
Diss. ETH No. 19948

Computational methods for ice flow simulation

A dissertation submitted to

ETH ZÜRICH

for the degree of

Doctor of Sciences

presented by

JEDEDIAH ASPEN KALLEN-BROWN

Master of Science (Mathematics) University of Alaska Fairbanks
Bachelor of Science (Physics) University of Alaska Fairbanks

Bachelor of Science (Mathematics) University of Alaska Fairbanks

born

4 June, 1983

citizen of

United States of America

accepted on the recommendation of

Prof. Dr. M. Funk, examiner

Prof. Dr. W. Kinzelbach, examiner

Dr. M. Lüthi, examiner

Prof. Dr. E. L. Bueler, co-examiner

Dr. B. F. Smith, co-examiner

2011

Contents

Abstract . ix

Zusammenfassung . xi

1 Introduction 1

2 Efficient nonlinear solvers for nodal high-order finite element methods in 3D 4
2.1 Introduction . 4

2.2 Newton-Krylov . 6

2.2.1 The Newton iteration . 6

2.2.2 Krylov methods . 6

2.2.3 Performance . 7

2.3 High order finite element methods . 8

2.3.1 Discretization . 8

2.3.2 Residual evaluation . 8

2.3.3 Jacobian representation . 9

2.3.4 Preconditioning . 10

2.3.5 Performance of matrix operations . 10

2.4 Numerical examples . 11

2.4.1 p-Poisson . 11

2.4.2 Stokes . 14

2.5 Discussion . 17

3 Textbook multigrid efficiency for hydrostatic ice sheet flow 19
3.1 Introduction . 19

3.2 Equations and Discretization . 20

3.3 Solver and Implementation . 21

3.3.1 Anisotropic Meshes . 21

3.3.2 Dirichlet Boundary Conditions . 23

3.3.3 Matrices . 23

3.4 Numerical Examples . 24

3.4.1 Algorithmic Scalability . 24

3.4.2 Parallel Scalability on Blue Gene/P . 26

3.4.3 Algebraic Methods . 27

3.5 Conclusion . 30

3.6 Addendum: Implicit free surface and erosion . 32

4 Software 35
4.1 Multiphysics coupling . 36

4.1.1 Field-split preconditioning . 37

4.1.2 Linear algebraic interfaces to facilitate field-split preconditioning 39

4.2 High throughput on cache-based architectures . 41

4.2.1 Sparse matrix kernels . 41

4.2.2 Small dense tensor product kernels . 45

4.3 Generic finite elements . 46

4.3.1 Dual order finite elements . 47

4.3.2 Input/output and visualization for high-order mixed spaces 51

4.4 Verification . 52

4.5 Time integration . 57

5 Discretization issues 59
5.1 Regularity and approximation . 59

5.1.1 Singularities in the continuum formulation . 60

5.1.2 Approximation spaces . 61

5.2 Implementation of boundary conditions . 63

5.2.1 Dirichlet boundary conditions . 63

5.2.2 Slip . 64

6 Steady-state viscous heat transport at Jakobshavn Isbræ 67
6.1 Formulation and methods . 68

6.1.1 Problem description . 68

6.1.2 Numerical solution . 73

6.1.3 Verification . 77

6.1.4 A simple problem . 79

6.2 Jakobshavn Isbræ . 82

6.2.1 Scaling . 82

6.2.2 Meshing . 82

6.2.3 Solutions . 84

7 Conclusion and Outlook 89
7.1 Future directions . 89

References . 93

List of Figures

2.1 The left panel shows truncation error as a function of total degrees of freedom for a 3D
Poisson problem with smooth but rapidly varying solution. The thick horizontal line
represents an acceptable accuracy and is only modestly within the asymptotic range for all
approximation orders. The right panel shows the total number of nonzeros in the Jacobian
which is an optimistic lower bound for the flops required for the solve. 5

2.2 A patch of four Q5 elements with one Q1 subelement shaded. 10

2.3 Linear solve time for 3D Poisson with relative tolerance of 10−8 using assembled Q2
elements and unassembled Q3, Q5, and Q7 elements preconditioned by an assembled Q1
operator. 12

2.4 Two all-hexahedral meshes, twist and random, containing nearly degenerate elements
(element condition number shown). 13

2.5 Linear solve time for 3D Stokes with relative tolerance of 10−6. For Q2−Q1 and Q3−Q2
elements, convergence is significantly slower than with Qk−Qk−2, but apparently scalable
despite being somewhat erratic. 16

3.1 A cutout colored by velocity magnitude for flow over the bumpy bed of test X at L= 10km
with m = 1/10 nearly plastic basal yield model. The cut on the left shows along-flow
velocity as the ice hits the sticky region, the cut on the right shows across-flow shear
structure. 25

3.2 Grid-sequenced Newton-Krylov solution of test X . The solid lines denote nonlinear
iterations, and the dotted lines with × denote linear residuals. 26

3.3 Grid sequenced Newton-Krylov convergence for test Y 26

3.4 Average number of Krylov iterations per nonlinear iteration. Each nonlinear system was
solved to a relative tolerance of 10−2. 27

3.5 Strong scaling on Shaheen for different size coarse levels problems and different coarse
level solvers (see text for details). The straight lines on the strong scaling plot have slope
−1 which is optimal. Grid sequencing is used, but only the nonlinear solve on the finest
level is shown since strong scalability is most important when many time steps are needed. 28

3.6 Weak scaling on Shaheen with a breakdown of time spent in different phases of the
solution process. Times are for the full grid-sequenced problem instead of just the finest
level solve. 28

