
DISS. ETH NO. 20516

Formalizing the Logic of Event-B

Partial Functions, De�nitional Extensions, and

Automated Theorem Proving

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

Matthias Schmalz

Diplom der Informatik, Universität zu Lübeck

born on October 5, 1981

citizen of Germany

accepted on the recommendation of

Prof. Dr. David Basin

Prof. Dr. Cli� Jones

Prof. Dr. Peter Müller

Prof. Dr. Tobias Nipkow

2012

For Yang and Maximilian

3

Abstract

The basic motivation behind this thesis is to develop methods and tools for build-
ing highly reliable computerized systems. The work builds on the formal method
Event-B, the corresponding development environment Rodin, and the theorem prover
Isabelle/HOL. Event-B provides a methodology for developing models of complex
systems. A major strength of Event-B is its carefully designed re�nement calculus,
which helps to break big problems down to manageable pieces. A major weakness
of Event-B and Rodin is that the underlying logic is poorly understood; this has led
to unsound proofs and impedes enhancements of the logic. Another problem is that
it is di�cult to improve the performance of Rodin's theorem prover on domains to
which it has not been applied before. Isabelle/HOL is a theorem prover with strong
theoretical foundations and powerful facilities to adapt its proof methods to new
domains. Like Rodin, Isabelle/HOL can be used to develop models of systems, but
it o�ers less user guidance and lacks several useful features of Rodin. The contribu-
tion of this thesis is to develop a comprehensive theoretical foundation of Event-B's
logic and to bring Rodin together with Isabelle/HOL, creating a tool that has the
advantages of both worlds.
The speci�cation of Event-B's logic covers abstract syntax, semantics, proofs, and

methods for de�nitional theory extensions. Since Event-B's logic closely resembles
higher-order logic, I de�ne its semantics by an embedding into higher-order logic with
the bene�t that several meta-results on higher-order logic can be straightforwardly
transferred to Event-B. Event-B explicitly supports partial functions; as is often the
case for logics of partial functions, some design decisions are di�cult to make and to
explain. I therefore carefully analyze the impact of the non-trivial design decisions
underlying Event-B's logic; my analysis provides useful information for planning
future changes of Event-B and for developing other logics of partial functions. By
integrating Isabelle/HOL as a theorem prover into Rodin, Rodin obtains a proof
tactic that improves over existing tactics in terms of soundness, adaptability to new
domains, and sometimes even performance.
Although this research has been driven by the aim to improve Event-B and Rodin,

it has led to results of a more general interest. One of them is directed rewriting, a
term rewriting technique for logics of partial functions that has been implemented in
several theorem provers, but lacks a widely known theoretical justi�cation. I show
under which conditions directed rewriting is safe and sound, and I demonstrate that
directed rewriting signi�cantly reduces the need for solving preconditions of rewrite
rules during proofs.
Another result of general interest concerns the embedding of logics of partial func-

tions into classical logics. Such embeddings typically su�er an exponential blowup,
if connectives and quanti�ers are interpreted in Kleene semantics. I propose an em-
bedding that applies to a broader class of logics of partial functions than existing
embeddings. With my parametric complexity analysis and empirical evaluation I
refute the plausible and widely accepted belief that the exponential overhead of such
embeddings is unacceptably high for practical applications.

5

Zusammenfassung

Gegenstand dieser Dissertation sind Methoden zur Entwicklung qualitativ hochwer-
tiger computerbasierter Systeme. Ausgangspunkte sind die formale Methode Event-
B, die zugehörige Entwicklungsumgebung Rodin und der generische Theorembeweiser
Isabelle instanziiert mit Logik höherer Stufe (Isabelle/HOL). Event-B ermöglicht es,
verschiedenste Arten von komplexen Systemen auf intuitive Art und Weise zu mod-
ellieren und deren Korrektheit zu beweisen. Der Erfolg von Event-B wird jedoch
dadurch relativiert, dass sich mithilfe verschiedener Versionen von Rodin die Korrek-
theit fehlerhafter Systeme beweisen lässt. Grund dafür waren Programmierfehler in
Rodins Theorembeweiser, die häu�g auf ein mangelhaftes Verständnis der zugrunde
liegenden Logik zurückzuführen sind. Dieses mangelhafte Verständnis der Logik be-
hindert auch die Weiterentwicklung von Event-B. Eine weitere Schwäche von Rodins
Theorembeweiser besteht darin, dass seine Suchstrategien sich nur mit sehr grossem
Aufwand verändern lassen. Der Theorembeweiser Isabelle/HOL zeichnet sich dage-
gen dadurch aus, dass Fehler in Beweisen äusserst unwahrscheinlich sind und sich
dessen Beweisstrategien mit geringem Aufwand für spezi�sche Anwendungsfälle op-
timieren lassen. Isabelle/HOL kann zwar grundsätzlich auch zum Modellieren von
Systemen verwendet werden, ist in dieser Hinsicht jedoch deutlich weniger intuitiv
zu bedienen als Rodin. Der erste Beitrag dieser Dissertation ist eine systematische
Beschreibung der Logik von Event-B, die gängigen wissenschaftlichen Qualitätskri-
terien genügt. Der zweite Beitrag besteht in der Integration von Isabelle/HOL in
Rodin, so dass eine Entwicklungsumgebung entsteht, die die Vorteile von Event-B
und Isabelle/HOL vereint.
Die Beschreibung der Logik von Event-B beinhaltet deren Syntax, Semantik, Be-

weiskalküle sowie Methoden zur Erweiterung von Theorien mithilfe von De�nitionen.
Da die Logik von Event-B viele Ähnlichkeiten mit Logik höherer Stufe hat, de�niere
ich deren Semantik mithilfe einer Einbettung in Logik höherer Stufe. Dies hat den
Vorteil, dass verschiedenste Erkenntnisse über Logik höherer Stufe sich einfach auf
Event-B übertragen lassen. Die Logik von Event-B bietet verschiedene Mechanis-
men, die die Modellierung von partiellen Funktionen erleichtern, den Aufbau der
Logik selbst jedoch verkomplizieren. Ich analysiere, wie diese Mechanismen zusam-
menwirken; dies erleichtert es, die Auswirkungen von zukünftigen Veränderungen
der Logik vorherzusagen. Durch die Anbindung von Isabelle/HOL erhält Rodin eine
Beweisstrategie, die bestehenden Beweisstrategien in Bezug auf Korrektheit, Anpass-
barkeit und manchmal auch Performanz überlegen ist.
Auch wenn das primäre Ziel dieses Forschungsprojekts die Verbesserung von Event-

B und Rodin ist, haben manche der behandelten Beweistechniken Anwendungen
ausserhalb von Event-B. Eine dieser Techniken ist Directed Rewriting, eine Term-
ersetzungsstrategie für Logiken mit partiellen Funktionen. Obwohl diese Strategie
bereits in mehreren Theorembeweisern implementiert wurde, gab es bislang keine
allgemein bekannte Erklärung für deren Korrektheit. Ich erkläre, unter welchen

7

Bedingungen directed Rewriting korrekt ist, und ich zeige empirisch, dass directed
Rewriting Termersetzungsbeweise in praktisch relevanten Szenarien erheblich vere-
infacht.
Ein weiteres Ergebnis mit Anwendungen ausserhalb von Event-B betri�t die Ein-

bettung von Logiken mit partiellen Funktionen in klassische Logiken. Dieses Problem
ist insbesondere dann schwierig, wenn boolesche Junktoren und Quantoren gemäss
Kleene Semantik interpretiert werden. Ich de�niere eine Einbettungen, die eine
grössere Klasse von Logiken mit partiellen Funktionen abdeckt als bereits bekan-
nte Einbettungen. Weiterhin untersuche ich die E�zienz meiner Einbettung sowohl
mit einer parametrischen Komplexitätsanalyse als auch mithilfe von Experimenten;
mit meiner Analyse widerlege ich die weitverbreitete Annahme, dass Einbettungen
von Kleene Logiken in klassische Logiken für praktische Anwendungen zu ine�zient
sind.

8

Acknowledgements

I would like to thank my wife Yang for her outstanding patience, loyalty, and support.
If there is one thing that is harder than writing a PhD thesis, then it is to take care
of a little child while the husband is writing a PhD thesis.
I am very grateful to my supervisor David Basin for continuously reminding me

how outstanding research is done. I hope that I have understood at least half of his
lessons. I would also like to thank him for granting the freedom to pursue my own
ideas.
I am deeply indebted to numerous persons for their advice, inspiring discussions,

moral support, patience, loyalty, and other kinds of help:

Jean-Raymond Abrial, Nicolas Beauger, the administrators of ETH's
high-performance computing cluster Brutus, Michael Butler, Cas Cremers, Leo
Freitas, Andreas Fürst, Barbara Geiser, Rainer Gmehlich, Katrin Grau, Gudmund
Grov, Stefan Hallerstede, Matus Harvan, Thai Son Hoang, Cli� Jones, Felix
Klaedtke, Michael Leuschel, Felix Lösch, Issam Maamria, Ognjen Maric, Srdjan
Marinovic, Farhad Mehta, Simon Meier, Peter Müller, Thomas Muller, Tobias
Nipkow, Carine Pascal, Lawrence Paulson, Jann Röder, Mark Saaltink, Patrick
Schaller, Benedikt Schmidt, Christoph Sprenger, Laurent Voisin, Makarius Wenzel,
Burkhart Wol�.

Thank you very much for your support!

This research has been funded by the European Union's FP7 project Deploy (www.
deploy-project.eu) and by ETH Zurich's Institute of Information Security. I am
very grateful for this �nancial support; it allowed my family and me to have a
comfortable life during the last years time.

9

www.deploy-project.eu
www.deploy-project.eu

Contents

1. Introduction 15

1.1. Event-B . 16
1.1.1. Strengths . 17
1.1.2. Limitations . 18

1.2. Other Modeling and Veri�cation Environments 20
1.3. Problem Statement . 21
1.4. Approach to a Solution . 21
1.5. Overview and Contributions . 23

2. Event-B's Logic 27

2.1. Abstract Syntax . 27
2.1.1. Types and Terms . 28
2.1.2. An Example Signature . 30

2.2. Semantics . 31
2.2.1. Isabelle/HOL . 31
2.2.2. Preliminaries � the Theory EB_Prelims 32
2.2.3. Denotations of Types and Terms 33
2.2.4. Extending Structures . 34
2.2.5. Semantic Notions . 34
2.2.6. An Example Structure . 35
2.2.7. Substitutions . 36

2.2.7.1. Type Substitutions 36
2.2.7.2. Operator Substitutions 38
2.2.7.3. Ordinary Substitutions 40

2.3. Proofs . 40
2.3.1. Sequents . 41
2.3.2. Rules of Proofs . 42

2.3.2.1. Inference Rules . 42
2.3.2.2. Symmetric Rewrite Rules 44
2.3.2.3. Directed Rewrite Rules 46
2.3.2.4. Expressiveness and Limitations 48

2.3.3. Theories . 50
2.4. Comparison to Rodin's Implementation 51

11

Contents

3. Event-B's Theories 55

3.1. The Theory Core . 57
3.1.1. The Theory Min . 57
3.1.2. The Theory Log0 . 58
3.1.3. The Theory Log . 59
3.1.4. The Theory Set0 . 62
3.1.5. The Theory Choice . 63
3.1.6. The Theory Int0 . 64
3.1.7. The Theory Prod . 67
3.1.8. The Theory Core . 67

3.2. De�nitional Extensions . 67
3.2.1. New Rules . 69
3.2.2. New Operators . 70

3.2.2.1. Operator De�nitions 70
3.2.2.2. Strict Operator De�nitions 72

3.2.3. New Binders . 74
3.2.4. Operator Variables in a Monotonic Setting 78

3.3. Derived Theories . 82
3.3.1. The Theory Bool . 82
3.3.2. The Theory Set . 83
3.3.3. The Theory Rel . 84
3.3.4. The Theory Int . 86
3.3.5. The Theory EventB . 88

3.4. Comparison to Other Expositions on Event-B's Logic 88

4. Impact of Design Decisions 91

4.1. Directed Rewriting . 91
4.2. Dependencies Between Design Decisions 94
4.3. Kleene versus McCarthy Semantics 97
4.4. Alternative Approaches to Partial Functions 99

5. Automated Theorem Proving 105

5.1. Preliminaries . 106
5.1.1. Benchmarks . 106
5.1.2. Hardware and Software . 107

5.2. Unlifting . 108
5.2.1. Trivial Algorithm . 109
5.2.2. E�cient Algorithm . 111
5.2.3. Operator Variables . 112
5.2.4. Complexity Analysis . 113
5.2.5. Implementation . 118
5.2.6. Empirical Evaluation . 121

12

Contents

5.3. Theorem Proving in Isabelle/HOL 126
5.3.1. Abrial Benchmark . 126

5.3.1.1. Using Prede�ned Proof Methods 126
5.3.1.2. Design of Axe . 134
5.3.1.3. Performance of Axe 136
5.3.1.4. Impact of Design Decisions 139
5.3.1.5. Comparison to Rodin 144

5.3.2. BepiColombo Benchmark . 145
5.3.2.1. Further Improvements of Axe 145
5.3.2.2. Comparison to Rodin 154

5.3.3. Limitations . 155
5.3.4. Conclusions . 155

6. Conclusions 157

6.1. Summary of Contributions . 157
6.2. Future Work . 159
6.3. Personal Remarks . 160

List of Figures 163

Bibliography 165

A. Statistics on Rules Implemented in Rodin 173

A.1. Conditional Rewrite Rules . 173
A.2. Truly Directed Rewrite Rules in Rodin 174
A.3. Conditional Rewrite Rules with Dispensable Conditions 176

B. Complexity of Unlifting 177

B.1. De�nitions . 177
B.2. Automated Tool Setup . 180
B.3. Main Results . 182

C. Con�gurations of Rodin's Auto-Tactic 187

13

1. Introduction

Computerized systems play an increasingly important role in everyday life. Some
systems perform safety critical tasks, for example systems that control plains, trains,
cars, space crafts, or nuclear power plants. The consequences of failure in such
systems may be catastrophic. As a result, there is a strong need for methods that
make catastrophic failures so unlikely that the remaining risk is acceptable to the
society.
There are several ways of improving the quality of a system, ranging from ap-

propriate business processes (enforcing, e.g., separation of duty) over guidelines for
phrasing system requirements to methods for implementing and verifying systems.
In the context of this thesis, it is assumed that a speci�cation has been formulated
in an unambiguous manner and it remains to develop a system that is correct with
respect to this speci�cation. This is a well-known problem in the �eld of formal
methods [see Hinchey et al., 2010]. The postulate that speci�cations are "unambigu-
ous" rules out requirements like "The car should drive smoothly" because the term
"smoothly" is interpreted di�erently by di�erent drivers.
Whether a system is correct with respect to its speci�cation can in general not be

computed, because the underlying problem is undecidable. A noteworthy exception
is the case of systems that have �nitely many states; in this case, correctness can
sometimes be checked with a model checker [see Baier and Katoen, 2008, Clark
et al., 2000]. Model checking has the pleasing advantage that it requires little user
interaction; but it is inapplicable to a signi�cant class of systems, because they have
too many states or the system or speci�cation is too hard to express in the languages
supported by model checkers. For such systems, model checkers may be useful in
showing the presence of bugs, but they are unable to show their absence.
Although the correctness of a system can in general not be computed, it can be

proved within a mathematical formalism (provided the system is indeed correct).
Methods for developing systems and reasoning about their correctness date back to
the late sixties of the last century [Dijkstra, 1976, Hoare, 1969]. A considerable e�ort
has been made to develop corresponding tools [e.g. Abrial et al., 2010, Arthan, 1996,
Barnett et al., 2011, Böhme et al., 2010, ClearSy, Cok and Kiniry, 2004, Flanagan
et al., 2002, Jones et al., 1991, Kaufmann et al., 2000, Nipkow et al., 2002, Ouimet
and Lundqvist, 2007, Owre et al., 1992, Saaltink, 1997, Toyn and McDermid, 1995].
These tools allow users to describe systems and speci�cations in a formal language
and to carry out the corresponding correctness proofs. The duty of the tool is to
help the user structure the descriptions of system and speci�cation, and to check
whether the correctness proof is correct; most tools also support the user in �nding
a correctness proof, if the system is correct, or pointing out bugs, if the system is

15

1. Introduction

incorrect.
In practice, many problems remain with this approach. The user may fail to faith-

fully translate the system or the intended speci�cation into the language supported
by the formal method. Or the user may misunderstand the �real� requirements on
the system. Thus, even if the system is correct with respect to the given speci�cation,
it may fail to behave in the intended way.
The theorem prover or some other critical component of the tool may be incorrect.

Or the language used to express system and speci�cation may su�er fundamental
problems, which may in the extreme case have the consequence that every system
is considered correct. The user may fail to prove correctness because the e�ort of
communicating a proof to the theorem prover is too high. Or limitations in the tool
may make it impossible to prove correctness of certain correct systems.
Although the progress made during the last decade is impressive, development of

correct systems remains a demanding task, in particular for systems at industrial
scale. Developing a formal engineering method and corresponding tool does not
only involve a serious amount of implementation work, but also the development
of theoretical foundations and the solution of other research problems. Roughly
speaking, the goal of this thesis is to make a substantial progress towards a solution
of this challenge.

1.1. Event-B

The starting point of this research is the Event-B method [Abrial, 2010] with the
Rodin platform [Abrial et al., 2010], the corresponding development environment.
The choice of a starting point is of course somewhat arbitrary; to explain my choice,
I summarize Event-B's main features, strengths, and limitations.
Event-B is a method for modeling discrete transition systems as a collection of

events, which are a restricted version of guarded commands [Dijkstra, 1975]. In
the simplest case, the user speci�es one transition system, called machine, and an
invariant claim, i.e., the claim that a given property, the invariant, holds in every
reachable state. Rodin generates several proof obligations, i.e., logical statements
entailing correctness of the system with respect to its speci�cation. If the user
proves all proof obligations, it is for example known that the invariant holds in every
reachable state.
A typical Event-B model consists of several transition systems organized in a chain.

The �rst machine of the chain is the abstract machine, and each subsequent machine
is claimed to re�ne its predecessor. The abstract machine usually describes a small
but crucial part of the speci�cation. Subsequent machines introduce more details:
either details on the speci�cation or details on the system explaining how exactly the
system is executed. So every machine in the chain constitutes a limited view on the
system and speci�cation, with increasing amount of detail. Abrial [2010] describes
with several examples how this process works in practice.
Users have to prove several proof obligations entailing that the various re�nement

16

1.1. Event-B

claims are true. In a nutshell, a machine m2 re�nes a machine m1 if and only if
every execution of m2 is an execution of m1. In practice, the notion of re�nement is
more complicated, but the details are irrelevant at this point.
The overall correctness proof is structured into re�nement and invariant claims.

Re�nement has the e�ect that invariants (and other kinds of properties) of one
machine continue to hold in subsequent machines. Re�nement therefore supports
incremental development and separation of concerns.

1.1.1. Strengths

I view Event-B and Rodin as promising for developing correct systems for the fol-
lowing reasons. Re�nement facilitates writing systems and speci�cations, because
it relieves the user of the burden of coping with all details at once. By organizing
the overall correctness proof into proof obligations, the proof task is automatically
divided into manageable pieces that depend on small parts of the model. Since a
system in Event-B is a collection of events, Event-B can be naturally applied to
problems from various domains, such as the development of concurrent algorithms,
network protocols, and digital circuits [Abrial, 2010]. Event-B is the immediate suc-
cessor of classical B [Abrial, 2005], which has been successfully applied to large scale
industrial projects [Badeau and Amelot, 2005, Behm et al., 1999]. This demonstrates
the maturity of the underlying methodology.
As partial functions (such as array access, division, and �le manipulation) are om-

nipresent in computer systems, Event-B takes partial functions seriously. Informally,
if the user applies a function to an argument that does not belong to the function's
domain, there will be a proof obligation that cannot be proved.
Several people have contributed useful features to Rodin. UML-B [Snook and

Butler, 2008] allows users to de�ne Event-B models with UML-like diagrams (having
a formal semantics). It facilitates structuring large models, because UML diagrams
are often easier to grasp than long lists of events.
The ProB tool [Leuschel et al., 2011] has been integrated into Rodin as an animator

and model checker; it helps users in gaining trust that the formalization of the system
and speci�cation coincides with their intentions. ProB can discover simple errors
with little e�ort: either by a manual or automated search of the state space (i.e., by
animation or model checking), or by applying constraint solving techniques to proof
obligations [Hallerstede and Leuschel, 2011].
The interaction with Rodin's theorem prover is intuitive and easy to learn. A user

performs a proof step by clicking on a hyperlink on a symbol to which the proof
step is related. Quanti�ers are instantiated by entering the witness in a text�eld and
clicking on the quanti�er.
If the model changes, some proof obligations change and the corresponding proofs

need to be revised. Rodin implements several measures for minimizing the e�ort of
revising proofs [Mehta, 2007]. For example, Rodin records the hypotheses of a proved
proof obligation on which the corresponding proof depends. If the proof obligation
changes (because of a change in the model), the proof is converted into a proof of

17

1. Introduction

the changed proof obligation, provided the hypotheses on which the proof depends
are still available.
This list of useful features is not complete. In summary, Rodin o�ers several

features that support users in modeling large and complex systems.

1.1.2. Limitations

At the time of starting this research, there have been several problems that Event-B
and Rodin did not solve.

Modeling. Unlike in classical B [Abrial, 2005], control structures like sequential
compositions, conditionals, and loops need to be modeled by using auxiliary vari-
ables that simulate a program counter; this encoding of control �ow complicates
maintenance of models and proof activities. It is an ongoing challenge to express
and reason about real-time, probabilistic, and liveness properties; progress on some
of these topics is reported in [Hoang and Abrial, 2011, Yilmaz and Hoang, 2010].
Gmehlich et al. [2011] give a detailed account on the di�culties of applying Event-B
and Rodin to an industrial cruise control system; in particular, it is demanding to
synchronize an Event-B model with a large number of requirements.

Logical Foundations. I designate the language used to express the atomic elements
of models (such as guards, invariants, and proof obligations) as Event-B's logic.
Although Event-B is used to reason about the correctness of systems, Event-B's logic
itself lacks a rigorous speci�cation. It is therefore unclear what it actually means
that Rodin's theorem prover is correct. There is of course an unwritten agreement
on basic questions, e.g., 2 + 2 = 4 should be provable and 2 + 2 = 5 should not. The
main confusion concerns Event-B's approach to partial functions (see Section 3.4).
The lack of a clear semantics has had several negative consequences. Firstly, it

raises a credibility problem. Rodin users are told that the use of formal methods
only makes sense with a clean speci�cation; but Rodin does not have one.
A more technical problem is that several releases of Rodin are a�ected by consis-

tency bugs [Schmalz, 2012]. With these Rodin releases, every system can be proved
correct. Some of the consistency bugs have been introduced because of a poor un-
derstanding of the underlying semantics.
Another problem concerns the construction of proof tactics. A poor understanding

of what exactly quali�es a proof step as sound leads to unnecessary restrictions in
tactics; I give examples in Section A.3.
To improve a logic it is necessary to change it. Without a clear understanding

of the logic, it is hard to foresee the consequences of changes. In practice, this has
impeded or prevented useful changes of Event-B's logic � the risk of change was
considered too high.
One of the impeded changes is the introduction of theory extension methods; these

are methods for introducing new types, functions, or proof rules. A naive approach
to theory extensions easily leads to inconsistency [see Gordon and Pitts, 1993, p. 221,

18

1.1. Event-B

for one of the pitfalls]. Without clean theoretical foundations, it is neither possible
to formulate the requirements on theory extension methods nor to prove that these
requirements are ful�lled.

Theorem Proving. Rodin users complain about the performance of Rodin's auto-
mated theorem provers. The situation has been improved by implementing relevance
�ltering techniques [Röder, 2010], but there remains room for further improvements.
Since automated theorem proving is an undecidable problem, it is trivial to observe
that the performance can be improved. But it is a relevant problem because users
have expressed that they view the current performance as unsatisfactory.
Using common mathematical notation, it is impossible to prove 33 = 27 with

Rodin's theorem prover, at least if bugs in the theorem prover are not exploited. The
formula 22 = 4 can be proved, but the known proof requires an invocation of the rule
that rewrites card(P(R)) to 2card(R), for �nite sets R. So there are �simple� theorems
that cannot be proved with Rodin's theorem provers or whose proofs are surprisingly
lengthy and complicated. This problem is unavoidable because a generally accepted
de�nition of �simple� theorem with a corresponding e�cient proof procedure does
not exist.
Other proof assistants [such as those in Gordon and Melham, 1993, Nipkow et al.,

2002] cope with this problem by having powerful facilities for con�guring existing
proof tactics and de�ning new ones. In contrast, Rodin supports two ways of de�n-
ing new tactics. The �rst way is to implement (in Java) a patch of Rodin's theorem
prover; the person who writes the patch is responsible that it does not introduce
inconsistency. The second way is to introduce new proof rules with Rodin's theory
plug-in [Butler and Maamria, 2010, Maamria and Butler, 2010]; but although the
theory plug-in is a valuable e�ort, it still has several restrictions that competing
proof assistants do not have: it can be used to introduce new inconsistencies into
Rodin's proof calculus [Schmalz, 2012], there are restrictions on how the connectives
and quanti�ers of predicate calculus may occur in rules, and the before-mentioned
problem with exponentiation cannot be solved. Overall, Rodin's facilities for im-
proving its theorem prover are signi�cantly weaker than those of competing proof
assistants.

Engineering. Rodin and its plug-ins have su�ered from a number of engineering
problems. The installation of plug-ins is not always intuitive and sometimes unrea-
sonably slow. Users have experienced that the platform occasionally crashes. In
some cases, the quality of the architecture, source code, documentation, or user in-
teraction is not as high as it perhaps should be. For example, some kinds of failures
are silently ignored or reported with too little emphasis; the log�le typically con-
tains numerous events, and it is hard to distinguish minor problems from serious
ones. Working with large models has demanded a lot of patience from the user; but
the situation has recently improved. Not all problems originate from Rodin's source
code; some of them are inherited by Eclipse, which is of course not an excuse.

19

1. Introduction

It is important to view these engineering limitations in the right context. Building
an integrated development environment is a non-trivial and resource draining task,
and the resources for �mere� tool development have always been very limited. With
this in mind, Rodin still is a remarkable piece of software.

1.2. Other Modeling and Veri�cation Environments

An alternative tool for modeling and verifying systems is the theorem prover Is-
abelle/HOL [Nipkow et al., 2002], the instantiation of the generic theorem prover
Isabelle [Paulson, 1989] to higher-order logic (HOL). Isabelle/HOL has been applied
in prestigious veri�cation projects such as the re�nement based development of an
operating system kernel [Klein et al., 2010]. Sprenger and Basin [2010] have imple-
mented an Event-B style re�nement methodology within Isabelle/HOL and applied
it to develop security protocols. By using Isabelle/HOL, most of the limitations of
Rodin's theorem prover are avoided. Isabelle/HOL gives users much �exibility on
the used methodology: in re�nement based approaches, users may freely choose and
change the underlying re�nement calculus. In contrast, it is much more di�cult
to change Event-B's re�nement calculus because it is hard-coded in Rodin's source
code.
On the downside, Isabelle/HOL does not provide features for validating models

such as Rodin's UML representation, animation, and model-checking; to validate
models, users have to inspect the theory source code. The price of �exibility is that
the decomposition of re�nement and invariant claims into proof obligations has to be
guided by the user. Such a manual decomposition into proof obligations is feasible
for small models or with strongly experienced users, but it bears the risk that users
are overwhelmed by repetitive trivial tasks. Unlike in Rodin, dependencies of proofs
are not cached; whenever a declaration within a theory is changed, all subsequent
proofs need to be re-checked.
It is of course possible to overcome these limitations of Isabelle/HOL by building

appropriate front-ends or extensions. Examples include the front-ends for Z and
UML/OCL by Brucker et al. [2003].
Spec# is a well-known approach for reasoning about software systems [Barnett

et al., 2011]. Spec# is an extension of the C# programming language with anno-
tations such as assertions, pre- and postconditions for methods, and invariants for
classes. There is also a similar extension of C, supported by the verifying C com-
piler [Cohen et al., 2009]. The annotations are transformed into proof obligations
that are passed to an automated theorem prover, such as Z3 [de Moura and Bjørner,
2008]. Proof obligations of the verifying C compiler can also be interactively proved
in Isabelle/HOL [Böhme et al., 2010]. The main advantage and disadvantage of
this approach is that the system is expressed in a programming language. It is an
advantage because the used programming languages are widely known, and sophisti-
cated translations between system models and programming languages are avoided.
It is a disadvantage because it limits the scope of the approach to software and it

20

1.3. Problem Statement

inhibits the use of re�nement: all details of the system have to be speci�ed at once.
It also seems di�cult to use Spec# for reasoning about concurrent systems or about
systems that are executed within a sophisticated environment.
Overall, there are many methods and tools for modeling and verifying systems.

The decision to take Event-B as a starting point of my thesis is of course somewhat
arbitrary. The disadvantage of focusing on one method is that results may not
generalize to other methods; as a great advantage of this approach, it is easier to
see which problems really matter in practice and to develop results that make a real
di�erence in veri�cation projects.

1.3. Problem Statement

The �rst goal of this research is to improve Rodin's automated theorem proving ca-
pabilities by developing a new proof tactic. The new proof tactic should be sound
with a high degree of certainty according to common standards in the �eld of theo-
rem proving. The performance of the new tactic should be at least as good as the
performance of Rodin's auto-tactic, ideally even better. In comparison to Rodin's
auto-tactic, it should be easier to improve the performance of the new tactic on prob-
lems from new domains; this capability is called adaptability. Good performance and
adaptability should be demonstrated with experiments based on a challenging indus-
trial case study.
In order to show (or even claim) that a proof tactic is sound, there has to be a

rigorous de�nition of soundness. The notion of soundness depends on a semantics,
and the semantics of a logic can only be de�ned once its syntax is clear. The second
goal of this research is therefore to develop a comprehensive speci�cation of Event-
B's logic covering at least its syntax and semantics. In general, the logic speci�cation
should describe the logic implemented by Rodin and not a simpli�ed version [such
as Abrial, 2010]; exceptions to this rule need to be carefully justi�ed. To support the
further evolution of Event-B's logic, the motivations and consequences of non-trivial
design decisions should be explained. It should be demonstrated with examples to
which extent the speci�cation of syntax and semantics is suitable for developing and
reasoning about non-trivial features such as proof calculi, theory extension methods,
or embedding techniques.
Although this problem statement is tailored to Event-B, the solution should apply

to a more general setting whenever possible.

1.4. Approach to a Solution

Foundation of Event-B's Logic. It has been claimed (without further explanation)
that Event-B uses a ��rst-order logic and set theory� [Abrial et al., 2010] or �set
theory built on �rst order predicate calculus� [Mehta, 2007, 2008]; but Event-B's
logic actually closely resembles higher-order logic [as in Gordon and Pitts, 1993]:

21

1. Introduction

similar to higher-order logic, terms of Event-B are typed according to a Hindley-
Milner style type discipline, the logic admits quanti�cation over sets, and binders
like set comprehension are part of the object logic. It is therefore natural to de�ne
the semantics of Event-B's logic by an embedding into some version of higher-order
logic. The only major di�erence between Event-B's logic and higher-order logic is
the way how Event-B treats partial functions; this is the main challenge that needs
to be solved when de�ning a semantics.
Another challenge is to make sure that the semantics re�ects the unwritten agree-

ment in the Event-B community on which statements are supposed to be true. Since
the existing literature makes contradictory statements (cf. Section 3.4), this is more
a social process than a technical problem. It is crucial to clearly communicate what
the semantics is so that an agreement is eventually achieved. In the Event-B liter-
ature [Abrial, 2010, Mehta, 2008] and in Rodin's documentation, it is common to
specify the underlying semantics in terms of proof rules that are supposed to be
sound. To help readers who are familiar with Event-B but unfamiliar with higher-
order logic understand the semantics given in this thesis, I complement the de�nition
of semantics with a proof calculus that highlights important semantic properties.
The meta-properties of higher-order logic have been extensively studied [see e.g.

Andrews, 2002, Gordon and Pitts, 1993], which has lead to well-known results on
soundness, completeness, incompleteness, and theory extension methods. By de�ning
the semantics of Event-B's logic based on higher-order logic, it becomes easier to
understand the meta-properties of Event-B's logic.

Theorem Proving. To improve Rodin's automated theorem proving capabilities, I
have decided to follow Paulson's advice [Paulson, 1992]:

Don't write a theorem prover. Try to use someone else's.

It is di�cult to determine a priori which theorem prover is most suitable for a
particular class of problems. I have decided to integrate Isabelle/HOL [Nipkow
et al., 2002] into Rodin because Isabelle/HOL's strengths match Rodin's limitations
very well.
Isabelle/HOL follows well-known principles to achieve soundness with a high de-

gree of certainty, namely the LCF approach [Gordon et al., 1979] for the internal
representation of theorems and de�nitional extension methods [Gordon and Pitts,
1993, Wenzel, 1997] for theory construction. Although the subset of Isabelle/HOL's
source code that needs to be trusted (its trusted kernel) is bigger than in other highly
trustworthy theorem provers [see Slind, 2010], very few soundness or conservativity
bugs have been discovered. The latest bug in Isabelle's trusted kernel that is known
to me has been �xed until 20071. Isabelle/HOL is therefore widely accepted as a
highly trustworthy theorem prover.

1Traces of this bug can be found in the NEWS �le of Isabelle2007; it is related to circular
de�nitions.

22

1.5. Overview and Contributions

As a generic theorem prover, Isabelle provides powerful generic proof tactics that
have matured during several years or decades and that can be adapted to new do-
mains with little e�ort. Isabelle/HOL also integrates competition winning automated
theorem provers [Böhme and Weber, 2010, Meng et al., 2006]; such an integration of
theorem provers does not compromise soundness because proofs of external theorem
provers are veri�ed by Isabelle's trusted kernel.
Although an integration of Isabelle/HOL into Rodin seems promising, it is not

obvious that it will be successful. One challenge stems from the di�erent approaches
to partial functions, i.e., functions in Event-B are by default partial, and functions
in HOL are by default total. Moreover, Event-B provides several operators related
to relations that have no counterparts in HOL. It is a priori unclear how di�cult it
is to con�gure Isabelle's automated methods to reason about these operators. And
as in every engineering project, unexpected challenges may arise at any time.

1.5. Overview and Contributions

This thesis has two main contributions. The �rst contribution is a theoretical founda-
tion of Event-B's logic; this covers topics like syntax, semantics, proofs, de�nitional
extensions, and an analysis of the impact of various design decisions in a logic of
partial functions. The second contribution is an improvement of Rodin's automated
theorem proving capabilities in terms of soundness, adaptability, and sometimes even
performance. Although the research has been driven by Event-B, some of the results
are of a more general nature, as indicated below.

Chapter 2. The contribution of Chapter 2 is a comprehensive speci�cation of ab-
stract syntax, semantics, and proofs for Event-B's logic. Unlike other expositions on
Event-B's logic [Abrial, 2010, Mehta, 2008, Metayer and Voisin, 2009], my presenta-
tion treats the sets of available symbols (type operators, operators, and binders) and
proof rules as unknown parameters. This degree of generality is motivated by the
observation that the symbols and proof rules available in Rodin change over time.
Alternative expositions on Event-B's logic still are valuable sources of information,

but they are inadequate as speci�cation documents for the following reasons: Abrial
[2010] introduces Event-B's logic as a version of naive set theory (i.e., without types),
which is known to be inconsistent; note that Rodin does not implement naive set
theory. Mehta [2008] addresses only a fragment of Event-B's logic. Metayer and
Voisin [2009] disregard semantics and proofs.

Chapter 3. Chapter 3 introduces Event-B's main theory, i.e., the symbols (type op-
erator, operators, and binders) that are by default available in Rodin and a restricted
set of proof rules. The semantics of symbols is either explicitly given, speci�ed by
appropriate proof rules, or often both. I show that the proof calculus given by Event-
B's main theory is sound; to increase the degree of certainty that the soundness proof

23

1. Introduction

is correct, I have carried out a substantial part of it in Isabelle/HOL. The �rst con-
tribution of Chapter 3 is pragmatic: the chapter informs users and developers about
the semantics of the symbols available in Rodin, and it shows that it is practically
feasible to apply Isabelle/HOL to formally prove soundness of rules.
Chapter 3 also introduces de�nitional theory extension methods, i.e., methods for

introducing new operators, binders, and proof rules without performing soundness
proofs in Isabelle/HOL. Roughly speaking, the term de�nitional means that intro-
ducing new symbols or rules does not compromise soundness. Such methods have a
long history in logics [see e.g. Shoen�eld 1967, p. 41 or van Dalen 2004, p. 104], and
the methods given in Chapter 3 closely resemble those of Isabelle and higher-order
logic [Gordon and Pitts, 1993, Paulson, 1989, Wenzel, 1997]. The development of
de�nitional theory extension methods is however more than a trivial transfer because
Event-B's explicit support for partial functions poses novel challenges, in particular
when de�ning binders and introducing rules. As a proof of concept, I have applied
my theory extension methods to develop a substantial part of Event-B's main theory.
So the second contribution of Chapter 3 is the development of de�nitional theory

extension methods: it shows that the foundations laid in Chapter 2 can be used to
develop a non-trivial enhancement of the logic with reasonable e�ort. Moreover, it
provides the �rst theoretical justi�cation of the basic functionality of Rodin's theory
plug-in [Butler and Maamria, 2010]. Overall, the process of writing Chapters 2 and 3
has led to the discovery of several consistency bugs in Rodin's theorem prover.

Chapter 4. De�ning a logic of partial functions is easy; the challenge is to make
it practically useful. While developing such a logic, one has to make numerous dif-
�cult design decisions; the consequences of these decisions are often unclear. The
contribution of Chapter 4 is to review the main decisions underlying Event-B's logic,
analyze their impact and relations between each other, and compare them to other
approaches for modeling partial functions. Chapter 4 helps to foresee the conse-
quences of design decisions related to partial functions.
The best discovery of Chapter 4 is in my view the observation how the need for

solving preconditions during term rewriting is signi�cantly reduced due to directed
rewriting. This is a non-standard term rewriting technique for logics of partial func-
tions. Although it has been implemented in Rodin and PVS [Owre et al., 1992],
there is to my best knowledge no written account on the soundness or practical rel-
evance of this technique2. I have developed a soundness argument in Section 2.3.2.3
and show in Section 4.1 that directed rewriting makes a signi�cant number of condi-
tional rewrite rules unconditional; directed rewriting therefore reduces the overhead
of solving conditions during term rewriting.

2To be precise, I have published a paper on directed rewriting in the course of doing this research
[Schmalz, 2011]. Dawson [1998] develops a version of directed rewriting for a fragment of LPF
[Barringer et al., 1984], and Maamria and Butler [2010] for a limited version of Event-B (although
with a �aw in their soundness proof). They do not analyze practical relevance, and it is not
trivial to carry their soundness proofs over to (full) Event-B or PVS.

24

1.5. Overview and Contributions

Chapter 5. In Chapter 5, I report on the lessons learned during the integration
of Isabelle/HOL as an automated theorem prover into Rodin. The starting point
of a proof attempt is a naive encoding of the Event-B proof obligation in HOL;
unfortunately, Isabelle/HOL's prede�ned proof methods perform poorly on this en-
coding. I therefore develop a preprocessing phase that rewrites the naive encoding
of a proof obligation to a form that is more suitable for automated theorem proving
(cf. Section 5.2).
This preprocessing, which I call unlifting, is a problem of general interest: it is

the problem of translating from a logic that explicitly supports partial functions
to a classical logic, which supports only total functions. The problem of unlifting
arises whenever a theorem prover for classical logic is applied to a logic of partial
functions; several algorithms have been proposed in the literature [Abrial and Mussat,
2002, Berezin et al., 2005, Darvas et al., 2008, Owre and Shankar, 1999, Woodcock
et al., 2009]. The unlifting algorithm in Section 5.2 is more general than all of
these algorithms because it is able to cope with partial functions whose domains are
unknown. Other contributions are a detailed complexity analysis (Section 5.2.4), an
empirical evaluation showing that my implementation is e�cient on problems from
various (including industrial) domains (Section 5.2.6), and an implementation based
on Isabelle's simpli�er [Nipkow, 1989] (Section 5.2.5). The implementation based on
Isabelle has the advantage that the unlifting algorithm is sound by construction and
can be optimized easily without compromising soundness.
Another contribution is a novel proof method for Isabelle/HOL, called axe, which

is invoked on the output of the unlifting algorithm. I have evaluated the perfor-
mance of axe on conjectures generated from academic and industrial developments
whose sizes range up to 18000. (The size of a formula is the number of leaves of
its abstract syntax tree.) On the academic benchmark, the performance of axe is
similar to the performance of Rodin's auto-tactic. On the industrial benchmark, axe
discharges signi�cantly more proof obligations automatically at the price of an in-
creased runtime. Since Rodin's auto-tactic has been optimized for years and the axe
method only for months, I expect that it is practically feasible to further improve
the performance of axe.
In my empirical evaluation, I make a clear distinction between a training bench-

mark used to drive the optimization process and a validation benchmark that does
not in�uence the optimization process; this approach allows me to measure general-
ity of the various performance improvements. In a few cases, an improvement on the
training benchmark caused minor performance regressions on the validation bench-
mark; but in all other cases, the generalization was good or even excellent. This is
a clear sign that improving axe (or other proof methods) often pays o� in the long
run.
The axemethod is a non-trivial combination of Isabelle's prede�ned proof methods

(such as auto, blast, force, metis, and smt). Given that axe is a combination of
prede�ned methods, it is not surprising that axe outperforms the methods it is built
from. A major challenge is to decide when to invoke which of Isabelle's prede�ned
proof methods, with which parameters, and how long to wait for termination. In

25

1. Introduction

typical Isabelle proofs, the user makes these decisions; axe improves over Isabelle's
prede�ned proof methods by making these decisions for the user.
Another reason why axe outperforms Isabelle's prede�ned proof methods on the

considered benchmarks is that it carefully avoids or delays brute force strategies such
as naive case splitting. This improves the performance of axe on large problems.
Overall, the main contribution of Chapter 5 is a novel automated tactic for Rodin,

which is sound by construction. On one of the two considered benchmarks, this tactic
discharges roughly as many proof obligations as Rodin's auto-tactic; on the other
one (with larger proof obligations), it discharges signi�cantly more proof obligations.
The tactic inherits Isabelle's great support for adapting tactics to new domains.
So Chapter 5 shows that an integration of Isabelle/HOL into Rodin is practically
feasible and useful.

Chapter 6. In Chapter 6, I review the main results, address future work, and
conclude with personal remarks on this research.

26

2. Event-B's Logic

2.1. Abstract Syntax

In the following I de�ne the abstract syntax of Event-B's logic. The attribute "ab-
stract" means that the given syntax is restricted to features that are essential for
developing a semantics and reasoning about Event-B's logic. In particular, I will
neither give a rigorous account of in�x notation nor specify which kinds of strings
are admissible as identi�ers; these topics are important when developing a parser but
dispensable when reasoning about the logic. A slightly outdated speci�cation of the
concrete syntax of Event-B's logic, i.e., the input language of Rodin's parser, can be
found in [Metayer and Voisin, 2009].
To simplify the presentation and the development of not yet implemented improve-

ments, I have sometimes taken the liberty to generalize over the version of Event-B's
logic implemented by Rodin. Minor deviations from Rodin's implementation are
addressed on the �y; major deviations are justi�ed in Section 2.4.

