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Landscape Research (WSL), Zürich and Birmensdorf.
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Summary

The Swiss greenhouse gas inventory (GGI), submitted under the United Nations Framework
Convention on Climate Change and under the Kyoto Protocol, reports annually on changes of
organic carbon (OC) stocks in forests. The National Forest Inventory (NFI) offers comprehens-
ive data to quantify the living and dead forest biomass and its change in time. Estimating stocks
of soil organic carbon (SOC) in forests is more difficult because the variables needed to quantify
stocks vary strongly in space and precise quantification of some of them is very costly. First SOC
stock estimates were published for the Swiss forests by Perruchoud et al. in 2000. Since then
additional SOC measurements, new spatial data (high resolution terrain model, remotely sensed
spectral data) became available. Furthermore, new methods for robust geostatistical analyses of
spatial data were recently developed, which seem well suited for analysing environmental data-
sets. Based on these developments, we modelled OC stocks in the forest soils for three depth
compartments: (i) forest floor, (ii) mineral soil 0–30 cm and (iii) mineral soil 0–100 cm. We
applied a novel robust restricted maximum likelihood method to fit a linear regression model
with spatially correlated errors. For the regression analysis we used a broad range of covariates
derived from climate data (e.g. precipitation, temperature), two elevation models (resolutions 25
and 2 m) with their terrain attributes and spectral reflectance data representing vegetation. Fur-
thermore, the main cartographic categories of an overview soil map and a small-scale geological
map were used to represent the parent material. Based on the fitted models we mapped the spatial
distribution of the SOC stocks in the three soil compartments across the forest area of Switzer-
land by robust lognormal kriging with a resolution of 100 m. For the same compartments, we
computed also lognormal block kriging predictions of the mean SOC stocks per unit area for the
five NFI production regions stratified by three altitude classes.

During the analyses we discovered that the geostatistical model of forest floor stocks fitted the
data only poorly. Therefore, we computed as an alternative design-based estimates of these stocks
for the NFI production regions stratified by altitude. The design-based estimate of the mean OC
stock in the forest floor of Switzerland amounted to 16.7 t ha−1 (standard error 0.83 t ha−1).
Results for topsoil (0–30 cm) SOC stocks showed weak but significant residual autocorrelation.
Precipitation, spectral reflectance of the vegetation at near-infrared wavelength, a topographic
position index and aggregated soil and geological map information were the only significant
covariates. The predictive power of the fitted model, evaluated by comparing predictions with
independent validation data, was moderate (robust coefficient of determination 0.34). The pre-
dicted mean SOC stock to a depth of 30 cm amounted to 79.9 t ha−1 for whole Switzerland (block
kriging standard error 1.52 t ha−1). The model for the SOC stocks stored in 0–100 cm showed
the same weak residual autocorrelation. Also a similar set of covariates was chosen: March
precipitation, spectral reflectance of the vegetation at near-infrared wavelength, slope angle and
aggregated soil map information. The predictive power of the fitted model, evaluated again with
independent validation data, was slightly better than for the topsoil (robust coefficient of determ-
ination 0.40). On average 64 % of the SOC stock is stored in the topsoil as the prediction of the
mean SOC stock to a depth of 100 cm was equal to 125.8 t ha−1 (block kriging standard error
2.41 t ha−1).

The estimated mean stock agreed for the forest floor with a previous estimate by Moeri
(2007). However, the new predictions of the mean topsoil and mean total stocks down to 1 m
were significantly larger than the previous estimates by Perruchoud et al. (2000). The differences
were small for the topsoil (4.0 t ha−1, p-value: 0.004), but very pronounced (27.6 t ha−1, p-value:
< 10−12) for the total stocks. Since the present study relies on much more comprehensive data,
uses sophisticated geostatistical techniques for computing predictions and demonstrated that the
predictions were unbiased for independent validation data, one can safely conclude that SOC
stocks of mineral soils have in the past been underestimated for Swiss forests, in particular for
the subsoils.



CONTENTS 2

Contents

Summary 1

List of Figures 4

List of Tables 5

Abbreviations 6

1 Introduction 7
1.1 Estimation of carbon stocks in Swiss forest soils . . . . . . . . . . . . . . . . . . 7
1.2 TCCCA: specific information for UNFCCC-reviewers . . . . . . . . . . . . . . 8
1.3 Review of studies estimating SOC stock in European forests . . . . . . . . . . . 9

2 Method and materials 10
2.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 SOC data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Geostatistical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Robust estimation of model parameters . . . . . . . . . . . . . . . . . . 15
2.3.3 Model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Predicting SOC stock at unsampled locations by robust kriging . . . . . . 16
2.3.5 Evaluation of model performance . . . . . . . . . . . . . . . . . . . . . 17

2.4 Design-based estimation of OC stock of forest floor . . . . . . . . . . . . . . . . 18

3 Results 19
3.1 OC stock in forest floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 SOC stock in mineral soil 0–30 cm . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 SOC stock in mineral soil 0–100 cm . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Model validation with data from soil monitoring networks . . . . . . . . . . . . 26
3.5 Comparison of kriging predictions with stock estimates by Yasso07 model . . . . 28

4 Discussion 30

References 39

Appendices 41

A List of covariates (digital) 41

B Robust kriging predictions 41

C Covariances of robust kriging predictions and covariances of robust predictions
with observations 42



CONTENTS 3

D Covariances of lognormal kriging prediction errors 42

E Approximation of the prediction errors of the mean stocks per NFI production re-
gion and for whole Switzerland 43

F Geostatistical analysis of OC stock in forest floor 43
F.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
F.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
F.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

G Additional plots 47
G.1 Correlation-biplots (example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
G.2 Residual plots from model of SOC stock in 0–30 cm . . . . . . . . . . . . . . . 47
G.3 Residual plots from model of SOC stock in 0–100 cm . . . . . . . . . . . . . . . 49

H Result tables and maps (digital) 50

I R scripts (digital) 51



LIST OF FIGURES 4

List of Figures

1 Map of forest area of Switzerland with positions of the 1 033 WSL soil profiles . 11
2 Number of soil profiles sampled per year . . . . . . . . . . . . . . . . . . . . . . 11
3 Box-plots of estimated SOC stocks for three soil compartments . . . . . . . . . . 13
4 Fitted exponential variogram of the log-transformed SOC stock in the top 30 cm

of the mineral soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Scatterplots of measured against predicted SOC stock in the top 30 cm of the

mineral soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Ranked predictions of the SOC stock in the top 30 cm of the mineral soil with

95 %-prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Robust lognormal kriging prediction of the SOC stock in the top 30 cm of the

mineral topsoil of Swiss forests . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Fitted exponential variogram of the log-transformed SOC stock in 0–100 cm

depth of the mineral soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Scatterplots of measured against predicted SOC stock in 0–100 cm depth of the

mineral soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10 Ranked predictions of the SOC stock in 0–100 cm depth of the mineral soil with

95 %-prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11 Robust lognormal kriging prediction of the SOC stock in 0–100 cm depth of the

mineral soil of Swiss forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
12 Measured SOC stocks in 0–30 cm and 0–100 cm depth at sites of three soil

monitoring networks plotted against kriging predictions . . . . . . . . . . . . . . 27
13 Comparison of initial estimates of OC stocks by model Yasso07 with measured

stocks and kriging predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14 Comparison of initial OC stock estimates obtained by the model Yasso07 with

SOC block kriging predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
15 Fitted exponential variogram of the log-transformed OC stock in forest floor . . 44
16 Scatterplots of measured against predicted OC stocks in the forest floor . . . . . 45
17 Ranked predictions of the SOC stock in the forest floor with 95 %-prediction

intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
18 Robust lognormal kriging predictions of the OC stock in the forest floor of Swiss

forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19 Correlation-biplots showing groups of strongly correlated covariates (examples) . 47
20 Tukey-Anscombe plot and normal quantile-quantile plot of standardized resid-

uals of the model for SOC stock in mineral soil 0–30 cm . . . . . . . . . . . . . 47
21 Partial residual plots for covariates in the model of SOC stock 0–30 cm . . . . . 48
22 Tukey-Anscombe plot and normal quantile-quantile plot of standardized resid-

uals of the model for SOC stock in mineral soil 0–100 cm . . . . . . . . . . . . . 49
23 Partial residual plots for covariates in the model of SOC stock 0–100 cm . . . . . 49



LIST OF TABLES 5

List of Tables

1 Descriptive statistics of OC measurements . . . . . . . . . . . . . . . . . . . . . 12
2 Overview of the input data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Design-based estimates and robust block kriging predictions of the mean OC

stock in the forest floor of the five NFI production regions and of Switzerland . . 19
4 Statistics of relative OC stock prediction errors in (cross-)validations . . . . . . . 21
5 Robust block kriging prediction of the mean SOC stocks in the mineral soil of

the five NFI production regions and of Switzerland . . . . . . . . . . . . . . . . 24



ABBREVIATIONS 6

Abbreviations

asl above sea level

C carbon

CRPS continuous ranked probability score

FOEN Swiss Federal Office for the Environment

GGI greenhouse gas inventory

IHS intensity-hue-saturation color space

KABO Cantonal Soil Monitoring Network (Kantonale Bodenbeobachtung)

LASSO least absolute shrinkage and selection operator

MAD median absolute deviation

ML maximum likelihood

NABO Swiss Soil Monitoring Network (Nationale Bodenbeobachtung)

NDVI Normalized Differenced Vegetation Index

NFI National Forest Inventory

OC organic carbon

R2 coefficient of determination

REML restricted maximum likelihood

RMSE root mean squared error

robRMSE robust root mean squared error

SE standard error

SOC soil organic carbon

STDV standard deviation

TCCCA transparency, consistency, comparability, completeness, accuracy (guidelines)

UNFCCC United Nations Framework Convention on Climate Change

WSL Swiss Federal Institute for Forest, Snow and Landscape Research



1 INTRODUCTION 7

1 Introduction

1.1 Estimation of carbon stocks in Swiss forest soils

The Swiss greenhouse gas inventory (GGI), submitted under the United Nations Framework
Convention on Climate Change (UNFCCC) and under the Kyoto Protocol (FOEN, 2012), reports
annually on changes of organic carbon (OC) in forests. The National Forest Inventory (NFI,
Brassel and Lischke, 2001) provides comprehensive data to quantify the carbon (C) stored in the
living and dead forest biomass and its change in time. Estimating stocks of soil organic carbon
(SOC) in forests is more challenging because SOC concentration, gravel content, bulk density
and depth1 of soils vary strongly in space, measurements of these quantities are expensive, and,
in consequence, only limited information is commonly available to quantify SOC stocks.

To date, the Swiss Federal Office for the Environment (FOEN) used for Switzerland’s GGI
estimates of SOC stock in forests, published by Perruchoud et al. (2000) more than a decade
ago. As SOC data was then rather scanty (data of merely 168 sites were at the time available)
these authors reported estimates of the mean SOC stocks either for whole Switzerland, or for the
Southern Alps, where C rich soils prevail, and the remainder of the country2.

In the past ten years, additional SOC measurements were made by the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL) at additional 865 forest sites. Furthermore,
new spatial data (high-resolution terrain model, remotely sensed spectral information) became
available that may serve as covariates in statistical modelling of SOC stock data. In view of
the notably improved data basis, our study aims at providing (i) spatially explicit and (ii) more
precise estimates of SOC stocks stored in Swiss forest soils than are currently available. We used
a new, robust geostatistical approach (Künsch et al., 2011, in preparation) for this.

More specifically, we conducted in this study a robust geostatistical analysis of data on OC
stocks stored per unit area in three depth compartments of forest soils:

• forest floor (L, F and H horizons without deadwood),
• mineral soil 0–30 cm depth, and
• mineral soil 0–100 cm depth (or from 0 cm to depth of bedrock on shallower soils).

We mapped the spatial distribution of these three quantities across the forest area of Switzerland
by robust kriging. For the same soil compartments, we also report block kriging predictions
of the mean SOC stocks per unit area for the main production regions of Switzerland (Jura,
Central Plateau, Pre-Alps, Alps, Southern Alps, cf. Brassel and Brändli, 1999), further stratified
by altitude according to

• ≤ 600 m asl,
• > 600 m to ≤ 1200 m asl, and
• > 1200 m asl.