3.7 A steady-state solution for ISMIP-HOM test C (Pattyn et al., 2008) at 10km computed in
19 iterations. The elevated surface is exaggerated surface height and the color in the solid
domain is velocity. 33

3.8 Bed profile eroded from a flat bed after 300ka with test C slipperiness perturbation. Time
steps are 30ka at this point in the simulation. 33

4.1 Memory and floating point requirements for matrix-free tensor-product application of
an operator versus representation as an assembled matrix stored in BAIJ(b) format. The
same operation y← Ax is applied in both cases, the storage is just different. A “result” is
a single scalar entry in y, regardless of the block size b. 47

4.2 Solution of the large-deformation nonlinear elasticity problem with manufactured solution
on a Q5 mesh. 56

6.1 The numerical approximation to the manufactured solution (6.1.15) as computed using
a Q3−Q2−Q3 finite element discretization on a 12× 12× 12 mesh. The converging
streamlines are symmetric from below. Energy isosurfaces are shown, with the phase
transition occuring at approximately E = 0. The numerical solution is accurate to 4 digits
for momentum and energy and 2 digits for pressure, evaluated using the maximum norm
and a higher order quadrature rule. The gradients are accurate to 3 digits for momentum
and energy, with 3% error in the pressure gradient. 78

6.2 Convergence rates for Q3−Q2−Q3 under h-refinement. 79

6.3 Energy isosurfaces and velocity streamlines for the block on an inclined plate. The
energy scale has been shifted so that the phase transition occurs at approximately E = 0.
The warmest region (inside the red isosurface) occurs where the singular viscous heat
production (see Figure 6.4) balances advection and combined thermal and moisture
diffusion. 80

6.4 Isosurfaces of the viscous heat production rate ηDui :Dui and velocity streamlines for
the block on an inclined plate. Viscous heat production has a 1/r singularity at both the
upstream and downstream corners, clearly stronger at the downstream corner. 81

6.5 Regions of interest for Jakobshavn Isbræ. The outer black line marks the area on which
bed and surface measurements were accurate enough to perform decimation. The inner
(thick) black line marks the meshed region. 83

6.6 The volume to be meshed resting on the geometric model for the bed. 84

6.7 Computed momentum density streamlines for the ice stream region at Jakobshavn Isbræ.
The highest velocity occurs in a deep, narrow region of the ice stream. 85

6.8 Computed energy density (top) and momentum density (bottom) with flow streamlines
for the ice stream region at Jakobshavn Isbræ. 86

6.9 Contours of potential temperature (◦C) and velocity streamlines (colored by speed mea-
sured in ma−1). Variability in layer thickness is clearly caused by tributaries and geometry.
The maximum potential temperature is 7.3 ◦C which corresponds to a maximum melt
fraction of 4.8%. The sharp transition from cold upstream boundary condition is just
visible at the top of this plot. 87

List of Tables

2.1 Assembly and solve time (seconds) for a 3D Poisson problem with 1213 degrees of
freedom (1203 for Q7), relative tolerance of 10−8. 12

2.2 Iteration counts for four different meshes using ML, BoomerAMG (BMG), and Cholesky
(Chol) preconditioning. For Q1 random, BoomerAMG failed, producing NaN. ML on
the flat mesh was run with stronger smoothers as described in the text. Note that the
problem size increases with element order. 14

2.3 Time (seconds) spent in various stages of a nonlinear solve for Q3 elements preconditioned
by ILU(0) and ILU(1) applied to the corresponding Q1 matrix. The first columns solve the
linear system to a relative tolerance of 10−4 with a maximum of 60 Krylov iterations per
Newton, the latter use the Eisenstat-Walker(1996) method for adjusting solver tolerances
with a maximum of 30 Krylov iterations. The events MF MatMult (matrix-free Jacobian
application), PCSetup, and PCApply are part of the Krylov iteration. Additional Residual
evaluations are needed when the line search is activated. 15

2.4 Problem size and Krylov iterations to solve the Stokes problem to a relative tolerance
of 10−6 with elements of different orders using right-preconditioned GMRES(30) and
field-split ML on the A block. Each restart caused an approximately 2-iteration stall. . . 16

3.1 Throughput (Mflop/s) for different matrix formats on Core 2 Duo (P8700) and Opteron
2356 (two sockets). MatSolve is a forward- and back-solve with incomplete Cholesky
factors. The AIJ format is using “inodes” which unrolls across consecutive rows with
identical nonzero pattern (pairs in this case). 24

3.2 Average number of GMRES iterations per Newton iteration for one-level domain decom-
position with different overlap and fill. 29

3.3 Average number of GMRES iterations per Newton iteration for field-split preconditioners
with different ways of combining the splits and different solvers within the splits. Boomer-
AMG used 7 levels and ML had 3 with the same solver parameters as discussed in the
text for the coupled approach. 30

3.4 Average number of GMRES iterations per Newton for different multigrid preconditioners. 30

4.1 Throughput (Mflop/s) and percentage of STREAM Triad bandwidth, assuming optimal
vector reuse, for three matrix kernels and different matrix formats. The test machines are
a Core 2 Duo (P8700) and an Opteron 2356 (two sockets). The test problem is a Q1 finite
element discretization with block size of 2 on a 3D mesh (essentially a 27-point stencil)
in which each process has 64×64×63 nodes. 44

4.2 Assembly time for the Laplace and p-Bratu problems with different element types and
libraries. All cases have the same number of degrees of freedom, 653 = 274625. The
structured problem is treated as unstructured by libMesh, Deal.II, and Dohp, with gran-
ularity shown in the Connectivity column. DMDA uses a structured grid and is specialized
for Q1 assembly. 51

