-inhibit (FI) algorithm (Figure 6.6a), an edge
detected at a pixel triggers an output pulse which is reset when the edge reaches the
neighboring pixel. The width of this pulse linearly increases with the time-of-travel of
the stimulus.

The FI algorithm has its roots in the neural direction selectivity model of the rabbit retina.
The first silicon design that implemented this model (Benson and Delbruck, 1992) uses
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Figure 6.6: Comparison between time-of-travel motion algorithms. We show the block
diagrams of circuitry (top), the time traces for the internal signals and the motion output
that prefers a stimulus traveling from a photorector at the left to its right neighbor (mid-
dle) as well as the dependence of the output signal on the time-of-travel and the velocity
of the traveling stimulus (bottom). Note that while the FI, FT and the FTI algorithms use
encode the stimulus velocity in the width of an output pulse the FS and FC algorithms
output a value code. The labels note: F:facilitate, T:trigger, I:inhibit, L: optical flow out-
put that prefers traveling edges from right to the left, R: optical flow output that prefers
traveling edges from the left to the right, Pw:pulse width, tau:time constant of pulse with
fixed width.
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temporal ON contrast edges to trigger pulses that are terminated by inhibition from
neighboring photoreceptor pixels. In contrast to the motion chips that are described
in the rest of this section, the implementation by Benson and Delbruck (1992) did not
include a circuit that generates a binary pulse when an edge is detected. The output
pulse amplitude of this circuit is dependent on the contrast of the temporal edge, thus
making the chip usable only for limited contrast and velocity ranges.

An implementation that use pulses generated from the detection of a spatial edge using
a spatial difference-of-Gaussian filter was proposed by Etienne-Cummings et al. (1993).
The time-of-travel is determined by measuring the time that an edge took to appear at
a pixel and disappear at the neighboring pixel.

Facilitate-and-trigger: In the facilitate-and-trigger (FT) algorithm (figure 6.6b) contrast
edges trigger pulses of a fixed width. When an edge travels across the image plane it
triggers two pulses at neighboring pixels that are delayed by the time-of-travel. Thus
a simple boolean AND operation is sufficient to determine the temporal overlap of the
pulses which linearly decreases with the image velocity. The FT implementation by
Kramer et al. (1997) can detect image velocities from 2 mm/s to 120 mm/s, measured
through image projections onto the chip. However, as shown in figure 6.6b the motion
output saturates for higher image velocities. The general problem of the FT algorithm
lies in the fixed pulse width of the triggered pulses. If the pulse width is too small,
slow stimuli cannot be detected since the pulses will not overlap. On the other hand, a
large pulse width can lead to an output that constantly remains ’high’, for example when
pulses are triggered periodically due to a highly textured and fast stimulus. This means
that no output pulse is detected by the system.

Facilitate-trigger-and-inhibit: To overcome the fixed pulse width limitation in the FT
algorithm, Kramer (1996) introduced the facilitate-trigger-and-inhibit (FTI). The FTI al-
gorithm (Figure 6.6c) integrates signals from three adjacent pixels and outputs a binary
pulse whose width is inversely related to the velocity of contrast edges traveling across
the image plane. A contrast edge moving from left to right causes the edge detection
circuit at pixel 1 to output a pulse, called the facilitate signal F1. The signal F1 enables
the motion detection circuit to generate the trigger signal T2, that is caused by the same
edge traveling across pixel 2. The signal T2 causes the motion circuit to output a pulse
R that lasts until the edge reaches pixel 3. Once the edge is detected by pixel 3, it
sends an inhibition signal I3 which terminates the output pulse R. The detectable im-
age speed reported in Kramer (1996) ranges between 0.034 mm/s to 60 mm/s. For
velocities above 60 mm/s the circuit also shows a motion output in the non-preferred
direction due to the limited rise time of the inhibition signal.
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Facilitate-and-sample: Facilitate-and-sample (FS) aVLSI optical flow sensors were
first described by Kramer et al. (1995, 1997). FS sensors use a contrast edge detected
by a pixel to trigger both a small sampling pulse (S1, S2) as well as a facilitate signal
(F1, F2) that linearly or logarithmically decays over time (figure 6.6d,e). The time to
travel across two pixels for a contrast edge is determined by the sampled value of F1 by
S2 for stimuli moving from left to right and by the sampled value of F2 by S1 for stimuli
moving in the opposite direction. A similar token-based algorithm implemented with
discrete electronics components was reported earlier by Franceschini et al. (Blanes,
1986; Franceschini et al., 1986). The work by Kramer and Franceschini had great
influence on the design of the dynamic optical flow sensor which I later describe in
(chapter 7).

The FS optical flow sensor of Kramer uses a logarithmic encoding for the time-of-travel
(figure 6.6e). This encoding allows the motion circuit to represent a time-of-travel range
of more than seven orders of magnitude for fixed time constants. This chip performance
is the best reported in the literature so far. However, these motion measurements were
done by using electronically generated pulses which bypassed the outputs of the pixels’
edge-detection circuits. In addition, due to the highly compressed encoding of the mo-
tion output, where a change of 200mV in the output corresponds to one order of change
in the time-of-travel of an edge, 20mV of noise will lead to a relative error of 10% in the
decoding of the time-of-travel. So the optical flow output is very vulnerable to noise.

The FS algorithm is advantageous over the FI, FT, and FTI algorithms because its mo-
tion output can be held on a capacitor for a few ms, while the latter algorithms produce
temporal-coded motion outputs that need to be constantly monitored.

Facilitate-and-compare: The facilitate-and-compare (FC) algorithm is inspired by the
FS algorithm (Deutschmann and Koch, 1998a). The implemented algorithm (figure 6.6f)
does not require sample-and-hold circuits to store the sampled value of the facilitate
signals. The optical flow output is computed continuously by subtracting the linearly-
decaying facilitate signals from adjacent pixels. This difference codes the speed of the
stimulus. This algorithm leads to less complexity for the FC circuits but the implemented
circuits suffer from the tradeoff between high sensitivity settings (the facilitate signals
will decay quickly to ground) and from mismatch (the motion output varies over time
if the decay rates of the facilitate signals are different). The FC implementation by
Deutschmann and Koch (1998a) can measure image velocities in the range from 0.3
mm/s to 40 mm/s.
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6.4 Conclusions

Over the last 2 decades, more than 50 different aVLSI monolithic motion detection chips
have been reported. The implemented algorithms on these chips can be divided into
more than 14 sub-categories. Because of the wide range of algorithms and implemen-
tations, an unbiased comparison of the best optical flow sensor to use on a robotic
platform is difficult. There are several things that one can consider when designing
these sensors for a mobile robot:

• To operate in natural environments and without needing high-contrast textures, the
chip should respond to low contrast stimuli with small spatial frequencies reliably
and unambiguously.

• The chip should work robustly under different background light intensities.

• The optical flow sensor outputs should have low mismatch or the mismatch must
at least be easily removed in the readout, for example, through calibration.

• The chip should operate reliably in the presence of noise for example, noise on
the power supply lines as well as noise in the visual stimuli like light flicker.

• The pixel design should be compact and the design should support a large two-
dimensional spatial array.

• Since power resources on autonomous flying platforms are limited, optical flow
sensors should consume µW of power.

To decide on a particular optical flow algorithm and its subsequent implementation, one
has to clearly identify the advantages and disadvantages that come from the motion al-
gorithm itself and those that come from the VLSI circuit implementations. For example
most of the motion detection chips reported so far show a high dependence of the opti-
cal flow outputs on the stimulus contrast. While this contrast sensitivity can be easily
explained by the algorithm itself for intensity-based correlation implementations, there
is no theoretical reason why a FT implementation should respond more ambiguously to
low contrast features than an FS implementation. In this case, the ambiguous response
of the FT motion chip lies in the implementation of the edge detection circuits.

There is no single optical flow sensor in the literature so far that fulfills all my evaluation
criteria. Since most of these sensors have been designed to demonstrate a particular
principle or a specific novel circuit, the sensors are often not optimal for operation on
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a MAV. Coupled with this is the fact that there are no chip specifications for the end-
user. This is why researchers that want to explore new control algorithms end up using
cameras on their platform.

In my opinion the most interesting optical flow sensors presented so far are the normal
flow implementations by Mehta and Etienne-Cummings (2006), the gradient-based im-
plementation by Stocker (2002), the edge-counting sensor by Arreguit et al. (1996) and
the facilitate-and-sample implementation by Kramer et al. (1995, 1997).

• The normal flow implementations by Mehta and Etienne-Cummings (2006)
use a clocked active pixel sensor (APS) front-end as well as correlated double
sampling (CDS) for on-chip mismatch compensation The clocked-based APS cir-
cuits allow for a sequential readout of local intensity values of a row of pixels over a
global data bus. The computation of the optical flow values is done on the periph-
ery of the APS array so very dense 2-D pixel arrays can be achieved. The authors
report of an array size of 120 by 80 pixels, a fill-factor of 10%, and an equiva-
lent frame-rate of 20 frames per sec with a power consumption of 34.5mW. Note
that the normal flow estimation in this implementation is done in a line-sequential
way. The mismatch between the outputs of the different APS pixels is removed by
the correlated double sampling (CDS) technique and since the motion values are
computed sequentially row by row, the circuits that perform the motion computa-
tion can be shared thus eliminating another source of mismatch.

However, this implementation has drawbacks that are caused in part by the APS
implementation and by the normal flow algorithm itself. Since the operation of
the APS requires a clock, this implementation is susceptible to temporal aliasing
unlike the continuous-time optical flow sensor chips. In addition, the sequential
readout of the APS array for computing the motion can be a bottleneck and pre-
vents the detection of fast moving stimuli.

A general problem with the normal optical flow implementation is the need for high
precision division circuits whose output is imprecise for low contrast stimuli and
especially in the presence of mismatch and noise. These chips cannot produce
reliable measurements in low contrast environments and a thresholding circuit is
needed to eliminate low-contrast signals from the flow computation. The imple-
mentation by Mehta and Etienne-Cummings (2006) does not include any circuits
for spatial integration or segmentation.

• The gradient-based implementation by Stocker (2002) is an improved version
of the sensor by Stocker and Douglas (1999). It is the only optical flow sensor that
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I know of that implements the circuits of optical flow computation together with
circuits for spatial integration addressing the aperture problem as well as circuits
for motion segmentation on a single chip. The sensor operates on continuous
time and uses the adaptive photoreceptor circuit with selectable adaptation time
constants by Liu (1999) which allows circuit operation over a wide range of back-
ground lighting conditions. The need for linear multiplication circuits makes the
chip vulnerable to noise and mismatch.

Due to the strong dependence of the optical flow outputs on stimulus contrast for
contrast values below 50%, the chip is not usable in low-contrast environments.
The smoothing and multiplication operation circuits also require a lot of transis-
tors leading to a reported pixel fill factor of 4%. Furthermore, although the chip
performs smoothing of optical flow values, the local flow values need to be read
out from all pixels individually. There is no optical flow output that is the result
of a spatial integration of several pixels. Finally, I do not believe that the spatial
integration is optimally implemented. The weight that sets how strong neighboring
pixels are coupled is set to be constant except at neighboring pixels that provide
a sufficiently different optical flow output to trigger the segmentation circuits. Also
the segmentation threshold is fixed. Both constant coupling weight and constant
segmentation threshold can lead to incorrect optical flow outputs since their cor-
rect values typically depends on the particular scene that is projected onto the
sensor.

• Arreguit et al. (1996) described a computer mouse chip that computes optical
flow by counting the number of edges traveling across the focal plane within
a certain time bin. The chip contains 75 pixels arranged in the form of a circular
spot. It was developed to replace the mechanical parts of the track ball in a
computer mouse and was designed to measure the rotation of the track ball. The
authors showed that the displacement of the ball in the x- and y-direction ∆x and
∆y could be determined using the following equations:

∆x

P
=
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where P represents the pitch between the pixels, and
∑
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∑
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∑
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represent the number of edges that traveled to the right, left, upwards or down-
wards, respectively, within the time bin.

∑
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∑
Ey represent the total num-

ber of vertical and horizontal edges, respectively. An interesting property of the
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chip was that its resolution increased with the number of edges and the mini-
mum detectable displacement was smaller than the distance between the photo-
diodes P . The authors reported a resolution of more than 800 dpi over a 100-2000
mW/m2 light intensity range.

The continuous-time front-end of the optical flow sensor was highly optimized to
work together with a pulsed LED and a tracking ball with high contrast patterns.
With the presented front-end the sensor is thus not usable for controlling MAVs
but it introduces interesting ideas and circuits: The design by Arreguit et al. (1996)
is an example how spatial integration across an optical flow sensor can be imple-
mented in an elegant way where the entire sensor directly outputs a global optical
flow signal. The circuits for counting edges are simple and can be implemented
in a compact way. Furthermore, the total amount of edges that have contributed
to the optical flow calculation per unit time can form a well-suited reliability signal.

• Facilitate-and-sample implementations like the one presented by Kramer
et al. (1995, 1997) look interesting to me because they can be implemented us-
ing continuous time circuits and are less vulnerable to circuit noise and mismatch.
Facilitate-and-sample implementations can be made to consume little power if
one uses the fact that optical flow only needs to be calculated when a feature is
detected. Except for the photoreceptor front-end, the circuits of pixels where no
feature is present in theory could be deactivated and quickly reactivated when
being needed again.

The sensor front-end is usually implemented using the adaptive photoreceptor
circuit by Delbrück and Mead (1994). This circuit has been shown to be able
to adapt locally at each pixel over 6 decades of background light intensity thus
allowing a reliable coding of the motion outputs under conditions ranging from
moonlight to sunlight. This adaptation property is of great benefit when the chip is
operated in natural surroundings where there could be a wide spatial distribution
of light intensities, for example, when sunlight streams into part of a room and the
remaining areas are in shadow.

The drawback of the facilitate-and-sample implementations is that optical flow is
not calculated continuously but only if a contrast edge is detected. Thus the overall
sensor performance greatly depends on the edge detection circuit. The edge
detection circuit used by Kramer et al. (1995, 1997) for example makes the optical
flow outputs depending on contrast.

Based on the evaluation of optical flow sensor implementations in this chapter, I con-
centrated on two main ways of extracting flow in this thesis:
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1. The design of my monolithic dynamic optical flow sensor (DOFS) presented in
chapter 7. Like the optical flow sensor presented by Kramer et al. (1995, 1997),
DOFS implements a facilitate-and-sample algorithm to extract optical flow and
uses the adaptive photoreceptor circuit by Delbrück and Mead (1994). However,
for this sensor I developed a novel high-gain feature detector that improves the
sensitivity of DOFS to low contrast features by a factor greater than 7 in compari-
son to the facilitate-and-sample sensor by Kramer et al..

2. The development of an optical flow sensor module for ultra-lightweight flying robots
presented in chapter 9. The sensor module is composed of my adaptive vision
sensor (aVIS) that implements the continuous-time adaptive photoreceptor front-
end by Liu (1999) and a microcontroller running the Image Interpolation Algorithm
proposed by Srinivasan (1994) for extracting optical flow from the outputs of aVIS.





Chapter 7

Dynamic optical flow sensor

Abstract

This chapter presents a novel dynamic optical flow sensor (DOFS) that extracts optical
flow information by measuring the time a visual contrast edge requires to travel between
two adjacent photoreceptors on the sensor’s focal plane. This sensor implements the
facilitate-and-sample (FS) algorithm. It includes an adaptive logarithmic wide-dynamic-
range photoreceptor front-end by Delbrück and Mead (1994, 1995); a modified LMC cir-
cuit which removes DC and amplifies transient changes, and a novel double-threshold
edge-detection circuit which extracts edges from even low-contrast stimuli.

Section 7.1 gives an overview over the DOFS and motivates design choices while sec-
tion 7.2 shows the implemented circuits in detail. Section 7.3 presents experimental
results from the fabricated sensor. Section 7.4 discusses results and concludes the
chapter.

Highlights and original contributions

This section presents the following highlights and original contributions:

1. A novel double threshold circuit that allows for a robust edge detection for low
contrast stimuli in the presence of noise. Using two separate threshold parameters
the circuit allows to dynamically trade between the minimum contrast a visual
stimuli must have to be detected and the amount of input signal noise that is
rejected during the edge detection process. This circuit has major impact on

101
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reducing the dependence of the sensor’s optical flow outputs on the contrast of
the visual stimuli and its robustness to noise (section 7.2.3).

2. A modified LMC circuit that amplifies temporal contrast of visual stimuli and
processes the outputs of the adaptive photoreceptor circuit by Delbrück and Mead
(1994, 1995) to provide an optimized output signal for my edge detection circuit
(section 7.2.2).

3. I propose circuits for FS optical flow sensors with outputs that are linearly
proportional to stimulus velocity - not time-of-travel. (section 7.4)

7.1 Dynamic optical flow sensor - overview, motivations
and properties

This section introduces the dynamic optical flow sensor (DOFS) and motivates the im-
plementation of a facilitate-and-sample (FS) sensor in analog VLSI technology.

7.1.1 Sensor overview

Table 7.1: Specification of dynamic optical flow sensor and lens.

Fabrication process 2-metal 2-poly 1.5µm CMOS process
Supply voltage 5.0V
Number of pixels 24 x 1
Pixel distance 54.4µm

Pixel size 54.4µm x 1521.6µm

Size of photodiode 44µm x 44µm

Chip size 2.2mm x 2.2mm

Adaptation to background
light over 4 decades

Lens Computar 1/3”
Focal length 8.0mm

F/# 1:1.2

Table 7.1 gives an overview of the properties of the dynamic optical flow sensor (DOFS).
Pictures of the packaged sensor are shown in figure 7.1. DOFS contains six main
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(a) (b)

Figure 7.1: Pictures of (a) DOFS integrated into a DIP package with 40 pins without
lens and (b) with lens mounted on printed circuits board.

circuit blocks that have to work together to estimate optical flow from visual contrast
edges traveling across the sensor’s focal plane. Figure 7.2 gives an overview of these
circuits. The figure shows three neighboring pixels that form a linear array. Like most
token-based visual sensors, DOFs contains elements for phototransduction that convert
light falling onto the sensor’s focal plane into electrical signals (depicted as photodiode
symbols DL, D, and DR in figure 7.2), analog circuits that preprocess and filter these
voltage or current signals (PR, LMC), circuits that detect tokens (edge detection block)
and finally circuits that implement the optical flow estimation by sharing information
between neighboring pixels (pulse shaping, facilitate signal, sample & hold & decay
circuit). DOFS also contains a scanner circuit (section 7.2.6) that allows the sequential
readout of local analog pixel values (Mead and Delbruck, 1991).

In the DOFS facilitate-and-sample (FS) implementation, photocurrent generated in pho-
todiodes is converted into a voltage signal by an adaptive photoreceptor (PR) circuit
(section 7.2.1) that adapts over four decades of background illumination. An analog
LMC circuit (section 7.2.2) outputs a high gain, high-pass filtered version of the pho-
toreceptor signal, Vlmc, that is processed by a novel double-threshold edge detection
circuit (section 7.2.3). This edge detection circuit generates a digital event, Vdt, in the
presence of a temporal contrast edges in the LMC output signal.