When developing and fitting the geostatistical models, we used only a subset of the sites, for
which SOC stock data were available (calibration set), and used the data of the remaining sites
(validation set) to check the precision of the kriging predictions. Further validation data were
available from the national and two cantonal soil monitoring networks. We further compared our
predictions with initial stock estimates calculated by Weggler et al. (2012) with the C turn-over
model Yasso07 (Tuomi et al., 2009, 2011).

Our contract work for FOEN is partly based on a MSc thesis (Nussbaum, 2011, in German),
in which many covariates for the geostatistical modelling were generated and data on the SOC

1The latter three quantities are required in addition to the C concentration to estimate the SOC stock per unit area,
cf. section 2.2.1.

2WSL later computed with the same data estimates of the mean SOC stocks for the NFI production regions Jura,
Central Plateau, Pre-Alps, Alps, Southern Alps stratified by altitude (E. Thürig, personal communication).
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concentration and stock of the topsoil (0–30 cm depth, including forest floor) were geostatist-
ically analysed. In the current study, we extended Nussbaum’s work by quantifying the stocks
separately for the forest floor and two compartments of the mineral soil and by estimating the
mean stocks for the NFI production regions stratified by altitude.

1.2 TCCCA: specific information for UNFCCC-reviewers

The present report reflects the TCCCA (transparency, consistency, comparability, completeness,
accuracy) criteria as follows:

(i) Transparency The report documents what data were used for the analyses and describes the
adopted statistical approach. The origin of the SOC data and the derivation of SOC stock values
from the data sampled by soil horizon are explained in section 2.2.1. Table 2 gives an overview
of the input data from which covariates of the statistical models were selected and refers to the
orginal data sources where further information can be found. The structure of the geostatistical
model and the robust parameter estimation method are described with relevant references in
sections 2.3.1 and 2.3.2. Models of SOC stocks in three depth compartments of the soil (forest
floor, mineral soil 0–30 cm and 0–100 cm) were developed in several steps that are detailed in
section 2.3.3. Kriging predictions were computed as described in section 2.3.4 and Appendix B.
Further details about kriging are documented in Appendices C–E.

The geostatistical model of the OC stock in the forest floor turned out to have too little pre-
dictive power in the validation (cf. section 3.1 and F.2). Therefore, we could not reliably map the
spatial distribution of this quantity across Switzerland, and we employed a design-based proced-
ure for estimating the mean OC stocks in the forest floor for the NFI production regions and for
the whole country. The respective estimation methods are described in section 2.4. A description
of the best-fit geostatistical models of the stocks in the mineral soil can be found for the depth
compartment 0–30 cm in section 3.2.1 and for the compartment 0–100 cm in section 3.3.1. Our
estimates of the mean stocks for the NFI production regions and for Switzerland as a whole are
compared in section 4 with previous SOC stock estimates by Perruchoud et al. (2000) and Moeri
(2007) that were both computed with less SOC data and a less comprehensive set of potential
covariates for statistical modelling. There were no circumstances preventing transparent data
supply with regard to SOC and input data.

(ii) Consistency The soil data had been collected over a longer period of time (cf. Figure 2).
Consistency of the SOC stock data was ensured by using for all the soil samples the same methods
to determine OC and bulk density. Samples stored in a soil archive were re-analysed if other
OC measurement or carbonate removal methods had been initially used. Spatial consistency
was assured by using only those input datasets as potential covariates for statistical models (cf.
Table 2) that were available from the same source for the total Swiss forested area.

(iii) Comparability The present study modelled the OC stocks of three depth compartments of
forest soils that were defined in section 1. Our SOC stock predictions are compared in section 4
with estimates for other countries or regions that used the same compartments. Comparability
with other countries and regions is therefore established.

(iv) Completeness The OC predictions were computed for the forest floor and the mineral
soil. Completeness therefore can only be stated for the respective stocks. Complete geographical
coverage for the forest area is given as for every production region stratified by altitude (cf.
section 1) soil samples were available (cf. Table 3, Table 5). Hence, predictions of OC stocks
could be computed for the total Swiss forest area (cf. Table 3, Figure 7 and 11).
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(v) Accuracy The accuracy of the predictions was evaluated by cross-validation and by com-
parison with independent validation sets of OC measurements (for method description, see sec-
tion 2.3.5, for evaluation of model performance sections 3.1, 3.2.2, 3.3.2 and F.2). Uncertainties
of OC and input data are discussed in detail in section 4.

1.3 Review of studies estimating SOC stock in European forests

Several studies recently estimated OC stocks of forest soils on a regional or national scale in
Europe. Integrating soil data from different sources, possibly collected over a longer period of
time (Krogh et al., 2003), and imputing missing compulsory data, in particular bulk densities of
soils (Weiss et al., 2000), were common challenges in these endeavours. Some studies provided
only estimates of topsoil OC content or stocks (usually 0–30 cm, e.g. Oehmichen et al., 2011;
Meersmans et al., 2012), estimates of stocks stored in the top 50 cm of the solum (Xu et al., 2011),
or estimates of stocks down to one meter depth of the soil (Krogh et al., 2003; Lettens et al.,
2005; Wiesmeier et al., 2012). Commonly, stocks of forest soils were not estimated separately,
but jointly with stocks of other land uses (grassland, arable land, wetland, etc.). Information on
land use was often an important covariate in models of SOC stocks (e.g. Wiesmeier et al., 2012).

Only few studies could rely on measured bulk densities (Krogh et al., 2003; Wiesmeier et al.,
2012). Commonly, this parameter was estimated by pedotransfer functions from other measured
soil properties, such as SOC concentration (Meersmans et al., 2008, 2012; Weiss, 2000) or texture
classes (Lettens et al., 2005). Other studies assigned densities of similar soil types (Tomlinson
and Milne, 2006) or predicted missing densities by a regression model calibrated with a small
set of sites where bulk density had been measured (Xu et al., 2011). Oehmichen et al. (2011)
completed their bulk density data based on ordinal field estimates by experts as in the present
study (cf. section 2.2.1).

Various modelling approaches, using a variety of covariates (soil maps, climate data, land use
information, etc.) were used to estimate SOC stocks. A popular technique was to assign average
SOC stocks to map units of existing soil or land use maps or to their intersections (Krogh et al.,
2003; Lettens et al., 2005; Meersmans et al., 2008; Tomlinson and Milne, 2006; Oehmichen
et al., 2011). Other studies did not distinguish between soil or land use classes and used an
average SOC stock for the whole study area (Weiss et al., 2000; Wördehoff et al., 2011, 2012).
Furthermore, SOC data were fitted to land use information and climate data by linear regression
models, either ignoring spatial auto-correlation (e.g. Meersmans et al., 2012) or taking it into
account by fitting a linear model with auto-correlated errors (Wiesmeier et al., 2012). Xu et al.
(2011) predicted subsoil SOC stocks based on a kriged topsoil OC content map using a depth
distribution function. Also nonlinear models were used to relate SOC stocks to environmental
covariates: Apart from a geostatistical model, Schröder et al. (2009) used regression trees for
modelling the spatial distribution of OC stocks of forest soils in Northwestern Germany, and
Martin et al. (2011) used boosted regression trees for spatial modelling of SOC stocks across
France.

Most studies did not quantify the uncertainty of the SOC stock estimates (Schröder et al.,
2009; Tomlinson and Milne, 2006; Xu et al., 2011; Wiesmeier et al., 2012; Wördehoff et al.,
2011, 2012). Others reported 95 %-confidence intervals or standard errors of the mean SOC
stock estimates per land use class and/or total study areas (Lettens et al., 2005; Meersmans et al.,
2008; Oehmichen et al., 2011). Krogh et al. (2003) estimated the sampling distribution of the
mean SOC stock estimate by non-parametric bootstrapping and were able to calculate the 95 %-
confidence interval. Meersmans et al. (2012) used Monte Carlo simulations to propagate the
uncertainty in the input data of the employed pedotransfer function and the regression model
to the predicted SOC content. Among the studies on SOC stocks in European forests we found,
only Schröder et al. (2009), Martin et al. (2011) and Meersmans et al. (2012) evaluated the model
performance by cross-validation. We did not find any study that validated stock estimates with
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independent validation data.
None of cited studies used statistically robust estimation and prediction methods, although

outliers are quite common in environmental datasets. Moreover, most studies used only a limited
set of environmental covariates that did not completely characterize the conditions relevant for
soil formation. Thus, the usage of comprehensive climatic, topographical and spectral inform-
ation as potential covariates for statistical models that are furthermore fitted robustly, as in our
study, seems to be novel. Also the uncertainty of the estimates and of the model performance
were not generally quantified. Hence, our study is also in this respect different from previous
work.

2 Method and materials

2.1 Study area

This study focused on the forest area of Switzerland (Figure 1). “Forest” was defined as in
Giamboni (2008): The area classified by the VECTOR25 forest categories (Swisstopo, 2011)
with the addition of the areas devastated by the hurricanes Vivian and Lothar. From this area
the intersection with the National Inventory of Mires (BFS, 2001) was subtracted. 67 % of the
forested area is dominated by coniferous trees, deciduous forests prevail only at lower altitude in
the Southern Alps (BFS, 2001). Forests extend in Switzerland over altitudes ranging from 190 m
to 2 390 m asl. The climatic conditions vary notably over the forested area: Annual precipitation
ranges from 600 mm to 2 900 mm and mean annual temperature from -1 to 13 ◦C. Considerable
variation is also found in the geologic parent material for soil formation, which includes among
others limestones in the Jura mountains and in parts of the Pre-Alps, fluvio-glacial sediments
of several quaternary glaciations and of the Tertiary on the Central Plateau and igneous and
metamorphic rocks in the Alps and Southern Alps. This large variation of pedogenetic factors is
reflected by diverse developments of soils that resulted in varying conditions for accumulation or
degradation of SOC (Walthert et al., 2004).

2.2 Data

2.2.1 SOC data

Over the past 30 years, WSL opened and described more than 1 000 forest soil profiles and
collected and analysed soil samples from them. The sites were visited in several projects, mostly
between 1990 and 2000 (Figure 2). For the purpose of this study, one can assume that the SOC
data represent one time point because we did not find any significant linear time trends when we
modelled the data. The positions of the soil profiles were recorded in the field on paper maps
only. Therefore, the recorded locations are expected to differ from the real positions by about
± 25 m (Nussbaum, 2011). SOC was measured for 1 033 soil profiles (Figure 1). The sites had
not been selected by randomized designs, but they are nevertheless quite evenly distributed over
Switzerland, so there is good reason to assume that the SOC data represent OC stock in Swiss
forest soils fairly well. Three sites, situated within the area of the National Mire Inventory and
belonging to the validation set (profile identifiers 61, 63 and 67), were not used to fit the final
model (cf. section 2.3.3, item (v)) and to compute the kriging predictions (cf. section 2.3.4).

The thickness of all soil horizons was recorded in the field, along with estimates of the volu-
metric content of gravel (particles with size >2 mm) in mineral soil horizons. Bulked soil samples
were collected and analysed by soil horizons. For L horizons only thickness was recorded, but
no samples were taken. For all other horizons, soil samples were collected and OC concentra-
tion was measured. When the pH of a soil sample was larger than 6.0 then carbonates were
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validation set (175 sites) 
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Figure 1: Map of the forest area of Switzerland (cf. section 2.1) with the positions of the 1 033 WSL soil
profiles (subdivision into calibration and validation sets according to section 2.3.5) and the position of the
validation sites of the national (NABO) and two cantonal (KABO) soil monitoring networks.
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Figure 2: Number of soil profiles sampled per year.

removed by steaming hydrochloric acid prior to the measurement of the C content by an ele-
mental C/N-analyser (combustion at 1 000 ◦C, Walthert et al., 2010). Below this pH, carbonates
were assumed to be absent. The missing information on the C content of L horizons was taken
from Moeri (2007) and Wohlgemuth et al. (1995). From the study of Moeri complete data of
29 sites (with 4–8 replicates per site) and from Wohlgemuth et al. data of 18 “control sites”
(8 replicates per site) was available. The median C content of these soil samples was equal to
44.3510−3 kg kg−1 and was assigned as C content to all L horizons.
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Table 1: Descriptive statistics of OC measurements, computed for the forest floor, the mineral topsoil
(0–30 cm), the mineral soil to 100 cm depth and the subsoil (30–100 cm, cs: calibration set, vs: validation
set, stdv: standard deviation, mad: median absolute deviation).