Sequences. Sequences are not part of Event-B's syntax, but they are essential for
describing it; I therefore introduce several notational conventions. The sequence of
length n with ti at position i for 1 ≤ i ≤ n is denoted by t1, . . . , tn or alternatively
t1 . . . tn. Variables denoting sequences are written in bold and underlined. If
the sequence t has at least i elements, ti stands for the element at position i in t.
Moreover, |t| stands for t's length and t t′ for the concatenation of t and t′. I will
introduce more conventions when needed.

Symbols. The syntactic entities of Event-B's logic are built from symbols arranged
in the following pairwise disjoint categories:

1. delimiters: (,), ·, |, $, ◦◦, `, v, ≡,

2. type variables, usually denoted by α, β,

3. variable names, usually denoted by x, y, z,

4. non-logical symbols, such as ⇒,=, 1, ∀,Z.

I assume that each of the categories 2, 3, and 4 comprises in�nitely many symbols.
Symbols in the categories 1, 2, and 3 are also referred to as logical symbols.

27

2. Event-B's Logic

2.1.1. Types and Terms

Informally, the symbols that may be used to build syntactic entities are given by
a signature. More precisely, a signature Σ comprises three pairwise disjoint sets of
non-logical symbols: a set of type operators, a set of (ordinary) operators, and a set
of binders. In the following, I will explain how the symbols of a signature are used to
form types and terms. Readers familiar with higher-order logic [see e.g. Gordon and
Melham, 1993] or the programming language ML will recognize that Event-B has a
Hindley-Milner style type system.

Types. A signature Σ assigns a non-negative integer, called arity, to each type
operator. Every signature includes the boolean type operator B of arity zero. A
type operator of arity zero is also called basic type. The set of types (over Σ) is
the smallest set such that every type variable is a type, and τ(ν) is a type if ν is a
sequence of types and τ a type operator of arity |ν|. If ν is a basic type, I usually
write ν instead of ν().

Example 2.1. Examples of type operators in Rodin include the basic type Z (integer
type) and the set type operator P of arity 1. Informally, the type Z denotes the set
of all integers and P(Z) the set of all sets of integers; α stands for an unspeci�ed
nonempty set and P(α) for the set of all subsets of α. Type variables are closest to
Rodin's given types, which are also known as carrier sets or type parameters.

A (type) substitution σ (over Σ) consists of a sequence α of pairwise distinct type
variables and a sequence µ of types, where |α| =

∣∣µ∣∣, and is written [α := µ]. The
substitution σ maps the type ν to the type νσ obtained by simultaneously replacing
every occurrence of αi by µi for 1 ≤ i ≤ |α| in ν. The elements of µ are called the
right-hand sides of σ. The type sequence ν′ is an instance of ν i� |ν′| = |ν| and
there is a substitution σ such that ν ′i = νiσ, for 1 ≤ i ≤ |ν|.

Terms. The signature Σ associates with each ordinary operator f a sequence of
types ν (the argument type) and a type µ (the result type), written as f ◦◦ ν ⇀ µ.
A constant c ◦◦ µ is an operator with empty argument type and result type µ. With
each binder Q the signature Σ associates a non-empty sequence ν (the bound variable
type), a non-empty sequence µ (the argument type), and a type ξ (the result type),
written as Q ◦◦ (ν ⇀ µ) ⇀ ξ.

Example 2.2. Examples of operators in Rodin include 0 ◦◦ Z, conjunction ∧ ◦◦

(B,B) ⇀ B, and membership ∈ ◦◦ (α,P(α)) ⇀ B. An example of a binder is the
universal quanti�er ∀ ◦◦ (α ⇀ B) ⇀ B, which informally takes a function mapping
elements of α to booleans and yields a boolean.

An (ordinary) variable x ◦◦ ν consists of a variable name x and a type ν. An
operator variable $f ◦◦ ν ⇀ µ consists of a variable name f , argument types ν, and
a result type µ; if ν is empty, I usually write $f ◦◦ µ instead of $f ◦◦⇀ µ.

28

2.1. Abstract Syntax

Letter Usage
α, β type variable
τ type operator
ν, µ, ξ type
x, y, z ordinary variable or variable name
f, g operator
c constant
t, u term
ϕ,ψ, χ formula
$f, $g operator variable
$x, $y, $z operator variable with empty argument type
$ϕ, $ψ, $χ operator variable of result type B

These conventions also apply to letters decorated with subscripts and primes.

Figure 2.1.: Naming conventions

Conditions T1-T4 below inductively de�ne terms (over Σ) and their types. The
statement �t has type ν�, abbreviated as t ◦◦ ν, indicates that |t| = |ν| and ti is of
type νi, 1 ≤ i ≤ |t|.

T1: Every ordinary variable of type ν is a term of type ν.

T2: If f ◦◦ ν ⇀ µ is an operator and t ◦◦ ν ′ a sequence of terms, then f(t ◦◦ ν ′) ◦◦ µ′ is
a term of type µ′, provided ν ′ µ′ is an instance of ν µ.

T3: If $f ◦◦ ν ⇀ µ is an operator variable and t ◦◦ ν a sequence of terms, then
$f(t ◦◦ ν) ◦◦ µ is a term of type µ.

T4: If Q ◦◦ (ν ⇀ µ) ⇀ ξ is a binder, x ◦◦ ν ′ a sequence of pairwise distinct variables,
and t ◦◦ µ′ a sequence of terms, then (Qx ◦◦ ν ′ · t ◦◦ µ′) ◦◦ ξ′ is a term of type ξ′,
provided ν ′µ′ ξ′ is an instance of ν µ ξ, |ν ′| = |ν|, and

∣∣µ′∣∣ =
∣∣µ∣∣.

Given a constant c, I usually write c ◦◦ µ for the term c() ◦◦ µ. A term of type B
is called a formula. Figure 2.1 summarizes which letter is used for which syntactic
entity.
Rodin imposes further restrictions on terms: Rodin's parser may reject a term if

it contains variables with the same names and di�erent types. Rodin's type checker
stipulates that type variables are declared before their �rst usage. I ignore these
restrictions because they have no logical signi�cance and would merely complicate
the presentation without adding clarity.
I adopt the usual de�nitions of bound and free (ordinary) variables. For uniformity,

I also view operator and type variables as free. Unless mentioned otherwise, I consider
alpha-congruent terms, i.e., terms that informally speaking di�er only in the names

29

2. Event-B's Logic

of bound variables, as identical; Hindley and Seldin [2008] give precise de�nitions of
these notions.

Extending Signatures. Extending a signature informally means introducing addi-
tional symbols. Formally, a signature Σ′ extends a signature Σ i� the type operators,
operators, and binders of Σ are type operators, operators, and binders of Σ′, respec-
tively, and Σ′ assigns arities, bound variable, argument, and result types to symbols
of Σ in the same way as Σ.

2.1.2. An Example Signature

As a running example, I de�ne the signature Σ0 introducing the following symbols:

Type operators:

• the basic types B (of booleans) and Z (of integers),

• the set type operator P of arity 1.

Operators:

• D ◦◦ α ⇀ B (well-de�nedness),

• = ◦◦ (α, α) ⇀ B (equality),

• > ◦◦ B (truth), ⊥ ◦◦ B (falsity), and • ◦◦ α (ill-de�nedness),

• ¬ ◦◦ B ⇀ B (negation) and ∧ ◦◦ (B,B) ⇀ B (conjunction),

• ∨ ◦◦ (B,B) ⇀ B (disjunction) and ⇒ ◦◦ (B,B) ⇀ B (implication),

• ∈ ◦◦ (α,P(α)) ⇀ B (membership) and P ◦◦ P(α) ⇀ P(P(α)) (powerset),

• ∅ ◦◦ P(α) (empty set) and ∩ ◦◦ (P(α),P(α)) ⇀ P(α) (intersection),

• 0 ◦◦ Z, 1 ◦◦ Z, Z ◦◦ P(Z), and mod ◦◦ (Z,Z) ⇀ Z (modulo).

Binders:

• ∀ ◦◦ (α ⇀ B) ⇀ B (universal quanti�er),

• collect ◦◦ (α ⇀ B) ⇀ P(α) (simple set comprehension).

I usually write {x | ϕ} for collect x · ϕ and ∀x · ϕ for ∀x1 · . . . ∀x|x| · ϕ. The names
of the symbols (e.g., negation for ¬) should be viewed as hints to their standard
semantics, which I will make precise in Section 2.2.6.

30

2.2. Semantics

Conventions. To improve readability, type constraints �◦◦ ν� are omitted when there
is no danger of confusion. I use in�x notation for most operators taking two argu-
ments and leave out parentheses when the precedence is clear or irrelevant. By
default, operators taking one argument have higher precedence than operators in
in�x notation; e.g., ¬ϕ∧ψ stands for (¬ϕ)∧ψ. The scope of a binder extends as far
to the right as possible, e.g., ∀x · ϕ ∧ ψ is to be read as ∀x · (ϕ ∧ ψ). By default, a
term is of the most general type, and I assign the same types to di�erent occurrences
of a variable name. Hence, ∀x · x ∈ R ∧ x = x stands for

∀x ◦◦ α · (x ◦◦ α) ∈ (R ◦◦ P(α)) ∧ (x ◦◦ α) = (x ◦◦ α).

2.2. Semantics

For the reasons explained in the introduction (cf. Section 1.4), I have decided to
de�ne the semantics of Event-B's logic by an embedding into some version of higher-
order logic. As I plan to integrate Isabelle/HOL as a theorem prover into Rodin,
it makes sense to de�ne the semantics in terms of Isabelle's version of higher-order
logic. I will address the question whether I have de�ned the �right� semantics at the
beginning of Chapter 3.

2.2.1. Isabelle/HOL

The term Isabelle refers to the generic theorem prover designed by Paulson [1989]
that supports various logics. The abbreviation HOL stands for higher-order logic
as implemented by Isabelle. The instantiation of Isabelle by HOL is denoted by
Isabelle/HOL [Nipkow et al., 2002].
For readers that are not familiar with Isabelle/HOL, I give an informal summary

of the features that are relevant for my thesis. HOL's type system has much in
common with ML's. The details are elaborated in the texts by Gordon and Pitts
[1993], and Wenzel [1997]. The notation t ::ν indicates that the term t has type ν. A
term of type ν ⇒ µ denotes a function taking one argument of type ν and yielding
a result of type µ.
Functions taking n arguments, n > 0, are represented by terms of type ν1 ⇒ · · · ⇒

νn+1. The type operator ⇒ associates to the right. The application of the function
f to the arguments x1, . . . , x|x| is written f x1 . . . x|x| or f x and should be read
as (. . . (f x1) . . .) x|x|.
HOL supports in�x notations for some functions. For example, plus x y can be

written as x+ y. Function applications have higher precedence than in�x operators:
f x+ 1 is to be read as (f x) + 1.
Terms of type ν ⇒ µ represent total functions. It is also possible to encode

partial functions in HOL, but some partial functions are simply approximated by
total functions: HOL's integer division div is a total function of type int⇒ int⇒ int.
The developers of HOL have decided that x div (0 :: int) equals 0. The way how

31

2. Event-B's Logic

partial function are approximated by total functions varies from case to case: in
particular, the �least integer� Least {x :: int. True} is left unspeci�ed.
In a nutshell, a HOL theory comprises various kinds of declarations, in particular

de�nitions of constants, theorems with proofs, and postulates of axioms. Within
this document, I say that a HOL theory THY′ extends another HOL theory THY
i� THY′ includes all declarations of THY. Informally, THY′ de�nitionally extends
THY i� THY′ extends THY and THY′ only includes postulates of axioms contained
in THY. This de�nition of �de�nitional� is somewhat imprecise because some kinds
of declarations postulate new axioms in some versions of HOL and are de�nitional
in others; Wenzel [1997] carefully explains why type de�nitions (and therefore also
datatype declaration) constitute examples of such declarations.
To dispel any doubt, I say that THY′ de�nitionally extends THY i� THY′ extends

THY and every formula ϕ built from symbols declared in THY is valid1 in THY′

i� ϕ is valid in THY. For the purposes of this document, it su�ces to know that
HOL's constant de�nitions and speci�cations are de�nitional in this sense [as shown
by Gordon and Pitts, 1993, Wenzel, 1997].

2.2.2. Preliminaries � the Theory EB_Prelims

The theory EB_Prelims introduces auxiliary notation, which I use later in the def-
inition of the actual semantics. The main theory of HOL (called Main) introduces
option types, de�ned by

datatype α option = Some α | None.

Intuitively, the type α option contains �copies� of all elements x of the type α, writ-
ten as Some x. Additionally, the type α option contains a constant None that is
distinct from every �copy� Some x. For brevity, the theory EB_Prelims introduces
the notation α↑ for α option, x↑ for Some x, and • for None.
Moreover, EB_Prelims de�nes the functions WD, T, F, and WT by

WD x = (x 6= •),
T ϕ = (ϕ = True↑), F ϕ = (ϕ = False↑), WT ϕ = (ϕ 6= False↑).

For a term t of type ν↑, the formula WD t indicates whether t is well-de�ned, i.e.,
distinct from •. The opposite of well-de�ned is ill-de�ned. If ϕ is a term of type
bool↑, then T ϕ indicates whether ϕ is true, i.e., equal to True↑, and F ϕ whether ϕ
is false, i.e., equal to False↑. The formula WT ϕ indicates whether ϕ is weakly true,
i.e., true or ill-de�ned.

1The literature distinguishes several notions of validity for higher-order logic [see Andrews, 2002].
Within this document, validity always refers to the standard semantics of higher-order logic [as
in Andrews, 2002, Gordon and Pitts, 1993]; in particular, the type α⇒ β denotes the set of all
functions that map the set denoted by α into the set denoted by β.

32

2.2. Semantics

2.2.3. Denotations of Types and Terms

Given a signature Σ, a structure (over Σ) speci�es the denotations of Event-B's
types and terms over Σ. Technically, a structure (M, J·K) consists of a HOL theory
M extending EB_Prelims and a denotation function J·K mapping Event-B's type
operators, types, operators, binders, and terms to HOL's type operators, types,
constants, and terms.
I adopt the convention that JtK abbreviates Jt1K . . . Jt|t|K, for a sequence t of types

or terms. If the interpretation function J·K is clear from the context, I designate the
structure (M, J·K) by M.
The denotation JαK of an Event-B type variable α is de�ned as α; here I assume,

without loss of generality, that every Event-B type variable is a HOL type variable.
For every Event-B type operator τ of arity n, JτK is a HOL type operator taking n
arguments2. The boolean type B denotes bool, and a type τ(ν) denotes the type
(JνK) JτK, i.e., the result of applying the type operator JτK to the types JνK.
While the denotation of a type is obtained by renaming type operators, the sit-

uation is more involved for terms. The denotation function J·K maps operators
f ◦◦ ν ⇀ µ to HOL constants of type Jν1K↑ ⇒ . . . ⇒ Jν|ν|K↑ ⇒ JµK↑ and binders
Q ◦◦ (ν ⇀ µ) ⇀ ξ to HOL constants of type

(Jν1K⇒ . . .⇒ Jν|ν|K⇒ Jµ1K↑)⇒ . . .⇒ (Jν1K⇒ . . .⇒ Jν|ν|K⇒ Jµ|µ|K↑)⇒ JξK↑.

An Event-B term of type ν denotes a HOL term of type JνK↑ as follows:

1. Jx ◦◦ νK = (x :: JνK)↑.

2. Jf(t) ◦◦ µ′K = ((JfK JtK) :: Jµ′K↑).

3. J$f(t) ◦◦ µK = (($f JtK) :: JµK↑).

4. J(Qx ◦◦ ν · t) ◦◦ ξ′K = ((JQK (λx :: JνK. Jt1K) . . . (λx :: JνK. Jt|t|K)) :: Jξ′K↑).

For convenience, it is assumed that, for each Event-B variable name x, both x and
$x are available as variable names in M. In 4, the notation x :: ν abbreviates (x1 ::
ν1) . . . (x|x| :: ν|ν|).

Remark 2.3. A particular property of Event-B's semantics is that types are �at.
Suppose that the underlying signature has a function type operator →, which is
interpreted as ⇒. Then, Event-B terms of type α → β denote HOL terms of type
(α ⇒ β)↑. Consequently, a function is either well-de�ned or ill-de�ned as a whole.
In a non-�at interpretation of function types, Event-B terms of type α → β denote
HOL terms of type α↑ ⇒ β↑ or perhaps α⇒ β↑. Flatness of all types distinguishes
Event-B from LCF [see Paulson, 1987].
Recall that HOL provides only one operator, namely function application, and one

binder, namely lambda-abstraction, and views the remaining operators and binders

2In this regard, I also view Isabelle's type synonyms as type operators.

33

2. Event-B's Logic

as constants of suitable function types. Since Event-B types are �at, it is impossible
to structure Event-B's logic in a similar way: Event-B constants denote terms of type
ν↑ and are therefore in general unsuitable to represent operators and binders.

2.2.4. Extending Structures

Informally, there are two ways of extending a structure: extend the underlying sig-
nature or extend the underlying HOL theory. Formally, a structure (M′, J·K′) over Σ′

extends a structure (M, J·K) over Σ i� Σ′ extends Σ, M′ extends M, and the restric-
tion of J·K′ to symbols, types, and terms of Σ coincides with J·K. Moreover, (M′, J·K′)
de�nitionally extends (M, J·K) i� (M′, J·K′) extends (M, J·K) and M′ de�nitionally ex-
tends M.

2.2.5. Semantic Notions

An Event-B term is well-de�ned (ill-de�ned) i� its denotation is well-de�ned (ill-
de�ned). The Event-B terms t and u are equivalent i� JtK = JuK is valid. An
Event-B formula ϕ is valid i� T JϕK is valid.
For the following de�nitions, I suppose that Q is a HOL function of type

(Jν1K⇒ . . .⇒ JνnK⇒ Jµ1K↑)⇒ . . .⇒ (Jν1K⇒ . . .⇒ JνnK⇒ JµmK↑)⇒ JξK↑,

where n,m ≥ 0. If n > 0 and m > 0, Q may serve as the denotation of a binder. If
n = 0, one should think of Q as the denotation of an operator.

Domain. The domain of Q is the set {(f). WD Q f}. The domain of an Event-B
operator or binder is the domain of its denotation.

De�niteness. The function Q is de�nite i�

∀x. WD (g1 x) ∧ · · · ∧WD (gm x) implies WD (Q g1 . . . gm).

An Event-B operator or binder is de�nite i� its denotation is.

Smashedness and Strictness. The function Q is smashed in its ith argument i�

WD (Q g1 . . . gm) implies ∀x. WD (gi x),

where 1 ≤ i ≤ m. Moreover, Q is smashed i� Q is smashed in all arguments. The
function Q is the smashed extension of a function Q′ of type

(Jν1K⇒ . . .⇒ JνnK⇒ Jµ1K)⇒ . . .⇒ (Jν1K⇒ . . .⇒ JνnK⇒ JµmK)⇒ JξK

i� the following formula is valid:

Q g1 . . . gm =

{
(Q′ g′1 . . . g′m)↑ (∀x. gi x = (g′i x)↑ for 1 ≤ i ≤ m)
• (∃x. ¬WD (gi x) for some i with 1 ≤ i ≤ m).

34

2.2. Semantics

In the case of n = 0, it is common to replace the term smashed by the term strict.
The opposite of strict is lazy. The notions of strictness and smashedness are carried
over to operators and binders of Event-B in the obvious way; e.g., an operator is
strict in its �rst argument i� its denotation is.

Monotonicity. The �at domain order v [see e.g. Paulson, 1987] is de�ned by

∀x y. x v y ←→ (WD x −→ x = y).

The order v is lifted to functions in the usual point-wise fashion:

f v g ←→ (∀x. f x v g x).

The function Q is monotonic i�

∀f g. f1 v g1 ∧ · · · ∧ f|f| v g|g| implies Q f v Q g.

An Event-B operator or binder is monotonic i� its denotation is.

2.2.6. An Example Structure

The structure (EB0, J·K) de�nes the denotations of the types and terms of Σ0, the
signature de�ned in Section 2.1.2. I start with the denotations of the given type
operators, the well-de�nedness operator D, and ill-de�nedness •:

JBK = bool, JZK = int, JPK = set,

JDK x = (WD x)↑, J•K = •.

The operator D is de�nite but not monotonic (and therefore not strict).
Most operators f of Σ0 denote the strict extensions of their counterparts fHOL in

HOL according to the following table:

f = > ⊥ ¬ ∈ P ∅ ∩ 0 1 Z

fHOL = True False ¬ ∈ Pow {} ∩ 0 :: int 1 :: int UNIV :: int

If x is an ordinary variable, then x = x is valid, because x is well-de�ned. If however
$x is an operator variable, then $x = $x is not valid, because $x could be ill-de�ned.
The operator mod is strict but not de�nite, because it yields an ill-de�ned result

if an argument is negative:

JmodK x↑ y↑ =

 (xmod y)↑ (x ≥ 0 ∧ y > 0)

• (otherwise).

The denotation of conjunction is given by

J∧K ϕ ψ =

True↑ (T ϕ ∧ T ψ)

False↑ (F ϕ ∨ F ψ)

• (otherwise).

35

2. Event-B's Logic

The denotations of disjunction and implication are de�ned such that $ϕ ∨ $ψ is
equivalent to ¬(¬$ϕ∧¬$ψ) and $ϕ⇒ $ψ is equivalent to ¬$ϕ∨ $ψ. Note that con-
junction, disjunction, and implication are not strict in either argument. In particular,
both ⊥ ∧ $ϕ and $ϕ ∧ ⊥ are equivalent to ⊥. Contrast this to intersection: neither
∅∩ $R nor $R∩∅ is equivalent to ∅, because $R is not necessarily well-de�ned and
intersection is strict.
The denotation of collect is the smashed extension of HOL's Collect, and the

denotation of ∀ is de�ned such that

J∀x · ϕK =

True↑ (∀x. T JϕK)

False↑ (∃x. F JϕK)

• (otherwise).

The universal quanti�er may be viewed as generalized conjunction: for instance,
∀x ◦◦ B · $ϕ(x) is equivalent to $ϕ(>) ∧ $ϕ(⊥). The variables bound by a binder
range over well-de�ned values: ∀x · D(x) is valid, and {x | ¬D(x)} is equivalent to
the empty set ∅.

2.2.7. Substitutions

Event-B has three kinds of variables: type variables, ordinary variables, and operator
variables. Correspondingly, I will de�ne three kinds of substitutions. Although it
may seem completely obvious how to apply ordinary and type substitutions to terms,
the process involves some pitfalls; some of these pitfalls are hard to extract from
the literature and others are speci�c to Event-B. To avoid any ambiguities, I give
formal de�nitions of all three kinds of substitutions, referring to the literature when
possible. To validate my de�nitions, I will analyze the impact of a substitution on the
denotation of the term it is applied to; I will point out a close relationship between
Event-B's substitutions and their HOL counterparts. The lemmas of this section
constitute an important prerequisite for several proofs in Sections 2.3 and 3.2.

2.2.7.1. Type Substitutions

Intuitively, a type substitution [α := ν] is applied to a term by simultaneously
replacing αi by νi, for 1 ≤ i ≤ |α|. One subtlety needs to be observed: applying a
type substitution may identify variables having the same name but distinct types.
That gives rise to the question: what is the result of applying [α := B] to ∀x ◦◦ α ·
x ◦◦ B? After all that has been said it could be either ∀y ◦◦ B · x ◦◦ B or ∀x ◦◦ B · x ◦◦ B.
The following formal de�nition dispels any doubts:

De�nition 2.4. Let σ be a type substitution. The result of applying σ to a term is
de�ned by the following recursive equations:

1. (x ◦◦ ν)σ = x ◦◦ (νσ),

2. (f(t) ◦◦ µ)σ = f(tσ) ◦◦ (µσ),

36

2.2. Semantics

3. ($f(t) ◦◦ µ)σ = $f(tσ) ◦◦ (µσ),

4. ((Qx · t) ◦◦ ξ)σ = (Qxσ · tσ) ◦◦ (ξσ).

Here, tσ abbreviates t1σ, . . . , t|t|σ. In 4, the names of the bound variables x are
chosen such that (i) di�erent variables in x have di�erent names, and (ii) the names
of free variables of (Qx · t) di�er from the variable names in x.

Recall that ∀x ◦◦ α · x ◦◦ B and ∀y ◦◦ α · x ◦◦ B are identical, because they are
alpha-congruent. Then, Proviso (ii) of De�nition 2.4 has the e�ect that (∀x ◦◦ α · x ◦◦
B)[α := B] equals (∀y ◦◦ B · x ◦◦ B), similarly as in HOL [Gordon and Pitts, 1993].
Proviso (i) serves a similar purpose.
To gain a better understanding of type substitutions, I investigate their impact on

the denotations of terms. The denotation J[α := ν]K of a type substitution is de�ned
by [α := JνK]3. Type substitutions are closely related with their denotations:

Lemma 2.5. If σ is a type substitution, t a term, and ν a type, then JνσK = JνKJσK
and JtσK = JtKJσK are valid.

Proof. It is straightforward to show validity of JνσK = JνKJσK.
It remains to prove JuσK = JuKJσK by structural induction over u. If u is an

ordinary variable x ◦◦ ν, the proof proceeds as follows:

J(x ◦◦ ν)σK = Jx ◦◦ (νσ)K = (x :: JνσK)↑ = (x :: (JνKJσK))↑
= (x :: JνK)↑JσK = Jx ◦◦ νKJσK.

The cases of operators and operator variables proceed similarly and are therefore
omitted. If u is of the form (Qx · t) ◦◦ ξ, the proof proceeds as follows:

J((Qx ◦◦ ν · t) ◦◦ ξ)σK
= J((Qx ◦◦ νσ · tσ) ◦◦ (ξσ)K
= (JQK (λx :: JνσK. Jt1σK) . . . (λx :: JνσK. Jt|t|σK)) :: JξσK↑
= (JQK (λx :: (JνKJσK). Jt1KJσK) . . . (λx :: (JνKJσK). Jt|t|KJσK)) :: (JξKJσK)↑
= ((JQK (λx :: JνK). Jt1K) . . . (λx :: JνK. Jt|t|K)) :: (JξK)↑)JσK

= J(Qx ◦◦ ν · t) ◦◦ ξKJσK.

The equality between the fourth and �fth line is justi�ed by the de�nition of type
substitutions in higher-order logic [Gordon and Pitts, 1993]. In higher-order logic,
a similar proviso on the names of bound variables x as Event-B is stipulated. The
proviso in higher-order logic follows from the proviso in Event-B.

Type variables may be seen as place-holders for types. By de�ning the e�ect of type
substitutions on terms, I make precise how exactly type variables can be instantiated.
Lemma 2.5 provides a semantic characterization of type substitutions σ; in particular,
if ϕ is valid, then so is ϕσ.
3I deviate from the usual notation of substitutions in higher-order logic; the substitution [α := ν]
is usually written as [ν1/α1, . . . , ν|ν|/α|α|] [see e.g. Gordon and Pitts, 1993].

37

2. Event-B's Logic

2.2.7.2. Operator Substitutions

De�nition 2.6. An operator substitution σ is written

[$f1($x
1) := u1, . . . , $fn($xn) := un],

where $f1, . . . , $fn are pairwise distinct, the elements of $xi are pairwise distinct,
the type of $xi is the argument type of $fi, and the type of ui the result type of $fi,
for 1 ≤ i ≤ n. The terms u1, . . . , un are the right-hand sides of σ.

Before presenting a formal de�nition of the e�ect of operator substitutions on
terms, let us consider several examples.

Example 2.7. First, consider the operator substitution [$ϕ := x]. This substitution
merely replaces $ϕ by x:

($ϕ ∧ ¬$ϕ)[$ϕ := x] equals (x ∧ ¬x).

Bound variables are renamed so that the occurrences of x introduced by [$ϕ := x]
are free:

(∀x · $ϕ)[$ϕ := x] equals (∀y · x).

Now consider the substitution [$ϕ($y) := ($y = 0)]. Intuitively, it maps the
operator variable $ϕ to the function mapping $y to $y = 0; for example,

$ϕ(1)[$ϕ($y) := ($y = 0)] equals 1 = 0.

The argument $y of $ϕ may also match a bound variable:

(∀x · $ϕ(x))[$ϕ($y) := ($y = 0)] equals (∀x · x = 0).

Again, bound variables are renamed such that occurrences of ordinary variables
introduced by operator substitutions become free:

(∀x · $ϕ(x))[$ϕ($y) := ($y = x)] equals (∀y · y = x).

The following de�nition speci�es the result of applying operator substitutions to
terms:

De�nition 2.8. Let σ be the operator substitution

[$f1($x
1) := u1, . . . , $fn($xn) := un].

Then the result of applying σ to a term is de�ned recursively as follows:

1. xσ = x,

2. f(t)σ = f(tσ),

38

2.2. Semantics

3. $g(t)σ = $g(tσ), provided $g di�ers from $fi, for 1 ≤ i ≤ n,

4. $fi(t)σ = ui[$x
i
1 := t1σ, . . . , $x

i
|$xi| := t|t|σ], for 1 ≤ i ≤ n,

5. (Qy · t)σ = Qy · tσ, provided no element of y occurs free in u1, . . . , un.

Here, tσ abbreviates t1σ, . . . , t|t|σ. The proviso of 5 is achieved by suitably renaming
bound variables.

The denotation JσK of the operator substitution σ in De�nition 2.6 is

[$f1 := λ$x1. Ju1K, . . . , $fn := λ$xn. JunK].

With this de�nition of denotation, operator substitutions ful�ll a duality property
analog to Lemma 2.5:

Lemma 2.9. If t is a term and σ an operator substitution, then JtσK = JtKJσK is
valid.

Proof. First, note that it is straightforward to prove the assertion of the lemma for
operator substitutions of the form [$x1 := u1, . . . , $xn := un].
For the general case, suppose the operator substitution σ is of the form

[$f1($x
1) := u1, . . . , $fn($xn) := un].

It remains to show Jt′σK = Jt′KJσK by structural induction over t′.
If t′ is an ordinary variable, or takes the form f(t) or $g(t), where $g di�ers from

$fi, for 1 ≤ i ≤ n, the proof is straightforward and therefore omitted. If t′ is of the
form $fi(t), with 1 ≤ i ≤ n, the proof proceeds as follows:

J$fi(t)σK = Jui[$xi1 := t1σ, . . . , $x
i
|$xi| := t|t|σ]K

= JuiK[$xi1 := Jt1σK, . . . , $xi|$xi| := Jt|t|σK]

= JuiK[$xi1 := Jt1KJσK, . . . , $xi|$xi| := Jt|t|KJσK]

= (λ$xi. JuiK) (JtKJσK)
= ($fi JtK)JσK
= J$fi(t)KJσK.

The step from the �rst to the second line is justi�ed by the independent proof of the
case that the operator variables involved in the substitution have empty argument
types.
If t′ is of the form Qy · t, the proof proceeds as follows:

J(Qy · t)σK = JQy · tσK

= JQK (λy. Jt1σK) . . . (λy. Jt|t|σK)

= JQK (λy. Jt1KJσK) . . . (λy. Jt|t|KJσK)

= (JQK (λy. Jt1K) . . . (λy. Jt|t|K))JσK

= JQy · tKJσK.

39

2. Event-B's Logic

The equality of the third and fourth line rests on the assumption in the de�nition of
operator substitutions that no element of y occurs free in u1, . . . , un.

2.2.7.3. Ordinary Substitutions

It is hard to de�ne ordinary substitutions, i.e., substitutions replacing ordinary vari-
ables by terms, in such a way that a duality property analog to Lemma 2.5 or 2.9
holds. The problem is most easily demonstrated by an example. Suppose the ordi-
nary substitution σ is de�ned such that xσ is •. Then JxσK is •, but there is no way of
de�ning JσK such that JxKJσK equals •, because JxK is x↑. There are two ways out: (1)
exclude substitutions that substitute ill-de�ned terms for ordinary variables, or (2)
show some weaker version of Lemma 2.5 or 2.9. As the only application of ordinary
substitutions in this document is to change the names of ordinary variables, I take
option (1) by restricting the right-hand sides of ordinary substitutions to ordinary
variables.
An ordinary substitution [x := y] consists of two ordinary variables x, y of the

same type. The result of applying [x := y] to a term is obtained in two phases.
First, consistently rename bound variables such that they di�er from y. Second,
replace all free occurrences of x by y. A detailed de�nition can be found, e.g., in
Hindley and Seldin [2008]. After de�ning J[x ◦◦ ν := y ◦◦ ν]K as [x :: JνK := y :: JνK], it
is straightforward to show:

Lemma 2.10. If t is a term and σ an ordinary substitution, then JtσK = JtKJσK is
valid.

2.3. Proofs

After de�ning syntax and semantics, it remains to introduce a notion of proof for
Event-B's logic. Since Rodin's signature and proof calculus are constantly changing,
de�ning one �xed proof calculus for one �xed signature lacks the required �exibility.
Instead, I go a step further and develop a formal language for expressing a wide
variety of proof calculi. These are the main requirements:

• Flexibility: the language should cover a considerable fragment of the rules
available in Rodin. Challenges include how to express non-freeness conditions
in rules involving binders and how to cope with term rewriting.

• Convenience: Rodin users should be able to use it to specify proof rules conve-
niently. This requirement rules out programming languages like Java or ML.

In this section, types and terms are all drawn from the same signature, desig-
nated as Σ. The denotations of types and terms are speci�ed by an arbitrary but
�xed structure M over Σ. Occasionally, I make use of symbols from Σ0 (introduced
in Section 2.1.2) assuming that their denotations are given by EB0 (introduced in
Section 2.2.6).

40

2.3. Proofs

semantics unsound rule

WW
χ ` ψ

χ,¬ψ ` ⊥
notE

SS
χ, ϕ ` ⊥
χ ` ¬ϕ

notI

semantics unsound rule

WS
χ, ϕ ` ϕ

hyp

SW
χ ` ψ χ, ψ ` ϕ

χ ` ϕ
cut

Figure 2.2.: Unsound inference rules for the various sequent semantics

2.3.1. Sequents

Following Event-B's tradition [Abrial, 2010], I organize proofs in terms of hypo-
thetical statements, called sequents, which of course go back to Gentzen [1935] and
Prawitz [2006]. A sequent ψ ` ϕ consists of a �nite set {ψ} of formulae, called hy-
potheses, and a single formula ϕ, called goal. A proof obligation is a sequent that
is used to express a desired property of an Event-B model. I write (ψ ` ϕ)σ for
ψσ ` ϕσ.
I consider several ways of de�ning denotations of sequents, all of the form

Jψ1, . . . , ψn ` ϕK = (H Jψ1K ∧ · · · ∧ H JψnK −→ G JϕK),

where the functions H and G range over T and WT. I distinguish WW-, WS-, SW-,
and SS-semantics, where the �rst letter indicates the choice of H and the second
the choice of G; the letter S (�strong�) represents the choice T, and the letter W
(�weak�) represents the choice WT. A sequent is WW-, WS-, SW-, or SS-valid i�
its denotation is valid according to WW-, WS-, SW-, or SS-semantics, respectively.
The choice of sequent semantics is not straightforward. The various sequent se-

mantics are usually evaluated [Mehta, 2008, Owe, 1993] by constructing proof calculi
for them and arguing that one of them is most �natural�. Of course, the perception
of �what is natural� varies from person to person.
Figure 2.2 illustrates this point. It gives for each of the four semantics an inference

rule that is unsound with respect to exactly that semantics. As I will specify be-
low, an inference rule is sound i� validity of the antecedents (the sequents above the
horizontal line) implies validity of the consequent (the sequent below the horizontal
line). Soundness of the rules in Figure 2.2 can be recovered by adding the antecedent
χ ` D(ϕ) or χ ` D(ψ), but it may be unpleasing to discharge these additional an-
tecedents during proofs.
It is therefore not surprising that di�erent logics are based on di�erent seman-

tics: Owe [1993] carries out an extensive comparison of proof calculi; he favors
WS-semantics. Mehta [2008] constructs a proof calculus for SW-semantics and con-
vincingly argues that this proof calculus is natural. To my best knowledge, Mehta's
work constitutes the main reason why Event-B is based on SW-semantics. PVS

41

2. Event-B's Logic

[Owre and Shankar, 1999] is also based on SW-semantics. LPF [Barringer et al.,
1984] is based on SS-semantics.
I believe that the �best� semantics cannot be determined once and for all, as the

underlying quality measure depends too much on individual perception. As a novel
argument in favor of SW-semantics, I will point out that directed rewriting (to be
introduced in Section 2.3.2.3) requires SW-semantics, and that term rewriting in
Rodin greatly bene�ts from directed rewriting (Section 4.1).
In this document, I adopt the convention that sequents are interpreted in SW-

semantics unless indicated otherwise. In particular, the statement Γ is valid means
that Γ is SW-valid.

2.3.2. Rules of Proofs

The subject of this section is to introduce the various kinds of rules that constitute
a proof calculus.

2.3.2.1. Inference Rules

An inference rule is written
Γ

Γ0
r (x fresh) (2.1)

and consists of an optional name r, a sequence Γ of sequents, called the antecedents,
a single sequent Γ0, called the consequent, and an optional freshness condition x.
The variables in x are pairwise distinct.
The above inference rule r denotes

(∀x :: JνK.JΓ1K ∧ · · · ∧ JΓ|Γ|K) −→ JΓ0K,

where ν is the type of x. A rule is sound i� its denotation is valid. The rule
r informally states: �If the elements of Γ are true under the assumption that the
elements of x are arbitrary but �xed, then Γ0 is true.�
Roughly speaking, in a backwards proof a sequent ∆ is proved by �rst choosing

a rule with ∆ as consequent and then proving the antecedents of the rule. This is
repeated until no sequents remain to be proved. This attempt of a de�nition of proof
bears a problem: if the only available rule is

` $x = $x
,

one may prove `$x = $x, but one may not prove ` 1 = 1 or > ` $x = $x.
To resolve this pathological situation, I develop a more sophisticated notion of

proof, which has to some extent been inspired by logical frameworks [Basin and
Matthews, 2002] and the foundations of Isabelle [Paulson, 1989]. I distinguish the
set rules of rules that the user speci�es from the set rules′ of derived rules that may
actually be used in proofs. Formally, rules′ is the smallest superset of rules that

42

2.3. Proofs

is closed under the derivation methods introduced in the remainder of the current
section, namely lifting, instantiation, conversion, and (weak) congruence. The set of
sequents provable from rules is the smallest set such that, if all antecedents of a rule
in rules′ are provable, then so is the consequent.
For inference rules, I de�ne the derivation methods of lifting and instantiation.

Note that the freshness condition x has the e�ect that a derivation method does not
introduce additional free occurrences of x.

De�nition 2.11 (Lifting). Let r be the rule

ψ
1
` ϕ1 . . . ψ

n
` ϕn

ψ
0
` ϕ0

r (x fresh)

and χ a sequence of formulae such that the variables in x do not occur free in any
element of χ. Then the result of lifting r over χ is

χ,ψ
1
` ϕ1 . . . χ,ψ

n
` ϕn

χ,ψ
0
` ϕ0

(x fresh).

De�nition 2.12 (Instantiation). Let r be the rule

Γ

Γ0
r (x fresh)

and σ a substitution. If σ is a type or ordinary substitution, suppose that

1. the elements of xσ are pairwise distinct and

2. if z occurs free in Γ and zσ occurs in xσ, then z occurs in x.

If σ is an operator substitution, suppose that no variable in x occurs free in a right-
hand side of σ. Then, the result of instantiating r with σ is

Γσ

Γ0σ
(xσ fresh).

To justify the above derivation methods, I show that they preserve soundness.

Lemma 2.13. The result of lifting or instantiating a sound inference rule is sound.

Proof. For lifting, suppose that the inference rule

ψ
1
` ϕ1 . . . ψ

n
` ϕn

ψ
0
` ϕ0

r (x fresh) (2.2)

43

2. Event-B's Logic

is sound. I show, without loss of generality, that the result of lifting r over one
formula is sound. Let χ be a formula such that the variables in x do not occur free
in χ. Recall that the denotation of r is of the form

(∀x. Γ1 ∧ · · · ∧ Γn) −→ Γ0. (2.3)

As r is sound, its denotation is valid, and hence

(T JχK −→ (∀x. Γ1 ∧ · · · ∧ Γn)) −→ T JχK −→ Γ0

is valid as well. As no variable in x is free in χ, no variable in x is free in T JχK, and
therefore

(∀x. (T JχK −→ Γ1) ∧ · · · ∧ (T JχK −→ Γn)) −→ T JχK −→ Γ0 (2.4)

is valid. Now observe that (2.4) is equivalent to the denotation of the result of lifting
r over χ, which is therefore sound.
For instantiation, again suppose that r in (2.2) is sound. The denotation of r is of

the form
(∀x. Γ) −→ Γ0.

Given a substitution σ meeting the side-conditions of instantiation,

(∀x. Γ)JσK −→ (Γ0JσK) (2.5)

is valid, because validity is closed under substitution. Moreover, by Lemmas 2.5, 2.9,
and 2.10, the result of instantiating r with σ denotes

(∀xJσK. ΓJσK) −→ (Γ0JσK). (2.6)

Using the side-conditions of instantiation, it can be shown by structural induction
over Γ that (∀x. Γ)JσK is equivalent to ∀xJσK. ΓJσK. Therefore, validity of (2.5)
implies validity of (2.6).

2.3.2.2. Symmetric Rewrite Rules

A symmetric rewrite rule consists of an optional name r, a condition ϕ ◦◦ B, a left-
hand side t ◦◦ ν, and a right-hand side u ◦◦ ν, and is written

ϕ ◦◦ B
t ◦◦ ν ≡ u ◦◦ ν

r. (2.7)

An unconditional symmetric rewrite rule has the condition > and is written t ◦◦ ν ≡
u ◦◦ ν4. The rule in (2.7) is sound i� WT JϕK −→ JtK = JuK is valid. The choice to
4If the constant > is not available or has a non-standard denotation, this de�nition does not make
sense. To cope with such situations, one could treat unconditional symmetric rewrite rules as
a separate kind of rule with its own derivation methods. Since the details are lengthy and
uninteresting, I do not take this approach.

44

2.3. Proofs

interpret ϕ as WT JϕK instead of T JϕK is somewhat arbitrary and mostly in�uenced
by the rules I have seen. Note that T JϕK can always be encoded as WT JD(ϕ)∧ϕK.
Intuitively, the symmetric rewrite rule in (2.7) may be used to replace tσ by uσ

during a proof, provided ϕσ is weakly true. This is formalized by the following
derivation methods:

De�nition 2.14 (Conversion). Converting

χ

ψ1 ≡ ψ2

into inference rules yields

` χ ` ψ2

` ψ1
and

` χ ψ2 ` ϕ

ψ1 ` ϕ
.

De�nition 2.15 (Instantiation). Let

ϕ

t ≡ u
r

be a symmetric rewrite rule and σ a substitution. The result of instantiating r with
σ is

ϕσ

tσ ≡ uσ
.

De�nition 2.16 (Congruence). Let

ϕ

t1 ≡ t2

be a symmetric rewrite rule. Applying the congruence method yields

ϕ

f(u, t1,u
′) ≡ f(u, t2,u

′)
,

ϕ

$f(u, t1,u
′) ≡ $f(u, t2,u

′)
,

∀x · ϕ
Qx · u, t1,u′ ≡ Qx · u, t2,u′

.

The congruence method only makes sense if the universal quanti�er is available and
has suitable semantics. It is possible to describe symmetric rewriting for signatures
without the universal quanti�er, but at the cost of a more complicated presentation.
Again, the above derivation methods preserve soundness.

45

2. Event-B's Logic

Lemma 2.17. If a symmetric rewrite rule is sound, then so are the results of con-
version, instantiation, and congruence.