The FS algorithm is implemented by the following circuits: The pulse shaping circuit
(section 7.2.4) generates an asynchronous short digital pulse, P , every time a contrast
edge is found by the edge detection circuit. Each contrast edge triggers the reset of
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Figure 7.2: Overview of dynamic optical flow sensor circuits.

a facilitate signal, F , (described in section 7.2.4) that decays over time as depicted
by the blue dashed line in the timing diagram of figure 7.2. The facilitate signal of
neighboring left (FL) and right (FR) pixels are sampled at the time when the pulse P
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is generated by the sample & hold & decay circuit (section 7.2.5). If for example a
contrast edge travels from the left to the middle pixel it first triggers the reset of the
facilitate signal FL that decays over time while the contrast edge travels to the middle
pixel. Once the contrast edge reaches the middle pixel it triggers the generation of the
sampling pulse P that is used to sample FL and to update HL which stores the sampled
value as shown in the timing diagram of figure 7.2. The amount of decay of FL at the
time when P is generated reflects the time-of-travel of the contrast edge. The greater
the value of FL, the faster the contrast edge was traveling, the higher the optical flow as
well as the value HL. A contrast edge traveling from the right to the middle pixel would
trigger the reset of FR first that would be sampled when the edge reaches the middle
pixel and stored as HR. So by comparing the absolute values HL and HR one can find
the direction of image motion. The storage devices that hold HL and HR can be digital
memories when the facilitate signals are implemented in form of digital counters. In
this design, I decided for analog facilitate signals that I sample onto analog capacitors
where the signals slowly decay over time.

The direction selection circuit (section 7.2.7) compares the absolute values of HL and
HR to estimate the direction. If a contrast edge travels from the left to the right pixel the
reset of FL precedes P and the reset of FR. The value sampled onto HL is thus higher
than HR and the direction selection circuit sets the digital direction flag DIR accordingly
and selects the optical flow output OF to be equal to HL. If the contrast edge travels
from the right to the left side, FR gets reset first, HR is higher than HL and the optical
flow output OF is set equal to HR while the direction flag DIR is inverted.

In this design, the HL and HR signals are not optimally chosen for comparison by the
direction selection circuit. In contrast to Kramer et al. (1995, 1997) I compare the time-
of-travel between three instead of two neighboring pixels’ photodiodes. Thus if for ex-
ample two contrast edges travel in opposite directions as shown in figure 7.2 the optical
flow outputs can be corrupted. This is why for the experiments shown in this chap-
ter, I typically ignore the outputs of the direction selection circuit and directly read the
local sample-and-hold signals HL and HR. I then compare the HL and HR values of
neighboring pixels in software, remove offsets and correct for the selection problem.

Figures 7.3a and 7.3b show the layout and a microphotograph of the fabricated sensor
chip. DOFS comprises 24 optical flow pixels implemented on a 2.2mm x 2.2mm chip
area in a 2-poly 1.5µ CMOS process. As discussed in section 6.1 to obtain a good
spatial resolution, I decided to layout the pixels in form of a 1-dimensional linear array.
This design decision was taken because the sensor was originally intended for use on
the 10-gram airplane by Zufferey et al. (2007). As presented in section 4.1 Zufferey
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Figure 7.3: (a) Layout and (b) microphotograph of dynamic optical flow sensor. The
microphotograph was taken by Delbrück.

et al. have demonstrated that linear cameras are sufficient for autonomous optical flow
based control their airplane.

The circuits and the optical flow algorithm implemented in this chip are inspired by biol-
ogy. The photoreceptor front-end mimics the background light adaptation of the visual
system of many animals (Delbrück and Mead, 1994). The output of the photoreceptor is
processed by the LMC circuit that models the function of the Laminar Monopolar Cell in
the fly visual system (Liu, 2000). The time-of-travel optical flow algorithm was inspired
by the fly visual system (Franceschini et al., 1986).

7.1.2 Properties of the facilitate-and-sample circuit implementa-
tion

Design choices for a robust optical flow sensor implementation

I chose to implement the facilitate-and-sample (FS) algorithm because according to the
evaluation of existing sensors and optical flow algorithms (section 6), the FS method is
one of the best suited algorithms for implementation in analog VLSI technology and for
the visual guidance of autonomous robots (section 6.2):
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• The general structure of the token-based algorithm where the token detection
circuit separates the analog circuits at the sensor’s front-end from the circuits
that process the token event allows for robust VLSI implementations. While the
analog circuits at the front-end are still relatively vulnerable to noise in the visual
stimuli and circuit mismatch the token-processing circuits mostly need to deal with
asynchronous digital signals that are robust to noise.

• Since the facilitate-and-sample (FS) algorithm (in contrast to many other optical
flow algorithms) does not require any complex or high precision numerical
operations like multiplications, devisions, additions or subtractions, but is based
on relatively simple reset, decay, sample and pulse-shaping operations, it is less
sensitive to circuit noise and mismatch. The critical part of the FS implementation
is the reliable detection of contrast edges and the generation of a pulse whose
properties do not vary for different types of visual stimuli.

• The FS algorithm allows for a continuous time implementation with analog cir-
cuits and without an external clock signal for synchronization. All pixels perform
parallel low-latency optical flow estimations thus supporting the utilization of
the sensor in low-latency control applications. The bottleneck in the present DOFS
design is the scanner circuit that needs a clock for sequential access to local pixel
values.

• The FS algorithm supports the utilization of the adaptive photoreceptor (PR) front-
end that makes the design robust to variations of background light intensity
(Delbrück and Mead, 1994, 1995).

• Both the PR and LMC circuits amplify temporal contrast edges of small amplitude
that allows the DOFS to operate on low contrast visual stimuli.

• I use several mechanisms to reduce the effect of circuit noise:

– I use the biases of the PR and LMC circuits as well as the one of their inter-
mediate buffer circuits (see section 7.2.1) to control the circuits’ bandwidth
and filter both noise generated by the circuits (discussed in section 5.3) as
well as noise caused by the visual stimuli (like flicker noise from artificial light
sources).

– The double-threshold edge detection circuit (section 7.2.3) allows for filter-
ing further noise of higher amplitudes and lower frequencies that cannot re-
moved by the PR and LMC circuits. Its high gain amplifiers ensure that the
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shape of the edge detection signal, Vdt, is independent from the contrast of
the visual stimuli.

– The pulse-shaping circuit generates a pulse with a refractory period in which
no additional pulse can be generated. This ensures that contrast edges can-
not be accidentally detected within a short period of time.

– In contrast to Kramer et al. (1997), I do not use a logarithmic but a linear
encoding for the time-of-travel information. Although the logarithmic encod-
ing allows the sensor by Kramer et al. (1997) to operate over stimuli veloc-
ities of seven orders of magnitude for fixed time constants, the highly com-
pressed encoding of the optical flow output make it very vulnerable to the
addition of noise. 20mV of noise will lead to a relative error of 10% in the
decoding of the time-of-travel. Furthermore, Kramer et al. (1997) could only
show motion measurements over a large range of stimulus velocities by us-
ing electronically generated pulses which bypassed the outputs of the pixels’
edge-detection circuits. For my DOFS, I decided for a linear encoding of the
time-of-travel which requires a constant update of the facilitate signal’s time
constant to operate over more than two orders of magnitude but which makes
the sensor’s outputs less vulnerable to noise.

Expected properties of the FS sensor’s optical flow outputs

Due to the FS algorithm, the dynamic optical flow sensor inherits the following proper-
ties:

• FS sensors measure the time-of-travel, t, of contrast edges. It is common that
the facilitate signal, F , is reset to its maximum value, Fmax, and decays over time
so that the sensor outputs a signal that increases with stimulus velocity. However,
for a linear decay of the facilitate signal, the sensor’s optical flow output, OF , is
not linear with respect to the velocity of the visual stimuli, v, but follows the
relationship

OF = OFmax −
∆F

∆t
· t

= OFmax −
∆F

∆t
· s

v
(7.1)

where OFmax corresponds to the maximum value of OF (typically equal to Fmax

except for some offsets due to circuit limitations), s is the distance between the
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Figure 7.4: (a) Linear and (b) logarithmic plot of the optical flow output signal generated
by the facilitate-and-sample algorithm with respect to stimulus velocity. Solid lines depict
the sensors optical flow output OF normalized to the maximum facilitate signal Fmax.
Colored areas show the variance of the OF -signal in response to variations of the
stimulus velocity with a standard deviation of 50%. The OF outputs were calculated for
a decay rate ∆F/∆t = 1/Fmax of 1/s and a pixel distance of s = 1mm. (c) By adjusting
the decay rate a single FS sensor can respond to stimulus velocities that vary over
several orders of magnitude.



110 Chapter 7. Dynamic optical flow sensor

sensor’s pixels, v is the velocity of the visual stimulus, and ∆F/∆t is the decay
rate of the F -signal. Note that OF cannot become negative.

Figure 7.4 shows the theoretically expected dependence of the FS sensor’s opti-
cal flow outputs on the velocity of the visual stimuli traveling across the sensor’s
focal plane. The non-linear relationship between the OF output and stimulus ve-
locity v can be a drawback for controllers that rely on a linear dependence of
both signals. However, if properly used the non-linearity becomes an advantage:
When constantly adapting the decay rate ∆F/∆t the FS sensor can cover sev-
eral orders of magnitude of stimulus velocities (figure 7.4c) where for each decay
rate there is a region in the OF -v relationship where even small variations of the
stimulus velocity can be resolved (expansion region in figures 7.4a and 7.4b) and
a region where the OF -signal saturates (compression region in figures 7.4a and
7.4b). During operation it is advantageous to continuously adjust the decay rate
∆F/∆t so that the expected stimulus velocities fall into the expansion region and
can be measured with optimal precision. The compression region is useful since
it allows the estimation of stimulus velocities that do not fall into the expansion
region and a fast adaptation of the decay rate ∆F/∆t.

The FS algorithm is versatile and allows also for other OF -v output profiles. As will
be discussed in section 7.4, a linear or more complex OF -v relationship can be
achieved through the application of several decay rates and threshold operations.
For example, Kramer et al. (1995, 1997) obtained a logarithmic decay rate through
a diode-connected transistor.

• In contrast to other optical flow algorithms (for example gradient-based algo-
rithms), the FS algorithm does not provide a continuous update of optical flow
output values but only in the event of a detected contrast edge. The FS algorithm
is advantageous over other time-of-travel algorithms (see chapter 6 for details)
since the optical flow output is stored on a storage device and does not need to
be constantly monitored. In any case the event-based optical flow computation
can be a challenge if a controller requires the continuous update of each pixel but
also opens the potential for event-based communication and optical flow process-
ing.

7.1.3 Sensor history, modifications and acknowledgment

I based my DOFS design on an unpublished implementation of the facilitate-and-sample
algorithm by Jörg Kramer and my supervisor Shih-Chii Liu from the Institute of Neuroin-
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formatics. Based on this earlier design, I made additional modifications:

1. I designed a new edge detection circuit since I found that both the original designs
by Kramer et al. (1995, 1997) as well as in the unpublished sensor, suffer from a
strong dependence of the optical flow outputs on the contrast of the visual stimuli.
From simulations and by testing the unpublished hardware sensor, I identified the
edge detection circuits as the primary cause for this contrast dependence.

2. I designed my edge detection circuit using two global thresholds which allows for
a reliable feature detection in the presence of noise.

3. I modified the LMC circuit that amplifies and rectifies the signals from the photore-
ceptor circuit by adding a circuit by Liu that allows for adjustment of the adaptation
time constant of the LMC circuit. Furthermore, in contrast to Kramer et al. (1995,
1997) I decided to use the voltage output of the circuit instead of the current output
as the input to my edge detection circuit.

4. I replaced the logarithmic encoder by Kramer et al. (1995) with a circuit that uses a
linear encoding for the time-of-travel since this makes the optical flow outputs less
vulnerable to the addition of noise. By updating the time constant of the linear
encoder in a feedback loop, one can still measure optical flow values that vary
over several decades of amplitude (see section 7.3).

5. In contrast to the unpublished sensor which uses local direction selective circuits
for each pixel, I use a global direction selection circuit placed at the output of the
on-chip scanner circuit. This way the required chip area as well as the effect of
fabrication mismatch are reduced since all local optical flow signals are processed
by the very same circuit.

7.1.4 Remarks on circuit layout and fabrication process

The fabrication of chip prototypes is expensive. The first DOFS was fabricated in a rel-
atively low-cost but also relatively outdated 2-metal 2-poly 1.5µm CMOS process.The
restriction of two metal layers and the relatively large minimal transistor size of 1.5µm

lead to a relatively large sensor pixel layout. Modern chip fabrication processes for
analog circuits feature minimum sizes of 180nm and several metal interconnect layers
allowing for a more dense implementation of complex circuits. The fabrication process
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however supports the design of relatively well matched poly1-poly2 capacitors with rel-
atively high capacitance per area. These capacitors are used to reduce the mismatch
between different optical flow sensor pixels.

The FS implementation was optimized for providing robust optical flow outputs - not for
overall pixel size. Each FS pixel in this design requires 7 analog capacitors as well
as 70 MOSFETs from which 58 are analog MOSFETs that are not implemented with
minimum size to reduce the effect of fabrication mismatch. The scanner circuit requires
21 digital MOSFETs per pixel as well as 5 analog and one digital MOSFET per pixel.
The overall required pixel area when implemented in the 2-metal 2-poly 1.5µm CMOS
process is 54.4µm x 1521.6µm including the scanner for reading 6 local pixel values
and 54.4µm x 1063.2µm excluding the scanner circuit.

Since visual sensors like DOFS are constantly exposed to light, analog circuits need to
be shielded from undesired photo-generated current. This is why all the analog circuits
except for the photodiodes in the DOFS are covered with a metal shield that is also
connected to the power ground of the circuits. For connecting power VDD, intercon-
nection of circuits and for setting circuit parameters the remaining metal layer and the
poly1 layer have been used. Care was taken that wires that carry higher currents like
the power supply or that connect to the source or drain of MOSFETs are typically made
from metal. Poly1-wires that have a higher resistance than metal wires are only used to
drive the gates of MOSFETs and carry those signals that do not require high currents.

Under all these constraints the limited chip area of 2.2mm x 2.2mm allowed the place-
ment of 24 optical flow pixels and 40 pads. The limited amount of available pads that
form the input and output terminals of the sensor required sharing several parameters
among the circuits and makeing trade-offs, This is why not to all circuits optimal analog
parameter values can be applied.

7.2 Circuits of the dynamic optical flow sensor

This section discusses in detail the individual circuits of the dynamic optical flow sensor.
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7.2.1 Adaptive logarithmic wide-dynamic-range photoreceptor cir-
cuit

The inclusion of circuits for background light adaptation at pixel level allows each
pixel to adapt individually. This is in contrast to a visual sensor array in a standard cam-
era that globally controls the exposure time of all pixels. If the entire sensor experiences
the same amount of background light a global adaptation mechanism is sufficient and
can lead to lower fabrication mismatch. However, when different parts of the sensor are
exposed to different background light intensities because for example the visual scene
is composed of bright sunlight spots as well as dark shadows global adaptation mech-
anisms tend to fail and the local adaptation of individual pixels becomes an advantage.

DOFS uses the adaptive logarithmic wide-dynamic-range photoreceptor first described
by Delbrück and Mead (1994, 1995). This photoreceptor (PR) is an evolution of the
first adaptive photoreceptor design by the same authors (Delbrueck and Mead, 1989).
It amplifies temporal contrast and adapts locally to changes of background light over
several orders of magnitude.

Transfer function of the photoreceptor circuit

Over a large range of light intensities, the photocurrent generated by a photodiode is
directly proportional to the intensity of the light falling onto the photodiode’s active area.
As a result the generated photocurrent varies over several orders of magnitude when
a visual sensor should be operated both under bright sun light as well as indoors in
rooms with artificial light sources, in shadows, or even during the night under moon
light. Under this variety of background light conditions the photocurrent of a photodiode
with an area of about 10µm2 varies between a few pA and up to several hundreds of
nA.

In a closed-loop combination as shown in figure 7.5c, the inverting amplifier balances
the photocurrent, Iph, by the current through MOSFET M1 so that the voltage of the
photodiode, Vdiode, gets clamped. Due to this clamping the generated photocurrent
does not need to directly modify the voltage of the read-out MOSFET M5 by a great
amount. The response time of the output signal is increased so that the photoreceptor
circuit can be operated under a wide range of background light conditions. And since
the inverting amplifier and not the photodiode itself drives the photoreceptor output,
Vpr, the photoreceptor with feedback loop can drive high loads. The response of the
circuit follows:
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Figure 7.5: Schematics of (a) source-follower photoreceptor, and (b) inverting amplifier
circuit. (c) The logarithmic photoreceptor with feedback loop combines the circuits in
(a) and (b) to provide a logarithmic output voltage signal and speed up the receptor’s
response time.

Vpr =
1

κ

(
Vdiode + UT ln

(
Iph
I0

))
(7.2)

where I0 is the MOSFETs’ off-current, κ is a parameter describing the efficiency of the
gate in determining the channel potential, and UT is the thermal voltage.

Its sensitivity to temporal contrast can be described by:

dVpr
dt

= UT
Aia

κAia − 1

1

Iph

dIph
dt
≈ UT

κ

1

Iph

dIph
dt

(7.3)

where Aia - the amplification of the inverting amplifier - is typically in the range of a
couple of hundreds.
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Figure 7.6: (a) Schematic of adaptive logarithmic wide-dynamic-range photoreceptor
circuit by Delbrück and Mead (1994, 1995) and (b) layout. I modified the original layout
by Kramer and Liu by changing the size and form of the photodiode and by adding
an n-well guard ring to shield the analog MOSFETS from generated minority carriers.
The layout also contains M6 and M7 from the source-follower circuit in figure 7.7. The
photodiode area is 44x44µm2. C1 is implemented by four distributed capacitors with
an overall capacitance of C1=802fF. C2=61fF. MOSFET sizes in µm (width/length):
M1=6.4/9.6; M2=12.0/5.6; M3=5.6/9.6; M4=8.8/3.2; M5=8.8/9.6
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DOFS photoreceptor circuit

By adding a capacitive divider (C1, C2), a resistive element for adaptation (M2) as
well as a cascode transistor (M4) to the closed-loop photoreceptor Delbrück and Mead
(1994, 1995) created the adaptive logarithmic wide-dynamic-range photoreceptor.
This circuit also used on the DOFS is shown in figure 7.6a.