OC forest floor SOC 0–30 cm SOC 0–100 cm SOC 30–100 cm
cs vs cs vs cs vs cs vs

[t ha−1] [t ha−1] [t ha−1] [t ha−1] [t ha−1] [t ha−1] [t ha−1] [t ha−1]
mean 20.06 16.31 70.90 80.91 108.91 132.92 38.02 52.01
median 6.65 6.65 60.89 73.01 89.44 111.84 27.89 35.62
stdv 64.49 25.05 41.00 41.23 72.50 83.30 40.59 51.56
mad 7.40 4.93 30.29 34.53 45.30 60.47 21.44 30.31

The bulk density was measured for 440 out of the about 5 000 mineral soil horizons sampled.
A field estimate of the bulk density was available for all mineral soil horizons (ordinal variable
with five levels). The measured bulk densities were classified by the field estimate, and the
median density was computed for each level of the field estimate. The respective median was
then assigned to all mineral soil horizons without bulk density measurements. An adjustment
of the assigned value was necessary only for about 0.2 % of all mineral soil horizons. The
plausibility of the assigned values was checked by an expert. The bulk density of the forest floor
horizons were taken from Moeri (2007). The median density of the L horizons amounted to
75 kg m−3, of the F horizons to 140 kg m−3 and of the H horizons to 220 kg m−3.

The SOC stock Si stored in horizon i per unit area [kg ha−1] was calculated from the total
volume Vi of the horizon per unit area [m3 ha−1], its volumetric gravel content Gi [m3 m−3], bulk
density ρi [kg m−3] and its gravimetric SOC content Ci [kg kg−1] according to

Si = Vi (1 −Gi) ρi Ci, (1)

from which the stock Sc stored in a given depth compartment, was computed by

Sc =

h∑
i=1

wi Si, (2)

where h is the number of horizons present at a given site and wi is the “contribution” of horizon
i to the stock in the compartment, which is equal to one if the horizon is fully contained in the
compartment, equal to zero if no part of the horizon belongs to it and equal to

wi = (zc −

i−1∑
j=1

z j)/zi

if the compartment with thickness zc only partially contains horizon i (zi and z j denote here the
thickness of horizon i and j, respectively).

The frequency distributions of the SOC stocks stored in the three compartments forest floor,
mineral soil 0–30 cm and 30–100 cm, respectively, are summarized by box-plots in Figure 3. On
average, the largest stocks are stored in the mineral topsoil 0–30 cm (Table 1).

2.2.2 Input data

Table 2 gives an overview of the input data used to derive the covariates for the regression ana-
lysis, which is an important part of any geostatistical analysis. The last column lists the respective
covariates. In general, the covariates could be computed for the whole study area (cf. section 2.1).
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Figure 3: Box-plots of estimated SOC stocks for the three soil compartments forest floor, mineral soil
0–30 cm and 30–100 cm.

However, some input data was incomplete, e.g. values were missing for the SPOT5 mosaic where
clouds covered the land surface. Nussbaum (2011) reviews the quality of the input data, and the
references listed in Table 2 contain further information.

In view of the uncertainty of the recorded locations of the soil profiles (cf. section 2.2.1),
the values of the covariates were averaged within circular local neighbourhoods, centred on the
recorded profile locations and having radii either equal to 13 m, 19 m or 26 m. Depending on the
type of the data, different statistics were computed: Arithmetic means for real numbers, medians
for integers and the most frequent category for nominal or ordinal variables. For computing the
kriging predictions (cf. section 2.3.4), the covariates of the regression models (cf. section 2.3.3)
were extracted in the same way for the nodes of a square grid with spacing of 100 m.

2.3 Geostatistical analyses

2.3.1 Model

Our geostatistical analysis was based on the assumption that the area-specific SOC stock Sc(s) at
a given location s, possibly transformed by some function f (·), can be modelled by

f
(

Sc(s)
)

= x(s)Tβ + Z(s) + ε(s), (3)

where x(s)Tβ stands for a linear regression model that accounts for the large-scale spatial trend
in the data (x(s) is a vector with values of the covariates for location s [cf. section 2.2.2], β is a
vector of unknown regression coefficients that must be determined from the data and T denotes
the transpose). Z(s) models the small-scale variation that is not accounted for by the regression
model, but that is still spatially structured in the sense that Z(s) and Z(t) at two nearby locations
s and t do not differ much and that the contrast between Z(s) and Z(t) increases on average
with increasing distance between s and t. Hence, Z(s) stands for a normally distributed, auto-
correlated random variable that has zero mean and that is characterized by a variogram function
γ(s − t; θ) that depends on the lag distance s − t and on a vector of unknown parameters θ that
must be determined again from the data. Lastly, ε(s) is a spatially uncorrelated random variable
that models the remaining spatially unstructured variation. In our robust geostatistical approach,
ε(s) need not be a normally distributed variable, but can be any random variable, symmetrically
distributed around zero, and possibly having longer tails than a normal distribution, allowing
thereby for (spatially unstructured) outliers in a dataset.
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2.3.2 Robust estimation of model parameters

As mentioned in the previous section, the unknown parameters of the model (equation 3) are the
regression coefficients β and the variogram parameters θ (nugget σ2

0, sill σ2
1, range α) that must

be estimated from the SOC data and the values of the covariates. We used a novel robust restric-
ted maximum likelihood (REML) method for this. In short, the applied new method, which is
based on robustifying the Gaussian estimating equations and is related to the Maximum Like-
lihood (ML) II Proposal of Richardson and Welsh (1995), automatically identifies observations
in a dataset that do not follow the dominant patterns of the majority of observations and gives
those outlying observations a small weight when estimating the model parameters. The inter-
ested reader can find more details about our robust REML method in Künsch et al. (2011, in
preparation).

Given the SOC stock measurements Sc(si) and the values of the covariates x(si) for a set
of soil profile locations si, i = 1, 2, . . . , n the estimation algorithm provides estimates β̂ of the
regression coefficients along with an approximate estimate of their covariance matrix, estimates
θ̂ of the variogram parameters, and predictions Ẑ(si) of the normally distributed variable for
the locations of the soil profiles, along with the associated kriging variances (minimized mean
squared prediction errors).

2.3.3 Model building

Preliminary remark: For the analyses described in the sequel we used unless annotated other-
wise only the 858 observations of the calibration subset (cf. section 2.3.5 for details).

Given a set of covariates, the robust estimation method sketched in the previous section
provides estimates of the regression coefficients along with approximate standard errors (SE),
so that (approximate) significance testing of a particular set of regression coefficients is possible
(based on a Wald-Test). However, we had a large number of covariates, of which some were
mutually strongly correlated. Furthermore, based on the results obtained by Nussbaum (2011),
we had good reasons to believe that many covariates would not be statistically significant. Thus,
we faced a covariate selection problem with many non-significant and partly collinear covariates.
In addition, some nominal or ordinal covariates distinguished many categories, with very few OC
stock measurements for some categories. Hence, the model building process involved

(i) selecting an appropriate transformation f (·) for the response variables Sc(s)
)
,

(ii) the selection of a parsimonious set of relevant covariates,
(iii) the aggregation of sparsely populated and mutually not differing levels of categorical cov-

ariates,
(iv) the choice of a particular parametric variogram function and the optimal value of the tuning

constant of our robust estimation algorithm, and
(v) fitting of a final model with the merged calibration and validation sets for computing the

kriging predictions.

(i) Transformation of response variables Figure 3 shows that the empirical distributions of
the stock measurements were positively skewed. Ignoring the auto-correlation and possible out-
liers in the dataset and using all covariates, we fitted the parameter of a Box-Cox-Transformation
(Box and Cox, 1964) by ML. For all considered depth compartments, the estimated parameters
of the transformations were close to zero, so that the eventually chosen transformation by the
natural logarithm approximated a Box-Cox-Transformation in all instances well.

(ii) Selection of relevant covariates About 300 potential covariates were derived from the
input data and were available for regression modelling (cf. section 2.2.2). The distribution of the
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values of some terrain attributes and climate covariates were positively skewed, and the covariates
were transformed either by the square root or the natural logarithm. Relevant covariates were then
selected by a procedure consisting of three steps:

1. An initial set of covariates, from which in the subsequent steps the relevant ones were
selected, was chosen based on correlation-biplots (Gabriel, 1981). For this, we used the
values of the covariates for all 1 033 WSL soil profiles. Correlation-biplots illustrate mul-
tiple linear dependencies among a set of variables well. By this step we could eliminate a
considerable number of covariates that were strong correlated with others (cf. Figure 19 in
Appendix G).

2. The least absolute shrinkage and selection operator LASSO (Hastie et al., 2009, sec. 3.4) is
a covariate selection tool that minimizes a penalized sum of the squared residuals. LASSO
uses as penalty the sum of the moduli of the regression coefficients. The algorithm likely
excludes correlated and non-relevant covariates. LASSO was applied (a) to the full set
of covariates, (b) to the subset resulting from step 1 and (c) to these sets enriched by
interactions terms, i.e., new covariates obtained by multiplying two covariates used in (a)
and (b). We considered in particular products between climate and relief attributes on the
one hand and dummy indicator variables for biogeographical regions, soil and geotechnical
map units on the other. The LASSO covariate subset with the smallest mean squared error
was chosen for the following step 3.

3. Starting with the best LASSO covariate subset from step 2, the parameters of the geos-
tatistical model (equation 3) were then estimated as described in section 2.3.2. First, we
removed step by step non-relevant covariates from the LASSO subset by tenfold cross-
validation (e.g. Hastie et al., 2009, sec. 7.10). For this, we divided the calibration set ran-
domly into 10 subsets, excluded one subset in turn and fitted the model by robust REML to
the remaining data, and predicted the log-transformed SOC stock of the excluded subset by
robust kriging (cf. section 2.3.4). We used the continuous ranked probability score (CRPS,
Gneiting et al., 2007) as main criterion for the model selection.

(iii) Merging levels of categorical covariates In step 3 described above, the categories of
nominal and ordinal covariates were merged based on partial residual plots (e.g. Faraway, 2005,
sec. 4.2), and the benefit of the aggregation was evaluated again by tenfold cross-validation.

(iv) Choice of variogram function and robustness tuning constant After aggregating the
levels of categorical covariates, a range of parametric variogram functions was tested by cross-
validation. For the best-fit variogram model and the final set of covariates, an optimal value of
the tuning constant c, controlling the sensitivity of the robust REML procedure to outliers, was
similarly selected by tenfold cross-validation.

(v) Fitting of final model For computing the kriging predictions, we fitted a final model with
the same structure as in (ii) and (iii) to the merged calibration and validation sets (excluding 3
profiles situated within the area of the National Mire Inventory, cf. section 2.2.1), using the tuned
variogram function and the tuned robustness constant as in (iv).

2.3.4 Predicting SOC stock at unsampled locations by robust kriging

The log-transformed SOC stocks were predicted for the nodes of a grid with spacing equal to
100 m and for the sites of the validation sets by robust kriging. One needs for this the estim-
ated parameters of the best-fit model and for each prediction location the values of the respective
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covariates (cf. equation 9 in Appendix B). Outlying observations automatically receive small
weight, and our robust predictions are therefore insensitive to outliers in the SOC stock dataset.
We used the standard unbiased back-transformation for lognormal kriging (e.g. Cressie, 2006)
to transform the predictions of the log-transformed stocks back to the original scale of the meas-
urements. The mean stocks per NFI production region (and for whole Switzerland), stratified
by altitude, along with respective mean squared prediction errors (block kriging variances), were
computed from the lognormally back-transformed predictions at the nodes of the 1-ha grid by
block kriging (cf. equation 13 and 14 in Appendix B for details).