Proof. The case of conversion is a consequence of the various de�nitions of soundness.
The case of instantiation immediately follows from the fact that validity in higher-
order logic is closed under substitutions and from Lemmas 2.5, 2.9, and 2.10.
For the case of congruence, assume that

ϕ

t ≡ u
(2.8)

is sound. I only prove validity of

∀x · ϕ
Qx · u, t1, u′ ≡ Qx · u, t2, u′

. (2.9)

The other validity proofs are similar and simpler. From the soundness of (2.8), I
conclude that

∀x. WT JϕK −→ Jt1K = Jt2K (2.10)

is true. To prove validity of (2.9), we assume that ∀x. WT JϕK is true. With (2.10)
that leads to the conclusion

∀x. Jt1K = Jt2K,

which implies
JQx · u, t1, u′K = JQx · u, t2, u′K.

2.3.2.3. Directed Rewrite Rules

Surprisingly, symmetric rewriting does not explain soundness of term rewriting in
Rodin, because in Rodin it is possible to rewrite terms to terms that are not equiva-
lent. So Rodin implements several rewrite rules that are unsound if they are viewed
as symmetric rewrite rules. Examples include

$x = $x ≡ >, (2.11)

$x ∈ $R ∩ $S ≡ $x ∈ $R ∧ $x ∈ $S, (2.12)

$x ∈ ∅ ≡ ⊥, (2.13)

0 ∈ {x | $ϕ(x)} ≡ $ϕ(0), (2.14)

$x mod $x ≡ 0. (2.15)

The unsoundness of (2.11�2.14) stems from the special status of ill-de�nedness: (2.11)
is unsound because equality is strict and therefore not re�exive, (2.12) because in-
tersection is strict and conjunction is lazy, (2.13) because membership is strict, and
(2.14) because set comprehension is smashed. The last rule (2.15) is unsound because
it lacks a check that $x is greater than zero.

46

2.3. Proofs

The fact that the above rules (2.11�2.15) are unsound does not imply that term
rewriting in Rodin is unsound. It merely indicates that symmetric rewriting is an
inappropriate explanation. To explain why term rewriting in Rodin is sound, I
introduce the notion of directed rewriting.
A directed rewrite rule consists of an optional name r, a condition ϕ ◦◦ B, a left-hand

side t ◦◦ ν, and a right-hand side u ◦◦ ν, and is written

ϕ ◦◦ B
t ◦◦ ν v u ◦◦ ν

r. (2.16)

An unconditional directed rewrite rule has the condition > and is written t ◦◦ ν v
u ◦◦ ν. The rule in (2.16) is sound i� WT JϕK −→ JtK v JuK is valid.
Conversion and instantiation for directed rewriting are similar as for symmetric

rewriting:

De�nition 2.18 (Conversion). Converting

χ

ψ1 v ψ2

to inference rules yields

` χ ` ψ2

` ψ1
and

` χ ψ2 ` ϕ

ψ1 ` ϕ
.

De�nition 2.19 (Instantiation). Let

ϕ

t v u
r

be a symmetric rewrite rule and σ a substitution. The result of instantiating r with
σ is

ϕσ

tσ v uσ
.

The main di�erence lies in the congruence method:

De�nition 2.20 (Weak Congruence). Let

ϕ

t1 v t2

47

2. Event-B's Logic

be a symmetric rewrite rule and assume that f and Q are monotonic. Applying the
congruence method yields

ϕ

f(u, t1,u
′) v f(u, t2,u

′)
,

∀x · ϕ
Qx · u, t1,u′ v Qx · u, t2,u′

.

The main restriction of directed rewriting is that only the arguments of monotonic
operators and binders may be rewritten. In the context of Rodin this is no restriction
at all, because all operators and binders available in Rodin are monotonic, and
operator variables are not supported.
The derivation methods for directed rewrite rules preserve soundness. The proof

is similar to the proof for symmetric rewriting. The case of conversion relies on the
fact that sequents have SW-semantics; in fact, SW-semantics is the only one of the
four considered semantics under which conversion preserves soundness.

Lemma 2.21. If a directed rewrite rule is sound, then so are the results of conver-
sion, instantiation, and congruence.

There is more to be said about directed rewriting. In Section 4.1, I analyze the
practical impact of directed rewriting as a proof strategy. In Section 4.2, I describe
the e�ect of various design decisions, including monotonicity and SW-semantics, on
Event-B's logic.

2.3.2.4. Expressiveness and Limitations

It is possible to conveniently formalize a wide variety of rules as inference rules, and
symmetric and directed rewrite rules. In Chapter 3, I will give numerous examples.
At this point, I comment on the kinds of rules that are available in Rodin but
cannot be formalized or are di�cult to formalize with the machinery developed in
the preceding sections.

Associative-Commutative Operators. For simplicity, the congruence and instan-
tiation methods do not take associativity or commutativity into account. It is thus
impossible to formalize rewrite rules like

$ϕ1 ∧ · · · ∧ $ϕn⇒ $ϕi v > (1 ≤ i ≤ n).

It would however not be di�cult to extend my formalism to cover rules involving
associative-commutative operators.

48

2.3. Proofs

Binders Binding an Arbitrary Number of Variables. There is currently no way of
expressing

D($y)

∀x1 · . . . ∀xn · xi = $y⇒ $ϕ(xi) v $ϕ($y)
(1 ≤ i ≤ n)

because of the arbitrary number of variables bound by the universal quanti�er. Such
rules still need to be encoded in the underlying programming language.

Type Expressions. The informal descriptions of some rules implemented by Rodin
have constraints like �$R is a type expression�. As an example, consider

$x ∈ $R v > ($R is a type expression). (2.17)

This side-condition has the e�ect that $R is matched against terms denoting the
lifted universe UNIV↑, where UNIV is de�ned by UNIV = {x. True}. Of course, the
question whether a term denotes the universe is undecidable; therefore $R is matched
against so-called �type expressions�, i.e., terms that are built from a restricted set of
constants and are therefore known to denote the lifted universe. Type expressions
include terms built from Z and P.
Even though the notion of type expression is not available, a fairly similar e�ect can

be achieved with the machinery developed so far, provided the constant UNIV ◦◦ P(α)
(denoting UNIV↑) is available. For example, the rule (2.17) is represented as

$x ∈ UNIV v >.

This rule already matches terms of the form t ∈ UNIV, but it does not match terms
of the form t ∈ Z or t ∈ P(UNIV). To cope with such terms, introduce the rules

Z ≡ UNIV,

P(UNIV) ≡ UNIV.

Enumerated Sets and Numerals. It is di�cult to formalize rules involving enu-
merated sets like the following:

$x ∈ {$y1, . . . , $yn} v $x = $y1 ∨ · · · ∨ $x = $yn. (2.18)

The di�culty stems from the fact that the enumerated set operator takes an arbitrary
number of arguments.
In HOL, this problem is avoided by a clever representation of enumerated sets.

HOL provides an operator insert :: α⇒ α set⇒ α set such that

insert x R = {y. y = x ∨ y ∈ R}.

The enumerated set {t1, . . . , tn} is internally represented by

insert t1 (. . . (insert tn ∅) . . .).

49

2. Event-B's Logic

A rule analog to (2.18) is represented by

(x ∈ insert y R) = (x = y ∨ x ∈ R).

In Event-B, it is also di�cult to formalize rules involving numerals, such as 0, 1,
2, because numerals are implemented as primitive constants. Consider for example
the rule

i+ j ≡ �the numeral equal to i+ j� (i, j are numerals).

Similarly as for enumerated sets, a rule corresponding to the above can be expressed
in HOL (without reverting to ML tactics) thanks to a clever representation of numer-
als. The details can be found in [Cohen and Watson, 1991] and in the HOL theory
sources, in particular the sources of Int.
My conclusion is that there are limitations when expressing rules involving enu-

merated sets and numerals. To overcome these limitations, I would choose more
appropriate representations.

2.3.3. Theories

A theory THY = (Σ, rules) consists of a signature Σ and a set of rules rules over Σ.
A sequent over Σ is provable in THY i� it is provable from rules. The theory THY
is consistent i� some sequent over Σ is unprovable in THY. A structure M over Σ is
a model of THY, written as M |= THY, i� all rules in rules are sound with respect
to M.

Proposition 2.22 (Soundness). If M is a model of the theory THY, then every
sequent provable in THY is valid with respect to M.

Proof. Suppose M is a model of the theory THY = (Σ, rules). By the de�nition of
model and Lemmas 2.13, 2.17, and 2.21, all rules in rules′ are sound with respect
to M.
I prove by induction that every sequent provable in THY is valid with respect to M.

Let
Γ

Γ0
r (x fresh)

be an inference rule from rules′. By the induction hypothesis, all antecedents Γ of r
are valid. Hence, ∀x. JΓ1K ∧ · · · ∧ JΓ|Γ|K is valid, too. It remains to show that the
consequent Γ0 of r is valid, which follows with the fact that r is sound.

Extending Theories. Extending a theory essentially means to introduce new sym-
bols and rules. Formally, a theory (Σ′, rules′) extends a theory (Σ, rules) i� Σ′ extends
Σ and rules is a subset of rules′.

50

2.4. Comparison to Rodin's Implementation

Merging Theories. Merging two theories THY1 and THY2 informally means to
build a theory that contains the symbols and rules of THY1 and THY2. Formally, two
signatures Σ1 and Σ2 are compatible i� symbols available in both Σ1 and Σ2 have the
same kind (i.e., type operator, operator, or binder) and are assigned the same arities,
bound variable, argument, and result types. Merging two compatible signatures Σ1

and Σ2 results in the signature Σ1 ∪ Σ2 that contains exactly the symbols in Σ1

and Σ2 and is compatible with Σ1 and Σ2. Two theories are compatible i� the
underlying signatures are. The result of merging two theories THY1 and THY2 is
written THY1∪THY2 and obtained by merging the underlying signatures and taking
the union of the underlying rule sets.

2.4. Comparison to Rodin's Implementation

My preceding elaboration of Event-B's logic extends in several ways the version of
Event-B supported by Rodin. Rodin gives the booleans the status of a separate
syntactic category; I revoke this special status of the booleans and treat them in the
same way as any other type. I introduce operator variables and de�ne symmetric
rewriting, which do not have counterparts in Rodin. In the following, I shall explain
my motivations for these extensions.

Boolean Type. In more traditional texts such as by Abrial [2010], and Metayer and
Voisin [2009], the logic of Event-B is presented like a �rst-order logic with separate
syntactic categories of �expressions� and �predicates�. Intuitively, expressions stand
for terms and predicates for formulae. Some operators (including membership ∈) take
only expressions as arguments; others (including conjunction ∧) take only predicates.
In particular, Rodin considers sets of predicates such as {>} as syntactically ill-
formed.
At some point, it has been recognized that this way of treating predicates is too

restrictive for some applications. Therefore, expressions of boolean type5 were in-
troduced, including the expressions TRUE and FALSE. The singleton set containing
the boolean value �true� could henceforth be expressed as {TRUE}. To enable the
conversion from predicates to boolean expressions, the operator bool was introduced,
which takes a predicate and yields the corresponding boolean expression: bool(>) is
equivalent to TRUE and bool(⊥) equivalent to FALSE. A conversion from boolean
expressions to predicates is also available: a boolean expression t corresponds to
the predicate t = TRUE. Thanks to these conversions, Rodin's distinction between
expressions and predicates has become meaningless.

Operator Variables. Earlier Rodin versions only supported a �xed set of rules,
which were (and still are) hard-coded in Java. There was no need for operator
variables, because rules were described in Java and their soundness was proved on
paper or in the head of the developer. More recent Rodin versions allow the user to

5I thank Laurent Voisin for explaining the history of boolean expressions to me.

51

2. Event-B's Logic

specify new rules and reason about their soundness [Maamria and Butler, 2010]; yet,
Rodin does not support operator variables, which leads to several problems.
Obviously, rules with operator variables of non-empty argument type such as

D($y)

∀x · x = $y⇒ $ϕ(x) v $ϕ($y)

are hard to express without operator variables. Consequently, Rodin does not permit
the user to specify such rules.
But even when the operator variables in a rule have empty argument types, the

missing support for operator variables causes problems. I will illustrate this point
with the example of directed rewriting; similar problems arise with specifying and
reasoning about inference rules.
In Rodin, operators with empty argument types are usually replaced by ordinary

variables. For example, the (sound) rule

$x = $x v > (2.19)

is represented by
x = x v >. (2.20)

Rodin generates the soundness proof obligation D(x = x) ` D(>) ∧ (x = x) = >,
which happens to be valid. The general proceeding is: (1) replace operator variables
by ordinary variables, (2) generate the soundness proof obligation by noting that
t v u is sound i� D(t) ` D(u) ∧ t = u is valid.
The problem with this proceeding is that validity of the soundness proof obligation

does in general not imply soundness of the original rule. As an example, consider
the unsound rule

⊥ ∧ $x = $x v ¬($x = $x) (2.21)

with the valid soundness proof obligation

D(⊥ ∧ x = x) ` D(¬(x = x)) ∧ (⊥ ∧ x = x) = (¬(x = x)).

When the �rst versions of Rodin's extensible term rewriter were developed, this
problem was unknown, and users could therefore inadvertently introduce unsound
rules like (2.21). In later versions, the problem was solved by imposing several
syntactic restrictions on rules [Maamria and Butler, 2010]; in particular, directed
rewrite rules with lazy operators or non-smashed binders (such as ∧,∨,⇒,∀, ∃) on
the left-hand side are no longer supported.
On the one hand, Rodin's missing support for operator variables has led to a com-

plicated design (operator variables are �simulated� by ordinary variables), soundness
bugs, and undesirable restrictions (restricted support for lazy operators and non-
smashed binders). On the other hand, I admit that it would be a major undertaking
to implement support for reasoning about operator variables in Rodin. I therefore
pursue the following approach: Within this document, I assume that operator vari-
ables are available, because it leads to a simpler presentation. To make my results

52

2.4. Comparison to Rodin's Implementation

applicable to Rodin (without a major reengineering), I point out how to translate
proof obligations with operator variables to equivalent proof obligations without
(cf. Section 3.2.4).

Symmetric Rewriting. Rodin does not support symmetric rewrite rules: a sym-
metric rewrite rule is viewed as the corresponding directed rewrite rule. Symmetric
and directed rewriting behave di�erently if and only if non-monotonic symbols (op-
erators, binders, or operator variables) are available. As long as Rodin only supports
monotonic symbols, there is no need to implement symmetric rewriting.

53

3. Event-B's Theories

The main purpose of this chapter is to provide a comprehensive overview of the
symbols (i.e., type operators, operators, and binders) available in Rodin and give
them a semantics. This involves de�ning a signature and a structure, which I refer
to as the standard signature and standard structure for the moment. A challenge is
to provide convincing arguments that the standard structure is �right�, in the sense
that it should be used to validate Rodin's theorem provers. As there is no written
agreement about requirements on Event-B's logic, the reader has to decide himself
whether this is the case. To help the reader form his opinion, I provide the following
information:

• I develop a theory of which the standard structure is a model. The rules of this
theory illustrate important semantic properties to readers not familiar with
HOL.

• I compare my semantics with the semantics underlying other texts about Event-
B's logic, namely the texts by Mehta [2008], Metayer and Voisin [2009], and
Abrial [2010]. See Section 3.4.

In a �rst step, I de�ne a theory Core with a corresponding standard model covering
a fraction of the symbols available in Rodin (Section 3.1). Next, I develop methods
for extending theories with new operators, binders, and rules (Section 3.2); these
methods are de�nitional, which informally means that the extended theory does not
assert new axioms. In Section 3.2.4, I point out how to implement these theory
extension methods in a setting without operator variables, which is helpful for their
implementation in Rodin. Finally (Section 3.3), I construct Event-B's main theory
EventB as a de�nitional extension of Core; EventB covers all symbols available in
Rodin and possesses a model that de�nitionally extends the standard model of Core.
Figure 3.1 gives an outline of Event-B's theories.
Some readers may consider it as excessive to �rst de�ne de�nitional theory ex-

tension methods and then use them to construct EventB. Instead, one could have
de�ned a model for EventB directly in HOL. The work on de�nitional extensions has
been motivated by the recent implementation of theory extension methods in Rodin
[Butler and Maamria, 2010]. Although these extension methods are intended to be
de�nitional, at time of writing this goal has not been achieved yet [Schmalz, 2012];
an important reason for this is a poor understanding of the underlying logic. With
my work, I point out how the semantics of Section 2.2 can be used to prove that a
representative set of theory extension methods are de�nitional.
To improve the presentation, I take the liberty to introduce operators and binders

that are not available in Rodin. The �rst occurrences of such symbols are marked

55

3. Event-B's Theories

Min

Log0

Log

Set0

Int0 Choice Set Prod

Rel

Int

Bool

EventB

The theory Core � missing in the diagram to simplify the layout � results from merging
Int0, Choice, and Prod. Arrows indicate theory extensions. Dashed arrows indicate
de�nitional extensions; theories with several incoming dashed arrows, such as Rel,
de�nitionally extend the result of merging the theories from which the incoming
arrows originate, e.g., Rel de�nitionally extends Choice ∪ Set ∪ Prod.

Figure 3.1.: Event-B's theories

56

3.1. The Theory Core

with the superscript †. The models of the theories developed in this chapter are
available at [Schmalz].

3.1. The Theory Core

During the development of the theory Core, it quickly became clear that there is a
tradeo� between the number of provided symbols and the simplicity of the corre-
sponding rules. The main purpose of the following proof calculus is to communicate
the main properties of the underlying structure to readers not familiar with HOL. I
have therefore sacri�ced minimality for the bene�t of clarity. In particular, I have de-
cided against deriving the integers from an abstract axiom of in�nity [as in Andrews,
2002], because I doubt that such an approach would help to clarify the semantics of
Event-B's integers. As a result of these considerations, Core covers �rst-order logic,
sets, the axiom of choice, Cartesian products, and the integers.

3.1.1. The Theory Min

The theory Min introduces rules that illustrate essential properties of sequents and
well-de�nedness. Its signature contains the boolean type B, the ill-de�nedness con-
stant •† ◦◦ α, and the well-de�nedness operator D† ◦◦ α ⇀ B. The rules of Min are
presented in two blocks; the �rst block is as follows:

$ϕ ` $ϕ
hyp

` $ϕ

$ψ ` $ϕ
mon

` D($χ) ` $χ $χ ` $ϕ

` $ϕ
cut

$χ,D($χ) ` $ϕ

$χ ` $ϕ
DL

D($ϕ) ` $ϕ

` $ϕ
DR

Note that the cut rule di�ers from the version of Abrial [2010] by the antecedent
`D($χ). Removing this antecedent from cut would actually make the rule unsound
with respect to the semantics developed below. This indicates that Abrial had dif-
ferent semantics in mind than the Rodin developers.
The rules in the second block indicate that well-de�nedness conditions D(t) and

ordinary variables are well-de�ned, and • is ill-de�ned.

` D(D($x))
DD

` D(x)
D_var

D(•) ` $ϕ
D_ild

57

3. Event-B's Theories

The Standard Model. The standard structure (EB_Min, J·K) over the signature of
Min de�nes the denotation of • as • and the denotation of D by JDK(x) = (WD x)↑.
The theory EB_Min is a de�nitional extension of EB_Prelims; I omit further details
on EB_Min because they are irrelevant for understanding which sequents are valid
with respect to (EB_Min, J·K). Using Isabelle, I have proved that the rules of Min
are sound with respect to the underlying standard structure.

Proposition 3.1. The structure (EB_Min, J·K) constitutes a model of Min.

3.1.2. The Theory Log0

The theory Log0 extends Min by introducing basic concepts of �rst-order logic with
equality. The additional operators and binders of Log0 are

• = ◦◦ (α, α) ⇀ B (equality),

• ∧ ◦◦ (B,B) ⇀ B (conjunction),

• cond† ◦◦ (B, α, α) ⇀ α (conditional),

• ∀ ◦◦ (α ⇀ B) ⇀ B (universal quanti�er).

The conditional is not accessible through Rodin's concrete syntax, but it has an inter-
nal representation. I usually write if ϕ then t else u for conditional terms cond(ϕ, t, u).
The formula ∀x · ϕ abbreviates ∀x1 · . . . ∀x|x| · ϕ.
The theory Log0 adds the following rules to Min:

D($x = $y) ≡ D($x) ∧ D($y) eqD

` $x = $x
refl

$x = $y ` $ϕ($y)

$x = $y ` $ϕ($x)
subst

D($x) = D(•)
$x ≡ •

ild_unique
$ϕ ` $ψ $ψ ` $ϕ

` $ϕ = $ψ
bool_extn

$ψ1, $ψ2 ` $ϕ

$ψ1 ∧ $ψ2 ` $ϕ
conjL

` $ϕ1 ` $ϕ2

` $ϕ1 ∧ $ϕ2
conjR

D(if $ϕ then $x else $y) ≡ D($ϕ) ∧ (if $ϕ then D($x) else D($y)) condD

` D($y) ∀x · $ψ(x), $ψ($y) ` $ϕ

∀x · $ψ(x) ` $ϕ
allL

` $ϕ(x)

` ∀x · $ϕ(x)
allR (x fresh)

58

3.1. The Theory Core

The above rules neither allow one to prove interesting sequents involving condition-
als nor do they reveal the domains of conjunction and the universal quanti�er. I
introduce suitable rules with the theory Log below, because these rules can be stated
more conveniently after introducing additional operators.

The Standard Model. The standard structure (EB_Log0, J·K) over the signature of
Log0 de�nitionally extends the standard model of Min, and de�nes the denotations
of additional operators and binders as follows. Equality denotes the strict extension
of HOL's equality. The denotations of conjunction and conditional are de�ned by

J∧K ϕ ψ =

True↑ (T ϕ ∧ T ψ)

False↑ (F ϕ ∨ F ψ)

• (otherwise),

JcondK ϕ x y =

x (T ϕ)

y (F ϕ)

• (¬(WD ϕ)).

The universal quanti�er denotes

J∀x · ϕK =

True↑ (∀x. T JϕK)

False↑ (∃x. F JϕK)

• (otherwise).

I have used Isabelle to prove that the rules of Log0 are sound with respect to the
underlying standard structure.

Proposition 3.2. The structure (EB_Log0, J·K) constitutes a model of Log0.

3.1.3. The Theory Log

The theory Log extends Log0 with more �rst-order logic symbols; these symbols are
of a derived nature. I include them in the theory Core because they allow for more
readable formulations of some rules, and they are useful for developing de�nitional
extension methods in Section 3.2.
The theory Log provides the following symbols:

• > ◦◦ B (truth), ⊥ ◦◦ B (falsity),

• ¬ ◦◦ B ⇀ B (negation), 6= ◦◦ (α, α) ⇀ B (inequality),

• ∨ ◦◦ (B,B) ⇀ B (disjunction), ⇒ ◦◦ (B,B) ⇀ B (implication),

• ⇔ ◦◦ (B,B) ⇀ B (equivalence),

• ∃ ◦◦ (α ⇀ B) ⇀ B (existential quanti�er),

• ≡eb
† ◦◦ (α, α) ⇀ B (strong equality), veb

† ◦◦ (α, α) ⇀ B (�at order),

• Teb
† ◦◦ B ⇀ B (truth operator), WTeb

† ◦◦ B ⇀ B (weak truth operator).

59

3. Event-B's Theories

The formula ∃x · ϕ abbreviates ∃x1 · . . . ∃x|x| · ϕ.
The theory Log adds several rules to Log0, which are presented in six blocks. The

rules in the �rst block emphasize the �derived� status of the above symbols:

D(D(•)) ≡ >,
D(•) ≡ ⊥,
¬$ϕ ≡ $ϕ = ⊥,
$x 6= $y ≡ ¬($x = $y),

$ϕ ∨ $ψ ≡ ¬(¬$ϕ ∧ ¬$ψ),

$ϕ⇒ $ψ ≡ ¬$ϕ ∨ $ψ,

$ϕ⇔ $ψ ≡ $ϕ = $ψ,

∃x · $ϕ(x) ≡ ¬∀x · ¬$ϕ(x),

($x≡eb $y) ≡ (D($x)⇔ D($y)) ∧ (D($x)⇒ $x = $y),

($xveb $y) ≡ D($x)⇒ (D($y) ∧ $x = $y),

Teb($ϕ) ≡ D($ϕ) ∧ $ϕ,

WTeb($ϕ) ≡ D($ϕ)⇒ $ϕ.

The second block contains the following rules for reasoning about conditionals:

if > then $x else $y ≡ $x,

if ⊥ then $x else $y ≡ $y.

The rules in the third block determine the domains of conjunction and the universal
quanti�er:

D($ϕ ∧ $ψ) ≡ (D($ϕ) ∧ D($ψ)) ∨ Teb(¬$ϕ) ∨ Teb(¬$ψ),

D(∀x · $ϕ(x)) ≡
(
∀x · D($ϕ(x))

)
∨
(
∃x · Teb(¬$ϕ(x))

)
.

The above rules have the e�ect that conjunction is lazy in both arguments and the
universal quanti�er behaves like a �generalized conjunction�. This kind of semantics is
sometimes attributed to Kleene [1952, �64]1. In fact, Metayer and Voisin [2009] give
the impression that Event-B's conjunction and universal quanti�er have McCarthy
semantics [McCarthy, 1963], i.e., conjunction is strict in its �rst and lazy in its
second argument, and the universal quanti�er is smashed. The purpose of [Metayer
and Voisin, 2009] is however not to de�ne the domains of operators and binders but
instead to describe an approximation technique (cf. Sections 3.4 and 4.3).
The rules in the fourth block de�ne the domains of the remaining operators and

1Cheng and Jones [1990] meticulously describe the history of Kleene semantics.

60

3.1. The Theory Core

binders:

D(>) ≡ >,
D(⊥) ≡ >,
D(¬$ϕ) ≡ D($ϕ),

D($x 6= $y) ≡ D($x) ∧ D($y),

D($ϕ ∨ $ψ) ≡
(

D($ϕ) ∧ D($ψ)
)
∨ Teb($ϕ) ∨ Teb($ψ),

D($ϕ⇒ $ψ) ≡
(

D($ϕ) ∧ D($ψ)
)
∨ Teb(¬$ϕ) ∨ Teb($ψ),

D($ϕ⇔ $ψ) ≡ D($ϕ) ∧ D($ψ),

D(∃x · $ϕ(x)) ≡
(
∀x · D($ϕ(x))

)
∨
(
∃x · Teb($ϕ(x))

)
.

The rules in the �fth block are taken from [Mehta, 2008]; they emphasize similar-
ities between Event-B's �rst-order fragment and classical �rst-order logic:

` >
truthR ⊥ ` $ϕ

falsityL

` $ψ

¬$ψ ` $ϕ
negL

$ϕ ` ⊥
` ¬$ϕ

negR

¬$ϕ ` ⊥
` $ϕ

classical
$ψ1 ` $ϕ $ψ2 ` $ϕ

$ψ1 ∨ $ψ2 ` $ϕ
disjL

` $ϕ1

` $ϕ1 ∨ $ϕ2
disjR1

` $ϕ2

` $ϕ1 ∨ $ϕ2
disjR2

` $ψ1 $ψ2 ` $ϕ

$ψ1⇒ $ψ2 ` $ϕ
impL

$ψ ` $ϕ

` $ψ⇒ $ϕ
impR

$ψ1⇒ $ψ2, $ψ2⇒ $ψ1 ` $ϕ

$ψ1⇔ $ψ2 ` $ϕ
eqvL

$ϕ1 ` $ϕ2 $ϕ2 ` $ϕ1

` $ϕ1⇔ $ϕ2
eqvR

$ψ(x) ` $ϕ

∃x · $ψ(x) ` $ϕ
exL (x fresh)

` D($y) ` $ϕ($y)

` ∃x · $ϕ(x)
exR

The sixth and last block contains rules that convert appropriate formulae into
rewrite rules:

61

3. Event-B's Theories

$x≡eb $y

$x ≡ $y
≡eb_reflection

$xveb $y

$x v $y
veb_reflection

The Standard Model. The standard structure (EB_Log, J·K) over the signature of
Log de�nitionally extends the standard model of Log0, and de�nes the denotations
of additional operators and binders as follows.

• The denotations of >, ⊥, ¬, and ⇔ are the strict extensions of True, False, ¬,
and ←→, respectively.

• The denotations of disjunction and implication are chosen such that $ϕ ∨ $ψ
is equivalent to ¬(¬$ϕ ∧ ¬$ψ) and $ϕ⇒ $ψ is equivalent to ¬$ϕ ∨ $ψ.

• The denotation of the existential quanti�er is chosen such that ∃x · $ϕ(x) is
equivalent to ¬(∀x · ¬$ϕ(x)).

• The denotations of the remaining operators are de�ned by

J≡ebK x y = (x = y)↑, JvebK x y = (x v y)↑,
JTebK ϕ = (T ϕ)↑, JWTebK ϕ = (WT ϕ)↑.

It is straightforward to show (with Isabelle) that the rules of Log are sound with
respect to the underlying standard structure.

Proposition 3.3. The structure (EB_Log, J·K) constitutes a model of Log.

3.1.4. The Theory Set0

The theory Set0 extends Log with set membership and a restricted version of set
comprehension. More precisely, Set0 introduces

• the set type operator P of arity 1,

• the operator ∈ ◦◦ (α,P(α)) ⇀ B (membership),

• the binder collect† ◦◦ (α ⇀ B) ⇀ P(α) (simple set comprehension).

Simple set comprehension as such is not available in Rodin, but it is a special case
of Rodin's set comprehension, which will be de�ned in Section 3.3.2.
In concrete syntax, the term (collect x ◦◦ ν · ϕ) ◦◦ P(ν) is written {x ◦◦ ν | ϕ}.

Variables of set type are usually denoted R,S or $R, $S.
Apart from rules about well-de�nedness, the theory Set0 adds versions of beta-

reduction and extensionality to Log:

62

3.1. The Theory Core

D($x ∈ $R)
≡

D($x) ∧ D($R)
memD

D({x | $ϕ(x)})
≡
∀x · D($ϕ(x))

collectD

$y ∈ {x | $ϕ(x)} v $ϕ($y) beta
` x ∈ $R⇔ x ∈ $S

` $R = $S
set_extn (x fresh)

As an aside, note that universal (and therefore existential) quanti�cation can be
expressed in terms of simple set comprehension, similarly as in HOL [see e.g. Gordon
and Pitts, 1993]:

∀x · $ϕ(x) ≡
(
{x | Teb(¬$ϕ(x))} = {x | ⊥}⇒ •

)
⇒{x | Teb($ϕ(x))} = {x | >}.

The Standard Model. The standard structure (EB_Set0, J·K) over the signature of
Set0 de�nitionally extends the standard model of Log, and de�nes the denotation
of P as set, the denotation of ∈ as the strict extension of ∈, and the denotation of
collect as the smashed extension of Collect. Using Isabelle, I have proved that the
rules of Set0 are sound with respect to the underlying standard structure.

Proposition 3.4. The structure (EB_Set0, J·K) constitutes a model of Set0.

3.1.5. The Theory Choice

The theory Choice extends Set0 with the axiom of choice, which is stated in terms
of the choice binder some† ◦◦ (α ⇀ B) ⇀ α and the following rules:

D(some x · $ϕ(x)) ≡
(
∀x · D($ϕ(x))

)
∧
(
∃x · $ϕ(x)

)
choiceD

` (some x · $ϕ(x)) ∈ {x | $ϕ(x)}
choice

Note that, if choiceD is replaced by

D(some x · $ϕ(x)) ≡ ∃x · Teb($ϕ(x)),

the choice binder fails to be monotonic. As monotonicity is useful for directed rewrit-
ing, I have decided to make the choice binder smashed (and therefore monotonic).
Actually, none of the sources about Event-B that I am aware of postulates the

axiom of choice. I take the liberty to include the axiom of choice in Event-B's
semantics for the following reasons.

1. I am not aware of an application of Event-B in which the axiom of choice seems
an inadequate assumption.

63

3. Event-B's Theories

2. The ML prover, which has been designed for classical B and is also available
in Rodin, applies skolemization without restricting the use of set comprehen-
sions2. As pointed out by Miller [1992], the combination of skolemization and
comprehension axioms entails the axiom of choice. ML is therefore potentially
unsound with respect to a semantics without the axiom of choice!

3. Similarly, if I excluded the axiom of choice from Event-B's standard model,
only the version of Isabelle/HOL without the axiom of choice could be soundly
integrated as a theorem prover into Rodin. An integration of this restricted
version of Isabelle/HOL is considerably less attractive because it lacks useful
features like the integer type and link-ups to automated theorem provers such
as E [Schulz, 2002], Spass [Weidenbach et al., 2009], Vampire [Riazanov and
Voronkov, 2002], and Z3 [de Moura and Bjørner, 2008].

The Standard Model. The standard structure (EB_Choice, J·K) over the signature
of Choice de�nitionally extends the standard model of Set0, and de�nes the denota-
tion of some such that

Jsome x · ϕK =

 (SOME x. T JϕK)↑ ((∀x. WD JϕK) ∧ (∃x. T JϕK))

• (otherwise).

I have proved (with Isabelle) that the rules of Choice are sound with respect to
the underlying standard structure.

Proposition 3.5. The structure (EB_Choice, J·K) constitutes a model of Choice.

3.1.6. The Theory Int0

The theory Int0 extends Set0 with the type of integers as well as corresponding
operators. The rules of Int0 essentially characterize Event-B's integers as a well-
ordered integral domain and have been in�uenced by the exposition of Mendelson
[1973, Ch. 3]. The axioms of a well-ordered integral domain are known to characterize
the integers up to isomorphism [see Mendelson, 1973, p. 151, for a precise de�nition
and proof of this statement].
The signature of Int0 introduces the type Z of integers and the operators

0 ◦◦ Z, 1 ◦◦ Z, + ◦◦ (Z,Z) ⇀ Z,
uminus ◦◦ Z ⇀ Z, ∗ ◦◦ (Z,Z) ⇀ Z, ≤ ◦◦ (Z,Z) ⇀ B,

min ◦◦ P(α) ⇀ Z.

Terms of the form uminus(t) are usually written −t.
The rules that Int0 adds to Set0 are presented in �ve blocks. The �rst block

contains rules describing the domains of the operators introduced by Int0:

2I am grateful to Thierry Lecomte for bringing this to my attention.

64

3.1. The Theory Core

D(0) ≡ >,
D(1) ≡ >,
D($x+ $y) ≡ D($x) ∧ D($y),

D(−$x) ≡ D($x),

D($x ∗ $y) ≡ D($x) ∧ D($y),

D($x ≤ $y) ≡ D($x) ∧ D($y),

D(min($R)) ≡ D($R) ∧ (∃w · w ∈ $R) ∧ (∃b · ∀x · x ∈ $R⇒ b ≤ x).

The rules in the second block state that Z forms an integral domain:

` ($x+ $y) + $z = $x+ ($y + $z)
add_associativity

` $x+ $y = $y + $x
add_commutativity

` $x+ 0 = $x
add_neutral

` $x+ (−$x) = 0
add_inverse

` ($x ∗ $y) ∗ $z = $x ∗ ($y ∗ $z)
mult_associativity

` $x ∗ $y = $y ∗ $x
mult_commutativity

` $x ∗ 1 = $x
mult_neutral

` $x ∗ ($y + $z) = ($x ∗ $y) + ($x ∗ $z)
distributivity

$x ∗ $y = 0 ` $x = 0 ∨ $y = 0
no_zero_divisors

The rules in the third block postulate that the integral domain Z is ordered.
Mendelson [1973] de�nes ordered integral domains in terms of <. It is easy to check
that my formulation in terms of ≤ is equivalent, assuming that $x < $y ≡ $x ≤
$y ∧ $x 6= $y.

` $x ≤ $x
reflexivity

$x ≤ $y, $y ≤ $z ` $x ≤ $z
transitivity

65

3. Event-B's Theories

` $x ≤ $y ∨ $y ≤ $x
totality

$x ≤ $y, $y ≤ $x ` $x = $y
antisymmetry

$x ≤ $y ` $x+ $z ≤ $y + $z
add_comp

$x ≤ $y, 0 ≤ $z ` $x ∗ $z ≤ $y ∗ $z
mult_comp

The theory stated so far posses a model that interprets Z as a type with only one
element. This model is excluded by the fourth block:

` 0 6= 1
infinity.

The name infinity is due to the fact that the underlying rule imposes the existence
of an in�nite number of integers [Mendelson, 1973, p. 129, p. 136].
The rules in the �fth and last block state that Z constitutes a well-ordered integral

domain. They exclude the model that interprets Z as the rationals.

` min($R) ∈ $R
min_mem,

` $x ∈ $R

` min($R) ≤ $x
min_bound.

The Standard Model. The standard structure (EB_Int0, J·K) of Int0 de�nitionally
extends the standard model of Set0. The denotation of Z is int, and the denotation
of min is as follows:

JminK • = •,

JminK R↑ =

 Least R (R 6= ∅ ∧ (∃b · ∀x · x ∈ R⇒ b ≤ x))

• (otherwise).

Every remaining operator fEB of Int0 is interpreted as the strict extension of the
HOL constant fHOL according to the following table:

fEB 0 1 +

fHOL 0 :: int 1 :: int plus :: int⇒ int⇒ int

fEB uminus ∗ ≤

fHOL uminus :: int⇒ int times :: int⇒ int⇒ int less_eq :: int⇒ int⇒ bool

I have used Isabelle to prove that every rule introduced by Int0 is sound with
respect to the underlying standard structure.

66

3.2. De�nitional Extensions

Lemma 3.6. The structure (EB_Int0, J·K) constitutes a model of Int0.

3.1.7. The Theory Prod

The theory Prod extends Log with the notion of Cartesian product. It introduces
the product type operator ? of arity 2 and the product operator 7→ ◦◦ (α, β) ⇀ α ? β.
The additional rules of Prod are as follows:

D($x 7→ $y) ≡ D($x) ∧ D($y) prod_D

$x1 7→ $x2 = $y1 7→ $y2 v $x1 = $y1 ∧ $x2 = $y2 prod_inj

` D($x) $x = x1 7→ x2 ` $ϕ

` $ϕ
prod_surj (x1, x2 fresh)

The Standard Model. The standard structure (EB_Prod, J·K) over the signature of
Prod de�nitionally extends the standard model of Log, and de�nes the denotations
of ? as prod and of 7→ as the strict extension of Pair. Using Isabelle, it is easy to show
that the rules of Prod are sound with respect to the underlying standard structure.

Proposition 3.7. The structure (EB_Prod, J·K) constitutes a model of Prod.

3.1.8. The Theory Core

The theory Core results from merging Int0, Choice, and Prod. The standard structure
(EB_Core, J·K) of Core results from merging the standard models of Int0, Choice, and
Prod. It is easy to check that (EB_Core, J·K) constitutes a model of Core.

3.2. De�nitional Extensions

During the development of Event-B's core theories, I have introduced new sym-
bols and rules in an ad-hoc manner, proving soundness of new rules directly with
Isabelle/HOL. Although this approach has been e�ective so far, I regard it as im-
practical in general, because it requires Rodin users who want to extend theories
to become acquainted with Isabelle/HOL. The subject of this section is to develop
methods for extending theories that can be applied without performing proofs in
Isabelle/HOL. Figure 3.2 illustrates the main properties of these methods on an
intuitive level.
Most extension methods de�ned in this section apply only to theories extending

Log and models extending EB_Log. This restriction is necessary, because some
methods give rise to proof obligations that are expressed using symbols from Log;
these proof obligations ful�ll their purposes only if symbols of Log are interpreted
according to EB_Log.

67

3. Event-B's Theories

Log

EB_Log

THY THY′

M M′

� � �

Vertical arrows connect a model with its theory. Horizontal arrows indicate theory
or structure extensions. Dashed arrows indicate de�nitional extensions.

Figure 3.2.: De�nitional extensions

The extension methods are de�nitional in the following sense. Suppose the theory
THY has the model M, and some de�nitional extension method can be used to extend
THY to THY′. Then there exists a model M′ of THY′ that de�nitionally extends M.
This has the e�ect that the notion of validity is preserved in the sense that a sequent
over the signature of THY is valid with respect to M′ i� it is valid with respect to M.
In fact, if a theory THY with a model M is extended to THY′ using one of the

extension methods of this section, then the model M′ of THY′ that de�nitionally
extends M is uniquely determined. In this context, I consider two structures over a
given signature as equal i� they induce the same notion of validity. Uniqueness of M′

implies that the additional rules of THY′ fully specify the denotations of additional
symbols.
There is a wide variety of extension methods that could be treated within this

section. I restrict my focus on the methods that are required to extend the theory
Core to Event-B's main theory EventB (see Section 3.3). That excludes methods for
de�ning new types, datatypes, and records, as well as methods for de�ning functions
recursively.

Related Work. The usage of the term �de�nitional� and the methods for de�ning
new operators have been strongly in�uenced by Gordon and Pitts [1993]; the underly-
ing idea goes already back to Russell [1948, p. 71], who compares arbitrary extensions
with �theft� and de�nitional extensions with �honest toil�. Adding binders and rules
to a theory involves some di�culties that are unique in the setting of Event-B and
Rodin; one of these di�culties stems from the unavailability of operator variables in
Rodin (cf. Section 3.2.4).
An alternative requirement on theory extensions is conservativity [see e.g. Shoen-

�eld 1967, p. 41 or van Dalen 2004, p. 104]: a theory THY′ conservatively extends
a theory THY i� THY′ extends THY and the sequents over THY provable in THY′

are provable in THY as well. In the context of this document, it is more appropri-
ate to require that extensions are de�nitional because the semantics of the symbols
of interest is ultimately given by a model; the corresponding proof calculus merely
illustrates this semantics, but does not de�ne it.
The notions of �de�nitional� and �conservative� are incomparable: Veloso and

68

3.2. De�nitional Extensions

Veloso [1991] point out that conservative extensions need not be de�nitional, and
according to Gödel's �rst incompleteness theorem, de�nitional extensions need not
be conservative3.
Maamria and Butler [2010] show how to reason about soundness of directed rewrite

rules in the context of Event-B. They only consider rules that are built from ordinary
variables and strict operators. My work covers a substantially more general class of
rules and corrects a mistake concerning the application of rules. (The proviso above
(4.2) on Page 11 in [Maamria and Butler, 2010] allows one to apply conditional
rewrite rules in an unsound way.)

3.2.1. New Rules

To describe the proof obligations that need to be proved when introducing new rules,
I de�ne some auxiliary notation:

T −1(ψ ` ϕ) := Teb(ψ1) ∧ · · · ∧ Teb(ψ|ψ|)⇒WTeb(ϕ),

WT −1(ψ ` ϕ) := ψ1 ∧ · · · ∧ ψ|ψ| ⇒ ϕ.

The mappings T −1, WT −1 should be viewed as syntactic transformations, similarly
as substitutions.

Lemma 3.8. Let (M, J·K) be a structure extending EB_Log and Γ a sequent over the
signature of (M, J·K). Then,

T JT −1(Γ)K = JΓK,

WT JWT −1(Γ)K = JΓK

are valid with respect to M.

Suppose THY is a theory extending Log with a model M extending EB_Log.
Adding a rule r to THY is admissible i� the following proof obligation, depending on
the rule to be added, is valid4 with respect to M:

Rule Proof Obligations

Γ

Γ0
(x fresh) ∀x · T −1(Γ1) ∧ · · · ∧ T −1(Γ|Γ|) ` WT −1(Γ0)

ϕ

t ≡ u
WTeb(ϕ) ` t≡eb u

ϕ

t v u
WTeb(ϕ) ` tveb u

3According to Gödel's �rst incompleteness theorem, there is a sequent of Core that is valid but
not provable. A de�nitional extension of Core that is not conservative adds a rule to Core that
proves exactly that sequent.

4Alternatively, I could require that the proof obligation is provable in THY. The current setting
is slightly more general: it allows users either to prove the proof obligation with Rodin or its
denotation with Isabelle/HOL.