The divider composed of the capacitors C1 and C2 separates the output node, Vpr, from
the gate of the MOSFET M1 that is driven by the voltage, Vprfb. By reducing Vpr by the
factor

Apr =
C1 + C2

C2
(7.4)

the capacitive divider forces the inverting amplifier to respond with an amplified output
voltage Vpr to transients in the photocurrent to allow the current through M1 to compen-
sate the current generated in the photodiode D1 as in the photoreceptor design without
capacitive divider. Since the capacitive divider by itself does not have any DC current
path from the output node to the gate of M1, the photoreceptor circuit only amplifies
changes in the photoreceptor output Vpr:

dVpr
dt

= AprUT
Aia

κAia − 1

1

Iph

dIph
dt
≈ Apr

UT

κ

1

Iph

dIph
dt

(7.5)

The DOFS photoreceptor circuit has a gain, Apr of about 14.15.

To allow the circuit operating successfully over a large range of background light inten-
sities Delbrück and Mead (1994, 1995) added the MOSFET M2 that acts as an resistive
element allowing Vpr and Vprfb to slowly equalize over time. So the DC of Vpr follows the
same law as the photoreceptor with feedback loop (figure 7.5c). Delbrück and Mead
reported that with the adaptation through the resistive element, the photoreceptor cir-
cuit gained a total dynamic range of more than 6 decades and a dynamic range of 1-2
decades at a single adaptation level (Delbrück and Mead, 1994).

In comparison to the photoreceptor circuit shown in figure 7.5c Delbrück and Mead
furthermore added a cascode MOSFET (M4) to the inverting amplifier. This cascode
MOSFET nullifies the parasitic Miller capacitance between the drain and gate of M5.
Without a cascode this Miller capacitance (that has its origin in the fact that the gate
of every MOSFET as well forms a capacitor with the MOSFET’s channel, drain and
source) would allow the amplified changes in Vpr to couple back into the photodiode
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node Vdiode. The cascode prevends this coupling and furthermore leads to an increase
in the drain resistance of M5 which increases the gain of the inverting amplifier by a
factor of about 2 (Delbrück and Mead, 1995). Both effects speed up the photoreceptor’s
response which is useful for its application at lower light intensities.
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Figure 7.7: Two source follower circuits act as buffer and level shifter between the pho-
toreceptor and LMC circuit and between photoreceptor and scanner circuit. MOSFET
sizes in µm (width/length): M6=M8=5.6/9.6; M7=M9=4.8/10.4

In the DOFS, the output of the photoreceptor circuit goes through a source follower
circuit before driving the LMC circuit as shown in figure 7.7. The output of the second
source follower goes to the scanner. The source followers buffer the photoreceptor
output, Vpr from signal changes from the scanner and LMC circuit and shifts up the Vpr
DC voltage level. The output signal Vprscan is read by the scanner circuit while Vprbuf is
fed into the LMC circuit. Since Vprbias and Vlmcbias control the amount of current in the
inverting amplifiers and source followers, they can be used to control the bandwidth of
the circuits and to filter noise like flicker noise created by artificial light sources.

There are two main design choices that I would change if I had to redesign the layout
again. These design issues were addressed in the design of the adaptive vision sensor
(section 9.2.1):

1. The node Vdiode that is unbuffered and relatively susceptible to noise is too dis-
tributed in the layout (figure 7.6b). It is implemented in the form of long wires
since M1 and M5 are placed too far away from the photodiode. This is risky since
other signals - especially the amplified signal Vpr can couple into Vdiode.

2. The square form of the photodiode was not optimally for a linear pixel array. In
a linear array that should mostly be sensitive to contrast edges traveling in the
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orientation of the array, a rectangular structure as I used for my adaptive vision
sensor (chapter 9) is better. A rectangular structure spatially low-pass filters con-
trast edges traveling orthogonal to the orientation of the pixel array more than
visual stimuli traveling parallel to the direction of the pixel array.

Conclusions

Its amplification of temporal contrast support the detection of low contrast stimuli. Al-
though it is not suitable for producing classical images, it is well suited for an optical
flow sensor that should only respond to moving stimuli.

7.2.2 LMC circuit

The output of the buffered photoreceptor output Vprbuf is fed into an LMC circuit which
provides an output signal Vlmc that is useful for edge detection. To detect contrast edges
of small amplitude, a large photoreceptor gain, Apr, (>15) is of advantage. However, Apr

cannot be increased without decreasing the response speed of the photoreceptor since
larger gains will lead to a slower adaptation of the signal, Vprfb ,that sets the feedback
current through M1 to compensate for the photocurrent. So with high gains, Apr, the
clamping of the photodiode output, Vdiode, becomes less efficient and the photoreceptor
circuit looses its ability to operate under low background light intensities. Furthermore,
a gain that is too high will lead to unstable behavior of the photoreceptor circuit. The
LMC circuit provides additional amplification of Vpr.

Circuits

The LMC circuit (figure 7.8a) in the DOFS is a modified version of the original design
by Liu (2000) (figure 7.9). The original circuit was part of an intensity-based correlation
optical flow sensor (see section 6.3.2 for an explanation of this sensor type) and mimics
the behavior of the Laminar Monopolar Cell (LMC) in the fly visual system.

The LMC circuit removes the mismatch-affected, intensity-depended DC component of
the buffered photoreceptor output signal Vprbuf through the capacitor C3 and provides
a LMC output, Vlmc, which has a DC component that is only controlled through the bias
voltage Vlmcbias and that in contrast to the photoreceptor output is independent of the
background light intensity. Since device mismatch also affects the behavior of the LMC
circuit, the DC offset of the Vlmc outputs among different circuits can vary but the DC
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Figure 7.8: (a) Schematic and (b) layout of LMC circuit. The layout is partially taken
from the unpublished design by Kramer and Liu. The layout also contains M8 and M9
from the source-follower circuit in figure 7.7. C3 is implemented by two distributed
capacitors with an overall capacitance of C3=1.49pF. C4=35fF. MOSFET sizes
in µm (width/length): M10=7.2/9.6; M11=M12=4.8/6.4; M13=6.4/9.6; M14=9.6/4.8;
M15=M16=M17=4.8/9.6; M18=M19=5.6/12.0
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Figure 7.9: LMC circuit schematic of the original design by Liu (2000).

offset mismatch of the previous circuits (PR and buffer circuit) do not contribute to the
LMC DC offset.

Both the LMC circuits by Liu and the one used in the DOFS design are based on an
inverting differentiator that consists of an inverting amplifier (M15, M16), a capacitive
amplifier (C3, C4) and an adaptive element M14. C3 and C4 amplify transients in the
buffered photoreceptor output by the factor Almc:

Almc =
C3 + C4

C4
(7.6)

so that

dVlmc

dt
= Almc

dVpr
dt

(7.7)
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where the gain Almc in the DOFS design is about 43.57.

The total amplification of the temporal contrast due to PR and LMC circuit thus is

dVlmc

dt
≈ AlmcApr

UT

κ

1

Iph

dIph
dt

(7.8)

with a total gain of AlmcApr of about 616.1.

In contrast to the adaptive photoreceptor design by Delbrück and Mead (1994, 1995)
(figure 7.6a) the LMC circuit by Liu (2000) uses an adaptive element where a single
MOSFET (M14) is controlled by a source follower (M18, M19). The resistive element
allows the output Vlmc to return to its DC level with a time constant which is set by the
bias voltage Vlmcfbbias. In contrast to the single-MOSFET resistive element by Delbrück
and Mead (1994, 1995), the adaptive element by Liu (2000) requires three analog MOS-
FETs. However, at the cost of 2 extra MOSFETs, the adaptation time constant can be
tuned after fabrication.

For DOFS I combined two adaptive elements - (1) the resistive element proposed by Liu
(2000) (M14, M18, M19) and (2) the rectifier (M10-M13) from the unpublished sensor
design by Kramer and Liu. In the unpublished design, the currents in M10 and M13
were mirrored and fed into a completely different edge detection circuit that produced
contrast-dependent outputs. Instead, DOFS uses the voltage output signal Vlmc as the
input to the edge detection circuit.

Both adaptive elements are placed in the feedback path of the inverting amplifier so that
the swing of the output voltage signal Vlmc is limited. The current-voltage characteristics
of the adaptive elements are shown in figure 7.10. Both adaptive elements act like
non-linear resistors.

As can be seen in figure 7.10b the rectifier circuit provides a more symmetric response
than the adaptive element by Liu (2000). This is of advantage if the LMC circuit should
generate a similar response for ON and OFF temporal edges in visual stimuli. The
precise current-voltage characteristic of the rectifier can be adjusted before fabrication
by selecting the width-to-length ratios of the transistors M11 and M12. Since currents
generated through ON edges and currents generated due to OFF edges are fed through
different pathways (M11, M12) the response of the LMC circuit to ON and OFF edges
can be separately adjusted by choosing the width and length of the MOSFETs M11
and M12. Furthermore, the rectifier does not make any current flow directly between
the nodes Vlmc and Vlmcint supporting an increased response time to changes in the
output voltage.
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Figure 7.10: Current-voltage characteristics of adaptive resistive elements: Drain-to-
source currents of transistors of (a) adaptive element by Liu (2000) for different bias
voltages, and (b) rectifier. Simulation results obtained with Tanner Tools.

The adaptive element by Liu (2000) shows a more asymmetric current-voltage char-
acteristic (Figure 7.10a). Since only one MOSFET is used to allow currents flowing in
both directions directly between the nodes Vlmc and Vlmcint the asymmetric characteris-
tic cannot be further adjusted. However the adaptive element by Liu (2000) allows to
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still adjust the adaptation time constant of the LMC circuit after fabrication through the
bias voltage Vlmcfbbias.

For DOFS I decided to combine both adaptive elements to ideally have a symmetric
response to temporal ON and OFF edges but in case it is required to keep the flexibility
to adjust the circuits time constant after fabrication.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2.3

2.4

2.5

Time [ms]

V
p
r
bu

f
[V

]

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2.5

3

3.5

Time [ms]

V
lm

c
[V

]

Vlmcfbbias = 0V
Vlmcfbbias = 0.2V
Vlmcfbbias = 0.4V
Vlmcfbbias = 0.6V

Figure 7.11: Step response of DOFS LMC circuit for different Vlmcfbbias values. Simula-
tion results obtained with Tanner Tools.

Figure 7.11 presents simulation results on step responses of DOFS LMC circuit. The
results indicate how the adaptation time of the LMC circuit changes for different Vlmcfbbias

values.

Another modification to the original design by Liu (2000) is the addition of the diode
connected MOSFET M17 to the inverting amplifier. M17 lifts the DC of the LMC output
voltage by one diode drop (about 0.6 to 0.7V). M17 thus makes Vlmc better suited for
comparison against the thresholds in the edge detection circuit being described in the
following section.
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Layout

The layout of the LMC circuit is shown in figure 7.8b. I modified the original layout by
Kramer and Liu for the new circuits. In future, I would not wire the signals Vprscan and
Vlmc on top of the poly1 area of C3 to reduce coupling effects and signal noise.

Conclusions

The LMC circuit for the DOFS was designed to generate output signals that are further
processed by my novel edge-detection circuit. Due to the LMC circuit, temporal contrast
edges in the photoreceptor output can be further amplified. The DC offset mismatch in
the outputs of the photoreceptor and buffer circuits and the dependence of the offset on
the background light intensity can be eliminated.

7.2.3 Double threshold edge detection circuit

The edge or token detection circuit plays a major role for the reliability of any token-
based optical flow sensor. The task of the token detection circuit is the generation of an
event signal that indicates the detection of a predefined token - typically a contrast edge
- in the visual stimuli. To guarantee a reliable operation of the circuits implementing the
optical flow algorithm from the event signal, it is critical that the properties of the event
signal indicating the presence of a contrast edge are independent from the properties
of the contrast edge. For example, the amplitude and slew rate of the event signal
should not vary with the contrast magnitude and spatial frequency of the visual stimuli.
Otherwise, the sensor’s optical flow outputs will become dependent on other properties
of the visual stimuli than just the stimulus velocity. Optic flow measurements that are
dependent on spatial frequency and stimulus contrast can be difficult for use in the
control of a closed-loop robotic platform.

From the study of the existing aVLSI token-based optical flow sensor implementations
(chapter 6) I found that the contrast dependence of their optical flow outputs was mainly
caused by their edge detection circuits that output event signals with properties that
depend on the contrast of the visual stimuli. This is also a problem with the designs
by Kramer et al. (1995, 1997). As a result, I designed a novel double threshold edge
detection circuit which removes the effect of stimulus contrast.

Another aspect that needs to be considered for the design of an edge detection circuit
is the generation of false events in the presence of noisy visual stimuli and circuit noise.
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In contrast to intensity-based optical flow algorithms, token-based algorithms only op-
erate when the presence of a token is clearly identified in the visual stimulus. This is
an advantage since the optical flow algorithm is only executed when reliable signals
are present but this also means that token-based algorithms require reliable token de-
tection. Without reliable token detection their optical flow outputs become noisy and
unreliable.

The edge detection circuit presented here uses a two-threshold scheme to reduce the
effect of noise. It compares the LMC output signal against two thresholds. Both thresh-
olds are controlled by bias voltages that can be adjusted online so that the threshold
difference is large when the sensor is operated in noisy light conditions or small so that
the sensor can detect low contrast stimuli under better light conditions.

Circuits

The circuit schematics and layout of the double threshold edge detection circuit are
shown in figure 7.12. The circuit contains two 5-transistor differential operational transcon-
ductance amplifiers (OTA) (Comparator1: M20-M24 and comparator 2: M25-M29) that
compare the LMC output signal, Vlmc against the two thresholds Vthr1 and Vthr2. By
limiting the current in the comparators with the bias Votabias the circuits are guaranteed
to operate in the subthreshold regime. Under this condition the comparators’ transcon-
ductance gm is

gm =
dIout

d(V1 − V2)
≈ Ibiasκ

2UT

(7.9)

Their output conductance gd is given by

gd = − dIout
dVout

≈ Ibias
VE

(7.10)

From gm and gd one can compute the gain of the differential operational transconduc-
tance amplifier:

Aota =
dVout

d(V1 − V2)
=
gm
gd
≈ κVE

2UT

(7.11)

which is typically in the range of a couple of hundreds. Due to this large gain, compara-
tor 1 and 2 have nearly digital outputs.
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Figure 7.12: (a) Schematic and (b) layout of edge detection circuit. MOSFET
sizes in µm (width/length): M20=M25=M34=17.6/4.8; M21=M23=M26=M28=M30-
M33=5.6/6.4; M22=M24=M27=M29=6.4/6.4; M35-M38=4.8/1.6

Figure 7.13 depicts a timing diagram showing the signals of the edge detection circuit
that have been found with the circuit simulation software from Tanner Tools. The out-
puts of the comparators Vout1 and Vout2 switch whenever Vlmc crosses the respective
thresholds Vthr1 and Vthr2.
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Figure 7.13: Timing diagram for edge detection circuit (Circuit simulations with Tanner-
Spice). A temporal ON or OFF edge is only generated if the LMC output signal, Vlmc,
crosses both thresholds Vthr1 and Vthr2. If Vlmc crosses only one threshold the latch
circuit ensures that the digital edge detection signals VdtON and VdtOFF remain constant.
This way noise that causes the Vlmc-signal to cross a single threshold can only cause
a jitter in the edge detection event but does not trigger a false edge detection event.
In this example plot, Vlmc is a 1Hz sinusoidal signal with 1.4V peak-to-peak amplitude
corrupted by a 20Hz sinusoidal noise signal with 0.4V peak-to-peak amplitude. The
outputs of the comparators Vout1 and Vout2 switch whenever Vlmc crosses the respective
threshold Vthr1 and Vthr2. The comparator’s gains are not sufficiently high to generate a
fully digital output signal Vout1 and Vout2.
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Vout1 and Vout2 are used to set and reset the latch or memory circuit (M30-M34) shown in
figure 7.12a. The latch circuit is composed of two cross-coupled MOSFETs (M30,M32)
and a differential pair (M31,M33,M34) which maximum net current is controlled by the
bias voltage Vcurlimbias. The latch circuit guarantees that if both Vout1 and Vout1 are ≈
GND the states of the signals VdtON and VdtOFF remain unchanged. Vout1 = V DD

or Vout2 = V DD, however set VdtOFF and VdtON to V DD, respectively, while reseting
the their counterpart to GND. This is why the VdtON -signal generates a rising edge
indicating that a temporal contrast ON edge - a transition from dark to bright light - is
detected only if Vlmc crosses both thresholds - first Vthr1 and then Vthr2. A rising edge
on VdtOFF that signals the detection of a temporal contrast OFF edge - a transition from
bright to dark light - is only generated at the crossing of Vthr2 if Vlmc passed Vthr2 before.

The implementation of the two thresholds in combination with the latch circuit ensures
that small signal variations in Vlmc cannot trigger additional rising edges in the edge
detection signals VdtON and VdtOFF . The distance between the thresholds allows one
to select the amplitude of noise and signal contrast that should be rejected. If the
distance between the threshold is small, low contrast stimuli and small variations in
Vlmc can trigger edge detection events while a large difference between the thresholds
guarantees VdtON and VdtOFF to change their state only for large changes of Vlmc.

Besides the comparators and latch circuit, the edge detection circuit includes a multi-
plexer composed of two transmission gate circuits (M35-M38). This multiplexer allows
for selecting either ON or OFF events to trigger the subsequent pulse shaping circuit
and ensures that ON and OFF contrast edges are not mixed during the optical flow
measurement.

Figure 7.14 shows the Vdt event signals generated by the edge detection circuit when
being stimulated with sinusoidal Vlmc input signals of different frequencies. The circuit
generates sharp ON-edges for input frequencies between 0.1Hz and 100kHz. This
is more than the range of frequencies expected in the targeted autonomous robots.
Below 0.1Hz the rising edge of the output signal suffers from the limited gain of the
input comparators. However the falling edge of the edge detection event is not effected
due to the additional gain of the latch circuit. For input signal frequencies above 1MHz

Vdt becomes rounded due to the limited gain of the circuit.

Conclusion

The edge detection circuit is an important core element of the DOFS. It helps to reduce
the dependence of the flow output to variations in stimulus contrast, spatial frequency
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Figure 7.14: Output events, Vdt, from edge detection circuit when the circuit is stimu-
lated with sinusoidal Vlmc-signals with varying frequencies and constant peak-to-peak
amplitude of 1.4V. The thresholds Vthr1 and Vthr2 have been set to 2.3V and 2.7V,
respectively. (Simulation results generated with Tanner-Spice.)
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and noise. The application of this edge detection circuit is not limited to this facilitate-
and-sample algorithm. In fact, the combination of photoreceptor, LMC and edge detec-
tion circuit can form a robust front-end for implementations of any of the token-based
algorithms described in chapter 6 in analog VLSI technology - no matter if it is for an
implementation of the correlation algorithm (section 6.3.3) or one of the various time-
of-travel algorithms (section 6.3.4).

7.2.4 Circuits for pulse shaping and generation of facilitate signal

Together with the following sample & hold & decay circuit, the circuits for pulse shaping
and generation of the facilitate signal implement the actual facilitate-and-sample optical
flow algorithm.