2.3.5 Evaluation of model performance

The predictive power performance of the fitted geostatistical models was evaluated in three ways:

(i) by tenfold cross-validation of the final model with the calibration dataset (cf. section 2.3.3),
(ii) by predicting the SOC stocks for the independent WSL validation dataset and by compar-

ing the predictions with the respective measurements, and
(iii) by predicting and comparing similarly SOC stocks measured on forest sites of the national

(Desaules et al., 2006) and two cantonal soil monitoring networks (Gasser et al., 2009;
AFU, 2012).

We had to use the WSL dataset also for a comparison of measured SOC stocks with initial stock
estimates obtained by the Yasso07 model (Weggler et al., 2012). Yasso07 needs data on litter
input into the soil. Such data were available only for 269 WSL soil profile sites. The dataset could
therefore not be split randomly into calibration and validation sets. Rather, we selected those 134
out of the 269 sites that were evenly arranged on a 8 × 8-km-grid over Switzerland, and another
41 sites, selected such that we achieved more or less a balanced representation of the various soil
map units and of the forest types in both the validation and calibration sets. Nussbaum (2011)
describes in more detail how the dataset was split. In summary, 858 observation were assigned
to the calibration and 175 to the validation set (Figure 1).

The following statistics of the relative (cross-validation) prediction errors were computed to
characterize the marginal bias and the overall precision of the predictions:

BIAS = −
1
n

n∑
i=1

(
Sc(si) − Ŝc(si)

)
Sc(si)

, (4)

robBIAS = − median
i

( (Sc(si) − Ŝc(si)
)

Sc(si)
)
, (5)

RMSE =

1
n

n∑
i=1

(
Sc(si) − Ŝc(si)

Sc(si)

)21/2

, (6)

robRMSE = MAD
i

(
Sc(si) − Ŝc(si)

Sc(si)

)
. (7)

The symbol n denotes the number of observations in the (cross-)validation set and MAD stands
for median absolute deviation. In addition, CRPS and a robust estimate of the coefficient of
determination R2 (Croux and Dehon, 2003)3 was computed by

R2 = 1 −


∑n

i=1 | Sc(si) − Ŝc(si) |∑n
i=1 | Sc(si)− median

i

(
Sc(si)

)
|


2

. (8)

3This criterion is tailored for a robust regression analysis where the sum of the moduli of the residuals is minimized
(L1-regression). We did not use such an approach, but nevertheless found this criterion well-suited to summarize the
predictive power of the fitted models.
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For computing CRPS, we assumed that the prediction errors of the log-transformed stocks were
normally distributed with mean zero and variance equal to the robust kriging variance of the
log-transformed stock.

2.4 Design-based estimation of OC stock of forest floor

In the course of the geostatistical analyses we discovered that the model fitted to the OC stock
data of the forest floor predicted the WSL validation data only poorly (cf. section F.2 in Ap-
pendix). As an alternative to the geostatistical analysis, we computed therefore design-based4

estimates of the mean stocks for the NFI production regions and for the whole country. Three
soil profiles (profile identifiers 357, 361 and 387) with peat topsoil and very large stocks (1 325,
465 and 1 038 t ha−1, respectively) were omitted for design-based estimation. Furthermore, the
only site situated on the Central Plateau above 1200 m asl (profile identifier 579) was assigned
to region “Jura > 1200 m” because it was close to this region. Hence, there remained no data for
the region “Central Plateau > 1200 m”, and no design-based estimate could be computed. This
is not a serious problem, because this region covers an area of only about 25 km2 (Table 3).

To compute the design-based estimates, we assumed that the soil profile sites had been chosen
by a simple random sample without replacement, which is obviously not true. Furthermore, we
supposed that each soil profile was representative for a surrounding area of 1 ha and that the
forested area is equal to 1 283 800 ha. This defined the finite population size N = 1 283 800,
from which the n = 1 030 soil profiles were supposedly sampled5.

The design-based estimate of the mean stock in the forest floor for whole Switzerland is
simply the arithmetic mean, S̄c, of the measurement, and its standard error can be estimated by

SE[S̄c] =

(
(N − n)

N
s2

n

)1/2

,

where s2 is the customary sample variance of the measurements. For the NFI production regions,
stratified by altitude, the mean stocks along with the associated standard errors were estimated
by a ratio domain estimate (cf. Särndal et al., 1992, sec. 5.8).

4For the difference between model- and design-based estimation we refer the reader to de Gruijter et al. (2006,
pp. 15).

5The assumed size of the forest area is not critical because the finite population correction 1 − n/N was close to
one.
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3 Results

3.1 OC stock in forest floor

We report here the block kriging predictions of the mean stocks per NFI productions region strat-
ified by altitude, along with the respective design-based estimates (Table 3). Since the predictive
performance of the fitted geostatistical model turned out to be weak in the validation, we have
not much confidence in the geostatistical predictions, and we report the remaining results of the
geostatistical analysis of the forest floor OC data in Appendix F.

The design-based estimates of the mean stocks varied from 3 t ha−1 (Alps ≤ 600 m) to
33 t ha−1 (Alps > 1200 m), with a mean estimate for the whole country of 16.7 t ha−1 (SE:
0.8 t ha−1; 95 %-confidence interval: [15.1, 18.3] t ha−1). For most production regions and for
the whole country the block-kriging predictions of the stocks were larger than the design-based
estimates, although the 95 %-confidence regions (estimate or prediction ± 1.96 SE) frequently
overlapped, in particular also for the average stock of Switzerland. The comparison of the kri-
ging predictions with the measurements of the WSL validation set indicated that kriging over-
estimated the stocks in the forest floor systematically (median estimate of relative bias: 99 %,
cf. Table 4). Hence, one might therefore prefer the design-based estimates over the kriging pre-
dictions.

In the Pre-Alps, Alps and Southern Alps both types of estimates showed increasing stocks
with increasing altitude. This was less clear for the Jura region and the Central Plateau, where

Table 3: Design-based estimates and robust block kriging predictions of the mean OC stocks in the forest
floor of the five production regions of the NFI, stratified by altitude, and of Switzerland as a whole (Aforest:
forest area, n: number of soil profiles used for computing the predictions and for design-based estimation,
S̄c: design-based estimate, Ŝc: block kriging prediction; SE: standard error).

Region Altitude asl Aforest
a n S̄c Ŝc SE[S̄c] SE[Ŝc]

[m] [ha] [t ha−1] [t ha−1] [t ha−1] [t ha−1]
Jura ≤ 600 51 647 22 9.5 10.1 1.57 1.00

(600–1200] 116 363 68 7.5 13.2 0.70 1.37
> 1200 23 507 5b 7.8 20.7 1.74 4.21

Central Plateau ≤ 600 125 578 199 8.7 10.5 0.68 0.82
(600–1200] 91 196 105 11.4 12.0 1.45 0.92

> 1200 2 480 1c – 19.7 – 6.46
Pre-Alps ≤ 600 8 619 50 7.5 9.6 1.25 0.97

(600–1200] 129 997 189d 16.3 17.1 1.55 1.26
> 1200 59 571 68e 26.2 22.9 4.77 2.17

Alps ≤ 600 7 901 4 3.1 9.7 0.47 1.58
(600–1200] 95 101 64 20.0 17.0 2.64 1.59

> 1200 212 260 164 33.4 32.0 3.53 3.46
Southern Alps ≤ 600 18 460 22 8.2 13.2 1.62 1.92

(600–1200] 51 485 40 11.0 19.7 2.11 2.40
> 1200 57 330 32 30.8 36.6 5.43 4.95

Switzerland 1 051 495 1 033f 16.7 19.5 0.83 1.22
a number of nodes of 1-ha grid intersected with five production regions and three altitude classes less the

nodes, where values of covariates were missing (cf. section 2.2.2)
b 6 profiles for design-based estimation
c this profile was assigned to region the “Jura > 1200 m” for design-based estimation
d 188 profiles for design-based estimation
e 66 profiles for design-based estimation
f 1 030 profiles for design-based estimation
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Figure 4: Fitted exponential variogram of the log-transformed SOC stock in the top 30 cm of the mineral
soil (line: robust REML estimate computed with covariates listed in section 3.2.1 and tuning constant
c = 2, dots: method-of-moments estimate of sample variogram of robust regression residuals).

only the block kriging prediction suggested a positive dependence of stocks on altitude. How-
ever, only few profiles were available for the stratum “> 1200 m” there, and the standard errors of
the block kriging estimates were large. Contrary to what one would expect from a model-based
procedure, the standard errors of the block kriging predictions were not clearly smaller than the
standard errors of the design-based estimates. Considering the positive bias and the poor preci-
sion of kriging in the validation for the forest floor stock (Table 4 and section F.2 in Appendix)
we have more confidence in the design-based estimates than in the block kriging predictions.

3.2 SOC stock in mineral soil 0–30 cm

3.2.1 Model

The model building procedure selected just five covariates for the model of the log-transformed
SOC stock in the top 30 cm of the mineral soil (cf. residual plots in Appendix G):

• square root of mean annual precipitation,
• reflection in the near-infrared band of the SPOT5 mosaic,
• topographic position index with radius 500 m according to Jenness (2006), with a separate

coefficient for soils rich and poor in clay,
• median mass of soil particles with diameter < 2 mm assigned to geotechnical map units,

and
• categorical covariate distinguishing five aggregated soil map units (for aggregation, see

residual plots in Appendix G).

The residuals of the linear regression with the above covariates were spatially correlated with
a nugget/sill ratio of 0.37 and an effective range of about 600 m (cf. Figure 4). The correlation
was stronger here than in the model of the forest floor OC stock (section F.1 in Appendix). The
optimal value of the robust tuning constant was c = 2. This indicates that the robustly estimated
model fitted the data better than a customary REML estimate.
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Table 4: Statistics of relative OC stock prediction errors, computed for the measurements of the WSL
and of the soil monitoring datasets (NABO/KABO) with the respective final models (statistics defined in
section 2.3.5, cv: cross-validation, vs: validation set).

WSL forest floor WSL 0–30 cm WSL 0–100 cm NABO/KABO vs
cv vs cv vs cv vs 0–30 cm 0–100 cm

BIAS 0.135 2.634 0.207 0.135 0.232 0.152 0.198 0.117
robBIAS 0.891 0.990 0.096 0.070 0.124 0.066 0.107 0.070
RMSE 22.91 8.387 0.568 0.488 0.646 0.556 0.508 0.492
robRMSE 1.351 1.467 0.410 0.388 0.436 0.420 0.426 0.429
CRPS 0.791 0.647 0.238 0.221 0.252 0.247 0.238 0.249
R2 – – 0.309 0.337 0.305 0.403 0.216 0.166

3.2.2 Model validation

Figure 5 shows the measurements of the stock in the top 30 cm of the mineral soil, plot-
ted against the respective predictions for the calibration set (cross-validation results, prediction
of log-transformed stock) and for the WSL validation set (independent validation data, back-
transformed predictions and measurements plotted on log-scale). The lines of the loess smoother
(Cleveland et al., 1992) are in both panels close to the 1:1-line, indicating absence of noticeable
(conditional) bias. This is confirmed by the BIAS and robBIAS statistics in Table 4: Irrespective
how the statistic was computed, the relative (marginal) bias was always less than 20 %. How-
ever, the scatter of the points around the 1:1-line is quite large in both panels of Figure 5, and
this was mirrored in the large root mean squared relative errors: The MAD of the relative pre-
diction errors was about 40 %, irrespective of the data set, and the non-robust estimates were
even larger (49 % and 57 %, respectively). According to the robust estimate of the coefficient
of determination the model explained only about a third of the variation in the measurements,
and the robust estimate of the linear correlation between predictions and observations was equal
to 0.55 in cross-validation and 0.58 for the validation set. The differences in these statistics
between cross-validation and the independent WSL validation set were small. Hence, there was
no indication that the model over-fitted the data.

The kriging variances slightly over-estimated the magnitude of the prediction errors, as only
6 of the 175 validation observations lay outside of the 95 %-prediction intervals (expected: 9 ob-
servations, Figure 6).

