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Abstract

In this thesis, we present transport experiments on both single and bilayer graphene
devices at cryogenic temperatures. Charge transport is strongly influenced by the
system dimensions and we present different methods to confine carriers laterally.

Single and bilayer graphene exhibit a gapless energy spectrum, meaning that the
transition from hole-like to electron-like transport is continuous and a finite conduc-
tivity is maintained at all energies. In bilayer graphene, however, the degeneracy
of the valence band and the conduction band can be lifted by a potential differ-
ence between the two layers. We demonstrate, that a band gap is induced in an
unpatterned double gated bilayer graphene flake, if a perpendicular electric field is
applied. Thermal activation measurements yield an upper boundary of Egap ≈ 4
meV for the size of the opened energy gap.

A deeper understanding of the single layer transport characteristics is gained by
measurements of the quantum capacitance. This quantity is directly related to the
density of states, which determines the electronic properties of a system. In contrast
to theoretical predictions, we find that the density of states remains finite even at
zero Fermi energy.

Quasi one-dimensional channels of single and bilayer graphene are investigated
in a next step. Transport is dominated by a chain of quantum dots forming spon-
taneously due to disorder. Consequently the conductance is suppressed in a regime
governed by Coulomb blockade. For single layer devices we show that between
conductance resonances in this transport gap, cotunneling transport at the lowest
temperatures turns into activated transport at higher temperatures.

As a further confined system, an etched bilayer grahene quantum dot is studied.
With an additional top gate finger the island can be tuned independently from
the reservoirs. Coulomb blockade resonances are observed in this system and their
evolution is studied in an electric field as well as in a magnetic field. Moreover, we
demonstrate first experiments with a pulsed gate, evidencing the feasibility of high
frequency experiments on graphene devices.

Finally, an alternative approach for charge carrier confinement in bilayer gra-
phene is presented. Since a band gap can be opened in this material, insulating
regions can be defined below top gates. We show, that carriers are indeed directed
through a narrow opening between gates and discuss possible transport mechanisms.

i



Zusammenfassung

In der vorliegenden Arbeit präsentieren wir Tieftemperaturexperimente, die den
Ladungstransport in ein- und zweilagigem Graphen untersuchen. Allgemein wer-
den die Transporteigenschaften eines Systems stark von dessen Dimensionen bee-
influsst und wir zeigen verschiedene Möglichkeiten auf, diese für Ladungsträger zu
reduzieren.

Sowohl einlagiges als auch zweilagiges Graphen besitzt keine Bandlücke und
somit ist der Übergang von Löcher- zu Elektronentransport kontinuierlich. Ausser-
dem verbleibt die Leitfähigkeit für jede beliebige Energie bei endlichen Werten. In
zweilagigem Graphen kann die Entartung des Valenz- und des Leitungsbandes je-
doch durch eine Potentialdifferenz zwischen den beiden Lagen aufgehoben werden.
Wir zeigen anhand eines unstrukturierten, zweilagigen Graphenflakes, das mit einem
Top- und einem Bottomgate abgestimmt werden kann, dass ein senkrechtes elek-
trisches Feld eine Bandlücke erzeugt. Als Obergrenze für die Grösse dieser Bandlücke
finden wir mittels Messungen der thermischen Aktivierung den Wert Egap ≈ 4 meV.

Durch Messungen der Quantenkapazität gewinnen wir ein besseres Verständnis
der Transporteigenschaften von einlagigem Graphen. Diese Grösse hängt direkt mit
der Zustandsdichte zusammen, welche wiederum die elektrischen Eigenschaften eines
Systems bestimmt. Im Gegensatz zu theoretischen Vorhersagen finden wir, dass die
Zustandsdichten selbst bei Fermienergie gleich null, endliche Werte einnimmt.

Im nächsten Schritt untersuchen wir quasi-eindimensionale Kanäle in ein- und
zweilagigem Graphen. In diesen wird der Transport wird durch eine Kette von
Quantenpunkten dominiert, die sich aufgrund von Unordnung formen. Infolgedessen
wird der Leitwert in diesem Regime, das sich durch Coulombblockade auszeichnet,
unterdrückt. Für den Leitwert zwischen Coulombresonanzen zeigen wir anhand
von einlagigem Graphen, dass Cotunnelprozesse bei tiefen Temperaturen von ak-
tiviertem Transport bei höheren Temperaturen abgelöst werden.

In einem geätzten Quantenpunkt aus zweilagigem Graphen werden die Dimen-
sionen weiter reduziert. Dank eines zusätzlichen Topgatefingers kann die Insel un-
abhängig von den Reservoiren abgestimmt werden. In diesem System sehen wir
Coulombresonanzen und untersuchen deren Verhalten sowohl im elektrischen Feld
als auch im Magnetfeld. Zudem zeigen wir erste Experimente mit gepulsten Gates,
mit denen wir die Möglichkeit von Hochfrequenzexperimenten an Graphenproben
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belegen.

Schliesslich präsentieren wir eine Alternative zu geätzten Strukturen, um La-
dungsträger in zweilagigem Graphen lateral einzuschränken. Da in diesem Material
eine Bandlücke geöffnet werden kann, können isolierende Flächen mittels Topgates
definiert werden. Wir demonstrieren, dass Ladungsträger tatsächlich durch eine
schmale Öffnung zwischen zwei Gates geleitet werden.
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Chapter 1

Introduction

1.1 Graphene

A precise definition of the term graphene was first introduced by H. P. Boehm in
1986 [1, 2]. He had observed very thin graphitic films already 30 years earlier [3],
obtained by the reduction of a graphite-oxide suspension in adsorption measure-
ments. Theoretically, graphene had been studied even before these experiments by
P. Wallace [4], when he was exploring the band theory of graphite and started his
considerations with a single sheet of graphite. Only in 2004, individual graphene
layers could first be deposited onto a substrate by K. Novoselov and A. Geim [5],
who received the Nobel prize in 2010 for their achievements regarding graphene.

In such a layer, carbon atoms are arranged in a two-dimensional hexagonal pat-
tern connected to each other by covalent bonds within the plane. These strong
interconnections make graphene one of the strongest materials available [6] that at
the same time is highly flexible since the monoatomic layer can withstand very high
strain. Its outstanding mechanical properties lead to large interest in the field of
mechanical engineering.

Additional characteristics are the large surface to bulk ratio and the low optical
absorption of graphene. Due to its versatile properties, a large number of applica-
tions is suggested ranging from reinforcement over DNA sensing to hydrogen storage.

1.2 Graphene electronics

Novoselov et al. were the first to electrically contact an isolated single graphene
sheet. In measurements of the quantum Hall effect they could verify that indeed a
single layer of graphene had been isolated [5]. Since then, graphene has been ac-
claimed for being a revolutionary material for electronic devices. Among the special
properties, several meet the requirements of the present semiconductor technology.
Monolayer graphene provides good accessibility for patterning and contacting, since
all atoms are exposed at the surface. Lying only loosely on a substrate it has a
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Chapter 1. Introduction

remarkable stability even when shaped into nanoscale structures [7, 8]. Addition-
ally, the semiconductor industry is thrilled by the sub-nanometer thickness of this
mono-atomic layer. The channels of current silicon field effect transistors could be
thinned by a factor of one hundred if being replaced by graphene [9]. Moreover, due
to its unique band structure, charge carriers do not suffer from backscattering and
exhibit room temperature mobilities ten times higher than in silicon.

Besides complementing standard technologies, graphene is of substantial interest
for fundamental research. With its carriers being described by the Dirac equation,
it differs from standard semiconductors. Hence, physical phenomena so far only
predicted theoretically may be probed in this material system. The observed un-
conventional quantum Hall effect [10] is one example for the finger print of the
relativistic character of charge carriers in graphene.

Additionally, graphene offers the possibility to examine properties of quasi-
relativistic particles in reduced dimensions. This is an appealing new field of studies
within solid state physics and triggered various research projects concerned with
nanoscale structures.

200 nm300 nm 500 nm(a) (c)(b)

SET

CD

S

S D

D

QD1 QD2

Figure 1.1: Atomic force micrographs of different graphene nanostructures: (a)
Single electron transistor (SET) with a nearby charge detector (CD) [11]. Source
(S) and drain (D) are connected via narrow constrictions to the SET. Several in-
plane side-gates are used to tune the states on the island and inside the constrictions.
(b) Double quantum dot with in-plane gates [12]. The series connection of source,
left (QD1) and right quantum dot (QD2) and drain is implemented using narrow
constrictions. (c) Aharonov-Bohm ring for quantum interference measurements [13].

1.3 Graphene nanostructures

Like in semiconductor devices, the charge carrier density in a graphene sheet can be
tuned by gate electrodes utilizing the field effect. However, the absence of a band
gap does not allow for a complete depletion of charge carriers inside the system and
hence precludes electrostatic confinement. Instead, a continuous transition between
hole- and electron-like transport takes place close to the charge neutrality point.
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1.4. About this work

Experiments have shown however, that cutting graphene into narrow ribbons induces
a suppression of electronic transport. This so-called transport gap was adopted as
tunneling barriers in numerous different nano structures, where narrow constrictions
are used to define the structures. Three exemplary devices are depicted in Fig. 1.1
including a single and a double quantum dot (Fig. 1.1 (a) and (b)) and a quantum
interference device (Fig. 1.1 (c)). Resonances in the transport gap, which originate
from disorder fluctuations in the device, prevent a monotonous tuning of the barrier
thickness, however.

On the other hand, double gated bilayer graphene with low disorder may en-
able charge carrier confinement by electrostatics, since a band gap can be induced
in this material [14]. Nanostructures may then exhibit tunability comparable to
conventional semiconductor devices.

1.4 About this work

In the course of this work graphene devices exerting charge carrier confinement
in one, two or three spacial dimensions will be introduced. Whereas several ex-
periments were performed to gain understanding about the electronic transport
properties of single layer graphene, the main focus lies on the investigation of the
characteristics exhibited by bilayer graphene devices.

After the introduction in the present chapter, chapter 2 recapitulates the band
structure and its implications on the electronic properties of both a single layer
and two coupled graphene layers. In chapter 3 transport studies on bulk single
and bilayer graphene devices are presented. Besides discussing the influence of an
external magnetic field the opening of a band gap in bilayer graphene in the presence
of an electric field is demonstrated.

The density of states in a material is a determining factor for its transport
properties. A method to directly measure this parameter is introduced in chapter
4, where quantum capacitance data for a single layer graphene device is shown.

As graphene nanoribbons constitute basic building blocks for more sophisticated
nanostructures, their main characteristics will be presented thereafter. Whereas
chapter 5 reviews a number of experiments that are commonly carried out to char-
acterize these narrow ribbons, further experiments are presented in chapter 6 that
provide a more detailed understanding of the transport mechanisms involved.

Chapter 7 is concerned with data recorded on a double-gated bilayer quantum
dot. The energy spectrum of this system was studied both in an external B-field
and E-field and first experiments with a pulsed gate were perfomed.

Conventionally, charge carriers in graphene are confined by etching. Since bilayer
graphene can exhibit a band gap, electrostatic confinement might offer an alternative
to etching. The possibility of employing split gates is investigated in chapter 8.

Finally, chapter 9 concludes the work and provides an outlook for further exper-
iments.
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Chapter 2

Single and bilayer graphene -
theoretical aspects

In order to understand the electronic properties of a material, its band structure
has to be considered. With the knowledge of the energy dispersion, predictions of
the quasiparticle properties can be made. Commonly, tight-binding calculations are
employed to determine the band structure and we will discuss the results obtained
for graphene in the following. Further, the implications for magnetotransport are
presented.

2.1 Band structure of single layer graphene

Monolayer graphene is described by a honeycomb arrangement of carbon atoms. A
sketch of a lattice section is shown in Fig. 2.1 (a), where the circles indicate the
position of the carbon nuclei. The primitive cell of this system is identified to be
a rhombus containing the basis of two carbon atoms (here denoted by A1 and B1)
and it is spanned by the vectors a1 and a2. Hence, the hexagonal lattice can be seen
as the result of the interpenetration of two sublattices A1 and B1.

Each one of the C atoms is sp2 hybridized with its three neighbors via strong
covalent bonds. The corresponding σ-bands (bonding and anti-bonding) are split to
high absolute energy values and can therefore be neglected, when investigating the
low energy band structure. The remaining valence electron in the pz orbital leads
to the formation of another pair of bands, the so-called π-bands. Carrying out a
tight-binding calculation to obtain the dispersion relation of the graphene lattice as
a function of the wave vector q, yields [4]

ε±(q) = ±γ0

√
1 + 4 cos2(qxa/2) + 4 cos(qxa/2) cos(

√
3qya/2). (2.1)

Here, only the nearest neighbor was included, assuming the hopping parameter
γ0 between adjacent sites (see Fig. 2.1 (a)). Further, the lattice constant a = 2.46 Å
enters this equation. The plus and minus sign describe the π∗-band and the π-band,
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2.1. Band structure of single layer graphene

respectively. In Fig. 2.1 (b), the resulting band structure is plotted for the first
Brillouin zone (BZ). Whereas the bands exhibit a large energy separation of ≈ 20
eV in the center of the BZ, points of intersection at ε = 0 are obtained at the six
corners of the hexagonal reciprocal unit cell. For the Fermi surface to be located
at these special points, two valence electrons per primitive cell are necessary to fill
the valence band completely. The points denoted by K and K’ are the basis of the
reciprocal primitive cell and constitute the two inequivalent valleys, reflecting the
presence of two sublattices Q and B.

−0.1 0 0.1
k (π/a)

(c)

−1

0

1

ε/
γ 1

(a)

A1

B1A1 B1
γ0

a1

a2 K’
K

(b) ε

q

qy

x

x

Figure 2.1: (a) Sketch of single layer lattice with sublattice atoms for A1 and B1.
The unit cell with the corresponding vectors is indicated in red. Hopping between
sites requires the hopping energy γ0. (Adapted from Ref. 15) (b) Band structure
according to Eq. (2.1) for the first Brillouin zone. (c) Zoom into (b) at the K point
where the linear dispersion occurs. Blue and red arrows indicate the direction of
motion for electrons and holes, respectively. Grey and black double arrows show the
direction of the pseudo spin for the two parts of the spectrum. The energy axis is
normalized to the interlayer hopping energy γ1 to enable a direct comparison with
Fig. 2.2 (b) and (c).

The experimentally reachable range is restricted to low energies and therefore,
we focus on the dispersion around the K-points in the following. We replace the
wave vector q by k = K− q, describing the wave vector k with respect to the next
K point. Expanding Eq. (2.1) around the corners of the Brillouin zone results in
the linear dispersion relation for small k

ε±(k) = ±~
√

3γ0a

2~
|k| = ±~vF|k|, (2.2)

with the Fermi velocity vF in graphene being determined by the intralayer hop-
ping energy γ0. The corresponding energy eigenvalues are plotted Fig. 2.1 (c) and
reveal the gapless dispersion of graphene as well as the electron-hole symmetry. One
implication of the linear dispersion relation is the fact that the density of states in-
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Chapter 2. Single and bilayer graphene - theoretical aspects

creases linearly with increasing |ε|, namely D(ε) = 2|ε|/(π~2v2
F) and has zero states

at ε = 0.
Besides the linear dispersion, another peculiarity of graphene is comprised in the

description of its quasiparticles. Equation (2.1) gives the energy eigenvalues of the
Dirac equation for massless fermions in two dimensions, which reads

~vFkσ ψ = ε ψ, (2.3)

with the Pauli matrices σ = (σx, σy) around K and σ∗ = (σx,−σy) around K′

and the speed of light c replaced by the Fermi velocity vF. The two component state
vector ψ takes the role of the spin in neutrino physics and is therefore called pseudo
spin. The eigenvector is given by [16]

ψ±,K(k) =
1√
2

(
e−iθ/2

±eiθ/2
)
. (2.4)

It denotes the relative wave function amplitude on the two sublattices and in-
cludes the angle in momentum space, θ = arctan(kx/ky). Therefore, the direction
of the pseudo spin is coupled to the direction of k and a chirality can be attributed
to the quasiparticles. As indicated in Fig. 2.1 (c), for electrons, the pseudo spin
points in the same direction as the momentum, whereas for holes they are aligned
anti-parallel. According to the formal definition of the chirality being the projection
of the pseudo spin onto the direction of motion, electron-like states have positive
chirality whereas holes exhibit negative chirality.

This property has an important implication for transport. Since the direction
of the pseudo-spin is maintained in scattering processes in the absence of a short
range scattering potential, the only allowed transitions are from e.g. a right-moving
electron to a right-moving electron or to a left-moving hole (see Fig. 2.1 (c)). The
latter process is known from neutrino physic and is called Klein tunneling and poses
a challenge for the confinement of charge carriers in graphene [17]. Nevertheless,
the suppression of back scattering due to the fact that e.g. a right-moving electron
cannot be scattered into a left-moving electron, is expected to allow for charge carrier
mobilities of up to 200 000 cm2/Vs even at room temperature [18].

2.2 Band structure of bilayer graphene

As for single layer graphene, the band structure of bilayer graphene can be derived
employing the tight-binding model [19–22]. Here, we consider two graphene layers
being Bernal stacked as shown in Fig. 2.2 (a). Both layers consist of two sublattices,
labeled A1, B1, A2 and B2 and the primitive cell consequently contains four atoms.
Whereas each B1 site in the lower layer is located directly below an A2 atom of
the upper layer, the A1 site does not have a direct neighbor in the upper layer and
neither has the B2 atom in the lower layer. Besides the intralayer hopping energy
γ0, the interlayer hopping term γ1 is taken into account, describing the (strong)

6



2.2. Band structure of bilayer graphene

coupling between the B1 and A2 orbital. As a consequence of the pairing of lattice
sites (A2-B1 and A1-B2), the two component spinors contain the wave function of
two sublattices on different layers.

−0.1 0 0.1

−1

0

1

k (π/a)

ε/
γ 1

−0.1 0 0.1
k (π/a)

(a) (b) (c)

−1

0

1

ε/
γ 1

A2
A2 B2

B2

A1

B1A1 B1

γ1 γ1

x x

γ0

Δ

Figure 2.2: (a) Sketch of Bernal stacked bilayer lattice with sublattice atoms for A1,
B1, A2 and B2. Hopping between sites requires the hopping energy γ0 and/or γ1.
(Adapted from Ref. 15) (b) Energy dispersion around K for zero potential difference
between the layers. High energy bands (plus sign in Eq. (2.5)) are plotted in grey
and low energy bands (minus sign in Eq. (2.5)) in black. (c) Same as (b) but with
finite asymmetry. ∆ = 0.1 γ1 (dashed line) and ∆ = γ1 (dotted line).

The resulting energy dispersion near the K point is of the form

ε2±(p) = v2
F p

2 + γ2
1/2 + ∆2/4±

√
γ4

1/4 + (γ2
1 + ∆2) v2

F p
2, (2.5)

where p is the magnitude of the momentum near K, vF is the Fermi velocity as
defined above and ∆ is the difference between the on-site potentials in the two layers.
Due to the strong coupling between B1 and A2, the two corresponding energy bands
are split by γ1 = 0.39 eV [23]. They are given by the plus sign in Eq. (2.5). Lower
lying energy bands are formed, however, by interlinking the A1 and B2 site through
hopping via the A2-B1 dimer. This part of the spectrum is described by Eq. (2.5)
using the minus sign.

Figure 2.2 (b) shows the band energies of bilayer graphene for zero asymmetry
(∆ = 0) as a function of kx = px/~. The linear dispersion of single layer graphene
is replaced by a parabolic spectrum around K, indicating a finite mass of the quasi-
particles. This mass is gained by the energy γ1 needed for the transition from A1
to B2 according to m = γ1/2v

2
F ≈ 0.03 ·me [22]. As a consequence of the parabolic

spectrum, the density of states is independent of energy for bilayer graphene. In the
limit of large momenta, the linear spectrum is recovered. Further, the energy disper-
sion is gapless at the K point. It is important to realize, however, that the electron
and hole band in bilayer graphene effectively just touch each other in this point,
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Chapter 2. Single and bilayer graphene - theoretical aspects

whereas they are the natural prolongation of one another in single layer graphene
[24].

This condition facilitates the opening of a band gap. As a potential difference
is introduced to the system, the bands are shifted to higher |ε|. This is shown in
Fig. 2.2 (c) for ∆ = 0.1 γ1 (dashed line) and ∆ = γ1 (dotted line). At the K point,
the splitting is given by |ε±(p = 0)| =

√
γ2

1 + ∆2/4 for the high energy bands and
by |ε±(p = 0)| = |∆|/2 for the lower ones. For large asymmetries, the spectrum
adopts a ”mexican hat” shape. This implies that the true energy gap of the system
occurs at finite momentum k = 0, where it takes the values Egap = |∆|γ1/

√
γ2

1 + ∆2.
Theoretically, band gap values of up to Egap ≈ 200 meV should be achievable in the
experimentally available range.

2.3 Graphene in a perpendicular magnetic field

The trajectory of a charged particle in a perpendicular magnetic field follows an
orbit due to the Lorentz force acting on it. Since the wave character of electrons
leads to interference effects along such orbits, only discrete energies exist for which
constructive interference occurs. These are referred to as Landau levels and allow
for the observation of the quantum Hall effect [25].

The density of states in conventional semiconductor 2DEG condenses into a
sequence of Landau levels at energies EN

± = ±~ωc(N + 1
2
), where N is an integer

numbering the Landau levels. Each filled Landau level contributes with ge2/h to the
Hall conductivity, resulting in steps at σxy = i ge2/h, where g is the LL-degeneracy
and i an integer. In Fig. 2.3 (a), the position of the LLs as well as the ladder for
the Hall conductivity are shown as a function of charge carrier density. The factor
eB/h describes the Landau level degeneracy nL of the system.
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Figure 2.3: QHE for different materials. The position of the LLs is marked by the
peaks and the dependence of σxy on the charge carrier density is plotted as the red
trace. (a) Conventional 2DEG, (b) single layer graphene and (c) bilayer graphene.
(Figure reprinted from Ref. 10)
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2.3. Graphene in a perpendicular magnetic field

We now compare the spectra of graphene shown in Fig. 2.3 (b) and (c) to
the standard 2DEG displayed in Fig. 2.3 (a). An obvious difference between the
conventional semiconductor and the case of graphene is the position of the plateaus
in σxy. For single layer graphene the plateaus are located at σxy = ±ge2/h (i − 1

2
),

meaning that they are shifted by 1
2
ge2/h. Nevertheless, the step height is given by

ge2/h, with g = 4 accounting for both spin and valley degeneracy. Bilayer graphene
on the other hand follows the conventional quantization of σxy = ±i ge2/h for i ≥ 1
(g = 4). The plateau at zero energy is absent and the conductance increases by of
8e2/h for the step around zero.

A way of understanding the observed shift in the conductivity spectrum is pro-
vided by the pseudo spin of graphene, which leads to the accumulation of a Berry
phase. As a quasiparticle adiabatically rotates its pseudo spin by θ = 2π, meaning it
moves between the two sublattices, it picks up a phase shift of jπ (j = 1 for SL and
j = 2 for BL) and its wave functions change sign (see Eq. (2.4)). This Berry phase
contributes to the total phase, which a particle acquires while encircling a cyclotron
orbit. In single layer graphene it induces a phase shift of π to the Shubnikov- de
Haas oscillations and in turn an offset of 2e2/h to the Hall conductivity. For bilayer
graphene it is not straight forward to see, how the Berry phase of 2π influences
the spectrum [10]. We will therefore use another argument to explain the observed
behavior.

Whereas single layer graphene shows a linear density of states, the number of
states in bilayer is constant with energy. Since the states have to condense into the
discrete Landau levels, the spacing between energy levels is expected to differ for
single and bilayer. Indeed, the sequences are given by [22, 26]

EN
± = ±

√
2e~v2

FBN (SL) and EN
± = ±~ωc

√
N(N − 1) (BL),

where B is the magnetic field and ωc is the cyclotron frequency. The bilayer
spectrum equals the one for conventional semiconductors except for an additional
level at zero energy, which contains both the N = 0 and the N = 1 LL. Instead of
the four-fold degeneracy due to spins and valleys, it is hence eight-fold degenerate
and leads to a doubled step height in σxy. Single layer graphene exhibits an N = 0
Landau level at ε = 0 as well, which is only four-fold degenerate, however. It is
shared by electrons and holes and hence can accommodate only 2nL instead of 4nL

of each carrier type. Since σxy features a plateau if the energy is lying in-between
two LLs, the N = 0 LL induces a shift of the conductivity ladder by 2e2/h.

For biased bilayer graphene, a band gap opens at zero energy and the N = 0
Landau level splits. As a consequence, a conductance plateau evolves at σxy = 0
and the energy spectrum of a conventional gapped semiconductor is recovered [27].
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Chapter 3

Electronic transport properties of
bulk graphene

Studying electronic transport of a material gives insight into the properties of
the particles contributing to transport and the dynamics involved (e.g. scatter-
ing events). Before investigating nanostructured devices, it is therefore instructive
to get a feeling for the characteristic parameters used to describe electronic proper-
ties of bulk samples. These include for instance the doping level, the charge carrier
mobility, the mean free path and, in a double gated bilayer graphene device, the size
of the band gap.

In this chapter, we will introduce the basic measurements commonly carried out
to determine the material quality and analyze them accordingly by means of a single
layer device and two bilayer graphene structures.

3.1 Sample fabrication and measurement setup

Mechanical exfoliation of natural graphite flakes is commonly used to extract thin
graphene flakes and deposit them on Si/SiO2 substrate [5]. The thickness of the SiO2

is chosen in such a way, that the difference between the reflected intensity of light
impinging on the wafer in the presence and absence of graphene is maximized [28].
A 285 nm thick oxide layer indeed allows to identify single and bilayer flakes using an
optical microscope. Subsequent atomic force microscope (AFM) measurements as
well as Raman spectroscopy [29, 30] were performed to verify their single or bilayer
nature.

In order to electrically contact the graphene flakes, electron beam lithography
(EBL) is carried out in a clean room. For this purpose, the chip is covered with a
thin layer of PMMA (poly methyl methacrylate). Since the chains of this polymer
dissociate if high-energy electrons impinge, EBL can be used to modify the resist
in certain areas. After the writing step, the short polymer chains are soluble in a
developer and hence the irradiated areas are no longer covered by resist. Next, a
metal stack of 2 nm Cr and 40 nm Au is deposited by electron beam evaporation

10



3.2. Comparison of single layer and bilayer graphene

followed by a lift-off process.
Subsequently, the chip is glued into a ceramic chip carrier with silver epoxy and

the metal contacts are connected to the chip carrier via Au bond wires.
For the sample presented in Sec. 3.3, additional process steps are necessary to

define the top gate. As a dielectric material, hexagonal boron nitride (BN) was used.
Since this material is mechanically exfoliated as well and extracted in micrometer
size flakes only, a mechanical transfer technique was developed by Dean et al. [31]
to place a BN flake at a desired position on a chip (see more details in Appendix
C). After covering the contacted graphene flake with ≈ 10 nm thick BN, top gate
electrodes are defined by EBL. Finally, metal is evaporated (0.5 nm Cr and 45 nm
Au) and the structure is revealed after the subsequent lift-off.

The measurements presented here were all carried out in variable temperature
inserts with a base temperature of T ≈ 1.7 K. Since bulk structures exhibit low
impedance, a constant AC current bias was applied via a series resistance (typically
10 MΩ or 100 MΩ) connected to the output of a lock-in amplifier. If possible, four-
point measurements were performed to exclude the contact resistance of the voltage
probes from the measured signal.

3.2 Comparison of single layer and bilayer gra-

phene

3.2.1 Electric field effect in graphene

As discussed in the previous section, graphene devices are conventionally fabricated
on a Si substrate which is covered by a SiO2 layer. Utilizing the field effect, the
highly doped silicon serves as a global back gate (BG), meaning that by changing
the applied gate voltage the charge carrier density in the graphene structure is tuned.
According to the plate capacitor model, the density in the graphene sheet is changed
like n = (ε0εSiO2/edSiO2) ·∆VBG, where εSiO2 = 3.9 is the dielectric constant of SiO2,
ε0 is the vacuum permittivity and dSiO2 ≈ 285 nm is the thickness of the SiO2 oxide.
Measuring the resistance R of a graphene flake as a function of applied back gate
voltage gives information about the carrier mobility µ according to Drude’s model of
diffusive transport σ = nµe, which relates the conductivity σ and the charge carrier
density n by the proportionality factor µ.