The circuits for pulse shaping and generation of the facilitate signal are shown in figure
7.15. The circuits for pulse shaping generates a digital pulse P of controlled width in
time from a rising edge in the edge detection circuit output signal Vdt. As depicted in
the timing diagram in figure 7.15 a delay circuit (M39-M44) generates a delayed signal
Vdtdelay in response to a rising or falling edge in Vdt. The delay of the rising and falling
edges can be individually controlled via the biases Vpwbias and Vhysbias, respectively, that
limit the currents in the starved inverter circuit (M39-M42) of the delay circuit.

An OR gate compares the delayed (Vdtdelay) and inverted (Vndt) version of the edge
detection signal and generates a pulse nP which pulse width only depends on the bias
Vpwbias. Via the bias Vhysbias a refractory period - a time in which no additional pulse
can be generated - can be set. The refractory period is an additional mechanism in
the DOFS design to avoid the generation of false pulses due to circuit noise since it
prevents the accidental generation of bursts of pulses. I included it in the design but
finally never actively used the refractory for filtering noise since the double threshold
mechanism of the edge detection circuit was already so affective.

The generation of the facilitate signal is implemented by two MOSFETS (M55, M56)
and a single capacitor (C5). Whenever a pulse nP is generated in response to a de-
tected contrast edge the capacitor C5 is charged to the voltage level of Vsrcpbias. C5 is
discharged by a constant current source (M56) to the voltage level Vsrcnbias so that the
voltage level on C5 - the facilitate signal F - linearly decreases over time from Vsrcnbias
to Vsrcpbias. In practice Vsrcpbias and Vsrcnbias can be set to VDD and GND, respectively.
However, since the DOFS is implemented in a 5V technology it can be advantageous
to connect Vsrcpbias to a 3.3V supply so that the optical flow output can be directly con-
nected to a standard 3.3V microcontroller with integrated analog-to-digital converter.
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Figure 7.15: (a) Schematic and (b) layout of circuits for pulse shaping and generation
of facilitate signal. C5 is implemented by three distributed capacitors with an overall
capacitance of C5=0.77pF. MOSFET sizes in µm (width/length): M39=M42=7.2/10.4;
M56=4.8/9.6;M40=M41=M43-M55=4.8/1.6
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Figure 7.16: Output signal from the edge detection circuit, Vdt, its delayed version,
Vdtdelay, and the sampling pulse, nP , generated when the input to the edge detection
circuit, Vlmc, was stimulated with sinusoidal signals of different frequencies. The circuits
generate a pulse of fixed width over at least 3 decades of input frequencies. (Simulation
results with Tanner-Spice.)
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Figure 7.16 shows sampling pulses nP generated in simulation while stimulating the
double threshold edge detection circuit with different frequencies and feeding its output
Vdt into the pulse shaping circuit. The circuits’ bias values have been selected accord-
ing to the values used with the fabricated sensor. In its present configuration the pulse
shaping circuit generates pulses with constant pulse width for frequencies between 1Hz

and 100Hz. Pulses for lower frequencies could be generated as well if the falling edge
of the Vdt-signal was used instead of its rising edge. However, for the targeted flying
platform it is not expected that such low frequencies should be detected. Instead stimuli
with temporal frequencies below 1Hz will be filtered through the adaptation mechanism
in the PR and LMC circuits. In theory the edge detection and pulse shaping circuits
could also generate sampling pulses for frequencies above 100Hz. In practice although
the edge detection circuit generates events under the chosen bias values the edge de-
tection circuit does not. As shown in figure 7.16 the sampling pulse width was chosen
to be 1.35ms to ensure that the following sample & hold & decay circuit properly sam-
ples the facilitate signal for all the fabricated pixels of the optical flow sensor despite
fabrication mismatch between individual pixels. This pulse width does not allow the
generation of pulse for frequencies above 740Hz since the refractory period prevents
the generation of additional pulses once a single pulse is generated.

7.2.5 Sample & hold & decay circuit

The sample & hold & decay (SHD) circuit samples and stores the voltage of the facilitate
signals from the right (FR) and left (FL) neighbor of an optical flow pixel using the pulse
P .

The circuit and its layout are shown in figure 7.17. The SHD circuit is a standard de-
sign as it has been used by Kramer et al. (1995) and others before. It comprises two
unity-gain follower circuits (M57-M61 and M64-68) composed of 5-transistor differential
transconductance amplifiers which outputs are coupled to their negative input terminal,
respectively. The unity-gain followers provide an output signal Vout according to

dVout
dVin

=
Aota

Aota + 1
≈ 1 (7.12)

where Aota is the gain of a standard 5-transistor operated in the subthreshold domain
(7.11). The unity-gain followers buffer the respective facilitate signals and allow for a fast
charging of the storage capacitors C6 and C7 that hold the sampled facilitate signals,
HR and HL. C6 and C7 are charged through the MOSFET switches M62 and M69 that
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Figure 7.17: (a) Schematic and (b) layout of sample & hold & decay cir-
cuit. C6=C7=1.0pF. MOSFET sizes in µm (width/length): M57=M64=17.6/4.8;
M58=M60=M65=M67=6.4/6.4; M59=M61=M66=M68=19.2/4.8 (implemented as ring
transistors); M62=M69=4.8/6.4; M63=M70=4.8/9.6

are activated by the pulse P . The pulse width of P thus has to be long enough to allow
charging C6 and C7 reliably to the voltage levels of FR and FL. On the other hand the
pulse width should be as short as possible since it limits the maximum stimulus velocity
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that can be measured.

Both HR and HL are linearly decaying with a small time constant set by the bias voltage
Vhleakbias towards the voltage level set by Vsrcnbias. This leakage can be used to encode
the time since the last update of the hold signals HR and HL and allows for an efficient
encoding of a reliability signal.

7.2.6 Scanner circuit

The analog scanner circuit (Mead and Delbruck, 1991) consists of a row of shift regis-
ters that allows access to the analog signals of individual optical flow pixels. As shown
in figure 7.18a, the scanner on DOFS is composed of six unit-gain followers (OTA1 -
OTA6) that buffer and output the individual pixel signals when activated by one register.

The unity-gain follower can be implemented by a 2-transistor source follower circuits or
through an operational transconductance amplifiers (OTA). For the scanner, I decided to
use the same 5-transistor unity gain followers as the buffers in the SHD circuit (section
7.2.5) but with an additional 6th MOSFET that allow switching off the buffer. The OTA
circuit is shown in figure 7.19. Although OTAs require more transistors I avoided the use
of 2-transistor follower circuits since the OTAs do not provide buffered output signals
with shifted offsets.

Each of the six OTAs in a pixel, buffers and allows access to one of the following signals:
the LMC circuit output, Vlmc, the photoreceptor output as well as those of its left and right
neighbor Vpr, VprL, and VprR, and the sampled and hold facilitate signals HR and HL. If
the OTAs of several pixels are activated, the scanned output signals of these OTAs will
be averaged.

During normal operation of the scanner circuit, the registers ensure that only one pixel
is selected at a given time. The circuits of the register are shown in figure 7.20. This
standard text-book register is based on transmission gates (M1, M2, M6, M7) that shift
the voltage level from the differential input (BITIN , nBITIN ) to the differential output
(BITOUT , nBITOUT ) at each cycle of the clock signal CLK. Two latch circuits (M10-
M14 and M15-M19) store the current state of the bit values during a shift operation. The
registers of the individual pixels form a shift register where during each clock cycle, the
bits are shifted from each register to the following register. All registers are connected
by a wired OR signal that makes sure that a new active bit is only loaded into the first
register if all registers are empty.

The advantage of the present scanner design is that it allows accessing the local signals
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Figure 7.18: (a) Schematic and (b) layout of scanner circuit including scanner register
and six OTAs for selecting and buffering local pixel output values.



7.2. Circuits of the dynamic optical flow sensor 137

M2

M1

VDD

M3

M4

GND

M5

M6

GND

+

–
OTAx

Vin Vscanout

nACTIV ATE

Votabias

Figure 7.19: The buffer of the DOFS scanner is the well-known 5-transistor operational
transconductance amplifier (M2-M6) with an additional MOSFET M1 that acts as a dig-
ital switch and allows deactivating the output of the buffer circuit.

of individually pixels easily by scanning one pixel after the other with an interface that
requires only a clock signal, reading a synchronization bit to know when the shift register
is empty and starts scanning again the first pixel and reading as many analog values as
should be scanned. Since the scanner circuit has no reset - a choice made to save an
additional input signal - one has to empty the scanner’s shift register after the sensor is
first powered up, by toggling the clock signal, CLK, as many times as there are pixels
in the sensor.

Although the OTAs only consume power when activated, the scanner circuit is not ex-
actly low power. This is because the register circuit only uses either an nFET or a pFET
as transmission gates that without their complements do not well propagate either high
or low signals. Because of the transmission gates, the register requires the inverters
(M3, M5 and M8-M9, M20-M21) for restoring the voltage level and to properly drive the
OR and nACTIV ATE signal. These inverters as well as the latches can consume high
power when their input voltage level is too far from either VDD or GND. The advantage
of the present register design is that it does not require the generation of an inverted
clock signal.

The scanner circuit occupies a relatively large area. In fact is takes about 30% of the
pixel area. This is because the scanner layout was not optimized for space and since I
made the MOSFETs for the OTAs relatively large to reduce the effect of mismatch.
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Figure 7.20: Schematic of scanner shift register.

I chose to keep the scanner circuit in the DOFS design since it is a well tested reliable
circuit for analog test circuits. However, the scanner is also currently the main bottleneck
for the readout speed of individual pixel values. For a small array of only 24 pixels, this
is not a problem but for large pixel arrays it will become a limiting factor. So for future
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designs I would prefer adding a communication interface that takes advantage of the
event-based nature of the facilitate-and-sample algorithm or at least a scanner circuit
where pixels can be selected through an address.

7.2.7 Direction selection circuit

The schematic and layout of the direction selection circuit are shown in figure 7.21.
The circuit compares the sampled and hold signals HR and HL from the neighboring
left and right optical flow pixel. The higher hold signals is selected as the optical flow
output OFR and OFL and the corresponding direction flag DIRR or DIRL is set to VDD.
The other optical flow output of the lower signal HR or HL is set to be equal to Vsrcnbias
and direction flag is set to GND. All circuits are operated in subthreshold domain due to
the bias Votabias. The bias Vdrainbias allows to adjust the hysteresis for the comparison of
the signals HR and HL. It avoids oscillations of the direction selection flags and optical
flow outputs.

In the original design by Kramer and Liu the direction selection circuit was part of every
optical flow pixel. To reduce the pixel size and to avoid additional mismatch in the optical
flow outputs I decided to place this circuit in my sensor design after the scanner circuit.
This way the hold signals of all local optical flow pixels are processed by the very same
circuit.

However, since the direction selection circuit is vulnerable to offset mismatch in the hold
signals for my experiments I typically ignore the outputs of the direction selection circuit.
Instead I directly use the hold signals HR and HL, convert both by an analog-to-digital
converter and compare their values in software on a microcontroller. The reason is that
differences in the offset of the signals HR and HL can lead the direction selection circuit
to select for the wrong direction. In software, however, offsets can be removed before
comparing HR and HL.

7.3 Experimental results

This section presents experimental results from the fabricated dynamic optical flow sen-
sor. The experimental results have been partially published in form of conferences
articles (Moeckel and Liu, 2007, 2008) and in a book chapter (Moeckel and Liu, 2009).
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Figure 7.21: (a) Schematic and (b) layout of direction selection circuit. MOSFET
sizes in µm (width/length): M1=17.6/4.8; M2-M6=M8=M13-M16=M18=M20=4.8/4.8;
M7=M9=4.8/6.4; M10=M11=4.8/3.2; M12=8.0/4.8; M17=M19=4.0/4.8

7.3.1 Measured outputs at a pixel

The different output signals from a pixel are shown in figure 7.22. The feature detec-
tion signal Vdt is generated once the LMC output Vlmc has crossed from threshold 2 to
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threshold 1. The positive edge of Vdt is used to create the sampling pulse nP that also
resets the voltage F on a capacitor. After the reset, F leaks away linearly. The pulse nP
is also used to sample the F -signal from the left and right neighbors. The hold signal
H shows the larger of these two sampled values.
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Figure 7.22: (a) Measured outputs from the fabricated DOFS. The LMC output Vlmc

is compared against the two thresholds. When this output crosses both thresholds,
Vdt is high showing that a temporal OFF contrast edge is detected. This results in the
generation of the sampling pulse nP and the facilitate signal. nP is used to sample the
F signal from the neighboring pixels which results in the update of H. Figures adapted
from Moeckel and Liu (2007).
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Figure 7.23: Optic flow output samples from pixel number 10 for 6 different stimulus
velocities. Sharp positive updates in the signal reflect when a feature was detected.
Differences in the update value reflect both stimulus and circuit noise.

7.3.2 Optic flow output from a single pixel

The 24 optical flow outputs of the DOFS were recorded when presented with a variety
of moving spatial patterns on the LCD display. The optical flow sensor results were
obtained while using sinusoidal patterns of 35% contrast with a spatial period of 3cm.
The sensor perceived the visual stimuli through a 6mm focal length lens. The distance
between the chip and the display was approximately 28cm. The stimulus velocity was
varied between 10◦/s and 100◦/s in steps of 5◦/s.

Samples of raw optical flow outputs from the sensor’s pixel number 10 for six different
stimulus velocities are shown in figure 7.23. Each optical flow signal shows the behavior
where the output is periodically updated and otherwise decays linearly over time. Since
the spatial frequency of the stimulus was not changed between experiments but only
its velocity, the optical flow outputs get more often updated for fast moving stimuli. For
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an ideal sensor and experimental setup the optical flow outputs should be reset to the
same analog voltage value at each update. In practice the sensor suffers from noise
in the visual stimuli due to the screen as well as from circuit noise. This is why there
is some noise in the optical flow updates as well. However the six different stimulus
velocities can be clearly distinguished without the application of any filtering techniques.
When low-pass filtering the optical flow outputs the quality of the signals can be further
improved.

7.3.3 Optic flow output from all pixels

In the following experiments, 500 optical flow output values were recorded and averaged
for each stimulus velocity and pixel. Figures 7.24 and 7.25 show the mean optical flow
output profiles from the circuits that are selective for stimuli moving from the right to the
left as recorded for all 24 individual optical flow pixels. Figures 7.26 and 7.27 show the
optical flow output profiles from the circuits that are selective for stimuli moving from the
left to the right as measured from all 24 individual optical flow pixels. Error bars indicate
the minimum and maximum (figures 7.24 and 7.26) and standard (figure 7.25 and 7.27)
deviation. The deviations from the mean are caused both by circuit and power supply
noise in addition to noise in the moving stimulus pattern due to the passive LCD screen.
When operating an optical flow sensor on a flying platform similar deviations have to be
expected due to vibrations of the MAV.

Averaged optical flow output profiles across the 24 optical flow pixels as well as the
mean optical flow profiles of individual pixels are shown in figures 7.28 and 7.30. The
deviations between the response of individual pixels is probably caused by fabrication
mismatch. The 3D plots in figures 7.29 and 7.31 show a sinusoidal mismatch pattern
across the pixel array. This mismatch type that shows itself as a sinusoidal variation of
transistors properties being distributed in space with slowly varying frequency is typi-
cally referred to as the striation effect (section 5.2.1).

Figures 7.32 to 7.35 depict the converted pixel output profiles s = 1/(V DD − output).
As theoretically predicted, these plots show a typically approximately linear relation-
ship between s and stimulus speed. Deviations from the linear relationship are mostly
caused by saturation effects and fabrication mismatch.
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Figure 7.24: Optic flow outputs from the circuits that are sensitive for stimuli moving from
the right to the left side of the sensor’s pixel array. Outputs have been recorded from all
the 24 individual optical flow pixels. Lines are showing mean response averaged over
1000 trials. Error bars indicate maximum and minimum deviation from the mean. Pixel
25 is the sensor’s output when no pixel is selected by the scanner.
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Figure 7.25: Optic flow outputs from the circuits that are sensitive for stimuli moving from
the right to the left side of the sensor’s pixel array. Outputs have been recorded from all
the 24 individual optical flow pixels. Lines are showing mean response averaged over
1000 trials. Error bars indicate the standard deviation from the mean. Pixel 25 is the
sensor’s output when no pixel is selected by the scanner.
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Figure 7.26: Optic flow outputs from the circuits that are sensitive for stimuli moving from
the left to the right side of the sensor’s pixel array. Outputs have been recorded from all
the 24 individual optical flow pixels. Lines are showing mean response averaged over
1000 trials. Error bars indicate maximum and minimum deviation from the mean. Pixel
25 is the sensor’s output when no pixel is selected by the scanner.
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Figure 7.27: Optic flow outputs from the circuits that are sensitive for stimuli moving from
the left to the right side of the sensor’s pixel array. Outputs have been recorded from all
the 24 individual optical flow pixels. Lines are showing mean response averaged over
1000 trials. Error bars indicate the standard deviation from the mean. Pixel 25 is the
sensor’s output when no pixel is selected by the scanner.
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Figure 7.28: Top: Optic flow outputs from the circuits that are selective for stimuli moving
from the right to the left. Outputs are averaged across all 24 pixels. Error bars indicate
minimum and maximum deviation. Bottom: individual mean optical flow values from
the 24 pixels and the sensor’s output when no pixel is selected by the scanner. The
deviation between pixels outputs shows the effect of fabrication mismatch. Figures
adapted from Moeckel and Liu (2007).

7.3.4 Contrast independence of optical flow output

To steer MAVs reliably in natural environments, the on-board vision sensors should
be sensitive to low contrast stimuli. The DOFS satisfies this criteria, as the motion
output is still computed correctly even for stimuli of contrast values between 2.5% and
100%. The results of this experiment are shown in figure 7.36. The optical flow output
stays constant over the whole contrast range for a constant stimulus speed of 35◦/s.
In contrast to the optical flow output, the peak-to-peak amplitude of the photoreceptor
output (PR) decreases with decreasing stimulus contrast as expected. The results also
show that although the individual measured motion output varies across the motion
pixels because of the fabrication mismatch, each pixel shows a constant motion output
over the specified contrast range.
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Figure 7.29: 3D plot of the mean optical flow outputs from the circuits that are selective
for stimuli moving from the right to the left side of the sensor’s pixel array. Characteristic
curves are organized according to the pixel order in the sensor array. The sinusoidal
pattern across pixels is typical for fabrication mismatch due to striation effect.

7.3.5 Perception of self-rotation

To compare the outputs of the DOFS chip to the output of a gyroscope, we operated the
chip on a rotating robot. The results of this experiment have been published in Moeckel
and Liu (2008).