4.3 Convergence rates for the large-deformation elasticity problem with manufactured solution. 55

6.1 Physical constants used for the viscous heat transport problem. The same constants are
used in Aschwanden et al. (2011). 71

6.2 Nonlinear convergence rates. 78

ix

Abstract

A large amount of scientific effort worldwide is focused on understanding and predicting the advance and
consequences of climate change, due to its potentially disastrous affects on human society. Numerical
models are playing an ever-increasing role in the analysis of complex processes, but current modeling
approaches are limiting the scope of problems that can be addressed. With the ever-increasing complexity,
it is difficult to verify correctness of the implementation, assess accuracy of the simulation, or distinguish
between numerical and modeling errors. The established strategies for model coupling, while generally
thought to be necessary in order to manage complexity, cause significant stability and accuracy problems.
Efficiency of nonlinear solvers represent a further obstacle to high resolution and advanced analysis
techniques such as optimization, uncertainty quantification, and stability analysis. Present implementations
also tend to use low-order discretizations which poorly utilize emerging hardware, are low accuracy, and
cause numerical artifacts in some cases. This thesis contains contributions to each of these challenges.

A new perspective on high-order methods for finite element analysis is introduced. This formulation
is well-suited to advances in linear and nonlinear solvers and offers dramatically better utilization of
modern hardware than conventional methods. Dohp, a new general purpose library based on this method
is presented, and the performance is shown to be several times faster than other widely used finite element
libraries. Through new software interfaces, this performance is achieved while retaining more run-time
flexibility in terms of element and preconditioning choice, and drastically better performance as the order
of the element increases. The library also retains more geometric information than existing open source
libraries, permitting more natural coupling to CAD and geometric models, as well as the implicit solution
of equations in which the domain is part of the solution.

A new Newton-Krylov-Multigrid solver for the hydrostatic equations of ice sheet flow is presented.
The high cost of solving the hydrostatic equations using conventional methods has been the principle
impediment to their use in large-scale ice sheet models, causing existing models to fall back to simpler
momentum balance models. In addition to poor algorithms, the community has also suffered from lack of
quality parallel implementations, thus further limiting the scope of problems that could be solved. The
new solver demonstrates textbook multigrid efficiency on a variety of demanding problems, offering
several orders of magnitude speedup for problem sizes of interest, and nearly perfect strong and weak
scalability on parallel hardware.

A new algebraic interface for multiphysics coupling is introduced. Robust coupling of multiple interacting
physical processes is a challenging problem in which many commonly used methods are fundamentally
inadequate. The best methods are highly problem dependent, change as the number of coupled processes
grows, and are a highly active area of research. A crucial limitation of earlier software was that trying
different methods generally involved a great deal of error-prone software development by the user.
This poor software support made it difficult to test the quality and performance of different methods,
thus locking projects in to methods that may actually be ill-suited to the problems that are eventually
encountered. The new algebraic interface allows an arbitrary number of physical processes to be coupled
using a wide range of methods which can be selected and combined at run-time. It permits straightforward
reuse of single physics modules with no code modification, thus offering better support for model
verification and extensibility. The interface offers higher performance and a great deal more flexibility
in choice of methods than previous software. This software, along with implicit time integrators for
differential algebraic equations and optimal explicit strong stability preserving integrators for hyperbolic

systems, has been added to PETSc and is in production use by several external groups.

Improvements in throughput on modern hardware are presented. Current methods for solving partial
differential equations exhibit very low utilization of modern hardware, often less than 5 percent, due
to their overwhelming dependence on memory bandwidth. Part of this under-utilization was due to
implementation issues with sparse matrix kernels preventing good reuse of high-level caches. This
was rectified within this work by improving PETSc’s sparse matrix kernels by 20 to 30 percent, and
performance is now close to the theoretical limit of the hardware. The more fundamental limitation
of memory bandwidth cannot be overcome by implementation optimization; it requires changing the
underlying algorithm. In the context of the finite element library Dohp, this can be achieved by eschewing
assembled sparse matrices in favor of a matrix-free representation that has higher arithmetic intensity
and uses much less memory for everything beyond lowest order elements. This transformation permits
an order of magnitude improvement in hardware utilization and is transparently available to the user
in the Dohp library. Improved support for such unassembled representations was integrated into the
multi-physics coupling interface.

Robustness and accuracy requirements for ice flow problems place many constraints on the discretization
and treatment of boundary conditions. Many of these technical requirements are undocumented in the
glaciology literature and hampering current efforts for robust simulation. These technical issues are
investigated and conclusions are drawn, with practical consequences to the present work and future
development of methods for ice flow.

Current formulations for polythermal ice do not account for density variation caused by melt fraction and
thus commit a conservation error of first order in the melt fraction. A new continuum formulation that
exactly conserves mass, momentum, and energy independent of the melt fraction is presented. A high
order finite element discretization for this system is proposed and numerical accuracy is addressed using
manufactured solutions. This formulation treats all terms, including energy transport, implicitly in time,
which allows the direct application of Newton-Krylov methods to compute the steady state. Steady state
solutions are useful for parameter inversion, “spin up”, and stability analysis. They are conventionally
computed using direct time integration with a time step size constrained by the CFL stability criterion.
With this constraint, they require a mesh-dependent number of time steps, typically very large, to reach
steady state. The Newton-Krylov method converges in a small, mesh-independent number of iterations.
This steady-state solver is applied to a section of the ice stream channel at Jakobshavn Isbræ. Setting up a
model of an outlet glacier using realistic geometry and boundary conditions is a time-consuming task.
This is especially true if a geometric model is needed to define slip conditions, or if the mesh needs to
conform to the grounding line. Visualization is also complicated by the need to georeference model results.
These difficulties have been partially mitigated by having the analysis code work with georeferenced input
in any format and any projection, and produce georeferenced output.