69

3. Event-B's Theories

Some readers may object that these proof obligations are so straightforward that
the whole issue of introducing new rules seems trivial. It was indeed not di�cult
to �nd these proof obligations. The real di�culty was to present Event-B's logic in
such a way that these proof obligations can be stated conveniently. This involved
introducing Teb, WTeb, ≡eb, veb, inventing operator variables, and developing the
underlying meta-theory (mainly in Sections 2.2.7 and 2.3.2).
The following theorem shows that adding a rule to a theory is de�nitional i� it is

admissible.

Theorem 3.9. Let THY be a theory extending Log and M a model of THY extending
EB_Log. Suppose that THY′ results from adding the rule r (over the signature of
THY) to THY. The addition of r to THY is admissible i� it is de�nitional. Moreover,
every model of THY′ de�nitionally extending M induces the same notion of validity
as M.

Proof. Using Lemma 3.8, it is easy to check that the rule r is sound with respect
to M i� the corresponding admissibility proof obligation is valid with respect to M.
This gives the �rst part of the assertion.
For the second part, suppose M′ is an arbitrary model of THY′ de�nitionally

extending M. Hence, a sequent Γ is valid with respect to M′ i� it is valid with
respect to M. This gives the second part of the assertion.

3.2.2. New Operators

3.2.2.1. Operator De�nitions

An (ordinary) operator de�nition is written

f($x ◦◦ ν) ◦◦ µ ≡ t ◦◦ µ, (3.1)

where $x has pairwise distinct elements. Given a theory THY = (Σ, rules), the
operator de�nition in (3.1) yields the theory obtained by adding the operator f ◦◦

ν ⇀ µ to Σ and the rule f($x) ≡ t to rules. Applying the operator de�nition in
(3.1) to THY is admissible i� the following conditions hold:

1. The symbol f is a non-logical symbol, but not a type operator, operator, or
binder of Σ.

2. The elements of ν µ are types over Σ, and t ◦◦ µ is a term over Σ.

3. All variables free in t ◦◦ µ (including type variables) occur in $x, ν, or µ.

Condition 3 excludes operator de�nitions like c ◦◦ B ≡ ∀x ◦◦ α, y · x = y. Such an
operator de�nition fails to be de�nitional, because it generates a rule that precludes
models in which some type has exactly one inhabitant and another type has more
than one inhabitant. The underlying phenomenon has already been identi�ed by
Gordon and Pitts [1993].
The following theorem shows that operator de�nitions are de�nitional.

70

3.2. De�nitional Extensions

Theorem 3.10. Suppose that applying the operator de�nition f($x) ≡ t to the
theory THY with the model (M, J·K) is admissible and results in THY′. Then there is
a unique structure (M′, J·K′) that is a model of THY′ and a de�nitional extension of
(M, J·K).

Proof. I �rst prove the existence of (M′, J·K′) and then its uniqueness. The structure
(M′, J·K′) results from extending (M, J·K) as follows. The denotation function J·K′
coincides with J·K except that JfK′ is a constant not used in M. Condition 1 rules out
the pathological situation where JfK is already present in the signature underlying
M. The theory M′ results from adding the de�nition

de�nition JfK′ J$xK = JtK

to M. Condition 3 enforces HOL's side-conditions on de�nitions [see Gordon and
Pitts, 1993, Wenzel, 1997]. The structure (M′, J·K′) obviously constitutes a de�ni-
tional extension of (M, J·K) and a model of THY′.
Recall that two structures are considered equal i� they induce the same notion of

validity. Intuitively, I show uniqueness of (M′, J·K′) by giving a characterization of
validity that is independent from (M′, J·K′). Let Γ′ be a sequent over the signature of
THY′ and (M′, J·K′) a model of THY′ that de�nitionally extends (M, J·K). The sequent
Γ results from eliminating all occurrences of f from Γ′ by repeatedly applying the
rewrite rule f($x) ≡ t. Then,

Γ′ is valid with respect to (M′, J·K′)
i� Γ is valid with respect to (M′, J·K′)
i� Γ is valid with respect to (M, J·K).

The �rst equivalence holds, because the rule f($x) ≡ t is sound with respect to
(M′, J·K′). The second equivalence holds, because (M′, J·K′) de�nitionally extends
(M, J·K). Overall, the models of THY′ de�nitionally extending (M, J·K) are uniquely
determined, because the last line is independent from (M′, J·K′).

Monotonicity. To make directed rewriting applicable to the arguments of a newly
de�ned operator, monotonicity needs to be proved. The following proposition gives
the corresponding proof obligation:

Proposition 3.11. Let THY be a theory extending Log and M a model of THY
extending EB_Log. Suppose that applying the operator de�nition f($x) ≡ t to THY
is admissible and results in THY′. Then f is monotonic with respect to the (unique)
model M′ of THY′ de�nitionally extending M i� the following proof obligation is valid
with respect to M:

$x1 veb $y1, . . . , $x|$x| veb $y|$x| ` tveb (t[$x := $y]). (3.2)

Here, the elements of $y are pairwise distinct and do not occur in $x.

71

3. Event-B's Theories

Proof. The assertion follows from the observation that the denotation of (3.2) is
equivalent to the monotonicity of f .

Proving monotonicity proof obligations can sometimes be avoided. If the right-
hand side of an operator de�nition is built from monotonic operators and binders,
then the resulting operator is monotonic.

Proposition 3.12. Suppose that applying the operator de�nition f($x) ≡ t to the
theory THY is admissible and results in THY′. If the operators and binders in t are
monotonic with respect to the model M of THY, then f is monotonic with respect to
the (unique) model M′ of THY′ de�nitionally extending M.

Proof. The assertion can be proved by structural induction.

3.2.2.2. Strict Operator De�nitions

It is sometimes clumsy to apply ordinary operator de�nitions for de�ning strict
operators. For example, one might de�ne intersection by

$R ∩l $S ≡ {x | x ∈ $R ∧ x ∈ $S}.

This version of intersection however fails to be strict, because • ∩l ∅ is equivalent
to ∅. Ordinary operator de�nitions bear the risk that users inadvertently de�ne
operators to be lazy.
Strict intersection may be de�ned by

$R ∩ $S ≡ if D($R) ∧ D($S) then {x | x ∈ $R ∧ x ∈ $S} else •.

To achieve some degree of convenience, it is useful to additionally introduce the
rewrite rules

D($R ∩ $S) ≡ D($R) ∧ D($S),

D($R ∩ $S) v {x | x ∈ $R ∧ x ∈ $S}.

Since many operators in Event-B are strict, I develop a dedicated method for de�ning
them conveniently.
A strict operator de�nition is written as

f(x ◦◦ ν) ◦◦ µ v t ◦◦ µ with D(f(x)) ≡ ϕ ◦◦ B, (3.3)

where x has pairwise distinct elements. Suppose THY = (Σ, rules) is a theory extend-
ing Log and M a model of THY extending EB_Log. The strict operator de�nition in
(3.3) maps THY to the theory obtained by adding the operator f ◦◦ ν ⇀ µ to Σ and

72

3.2. De�nitional Extensions

the following rewrite rules to rules:

f($x) ≡ if D($x1) ∧ · · · ∧ D($x|$x|) ∧ ϕ′ then t′ else •, (3.4)

D(f($x)) ≡ D($x1) ∧ · · · ∧ D($x|$x|) ∧ ϕ′, (3.5)

f($x) v t′. (3.6)

Here, the sequence $x has pairwise distinct elements, |$x| = |x|, and t′ and ϕ′

result from replacing every free occurrence of xi by $xi, for 1 ≤ i ≤ |x|, in t and ϕ,
respectively.
Applying the strict operator de�nition in (3.3) to THY is admissible i� the following

conditions hold:

1. The symbol f is a non-logical symbol, but not a type operator, operator, or
binder of Σ.

2. The elements of ν µ are types over Σ, and t ◦◦ µ and ϕ ◦◦ B are terms over Σ.

3. All variables free in t ◦◦ µ or ϕ ◦◦ B (including type variables) occur in x, ν, or
µ.

4. The sequents `D(ϕ) and ϕ ` D(t) are valid with respect to M.

It remains to show that strict operator de�nitions are de�nitional.

Theorem 3.13. Let THY be a theory extending Log and (M, J·K) a model of THY
extending EB_Log. Suppose that applying the strict operator de�nition in (3.3) to
THY is admissible and results in THY′. Then there is a unique structure (M′, J·K′)
that is a model of THY′ and a de�nitional extension of (M, J·K).
Proof. The theory THY′ results from applying the operator de�nition (3.4) and sub-
sequently adding the rules (3.5) and (3.6) to THY. The admissibility conditions 1�3
of the strict operator de�nition entail the admissibility conditions of the operator def-
inition (3.4). The admissibility condition 4 entails that it is admissible to introduce
the rules (3.5) and (3.6).
As the extension of THY to THY′ is de�nitional, there exists a model (M′, J·K′) of

THY′ that de�nitionally extends (M, J·K). Uniqueness can be shown similarly as for
ordinary operator de�nitions (cf. Theorem 3.10).

Note that operators introduced by strict operator de�nitions are strict and there-
fore also monotonic.

De�nite Variant. The de�nite strict operator de�nition

f(x ◦◦ ν) ◦◦ µ v t ◦◦ µ

is a short-hand for the strict operator de�nition

f(x ◦◦ ν) ◦◦ µ v t ◦◦ µ with D(f(x)) ≡ >.

The admissibility conditions 1�3 remain unchanged. Condition 4 simpli�es to the
requirement that `D(t) is valid.

73

3. Event-B's Theories

Simpli�cations. The following lemma is useful to discharge proof obligations arising
from strict operator de�nitions:

Proposition 3.14. Suppose the term t is built from ordinary variables, de�nite
operators, and de�nite binders. Then the sequent `D(t) is valid.

Proof. The assertion can be proved by structural induction.

3.2.3. New Binders

When developing binder de�nitions for Event-B, one has to cope with a mismatch
between the types of denotations of binders and of operator variables. To understand
this point, it is instructive to focus on binders binding one variable and taking one
argument. Such a binder denotes a function of type (JνK ⇒ JµK↑) ⇒ ξ↑. To de�ne
such a binder, it is useful to have a variable whose denotation is of type JνK⇒ JµK↑;
this variable serves as place-holder for the argument of the binder.
Event-B's logic does not provide such a variable, but it provides an operator vari-

able $f whose denotation is of type JνK↑ ⇒ JµK↑. If $f is used as a place-holder in
the de�nition of a binder, the problem is that $f provides more information than the
binder can absorb, namely $f(•). To ensure that binder de�nitions are de�nitional,
it is necessary that the right-hand side of a binder de�nition does not depend on
$f(•). In general, this can be enforced by a proof obligation; in practice, it is likely
that this proof obligation is proved automatically by a trivial tactic.
An alternative approach is to invent a new kind of variable whose denotation is of

type JνK⇒ JµK↑. The logic of partial functions by Farmer [1990] provides such vari-
ables. These variables help to formulate binder de�nitions somewhat more elegantly.
But they are generally inadequate as place-holders in rules, because they cannot be
soundly instantiated with lazy operators. I have decided against introducing another
kind of variable, because that would complicate the design of Event-B's logic for the
small bene�t of avoiding a proof obligation that can often be hidden from the user
anyway.
A binder de�nition is written

(Qx ◦◦ ν · $f(x) ◦◦ µ) ◦◦ ξ ≡ t ◦◦ ξ, (3.7)

where x and $f are sequences of pairwise distinct ordinary or operator variables.
The notation $f(x) ◦◦ µ stands for $f1(x) ◦◦ µ1, . . . , $f |$f|(x) ◦◦ µ|µ|.
Suppose THY = (Σ, rules) is a theory extending Log with a model M extending

EB_Log. The binder de�nition in (3.7) maps THY to the theory obtained by adding
the binder Q ◦◦ (ν ⇀ µ) ⇀ ξ to Σ and the rewrite rule in (3.7) to rules. Applying
the binder de�nition in (3.7) to THY is admissible i� the following conditions hold:

1. The symbol Q is a non-logical symbol, but not a type operator, operator, or
binder of Σ.

2. The elements of ν, µ, and ξ are types over Σ, and t ◦◦ ξ is a term over Σ.

74

3.2. De�nitional Extensions

3. The term t ◦◦ ξ does not contain free ordinary variables, and each type or
operator variable occurring in t belongs to $f , ν, µ, or ξ.

4. The sequent

∀x · $f1(x)≡eb $g1(x)

. . .

∀x · $f |$f|(x)≡eb $g|$f|(x)

` t≡eb t[$f($x) := $g($x)]

is valid with respect to M. Here, the elements of $g are pairwise distinct and
do not occur in $f .

Condition 4 ensures that t does not depend on $f(•). It rules out binder de�nitions
like

Qx · $f(x) ◦◦ B ≡ $f(•). (3.8)

The result of extending Log with the rule (3.8) is inconsistent. An arbitrary sequent
can be proved based on the following observations:

Qx · D(x) ≡ D(•) ≡ ⊥,
Qx · D(x) ≡ Qx · > ≡ >.

Finally, I show that binder de�nitions are de�nitional.

Theorem 3.15. Let THY be a theory extending Log and (M, J·K) a model of THY
extending EB_Log. Suppose that applying the binder de�nition in (3.7) to THY
is admissible and results in THY′. Then there is a unique structure (M′, J·K′) that
constitutes a model of THY′ and de�nitionally extends (M, J·K).

Proof. Let n be the length of x and m the length of $f . I de�ne the structure
(M′, J·K′) as follows. The denotation function J·K′ coincides with J·K except that JQK′

is a constant not used in M. Note that JQK′ cannot be de�ned by

de�nition JQK′ $f = JtK,

because JQK′ is of type

(Jν1K⇒ . . .⇒ JνnK⇒ Jµ1K↑)⇒ . . .⇒ (Jν1K⇒ . . .⇒ JνnK⇒ JµmK↑)⇒ JξK↑

and $fi is of type

Jν1K↑⇒ . . .⇒ Jν|ν|K↑⇒ JµiK↑ (1 ≤ i ≤ m).

Instead, the theory M′ is the result of adding the de�nition

de�nition JQK′ g1 . . . gm = JtK[$f := arg_lift g1, . . . , arg_lift gm]

75

3. Event-B's Theories

to M, which makes use of the function arg_lift de�ned such that

arg_lift f x↑ = f x.

(The notation x↑ stands for x1↑ . . . x|x|↑.) Now, the de�nition of JQK′ is type
correct. Conditions 1�3 enforce HOL's side-conditions on de�nitions [see Gordon
and Pitts, 1993, Wenzel, 1997].
It remains to show that the rule Qx · $f(x) ≡ t is sound, which amounts to prove

JtK[$f := arg_lift(λx. $f1 x↑), . . . , arg_lift(λx. $fm x↑)] = JtK. (3.9)

Note that Condition 4 entails the validity of|$f|∧
i=1

∀x. $fi x↑ = $gi x↑

 −→ (
JtK[$f := $g]

)
= JtK. (3.10)

In particular, the conclusion of (3.10) matches (3.9). Therefore, it remains to show

∀x. $fi x↑ = arg_lift (λx. $fi x↑) x↑ (1 ≤ i ≤
∣∣$f ∣∣). (3.11)

Equation (3.11) follows from the de�nition of arg_lift.
Uniqueness of (M′, J·K′) can be shown in a similar way as for ordinary operator

de�nitions (cf. Theorem 3.10).

Monotonicity. The following proposition shows how to prove that a newly de�ned
binder is monotonic.

Proposition 3.16. Let THY be a theory extending Log and M a model of THY
extending EB_Log. Suppose that applying the binder de�nition Qx · $f(x) ≡ t
to THY is admissible and results in THY′. Then, the binder Q is monotonic with
respect to the unique model of THY′ that de�nitionally extends M i� the following
proof obligation is valid with respect to M:

∀x · $f1(x)veb $g1(x)

. . .

∀x · $f |$f|(x)veb $g|$f|(x)

` tveb t[$f($x) := $g($x)].

(3.12)

Here, the elements of $g are pairwise distinct and do not occur in $f .

Proof. The assertion follows from the fact that the denotation of (3.12) is equivalent
to the monotonicity of Q.

If the right-hand side of a binder de�nition is built from monotonic operators and
binders, the resulting binder is monotonic, too.

76

3.2. De�nitional Extensions

Proposition 3.17. Let THY be a theory extending Log and M a model of THY
extending EB_Log. Suppose that applying the binder de�nition Qx · $f(x) ≡ t to
THY is admissible and results in THY′. If the operators and binders occurring in t
are monotonic with respect to M, then so is the binder Q with respect to the unique
model of THY′ that de�nitionally extends M.

Proof. The proof proceeds by showing validity of the proof obligation of Proposi-
tion 3.16. Because of admissibility condition 4, it may be assumed without loss of
generality that the elements of $f and $g have strict denotations. With this in
mind, the assertion can be shown by an induction over the structure of t.

Simpli�cations. The following propositions point out conditions under which the
admissibility condition 4 is dispensable. First, the condition is true whenever all
occurrences of operator variables in the right-hand side of the binder de�nition are
of the form $f(x), where x is a sequence of ordinary variables; di�erent occurrences
of operator variables may take di�erent ordinary variables as arguments.

Proposition 3.18. Suppose THY is a theory extending Log and Qx · $f(x) ≡ t
a binder de�nition such that the admissibility conditions 1�3 are true. Moreover
suppose that every occurrence of $fi in t, for 1 ≤ i ≤

∣∣$f ∣∣, is of the form $fi(y),
where y is a sequence of ordinary variables. Then the admissibility condition 4 is
true.

Proof. It su�ces to prove the sequent

∀x · $f1(x)≡eb $g1(x)

. . .

∀x · $f |$f|(x)≡eb $g|$f|(x)

` t≡eb t[$f($x) := $g($x)].

First, repeatedly apply the following instances of ≡eb_reflection:

$fi(y)≡eb $gi(y)

$fi(y) ≡ $gi(y)
.

It remains to prove two kinds of sequents: sequents of the form

∀x · $fi(x)≡eb $gi(x), . . . ` ∀y′ · $fi(y)≡eb $gi(y), (3.13)

where y′ is a subsequence of y and 1 ≤ i ≤
∣∣$f ∣∣, and the sequent

. . . ` t[$f($x) := $g($x)]≡eb t[$f($x) := $g($x)]. (3.14)

The sequent (3.14) can be proved by unfolding the de�nition of ≡eb and with some
propositional reasoning. The sequents (3.13) can be proved with allR, allL, D_var,
and hyp.

77

3. Event-B's Theories

Without the restriction that all occurrences of $fi in t are of the form $fi(y), it
would still be possible to apply ≡eb_reflection leading to the sequent (3.14); but the
corresponding versions of (3.13) would in general be unprovable.

The admissibility condition 4 is also true if the monotonicity proof obligation
according to Proposition 3.16 is valid.

Proposition 3.19. Suppose THY is a theory extending Log with a model M extending
EB_Log. Moreover, suppose that Qx · $f(x) ≡ t is a binder de�nition such that the
admissibility conditions 1�3 are true. If the proof obligation (3.12) of Proposition
3.16 is valid with respect to M, then applying Qx · $f(x) ≡ t to THY is admissible.

Proof. Note that if the proof obligation (3.12) of Proposition 3.16 is valid with respect
to M, then so is the proof obligation (3.12) with $f and $g interchanged. From this
it is straightforward to derive admissibility condition 4.

3.2.4. Operator Variables in a Monotonic Setting

The de�nitional extension methods described so far are di�cult to implement, as the
underlying proof obligations involve operator variables and non-monotonic operators,
which are not available in Rodin. A natural solution is to just implement support for
operator variables and the missing (non-monotonic) operators. Such an extension
would however not come cheaply, because monotonicity assumptions are hard-wired
in several places, in particular in Rodin's term rewriter. Therefore, I develop an
alternative approach, which essentially translates proof obligations from the general
setting developed in this document into the restricted setting supported by Rodin.
In a �rst step, it needs to be clari�ed what the �restricted setting supported by

Rodin� actually is. Given a theory THY, Rodin only supports terms built from
monotonic symbols, namely terms in mono(THY) according to the following de�ni-
tion:

De�nition 3.20 (Monotonic Fragment). Let THY be a theory with a model M.
Then, the monotonic fragment mono(THY) of THY is the set of terms built from
ordinary variables and monotonic operators or binders (with respect to M) of the
signature underlying THY.

Non-monotonic operators, most signi�cantly the well-de�nedness operator D, play
an important role in proofs; consider for example the rules cut and exR. Yet, Rodin
does not explicitly support non-monotonic symbols. Instead, Rodin replaces a term
f(t), with a non-monotonic operator f , by an equivalent term built from only mono-
tonic operators and binders. Such an approach obviously requires that appropri-
ate replacements exist within mono(THY), the set of terms supported by Rodin.
Using the notion of de�nability given by the following de�nition, the approach
taken by Rodin requires that the non-monotonic operators of THY are de�nable
in mono(THY).

78

3.2. De�nitional Extensions

De�nition 3.21 (De�nability). Let L be a set of terms. The operator f is de�nable
in L (with respect to a structure M) i� every formula f(t) with t1, . . . , t|t| in L is
equivalent (with respect to M) to a term in L. The binder Q is de�nable in L (with
respect to a structure M) i� every formula Qx · t with t1, . . . , t|t| in L is equivalent
(with respect to M) to a term in L.

In fact, the non-monotonic operators and binders of the theories developed in this
chapter are de�nable in the respective monotonic fragments.

Proposition 3.22. Let THY be a theory derived from Core using the extension meth-
ods of Sections 3.2.1�3.2.3. Then every non-monotonic operator or binder of THY
is de�nable in mono(THY).

Proof. It su�ces to show how to rewrite a term t over THY that does not contain
operator variables to an equivalent term in mono(THY). This can be achieved by
repeatedly applying the following steps to t:

• Eliminate operators and binders introduced by ordinary operator and binder
de�nitions using the rewrite rules introduced by their de�nitions.

• Eliminate the non-monotonic operators Teb, WTeb, veb, ≡eb with the respective
rewrite rules of the theory Log.

• Eliminate the well-de�nedness operator D by applying rewrite rules of the form

D(f($x)) ≡ ϕ or D(Qx · $g(x)) ≡ ϕ.

Note that such rewrite rules exist for each monotonic operator of Core, each
binder of Core, and each operator introduced by a strict operator de�nition.

It is easy to check that this strategy terminates and yields a term in mono(THY).

The main question of this section is how to translate � in a validity preserving
manner � sequents with operator variables to sequents without. A natural solution
is to represent the operator variables to be eliminated by newly introduced operators.
Special care is needed to represent operator variables by monotonic operators and to
ensure that D remains de�nable in the monotonic fragment of the resulting theory.
My solution is based on two ideas:

1. Introduce for every operator variable $f two new operators f ′ and df ′. For
simplicity, assume that $f takes one argument. Replace every occurrence of
$f by f ′. Introduce the rewrite rules

D(f ′($x)) ≡ df ′($x),

D(df ′($x)) ≡ >

for D-de�nability.

79

3. Event-B's Theories

2. The operators f ′ and df ′ are not necessarily monotonic. To recover mono-
tonicity of, say, f ′, introduce a fresh operator f by f ′($x) ≡ f(D($x), $x). It
is possible to establish D-de�nability and monotonicity of f by de�ning appro-
priate rewrite rules.

The following theorem gives the technical details. For simplicity, the assertion is
stated for operator variables that takes exactly one argument. The lengthier version
of the theorem with an arbitrary number of arguments holds as well.

Theorem 3.23. Let THY be a theory extending Log and $f ◦◦ ν ⇀ µ an operator
variable. Suppose that f and df are non-logical symbols not used in the signature of
THY. De�ne THY′ as the theory extending THY by the operators f ◦◦ ν ⇀ µ and
df ◦◦ ν ⇀ B, and the rules

D(f($ϕ, $x)) ≡ Teb(df ($ϕ, $x)), (3.15)

D(df ($ϕ, $x)) ≡ D($ϕ) ∧ ($ϕ⇒ D($x)), (3.16)

f(⊥, $x) ≡ f(⊥, •), (3.17)

df (⊥, $x) ≡ df (⊥, •). (3.18)

Then the following is true:

1. Every model M of THY that extends EB_Log can be de�nitionally extended to
a model M′ of THY′ such that every sequent Γ over THY is valid with respect
to M i� Γ[$f($x) := f(D($x), $x)] is valid with respect to M′.

2. The operators f and df are monotonic with respect to every model of THY′

that extends EB_Log.

Proof. For Claim 1, de�ne the structure M′ as an extension of M by a constant speci�-
cation [Gordon and Pitts, 1993] postulating that JfK and Jdf K satisfy the denotations
of (3.15�3.18). This constant speci�cation requires a proof that the denotations of
(3.15�3.18) are satis�able, which is witnessed by

JfK ϕ x := •,
Jdf K ϕ x := (if WD ϕ ∧ (T ϕ −→WD x) then False↑ else •).

The structure M′ de�nitionally extends M, because constant speci�cations are de�-
nitional. By de�nition, M′ is a model of THY′.

Let Γ be a sequent over THY and denote Γ[$f($x) := f(D($x), $x)] by Γ′. If Γ
is valid with respect to M, Γ′ is valid with respect to M′ because M′ extends M and
validity is closed under substitution. Now suppose Γ′ is valid with respect to M′. By

80

3.2. De�nitional Extensions

exporting Γ′ into M, it can be concluded that

∀f df .
(∀ϕ x. WD (f ϕ x)←→ T (df ϕ x)) ∧
(∀ϕ x. WD (df ϕ x)←→WD ϕ ∧ (T ϕ −→WD x)) ∧
(∀x. f False↑ x = f False↑ •) ∧
(∀x. df False↑ x = df False↑ •)

−→
JΓK[$f := (λx. f (WD x)↑ x)]

(3.19)

is valid in M. Instantiate the outermost quanti�er in (3.19) as follows:

f ϕ x := if WD ϕ ∧ (T ϕ −→WD x)

then $f (if T ϕ then x else •)
else •,

df ϕ x := if WD ϕ ∧ (T ϕ −→WD x)

then (WD ($f (if T ϕ then x else •)))↑
else •.

Under this instantiation, the premises of the implication in (3.19) are true and the
conclusion is equivalent to JΓK. Therefore, Γ is valid in M.
For Claim 2, it su�ces to prove monotonicity of JfK and Jdf K from the denotations

of (3.15�3.18), which is straightforward. In fact, the rules (3.17�3.18) have been
introduced to prevent non-monotonic denotations of f and df .

Suppose the theory THY, with the model M, has been derived from Core using
the extension methods of the preceding sections. Theorem 3.23 and Proposition 3.22
show how to eliminate operator variables and non-monotonic operators and binders
from an arbitrary sequent Γ of THY:

1. Repeatedly apply Theorem 3.23 to eliminate all operator variables from Γ. Call
the resulting sequent Γ̃, the resulting theory THY′, and the resulting model M′.

2. Eliminate the non-monotonic operators and binders from Γ̃ by applying the
procedure in the proof of Proposition 3.22 and the rules (3.15�3.16) obtained
from applying Theorem 3.23. Call the resulting sequent Γ′.

Note that Γ′ is valid with respect to M′ i� Γ is valid with respect to M. Moreover,
Γ′ is built from formulae in mono(THY′).
The overhead of embedding terms into the monotonic fragment of the underlying

theory is exponential in the worst case. I nevertheless expect that the actual overhead
is acceptable in a wide range of practical applications for the following reasons:

81

3. Event-B's Theories

• The embedding into the monotonic fragment, in particular the procedure in
the proof of Proposition 3.22, has much in common with the problem of un-
lifting, which I examine in Section 5.2; the optimizations for unlifting can be
straightforwardly adopted to the embedding into the monotonic fragment.

• Since the proof obligations associated with de�nitional extensions are usually
rather small, an exponential blow-up is often acceptable. This is also supported
by the fact that de�nitional extensions are one-time investments.

That said, the examinations of this section show that supporting only monotonic
symbols has a price, both in terms of computational complexity (at least from a
theoretical perspective) and in terms of intricacy of the required algorithms.

3.3. Derived Theories

This section concludes the development of Event-B's main theory. I de�ne the re-
maining operators available in Rodin based on the theory Core, using the de�nitional
theory extension methods of the preceding section. I have developed standard mod-
els for the theories developed in this section, i.e., models that de�nitionally extend
the standard model of the theory Core. These standard models can be found in
[Schmalz]. Since it is known that standard models exist and are uniquely deter-
mined (cf. Section 3.2), I refrain from de�ning these models explicitly within this
document.
All operators and binders introduced in this section are proved to be monotonic.

Proof obligations that can be discharged by Propositions 3.12, 3.14, 3.17, or 3.18 are
omitted. I have proved the remaining proof obligations by using Isabelle/HOL.

3.3.1. The Theory Bool

The theory Bool de�nitionally extends Set0 with the following derived operators
related to the booleans:

BOOL ≡ {x ◦◦ B | >},
bool(x) ≡ x,

TRUE ≡ >,
FALSE ≡ ⊥.

The operators bool, TRUE, and FALSE are redundant in the setting of this docu-
ment. I have included them for compatibility with Rodin; in Rodin these operators
are required because of the distinction between �predicates� and �expressions� (cf.
Section 2.4).

82

3.3. Derived Theories

3.3.2. The Theory Set

The theory Set de�nitionally extends Set0. It introduces the following operators by
strict operator de�nitions:

x /∈ R v ¬(x ∈ R),

R ⊆ S v ∀x · x ∈ R⇒ x ∈ S,
R * S v ¬R ⊆ S,
R ⊂ S v R ⊆ S ∧ ¬S ⊆ R,
R 6⊂ S v ¬R ⊂ S,
∅ v {x | ⊥},
R ∪ S v {x | x ∈ R ∨ x ∈ S},
R ∩ S v {x | x ∈ R ∧ x ∈ S},
R \ S v {x | x ∈ R ∧ x /∈ S},
P(R) v {S | S ⊆ R},
P1(R) v {S | S 6= ∅ ∧ S ⊆ R},
union(R) v {x | ∃S · S ∈ R ∧ x ∈ S},
inter(R) v {x | ∀S · S ∈ R⇒ x ∈ S}

with D(inter(R)) ≡ R 6= ∅.5

The theory Set also introduces several in�nite families of operators and binders,
which intuitively represent operators that take an arbitrary number of arguments or
binders that bind an arbitrary number of variables.

{x · $ϕ(x) | $f(x)} ≡ if ∀x · D($ϕ(x)) ∧ ($ϕ(x)⇒ D($f(x)))

then {z | ∃x · $ϕ(x) ∧ z = $f(x)}
else •,
where z does not appear in x, and |x| ≥ 1,

{ } v ∅,
{x} v {y | y = x1 ∨ · · · ∨ y = x|x|}, (|x| ≥ 1),⋃
x · $ϕ(x) | $R(x) ≡ union({x · $ϕ(x) | $R(x)}), (|x| ≥ 1),⋂
x · $ϕ(x) | $R(x) ≡ inter({x · $ϕ(x) | $R(x)}), (|x| ≥ 1),

partition(R) v R = ∅,
5The empty set has been excluded from the domain of inter because {x | >} is not a legal term of
Zermelo-Fraenkel set theory. Given that Event-B has a Hindley-Milner style type system (like
higher-order logic and unlike Zermelo-Fraenkel set theory), it would be more natural to de�ne
inter(∅) to be {x | >}.

83

3. Event-B's Theories

partition(R,S) v S = R,

partition(R,S1, . . . , Sn) v S1 ∪ · · · ∪ Sn = R ∧
S1 ∩ S2 = ∅ ∧ · · · ∧ S1 ∩ Sn = ∅ ∧
S2 ∩ S3 = ∅ ∧ · · · ∧ S2 ∩ Sn = ∅ ∧
. . . ∧
Sn−1 ∩ Sn = ∅.

It is straightforward to prove the following semantic properties of the set compre-
hension binder {x · _ | _}:

Lemma 3.24. Set comprehension is de�nite and monotonic with respect to the stan-
dard model of Set.

Concrete Syntax. Event-B's concrete syntax o�ers alternative notations for the
binders introduced by Set:

Concrete Syntax Abstract Syntax

{t | ϕ} {x · ϕ | t}⋃
t | ϕ

⋃
x · ϕ | t⋂

t | ϕ
⋂
x · ϕ | t

Here, the sequence x is nonempty, has pairwise distinct elements, and contains ex-
actly the free variables of t. Note that the notation {x | ϕ} is ambiguous, as it stands
both for (collect x · ϕ) and {x · ϕ | x}. This ambiguity is harmless, as (collect x · ϕ)
and {x · ϕ | x} are equivalent with respect to every model of Set.

3.3.3. The Theory Rel

The theory Rel de�nitionally extends Choice ∪ Set ∪ Prod by several operator def-
initions concerning relations, i.e., terms of type P(ν ? µ). Variables ranging over
relations are denoted by r and s.
The following operators of Rel determine common properties of relations:

dom(r) v {x | ∃y · x 7→ y ∈ r},
ran(r) v {y | ∃x · x 7→ y ∈ r},
total†(r,R) v R ⊆ dom(r),

surjective†(r,R) v R ⊆ ran(r),

functional†(r) v ∀x, y1, y2 · x 7→ y1 ∈ r ∧ x 7→ y2 ∈ r⇒ y1 = y2,

injective†(r) v ∀x1, x2, y · x1 7→ y ∈ r ∧ x2 7→ y ∈ r⇒ x1 = x2.

84

3.3. Derived Theories

The theory Rel introduces operators determining the relational and functional
images of relations:

relimg(r,R) v {y | ∃x · x ∈ R ∧ x 7→ y ∈ r},
funimg(r, x) v some y · y ∈ relimg(r, {x})

with D(funimg(r, x)) ≡ functional(r) ∧ x ∈ dom(r).

The de�nition of funimg gives rise to a non-trivial proof obligation, which I have
proved using Isabelle/HOL. In concrete syntax, relimg(t, u) is denoted by t[u] and
funimg(t, u) by t(u).
The following operators of Rel create or modify relations:

R× S v {x 7→ y | x ∈ R ∧ y ∈ S},
id v {x 7→ x | >},
prj1 v {(x1 7→ x2) 7→ x1 | >},
prj2 v {(x1 7→ x2) 7→ x2 | >},
r∼ 6 v {y 7→ x | x 7→ y ∈ r},
r ; s v {x 7→ z | ∃y · x 7→ y ∈ r ∧ y 7→ z ∈ s},
s ◦ r v r ; s,

RC r v {x 7→ y | x 7→ y ∈ r ∧ x ∈ R},
RC− r v {x 7→ y | x 7→ y ∈ r ∧ x /∈ R},
r BR v {x 7→ y | x 7→ y ∈ r ∧ y ∈ R},
r B−R v {x 7→ y | x 7→ y ∈ r ∧ y /∈ R},
r C− s v (dom(s)C− r) ∪ s,
r ⊗ s v {x 7→ (y 7→ z) | x 7→ y ∈ r ∧ x 7→ z ∈ s},
r ‖ s v {(x1 7→ y1) 7→ (x2 7→ y2) | x1 7→ x2 ∈ r ∧ y1 7→ y2 ∈ s}.

Finally, Rel introduces operators that generate sets of relations:

R↔ S v P(R× S),

R←↔ S v {r | r ∈ R↔ S ∧ total(r,R)},
R↔→ S v {r | r ∈ R↔ S ∧ surjective(r, S)},
R↔↔ S v {r | r ∈ R↔ S ∧ total(r,R) ∧ surjective(r, S)},
R 7→ S v {r | r ∈ R↔ S ∧ functional(r)},
R→ S v {r | r ∈ R↔ S ∧ functional(r) ∧ total(r,R)},

6Some authors [e.g. Abrial, 2010] write r−1 instead of r∼. Rodin uses the notation r∼.

85

3. Event-B's Theories

R 7� S v {r | r ∈ R↔ S ∧ functional(r) ∧ injective(r)},
R� S v {r | r ∈ R↔ S ∧ functional(r) ∧ injective(r) ∧ total(r,R)},
R 7� S v {r | r ∈ R↔ S ∧ functional(r) ∧ surjective(r, S)},
R� S v {r | r ∈ R↔ S ∧ functional(r) ∧ total(r,R) ∧ surjective(r, S)},
R�� S v {r | r ∈ R↔ S ∧ functional(r) ∧ injective(r) ∧

total(r,R) ∧ surjective(r, S)}.

Lambda Abstractions. Event-B's lambda abstraction (λt · ϕ | u) is a construct of
concrete syntax: (λt · ϕ | u) is a short-hand for {x · ϕ | t 7→ u}, where x contains
exactly the free variables of t and has pairwise distinct elements. The term t has
to be built from pairwise distinct ordinary variables and the pair operator 7→ [p. 14
Metayer and Voisin, 2009].

3.3.4. The Theory Int

The theory Int de�nitionally extends Int0 ∪ Rel with derived operators related to
the integers. The de�nitions of this section give rise to several non-trivial proof
obligations, which I have proved using Isabelle/HOL.
To begin with, Int introduces several variants of ≤:

x ≥ y v y ≤ x,
x < y v x ≤ y ∧ x 6= y,

x > y v y < x.

Next, Int introduces numerals such as 2, 3, 4:

2 v 1 + 1,

3 v 2 + 1,

4 v 3 + 1,

. . .

The theory Int also includes the following operators:

Z v {x ◦◦ Z | >},
N v {x | x ≥ 0},
N1 v {x | x > 0},
x .. z v {y | x ≤ y ∧ y ≤ z},
x− y v x+ (−y),

86

3.3. Derived Theories

succ v {x 7→ x+ 1 | >},
pred v succ∼.

The above operators are used to express the induction rule

` 0 ∈ $R ` succ[$R] ⊆ $R

` N ⊆ $R
Induction.

Maximum is de�ned by

max(R) v −min({x | −x ∈ R})
with D(max(R)) ≡ R 6= ∅ ∧ (∃b · ∀y · y ∈ R⇒ y ≤ b),

and division and modulo by

x÷ y7 v if x ≥ 0⇔ y ≥ 0

then max({z | if x ≥ 0 then y ∗ z ≤ x else y ∗ z ≥ x})
else min({z | if x ≥ 0 then y ∗ z ≤ x else y ∗ z ≥ x})

with D(x÷ y) ≡ y 6= 0,

x mod y v some z · y ∗ (x÷ y) + z = x

with D(x mod y) ≡ x ≥ 0 ∧ y > 0.

Remark 3.25. Some readers may wonder why division and modulo have di�erent
domains. The domains used to be the same in earlier Rodin versions, i.e., D(x
mod y) ≡ y 6= 0 was sound. However, Rodin's ML prover, which has originally been
designed for classical B, is possibly unsound with respect to this ancient semantics
of modulo. To ensure soundness of ML, the Rodin developers restricted the domain
of modulo to the one of classical B. Note that the document by Metayer and Voisin
[2009] incorrectly gives the ancient domain of modulo.

For the sake of illustration, Int includes the following rules about division and
modulo:

` $x mod $y ∈ 0 .. $y − 1
mod_range,

(−$x)÷ $y ≡ −($x÷ $y) div_sign1,

7Abrial [2010, p. 333] postulates that c = a÷b can be rewritten to ∃r · (r ∈ N∧r < b∧a = c∗b+r).
I do not adopt his postulate because it cannot be transformed into a sound directed rewrite rule,
at least if the integers are interpreted according to their standard semantics. To see the problem,
instantiate b with −1.

87

3. Event-B's Theories

$x÷ (−$y) ≡ −($x÷ $y) div_sign2.

Exponentiation is de�ned by

x ̂ y v
(

some r · r ∈ N→ Z ∧ r(0) = 1∧(
∀z · z ∈ N⇒ r(z + 1) = x ∗ r(z)

))
(y)

with D(x ̂ y) ≡ x ≥ 0 ∧ y ≥ 0.

To clarify the de�nition of exponentiation, I include the following rules into Int8:

$x ̂ 0 v 1 expn_base,
` $x ̂ ($y + 1) = ($x ̂ $y) ∗ $x

expn_step.

Finally, Int provides the operators

finite(R) v (∃x · R�� 1 .. x 6= ∅),

card(R) v some x · x ∈ N ∧R�� 1 .. x 6= ∅
with D(card(R)) ≡ finite(R).

3.3.5. The Theory EventB

Event-B's main theory EventB results from merging Bool and Int, and includes all
symbols supported by Rodin. It is straightforward to merge the standard models of
Bool and Int to a model of EventB that de�nitionally extends EB_Core; I call it the
standard model of EventB.

3.4. Comparison to Other Expositions on Event-B's Logic

Mehta [2008] carefully describes the untyped �rst-order fragment of Event-B's logic,
which essentially covers the monotonic fragment of Log without boolean variables
and with exactly one non-boolean type. The starting point of Mehta's presentation
is classical �rst-order logic. He introduces a syntactic transformation D that maps
every term to a formula; the term t is said to be well-de�ned i� D(t) is valid. So well-
de�nedness is handled in an additional layer on top of classical �rst-order logic. In a
last step, Mehta introduces a non-classical notion of sequent as well as corresponding

8Abrial [2010, p. 332] postulates ∀a · a ̂ 0 = succ(0) and ∀a, b · a ̂ succ(b) = (a ̂ b) ∗ a. I have
not adopted these postulates, because they are invalid if the integers are interpreted according
to their standard semantics. To see the problem, instantiate a with 0 and b with −1.

88

3.4. Comparison to Other Expositions on Event-B's Logic

inference rules, which he proves to be sound by an embedding into classical �rst-order
logic.
My presentation di�ers from Mehta's by making partial functions and the well-

de�nedness operator D a genuine part of the logic. Mehta's non-classical sequents
coincide with the sequents of this document (interpreted in the SW-semantics), and
Mehta's inference rules are in fact contained in Log. Mehta therefore describes the
same notion of validity as this document, restricted to a fragment of Event-B's logic
and using an alternative presentation.
The document by Metayer and Voisin [2009] introduces (a slightly outdated ver-

sion of) Event-B's concrete syntax and moreover seems to de�ne the domains of the
various operators and binders. For some operators and binders however, this doc-
ument merely de�nes approximations of their domains, as has been decided during
a meeting of the Deploy project [telcoWD]. This concerns the operators ∧, ∨ and
⇒, and the binders ∀ and ∃. The actual domains are de�ned in [Mehta, 2008] (and
therefore also in this thesis). The underlying approximation technique is elaborated
in Section 4.3. Except for the domain of modulo (see Remark 3.25), the domains ac-
cording to the standard model of EventB coincide with the domains given in [Metayer
and Voisin, 2009].
The book by Abrial [2010] provides an introduction to Event-B for Rodin users

without giving the foundations of the logic. On the one hand, Abrial's �mathematical
language� covers most operators and binder supported by Rodin and has therefore
been useful in providing a �rst idea of the intended semantics. On the other hand,
Abrial omits important aspects of the logic, including types and the treatment of
partial functions. If the given information is taken literally, Abrial de�nes Event-B's
logic as a version of naive set theory, which is known to be inconsistent. On an in-
formal level, the version of Event-B's �mathematical language� illustrated in Abrial's
book has many similarities with the logic of Event-B de�ned in this document. On
a formal level, it is hard to establish a precise connection.

89

4. Impact of Design Decisions

The focus so far has been on the question of what the logic underlying Event-B is.
Various design decisions, typically related to partial functions, have been made with-
out explaining the underlying reasons (or lack thereof). There is often no agreement
in the literature on which choice is �best� simply because di�erent authors have dif-
ferent applications in mind. In this chapter, I step back and analyze the impact of
the design decisions made during the evolution of Event-B's logic.
I start by evaluating the impact of directed rewriting (Section 4.1). Section 4.2

gives an overview of the main design decisions and points out several dependencies.
One decision concerns the semantics of boolean connectives, and universal and exis-
tential quanti�ers; Rodin implements an intricate solution that has often been mis-
understood and is not documented elsewhere1. This issue is handled in Section 4.3.
Finally, I compare Event-B's approach to partial functions to other approaches in
the literature (Section 4.4).