3.2.3 Prediction

For computing the predictions, the parameters of the final model were estimated with the data
of 1 022 sites, based on the set of covariates listed in section 3.2.1. For 8 sites, the information
on the reflectance in the near-infrared band was missing, and 3 soil profiles, situated within the
area of the National Mire Inventory were excluded (cf. section 2.2.1). The robust lognormal
kriging predictions are mapped in Figure 7 for the nodes of the 1-ha grid, and the block kriging
predictions of the mean stocks for the NFI production regions and for whole Switzerland are
listed in Table 5.

The largest stocks (> 120 t ha−1) are stored at higher elevation in the Jura, in parts of the
Pre-Alps and in the southern part of the Canton of Ticino. Small stocks (< 60 t ha−1) are found
at low elevation on the Central Plateau and in the inner-alpine valleys. A large part of the Jura
region and of the Pre-Alps have intermediate stocks.

The predictions of the mean stocks varied for the NFI production regions between 55 t ha−1

(Central Plateau ≤ 600 m) and about 120 t ha−1 (Central Plateau and Jura > 1200 m). For the
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Figure 5: Scatterplots of measured against predicted SOC stock in the top 30 cm of the mineral soil.
Cross-validation predictions of log-transformed stocks for calibration set (left panel) and lognormally
back-transformed predictions computed with the calibration data for the sites of the WSL validation set
(right panel, green lines: loess scatterplot smoothers).
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Figure 6: Ranked predictions of the SOC stock in the top 30 cm of the mineral soil for the WSL validation
set (black) with 95 %-prediction intervals (vertical grey lines). Measurements inside the intervals are
shown in blue, those outside in red.

whole country, a mean value of 80 t ha−1 was predicted with a standard error of 1.5 t ha−1,
yielding a 95 %-prediction interval of [76.9, 82.9] t ha−1. Except for the Southern Alps, the
predictions showed again the tendency of increasing stocks with increasing altitude, in particular
for the Jura and the Pre-Alps, where the 95 %-tolerance regions of the predictions (prediction ±
1.96 SE) generally did not overlap for the different elevation strata. In spite of the rather poor
precision of the point predictions, demonstrated in the previous section for the WSL validation
set, the standard errors of the predicted mean stocks in the NFI regions were small (2–4 t ha−1)
in comparison with the stocks themselves (60–120 t ha−1). This gain in precision is due to
the “bulking” effect of block kriging: By predicting mean values, the small-scale variation is
averaged out.
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Data Source: 
  Prediction of soil organic carbon in forests: own data 
  Lakes: Vector 200 © 2007 swisstopo (DV033492.2)) 

  Relief 1:1'000'000: K606-01 © 2004 swisstopo
  Swiss Boundary: BFS GEOSTAT, swisstopo

 SOC stock 0 - 30 cm   [t ha-1]
0 30 60 90 120 150 180 210 240 270

Figure 7: Robust lognormal kriging prediction of the SOC stock in the top 30 cm of the mineral topsoil of
Swiss forests (computed with best-fit model with covariates according to section 3.2.1 and tuning constant
c = 2, smoothed with a focal mean with a radius of 1 pixel = 100 m).

3.3 SOC stock in mineral soil 0–100 cm

3.3.1 Model

Compared with the model of the topsoil stock (section 3.2.1) very similar covariates were chosen
for the model of the SOC stock stored in the mineral soil in 0–100 cm depth:

• square root of March precipitation,
• reflection in the near-infrared band of the SPOT5 mosaic,
• slope angle computed from high resolution (2 m) terrain model, and
• categorical covariate distinguishing nine soil map units (for aggregation, see residual plots

in Appendix G).

The residuals of the linear model were to the same degree spatially auto-correlated as the resid-
uals of the topsoil model (nugget/sill ratio 0.41, effective range 660 m, Figure 8). According to
the cross-validation results, robust REML with a tuning constant c = 2 fitted the data again better
than a non-robust REML fit.

3.3.2 Model validation

Figure 9 shows the measurements plotted against the predictions of the stocks. As noticed already
for the topsoil, the cross-validation predictions and the predictions for the WSL validation set
showed only little bias (loess smoother lines close to 1:1-line, robBIAS ≤ 12 %). Compared to
the predictions of the topsoil stock, those of the stock stored to 100 cm depth were less precise
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Table 5: Robust block kriging prediction of the mean SOC stocks in the mineral topsoil (0–30 cm depth)
and in the mineral soil from 0–100 cm of the five production regions of the National Forest Inventory, strat-
ified by altitude, and of Switzerland as a whole (n: number of soil profiles used for computing predictions,
Ŝc: block kriging prediction; SE: standard error).

0–30 cm 0–100 cm
Region Altitude n Ŝc SE[Ŝc] n Ŝc SE[Ŝc]

[m] [t ha−1] [t ha−1] [t ha−1] [t ha−1]
Jura ≤ 600 22 82.6 3.34 22 104.8 6.51

600–1200 68 102.0 3.56 68 145.9 5.02
> 1200 5 121.3 5.39 5 168.1 7.52

Central Plateau ≤ 600 199 55.4 1.55 199 81.4 2.11
600–1200 102 62.1 1.68 102 92.2 2.11
> 1200 1 122.0 7.07 1 171.0 10.29

Pre-Alps ≤ 600 50 66.1 2.06 50 93.2 2.38
600–1200 184 75.9 2.00 184 112.9 2.95
> 1200 66 95.8 3.27 66 153.8 4.98

Alps ≤ 600 4 66.5 2.44 4 99.6 2.86
600–1200 64 74.4 2.42 64 120.9 3.62
> 1200 163 69.5 1.85 163 115.3 3.19

Southern Alps ≤ 600 22 102.4 4.07 22 196.3 9.84
600–1200 40 109.0 4.09 40 209.5 9.83
> 1200 32 107.1 4.11 32 192.4 8.04

Switzerland 1 022a 79.9 1.52 1 022a 125.8 2.41
a data of near-infrared reflectance was missing for 8 out of 1 033 WSL profile sites because of

clouds in the SPOT5 mosaic and 3 sites laying within the National Mire Inventory were excluded
(cf. section 2.2.1).
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Figure 8: Fitted exponential variogram of the log-transformed SOC stock in 0–100 cm depth of the
mineral soil (line: robust REML estimate computed with covariates listed in section 3.3.1 and tuning
constant c = 2, dots: method-of-moments estimate of sample variogram of robust regression residuals).

(robRMSE: 44 % [cross-validation 0–100 cm] and 42 % [validation set 0–100 cm] vs. 41 %
[cross-validation 0–30 cm] and 39 % [validation set 0–30 cm]). The larger values of CRPS
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Figure 9: Scatterplots of measured against predicted SOC stock in 0–100 cm depth of the mineral soil.
Cross-validation predictions of log-transformed stocks for calibration set (left panel) and lognormally
back-transformed predictions computed with the calibration data for the sites of the WSL validation set
(right panel, green lines: loess scatterplot smoothers).
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Figure 10: Ranked predictions of the SOC stock in 0–100 cm depth of the mineral soil for the WSL val-
idation set (black) with 95 %-prediction intervals (vertical grey lines). Measurements inside the intervals
are shown in blue, those outside in red.

(0.25 vs. 0.22–0.24) confirm that the total stock in the mineral soil were slightly less precisely
predicted than the topsoil stock, although the robustly estimated R2-statistic (40 %) was for the
stock 0–100 cm of the validation set a bit larger than for the topsoil stock (34 %). The robustly
estimated correlation between predictions and measurements was equal to 0.63 for the validation
data and again equal to 0.55 in cross-validation. Since the predictive power of the model for the
validation set was about the same as in cross-validation, we conclude again that the model did
not over-fit the data.

Similar to the topsoil stock, the kriging variance were again somewhat too large, as only 6
instead of the expected 9 observations fell outside of the 95 %-prediction intervals (Figure 10).
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3.3.3 Prediction

For computing the predictions, the parameters of the final model were estimated with the data
of 1 022 sites, based on the set of covariates listed in section 3.3.1. Eleven observations were
omitted for the same reasons as mentioned in section 3.2.3 for the topsoil stocks. The robust
lognormal kriging predictions of the stocks stored to 100 cm depth are mapped in Figure 11 for
the nodes of the 1-ha grid, and the block kriging predictions of the mean stocks for the NFI
production regions and for whole Switzerland are listed in Table 5.

The spatial patterns in Figure 11 are broadly the same as in the map of the topsoil stocks
(0–30 cm), except that the predicted total stocks were much larger in parts of Ticino where a
combination of large precipitation, forest fire, and metaphorphic parent material lead to an accu-
mulation of organic matter in deeper soil horizons (cf. section 4 for a more detailed discussion).
Large stocks up to 400 t ha−1 were also found in the parts of the Eastern Pre-Alps, where pre-
cipitation is large and water-logged soils developed on Flysch parent material. Very small total
stocks in the mineral soil were predicted for Permian Verrucano sand stones in parts of the East-
ern Pre-Alps and Alps.

For the whole country, about 126 t ha−1 are stored in the mineral soil down to 100 cm. The
block kriging standard error was equal to 2.4, yielding a 95 %-prediction interval of [121.1,
130.5] t ha−1. Thus, about 45 t ha−1 SOC are stored in the subsoils of Swiss forests. The
largest stocks were predicted for the Southern Alps (196–210 t ha−1), irrespective of altitude. The
smallest stocks (80–90 t ha−1) were predicted for the two lower elevation strata of the Central
Plateau and the lowest elevation stratum of the Pre-Alps. Except for the Southern Alps, the
stocks at higher elevation were on average again larger, in particular, when one compares the
strata < 600 m and 600–1200 m.

3.4 Model validation with data from soil monitoring networks

The predictive power of the models was evaluated in sections 3.2.2 and 3.3.2 with the WSL data.
Here we present an additional validation of the fitted models with data of the national and two
cantonal soil monitoring networks. For the top 30 cm of the mineral soil, SOC stock data of 75
soil profiles were available, and for the mineral soil down to 100 cm depth we had complete SOC
stock measurements of 51 soil profiles. Other cantonal monitoring networks did not measure
SOC stocks of forest soil profiles, especially bulk density measurements were missing, and no
further validation data was available for the forest floor. To assess the quality of the predictions,
we used the same plots and criteria as before (cf. section 2.3.5).

As can be seen from Figure 12, except for two sites, the measurements of the national soil
monitoring network (NABO) were predicted well. The NABO sites were distributed evenly over
the whole study area (cf. Figure 1), representing thereby a large part of the relevant covariate
space. The predictions for the sites of the soil monitoring networks of St. Gallen and Zurich
(KABO) spanned a narrower range than the respective measurements and the predictions for the
NABO sites. The sites of the two networks mostly lie in Northeastern Switzerland in an area
with similar pedogenetic conditions.

The validation statistics were calculated for the merged set of national and cantonal monitor-
ing data (cf. Table 4). According to the BIAS statistics the systematic error was small. However,
R2 with values 0.22 and 0.17 was smaller than in the other validations, where a range between
0.3 to 0.4 had been found. This reflects probably the fact that soil sampling and analysis likely
differed from the methods employed at WSL.
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 SOC stock 0 - 100 cm   [t ha-1] Data Source: 
  Prediction of soil organic carbon in forests: own data 
  Lakes: Vector 200 © 2007 swisstopo (DV033492.2)) 
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Figure 11: Robust lognormal kriging prediction of the SOC stock in 0–100 cm of the mineral soil of
Swiss forests (computed with best-fit model with covariates according to section 3.3.1 and tuning constant
c = 2, smoothed as Figure 7)
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Figure 12: Measured SOC stocks in 0–30 cm and 0–100 cm depth at sites of three soil monitoring
networks plotted against the kriging predictions computed from the models of the respective soil compart-
ments (cf. sections 3.2.1 and 3.3.1, green lines: loess scatterplot smoothers).
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Figure 13: Comparison of Yasso07 estimates of OC stock (sum of OC in deadwood, litter and mineral
soil 0–100 cm) with measured stocks (left panels) or kriging predictions (right panels), based on model
described in section 3.3.1. Yasso07 estimates were computed either with the 2009 parameter set (top row,
Tuomi et al., 2009) or the 2011 set (bottom row, Tuomi et al., 2011), cf. Weggler et al. (2012, secs 2.3.1 and
4.6) for details (green lines: loess scatterplot smoothers; grey solid lines: 1:1-lines adjusted for average
forest floor OC stock in Switzerland [16.7 t ha−1], cf. Table 3; grey dashed lines: unadjusted 1:1-line).