The purpose of this thesis is not to make a specific prediction, but rather to improve the methods and
process available for future predictive modeling, especially by glaciologists less interested in numerical
and computational issues.

xi

Zusammenfasssung

Viele der weltweiten wissenschaftlichen Anstrengungen sind darauf ausgerichtet, das Verständnis des Kli-
mawandels und seiner Konsequenzen zu verstehen und vorherzusagen, dies insbesondere auch im Hinblick
auf die möglicherweise katastrophalen Auswirkungen auf die Gesellschaft. Numerische Modelle spielen
eine immer wichtigere Rolle bei der Analyse komplexer Prozesse, allerdings ist der Anwendungsbereich
der Modelle limitiert durch die gegenwärtigen Modell-Ansätze. Mit zunehmender Modell-Komplexität ist
es schwierig, die Güte der Implementation zu verifizieren, die Genauigkeit der Simulation zu bestimmen,
und zwischen numerischen und Modellfehlern zu unterscheiden. Die etablierten Strategien der Modellkop-
plung, die als notwendig zur Bewältigung der Komplexität angesehen werden, verursachen signifikante
Stabilitäts- und Genauigkeitsprobleme. Die Effizienz von nichtlinearen Solvern sind ein weiteres Hinder-
nis für hohe Auflösung und fortgeschrittene Analysetechniken wie etwa Optimierung, Quantifizierung
der Ungenauigkeit und Stabilitätsanalyse. Heutige Implementierungen verwenden Diskretisierungen
niedriger Ordnung welche moderne Hardware nur schlecht ausnutzt, sind von niedriger Genauigkeit,
und rufen in gewissen Fällen numerische Artefakte hervor. Diese Arbeit enthält Beiträge zu jeder dieser
Herausforderungen.

Eine neue Perspektive auf Finite-Elemente Methoden höherer Ordnung wird eingeführt. Diese For-
mulierung ergänzt die Fortschritte bei linearen und nichtlinearen Solvern, und nützt die Eigenschaften
moderner Hardware viel besser aus als herkömmliche Methoden. Eine neuentwickelte, allgemein ver-
wendbare Programm-Bibliothek mit Namen Dohp wird präsentiert, deren Performance um ein vielfaches
besser ist als diejenige von anderen gebräuchlichen Finite-Elemente Programm-Bibliotheken. Die hohe
Performance wird erreicht durch neue Software-Interfaces, während gleichzeitig die Flexibilität zur
Laufzeit bei der Auswahl von Elementen und Preconditionern grösser ist. Die Performance des Codes
steigt drastisch mit höherer Element-Ordnung. Diese Programm-Bibliothek stellt auch mehr geometrische
Information bereit als andere Open-Source Codes, und erlaubt dadurch eine natürliche Kopplung mit
CAD und geometrischen Modellen, sowie die implizite Lösung von Gleichungssystemen, in denen die
Modell-Geometrie Teil der Lösung ist.

Ein neuer Newton-Krylov Multigrid-Solver für die hydrostatischen Eisschild-Gleichungen wird dargestellt.
Der hohe Aufwand zur Lösung der hydrostatischen Gleichungen mit konventionellen Methoden war bisher
der Hauptgrund für deren Nicht-Gebrauch in grossen Eisschildmodellen – stattdessen werden einfachere
Approximationen der Impuls-Bilanz verwendet. Neben den schlechten Algorithmen hat die Modellier-
Gemeinde auch keine gute Implementation für Parallelcomputer zur Hand, was den Anwendungsbereich
weiter stark einschränkt. Der neue Solver zeigt eine Multigrid-Effizienz wie aus dem Lehrbuch für mehrere
anspruchsvolle Probleme, bietet eine Laufzeitverminderung um Grössenordnungen für interessierende
Problemgrössen, und zeigt nahezu perfekte starke und schwache Skalierbarkeit auf paralleler Hardware.

Ein neues algebraisches Interface für die Kopplung verschiedener Modell-Codes wird eingeführt. Die
robuste Kopplung mehrerer physikalischer Prozesse ist eine Herausforderung für welche viele der nor-
malerweise verwendeten Methoden inadäquat sind. Welche Koppelungsmethode sich am besten eignet
ist problemabhängig, ändert sich mit der Anzahl der betrachteten Probleme, und sind ein Gebiet ak-
tiver Forschung. Eine entscheidende Einschränkung bisheriger Software war, dass das Ausprobieren
verschiedener Methoden üblicherweise einen grossen Programmieraufwand des Benutzers erforderte. Die
mangelnde Unterstützung durch die Software erschwerte das Testen von Qualität und Performance ver-
schiedener Methoden, und führte oft zur Verwendung inadäquater Methoden für die zu lösenden Probleme.

Das neue algebraische Interface erlaubt es, eine beliebige Zahl physikalischer Prozesse mit einer grossen
Auswahl an Methoden zu koppeln, welche zur Laufzeit ausgewählt und kombiniert werden können. Es
erlaubt die unveränderte Verwendung bestehender Programmmodule für die einzelnen Prozesse, und
bietet daher bessere Unterstützung von Verifikation und Extensibilität. Das Interface bietet eine höhere
Performance und weitaus mehr Flexibilität bei der Auswahl der Methoden als bisherige Software. Diese
Software, zusammen mit impliziten Zeitintegratoren für differentiell-algebraische Gleichungen sowie
optimaler expliziter, stark stabilitätserhaltender Integration für hyperbolische Systeme, wurde in PETSc
implementiert und ist bei mehreren externen Forschungsgruppen in Gebrauch.