4.1. Directed Rewriting

Recall that the directed rewrite rule t v u is sound i� the corresponding symmetric
rewrite rule

D(t)

t ≡ u

is sound. The advantage of directed rewriting over symmetric rewriting is that fewer
well-de�nedness conditions (namely D(t) in the example) need to be checked during
proofs.
There is of course no advantage if t ≡ u is sound. I therefore de�ne the notion of

a truly directed rewrite rule: a directed rewrite rule

ϕ

t v u
r

is truly directed i� r is sound and

ϕ

t ≡ u
r′

is unsound.
1That said, some readers may recognize that the underlying technique originates from classical B
[Abrial and Mussat, 2002].

91

4. Impact of Design Decisions

Table 4.1.: Statistics on truly directed rewrite rules in Rodin

truly directed symmetric total

unconditional 165 288 453

conditional 42 11 53

total 207 299 506

Examples of truly directed rewrite rules include:

$x ∈ ∅ v ⊥, (4.1)

$x ∈ $R ∩ $S v $x ∈ $R ∧ $x ∈ $S, (4.2)

0 ∈ {x | $ϕ(x)} v $ϕ(0), (4.3)

$x mod $x v 0. (4.4)

Each of these rules points to an entire class of truly directed rules:

• The rule (4.1) is built from strict and de�nite operators and binders and its left-
hand side contains an operator variable that is not contained in its right-hand
side.

• The rule (4.2) is an example of a rule with a �mismatch� between strict (∩)
and lazy (∧) operators.

• The rule (4.3) is truly directed due to the smashedness of an involved binder.

• The rule (4.4) is an example of a rule with a partial operator on the left-hand
side.

This gives the impression that truly directed rules are quite common.
To substantiate this impression, I have analyzed the rewrite rules available in

Rodin. New rules for Rodin's term rewriter are chosen and implemented based on
the requests of Rodin users. The set of available rules therefore re�ects which rules
are important in common applications of Event-B. The details of the analysis can be
found in Appendix A, and a summary is given in Table 4.1.
Overall, 36% of Rodin's unconditional rewrite rules and 79% of Rodin's conditional

rewrite rules are truly directed. Thus, in a signi�cant number of cases, directed
rewriting makes conditional rewrite rules unconditional or makes the condition of a
rewrite rule easier to solve. I therefore conclude that directed rewriting constitutes
an important optimization of Rodin's term rewriter.
The reader may have the impression that directed rewriting mainly compensates

for problems introduced by the fact that Event-B's logic explicitly supports partial
functions. But this is not entirely true. In logics with only total functions it is quite

92

4.1. Directed Rewriting

common to approximate partial functions by underspeci�ed total functions. In such
a logic, x mod 0 denotes an unspeci�ed integer. Therefore x mod x is equivalent
to 0 only if x 6= 0. In Event-B, the condition x 6= 0 can be avoided by restating
the rule as $x mod $x v 0. Thus, directed rewriting not only compensates for
problems introduced by explicit partiality, but also makes rules unconditional that
are commonly conditional in logics of total functions. Rodin implements 35 such
rules.

Safety. It is highly desirable that automated proof tactics are safe, i.e., they never
transform a valid sequent into an invalid one during a backwards proof. Unsafe
tactics need to be applied with care because they may drive the proof attempt into
a dead end. Directed rewriting is unsafe in general, as the rule $x mod $x v 0
transforms the valid sequent ` 0 mod 0 = 1 into the invalid sequent ` 0 = 1. It is
however quite di�cult to reproduce such an unsafe behavior of directed rewriting in
Rodin; the question is therefore under which preconditions directed rewriting is safe.
It su�ces to consider the case of unconditional rewrite rules, because it makes sense
to assume that conditional rules are applied only if their conditions can be solved.
Recall that sequents are interpreted in SW-semantics by default, and �valid� is

consequently short for SW-valid. For the purposes of this section, it is necessary to
recall WS-semantics. A tactic is WS-safe i� it never transforms a WS-valid sequent
into a WS-invalid one during a backwards proof. Unconditional directed rewriting is
not SW-safe, but it is WS-safe.
From this observation, it can be derived that directed rewriting is safe under

certain preconditions.

Theorem 4.1. Assume that directed rewriting is only applied to sequents Γ such that

Γ is SW-valid implies that Γ is WS-valid. (4.5)

Then, directed rewriting is safe.

Proof. Suppose the sequent under consideration is SW-valid. By assumption, it is
WS-valid as well. Hence, the result of directed rewriting is WS-valid. As WS-validity
implies SW-validity, the result of directed rewriting is SW-valid.

How strong is Condition (4.5) of Theorem 4.1? I separately address the questions
of how it can be established for proof obligations and how it can be preserved for
intermediate sequents of a proof.
Note that Condition (4.5) is satis�ed by sequents of the form

D(ψ1), . . . ,D(ψ|ψ|),D(ϕ),ψ ` ϕ.

Adding the well-de�nedness conditions D(ψi), for 1 ≤ i ≤
∣∣ψ∣∣, or D(ϕ) to the sequent

ψ ` ϕ is sound. Thus, Condition (4.5) can be established for proof obligations by a
slight modi�cation of Rodin's proof obligation generator.

93

4. Impact of Design Decisions

Next, note that (4.5) is preserved by WS-safe tactics. In particular, it is preserved
by unconditional directed and symmetric rewriting. Inference rules are not WS-safe
in general. Clearly, an unsafe inference rule such as cut is not WS-safe either. If the
user applies unsafe inference rules, directed rewriting subsequently becomes unsafe
as well; I do not view this as a problem, as the user should anyway be careful when
applying unsafe rules like cut.
Inference rules can also be safe and WS-unsafe:

` •
` >

.

But it is always possible to transform (in a soundness preserving manner) a safe
inference rule into a WS-safe one by adding well-de�nedness conditions to the an-
tecedents. Such a transformation is actually unnecessary for the inference rules
available in Rodin: by inspecting the list of available rules2, I have observed that
every safe inference rule of Rodin is WS-safe as well. So Condition (4.5) is preserved
if the user sticks to applying rewrite rules and safe inference rules.
In summary, directed rewriting is unsafe in general; but after slight modi�cations

of the proof obligation generator and the available inference rules, directed rewriting
is safe whenever only safe inference rules are applied within proofs. For Rodin,
modi�cations of the proof calculus are unnecessary.

4.2. Dependencies Between Design Decisions

Figure 4.1 illustrates the high-level structure of the dependencies between features
of Event-B's logic. In the following, I address them one by one.

Directed Rewriting. Directed rewriting has strongly in�uenced the design of Event-
B's logic. Soundness of directed rewriting rests on the assumption that sequents are
interpreted in SW-semantics, and only the arguments of monotonic operators and
binders may be rewritten.

SW-Semantics. If sequents are not interpreted in SW-semantics, applying directed
rewrite rules to the hypotheses or the goal of a sequent is unsound. Hence, SW-
semantics is a precondition of directed rewriting. As pointed out in Section 2.3.1,
there is no agreement in the literature on which sequent semantics is �best�. I view
directed rewriting as a novel argument in favor of SW-semantics.

Monotonicity. Monotonicity refers to the fact that Rodin supports only the mono-
tonic fragment of a given theory. If non-monotonic symbols are made available,
directed rewriting still remains sound in the monotonic fragment. So by admitting

2Statements about the rules available in Rodin refer to the rules published in http://wiki.

event-b.org on April 5, 2011. Appendix A gives more details.

94

http://wiki.event-b.org
http://wiki.event-b.org

4.2. Dependencies Between Design Decisions

Directed Rewriting Unlifting

Monotonicity SW-Semantics

D-de�nability

Strictness

Well-De�ned Free VariablesFlat Types

A solid arrow from P to Q indicates that Q is necessary to establish P. A dashed
arrow from P to Q indicates that Q is helpful to establish P.

Figure 4.1.: Dependencies between features of Event-B's logic

non-monotonic symbols, the applicability of directed rewriting is not restricted. A
monotonicity postulate simpli�es the implementation of rewriting, as there is no
need to implement a symmetric rewriting engine to cope with non-monotonic sym-
bols. But directed rewriting can very well coexist with non-monotonic symbols.

Unlifting. Although Event-B's logic features explicit partial functions, Rodin has
always been connected to theorem provers that do not. Rodin therefore implements
an embedding, called unlifting, from Event-B's logic of partial functions into the frag-
ment of Event-B's logic that supports only total functions. Algorithms for unlifting
have been proposed in several contexts [see e.g. Abrial and Mussat, 2002, Berezin
et al., 2005, Darvas et al., 2008, Woodcock et al., 2009]. In Section 5.2, I describe
my implementation of unlifting for Event-B.

Strictness. An important subproblem of unlifting is to eliminate D from well-
de�nedness conditions D(t). Strict operators f are convenient in this respect, be-
cause D(f($x)) is equivalent to D($x1) ∧ · · · ∧ D($x|$x|); so D can be eliminated
from D(f($x)) without substantially increasing the size of the formula.
Using the example of intersection, I will illustrate the �price� of making strict

operators lazy. Consider the intersection ∩ll that is lazy in both arguments:

$R ∩ll $S ≡ {x | x ∈ $R ∧ x ∈ $S}.

It deviates from the usual strict intersection by the fact that

D($R ∩ll $S) ≡ (D($R) ∧ D($S)) ∨ (D($R) ∧ $R = ∅) ∨ (D($S) ∧ $S = ∅) (4.6)

95

4. Impact of Design Decisions

is sound. If the rule (4.6) is used for unlifting, occurrences of ∩ll contribute to an
exponential blowup.
Alternatively, one could introduce a version of intersection ∩sl that is strict in its

�rst and lazy in its second argument. Thus, the rule

D($R ∩sl $S) ≡ D($R) ∧ ($R 6= ∅⇒ D($S)) (4.7)

is sound. If the rule (4.7) is used for unlifting, occurrences of ∩sl contribute to a
quadratic blowup.
For the (lazy) operators ∧, ∨, and⇒, a method is known that limits the exponen-

tial blowup that arises in a naive implementation of unlifting [Darvas et al., 2008].
This method can possibly be adopted to other lazy operators as well. Yet, a simpler
measure against blowups during unlifting is to de�ne as many operators as possible
to be strict.

D-de�nability. The term D-de�nability stands for the fact that D is de�nable in
the underlying set of available terms. Proposition 3.22 points out that D-de�nability
holds for the monotonic fragment of every theory derived from Core with the exten-
sion methods of Section 3.2, and therefore for the set of terms supported by Rodin.
Well-de�nedness conditions D(t) naturally arise during proofs: consider the rules

cut and allL of the theory Log. Yet, Rodin does not explicitly support the operator
D. This problem is solved with the machinery in Section 3.2.4, which rests on D-
de�nability.
The unlifting algorithms known to me require D-de�nability as well. This is not

surprising, as it is unclear how to unlift the formula D(f(t)), if the domain of f is
unknown. It should be noted that D-de�nability can often be achieved by applying
the following receipt: �If D cannot be eliminated from a formula D(t), then give it a
new name.�

Flat Types. As pointed out in Section 2.2, Event-B's types are interpreted in a �at
way. For example, if t is of type P(α), its denotation is of type (α ⇒ bool)↑ and
not of type α ⇒ bool↑ or α↑ ⇒ bool↑. Non-�at interpretations of types make it
more complicated to achieve D-de�nability. For the sake of illustration, consider a
non-�at function variable f whose denotation is of type ν ⇒ µ↑. If the domain of f
is unknown, it is impossible to eliminate D from terms like D(f(x)).
In practice, this di�culty can be overcome to some extent. The trick is to exclude

non-�at functions (with unknown domains) from the logic and to use total functions
over restricted (and de�nable) domains instead. The formula D(f(x)) is then equiva-
lent to x ∈ DOMf , where DOMf is the term de�ning the domain of f . PVS [Owre
and Shankar, 1999] employs such an approach.

Well-De�ned Free Variables. The free variables supported by Rodin are always
well-de�ned, since ordinary variables are well-de�ned and operator variables are not
available. This is helpful for D-de�nability, because �problematic� formulae like

96

4.3. Kleene versus McCarthy Semantics

D($x) do not arise. That said, Theorem 3.23 shows how to recover D-de�nability in
the presence of operator variables.
As an aside, the reader may wonder why Event-B's bound variables may not be

ill-de�ned. Well-de�nedness of bound variables follows from a restriction on the
types that the denotations of binders may inhabit. In a more liberal approach, some
binders would range over ill-de�ned variables as well. As an example, consider a
universal quanti�er ∀′ whose denotation is of type (α↑ ⇒ bool↑)⇒ bool↑:

∀′$x · $ϕ($x) ≡ (∀x · $ϕ(x)) ∧ $ϕ(•).

Apart from reduced implementation e�ort, it does not seem bene�cial to exclude
such binders from the logic.

Summary. Directed rewriting and unlifting have motivated several limitations of
Rodin's implementation of Event-B's logic. Most of these limitations simplify the
implementation but are not strictly required for directed rewriting and unlifting.
In Section 3.2.4, I explain how to overcome one of these limitations, namely the
convention that free variables are well-de�ned. It seems possible to overcome further
limitations, but the technical details still need to be worked out.

4.3. Kleene versus McCarthy Semantics

The semantics of disjunction (and correspondingly conjunction and implication) has
been discussed at length. Opponents of Kleene disjunction ∨ (as adopted by Event-
B's logic) usually favor McCarthy disjunction ∨MC de�ned by

$ϕ ∨MC $ψ ≡ if $ϕ then > else $ψ.

The McCarthy disjunction is strict in its �rst and lazy in its second argument.
Concerning the quanti�ers ∀ and ∃, Event-B's logic adopts Kleene quanti�ers; the
McCarthy versions of ∀ and ∃ are smashed.
As the main argument in favor of McCarthy disjunction, McCarthy [1963] himself

stresses its intuitive operational interpretation; indeed, McCarthy disjunction closely
resembles the disjunction provided by Ada, C, Java, and several other programming
languages.
Another argument in favor of McCarthy disjunction [pointed out by Abrial and

Mussat, 2002, Rushby et al., 1998] is that it allows for a more e�cient implementation
of unlifting. This argument is inspired by the observation that the rule

D($ϕ ∨MC $ψ) ≡ D($ϕ) ∨ (¬$ϕ⇒ D($ψ)) (4.8)

leads to a polynomial blowup during unlifting, whereas the corresponding rule for
the Kleene disjunction

D($ϕ ∨ $ψ) ≡ (D($ϕ) ∨ D($ψ)) ∨ (D($ϕ) ∨ $ϕ) ∨ (D($ψ) ∨ $ψ) (4.9)

97

4. Impact of Design Decisions

leads to an exponential blowup. In my view, this e�ciency argument has become
outdated: Darvas et al. [2008] have recently developed an unlifting technique that
avoids using the rule (4.9). The complexity of this unlifting technique is still expo-
nential in the worst case; but I will show in Section 5.2.2 that the complexity is linear
except in corner cases and substantiate this observation with empirical results. With
McCarthy disjunction on the other hand, unlifting leads to a quadratic blow-up even
in common cases such as iterated disjunctions.
One argument in favor of Kleene disjunction is that it makes the formula

x mod 2 = 2 ∨ (−x) mod 2 = 2 (4.10)

valid, whereas the corresponding formula

x mod 2 = 2 ∨MC (−x) mod 2 = 2

is not3. Validity of the latter formula cannot be recovered by reordering disjuncts.
As supporters of McCarthy disjunction, Shankar and Owre [1999] object that �In
practice, we have yet to encounter a need for this kind of expressiveness�.
Another argument in favor of Kleene disjunction [given by Cheng and Jones, 1990,

Darvas et al., 2008, Jones, 2006] is commutativity; note that the McCarthy disjunc-
tion fails to be commutative. Although this argument has strongly in�uenced the
decision for Kleene semantics in the implementation of Event-B's logic, commutativ-
ity rules for conjunction or disjunction have never been implemented. To understand
the real bene�ts of commutativity, I have analyzed the rules implemented by Rodin.
Interestingly, only two of these rules would become unsound if symbols were inter-
preted in McCarthy semantics instead of Kleene semantics, namely:

$ϕ⇒ $ψ v ¬$ψ⇒¬$ϕ, ($ϕ1∨$ϕ2)⇒$ψ v ($ϕ1⇒$ψ)∧($ϕ2⇒$ψ).

In turn, some other rules have preconditions that could be dispensed with if the
involved symbols were interpreted in McCarthy semantics:

D($y)

∀x · x = $y⇒ $ϕ(x) v $ϕ($y)
,

D($y)

∃x · x = $y ∧ $ϕ(x) v $ϕ($y)
.

I therefore view the positive impact of Kleene semantics on Rodin's proof calculus
as rather small.
Rodin implements a sophisticated approximation technique that aims to combine

the bene�ts of Kleene and McCarthy semantics. By default, symbols are inter-
preted according to Kleene semantics. A well-de�nedness condition D(t) is however
approximated by D(t′), where t′ results from replacing Kleene symbols by the corre-
sponding McCarthy symbols (e.g., ∨ by ∨MC). This approximation is sound for two

3This example has originally been stated using subtraction restricted to the natural numbers and
goes back to Jones [2006].

98

4.4. Alternative Approaches to Partial Functions

reasons. First, D(t′) implies D(t), because Rodin supports only monotonic symbols
and McCarthy semantics imposes smaller domains than Kleene semantics. Second,
well-de�nedness conditions in Rodin arise only in goals of sequents, and it is sound
to strengthen the goal of the sequent to be proved.
This approximation technique has several consequences:

1. Boolean connectives in Event-B components (contexts or machines) are e�ec-
tively interpreted in McCarthy semantics and therefore closely correspond to
their counterparts in several programming languages.

2. Unlifting has polynomial runtime.

3. Within proofs, conjunction and disjunction are commutative, and the contra-
position law is sound; but only the contraposition law has been implemented.

4. Within Event-B components, conjunction and disjunction are not commuta-
tive. The contraposition law does not hold either.

5. The approximation prevents users from introducing the commutativity rules
for conjunction and disjunction with Rodin's rule de�nition facilities.

6. The approximation prevents users from proving theorems such as (4.10).

7. The approximation has prevented the implementation of the rules DL and DR

(of Min), which makes the resulting proof calculus incomplete.

8. The approximation is complicated, has consequently confused Rodin develop-
ers, and has caused at least one soundness bug [Schmalz, 2012].

The current solution has the advantages of McCarthy semantics (Points 1 and 2), it
does not exploit (Point 3) or not have (Points 4 - 6) the advantages of Kleene seman-
tics, and it has additional disadvantages (Point 7 - 8). It is therefore unclear why
the current solution should be preferred over interpreting all symbols in McCarthy
semantics.

4.4. Alternative Approaches to Partial Functions

There are numerous ways of modeling partial functions; Abrial and Mussat [2002],
Cheng and Jones [1990], Farmer [1990], Jones [2006] and Müller and Slind [1997]
provide comparisons between various approaches preceding Event-B. The purpose of
this section is to compare Event-B with some of these approaches; because of the
number of approaches that have been proposed, this comparison cannot be complete.
For uniformity, examples are given in the notation of Event-B or HOL.

99

4. Impact of Design Decisions

PVS. PVS (the �prototype veri�cation system�) [Owre et al., 1992] models partial
functions as total functions over restricted domains. These domains are formalized
with a sophisticated type system that supports predicate subtypes and dependent
types [Rushby et al., 1998, Shankar and Owre, 1999]. If well-de�nedness in Event-B is
identi�ed with type-correctness in PVS, the operators and binders of PVS are mono-
tonic, types are �at, variables are well-de�ned, and sequents have SW-semantics.
Unlike in Event-B, the boolean connectives are interpreted in McCarthy semantics,
and quanti�ers are smashed.
Overall, I view my presentation of Event-B's logic as more lightweight than the

semantics speci�cation by Owre and Shankar [1999]. One reason for the heaviness of
the PVS semantics speci�cation is the decision to interpret PVS terms in a restricted
version of Zermelo-Fraenkel set theory instead of a typed logic. Another reason is
that PVS has features (such as type judgements) that are not available in Event-B.
PVS provides similar methods as Event-B for de�ning new operators and binders,

which are viewed as constants of appropriate higher-order types. Methods for intro-
ducing new inference rules seem not to be available.
I am not aware of a paper explaining the foundations of term rewriting in PVS;

the following considerations are therefore based on the prover guide [Shankar et al.,
2001] and experimentation. PVS implements a number of directed rewrite rules; an
example is 0 ∗ $x v 0 [Shankar et al., 2001, p. 86]. The semantics speci�cation of
PVS [Owre and Shankar, 1999] does not provide an explanation why this kind of
rewriting is sound; but the results of this document on soundness (Section 2.3.2.3)
and safety (Section 4.1) apply to PVS as well.
It is possible to declare conditional equalities ϕ⇒ t = u as rewrite rules. This

method for introducing new rewrite rules is however substantially weaker than the
corresponding method in Event-B, for two reasons. First, PVS does not support
an analog to Event-B's congruence method for binders (cf. De�nition 2.16). That
prevents users from applying the rule x ∈ ∅ ≡ ⊥ to ∀x · x ∈ ∅. Second, PVS
uses ordinary variables as place-holders that are instantiated when rewrite rules
are matched. These variables can only be instantiated with type-correct terms,
and the type-correctness needs to be checked whenever the rule is instantiated. In
comparison to Event-B, the method for introducing new rewrite rules is simpler,
because constructions such as in Section 3.2.4 can be avoided; the price is an increased
e�ort (in terms of type-correctness checks) when applying user supplied rewrite rules
during proofs.

LPF. LPF (the �logic of partial functions�) by Barringer et al. [1984], and Jones
and Middelburg [1994] is the logic underlying VDM, which has been implemented
in, e.g., the Mural system [Jones et al., 1991]. As in Event-B, functions in LPF
may be partial, i.e., they may fail to yield a result for certain arguments. The logic
correspondingly provides unde�ned (i.e., ill-de�ned) terms. Variables in LPF range
over de�ned values, non-monotonic operators are available, and boolean connectives
and quanti�ers are interpreted in Kleene semantics.

100

4.4. Alternative Approaches to Partial Functions

Terms in LPF are a priori untyped, i.e., ∅+ 0 is considered a legal term; LPF still
provides (�at) types, including predicate subtypes, and type-correctness of terms
may be proved separately. In particular, it cannot be proved that ∅+ 0 inhabits one
of LPF's types. Unlike in Event-B, sets in LPF are always �nite.
LPF interprets sequents in SS-semantics. It is consequently sound to apply di-

rected rewrite rules to hypotheses, as long as only the arguments of monotonic op-
erators and binders are rewritten; but it is unsound to apply directed rewrite rules
to goals. In fact, Dawson [1998] already proposes a version of unconditional directed
rewriting for quanti�er free LPF; I complement his work by providing evidence that
directed rewriting is relevant in practice and by my results on safety.
LPF employs a method for de�ning (recursive) functions, but it seems not to

provide ways for de�ning new binders or introducing new rules.

Semi-classical Logics. Semi-classical logics support partial functions in a setting
with only two truth values. Predicates consequently yield truth or falsity if one
of their arguments is unde�ned and can therefore not be monotonic. Several semi-
classical logics have been proposed: LUTINS [Farmer et al., 1993] and its predecessors
[Farmer, 1990, 1993], some formulations of Z [Spivey, 1988, 1992], and the logics by
[Beeson, 1985, Burge, 1974, Feferman, 1990, Schock, 1968]; the underlying ideas can
already be found in papers by Russell [such as 1905]. In the following, I focus on
LUTINS, because it is the only logic in this list that constitutes the foundation of a
theorem prover4.
LUTINS is a higher-order logic of partial functions, the logic underlying the IMPS

theorem prover [Farmer et al., 1993, 1996]. To understand how unde�nedness is
propagated in LUTINS, consider a LUTINS function f of type ν1↑ ⇒ · · · ⇒ νn↑ ⇒
µ↑, where µ is an atomic (i.e., non-functional) type. The semantics of LUTINS
adopts the following conventions:

1. If µ is the boolean type, then f denotes a de�nite function.

2. If f is a variable or a lambda abstraction and µ is the boolean type, then
applying f to an unde�ned argument yields falsity.

3. If f is a variable or a lambda abstraction and µ is not the boolean type, then
f is a strict partial function.

4. If f is a variable or a constant that does not take arguments (i.e., n = 0), then
f is de�ned.

LUTINS also provides analogs to Event-B's strong equality ≡eb and lazy operators
like Event-B's conditional. This is the reason why Conditions 2 and 3 restrict f to
variables and lambda abstractions.
4Of course, there are several theorem provers for Z: ProofPower [Arthan, 1996], CADiZ
[CADiZ/Ref, Toyn and McDermid, 1995], HOL-Z [Brucker et al., 2003, Kolyang et al., 1996],
Z/EVES [Saaltink 1997 and p. 328 of Woodcock et al. 2009]; none of them implements Z as a
semi-classical logic.

101

4. Impact of Design Decisions

As a consequence of these conventions, the following is a theorem:

if 1÷ 0 = 0 then 1÷ 0 6= 0 else ¬(1÷ 0 6= 0).

Farmer [1990] claims that this kind of treating unde�ned terms �correspond[s] . . . to
how mathematicians usually reason with nondenoting terms�. I leave it to the reader
to draw his own conclusions.
LUTINS provides non-�at function types such as (int⇒ int↑)⇒ (int⇒ int↑). An

inhabitant of this type is the partial function λf · λx · f (x + 1). Event-B's type
system does not provide the non-�at functions types of LUTINS, but of course the
corresponding functions can be expressed in Event-B as sets of pairs.
IMPS (the �interactive mathematical proof system�) provides methods for de�ning

new operators and binders as constants of appropriate higher-order types. Users
may supply rewrite rules in the form of conditional equalities. Directed rewriting
is unsound (and therefore not available) because predicates fail to be monotonic.
Since variables (which are always de�ned) are used as place-holders in user-supplied
rewrite rules, de�nedness conditions need to be checked whenever a rewrite rule
is instantiated; in this regard, the situation is rather similar as in PVS. Farmer
et al. [1993] therefore develop a sophisticated machinery for discharging de�nedness
condition; by using operator variables instead of ordinary variables as place-holders
in rules, Event-B reduces the need for such a machinery.

LCF. The logic LCF (the �logic of computable functions�) [see e.g. Paulson, 1987]
also supports partial functions, but deviates from Event-B in several ways. Terms
of LCF denote (three-valued) booleans, pairs, and partial functions; other type op-
erators may be introduced as well. The main di�erence to Event-B and LPF lies
in the fact that types are not necessarily �at. LCF therefore supports products of
type α↑ × β↑, and functions of type α↑ ⇒ β↑; as type operators can be arbitrarily
nested, functions of type (α1↑ ⇒ α2↑)⇒ (β1↑ ⇒ (β2↑ × β3↑)) are available as well.
The order relation v is lifted to non-�at types in a natural way; LCF functions are
required to be monotonic and continuous with respect to this order.
Unlike in LUTINS, function variables in LCF may denote lazy functions. Unlike

in LCF, functions in LUTINS may be non-monotonic. The set of functions de�nable
in LCF is therefore incomparable with the set of functions de�nable in LUTINS.
Formulae of LCF are built from strong equality ≡, the order relation v, and

the usual �rst-order connectives and quanti�ers. While terms of boolean type are
true, false, or unde�ned, a formula is either true or false but never unde�ned. In
this respect, LCF resembles a semi-classical logic. Note that LCF supports non-
monotonic operators � but only at the formula level. Unlike in Event-B, variables
range over all values of the underlying type; so a variable may be unde�ned.
LCF formulae may syntactically include LCF terms, but LCF terms may not

include LCF formulae. Moreover, the binders of EventB, most signi�cantly set com-
prehension, fail to be continuous. For these reasons, an embedding of Event-B's logic
into LCF would be quite complicated.

102

4.4. Alternative Approaches to Partial Functions

It is unclear whether directed rewriting has applications in LCF, because formulae
are built from ≡ and v. The challenge is to reorganize proofs in terms of sequents
that have SW-semantics. The monotonicity constraint on functions would certainly
be helpful when developing directed rewriting for LCF.
HOLCF [Müller et al., 1999], the modern implementation of LCF, integrates the

term language of LCF into higher-order instead of �rst-order logic. It combines the
de�nitional extension methods of HOL with the de�nitional extension methods of
LCF. It is therefore not surprising that HOLCF's facilities for de�ning new operators
and binders, and for introducing new rules are more general than Event-B's, because
of, e.g., �x-point recursion, nested natural deduction rules, and sort restrictions on
type variables. There remain several opportunities for transferring theory extension
methods from HOLCF to Event-B.

Classical Logics. Although classical logics do not provide partial functions per se,
they can still be used to model partial functions. One approach is to avoid functions
altogether and to express a function f taking n arguments by a predicate pf taking
n+1 arguments; pf (x1, . . . , xn, y) is used to express f(x1, . . . , xn) = y. This approach
makes sense from a theoretical point of view, but it is hard to write speci�cations
without using functions. I could not �nd clear proponents of this approach in the
literature; Jones [2006] calls it �clumsy� and �heavy�.
Another approach, advocated by Gries and Schneider [1995], Müller and Slind

[1997] (but rejected by Jones [1995]), is to model partial functions as total functions
that yield unspeci�ed results if applied to arguments outside of their domains. This
approach is called underspeci�cation; it is widely applied, e.g., in several formulations
of Z [Arthan, 1996, CADiZ/Ref, Kolyang et al., 1996, Valentine, 1998], in theorem
provers for higher-order logic [Gordon and Melham, 1993, Nipkow et al., 2002], and in
several automated theorem provers for �rst-order logic [e.g., de Moura and Bjørner,
2008, Riazanov and Voronkov, 2002].
In the underspeci�cation approach, 1÷0 denotes an unknown integer. This leads to

complications when reasoning about expressions of a programming language: 1÷0 =
1÷ 0 is a theorem even though the corresponding programming language expression
does typically not evaluate to true but instead leads to a runtime error. Proponents
of the underspeci�cation approach assume that the user of the logic is aware of this
discrepancy and able to cope with it. Event-B does not make such an assumption.
Some authors propose to interpret conjectures given by the user in a logic of partial

functions, but perform the actual reasoning in a classical logic; this approach has
been implemented in Z/EVES [Saaltink, 1997] and in some of Rodin's link-ups to
automated theorem provers. Woodcock et al. [2009] develops a general framework
for reasoning with a theorem prover for one logic about conjectures of another logic.
On the one hand, such an approach combines the advantages of logics of partial
functions with the advantages of classical logics: partial functions have an intuitive
semantics and powerful automated theorem provers for classical logic can be applied.
On the other hand, classical logics are not always more suitable for reasoning about

103

4. Impact of Design Decisions

partial functions, as I have explained in Section 4.1 for term rewriting. Another
disadvantage of this approach is that it involves two di�erent semantics, which may
complicate the architecture (and therefore compromise correctness) of tools.

104

5. Automated Theorem Proving

Rodin's theorem provers su�er four kinds of problems: unsoundness, incompleteness,
and limitations in performance and adaptability.

Unsoundness. Several versions of Rodin's provers are known to be unsound. Both
Rodin's built-in tactics and the so-called external provers (in particular newPP and
ML) have been a�ected [Schmalz, 2012]. Although the known soundness bugs have
been �xed, there is no guarantee that the current versions of Rodin's provers are
sound. This unsoundness raises a credibility problem; it is a serious obstacle to the
use of Rodin for the development of safety critical systems.

Incompleteness. There are surprisingly simple theorems that Rodin's (automated
and manual) theorem provers cannot discharge, at least if soundness bugs are not
exploited. An example is 3 ̂ 3 = 27.

Performance. Informally, the term performance refers to the ability to discharge
as many proof obligations as possible in as little time as possible. Rodin users
have frequently complained about the performance of Rodin's automated provers,
substantiated their complaints with examples (such as 3 ̂ 3 = 27), and expressed
that the current performance of Rodin's theorem provers inhibits the use of Rodin.
There are of course applications of Event-B in which Rodin's theorem provers

perform very well [Abrial, 2010]; there are however other cases, in which users had
to carry out numerous manual proofs, although the proof obligations appear to be
rather simple [Ili¢ et al.].

Adaptability. There are three ways of improving the performance of Rodin's auto-
mated theorem provers. First, users may add or remove sub-tactics from Rodin's
auto-tactic or change timeouts and parameters of relevance �lters [Röder, 2010].
Second, users may use the theory plug-in [Butler and Maamria, 2010, Maamria and
Butler, 2010] to introduce inference and rewrite rules, prove their soundness, and
apply them automatically during proofs. As the theory plug-in is a recent develop-
ment, it still su�ers restrictions that competing tools like Isabelle's simpli�er and
classical reasoner do not have. Third, users may change the source code. Overall,
it is quite challenging to improve the performance of Rodin's automated provers
without compromising soundness.

105

5. Automated Theorem Proving

Overview. In this chapter, I report on my integration of Isabelle/HOL as an au-
tomated theorem prover into Rodin. The integration is based on the semantic em-
bedding de�ned in Section 2.2 of Chapter 2. In a �rst step, the proof obligation of
interest is translated to its denotation. Then (Section 5.2), option types are removed
from the conjecture, because they complicate the automated proof search. Finally, a
proof method, called axe, is invoked to prove the remaining subgoals. In Section 5.3,
I report on the process of developing axe.

Since Isabelle/HOL follows the well-known LCF approach [Gordon et al., 1979]
and is strongly committed to de�nitional extensions, it is rather unlikely that it
produces an unsound proof. Unsoundness may still be introduced by an incorrect
implementation of the denotation function, i.e., the translation from Event-B to
HOL. I view this as unlikely, because the implementation of the denotation function
is concise and straightforward. As opposed to Rodin's theorem provers, the risk of
introducing bugs in the future is negligible because there is no need to constantly
change the implementation.

According to Gödel's �rst incompleteness theorem, a consistent, complete, and
decidable proof calculus for higher-order logic does not exist [see e.g. Andrews, 2002].
Theorem provers for higher-order logic [such as Gordon and Melham, 1993, Harrison,
2009a, Nipkow et al., 2002] typically provide proof calculi that are complete with
respect to general model semantics [see e.g. Andrews, 2002]. Validity in the general
sense implies validity in the standard sense, but not the other way around. It seems
plausible that formulae that are valid in the standard sense and invalid in the general
sense do not arise during the formal veri�cation of industrial systems. The integration
of Isabelle/HOL into Rodin enables users to prove every sequent whose denotation
is valid in the general sense.

A priori, it is clear that by integrating Isabelle/HOL into Rodin, Rodin gets a
theorem prover with strong soundness guarantees and a complete proof calculus (in
the general sense). The purpose of this chapter is to investigate performance and
adaptability.

5.1. Preliminaries

5.1.1. Benchmarks

Most of the experiments of this chapter are based on one of the following two bench-
marks. The Abrial benchmark consists of Abrial's Event-B models about the exam-
ples described in his book [Abrial, 2010]. The models are freely available [Abrial].
The involved proof obligations cover a broad range of application domains. The total
number of proof obligations is 2029, and the maximum size1 of a proof obligation is
about 4000.

1The size of a proof obligation refers to the size of its denotation. The size of a higher-order logic
term is the number of the leaves of its syntax tree.

106

5.1. Preliminaries

Varpaaniemi [2010] from Space Systems Finland has developed an Event-B model
for a space craft subsystem involved in the BepiColombo mission to Mercury. The
BepiColombo benchmark consists of Varpaaniemi's model; it contains 625 proof obli-
gations whose size ranges up to 48000.
The purpose of the BepiColombo model is to point out di�culties in the model-

ing process, and not to cover all requirements on the real system. In this respect,
BepiColombo has been quite successful [Ili¢ et al.]: among other things, the authors
of BepiColombo emphasize that �The only really time-consuming activity in the pi-
lot development is proofs � a considerable amount of time is needed for producing
a proof, even when it is needed only to reuse an existing proof�. This shows that
BepiColombo is a challenging industrial case study, not in terms of the total number
of proof obligations, but in terms of the e�ort for developing proofs. Improvements
of the prover performance are therefore highly desirable.

5.1.2. Hardware and Software

By default, I have executed experiments on ETH's high-performance computing clus-
ter Brutus. I have run the 64bit version of Isabelle2011 on machines with a 64bit
version of GNU Linux (Kernel version 2.6.18), AMD Opteron 8380 processors with
16 processor cores (2.5 GHz), and 32GB of main memory. For each experiment,
only 1 processor core and 8GB of main memory has been used. The 64bit ver-
sion of Isabelle had to be used, because the target machines do not support the
32bit version of Isabelle. The generous amount of main memory is motivated by the
fact that the 64bit version of Isabelle consumes more memory than the 32bit ver-
sion, and that the operating system applies a rather conservative memory allocation
strategy2. The experiments have been run in batch mode with the usedir options
"-p0 -q1 -M1 -v true" and the ML option "-H 2000".
Statements on Rodin refer to Rodin 2.2.2 with the following plug-ins:

• Atelier B provers 1.2.2,

• Event-B EMF Framework 3.4.0,

• Export to Isabelle 0.5.0,

• Scala Library for Eclipse 2.9.1,

• Modularisation Plugin 2.2.1,

• Records 1.0.1,

• Relevance Filter 1.1.1,

• Event-B Theory Feature 1.3.0,

2To be precise, memory overcommitting is disabled. More information on memory allocation
strategies can be found in the man page of proc.

107

5. Automated Theorem Proving

• other plug-ins that are unlikely to in�uence the results of the experiments.

Since it will be di�cult to obtain this Rodin installation in the future, I will store
an archive of it together with the data used in the experiments. Rodin has been
executed with the Java virtual machine 1.6.0_26 by Oracle with the non-standard
command line arguments

"-Xmx1800m -Xss1m -server -XX:GCTimeRatio=10

-XX:+DoEscapeAnalysis -XX:MaxPermSize=256m".

Since it is di�cult to disable Rodin's graphical user interface, it is hard to run
Rodin on Brutus. I have therefore executed experiments with Rodin on a HP Compaq
6910p laptop with a 32bit version of GNU Linux (Kernel version 2.6.32), a dual core
Intel Centrino vPro processor (2.0 GHz) and 4GB of main memory. To enable
comparison of runtimes between Rodin and Isabelle, the experiments with Isabelle
in Sections 5.3.1.5 and 5.3.2.2 had to be performed on this laptop as well. For these
experiments, I have used the 32bit version of Isabelle2011 with the usedir options
"-p0 -q1 -M1 -v true" and the ML option "-H 4000".
The purpose of most experiments was to determine the runtime of proof methods.

The term runtime always refers to wall-clock time.

5.2. Unlifting

A lifted (HOL) type is a type of the form ν↑. Lifted types are heavily used to express
the denotations of Event-B terms. This is the main reason why Isabelle's automated
proof methods (such as simp, safe, auto, metis, sledgehammer, and smt) perform
poorly if they are directly invoked on the denotations of sequents or rules. A way to
avoid this problem is to eliminate lifted types before invoking Isabelle's automated
methods.
The problem of unlifting is to compute for a formula ϕ a formula ϕ′ without lifted

types such that ϕ is valid i� ϕ′ is valid. Since this research is dedicated to Event-B, I
only consider the problem of unlifting denotations of sequents and rules. To simplify
the presentation, I focus on denotations of sequents and rules over the signature Σul

providing the following symbols:

• Type operators: B, Z, P

• Operators: =, ∧, D, mod

• Binders: ∀, collect, some

It is easy to generalize the results of this section to the signature of EventB; the
missing details can be found in the implementation [Schmalz]. The unlifting algo-
rithm described in this section can also be generalized to unlift the denotations of
sequents or rules drawn from de�nitional extensions of EventB; as soon as arbitrary

108

5.2. Unlifting

de�nitional extensions come into play, it is however hard to give useful complexity
results.
Unlifting algorithms have already been presented elsewhere [Abrial and Mussat,

2002, Berezin et al., 2005, Darvas et al., 2008, Owre and Shankar, 1999, Woodcock
et al., 2009]. The novelties in this work are a parametric complexity analysis, an
empirical evaluation on benchmarks from the industry, a method for unlifting de-
notations of sequents with operator variables, and an implementation of unlifting
based on Isabelle's simpli�er [Nipkow, 1989]. The implementation based on Isabelle
has the advantage that the unlifting algorithm is sound by construction and can be
optimized easily without compromising soundness.

Proceeding. I �rst present a naive unlifting algorithm in a setting without op-
erator variables (Section 5.2.1). Then (Section 5.2.2), I recall the more e�cient
algorithm by Darvas et al. [2008]. In Section 5.2.3, I explain my extension for opera-
tor variables. The complexity of the unlifting algorithm is analyzed in Section 5.2.4.
Finally, I report on my implementation (Section 5.2.5) and experimental evaluation
(Section 5.2.6).

5.2.1. Trivial Algorithm

To examine the problem of unlifting, it is useful to introduce the HOL constant ↓ of
type α↑ ⇒ α that is de�ned by

x↑↓ = x;

note that •↓ is an unknown inhabitant of the type α.
A straightforward unlifting algorithm repeatedly applies the rewrite rules in Fig-

ure 5.1. Readers not familiar with Isabelle/HOL should view Isabelle's meta-equality
≡ as an alternative notation for HOL's object equality =. The only di�erence is that
≡ has a lower priority than any other HOL symbol; so T ϕ ≡ WD ϕ ∧ ϕ↓ is to be
read as (T ϕ) ≡ (WD ϕ ∧ ϕ↓).

Proposition 5.1. Suppose that ϕ is the denotation of a sequent or rule over the
signature Σul. If ϕ does not contain denotations of operator variables, then ϕ can be
unlifted by repeatedly applying the rules in Figure 5.1.

Proof. Recall the following observation about term rewriting. When rewriting a
formula ψ1 −→ ψ2, the premise ψ1 may be assumed while rewriting the conclusion
ψ2. Likewise, when rewriting ψ1 ∧ ψ2, the �rst conjunct ψ1 may be assumed while
rewriting the second conjunct ψ2. The local assumption ψ1 may subsequently be
used to discharge preconditions of rules that are used to rewrite ψ2.
This observation can be used to construct a proof that well-de�nedness of t may be

assumed whenever the algorithm tries to rewrite a term of the form t↓. Therefore, the
preconditions of the rules in Group 3 can always be solved while repeatedly applying
the rules in Groups 1�3 to ϕ. The proof proceeds as follows.