Two representative graphene flakes are characterized in this section - a single
layer and a bilayer device. As displayed in Fig. 3.1 (a) and (d), the metallic
contacts are arranged in conventional Hall bar configuration. The flakes are however
not etched into Hall bar geometry to avoid disorder, which is possibly induced by
additional processing steps.
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Chapter 3. Electronic transport properties of bulk graphene
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Figure 3.1: Comparison of single layer (panels in upper row) and bilayer character-
istics (panels in lower row). (a) and (d) Atomic force micrograph of unpatterned
flakes used for the Hall measurements. The white regions are the gold electrodes
and the light grey areas are the graphene. Indicated are the dimensions used to
determine the conductivity. For (a) these are Wmin = 1.1 µm, Wmax = 3.45 µm and
L = 3.25 µm and for (d) Wmin = 2.8 µm, Wmax = 4.5 µm and L = 3.5 µm. (b) and
(e) Back gate characteristics measured at T = 1.7 K with constant current bias of
100 nA. Conductivity σ as a function of VBG (upper x-axis) and the charge carrier
density n determined from the plate capacitor model. (c) and (f) Double logarithmic
plot of σ vs n to determine the saturation density (indicated by the vertical line).

Single layer graphene

The back gate characteristics obtained for the single layer device is displayed in
Fig. 3.1 (b). The measured resistance R and the conductivity σ are related via the
device length L and width W by σ = 1/R · L/W . Since the width of the flakes is
not well defined here, we take the largest value (Wmax in Fig. 3.1 (a)) to obtain the
lower bound for the charge carrier mobility µ. Whereas the upper x-axis displays
the measurement parameter VBG, the charge carrier density n is given by the bottom
axis.

12



3.2. Comparison of single layer and bilayer graphene

Clearly, a minimum in the conductivity is visible as the BG is tuned from negative
to positive voltages. This is expected for single layer graphene since the density of
states decreases linearly as the absolute value of the Fermi energy |EF| is reduced.
Ideally, the graphene sheet exhibits no density of states and hence zero conductivity
at the charge neutrality point (CNP). In experimental data, a finite value of the
order of 4e2/h is obtained, however. Whether this value is universal and the origin
of it are still under dispute [16, 32–37]. As an explanation, the formation of electron-
hole puddles due to potential fluctuations is put forward. Within these puddles, a
finite density of states is present and due to Klein tunneling, charge carriers can be
transferred through the graphene sheet, leading to an increased conductance. As
an enhanced disorder amplitude is induced by impurities residing on the graphene
surface, scattering of charge carriers will reduce the conductivity on the other hand.
It is indeed observed that clean samples (e.g. supported by BN or suspended) exhibit
an increased minimum conductivity [31, 38, 39] as compared to devices with a high
charge carrier inhomogeneity.

The shift of the charge neutrality point away from zero gate voltage indicates the
doping asymmetry. In the back gate dependence shown in Fig. 3.1 (b), the minimum
of σ is located at a slightly negative voltage, indicating that an excess of positive
dopants is present. When determining the density n, this shift was compensated
for.

Since the position of the charge neutrality point only provides information about
the relative doping of positive and negative impurities, a closer look at the curvature
of the conductivity trace at its minimum is instructive [39]. In the double logarith-
mic plot of Fig. 3.1 (b) two regimes are observed for the conductivity. Below a
threshold density (indicated by the vertical line), the conductivity is independent of
the number of charge carriers in the system. Here, the transport is dominated by
potential fluctuations and the Drude model is not valid anymore. We can extract
a saturation density of nsat ≈ 9.5·1010 cm−2 for the single layer device. Following
Ref. 39, we can determine the Fermi energy at which the saturation sets in to be
EF,sat = ~vF

√
πnsat ≈ 35 meV. Such a low value is achieved only rarely in graphene

flakes supported by SiO2 [40] and indicates the high quality of the present flake.
By fits to the linear part of the conductivity curve, we can estimate the charge

carrier mobility. The curve is symmetric indicating that electrons and holes exhibit
the same carrier mobility. As a lower limit, assuming the whole width of the flake
contributing to transport, we obtain µmin ≈ 14 400 cm2/Vs. Supposed that only the
inner part, defined by the distance Wmin between the contacts, carries current, the
upper limit for the mobility µmax ≈ 45 200 cm2/Vs is found. In agreement with the
extraordinarily low disorder density nsat, the mobility values are among the highest
reported so far for non-suspended graphene on SiO2. This finding demonstrates,
that the fabrication process does not necessarily affect the transport characteristics.

From these values, the minimum mean free path for n = 2·1012 cm−2 is deter-
mined to be lmfp = (~µmin/e)

√
πn ≈ 238 nm. A comparison to the system size hence

justifies the application of the Drude model for diffusive transport a posteriori.
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Chapter 3. Electronic transport properties of bulk graphene

Bilayer graphene

We now discuss the data recorded for the bilayer device (see Fig. 3.1 (e)). As it
is apparent from the large shift of the charge neutrality point to the negative side
∆VCNP = -15 V, the relative level of positive dopants is comparably high. The
conductivity curve nevertheless exhibits similar slopes for the hole transport regime
on the left hand side of the CNP and for the electron regime on the right hand side.

Comparing the curves in Fig. 3.1 (b) and (e) the region of non-linear σ(n) is
much broader for the bilayer flake. This finding is resembled in Fig. 3.1 (f), where
σ is constant for charge carrier densities up to nsat ≈ 2·1011 cm−2. For bilayer
graphene, the Fermi energy is related to the density as EF,sat = (~2πnsat)/2m

∗ and
hence the saturation energy is EF,sat ≈ 80 meV. Although this value is more than
twice the one for the single layer device above, the obtained disorder amplitude is
comparable to average single layer flakes [41].

For the mobilities, we extract µmin ≈ 5 500 cm2/Vs and µmax ≈ 9 000 cm2/Vs,
which corresponds to a mean free path lmfp ≈ 90 nm at a density of n = 2·1012 cm−2.

Hence, the parameters extracted from the back gate characteristics provide a
consistent picture of the device quality for both devices.

3.2.2 Magnetotransport in graphene

The smoking gun of a single layer of graphene is its quantum Hall effect since
the chirality of the massless fermions present in graphene leads to conductance
quantization at half-integer multiples of 4e2/h in a finite magnetic field. For bilayer
graphene, the coupling between the two graphene sheets imposes a finite mass to the
charge carriers. Nevertheless, they remain chiral particles and accumulate a Berry’s
phase of 2π along cyclotron orbits (instead of π for single layer graphene). The
resulting conductance ladder exhibits plateaus at integer multiples of 4e2/h except
for the one at zero, which is absent due to the presence of a combined Landau level
(LL) consisting of the lowest electron and hole LL.

Magnetotransport was investigated in the devices introduced in the previous sec-
tion. Throughout the measurements the magnetic field was oriented perpendicular
to the graphene plane.

Single layer graphene

Figure 3.2 (a) shows the back gate curve recorded atB = 7 T for the single layer flake.
Both the Hall conductivity σxy = ρxy/(ρ

2
xx +ρ2

xy) and the longitudinal resistance Rxx

are displayed in the blue and green trace, respectively.
As predicted, the transverse conductivity shows pronounced plateaus at half-

integer values. This characteristic ladder of conductance steps is well developed for
the complete back gate range.

The longitudinal resistance is expected to take finite values if the Fermi energy
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Figure 3.2: (a) Back gate dependence at B = 7 T for single layer. Displayed are the
Hall conductivity σxy (blue trace) and the longitudinal resistance Rxx (green trace).
(b) Same as (a) but for bilayer graphene. (c) Rxx as a function of VBG and B-field
for single layer graphene. (d) Quantum Hall effect of bilayer graphene (color bar of
(c) is valid for (d) as well). All measurements were recorded at T = 1.7 K with a
current bias of 100 nA on the flakes displayed in Fig. 3.1 (a) and (d).

lies in a Landau level. If EF is located in between two LLs however, no back
scattering between edge channels takes place and the resistance drops to zero. This
effect is observed in Fig. 3.2 (a), where the resistance peaks indicate the position
of the LLs. The maximum at VBG ≈ -2 V corresponds to the N = 0 LL, which
is shared by electrons and holes. The system takes constant filling factor ν at the
resistance minima. Starting from zero BG the values are ν = ±2, ±6, ±10... where
the factor 4 results from the four-fold energy degeneracy in graphene caused by the
two-fold sublattice and spin degeneracy.

The remarkable quality of the flake is visible in Fig. 3.2 (c), where Rxx is plotted
as a function of the applied back gate voltage for varying magnetic fields. Since the
LLs are unvealed by the resistance maxima (Shubnikov-de Haas maxima), such a
plot enables to follow how the density position of the quantized energy levels (LLs)
is changed by an external field. Lines of constant filling factor are located at the
density values expected from the relation ν = nh/B|e|. In the present measurement,
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Chapter 3. Electronic transport properties of bulk graphene

the lowest Landau levels (N = 0, -1 and 1) can be followed down to almost B =
0 where they merge into the resistance peak characteristic for the charge neutrality
point. The next higher energy levels fade away only at B = 2 T and filling factors
up to ν = ±62 can be distinguished at the highest densities studies here.

Bilayer graphene

Looking at the corresponding measurements for the bilayer flake, the differing be-
havior of charge carriers in two coupled graphene layers is verified.

In Fig. 3.2 (b), the Hall conductivity is quantized at integer multiples of 4e2/h
and shows no plateau at zero. The sample therefore exhibits the characteristics of
bilayer graphene.

For the longitudinal resistance a broad peak is present, where σxy exhibits the
enlarged step height indicating the position of the CNP. Whereas the resistance
minima at higher densities are equally spaced, a doubled spacing in VBG is observed
between the minima lying lowest in density. This is a result of the eight-fold degen-
erated N = 0 LL developing at the CNP and the associated sequence of constant
filling factors is ν = ±4, ±8, ±12... The fact that Rxx does not fall to zero in-between
Landau levels, implies that charge carriers in the edge channels still experience scat-
tering. As discussed in the previous section, the disorder is comparably high in the
present flake and hence it is well conceivable that impurities lead to an enhanced
number of scattering events.

Nevertheless, a Landau fan is clearly visible if the applied B-field is changed (see
Fig. 3.2 (d)). Shubnikov-de Haas oscillations emerge at B = 3 T and are shifted
linearly to higher densities as the magnetic field is increased. The positions of their
minima agree with the ones predicted by ν = nh/B|e| using the density n deter-
mined from the plate capacitor model.

In summary, both samples exhibit the magnetotransport characteristics antici-
pated for the respective number of layers. The finding that all features are more
pronounced for the single layer flake as compared to the bilayer device, reflects the
significant influence of potential fluctuations on transport properties of the system.

3.3 Top gated bilayer graphene

In order to split the valence and conduction band in bilayer graphene, breaking of
the layer symmetry is required. Applying a potential difference between the upper
and the lower graphene layer hence induces a band gap in the energy spectrum.
Such an asymmetry is imposed by an electric field oriented perpendicularly to the
bilayer graphene plane. To reach high E-field values and at the same time enable
charge carrier density tunability, a double-gated device configuration was developed
[42–44].

An optical microscope image of the sample characterized here is shown in Fig.
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3.3. Top gated bilayer graphene

3.3 (a). The graphene flake (outlined by the black dashed line) is covered by a 8 nm
thick BN flake. The top gate electrode (marked red) is spanning across the complete
width of the flake and is 8 µm wide and 900 nm long. The Ohmic contacts used as
voltage probes in the four-point measurements carried out here are marked by the
blue lines.
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Figure 3.3: (a) Optical microscope image of the top gated device. The top gate tuned
in the measurements discussed here is marked by the red line and the electrodes used
as voltage probes are indicated by blue lines. The graphene flake is outlined with a
black dashed line. (b) Four point resistance as a function of top gate and back gate.
(c) R(VTG) at constant VBG between -50 V and +50 V. The back gate was changed
in steps of 10 V. All measurements were taken at T = 1.6 K with Ibias = 1 nA.

3.3.1 Tunable band gap

Figure 3.3 (b) displays the resistance through the device as a function of back gate
and top gate voltage. The arrows shown in the plot indicate the axes along which
the density n in the graphene and the displacement field D across the layers are
tuned. These two parameters are defined by the applied gate voltages via the field
effect. The charge carrier density is changed according to

n =
ε0εSiO2

edSiO2

((VBG − VD,BG) + αTG/BG(VTG − VD,TG)), (3.1)

where VD,BG and VD,TG are the position of the charge neutrality point at effec-
tively zero E-field for the back gate and top gate, respectively, and αTG/BG is the
ratio between the top gate and the back gate capacitance. For the displacement
field, the relation reads

D =
εSiO2

dSiO2

((VBG − VD,BG)− αTG/BG(VTG − VD,TG)). (3.2)

Moving along the displacement axis at zero density, the maximal achievable
values are D = -1.64 V/nm for the negative VBG regime and D = 1.05 V/nm for
positive value of VBG. According to self consistent tight-binding calculations [21],
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Chapter 3. Electronic transport properties of bulk graphene

relating the applied displacement field to the splitting between the valence and
conduction band, a band gap of up to Egap ≈ 200 meV should be opened in the
present device.

For each TG trace at constant VBG in Fig. 3.3 (b), a resistance maximum Rmax

is observed at the cross-over from hole-like to electron-like transport. Since the
position of the charge neutrality point is shifted in gate space due to the capacitive
coupling of the two gates, the slope of Rmax gives the relative lever arm αTG/BG

between top gate and back gate. From the extracted value αTG/BG ≈ 28.5, the
thickness of the BN flake can be determined assuming the dielectric constant of BN
to be εBN = 3.5 [44]. The obtained value of dBN ≈ 9 nm agrees well with the one
measured in an atomic force micrograph.

A horizontal stripe of increased resistance around VBG = 10 V is observed in Fig.
3.3 (b). This originates from the area of the graphene flake which is not covered by
a top gate and contributes as a back gate dependent series resistance to transport.
The enhanced resistance hence marks the electron hole cross-over in the graphene
section which is tuned only by one gate.

Looking at cuts in the two-dimensional plot illustrates the opening of a band
gap. In Fig. 3.3 (c) the back gate is stepped by 10 V for each consecutive top gate
curve. Starting from VBG = -50 V each step induces a shift to more negative top
gate voltages. At the same time the amplitude of the resistance peak monotonously
decreases as the displacement is reduced and increases again after passing the back
gate value at which the D-field is effectively zero. Within the range covered here
the maximum resistance takes values between Rmax ≈ 1 kΩ and 1.5 MΩ indicating
that the flake is getting more and more insulating as |D| increases.

3.3.2 Temperature dependence

From the previously discussed transport experiments alone, the size of the band gap
cannot be determined. We therefore discuss the temperature dependence of Rmax in
the following. In order to avoid thermal activation of charge carriers by dissipation,
we changed the setup to measure with constant voltage bias of Vbias = 50 µV.

Top gate traces at VBG = -50 V (maximum achievable D-field) were taken at
temperatures between 1.7 K and 16.5 K (see Fig. 3.4 (a)). As the temperature
is increased, the peak height falls meaning that transport gets facilitated by the
thermal energy provided to the system. Extracting the amplitude of the resistance
peak as a function of temperature should give information about the character of
the thermally activated transport.

Assuming an ideal band gap without subgap states, the resistance is expected
to increase exponentially with increased temperature. From the relation R ∝
exp(−Egap/2kBT ) one can hence extract the size of the band gap Egap. In Fig.
3.4 (b) the maximum values of R are plotted as a function of 1/T in a logarithmic
plot. The dependence between the two plotted parameters is sublinear, meaning
that the conductance is less strongly suppressed than predicted for an ideal system.
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Figure 3.4: (a) Temperature dependence of R(VTG) at VBG = -50 V. Conductance
data was recorded with lock-in technique at Vbias = 50 µV and converted into resis-
tance data afterwards. (b) Extracted resistance maxima of traces in (a) as a function
of 1/T . (c) Data of (b) as a function of 1/T 1/3 to determine characteristic energy
scale of hopping transport by a linear fit (grey line).

Since the minimum disorder amplitude achieved on SiO2 supported flakes is on the
order of several 10 meV (see discussion of EF,sat above), energy levels inside the gap
are most likely available for charge carriers leading to a reduction of Rmax. To derive
an upper limit for the band gap, we include only the data obtained for the seven
highest temperatures into a linear fit in Fig. 3.4 (b). A value of Egap ≈ 4 meV is
yielded, which is much smaller than the theoretically expected one.

Similar behavior was observed in other transport experiments [42, 43]. In these
studies, the values for ln(Rmax) were found to depend linearly on 1/T 1/3 and inter-
preted to be indicative for variable range hopping due to the finite density of states
inside the band gap. Replotting the data as a function of 1/T 1/3 indeed reveals a
linear slope as shown in Fig. 3.4 (c). From the theory developed by Mott, describing
variable range hopping in two dimensions [45, 46], we can extract the characteristic
energy ∆0 from the slope of a linear fit to the data. As shown in Appendix A, we
can determine the localization length ξ and the optimum hopping distance dopt in
the system being ξ ≈ 18 nm and dopt(1.7 K) ≈ 52 nm. These estimates illustrate
that indeed a large number of localized states are present in the system and charge
carriers need to complete a series of hops to be transferred through the system.

In conclusion, we have observed the opening of a band gap in dual-gated bilayer
graphene in transport experiments. Our analysis of the temperature dependence
exhibited by transport properties shows, that subgap states are present and lead
to an enhanced conductance as compared to an exponential decay at the lowest
temperatures. The model of variable range hopping in two dimensions, on the other
hand, can well describe the data and is hence a possible microscopic mechanism
behind transport.
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Chapter 3. Electronic transport properties of bulk graphene

3.4 Conclusion

In summary, we have investigated unpatterned graphene flakes consisting of one
and two layers. All devices showed the respective characteristic properties in trans-
port measurements. Additionally, we have demonstrated, that a band gap can be
opened in a bilayer graphene flake by a perpendicular electric field, which breaks
the symmetry between the layers.

The transport properties observed in this chapter originate from the exceptional
density of states of graphene. We will therefore focus on this quantity and present
measurements on a single layer device.
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Chapter 4

Quantum capacitance and density
of states of single layer graphene

The number of available electronic states at the Fermi level determines the trans-
port characteristics of electronic devices. A solid understanding of the density of
states is hence crucial for the interpretation of the electronic properties a given sys-
tem exhibits. In two-dimensional electron gases in semiconductor heterostructures,
experiments have been accomplished mapping the density of states directly via the
quantum capacitance already in the 1980s [47, 48] and are nowadays standard char-
acterization tools for these structures. More recently, the energy level spectrum of
carbon nanotubes was experimentally observed in measurements of the quantum
capacitance [49].

An infinite single-layer graphene sheet is expected to show a linear density of
states that vanishes at the charge neutrality point [4]. The experimental findings of
conductance measurements, however, contrast this theoretical prediction by showing
a minimum conductivity of the order of 4e2/h which indicates a finite charge carrier
density [40, 50]. Since the quantum term in the capacitance gives insight to the
density of states, both theoretical [51, 52] and experimental [18, 53, 54] studies of
the quantum capacitance have been carried out for graphene within the last years.
All measurements show a non-zero value of the density of states at the Dirac point
which is commonly interpreted as originating from potential fluctuations in the
graphene sheet. Here we discuss experiments on a top gated single-layer graphene
ribbon and analyze the data in a self-consistent manner not making any theoretical
assumptions about the density of states.

4.1 Theoretical background

A classical plate capacitor consists of two well conducting plates arranged in par-
allel to each other and separated by a dielectric layer of a certain thickness. Its
capacitance can be calculated considering material and geometric parameters of the
system. If the density of states on one of the plates is finite, however, adding a
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Figure 4.1: (a) Schematic cross section of a top gated graphene sample. The gra-
phene flake (black) is contacted with gold electrodes (orange) and covered partly by
an alumina/gold top gate (grey/red). (b) Schematic of the electrostatics of the struc-
ture showing the change in electrochemical potential between the top gate electrode
and the graphene sheet. (c) Circuit scheme of the measured system.

charge carrier costs kinetic energy due to the shift of the Fermi level. Since this
required extra energy reduces the total capacitance of the system the density of
states is directly reflected in an additional capacitance term. As visualized in the
cross section in Fig. 4.1 (a) a locally gated graphene device can be viewed as a
plate capacitor with one plate being the top gate electrode and the other being the
graphene sheet.

The total capacitance between the gate and the electron gas can be derived from
the electrostatics describing the system [55–57]. A finite applied bias −|e|VTG intro-
duces a difference in the electrochemical potentials of the metal top gate electrode,
µM, and of the graphene, µG. As sketched in Fig. 4.1 (b) it consists of the Fermi
energy EF in graphene, the electrostatic potential across the dielectric as obtained
from solving Poisson’s equation and the two work functions χ and W of graphene
and the metal, respectively. The effective potential difference is therefore given by

µG − µM = |e|VTG = EF +
|e|2ns

εε0
d+ const., (4.1)
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4.2. Measurement setup

where ns is the charge carrier density in the graphene layer, d is the thickness of
the dielectric layer and the constant term includes the work function difference of
the two materials, which can be neglected for the analysis provided that it is gate
voltage-independent. Differentiating Eq. (4.1) with respect to ns gives an expression
for the capacitance per unit area

1

C/A
=
d(|e|VTG)

e2dns

=
dEF(ns)

e2dns

+
d

εε0
, (4.2)

where the second term on the right hand side can be identified as the inverse of the
geometric capacitance per unit area Cg/A. The other term has the dimensions of a
capacitance and is inversely proportional to the density of states D(EF) = dns/dEF.
The quantity e2D(EF) is the so-called quantum capacitance per unit area Cq/A
[55] which describes an effective decrease of the total sample capacitance. Since
it is connected in series to Cg the quantum capacitance will dominate the total
capacitance if it takes values smaller than Cg.

4.2 Measurement setup

The temperature for all measurements was 1.7 K achieved in a variable temperature
insert 4He cryostat. For basic characterization of the device transport measurements
using standard lock-in techniques were carried out in addition to the quantum ca-
pacitance measurements. For the latter the size of the expected signal was of the
order of several fF and hence a high measurement resolution was required. Since
frequencies can be measured with high accuracy we used an LC-circuit and recorded
changes in its resonance frequency fres. Fig. 4.1(c) shows the circuit model of our
setup with the oscillator consisting of an inductor (L=100 µH) placed at room tem-
perature in parallel to the setup capacitance C. The main contribution to C comes
from the wiring of the cryostat with a capacitance Ccables ≈ 340 pF for the coax-
ial cables. In parallel to this the series connection of Cg and Cq form the sample
capacitance Cs.

During the measurements an oscillation amplitude of 20 mV was maintained
in the resonator by an external drive. The resulting self-resonant frequencies were
850-900 kHz and the relative sensitivity for frequency changes was ∆f ≈ 2.5×10−7.
Converted to capacitance changes an accuracy of the order of 170 aF was achievable
with this setup.

4.3 Sample fabrication

Single layer graphene flakes were characterized and contacted with Cr/Au (2 nm/40
nm) as described in chapter 3.1. In contrast to the other experiments described in
this thesis, the Si substrate was undoped however. Care was taken about this fact to
exclude stray capacitances from the back gate which would falsify the measurements.
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Figure 4.2: (a) Atomic force microscope (AFM) image of the device studied here.
The electrodes are colored corresponding to the scheme in Fig. 4.1 (a). (b) Two-
point resistance obtained in transport measurements with a constant current of I =
1 nA at a temperature of T = 1.7 K.

The graphene sheets were structured by the commonly applied dry etching technique
called reactive ion etching (RIE). In this method a directed oxygen-argon plasma
in the RIE chamber removes the graphene in the regions laid open in another EBL
step. After removal of the remaining resist, the desired structure is left behind in
the graphene sheet.

A patterned top gate was deposited after a third electron beam lithography step.
As a dielectric for the top gate we used dense Al2O3 thin film, which was obtained
in cycles of depositing 1 nm of aluminum followed by a 3 min period of increased
oxygen pressure in the deposition chamber leading to the complete oxidation of the
thin Al-film. The resulting oxide thickness after four such cycles was approximately
12 nm. Deposition of Ti/Au (5 nm/50 nm) in the same evaporation chamber formed
the top gate electrode. Fig. 4.2 (a) displays an AFM image of the device measured
for this work.

4.4 Experimental observations and discussion

Figure 4.2 (b) shows a two-terminal transport measurement taken with a current
bias of 1 nA. The Dirac point is visible as a resistance maximum and only slightly
shifted away from zero top gate voltage. Since we do not know the precise thickness
and the dielectric constant of the aluminum oxide we can only estimate the geometric
capacitance of the top gate to be Cg ≈ 6 fF/µm2. Using this estimate a mobility of
2000-3000 cm2/Vs is extracted for the device.

The change in resonance frequency fres as a function of applied top gate voltage
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4.4. Experimental observations and discussion

VTG is displayed in Fig. 4.3 (a). A maximum is observed close to zero gate voltage
which coincides with the maximum in the transport curve (Fig. 4.2 (b)) and there-
fore marks the Dirac point. At high charge carrier densities, the resonance frequency
reaches a constant value indicating the dominant influence of the cable capacitance.
We are interested in the relative change of fres and therefore define the magnitude
δm ≡ ∆f(VTG)/f0 with f0 being the voltage independent background frequency (see
right scale in Fig. 4.3 (a)).

To determine the changes in quantum capacitance from the frequency measure-
ment the circuit diagram has to be considered. Far away from the Dirac point we
expect Cq to be too large to affect the total capacitance which is hence given by
Ccables + Cg in this limit. The total capacitance of the equivalent circuit in Fig. 4.1
(d) can be written as

C(VTG) = Ccables + Cg −

[
Cg −

(
1

Cg

+
1

Cq

)−1
]
, (4.3)

where the term outside the square brackets is constant at all top gate voltages and
only the term inside is varying causing the change in capacitance ∆C(VTG). This
expression describing ∆C can be simplified to C2

g/(Cg + Cq).

The resonance condition of an LC-circuit fres = 1/(2π
√
LC(VTG)) can be ex-

panded for small variations ∆C of the capacitance yielding ∆C = −2(Ccables +
Cg)∆f/f0. Applying this relation to the frequency data yields the curve displayed
in Fig. 4.3 (b). A minimum is visible at the charge neutrality point and an increase
of ∆C with increasing density is observed. In this regime the quantum capacitance
is dominating the signal. The transition to a constant capacitance value at large
top gate voltages indicates that Cq is negligible beyond ± 1 V.

Combining the two expressions for ∆C relates the quantum capacitance to the
cable capacitance, the geometric capacitance and the measured frequency

Cq = Cg
α− δm

δm

, (4.4)

where α = Cg/2Ccables. This equation contains only experimental parameters and
will later be used to deduce the density of states D(E) = Cq(VTG)/|e|2.