Verbesserungen des Durchsatzes auf moderner Hardware werden dargestellt. Bisherige Methoden zur
Lösung partieller Differentialgleichungen zeigen eine schlechte Ausnützung moderner Hardware, oft
unter 5 Prozent, wegen der überwiegenden Abhängigkeit von der Memory-Bandbreite. Zum Teil war
diese schlechte Ausnützung auf Implementationsprobleme der “Sparse Matrix Kernels” zurückzuführen,
die zu schlechter Auslastung des high-level Caches führten. Im Rahmen dieser Arbeit wurden die PETSc
Sparse Matrix Kernels um 20 bis 30 Prozent verbessert – die Performance ist nun nahe der theoretischen
Grenze der Hardware. Der fundamentaleren Limitierung von Memory-Bandbreite lässt sich nicht mit einer
optimierten Implementierung beikommen, dafür sind Veränderungen des Lösungs-Algorithmus notwendig.
Im Kontext der Finite-Elemente-Bibliothek Dohp kann das durch Vermeiden von assemblierten “Sparse-
Matrices” erreicht werden, indem der Matrix-freien Repräsentation Vorzug gegeben wird, welche eine
höhere arithmetische Intensität und stark reduzierte Speicheranforderungen für alle Elemente, ausser jener
der niedrigsten Ordnung, hat. Diese Transformation erlaubt eine Verbesserung um eine Grössenordnung
im Hardware-Gebrauch, und ist in Dohp für den Benutzer transparent anwendbar. Eine verbesserte
Unterstützung für nicht-assemblierte Repräsentationen wurde auch im Multi-Physik-Interface integriert.

Die Robustheits- und Genauigkeitsanforderungen für Eisfliessen schränken die Auswahl der
Diskretisierung und die Behandlung der Randbedingungen ein. Viele dieser technischen Anforderungen
sind in der Glaziologie-Literatur nicht dokumentiert, und behindern gegenwärtige Anstrengungen einer
robusten Simulation. Diese technischen Anforderungen werden untersucht und Folgerungen gezogen, die
praktische Konsequenzen für diese Arbeit, sowie auch für künftige Entwicklungen der Methoden für die
Modellierung des Eisfliessens haben.

Gegenwärtige Formulierungen für polythermales Eis vernachlässigen die Dichtevariation durch die
Schmelze, und verursachen einen Erhaltungs-Fehler erster Ordnung im Schmelzanteil. Eine neue
Kontinuums-Formulierung mit exakter Erhaltung von Masse, Impuls und Energie, unabhängig vom
Schmelzanteil, wird präsentiert. Für dieses System wird eine Diskretisierung hoher Ordnung vorgeschla-
gen, und die numerische Genauigkeit wird mit “Manufactured Solutions” untersucht. Diese Formulierung
behandelt alle Terme, einschliesslich des Energietransportes, implizit in der Zeit, was die Verwendung
von Newton-Krylov Methoden zur Berechnung von stationären Zuständen erlaubt. Solche stationäre
Zustände sind nützlich zur Inversion von Parametern, “spin up”, sowie zur Stabilitätsanalyse. Sie
werden üblicherweise mit direkter Zeitintegration berechnet mit einer Schrittweite die durch die CFL Sta-
bilitätsbedingung begrenzt ist. Diese Bedingung verlangt üblicherweise eine sehr grosse, netzabhängige
Anzahl von Zeitschritten zur Erreichung eines stationären Zustandes. Die Newton-Krylov Methode
hingegen konvergiert nach einer kleinen, netzunabhängigen Anzahl Iterationen. Dieser Solver wird
für einen Ausschnitt des Jakobshavn Isbræ angewendet. Ein solches Modell eines Outlet-Gletschers
mit realistischer Geometrie und Randbedingungen zu erstellen ist zeitaufwendig, insbesondere wenn
ein geometrisches Modell für die Darstellung der Gleit-Randbedingung benötigt wird, oder wenn das
Netz zur Grounding Line konform sein soll. Die Visualisierung der Resultate wird erschwert durch die
Notwendigkeit einer Georeferenzierung. Diese Schwierigkeiten wurden teilweise dadurch gelöst, dass
der Code mit georeferenzierten Eingabedaten in beliebigem Format und Projektion auskommt, und eine
georeferenzierte Ausgabe erzeugt.

Das Ziel dieser Arbeit ist nicht, genaue Vorhersagen zu machen, sondern die Methoden und Prozesse
für zukünftige Vorhersage-Modelle zu verbessern – dies insbesondere für Glaziologen die weniger an
numerischen und implementations-bedingten Problemen interessiert sind.

Chapter 1

Introduction

A large amount of scientific effort worldwide is focused on understanding and predicting the advance and
consequences of climate change, due to its potentially disastrous affects on human society. Increasingly,
the results of numerical models are being used to influence decisions regarding energy policy, water rights,
property values, geoengineering projects, and many more. Thus climate science, once an academic pursuit,
is transforming into an engineering project of the grandest scale, the success of which will affect the entire
planet. However, in stark contrast to other engineering disciplines, the “product development” latency for
climate is a human lifetime or more, observations are difficult to obtain, and experimental perturbation is
nearly impossible. This contributes to an environment in which the people creating and using numerical
models never have direct feedback to assess the quality of the numerical results. Additionally, there is no
direct financial incentive to produce quality results. Indeed, the quality of the results may never be known
within the lifetime of the scientist who creates them.