3.5 Comparison of kriging predictions with stock estimates by Yasso07 model

Yasso07 (Tuomi et al., 2009, 2011) and its predecessor Yasso (Liski et al., 2005) model the accu-
mulation and degradation of OC in the soil. The models were developed for general application
and therefore require only little input data and few parameters. Initial OC stocks are estimated by
Yasso07 in a “spin-up” procedure based on long-term mean annual temperature and precipitation
and C input into the soil (woody and non-woody litterfall). This is to ensure that the model is in
equilibrium with climate, prior to simulating scenarios of changes in litterfall inputs and climate.
Yasso07 outputs the combined OC stored in deadwood, litter and soil. Weggler et al. (2012)
validated Yasso07 output of initial stocks and changes for conditions in Switzerland.
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Figure 14: Comparison of initial OC stock estimates (including deadwood, forest floor and mineral soil 0–
100 cm) obtained by the model Yasso07 with block kriging predictions (with standard errors) SOC stocks
in mineral soil 0–30 cm and 0–100 cm. No error estimates were available for the Yasso07 estimates.

Figure 13 contrasts the Yasso07 stock estimates, computed with two different parameter sets,
with the measured SOC stocks in 0–100 cm and our kriging predictions. Evidently, there is hardly
any relation, neither to the measured stocks, nor to our predictions. Stock estimates computed
with the 2009 parameter set strongly underestimated the measured stocks, in particular if one
takes into account that the Yasso07 estimates include OC in the forest floor (and in deadwood),
cf. solid grey lines in Figure 13. Stock estimates computed with the 2011 parameter set were
marginally less biased, but the conditional bias remained severe, confirming findings by Weggler
et al. (2012, sec. 4.6).

Figure 14 compares our block kriging OC stock predictions with the Yasso07 estimates by
NFI production region stratified by altitude classes. The Yasso07 estimates were computed with
the 2009 parameter set (Tuomi et al., 2009). Not surprisingly, the Yasso07 estimates are again
negatively biased, in particular for the Southern Alps. Furthermore, except for the Alps (and the
Southern Alps), Yasso07 estimates did not clearly increase with altitude, unlike our block kriging
predictions.
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4 Discussion

SOC stocks in mineral soil For the SOC stocks in the mineral soil of Swiss forests, the model
building procedure (cf. section 2.3.3) effectively reduced the large number of potential covariates
and their first-order interactions to a small and meaningful set. Precipitation (mean yearly and
mean March, respectively) remained — with positive regression coefficients (cf. Figures 21 and
23 in Appendix G) — in both models. The same result had been obtained before by Perruchoud
et al. (2000). Martin et al. (2011) and Meersmans et al. (2012) similarly found that precipita-
tion was an important covariate for modelling the spatial distribution of topsoil (0–30 cm) OC
stocks across France: Wet and cool climates favours SOC accumulation. But as precipitation
and temperature are quite strongly correlated by their dependence on elevation, one cannot easily
separate the effects of the two covariates. Near infrared reflectance was also chosen for both mod-
els and thus appears to be an important covariate. This variable discriminates between conifers
and deciduous trees, the former having smaller reflectance for wavelengths from 750 to 1300 nm
(Cipar et al., 2004). The negative regression coefficients (Figures 21 and 23) for this covariate
thus imply that SOC stocks are larger under conifers than under deciduous trees, which is in
agreement with common understanding of OC accumulation in forests. Furthermore, merged
(and partly amended) units of the soil map were informative predictors for modelling mineral
SOC stocks. They contain information about the parent material, which is evidently important
for soil formation.

The residual spatial auto-correlation remained rather weak in both models. This suggests
that the regional patterns in SOC stock data could be reasonably well modelled by the fitted
regression models. The short-ranged spatial dependence has consequences for computing the
kriging predictions: Only about 5 % of the nodes of the grid, for which kriging predictions were
computed, lie within a distance of the effective ranges of the two variograms (600 and 660 m,
respectively). The kriging predictions deviate only within these zones from predictions obtained
by the fitted regression models alone6. Hence, for most parts of Switzerland, only the fitted
regression models mattered for kriging, and nearby observations did not directly influence the
predictions.

The evaluation of the predictive performance of the two models by cross-validation and with
independent validation data showed that the predictions were neither conditionally nor margin-
ally biased. This was not a priori clear because the profile locations of the calibration set had not
been selected by a randomized design7. But random dispersion of the prediction errors remained
large as the robustly estimated relative root mean squared errors with values between 39 % and
44 % demonstrate. This was also reflected in the rather small, robustly estimated R2, which
reached only values between 0.3 to 0.4. R2-values of the validations with data of national and
cantonal soil monitoring data were even smaller. This can likely be attributed to differences in
soil sample collection and analytical procedures. Since there were no indications that our models
over-fitted the data — the validation statistics matched the respective cross-validation statistics
well — we can be quite confident that the evaluated statistics provide a fair picture of the pre-
dictive performance of the fitted models when predicting stocks in the mineral soil for the whole
country.

Several causes are likely responsible for the moderate precision of the predictions:

• Bulk density had been merely measured for about 8 % of all mineral soil horizons, and
for the vast majority of horizons only a field estimate of the density was available (cf.

6The elements of the covariance vector γ(s0) in equation 9 (Appendix B) are close to zero for distances between
prediction s0 and data locations si larger than the effective range of the variogram. The second term of the right-hand
side of equation 9 thus vanishes if all si are farther away from s0 than the effective range.

7The WSL validation data provide nevertheless spatially representative information about the predictive perform-
ance of the models because the majority of its profile locations were evenly distributed on a 8 × 8-km-grid across the
whole country (cf. section 2.3.5).
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section 2.2.1). Since measurement errors of SOC concentration hardly matter (Walthert
et al., 2010), the quality of the SOC stock data was mainly controlled by the quality of the
bulk density estimates and the field estimates of volumetric gravel content. We believe that
respective errors were the most important cause of the limited precision of the predictions.

• The soil samples had been collected over a longer period of time (Figure 2). Although we
found no significant linear change of SOC stocks in time, it is nevertheless likely that this
had added some extra-variation to the data.

• The uncertainty in the recorded coordinates of the soil profile locations (±25 m) was larger
than the resolution (2 m) of the spatially best resolved input data. Although the values of
these covariates have been averaged over circular windows with various radii, the errors in
the recorded locations nevertheless weakened the predictive power of the covariates.

• Poor quality of original data from which the input data were derived (e.g. errors in digital
elevation and terrain models, clouds covering forest canopy in the SPOT5 mosaic) resulted
in distorted or missing values for some covariates (see Nussbaum, 2011, for more details).

• Covariates characterizing OC input into the soil (e.g. accurate and highly resolved inform-
ation on tree species composition of forests) and factors relevant for OC turnover in soils
(e.g. pH, soil texture) were largely lacking in the input data, because such information is
currently not available contiguously for whole Switzerland. Similarly, only coarse inform-
ation about parent material was available from the soil and geotechnical maps (both at
scales of 1:200 000). We tried to extrapolate soil information, measured at the 1 033 soil
profile sites, to whole Switzerland by assigning median values of abundance of particle size
classes, pH and soil mass to the units of the soil or geotechnical maps. This had some suc-
cess as both clay content (in an interaction with a topographic position index) and mass of
soil particles < 2 mm were covariates of the best-fit model of topsoil mineral SOC stocks.
However, it is quite clear that availability of covariates with spatially highly resolved, ac-
curate information on parent material, C input into the soil and on factors controlling OC
turnover would have resulted in models with far better predictive power.

Other studies found cross-validation statistics of similar magnitude: Martin et al. (2011) ob-
tained by cross-validation a (non-robust) R2 of 0.36 for predicting topsoil OC stocks of French
forests. Schröder et al. (2009) reported a mean relative error of 35 %. As an aside: Per-
ruchoud et al. (2000) obtained goodness-of-fit R2-values of 0.14 for the top (0–20 cm) mineral
soil stocks and 0.24 for the total stocks down to the bedrock, which puts our apparently small
(cross-)validation R2-values somewhat into perspective.

According to the cross-validation results, moderate robustification of the parameter estima-
tion procedure (with tuning constant c = 2) increased the predictive power of the fitted models
slightly in comparison with customary REML estimation and kriging. The residual diagnostic
plots in Figures 20 and 22 (Appendix G) revealed that there were indeed a few observations in
the dataset that did not follow the patterns of the majority of the data and therefore appeared as
outliers in the residual plots. Using robust procedures then ensures that these observations do not
upset statistical analyses.

OC stock in forest floor We did not trust the results of the geostatistical analysis of the forest
floor OC stock data because the fitted model predicted the WSL validation data poorly (cf. sec-
tions 2.4 and F.2). We estimated the mean stocks for the NFI production regions and for the
whole country therefore by design-based estimates, although the underlying assumption (simple
random sample) was clearly not met. Beside Horvitz-Thompson estimators, calibrated estimat-
ors (with mean annual temperature and merged soil map units as auxilary variables, cf. Deville
and Särndal, 1992) were used to estimate the mean stocks. However, calibrated estimation did
not clearly reduce the standard errors of the estimates, and we reported here therefore only the
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Horvitz-Thompson estimates. Since we had to use all the data for computing design-based estim-
ates and could furthermore not compute point predictions, we could neither validate estimated
stocks in the forest floor nor the quality of the estimated standard errors of the stocks.

Besides the reasons listed above, the following causes were likely decisive for the failure of
our geostatistical analysis of the forest floor data:

• Parts of the forest floor (L horizon) are spatially and seasonally very variable (Moeri,
2007).

• Only the thickness of the L horizons had been measured for all soil profiles, along with OC
concentrations of F and H horizons. OC concentrations of L horizons and bulk densities
of all forest floor horizons were measured only for a small number of sites and respective
medians were assigned to horizons with missing data. Hence, the data on forest floor
stocks were likely subject to (considerable) errors that could however not be quantified.

Comparison with Yasso07 stock estimates We have shown in section 3.5 that the initial stock
estimates obtained by Yasso07 for 149 out of 175 sites of the WSL validation set were, unlike
our kriging predictions, both marginally and conditionally strongly negatively biased (Figure 13).
The aggregated Yasso07 stock estimates differed also for the NFI production regions strongly
from our block kriging predictions (Figure 14). Yasso07 was validated in more depth by Weggler
et al. (2012) for Swiss conditions. While modelled litter decomposition (with the parameter
set 2009) agreed well with measured data, measured SOC stocks were underestimated. Since
Yasso07 models OC stocks solely based on OC inputs and climate without any information on
soils, some deviation from the measured stock for single sites is to be expected. The expectation
is that spatially aggregated stock estimates will be more accurate. However, this is doubtful
because spatial averaging (“bulking”) reduces only the variance (random variation) but not the
bias (systematic error), and it is therefore unlikely that Yasso07’s inital stocks estimates for the
NFI production regions are much better than its predictions for single sites. The particularly large
discrepancy for the Southern Alps (Figure 14) was likely due to two reasons:

• The probable accumulation of pyrogenic C could not be reproduced by Yasso07 without
soil information.

• Yasso07 uses annual time steps and thus likely overestimated decomposition in this re-
gion, which is characterized by large annual precipitation, but considerable inter-annual
variation of precipitation.

The tendency of increasing SOC stocks with increasing altitude (e.g. Hagedorn et al., 2010)
was more apparent in our block kriging predictions than in Yasso07’s initial stock estimates. In
Yasso07 this trend may not be reproduced to the same degree. The mean annual precipitation in
Switzerland is in the upper range of the current Yasso07 model parametrization what probably
reduces the effect of increased precipitation with altitude on the Yasso07 stock estimates. The
“spin-up” procedure that was used to derive initial OC stocks by Yasso07 may be yet another
reason for the discrepancy between its stock estimates and our block kriging predictions: The
assumption that the initial stocks accumulated under current climate (mean of period 1961–1990)
might be too coarse an approximation.