After the characterization of the optical flow output of individual pixels a look-up table
was computed that allows a correction for the non-linear relation between optical flow
output and stimulus speed. This look-up table was used to correct the averaged optical
flow output and allowed us to compare the output of the DOFS chip to the output of
a gyroscope while accelerating and decelerating the robot platform. The results are
shown in figure 7.37. The platform was accelerated and decelerated by approximately
200◦/s2 with a period of 1.9s (figure 7.37a) and by approximately 100◦/s2 with a period
of 0.8s (figure 7.37b). We used a gyroscope ADXRS150 from Analog Devices. The gy-
roscope provided an approximately linear rate output for a maximum yaw rate of 150◦/s.
We manually removed the offset of the gyroscope in the plot. The optical flow outputs
as well as the output of the gyroscope were sampled with a rate of 100Samples/s. To
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Figure 7.30: Top: Optic flow outputs from the circuits that are selective for stimuli moving
from the left to the right. Outputs are across all 24 pixels. Error bars indicate minimum
and maximum deviation. Bottom: individual mean optical flow values from the 24 pix-
els and the sensor’s output when no pixel is selected by the scanner. The deviation
between pixels outputs shows the effect of fabrication mismatch. Figures adapted from
Moeckel and Liu (2007).

remove the temporal noise from the optical flow outputs that were caused by the step
motors of the robot, we low-pass filtered the outputs from both the DOFS chip and the
gyroscope. The filtered optical flow outputs from the gyroscope and DOFS chip match
quite well with a maximum error of 10◦/s. These errors mostly occurred at the beginning
and at the end of an acceleration and deceleration cycle and are due to the fact that
the platform was not fully damped which led to platform vibrations. The good matching
between the outputs of both sensors should allow us to remove the rotational optical
flow by subtracting the output of the gyroscope from the overall optical flow output of the
DOFS. Thus the output of the DOFS is suitable for control strategy used in state-of-the
art optical flow controlled MAV where the distance dependend translational optical flow
component is extracted by subtracting the output of a gyroscope from the total optical
flow measured by an optical flow sensor (chapter 4).
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Figure 7.31: 3D plot of the mean optical flow outputs from the circuits that are selective
for stimuli moving from the left to the right side of the sensor’s pixel array. Characteristic
curves are organized according to the pixel order in the sensor array. The sinusoidal
pattern across pixels is typical for fabrication mismatch due to striation effect. Figures
adapted from Moeckel and Liu (2009).

7.4 Discussion

This chapter describes a dynamic optical flow sensor (DOFS) design that implements a
facilitate-and-sample algorithm for optical flow estimation in analog VLSI technology. At
the core of this sensor is a novel double threshold edge detection circuit that allows for
robust detection of temporal contrast edges. In combination with the photoreceptor cir-
cuit by Delbrück and Mead (1994, 1995) and the modified version of the LMC circuit by
Liu (2000), the edge detection circuit forms a robust and reliable front-end that can be of
benefit for token-based vision sensors in general. The front-end photoreceptor adapts
over 4 decades of background intensity and optical flow information can be extracted for
visual stimuli with contrast above 2.5%. Stimulus velocities varying over two orders of
magnitude can be extracted. The chapter also presents characterization experiments
of both of the sensor itself and in combination with a rate gyroscope to illustrate its use
for autonomous control of MAVs. These experiments show good matching between
both sensors with a maximum error of 10◦/s.
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Figure 7.32: Optic flow outputs from figure 7.28 replotted to show the linear theoretically
predicted linear relationship between s = 1/(V DD − output) and stimulus velocity.

Figure 7.33: Optic flow outputs from figure 7.29 replotted to show the linear theoretically
predicted linear relationship between s = 1/(V DD − output) and stimulus velocity.
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Figure 7.34: Optic flow outputs from figure 7.30 replotted to show the linear theoretically
predicted linear relationship between s = 1/(V DD − output) and stimulus velocity.

Figure 7.35: Optic flow outputs from figure 7.31 replotted to show the linear theoretically
predicted linear relationship between s = 1/(V DD − output) and stimulus velocity.
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Figure 7.36: Average motion output O and photoreceptor output (PR) of the chip in
response to a sinusoidal pattern whose contrast C ranges from 2.5% to 80%. The
contrast C = Imax−Imin

Imax+Imin
∗ 100% where Imax and Imin are the maximum and minimum

light intensities of the stimulus measured with a light meter. The range of contrasts
is limited by the passive LCD screen on which the pattern is displayed. The distance
between chip and screen was approximately 16cm. The motion output stays constant
for a constant stimulus velocity even for stimulus contrasts as low as 2.5% while the
peak-to-peak amplitude of the photoreceptor (PR) output drops as the stimulus contrast
decreases. Figures adapted from Moeckel and Liu (2009).

Figure 7.37: Comparison of the optical flow output (dashed black line) with the output
of a gyroscope (solid gray line) for two different accelerations ((a) 200◦/s2, (b) 100◦/s2).
The measurements were taken while the chip and the gyroscope were operated to-
gether on a rotating robot. The optical flow output was averaged across all 24 motion
pixels, corrected to be linear with speed and low-pass filtered. The maximum error is
10◦/s. Figures adapted from Moeckel and Liu (2008).
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Some potential of the FS algorithm remains unexplored in the present dynamic optical
flow sensor implementation:

Reducing the power consumption of DOFS

In theory the FS algorithm allows for very low power implementations. The analog
front-end can be implemented using circuits operating in subthreshold regime consum-
ing little power and the power of the event-based FS circuits can be switched off while
no contrast edge is processed. In practice however, the present DOFS implementation
is not very low power but consumes several mW of power. This is because of limitations
due to the fabrication process several biases (circuit parameters) had to be shared be-
tween circuits which does not allow optimal parameter tuning for all circuits. So several
buffer circuits that share the same biases have a power consumption that is too high.
Also the pulse-shaping circuit that was copied from an earlier unpublished FS design
consumes too much power. Furthermore, circuits that switch off power when no con-
trast edge is detected could have been used. However, I found their implementations
too risky for the first design.

Figure 7.38 depicts a modified version of the original adaptive logarithmic wide-dynamic-
range photoreceptor by Delbrück and Mead (1994, 1995) that would allow to reduce
also the power consumption of the DOFS photoreceptor circuits. Although the present
photoreceptor circuit (section 7.2.1) can be operated in subtheshold it is not exactly a
low power circuit. This is because the current in the inverting amplifier - controlled by
the bias, Vprbias - has to be large enough to make the feedback loop sufficiently sta-
ble at high illumination levels. So if Vprbias is set statically the photoreceptors current
consumption has to be adjusted for the highest expected photocurrents and the pho-
toreceptor constantly burns several µA although on average a bias current through M3
in the order of nA would be sufficient to keep the feedback loop stable.

Delbruck and Oberhoff (2004) proposed a modification of the original photoreceptor
circuit where Vprbias and thus the current in the inverting amplifier is automatically ad-
justed according to the average photocurrent. Figure 7.38 shows the schematics of
this low-power self-biasing photoreceptor circuit that for example has been success-
fully demonstrated in the vision sensors designs by Lichtsteiner et al. (2006, 2008). In
this modified PR design the photocurrents of all sensor pixels are sourced through the
diode-connected MOSFET M0 that copies a fraction of the photocurrent into the indi-
vidual pixels by the MOSFET M3. The size ratio of M0 and M3 sets the precise ratio
of currents. The capacitor C0 has to be large enough to avoid unstable behavior in



156 Chapter 7. Dynamic optical flow sensor

D1

M1

GND

C1

GND

M2
C2

M3

VDD

M4

M5

GND

M0

I0

GND

VDD

C0

VDD

Vprbias

Vcasbias

Vpr

Vdiode

Vprfb

Source-
follower

Inverting
amplifier

Amplification
& adaptation

Self-biasing
(global)

Figure 7.38: Self-biasing photoreceptor circuit.

the feedback loop that adjusts Vprbias. The current source I0 generates a small offset
current that ensures that at low photocurrents the inverting amplifiers stay turned on.
M0, C0 and I0 have only to be implemented once per pixel array. So the overall pixel
size remains constant.

The self-biasing adaptive photoreceptor by Delbruck and Oberhoff (2004) inherits all the
properties of the original adaptive photoreceptor by Delbrück and Mead (1994, 1995)
(section 7.2.1) including its amplification of temporal contrast.
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An event-based communication interface for DOFS

The non-continuous event-based optical flow computation of the FS algorithm opens
the possibility to implement event-based communication between the sensor and a host
processor that is running the controller for an autonomous robot. Similarly as the retina
design by Lichtsteiner et al. (2006, 2008) the individual pixels of a FS optical flow sen-
sor could communicate with the host processor when a new optical flow estimate is
available using an interrupt-based communication scheme. Communication schemes
that use the interrupt of a microcontroller can be very efficient especially for sparse
communication when not every optical flow pixel detects a contrast edge in the visual
stimuli.

In the present DOFS design, such an event-based communication scheme remains un-
explored. Instead I am sequentially scanning the output of all optical flow pixels. The
drawback of this scanner scheme is that the analog outputs of the DOFS need to be dig-
itized leading to a less efficient communication, higher computational load for the host
processor and higher load for the analog-to-digital converter. The advantage lies in the
simplicity of the communication that makes the system very robust. Furthermore, the
technique of constant scanning the optical flow outputs corresponds better to the typical
frame-based computation as it is still standard in many control and machine vision ap-
plications - allowing for a direct integration of DOFS into existing control architectures.
The continuous readout of the analog optical flow outputs allows for an efficient coding
of both the optical flow value as well as the point in time when the optical flow value was
updated in the same analog signal. This way the continuous analog optical flow output
can carry both the optical flow information as well as a reliability measure in the same
signal.

In future designs, the full potential of the event-based optical flow computation in the
DOFS design could probably be best explored by adding an event-based communi-
cation interface to the sensor. Asynchronous communication interfaces with address-
event representation (AER) have been widely studied for instance by Boahen (2000,
2004a,b,c). An AER interface allows individual pixels in an array to output a digital
event by placing their address on a global data bus. Facilitate-and-sample sensor pix-
els could benefit from such an interface in the following way. Individual pixels could
trigger an address event only when a new optical flow measurement is available. The
precise optical flow value remains stored on a capacitor until the value is read by a host
device like a microcontroller and the event is acknowledged. The combination of the
asynchronous event-based optical flow circuits together with an asynchronous event-
based AER communication interface allows the microcontroller to only read the outputs
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of those optical flow pixels that provide a new measurement thus saving communica-
tion time and reducing both the power consumption of the overall system as well as the
computational load on the host controller. The microcontroller and its internal analog-
to-digital converter do not have to continuously read, convert and process all optical
flow output signals on every clock cycle but only once per optical flow value update by
the FS circuits.

Facilitate-and-sample circuits for a linearized optical flow output

The facilitate-and-sample (FS) algorithm measures the time t that a contrast edge re-
quires to travel the distance between neighboring pixels. As a result, a FS optical flow
sensor which uses a linear decay rate for its facilitate signal, will generate an output
OF that is not linearly proportional to the speed v of the stimuli traveling across the
sensor’s focal plane but to t. As discussed in section 7.1.2, this does not have to be a
disadvantage. If, however, a linear or more complex OF -v relationship is desired, this
can be achieved by using a piece-wise approximation of the preferred output function.

Figure 7.39 shows the design of a new circuit that can generate linear and complex
OF -v output functions using piece-wise approximations. The circuit uses the capacitor
C5 that stores the facilitate signal F as well as the reset MOSFET M55 and the current
source M56 from the original facilitate circuit in figure 7.15a. It includes in addition,
several comparators (OTA1-OTAn) that deactivate the current paths through additional
current sources (M57, M59, M61) when the F -signal falls below each OTA’s correspond-
ing threshold voltage (Vthr1bias-Vthrnbias). So as F decreases over time, the number of
active current sources decrease, and the decay rate ∆F/∆t decreases as well.

The simulation plots in figure 7.40 show optical flow OF output profiles that are linear in
the stimulus velocities v (figures 7.40b and 7.40d). They also show the corresponding
timing diagrams for the facilitate signals (figures 7.40a and 7.40c) using 7 and 4 different
thresholds and additional decay rates, respectively. Horizontal lines in the plots depict
the thresholds that are used for linearization. For generating the linear output profiles
in (b) and (d), I use the pulse width of the nP -signal (dotted line in figures 7.40a and
7.40c) that resets F , to limit the maximum stimulus velocities that can be resolved.
With the various threshold and decay rate parameters, the circuit using 7 (4) thresholds
generates an RMS error of 1.68% (5.48%) and a maximum error of 3.03% (14.90%) in
comparison to a perfect linear relationship.

The circuits using several thresholds and decay parameters will benefit from a dynamic
parameter update that adjusts the range of stimulus velocities that can be optimally
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Figure 7.39: Multi-decay rate facilitate circuit which produces an output that is approxi-
mately linear in the stimulus speed.
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Figure 7.40: Simulation plots of the multi-decay rate facilitate circuit. (a,c) F vs time
(b,d) F vs stimulus velocity. (a,b) 7 thresholds rms error:1.68%; max error:3.03% (c,d)
4 thresholds rms error=5.48%; max error=14.90%

measured and resolved similarly as the fabricated DOFS.

To the best of my knowledge such a multi-threshold facilitate circuit that supports an op-
tical flow output that changes linearly with stimulus velocity has not been demonstrasted
in the literature before.



Chapter 8

Steering a simulated car with the
dynamic optical flow sensor

Abstract

To demonstrate the capabilities and potentials of the dynamic optical flow sensor (DOFS)
a simplified car driving simulation was developed in Matlab. DOFS observes the sim-
ulation through a standard LCD laptop screen. We trained a single-layer perceptron -
a well-known numerical neuron model - to process the local optical flow outputs gen-
erated by DOFS to steer the car in the driving simulation. The presented work has
been published at the IEEE International Symposium on Circuits and Systems (Moeckel
et al., 2008). I would like to thank Roger Jäggi who developed with me the car driving
simulation as part of his semester project at the Institute of Neuroninformatics.

The following section 8.1 presents the car driving simulation software and experimental
setup while section 8.2 describes the perceptron controller. Section 8.3 presents ex-
perimental results where DOFS is demonstrated to autonomously steer the simulated
car based on visual feedback. The results are discussed in section 8.4.

8.1 Experimental Setup

A picture and the schema of the experimental setup are shown in figure 8.2. The analog
local optical flow values (the sampled facilitate signals HR and HL) from the 24 DOFS
pixels are continuously scanned by an ARM7 microcontroller in a frame-based fashion
and converted into digital values with a resolution of 7 bit. The microcontroller also

161
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Figure 8.1: Demo setup. The motion chip computes optical flow based on the driving
simulation generated by a PC. A microcontroller continuously scans the local motion
values from the chip, converts the analog values to digital ones and sends them via a
serial communication interface (RS232) to the PC where a simple controller updates
the position of the simulated car based on the motion values. The microcontroller is
further responsible for adjusting the velocity bias that sets the current detectable range
of image velocities. Figures adapted from Moeckel et al. (2008).

adjusts the velocity bias, Vfleakbias, that sets the range of image velocities that DOFS
can detect (see section 7.2.4).

During the experiments the microcontroller’s analog-to-digital converter was set to its
maximum sampling rate of 10KSamples/s which leads to a minimum readout time of
100µs per pixel. But since the optical flow measurements change only slowly over time
we read the sensor outputs not at the maximum frame rate but at a reduced rate of
100 frames per second. The optical flow values were sent to a laptop PC running the
driving simulation as well as the controller of the simulated car via a standard serial
RS232 communication interface with a baud rate of 38400baud/s.

The car driving simulation and controller are implemented in Matlab. The visual stimuli
are generated with the Psychtoolbox (Brainard, 1997; Pelli, 1997). A typical screen
shot of the game is shown on the left side of figure 8.2. During the game the car at
the bottom of the screen is steered using the local optical flow outputs generated by
DOFS to avoid collisions with the walls on both sides of the simulated road. The sensor
was placed so that it monitors the far end of the street as indicated by the red box. For
a straight street, the optical flow sensor outputs a 1-dimensional optical flow field that
forms an expansion pattern similarly to the one shown on the right of figure 8.2. If the
street curves to the left or right of the screen, the optical flow field is shifted and this
shift is used to adjust the position of the car in the next frame.
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Figure 8.2: Screen shot of one frame in the car driving simulation. The visual field of the
motion detection chip is indicated by the red box. The box on the right shows the local
motion values of the chip that are used to steer the car. Figure adapted from Moeckel
et al. (2008).

8.2 Single-layer perceptron controller

Figure 8.3: The perceptron calculates the current position of the street based on the 24
DOFS optical flow output signals. Figure adapted from Moeckel et al. (2008)

For steering the simulated car we decided on a simple controller based on the well-
known perceptron shown in figure 8.3. The 24 optical flow values extracted by DOFS
are inputs to the perceptron that fuses the information from the individual optical flow
pixels and produces an output based on the weighted sum of the inputs following the
equation:

output = f(
24∑
i=1

weighti ∗ inputi) (8.1)

where f is the sigmoid function. During a training period the weight vector is updated
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using the following supervised learning rule

∆weight = η ∗ (supervisor − output) ∗ input (8.2)

where the weight change ∆weight is determined based on the difference between the
supervisor signal (that is the desired output) and the current output of the perceptron.
η is a constant that is used to adjust the amount of weight update per learning step.

8.3 Experimental results

(a) (b)

Figure 8.4: (a) Average estimation error of the current position of the center of the
street measured in number of pixels on the screen. Error bars indicate the standard
deviation. After the supervised training phase of the perceptron, the error decreases
below 60 pixels. (b) Final weight values for the inputs of the perceptron after 8000
learning steps. The perceptron learned to steer the simulated car towards the center
of the street which was approximately in the field of view between optical flow sensor
pixels 12 and 13. Figures adapted from Moeckel et al. (2008).

We generated a long driving track for the car simulation. During the training phase, the
perceptron was trained with different segments of this track. A typical evolution of the
displacement error during this training phase is shown in figure 8.4a. The error value
defined in screen pixels is the difference between the distance of the current position of
the center of the street and the perceptron output based on the local motion values. The
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displacement error decreases below 60 pixels after 8000 weight updates while using a
screen resolution of 1024x768 pixels.

An example of a final weight distribution at the end of a learning phase is shown in figure
8.4b. For this experiment, the optical flow sensor was placed in front of the screen so
that the center of the street was approximately in the visual field of optical flow pixels in
the center of the sensor’s 1-dimensional pixel array. Even though the weight distribution
is asymmetric, the net output of the perceptron is close to zero which means that the
car will stay in its current horizontal position. The unsymmetric weight distribution is
probably due to the fact that the motion chip was not looking exactly at the center of the
screen or that the sensor was not oriented orthogonally to the screen surface. Overall
the perceptron proved to have the potential to correct for both displacement errors of
the sensor with respect to the center and orientation of the screen as well as for fixed
pattern noise in the optical flow outputs and lens aberrations.

Figure 8.5: Horizontal position of the center of the street (solid line) and the location of
the car (dashed line) on the screen in units of pixels. Figures adapted from Moeckel
et al. (2008).

The trajectory of the car through the driving simulation after training is shown in form of
a dashed line in figure 8.5. The car was able to drive close to the center of the street
(depicted as a solid line in figure 8.5) without colliding with the walls. The figure shows
that when the street contains sharp curves the car sometimes leaves the middle line of
the street - but does not leave the street. This behavior is caused by the proportional
steering controller but especially by the limited number of only 24 optical flow pixels that
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where not sufficient to cover the entire screen. I believe that a slightly more complex PID
controller that allows better estimation of the next street position based on the history
as well as the application of a DOFS with a higher spatial resolution could reduce the
displacement errors.