109

5. Automated Theorem Proving

Group 1:

T ϕ ≡ WD ϕ ∧ ϕ↓ F ϕ ≡ WD ϕ ∧ ¬ϕ↓

WT ϕ ≡ WD ϕ −→ ϕ↓ x v y ≡ WD x −→WD y ∧ x↓ = y↓

(x :: ν↑) = y ≡ WD x = WD y ∧ (WD x ∧WD y −→ x↓ = y↓)

Group 2:

WD (x↑) ≡ True WD (J=K x y) ≡ WD x ∧WD y

WD (J∧K ϕ ψ) ≡ (T ϕ ∧ T ψ) ∨ F ϕ ∨ F ψ

WD (JDK x) ≡ True WD (JmodK x y) ≡ WD x∧WD y∧x↓ ≥ 0∧y↓ > 0

WD (J∀K ϕ) ≡ (∀x. T (ϕ x)) ∨ (∃x. F (ϕ x))

WD (JcollectK ϕ) ≡ ∀x. WD (ϕ x)

WD (JsomeK ϕ) ≡ (∀x. WD (ϕ x)) ∧ (∃x. (ϕ x)↓)

Group 3:

(x↑)↓ ≡ x (JDK x)↓ ≡ WD x

WD (J=K x y)

(J=K x y)↓ ≡ x↓ = y↓
WD (J∧K ϕ ψ)

(J∧K ϕ ψ)↓ ≡ ϕ↓ ∧ ψ↓

WD (JmodK x y)

(JmodK x y)↓ ≡ x↓ mod y↓
WD (J∀K ϕ)

(J∀K ϕ)↓ ≡ ∀x. (ϕ x)↓

WD (JcollectK ϕ)

(JcollectK ϕ)↓ ≡ {x. (ϕ x)↓}
WD (JsomeK ϕ)

(JsomeK ϕ)↓ ≡ SOME x. (ϕ x)↓

Figure 5.1.: A trivial unlifting algorithm

110

5.2. Unlifting

First, note that the input ϕ does not contain subterms of the form t↓; hence when
the algorithm starts, none of the rules in Group 3 can be applied and therefore no
preconditions need to be solved.
Some of the rules in Groups 1 and 2 generate subterms of the form t↓; the rule

T ϕ ≡ WD ϕ ∧ ϕ↓ is an example. As this rule generates a formula of the form
WD ϕ ∧ ϕ↓, WD ϕ may be assumed whenever rewriting the generated subterm ϕ↓.
In the same way, it can be checked for every rule in Group 1 or 2 that generates a
subterm of the form t↓ that the condition WD t may be assumed while rewriting the
term t↓.
Some of the rules in Group 3 generate subterms of the form t↓ as well. The formula

(J=K x y)↓ may be rewritten to x↓ = y↓ provided J=K x y is well-de�ned. But if
J=K x y is well-de�ned, then x and y are well-de�ned as well. Hence, when rewriting
x↓ or y↓, well-de�nedness of x or y may be assumed, respectively.
A more intricate example concerns the rule that rewrites (J∧K ϕ ψ)↓ to ϕ↓ ∧ ψ↓.

This rewriting step is possible only if J∧K ϕ ψ is well-de�ned. So suppose that
J∧K ϕ ψ is well-de�ned. The condition WD ϕ may be assumed when rewriting ϕ↓ for
the following reasons: First consider the case that ϕ is indeed well-de�ned; then it is
sound to assume WD ϕ. Second consider the case that ϕ is ill-de�ned. In this case,
ψ equals False↑ because it has been assumed that J∧K ϕ ψ is well-de�ned. Hence, the
truth value of ϕ↓∧ψ↓ does not depend on ϕ↓, and ϕ↓ may consequently be replaced
by an arbitrary term. Therefore, it is sound to assume WD ϕ while rewriting ϕ↓. A
similar argument explains why WD ψ may be assumed when rewriting ψ↓ in ϕ↓∧ψ↓.
For the remaining rules of Group 3 it can be shown in a similar way that WD t

may be assumed when rewriting a subterm of the form t↓ generated by one of the
rules in Group 3.
Overall, I have shown that the preconditions of the rules in Group 3 can always be

solved during the process of repeatedly applying rewrite rules from Figure 5.1 to ϕ.
With this in mind, it is easy to check that the rules in Groups 1�3 form a con�uent
and terminating rewrite calculus, and the normal form of ϕ does not contain lifted
types. It can also be shown (using Isabelle/HOL) that the rules in Figure 5.1 are
sound; the normal form of ϕ is therefore valid i� ϕ is valid.

5.2.2. E�cient Algorithm

The complexity of the unlifting algorithm described in Section 5.2.1 is high: unlifting
the denotation of `D(x1∧· · ·∧xn) yields a formula of exponential size (in n). Darvas
et al. [2008] therefore propose a more e�cient algorithm, which additionally applies
the rules in Group 4 of Figure 5.2. Whenever a rule in Group 4 can be applied to
a subterm, one of the rules in Group 1 can be applied to the same subterm as well.
This non-con�uence is resolved by applying rules of Group 1 only to subterms that
are not matched by rules of Group 4.
The e�cient algorithm unlifts the denotation of `D(x1 ∧ · · · ∧ xn) to

True −→ ((True ∧ x1) ∧ · · · ∧ (True ∧ xn)) ∨ (True ∧ ¬x1) ∨ · · · ∨ (True ∧ ¬xn),

111

5. Automated Theorem Proving

Group 4:

T (J∧K ϕ ψ) ≡ T ϕ ∧ T ψ F (J∧K ϕ ψ) ≡ F ϕ ∨ F ψ

T (J∀K ϕ) ≡ ∀x. T (ϕ x) F (J∀K ϕ) ≡ ∃x. F (ϕ x)

Figure 5.2.: Additional rules of the e�cient unlifting algorithm

which is of linear size in n.

Proposition 5.2. Suppose that ϕ is the denotation of a sequent or rule over the
signature Σul. If ϕ does not contain denotations of operator variables, then ϕ can be
unlifted by repeatedly applying the rules in Figures 5.1 and 5.2.

Proof. The proof is similar to the proof of Proposition 5.1.

5.2.3. Operator Variables

Since inference and rewrite rules naturally contain operator variables, it is desirable
to extend the unlifting algorithm of Section 5.2.2 to a setting with operator variables.
For simplicity, it is assumed that there is only one operator variable $f ◦◦ ν ⇀ µ that
takes exactly one argument; it is straightforward to develop a version for several
operator variables that take arbitrary numbers of arguments.
The extended unlifting algorithm proceeds in two phases: a preprocessing phase

and an unlifting phase. During the preprocessing phase, the algorithm eliminates the
operator variable $f from the input. The unlifting phase is essentially an invocation
of the algorithm of the preceding section.
Suppose the theory underlying the standard model of Σul is called THY. In the

preprocessing phase, the algorithm �rst adds the uninterpreted constant

f :: JνK↑ ⇒ JµK↑

to THY, yielding the theory THYf . Then, the algorithm de�nes the constants df
and sf by

df (d :: bool) (s :: JνK) = WD (f (if d then s↑ else •)), (5.1)

sf (d :: bool) (s :: JνK) = (f (if d then s↑ else •))↓. (5.2)

The resulting theory is denoted by THYf,df ,sf .
Suppose that ϕ is the denotation of an Event-B sequent or rule over Σul. The

result of the preprocessing phase is ϕ′ := ϕ[$f := f].
The unlifting phase proceeds similar as in Section 5.2.2. The following rules are

used to cope with occurrences of f :

WD (f x) ≡ df (WD x) x↓, (5.3)

(f x)↓ ≡ sf (WD x) x↓. (5.4)

112

5.2. Unlifting

The rules (5.3�5.4) are sound because they can be derived from (5.1�5.2).
The extension of the unlifting algorithm described so far is problematic, because

some unlifted formulae can only be proved by using (5.1�5.2), which contain lifted
types. The problem can be seen when trying to prove the result of unlifting

¬WD f −→WD (ϕ f) = WD (ϕ •).

To overcome this problem, de�ne the theory THYdf ,sf by adding the constants df
and sf and the following axioms to THY:

¬ df d s −→ sf d s = •↓, (5.5)

df False s = df False undefined, (5.6)

sf False s = sf False undefined. (5.7)

The constant undefined :: α is declared in the main theory of HOL; its denotation is
unspeci�ed.
The following theorem shows that the input of the unlifting algorithm is valid over

THY i� the output is valid over THYdf ,sf . As the theory THYdf ,sf does not contain
(5.1�5.2), a theorem prover that does not support lifted types may be used to reason
about the output.

Theorem 5.3. Let ϕ be the denotation of a sequent or rule over Σul that does not
contain an operator variable di�erent from $f . Moreover let ϕ′′ be the result of
unlifting ϕ. Then, ϕ is valid over THY i� ϕ′′ is valid over THYdf ,sf .

Proof. Since f is an uninterpreted constant, ϕ is valid over THY i� ϕ′ is valid over
THYf . As THYf,df ,sf is a de�nitional extension of THYf , ϕ′ is valid over THYf i�
ϕ′ is valid over THYf,df ,sf . As the unlifting phase rewrites formulae to equivalent
formulae, ϕ′ is valid over THYf,df ,sf i� ϕ′′ is valid over THYf,df ,sf . It remains to
prove that ϕ′′ is valid over THYf,df ,sf i� ϕ′′ is valid over THYdf ,sf .
First suppose that ϕ′′ is valid over THYdf ,sf . It is easy to check that (5.5�5.7) are

valid in THYf,df ,sf . Thus, ϕ′′ is valid in THYf,df ,sf .
Second suppose that ϕ′′ is valid over THYf,df ,sf . De�ne the theory THY′f,df ,sf by

extending THYdf ,sf with the following constant de�nition:

f x = if df (WD x) x↓ then (sf (WD x) x↓)↑ else •.

It can be checked that (5.1�5.2) are valid in THY′f,df ,sf . Hence, ϕ′′ is valid in
THY′f,df ,sf . As ϕ′′ does not contain f and THY′f,df ,sf is a de�nitional extension
of THYdf ,sf , ϕ′′ is valid in THYdf ,sf as well.

5.2.4. Complexity Analysis

Darvas et al. [2008] observe that the output of their unlifting algorithm is of at most
quadratic size with respect to the size of the input. This result is however restricted
to a �rst-order setting without equivalence. In a �rst-order logic with equivalence,

113

5. Automated Theorem Proving

the output of the e�cient unlifting algorithm may be of exponential size. This
exponential blow-up can be observed when unlifting T JϕnK, where ϕn is de�ned as
follows:

ϕ0 := x,

ϕi+1 := (x = (x ∧ ϕi)), for i ≥ 0.

The reason for the blow-up is that the rule

WD (J∧K ϕ ψ) ≡ (T ϕ ∧ T ψ) ∨ F ϕ ∨ F ψ

is applied repeatedly. Since equivalences frequently arise in practice, the complexity
analysis and the empirical evaluation by Darvas et al. [2008] do not show that their
unlifting algorithm (or a trivial extension thereof) has a reasonable performance in
practical applications.
It is quite straightforward to �nd an upper bound on the size of the unlifting

output based on the size and the depth of the input formula. The result of unlifting
the formula ϕ with the algorithm developed in Sections 5.2.1�5.2.3 is denoted by
U (ϕ). The size of a HOL term is the number of the involved variables, constants,
and abstractions:

De�nition 5.4 (Size). The size |t| of a HOL term t is de�ned as follows:

• |c| := 1, where c is a constant or variable,

• |t u| := |t|+ |u|,

• |λx. t| := 1 + |t|.

The depth of an Event-B term is the length of the longest path from the root to a
leaf of the syntax tree:

De�nition 5.5 (Depth). The depth DEP (t) of an Event-B term t is de�ned as
follows:

• DEP (x) := 0,

• DEP (f(t)) := 1 + max(DEPR(t1), . . . ,DEPR(t|t|)),

• DEP ($f(t)) := 1 + max(DEPR(t1), . . . ,DEPR(t|t|)),

• DEP (Qx · t) := 1 + max(DEPR(t1), . . . ,DEPR(t|t|)).

The depth of a sequent or rule is the maximum of DEP (t), where t ranges over the
terms from which the sequent or rule is built.

114

5.2. Unlifting

The following proposition gives an upper bound on the size of the unlifting out-
put. Although the unlifting algorithm has been presented in the context of Σul, the
theorem applies to denotations of terms drawn from the signature of EventB. The
missing rules of the unlifting algorithm are easy to discover and can be found in the
implementation [Schmalz].

Proposition 5.6. Let r be a sequent or rule over EventB. Then,

|U (JrK)| ∈ O(|JrK| · 4DEP (r)).

Proof. The following claims can be proved by a structural induction, provided c and
d are su�ciently large:

• |U (T JϕK)| ≤ c · |JϕK| · 4DEP (ϕ) − d,

• |U (F JϕK)| ≤ c · |JϕK| · 4DEP (ϕ) − d,

• |U (WD JtK)| ≤ c · |JtK| · 4DEP (t) − d,

• if WD JtK is known to be true, then |U (JtK↓)| ≤ c · |JtK| · 4DEP (t) − d.

Here, t and ϕ range over terms and formulae of EventB. The above claims hold for
d := 0, but an induction proof requires that d is signi�cantly greater than 0. It is
straightforward to derive the assertion of the Proposition from the above claims.
The base of the power has been chosen to be 4 because the right-hand sides of

unlifting rules contain at most 4 free occurrences of free variables of the respective
left-hand sides. An example of a rule that replicates a subterm four times is

T (JfunimgK x y)
≡

WD x ∧WD y ∧ (JfunctionalK x)↓ ∧ (J∈K y (JdomK x))↓ ∧ (JfunimgK x y)↓.

The upper bound of Proposition 5.6 is presumably not tight because it seems
impossible to construct an example in which every unlifting step replicates a subterm
four times. The overhead of unlifting is quite high when unlifting T JϕnK, where ϕn

is de�ned by

ϕ0 := x,

ϕn+1 := x≡eb (∀x · ϕn), for n ≥ 0.

The size of U (T JϕnK) is in Θ(5n) = Θ(
√

5
DEP (ϕn)

) ≈ Θ(2.2DEP (ϕn)). I was unable to
�nd a sequence of formulae for which the asymptotic overhead of unlifting is higher.
Since inference and rewrite rules are typically of moderate size and depth, the

upper bound of Proposition 5.6 shows that the result of unlifting denotations of
rules is likely to be of an acceptable size. The situation is di�erent for sequents: in

115

5. Automated Theorem Proving

the BepiColombo benchmark (cf. Section 5.2.6), it is easy to �nd sequents of depth 10
and more. According to Proposition 5.6, unlifting the denotations of these sequents
may increase the size of the input by a factor of 1000000 or more. The upper bound
of Proposition 5.6 does therefore not assert that unlifting denotations of sequents is
practically feasible.
To give a more useful upper bound, I consider additional parameters of the input,

namely the R-alternation depth and the P -depth, which are de�ned below. Non-
monotonic operators and operator variables tend to make unlifting expensive, but
do not arise in Rodin's proof obligations. I therefore focus on sequents built from
formulae in mono(EventB).
The R-alternation depth of a term counts the maximum number of alternations

between symbols that do not belong to R and symbols that do.

De�nition 5.7 (R-Alternation Depth). Let R be a set of Event-B operators and
binders. The R-alternation depthALT R(t) of an Event-B term t is de�ned as follows:

• ALT R(x) := 0,

• ALT R($f(t)) := max(ALT R(t1), . . . ,ALT R(t|t|)),

• if f ∈ R, then ALT R(f(t)) := max(ALT R(t1), . . . ,ALT R(t|t|)),

• if f /∈ R, then ALT R(f(t)) := max(ALT ′R(t1), . . . ,ALT ′R(t|t|)),

• if Q ∈ R, then ALT R(Qx · t) := max(ALT R(t1), . . . ,ALT R(t|t|)),

• if Q /∈ R, then ALT R(Qx · t) := max(ALT ′R(t1), . . . ,ALT ′R(t|t|)),

• ALT ′R(x) := 0,

• ALT ′R($f(t)) := max(ALT ′R(t1), . . . ,ALT ′R(t|t|)),

• if f ∈ R, then ALT ′R(f(t)) := 1 + max(ALT R(t1), . . . ,ALT R(t|t|)),

• if f /∈ R, then ALT ′R(f(t)) := max(ALT ′R(t1), . . . ,ALT ′R(t|t|)),

• if Q ∈ R, then ALT ′R(Qx · t) := 1 + max(ALT R(t1), . . . ,ALT R(t|t|)),

• if Q /∈ R, then ALT ′R(Qx · t) := max(ALT ′R(t1), . . . ,ALT ′R(t|t|)).

The R-alternation depth of a sequent or rule is the maximum of ALT R(t), where t
ranges over the terms from which the sequent or rule is built.

The R-depth of a term counts the maximum number of nested occurrences of
symbols in R.

De�nition 5.8 (R-Depth). Let R be a set of Event-B operators, operator variables,
and binders. The R-depth DEPR(t) of a term t is de�ned as follows:

116

5.2. Unlifting

• DEPR(x) := 0,

• if f ∈ R, then DEPR(f(t)) := 1 + max(DEPR(t1), . . . ,DEPR(t|t|)),

• if f /∈ R, then DEPR(f(t)) := max(DEPR(t1), . . . ,DEPR(t|t|)),

• if $f ∈ R, then DEPR($f(t)) := 1 + max(DEPR(t1), . . . ,DEPR(t|t|)),

• if $f /∈ R, then DEPR($f(t)) := max(DEPR(t1), . . . ,DEPR(t|t|)),

• if Q ∈ R, then DEPR(Qx · t) := 1 + max(DEPR(t1), . . . ,DEPR(t|t|)),

• if Q /∈ R, then DEPR(Qx · t) := max(DEPR(t1), . . . ,DEPR(t|t|)).

The R-depth of a sequent or rule is the maximum of DEPR(t), where t ranges over
the terms from which the sequent or rule is built.

The following theorem is the main result of this section.

Theorem 5.9. Suppose Γ is a sequent built from formulae in mono(EventB). De�ne
P as the set that contains every inde�nite operator or binder of EventB as well as
set comprehension,

⋃
, and cond. Let n be the size of JΓK, a the {∀,∃,∧,∨,⇒}-

alternation depth of Γ, and d its P -depth. Then the result of unlifting JΓK is of size
O(2a · n · (d+ 1)).

Proof. Let R := {∀,∃,∧,∨,⇒}. The proof rests on the following observations:

• |U (T JϕK)| ≤ 180 · 2ALT R(ϕ) · |ϕ| · (DEPP (ϕ) + 1)− 60 · |ϕ|,

• |U (F JϕK)| ≤ 180 · 2ALT R(ϕ) · |ϕ| · (DEPP (ϕ) + 1)− 60 · |ϕ|,

• if WD JtK is known to be true, then |U (JtK↓)| ≤ 20 · |t|,

• |U (WD JtK)| ≤ 360 · 2ALT R(t) · |t| · (DEPP (t) + 1)− 120 · |t|.

Here, t and ϕ range over terms and formulae of mono(EventB). I have proved slightly
stronger versions of these observation by a structural induction using Isabelle/HOL.
The details can be found in Appendix B.
Suppose Γ has the form ψ1, . . . , ψk ` ϕ. The main assertion can be proved as

follows:

|U JΓK| =
k∑

i=1

|U (T JψiK)|+ |U (WT JϕK)|+O(k)

≤
k∑

i=1

O(2a · |JψiK| · (d+ 1)) +O(2a · |JϕK| · (d+ 1))

≤ O(2a · n · (d+ 1)).

117

5. Automated Theorem Proving

Informally, Theorem 5.9 asserts that nesting of inde�nite operators and binders,
conditionals, and set comprehensions (measured with the parameter d) may lead to
a quadratic blow-up during unlifting. Moreover, alternations between ∀, ∃,∧,∨,⇒
and the other symbols of EventB (measured with the parameter a) may lead to an
exponential blow-up. It seems plausible that the parameters a and d are quite low
for many sequents arising in practical applications of Event-B; Theorem 5.9 asserts
that the denotations of such sequents can be unlifted with constant overhead.
A minor drawback of Theorem 5.9 is that it gives the incorrect impression that

alternations between negations and, say, conjunctions lead to an exponential blow-
up. In fact, negations can be unlifted with the following rules:

T (J¬K ϕ) ≡ F ϕ F (J¬K ϕ) ≡ T ϕ WD (J¬K ϕ) ≡WD ϕ
WD (J¬K ϕ)

(J¬K ϕ)↓ ≡ ¬(ϕ↓)

So negations do not contribute to a blow-up during unlifting. Formally, it can be
proved that |U (t)| ≤ |U (t′)| + i, where i is the number of negations in t and t′ the
result of removing all negations from t. Using the terminology in Theorem 5.9,

|U (t)| ≤ O(2a
′ · |t| · (d+ 1)),

where a′ is the {∀, ∃,∧,∨,⇒}-alternation depth of t′.

5.2.5. Implementation

I have implemented the unlifting algorithm described in the preceding sections based
on Isabelle's simpli�er [Nipkow, 1989]. The source code can be obtained from
[Schmalz]. The unlifting process is invoked with ebsimp'3 and performs the fol-
lowing steps:

1. preprocessing (ebpre'),

a) bottom-up unlifting (ebpresimp'),

b) speculative splitting (ebpresplit),

c) if the output of ebpresplit di�ers from its input:
a second invocation of ebpresimp',

2. unlifting (ebtrans),

a) eliminating operator variables (ebtranssplit),

b) unfolding auxiliary de�nitions (ebtranssimp1),

c) unlifting (ebtranssimp2),

3. postprocessing (ebpost).

Preprocessing and postprocessing apply heuristics to improve readability of the re-
sult. The unlifting algorithm is executed in the unlifting phase.
3Names of proof methods are somewhat ad-hoc and subject to change in future versions. The
prime indicates that an older version of the same method, called ebsimp, exists or has existed.

118

5.2. Unlifting

Preprocessing. The preprocessing phase consists of bottom-up unlifting and spec-
ulative splitting. Informally, bottom-up unlifting rewrites terms that are obviously
well-de�ned to the form t↑ and terms that are obviously ill-de�ned to •. Using the
example of conjunction, this is achieved by the following rewrite rules:

J∧K ϕ↑ ψ↑ ≡ (ϕ ∧ ψ)↑, J∧K • • ≡ •.

Bottom-up unlifting has the e�ect that WD Jx ∧ yK is unlifted to True instead of
(True ∧ x) ∧ (True ∧ y) ∨ (True ∧ ¬x) ∨ (True ∧ ¬y).
Bottom-up unlifting also applies propositional simpli�cation rules such as

J∧K ϕ False↑ ≡ False↑,
J∧K False↑ ψ ≡ False↑,
J∧K ϕ True↑ ≡ ϕ,

J∧K True↑ ψ ≡ ψ.

This has the e�ect that WD J$x ∧ >K is unlifted to dx instead of

(dx ∧ sx) ∧ (True ∧ True) ∨ (dx ∧ ¬sx) ∨ (True ∧ ¬True).

The method ebpresplit for speculative splitting tries to replace variables $x of
type ν↑ (i.e., denotations of operator variables that do not take arguments) by terms
of the form x↑ or •; it therefore reduces the need for unlifting operator variables and
the corresponding overhead. Given a variable $x :: ν↑, ebpresplit �rst performs a
case split with the cases (1) $x = x↑, where x is a fresh variable, and (2) $x = •.
The assumption $x = x↑ or $x = • is used to eliminate occurrences of $x from the
input formula. Next, ebpresplit tries to solve at least one of the two cases with
ebpresimp', ebtrans, and ebpost; if none of the two cases can be solved, the case
split is rescinded.
The second invocation of ebpresimp' is likely to succeed because successful in-

vocation of ebpresplit introduces subterms of the form x↑ or •. An alternative
version of ebpre' invokes ebpresplit and ebpresimp' in turns until the proof state
does not change anymore; I have refrained from invoking ebpresplit more than
once because a second invocation is quite expensive and unlikely to succeed.

Unlifting. The method ebtranssplit eliminates operator variables similarly as de-
scribed in Section 5.2.3. There are two major di�erences. First, ebtranssplit leaves
the underlying theory unchanged; in the notation of Section 5.2.3, the symbols df
and sf are variables that are constrained by suitable hypotheses instead of constants
that are introduced by constant de�nitions. The implemented version is somewhat
more �exible, but requires a deeper understanding of Isabelle.
Second, if $f is of type ν ⇀ µ, then df is of type JνK↑ ⇒ bool and sf of type

JνK↑ ⇒ JµK. (In Section 5.2.3, df was of type bool ⇒ JνK ⇒ bool, and sf was of

119

5. Automated Theorem Proving

type bool ⇒ JνK ⇒ JµK.) Moreover, df and sf are constrained by the following
meta-equalities:

WD ($f x) ≡ df (if WD x then x else •),
($fx)↓ ≡ sf (if WD x then x else •).

The advantage of the Isabelle implementation over the algorithm in Section 5.2.3
is a more compact and natural representation: additional hypotheses or axioms (such
as (5.5�5.7)) can be avoided. The algorithm in Section 5.2.3 is slightly more general,
because it removes all occurrences of lifted types from the input formula; the Isabelle
implementation outputs a formula that may still contain lifted types (such as in the
type of •) and therefore requires that lifted types are available in the underlying
logic.
The method ebtranssimp1 establishes certain preconditions of ebtranssimp2,

but has no logical signi�cance and may disappear in future releases. The method
ebtranssimp2 executes the actual unlifting algorithm (Section 5.2.2).
To improve readability of the output, ebtranssimp2 makes use of rewrite rules

that are not contained in Figures 5.1 and 5.2: an example is the rule T x↑ ≡ x.
Moreover, I have modi�ed some of the rules to produce a more readable output: An
example is the rule F J∧K ϕ ψ ≡ ¬(¬(F J∧K) ∧ ¬(F J∧K)). The double negation
has the e�ect that the denotation of Event-B's conjunction is translated to a HOL
conjunction, and not to a disjunction as in Figure 5.2.
To avoid applications of rules like

WD (J∧K ϕ ψ) ≡ (T ϕ ∧ T ψ) ∨ F ϕ ∨ F ψ,

ebtranssimp2 instead applies the following rules whenever possible:

WD (J∧K • ψ) ≡ F ψ,

WD (J∧K ϕ •) ≡ F ϕ,

WD (J∧K ϕ↑ ψ) ≡ ϕ −→WD ψ,

WD (J∧K ϕ ψ↑) ≡ ψ −→WD ϕ.

The implementation of ebtranssimp2 is fairly sophisticated because it has to
tackle the following challenges:

• Solve the well-de�nedness conditions of the rules in Group 3 of Figure 5.1. This
is established by suitable congruence rules [Nipkow et al., 2002, p. 175].

• If subterms are frequently duplicated in intermediate steps, the runtime of
ebsimp' is exponential even though the result is of polynomial size. This
problem is avoided by using let bindings at intermediate stages. Note that the
output of ebsimp' never contains let bindings.

120

5.2. Unlifting

• Isabelle's simpli�er by default applies the most general matching rewrite rule;
for unlifting it is often necessary to apply a more speci�c rewrite rule. This
is ensured by using simpli�cation procedures (i.e., an ML function that gener-
ates appropriate rewrite rules on the �y [Wenzel, 2011, p. 138]) and auxiliary
constants.

• Set comprehensions bind an arbitrary number of variables. Correspondingly,
an in�nite number of unlifting rules is required to unlift set comprehensions.
These rules are represented by suitable simpli�cation procedures.

Despite these complications, it pays o� to implement unlifting as an Isabelle tactic:
thanks to Isabelle's LCF architecture, the unlifting tactic is sound, and it is easy to
implement further optimizations without compromising soundness.

Postprocessing. The ebpost method applies basic propositional and �rst-order
rewrite rules to the result of ebtrans. Its purpose is not only to improve readability
of the output but also to support ebpresplit in solving trivial cases.

5.2.6. Empirical Evaluation

I have evaluated my implementation of unlifting on three benchmarks: the Abrial
and BepiColombo benchmarks, described in Section 5.1.1, and the Rules benchmark.
The Rules benchmark consists of denotations of rules and has been included because
none of the other benchmarks contains operator variables.
When a new inference or rewrite rule is implemented in Rodin's built-in theorem

prover, the rule is announced on one of Rodin's mailing lists to give other developers
the opportunity to prevent implementation of unsound rules. The Rules benchmark
contains the denotations of 58 rules, taken from the latest announcements.
The output sizes and runtimes for the three benchmarks are depicted in Fig-

ures 5.3�5.5. In the Abrial and BepiColombo benchmark, unlifting typically de-
creases the size of the formula by a factor of 2.5; this decrease of size is presumably
caused by a less verbose representation of the output: an ordinary variable x is for
example represented by x↑ (size 2) in the input and by x (size 1) in the output. Some
proof obligations are proved during unlifting, and their output size is consequently
zero. In the Rules benchmark, unlifting increases the size of the processed formula
by a factor of up to 5.6, but the maximum output size remains in reasonable bounds.
A manual inspection of the rules with the highest blow-up has revealed that the
blow-up is caused by the treatment of operator variables.
One may speculate that the output sizes result from aggressive postprocessing by

ebpost instead of an e�cient implementation of the main unlifting phase ebtrans;
this can be refuted by observing the runtime of unlifting: if the implementation
of ebtrans was ine�cient, the overall runtime would be high. But the runtime of
unlifting is below 0.9 seconds in the Abrial benchmark, 2.5 seconds per 10000 size
units in the BepiColombo benchmark, and up to 0.3 seconds in the Rules benchmark.

121

5. Automated Theorem Proving

The runtimes in the BepiColombo benchmark are more concentrated on a straight
line than the runtimes in the Abrial benchmark. I expect this is a consequence of the
fact that the BepiColombo benchmark originates from a single application domain,
while the Abrial benchmark is more heterogeneous.
There are several outliers in the BepiColombo benchmark where the runtime is

signi�cantly higher than 2.5 seconds per 10000 size units. It turns out on manual
inspection that these increased runtimes are caused by the garbage collector, i.e.,
they are indirectly caused by previous computations.
Overall, these measurements show that my implementation of unlifting has a rea-

sonable performance on an important class of formulae. Although small examples
can be constructed for which unlifting takes several hours, days, or years, such ex-
amples do not occur in the benchmarks. The runtime of unlifting is not negligible
(i.e., sometimes in the order of several seconds), but it is proportional to the size of
the input for the examples considered during the experiments.

122

5.2. Unlifting

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000 4500

input size

output size

0.0 s

0.1 s

0.2 s

0.3 s

0.4 s

0.5 s

0.6 s

0.7 s

0.8 s

0.9 s

0 500 1000 1500 2000 2500 3000 3500 4000 4500

input size

runtime

Figure 5.3.: Performance of unlifting in the Abrial benchmark

123

5. Automated Theorem Proving

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

input size

output size

0.0 s

5.0 s

10.0 s

15.0 s

20.0 s

25.0 s

30.0 s

35.0 s

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

input size

runtime

Figure 5.4.: Performance of unlifting in the BepiColombo benchmark

124

5.2. Unlifting

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

input size

output size

0.0 s

0.1 s

0.1 s

0.2 s

0.2 s

0.2 s

0.3 s

0 10 20 30 40 50 60 70 80

input size

runtime

Figure 5.5.: Performance of unlifting in the Rules benchmark

125

5. Automated Theorem Proving

5.3. Theorem Proving in Isabelle/HOL

After unlifting the proof obligation of interest it remains to prove it. One may hope
that Isabelle's prede�ned proof methods are e�ective in this respect, but, at least
if default con�gurations are used, the performance results are rather disappointing.
In this section, I report on the process of developing a method whose performance
is at least similar to and sometimes even better than the performance of Rodin's
auto-tactic. The implementation is freely available [Schmalz].

5.3.1. Abrial Benchmark

5.3.1.1. Using Prede�ned Proof Methods

In the beginning, I tried to discharge the proof obligations of the Abrial benchmark
by using one of Isabelle's prede�ned automated methods: auto, blast, clarsimp,
force, metis, and smt. Further information on these methods can be obtained
from [Paulson, 2011, Wenzel, 2011]. The smt method invokes the Z3 SMT solver
[de Moura and Bjørner, 2008]; Isabelle accepts a proof generated by Z3 only if it can
be reconstructed in Isabelle [Böhme and Weber, 2010].
The smt and metismethods support only a limited fragment of HOL's main theory

and treat unsupported constants as uninterpreted. To improve the performance, I
have introduced a preprocessing phase that tries to eliminate unsupported constants
by unfolding their de�nitions. In the following, the terms smt and metis refer to
Isabelle/HOL's smt and metis methods including this preprocessing phase. In some
cases, a constant cannot be reasonably eliminated; examples include set comprehen-
sion and de�nite description (i.e., HOL's counterpart of funimg). In such cases, the
constant remains unchanged. Although this procedure is quite ad hoc, the resulting
version of smt is quite powerful (cf. Section 5.3.1.4). That said, it would be helpful
to develop a more systematic approach to translate HOL formulae to the restricted
theories supported by smt and metis.
Apart from the choice of method, the performance can also be improved by de-

creasing the simpli�cation depth limit. Isabelle tries to solve preconditions of con-
ditional rewrite rules by applying the simpli�er recursively. Conditional rewriting
may therefore lead to an in�nite chain of recursive simpli�er invocations. To prevent
nontermination, the recursion depth of the simpli�er is bounded by the simpli�cation
depth limit.
I also spent a considerable amount of time in tuning Isabelle's clasimpset, i.e.,

the set of available simpli�cation, introduction, and elimination rules. During this
process I recorded 4 versions of the clasimpset:

v0: Version 0 of the clasimpset is like Isabelle/HOL's default clasimpset, except that
simpli�cation rules are added to unfold the de�nitions of those constants that
I have introduced during the development of EventB's standard model.

v1: Version 1 is the outcome of investigating Abrial's model of a �le transfer protocol
[Ch. 4 Abrial, 2010].

126

5.3. Theorem Proving in Isabelle/HOL

30%

40%

50%

60%

70%

80%

90%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

auto

force

smt

clarsimp

metis

blast

Figure 5.6.: Comparison between di�erent methods with simpli�cation depth limit 1
and Version 3 of the clasimpset on the Abrial benchmark

v2: Version 2 is the outcome of additionally investigating Abrial's model of a con-
current program [Ch. 7 Abrial, 2010].

v3: Version 2 covers only a small fraction of the constants that may arise during
proof attempts. During the development of Version 3, I tried to de�ne smart
simpli�cation, introduction, and elimination rules for all constants that may
arise.

Based on extensive experimentation, I recommend to use auto with simpli�ca-
tion depth limit 1 and Version 3 of the clasimpset: with this con�guration, about
88% of the proof obligations are discharged automatically if the invocation of auto
is aborted after a timeout of 10 seconds. To substantiate my recommendation, I
present the performance of those con�gurations that result from changing one of the
three parameters (method, simpli�cation depth limit, version of clasimpset) while
leaving the other two parameters unchanged. The results of these experiments can
be found in Figures 5.6, 5.7, and 5.8. Of course, one can always try to �nd a better
recommendation or justi�cation by testing more con�gurations.

127

5. Automated Theorem Proving

70%

75%

80%

85%

90%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

1

2

0

5

10

20

50

Figure 5.7.: Comparison between di�erent simpli�cation depth limits with auto and
Version 3 of the clasimpset on the Abrial benchmark

128

5.3. Theorem Proving in Isabelle/HOL

76%

78%

80%

82%

84%

86%

88%

90%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

Version 3

Version 2

Version 1

Version 0

Figure 5.8.: Comparison between di�erent clasimpsets with auto and simpli�cation
depth limit 1 on the Abrial benchmark

129

5. Automated Theorem Proving

The development of Version 3 of the clasimpset does not involve a major secret. I
have spent several weeks inspecting failed proof attempts and the trace information
generated by automated proof methods. I identi�ed proof steps that a human proof
engineer would naturally apply, and translated these proof steps into rule declara-
tions. I tried to avoid rules that increase the size of the proof state; in my view, such
rules are useful in special situations, but often introduce new problems in the long
run. Most of the enhancements could be encoded as rule declarations and only in a
few cases I had to write ML code.
It was important to precisely understand the behavior of Isabelle's prede�ned proof

methods. The manuals were a good starting point [Paulson, 2011, Wenzel, 2011], but
sometimes it was necessary to study Isabelle's source code. Overall, tuning Isabelle's
automated methods is slightly more di�cult than performing manual proofs; but it
is a skill that can be acquired within a couple of months.
A natural question is whether auto with simpli�cation depth limit 1 and Version

3 of the clasimpset is a good choice in other benchmarks as well. To shed some light
on this issue, I have tested several con�gurations on the BepiColombo benchmark.
The main observations are depicted in Figures 5.9, 5.10, and 5.11. Note that the
BepiColombo benchmark has not in�uenced the development of Versions 1�3 of the
clasimpset.
Figure 5.9 indicates that a con�guration with simpli�cation depth limit 0 is most

successful. This is not surprising, as the proof obligations of the BepiColombo bench-
mark are much bigger than the proof obligations of the Abrial benchmark. As in
the Abrial benchmark, auto is the most powerful of the considered methods (cf. Fig-
ure 5.10), at least for timeouts of more than 200 seconds. According to Figure 5.11,
Version 3 of the clasimpset is a clear improvement over earlier versions. But the
di�erences between Versions 1 and 2 are hardly visible; this is presumably a con-
sequence of the fact that Version 2 is an ad-hoc improvement over Version 1 that
is inspired by the Abrial benchmark. At least, the changes in the clasimpset have
never signi�cantly corrupted auto's performance.

130

5.3. Theorem Proving in Isabelle/HOL

0%

10%

20%

30%

40%

50%

60%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

0

1

2

10

20

50

Figure 5.9.: Comparison between di�erent simpli�cation depth limits with auto and
Version 3 of the clasimpset on the BepiColombo benchmark

131

5. Automated Theorem Proving

0%

10%

20%

30%

40%

50%

60%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

auto

clarsimp

force

smt

blast

metis

Figure 5.10.: Comparison between di�erent methods with simpli�cation depth limit
0 and Version 3 of the clasimpset on the BepiColombo benchmark

132

5.3. Theorem Proving in Isabelle/HOL

20%

25%

30%

35%

40%

45%

50%

55%

60%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

Version 3

Version 2

Version 1

Version 0

Figure 5.11.: Comparison between di�erent clasimpsets with auto and simpli�cation
depth limit 0 on the BepiColombo benchmark

133

5. Automated Theorem Proving

5.3.1.2. Design of Axe

During my experiments with Isabelle's prede�ned proof methods, I experienced the
following problems and inconveniences:

1. It is tricky to �nd a �good� simpli�cation depth limit. The recommendation to
set the simpli�cation depth limit to 1 (cf. Section 5.3.1.1) in the Abrial bench-
mark is the result of experiments that consumed vast amounts of processing
time. In other benchmarks (such as BepiColombo), di�erent simpli�cation
depth limits lead to a better performance. Common users do not have access
to a high-performance computing cluster. Therefore, a heuristic that adapts
the simpli�cation depth limit automatically would be very useful.

2. Even with low simpli�cation depth limits, the simpli�er sometimes fails to
terminate or is unreasonably slow. Since auto invokes the simpli�er several
times, a slow or non-terminating simpli�er lets auto fail, even if a version of
auto without simpli�cation would discharge the given subgoal.

3. Some lemmas can only be proved by a combination of auto, metis, and smt.

4. The auto method applies splitting rules, i.e., rules that increase the number of
subgoals, in a rather aggressive manner. An example is disjunction elimina-
tion, i.e., HOL's counterpart to disj_L. Backjumping [see e.g. Harrison, 2009b,
p. 88] seems a promising solution, but I have refrained from implementing
backjumping as it is a major undertaking. A more modest countermeasure is
to restrict the set of splitting rules that are applied automatically and to delay
the application of the remaining splitting rules as much as possible.

To tackle these problems, I have developed a new proof method: axe. Overall,
axe executes the following phases:

1. simpli�cation (axe_simp)

2. simpli�cation and classical reasoning without splitting rules (axe_clarsimp)

3. simpli�cation and classical reasoning with splitting rules (axe_safesimp)

4. Try to solve the remaining subgoals by applying a set of prede�ned tactics
(axe_solve).

Simpli�cation. The simpli�cation phase of axe behaves quite similar to Isabelle's
simpli�er. One di�erence is that the execution of axe_simp is limited by a timeout.
Another di�erence is that axe_simp repeatedly invokes Isabelle's simpli�er with in-
creasing simpli�cation depth limits: the �rst invocation of the simpli�er uses the

134

5.3. Theorem Proving in Isabelle/HOL

simpli�cation depth limit zero4, and in every subsequent invocation, the simpli�-
cation depth limit is increased by one. If the timeout elapses while axe_simp is
running the simpli�er with simpli�cation depth limit n, axe_simp aborts and out-
puts the result of invoking the simpli�er with simpli�cation depth limit n − 1. (If
n = 0, axe_simp fails.)

This approach has the advantage that a slow or non-terminating simpli�er does
not inhibit subsequent computations. If the simpli�er terminates quickly with sim-
pli�cation depth limit 1 and fails to terminate with simpli�cation depth limit 2,
axe_simp still outputs the result of simplifying with simpli�cation depth limit 1.
Moreover, the user decides on the amount of time used for simpli�cation instead of
a simpli�cation depth limit, which is a more intuitive decision.

For the sake of completeness, I want to mention that axe_simp also aborts if
the simpli�cation depth limit exceeds the so-called maximum simpli�cation depth
limit or if a certain number of subsequent simpli�er invocations leave the proof state
unchanged.

Classical Reasoning. The axe_clarsimp method is quite similar to the prede�ned
clarsimp method. First, axe_clarsimp repeatedly applies non-splitting introduc-
tion and elimination rules (i.e., like clarify). To be precise, only rules that have
been declared as safe are applied; there is an agreement that only rules that are safe
in the sense of Section 4.1 should be declared as safe.

As soon as none of these introduction and elimination rules can be applied any-
more, axe_clarsimp applies Isabelle's simpli�er with simpli�cation depth limit zero5.
On failure, the simpli�cation depth limit is repeatedly increased by one. On success,
the entire process is restarted, i.e., axe_clarsimp passes on to applying introduction
and elimination rules.

Like axe_simp, each execution of axe_clarsimp is limited by a maximum simpli-
�cation depth limit and a timeout. If axe_clarsimp is aborted because the timeout
has elapsed, axe_clarsimp outputs the intermediate proof state.

The axe_safesimp method behaves like axe_clarsimp with the exception that
splitting rules are applied as well. Unlike auto or safe, axe_safesimp processes
only the �rst available subgoal.

As for axe_simp, if an invocation of the simpli�er fails to terminate, axe_clarsimp
and axe_safesimp still terminate after the timeout and output an intermediate re-
sult. This limits the damage caused by a looping simpli�er. I have decided to invoke
axe_clarsimp before axe_safesimp to delay the application of splitting rules.

4An implementation note: if the simpli�cation depth limit is zero, the simpli�er is not invoked
by �simp?�, but instead by �((simp (no_asm))?, (simp (no_asm_use))?, (simp (asm_lr))?,

(simp (no_asm_use)?))�. This is admittedly a historical accident; I have recti�ed the situation
during my subsequent work on the BepiColombo benchmark (cf. Section 5.3.2).

5If the simpli�cation depth limit is zero, the simpli�er is actually invoked by �(simp (no_asm) |

simp (no_asm_use) | simp (asm_lr) | simp)�.

135

5. Automated Theorem Proving

Applying Solvers. The method axe_solve applies a list of tactics, called solvers,
to solve the given subgoal. The executions of the solvers are limited by timeouts.
If a solver fails to solve the subgoal, axe_solve discards its output (if there is any)
and applies the next solver. If none of the solvers solves the subgoal, axe_solve
terminates in failure. In the Abrial benchmark, axe_solve applies variants of smt,
metis, auto, force, and blast (in this order).
The interaction between axe_safesimp and axe_solve is as follows. The axe

method applies axe_solve to the �rst subgoal left by axe_safesimp. If axe_solve
solves the �rst subgoal, axe_safesimp is reinvoked on the new �rst subgoal (if there
is any). The axe method terminates if no subgoal remains to be proved or axe_solve
fails to prove the �rst subgoal, and outputs the (possibly empty) stack of remaining
subgoals.
In contrast to auto or safe, axe focuses on the �rst subgoal. This does not a�ect

the runtime on provable conjectures, but it signi�cantly improves the runtime on
unprovable conjectures: if the �rst subgoal cannot be solved, there is no point in
trying to solve other subgoals.