In order to extract the density of states as a function of the Fermi energy, the
top gate voltage axis has to be transformed into energy. To avoid any a priori
assumptions about the density of states we do not use the linear dispersion but
start with the electrostatic configuration described by Eq. (4.1). The charge carrier
density ns is obtained from integrating the density of states D(E) over all energies
between the Dirac point and the Fermi energy EF and can be substituted to give

|e|VTG = EF +
|e|2

εε0
d

∫ EF

0

D(E)dE. (4.5)
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Figure 4.3: (a) Resonance frequency as a function of applied top gate voltage VTG.
(b) Determined change in total capacitance from frequency measurements. (c) Re-
lation between Fermi energy and top gate voltage as deduced from eq. (4.7). The
different curves (black lines) are obtained for varying values of Cg (from outermost
to innermost curve: 4.8 fF/µm2, 5.8 fF/µm2, 6.8 fF/µm2). The dashed curve shows
the theoretically expected dependence for a perfectly clean graphene sheet. To com-
pensate for the shift of the Dirac point towards negative voltages the horizontal axis
in (a), (b) and (c) is offset by 0.3 V.
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As shown above both the geometric capacitance Cg and the quantum capacitance
Cq enter this expression. The change in Fermi energy for a given change in top gate
voltage can hence be written as

∂EF

∂VTG

= |e|
[
1 +

Cq(VTG)

Cg

]−1

. (4.6)

The relation between the capacitances involved and the measured frequency iden-
tified before can be included into Eq. (4.6). An expression for the Fermi energy
which depends on the applied top gate voltage is gained by integration over VTG

EF(VTG) =
|e|
α

∫ VTG

VD

δm(V ′TG)dV ′TG, (4.7)

where VD is the gate voltage at the Dirac point. Here the geometric capacitance
is the only parameter our device does not allow us to determine from the data
directly. We can however estimate it from the parallel plate capacitor geometry (as
it has been done above to deduce the charge carrier mobility) to be Cg ≈ 6 fF/µm2.
In addition to the ribbon device a bilayer Hall bar located on the same chip was
used to determine the charge carrier density from Hall measurements. A geometric
capacitance of Cg ≈ 5.8 fF/µm2 was obtained from this method. Since the two
values are comparable the estimate for the free parameter Cg seems reasonable.

Eq. (4.7) can now be applied to the data assuming a specific Cg. In Fig. 4.3 (c)
the obtained Fermi energy is plotted as a function of top gate voltage for three differ-
ent values of Cg as well as for an ideal graphene sheet (dashed curve). As expected
an increase of |EF| with increasing |VTG| is observed. This effect is strong at small
voltages. The (unphysical) saturation at |VTG| > 1 V indicated in Fig. 4.3 is due to
the dominating cable capacitance. For all experimental curves the Fermi energy at
a certain top gate voltage is below the theoretically expected value. As the noise in
the frequency measurement leads to an error in the EF(VTG) relationship extracted
from the measurement an error analysis is done. The accuracy is estimated assum-
ing a Gaussian probability density distribution for the relative frequency change
∆f/f0. Its width is given by the variance of the noise in δm yielding σ=2.5×10−7.
The resulting error bars indicated in Fig. 4.3 (c) are small in comparison to the
uncertainty given by the parameter Cg.

Equations (4.4) and (4.7) now allow us to convert the data in Fig. 4.3 (b) into
a D(EF) plot. The result is shown in Fig. 4.4 for different Cg between 4.8 fF/µm2

and 6.8 fF/µm2. For comparison the dashed line in Fig. 4.4 displays the theoretical
density of states of perfectly clean graphene given by D(EF) = 2EF/π(vF~)2 [4].
Especially at low energies a large discrepancy is observed between experiment and
theory. Instead of the linear increase starting at zero a nearly constant value of
D(EF) ≈ 1×1017 m−2eV−1 is maintained in the interval between EF = ±50 meV.
An increase of the number of states towards higher energies is observed. However,
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Figure 4.4: Density of states as a function of Fermi energy. The black solid lines show
the experimental data assuming different geometric capacitance Cg (from outermost
to innermost curve: 4.8 fF/µm2, 5.8 fF/µm2, 6.8 fF/µm2). Error bars are indicated
and the theoretically expected density of states for a perfectly clean graphene sheet
is drawn as the dashed line. The bias window defined in Fig. 4.3 for the range in
which Cg is dominating the total capacitance is plotted with dotted lines.

since the signal to noise ratio decreases rapidly as the measurement value is constant
at high charge carrier densities, the errors in the extracted D(EF) are getting very
large outside the interval limited by the grey areas in Fig. 4.4. The full width at
half maximum of the probability density function of D(EF) was used to determine
the error bars shown in the graph.

The observed non-zero density of states around the charge neutrality point indi-
cates a finite number of states. This is conceivable in the presence of local potential
fluctuations in the graphene sheet. From the flat portion of the density of states
in Fig. 4.4 we can estimate a characteristic amplitude of the fluctuations of 100
meV. Comparing our results to transport measurements on graphene nanoribbons
[58–62] and scanning tunneling electron transistor experiments [41] we find good
agreement. As these samples were not covered with any dielectric unlike the sam-
ple used in our experiment we can infer that the gate oxide did not induce a large
amount of additional disorder in our graphene device.
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4.5 Conclusion

We have performed transport and capacitance measurements on a locally gated
single-layer graphene sheet. With our measurement setup using a resonant circuit
we could measure the capacitance with very high sensitivity. The density of states
as a function of Fermi energy was determined from experimental data. As the main
results we extracted a constant density of states D(EF) ≈ 1×1017 m−2eV−1 around
the Dirac point and determined the size of the disorder potential to be ≈ 100 meV,
which is comparable to other studies.

It has been shown recently that the reduction of the disorder fluctuations (e.g.
by using different substrates [31, 63]) improves the quantum capacitance signal
dramatically and even allows for the investigation of Landau level formation in
capacitance measurements [44, 64, 65].
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Chapter 5

Graphene nanoribbons - basic
characterization

Narrow graphene constrictions are commonly used as tunneling barriers in nano-
scale graphene devices. The transport properties of such graphene ribbons and
constrictions on a SiO2 substrate have been one of the puzzles for the understand-
ing of graphene nanostructures. Theoretical predictions of an energy gap in ribbons
[66–69] have triggered intense experimental [58–62, 70–75] and theoretical research
[68, 76–87]. It has become evident experimentally, that localized states originating
from edge and bulk disorder, suppress the conduction and lead to a transport gap
[58–60] rather than a true band gap. In addition, experiments indicate the formation
of an interaction driven Coulomb gap [58–62]. A wealth of theoretical ideas ranging
from Anderson localization [79–83] to Coulomb blockade [77, 84] try to explain the
phenomenology.

5.1 Theoretical background

5.1.1 Constrictions in conventional semiconductors

Nanostructures have been studied in semiconductors for the last decades. Often,
heterostructures that contain a two-dimensional electron gas (2DEG) buried un-
derneath the surface are used as the starting material. In order to confine charge
carriers to even lower dimensions, metal electrodes are placed on the surface. By
applying a negative voltage to these so-called split gates, the 2DEG below the gate
area is depleted of charge carriers and hence becomes electrically insulating.

As displayed in Fig. 5.1 (a), a constriction is formed if only a small opening
remains between two electrodes such that electrons have to pass this channel when
crossing from one large reservoir to the other. Low-temperature transport mea-
surements on such a gate geometry on top of a GaAs/AlGaAs heterostructure have
been carried out in 1988 for the first time by two groups independently [88, 89]. The
resistance recorded in these measurements was transformed into a conductance G,

30



5.1. Theoretical background

which is shown in Fig. 5.1 (b) as a function of the applied split gate voltage VG.
Here, as an over-all tendency, the conductance increases as the gate voltage is made
less negative. The intuitive explanation for this effect is that the depleted area is
reduced as VG is tuned to more positive voltages and the channel gets effectively
wider, allowing more charge carriers to pass.
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Figure 5.1: (a) Schematic of a split gate defined constriction in a semiconductor
heterostructure as measured in Refs. 88 and 89. The 2DEG is depleted underneath
the gates and the region above the gates is connected only via a narrow opening with
the lower part. (b) Conductance G as a function of gate voltage VG for a quantum
point contact of width W = 250 nm. Conductance is obtained from inversion of
measured resistance signal and the subtraction of a gate independent background
resistance. (Figure reprinted from Ref. 88)

The more striking observation, however, is the appearance of conductance steps
of equal height along the gate voltage axis. With each step the conductance increases
by ∆G = 2e2/h which equals twice the conductance quantum G0 = e2/h. The
picture behind this experimental finding is that of discrete quantized states, called
modes, propagating along the channel axis [90]. These are formed as a consequence
of the lateral confinement normal to the direction of motion. Both the Fermi energies
in the reservoirs and the width of the constriction determine the number of occupied
modes. If a small bias voltage Vbias is applied between the two reservoirs the current
carried by the modes traveling to the left and to the right, respectively, differs and
a net current flows. Each of the occupied quantum states contributes a net current
of I = (e2/h) · Vbias, meaning one conductance quantum G0. In zero magnetic field,
electron spin degeneracy leads to a conductance contribution of 2e2/h per mode as
seen in Fig. 5.1 (b).

The phenomenon discussed above is observed in experiment under the condition
that the thermal energy kBT of charge carriers is smaller than the energy spacing
between the transverse modes to resolve the discrete values of G. Additionally, the
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channel width and the length have to be much smaller than the mean free path
(ballistic regime) of the electrons and the Fermi wavelength has to be comparable
to the channel width. In semiconductor heterostructures these requirements are
typically met with the present sample quality. The device introduced in this section
is usually referred to as a quantum point contact (QPC) since its transport properties
are a result of the quantum mechanical wave character of the charge carriers.

5.1.2 Conductance in single layer graphene constrictions

The absence of a band gap in bulk graphene does not allow for the adaptation of
the split gate technique in graphene, which is commonly used in semiconductors. In
order to form a quasi one-dimensional transport channel in graphene, the material
has to be cut into the desired geometry instead. In experiments, the propagation of
electrons along the channel is very sensitive to edge disorder due to the absence of
depletion effects near the edges. In this section a number of theoretical studies will
be discussed which have carried out calculations considering different possible edge
orientations and edge disorder in such ribbons.

Nanoribbons with ideal edges

Like for bulk graphene, tight-binding calculations were performed [66, 91–93] to
determine the band structure for both clean armchair termination and zigzag ter-
mination of the ribbon edges as sketched in Fig. 5.2 (a) and (b). Fundamentally
different characteristics were found depending on the edge type and the width of the
ribbon. In Fig. 5.2 (c)-(f) the energy bands of the three distinct cases are shown.
Armchair nanoribbons result in either a gapped band structure (Fig. 5.2 (c) and (e))
or a gapless metallic bandstructure (Fig. 5.2 (d)) depending on the number of dimer
lines N across the ribbon width. The latter is found only under the condition that
N = 3m− 1, with m being an integer, and leads to a degenerate zero energy state
at k = 0. The size of the direct bandgap ∆Ec in semiconducting armchair ribbons
decreases with 1/W as the ribbon is made wider [93]. For zigzag nanoribbons the
dispersion exhibits a degeneracy of valence and conduction band at k = π (Fig. 5.2
(f)). As the wave vector is diminished towards the center of the Brillouin zone these
two bands continue to lie close to the Fermi level within the wave vector interval
π ≥ |k| ≥ 2π/3 and show almost no dispersion.

The fact that in the armchair case neighboring atoms at the edges belong to
different sublattices, whereas all edge atoms belong to the same sublattice in the
zigzag case, is responsible for the observed difference in the band structure. Arm-
chair edges include both A- and B-type atoms and hence the wave function needs
to vanish on both sublattices at the edges to fulfill the boundary conditions. A
zigzag edge on the other hand consists of only one sublattice, e.g. A-type on the
top edge of Fig. 5.2 (b), allowing for a non-vanishing wave function on sublattice B.
However, at the opposite side of the ribbon the wave function is required to be zero
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Figure 5.2: Lattice structure of (a) an armchair nanoribbon with N = 10 and (b)
a zigzag nanoribbon N = 5. Definition of dimer number N is indicated and the
sublattice assignment is marked. (c)-(f) Tight binding calculations of nanoribbon
subbands for (c) N = 3m − 2 armchair, (d) N = 3m − 1 armchair, (d) N = 3m
armchair and (f) zigzag with N = 6. (Figure reprinted from Ref. 66)

on the B sublattice. The two dispersionless states at finite k-values originate from
this asymmetry between the sublattices and appear as strongly localized electronic
states at the edges of the zigzag ribbon.

In analogy to the one-dimensional wires formed in semiconductor heterostruc-
tures, a quantization of the transverse modes is present in ideal graphene nanorib-
bons as well. A fundamental variation of the phenomenology is however the symme-
try of the quantized spectrum around the Fermi energy. According to the differing
subband structure, the edge configuration results in characteristic quantization se-
quences for the three different cases [67, 94, 95]. For semiconducting armchair
ribbons a quantization in steps of even multiples of G0, namely 0, 2, 4, 6....×e2/h,
is predicted. In the metallic case, the mode at zero energy is already two-fold de-
generate and hence the conductance at zero energy is 2e2/h and increases in steps
of 2·G0 as the energy is tuned away from the charge neutrality point. Here, only a
factor of two for the spins is considered for the quantization since the ideal armchair
edge leads to a lifting of the valley degeneracy [67, 94, 95]. For perfect zigzag edges
in contrast, the valley degeneracy is expected to be maintained and a sequence of
2, 6, 10, 14....×e2/h is obtained for the conductance.

Extension to disordered edges

So far, only nearest neighbor hopping was considered within a tight-binding band
structure model, and any disorder was excluded from the discussion. Taking disorder
effects into account, however, induces distinct changes to the results obtained above.

Armchair ribbons, which have a metallic band structure for certain widths in the
ideal picture, are found to exhibit a bandgap of several 10 meV. This is obtained
by the inclusion of next nearest neighbor hopping and a contraction of the bonds
between the edge atoms by 3.5% [96]. Similarly, a bandgap is opened in zigzag
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nanoribbons. Here, the reason is a magnetic ordering at the edges with opposite
spin polarization on the two sublattices, which originates from on-site repulsion
between the states at the Fermi level. This exchange potential difference on the
two sublattices moves the previously flat bands, that were lying close to the Fermi
level, away from each other. Hence, a small but finite band gap is predicted for all
nanoribbons with pure armchair [93, 96] or zigzag [66, 92, 96] edge termination. For
20 nm wide ribbons, band gap values of 10 meV ≤ Ec ≤ 70 meV should hence be
achievable according to these calculations.

In order to resemble realistic devices more closely, ribbons consisting of both
armchair and zigzag sections have been investigated [66]. Remarkably, the flat bands
of the zigzag termination are extremely robust to the inclusion of armchair sites
meaning that edge states are present even in ribbons having only few zigzag sites
incorporated in the edges. While these electronic states are delocalized along the
edge in pure zigzag ribbons, they get more and more localized as armchair fragments
interrupt the zigzag termination.

As a consequence of disorder (at the edges) and the accompanying change in the
density of states the formation of subbands is getting less pronounced. Conductance
quantization is therefore no longer expected to be observable.

All theoretical studies show a significant deviation of the electronic properties
from the ideal case if the edges are assumed to be slightly imperfect. In to date
realistic devices, however, disorder is expected to be present both at the edges and
in the bulk of the system. How this affects the transport properties is going to be
subject of the following sections.

5.2 Sample fabrication and measurement setup

In order to get close to the device dimensions investigated in theoretical studies,
two-dimensional graphene sheets have to be patterned into narrow ribbons, which
then act as transport channels for the charge carriers. After the standard mechanical
exfoliation and subsequent identification of single layer graphene flakes by atomic
force microscopy and Raman spectroscopy [29, 97], the flake is electrically contacted
as described in chapter 3.1. The created metallic fingers are needed as contacts for
all electronic transport measurements discussed in this chapter. As a last step, the
nanoribbons were defined in a resist mask during an EBL step. Subsequent RIE-
etching (see chapter 4.3 for more details) and removal of the PMMA left behind
the desired nanostructures. Atomic force micrographs of the single layer graphene
nanoribbons measured in this chapter are displayed in Fig. 5.3.

All data was recorded in a variable temperature insert (VTI) at temperature
between 1.25 K and 1.7 K. For all conductance measurements standard lock-in
techniques were applied at frequencies well below 100 Hz.
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Figure 5.3: AFM images of the single layer graphene constrictions measured in this
chapter. Graphene remained in the light grey areas whereas in the dark areas the
substrate is visible. The channel is formed between the source and drain reservoir.
The dimensions of the nanoribbons are given in the following by length × width:
(a) 100 nm × 45 nm, (b) 100 nm × 80 nm, (c) 100 nm × 100 nm, (d) 100 nm ×
122 nm, (e) 200 nm × 55 nm, (f) 200 nm × 75 nm, (g) 200 nm × 98 nm and (h)
500 nm × 98 nm.

5.3 Experimental observations and microscopic pic-

tures

5.3.1 Dependence of transport on the charge carrier density

In order to change the charge carrier density in the graphene sheet, a voltage is
applied to the highly doped Si substrate, which acts as a global back gate. Fig.
5.4 shows a typical low-temperature (T ≈ 1.25 K) gate voltage dependence of the
conductance through a graphene nanoribbon with a width of 75 nm and a length of
200 nm. By sweeping the back gate voltage VBG from negative to positive values,
the Fermi energy is tuned from the valence band through the charge neutrality point
into the conduction band as is visualized by the sketched Dirac cones in Fig. 5.4.
In these two regimes, transport can therefore be described as being hole-like and
electron-like, respectively.

In contrast to transport data taken for bulk graphene, here, a region of strongly
suppressed conductance is observed in the vicinity of the charge neutrality point
around VBG = -2 V. In this regime, the measured conductance values drop consid-
erably below e2/h (dashed line in Fig. 5.4) indicating that the system is strongly
localized [98]. However, the formation of a band gap cannot explain this feature.
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Figure 5.4: Conductance G as a function of applied back gate voltage VBG. The
data shown was measured for a constriction with length L = 200 nm and width W
= 75 nm at a temperature of T = 1.25 K. A DC bias voltage Vbias = 500 µV was
applied and the conductance was recorded using standard lock-in techniques at a
frequency of 13 Hz and an AC bias modulation of Vmod = 50 µV. The shaded region
indicates the range of the transport gap ∆VBG and the dotted curve marks the value
of the conductance quantum e2/h.

The expected size of a band gap Ec for an ideal ribbon of the given dimensions is
much smaller than the large change of Fermi energy ∆EF necessary to overcome the
region of conductance suppression ∆VBG in the present measurement. Since current
flow is strongly inhibited throughout ∆VBG, it is commonly called the ”transport
gap” in the literature.

Additionally, the curve exhibits strong conductance fluctuations at low charge
carrier densities that get smaller as the charge carrier density is increased. Simi-
lar features have been observed in measurements of narrow disordered channels in
Si-inversion layers [99] where they were explained by hopping transport between
strongly localized states caused by the structure of the underlying density of states.

A comparison of the gate voltage dependence for a narrow channel formed in
a two-dimensional electron gas as plotted in Fig. 5.1 (b), and the corresponding
measurement of a graphene nanoribbon in Fig. 5.4, illustrates the absence of con-
ductance quantization in the latter. This observation does not come as a surprise
since, as discussed in Sec. 5.1.2, the presence of disorder at the edges results in
the disappearance of discrete plateaus in the conductance trace. Due to the top-
down fabrication applied here, it is not possible to control the edge termination
on the atomic scale as would be necessary to observe the theoretical predictions of
quantized conductance.
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Figure 5.5: (a) Close-up of conductance spectrum as a function of back gate voltage
inside transport gap (grey shaded region in Fig. 5.4) taken with an applied voltage
bias Vbias = 100 µV. (b) Finite bias measurement of same back gate range as in (a)
showing Coulomb blockade diamonds. Both measurements were obtained with the
nanoribbon shown in Fig. 5.3 (f) with L = 200 nm and W = 75 nm at a temperature
of T = 1.25 K with lock-in techniques.

5.3.2 Dependence of transport on the applied voltage bias

It proves helpful to look into the transport characteristics around the charge neu-
trality point in more detail. A zoom into the transport gap is shown in Fig. 5.5 (a)
where a large number of conductance resonances show up as a function of back gate
voltage. In between these peaks the conductance is close to zero. If we associate
with each conductance resonance the addition of a single electron to the system,
the transport gap corresponds to a density of states of ≈5×1016 m−2eV−1. This
value is in good agreement with the result of chapter 4, where the density of states
was determined from the quantum capacitance of a top gated large-area device. A
similar behavior is known from systems in the Coulomb blockade regime as e.g. a
single electron transistor (SET) or a single quantum dot (QD) [57].

In such devices a chargeable island is coupled to a source and a drain contact via
two tunneling barriers. Due to the size confinement of this island and the Coulomb
interaction, the available additional energy levels take discrete values with spacing
Eadd. Figure 5.6 (a)-(c) shows a sketch of the arrangement. Additionally, a finite
bias can be applied across the structure inducing a difference in the electrochemical

37



Chapter 5. Graphene nanoribbons - basic characterization

potentials of the source and drain. If an energy level of the island lies within this
window, as visualized in Fig. 5.6 (a), transport is possible and a peak in the conduc-
tance is observed. If, on the other hand, no level is located inside the bias window
(see Fig. 5.6 (b) and (c)), current flow is not allowed, resulting in zero conductance
- the Coulomb blockade. In order to tune the system into or out of the blockaded
regime, one can either shift the discrete energy levels by applying a gate voltage
or change the size of the bias window. In a measurement where both the applied
bias and gate voltage are changed, diamond-like features of suppressed conductance
are observable which are commonly referred to as Coulomb blockade diamonds. As
indicated in Fig. 5.6 (d), the size of these diamonds in the bias direction directly
resembles the energy Eadd = |e|Vbias needed to add one more electron to the island.
The addition energy Eadd is composed of the charging energy Ec = e2/C, where C
is the capacitance of the island, and the single-particle level spacing ∆s. For large
islands, the contribution of ∆s is negligible and hence Eadd ≈ Ec. Since the charging
energy is related to the capacitance of the island, it is possible to extract information
about the size of the SET.
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Figure 5.6: (a)-(c) Energy diagram of a single electron transistor or single quantum
dot. Tunneling barriers separate the island from the leads. The island contains
discrete energy levels at electrochemical potential µN and µN+1 that can be shifted
to lower energies by increasing an applied gate voltage Vgate as done from (a) to
(c). The electrochemical potentials of source and drain reservoir are offset by the
bias voltage Vbias. (d) Charge stability diagram (Vbias vs. Vgate) showing regions
of suppressed transport in white and regions where transport is allowed in grey.
(Figure adapted from Ref. 8)

Figure 5.5 (b) depicts the result of finite-bias spectroscopy for the graphene
nanoribbon introduced in this section. Strikingly, a large number of Coulomb dia-
monds is obtained similar to the ones expected for an SET. However, in contrast to
the rhombi sketched in Fig. 5.6 (d), which touch each other in discrete points along
the gate-axis and are equal in size, in some regions the measured diamonds overlap
with each other and show a large variance of their extent in the bias direction. Such
characteristics have been observed in devices consisting of several islands, which all
contribute to transport [100]. Due to the random gate dependence of charge carrier
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transfer through such a system as well as the randomly varying magnitude of the
charging energy Ec, this phenomenology is called stochastic Coulomb blockade.

The described observations evoke the assumption that several localized islands
are formed inside the narrow ribbon. For some back gate voltage ranges, only one
of these dominates charge transfer and the characteristics of transport through a
single island is obtained (e.g. around -1.5 V in Fig. 5.5 (b)). In other voltage ranges
multiple islands contribute to the measured conductance. It is important to notice
that in the devices studied so far [58–62, 70–74, 101, 102] no self averaging is present,
meaning that the number of localized sites is rather small. As a consequence the
charging of individual islands is detectable in a finite-bias measurement by resolving
Coulomb diamonds.

5.3.3 Microscopic pictures

Differing models have been put forward to explain the origin of the transport gap
and the observed conductance resonances - a model based on Anderson localization
and another based on Coulomb blockade effects in a series of charged islands along
the ribbon. Both assume a considerable influence of disorder at the edges and/or
in the bulk. While the former originates from the etching process, which results in
rough edges, the latter is induced by surface or trapped charges in the substrate
or by organic residues of the fabrication lying on top of the graphene sheet. Both
types of disorder are hence inherent for the devices discussed here. It should be
mentioned that in recent studies on large graphene flakes [31, 63] the SiO2 substrate
has been replaced by hexagonal boron nitride (BN). Due to its crystal structure, BN
induces considerably less bulk disorder to the graphene sheets and hence reduces
the influence of the substrate. In nanostructures, however, the edge-bulk ratio is
significantly increased compared to that of large flakes. To date, experiments on
nanostructures fabricated on BN substrate remain to be carried out. These will
show how strongly the edge disorder induced by etching influences the transmission
through graphene nanostructures and possibly clarify the microscopic picture behind
electronic transport in these systems. In this section we discuss models that are
suggested to explain the experimental findings made in nanostructures supported
by SiO2.

The picture of Anderson localization is generally used to describe the influence
of disorder on electronic transport. In graphene nanoribbons non-perfect edge ter-
mination results in the formation of strongly localized low energy edge states as
argued in Sec. 5.1.2, resulting in the suppression of current flow. The localization
length is increased, however, as the absolute value of the Fermi energy is raised
from zero [78]. When the localization length exceeds the system length, transport
is no longer hindered and the transport gap ∆VBG is overcome. In the language
of Anderson localization, this transition is termed ”mobility edge”. Additionally,
the localized states lead to an enhanced density of states (DOS) around the charge
neutrality point. Calculations have shown that correlated with the large local DOS
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at the boundaries there is a reduced DOS in the bulk of the nanoribbon [78, 81].
This may - for large edge defect concentrations - span the complete ribbon width
and induce a barrier for charge transport [81] leaving localized islands behind. The
diameter of such an island is expected to be comparable to the ribbon width [84],
in agreement with size estimates from Coulomb diamonds. Hence, the origin of the
two identified energy scales ∆VBG and Ec can be accounted for using the Anderson
model.

A competing explanation involves the formation of localized islands as a con-
sequence of bulk disorder combined with a small energy gap. Due to the disorder
potential a two-dimensional graphene sheet consists of electron-hole puddles [41]
close to the charge neutrality point. In large area samples charge carriers can be
transferred from one puddle to another without energy expense via Klein tunneling.
If a ribbon of only some nanometers width is considered, on the other hand, the
confinement is predicted to open a small band gap [66, 92, 93, 96] and electron-
electron interaction may additionally induce a Coulomb gap. The borders between
adjacent puddles are hence no longer transparent but display real tunneling barriers.
Much like in an SET, the particles have to pay a certain charging energy Ec to enter
the puddle and Coulomb blockade is expected to occur in such a system. The size
of the puddles depends on the spatial variation of the potential landscape. In this
picture, the size of the transport gap ∆VBG is given by the sum of the amplitude of
the disorder potential and the size of the energy gap since transport is constricted
as long as the Fermi level lies between the global minimum of the valence band and
the global maximum of the conduction band.

Besides these two pictures, another model assumes electronic transport in disor-
dered graphene to happen along percolating paths of constant energy [80]. Consid-
ering the presence of an energy gap in such a nanoribbon, the system is expected to
undergo a two-dimensional metal-insulator transition [80].

The so far presented experimental transport data can be understood in all these
frameworks relatively well leaving the exact microscopic mechanisms behind trans-
port a question yet to be answered. To shine further light on this open issue, more
experiments have been carried out which will be subject of discussion in chapter 6.

5.3.4 Geometry dependence

To get a better feeling for the meaning of the energy scales observed in transport
spectroscopy, a large number of experiments were conducted on ribbons of varying
geometries [59, 60, 62, 70–74, 101]. From these measurements, several empirical
scaling laws could be extracted.

The first quantitative characterization of the transport gap was done by Han et
al. [70]. By investigating the extent of the region of suppressed conductance ∆VBG

in the bias direction, they extracted a value for the size of the energy gap Ec. Figure
5.7 (a) displays finite-bias measurements for a nanoribbon of width W ≈ 100 nm
and length L = 500 nm and the dashed line indicates how Ec is commonly extracted
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Figure 5.7: (a) Finite-bias spectroscopy for a 98 nm wide and 500 nm long nanorib-
bon. A region of suppressed current is visible. The characteristic energy Ec was
extracted from the size in bias direction as indicated by the dashed line. (b) Ec as
a function of ribbon width W . Three data points shown by red diamond markers,
are taken from Ref. 59 to illustrate the trend for small widths. Fits according to the
equations indicated in the graph were carried out to compare the experimental data
with theoretical predictions. The error bars stem from the uncertainty in the AFM
measurement when determining the diamater (∆d = ± 5 nm) and the variation in
size of the Coulomb diamonds.

from such a conductance map. In the work presented here, eight nanoribbons on
standard SiO2 substrate (red circles in Fig. 5.7 (b)) and two constrictions lying on
hexagonal BN (blue diamond markers in the figure) were investigated to find the
width dependence of Ec. Plotting the determined values Ec as a function of width W
yields the graph shown in Fig. 5.7 (b). It clearly shows that the two quantities are
inversely proportional to each other. The data can be fitted well with the relation
Ec = α/(W − W ∗) with α being a scaling factor and W ∗ being the width of an
inactive region at the edge of the ribbon. These two fitting parameters were found
to take the values α = 0.40 eV nm, in agreement with theoretical predictions [77]
and experimental results [103], and W ∗ = 20 nm. Besides this empirical law, Sols et
al. [77] explained the energy gap in their theory as a renormalized charging energy
and derived the expression Ec = γ/W e−βW , where γ and β are free parameters.
Fitting the data with this relation leads to values of γ = 1.65 eV nm and β = 0.015
nm−1. Both models describe the data well within the experimental precision and
quantify how the transport gap can be tuned by the ribbon width in a remarkably
wide range.