Figure 8.6: Screen shots of the car driving simulation with contrast of 1.0 (left) and 0.05
(right). Figures adapted from Moeckel et al. (2008).

We tested the steering properties of our setup for scenes of different contrasts and
background light intensity. Examples of two different contrast scenes are shown in
figure 8.6. Because of the contrast independent optical flow outputs of DOFS, the setup
can deal with low contrast simulations down to a contrast of 5% and various background
light intensities.

8.4 Discussion

The presented demonstration setup shows the potentials and properties of the DOFS
in steering a simulated car using only 24 optical flow pixels. The car driving simulation
is somewhat simplified due to the limited number of pixels in the DOFS and the limited
resources for the development of the simulation environment. Future demonstration
systems that simulate more complex 3D flight behavior would probably require several
DOFSs with a higher pixel count. The present car driving simulation is nevertheless
a powerful demonstration system: By fusing the optical flow values with the help of a
simple single-layer perceptron, one can find the displacement error of the simulated car
in relation to the center of the street and generate a steering signal. The perceptron
produces the steering output only based on the weighted sum of the local optical flow
values. Because of the inclusion of circuits on the optical flow sensor to model the prop-
erties of cells in the stages prior to the optical flow computation in biological systems,
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and the learning through the perceptron, we get a robust setup that (i) is adaptive to
approximately three orders of magnitude of change in background light intensity; (ii) op-
erates over a large range of contrasts down to a contrast of 5%; (iii) supports pixel-level
optical flow variations over two orders of magnitude without bias changes; (iv) adapts
to displacement errors of the placement of the motion chip in front of the screen, and
(v) is robust to variance across the local measured optical flow values. So the system
demonstrates how the difficult task of steering a car can be achieved with the help of
the DOFS that performs the computationally expensive task of optical flow processing.





Chapter 9

Adaptive aVLSI vision sensor

Abstract

This chapter presents a 160-pixel adaptive vision sensor (aVIS) implemented in analog
Very Large Scale Integrated Technology. By outfitting the vision sensor with a standard
lens, a 0.3 gram compact vision system for guidance of micro-aerial vehicles (MAV)
was created. The sensor features the wide-dynamic range photoreceptor circuit that
adapts over four orders of background light intensity as well as the LMC circuit from
the dynamic optical flow sensor presented in chapter 7. Optic flow estimation is imple-
mented on a dsPIC microcontroller that sequentially reads the LMC output signals from
aVIS and computes optical flow based on the Image Interpolation Algorithm (I2A) by
Srinivasan (1993, 1994). We characterize the system for optical flow computation by
comparing the I2A outputs against the outputs from a rate gyroscope and show that the
vision system is a suitable candidate for visual guidance of autonomous robots.

Section 9.1 gives an overview of the adaptive vision system module while sections
9.2 and 9.3 introduce the aVIS circuits and image interpolation algorithm, respectively.
Experimental results are presented in section 9.4. Section 9.5 concludes and discusses
the experimental results.

Highlights and original contributions

This chapter explores the possible advantages of using a front-end bio-inspired sensor
with properties such as local background light adaptation over a wide range of inten-
sity levels and local amplification together with an algorithm that computes optical flow
based on sets of images. Similarly as the front-end circuits implemented in DOFS (pre-
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sented in chapter 7) the photoreceptor and LMC circuit of the adaptive vision sensor
amplify temporal contrast of visual stimuli and show adaptation behavior when the stim-
ulus contrast does not vary over time. So since the Image Interpolation Algorithm (I2A)
was designed processing optical flow based on consecutively taken images it was not
obvious that the I2A could be used as well to compute optical flow from the outputs of
the adaptive vision sensor.

9.1 Overview of the adaptive vision system

This section introduces the adaptive vision sensor and explains the history of the sen-
sor.

9.1.1 Sensor overview

Table 9.1: aVIS and lens specification.

Fabrication process AMS 0.35µm 4 Metal 2 Poly
Supply voltage 3.3V
Number of pixels 160 x 1
Pixel distance 20µm

Size of photodiode 17µm x 66µm

Chip size 4.141mm x 2.441mm

Weight incl. PCB 0.117g

Lens name DSL767A
Focal length 2.43mm

F/# 2.8
Diagonal field of view 66◦

Size 8mm x 8mm x 3.2mm

Weight 0.18g

The specifications of the adaptive vision sensor are summarized in table 9.1. A mi-
crophotograph of the adaptive vision sensor’s bare die is depicted in figure 9.1. The
aVLSI sensor consists of a linear array of 160 pixels and was fabricated in an AMS
0.35µm 4 metal 2 poly process. Each pixel contains a photodiode that converts light
into photocurrents. A photoreceptor circuit (section 9.2.1) amplifies temporal contast
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Figure 9.1: Picture of adaptive vision sensor bare die. The vision sensor contains an
array of 160 pixels that are composed of a photodiode, photoreceptor and LMC circuit.
An analog scanner circuit allows sequential access to local pixel output signals. The
bias-current generator provides the capability to generate all bias parameters on-chip.
Since aVIS was originally designed as a predecessor of the dynamic optical flow sensor
it contains additional circuits. (Picture taken by Adam Klaptocz.)

and adapts to background light intensity (Delbrück and Mead, 1994, 1995). The pho-
toreceptor outputs are further amplified and clamped by an LMC circuit (section 9.2.2)
that models the Laminar Monopolar Cell (LMC) in the fly visual system (Liu, 2000).
The local LMC output signals are sequentially read through an analog scanner circuit
(section 9.2.3) (Mead and Delbruck, 1991). The sensor furthermore includes a pro-
grammable bias generator circuit that allows the on-chip generation of the circuits’ bias
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currents (Delbruck and Lichtsteiner, 2006). With this circuit block, no external chips like
DACs are needed for generating the bias values of the sensor.

8mm

15
.7

m
m

(a) aVIS die mounted on
a printed circuit board
(PCB).

(b) aVIS module
with lens.

(c) Pyramidal eye configuration
composed of 3 camera mod-
ules.

Figure 9.2: (a) aVIS chip die directly bonded on a custom printed circuit board. (Picture
taken by Adam Klaptocz.) (b) Adaptive vision sensor module with lens. (c) 3 aVIS
modules forming a pyramidal eye. Vision sensors pointing to the left, right, and bottom
for obstacle avoidance and altitude control. Design idea by Jean-Christophe Zufferey.
The bottom PCB with microcontroller shown in (c) was designed by Adam Klaptocz.

Figures 9.2a and 9.2b show the adaptive vision sensor mounted on a triangle printed
circuit board (PCB) without and with lens attached. The specific shape of the PCB
was chosen according to an idea by our partner Jean-Christophe Zufferey. The shape
allows three to four sensor modules to be mounted together to form a pyramidal eye
as depicted in figure 9.2c. The sensor outputs go to a microcontroller mounted on the
bottom PCB of the pyramid. The pyramidal configuration was chosen to form a compact
vision system where individual sensors - when mounted on the MAV - face to the left
and right sides for obstacle avoidance and to the top and bottom for floor and ground
avoidance. The PCBs were designed for operation of the aVIS modules on the 10-gram
indoor microflyer by Zufferey et al. (2007) (section 4.1).

9.1.2 Sensor history

The adaptive vision sensor was designed to be the successor of the dynamic optical
flow sensor presented in chapter 7. The unlabelled sensor area in figure 9.1 contains
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the circuits that implement the facilitate-and-sample (FS) optical flow algorithm. These
circuits were not usable after fabrication because of two mistakes that were made when
I transferred the DOFS design from the 1.6µm to the 0.35um fabrication process. These
mistakes affected the performance of the sensor’s optical flow outputs making them too
noisy and unreliable for visual guidance of autonomous robots.

1. I increased the capacitive gains of the photoreceptor from Apr = 14.15 to Apr = 23

and the LMC circuit from Almc = 43.57 to Almc = 51.2. Due to the increased gain
and in the presence of circuit noise the coupled photoreceptor and LMC showed
unstable behavior where spontaneous oscillations where generated. The problem
of oscillations was addressed by limiting the bias currents of the circuits’ amplifiers
which also limits the circuits’ bandwidths.

2. I added a circuit for local competition between the FS circuits of neighboring pixels
that makes the sensor’s optical flow outputs unreliable. Unfortunately, I could not
find a work around for addressing this problem.

Because of these problems, we decided to directly read the sensor’s LMC outputs and
compute optical flow off-chip on a microcontroller.

9.2 Circuits of the dynamic optical flow sensor

This section discusses the individual circuits of the adaptive vision sensor in detail.

9.2.1 Adaptive logarithmic wide-dynamic-range photoreceptor cir-
cuit

The adaptive vision sensor uses similar adaptive wide-dynamic-range photoreceptor
circuit as DOFS. The only modification to the circuits is the replacement of the adaptive
element proposed by Delbrück and Mead (1994, 1995) by a source-follower controlled
element (M6,M7,M2) as suggested by Liu (2000) that allows to control the circuits adap-
tation time constant after fabrication through the bias Vprbfbias. The aVIS photoreceptor
circuit is shown in figure 9.3.

The circuit amplifies temporal contrast and outputs a voltage Vpr
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Figure 9.3: Schematic of adaptive logarithmic wide-dynamic-range photoreceptor cir-
cuit implemented as part of aVIS.

dVpr
dt
≈ Apr

UT

κ

1

Iph

dIph
dt

(9.1)

where κ describes the efficiency of the gate in driving the channel potential, UT is the
thermal voltage, Iph is the photocurrent generated by the photodiode and Apr is the gain
of the capacitive amplifier (C1,C2) , that is,
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Apr =
C1 + C2

C2
(9.2)

The gain Apr for the aVIS is about 23.

M7

GND

M6

VDD

M9

GND

M8

VDD

Vprbuf Vprscan

Vprbias

Vpr

Vlmcbias

Source follower Source follower

Figure 9.4: Two source follower circuits act as buffer and level shifter between the
photoreceptor and LMC circuit and between photoreceptor and scanner circuit.

Similarly as in DOFS, two source follower circuits buffer the photoreceptor output signal
(figure 9.4) and prevent signals from the LMC and scanner circuit from coupling back
into the photoreceptor.

9.2.2 LMC circuit

The aVIS LMC circuit is the same as for DOFS. The circuit that outputs an amplified
version Vlmc of the photoreceptor output Vpr is displayed in figure 9.5.

dVlmc

dt
= Almc

dVpr
dt

(9.3)

where the capacitive gain, Almc = C3+C4
C4

and is about 51.2 in this design.

Besides the amplification the LMC circuit implements adaptation by the two feedback
elements M10-M13 and M14,M18,M19. Furthermore, the circuit removes the DC mis-
match from the photoreceptor and outputs a voltage signal which DC is independent
from the background light level. These properties are useful for computing the optical
flow by using the Image Interpolation Algorithm on the LMC outputs.
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Figure 9.5: (a) Schematic of aVIS LMC circuit.

9.2.3 Scanner circuit

As in DOFS, a scanner circuit is used to read the local output values of individual pixel. I
applied two modification to the orginal scanner circuit: (1) I modified the scanner circuit
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so that several bits can be manually be loaded into the scanner’s shift register and thus
the scanner can read out an average over the outputs of several pixels. This option to
actively load bits allows as well for the synchronization of the readout of several aVIS
chips using the same digital interface, for example, in the pyramidal eye configuration.
(2) Furthermore, I replaced the DOFS 5-transistor unit-gain follower circuits with wide-
range follower circuits that have more gain and thus speed up the response of the
scanner circuit and that can have an input and output voltage swing over the whole
power supply levels.

9.3 Linear Image Interpolation Algorithm

f0 fRfL

f

Time t0

Time t = t0 + ∆t

Intensity
Image

Intensity

Image

Figure 9.6: The linear I2A uses four image frames for the estimation of an optical flow
value: Image frames f0 and f are sampled successively with an inter image time iit =

∆t. Image frames fL and fR are generated by shifting image f0 to the left and right by
one pixel, respectively.

The Image Interpolation Algorithm (I2A) by Srinivasan (1993, 1994) estimates optical
flow by measuring how much the pixels’ intensity values shift between two successive
image frames f0 and f as shown in Figure 9.6. On a 1-dimensional pixel array like aVIS
the shift along the array ∆̂x between f0 and f can be estimated with the help of two
reference image frames with a known amount of shift. These reference images fR and
fL can be generated by shifting the intensity values of the image frame f0 by a known
amount of pixel shift, ∆xref .

fR = f0(x−∆xref ) (9.4)

fL = f0(x+ ∆xref ) (9.5)



178 Chapter 9. Adaptive aVLSI vision sensor

If the shift between f0 and f is sufficiently small which can be achieved by adjusting the
time delay or inter-image time ∆t between f0 and f , the image shift or optical flow ∆̂x

can be estimated by finding an approximation to f , called f̂ , that is a linear weighted
combination of the reference images fR and fL relative to the original image f0. The
weight corresponding to the unknown spatial shift ∆̂x is normalized to the known shift,
∆xref , used to generate the reference image frames:

f̂ = f0 + 0.5

(
∆̂x

∆xref

)
(fR − fL) (9.6)

The unknown ∆̂x can be found by minimizing the least square error between f and its
approximation f̂ :

E =

∫
Ψ ·
[
f − f̂

]2

dx (9.7)

where Ψ is a function to apply a spatial low-pass filter to the image frames which Srini-
vasan has shown to be useful for low-noise optical flow estimation. Furthermore, Ψ can
be used to select a certain patch in the image by setting all other image intensity values
to zero. A typical function for Ψ is a Gaussian. By substituting f̂ from (9.6) into (9.7)
and setting the derivative of the mean-square error E with respect to ∆̂x to zero, the
unknown image shift can be obtained:

∆̂x

∆xref
= 2 ·

∫
Ψ · (f − f0) (fR − fL) dx∫

Ψ · (fR − fL)2 dx
(9.8)

We chose the I2A for optical flow computation due to its interesting properties for em-
bedded systems and since it was already successfully demonstrated on the indoor flyer
by Zufferey et al. (2007) using a standard frame-based linear camera.

1. The I2A is a non-iterative algorithm with a closed-form solution. If Ψ is ignored, for
n pixels the I2A requires only two subtractions and two multiplications per pixel as
well as (n− 1) additions for the spatial integration and a single division. It is thus
computationally inexpensive and suitable for implementation into a microcontroller
on-board a flying platform.

2. The spatial low-pass filtering of Ψ can be achieved without any computational
effort by defocussing the lens with respect to the vision sensor.
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3. The I2A implements spatial integration among different pixels providing proper
weighting of image contrast - giving a higher weight to high contrast stimuli.

As in all gradient-based optical flow algorithms, the I2A algorithm can also become
unstable in the presence of noisy images if the contrast is too low and the denominator
in (9.8) is close to zero. This situation can be avoided by discarding the image frames
when the denominator drops below a set threshold.

9.4 Experiments

We evaluated the adaptive vision sensors under similar conditions as the cameras orig-
inally used by Zufferey et al. (2007) for their flight experiments to test the performance
of the aVIS-I2A combination. The following sections describe the experimental setup
and results in more detail.

9.4.1 Experimental setup

Figure 6: Our 7x6-m experimentation room for indoor aerial vision-based navigation. Left: Arrangement

of the 8 projectors hanging from the ceiling, each projecting on the opposite half-wall. Note the dashed

pyramidal outline showing as an example the zone illuminated by the left-back projector. Right: Picture

of the interior of this room with a random checkerboard pattern being projected.

3.3 In-flight Experiments and Results

We present two experiments where the MC2 fitted with the control strategy previously described is

started from the ground of our experimentation room and must steer autonomously while regulating its

airspeed. The only difference between the two experiments is the type of projected texture. In the first

experiment, randomly distributed black and white stripes are used, whereas in the second one a random

black and white checkerboard pattern is projected (Fig. 7). This latter texture is more difficult from

the perspective of OF estimation because rolling and pitching movements of the plane can dramatically

change the visual content from one image acquisition to the next. However, at this preliminary stage,

the goal of these two experiments is not to systematically investigate effects of different visual textures

or control parameters, but rather to demonstrate partially autonomous operation of the MC2 as a proof-

of-concept. A video clip corresponding to these experiments is available for download from the project

website (http://lis.epfl.ch/microflyers).

These experiments were carried out several times with the same control strategy and the MC2

demonstrated good robustness with both kinds of visual textures meaning that it could fly for up to 10

minutes without crashing. Fig. 7 shows a subset of flight data recorded during the first 25 s of the flight

when the robot takes off, climbs, and levels off. During those 25 s, the MC2 travels approximately 4

times around the room.

The bottom graphs of each experiment (Fig. 7) show the motor power settings and anemometer

readings over time. At the beginning, one can easily distinguish when autonomous control is initiated

since it corresponds to the moment when the motor power rises from 0% to 100%. The anemometer then

reacts to the plane’s acceleration. After one or two seconds the plane reaches its cruising altitude and

the human pilot levels it off with a slight push on the joystick. The motor power is then automatically

adapted according to the anemometer readings.

Fig. 7 also shows the signals related to steering control, i.e., OFDiv and yaw rate gyro. A quick

inspection of the gyro signal indicates that the MC2 is flying in leftward circles and continuously adapts

9

Figure 9.7: Experiments for the characterization for optical flow extraction with aVIS and
the image interpolation algorithm have been carried out in the same 7m x 6m room as
the flight experiments by Zufferey et al. (2007). This room is equipped with 8 projectors
that can project arbitrary images on the walls. The figure showing a typical test pattern
is adapted from Zufferey et al. (2007).
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To evaluate the possibility of controlling a MAV with the adaptive vision sensor, we
evaluated the sensors in the same room (shown in figure 9.7) that was used by Zufferey
et al. (2007) for their flight experiments with their 10-gram indoor airplane. I would like
to thank Jean-Christophe Zufferey for his advice on the experiments as well as Adam
Klaptocz and Antoine Beyeler who together with me created the experimental setup
for testing the sensors. Furthermore, I would like to thank Prof. Dario Floreano, who
allowed me to do the experiments at the EPFL Laboratory of Intelligent Systems.

As discussed in section 2.3, Koenderink and van Doorn (1987) had shown that the total
optical flow OF is the linear combination of a distance-independent rotational optical
flow component, OFrot, and a translational component, OFtrans, which magnitude is
inversely proportional to the distance between the sensor and an object:

OF = OFtrans +OFrot (9.9)

Zufferey et al. (2007) used this fact for their flight controller that was discussed in detail
in section 4.1. The controller uses the total optical flow perceived by two vision sensors
and subtracts the rotational optical flow components to gain the remaining translational
optical flow. The airplane’s rudder is controlled by a signal OFDiv that is generated by
subtracting the translational optical flow perceived by the left and right vision sensor.
The rotational optical flow component is estimated based on the readings from a gy-
roscope. The controller thus fully depends on a good matching between the rotational
optical flow computed from the vision sensors and the outputs of the gyroscope.