The situation is very different in the industrial setting. If a computer program is used to design a plane that
malfunctions, a bridge or dam that collapses, an engine with poor efficiency, or a reservoir engineering
plan that results in poor recovery, there is process of accountability. Poor numerical results have direct
financial and/or political consequences for the company or organization responsible. In such fields, it was
learned early on that the process of verification and validation (Roache, 1998; Babuška and Oden, 2004)
is of paramount importance. Numerical and computational issues cannot be merely an afterthought, and
short cuts generally lead to incorrect results and poor understanding of complex phenomena.

This philosophy was summarized well in the 1986 Editorial Policy Statement on the Control of Numerical
Accuracy for the Journal of Fluids Engineering (Roache et al., 1986). This statement was unequivocal that
the time for less rigorous analysis and testing of methods had long passed, and announced that the jouarnal
“will not accept for publication any paper reporting the numerical solution of a fluids engineering problem
that fails to address the task of systematic truncation error testing and accuracy estimation.” In particular,
“a single calculation in a fixed grid will not be acceptable” and “the editors will not consider a reasonable
agreement with experimental data to be sufficient proof of accuracy, especially if any adjustable parameters
are involved.” This policy was strengthened and extended in 1993 to its current form (American Society
of Mechanical Engineers, 2004) which defines a list of ten criteria that must be used to assess the accuracy,
robustness, efficiency, and proper documentation of a numerical method in order for it to be considered by
the journal. Many other engineering journals have since adopted similar editorial policies. It is clear from
the list, and has been confirmed by numerous colleagues in each discipline of climate modeling, that there
does not exist a single climate component in any discipline that comes close to satisfying these publication
criteria. This must change if the results of numerical models are to be taken seriously in the future.

Unfortunately, careful study of spatial discretization and grid convergence is not sufficient to enable
the next generation of scientific inquiry for multiphysics systems such as climate or even ice dynamics
in isolation. Time discretization and implicit solver performance must also be addressed. As argued
by a recent Department of Energy panel (Simon et al., 2007), current models invariably rely on “first-
order accurate operator-splitting, semi-implicit and explicit time integration methods, and decoupled

2 CHAPTER 1. INTRODUCTION

nonlinear solution strategies. Such methods have not provided the stability properties needed to perform
accurate simulations over the dynamical time-scales of interest. Moreover, in most cases, numerical
errors and means for controlling such errors are understood heuristically at best.” This and a related
report (Washington et al., 2009) prioritize further research in fast, robust linear and nonlinear solvers
because these “will directly determine the scope of feasible problems to be solved” as, inevitably, implicit
formulations and advanced analysis techniques such as optimization, uncertainty quantification, and
stability and sensitivity analysis assume a central role.

Ice dynamics was identified by the fourth assessment report of the IPCC (Lemke et al., 2007) as a crucial
source of uncertainty in sea level rise estimates, with no existing models capable of simulating the physical
processes responsible for the large uncertainty. The underlying source of this uncertainty is a dynamical
instability identified by Weertman (1974) and made rigorous by Schoof (2007). The problem of grounding
line stability in locations such as Jakobshavn Isbræ is fundamentally three dimensional, constant factors
are important, and the overall stability is determined by multi-scale behavior such as heat flux from the
ocean through thin boundary layers and small bed features that can stabilize an unstable state. The “full”
grounding line stability problem is on the frontier of computational science in many ways. It involves
coupling physical processes in multiple domains interacting on multiple time scales through boundary
layer processes, with material and geometric anisotropy, strong nonlinearity and heterogeneity, mixed
characteristic PDEs, four varieties of interacting contact problems, and uncertainty in the geometry,
coefficients, and constitutive models.

Advances in geoscience simulations will come from the synergy of

• more accurate physical models,

• more sophisticated mathematical algorithms, and

• more efficient implementations of these models and algorithms that take into account recent
advances in computer hardware.

This synergy can only occur within a comprehensive well-thought-out software infrastructure that reflects
all three facets of simulation. This thesis contains my work on each of these topics and their synthesis.
It attempts to bring a more rigorous understanding of numerical and computational issues in ice flow
modeling, with a focus on robust, extensible methods that scale to large problem sizes with efficient use
of current and future hardware. An overarching theme is the development of extensible software that can
be used to solve increasingly complex problems with minimal development time, while using the best
possible methods. Much of this software has been added to the PETSc (Balay et al., 2012a) library1 and is
in production use by many external groups. Components which are not part of PETSc are available under
a BSD-style open source license.

Chapter 2 investigates efficient nonlinear solvers for high-order finite element methods in a rather general
setting. High order methods have accuracy benefits, but they are also capable of better utilizing modern
hardware, and are necessary for certain conservation and stability properties that are needed for robust
methods on practical meshes for ice flow problems. Chapter 3 presents an especially robust and scalable
multigrid method for the hydrostatic equations of ice flow. These equations are considered to be an
important intermediate description of the ice flow and were previously thought to be very expensive to
solve. Our implementation improves by several orders of magnitude on the best previous results, both in
time to solution and in maximum problem size. The code is available as a tutorial in PETSc.