The data points for Ec in Fig. 5.7 (b) originate from nanoribbons of different
lengths. Still they all follow the introduced scaling laws. This suggests that the
length of the structures does not have a large influence on the size of the energy
gap. However, the variety of lengths among the nanoribbons analyzed here (100
nm ≤ W ≤ 500 nm) was not large enough to make a strong statement on the
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correlation between system length and the characteristic energy scale Ec. To support
the above supposition two works that carried out extensive experiments on the
length-dependence will be mentioned shortly in the following.

A study investigating the size of the energy gap as a function of ribbon length
L [74] obtained an almost constant Ec-value as the length of the constriction is
changed. However, the minimum value of the averaged back gate dependent conduc-
tance Gmin exhibits a strong length dependence. With increasing L the conductance
value drops exponentially. This finding is consistent with the microscopic picture of
transport being dominated by tunneling processes between localized charged islands.

Surprisingly, even for very short constrictions (L ≤ 60 nm) localization takes
place [60, 74]. Charge stability maps taken on such devices look very similar to
those of intentionally designed quantum dots. Inside the Coulomb diamonds a num-
ber of co-tunneling lines are visible suggesting a rather strong coupling to the leads
[74]. These systems might therefore be suitable to investigate the Kondo-effect
in graphene and to observe Fano-resonances. Additionally, the limit of short con-
strictions is very interesting for the fabrication of more sophisticated devices since
the occurrence of localization allows for their use as tunneling barriers in graphene
nanostructures.

5.3.5 Bilayer graphene nanoribbons

Besides the study on single layer constrictions, six bilayer ribbons on SiO2 substrate
were investigated covering lengths L between 100 nm and 500 nm. As for single
layer nanoribbons, for bilayer ribbons a transport gap is opened around the charge
neutrality point. Within this gate voltage range, overlapping Coulomb diamonds
appear in the finite-bias spectroscopy, thus exhibiting the finger print of stochastic
Coulomb blockade. Since the over-all behavior is qualitatively similar to that of
single layer graphene, a comparison of the characteristic energy scales may reveal
differences.

Figure 5.8 displays the gap size Ec determined from the size of the Coulomb
diamonds in bias direction using the method described in Fig. 5.7 (a). Indicated
in grey are the single layer data points introduced in the previous section and the
black traces show the previously carried out fits to this latter data set. The bilayer
data is plotted in green.

As a general trend, a decay of the charging energy is observable as the structures
get wider. The inverse dependence of the charging energy on the ribbon width is
however not as pronounced as for the single layer ribbons. Additionally, the values
of Ec are mostly larger than those determined for a single layer constriction of
comparable width.

Applying the same technique as has been done for single layer constrictions in
Ref. 59, we extract the extent of the transport gap in back gate voltage ∆VBG as a
function of width W for the single and bilayer ribbons investigated here. As is shown
in Fig. 5.8 (b), the energy scale ∆VBG is larger for narrower ribbons as well. Within

42



5.3. Experimental observations and microscopic pictures

(a) (b)

40 60 80 100 1200

10

20

30

40

W (nm)

E c
 (m

eV
)

 

SL ribbons on SiO2
BL ribbons on SiO
fit to E c =α /(W−W*)
fit to E c = γ /W e −βW

2

0

10

20

30

Δ
V BG

 (V
)

40 60 80 100 120
W (nm)

SL ribbons on SiO2
BL ribbons on SiO2

Figure 5.8: (a) Ec as a function of ribbon width W . The grey data points and the
fits are the ones obtained from the single layer constriction (see Fig. 5.7 (b)). Green
data is extracted for bilayer nanoribbons from Coulomb blockade diamonds. (b)
Transport gap in back gate ∆VBG as a function of W for single layer (grey dots) and
bilayer (green dots) nanoribbons.

the investigated range of ribbon widths the dependence appears to be approximately
linear. Like for the charging energy, the values of ∆VBG are again higher for the
bilayer constrictions than the ones determined for single layer ribbons.

According to the model introduced in the previous section, Ec ∝ 1/(W −W ∗),
the transport gap scales inversely with the ribbon width W . This width is corrected
by a term W ∗ describing an area along the edges, which does not make a contribu-
tion to the measured conductance. An increased Ec may hence be the result of a
wider inactive edge region for bilayer graphene. An explanation for such an increase
of W ∗ may be provided by tight-binding calculations done for zigzag nanoribbons
formed in bilayer graphene [104]. In this study the wave functions are found to get
localized at the edges in zero energy states that extend over both layers. Since these
states penetrate deeper into the bulk than edge states living on only one layer the
conducting channel of the nanoribbon is effectively reduced.

On the other hand, both energy scales, Ec and ∆VBG, characterize the potential
fluctuations inside the graphene constriction and the fact that transport is blocked
more efficiently for the bilayer graphene sample investigated here may indicated that
the flake simply exhibits a stronger disorder potential than the single layer flakes
studied earlier.

The bilayer constrictions measured here did not cover a large variety of aspect
ratio and were all located on the same flake. A larger number of bilayer nanoribbons
needs to be measured to further elucidate the influence of the number of layers
on electronic transport in these narrow channels. From the data discussed here,
no fundamental difference between single layer and bilayer graphene is apparent,
however.

43



Chapter 5. Graphene nanoribbons - basic characterization

Figure 5.9: Ec vs. d for single
QDs (blue dots) [11, 12, 105–108]
and nanoribbons (red dots for
SL, green dots for BL). Dashed
line: Self capacitance of disc sur-
rounded by SiO2 and air. Solid
lines: Fit to Ec ∝ 1/d of the re-
spective data set to determine the
effective dielectric constant ε.
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5.3.6 Comparison of energy scales between nanoribbons and
quantum dots

A rough estimate of the average size of the localized sites can be obtained from the
charging energy extracted from the Coulomb diamonds utilizing a self capacitance
model for a disc [57]. In Fig. 5.9 data from single quantum dots as well as from
nanoribbons are presented.

For the QDs (blue data points in Fig. 5.9) the charging energy was received from
the largest Coulomb blockade diamond. The size of the island could be determined
from AFM measurements with an accuracy of ± 5 nm. The resulting plot of Ec vs.
the dot diameter d suggests an inverse proportionality between these two parameters.
An estimate of the energy needed to add an extra electron to such a disc is given by
the capacitive charging energy Ec = e2/CΣ. Since the island can be described as a
metallic disc of diameter d which is surrounded by a dielectric material with relative
permittivity ε, the self capacitance Cdisc = 4εε0d is providing the lower limit for the
total capacitance CΣ.

As a first assumption for the dielectric constant ε = 2.5, an average between the
value for SiO2 and air is taken (dashed line in Fig. 5.9). This value, however, gives a
clear overestimation of the measured energy values and a fit to Ec = e2/4εε0d results
in a considerably higher relative permittivity εQD ≈ 4.0. The observed discrepancy
can be explained by the enhanced effective capacitance of the island due to the
nearby graphene leads, surrounding gates and metallic contacts.

Next we apply this model to the nanoribbon device introduced in Sec. 5.3 (grey
shaded area in Fig. 5.9). The size of the Coulomb diamonds in Fig. 5.5 indicate
charging energies Ec between 7 meV and 9 meV. Hence, a diameter of 125 nm ≤ d ≤
170 nm would be expected for the localizations in the nanoribbon. Since the device
is only 75 nm wide this seems unphysical and we assume the ribbon’s width to set
the upper boundary for the localization diameter. Other devices yielded similar
results [58–62, 70–74, 101, 102].

The red data points in Fig. 5.9 display the extracted Ec for the single layer
nanoribbons measured in this work plotted as a function of the ribbon diameter.
The observed Ec-d-dependence can still be described well within the disc model
if the relative permittivity is increased to εSL−ribbon ≈ 8.7. Since the capacitive
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coupling to neighboring localized islands is assumed to be large, this enhancement
can be well explained.

For the bilayer nanoribbons (green data points in Fig. 5.9), the charging energy
tends to be larger than for the single layer structures, as discussed in the previous
section. This fact indicates a less strongly coupled environment and indeed the
fitting to the 1/d-model yields εBL−ribbon ≈ 6.3, a value just in-between the obtained
εQD and εSL−ribbon. Since the design (arrangement of metallic contacts and adjacent
graphene areas) of the single layer and the bilayer nanoribbon devices is the same,
the capacitive coupling to the surrounding should be comparable. The exhibited
behavior may hence be due to a smaller intrinsic screening for bilayer manifesting
itself in a lower self capacitance than found in single layer graphene.

This observation is compatible with the picture of zero energy states spanning
across the ribbon introduced in Sec. 5.3.3. These originate from the boundaries and
lead to a reduced DOS in the bulk. Since the penetration of such states is expected
to be enhanced for bilayer graphene [104], puddles may be capacitively decoupled
from each other more efficiently already for wider ribbons as compared to single
layer devices.

Even though the self capacitance for these bilayer devices is lower than the one
of single layer constrictions, a comparison to the QD-data shows that the width of
the ribbon displays the upper boundary for the size of the localized islands as well.

5.4 Conclusion

In this chapter we have given a general review of the transport properties of etched
graphene nanoribbons, which was found to be governed by Coulomb blockade effects.
Several scaling laws for the different energy scales involved were presented. These
lead to an estimate for the number of localized islands inside constrictions with
relatively small aspect ratios (L/W . 5). In the present devices, the islands were
found to extend across the total width of the ribbon and other devices yielded
similar results [58–62, 70–74, 101, 102]. An arrangement of the islands in a quasi
one-dimensional chain is hence likely and as a rule of thumb the number of charge
puddles p can be approximated by the ratio between length and width p ≈ L/W .
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Chapter 6

Graphene nanoribbons - further
experiments for more detailed
understanding

6.1 Temperature dependence

The measurements covered in the previous chapter indicated that a number of local-
ized charge puddles form spontaneously in graphene nanoribbons around the charge
neutrality point. However, the mechanism behind transport in those devices was
not yet discussed. Studying the temperature dependence of the conductance reveals
activation processes for electronic transport inside the transport gap. [62, 73, 102]

In Fig. 6.1 (a) the conductance inside the transport gap is plotted for various
temperatures between 1.25 K and 45 K. To obtain this temperature dependence of
G, the investigated back gate voltage range was split into intervals of about 1 V
as indicated in Fig. 6.1 (a) by the vertical dashed lines. In these sections G was
measured at stepwise increasing temperatures between 1.25 and 45 K. In all sections
it was verified that the low-temperature Coulomb peak spectra were identical before
and after the thermal cycle.

The sharp conductance peak spectrum at the lowest temperatures gets washed
out more and more as the temperature is increased. This is due to a large increase
of the conductance in the Coulomb blockaded regions in-between resonances. For
the conductance peaks, two distinct behaviors are observable. A number of peaks
decrease in height as the temperature is raised, whereas the majority exhibit an ever
larger amplitude as T is raised and get broadened at the same time. Hence, a rather
smooth conductance curve is obtained for the highest temperature approaching a
conductance value of e2/h. the fact that even at the highest temperatures the
conductance approaches but does not exceed one conductance quantum means that
the system remains in the strongly localized regime.

Figure 6.1 (b) shows a close-up for Coulomb resonances with distinctly different
behaviors. The amplitude of the left peak grows with T and the peak broadens
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at the same time until it is finally swamped away by the rising background. The
signature of the right peak is a maximum peak value of G at the lowest temperature
which drops to a local minimum at intermediate temperatures and recovers as T is
increased further. Such a behavior is found only for those ≈10 % of the resonances in
the investigated back gate window, which are particularly sharp at low temperatures.
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Figure 6.1: (a) T -dependence of G inside the transport gap at Vbias = 100 µV. Dif-
ferent curves are taken at T = 1.25 K to 45 K (black to red lines). Inset: Coulomb
resonances (grey line) reconstructed by a convolution of three Lorentzians with the
derivative of the Fermi distribution (red dotted line). (b) Zoom into two represen-
tative peaks of (a). The left peak is broadened and grows with increasing T and the
amplitude of the right peak exhibits an overall decrease with temperature. (c) G as
a function of 1/T at three positions in VBG indicated by arrows in (b). Solid lines
are fits to the data according to Eq. (6.1).

For single quantum dots, the evolution of the peak shape was explained by
the contributions of temperature, single-particle level spacing ∆s and coupling of
the energy levels to the leads [109]. A 1/T -dependence is expected for a strongly
coupled ground state, as observed in Fig. 6.1 (a) (and for the right peak in Fig. 6.1
(b)) for peaks that are particularly sharp at the lowest temperatures. If, however,
an excited state exhibits a stronger coupling to the leads than its ground state,
a temperature increase will facilitate transport until, at ∆s . kBT , both levels
contribute to transport. The latter leads to the recorded amplitude increase and
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the broadening of conductance peaks in Fig. 6.1 (a) (and for the left peak in Fig.
6.1 (b)).

The thermal activation of G in the conductance valleys gives insight into the
transport mechanisms. Figure 6.1 (c) displays the conductance as a function of 1/T
for three representative back gate values (marked with black arrows in Fig. 6.1 (b)).
In this Arrhenius-type plot, the curves show a branch with a linear slope for the
higher temperatures (T & 3K) and a branch with almost constant value of G at
lower T . The activation above the threshold temperature is linked to the energy
needed to induce transport through the system. Empirically, the data can be fitted
to

G(T ) = G0 exp

(
− Ea

kBT

)
+Goff (6.1)

with the free parameters G0 being a prefactor quantifying the high-T limit of G, Ea

being the activation energy and Goff being a constant offset whose meaning will be
discussed below. The solid lines in Fig. 6.1 (c) are the resulting fits and show that
the data (diamond shaped markers in Fig. 6.1 (c)) can be reproduced very well with
this empirical law.

A physical motivation for Eq. (6.1) is found by reproducing the peak shape of the
Coulomb blockade resonances considering both thermal and coupling broadening as
depicted in the inset of Fig. 6.1 (a). The width of the peaks is resembled well by the
derivative of the Fermi function at a given temperature. A large discrepancy is found,
however, for the tails of the peak where the thermal broadening underestimates the
conductance considerably. In order to obtain higher values for the conductance away
from the resonances, the Fermi function is convoluted with a Lorentzian distribution
function. With this additional contribution the coupling of the energy levels to the
leads is taken into account. The tail of the Lorentzian, and hence the constant Goff

in Eq. (6.1) can be interpreted as describing cotunneling processes in the system at
the lowest temperatures.

To motivate equation (6.1), the low-temperature limit of the Fermi distribution,
Ec = 2Ea � kBT , has to be considered, which reads

df(E)

dE
∝ G(T ) ∝ cosh−2

(
Ea

2kBT

)
⇒ G(T ) ∝ exp

(
− Ea

kBT

)
. (6.2)

Note that the maximum activation energy Ea for transport is half the charging
energy Ec describing the spacing between two energy levels of a localized island.
The pre-factor, G0, specifies the conductance value at high temperatures where the
exponential term in Eq. (6.2) approaches unity. It contains contributions of various
transport mechanisms which cannot be quantified easily. Finally, cotunneling of
charge carriers results in a constant background, Goff , which has to be added to Eq.
(6.2). Hence, the application of Eq. (6.1) for fitting the experimental data is well
motivated.
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The three fitting parameters Ea, G0 and Goff can be determined for each back
gate voltage to obtain their specific energy dependence. Meaningful values are ob-
tained for those back gate values where G covers more than one order of magnitude
as a function of T . The results are shown in Figs. 6.2 (a) and (b). Due to the given
criterion for the analysis an evaluation at the edge of the transport gap as well as
around VBG = -1.25 V was not possible.

We start with discussing the high-temperature activated behavior found in the
data. The activation energies Ea(VBG) peak in the middle between neighboring
conductance resonances (Fig. 6.2 (a)). On the other hand, pronounced dips in
the activation energies arise which coincide with conductance peaks. In-between,
a linear dependence on gate voltage is observed as is characteristic for Coulomb
blockade diamonds. Additionally, the largest 2Ea values are 10 to 20 meV. This
energy scale is of the order of typical charging energies Ec of this device determined
from the finite-bias spectroscopy in Fig. 5.5. As visualized in Fig. 6.2 (c), a
more careful comparison shows that the activation energy resembles the measured
Coulomb diamond boundaries remarkably well. Due to thermal cycling in-between
the diamond and the temperature measurement, some shifts are visible in the spectra
if the two energy scales are plotted on top of each other over a large gate voltage
range. The finding that the peak values of 2Ea in the valleys between conductance
resonances are identical to the charging energy Ec extracted from Coulomb diamonds
is a central result of this experiment.

We can reconstruct Coulomb diamonds from the activation energy by mirroring
Ea(VBG) at the voltage axis and inserting lines along the linear slopes in Ea. The
insets of Fig. 6.2 (a) displays two qualitatively different regions in back gate volt-
age. In the left graph adjacent diamonds touch each other in one point at zero bias.
Their size is similar and the flanks have the same slopes. For this back gate voltage
range the same observations are made for the boundaries of Coulomb blockade dia-
monds measured in finite-bias spectroscopy. Such a behavior is characteristic for a
single quantum dot where levels are filled sequently. In the region under discussion,
transport is therefore dominated by only one localized island. Since the charging
happens from the (temperature broadened) leads, that are coupled to the island, the
corresponding maximum 2Ea and Ec have to be interpreted as the on-site charging
energy of this localized site. Its diameter corresponds roughly to the ribbon width
when estimating the size of the puddle from Ec by a comparison to data taken on
quantum dots.

The temperature dependence of the conductance resonances between these dia-
monds exhibits a monotonic increase (see Fig. 6.1 (a)). As discussed before, this is
expected for multilevel transport [109].

As a second regime we chose a back gate voltage in Fig. 5.5 around which
the regions of suppressed current are connected to each other. The right inset in
Fig. 6.2 (a) shows the corresponding reconstruction of Coulomb diamonds from Ea,
where diamonds overlap and the size as well as the back gate dependence of Ea vary
strongly in neighboring diamonds. Taking this behavior as an indication for the
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participation of several dots in transport, we now have to attribute 2Ea and Ec to
both on-site and inter-site charging energies. Stochastic Coulomb blockade describes
such a phenomenon, where transmission through a small number of quantum dots
is considered.

Next we proceed with a discussion of the low-temperature conductance repre-
sented by Goff in Eq. (6.1). As shown in the derivation of Eq. (6.2) we attribute Goff

to cotunneling processes that determine the conductance value before thermal acti-
vation sets in. We can do a refined analysis of the low-temperature background by
fitting the low-T data between resonances to the expression Glow ∝ β(T 2 +T 2

0 ) [110].
We find that the data can be well described by this expression. Fig. 6.2 (b) shows
that the conductance spectrum taken at the lowest temperature is indeed reflected
by the extracted cotunneling background. The finding of cotunneling transport sup-
ports the previous statement that only few islands are involved in transport since
cotunneling becomes suppressed as the number of localized states increases.

We now discuss the behavior of the prefactor G0 in Eq. (6.1). It extrapolates the
conductance for kBT � Ea and hence represents the high-temperature conductance.
The order of magnitude of G0 is between 0.1 and 1 in units of e2/h. Similar to Ea

it is strongly anti-correlated with the conductance at the lowest temperature as
illustrated in Fig. 6.2 (b). The correlation between Ea and G0 in conductance
valleys is visualized in Fig. 6.2 (d). Clearly, the G0(Ea) plot consists of discrete
branches with varying curvature/slope. Each color-coded branch corresponds to a
peak of Ea in the back gate spectrum. The ratio of G0 to Ea decreases as the pair
originates from a back gate value closer to the center of the transport gap.

The picture of transport we present here does not require but does not exclude
either the contribution of phonons inside the system. Activation may take place in
the leads from which the localized puddles get charged via smearing of the Fermi
function. It is unclear whether phonons in the ribbon get important for transport
at elevated temperatures. The origin of the correlation between Ea and G0 remains
to be understood but may be linked to the role of phonons.

In summary, the interpretation of the finite-bias measurements presented in chap-
ter 5.3.2 and the analysis of the thermal activation measurements arrive at the same
conclusions: Charge transport in graphene nanoribbons is dominated by mainly one
or a few puddles arranged in series. Although the details depend on the meso-
scopic arrangements within the system, carrier transmission can be understood in a
single-particle picture including Coulomb blockade effects.
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Figure 6.2: Back gate dependence of fitting parameters: (a) Ea, (b) Goff and G0.
In (a) and (b) the black solid curve shows G at base temperature. Insets: Coulomb
diamonds reconstructed from Ea for two regimes. (c) Comparison of a Coulomb dia-
mond (representing Ec(VBG)) and 2Ea determined for this VBG-interval. (d) G0(Ea)
for the transport gap. Colored branches indicate G0/Ea pairs that originate from
the same conductance valleys (arrows in (b)).
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6.2 Magnetic field dependence

Studying an electronic system in the presence of a perpendicular magnetic field
allows for the detailed understanding of its properties since the spatial extent of the
electron wave function is changed as an external B-field is tuned. In a semi-classical
picture, this is due to the propagation of charge carriers on cyclotron orbits of radius
rcycl if a Lorentz force acts on them. As a consequence, transport is mainly sensitive
to potential fluctuations of certain length scales in the different regimes. Magneto
transport in graphene nanoribbons was investigated to probe the effect of a magnetic
field on the localized states inside the channel [73, 101].
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Figure 6.3: Differential conductance measurements as a function of source-drain bias
and gate voltage at 0 T (a) and 7 T (b) showing the evolution of the diamonds of
suppressed conductance with increasing magnetic field. The device had a width of
55 nm and a length of 200 nm and was measured at T = 1.7 K.

Figure 6.3 (a) and (b) show finite-bias measurements of a graphene nanoribbon
of dimensions W = 55 nm and L = 200 nm at magnetic fields B = 0 T and 7
T. Coulomb blockade diamonds are visible, indicating the formation of charged
islands inside the ribbon. As the magnetic field is ramped up, the size of these
regions of suppressed conductance shrinks considerably and the over all conductance
is enhanced.

Smaller Coulomb diamonds indicate a decrease of the charging energy Ec and
therefore an increase in island size. In agreement with these findings, temperature
dependent measurements [73, 102] in finite magnetic fields indicated that the energy
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scale relevant for transport, namely Ea, shrinks as well if a finite magnetic field is
applied. Furthermore, the transport gap is diminished since ∆VBG is smaller at
non-zero B-field.

To explain these observations, we compare the dimensions of the nanoribbon with
the magnetic length lB =

√
~/eB. If the ribbon width is smaller than the cyclotron

length W � lB, the electron wave function extends across the whole width and hence
transport is influenced by both edge and bulk disorder. For narrow channels this
condition is fulfilled for low magnetic fields. As B gets larger the magnetic length
falls below the system dimensions and the effect of both the quantum confinement
and the edges becomes less relevant for transport [101]. Here, the magnetic length
exceeds the ribbon size W = 55 nm by approximately 10 nm for a magnetic field of
1 T since lB ≈ 65 nm. In contrast, at the maximum field of B = 7 T the cyclotron
length is lB ≈ 25 nm, meaning the orbit fits well inside the ribbon.

A contrary effect of the applied magnetic field is that the localization of the wave
function leads to smaller wave function overlap and hence smaller tunneling coupling
between neighboring puddles. As a consequence, the conductance is reduced as the
magnetic field is increased.

The two contributions are therefore expected to compete in nanoribbons. In the
data presented here in Fig. 6.3, the reduced backscattering appears to be dominating
causing the increase of conductance. Following this observation, it is suggested [111–
113], that such a system eventually undergoes a semiconductor-metal transition at
high magnetic fields. The data presented in Fig. 6.3 are in good agreement with
this explanation and imply that the ribbon width is a good estimate for the size of
the localized states.

Following the reasoning of Ref. 73, the enhanced conductance originates from
time reversal symmetry breaking in a finite magnetic field [114, 115]. The magnetic
flux through the area occupied by a localized state has to be comparable to a flux
quantum h/e in order to break time reversal symmetry. Measurements of the B-
field dependent conductance allow one to extract a size estimate for the localized
sites. The obtained value for the size of the localized states is again comparable to
the ribbon width [73] and hence, magnetic field spectroscopy is providing yet more
evidence for the spatial extent of the charged islands in graphene nanoribbons.

However, as noted in Ref. 73, Landau level quantization should be observable
at high magnetic fields where W � lB. Under these conditions, edge channels are
expected to be formed each contributing to transport with e2/h. Measurements on
wide channels (W & 75 nm) have indeed shown indications of conductance quanti-
zation (see Fig. 6.4). Conductance data for narrower ribbons, on the other hand,
did not exhibit this feature. Possibly, scattering events between transport channels
located at opposite edges, inhibit the transmission for narrow ribbons. As the edge
channels are separated further for wider nanoribbons, scattering is less likely and
Landau level formation may be recorded in conductance measurements.

An example for a device in which the required conditions are fulfilled is presented
in the following. The nanoribbon was fabricated in a single layer graphene flake and
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Figure 6.4: (a) Differential conductance measurements as a function of back gate
voltage and applied magnetic field showing the development of quantized conduc-
tance plateaus with increasing magnetic field. (a) Numerical derivative of the data
in (a) with respect to VBG. For both (a) and (b) the expected position of the filling
factors for single layer graphene is indicated by the fan-like lines. (c) Differential
conductance G versus charge carrier density at B = 0 T. (d) Quantized differential
conductance G versus charge carrier density at B = 7 T. The y-grid gives the posi-
tion of the filling factors ν for this B-field. (e) Zoom into the region indicated by a
black box in (b). The device has a width of 122 nm and length of 100 nm and was
measured at T = 1.6 K.

was 100 nm long and 122 nm wide. In Fig. 6.4 (a) the evolution of the conductance
in B-field is plotted as a function of applied back gate voltage VBG. To get a better
feeling for the magnitudes plotted in this two-dimensional graph, we first look at
two cuts at a constant magnetic field.

For zero magnetic field (see Fig. 6.4 (c)), the conductance is suppressed between
0 and 3 V. Outside the transport gap it increases monotonously to values of up to
8e2/h as the density is increased to n ≈ 2 ·1012 cm−2. The curve changes drastically,
though, when the same trace is recorded at the maximum magnetic field of B = 7
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T, as is visible in Fig. 6.4 (d). Here, the conductance rises in an oscillatory manner
away from the charge neutrality point. Local minima at G = e2/h, 3e2/h and 5e2/h
are observed, which are connected to the adjacent one by a local maximum in the
conductance. A periodicity is apparent in the density dependence of G, pointing
towards the presence of quantized energy levels. The vertical dashed lines in the
plot mark the density values for the filling factors ν as they are expected for single
layer graphene according to the plate capacitor model. Indeed, close to each of those
filling factors, a local minimum is reached. This evidences that the DOS condenses
into Landau levels and the minima can be interpreted as being the conductance
plateaus expected for the quantum Hall effect.

In Fig. 6.4 (a) we now understand the fan-like pattern appearing for B >
2.5 T as the evolution of Landau levels. Following in B-field the point at which
a conductance steps is occurring in this graph, should therefore be equivalent to
moving along lines with constant filling factor ν. The overlaid lines in Fig. 6.4 (a)
resemble the position of Landau levels as a function of magnetic field determined
from the plate capacitor model. Although this model is probably not accurate for
the present device geometry (the lateral extent of the capacitor plate represented by
the ribbon is much smaller than the distance between the two plates), the indicated
Landau levels and the measurement are in good agreement. This is seen even better
in Fig. 6.4 (b) where the derivative of the conductance with respect to the back
gate voltage is plotted. Filling factors up to ν ± 18 are well resolved.