To test the compatibility of aVIS with the flight controller by Zufferey et al. (2007) the
optical flow generated by the I2A based on the sensor’s outputs was compared with
the outputs of a rate gyroscope (IDG-500 from Invensense Inc.). During the experi-
ments, aVIS was mounted on a rotating platform facing visual patterns that have been
projected onto the walls of the experimental room (shown in figure 9.7). The LMC and
photoreceptor (PR) outputs from the 60 pixels in the middle of the aVIS pixel array were
recorded. For comparison we furthermore recorded images and computed optical flow
from the 60 central pixels of the same off-the-shelf linear image sensor (TSL3301 from
TAOS, Inc) that was used by Zufferey et al. (2007) for their flight experiments. Specifica-
tions of the TSL3301 image sensor can be found in table 9.2. For a better comparison
both aVIS and TSL have been equipped with the same lens (EL20 with effective focal
length EFL=3.4mm).

For the optical flow extraction the inter-image time, iit, for aVIS and TSL was adapted to
match the theoretically expected maximal image shift between two consecutive frames
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Table 9.2: Specifications of TSL3301 image sensor.

Supply voltage 3.3V
Number of pixels 102 x 1
Pixel size 85µm x 77µm

Pixel distance 85µm

to a rotation rate of 300◦/s.This is the maximum rotation rate measured on the target
aerial platform. The aVIS was tested under the 3 conditions:

1. In the first condition called ”1 pixel shift” the iitwas set so that in the time between
two frames the image is shifted by 1 pixel when the sensor is rotated with the
maximum rotation rate of 300◦/s.

2. In the second condition called ”3 pixel shift” the iit was set so that in the time
between two frames, the image is shifted by 3 pixels when the sensor is rotated
with the maximum rotation rate of 300◦/s.

3. In the last condition called ”3 pixel bins” sensor pixels were grouped into bins of
3 pixels. The averaged PR and output values of the pixels within a bin was used
as input to the I2A. So 3 pixels were treated as if they were a single one. The iit
was set so that in the time between two frames the image is shifted by these 3
pixels when the sensor is rotated with the maximum rotation rate of 300◦/s.

Our hypothesis was that averaging over several aVIS pixels would help to cancel mis-
match and reduce noise in the LMC and PR output signals. Furthermore, we expected
the optical flow estimates calculated from the LMC output to be of less noise and less
error than the optical flow generated from the PR output because of the further ampli-
fication and the band-pass filtering of the PR signals by the LMC circuit. The biases
of the circuits had been adjusted to reduce errors in the optical flow calculation due to
adaptation. The lens was defocused to spatially smooth the images projected on the
sensors. The sensors have been tested with the visual pattern shown in figure 9.7 using
2 different spatial frequencies.

9.4.2 Experimental results

Figures 9.8 and 9.9 show the optical flow calculated from aVIS plotted against the
output of the gyroscope. Ideally all measurements should be on the diagonal line.
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(a)

(b)

Figure 9.8: Optic flow calculated from the aVIS LMC circuit output plotted against the
output of the gyroscope for the (a) 1-pixel-shift and (b) 3-pixel-shift condition in form
of a scatter plot. The black dashed line shows the desired linear relationship between
gyroscope and optical flow. SSE is the root mean squared error.



9.4. Experiments 183

(a)

(b)

Figure 9.9: Optic flow calculated from (a) the aVIS LMC circuit output plotted against
the output of the gyroscope for the 3-pixel-bin condition and (b) estimated from the TSL
image sensor in form of a scatter plot. The black dashed line shows the desired linear
relationship between gyroscope and optical flow. SSE is the root mean squared error.
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However, due to noise, mismatch and since the precise distance between lens and
sensor is not known the measurements are scattered around a line with a slope different
from 1. For finding the best possible matching we did a linear least squares fit extracting
the gain and offset to match optical flow and gyroscope output values. To ensure an
equal contribution of optical flow values over the entire range from -300◦/s to 300◦/s we
separated the measurements into 10 bins and selected 30 OF-gyroscope value pairs
for calculating the least squares fit.

Figures 9.10 to 9.15 show samples from the gyroscope and optical flow time traces
when aVIS was rotated in front of the visual stimulus patterns 1 and 2. The plots
reveal the differences in the matching for the different test conditions. A good matching
between gyroscope and optical flow output seems to be achieved for instance by the
experiment which results are shown in figure 9.15a.

To quantify the matching between gyroscope and I2A optical flow data we again binned
data samples into 10 equally sized bins of optical flow velocity ranges between -300◦/s

and 300◦/s. For each bin we randomly sampled 30 values from the time traces and
calculated the root mean squared error (RMSE) between the mean optical flow value
per bin and the desired linear optical flow to gyroscope relationship. The results are
shown in figures 9.16 to 9.21.

For comparison we also recorded the optical flow generated by the TSL camera. The
results are shown in figure 9.22.

9.5 Discussion

The results of the different experiments are summarized in figure 9.23. From the RMSE
measurements we conclude that when using aVIS in combination with the I2A the best
results are obtained by binning pixels and averaging their LMC output signals.

The experiments show that the smaller spatial frequencies in stimulus pattern 2 were
better suited for the 3-pixel-binning and 3-pixel-shift than for 1-pixel-shift condition. This
is probably because the I2A prefers many smooth gradients across the sensor array.
When limiting the image shift to a maximum of a single sensor pixel, the pixel’s FOV is
too small to receive a sufficient gradient and resolve different image velocities with good
resolution and low noise. Furthermore, the mismatch has larger effect for the 1-pixel-
shift condition since no averaging between pixels takes place before the optical flow
calculation. The spatial optical flow integration of the I2A is of benefit but a combination
of the two integration techniques is of more advantage.
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Figure 9.10: Timing diagram of optical flow and gyroscope output signals. The optical
flow output was corrected by the gain and offset found with a least squares fit to match
the gyroscope as good as possible. Time traces are shown for (a) the visual stimulus
pattern 1 and (b) stimulus 2. Optic flow was calculated from the aVIS photoreceptor
outputs. The optical flow follows the gyroscope best when the rotation rate changes
smoothly but tends to overshoot at high accelerations and decelerations.

The results also clearly indicate that the LMC output is better suited for optical flow
computation than the outputs of the TSL sensor and as expected than the aVIS pho-
toreceptor outputs. The only exception where the LMC performs worst is for stimulus
2 and the 1-pixel shift condition. The advantage from the optical flow generated from
the LMC output over those estimated from the TSL sensor could be partially caused
by the better spatial resolution of aVIS. The LMC outputs are better suited for optical
flow calculation than the photoreceptor outputs because the LMC high-pass filters and
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Figure 9.11: Timing diagram of optical flow and gyroscope output signals. The optical
flow output was corrected by the gain and offset found with a least squares fit to match
the gyroscope as good as possible. Time traces are shown for (a) the visual stimulus
pattern 1 and (b) stimulus 2. Optic flow was calculated from the aVIS photoreceptor
outputs.

amplifies the PR output. Thus the LMC circuit is removing the DC mismatch of the pho-
toreceptor outputs but also makes the signals better suited for the conversion by the
10-bit analog-to-digital converter that has an input range from 0 to 3.3V. The LMC bias
controlling the current in the inverting amplifier Vlmcbias was set so that high frequencies
were filtered - a further advantage over the photoreceptors’ outputs.

Further improvements of the optical flow quality is possible by adjusting the range of
analog-to-digital converter (ADC) to fit to maximum peak-to-peak amplitude of the LMC
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Figure 9.12: Timing diagram of optical flow and gyroscope output signals. The optical
flow output was corrected by the gain and offset found with a least squares fit to match
the gyroscope as good as possible. Time traces are shown for (a) the visual stimulus
pattern 1 and (b) stimulus 2. Optic flow was calculated from the aVIS photoreceptor
outputs.

output signal so that resolution of the ADC is optimally used. Furthermore, the system
would benfit from the additon of a sample and hold circuit to the LMC output. Currently
the values of the pixels can change while pixels are scanned due to image motion.
So for large sensor arrays when the time deviation between sampling pixels cannot be
neglected anymore the moving stimuli or sensor can generate considerable distortion
in the optical flow measurements. With a simple sample-and-hold circuit this can be
avoided.
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Figure 9.13: Timing diagram of optical flow and gyroscope output signals. The optical
flow output was corrected by the gain and offset found with a least squares fit to match
the gyroscope as good as possible. Time traces are shown for (a) the visual stimulus
pattern 1 and (b) stimulus 2. Optic flow was calculated from the aVIS LMC outputs.

Overall our experimental results show that a combination of I2A and the continuous-
time adaptive image sensor is possible. The RMSE measurements make confident that
autonomous guidance of a MAV like the indoor flyer by Zufferey et al. (2007) are within
reach using our adaptive vision sensor.
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Figure 9.14: Timing diagram of optical flow and gyroscope output signals. The optical
flow output was corrected by the gain and offset found with a least squares fit to match
the gyroscope as good as possible. Time traces are shown for (a) the visual stimulus
pattern 1 and (b) stimulus 2. Optic flow was calculated from the aVIS LMC outputs.
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Figure 9.15: Timing diagram of optical flow and gyroscope output signals. The op-
tical flow output was corrected by the gain and offset found with a least squares fit
to match the gyroscope as good as possible. Time traces are shown for (a) the visual
stimulus pattern 1 and (b) stimulus 2. Optic flow was calculated from the aVIS LMC out-
puts. When averaging the LMC output from 3 pixels the calculated optical flow closely
matches the output from the gyroscope.
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(a)

(b)

Figure 9.16: Optic flow estimates plotted against output of gyroscope for a 1 pixel shift.
The optical flow output extracted from the aVIS photoreceptor was corrected by the gain
and offset found with a least squares fit to match the gyroscope output. For all plots from
figures 9.16 to 9.21, the range of rotation rates from -300◦/s and 300◦/s was separated
into 10 bins. The red error bar plots shows the mean and standard deviation of the
30 value pairs per bin randomly selected from the time traces. The black dashed line
indicates the desired linear relationship between optical flow and gyroscope outputs.
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(a)

(b)

Figure 9.17: Optic flow estimates plotted against output of gyroscope for a 3 pixel shift.
The optical flow output extracted from the aVIS photoreceptor was corrected by the gain
and offset found with a least squares fit to match the gyroscope output. The red error
bar plots shows the mean and standard deviation of the 30 value pairs per bin randomly
selected from the time traces. See caption of figures 9.16 for more details.
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(a)

(b)

Figure 9.18: Optic flow estimates plotted against output of gyroscope for a 3 pixel bin
average. The optical flow output extracted from the aVIS photoreceptor was corrected
by the gain and offset found with a least squares fit to match the gyroscope output. The
red error bar plots shows the mean and standard deviation of the 30 value pairs per bin
randomly selected from the time traces. See caption of figures 9.16 for more details.
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(a)

(b)

Figure 9.19: Optic flow estimates plotted against output of gyroscope for a 1 pixel shift.
The optical flow output extracted from the aVIS LMC circuit was corrected by the gain
and offset found with a least squares fit to match the gyroscope output. The red error
bar plots shows the mean and standard deviation of the 30 value pairs per bin randomly
selected from the time traces. See caption of figures 9.16 for more details.
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(a)

(b)

Figure 9.20: Optic flow estimates plotted against output of gyroscope for a 3 pixel shift.
The optical flow output extracted from the aVIS LMC circuit was corrected by the gain
and offset found with a least squares fit to match the gyroscope output. The red error
bar plots shows the mean and standard deviation of the 30 value pairs per bin randomly
selected from the time traces. See caption of figures 9.16 for more details.
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(a)

(b)

Figure 9.21: Optic flow estimates plotted against output of gyroscope for a 3 pixel bin
average. The optical flow output extracted from the aVIS LMC circuit was corrected by
the gain and offset found with a least squares fit to match the gyroscope output. The
red error bar plots shows the mean and standard deviation of the 30 value pairs per bin
randomly selected from the time traces. See caption of figures 9.16 for more details.
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Figure 9.22: Experimental results from the off-the-shelf TSL image sensor. (a) Timing
diagram of optical flow calculated from TSL sensor and gyroscope output. (b) Optic
flow estimates plotted against output of gyroscope. The red error bar plots shows the
mean and standard deviation of the 30 value pairs per bin randomly selected from the
time traces. See caption of figures 9.16 for more details. The optical flow values in (a)
and (b) were adjusted with the gain and offset calculated with a least squares fit.



198 Chapter 9. Adaptive aVLSI vision sensor

Figure 9.23: Overview of root mean squares error measurements from the two sensors
and different experimental conditions.



Chapter 10

MAVs and controller for efficient use
of optical flow sensors

Abstract

As presented in chapter 4 state-of-the-art optical flow controlled MAVs combine differ-
ent arrangements of optical flow sensors and rate gyroscopes for (semi-) autonomous
flight. The outputs of rate gyroscopes are used to estimate and remove the distance-
independent optical flow component caused by self-rotation of a MAV from the total
optical flow that is measured with optical flow sensors. The remaining translational
optical flow is know to have a magnitude that is inversely proportional to the relative
distance between the MAV and the objects in the MAV’s environment and can thus be
used for obstacle avoidance and altitude control.

The present chapter demonstrates that this state-of-the-art control strategy does not
optimally use optical flow sensors. The presented analysis suggests that optical flow
sensors can be used more efficiently if MAV and controller mimic the flight behavior
found in insects more closely. While most of the optical flow controlled MAVs presented
in the literature support slow turning maneuvers insects like flies and bees exploit rapid
turns - so-called flight saccades. The study presented in this chapter shows that the
ability to perform flight saccades does not only improve the maneuverability of MAVs
but also allow the controller to exploit optical flow sensors more efficiently.
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10.1 Theoretical analysis on wall avoidance with opti-
cal flow guided MAVs

It is a well-known fact that one should not try to gain a control signal of small amplitude
by subtracting two large signals from noisy sources. When subtracting two signals of
large amplitude the noise in the signals is not reduced and thus the signal-to-noise
ratio of the difference is low. So when calculating the distance-dependent translational
optical flow component OFtrans by subtracting the noisy output of a gyroscope OFrot

from the noisy total optical flow perceived by an optical flow sensor OFtotal, the signal-to-
noise ratio of the translational optical flow component is higher the lower the amplitude
of the gyroscope output and the more equal OFtotal and OFtrans.

This section analyzes the typical ratio between the optical flow components OFtrans and
OFrot that a MAV is confronted with during wall avoidance. To answer this question we
need to find an estimate of the highest bound of the ratio OFtrans,max/OFrot,max. So we
have to find an estimate for OFtrans,max which represents the maximum translational op-
tical flow that a sensor still needs to measure reliably and to relate this to the maximum
optical flow that will be caused by the self-rotation of the sensor, OFrot,max.

Scenario: wall avoidance

WALL

Turn or no return
Free flight

D = Dnr

ϕ̇
v

R

d

α

β

v

R

Figure 10.1: An optical flow guided MAV is approaching a WALL with a forward velocity
v. At a minimum distance D = Dnr the MAV initiates a turning maneuver with a rotation
rate ϕ̇. α is the angle between the MAV’s direction of translation and the direction in
which the MAV’s optical flow sensor is pointing towards the wall. R is the MAV’s collision
radius.
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Obstacle or wall avoidance of an optical flow controlled MAV can be studied with the
scenario shown in figure 10.1 which depicts a MAV displayed as a circle approaching
a wall at an angle β=90◦and then turning away from the wall. The distance between
the center of the MAV and the wall is called D. In figure 10.1 the MAV is shown at two
positions: (1) at the distance-before-no-return, D = Dnr, - the minimum wall distance
at which the MAV has to initiate a turning maneuver to still be able to avoid a collision
with the wall - and (2) after a successful turn moving parallel to the wall at the minimum
distance D = R that causes no collision. R is the collision radius around the MAV.

For this analysis a flying platform and flight controller similarly to the quadcopter pre-
sented by Zingg et al. (2010) and the microflyer platform by Zufferey et al. (2007) (chap-
ter 4) is assumed. So the MAV’s self-motion can be described by a forward velocity v

that for example can be a linear superposition of thrust and lift and an angular rate ϕ̇

that represents the MAV’s rotation rate. Note that figure 10.1 does not need to depict
a top view of the wall-avoidance scenario but can be a view from any angle of the 3-
dimensional flight trajectory of the MAV shown as a dashed line. So the example could
depict an airplane that both rolls and yaws at a constant rate after passing D = Dnr.

The MAV is assumed to be equipped with one or several optical flow sensors that share
the same ideal properties as the spherical optical flow sensor described in section 2.3
except for the fact that the sensor in the present scenario has only a very small field of
view and outputs a single optical flow value OFtotal = OFtrans + OFrot. The optical flow
sensor faces the wall in a direction that differs from the MAV’s direction of translation
by the angle α. The distance between the sensor and the wall in the direction of the
sensor is d.

In the given 2-dimensional scenario the translational optical flow OFtrans perceived by
the sensor that was formally described by (2.10) can be simplified to

OFtrans =
v

d
· sin(α) (10.1)

and the rotational optical OFrot flow formerly described by (2.11) can be simplified to

OFrot = ϕ̇ (10.2)

The total optical flow OFtotal induced by egomotion of the MAV which as presented
in section 2.3 is a linear combination of the two optical flow components caused by
rotation and translation is given by
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OFtotal = OFtrans + OFrot (10.3)

OFtotal =
v

d
· sin(α) + ϕ̇ (10.4)

From (10.4) one can estimate the wall distance in the direction of the optical flow sensor
by

d =
v

OFtotal −OFrot

· sin(α) (10.5)

when the MAV’s velocity v is known.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

distance d

O
F

tr
a
n

s

1
d
· sin(0◦)

1
d
· sin(15◦)

1
d
· sin(30◦)

1
d
· sin(45◦)

1
d
· sin(60◦)

Figure 10.2: Translational optical flow, OFtrans, measured by a perfect spherical optical
flow sensor when approaching a wall at a constant velocity v. The different curves
correspond to different distances d and different angles α between the sensor’s direction
of translation and the direction in which the sensor is pointing. d is given in multiples of
the velocity v.

Figure 10.2 displays the amount of translational optical flow perceived by a sensor
when the MAV is approaching the wall at a constant velocity. Optical flow values are
calculated at different distances d and for different angles α. Figure 10.2 shows that
the optical flow sensor will measure more optical flow, the bigger the angle between the
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MAV’s direction of translation and the direction in which the sensor is pointing. However,
one has to keep in mind that for large angle α, objects in front of the MAV that can lead
to a collision cannot be detected.

Relation of maximum rotational and translational optical flow perceived on a MAV

From (10.2) it is known that for the considered spherical sensor the maximal rotational
optical flow is equal to the maximal rotation rate of the observer. Only the optical flow
generated during translation is dependent on the distance d between sensor and wall
(equation (10.1)) and reaches its maximum when the distance is at its minimum. How-
ever, due to the limited rotation rate ϕ̇ of the MAV there is a certain distance D = Dnr at
which a turning maneuver needs to be initiated (figure 10.1). If at this distance-before-
no-return Dnr the MAV does not start turning immediately it will collide with the wall.
So Dnr is the minimum distance that at least needs to be detected and also the point
where the maximal translational optical flow that still needs to be measured reliably by
the sensor is measured.