Chapter 4 discusses several of the software components that were implemented to facilitate efficient
solvers, high throughput, flexible and performant finite element methods for multi-physics problems,

1The Portable Extensible Toolkit for Scientific computing (PETSc) is an open source parallel nonlinear solvers package with
support for many related tasks in scientific computing. It has thousands of users in academia and industry, with uses ranging
from development of new iterative and preconditioning methods to computational physics and engineering problems in many
fields, and forms the solver infrastructure for many discretization libraries as well as commercial software. I have been an active
developer since 2008 and any developments that I felt belonged at PETSc’s level of abstraction have been added to the library.

3

and designing code for easy verification. Chapter 5 investigates several relatively unique discretization
requirements for ice flow problems. Finally, Chapter 6 introduces a new conservative formulation for
polythermal ice, an implementation using the tools developed in earlier sections, and presents flow
solutions for the ice stream channel at Jakobshavn Isbræ. Polythermal ice and refreezing due to the
upward sloping bed near the grounding line is believed to play a role in the unique seasonal calving cycle
at Jakobshavn.

Chapter 2

Efficient nonlinear solvers for nodal high-order
finite element methods in 3D

This chapter is published as:
Brown, J. (2010). Efficient nonlinear solvers for nodal high-order finite element methods in 3D. J. Scientific
Computing, 45(1):48–63.

Abstract. Conventional high-order finite element methods are rarely used for industrial problems because
the Jacobian rapidly loses sparsity as the order is increased, leading to unaffordable solve times and
memory requirements. This effect typically limits order to at most quadratic, despite the favorable accuracy
and stability properties offered by quadratic and higher order discretizations. We present a method in
which the action of the Jacobian is applied matrix-free exploiting a tensor product basis on hexahedral
elements, while much sparser matrices based on Q1 sub-elements on the nodes of the high-order basis
are assembled for preconditioning. With this “dual-order” scheme, storage is independent of spectral
order and a natural taping scheme is available to update a full-accuracy matrix-free Jacobian during
residual evaluation. Matrix-free Jacobian application circumvents the memory bandwidth bottleneck
typical of sparse matrix operations, providing several times greater floating point performance and better
use of multiple cores with shared memory bus. Computational results for the p-Laplacian and Stokes
problem, using block preconditioners and AMG, demonstrate mesh-independent convergence rates and
weak (bounded) dependence on order, even for highly deformed meshes and nonlinear systems with
several orders of magnitude dynamic range in coefficients. For spectral orders around 5, the dual-order
scheme requires half the memory and similar time to assembled quadratic (Q2) elements, making it very
affordable for general use.

2.1 Introduction

High order spatial discretization has significant advantages over low order when high accuracy is required,
especially when the solution is smooth. When the solution is only piecewise smooth, hp finite element
methods (Demkowicz et al., 1989; Oden et al., 1989; Rachowicz et al., 1989; Schwab, 1998) are capable of
exponential convergence, but high order discretization may yield higher quality results before asymptotic
convergence rates are realized. Optimal hp meshes are usually defined in terms of minimizing the
discretization error for a given number of degrees of freedom, and effective refinement strategies (e.g.
Ainsworth and Senior, 1998; Demkowicz et al., 2002) have been developed relative to this metric.

Due to rapid loss of sparsity in the Jacobian under p-refinement, the total number of degrees of freedom is
only weakly related to the practical performance metrics, computational time and storage requirements.
For linear constant coefficient problems, this can be avoided by choosing special hierarchical bases that
preserve sparsity (Karniadakis and Sherwin, 2005). When the spectral element method (a special case of
nodal p-FEM which reuses the interpolation nodes for quadrature) is used with (nearly) affine elements,

2.1. INTRODUCTION 5

Figure 2.1: The left panel shows truncation error as a function of total degrees of freedom for a 3D Poisson
problem with smooth but rapidly varying solution. The thick horizontal line represents an acceptable
accuracy and is only modestly within the asymptotic range for all approximation orders. The right panel
shows the total number of nonzeros in the Jacobian which is an optimistic lower bound for the flops
required for the solve.

linear constant coefficient problems can be very efficiently solved using the fast diagonalization method
combined with a multilevel coarse solve (Lottes and Fischer, 2005).

For nonlinear and variable coefficient problems in 3D, the element matrices are necessarily dense and
fast diagonalization is not available. For order p tensor product bases on hexahedral elements, there
are n = (p+ 1)3 degrees of freedom per element, but the dense element matrices contribute (p+ 1)6

nonzeros to the global matrix. Since most sparse matrix operations scale linearly with the number of
nonzeros, both time and memory costs scale as O(n2) under p-refinement. A popular method for reducing
linear algebra costs is static condensation which removes the interior degrees of freedom. This method
is effective at moderate to high order in 2D because a large portion of the nodes are interior, but in 3D
less than half the nodes are interior when p < 9. For a scalar problem with p = 9, condensation requires
manipulating a dense 1000×1000 matrix for each element. This is very expensive in time and memory
for only 1000 degrees of freedom, and still contributes a dense 488×488 matrix to the global system. An
additional bottleneck of traditional hp-FEM is integration of element matrices. Naı̈ve assembly of the true
Jacobian using a p-point quadrature rule is O(p9) although it can be improved to O(p7) by exploiting the
tensor product structure using sum factorization. The cost incurred by forming and manipulating these
dense matrices is the primary reason why high order (even quadratic) elements are not more popular in
applications where extremely high accuracy is not needed.

If extremely high accuracy is desired, conventional high-order methods are attractive because the extra
cost is more than made up for by improved convergence rate in the asymptotic range. For practical
simulations, the asymptotic range is typically only mildly realized because an acceptable accuracy is
obtained shortly after the solution is resolved. This effect is illustrated in Figure 2.1. High-order methods
must have comparable cost per degree of freedom to be competitive with low-order methods unless the
desired level of accuracy is well into the asymptotic range.