5.3.1.3. Performance of Axe

Figure 5.12 measures the impact of the main improvements driven by the Abrial
benchmark. I consider two versions of auto and two versions of axe. The method
auto100_v0 is Isabelle's default con�guration of auto, and auto1_v3 is the rec-
ommendation of Section 5.3.1.1. The method axe_slow is a version of axe with
generous timeouts, and axe_light is the result of optimizing timeouts. The �gure
shows that the recommendation of Section 5.3.1.1 are clear improvements over Is-
abelle's default con�guration of auto and that axe is a clear improvement over auto:
axe_slow proves 95% of the proof obligations with a timeout of 90 seconds, and with
axe_light, this timeout can be reduced to 40 seconds.
Figure 5.13 compares auto with axe on the BepiColombo benchmark; the cor-

responding experiments have not in�uenced the development of axe. The �gure
con�rms the results on the Abrial benchmark: auto0_v3 is a clear improvement
over auto100_v0, and axe is a clear improvement over auto. Since the proof obliga-
tions are much bigger than in the Abrial benchmark, the timeouts of axe_light are
however too short.

136

5.3. Theorem Proving in Isabelle/HOL

65%

70%

75%

80%

85%

90%

95%

0 s 50 s 100 s 150 s 200 s

timeout

success rate

axe_light

axe_slow

auto1_v3

auto100_v0

• The auto1_v3 method invokes auto with Version 3 of the clasimpset and sim-
pli�cation depth limit 1, i.e., with the simpli�cation depth limit recommended
in Section 5.3.1.1. auto100_v0 invokes the default con�guration of auto, i.e.,
with Version 0 of the clasimpset and simpli�cation depth limit 100.

• The axe_slow method runs axe with Version 3 of the clasimpset. It executes
axe_simp for up to 20 seconds, and axe_clarsimp and axe_safesimp for up
to 40 seconds, respectively. The simpli�cation depth limit is increased up to
5, and axe_simp aborts after 5 subsequent failures. The list of solvers is smt,
metis, auto, force, blast (in this order), and each solver is invoked with a
timeout of 40 seconds.

• The axe_light method di�ers from axe_slow by running axe_simp for up to
10 seconds, axe_clarsimp and axe_safesimp for up to 5 seconds, and each
solver for up to 10 seconds. Moreover, axe_simp is already aborted after 2
subsequent failures.

Figure 5.12.: Comparison of axe with auto on the Abrial benchmark

137

5. Automated Theorem Proving

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

axe_slow

axe_light

auto0_v3

auto100_v0

The auto0_v3 method invokes auto with Version 3 of the clasimpset and simpli�-
cation depth limit 0, i.e., with the simpli�cation depth limit recommended in Sec-
tion 5.3.1.1. The other methods are de�ned in Figure 5.12.

Figure 5.13.: Comparison of axe with auto on the BepiColombo benchmark

138

5.3. Theorem Proving in Isabelle/HOL

5.3.1.4. Impact of Design Decisions

At this point, I analyze the impact of various decisions underlying the design of
axe. The impact is measured by comparing modi�ed versions of axe (or the used
clasimpset) with the con�guration of axe recommended in the previous section.
In the case of the Abrial benchmark, modi�ed versions of axe are compared to
axe_light, and in the case of the BepiColombo benchmark, to axe_slow; both are
de�ned in Figure 5.12.
It was important to optimize the clasimpset: if axe is invoked with Version 0 of the

clasimpset, the number of automatically proved conjectures drops by 7 percentage
points in the Abrial benchmark (cf. Figure 5.14) and by 26 percentage points in the
BepiColombo benchmark (cf. Figure 5.15). So unfolding de�nitions, the strategy
underlying Version 0, is far from optimal. Although the BepiColombo benchmark
has not in�uenced the development of Version 3, the bene�ts of Version 3 generalize
well to the BepiColombo benchmark.
Another question concerns the impact of smt. In both benchmarks (cf. Figures 5.14

and 5.15), the impact of the solvers other than smt is quite small: if axe_solve

invokes only smt, the performance drops by at most 2 percentage points. In the
Abrial benchmark, a con�guration of axe_solve that invokes every solver except
smt (i.e., metis, auto, force, and blast) is almost as powerful as the con�guration
with only smt. But in the BepiColombo benchmark, the con�guration of axe_solve
without smt is signi�cantly less powerful than the con�guration with only smt: the
di�erence is about 8 percentage points.
In Figures 5.16 and 5.17, I compare the impact of various strategies for applying

splitting rules. Eager splitting means that axe skips the invocation of axe_clarsimp;
splitting rules are consequently applied more eagerly than in the default version of
axe. In Version 3 of the clasimpset, splitting rules that are triggered by a hypothesis
(such as disjunction elimination, i.e., HOL's counterpart to disj_L) have been dis-
abled in axe_safesimp; such rules are still used in some way by the various solvers6.
Splitting on hypotheses means that axe uses Version 3 of the clasimpset except that
axe_safesimp also applies the splitting rules of Isabelle/HOL's default clasimpset
that are triggered by a hypothesis.
In the Abrial benchmark (cf. Figure 5.16), the choice of splitting strategy a�ects

one percentage point of the proof obligations. Stated in absolute numbers, I could
reduce the number of unproved proof obligations from about 120 to about 100 by
delaying or avoiding the application of splitting rules. The e�ect is visible but hardly
worth the e�ort. The improvement is much more evident in the BepiColombo bench-
mark (cf. Figure 5.17): the di�erence between the most aggressive strategy and the
most conservative strategy is up to 12 percentage points. Interestingly, the most
conservative strategy is most e�cient in both benchmarks.

6The smt solver applies disjunction elimination as part of the underlying proof calculus. The
metis solver does not apply disjunction elimination literally, but the resolution calculus has a
similar e�ect. The auto, force, and blast solver apply splitting rules that are triggered by a
hypothesis as unsafe elimination rules.

139

5. Automated Theorem Proving

75%

80%

85%

90%

95%

0 s 50 s 100 s 150 s 200 s

timeout

success rate

axe_light

only smt

no smt

Version 0 of the clasimpset

The axe_light method is the version of axe de�ned in Figure 5.12. The other
methods di�er from axe_light as indicated by their names.

Figure 5.14.: Variants of axe on the Abrial benchmark

140

5.3. Theorem Proving in Isabelle/HOL

30%

40%

50%

60%

70%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

axe_slow

only smt

no smt

Version 0 of the clasimpset

The axe_slow method is the version of axe de�ned in Figure 5.12. The other con-
�gurations di�er from axe_slow as indicated by their names.

Figure 5.15.: Variants of axe on the BepiColombo benchmark

141

5. Automated Theorem Proving

90%

91%

92%

93%

94%

95%

96%

0 s 50 s 100 s 150 s 200 s

timeout

success rate

axe_light

eager splitting
splitting on hypotheses

eager splitting on hypotheses

The axe_light method is the version of axe de�ned in Figure 5.12. The other
con�gurations di�er from axe_light as indicated by their names.

Figure 5.16.: Di�erent splitting strategies on the Abrial benchmark

142

5.3. Theorem Proving in Isabelle/HOL

50%

55%

60%

65%

70%

75%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

axe_slow

eager splitting
splitting on hypotheses

eager splitting on hypotheses

The axe_slow method is the version of axe de�ned in Figure 5.12. The other con-
�gurations di�er from axe_slow as indicated by their names.

Figure 5.17.: Di�erent splitting strategies on the BepiColombo benchmark

143

5. Automated Theorem Proving

86%

88%

90%

92%

94%

96%

0 s 20 s 40 s 60 s 80 s 100 s 120 s 140 s

timeout

success rate

filtered10

filtered2

(ebsimp', axe_light)

unrestricted100

unrestricted50

default

The method (ebsimp', axe_light) refers to the sequential composition of ebsimp'
and axe with the con�guration axe_light.

Figure 5.18.: Comparison of axe with Rodin's auto-tactic on the Abrial benchmark

5.3.1.5. Comparison to Rodin

Finally, I compare the performance of axe_light with the performance of Rodin's
auto-tactic. For the reasons explained in Section 5.1.2, I have performed the cor-
responding experiments on a HP Compaq 6910p laptop. Since unlifting is a non-
negligible part of the proof task, I compare the performance of Rodin's auto-tactic
with the performance of applying the sequential composition of ebsimp' and axe.
Figure 5.18 displays the main results.
The term default refers to the default con�guration of Rodin's auto-tactic. The

default con�guration discharges less than 90% of the available proof obligations,
but it is extremely fast.
A comparison to default is not very informative because it is easy to �nd con�g-

urations that are stronger than default. The con�guration unrestricted50 is an
example. It uses most of the available features and invokes Rodin's external provers
(i.e., newPP, PP, and ML) with the rather generous timeout of 50 seconds. Fur-
ther information on the used con�gurations of Rodin's auto-tactic can be found in
Appendix C. The con�guration unrestricted50 discharges almost 95% of the proof

144

5.3. Theorem Proving in Isabelle/HOL

obligations within 60 seconds per proof obligation. By increasing the timeouts of
external provers to 100 seconds (cf. unrestricted100), the number of automatically
discharged proof obligations can be only slightly increased. Both unrestricted50

and unrestricted100 are weaker than axe_light.
The con�guration filtered2 is a further improvement; it applies relevance �lters

[Röder, 2010], i.e., heuristics that remove hypotheses from the sequent that are as-
sumed to be unhelpful during the proof search. Rodin's external provers are invoked
with a timeout of 2 seconds. If the timeouts of Rodin's external provers are increased
to 10 seconds (cf. filtered10), more proof obligations are discharged automatically,
but filtered10 is slower than filtered2. The con�guration filtered2 is slightly
more powerful than axe_light, and filtered10 is more powerful than axe_light

for timeouts of more than 60 seconds.
There are many more ways of con�guring Rodin's auto-tactic � too many to test

them all. The con�gurations filtered2 and filtered10 are reasonable but maybe
not optimal. If there exist more powerful con�gurations, they are not well-known
and hard to �nd. I view this as a problem of Rodin, not of the comparison.
My hope was of course that axe outperforms even the best of Rodin's auto-tactic

con�gurations. This is the case for con�gurations that do not use relevance �ltering.
(Note that axe does not use relevance �ltering either.) If relevance �ltering is used,
Rodin's auto-tactic is slightly more powerful than axe. Since the di�erences are
rather small, I expect that axe can be further improved to outperform filtered10.

5.3.2. BepiColombo Benchmark

The axe method discharges almost 76% of the proof obligations in the BepiColombo
benchmark (cf. Figure 5.13). But it would be surprising if there were no room for
further improvements. In this section, I report on the process of optimizing axe for
BepiColombo.

5.3.2.1. Further Improvements of Axe

To maximize the impact of optimizations, I have focused on those proof obligations
of BepiColombo that are not discharged automatically by some version of Rodin's
auto-tactic; there are 132 such proof obligations, which I refer to as di�cult proof
obligations7. The set of di�cult proof obligations is randomly partitioned into two
sets: a training set and a validation set. The elements of the training set are used to
discover undesired behavior or missing simpli�cation, introduction, and elimination
rules. To rule out over�tting, the performance of the various improved versions of
axe is measured on the validation set after �nishing the process of optimizing axe.
The training set contains 33 proof obligations; the size of training set has mainly been

7The choice of auto-tactic con�guration used to determine di�cult proof obligations is somewhat
ad-hoc. When I carried out the experiments, it was the best known con�guration. Later, I
discovered a slightly more powerful con�guration, according to which only 123 proof obligations
are di�cult.

145

5. Automated Theorem Proving

in�uenced by the available time for carrying out the experiments (i.e., 100 working
hours).
During the process of optimization, I implemented 4 additional versions of the

clasimpset, i.e., Versions 4�7, and an enhanced version of axe, called axe'8. Fig-
ures 5.19 and 5.20 show that newer versions of the clasimpset or axe are improve-
ments over older versions, both on the training and the validation set. Of course,
that does not show that each implemented change is indeed an enhancement, but
the combination of all changes has a clear positive e�ect. To give the reader a feeling
of how I have achieved this positive e�ect, I summarize the main changes.

Version 4. In Version 4 of the clasimpset, the distributivity law

(∃x. ϕ x ∨ ψ x)←→ (∃x. ϕ x) ∨ (∃x. ψ x)

for ∃ and ∨ is used to postpone non-trivial instantiations of quanti�ers or case splits:
a goal that matches the left-hand side of the rule is rewritten to the right-hand side,
and a hypothesis that matches the right-hand side is rewritten to the left-hand side.
The distributivity law for ∀ and ∧ is used in a similar way.
The simpli�er tries to minimize the scope of quanti�ers by mini-scoping rules such

as
(∀x. ϕ ∨ ψ x)←→ ϕ ∨ (∀x. ψ x).

Version 4 introduces mini-scoping rules for conditionals such as

(∀x. (if ϕ then ψ1 x else ψ2 x))←→ if ϕ then (∀x. ψ1 x) else (∀x. ψ2 x).

Since Rodin does not support conditionals, if ϕ then ψ1 else ψ2 is usually expressed
by (ϕ −→ ψ1) ∧ (¬ϕ −→ ψ2) or (ϕ ∧ ψ1) ∨ (¬ϕ ∧ ψ2). Version 4 of the clasimpset
also provides mini-scoping rules for these rephrased versions of conditionals.
I also observed proof attempts in which the simpli�er failed to terminate. Non-

termination of the simpli�er is often caused by a combination of factors. An impor-
tant factor was that hypotheses of the form

∀x. ϕ x −→ t x = u x (5.8)

were automatically converted into conditional rewrite rules. The problem was that
the left-hand side of the rewrite rule matched a subterm of the right-hand side. Ver-
sion 4 of the clasimpset prevents this kind of non-termination by enforcing that the
left-hand side of an automatically generated rewrite rule does not match a subterm of
the right-hand side; this is achieved by exchanging t x and u x or replacing t x = u x
by (t x = u x) = True.
Together with the development of Version 4 of the clasimpset, I also changed

the preprocessing of the input of smt and metis. Before, the extensionality axiom
was applied aggressively to support the elimination of unsupported de�nitions. For

8In future releases, axe will be discontinued, and axe' will be renamed to axe.

146

5.3. Theorem Proving in Isabelle/HOL

0%

20%

40%

60%

80%

0 s 100 s 200 s 300 s 400 s 500 s

timeout

success rate

axe' with Version 7

axe' with Version 6

axe' with Version 5

axe' with Version 4

axe_light with Version 3

• The axe'method invokes axe_simp with a maximum simpli�cation depth limit
of 5 and a timeout of 10 seconds, and aborts axe_simp after 5 subsequent
failures. It invokes axe_clarsimp and axe_safesimp with timeouts of 180
seconds. It aborts axe_clarsimp if it fails to progress for 20 seconds, and
axe_safesimp if it fails to progress for 5 seconds. The axe_solve method runs
smt, metis, auto, force, and blast with timeouts of 40 seconds.

• The axe_light method is de�ned in Figure 5.12.

Figure 5.19.: Evolution of axe and the clasimpset on the training set

147

5. Automated Theorem Proving

0%

10%

20%

30%

40%

50%

60%

70%

0 s 100 s 200 s 300 s 400 s 500 s

timeout

success rate

axe' with Version 7

axe' with Version 6

axe' with Version 5

axe' with Version 4

axe_light with Version 3

The parameters of axe and axe' are chosen as in Figure 5.19.

Figure 5.20.: Evolution of axe and the clasimpset on the validation set

148

5.3. Theorem Proving in Isabelle/HOL

example, the hypothesis R = S, where R, S are variables of set type, was rewritten
to ∀x. x ∈ R ←→ x ∈ S. But since smt and metis are unaware of extensionality,
they failed to recognize that R and S were equal, which was sometimes harmful.
Unfortunately, it is also harmful not to apply the extensionality axiom at all. As a
compromise, I disabled application of extensionality to equalities R = S if R and
S are variables. This solution is helpful for BepiColombo, but there presumably
remains room for improvements.
Another observation is that hypotheses functional r or injective r can be quite

harmful if supplied to smt or metis. As a way out, I simply remove such hypotheses
from the input of smt and metis. This is of course sometimes counterproductive,
but at least in the training set of BepiColombo the bene�ts outweigh the drawbacks.
Since datatypes have not been available during the development of the Bepi-

Colombo model, a type PERSON with two inhabitants adam and eve is axiomatized
(in HOL) by

UNIV = {adam, eve},
adam 6= eve.

The Z3 solver behind smt has di�culties to cope with such a representation of �-
nite types9. As a quick solution, the preprocessing phase of smt adds a hypothesis
t = adam ∨ t = eve for every subterm of the given subgoal that does not contain
bound variables. In the long run, it seems promising to solve this problem by using
Isabelle/HOL's and Z3's support for datatypes.
Apart from that, Version 4 of the clasimpset introduces rules for reasoning about

functional images and the converse of injective functions.

Enhancements of axe. During the development of Version 4 of the clasimpset, it
became clear that some problems could be solved by improving axe; the enhanced
version of axe is invoked with axe'. One observation was that mutual simpli�cation
[see Wenzel, 2011, p. 137] is quite expensive, even with a simpli�cation depth limit
of zero. Mutual simpli�cation proceeds as follows: Simplify each hypothesis until
no hypothesis can be further simpli�ed; then simplify the goal. When a hypothesis
is simpli�ed, every other hypothesis is used as a rewrite rule. When the goal is
simpli�ed, every hypothesis is used as a rewrite rule.
The axe method already invokes the simpli�er repeatedly with an increasing sim-

pli�cation depth limit. The axe' method further divides every invocation of the
simpli�er into the following four phases:

1. simpli�cation of the goal (simp (no_asm))

2. simpli�cation of all hypotheses without using other hypotheses as rewrite rules
(simp (no_asm_use))

9For example, smt fails to prove x = adam ∨ x = eve from ∀x. x = adam ∨ x = eve in its default
con�guration.

149

5. Automated Theorem Proving

3. left-to-right simpli�cation: when a hypothesis is simpli�ed, every preceding
hypothesis is used as a rewrite rule; when the goal is simpli�ed, every hypothesis
is used as a rewrite rule. (simp (asm_lr))

4. mutual simpli�cation (simp)

Interestingly, execution of the four phases is sometimes faster than a direct invocation
of mutual simpli�cation.
The axe method already limits the execution of axe_clarsimp and axe_safesimp

by a timeout. The axe' method additionally aborts the execution of axe_clarsimp
(or axe_safesimp) if it fails to change the proof state for a given amount of time. This
sometimes allows axe' to abort the execution of axe_clarsimp or axe_safesimp

earlier than axe without preventing useful proof steps.
While developing axe', I discovered that axe' may fail to prove conjectures having

a goal that is identical to one of the hypotheses. This problem arises if the �rst
invocation of the simpli�er changes the goal, subsequent invocations of the simpli�er
fail to terminate, and other sub-tactics of axe' fail to recognize that the goal equals
one of the hypotheses. I am not sure whether this problem occurs frequently, but if
it occurs it is rather embarrassing. To prevent this problem, I have introduced an
additional phase axe_triv that is invoked right before axe_simp; axe_triv tries to
apply a limited set of rules that prove the given subgoal in one or two steps.

Version 5. Version 5 of the clasimpset provides some rules that eliminate duplicated
subterms. An example is

ϕ ∨ (ϕ ∧ ψ)←→ ϕ.

It is unclear to me whether these rules increase the number of automatically proved
conjectures, but they greatly improve readability of intermediate proof states.
Version 5 moreover improves the facilities of Version 3 for simplifying functional

images whose �rst argument is given by an enumerated set. Using the notation of
Event-B, an example is {1 7→ 2, 2 7→ 3}(2), which is simpli�ed to 3.

Version 6. Version 6 of the clasimpset provides a rule that rewrites (ϕ∧ψ1)∨(¬ϕ∧
ψ2) to if ϕ then ψ1 else ψ2 and a rule that replaces the two hypotheses ϕ −→ ψ1 and
¬ϕ −→ ψ2 by the hypothesis if ϕ then ψ1 else ψ2

10. The details are rather delicate
because the simpli�er sometimes rewrites if ϕ then ψ1 else ψ2 to (ϕ −→ ψ1)∧(¬ϕ −→
ψ2). The advantage of such a transformation is that HOL's prede�ned rules for
reasoning about conditionals can be applied to formulae that result from encoding
conditionals with boolean connectives.

Version 7. In some cases, the given subgoal contained a hypothesis of the form
if ϕ then ψ1 else ψ2 and it was helpful to perform a case split on ϕ. I already had the

10Implementation note: introduction, elimination, and destruction rules that are triggered by more
than one formula are implemented as classical wrappers.

150

5.3. Theorem Proving in Isabelle/HOL

intuition that case splits need to be applied with care; this was later on con�rmed
by the measurements of Section 5.3.1.4. To limit the negative impact of case splits,
I introduced an additional phase into axe', namely axe_split. If axe_safesimp

fails to solve the given subgoal, axe_split tries to apply an elimination rule that
increases the number of subgoals. In Version 7 of the clasimpset, axe_split tries
to �nd a hypothesis of the form if ϕ then ψ1 else ψ2 and performs a case split on ϕ.
If there is such a hypothesis, axe' continues with axe_safesimp. Otherwise, axe'
tries to solve the subgoal with axe_solve. The axe_split method was initially an
experimental feature; given that it is quite successful, I have decided to integrate it
into axe'.

Validation. The improvements of the clasimpset and the development of axe' have
been quite successful on the di�cult proof obligations of the BepiColombo bench-
mark. The improvements remain successful on the validation set, which has not
in�uenced the development of the improvements. Figure 5.21 compares the per-
formance of axe' with earlier milestones on the full BepiColombo benchmark; it
con�rms that axe' with Version 7 of the clasimpset remains a clear improvement
over axe with Version 3 of the clasimpset.
Concerning the Abrial benchmark, Figure 5.22 shows that axe' with Version 7 of

the clasimpset is only a minor improvement over axe with Version 3 of the clasimpset.
I compare axe' with axe_slow instead of axe_light (cf. Figure 5.12), because the
timeouts of axe' have not been optimized for the Abrial benchmark and are therefore
closer to the timeouts of axe_slow.
Apparently, the changes developed in this section are useful for the BepiColombo

benchmark, but they are not very useful to �nd more proofs in the Abrial benchmark.
This is not surprising to me. The performance of axe on the Abrial benchmark has
already been quite good. It therefore requires very speci�c measure to improve the
performance further; it is unlikely that these measures are discovered by investigating
a di�erent benchmark. I still view it as a success that the improvements on the
BepiColombo benchmark do not degrade the performance on the Abrial benchmark.

151

5. Automated Theorem Proving

0%

20%

40%

60%

80%

0 s 200 s 400 s 600 s 800 s 1000 s

timeout

success rate

axe'

axe_slow

axe_light

auto0_v3

auto100_v0

The axe' method uses Version 7 of the clasimpset and the parameters given in Fig-
ure 5.19. The methods axe_slow and axe_light are the outcomes of my work on
the Abrial benchmark. Their de�nitions can be found in Figure 5.12. The auto0_v3
method is the preliminary recommendation of Section 5.3.1.1: auto with simpli�-
cation depth limit 0 and Version 3 of the clasimpset. The auto100_v0 method is
Isabelle's default con�guration: auto with simpli�cation depth limit 100 and Version
0 of the clasimpset.

Figure 5.21.: Performance of axe' and Version 7 of the clasimpset on the full Bepi-
Colombo benchmark

152

5.3. Theorem Proving in Isabelle/HOL

93.0%

93.5%

94.0%

94.5%

95.0%

95.5%

0 s 50 s 100 s 150 s 200 s

timeout

success rate

axe'

axe_slow

The axe' method uses Version 7 of the clasimpset and the parameters given in
Figure 5.19. The axe_slow method is de�ned in Figure 5.12.

Figure 5.22.: Performance of axe' and Version 7 of the clasimpset on the Abrial
benchmark

153

5. Automated Theorem Proving

20%

30%

40%

50%

60%

70%

80%

90%

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s 400 s

timeout

success rate

(ebsimp', axe')

filtered20

filtered10

unrestricted20

unrestricted10

default

Figure 5.23.: Comparison of axe' with Rodin's auto-tactic on the BepiColombo
benchmark

5.3.2.2. Comparison to Rodin

Similarly as in Section 5.3.1.5, I compare axe' with Rodin's default auto-tactic con-
�guration (default), and improved tactics that do (filtered10 and filtered20)
and do not (unrestricted10 and unrestricted20) use relevance �ltering. The de-
tails on auto-tactic con�gurations are explained in Appendix C. As in Section 5.3.1.5,
I have performed the experiments on a HP Compaq 6910p laptop (cf. Section 5.1.2).
Figure 5.23 shows that axe' with Version 7 of the clasimpset (preceded by ebsimp')
discharges more proof obligations than the best known con�gurations of Rodin's
auto-tactic. The axe' method is however sometimes slower than Rodin's auto-tactic,
in particular if relevance �ltering is used.

154

5.3. Theorem Proving in Isabelle/HOL

5.3.3. Limitations

Several problems have not been solved because of lack of time or suitable ideas; some
of these problems seem not to be relevant to the considered benchmarks, but they
may be relevant to others.
A technical problem stems from the cost of parsing formulae. The current toolchain

uses Isabelle's generic parser, which sometimes takes several minutes to parse a proof
obligation. This is clearly unacceptable. After �nishing my experiments, a more
e�cient method for parsing formulae has been implemented11. By using this method,
I expect that the parsing time can be reduced by several orders of magnitude.
Another problem is the number of irrelevant hypotheses: axe processes all available

hypotheses, although usually only a fraction is required to �nd a proof. I expect
that the performance of axe can be improved by heuristically removing some of the
available hypotheses before starting the proof attempt or by delaying the processing
of hypotheses that seem unlikely to be useful for a proof. Such techniques have been
implemented elsewhere [such as in Hoder and Voronkov, 2011, Meng and Paulson,
2009, Röder, 2010]; it remains to implement them and to �nd suitable parameters.
Another problem concerns the application of splitting rules. The current version

of axe prevents or delays the application of splitting rules such as disjunction elimi-
nation. It is di�cult to construct a simple example where this behavior lets a proof
attempt fail, because several heuristics reduce the need for applying splitting rules.
Nevertheless, it seems plausible that axe is unable to �nd proofs that require ex-
cessively many applications of splitting rules. A way out is to implement a more
sophisticated splitting strategy such as backjumping [see Harrison, 2009a], which is
of course a major undertaking.
Before invoking the metis or smt method, I apply a preprocessing phase that

unfolds the de�nitions of most constants that are not supported by smt or metis.
Although this kind of preprocessing is e�ective, the approach is quite ad hoc and
leaves room for improvements.

5.3.4. Conclusions

Out of the box, Isabelle/HOL has not been useful as an automated theorem prover
for Rodin: the auto method discharges 76% of the proof obligations in the Abrial
benchmark and 17% in the BepiColombo benchmark. But Isabelle/HOL provides a
great support for improving existing and developing new proof methods. In a �rst
step, I have developed the axe method, which is essentially a smart combination of
prede�ned tactics, and I have de�ned several introduction, elimination, and simpli�-
cation rules tailored to the HOL theory underlying Event-B's standard model. To be
precise, I have also developed a few so-called classical wrappers [Paulson, 2011]. The
development has been driven by the Abrial benchmark. After these improvements,
axe discharges 95% of the proof obligations in the Abrial benchmark and almost
76% in the BepiColombo benchmark. The performance improvements on the Abrial

11I am grateful to Makarius Wenzel for his quick reaction on my feature request.

155

5. Automated Theorem Proving

benchmark generalize well to the BepiColombo benchmark, and the overall perfor-
mance (on the Abrial benchmark) is almost as good as the performance of Rodin's
auto-tactic.
Next, I have further improved the performance of axe; the process was driven by

a training set, i.e., a small fragment of the BepiColombo benchmark that consists of
33 proof obligations. Within about 100 working hours, I could increase the number
of automatically discharged proof obligations from 5 to 27 on the training set, and
from 411 to 545 on the entire BepiColombo benchmark. This means, whenever I
turned a failed proof attempt of the training set into an automatic proof, on average
about 5 failed proof attempts of the remaining BepiColombo benchmark became
automatic as well: �buy one, get �ve for free�. This calculation still gives an under-
approximation, because it assumes that I investigated 22 proof obligations of the
training set; in fact, it was less than 22, because of generalization e�ects within
the training set. In the end, Rodin's auto-tactic still performs better than axe for
timeouts of up to 75 seconds, but axe outperforms Rodin for timeouts of more than
80 seconds.
The main arguments in favor of Isabelle/HOL and axe are strong guarantees that

proofs are correct and the great support for extending and con�guring automated
methods. One could try to carry the performance improvements inspired by the Bepi-
Colombo benchmark over to Rodin's auto-tactic; but that would take signi�cantly
more time than 100 working hours. The various improvements often generalize well
to proof obligations that have not in�uenced their development; I encountered the
situation that a later version of a tactic or con�guration was not an improvement
over an earlier version, but I never experienced that a later version performed signif-
icantly worse than an earlier version. Another argument in favor of axe is that its
performance is not bad (in comparison to Rodin's auto-tactic) and sometimes even
clearly better.
The main argument against Isabelle/HOL and axe is that its performance was

always worse than the performance of Rodin's auto-tactic before domain speci�c
improvements had been developed. This is not surprising, since Rodin's auto-tactic
has been optimized during several years and axe only during months. The price
of improving the performance of axe is that a developer has to become familiar
with Isabelle/HOL. Overall, users should consider using Isabelle/HOL and axe if
soundness is of utmost importance or when Rodin's auto-tactic performs poorly.
Coming back to the problems mentioned at the beginning of the chapter, the inte-

gration of Isabelle/HOL gives Rodin a theorem prover that is sound by construction
and has a complete proof calculus (in the general sense). On the considered bench-
marks, Isabelle/HOL discharges either roughly as many proof obligation as Rodin's
auto-tactic or sometimes even signi�cantly more; the price is that the proof search
by Isabelle/HOL sometimes takes more runtime than the proof search by Rodin.
Adaptability is a major strength of Isabelle/HOL.

156

6. Conclusions

6.1. Summary of Contributions

I have achieved the goals stated in the problem statement of Section 1.3 in the
following way. In Sections 2.1 and 2.2, I develop de�nitions of syntax and semantics
of Event-B's logic, viewing the underlying signature and structure as unknown. In
Sections 3.1 and 3.3, I instantiate these generic de�nitions by giving a signature and
structure covering the symbols that are by default available in Rodin. The impact
of non-trivial design decisions underlying Event-B's logic is analyzed in Chapter 4.
The de�nition of Event-B's logic is close to its implementation in Rodin; exceptions

are described and justi�ed in Sections 2.3.2.4, 2.4, 3.4, and 4.3. Readers may validate
the given semantics by inspecting its de�nition (Section 2.2) and the corresponding
proof calculus in Sections 3.1 and 3.3.
I have demonstrated with various examples that my speci�cation of syntax and

semantics is suitable for developing and understanding other features of Event-B's
logic:

• a de�nition of substitution with a semantic justi�cation (Section 2.2.7),

• a rigorous account on proof calculi in Event-B, explaining what the di�erent
kinds of rules are, how they may be applied during proofs, and when their
application is sound (Section 2.3),

• a soundness proof of a concrete proof calculus, veri�ed to a large extent by
Isabelle/HOL (Chapter 3),

• a development of methods for extending theories and a proof that these meth-
ods are de�nitional (Section 3.2),

• an embedding into the monotonic fragment of Event-B's logic (Section 3.2.4).

I have improved Rodin's theorem proving capabilities by integrating Isabelle/HOL
as an automated theorem prover and by developing the axe method (Chapter 5).
Concerning soundness, Isabelle/HOL meets high standards because it implements
the LCF approach, it is committed to de�nitional theory extensions, and it has
matured during several decades. My integration of Isabelle/HOL into Rodin adopts
this trustworthiness to a large extent because the actual embedding of Event-B's
logic into HOL is quite simple; the complicated parts of the embedding have been
implemented as Isabelle tactics and are therefore correct by construction. Since there

157

6. Conclusions

is no need to constantly change the implementation of the embedding, it is unlikely
that new soundness bugs will be introduced in the future.
I have evaluated my Isabelle/HOL based tactic on proof obligations from various

domains, in particular on the proof obligations of BepiColombo, which is one of
the most challenging industrial case studies to which Rodin has been applied. The
evaluation shows that Isabelle/HOL and axe are an improvement over Rodin's auto-
tactic in terms of adaptability and � in the case of BepiColombo � even in the number
of automatically discharged proof obligations.

Impact on Event-B and Rodin. The results of this thesis and the process of doing
this research have impacted Event-B and Rodin in several ways. Several consistency
bugs have been discovered and corrected. The discovery of such bugs and the parallel
development of theoretical foundations has initiated a learning process: over the
years, the consistency bugs have become much more subtle.
By studying the foundations of term rewriting, it has become clear how to apply

conditional rewrite rules to the arguments of binders, a feature that is so far not sup-
ported by Rodin. The study of proof calculi has also helped to eliminate dispensable
preconditions of rules; a few examples can be found in Section A.3.
The basic extension methods implemented in the theory plug-in [Butler and Maam-

ria, 2010] have now got a theoretical foundation. My work also shows how to over-
come various restrictions when introducing new rules, most notably the restriction
that ∧,∨,⇒, ∀, ∃ may not occur in the left-hand sides of rewrite rules.
The integration of Isabelle/HOL is not only useful for discharging proof obligations

automatically, it can also be used to formally reason about the soundness of new rules.
A better approach to soundness is of course to change Rodin's prover architecture
to prevent application of unsound rules; but it is unclear whether and when such a
change of architecture will take place. In the meantime, formal soundness proofs in
HOL are a bene�cial complement to the current review procedure that is based on
human inspection.

Contributions to the Field of Theorem Proving. Although this research has been
driven by the aim to improve Event-B and Rodin, it has led to results of a more
general interest. One of these results is directed rewriting. Although this term
rewriting technique has already been implemented in Rodin and PVS, it has been
poorly understood. With my research, I point out under which conditions directed
rewriting is sound (i.e., monotonicity and SW-semantics), I give empirical evidence
that it improves the performance of term rewriting, and I show that it is safe (under
weak preconditions), which is not obvious from the de�nition of directed rewriting.
Another result concerns unlifting. A common argument against Kleene semantics

of �rst-order connectives and quanti�ers is an exponential overhead of unlifting. With
my parametric complexity analysis I point out that this exponential overhead occurs
only in corner cases, and with my empirical evaluation I show that these corner cases
do not arise in a wide variety of practical problems. Unlike other unlifting algorithms,

158

6.2. Future Work

my algorithm is able to cope with functions whose domains are unknown.
Although the axe method has been designed to solve conjectures originating from

Event-B, it is as generic as other automated methods in Isabelle. It has proved to
be e�ective on big and somewhat shallow problems without guidance from the user.
I expect that it is useful in application domains beyond Event-B.

6.2. Future Work

There are several ways of improving or extending the results obtained in this thesis.
The various restrictions on de�nitional theory extension methods in Rodin need to be
overcome; the foundations of more extension methods than given in this document
can and should be developed, e.g., methods for de�ning new types and methods
for recursive function de�nitions. The theory plug-in already allows users to de�ne
datatypes [Butler and Maamria, 2010], but the theoretical foundations have not yet
been worked out; in fact, certain datatype �de�nitions� make the resulting theory
inconsistent [Schmalz, 2012].
Another important problem is to make the integration of Isabelle compatible with

de�nitional extensions. Most of Rodin's automated tactics, in particular the external
provers, have di�culties coping with de�nitional extensions. A trivial approach to
achieve at least some degree of compatibility is to eliminate user-de�ned operators by
unfolding de�nitions and to specify user-de�ned types by adding appropriate axioms.
But the results of Section 5.3.1.4 show that unfolding de�nitions often leads to a poor
performance. It therefore seems bene�cial to investigate alternative approaches that
lead to a better performance.
Before this research has been carried out, there was not much that could be done

to in�uence the behavior of Rodin's automated tactics. The axe method is easier
to adapt than other automated tactics of Rodin, but adapting axe still requires
experience with Isabelle/HOL and the embedding of Event-B's logic into HOL; it
is therefore unlikely that common Rodin users will be able to con�gure axe. A
natural next step is to investigate more user-friendly mechanisms for in�uencing
the behavior of automated tactics. This could include annotations for indicating
which hypotheses are relevant for proofs, which disjunctions should be used for case
splits, which witnesses should be considered for quanti�er instantiation, and which
hypotheses should be used as inference or rewrite rules. One challenge is to keep the
e�ort of writing annotations low; another challenge is the automatic conversion of
hypotheses to rules, which is more challenging than in higher-order logic because of
Event-B's partial function semantics.
In the current setting, the new tactic based on Isabelle/HOL outputs only whether

the given proof obligation could be proved. If a proof cannot be found, axe outputs
the subgoals that remain to be proved; this output could help users to understand
why a proof has not been found. It would therefore be useful to translate the output
of axe back to Event-B's logic and display it in Rodin. As for unlifting, the challenge
is to de�ne a translation to Event-B's logic that produces a concise and readable

159

6. Conclusions

output.
My integration uses Isabelle/HOL as an automated theorem prover, but Isabelle

has more to o�er. For example, it supports a readable and robust notation for
proofs [Wenzel, 2001] and provides a sophisticated user interface [Wenzel, 2010] that
goes far beyond the common read-eval-print loop of terminals. If Isabelle/HOL were
integrated as an interactive theorem prover, Rodin users would bene�t from these
and other features. In a possible approach to such an integration, the user speci�es
models in Rodin, Rodin generates proof obligations, translates them to HOL, and
invokes the unlifting method. The user subsequently uses Isabelle as an interactive
prover to discharge the remaining subgoals. A minor di�culty with this approach
is that Event-B and HOL have a di�erent syntax; this can be overcome by con�g-
uring Isabelle's parser and pretty-printer. Another di�culty is that corresponding
functions (such as Event-B's and HOL's division) have slightly di�erent semantics; I
expect that this di�culty can be overcome by appropriate documentation, because
Rodin does already implement di�erent semantics during modeling and proving (cf.
Section 4.3) and users (as opposed to developers) hardly notice the di�erence.
It is also natural to invest into building more powerful and generic proof tactics

for Rodin; some progress is reported in [Butler and Maamria, 2010, Maamria and
Butler, 2010]. On the one hand, this approach is not burdened with the engineering
challenges of a tool integration. It is also a great chance to develop novel proof tactics
for reasoning about partial functions, such as directed rewriting. On the other hand,
apart form soundness concerns, non-trivial techniques like term rewriting, higher-
order uni�cation [Huet, 1975], and tableau reasoning need to be implemented from
scratch, which is a major undertaking. So this approach has the best chances to lead
to an optimal solution, but the e�ort may be unreasonably high.

6.3. Personal Remarks

I conclude my thesis with three personal remarks. First, it became clear in a very
early stage that any serious work on theorem proving in Event-B would require a
major overhaul of the foundations of its logic. Initially, I was not too happy about
it, because I viewed this task as tedious routine work that would not reveal valuable
insights. But then, it turned out to be surprisingly challenging to get all the details
right and to make the presentation readable; that was already an exciting task per
se. Even better, inspired by discussions (most notably with Issam Maamria) and
by carefully examining Rodin's proof calculus, I discovered that Rodin implemented
a smart, powerful, and hitherto poorly understood rewriting technique: directed
rewriting.
Second, my attitude towards partial functions has changed over the years. Initially,

I had the impression that logics of partial functions were unreasonably complicated
and therefore a pointless academic exercise. I still view logics of partial functions as
more complicated than classical logics. However, this complexity stems from partial
functions themselves and not from their representation in logics of partial functions.

160

6.3. Personal Remarks

Reasoning about total functions in a logic of partial functions does not have to be
more di�cult than in a classical logic, because the corresponding well-de�nedness
conditions can be solved by a trivial tactic (i.e., bottom-up unlifting). Likewise,
reasoning about partial functions in a classical logic is not simpler than in a logic of
partial functions: this conviction is the result of doing numerous painful proofs about
de�nite descriptions (the HOL counterparts of functional images) with Isabelle/HOL.
I even had the impression that these proofs would have been less painful in Rodin
with appropriate directed rewrite rules. In practice, it may still be worth expressing
partial functions in a classical logic, because classical logics often have a better tool
support. For the time being, my advice is this: if partial functions can be avoided,
avoid them and use a classical logic; if they are inherent to the problem, try to make
the decision by the quality of tool support; if tools for classical logics do not bring
clear bene�ts, choose a tool supporting a logic of partial functions.
Third, one of the most critical decision during this research was whether to develop

my own theorem prover and, if not, which theorem prover to build on. The advice
I received from other people could not have been more contradictory; this is not
a complaint � it was a di�cult decision. After frustrating experiences with other
theorem provers, I decided to build on Isabelle/HOL. Of course, it was di�cult
to become acquainted with the tool. But then its capabilities far surpassed my
expectations. I progressed very quickly mainly for two reasons: Isabelle's automated
tactics can be con�gured on a high level of abstraction, which relieved me to a
large extent of implementing low-level term manipulations. And thanks to the LCF
architecture, I never had to bother about soundness, which decreased the e�ort of
testing signi�cantly. Without these two capabilities of someone else's theorem prover
I would have achieved much less. So with hindsight, Paulson's advice not to write a
theorem prover was good for me.

161

List of Figures

2.1. Naming conventions . 29
2.2. Unsound inference rules for the various sequent semantics 41

3.1. Event-B's theories . 56
3.2. De�nitional extensions . 68

4.1. Dependencies between features of Event-B's logic 95

5.1. A trivial unlifting algorithm . 110
5.2. Additional rules of the e�cient unlifting algorithm 112
5.3. Performance of unlifting in the Abrial benchmark 123
5.4. Performance of unlifting in the BepiColombo benchmark 124
5.5. Performance of unlifting in the Rules benchmark 125
5.6. Comparison between di�erent methods with simpli�cation depth limit

1 and Version 3 of the clasimpset on the Abrial benchmark 127
5.7. Comparison between di�erent simpli�cation depth limits with auto

and Version 3 of the clasimpset on the Abrial benchmark 128
5.8. Comparison between di�erent clasimpsets with auto and simpli�ca-

tion depth limit 1 on the Abrial benchmark 129
5.9. Comparison between di�erent simpli�cation depth limits with auto

and Version 3 of the clasimpset on the BepiColombo benchmark . . . 131
5.10. Comparison between di�erent methods with simpli�cation depth limit

0 and Version 3 of the clasimpset on the BepiColombo benchmark . 132
5.11. Comparison between di�erent clasimpsets with auto and simpli�ca-

tion depth limit 0 on the BepiColombo benchmark 133
5.12. Comparison of axe with auto on the Abrial benchmark 137
5.13. Comparison of axe with auto on the BepiColombo benchmark . . . 138
5.14. Variants of axe on the Abrial benchmark 140
5.15. Variants of axe on the BepiColombo benchmark 141
5.16. Di�erent splitting strategies on the Abrial benchmark 142
5.17. Di�erent splitting strategies on the BepiColombo benchmark 143
5.18. Comparison of axe with Rodin's auto-tactic on the Abrial benchmark 144
5.19. Evolution of axe and the clasimpset on the training set 147
5.20. Evolution of axe and the clasimpset on the validation set 148
5.21. Performance of axe' and Version 7 of the clasimpset on the full Bepi-

Colombo benchmark . 152

163

List of Figures

5.22. Performance of axe' and Version 7 of the clasimpset on the Abrial
benchmark . 153

5.23. Comparison of axe' with Rodin's auto-tactic on the BepiColombo
benchmark . 154

164

Bibliography

J.-R. Abrial. Models accompanying Abrial [2010]. http://wiki.event-b.org/

index.php/Event-B_Language.

J.-R. Abrial. The B-book � assigning programs to meanings. Cambridge University
Press, 2005.

J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

J.-R. Abrial and L. Mussat. On using conditional de�nitions in formal theories. In
ZB, volume 2272 of Lecture Notes in Computer Science, pages 242�269. Springer,
2002.

J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. STTT, 12(6):
447�466, 2010.