As mentioned, the fan-like pattern is established for B > 2.5 T only. To look into
the transition more closely, a higher resolution measurement of the range marked in
Fig. 6.4 (b) was taken and is displayed in panel (e) of the same figure. A number
of states (mainly in the left part of the graph) are observable that do not show a
dispersion in B-field. Other states (mostly away from the charge neutrality point)
wiggle around as the magnetic field is ramped up, merge with others and/or split.
Therefore it is difficult to follow one particular state all the way from low magnetic
fields to the quantum Hall regime. We attribute the B-field dependence for B <
2.5 T to the fact that transport is governed by localized states that are hardly
influenced by the flux penetrating the graphene layer. Only at high fields when well
separated Landau levels develop, the conductance of the nanoribbon is dominated
by transmission through edge channels.

We now comment on the fact that the conductance values are lower than the ones
obtained in measurements on a Hall bar. Instead of being located at half integer
multiples of 4e2/h, the plateaus in Fig. 6.4 (d) take values that are only half of the
ones expected for the respective Landau level. Since all measurements were taken in
a two-probe configuration a contribution of the leads has to be taken into account
for the interpretation of the data. Like for a wide Hall bar, clean edge channels
should be present in the bulk leads. These channels propagate into the constrictions
as well. However, due to the size confinement, charge carriers occupying the higher
Landau levels experience back scattering. Hence the total conductance through the
system drops as is observed in the measurements.
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Altogether, conductance quantization in high magnetic fields was observed in
several nanoribbons with W & 75 nm fabricated both from single- and bilayer
graphene. In the latter ones, however, only the first quantization step was developed
clearly. For single layer, although the effect is getting less pronounced, quantization
was still recorded for the ribbon with W = 75 nm and L = 200 nm introduced
earlier in this chapter. The fact that the plateaus get smeared out indicates that
the formed transport channels extend approximately W/2 from the edge into the
bulk of the ribbon and scatter into each other. Detailed width dependent studies of
the visibility of the QHE in nanoribbons may therefore provide a method of probing
the spatial extent of edge channels in the quantum Hall regime.

6.3 Side gate influence

Changing the potential landscape locally helps us to understand the spatial arrange-
ment of localized islands inside the narrow channels. Transport studies on graphene
nanoribbons with two nearby in-plane side gates were carried out. While one of
the side gates (SG1) affected the drain side of the ribbon preferentially, the other
(SG2) acted more on the source side. By tuning the side gate voltage with respect
to the back gate voltage, the conductance resonances inside the transport gap are
shifted in energy according to the coupling of the side gate to the respective localized
state. Assuming that mainly the distance between the gate and the charged puddle
determines the coupling, Coulomb blockade resonances evolving with similar slopes
should originate from the same localized sites.

Typical gate-gate maps are shown in Fig. 6.5 (a) and (b), where SG1 and SG2
were used, respectively, to tune the conductance resonances in the back gate voltage
range 9 V ≤ VBG ≤ 10 V. In each graph, two different slopes for the evolution of
the Coulomb blockade resonances are distinguishable. This finding indicates that
only two localized islands dominate the transmission through the nanoribbon in
the investigated gate regime. The measured device has a length of L = 200 nm
and a width of W = 80 nm. Applying the rule of thumb for the number of puddles
(p ≈ L/W ) as introduced in chapter 5.3.6 for a ribbon of these dimension, yields two
to three localized islands and hence agrees well with the result of this measurement.

Relative lever arms α can be extracted from the slopes in Fig. 6.5 (a) and
(b) which characterize the strength of the capacitive coupling of the side gate with
respect to the back gate. The values determined from Fig. 6.5 (a) and (b) are
αSG1 ≈ 0.74 and 0.31 for SG1 and αSG2 ≈ 0.78 and 1.94 for SG2. A rough estimate
for the position of the respective localized state is possible with these numbers. As
the lever arm ≈ 0.75 appears in both plots, the corresponding puddle is likely sitting
in between the two side gates or in other words in the center of the ribbon. The
other resonance is tuned only weakly by SG1 (αSG1 ≈ 0.31) but strongly by SG2
(αSG2 ≈ 1.94), which suggests that the corresponding localized state is located much
closer to SG2 than to SG1. Additionally, it couples better to the side gate than to

56



6.3. Side gate influence

(a)

(b)

(c)

−5 0 5 10 15 200

0.5

1

1.5

2

V
BG

 (V)
 

 

α
SG1

α
SG2

V S
G

1 (
V)

 

 

0
0.2

0.4

0.6
0.8

1

VBG (V)

 

 

9 9.2 9.4 9.6 9.8 10

G
 (e

2/h)V S
G

2 (
V)

0
0.2

0.4

0.6
0.8

1
VBG (V)

9 9.2 9.4 9.6 9.8 10

G
 (e

2/h)

0

0.05

0.10

0.15
0.74

0.31

0.78

1.94
0

0.05

0.10

0.15 α
   

 (
a.

u.
)

re
l

Figure 6.5: Conductance G as a function of side gate voltage VG1 in (a) and VG2 in
(b) for the back gate voltage 9 V ≤ VBG ≤ 10 V inside the transport gap. Black
lines indicate the evolution of Coulomb blockade resonances and are labeled with
the corresponding relative lever arms. (c) Relative lever arms α for different back
gate configurations inside the transport gap extracted from maps similar to (a) and
(b). The exemplary error bars arise from the fitting imprecision.

the back gate indicating that the back gate influence is screened relative to the side
gate influence.

Measurements like those shown in Fig. 6.5 (a) and (b) were performed for sev-
eral back gate ranges inside the transport gap and the corresponding lever arms
were extracted (see Fig. 6.5 (c)). Generally, several slopes were recorded in all
regimes, however never more than four different ones. Furthermore, the discussed
anti-correlation of the relative lever arms originating from different side gates is ob-
served in most back gate voltage ranges as well. For the analysis, several Coulomb
resonances with similar slopes were fitted to extract the relative lever arms. Since
the evolution of such resonances in the gate map is not perfectly linear, a dispersion
around a mean value is obtained. This error is relatively large, as it can be seen
from the indicated error bars in Fig. 6.5 (c). Nevertheless, the varying values for α
inside the transport gap illustrate the modulation of the coupling of distinct states
to the gates. This effect may be explained by puddles rearranging themselves inside
the constriction. Along with the tuning of the back gate voltage comes a change in
the potential landscape and hence in puddle size and position - some get larger and
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even merge with neighboring ones, others fall into smaller islands.
In conclusion, a small number of puddles along the nanoribbon influences the

transmission. The exact number and arrangement of these islands is changed as
a function of Fermi energy as reasoned from the lever arm modulation. Hence,
the experiments on side gated graphene nanoribbons support statements about the
mesoscopic character of the system made earlier in this chapter.

6.4 Thermal cycling

In the previous sections transport properties were interpreted as the finger print of
disorder in the graphene nanoribbons that were investigated. However, the micro-
scopic origin of this disorder based on experimental results was not discussed so far.
Two contributions - edge and bulk disorder - were identified in chapter 5.3.3 but not
further specified.

In order to shine light on the character of these influences, conductance spectra
of a nanoribbon were measured at T = 1.25 K before and after warming it up to
room temperature. The recorded data is shown in Fig. 6.6 where the conductance
inside the transport gap is plotted as a function of applied back gate voltage.
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Figure 6.6: Conductance G as a function of applied back gate voltage VBG before
and after warming the sample to room temperature. The data shown was measured
for a nanoribbon with length L = 200 nm and width W = 75 nm at a temperature
of T = 1.25 K. A DC bias voltage Vbias = 500 µV was applied and the conductance
was recorded using standard lock-in techniques at a frequency of 13 Hz and an AC
bias modulation of Vmod = 50 µV.

Both measurements exhibit a region of suppressed current in the gate voltage
interval -1.5 V ≤ VBG ≤ 1 V and the conductance resonances show the same order
of magnitude in this regime. Some Coulomb blockade resonances even fall on top
of each other. As the gate voltage is moved away from the center of the gap, the
conductance spectra differ more. In contrast, some main features like the small
peak spacing at positive gate voltages and the larger spacing for negative VBG are
preserved.
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These observations indicate that the potential landscape that causes the con-
ductance fluctuations at low temperatures undergoes a significant change at T ≈
300 K. The thermal energy associated with room temperature is low compared to
energies necessary to reconstruct the graphene lattice or to break covalent bonds.
Hence, disorder is not only caused by the disordered edge structure of the graphene
lattice, nor is it only some bulk disorder due to lattice imperfections, rippling, or
other structural properties. Imperfections that can rearrange at room temperature,
on the other hand, are charge traps in the SiO2, adsorbates and debris on the sur-
face, etc. The here discussed measurements therefore show that the environment
(e.g. substrate, processing residues) has an important influence on the transport
characteristics in graphene nanoribbons.

6.5 Conclusion and outlook

All structures presented in the last two chapters were fabricated on Si/SiO2 substrate
and carved into a graphene sheet by means of dry etching. The main conclusion
of these chapters is, that the mesoscopic character of transport through graphene
nanoribbons originates from disorder at both the edges and in the bulk. As discussed
earlier, environmental effects like those coming from the substrate or adsorbates on
the graphene surface are likely to have a large impact on the potential landscape.
As a consequence of the strong disorder, the transmission tunability can be strongly
non-monotonic due to conductance resonances in the constriction. Since narrow
and short constrictions serve as tunneling barriers in nanoscale devices, the reduc-
tion of bulk disorder and the construction of well controlled edges are desirable.
Several approaches have been realized recently to improve on these issues, namely
(i) the bottom-up growth of graphene nanoribbons from precursors containing ben-
zene rings [116] and (ii) the fabrication of suspended nanoribbons showing quantized
conductance at zero magnetic field [75].

The results of these very recent studies give hope for graphene electronics since
the influence of bulk and edge disorder is potentially negligible in these systems.
However, both the bottom-up growth as well as the suspended graphene come along
with some drawbacks as well. The bottom-up ribbons are grown on a conductive
substrate and need to be transferred to an insulator, and the suspended ribbons are
extremely fragile (in addition they are very small so far, so processing, contacting
etc. is not trivial).

Substrate supported nanostructures are preferable due to their better stability.
It was shown [31], that hexagonal boron nitride (BN) as a supporting material main-
tains high electronic quality of graphene sheets and is hence a promising substrate
for devices. However, it remains to be investigated how the etched edges influence
transport in nanoribbons built on a BN substrate.

Another alternative is the use of bilayer instead of single layer graphene and will
be discussed in chapter 8. Since a real band gap can be opened in this system as a
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Chapter 6. Graphene nanoribbons - further experiments for more detailed
understanding

perpendicular electric field is applied, electrostatic confinement may be possible like
in GaAs devices. The apparent advantage of this method would be the smooth con-
finement potential in contrast to rough edges in to date devices. The parabolic band
structure of bilayer graphene may change the over all properties of the bulk material
as well as compared to the linear dispersion of single layer graphene. For nanos-
tructures, in which the confinement induces quantized energy levels, the concept of
energy bands is not valid however and therefore poses no limitation.

In conclusion, a graphene nanostructure with low disorder and high tunability is
most likely achieved by using a crystalline substrate, which matches the graphene
lattice structure well (e.g. BN), and avoiding edge disorder induced in the patterning
process.
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Chapter 7

Bilayer graphene quantum dots

In the previous chapters charge transport was restricted to one dimension in nar-
row channels. The main result of the studies carried out on graphene nanoribbons
was that they consist of a chain of charged islands along which charge carriers are
transported. Whereas those localized states develop randomly due to underlying
potential, we will discuss measurements on an intentionally formed island in this
chapter. Such a structure, that leads to the confinement of charge carriers in all
three dimensions, is termed quantum dot (QD), since quantum mechanical effects
are getting more relevant as the electronic wave function is localized.

Individual charge carriers that are trapped inside the QD are well shielded from
environmental perturbations and hence their properties can be investigated sepa-
rately. In graphene a number of experiments have demonstrated the possibility to
realize QDs by etching the graphene flake into the desired shape. In the classical
regime electron-electron interaction leads to Coulomb blockade (see chapter 5.3.2)
and enabled e.g. time-resolved measurements of electronic transport [117]. As the
quantization into quantum mechanical energy levels was achieved, this energy spec-
trum could be probed and individual spin states were read out [118]. However, the
larger the number of charge carriers in the system is, the more complex does its
energy spectrum get. It is hence desirable to reach the few electron or hole limit.
Due to the continuous transition from electron to holes in single layer graphene, the
location of the charge neutrality point is difficult [107].

Bilayer graphene, on the other hand, may offer an appropriate solution to this
limitations since an energy gap, much like in a conventional semiconductor, should
separate the last hole from the first electron. In the following we will first present
tight-binding calculations and later compare those to experiments on a top gated
bilayer graphene QD.

7.1 Predictions for an ideal quantum dot

Numerical tight-binding calculations were carried out on a quadratic bilayer gra-
phene island of edge length 60 nm by F. Libisch [private communication]. For the
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simulations, up to the third nearest neighbor was considered within the sheet and in
the second layer the nearest neighbor was taken into account. The two layers were
AB-stacked and the potential variations at the dot boundaries were slow compared
to the lattice constant. Setting this boundary condition, a smooth edge is modeled.
Similar simulations were performed in Ref. 119 and more details on the simulation
method can be found there.
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Figure 7.1: Numerical tight-binding calculations of the eigenenergies of a bilayer
graphene quantum dot (a) Magnetic field dependence assuming a band gap of Egap

= 4 meV. (b) Dependence on the potential difference Ediff between the two layers
(B = 0 T). The inset shows the energy level spectrum as it is oriented in the gate-
gate plane used for the experiments. The grey colored areas mark the expected
experimentally accessible range.

A quantum dot exhibits quantized energy levels due to confinement at zero mag-
netic field. The spacing between those energy levels is determined by the underlying
density of states. For bilayer graphene, the DOS is constant in energy due to its
parabolic dispersion relation. As a consequence, the energy levels will be equally
spaced. The orbital electronic states are influence by a finite magnetic field applied
perpendicular to the graphene plane. At high fields, the density of states condenses
into discrete Landau levels. Their position in energy reflects the carrier characteris-
tics and is a distinctive fingerprint for bilayer graphene.

Figure 7.1 (a) shows the evolution of the energy levels in a magnetic field as
obtained from numerical calculations. The gap in the spectrum around EF = 0
represents an assumed band gap of Egap = 4 meV due to a potential difference
between the two layers imposed in the calculation. This value is compatible with
the gap size determined from transport measurements on bulk double gated graphene
bilayer devices as presented in chapter 3.3.2. At low fields, a complex pattern of
peaks wiggling in B-field is observed, which eventually move towards one of the LLs
indicated by the respective number in Fig. 7.1 (a).

The range available in the experiments presented in the following is marked by
the grey box in the graph. Although the simulation does not include the charging
energy separating each state from its neighbor, the main features are pronounced
enough to be observable in transport measurements. Namely these are the bending
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7.2. Sample fabrication

of peaks with EF < 25 meV towards the n = 0 LL for high magnetic fields and the
chaotic peak evolution for the remaining part of the spectrum.

Tuning the potential difference Ediff between the two layers to a finite value
causes a splitting of the electronic bands at EF = 0 and hence the electronic states
need to move to higher absolute values of EF. Panel (b) of Fig. 7.1 displays the
simulation for an applied perpendicular E-field where this trend is clearly visible.

Again the grey colored area indicates the parameter range which can be covered.
Here, the maximum achievable potential difference Ediff is assumed to be the same
as for bulk devices. This assumption remains to be scrutinized in the following.
Characteristics of the spectrum in the experimental range are the different slopes
of adjacent peaks. Whereas the energetically high lying states exhibit almost no
energy dependence as Ediff is increased, a significant energy gain or loss is observed
for the low lying states. As a result, the peak-to-peak spacing is expected to vary
as a function of EF, which should be detectable in experiments besides the change
of peak slopes.

The numerical calculations presented here provide a number of signatures to
be looked for in experiments. Since the simulations considered the graphene to be
perfectly clean, doubts may arise about the relevance of those predictions. It should
be noted, however, that the data obtained on a single layer dot in Ref. 107 could
successfully be explained by a model assuming zero disorder potential.

7.2 Sample fabrication

Applying the processing steps introduced in chapter 5.2 the QD device was fabricated
from a bilayer graphene flake deposited onto SiO2 substrate. Two micrographs in
Fig. 7.2 display the device layout. The resulting island had a size of 85×50 nm2

and the constrictions that constitute the tunneling barriers were measured to be 20
nm wide. A nearby charge detector had a width of 40 nm. Measurements on the
latter will however not be discussed here.

The top gate dielectric used for this device is commercially available under the
name CytopTM and is a fluoropolymer used mainly for coatings and in organic thin
film field effect transistors [120, 121]. It has a relative permittivity of ε ≈ 2.1-2.2,
withstands high electric fields and has been proven to be highly electrically stable.
After spin coating the chip with the polymer (see Appendix E for parameters), a
local top gate was defined by e-beam lithography followed by metal evaporation (2
nm Ti/ 40 nm Au) and lift-off. Since CytopTM is highly water repellant, a 5 nm thick
Cr-layer was evaporated prior to the application of the e-beam resist and removed
in an etching step after patterning the top gate. In Fig. 7.2 (b) the location of the
TG electrode is depicted by the red dashed contour. It covers not only the island
itself but also the constrictions and the charge detector.

A first set of data was recorded in a dilution refrigerator at base temperature of
T = 120 mK to characterize the sample before adding a top gate (TG). Although
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(a) (b)
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Figure 7.2: AFM images showing the sample before the top gate was processed (a)
Micrograph of the complete flake where the white parts are the metallic contacts,
the light grey part is the graphene flake and the dark lines show the region where
trenches were etched into the graphene. (b) Zoom into (a) where the island is located
in the middle of the image and is connected to source (S) and drain (D). A number
of gates (left gate (LG), middle gate (MG), right gate (RG) and charge detector
gate (CDG)) is located around the quantum dot and a charge detector (CD) is lying
nearby. The area marked by the red dashed line was in a second step covered by a
top gate electrode (TG).

no explicit presentation of these data is provided in this chapter, a comparison of
important parameters will be done.

7.3 Sample characterization

CytopTM has previously been used as a dielectric at room temperature only [120,
121]. Experiments at 4 K were therefore carried out in a dip stick setup to test the
material stability at cryogenic temperatures.

The recorded back gate dependence is presented in Fig. 7.3 (a). Within the
measured gate range the current is mostly suppressed and only few spots exhibiting
higher transmission are present within the transport gap. This behavior is quali-
tatively similar to what was observed in measurements taken on the same device
before the TG was added, as shown by the blue trace in the same figure. We can
therefore remark that the size of the transport gap in back gate direction overcomes
the values for nanoribbons determined in chapter 5.3.5 by far.

Since transport is mainly dominated by the constrictions, as they are the narrow-
est points in the structure, two points can be mentioned to provide an explanation
for these large values. Firstly, the ribbons used here were only half as wide as the
narrowest ones investigated in chapter 5.3.5. Extrapolating the width dependence
found there, a transport gap ∆VBG > 30 V is to be expected. Secondly, the two con-
strictions constituting the tunneling barriers for the island are not necessarily doped
by the same amount and hence their transport gaps may be shifted with respect to
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Figure 7.3: (a) Back gate characteristics before (blue trace) and after (red trace)
the top gate was patterned. Both curves were recorded with a bias of Vbias = 5 mV
at 120 mK and 4 K, respectively. (b) Top gate dependence for VBG = 0. The two
sweeps were recorded at 4 K one after the other with Vbias = 5 mV. Black curve is
shifted by + 50 pA for clarity. (c) Two-dimensional maps for left: BG vs. TG (VLG

= VMG = 0) , middle: BG vs. LG (VTG = 0.7 V, VMG = 0) and right: BG vs. MG
(VTG = 0.7 V, VLG = 0). All measurements were taken at 4 K with Vbias = 5 mV.

each other in gate voltage. Since the transmission is dominated by the constriction,
which is pinched-off the most, the gap in back gate space gets effectively larger. At
the gate voltage values that show higher over-all current (e.g. around VTG = 0.8 V
and 1.25 V), the coupling to the leads is rather good and hence more charge carriers
can pass through the structure.

Zooming into the gapped region but now sweeping the voltage applied to the
top gate electrode while keeping VBG = 0, illustrates the remarkable stability of the
device. The two traces in Fig. 7.3 (b), taken one after the other, fall perfectly on
top of each other. They reveal a number of Coulomb blockade resonances that are
mostly equally spaced as commonly observed for single quantum dots. For a brief
introduction to the transport mechanisms in the regime of Coulomb blockade we
refer to chapter 5.3.2.

From the size of the corresponding Coulomb blockade diamonds (not shown here)
a charging energy of Ec ≈ 8 meV was extracted. Representative measurements are
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displayed in Fig. 7.5 (b) and 7.7 (a) where diamonds in different gate regimes were
recorded. In chapter 5.3.6 the correlation between the charging energy and the size
of the quantum dot was discussed. The data point extracted from this device would
be located well below the data for single layer QDs represented in Fig. 5.9, meaning
that its capacitance is sufficiently larger. This increased shielding can be explained
by the additional metallic reservoir induced by the top gate electrode. Indeed the
maximum size of Coulomb blockade diamonds measured before adding the TG was
Ec ≈15 meV. This value is comparable to similar data obtained with single layer
quantum dots.

Next we discuss the tunability of the carrier number on the island. Four gates
could be used to shift the energy levels inside the QD. To determine the relative
lever arms of these gates, the current through the device was recorded as a function
of two gates at a time. Fig. 7.3 (c) displays the resulting two-dimensional plots
where the BG was tuned with respect to the TG, the left gate (LG) and the middle
gate (MG), respectively. In all plots a number of resonances running parallel to each
other are visible. As mentioned before, the peak amplitude is modulated in all three
cases as the tunneling barriers are more or less transparent.

without TG at 120 mK with TG at 4 K with TG at 120 mK

αLG/BG
0.8∗

0.25 0.31

αMG/BG 0.67 0.66

αTG/BG - 6 8.7

Table 7.1: List of relative lever arms for the different gates with respect to the back
gate. Compared are the values before and after the TG was added.
∗ Since the left gate and the middle gate were short-circuited in the first measure-
ments (without TG), only one value exists for both.

Besides these similarities the apparent difference between the graphs is the slope
of the resonances or, in other words, the relative lever arm of the respective gate.
A direct comparison of the lever arms is given in Tab. 7.1. Since the TG is located
directly above the islands with a distance of only ≈25 nm, it provides the strongest
tunability on the island. In contrast to this vertical arrangement, the side gates
exert an electric field only laterally on the island. Hence, more voltage needs to be
applied to change the number of charge carriers on the QD. Additionally, the gap
between the middle gate and the island is >30 nm and the left gate is even >50
nm away. The obtained hierarchy of the relative lever arms can therefore well be
explained by the sample design.

Furthermore, the previously discussed decrease of the charging energy Ec after
adding the TG as compared to the device without, is resembled in the change of the
relative leverarms. The influence of the middle gate on the dot levels was consid-
erably larger before the additional electrode was fabricated, making the enhanced
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shielding due to the metallic finger gate apparent.

7.4 Electric field dependence

As discussed in the introduction of this chapter, opening a band gap in a bilayer
graphene quantum dot would allow for the unambiguous separation of holes and
electrons. According to the tight-binding calculation for a bilayer graphene quantum
dot in a perpendicular electric field (see Fig. 7.1 (b)), the electronic eigenstates drift
to higher absolute energies values as the layer symmetry is broken. Therefore, in
this section, the evolution of the QD energy levels in a perpendicular electric field
will be discussed.

All measurements were taken in a dilution refrigerator at the base temperature of
120 mK. However, the electron temperature extracted from fits to Coulomb blockade
resonances assuming multilevel transport, resulted in Tel ≈ 1-2 K. Similarly high
values were obtained also for the measurements before the TG was added, meaning
that the large discrepancy between base temperature and electronic temperature
does not originate from the additional material. Depending on the regime it either
stems from a small tunneling coupling to the leads, which prevents cooling of the
island via thermal equilibration to the reservoirs, or from a large tunneling coupling,
which causes the peaks to be coupling-broadened.

To get a feeling for the location of the charge neutrality point in gate space, both
BG- and TG-characteristics were recorded at room temperature where the transport
gap is not developed and the structure is transparent for charge carriers. Leaving
the respective other gate grounded, the obtained values were VD,BG ≈ +8 V and
VD,TG ≈ +1 V. Using the relative leverarm given in Tab. 7.1, these two values can
be converted into each other as it is expected from two gates both tuning the very
region, which is dominating transport through the structure. Throughout the low-
temperature measurements, we focus on a gate range for BG and TG around the
determined charge neutrality point.

For the E-field dependence, we split the investigated TG-range (1.4 V < VTG <
6.1 V) into intervals of 1.5 V. By sweeping through such an interval and then stepping
the BG-voltage from -30 V to +30 V, we cover all accessible electric field values.
Within each TG section a number of Coulomb resonances is visible. In order to
track the same resonances through the whole BG-range, we compensate for the shift
of the peaks induced by the BG according to VTG,eff = VTG − 0.11 · (VBG + 30V ).
Further, to avoid misinterpretation due to drift in time, we step the BG both up
and down. Except for unavoidable charge rearrangements, the peak evolution was
found to be reproducible.

A representative segment, measured as described, is shown in Fig. 7.4 (a). The
evolution of the approximately 30 Coulomb blockade peaks can be followed over large
ranges in BG direction. A number of horizontal lines within the graph indicates the
occurrence of charge rearrangements as the back gate voltage is stepped. It should
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Figure 7.4: (a) Representative segment of Coulomb blockade peaks as a function of
applied VBG and VTG,eff (see text for the definition of the latter). The bias voltage
between source and drain was Vbias = 3 mV. (b) Extracted peak-to-peak spacing for
cuts at constant VBG in measurements like in (a) but for a larger range of VTG,eff .
(c) Determined maxima (circles) and fitted slopes (grey lines) for the Coulomb
resonances outlined by the dashed box in (a). For each peak in the VTG,eff interval,
the respective slope value obtained from the fit is plotted in (d). The dashed line
indicates the mean value of Speak.

be noted however, that the small number of such charging events is another evidence
for the striking electronic stability of the sample. Another set of lines with finite
slopes is observed (e.g. in the range 10 V < VBG < 30 V and 4.6 V < VTG,eff < 5 V)
causing abrupt jumps in the peak spectrum. These can be attributed to localized
states that are less strongly tuned by the TG than the QD resonances but still
influence the transport.

Moreover, within the large BG voltage range examined here, the transmission
amplitude of a single resonance can change by up to two orders of magnitude. This
observation illustrates convincingly that the transmission sensitively depends on
the specific gate configuration. Depending on the specific level spectrum within the
constrictions and the dot, the coupling will be weaker or stronger.

To analyze the data, two approaches were chosen which we will present now. In
the first case, we extract the peak-to-peak spacing of neighboring Coulomb blockade
resonances at different values of VBG. For an energy gap to be opened, the positive
electronic eigenstates of the graphene quantum dot need to diverge from the negative
ones and hence an increase (at the charge neutrality point) or a squeezing (for higher
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charge carrier numbers) of the peak to peak spacing should be detectable in a perfect
QD. The variations in peak-to-peak spacing originate from the spectrum of the single
particle level spacing ∆s. Hence, ∆s needs to be sufficiently large compared to the
charging energy to allow for the fluctuations to be visible in such an analysis. As
will be discussed later, ∆s = 1.2 meV in the present devices, which is 15% of Ec and
hence adequate to be detected.