Comparison with previous SOC stock estimates for Switzerland To date, no maps of SOC
stocks have been published for Switzerland that could be used for a comparison with our results.
Nevertheless, several patterns in our mineral soil SOC stock maps (Figures 7 and 11) matched
qualitatively our expectations as soil scientist:

• Small SOC stocks were predicted for lower altitude on the Central Plateau where acid soils
prevail and in the dry inner Alpine valleys (Valais in particular).
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• The large SOC stocks predicted for the Jura region are likely related to OC stabilisation by
calcium (Walthert et al., 2004).

• Very large SOC stocks in the Southern Alps, particularly in the subsoils, are likely caused
by stabilisation through geogenetic elements (Blaser et al., 2005, chap. 3).

• The block kriging predictions of the mean stocks per elevation-stratified NFI production
region nicely reflected the gradient described by Hagedorn et al. (2010) of increasing SOC
stocks with increasing altitude, in particular for the strata of ≤600 m and (600–1200] m asl
(Figure 14).

For the total forest area of Switzerland, our design-based estimate of the mean forest floor
OC stock was equal 16.7 t ha−1 (95 %-confidence interval [15.1, 18.3] t ha−1, Table 3), and
the block kriging predictions of the mean mineral soil SOC stocks amounted to 79.9 t ha−1

(95 %-prediction interval [76.9, 82.9] t ha−1) for the top 30 cm of the solum and to 125.8 t ha−1

(95 %-prediction interval [121.1, 130.5] t ha−1) for 0–100 cm depth (Table 5).
Based on Perruchoud et al. (2000) and Moeri (2007), the Swiss GGI used so far SOC stock

estimates of 17.5 t ha−1 for the forest floor, 75.9 t ha−1 for the the top 30 cm of the mineral soil
and 98.2 t ha−1 for the mineral soil down to 100 cm depth. Unlike the previous stock estimate
for the forest floor, which falls into our confidence interval, the previous estimates for mineral
soil stocks are significantly smaller than the values predicted in this study (p-values of one-sided
z-tests: 0.004 and < 10−12, respectively). According to Perruchoud et al. (2000), about 77 % of
the SOC stock is found in the mineral topsoil (0–30 cm), whereas we predicted here a proportion
of only 64 %, which matches the 64.3 % computed directly from the SOC data (n = 1 030) very
well. We have currently no explanation for these discrepancies, except that our analysis relies on
a substantially larger database than was available to Perruchoud et al.. As we have good reasons
to trust our stock estimates for the mineral soil, we conclude that SOC stocks in the topsoil had
been sligtly and those in the subsoil strongly underestimated in the past.

Comparison with SOC stock estimates for other European countries Several studies estim-
ated SOC stocks in forest soils of other European countries for the same depth compartments as
used in our study: For the forest floor, estimates are available for Austria 15 t ha−1 (Weiss et al.,
2000), Lower Saxony 25 t ha−1 (Wördehoff et al., 2011), Schleswig-Holstein 35 t ha−1 (Wörde-
hoff et al., 2012), 19 t ha−1 (Schröder et al., 2009) and Germany as a whole 19.8 ± 0.6 t ha−1

(Oehmichen et al., 2011). Meersmans et al. (2012) estimated for the mineral topsoil (0–30 cm)
of French forests a SOC stock of 94–95 t ha−1 depending on the used model and Lettens et al.
(2005) estimated a value range of 87–93 t ha−1 (standard errors 4–14 t ha−1) for different forest
types. Much larger stocks of 163 t ha−1 were estimated for the same depth compartments of Irish
forests (Xu et al., 2011), but also much smaller stocks were found for German forests of 59 and
68 t ha−1 for two sampling periods (Oehmichen et al., 2011).

The estimates of SOC stocks in 0–100 cm of the the mineral soil amounted for Danish forests
to 169 t ha−1 (95 %-confidence interval 148–188 t ha−1, Krogh et al., 2003) and for Belgian forest
to 148–155 t ha−1 (standard errors 12–26 t ha−1, Lettens et al., 2005) and for Bavarian forest to
98 t ha−1 (Wiesmeier et al., 2012). For the stocks stored in the entire forest soil profiles, Wörde-
hoff et al. (2011) reported for Lower Saxony estimates of 72 and 102 t ha−1 for deciduous and
coniferous stands, respectively, and Schröder et al. (2009) estimated for North Rhine-Westphalia
total stocks of 91 t ha−1.

Some or these estimates are in good agreement with our predictions, other differ quite
strongly from our figures. It is very difficult to account for the observed discrepancies: The
number of soil profiles, from which data were available, varied strongly between the studies,
along with type of available soil data (SOC content, bulk density, gravel content). Furthermore
diverse estimation procedures were employed, ranging from a simple arithmetic mean to spatial
regression analyses, comparable to the ones used in our study (cf. section 1.3).
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It is rather remarkable that only two studies made efforts to validate their SOC stock estim-
ation procedures, which should be a “must” in the context of greenhouse gas reporting, as it is
very difficult to assess the reliability of reported estimates without such information. Only Mar-
tin et al. (2011) and Schröder et al. (2009) (cross-)validated their stock predictions, but none of
the studies validated predictions with independent validation data. Our study seems to be quite
unique in its attempts to thoroughly validate both the levels of the predicted SOC stocks and the
modelled prediction uncertainty. Our analysis of the forest floor data exemplifies that this is es-
sential for qualifying the results, even if this eventually leads to complete rejection of a modelling
approach.
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Band 2. Regionen Alpen und Alpensüdseite. Eidg. Forschungsanstalt WSL and Hep Verlag,
Birmensdorf and Bern.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal
Statistical Society Series B, 26, 211–243.
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Appendices

A List of covariates (digital)

The digital appendix includes the list of covariates (in German) with data description (resolution,
entity or categories, source) as Excel and PDF file with the following file names:

liste der kovariablen.xlsx

liste der kovariablen.pdf

B Robust kriging predictions

Point kriging We predicted the log-transformed SOC stocks, say Yc(s) = log(Sc(s)), at the
nodes of a grid with spacing equal to 100 m and for the soil profile locations of the validation
sets by robust kriging. Based on the set of covariates (known x(s0)) and the estimated parameters
β̂ and θ̂

T
=

(
σ̂2

0, σ̂
2
1, α̂

)
of the final model, the robust kriging predictions were computed for a

location s0 without measurement by

Ŷc(s0) = x(s0)Tβ̂ + γ(s0)T Γ−1 Ẑ, (9)

where ẐT
is the vector with the robust kriging predictions of ZT =

(
Z(s1),Z(s2), . . . ,Z(sn)

)
ob-

tained by the robust REML algorithm for the n soil profile locations; γ(s0)T =
(
γ(s0−s1; θ̂), γ(s0−

s2; θ̂), . . . , γ(s0 − sn; θ̂)
)

is the vector with the estimated covariances between ZT and Z(s0); and
Γ is the n× n-matrix of the covariances between all pairs Z(si) and Z(s j), i.e. the (i, j)-th element
of Γ is equal to γ(si − s j; θ̂). Since outliers receive small weight when computing Ẑ by the robust
REML algorithm, the prediction at s0 by equation 9 is also insensitive to outlying observations.

The variance of the prediction errors of the log-transformed stocks, i.e. the robust kriging
variances, were computed by

σ2
K(s0) = Var[Yc(s0) − Ŷc(s0)] = σ̂2

0 + σ̂2
1 − γ(s0)T Γ−1 γ(s0) + (10)(

γ(s0)T Γ−1, x(s0)T
)

Cov
[(

Z − Ẑ
−β̂

)
,
((

Z − Ẑ
)T
,−β̂

T
)] (

Γ−1 γ(s0)
x(s0)

)
.

The robust REML algorithm provides an approximation of the joint covariance matrix of Ẑ and
β̂ (cf. Künsch et al., 2011, eq. 19). From this we can compute the joint covariance matrix of the
n prediction errors at the soil profile locations, Z − Ẑ, and of −β̂, required to evaluate the above
expression, by

Cov
[(

Z − Ẑ
−β̂

)
,
((

Z − Ẑ
)T
,−β̂

T
)]

= Cov
[(

Ẑ
β̂

)
,
(
ẐT
, β̂

T
)]

+[
Γ 0n×p

0p×n 0p×p

]
− b M−1

[
Γ 0n×p

XTΓ 0p×p

]
− b

[
Γ ΓX

0p×n 0p×p

]
M−1, (11)

where b, X, M are as in Künsch et al. (2011), p is the number of regression coefficients in β, and
0r×c is a matrix with r rows and c columns and all entries equal to zero.

To transform the predictions of the log-transformed stocks back to the original scale of the
measurements, we used the standard unbiased back-transformation for lognormal kriging (e.g.
Cressie, 2006)

Ŝc(s0) = exp
(
Ŷc(s0) + 1/2 (σ̂2

0 + σ̂2
1 − Var[Ŷc(s0)])

)
. (12)

The variance of Ŷc(s0) was computed by equation 15 given in Appendix C (one has to set si =

s j = s0 for this).
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Block kriging The mean SOC stocks in the NFI production regions (and for whole Switzer-
land), stratified by altitude (cf. section 1), were computed from the lognormally back-transformed
robust point predictions at the nodes of the 1-ha grid by block kriging. In more detail, we ap-
proximated the mean stock, say Sc(Bk), of region Bk by

Ŝc(Bk) = 1/Nk

∑
si ∈ Bk

Ŝc(si), (13)

where the notation
∑

si ∈ Bk means summation over the Nk nodes of the 1-ha grid that fall into
region Bk. The variance of the prediction error, Sc(Bk) − Ŝc(Bk), is then equal to

Var[Sc(Bk) − Ŝc(Bk)] =
1

N2
k

∑
si ∈ Bk

∑
s j ∈ Bk

Cov[Sc(si) − Ŝc(si), Sc(s j) − Ŝc(s j)], (14)

where the covariances of the prediction errors at locations si and s j are given by equation 17 in
Appendix D. However, Nk was too large (order of magnitude 104–105) to evaluate the double sum
in equation 14 in acceptable computing time. We used therefore the Monte-Carlo approximation,
detailed in Appendix E, which approximated Var[Sc(Bk) − Ŝc(Bk)] well.

Due to the central limit theorem, the distribution of the prediction errors of the mean stocks
per NFI production region or for the whole country can be approximated by a normal distribution,
in spite of the fact that the prediction errors for the nodes of the 1-ha grid followed lognormal
laws.

C Covariances of robust kriging predictions and covariances of ro-
bust predictions with observations

The covariance of the robust kriging predictions of the log-transformed SOC stocks at two un-
sampled locations si and s j is given by

Cov[Ŷc(si), Ŷc(s j)] =
(
γ(si)T Γ−1, x(si)T

)
Cov

[(
Ẑ
β̂

)
,
(
ẐT
, β̂

T
)] (

Γ−1 γ(s j)
x(s j)

)
, (15)

and the covariance of Ŷc(si) with the true log-transformed stock Yc(s j) at location s j is equal to

Cov[Ŷc(si),Yc(s j)] =
(
γ(si)T Γ−1, x(si)T

)
Cov

[(
Ẑ
β̂

)
,Yc(s j)

]
= b

(
γ(si)T Γ−1, x(si)T

)
M−1

(
γ(s j)

XTγ(s j)

)
, (16)

where b, X, M are again as in Künsch et al. (2011). The robust REML algorithm approximates
the joint covariance matrix of (ẐT

, β̂
T
) (cf. Künsch et al., 2011, eq. 19) for the evaluation of

equation 15.

D Covariances of lognormal kriging prediction errors

The covariance between the lognormally back-transformed prediction errors at two locations si

and s j is equal to

Cov[Sc(si) − Ŝc(si),Sc(sj) − Ŝc(sj)] = µ(si) µ(s j)
{
exp

(
Cov[Yc(si),Yc(s j)]

)
(17)

− exp
(
Cov[Yc(si), Ŷc(s j)]

)
− exp

(
Cov[Ŷc(si),Yc(s j)]

)
+ exp

(
Cov[Ŷc(si), Ŷc(s j)]

)}
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with µ(si) (and µ(s j) analogously) approximated by

µ(si) ≈ exp
(
x(si)Tβ̂ + 1/2 (σ̂2

0 + σ̂2
1)

)
.