P. B. Andrews. An Introduction to Mathematical Logic and Type Theory. Springer,
2002.

R. D. Arthan. Unde�nedness in Z: Issues for speci�cation and proof. In Proceedings
of the Workshop on the Mechanization of Partial Functions. 1996.

F. Badeau and A. Amelot. Using B as a high level programming language in an
industrial project: Roissy VAL. In ZB, volume 3455 of Lecture Notes in Computer
Science, pages 334�354. Springer, 2005.

C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte, and H. Ven-
ter. Speci�cation and veri�cation: the Spec# experience. Communications of the
ACM, 54(6):81�91, 2011.

H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering unde�nedness in
program proofs. Acta Informatica, 21:251�269, 1984.

D. Basin and S. Matthews. Logical frameworks. In Handbook of Philosophical Logic,
volume 9, pages 89�163. Kluwer Academic Publishers, 2002.

M. J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.

165

http://wiki.event-b.org/index.php/Event-B_Language
http://wiki.event-b.org/index.php/Event-B_Language

Bibliography

P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A successful applica-
tion of B in a large project. In World Congress on Formal Methods, volume 1708
of Lecture Notes in Computer Science, pages 369�387. Springer, 1999.

S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gur�nkel, and D. L. Dill. A
practical approach to partial functions in CVC Lite. Electronic Notes in Theoretical
Computer Science, 125(3):13�23, 2005.

S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors. 22nd International
Conference on Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science, 2009. Springer.

S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In ITP, volume
6172 of Lecture Notes in Computer Science, pages 179�194. Springer, 2010.

S. Böhme, M. Moskal, W. Schulte, and B. Wol�. HOL-Boogie - an interactive prover-
backend for the verifying C compiler. Journal of Automated Reasoning, 44(1-2):
111�144, 2010.

A. D. Brucker, F. Rittinger, and B. Wol�. HOL-Z 2.0: A proof environment for
Z-speci�cations. Journal of Universal Computer Science, 9(2):152�172, 2003.

T. Burge. Truth and singular terms. Noûs, 8(4):309�325, 1974.

M. Butler and I. Maamria. Mathematical extension in Event-B through the Rodin
theory component, 2010. http://deploy-eprints.ecs.soton.ac.uk/251.

CADiZ/Ref. CADiZ reference manual. http://www.cs.york.ac.uk/hise/cadiz/

looseness.html.

J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions.
In 3rd BCS-FACS Re�nement Workshop, pages 51�69. Springer, 1990.

E. M. Clark, E. M. J. Clark, and O. Grumberg. Model Checking. MIT Press, 2000.

ClearSy. Atelier B. http://www.atelierb.eu.

D. Cohen and P. Watson. An e�cient representation of arithmetic for term rewrit-
ing. In RTA, volume 488 of Lecture Notes in Computer Science, pages 240�251.
Springer, 1991.

E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In Berghofer et al. [2009], pages 23�42.

D. R. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In CASSIS,
volume 3362 of Lecture Notes in Computer Science, pages 108�128. Springer, 2004.

Á. Darvas, F. Mehta, and A. Rudich. E�cient well-de�nedness checking. In IJCAR,
volume 5195 of Lecture Notes in Computer Science, pages 100�115. Springer, 2008.

166

http://deploy-eprints.ecs.soton.ac.uk/251
http://www.cs.york.ac.uk/hise/cadiz/looseness.html
http://www.cs.york.ac.uk/hise/cadiz/looseness.html
http://www.atelierb.eu

Bibliography

J. E. Dawson. Simulating term-rewriting in LPF and in display logic. In Supple-
mentary Proceedings of TPHOLs, pages 47�62. Australian National University,
1998.

L. M. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337�340. Springer, 2008.

E. W. Dijkstra. Guarded commands, non-determinancy and a calculus for the deriva-
tion of programs. In Language Hierarchies and Interfaces, volume 46 of Lecture
Notes in Computer Science, pages 111�124. Springer, 1975.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

W. M. Farmer. A partial functions version of Church's simple theory of types. Journal
of Symbolic Logic, 55(3):1269�1291, 1990.

W. M. Farmer. A simple type theory with partial functions and subtypes. Annals
of Pure and Applied Logic, 64(3):211�240, 1993.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive mathematical
proof system. Journal of Automated Reasoning, 11(2):213�248, 1993.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An updated system de-
scription. In CADE, volume 1104 of Lecture Notes in Computer Science, pages
298�302. Springer, 1996.

S. Feferman. Polymorphic typed lambda-calculi in a type-free axiomatic framework.
Contemporary Mathematics, 106:101�136, 1990.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234�245, 2002.

G. Gentzen. Untersuchungen über das logische Schlie�sen. I. Mathematische
Zeitschrift, 39(1):176�210, 1935.

R. Gmehlich, K. Grau, S. Hallerstede, M. Leuschel, F. Lösch, and D. Plagge. On
�tting a formal method into practice. In Qin and Qiu [2011], pages 195�210.

M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge University
Press, 1993.

M. J. C. Gordon and A. M. Pitts. The HOL Logic, pages 191�232. In Gordon and
Melham [1993], 1993.

M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer, 1979.

D. Gries and F. B. Schneider. Avoiding the unde�ned by underspeci�cation. In
Computer Science Today, volume 1000 of Lecture Notes in Computer Science,
pages 366�373. Springer, 1995.

167

Bibliography

S. Hallerstede and M. Leuschel. Constraint-based deadlock checking of high-level
speci�cations. TPLP, 11(4-5):767�782, 2011.

J. Harrison. HOL Light: An overview. In Berghofer et al. [2009], pages 60�66.

J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009b.

M. Hinchey, J. P. Bowen, and E. Vassev. Formal methods. In Encyclopedia of
Software Engineering, pages 308�320. Taylor & Francis, 2010.

J. R. Hindley and J. P. Seldin. Lambda-Calculus and Combinators. Cambridge
University Press, 2008.

T. S. Hoang and J.-R. Abrial. Reasoning about liveness properties in Event-B. In
Qin and Qiu [2011], pages 456�471.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576�580, 1969.

K. Hoder and A. Voronkov. Sine qua non for large theory reasoning. In CADE,
volume 6803 of Lecture Notes in Computer Science, pages 299�314. Springer, 2011.

G. P. Huet. Uni�cation in typed lambda calculus. In Lambda-Calculus and Computer
Science Theory, volume 37 of Lecture Notes in Computer Science, pages 192�212.
Springer, 1975.

D. Ili¢, T. Latvala, P. Väisänen, K. Varpaaniemi, L. Laibinis, and E. Troubitsyna.
Deploy deliverable D20 � pilot deployment in the space sector.
http://www.deploy-project.eu/pdf/D20-pilot-deployment-in-the-space-

sector-final-version.pdf.

C. B. Jones. Partial functions and logics: A warning. Information Processing Letters,
54(2):65�67, 1995.

C. B. Jones. Reasoning about partial functions in the formal development of pro-
grams. Electronic Notes in Theoretical Computer Science, 145:3�25, 2006.

C. B. Jones and C. A. Middelburg. A typed logic of partial functions reconstructed
classically. Acta Informatica, 31(5):399�430, 1994.

C. B. Jones, K. D. Jones, P. A. Lindsay, and R. C. Moore. Mural - a formal devel-
opment support system. Springer, 1991.

M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, 2000.

S. C. Kleene. Introduction to Metamathematics. North Holland, 1952.

168

http://www.deploy-project.eu/pdf/D20-pilot-deployment-in-the-space-sector-final-version.pdf
http://www.deploy-project.eu/pdf/D20-pilot-deployment-in-the-space-sector-final-version.pdf

Bibliography

G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
seL4: formal veri�cation of an operating-system kernel. Communications of the
ACM, 53(6):107�115, 2010.

Kolyang, T. Santen, and B. Wol�. A structure preserving encoding of Z in Is-
abelle/HOL. In TPHOLs, volume 1125 of Lecture Notes in Computer Science,
pages 283�298. Springer, 1996.

M. Leuschel, J. Falampin, F. Fritz, and D. Plagge. Automated property veri�cation
for large scale B models with ProB. Formal Aspects of Computing, 23(6):683�709,
2011.

I. Maamria and M. Butler. Rewriting and well-de�nedness within a proof system. In
PAR, volume 43 of Electronic Proceedings in Theoretical Computer Science, pages
49�64, 2010.

J. McCarthy. A basis for a mathematical theory of computation. Computer Pro-
gramming and Formal Systems, pages 33�70, 1963.

F. Mehta. Supporting proof in a reactive development environment. In SEFM, pages
103�112. IEEE Computer Society, 2007.

F. Mehta. A practical approach to partiality - a proof based approach. In ICFEM,
volume 5256 of Lecture Notes in Computer Science, pages 238�257. Springer, 2008.

E. Mendelson. Number Systems and the Foundations of Analysis. Academic Press,
1973.

J. Meng and L. C. Paulson. Lightweight relevance �ltering for machine-generated
resolution problems. Journal of Applied Logic, 7(1):41�57, 2009.

J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof: First
prototype. Information and Computation, 204(10):1575�1596, 2006.

C. Metayer and L. Voisin. The Event-B mathematical language, 2009. http://

deploy-eprints.ecs.soton.ac.uk/11.

D. Miller. Uni�cation under a mixed pre�x. Journal of Symbolic Computation, 14
(4):321�358, 1992.

O. Müller and K. Slind. Treating partiality in a logic of total functions. Computer
Journal, 40(10):640�652, 1997.

O. Müller, T. Nipkow, D. von Oheimb, and O. Slotosch. HOLCF=HOL+LCF.
Journal of Functional Programming, 9(2):191�223, 1999.

T. Nipkow. Term rewriting and beyond - theorem proving in isabelle. Formal Aspects
of Computing, 1(4):320�338, 1989.

169

http://deploy-eprints.ecs.soton.ac.uk/11
http://deploy-eprints.ecs.soton.ac.uk/11

Bibliography

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

M. Ouimet and K. Lundqvist. The TASM toolset: Speci�cation, simulation, and
formal veri�cation of real-time systems. In CAV, volume 4590 of Lecture Notes in
Computer Science, pages 126�130. Springer, 2007.

O. Owe. Partial logics reconsidered: A conservative approach. Formal Aspects of
Computing, 5(3):208�223, 1993.

S. Owre and N. Shankar. The formal semantics of PVS, 1999. http://pvs.csl.

sri.com/papers/csl-97-2/csl-97-2.ps.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system. In
CADE, volume 607 of Lecture Notes in Computer Science, pages 748�752. Springer,
1992.

L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated
Reasoning, 5(3):363�397, 1989.

L. C. Paulson. Designing a theorem prover. In Handbook of Logic in Computer
Science, volume II, pages 415�475. Oxford, 1992.

L. C. Paulson. Old Isabelle reference manual, 2011. http://isabelle.in.tum.de/
dist/Isabelle2011-1/doc/ref.pdf.

D. Prawitz. Natural deduction: a proof-theoretical study. Dover Publications, 2006.

S. Qin and Z. Qiu, editors. 13th International Conference on Formal Engineering
Methods, volume 6991 of Lecture Notes in Computer Science, 2011. Springer.

A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI
Communications, 15(2-3):91�110, 2002.

J. Röder. Relevance �lters for Event-B. Master Thesis, ETH Zürich, 2010.

J. M. Rushby, S. Owre, and N. Shankar. Subtypes for speci�cations: Predicate
subtyping in PVS. IEEE Transaction on Software Engineering, 24(9):709�720,
1998.

B. Russell. On denoting. Mind, 14(56):479�493, 1905.

B. Russell. Introduction to Mathematical Philosophy. Allen & Unwin, reprinted
edition, 1948.

170

http://pvs.csl.sri.com/papers/csl-97-2/csl-97-2.ps
http://pvs.csl.sri.com/papers/csl-97-2/csl-97-2.ps
http://isabelle.in.tum.de/dist/Isabelle2011-1/doc/ref.pdf
http://isabelle.in.tum.de/dist/Isabelle2011-1/doc/ref.pdf

Bibliography

M. Saaltink. The Z/EVES system. In ZUM, volume 1212 of Lecture Notes in Com-
puter Science, pages 72�85. Springer, 1997.

M. Schmalz. HOL/Event-B, Version 0.5.0. http://sourceforge.net/projects/

rodin-b-sharp/files/Plugin_Isabelle.

M. Schmalz. Term rewriting in logics of partial functions. In Qin and Qiu [2011],
pages 633�650.

M. Schmalz. Rodin's soundness bugs. Technical Report 697, ETH Zurich, Switzer-
land, 2012. http://www.inf.ethz.ch/research/disstechreps/techreports.

R. Schock. Logics without existence assumptions. Almqvist & Wiksell, 1968.

S. Schulz. E - a brainiac theorem prover. AI Communications, 15(2-3):111�126,
2002.

N. Shankar and S. Owre. Principles and pragmatics of subtyping in PVS. In WADT,
volume 1827 of Lecture Notes in Computer Science, pages 37�52. Springer, 1999.

N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS prover
guide, 2001. http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf.

J. R. Shoen�eld. Mathematical Logic. Addison Wesley, 1967.

K. Slind. Trusted extensions of interactive theorem provers: Workshop summary.
http://www.cs.utexas.edu/~kaufmann/itp-trusted-extensions-aug-2010/

summary/summary.pdf, 2010.

C. F. Snook and M. J. Butler. UML-B: A plug-in for the Event-B tool set. In ABZ,
volume 5238 of Lecture Notes in Computer Science, page 344. Springer, 2008.

J. M. Spivey. Understanding Z. Cambridge University Press, 1988.

J. M. Spivey. The Z Notation - a reference manual. Prentice Hall International Series
in Computer Science. Prentice Hall, 2nd edition, 1992.

C. Sprenger and D. A. Basin. Developing security protocols by re�nement. In ACM
Conference on Computer and Communications Security, pages 361�374. ACM,
2010.

telcoWD. Telephone conference of the Deploy project on well-de�nedness, December
2009. Participants: M. J. Butler, S. Hallerstede, C. B. Jones, M. Schmalz, and L.
Voisin.

I. Toyn and J. A. McDermid. CADiZ: An architecture for Z tools and its implemen-
tation. Software: Practice and Experience, 25(3):305�330, 1995.

S. H. Valentine. Inconsistency and unde�nedness in Z - a practical guide. In ZUM,
volume 1493 of Lecture Notes in Computer Science, pages 233�249. Springer, 1998.

171

http://sourceforge.net/projects/rodin-b-sharp/files/Plugin_Isabelle
http://sourceforge.net/projects/rodin-b-sharp/files/Plugin_Isabelle
http://www.inf.ethz.ch/research/disstechreps/techreports
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
http://www.cs.utexas.edu/~kaufmann/itp-trusted-extensions-aug-2010/summary/summary.pdf
http://www.cs.utexas.edu/~kaufmann/itp-trusted-extensions-aug-2010/summary/summary.pdf

Bibliography

D. van Dalen. Logic and Structure. Springer, fourth edition, 2004.

K. Varpaaniemi. Bepicolombo models v6.4, 2010. http://deploy-eprints.ecs.

soton.ac.uk/244.

P. A. S. Veloso and S. R. M. Veloso. On conservative and expansive extensions. O
que nos faz pensar, 4, 1991. http://www.oquenosfazpensar.com/adm/uploads/
artigo/on_conservative_and_expansive_extensions/n4paulo.pdf.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
Spass version 3.5. In CADE, volume 5663 of Lecture Notes in Computer Science,
pages 140�145. Springer, 2009.

M. Wenzel. Type classes and overloading in higher-order logic. In TPHOLs, volume
1275 of Lecture Notes in Computer Science, pages 307�322. Springer, 1997.

M. Wenzel. Isabelle/Isar � a versatile environment for human-readable formal proof
documents. Dissertation, Technische Universität München, 2001.

M. Wenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit.
In User Interfaces for Theorem Provers, Electronic Notes in Theoretical Computer
Science. Elsevier, 2010.

M. Wenzel. The Isabelle/Isar reference manual, 2011. http://isabelle.in.tum.

de/dist/Isabelle2011/doc/isar-ref.pdf.

J. Woodcock, M. Saaltink, and L. Freitas. Unifying theories of unde�nedness. In
Engineering Methods and Tools for Software Safety and Security, pages 311�330.
IOS Press, 2009.

E. Yilmaz and T. S. Hoang. Development of Rabin's choice coordination algorithm
in Event-B. ECEASST, 35, 2010.

172

http://deploy-eprints.ecs.soton.ac.uk/244
http://deploy-eprints.ecs.soton.ac.uk/244
http://www.oquenosfazpensar.com/adm/uploads/artigo/on_conservative_and_expansive_extensions/n4paulo.pdf
http://www.oquenosfazpensar.com/adm/uploads/artigo/on_conservative_and_expansive_extensions/n4paulo.pdf
http://isabelle.in.tum.de/dist/Isabelle2011/doc/isar-ref.pdf
http://isabelle.in.tum.de/dist/Isabelle2011/doc/isar-ref.pdf

A. Statistics on Rules Implemented in

Rodin

Rodin's inference and rewrite rules can be found in the following locations:

http://wiki.event-b.org/index.php?title=Inference_Rules&oldid=8898

http://wiki.event-b.org/index.php?title=Set_Rewrite_Rules&oldid=8523

http:

//wiki.event-b.org/index.php?title=Relation_Rewrite_Rules&oldid=8891

http:

//wiki.event-b.org/index.php?title=Arithmetic_Rewrite_Rules&oldid=8892

My analysis is based on the version of April 5, 2011; I also include rules into my
analysis that had been proposed for implementation but were not yet implemented.

A.1. Conditional Rewrite Rules

The documentation clearly distinguishes inference rules from unconditional rewrite
rules. Conditional rewrite rules are represented either as inference rules or as rewrite
rules with side-conditions. For my analysis I therefore had to change the represen-
tation of rules as in the following examples:

�n_l_lower_bound_l:
finite($S)

∃n · ∀x · x ∈ $S⇒ n ≤ x v >

ov_setenum_l:
$G = $E

($f C− {$E 7→ $F})($G) v $F

and
¬($G = $E)

($f C− {$E 7→ $F})($G) v {$E}C− $f($G)

�n_subseteq_r:
D($T) ∧ $S ⊆ $T ∧ finite($T)

finite($S) v >

simp_card_setminus_l:
finite($S)

card($S \ $T) v card($S)− card($S ∩ $T)

Below is the list of conditional rewrite rules.

fun_goal, neg_in_l, subset_inter, in_inter, notin_inter, �n_l_lower_bound_l,
�n_l_lower_bound_r, �n_l_upper_bound_l, �n_l_upper_bound_r,
ov_setenum_l (2 rules), ov_l (2 rules), dis_binter_r, dis_setminus_r,

173

http://wiki.event-b.org/index.php?title=Inference_Rules&oldid=8898
http://wiki.event-b.org/index.php?title=Set_Rewrite_Rules&oldid=8523
http://wiki.event-b.org/index.php?title=Relation_Rewrite_Rules&oldid=8891
http://wiki.event-b.org/index.php?title=Relation_Rewrite_Rules&oldid=8891
http://wiki.event-b.org/index.php?title=Arithmetic_Rewrite_Rules&oldid=8892
http://wiki.event-b.org/index.php?title=Arithmetic_Rewrite_Rules&oldid=8892

A. Statistics on Rules Implemented in Rodin

sim_rel_image_r, sim_fcomp_r, �n_subseteq_r, �n_binter_r, �n_kinter_r,
�n_qinter_r, �n_setminus_r, �n_rel, �n_rel_img_r, �n_rel_ran_r,
�n_rel_dom_r, �n_fun_dom, �n_run_ran, �n_fun_img_r, �n_fun_ran_r,
�n_fun_dom_r, �n_lt_0, �n_ge_0, card_interv, card_empty_interv,
deriv_le_card, deriv_ge_card, deriv_lt_card, deriv_gt_card, deriv_equal_card,
simp_card_setminus_l, simp_card_cprod_l, one_point_l (with ∀), one_point_l
(with ∃), simp_funimage_domres, simp_funimage_domsub,
simp_funimage_ranres, simp_funimage_ransub, simp_funimage_setminus,
deriv_dom_totalrel, deriv_ran_surjrel, simp_card_setminus,
simp_card_setminus_setenum

A.2. Truly Directed Rewrite Rules in Rodin

Rodin's proof rules are organized in four categories: inference rules, set rewrite
rules, relation rewrite rules, and arithmetic rewrite rules. Table A.1 summarizes my
observations on unconditional rewrite rules. The column TDCTF counts rules that
are truly directed and conditional if restated in a logic of total functions, assuming
that this logic of total functions approximates partial functions as underspeci�ed
total functions.
To avoid biased results due to uncommon domains of operators, I assume for the

TDCTF column that inter (and
⋂
) is de�nite, and mod and ̂ are well-de�ned if

their �rst-arguments are negative.
In fact, there are rules that are unsound in logics of total functions (with under-

speci�cation), but sound as symmetric rewrite rule in Event-B:

(2 ∗ $x)÷ (2 ∗ $y) ≡ $x÷ $y.

Its classical counterpart is unsound, because 2 ÷ 0 and 1 ÷ 0 may denote di�erent
numbers. This rule shows that some rewrite rules have less conditions if there is only
one ill-de�ned value. The TDCTF column does not count such rules; it counts only
truly directed rules because it is supposed to measure the positive impact of directed
rewriting, not the positive impact of logics of partial functions in general.
In the following, I list the unconditional truly directed rewrite rules. The notation

�rule_name (+x)� designates the rule with name �rule_name� and the x following
rules.

Category Set Rewrite Rules.

simp_multi_and_not, simp_multi_or_not, simp_multi_imp (+1),
simp_multi_eqv (+1), simp_multi_equal (+2), simp_type_subseteq,
simp_special_subseteq (+7), simp_special_binter, simp_special_bunion,
simp_multi_setminus, simp_special_setminus_l (+1), simp_kinter_pow,
simp_special_cprod_r (+2), simp_subseteq_compset_l (+4),
distri_subseteq_bunion_sing, simp_�nite_setenum (+1), simp_�nite_qunion,

174

A.2. Truly Directed Rewrite Rules in Rodin

Table A.1.: Statistics on unconditional rewrite rules

Category Total Truly Directed TDCTF

Inference Rules 0 0 0

Set Rewrite Rules 166 59 0

Relation Rewrite Rules 198 65 12

Arithmetic Rewrite Rules 89 41 23

Total 453 165 35

deriv_�nite_cprod, simp_�nite_upto, simp_�nite_lambda, simp_type_in,
simp_special_subset_r, simp_multi_subset (+3), def_in_mapsto, def_in_pow1
(+10), deriv_subseteq_setminus_r (+1).

Category Relation Rewrite Rules.

simp_dom_setenum, simp_ran_setenum, simp_type_overl_cprod (+2),
simp_special_ranres_r (+1), simp_special_domsub_r (+3),
simp_special_ransub_l (+3), simp_special_fcomp, simp_special_bcomp,
simp_special_dprod_r (+1), simp_special_pprod_r (+1),
simp_special_relimage_r (+1), simp_multi_relimage_cprod_sing (+2),
simp_multi_relimage_domsub, simp_special_rel_r (+5),
simp_funimage_lambda (+10), simp_funimage_funimage_converse (+2),
deriv_fcomp_sing, def_in_domres (+5), def_in_dprod (+1), def_in_reldom
(+4), def_in_tinj (+3).

Category Arithmetic Rewrite Rules.

simp_special_mod_0 (+1), simp_min_bunion_sing (+3), simp_card_sing (+1),
simp_card_lambda, simp_lit_ge_card_1 (+8), def_equal_min (+1),
simp_multi_minus (+10), simp_special_div_0, simp_special_expn_1_l (+8).

In the following, I list the rules I counted in the TDCTF column.

Category Relation Rewrite Rules.

simp_funimage_lambda, simp_in_funimage (+7),
simp_funimage_funimage_converse (+2).

175

A. Statistics on Rules Implemented in Rodin

Table A.2.: Statistics on conditional rewrite rules

Category Total Truly Directed

Inference Rules 44 35

Set Rewrite Rules 0 0

Relation Rewrite Rules 7 7

Arithmetic Rewrite Rules 2 0

Total 53 42

Category Arithmetic Rewrite Rules.

simp_special_mod_0, simp_min_bunion_sing (+3), simp_special_equal_card,
simp_card_lambda, simp_lit_ge_card_1 (+8), def_equal_min (+1),
simp_special_div_0, simp_special_expn_1_l, simp_multi_div (+2).

Table A.2 summarizes my observations on conditional rewrite rules. The inference
rule category contains conditional rewrite rules that are represented as inference
rules. In the following, I list the truly directed conditional rewrite rules.

Category Inference Rules.

fun_goal, neg_in_l, subset_inter (+6), ov_setenum_l (2 rules), ov_l (2 rules),
�n_subseteq_r (+10), �n_funimage_r (+2), �n_lt_0 (+1), card_empty_interv
(+5).

Category Relation Rewrite Rules.

simp_funimage_domres (+4), deriv_dom_totalrel (+1).

A.3. Conditional Rewrite Rules with Dispensable
Conditions

For the following rules, the strictness side-condition can be dropped:

dis_binter_r, dis_binter_l, dis_setminus_r, dis_setminus_l,
simp_card_setminus_l, simp_card_setminus_r, simp_card_cprod_l,
simp_card_cprod_r.

In the case of ov_setenum_l, the strictness side-condition is necessary for sound-
ness, but can be avoided if the rule is stated as proposed in Section A.1. Similar
considerations apply to

ov_setenum_r, ov_l, ov_r, card_interv, and card_empty_interv.

176

B. Complexity of Unlifting

theory Unlifting imports Main begin

Generated with Isabelle 2011.

B.1. De�nitions

The type tt is a datatype for (a subset of) the terms over the theory EventB. Types
and binding structure is ignored. Several operators / binders are identi�ed because
the equalities used for unlifting have a similar structure. For simplicity, operators
that take more than two arguments (i.e., cond, enumerated sets, and partition) or
bind more than one variable (i.e., some set comprehensions) are ignored. The main
result holds for such operators as well.

datatype tt =

var � ordinary variable or constant

| coll tt � smashed and de�nite, one argument, such as collect and dom
| eq tt tt � strict and de�nite, two arguments, such as equality
| ch tt � some,min,max, inter, card
| md tt tt � set comprehensions that bind one variable (including

⋃
and

⋂
), funimg,

mod, div, and exponentiation

| land tt tt � conjunction, disjunction, implication
| all tt � universal and existential quanti�ers

The function size yields a lower bound on the size of the denotation of an Event-B
term. The lower bound di�ers from the actual size by a constant factor.

hide_const (open) size

fun size :: "tt ⇒ int"

where
"size var = 1"

| "size (coll t) = 1 + size t"

| "size (eq t1 t2) = 1 + size t1 + size t2"

| "size (ch t) = 1 + size t"

| "size (md t1 t2) = 1 + size t1 + size t2"

| "size (land t1 t2) = 1 + size t1 + size t2"

| "size (all t) = 1 + size t"

lemma size_pos [simp]: "0 < size t" "1 ≤ size t" "0 ≤ size t"

by (induct t) auto

177

B. Complexity of Unlifting

The constant overhead of an unlifting rule is the number of symbols in the right-
hand side "between" the terms that are unlifted further. E.g., in the case of WD ([[mod]]

x y) = WD x ∧ WD y ∧ x↓ ≥ 0 ∧ y↓ ≥ 0 the constant overhead is 7 (3 occurrences
of op ∧, 2 occurrences of op ≥, 2 occurrences of 0). The constant zc is an upper
bound on the constant overhead of all unlifting rules.

de�nition zc :: "int"

where zc_pos [simp, arith]: "zc = 20" � underspeci�cation would be nice, but it
complicates proofs too much.

The strip overhead of an unlifting rule is the maximum number of occurrences
of a term x↓ in the right-hand side, where x ranges over variables in the left-hand
side. E.g., in the case of WD ([[mod]] x y) = WD x ∧ WD y ∧ x↓ ≥ 0 ∧ y↓ ≥ 0 the
strip overhead is 1 because x↓ and y↓ occur only once in the right-hand side. The
constant zs is an upper bound on the strip overhead of all unl�ting rules.

de�nition zs :: "int"

where zs_pos [simp, arith]: "zs = 3"

� underspeci�cation would be nice, but it complicates proofs too much.

Upper bounds on the sizes of unlifted terms:

fun wds :: "tt ⇒ int" � wds t ≥ |U(WD JtK)|
and ss :: "tt ⇒ int" � ss t ≥ |U(JtK↓)|
and ts :: "tt ⇒ int" � ts t ≥ |U(T JtK)|
There is no need to consider WT and F because they behave like T. There is also no need
to consider = and v, as they are unfolded only once.
where

"wds var = zc"

| "wds (coll t) = zc + wds t"

| "wds (eq t1 t2) = zc + wds t1 + wds t2"

| "wds (ch t) = zc + wds t + zs * ss t"

| "wds (md t1 t2) = zc + wds t1 + wds t2 + zs * ss t1 + zs * ss t2"

| "wds (land t1 t2) = zc + 2 * (ts t1 + ts t2)"

| "wds (all t) = zc + 2 * ts t"

| "ss var = zc"

| "ss (coll t) = zc + ss t"

| "ss (eq t1 t2) = zc + ss t1 + ss t2"

| "ss (ch t) = zc + ss t"

| "ss (md t1 t2) = zc + ss t1 + ss t2"

| "ss (land t1 t2) = zc + ss t1 + ss t2"

| "ss (all t) = zc + ss t"

| "ts (land t1 t2) = zc + ts t1 + ts t2"

| "ts (all t) = zc + ts t"

| "ts var = zc"

| "ts t = wds t + ss t"

The functions nt and nwd count the nested applications of "expensive" unlifting
rules like WD (x ^∧^ y) = ... and WD (∀ ^ x. phi x) =

178

B.1. De�nitions

• nwd : a term of the form WD t is unlifted.

• nt : a term of the form T t is unlifted.

fun nt :: "tt ⇒ nat"

and nwd :: "tt ⇒ nat"

where
"nwd var = 0"

| "nwd (coll t) = nwd t"

| "nwd (eq t1 t2) = max (nwd t1) (nwd t2)"

| "nwd (ch t) = nwd t"

| "nwd (md t1 t2) = max (nwd t1) (nwd t2)"

| "nwd (land t1 t2) = 1 + max (nt t1) (nt t2)"

| "nwd (all t) = 1 + nt t"

| "nt var = 0"

| "nt (coll t) = nwd t"

| "nt (eq t1 t2) = max (nwd t1) (nwd t2)"

| "nt (ch t) = nwd t"

| "nt (md t1 t2) = max (nwd t1) (nwd t2)"

| "nt (land t1 t2) = max (nt t1) (nt t2)"

| "nt (all t) = nt t"

The {∧,∨,⇒, ∀,∃}-alternation depth of a term. Currently, there is no di�erence
between alt and nt or alt' and nwd ; but they could di�er in future versions that
take more operators or binders into account.

fun alt :: "tt ⇒ nat"

and alt' :: "tt ⇒ nat"

where
"alt var = 0"

| "alt (coll t) = alt' t"

| "alt (eq t1 t2) = max (alt' t1) (alt' t2)"

| "alt (ch t) = alt' t"

| "alt (md t1 t2) = max (alt' t1) (alt' t2)"

| "alt (land t1 t2) = max (alt t1) (alt t2)"

| "alt (all t) = alt t"

| "alt' var = 0"

| "alt' (coll t) = alt' t"

| "alt' (eq t1 t2) = max (alt' t1) (alt' t2)"

| "alt' (ch t) = alt' t"

| "alt' (md t1 t2) = max (alt' t1) (alt' t2)"

| "alt' (land t1 t2) = 1 + max (alt t1) (alt t2)"

| "alt' (all t) = 1 + alt t"

lemma alt_bound: "alt t ≥ nt t" "alt' t ≥ nwd t" "alt t + 1 ≥ nwd t"

by (induct t) auto

Next, I de�ne the P -depth of a term, where P contains some,min,max, cond, inter,
set comprehensions (including

⋃
and

⋂
), funimg,mod,÷, exponentiation, and card.

179

B. Complexity of Unlifting

For technical reasons, pdepth t equals DEPP (t) + 1.

fun pdepth :: "tt ⇒ int"

where
"pdepth var = 1"

| "pdepth (coll t) = pdepth t"

| "pdepth (eq t1 t2) = max (pdepth t1) (pdepth t2)"

| "pdepth (ch t) = 1 + pdepth t"

| "pdepth (md t1 t2) = 1 + max (pdepth t1) (pdepth t2)"

| "pdepth (land t1 t2) = max (pdepth t1) (pdepth t2)"

| "pdepth (all t) = pdepth t"

lemma pdepth_nonneg [simp]: "pdepth t ≥ 1" "pdepth t > 0" "pdepth t ≥ 0"

by (induct t) auto

B.2. Automated Tool Setup

The following declarations implement an ad-hoc tactic for solving non-linear inequal-
ities:

• apply the distributivity laws ring_distribs

• sort with add_ac

• compare �rst summands of both sides

� if one of them is negative, move it to the other side

� if they are in the right order, apply add_mono

� otherwise: skip with le_add_drop

Products are treated similarly.
Limitations:

• Sorting with add_ac does not always yield the "right" order.

• Unable to solve a - b ≤ (0 ::'a), even if a ≤ b.

declare mult_le_cancel_left_pos [simp]

thm mult_le_cancel_left_pos

lemma mult_le_cancel_left_pos' [simp]:

"(0 :: int) < a =⇒ a ≤ a * d ←→ 0 < d"

apply (subst mult_1_right [symmetric])

apply (unfold mult_le_cancel_left_pos)

by auto

declare mult_mono [intro] mult_left_mono [intro]

thm mult_mono mult_left_mono

180

B.2. Automated Tool Setup

lemma le_mult_drop [intro]:

" [[(a :: int) ≤ e; 0 ≤ a; 0 < d]] =⇒ a ≤ d * e"

apply (subst mult_1_left [symmetric])

apply (rule mult_mono)

by auto

lemma sign_simps [simp]:

" [[(0 :: int) < a; 0 < b]] =⇒ 0 < a * b"

" [[0 < a; 0 < b]] =⇒ 1 ≤ a * b"

proof -

assume "0 < a" "0 < b"

thus "0 < a * b" by (auto simp add: sign_simps)

thus "1 ≤ a * b" by arith

qed

declare mult_nonneg_nonneg [intro]

thm mult_nonneg_nonneg

lemma le_add_drop [intro]:

" [[(a :: int) ≤ e; 0 ≤ d]] =⇒ a ≤ d + e"

by auto

declare add_mono [intro]

thm add_mono

lemma le_add_flip [simp]:

"b < (0 :: int) =⇒ a ≤ b + d ←→ a - b ≤ d"

"b < 0 =⇒ a ≤ b ←→ a - b ≤ 0"

"a < 0 =⇒ a + b ≤ d ←→ b ≤ d - a"

"a < 0 =⇒ a ≤ b ←→ 0 ≤ b - a"

by auto

lemma uminus_push [simp]:

"- ((a :: int) * number_of x) = a * - number_of x"

unfolding minus_mult_right

by simp

declare ring_distribs [simp]

thm ring_distribs

declare zminus_zadd_distrib [simp]

thm zminus_zadd_distrib

declare add_ac [simp] mult_ac [simp]

thm add_ac mult_ac

declare diff_int_def_symmetric [simp del] diff_int_def [simp]

thm diff_int_def_symmetric diff_int_def

declare split_max [split]

thm split_max

lemma le_push:

181

B. Complexity of Unlifting

" [[(a::int) ≤ b; a ≤ b =⇒ d + b ≤ e]] =⇒ a + d ≤ e"

" [[a ≤ b; a ≤ b =⇒ d + b * 2 ≤ e]] =⇒ a * 2 + d ≤ e"

" [[a ≤ b; a ≤ b =⇒ d + b * 3 ≤ e]] =⇒ a * 3 + d ≤ e"

" [[a ≤ b; a ≤ b =⇒ d + b * 4 ≤ e]] =⇒ a * 4 + d ≤ e"

" [[a ≤ b; a ≤ b =⇒ b ≤ d]] =⇒ a ≤ d"

" [[a ≤ b; a ≤ b =⇒ b * 2 ≤ d]] =⇒ a * 2 ≤ d"

" [[a ≤ b; a ≤ b =⇒ b * 3 ≤ d]] =⇒ a * 3 ≤ d"

" [[a ≤ b; a ≤ b =⇒ b * 4 ≤ d]] =⇒ a * 4 ≤ d"

by auto

lemma const_commute:

"a + zc ≤ b =⇒ zc + a ≤ b"

"a + zc * 2 ≤ b =⇒ zc * 2 + a ≤ b"

"a + zc * zs ≤ b =⇒ zc * zs + a ≤ b"

by auto

lemma push: "(a :: int) + d ≤ b =⇒ d + a ≤ b"

by auto

B.3. Main Results

theorem unlift_bound:

"ts t ≤
2 ^ nt t * size t * pdepth t * zc * zs * 3 -

size t * zc * zs ∧
ss t ≤ size t * zc ∧
wds t ≤

2 ^ nwd t * size t * pdepth t * zc * zs * 3 -

size t * zc * zs * 2"

proof (induct t)

case var � base case
thus ?case by auto

next
case (coll t)

thus ?case

apply (simp (no_asm_simp))

apply safe

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

done
next
case (all t) � lazy case

182

B.3. Main Results

thus ?case

apply (simp (no_asm_simp))

apply safe

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

done
next
case (ch t) � inde�nite case
thus ?case

apply (simp (no_asm_simp))

apply safe

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

apply (simp only: add_assoc | elim le_push |

intro const_commute | elim thin_rl)+

apply fastsimp

done

�The remaining cases are similar except that more terms arise because the involved symbols
take two arguments.
next
case (eq t1 t2) thus ?case

apply (simp (no_asm_simp))

apply safe

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

183

B. Complexity of Unlifting

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

done
next
case (land t1 t2) thus ?case

apply (simp (no_asm_simp))

apply safe

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

done
next
case (md t1 t2) thus ?case

apply (simp (no_asm_simp))

apply safe

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

184

B.3. Main Results

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

apply (simp only: add_assoc | elim le_push | intro const_commute)+

apply fastsimp

done
qed

theorem
"ts t ≤ 2 ^ alt t * size t * pdepth t * 180 - size t * 60" (is ?ts_bound)

"ss t ≤ size t * 20" (is ?ss_bound)

"wds t ≤ 2 ^ alt t * size t * pdepth t * 360 - size t * 120"

(is ?wds_bound)

proof -

from alt_bound(3) [of t] have "(2 :: int) ^ nwd t ≤ 2 * 2 ^ alt t"

proof -

have "(2 :: int) ^ nwd t ≤ 2 ^ (alt t + 1)"

by (rule power_increasing) (insert alt_bound(3), auto)

thus ?thesis by simp

qed
with unlift_bound [of t] and alt_bound [of t] show ?wds_bound

by (auto elim: le_push)

from unlift_bound [of t] and alt_bound [of t] show ?ts_bound

by (auto elim: le_push)

from unlift_bound [of t] show ?ss_bound

by auto

qed

end

185

C. Con�gurations of Rodin's

Auto-Tactic

In the following, I de�ne the con�gurations of Rodin's auto-tactic used in Chapter 5.
The con�guration default refers to Rodin's default con�guration. The con�gura-
tions whose names have the pre�x unrestricted or filtered use the auto-tactic
with the following sub-tactics:

• True Goal

• False Hypothesis

• Goal in Hypothesis

• Functional Goal

• Bounded Goal with �nite Hypothesis

• Find Contradictory Hypotheses

• Belongs to domain

• Functional image membership

• Datatype Destructor WD

• Goal Disjunct in Hypotheses

• Partition Rewriter

• Simpli�cation Rewriter

• Type Rewriter

• Shrink Implicative Hypotheses

• Implicative Goal

• Functional Image

• For-all Goal

• Exists Hypotheses

• Shrink Enumerated Set

187

C. Con�gurations of Rodin's Auto-Tactic

• Implicative Hypotheses with Conjunctive RHS

• Implicative Hypotheses with Disjunctive LHS

• Remove disjunction in a disjunctive goal

• Use Equals Hypotheses

• Clarify Goal

• Generalized Modus Ponens

• Put in Negation Normal Form

• Conjunctive Goal

• Functional Overriding in Goal

• One Point Rule in Goal

• Functional Overriding in Hypothesis

• One Point Rule in Hypotheses

• Meta prover

The Meta prover always includes the external provers ML, PP, and NewPP (in
this order). The timeout of each automated prover is indicated by the name of the
con�guration; e.g., unrestricted10 runs ML, PP, and NewPP with timeouts of 10
seconds, respectively. The maximum number of steps of NewPP is chosen as 6t,
where t is the timeout of NewPP in milliseconds.
The con�gurations whose names have the pre�x unrestricted only use the �lter

called �unrestricted�. The con�gurations whose names have the pre�x filtered use
the following �lters:

• Restricted

• Meng-Paulson(0.4, 1.2)

• Sub-Expr(0.3, 3)

• Meng-Paulson(0.8, 1.2)

• Sine

• Lasso

• Dcr(0.3, true)

• Unrestricted

The con�guration of the Meta prover is similar to the one recommended in [Röder,
2010]. The only exceptions are the inclusion of the ML prover and the �restricted�
and �unrestricted� �lters.

188

	Introduction
	Event-B
	Strengths
	Limitations

	Other Modeling and Verification Environments
	Problem Statement
	Approach to a Solution
	Overview and Contributions

	Event-B's Logic
	Abstract Syntax
	Types and Terms
	An Example Signature

	Semantics
	Isabelle/HOL
	Preliminaries – the Theory EB_Prelims
	Denotations of Types and Terms
	Extending Structures
	Semantic Notions
	An Example Structure
	Substitutions
	Type Substitutions
	Operator Substitutions
	Ordinary Substitutions

	Proofs
	Sequents
	Rules of Proofs
	Inference Rules
	Symmetric Rewrite Rules
	Directed Rewrite Rules
	Expressiveness and Limitations

	Theories

	Comparison to Rodin's Implementation

	Event-B's Theories
	The Theory Core
	The Theory Min
	The Theory Log0
	The Theory Log
	The Theory Set0
	The Theory Choice
	The Theory Int0
	The Theory Prod
	The Theory Core

	Definitional Extensions
	New Rules
	New Operators
	Operator Definitions
	Strict Operator Definitions

	New Binders
	Operator Variables in a Monotonic Setting

	Derived Theories
	The Theory Bool
	The Theory Set
	The Theory Rel
	The Theory Int
	The Theory EventB

	Comparison to Other Expositions on Event-B's Logic

	Impact of Design Decisions
	Directed Rewriting
	Dependencies Between Design Decisions
	Kleene versus McCarthy Semantics
	Alternative Approaches to Partial Functions

	Automated Theorem Proving
	Preliminaries
	Benchmarks
	Hardware and Software

	Unlifting
	Trivial Algorithm
	Efficient Algorithm
	Operator Variables
	Complexity Analysis
	Implementation
	Empirical Evaluation

	Theorem Proving in Isabelle/HOL
	Abrial Benchmark
	Using Predefined Proof Methods
	Design of Axe
	Performance of Axe
	Impact of Design Decisions
	Comparison to Rodin

	BepiColombo Benchmark
	Further Improvements of Axe
	Comparison to Rodin

	Limitations
	Conclusions

	Conclusions
	Summary of Contributions
	Future Work
	Personal Remarks

	List of Figures
	Bibliography
	Statistics on Rules Implemented in Rodin
	Conditional Rewrite Rules
	Truly Directed Rewrite Rules in Rodin
	Conditional Rewrite Rules with Dispensable Conditions

	Complexity of Unlifting
	Definitions
	Automated Tool Setup
	Main Results

	Configurations of Rodin's Auto-Tactic