In Figure 7.4 (b) the data obtained for the complete TG-range is plotted (each
trace being vertically offset by 15 mV). Cross-sections at VBG = -30 V, -15 V, 0
V, 15 V and 30 V were analyzed wherever the visibility was sufficient to locate
peak maxima. Since the signal to noise ratio between VTG,eff ≈ 5 V and 5.3 V was
too low for this experiment, the analyzed spectrum is gapped here. In previous
measurements, carried out with higher voltage bias, it was verified, however, that
the peak spectrum is continuous also in this interval and not gapped.

It gets apparent that the analysis results in a constant value of ∆VTG ≈ 25 mV
for most peak-to-peak spacings within the investigated VTG,eff range. This value
corresponds to an energy of 10 meV applying the absolute lever arm αTG ≈ 0.4
determined from Coulomb diamonds measurements. Since the shifts of the energy
levels expected from the tight binding calculations presented in Fig. 7.1 (b) are on
the order of few meV even for very low Ediff , they should hence be observable.

Before discussing possible explanations, we introduce a second way of inspecting
the data. As the energy levels drift apart as a function of applied E-field for gapped
bilayer graphene, they exhibit different slopes according to their energy value with
respect to EF = 0. Therefore, comparing the slopes of neighboring peaks in a specific
interval for Ediff is expected to provide an indication for the location of the charge
neutrality point. At this position, the slopes of energy levels emerging at positive or
negative side would diverge at the vertical asymptote constituted by EF = 0. Since
we investigate the peak evolution in a gate-gate plot and not for Ediff as a function
of EF (see inset of Fig. 7.1 (b) for a visualization), the slopes are not expected to
change sign but their magnitude.

Figure 7.4 (c) illustrates the method applied for the analysis with the help of the
VTG,eff interval shown in panel (a) of the same figure. Within the back gate window
-30V < VBG < -25 V, the extracted maxima belonging to one Coulomb blockade
resonance were fitted with a first order polynomial in order to determine the slope
Speak of the respective peak. As the number of extracted maxima along a resonance
is not always sufficient to allow for a reliable fit, the analysis was not carried out for
all peaks in the spectrum.

Plotting the gained values for Speak as a function of the effective TG voltage
yields the distribution plotted in Fig. 7.4 (d). A rather large scattering of the data
points is observed although care was taken to limit the analysis to well pronounced
peaks. This shows that the movement in E-field of Coulomb blockade peaks indeed
varies significantly. The grey dashed line marks the mean value of the peak slopes
and serves as a guide to the eye to distinguish a change in magnitude of Speak. For
values of VTG,eff > 4.5 V a tendency of decreasing slope can be observed, which
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may be interpreted as a signature for the opening of a gap in the level spectrum.
Due to the imposed restriction for the data included in the analysis, a meaningful
evaluation was not possible for the opposite polarization of the electric field. Such
data could have possibly supported the trend seen in Fig. 7.4 (d) and allow for a
stronger statement.

Next, we give arguments for the discrepancy between the theory and the exper-
iment. The fact that no distinct deviation from the constant peak-to-peak value
is detected in the first analysis and the change in peak slopes is only weakly pro-
nounced, indicates that the opening of a band gap and the accompanying evolution
of the eigenstates is not the dominant process in the performed experiment. As
mentioned in chapter 2, the energy gap obtained in transport measurements in bi-
layer graphene bulk samples deposited on SiO2 is on the order of Egap = 2−5 meV
[42, 43]. In a size confined structure like the QD presented here, the edge to bulk
ratio increases significantly and any edge disorder may lead to an even decreased
Egap. Hence the effect on the eigenstate spectrum would get negligible. The large
value for the transport gap ∆VBG is an additional indication for a large density fluc-
tuation amplitude in the system. However, this parameter does not allow to specify,
whether the disorder is originating from the edges or the bulk.

7.5 Magnetic field dependence

To further shine light on the character of the states probed in the quantum dot, we
place the device in a perpendicular magnetic field and examine the dispersion of the
Coulomb blockade resonances as the magnetic field is tuned. As was done for the
experiment investigating transport in an electric field, the B-field dependence was
recorded in segments for the TG-voltage. Since the back gate voltage was kept at
its maximum value VBG = -30 V, the device is exposed to a displacement field of
-0.22 V/nm < Ddis < -0.27 V/nm, additionally.

Characteristic data is displayed in Fig. 7.5 (a) where the TG window was again
chosen to be located around the position of the charge neutrality point determined
at room temperature. The horizontal lines at which the resonances experience a
sudden shift (e.g. at 5 T for 5 V < VTG < 6.1 V) in gate direction are again due to
charge rearrangements. No data could be recorded for the upper right corner of the
map since we encountered problems with the magnet stability in the measurement
setup.

One of the main features in this graph is that the Coulomb blockade resonances
run almost parallel to each other and hardly move along the gate axis as the magnetic
field is stepped. Qualitatively similar data was recorded in other bilayer graphene
quantum dots both with and without top gate electrodes as well. This observation
is in strong contrast to the behavior of a single layer graphene quantum dot in a
perpendicular magnetic field. As was shown experimentally and theoretically [107],
the electronic eigenstates exhibit a linear dispersion in energy at low B but tend
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Figure 7.5: (a) Current through the QD as a function of B-field and TG-voltage
taken at 120 mK. The back gate was set to -30 V and the applied bias voltage
was Vbias = 3 mV. The dashed lines mark the cross-sections at which the Coulomb
diamonds shown in (b)-(d) were taken.

to merge into Landau levels at high fields. For the 0th LL this implies that single
particle states lying lower in energy need to bend towards higher values to reach
EF = 0 whereas states having higher energies tend to move to lower values. The
therefore required moving of Coulomb resonances in gate direction was well visible
in Ref. 107 and on the order of several 10 meV.

The tight-binding calculations carried out for a bilayer quantum dot using the
same model as for the single layer graphene quantum dot in Ref. 107, were discussed
earlier in this chapter. However, the properties featured by the calculation within the
accessible measurement range are not resembled by the measured data. Whereas
the simulation presented here assumed perfect edges and no bulk disorder, it is
instructive to discuss a study conducted on single layer QDs exhibiting different
types of disorder [119]. It is found that at defects breaking the A-B sublattice
symmetry, states get localized. This is the case for rough edges as well as for certain
types of adsorbates and thus a reasonable scenario for our sample. Since the size of
such states is commonly smaller than the magnetic length lB, they are not influenced
by the external magnetic field.

Although these findings may explain the weak B-field dependence of the inves-
tigated bilayer graphene quantum dots, the microscopic picture is not fully under-
stood. If indeed all probed states are localized, hopping transport would be expected
leading to stochastic Coulomb blockade. This is however not observed here.
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Another possible scenario is related to the fact that transport happens through
multiple levels for almost all gate configurations. Averaging of several single particle
levels could smear out the expected fluctuations and lead to the observed straight
peak evolution.

Some peaks experience an amplitude modulation along the B-field axis. The
characteristic length scales in magnetic field for the present quantum dot are given
by its size. As the magnetic length lB =

√
~/eB gets comparable to the system

size, transport gets sensitive to the applied magnetic field. For the dot with a
diameter of 60 nm, the critical magnetic field is B = 1.8 T. Since we assume that
the transmission is dominated by the constrictions, the critical field at which the
transmission starts depending on B should be estimated from the constriction width
resulting in B(20 nm) = 16.5 T. Both values do not correspond to the field values at
which the structure gets more transparent, showing that the amplitude modulation
is not (only) correlated with the magnetic length.

If, on the other hand, we picture the QD as a quantum interference device, an
amplitude modulation would be expected with a characteristic B-field period ∆B =
(h/e)/A with A being the area threaded by the magnetic field. For the quantum
dot a period of ≈ 1.5 T should hence be obtained. Since the amplitude modulations
observed e.g. around VTG take place on a magnetic field scale on the order of ≈
5 T, the here suggested simple models for transport cannot provide a sufficient
explanation for the finding. Most likely, an interplay of the two effects, combining
processes in the constrictions and on the island causes the observed features.

This last statement is further supported when investigating Coulomb diamond
measurements taken at different magnetic fields, namely B = 0 T, 5 T and 10
T. Figures 7.5 (b)-(d) present the differential conductance dI/dVTG measured in
the corresponding finite-bias spectra. As anticipated for a single quantum dot, the
Coulomb blockade diamonds do not overlap. Furthermore, the size of the diamonds
shaped areas stays constant in gate direction for all three cases. However, the extent
of the regions of suppressed current in bias direction varies strongly. At B = 0 T,
the diamonds exhibit well defined edges and a charging energy of Ec = 8 meV in
the lower gate regime. For larger gate voltage on the other hand the boundaries of
the diamonds are smeared out more and more.

Since the boundaries of the Coulomb diamonds are given by the condition, that
a dot level becomes resonant with the electrochemical potential in one of the leads,
the sharpness of the edge is an indication for the coupling strength between the
dot and the respective lead. For the zero field data, for negative bias voltages the
smearing happens at the lower edge, whereas for positive bias this is the case at the
upper diamond edge. Hence, we can conclude, that the coupling strength to the
source lead is strongly affected by the TG configuration. To explain this finding we
reason with a slightly asymmetric alignment of the top gate electrode leading to a
stronger tuning of the left reservoir.

It should be noticed, that the single particle spectrum was observed only in
small gate regimes and a systematic study could therefore not be accomplished.
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The limited visibility of excited states is most probably related to the high electron
temperature Tel but also to the coupling conditions leading to multilevel transport
in most gate regimes.

Recording the conductance within the same regime as for Fig. 7.5 (a) but at 5 T
and 10 T results in less extended regions of suppressed transport. Although an asym-
metry in the coupling is still observed, it is less pronounced for these measurements,
indicating that the finite magnetic field increases the coupling. Recapitulating the
discussion of chapter 6.2, where the behavior of graphene constrictions placed in
a magnetic field was shown, a better coupling due to higher transparency of the
tunneling barrier is indeed likely beyond a critical field. Since the quantum dot is
pictured as being defined by narrow constrictions acting as tunneling barriers, we
can explain our observations consistently.

7.6 High frequency gate manipulation

The experiments so far presented in this chapter all relied on a specific property
of graphene nanoribbons, namely the presence of a transport gap. Although this
feature is commonly utilized in graphene nanostructures as tunneling barrier, mea-
surements of the tunneling coupling could so far not be accomplished for a single
quantum dot connected to two leads. Additionally, the time evolution of quantum
dot states e.g. the relaxation rates of excited states into the ground state have so far
not been explored. Extracting the T1-time is an important step to figure out whether
spin manipulation experiments are feasible in graphene. For both parameters to be
determined, time resolved measurements are required.

As proposed and realized in Ref. 122, the time dependence of the electronic states
in a quantum dot can be investigated in transient current spectroscopy. In this
technique, high frequency voltage pulses are applied to one gate, by this changing the
dot configuration on a short time-scale. Simultaneously, the DC-transport across the
structure is measured as a function of the pulse length. The resulting signal contains
the time-averaged current and hence provides information about the population of
energy levels.

7.6.1 Estimates on expected parameters

Before adapting this method to graphene devices, an open issues needs to be ad-
dressed. The highly doped Si back gate may induce a capacitive current between
the pulsed gate and the substrate and hence attenuates the pulse signal. We can
estimate the magnitude of this damping from the capacitance Cgate of a typical gate
electrode since the reactance of this capacitance leads to a voltage division. The
main contribution is given by the bond pad, which has an area of 100 µm2. The
capacitance is therefore estimated by Cgate = ε0ε · (100× 100)µm2/d ≈ 1.2 pF with
d = 285 nm being the SiO2 thickness. Further, the reactance is determined by the
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rise time τrise of the pulse generator. In the measurement setup used here, this
value was τrise ≈ 1 ns resulting in |Xgate| = 1/(2πfmax · Cgate) ≈ 130 Ω. Assuming
a low pass filter to be formed by the gate capacitance and any series resistance in
the HF line, results in a cut-off frequency fc. In order to have no damping of the
signal amplitude, this series resistance has to be well below 1 kΩ (see Appendix B).
The stainless steel coaxial cables used in the setup fulfill this requirement with an
impedance of Rcable = 50 Ω. On the sample itself, resistances can occur if e.g. an
in-plane gate is pulsed. Here, a contact resistance of Rcontact ≈ 1 kΩ should be taken
into account.

Consequently, the high frequency manipulation of graphene samples having a
back gate, should be feasible. Moreover, an increased bandwidth can be achieved
by avoiding the use of side gates for pulsing and by minimizing the area of the bond
bad. Here, experiments in which the TG electrode was used as the pulsed gate were
carried out and will be discussed in the following.

7.6.2 High frequency setup

The challenge for high frequency measurements at low temperatures are manifold.
Firstly, losses due to capacitive and inductive coupling of the signal to system com-
ponents arise for fast signal modulation only. Secondly, the dissipated energy of
these losses may couple as heat into the system preventing low electron temper-
atures. Moreover, electrical noise from the signal source may degrade the signal
quality.

In the setup used in this work, the first two issues are addressed by the application
of stainless steel coaxial cables. The well shielded inner conductor minimizes the
signal dissipation due to its high electric conductivity. Since this latter property is
beneficial for the heat transfer to the sample as well, a -20 dB attenuator acting as a
cooling stage at the 1K pot is built in. Additional cooling is provided by the bias-tee
(Anritsu K251) used to admix the AC-signal to a well thermalized DC-line. This
component is located at the mixing chamber and due to the capacitive coupling of
the AC voltage to the sample, any direct noise transfer is prohibited. An additional
attenuation can be inserted at the top of the cryostat to block noise from the pulse
generator. The setup was implemented within the course of the project carried out
in Ref. 123 and a detailed description of the components can be found therein.

Standard lock-in techniques were applied to measure DC-transport through the
quantum dot at constant voltage bias between source and drain reservoir. The
modulated voltage signal was applied to the top gate (for the data shown here)
and to the middle gate (being qualitatively similar to the TG data). Whereas a
Yokogawa voltage source was used for the DC-part, the square shaped voltage pulses
were generated by an arbitrary waveform generator (Tektronix AWG520) allowing
for pulse lengths as short as 1 ns.
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7.6.3 Proof of concept for experiments on graphene
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Figure 7.6: (a) Coulomb resonance for different amplitudes of the square pulse ap-
plied to the top gate. The inset shows the pulse shape and introduces the definition
for the dwell times for two levels. (b) and (d) Evolution of three Coulomb resonances
with increasing pulse amplitude for t1 = 5 and 1 ns, respectively. (c) Frequency de-
pendence of the peak spacing for ∆V = 40 mV applied pulse amplitude. For all
measurements a voltage bias of Vbias = 1 mV was applied. The colorbar is valid for
all 2D-maps shown.

The red trace in Fig. 7.6 (a) exhibits a current peak at the gate voltage at
which the resonance condition for transport through the quantum dot is fulfilled.
As a symmetric square shaped AC-signal (see inset for a sketch of the pulse shape)
is superimposed to the DC top gate voltage, this Coulomb resonance splits into
two peaks, since the QD level comes into resonance two times as the TG is tuned
towards more positive voltages - first for the upper pulse level and then for the lower.
For the blue and the grey trace, the system spends an equal amount of time in the
respective voltage level and hence the newly arising peaks exhibit approximately half
the height of the original resonance. A slight asymmetry can be observed for the two
peaks emerging at ∆V = 80 mV. We attribute this to a smeared out pulse shape
due to the damping of higher harmonics. The distance between the peak maxima
increases linearly with the amplitude of the applied voltage pulse. This is seen
even more clearly in Fig. 7.6 (b) where the splitting of three consecutive Coulomb
resonances was followed as the pulse amplitude was increased. The splitting can
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be used to extract the conversion factor between the signal amplitude ∆V at the
AWG-output and ∆peaks present at the structure. Here, the 100 mV provided at the
top of the cryostat correspond to ∆peaks ≈ 8.5 mV, which is compatible with a -20
dB attenuation at the 1 K-pot and an attenuation of approximately -3 dB due to the
cables and the bias-tee. This is an indication that even though the AC-modulation
was carried out with a repetition rate of f = 100 MHz in this measurement, the
square pulse signal arrives almost unperturbed at the sample.

The latter finding is compatible with the prediction made earlier about the neg-
ligible influence of series impedances Rsetup in the system. As an upper boundary
for Rsetup we therefore find a value of ≈ 200 Ω (see Appendix B) for the present
device.

Another characterization measurement for the setup is shown in Fig. 7.6 (c) were
the frequency response of the peak spacing ∆peaks is probed. The applied square
pulse was symmetric and had an amplitude of ∆V = 40 mV. The peak spacing
varies between 6 mV and 4 mV as the excitation frequency is increased from f =
5 MHz to 100 MHz. Such a modulation is most likely related to standing waves
forming inside the cryostat along the coaxial cables connecting the contacts on top
of the cryostats with the sample holder. As a frequency of 100 MHz corresponds to
a wavelength of λ = c/f = 3 m, this explanation is well conceivable.

In order to probe the time evolution of electronic states on the nanosecond time
scale it is conducive to change the pulse shape. In Fig. 7.6 (d) the system spent
nominally only t1 = 1 ns in the lower lying energy level and t2 = 9 ns in the upper.
As expected, the peak amplitude resembles the contribution to transport each level
makes and is therefore strongly reduced for the shorter populated level.

A closer look at the peak amplitude as a function of dwell time is instructive and
provided in Fig. 7.7. For the analysis, the peak pair displayed in Fig. 7.7 (a) was
examined. It is well visible that one resonance grows at the expense of the other as
a function of t1. The peak for the respective shortest dwell time (marked by black
arrows) is shifted towards the center of the gap. We will discuss this finding shortly
and for now take the amplitude values at the two relative maxima of each trace.
Two peak pairs were evaluated in this way and shown in Fig. 7.7 (b) - one at -0.5
mV and another at 0.5 mV. The current amplitude depends almost linearly on t1 in
this regime indicating constant current flow. For the lowest dwell times, however,
the current values seem to level off and an extrapolation to 0 and 10 ns would still
yield a finite current. Such a behavior is unphysical and indicates a constraint given
by the setup.

To investigate this fact further we go back to the pulse amplitude dependence
in Fig. 7.6 (d). In comparison to the symmetric case, it gets apparent that the
peaks do not drift apart as much as expected. Namely, the spacing is reduced by
a factor of two. An analysis of the peak spacing as a function of the parameter
t1 (characterizing the pulse shape) is shown in Fig. 7.7 (c). The distance between
three peak pairs were investigated for this graph all being excited by a 100 mV
pulse amplitude. Between t1 = 2 ns and 8 ns the desired splitting ∆peaks ≈ 7.1 mV
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Figure 7.7: (a) Coulomb resonance split by a ∆V = 100 mV voltage pulse with
modulation frequency was f = 100 MHz. The dwell time t1 was tuned from 1 to 9
ns for the grey to the red trace. The black arrows mark the peak position for the
lower peak for t1 = 1 and 9 ns. (b) Peak amplitudes for peak (I) and (II) marked
in (a) extracted for Vbias = -0.5 mV (diamonds) and Vbias = 0.5 mV (circles). (c)
Determined peak spacing as a function of pulse shape for the Coulomb resonances
in (a) at Vbias = -1 mV (dark blue), -0.5 mV (red) and 0.5 mV (light blue). The
grey dashed line indicates the ideally achieved ∆peaks due to 13 dB attenuation at
the sample. A fit to the data assuming a single exponential function is shown as the
grey solid line.

(marked by the grey dashed line) is achieved satisfactorily. As the dwell time for one
voltage level is less than 2 ns, however, the amplitude breaks down indicating the
deteriorated pulse quality. Fitting the saturation curve to an exponential function of
the form (∆peaks,ideal−α·exp(−t1/trise)), with the free parameters α and trise, enables
us to determine the rise time of the system to be trise ≈ 0.7 ns. Since the rise time
specified for the AWG is < 1.5 ns, the value found here can well be explained by this
instrument limitation and has to be considered for future experiments. Due to the
reduced peak separation, an overlap is likely which may contribute to the previously
observed current saturation for low dwell times.

Measurements summarizing the above observations are shown in Fig. 7.8 (a)-
(d). The finite-bias spectroscopy was carried out without AC-modulation of the top
gate as well as with voltage pulses of different shapes applied to the gate. For the
measurements in which the gate is pulsed a doubling of the Coulomb diamonds is
observed. In Fig. 7.8 (a)-(d), the two newly arising peaks are visible at the touching
points of the small and the big diamonds. For asymmetric pulse shapes like in Fig.
7.8 (c) and (d) the small pinched off region in the center merges once either with
the lower or the upper diamond (see black arrows), which represents the amplitude
dependence discussed in Fig. 7.7 (b).

Although the pinched off region is not well pronounced for the smaller diamond,
a number of resonances emerge for negative bias indicating the single particle spec-
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curves are vertically and horizontally offset for clarity. (f) Detailed measurement of
peak pair marked in (e) as a function of dwell time. Light to dark curve correspond
to t1 = 1 ns to 28 ns. Constant parameters were f = 10 MHz and ∆V = 325 mV.
(g) Average number of charge carriers per cycle <n> as a function of t1 extracted
from peak maxima for peak pair in (f).

trum. The single particle level spacing is ∆s = 1.2 meV for the first observed state.
This value fits well to the one expected for bilayer graphene being ∆s = ~2/(m∗·r2) ≈
1 meV assuming an effective mass of m∗ = 0.03 me [124] and a radius r = 50 nm
for the QD. The second excited state that is detected in the experiment is separated
by ∆′s = 2.6 meV from the next lower lying one. The doubled energy spacing likely
originates from a weak coupling to the second excited state and thus a good visibility
only for the first and third level of the single particle spectrum.

In order to get these states into the the investigated voltage window, we choose
a constant bias voltage ∆s > Vbias = -0.55 mV and increase the pulse amplitude
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∆V stepwise at a fixed frequency f = 10 MHz, t1 = 20 ns (see Fig. 7.8 (e)). As
the peaks split, indeed a new peak evolves at slightly higher energies than the lower
split-off resonance as is visible for the peak pair marked by the grey box in Fig.
7.8 (e). Striking is however, that the distance between the main resonance and the
sub-peak is linearly dependent on the pulse amplitude. Since there is no obvious
reason for the single particle spectrum to be influenced by the pulse height or shape,
we cannot attribute the additional peak to an excited state with certainty.

Further information about this new state is obtained by analyzing the trans-
mission amplitude as a function of dwell time as it was done for Fig. 7.7 (b). To
increase the visibility of the two peaks, a pulse height of ∆V = 325 mV was applied
at f = 10 MHz. The duty cycle was stepped from 1 to 99% after each recorded
top gate trace. In contrast to the earlier observation for the amplitude evolution
of two main resonances, here, both sub-peaks gain in height (Fig. 7.8 (f)) as t1
is increased. Such a behavior is expected for energy levels belonging to the same
ground state. The number of electrons <n> transported through the structure per
pulse cycle is shown in Fig. 7.8 (g). Whereas a monotonous increase is observed
for the main resonance (peak (III)), the current through the additional resonance
saturates at t1 ≈ 10 ns. For larger dwell times up to 99 ns, a constant current of
0.4 electrons per cycle is transferred from source to drain. The threshold at which a
kink is observed, sets an upper boundary for the decay time of the higher state into
the lower one and hence a decay rate Γd ≈ 100 MHz. This value is high compared
to the maximum tunneling rate Γtot ≈ 40 MHz through the dot observed for the
lower resonance.

Although the overall behavior may indicate that transient current through an
excited state is probed for low dwell times, a number of features speak against this
hypothesis. Firstly, the increasing peak separation is not expected for quantum
states as mentioned above. Furthermore, the saturation stemming from a transient
current can be described by an exponential function of the form (1−exp(-t1/τ0)),
which is in contrast to the sharp kink exhibited in Fig. 7.8 (g). Another observation
is the fact that the stable current given by peak (III) sets in only at the point at
which the second current trace is saturated. The arguments brought forward point
towards a somewhat distorted square pulse imposed on the gate. Reflections in the
system are likely to induce such a double peak spectrum. With the recorded data it
is, at that point, delicate to distinguish between measurement artifacts and features
originating from the device.

7.7 Conclusion

We have shown measurement of an etched bilayer graphene quantum dot. A top
gate finger, located above the island enabled us to tune the dot levels. We found the
dielectric material CytopTM to be remarkably stable also at cryogenic temperatures.

The evolution of Coulomb peaks was recorded as a function of an applied elec-

79



Chapter 7. Bilayer graphene quantum dots

tric field as well as for an external magnetic field. Although a potential difference
between the graphene layers was introduced by the E-field, no band gap was de-
tected in the spectra. Further, the results obtained from the measurements in a
magnetic field were found to be qualitatively different from the B-field characteris-
tics exhibited by single layer QDs. Both measurements also showed a deviation from
predictions made by numerical simulations. As discussed, potential fluctuations in
the bulk or introduced at the edges of the structure are present and may cause the
discrepancy. It remains to be shown whether this limitation is inherent for etched
structures due to a dominating edge contribution or whether it can be overcome by
decreasing the effect of the substrate on the bulk disorder.

The high frequency measurements presented here demonstrate the possibility of
pulsed gate experiments in graphene. One of the future prospect is to use transient
current spectroscopy to determine coherence times of electronic states. In order
to accomplish this goal, either the probing frequencies need to be increased or the
characteristic time scales for the state dynamics need to be lowered. The former
request can be fulfilled since the setup is suited for a bandwidth up to several 100
MHz as has been shown in Ref. 123. It remains an open question though, how
the capacitively coupled back gate may affect the signal at higher frequencies. To
overcome the latter issue, the realization of highly tunable tunneling barriers that
allow for the adjustment of the decay rates to source and drain and the internal
decay between dot states is desirable.
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Chapter 8

Confinement in double gated
bilayer graphene

In the quest for fabricating graphene nanostructures with low edge disorder, an ob-
vious step is to exploit the fact that a band gap can be induced in bilayer graphene.
In analogy to nanostructures in conventional semiconductor 2DEGs, charge carriers
can therefore be depleted locally and conductive regions can be defined electrostat-
ically. In this chapter we present data taken on a double gated bilayer graphene
device, which showed signatures of electrostatic charge carrier confinement.

8.1 Sample and measurement setup

We employ split gates to form a narrow conductive channel connecting two reservoirs
in a bilayer graphene flake. Contrary to conventional 2DEGs, an additional dielectric
layer is needed to separate the graphene from the top gate electrodes. Hexagonal
boron nitride has been proven to be an excellent insulator with breakdown fields
on the order of Ebreak = 0.7 V/nm [44]. Further, dangling bonds and charge traps
are quasi absent in this single crystalline material. Like for graphene, its atoms are
arranged in a honeycomb pattern with a lattice constant only 1.7% mismatched to
graphene [125]. Also, the energies of surface optical phonons are twice as large as
the ones in SiO2 [31], implying that perturbations due to phonons are suppressed
beyond cryogenic temperatures. Indeed it has been demonstrated that the induced
disorder is very low for BN as compared to amorphous SiO2 [31, 63].

The structure investigated here was located on the same flake as the one intro-
duced in chapter 3 and the fabrication details can be found there (chapter 3.1) and
in appendix C. In Fig. 8.1 (a) the measured device is depicted in an AFM image.
For the constriction (marked with the solid red line), the gates are L = 0.9 µm long
in transport direction and the opening between them is Wch = 80 nm wide.

With standard techniques we recorded the voltage drop induced by a constant
current bias. For this purpose, we connected a large resistance (R ≥ 1 MΩ) to a
lock-in amplifier voltage output by which a current was generated. The voltage drop
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was then determined from the signal that was fed back to the lock-in amplifier input.
Besides, we measured the change of resistance by modulating the gates with a small
AC signal with frequency f < 100 Hz superimposed onto the DC bias voltage VTG.
With a lock-in amplifier we then detected the transport signal at the same frequency
f and obtained the transconductance ∂R/∂VTG.

If not stated otherwise, the measurements were carried out in a variable temper-
ature insert at the base temperature of T ≈ 1.7 K.
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Figure 8.1: (a) AFM image of the bilayer graphene device. The black dotted line
outlines the graphene flake, the red solid line indicates the split gate structure con-
sidered in this chapter. The other two marked gates are discussed in Sec. 8.4. (b)
Conductance map for split gates as a function of applied back gate and top gate
voltage recorded in a three point configuration with 1 nA current bias. (c) Sketch
of split gate configuration (d) Energy band alignment for three cases marked in (b)
along the cut indicated in (c) with the white dashed line.