For an observer traveling in an airplane with a constant thrust velocity v and a collision
radius R (figure 10.1) the minimum distance at which the turning maneuver needs to be
initiated, Dnr, is given by

Dnr = v · trot +R (10.6)

where R is the minimum distance that the center of the airplane has to keep to the wall
to avoid a collision and trot is the minimum time to rotate the MAV by the angle β.

Depending on from which angle β the MAV is approaching the wall, the distance-before-
no-return varies. The largest minimum distance is required when the MAV is approach-
ing the wall at the angle β = 90◦. At any other angle the MAV can initiate the turning
maneuver later since the amount of angle it needs to turn before colliding with the wall
is smaller. So if one wants to use a single global threshold for initializing the turning
maneuver one has to use the optical flow threshold for β = 90◦. Alternatively one can
use a slightly more complex optical flow detection system and flight controller similarly
to the one described by Zufferey et al. (2007) (section 4.1) where the optical flow mea-
sured by two sensors - one pointing to the left, another sensor pointing to the right of
the MAV - are subtracted and the optical flow threshold and turning rate are adjusted
based on the result of the subtraction. Since we are am only interested in the highest
bound of the OFtrans,max/OFrot,max-ratio it is sufficient to consider a single threshold for
OFtrans,max for β equal to 90◦or π/2.
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For the same reasons it is also sufficient to assume that the collision radius R = 0, and
that the MAV always turns with its maximum rotation rate ϕ̇ which it can instantaneously
reach from a rotation rate of zero.

The minimum time to rotate the MAV 90◦or π/2 with the airplane’s maximum rotation
rate ϕ̇ can then be described as:

trot =
π

2ϕ̇
(10.7)

Note that the translational optical flow is dependent on the distance, dnr, in the direction
that the sensor is pointing while the time to rotate depends on Dnr. The two distances
are related by the angle α:

dnr =
Dnr

cos(α)
(10.8)

The translational optical flow measured at the distance-before-no-return, OFtrans,nr, can
then be found by inserting (10.8) into (10.1) and setting R = 0:

OFtrans,nr =
v

dnr
· sin(α) (10.9)

=
2vϕ̇ sin(α) cos(α)

vπ

=
2ϕ̇ sin(α) cos(α)

π
(10.10)

For this analysis we are only interested in finding the maximal translational optical flow
that needs to be detected by the optical flow sensor before turning away from the wall.
Since the expression sin(α) cos(α) reaches its maximum of 0.5 for an angle α = 45◦ one
can find the maximum optical flow caused by translation of an observer approaching a
wall at the distance-before-no-return OFtrans,nr,max:

OFtrans,nr,max =
2ϕ̇ sin(45◦) cos(45◦)

π

=
2ϕ̇

2π

=
ϕ̇

π
(10.11)

and the ratio between the amounts of translational and rotational optical flow that need
to be measured is

OFtrans,max

OFrot,max

=
1

π
(10.12)
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So given the rather conservative estimations used it can be concluded that indepen-
dent of the observer’s velocity the perceived maximum optical flow caused by the
translation of the airplane that still needs to be detected before a turning maneuver has
to be initiated is smaller than the optical flow caused by self-rotation of the airplane
OFrot = ϕ̇ at least by a factor of π.

10.2 Discussion

From the presented analysis it can be concluded that the extraction of translational
optical flow by subtracting an estimation of the rotational optical flow from the total
flow is problematic in the presence of noisy sensors if the translational optical flow
component is a too small fraction of the total optical flow. If the approach should be
applied successfully as presented by Zufferey et al. (2007) and others (chapter 4) the
perceived rotational optical flow and thus the rotation rate of the MAV needs to be limited
- reducing the maneuverability of the MAV. Even with this limitation of the rotation rate
as presented in the wall-avoidance scenario, for constant-speed controlled MAVs the
magnitude of the behaviorally relevant translational optical flow will always be smaller
than the to be expected maximum optical flow generated during rotation of the MAV. An
optical flow sensors that should measure the sum of both rotational and translational
optical flow has to spend 2/3 of its resolution on the rotational component.

A flight controller that uses optical flow sensors more efficiently would be one that gen-
erates only translational optical flow and in case an obstacle needs to be avoided turns
the MAV almost instantaneously. Such fast turns would not only allow a MAV to maneu-
ver on very limited space. Furthermore since during the rapid turns it can be assumed
that no behaviorally relevant event occurs, the optical flow sensors would only have
to measure optical flow between turns when (almost) no rotational optical flow is gen-
erated. Thus the resolution of the optical flow sensors could be spend only on the
translational optical flow leading to a better resolution of the relative distance to obsta-
cles.

Many flies show such a flight behavior where periods of straight flights and rapid turns
- called saccades - alternate (Collett and Land, 1975; Wagner, 1986; Schilstra and
Hateren, 1999; Tammero and Dickinson, 2002a). Figure 10.3 is showing example tra-
jectories of flies triggered by image expansions. Flies have been recorded by a over-
head camera while flying in cylindric arenas with uniform (left) and textured (right) back-
grounds. Tammero and Dickinson (2002a) showed that flies alter their course by about
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shown in Fig. 5. The uniform background raised the flies’
horizontal velocity (P<0.0005, t-test) and increased the range
of vertical velocities (P<0.01, F-test). The flies also flew at a

higher altitude within the uniform background (P<0.0005,
t-test), with the mean altitude lying almost exactly at the
transition from the uniform white wall to the black curtain.
Thus, the presence or absence of a richly textured visual
background has a substantial impact on the motor output that
emerges from the flight control system.
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Fig. 3. Visual input influences the direction but not the amplitude of
a saccade. (A) Approach angle is defined as the angle that a
continuation of the trajectory to the wall of the arena would make
with the line perpendicular to the tangent at the intersection point.
Approach angle is used as a rough measure of the asymmetry of
visual motion experienced by the fly prior to the saccade. Positive
approach angles indicate that the fly is closer to the arena wall on its
left (L) side, and thus that the visual motion perceived on the left
side is greater. Negative approach angles indicate that the perception
of visual motion is stronger on the fly’s right (R) side. (B) Saccade
angle plotted against approach angle for 1579 saccades from
trajectories from 36 flies flying within a textured background. The
two clusters around ±90 ° demonstrate that the fly does not alter the
amplitude of the saccade on the basis of asymmetries in visual
motions. Red lines show linear regressions for each cluster (r2<0.01,
P>0.5 for the upper line both regressions, P>0.25 for the lower line).
The histogram to the right of the scatterplot shows the distribution of
saccade angles pooled over all measurements. (C) The probability of
turning left or right depends on approach angle. To generate the
probability distributions, saccade angles were binned according to
approach angle. Each bin was 5 ° wide, and bin centers were
separated by 5 °.
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Fig. 4. The fly’s visual environment influences the spatial structure of
its flight trajectory. (A) Sample trajectories taken within uniform (left)
and textured (right) backgrounds showing the effects of changing the
fly’s visual environment. The inter-saccade segments are longer for
flight within the uniform background, causing saccades to occur
farther from the center of the arena. (B) Histogram of the fly’s
position within the arena for uniform and textured backgrounds
pooled over multiple flies. The transit probability peaks in the center
of the arena with a textured background and is more evenly
distributed with the uniform background. (C) Histograms showing the
distribution of saccade locations. Within a textured background, flies
tend to saccade in the middle of the arena. Position bins are
50 mm×50 mm. Uniform background data represent 58 trajectories
totaling 916 s containing 1080 saccades; textured background data
represent 36 trajectories totaling 1020 s containing 1579 saccades.

Figure 10.3: Example flight trajectories of flies flying in cylindric arenas with uniform
(left) and textured (right) backgrounds. Flies show a behavior where periods of straight
flights and rapid turns alternate. Turns are initiated by image expansions. The periods
for straight flights are longer in the arena with uniform background and flies initiate turns
closer to the walls. Figures are adapted from Tammero and Dickinson (2002a).

90◦ in less than 100ms. Saccades can lead to turns of more than 90◦. Furthermore,
Tammero and Dickinson (2002a) presented that once initiated, visual feedback does not
appear to influence saccade kinematics further. So the flies seem indeed to measure
optical flow only in between saccades.

Evidence has been found that while some of the saccades are spontaneously gener-
ated (Heide, 1983), other saccades seem to be triggered by image expansions (Tam-
mero and Dickinson, 2002a). While saccades triggered by image expansions seem to
used to avoid obstacles, spontaneously generated saccades could be useful to observe
the fly’s environment at different angles in relation to the own movement. Also for MAVs
spontaneous saccades could be helpful to resolve ambiguities in the perceived optical
flow patterns and to maximize the perceived optical flow in different directions since as
presented in section 2.3 (observation 4) zero optical flow is perceived in the center of
an expansion pattern generated when flying into an obstacle but maximal optical flow
is generated in all directions orthogonal to the flight direction. Spontaneous changes of
the flight direction can thus help detecting obstacles that would otherwise generate to
little optical flow when flying directly towards these obstacles. In insects spontaneous
saccades might furthermore help confusing and detecting predators that try to chase a
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flying insect by using motion camouflage.

Although optical flow sensors could be used more efficiently when MAV controllers
would exploit saccades, similarly rapid turns as found in insects have not been demon-
strated on state-of-the-art optical flow guided MAVs so far. Currently presented MAVs
in the literature that have been successfully controlled with optical flow are either de-
signed to be passively stable like the airplanes presented by Zufferey et al. (2007) and
Beyeler et al. (2009) or critically stabilized helicopters and quadcopters (chapter 4).
They are thus not capable of performing rapid saccades. Insects and bees however
are passively unstable flyers (Taylor and Krapp, 2007) allowing for their impressive ma-
neuverability and better use of their optical flow sensors. Quadcopters and helicopters
when being controlled differently but especially flapping robots might be able to bridge
the performance gap between insects and artificial MAVs in the future.





Chapter 11

Conclusion

11.1 Main achievements

This thesis contributes to two research areas: First to the area of VLSI optical flow
sensors and second to the area of optical flow controlled micro aerial vehicles (MAVs).
The thesis introduces novel VLSI circuits and bio-inspired optical flow sensors for steer-
ing autonomous MAVs. The thesis further aims at providing a better understanding of
how MAVs can use optical flow sensors more efficiently and how the flight controller
and flight properties of MAVs could be modified to allow the MAVs to mimic the flight
behavior of insects more closely.

The main part of the thesis focuses on the development of custom Very Large Scale
Integrated (VLSI) optic flow sensor chips that are suitable for autonomous micro aerial
vehicles. Therefor both existing optical flow controlled MAVs as well as VLSI optical flow
sensors are evaluated to specify the required properties of optical flow sensors suitable
for autonomous micro aerial vehicles. The results of these studies are presented in
chapter 4 and 6.

The on-board requirements for small, light-weight, low power sensors and electronics
on autonomous micro aerial vehicles limit the computational power available for pro-
cessing sensory signals including the computation of optic flow. Custom Very Large
Scale Integrated (VLSI) sensor chips which perform both phototransduction as well as
optic flow estimation on the focal plane can be beneficial for such platforms since they
allow for specialized compact solutions that use little power while computing optic flow
values in real-time. To be suitable for MAV control optical flow sensors must provide
reliable output signals that ideally only depend on the velocity of the visual stimuli - not
for instance on stimulus contrast and spatial frequency. Although such optical flow mea-
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sures that are relatively unaffected by variations in the contrast and spatial frequency
of the visual patterns have been found in insects (Si et al., 2003) the realization of this
property in artificial systems is challenging.

This thesis proposes two VLSI sensor systems for controlling MAVs.

• The dynamic optical flow sensor (DOFS) described in chapter 7 implements a
time-of-travel algorithm for computation of optical flow in form of custom VLSI cir-
cuits directly on the sensor’s focal plane. It features a novel double threshold edge
detection circuit that reliably generates output events for contrast values down to
2.5%. The sensor’s sensitivity to contast is thus improved by a factor greater than
7 in comparison to previously published sensors with simular architectures like
the ones presented by Kramer et al. (1995, 1997). Due to the inclusion of the
photoreceptor circuit by Delbrück and Mead (1994, 1995) and a modified version
of the LMC circuit by Liu (2000), DOFS adapts over 4 decades of background
intensity. Optical flow information can be extracted for visual stimulus velocities
varying over two decades.

• The adaptive vision sensor (aVIS) is presented in chapter 9. In combination with
the Image Interpolation Algorithm (I2A) by Srinivasan (1993, 1994) aVIS forms an
optical flow sensor module for steering micro aerial vehicles. aVIS implements
160 pixels each containing adaptive photoreceptor circuits and LMC circuits Liu
(2000). The LMC output signals are read by a microcontroller running the I2A that
computes and integrates optical flow among aVIS pixels.

Table 11.1: Comparison of dynamic optical flow sensor (DOFS) and optical flow sensor
module based on the adaptive vision sensor (aVIS).

Dynamic optical flow sensor Adaptive vision sensor module

Token-based Gradient-based

Event-based optical flow calcula-
tion / every event counts

Frame-based optical flow calcula-
tion / single calculations less impor-
tant

(+) Optical flow calculation on-chip (-) Optical flow calculation off-chip

Requires external spatial integra-
tion

(+) Built-in spatial integration due to
Image Interpolation Algorithm
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Table 11.1 compares key properties of the two presented optical flow sensor systems.
Since both DOFS and aVIS rely on fundamentally different implementation principles
there is no clear winner in a comparison. In DOFS the optical flow computation is only
triggered when a contrast edge is detected. So if only few contrast are available within
the scene each edge detection event becomes important and noisy calculations can-
not be tolerated. For aVIS however a frame-based optical flow calculation algorithm
was selected that requires sufficiently smooth contrast gradients to operate correctly. If
sufficient gradients are present several optical flow calculations can be performed on
a moving gradient where DOFS would only detect a single or very few contrast edges.
Thus under these conditions the aVIS module can support temporal averaging among
several measurements and single optical flow calculations - even if they are noisy -
become less important. DOFS comes with the clear advantage that the entire optical
flow computation process is implemented on-chip while aVIS requires an external mi-
crocontroller to perform the computation of optical flow. On the other hand if spatial
integration of local optical flow measurements are required DOFS will require an exter-
nal microcontroller as well. This can become computationally expensive for a DOFS
implementations while spatial integration is a feature naturally embedded in the Image
Interpolation Algorithm that was chosen to compute optical flow from the outputs of
aVIS.

We believe that both DOFS and aVIS are well suited for behavioral guidance of MAVs
like the airplane by Zufferey et al. (2007). A final demonstration of the sensor systems
on MAVs is still missing but the sensors have been tested while generating optical flow
on PC screen and by operating the sensors on rotating platforms. By comparing the
sensors’ outputs with output signals generated by rate gyroscope we can shown that
the sensors are well suited for the flight controller proposed by Zufferey et al. (2007).
Furthermore, DOFS has been demonstrated as part of a simple car driving simulation
(chapter 8) where the outputs of DOFS are processed to steer a simulated car (Moeckel
et al., 2008).

The application of the edge detection circuit presented in this thesis (chapter 7) is not
restricted to its particular implementation as part of the dynamic optical flow sensors.
Most token-based vision sensors require a reliable feature detection circuit that provides
output events independent from stimulus contrast. Furthermore, the edge detection
circuit allows for online adjustment of the amount of signal noise that should be rejected
- a feature that is useful in many token-based vision sensors. So the presented edge
detection circuit can be of benefit for token-based vision sensors in general.

From the evaluation of state-of-the-art optical flow controlled MAVs like the airplanes
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by Zufferey et al. (2007) and Beyeler et al. (2009) presented in chapter 4 it can be con-
cluded that the currently used MAVs are mostly chosen for their stable flight behavior.
Insects however are passively unstable (Taylor and Krapp, 2007) and developed flight
strategies that use optical flow sensors more efficiently than artificial flyers (chapter
10). As presented in chapter 3 insects try to keep the overall perceived optical flow
constant (Srinivasan et al., 1996) rather than their forward velocity as it is currently the
case in MAV control (chapter 4). Furthermore, insects like flies and honeybees devel-
oped a flight behavior where periods of straight flight alternate with fast turns - so called
saccades (Schilstra and Hateren, 1999; Tammero and Dickinson, 2002a). This flight
behavior uses optical flow sensors efficiently: During the straight flights only transla-
tional optical flow is generated that can be used for estimation of distances between the
insect and objects in its environment. During saccades insects do not use optical flow
for behavioral guidance (Tammero and Dickinson, 2002a). Since due to their body prop-
erties insects can perform fast saccades the time in which they do not estimate optical
flow is not behavioral relevant. State-of-the-art optical flow controlled MAVs however
typically cannot turn as fast as insects. Thus the standard MAV controller uses a gyro-
scope to estimate the distance independent optical flow component that is caused due
to rotation. This rotational optical flow component is subtracted from the total flow mea-
sured by optical flow sensors to gain the distance dependent translational optical flow.
In conclusion in contrast to flies and honeybees the state-of-the-art optical flow con-
trolled MAVs do not only lack maneuverability but their optical flow sensors also have
to measure both translational and rotational optical flow together and thus the sensors’
resolution is not optimally used (chapter 10).

11.2 Future works

This thesis makes a contribution to the futuristic scenario where MAVs will show the
same impressive flight behavior as flies or honeybees. But there is clearly still much
work left to be done to reach this goal. Concrete future works for improving the optical
flow sensors and MAVs are:

The event-based processing of optical flow in the presence of detected contrast edges
opens the possibility to include an event-based communication interface to the dynamic
optical flow sensor. Such a communication interfaces that only transmit data to a host
processor in the event that new optical flow values are available would make the com-
munication between the sensor and the host processor more efficient if it replaces the
current scheme where the host processor is sequentially scanning and converting the
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local optical flow outputs of the pixel array. Asynchronous communication interfaces
with address-event representation (AER) have been widely studied for instance by Boa-
hen (2000, 2004a,b,c). So far no AER interface was added to DOFS since it would as
well require changes to the controller of the MAV.

So far the dynamic optical flow sensor currently does not include a powerful mechanism
for the spatial integration of local optical flow outputs. If the pool of pixels for which a
global optical flow estimate should be estimated could be selected online a on-chip
mechanism for spatial integration would further ease the optical flow processing on the
host processor.

The aVIS module implements spatial integration through the image interpolation al-
gorithm (I2A). The experimental results presented in chapter 9 are encouraging and
demonstrate that the I2A is well suited for processing optical flow based on the aVIS
LMC output signals. In the future it would be worth transferring the I2A directly onto the
adaptive vision sensor to free the microcontroller from the optical flow calculations.

Finally, from the presented evaluations it can be concluded that for closing the perfor-
mance gap between insects and their engineered counterparts a change from passively
stable airplanes to quadcopters or flappers that allow flight saccades would be useful.
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