Cov[Yc(si),Yc(s j)] can be computed from the estimated variogram, exploiting the well-known
relation between a weakly stationary variogram and an auto-covariance function, and the other
covariance terms are given by equations 15 and 16 in Appendix C.

E Approximation of the prediction errors of the mean stocks per
NFI production region and for whole Switzerland

To approximate Var[Sc(Bk) − Ŝc(Bk)] (equation 14), we selected nk of

(a) the Nk nodes of the 1-ha grid falling into region Bk, or
(b) all Nk grid nodes discretizing the forest area of Switzerland

randomly without replacement and computed for each such sample the approximation

Var[Sc(Bk) − Ŝc(Bk)] ≈
1

N2
k

∑
si ∈ Bk

Var[Sc(si) − Ŝc(si)] (18)

+
Nk − 1

Nk nk (nk − 1)

∑
si ∈ sample

∑
s j ∈ sample, s j,si

Cov[Sc(si) − Ŝc(si), Sc(s j) − Ŝc(s j)].

For the NFI production regions, we evaluated the above expression for 1 000 independently
chosen samples, each sample consisting of max(0.01 Nk, 500) nodes in Bk, and approximated
Var[Sc(Bk) − Ŝc(Bk)] by their mean. To predict the mean stocks for whole Switzerland, we av-
eraged the approximations for 2 000 samples, each sample consisting of about 5 500 randomly
chosen grid nodes.

F Geostatistical analysis of OC stock in forest floor

F.1 Model

Since we used a robust estimation procedure, we did not exclude the three soil profiles with peat
topsoil (cf. section 2.4), but used all 858 observations of the calibration set for estimating the
model parameters. The multi-step model building procedure (cf. section 2.3.3) selected for the
final model of the log-transformed OC stock in the forest floor the following set of covariates:

• spatial minimum of potential direct solar radiation in March in a local neighbourhood with
radius 75 m,

• potential direct solar radiation in July,
• ratio of actual to potential evapotranspiration, the latter according to Penman (Penman,

1948),
• square root of combination of planar and profile curvature,
• square root of planar curvature,
• pH assigned to soil map units,
• categorical covariate distinguishing three aggregated soil map units,
• indicator variable discriminating coniferous and deciduous forest,
• single flow topographic wetness index based on 25 m elevation model (DHM25), with a

separate regression coefficient for coniferous and deciduous forest.
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Figure 15: Fitted exponential variogram of the log-transformed OC stock in forest floor (line: robust
REML estimate computed with covariates listed in section F.1 and tuning constant c = 2, dots: method-
of-moments estimate of sample variogram of robust regression residuals).

The residuals of the linear regression with above covariates were only weakly auto-correlated
(Figure 15), but with a very wide range of 30 km. Although the nugget/sill-ratio of the fitted
exponential variogram was large (0.87), this model nevertheless outperformed a model with a
pure-nugget variogram in the cross-validation. The optimal value of the robust tuning constant
was c = 2. This indicates that the robustly estimated model fitted the data better than a customary
REML estimate.

F.2 Model validation

Figure 16 shows the measurements plotted against the respective predictions for the calibration
set (cross-validation results, prediction of log-transformed stock) and for the WSL validation set
(independent validation data, back-transformed predictions and measurements plotted on log-
scale). The predictions of the validation data were quite scattered, and the loess smoother line in-
dicated a substantial positive conditional bias. This was confirmed by the large positive marginal
bias: for nearly 50 % of the data the predictions were at least twice as large as the measurements
(Table 4). In the cross-validation of the calibration data, both the marginal and conditional biases
were smaller and did not differ much from the results obtained for the mineral soil.

The root mean squared relative errors were very large (robRMSE: 135 % [cross-validation]
147 % [validation]; RMSE: 2 290 % [cross-validation] 839 % [validation]). The large difference
between the non-robust and robust measures of overall precision indicates that some data were
very poorly predicted by the model. Furthermore, the large CRPS statistic and a larger variation
of the prediction errors (mean absolute error: 16.4 for validation set) than the stock measurements
(mean absolute difference to median: 12.4, again validation set), which would result in a negative
coefficient of determination according to equation 8, confirmed that the predictive power of the
geostatistical model was poor for the forest floor stocks.

According to Figure 17 of 175 validation sites 8 lay outside the 95 %-prediction intervals (ex-
pected: 9 observations), which means that the magnitude of the prediction errors was modelled
well.
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Figure 16: Scatterplots of measured against predicted OC stocks in the forest floor. Cross-validation
predictions of log-transformed stocks for calibration set (left panel) and lognormally back-transformed
predictions computed with the calibration data for the sites of the WSL validation set (right panel, green
lines: loess scatterplot smoothers).
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Figure 17: Ranked predictions of the OC stock in the forest floor for the WSL validation set (black) with
95 %-prediction intervals (vertical grey lines). Measurements inside the intervals are shown in blue, those
outside in red.

F.3 Prediction

For computing the predictions of the stock, the parameters of the final model were estimated
with the data of all 1 033 sites, based on the set of covariates listed in section F.1. The robust
lognormal kriging predictions are mapped in Figure 18 for the nodes of the 1-ha grid. Large
stocks (> 40 t ha−1) were mainly predicted for higher altitudes in the Alps and Southern Alps
where on igneous and metamorphic parent material podzolic soils prevail and for parts of the
Pre-Alps. Small stocks (< 15 t ha−1) were predicted for the Central Plateau, the alpine valley
grounds and a large part of the Jura region, intermediate stocks for the foothills of the Pre-Alps
and the highest part of the Jura mountains. The block-kriging predictions of the mean stocks for
the NFI production regions and for whole Switzerland were listed in Table 3.
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0 5025 km
Data Source: 

  Prediction of soil organic carbon in forests: own data 
  Lakes: Vector 200 © 2007 swisstopo (DV033492.2)) 

  Relief 1:1'000'000: K606-01 © 2004 swisstopo
  Swiss Boundary: BFS GEOSTAT, swisstopo

 SOC stock forest floor  [t ha-1]
0 5 10 15 20 25 30 35 40 400

Figure 18: Robust lognormal kriging predictions of the OC stock in the forest floor of Swiss forests (com-
puted with best-fit model with covariates according to section F.1 and tuning constant c = 2, smoothed as
Figure 7).
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G Additional plots

G.1 Correlation-biplots (example)
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Figure 19: Correlation-biplots (Gabriel, 1981) of the first and second principal component showing for
mean monthly and yearly precipitation (left panel) and planform, profile and total curvature of two terrain
models (right panel) groups of strongly correlated covariates. For an explanation of the acronyms, see list
of covariates in Appendix A.

G.2 Residual plots from model of SOC stock in 0–30 cm
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Figure 20: Tukey-Anscombe plot (left panel) and normal quantile-quantile plot (right panel) of the stand-
ardized residuals of the model for prediction of the SOC stock in the mineral soil 0–30 cm (cf. sec-
tion 3.2.1). For information on the plots, see e.g. Faraway (2005, pp. 53).
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Figure 21: Partial residual plots for each covariate used in the model for prediction of the SOC stock in
the mineral soil 0–30 cm (cf. section 3.2.1). For information on the plot, see e.g. (Faraway, 2005, pp. 72).
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G.3 Residual plots from model of SOC stock in 0–100 cm
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Figure 22: Tukey-Anscombe plot (left panel) and normal quantile-quantile plot (right panel) of the stand-
ardized residuals of the model for prediction of the SOC stock in the mineral soil 0–100 cm (cf. sec-
tion 3.3.1).

500 1000 1500 2000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

square root of mean March precipitation

pa
rt

ia
l r

es
id

ua
ls

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●●

●

●

●●
●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●● ●

●

●

●

●
●●●

●

10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0
1.

5

near−infrared reflectance

pa
rt

ia
l r

es
id

ua
ls

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

● ●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●● ●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●
●

●

●

●

● ●

●

●●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●●

● ●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

0 10 20 30 40 50

−
0.

5
0.

0
0.

5
1.

0
1.

5

slope angle

pa
rt

ia
l r

es
id

ua
ls

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●
●●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●● ●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●
●

●

●

●● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

soil map units

pa
rt

ia
l r

es
id

ua
ls ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●
● ●

●

●●

●●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●●

●
●●

●

●
●

●

●●

●
●

●

●

●●●

●

●

●

●

● ●
● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●
●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●● ●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●●

●

●

●

●
●●

●
● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●

A
C,D,G,F,
H,L,V,Y

E,FLY,
Vsa,Ws

J,Q,
O,P K M,N

R,S,T,
U,W Uv Vst

Figure 23: Partial residual plots for each covariate used in the model for prediction of the SOC stock in
the mineral soil 0–100 cm (cf. section 3.3.1).
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H Result tables and maps (digital)

The following files contain the main results of the project and are included in the digital appendix:

Description Name of file
table (Excel file) containing the predictions of the
OC stocks in the forest floor and in the mineral
soil 0–30 cm and 0–100 cm for NFI production re-
gions stratified by three altitude classes (Tables 3
and 5)

SOC stocks nfi region alti.xlsx

shapefile of the NFI production regions, stratified
by three altitude classes, with attribute table con-
taining the prediction results of Tables 3 and 5

shape/SOC stocks nfi region alti.shp

meta information on the shapefile shape/readme.txt
ESRI grid (resolution: 100 m) containing the
robust lognormal kriging prediction of the SOC
stock in 0–30 cm of the mineral soil of Swiss
forests (Figure 7)

raster/SOC 0 30cm/ha0 30n

ESRI grid (resolution: 100 m) containing the
robust lognormal kriging prediction of the SOC
stock in 0–100 cm of the mineral soil of Swiss
forests (Figure 11)

raster/SOC 0 100cm/ha0 100n

meta information on the ESRI Grid files raster/readme.txt
map (as PDF and JPG files) of the robust lognor-
mal kriging prediction of the SOC stock in 0–30
cm of the mineral soil of Swiss forests (Figure 7)

figure 7 map prediction SOC 0 30cm.pdf/.jpg

map (as PDF and JPG files) of the robust lognor-
mal kriging prediction of the SOC stock in 0–100
cm of the mineral soil of Swiss forests (Figure 11)

figure 11 map prediction SOC 0 100cm.pdf/.jpg
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I R scripts (digital)

The R scripts used for the preparation of the data and their analysis are included in the digital
appendix. All R code is distributed under the GNU General Public License, Version 2, June
1991. The following files are found in the respective folder:

Topic Name of file
GNU General Public License Version 2 copying.txt
georob functions (package) georob/georob.R

georob/georob.auxiliary.funcs.R
georob/georob.lgnpp.R
georob/georob.methods.R
georob/georob.predict.R
georob/georob.xvalid.R
georob/validate.predictions.R
georob/variogram.R
georob/georob example.txt

preparation of data for analysis and 1 daten aufbereiten.R
exploratory analysis of data 2 datenfile fuer regression.R

3 explorative analyse erklaerende variablen.R
4 corg explor variablen.R
5 fire ph xeromoder analyse.R
6 regression am profil version1.R
7 regression am profil version2.R

design-based estimation of OC 8 design basierte schaetzung vorrat version2.R
stock in the forest floor
geostatistical analysis of OC 9 corg vorrat auflage lasso.R
stock in the forest floor 10 corg vorrat auflage georob.R

11 corg vorrat auflage validate predict.R
geostatistical analysis of SOC 12 corg vorrat minerde0 30 lasso.R
stock in the mineral soil 0–30 cm 13 corg vorrat minerde0 30 georob.R

14 corg vorrat minerde0 30 validate predict.R
geostatistical analysis of SOC 15 corg vorrat minerde0 100 lasso.R
stock in the mineral soil 0–100 cm 16 corg vorrat minerde0 100 georob.R

17 corg vorrat minerde0 100 validate predict.R
validation with monitoring data 18 validate kabo nabo.R
graphics for final report 19 abbildungen reporting bafu.R