8.2 Sample characterization

A two-dimensional conductance map of the complete gate range is shown in Fig.
8.1 (b). Two lines of lowered G divide the plane into four sections, which possess
different doping levels in adjacent device areas. Tuning the back gate voltage from
negative to positive values results in the cross-over from hole to electron transport
in the region of the device that is not covered by a top gate. This gate dependence
manifests itself as the horizontal bar of reduced conductance in Fig. 8.1 (b). There-
fore, we attribute the lower part of the graph to a p-doped ungated region and the
upper part to n-doping. Similarly, the diagonal line of low G indicates the position
of charge neutrality in the double gated regions.
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It is instructive to sketch the band alignment for some gate configurations as is
done in Fig. 8.1 (d). We look at real-space cuts along the dashed line indicated in
Fig. 8.1 (c) at the positions in gate voltage space marked in panel (b) of the same
figure with roman numbers. In the channel, the Fermi energy EF is located in the
valence band for all three cases, since it is influenced only weakly by the applied top
gate voltage. In contrast, the outer sections of the band diagrams are tuned strongly
by top and back gates and change their doping polarization between (I) and (III)
from p-type to n-type. In case (I) the doping arrangement is p-p’-p, meaning that
only holes contribute to transport and no lateral confinement is expected. As the
graphene underneath the TG is depleted in case (II), charge carriers are forced to be
transmitted through the channel. Case (III) enables transport in the gated region
again, although current is carried by electrons in this configuration and a bipolar
n-p’-n junction is formed. Before looking more closely into the transport data at
the transition from the p-p’-p to n-p’-n alignment, we compare the data of Fig. 8.1
(b) to a simple model that helps to understand the constituent features of this plot.

8.3 Simulation with resistor network

In a simple picture the device can be described as a network of resistors that deter-
mines the transmission from source to drain contact. As depicted in Fig. 8.2 (a),
we identify three contributions to the total resistance. The parallel arrangement
of the resistance Rgate of the areas underneath the TGs and the resistance of the
channel, Rconstr, is connected in series to the resistance Rbulk of the ungated regions.
We choose to express the transmission in terms of the total conductance Gtot

Gtot =

(
1

Gbulk

+ (Ggate +Gconstr)
−1

)−1

. (8.1)

In the following, we determine each of these conductance contributions and com-
bine them in the last step to obtain Gtot. The values used for this simulation are
listed in Tab. 8.1. We model the bulk conductance with the help of Drude’s theory
and the parallel plate capacitor assumption. As we have found in chapter 3, this
transport model breaks down for densities below a threshold value nsat. We include
this saturation value into the total charge carrier density ntot and obtain [126]

ntot =
√
n2

C + n2
sat =

√(
ε0εSiO2

edSiO2

·∆VBG

)2

+ n2
sat, (8.2)

where nC is the density induced by the field effect from the back gate (see chapter
3 for more details). The bulk conductance is then given by

Gbulk =

(
Rcontact +

(
ntotµ e

(
W

L

)
bulk

)−1
)−1

, (8.3)

83



Chapter 8. Confinement in double gated bilayer graphene

with Rcontact being a constant contact resistance, since three point measurements
were carried out, µ being the charge carrier mobility and (W/L)bulk being the ratio
between width and length of the ungated device area. Figure 8.2 (b) shows the re-
sulting conductance map considering only the bulk part of the sample. As expected,
the conductance exhibits a minimum at a specific back gate voltage, indicating the
electron-hole cross-over. The shift of this minimum value away from zero is intro-
duced to the model to compensate for excess doping recorded in the experimental
data.

The conductance underneath the top gates is determined by the Drude conduc-
tivity, which gets reduced by the opening of a band gap around the charge neutrality
point. We write Ggate as follows

Ggate = G0 · exp

(
− Egap

2kBT

)
=

(
ntot,gate µ e

(
W

L

)
gate

)
· exp

(
− Egap

2kBT

)
, (8.4)

where the first term on the right hand side expresses the transport due to the

charge carrier density ntot,gate =
√
n2

C,gate + n2
sat. Here, the density nC,gate is induced

by the field effect from both the back gate and the top gate and nsat is the satura-
tion density as introduced in chapter 3. This conductance G0 is suppressed in the
presence of a band gap according to the exponential term in Eq. (8.4) with Egap

being the displacement field dependent size of the band gap as determined from
tight-binding calculations [15]. As verified in Fig. 8.2 (c), the transmission is more
and more reduced around the charge neutrality point as the displacement field is
increased. It should be noted that Ggate can be mirrored at the CNP as a function
of n but is not symmetric along the VTG axis. This effect gets more pronounced for
larger Egap values.

As the last contribution, the conductance through the channel is to be modeled.
Here, we assume diffusive transport to happen in the short constriction. This as-
sumption is somewhat against the transport mechanism hoped for, which would be
via discrete modes. In such a system, quantized conductance would be observed
through the channel and the transmission would be suppressed completely for the
lowest densities. However, in the present split gate device the confinement to a
narrow channel is provided only at a finite displacement field, whose value we do
not know. To simplify the model, we therefore take the conductance value given
by the Drude model for the complete gate range. For small displacement values,
this is a good approximation and we will later comment on the difference of the re-
sults obtained at high D-fields for the diffusive and the ballistic case. The equation
describing the conductance Gconstr reads

Gconstr = ntot,constr µ e

(
W

L

)
constr

, (8.5)

where ntot,constr is defined by Eq. (8.2). The corresponding conductance map is
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Figure 8.2: (a) Sketch of considered resistor network. Simulated conductance maps
for (b) bulk conductance Gbulk, (c) conductance underneath top gates Ggate and (d)
conductance through channel Gconstr. (e) Measured conductance map (same as Fig.
8.1 (b)). (f) Simulated conductance map according to Eq. (8.1). For details on the
model and parameters used, see text. (g) Cuts in (e) at constant VBG = -50 V, -26
V, 0 V, 26 V, 50 V. (h) Cuts in (f) at same VBG values as in (g).

shown in Fig. 8.2 (d) exhibiting conductance values independent of the displacement
field, as expected.

We now insert the conductances Gbulk, Ggate and Gconstr into Eq. (8.1). With
the parameter set used here (see Tab. 8.1), we find, however, a large discrepancy
between measurement and simulation. The only quantity not directly provided by
the device properties and the measured data, is the value for Egap. And indeed,
if we reduce the theoretically expected band gap Egap by a reduction factor Sred

= 380, the experimental data can be resembled well. In transport measurements
on bilayer graphene, the effectively detected size of the band gap has commonly
been drastically lower than the one predicted [42, 43] and the introduction of Sred

is therefore motivated empirically.
The lower row of Fig. 8.2 allows for a direct comparison of measurement ((e) and

(g)) and simulation ((f) and (h)). Obviously, the model captures the main features
of the data rather well, indicating that the magnitude of the considered parameters
was extracted correctly. In the graphs displaying cuts at constant VBG (Fig. 8.2
(g) and (h)), the slight asymmetry of the conductance dips originates from Ggate.
Combined with the finding, that the conductance decreases as a function of the

85



Chapter 8. Confinement in double gated bilayer graphene

parameter value parameter value

(W/L)bulk 1.5 (W/L)gate 8

Wch 80 nm αTG/BG 28.5

Rcontact 1.1 kΩ

µ 4000 cm2/Vs nsat 2·1011 cm−2

VBG,D 8 V VBG,Dis 30 V

Sred 380

Table 8.1: List of parameters used for simulation. Symbols are introduced in the
text except for VBG,D, the offset of the CNP in VBG for the ungated part, and VBG,Dis,
the saddle point of the resistance maximum along the displacement axis in VBG.

displacement field, the presence of a (small) band gap is suggested and its value of
Egap ≈ 1 meV at the maximum displacement field is in good agreement with other
experiments (e.g. in chapter 3).

Next, we discuss the influence of the transport mechanism inside the channel. In
order to make the simulation converge towards the experimental data, the asymme-
try induced by Ggate needs to be suppressed. Since the two parallel conductances
are competing in Eq. (8.1), for low densities either Gconstr or Ggate will be dominant.
At high displacement fields, where a band gap is potentially confining charge car-
riers to a narrow channel, transport may be ballistic. Under these conditions, the
conductance in the channel increases quickly as the density is tuned away from the
CNP and transport takes place through the channel. As a consequence, the over-all
conductance is raised quickly as well. In the diffusive limit, the conductance is a
slowly varying function of the density and the conductance underneath the gates
stays relevant up to higher densities as compared to the ballistic case. To suppress
the asymmetry, the reduction factor needs to be larger for the diffusive channel. For
the ballistic case, we extracted the band gap to be reduced by Sred = 250 corre-
sponding to a band gap of Egap ≈ 1.5 meV at maximum displacement field. The
comparison to the values obtained for the diffusive regime shows that the result of
the simulation is rather robust against the choice of transport characteristics inside
the channel as long as the band gap is on the order of few meV.

In conclusion, simulating transport through the device with a resistor network
enabled us to get an estimate for the size of the band gap, which is opened under-
neath the split gates. The obtained value is in line with that extracted in previous
measurements (see chapter 3) and indicates that transport in the gated areas is
never blocked completely. It gets apparent from the comparison of the maximal
achievable resistances in the three regions, that they are all of the same order of
magnitude. Namely, we extract Rbulk,max = 8 kΩ and Rgate,max = 12 or 6 kΩ and
Rchannel,max = 4 or 10 kΩ for the ballistic and the diffusive case, respectively. This
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finding raises doubts in whether transport can be strongly modified by electrostatics
in the present system. Later we will look more closely into the features exhibited
by the recorded transport data.

8.4 Comparison of different geometries

The discussion of the foregoing section showed that transport is not strictly confined
to the narrow opening between the split gates. However, the transmission below the
top gate is significantly reduced at high layer asymmetry and most likely governed
by variable range hopping in two dimensions, as we found in chapter 3.3.2. In the
following, we present a comparison of different devices that were all located on the
same flake. We wish to understand in which way the shape of the gate structure
influences the transport properties. For all devices we looked at a zoom into the
negative displacement range of a two-dimensional conductance map in the back gate
- top gate plane, where we expect the transition from a unipolar (p-p’-p) to a bipolar
(n-p’-n) junction.
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Figure 8.3: Transconductance maps for (a) full barrier (dashed-dotted outline in
Fig. 8.1 (a)), (b) split gates (solid outline in Fig. 8.1 (a)), (c) ”half” barrier (dashed
outline in Fig. 8.1 (a)). Sketches illustrate the respective geometry. (d) and (e)
Cuts in the respective graph above at constant VBG = -50 V. (f) Same as (d) but
at VBG = -47 V. The dashed lines in (b) are a guide to the eye for the two slopes
discussed in the main text. The measurements were carried out in a dilution fridge
at T = 100 mK. The current bias was 0.5 nA for all experiments and the modulation
amplitude for the transconductance was ∆VAC = 10 mV.

First, a gate that completely spans the graphene flake without a gap was con-
sidered. In the transconductance plot in Fig. 8.3 (a) the region of suppressed
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transmission is recognized by large relative resistance fluctuations. A number of
resonances running parallel to the displacement axis is visible. Due to their rela-
tive lever arm in gate space, we can attribute these oscillations to features located
underneath the top gates.

The transport characteristics are different in the sample where a narrow open-
ing (Wch = 80 nm) is present in the gate, as shown in Fig. 8.3 (b). Again, the
transconductance signal shows oscillations resulting in lines running parallel to the
displacement axis. The indicate that localized states in the gated areas contribute
to transport. Additionally, plenty of resonances appear, which exhibit a consider-
ably lower relative lever arm αTG/BG and are hence less strongly tuned by the top
gates. Both slopes are marked in Fig. 8.3 (b) with dashed lines. The appearance
of these features was observed in more than five split gate devices in total and is
therefore believed to originate from the narrow opening. As the displacement field
is lowered, first the newly observed resonances fade away at D ≈ -0.73 V/nm (not
shown here), whereas those induced by localized states underneath the TGs remain
down to D ≈ -0.4 V/nm. This finding indicates, that the charge carriers are more
and more forced to pass through the channel as D is increased even though the
confinement is imperfect.

Last, we show the transconductance signal of a gate that did not span the whole
width of the flake but instead left a Wch >150 nm wide ungated channel between
the TG and the flake edge (see Fig. 8.3 (c)). In contrast to the previous two cases,
no resonances are visible and the relative resistance changes ∆R/R are comparably
small. This observation can be explained by the properties of nanoribbons studied
in chapters 5 and 6. Unless transport is ballistic in such a wide ribbon, commonly,
no difference to a bulk device is observed. The device discussed here does not
fulfill the requirements for truly ballistic transport and hence, even if charge carriers
were confined to the channel, the transmission would appear similar as for bulk.
Further, in the region of lowered conductance, no resonances are observed parallel
to the displacement axis, since transport takes place through the channel in all gate
configurations, where localized states do not hamper the transmission.

From the presented comparison we can conclude that the gate structure does
affect the transmission and that charge carriers are weakly confined to a narrow
channel by top gates in the presence of a perpendicular electric field. The accu-
racy of this supposition was further investigated by modulating the two split gates
individually, which will be presented in the following section.
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8.5. Transport through the channel

8.5 Transport through the channel

8.5.1 Correlations between the transconductance of individ-
ual gates

To understand the contribution to transport made by each one of the two top gates,
we measured their transconductances individually. For this purpose we superim-
posed the modulation voltage ∆VAC = 10 mV to each of the gates at a different
frequency (fup = 71.0 Hz and flow = 13.3 Hz) and detected the transconductance
signal at the respective frequency. The results are shown in Fig. 8.4, where the up-
per row displays the data obtained for the upper TG and the lower one corresponds
to the data recorded for the lower TG.
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Figure 8.4: Transconductance maps for the individual TGs. Upper (lower) row is
displaying the signal obtained by modulating the upper (lower) TG. (a) and (d):
The DC voltage on both gates is swept simultaneously. The arrow in (a) indicates
the position of the conductance traces of Fig. 8.6 and the black dashed lines in (a)
and (d) show the line along which the TG is tuned for the measurements displayed
in the 2nd and 3rd column. (b) and (e): DC voltage for upper TG kept at charge
neutrality (n = 0), DC voltage for lower TG swept. (c) and (f) Same as second
column but vice versa. The current bias was 0.5 nA for all experiments and the
modulation amplitude for the transconductance was ∆VAC = 10 mV.

In the measurements leading to the first column of Fig. 8.4, the DC voltage ap-
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plied to the gates were swept simultaneously between 1.2 V and 2.5 V. The transcon-
ductance maps show similar features to the one observed in Fig. 8.3 (b), namely
two sets of resonances - one with a steep slope and another one less strongly tuned
by the TG. The fact that these latter oscillations appear for both gates, indicate
that the corresponding physical origin is present in the vicinity of both gates. Since
the relative lever arms are the same for the upper and the lower gate, we conclude
that the coupling is equally strong.

For the data displayed in the second and third column of Fig. 8.4, only one of
the top gate voltages was swept. The DC voltage for the other one was kept at the
value, which, for the respective VBG, corresponded to the position of the CNP (see
dashed lines in Fig. 8.4 (a) and (d)). This means that its DC voltage was stepped
along the displacement axis. As seen in Fig. 8.4 (c) and (e), for the gate below
which the density is tuned, the transconductance resembles the same characteristic
resonances as the data in the first column. Hence, as long as the transmission is
limited below the upper (lower) gate, transport underneath the lower (upper) gate
is governed by the same physics as in the case where both gates are tuned.

Although the DC voltage value applied to the upper and lower TG in Fig. 8.4 (b)
and (f) is not changed along cuts at constant VBG, a modulation of the transconduc-
tance signal is observed. For some gate ranges these modulations possibly possess
the same lever arm as the resonances with the flat slope in Fig. 8.4 (a) and (d).
This finding would clearly indicate, that the cause of these oscillations is located
in-between the gates. However, due to the data quality, a strong statement is not
possible at this point. Interestingly, the transconductance in Fig. 8.4 (b) and (f) is
modulated along the VBG axis. We assume that, depending on the gate configura-
tion, the coupling from the bulk to transport channels under the TG is stronger or
weaker, leading to fluctuations in ∂R/∂VTG.

Figure 8.5: Interdependence be-
tween Fig. 8.4 (a) and (d) by
subtracting one from the other
to identify the origin of the ob-
served oscillatory features in the
transconductance signal. VTG (V)
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Since the data of Fig. 8.4 (a) and (d) does not enable us to exclude a situation,
where localized states are distributed along the edges of the gates, we show their
interdependence in Fig. 8.5. By subtracting the two signals from each other, the
oscillations running parallel to the displacement axis are maintained, whereas the
other set cannot be distinguished well anymore. This correlation suggests that the
probed physical origin is indeed the same for both split gates.
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8.5.2 Possible transport mechanisms

We now focus on the set of oscillations, which we suspect to stem from the open-
ing between the split gates. A number of mechanisms are conceivable to cause the
observed transport features. Although transport through discrete modes leading
to quantized conductance may play a role here, we will consider alternative expla-
nations. Namely, resonant tunneling or Coulomb blockade through states inside
the channel and universal conductance fluctuations in the leads would induce an
oscillatory behavior as well.

Ballistic transport via transverse modes

Supposably, the resonances are caused by discrete modes in the channel. In an
ideal ballistic graphene system, the conductance is given by Gconstr = (4e2/h) · 2Wch

λF
,

where λF is the Fermi wavelength and Wch is the width of the channel. If indeed
a quantum point contact with quantized conductance was formed, the observed
oscillations in the transconductance data would indicate the position of the steps
in Gconstr. Furthermore, the integrated signal (integrated along the direction of the
modulated gate to get the conductance) should show steps by the expected values.
This is not the case for the recorded data.

Additionally, the present device exhibits a mean free path of lmfp . 100 nm
in the density range where the resonances appear, meaning that the system is not
fully ballistic. We can therefore exclude that these features are due to transport via
discrete modes in the channel. The fact, that we do not observe any clear signature
for quantized conductance in the measured DC data (see e.g. Fig. 8.6 (c)), further
supports this conclusion. We therefore need to present alternative explanation for
the experimental data.

Tunneling processes

Resonant tunneling : Potentially, the oscillations are the result of resonant tunneling
through localized states in the constriction. In order to observe tunneling processes,
the resistance of the tunneling barriers is required to exceed the resistance quantum
RT = h/e2. As apparent in the conductance trace displayed in Fig. 8.6 (c), the
conductance never falls below 2e2/h. This finding allows for the exclusion of resonant
tunneling as the transport mechanism as well

Coulomb blockade: If transport happens through localized sites that are only
weakly coupled to the environment, Coulomb blockade can be recorded in the pres-
ence of electron-electron interactions. Since the requirement of tunneling barriers
with large resistance (RT > h/e2) is not fulfilled in the present device, we can apply
the same argument as above and Coulomb blockade becomes an unlikely explanation
for the observed features.

This is further supported by finite-bias spectroscopy which was carried out inside
the region of suppressed conductance (see dashed line in Fig. 8.4 (a)). The conduc-
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tance data was recorded at VBG = -50 V as a function of VTG and is shown in Fig.
8.6 (a) and (c). Although regions of lowered conductance are visible along the gate
axis, Coulomb diamonds cannot be clearly distinguished and we can presumably
exclude this mechanism.
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Figure 8.6: (a) Finite-bias spectroscopy as a function of VTG taken at VBG = -50
V. (c) Cut at Vbias = 0 in (a). The conductance measurement was taken at T =
100 mK with standard lock-in techniques using an AC modulation voltage of 50
µV. (b) Transconductance map showing the B-field dependence of a TG trace taken
at VBG = -50 V. (d) Cut in (b) at the position indicated by the dashed line. The
measurements were performed at T = 100 mK with a current bias of 0.5 nA and
the modulation amplitude for the transconductance was ∆VAC = 10 mV.

Universal conductance fluctuations

The fourth explanation we put forward, is the appearance of universal conductance
fluctuations (UCF), which occur in open diffusive systems with conductances larger
than the conductance quantum [127]. These originate from quantum interference
of elastically scattered carriers moving along different paths, leading to a certain
reflection amplitude. As the arrangement of scattering impurities in the system is
changed, the total reflection changes and is found to induce a modulation of the
detected conductance by ∆G = e2/h [128]. Experimentally, uncorrelated impurity
configurations can be achieved by a change in Fermi energy. UCF may hence be the
cause of the oscillations we observe in the data of Fig. 8.3 (b) and Fig. 8.4.

Since interference effects are altered by an external perpendicular magnetic field,
a correlation field can be identified from measurements of the conductance as a
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function of B [129]. Figure 8.6 (b) shows the magnetic field dependence of the
transconductance measured along the same gate configuration as Fig. 8.6 (a). The
oscillations exhibit a quasiperiodic pattern typical for conductance fluctuations as a
function of magnetic field (see Fig. 8.6 (d)). In cuts at constant VTG (see Fig. 8.7
(d)), however, a characteristic quasi-period is observed. From its value, ∆B ≈ 200
mT, we can estimate the area covered by interfering paths to be A =

(
h
e

)
/∆B ≈

150 nm2. Again, we find this length scale being comparable to the system size. It
should be noted, that this is a lower bound for the covered area, since the corre-
lation field is expected to be lower than the here determined ∆B. The amplitude
of the conductance oscillation is ∆G ≈ e2/h, which further implies the presence of
universal conductance fluctuations in the system.

In conclusion, we find that the system is not in the Coulomb blockade regime.
Further, the transmission via discrete modes and via resonant tunneling can be
excluded with high confidence by the measurement data. It is however most likely
that we probe universal conductance fluctuations of an area around the opening
between the gates. Since the mean free path is on the order of the system size, the
characteristics of the present device are located at the cross-over from ballistic to
diffusive transport. Additionally, we cross over from an unconfined to a confined
system as the band gap is opened. We may therefore even see signatures of more
than one phenomenon in the recorded data.

8.6 Transport in a perpendicular magnetic field

Last, the influence of high magnetic fields is discussed based on Fig. 8.7. For this
color plot, the transconductance for the same gate voltage range as discussed in the
previous sections was recorded at B = 0 T (Fig. 8.7 (a)) and at B 13 T (Fig. 8.7
(b)). An obvious difference between the two cases is, that the gate range for which
transconductance features are observed, is strongly confined to a diagonal line for B
= 0 T. At finite magnetic field, the plot exhibits structure in the transconductance
signal across the whole gate range. The over-all contrast is weaker for B = 13 T,
indicating that the resistance changes are smoothened as compared to B = 0 T.

We first compare the set of oscillations exhibiting the steeper slope for zero and
finite magnetic field. At B = 0 T, the transconductance oscillations show large
amplitudes for low densities, which fade away as the density is increased. At high
magnetic field, the oscillations are not discernable close to the charge neutrality
point. In contrast, a number of lines running parallel to the displacement axis
evolve for more negative VTG. This regime corresponds to the case, where both
the transport underneath the TGs and in the uncovered regions is governed by
holes. Due to their appearance only at finite magnetic fields, we attribute these
transconductance features to Shubnikov-de Haas oscillations tuned strongly by the
TG. Strikingly, the oscillations are absent for the bipolar doping regime (right hand
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Figure 8.7: Transconductance maps at B = 0 T (a) and B = 13 T (b) with the
measurement conditions as described in Fig. 8.3. (c) and (d) Sketch of edge channel
configuration for the two regimes identified in (b). (c) For p-p’-p alignment and (d)
for p-n’-p alignment between the ungated and the gated regions.

side of Fig. 8.7 (b)).
Looking at the second set of oscillations in this finite magnetic field measurement,

we observe the contrary behavior. For the gate range in which a p-p’-p junction is
formed, no signature of the channel between the split gates is visible. As the system
exhibits a bipolar p-n’-p junction between the top-gated and the uncovered areas,
oscillations are visible even away from the CNP. At such large density values the
Fermi energy underneath the gates is tuned much above the band gap and hence
transport is in principle not hindered in these areas. From this observation we
can conclude, that the contribution of the features weakly tuned by the TGs is
maintained at large carrier densities, if the doping exhibits opposite polarization in
adjacent areas.

In the following, we suggest an explanation for the observed data based on the
picture of quantum Hall edge channels following Ref. 130. In a sufficiently high exter-
nally applied magnetic field the density of states is concentrated in discrete Landau
levels and transport is expected to happen along edge channels. In the present sam-
ple, the filling factor in the ungated region differs from the one underneath the TGs
for certain gate configurations. As a consequence, the number of edge channels as
well as their propagation direction may vary. Two explicit cases are depicted in Fig.
8.7 (c) and (d), for filling factor νbulk = 4 in the ungated regions and νgate = ±4
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below the gates. In the case that the filling factors are the same in all regions (see
Fig. 8.7 (c)), the edge states propagate along the boundaries of the graphene flake.
Since it penetrates underneath the TG, the transconductance signal is sensitive to
this part of the sample. In contrary, charge carriers travel along the edges of the
top gates, if a p-n’-p junction is formed between the bulk and the gated area. As
sketched in Fig. 8.7 (d), current flows through the narrow opening between the split
gates. Consequently, the constriction influences the transconductance signal in this
configuration.

It should be noted that this simple model breaks down for more than one edge
channel. Since magnetoresistance measurements in the bulk part of the sample did
not reveal filling factors higher than ±4 clearly, we conclude that these are not fully
developed in the present device. Under this assumption, the observation of two
distinct regimes is conceivable.

8.7 Conclusion

In the presented measurements, we saw signatures for electrostatic confinement in
a double gated bilayer graphene sheet. The limited tunability of the resistance un-
derneath the top gates prevented, however, to fully pinch-off the current below the
split gates. As a result, the recorded transport characteristics consist of contribu-
tions from the gates and the channel likewise. For finite magnetic fields, we find
that the data can be explain well by the formation of bipolar p-n junctions at the
interface between gated and ungated regions of the device.

Recent experiments on double gated suspended bilayer graphene devices demon-
strated, that phenomena like Coulomb blockade and quantized conductance are
observable in electrostatically defined structures [14]. These free standing devices
exhibit typically excellent transport quality, implying a smooth potential landscape.
Therefore, the induced band gap is less likely overcome by potential fluctuations
and gated areas are depleted effectively.
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Chapter 9

Conclusions and Outlook

In the course of this work, graphene was investigated with respect to its electronic
properties. The performed experiments join a large number of studies conducted
since graphene’s discovery in 2004. Starting with the finger print of chiral particles,
the first experiments verified this peculiar property by quantum Hall measurements
[50, 131]. The present work started out at this point as well (see chapter 3) and
then focused on the characteristic density of states in single layer graphene (see
chapter 4). Contrary to theoretical predictions of a vanishing density of states at
the charge neutrality point, the experimental results possessed a finite value for the
DOS indicating the presence of disorder fluctuations in the system.

Strikingly, disorder induced localized states commonly played a dominant role in
experiments probing electronic transport in graphene nanostructures. The absence
of an energy gap in the dispersion relation of graphene poses a challenge for the pat-
terning of electronic devices. Whereas conductive areas can be completely isolated
from each other by etched trenches, tunneling barriers cannot be created that way.
Since localized states lead to the formation of a transport gap in spatially confined
systems, tunneling barriers were defined by narrow constrictions [12, 105, 132, 133].
A detailed discussion of the transport properties of such nanoribbons was presented
in chapter 5 and 6. Besides extracting a scaling law for the number of charged
islands in the system, nearest neighbor hopping was identified as the microscopic
mechanism behind transport. Further, disorder induced at the edges as well as in
the bulk were found to contribute to the formation of localized states.

Whereas single layer graphene attracted large interest during the first years of
graphene research, lately, focus was brought more and more to bilayer graphene. Al-
though the quasiparticles are no longer described by the Dirac equation for massless
fermions in this material, most of the exceptional physical properties are maintained
(e.g. the chirality and the large charge carrier mobility). The main advantage of
bilayer graphene is the fact that an energy gap can be opened and tuned in the band
structure by an electric field gradient perpendicular to the two sheets. Experiments
on a top-gated bilayer graphene quantum dot were performed in quest of determining
the location of the electron-hole cross-over in the energy spectrum unambiguously
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(see chapter 7). The recorded data revealed, however, that the effective band gap in
the system was small compared to the level spacing of the quantum dot and could
hence not be used as an indicator for the charge neutrality point.

As the boundaries of graphene nanostructures are commonly suspected to in-
duce a considerable amount of disorder, in chapter 8 we presented an approach to
eliminate the edges and instead confine charge carriers in bilayer graphene electro-
statically. The measurements showed, that carriers can indeed be directed to gate
defined transport channels. Hence, the split gate technology is certainly promising
for the patterning of bilayer graphene structures.

Most studies carried out in this thesis found a significant amplitude of density
fluctuations in the graphene sheets. For the next experiments, it is desirable to
reduce the limitations imposed to the sample quality due to this disorder in the sys-
tem. Large improvements of the bulk transport properties were achieved recently by
the removal or the replacement of the SiO2 substrate material [31, 134]. Combining
the application of single crystalline boron nitride as a substrate and the electro-
static confinement by split gates, should allow for the fabrication of devices with
low disorder.

If such structures are in the ballistic transport regime, phenomena like con-
ductance quantization and resonant tunneling can be investigated. Additionally,
the controlled tunability of the barrier width of tunneling barriers would facilitate
a large number of experiments that are challenging to be performed at present.
Among these are time resolved measurements of the charge carrier transmission
through quantum dots and pulsed gate experiments to determine relaxation times.
Opening a band gap in bilayer graphene would facilitate the identification of the few
electron regime and ease the understanding of the single particle level spectrum in
quantum dots. With the implementation of this new generation of graphene devices,
many of the questions that are left open at this point, can presumably be answered
and extend the knowledge of the electronic properties of graphene.
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Appendices

A 2D Mott variable range hopping

The theory developed by Mott [46] describes transport of charge carriers via discrete
energy levels being randomly located in energy and space. It may be favorable for a
charge carrier to cover a large distance in space (larger than to the nearest neighbor)
if the energy expense required to reach it is small. From the optimized hopping rate
between two localized sites, the conductivity through the sample is found to be

σ = σ0 exp

[
−
(

∆0

kBT

)1/3
]
,

where the characteristic energy ∆0 is defined as

∆0 =
27

πD(EF)ξ2
.

Here, the density of states D(EF) of bilayer graphene and the localization length
ξ enter. For the density of states, the interlayer hopping energy γ1 and the Fermi
velocity vF need to be known to get a value for

D(EF) =
γ1

π(~vF)2
.

We take them to be γ1 = 0.39 eV [23] and vF = 106 m/s [4] and find for the
localization length

ξ =

√
27

γ1∆0

· ~vF.

The optimum hopping distance is defined as

dopt =

(
ξ

π · D(EF) · kBT

)1/3

and should be much smaller then the system dimension to make the model of
variable range hopping conceivable as a transport mechanism.
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B High frequency limitations

Large damping in high frequency setups is caused by capacitances that may short
circuit the high frequency line to a reservoir. Together with the resistance of the line,
the capacitance then forms an RC-filter, which dampens the applied signal. Here,
we estimate the expected frequency response of such a filter supposably forming in
the device presented in chapter 7 and determine some limits.

The capacitor is constituted by the metal electrode of the gate (including the
bond pad) and the back gate. The size of its capacitance is therefore determined
by the thickness of the SiO2 separating the two plates, d = 285 nm, the dielectric
constant of the oxide and the area A of the gate electrode.
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Figure B.1: Simulation of the fre-
quency response of an RC-filter with
parameters expected for the device dis-
cussed in chapter 7.

Since the RC-filter acts as a voltage divider, the output voltage Vout can be
defined by the reactance Xc of the capacitor and the resistance R to be

Vout = Vin ·
Xc√

R2 +X2
c

.

The frequency dependence of the gain Vout/Vin is plotted in Fig. B.1 for two
different series resistances Rsetup in the line assuming the area of the capacitor to
be given by the bond pad, A = (100 × 100) µm2. The resistance is assumed to be
Rsetup = 100 kΩ (solid line) and Rsetup = 100 Ω (dashed line).

The dotted line in Fig. B.1 indicates the value at which the input signal is
attenuated by 3 dB. Where the gain curve intersects this threshold value, the cut-off
frequency fc of an RC-filter is defined. In the cases presented here, the values are
fc ≈ 1.4 MHz for the high series resistance and fc ≈ 1.4 GHz for the small one,
where the latter is compatible with the order of magnitude observed in chapter 7,.
Assuming that Rsetup = 200 Ω, the gain falls below the threshold at ≈ 750 MHz. For
the case presented in chapter 7, the signal is still unperturbed for these frequencies
and we can therefore infer that the resistance exhibited by the system has to be
smaller than this critical value.
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C Mechanical transfer process

In this work, hexagonal boron nitride (BN) was used as a dielectric for top-gated
bilayer graphene devices. For this purpose, bilayer graphene was mechanically ex-
foliated, flakes were characterized and electrically contacted as described in chapter
3.1. A representative flake is shown in Fig. C.2 (e) and (f) before and after being
contacted, respectively. For the positioning of a BN flake on top of this structure,
we employ a transfer process, which has been developed by Dean et al. [31].

PVA
PMMA

graphene

BN

BNDI water

Si

Floating PMMA Metallic “volcano”

Si/SiO2

Au electrodes

10μm

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.2: Schematic of the transfer process. (a) Si chip covered with a stack
of PVA and PMMA. Characterized BN flake lies on surface. (b) After PVA is
etched away, Si chip sinks and PMMA remains floating on surface. (c) PMMA film
is deposited on transfer slide, aligned with graphene structure and (d) brought in
contact. (e) Optical image of a bare graphene flake on SiO2 substrate. (f) After
ohmic contacts were added. (g) After BN was deposited. (h) Final device with TG
electrodes. (Figure (a) to (d) adapted from Ref. 31)

Transfer chips are prepared onto which BN is mechanically exfoliated. The
substrate is Si (approx. 500 µm thick), which is spin coated with a layer of poly
vinyl alcohol (PVA) solution (PVA 9000, 4.7% mass in DI water). After soft-baking
at 100◦C, a layer of PMMA (PMMA 950K 4:1 in chlorobenzene (CB)) is spun on
top of this and soft-baked as well. The thickness of the complete polymer stack is
tuned to be ≈ 300 nm, to which the PVA contributes with ≈ 100 nm. Since the
dielectric constants of the polymers are comparable to that of SiO2, the visibility of
graphene and BN in an optical microscope is maintained.

Boron nitride flakes are characterized by their contrast in the optical microscope
and AFM measurements. Flakes suitable for the application as TG dielectric should
be 7−15 nm thick and exhibit a low surface roughness. Ideally the value measured
in the AFM falls to the resolution limit of 0.1 nm.
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For the transfer, the position of the BN flake chosen is indicated on the transfer
chip with the help of small blue tape pointers and the polymer is scratched away
along the edges of the transfer chip. By this, the etching of the PVA in the next
process step is facilitated. For the PMMA release, a beaker is filled with DI water
(ca. 5 mm high) and the transfer chip is placed on the water surface. As the water
penetrates at the edges of the chip, it dissolves the PVA layer (see Fig. C.2 (a)) and
finally separates the Si from the PMMA. Whereas the former sinks to the bottom
of the beaker, the latter remains floating at the water surface as is shown in Fig.
C.2 (b). Subsequently, the beaker is carefully filled with DI water up to the rim.

The device used to handle the PMMA film during the transfer is a metallic slide,
which has a cone-shaped attachment on one side. A hole of ≈ 2 mm diameter is
positioned in the center of this cone, penetrating through the metal slide as well.
Due to its shape, this device was termed ”volcano”.

As the next step in the transfer, the PMMA film is adhered to this volcano and
the position of the BN flake is verified to be in the center of the hole by means of
optical microscope. To dry the back side of the polymer film, the slide is then placed
on a hot plate (T = 70◦C) for 10−15 min until all water droplets are evaporated.

Consequently, the volcano is mounted on the arm of a micro manipulator, which
is combined with an optical microscope (Olympus BX-FLA). The target Si/SiO2

chip is placed below on a heatable table. To avoid the formation of a water layer
on the target structure, this table is heated to 100−120◦C during the alignment
process. With the help of the optical microscope, the BN flake on the PMMA film
is positioned above the graphene flake and brought in contact by simply lowering
the film to the SiO2 surface. After adhesion is established, the micro manipulator
arm is left in its position for 5−10 min and the elevated temperature of the target
chip helps to relax folds in the PMMA.

Finally, the chip is unmounted and the PMMA is removed in warm acetone.
The BN is strongly attached to the surface and stays in place as it is shown in Fig.
C.2 (g). As the achieved lateral accuracy of this positioning method is ±5 µm,
sufficiently large BN flakes are required. After the transfer, TG electrodes can be
fabricated by means of standard EBL and metal deposition. In Fig. C.2 (h) a final
device is displayed, which features a number of top gates.
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D Local oxidation of graphene

One of the main results of chapters 5, 6 and 7 was, that a number of localized states
are forming in etched nanostructures that affect transport considerably. A possible
origin of these states is the presence of rough edges as a result of the etching process.
Hence, an alternative method to structure graphene would be desirable that imposes
a smooth confinement potential on charge carriers. The local modification of the
graphene lattice might allow to pattern graphene flakes on the nanoscale.

Figure D.3: Working principle of AFM
lithography sketched using the exam-
ple of a graphene device. An applied
voltage bias between tip and graphene
sheet (orange region) initiates an oxi-
dation process of the latter.

bias 

SiO2 

Si 

AFM tip 

water film 

The principle

A well established method to structure GaAs heterostructures is the so called AFM
lithography. The working principle is depicted in Fig. D.3. In ambient conditions,
the surface of the chip to be patterned is covered with a thin layer of water. A
conductive AFM tip is brought close to the surface and a bias voltage is applied
between the tip and the sample. The energy provided thereby is sufficient to initiate
a local oxidation of the sample surface below the tip, which makes the underlying
2DEG insulating.

The particular advantage of AFM lithography over EBL with regard to graphene
is, that no resist layer is needed for the pattering. Thereby, additional contamination
of the graphene surface is avoided during the fabrication process. Further, the
structure can be investigated by means of microscopy and in-situ measurements
immediately after the patterning and possibly corrected for imperfections.

Here, we investigate the feasibility to adapt this technique to graphene. Since
the 2DES is lying on the surface, a direct modification of the graphene is permitted.
A well conceivable chain of chemical reactions taking place, is [135]

C + H2O → C(H2O),

C(H2O) → H2 + C(O),

C(O) → CO.

In the first step a water molecule is physisorbed on a carbon atom to form C(H2O).
Next, a hydrogen molecule is released as gas and the oxygen is chemisorbed on a
carbon atom C(O). In the last step, the final reaction product carbon monoxide is
obtained [135], leaving a vacancy in the graphene lattice behind.
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Experiments on graphite

All experiments discussed here were carried out with a commercial AFM (Veeco
Dimension V). Since a number of parameters can be tuned to reach optimal perfor-
mance, first tests were performed on highly ordered pyrolytic graphite (HOPG). This
stack of graphene layers is conductive and no additional grounding of the sample is
necessary.

200 nm 200 nm 

200 nm 

200 nm 

(a) (b)

(c) (d)

Figure D.4: Local oxidation on HOPG with tapping mode under the variation of
different parameters. (a) Applied DC voltage varied (from left to right: -26 V, -28
V, -25 V, -28 V, -27 V, -25 V). The oxidation set point was 2.6% of the free driving
amplitude for the three lines on the left side and 3% for the ones on the right. (b)
Write rate varied (from left to right: 0.02 µm/s, 0.1 µm/s, 0.5 µm/s, 1 µm/s).
(c) Oxidation set point varied (from left to right: 1.9%, 2.1%, 1.7%). (d) Relative
humidity varied (from left to right: 26%, 38%, 40%,43%).

The AFM is operated in tapping mode with a free driving amplitude of ≈ 350
mV and the amplitude feedback is kept on during the writing process. We apply a
DC voltage Vox to the highly doped Si tip and lower the amplitude set point during
the writing process to increase the tip surface interaction. The AFM images in Fig.
D.4 illustrate the effect of the applied tip voltage, the write rate (WR), the oxidation
set point (SP) and the relative humidity in the sample environment on the resulting
modification.
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We first look at the influence of the tip voltage with constant SP = 2.6 − 3%
and WR = 100 nm/s. In Fig. D.4 (a) trenches of ≈ 50 nm width and up to 10 nm
depth are etched into the graphite. A larger oxidation voltage Vox is correlated with
deeper trenches, meaning that the anticipated oxidation reaction is taking place
more efficiently. Along with the local tip-induced modification comes a change in
the topography of the graphite on a larger scale (bright cloud-shaped area around
the trenches). This height increase may either be due to the lifting of the uppermost
graphite layer(s) or due a partial execution of the reaction chain mentioned before,
leaving C(O) behind.

Next, we vary the write rate away from the standard speed of 100 nm/s and
keeping Vox = -28 V and SP = 3% constant (see Fig. D.4 (b)). Although no
trenches are etched for any of the lines, the area of modified material is strongly
increasing as the tip is kept at a certain position for a longer time.

Figure D.4 (c) illustrates that the set point during the oxidation is a crucial
parameter. The write rate was 100 nm/s and Vox = -28 V. Only the lowest SP
results in etching of the graphite. The difficulty of reproducibility gets apparent
when comparing the second to left line in D.4 (a) and the middle one in D.4 (c)
(see arrows), which are nominally written under the same conditions expect for the
SP value. Even though the set point is lower for the latter line, the graphene is not
removed, meaning that the chemical reaction could not be completed.

As the last variable, the relative humidity is changed, whereas it was kept at 48%
for the previous graphs. The other parameters were Vox = -28 V, SP = 3% and WR =
100 nm/s. Clearly, the etching is facilitated at higher relative humidities. However,
bulging along the edges of the trench appears for all traces and the surrounding
graphite material is affected as well.

For GaAs it has been reported [136] that the application of a square shaped
AC tip voltage is beneficial. Such a scheme helps to maintain the water meniscus
between the surface and the tip and neutralizes surface charges, since the tip polar-
ization is changed in each cycle. This method was however not found to improve
the results for the lithography on graphite or graphene in this study.

Experiments on graphene

In order to assure a good connection to ground, the graphene flakes were contacted,
bonded and mounted into a grounded chip socket at the AFM. To remove residual
resist, we scanned the flake in contact mode with a DC tip bias of -3 V before
starting the lithography.

Both tapping and contact mode AFM were tested for the patterning of single
layer graphene and the results were slightly better for the operation in contact mode
with an applied DC bias at the tip. As demonstrated before, a higher reactivity was
achieved with increased relative humidity. We therefore humidified the air to 60% for
the modification process. Since the AFM tip is touching the surface at all times in
contact mode operation, the set point was not changed during the lithography. Also
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Figure D.5: (a) Height image obtained with contact mode just after writing. Arrow
indicates direction of lithography trace. (b) Deflection error image corresponding
to (a). (c) Optical microscope image of complete flake. Zoom shown in (a) and
(b) was done in the area marked by the grey box. Contacts are numbered and the
lines along which the graphene was modified are marked (black lines). (d) Current-
voltage characteristics measured between different contacts (see legend). Data was
recorded at T = 4 K and the contact resistances were all on the order of few kΩ
(tested before the structuring).

due to the fact that a contact is established between the probe and the graphene,
Vox = -6 V is enough to initiate a chemical reaction. Care has to be taken, that
the mechanical force is low enough to not cause ripping of the graphene layer when
working in this operation mode.

Figure D.5 (a) and (b) show AFM micrographs taken immediately after the
writing of a vertical line (indicated by the arrow) across the flake. Although a change
is hardly visible in the height image, the tip experiences a fast varying change in
deflection along this cut. Subsequently, another section of the flake was processed
in the same way (see Fig. D.5 (c) for the position of the lithographic traces).

Since the graphene flake was connected to four electrodes, measurements of the
insulating properties across the modified lines were performed in a He dewar setup
at 4 K. The recorded IV-characteristics are shown in Fig. D.5 (d) measured for
different contact configurations. For the contact pair located in the lower part of
the flake (3 and 4), a very low resistance was measured, indicating that the graphene
is conducting well. If the two contacts are separated by a lithography trace (2 and
4), the current is suppressed up to a threshold voltage of V ≈ 120 mV. This value is
increased to V ≈ 300 mV, if a second line is located in-between the two electrodes
(1 and 4).

The fact that lithographic traces are insulating for low voltage bias values com-
bined with the observation that the graphene is not removed in the modified areas,
supports the statement made earlier about the uncompleted chemical reaction. The
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chemisorbed oxygen forming C(O), reduces the conductivity of graphene consider-
ably, but does not break all bonds between neighboring carbon atoms across the
flake. Hence, conductive paths remain and we observe a finite current.

Conclusions

It could be shown that AFM lithography can be used to modify both graphite and
graphene. Throughout the experiments, the reproducibility was however found to
be rather poor. A reason is likely the lack of control of the relative humidity on the
sample surface, which is one of the crucial parameters for the reaction to take place.
Further, discharges and non-local modification of the graphene happened numerous
times, possibly related to charged impurities on the surface. Other groups that
reported structures fabricated by local oxidation with an AFM, mentioned similar
issues [137–139].

With the advent of ultra clean graphene on BN, the request for a lower impurity
density on the surface is supposably met. If high relative humidities can be provided
at the reaction interface, local oxidation may be an alternative to the commonly used
dry etching technique.
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E Processing of graphene samples in FIRST

Process Description of process steps Remarks

Defining markers on
Si or Si/SiO2 wafer

Optional HMDS coating: 2-5 droplets of HMDS on wafer, spinner parameters:
3000 rpm, acc 2, 40 s

For better adhesion of the pho-
toresist

Resist coating: cover 1/3 of wafer with resist ma-N 1405, spinner parameters:
3000 rpm, acc 2, 40 s

Baking: 60 s at 100◦C

Exposure: MA6 mask aligner, constant power (CP) mode, lamp test with 365 nm
sensor, Exposure ca. 40 s

Developing: ma-D 533s, 60 s, stir slightly, rinse in water for 120 s

Cleaning before deposition: small oxygen plasma asher, 30 s at 200 W, 0.7 Torr Important to remove residues
of photo lithography below
bond pads

Metal evaporation: 5 nm Ti/ 40-50 nm Au

Lift-off: > 10 min in 50◦C acetone until gold starts to lift, blow Au away with
pipette and use US

Cleaning: 2 min in acetone, US power 9; 2 min in isopropanol, US power 9, dry
with N2

Cutting wafer into in-
dividual chips

Spinning: Shipley 1805, 60 s at 5000 rpm Protection layer during sawing

Baking: 2 min at 115◦C

Contact Hansjakob Rusterholz for sawing into 7.1×7.1 mm2 chips or 1.2×1.2

mm2 if intended for transfer chips

Preparing chips for
transfer process

Clean samples: 2 min in acetone, US power 5; 2 min in isoprop., US power 5,
dry with N2

Spinning: PVA 9000 in DI water (4.7 mass %), 60 s at 4000 rpm

Baking: 2 min at 100◦C

Spinning: PMMA 950K 4:1 in CB, 60 s at 4000 rpm

Baking: 2 min at 120◦C Compare color to Si/SiO2 sub-
strate to assure visibility of
graphene with the optical mi-
croscope

Mechanical exfolia-
tion of graphene or
boron nitride

Clean samples: 2 min in acetone, US power 5; 2 min in isoprop., US power 5,
dry with N2

Plasma ashing: 2 min at 200 W, 0.7 Torr Optional 10 min ozone cleaning
in UVOCS

Press graphite nugget or BN crystal on blue tape once, fold 6-10 times to dis-
tribute

To be done in the grey room
next to wafer saw

Put Si chips upside-down onto tape, press gently

Clean chips in warm acetone (short US pulse in warm acetone) To make sure the flakes used for
processing stick well

Rinse 2 min in isoprop., no more US power, dry with N2

Identify flakes with means of optical microscope, AFM and Raman spectroscopy
(only for graphene)

Transfer of graphene
or boron nitride on
other substrate

Mark position of flake on transfer chip with small pieces of blue tape Facilitates positioning later

Scratch away the resist along the edges of the transfer chip To allow penetration of water
to the PVA layer

Fill DI water into beaker (5 mm), place chip onto water surface and dip edges
and corners of transfer chip into water gently

Wait until PMMA film is separated from Si and floating on the water surface

Fill beaker with water to the rim and fish the film with the ”volcano”

Pat dry the bottom of the volcano and heat on hot plate at 70◦C until no water
is left anymore

Place target substrate on heater in micro manipulator set to 15 V (ca. 110◦C) To remove water from the tar-
get surface

Mount volcano to micro manipulator and align graphene flake with substrate

Leave after contact has been established for 5−10 min at 110◦C

Remove chip from volcano

Rinse in DI water to remove PVA residues and do lift-off in warm acetone to
remove PMMA (ca. 5 min)

Clean samples: 2 min in isoprop., no US power, dry with N2
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Process Description of process steps Remarks

Fabrication of metal
contacts or gate elec-
trodes

Spinning: PMMA 50K in CB, 1000 rpm for 1 s, 5000 rpm for 45 s

Baking: 3 min at 180◦C

Spinning: PMMA 950K 1:1, 1000 rpm for 1 s, 5000 rpm for 45 s

Bake: 3 min at 180◦C

EBL exposure

Developing: MIBK:IPA 1:3, 60 s, no stirring

Rinsing: isopropanol, 60 s, dry with N2

Metal evaporation: 0.5 nm Cr, 40 nm Au Evaporate 5 nm Ti with closed
shutter before to achieve lower
pressure in chamber

Lift-off: ≈5-10 min in acetone at 50◦C, stir or blow with pipette to remove gold

Clean samples: 2 min in isoprop., no US power, dry with N2

Dry etching Spinning (for normal size structures): PMMA 50K in CB, 1000 rpm for 1 s, 5000
rpm for 45 s

Spinning (for small structures): PMMA 950K 2:5, 1000 rpm for 1 s, 6000 rpm
for 45 s

For single-pixel lines, resist
thickness: ≈ 45 nm

Baking: 3 min at 180◦C

EBL exposure

Developing: MIBK:IPA 1:3, 60 s, no stirring

Rinsing: isopropanol, 60 s, dry with N2

Etching in RIE (for normal size structures): clean chamber (recipe Graphene O2
clean), load sample, etch (recipe Graphene C-etch gentle (13−40s)

Depending on thickness of
flakes that should be etched

Etching in RIE (for thin resist): clean chamber (recipe Graphene O2 clean), load
sample, etch (recipe Graphene C-etch gentle (10-15s))

Remove resist: prepare two glasses of acetone at 50◦C, hold sample upside-down,
immerse in first glass of acetone while moving slightly for ≈ 5s, immerse into
second glass of acetone for 2 min, rinse in isopropanol for 2 min, dry with N2

Sometimes the upper resist
layer is deposits on top of the
sample, then it can only be re-
moved in oxygen plasma

Glueing sample into
chip carrier

Prepare conductive silver paste: H20E A,B, approx 30g of each on a glass plate,
mix with toothpick

Optional: use dummy chip as spacer Samples for scanning gate or
AM lithography

Glue sample to chip carrier, contact back gate by droplet of glue from the side

Baking: in vacuum in graphene annealing oven, 20 min at 150 ◦C

Processing top gates

with CytopTM dielec-
tric

Spinning: CytopTM CTL-809M diluted 1:10 in CT-Solv.180, 500 rpm for 10 s,
2000 rpm for 20 s

Baking (I): 30 min at 50◦C; Baking (II): 30 min at 80◦C

Metal evaporation: 5 nm Cr PMMA does not stick on the
hydrophobic CytopTM surface

Process contacts as described above

Cr-etching: Cr-etch (ammonium nitrate & acidic acid & water), 30s

Rinsing: 2 min in DI water
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[54] S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin,
and T. Ihn, Applied Physics Letters 96, 152104 (2010).

[55] S. Luryi, Applied Physics Letters 52, 501 (1988).

[56] J. H. Davies, The physics of low dimensional semiconductors (Cambridge Uni-
versity Press, 1998).

[57] T. Ihn, Semiconductor Nanostructures (Oxford university press, 2010).

[58] C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn,
Physical Review Letters 102, 056403 (2009).

[59] F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, and K. Ensslin,
Physical Review B 79, 075426 (2009).

[60] K. Todd, H.-T. Chou, S. Amasha, and D. Goldhaber-Gordon, Nano Letters
9, 416 (2009).

[61] X. Liu, J. B. Oostinga, A. F. Morpurgo, and L. M. K. Vandersypen, Physical
Review B 80, 121407(R) (2009).

[62] M. Y. Han, J. C. Brant, and P. Kim, Physical Review Letters 104, 056801
(2010).

[63] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande,
K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, Nat Mater
10, 282 (2011).

[64] L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S.
Novoselov, M. I. Katsnelson, and A. K. Geim, Physical Review Letters 105
(2010).

[65] E. A. Henriksen and J. P. Eisenstein, Physical Review B 82 (2010).

[66] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Physical Review
B 54, 17954 (1996).

114



[67] N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Physical Review B 73,
195411 (2006).

[68] D. Gunlycke, D. A. Areshkin, and C. T. White, Applied Physics Letters 90,
142104 (2007).

[69] M. Zarea and N. Sandler, Physical Review Letters 99, 256804 (2007).

[70] M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Physical Review Letters 98,
206805 (2007).

[71] Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E 40, 228 (2007).

[72] P. Gallagher, K. Todd, and D. Goldhaber-Gordon, Physical Review B 81,
115409 (2010).

[73] J. B. Oostinga, B. Sacepe, M. F. Craciun, and A. F. Morpurgo, Physical
Review B 81, 193408 (2010).

[74] B. Terres, J. Dauber, C. Volk, S. Trellenkamp, U. Wichmann, and C. Stampfer,
Applied Physics Letters 98, 032109 (2011).

[75] N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimaraes, I. J. Vera-Marun,
H. T. Jonkman, and B. J. van Wees, Nat Phys advance online publication,
(2011).

[76] D. A. Areshkin, D. Gunlycke, and C. T. White, Nano Letters 7, 204 (2006).

[77] F. Sols, F. Guinea, and A. H. C. Neto, Physical Review Letters 99, 166803
(2007).

[78] D. Querlioz, Y. Apertet, A. Valentin, K. Huet, A. Bournel, S. Galdin-
Retailleau, and P. Dollfus, Applied Physics Letters 92, 042108 (2008).

[79] A. Lherbier, B. Biel, Y.-M. Niquet, and S. Roche, Physical Review Letters
100, 036803 (2008).

[80] S. Adam, S. Cho, M. S. Fuhrer, and S. D. Sarma, Physical Review Letters
101, 046404 (2008).

[81] M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, Physical Review B
78, 161407 (2008).

[82] E. R. Mucciolo, A. H. C. Neto, and C. H. Lewenkopf, Physical Review B 79,
075407 (2009).

[83] G. Schubert, J. Schleede, and H. Fehske, Physical Review B 79, 235116 (2009).

[84] I. Martin and Y. M. Blanter, Physical Review B 79, 235132 (2009).

115



[85] S. Ihnatsenka and G. Kirczenow, Physical Review B 80, 201407 (2009).

[86] J. W. Klos, A. A. Shylau, I. V. Zozoulenko, H. Xu, and T. Heinzel, Physical
Review B 80, 245432 (2009).

[87] F. Libisch, S. Rotter, and J. Burgdörfer, arXiv:1102.3848v1 (2011).

[88] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P.
Kouwenhoven, D. van der Marel, and C. T. Foxon, Physical Review Letters
60, 848 (1988).

[89] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F.
Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, Journal
of Physics C: Solid State Physics 21, 209 (1988).

[90] H. van Houten and C. Beenakker, Physics Today 49, 22 (1996).

[91] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Journal of the
Physical Society of Japan 65, 1920 (1996).

[92] K. Wakabayashi, Physical Review B 64, 125428 (2001).

[93] C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Letters 7, 825
(2007).

[94] L. Brey and H. A. Fertig, Physical Review B 73, 235411 (2006).
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