To develop efficient solvers for high order elements, we examine the bottlenecks present in nonlinear
solvers, and design the discretization to eliminate as many of these bottlenecks as possible. Our approach
to preconditioning involves the method proposed by Orszag (1980) and further investigated by Deville and
Mund (1985, 1990); Heys et al. (2005); Kim (2007), resulting in a scheme with storage costs equivalent
to Q1 (piecewise trilinear) elements independent of p and total CPU time which is mesh independent
and only weakly dependent on p. The principle contributions of this paper are a formulation of this

6
CHAPTER 2. EFFICIENT NONLINEAR SOLVERS FOR NODAL HIGH-ORDER FINITE ELEMENT

METHODS IN 3D

preconditioner that is applicable to general nonlinear systems, a matrix-free representation of the Jacobian,
and observation of a much lower “crossover” order p at which this class of methods is to be preferred
over conventional methods.

2.2 Newton-Krylov

Jacobian-free Newton-Krylov (JFNK) methods combine Newton-type methods for superlinearly conver-
gent solution of nonlinear equations with Krylov subspace methods for solving the Newton step without
actually forming the true Jacobian (Knoll and Keyes, 2004). In this section, we introduce the method and
highlight the performance bottlenecks.

2.2.1 The Newton iteration

The Newton iteration for the nonlinear system F(x) = 0 with state vector x involves solving the sequence
of linear systems

J(xk)sk =−F(xk), xk+1← xk + sk, k = 0,1, . . . (2.2.1)

until convergence which is frequently measured as a relative tolerance∥∥∥∥F(xk)

F(x0)

∥∥∥∥< εtol.

The structure and conditioning of the Jacobian J(x) = ∂F(x)
∂x is dependent on the equations and discretiza-

tion, but for second order elliptic operators, the condition number κ(J) = ‖J‖
∥∥J−1

∥∥ scales as O(h−2 p4)
where h is the mesh size and p is the approximation order.

2.2.2 Krylov methods

Krylov methods solve Jx = b using the Krylov subspaces

K j = span{b̃, J̃b̃, J̃2b̃, . . . , J̃ j−1b̃}

where J̃ = P−1J, b̃ = P−1b0 for left preconditioning and J̃ = JP−1, b̃ = b for right preconditioning. The
convergence rate of various Krylov methods (e.g. CG, MINRES, GMRES, BiCGStab, QMR) depend in
diverse ways on the spectral properties of J̃ (e.g. Nachtigal et al. (1992) constructs a linear system for
each Krylov scheme listed above, for which that scheme beats all other schemes by a large margin) but a
useful heuristic is that the iteration count scales as the square root of κ(J̃). When solving the Newton
step (2.2.1) we rely on P−1 to overcome the O(h−2 p4) conditioning of the spatial discretization. Our
preconditioners are obtained by applying an algorithm P to data Jp provided by the discretization of the
equations, i.e. P−1 = P(Jp). Concretely, Jp almost always contains one or more assembled matrices, but
may contain auxiliary information such as a multilevel hierarchy. The fundamental preconditioners P
are relaxation (e.g. SOR) and (incomplete) factorization, which are used to build scalable and problem-
specific preconditioners such as multigrid, domain decomposition, and Schur-complement. The notation
P−1 comes from incomplete factorization in which P = LU is available, but multiplication by P is never
needed in the Krylov iteration and indeed is rarely available. A complete solver for Jx = b is K(J,P(Jp))
which represents a choice of Krylov accelerator K, preconditioning method P, and preconditioning data
Jp.

As discussed in the introduction, the Jacobian in (2.2.1) loses sparsity for high order methods so we will
never form it explicitly. The finite difference representation

J(x)y =
F(x+ εy)−F(x)

ε

2.2. NEWTON-KRYLOV 7

for appropriately chosen ε is attractive because it requires no additional storage and no coding beyond
function evaluation, however the adjoint JT is not available, its accuracy is at best

√
εmachine, and it per-

forms unnecessary computation if function evaluation involves costly fractional powers or transcendental
functions. The inaccuracy can lead to stagnation due to a poor quality Krylov basis, especially when
restarts are needed. Automatic differentiation (AD) offers a full accuracy alternative and can produce
adjoints in reverse mode, but such evaluations, especially in reverse mode, are usually more expensive
than function evaluation due to suboptimal taping1 strategies. In section 2.3.3 we detail an alternative
with several advantages over finite differencing and which is similar to AD with optimal taping.

2.2.3 Performance

The most expensive parts of the Newton-Krylov iteration are assembling matrices for the preconditioner
and subsequently solving for the Newton step. Most preconditioners require a setup phase after the
matrices (and whatever else goes into Jp) are assembled. Scalable preconditioners for elliptic problems
require a globally coupled coarse level solve and we take multigrid as the canonical example. With
geometric multigrid the coarse level can be provided by the application by rediscretizing the governing
equations while algebraic multigrid must analyze the matrix structure to determine the coarse component
and then compute the Galerkin coarse operator (involving relatively expensive matrix-matrix products and
producing a denser coarse operator). The coarse operator needs to be factored, a task that is often done
redundantly. Finally, the solve involves matrix multiplication and smoothers on each level.

The relative cost of these three phases (assembly, setup, solve) is highly problem dependent, but we
offer some general guidelines for perspective; see Gropp et al. (2000b); Knoll and Keyes (2004); Knoll
and McHugh (1998) for more detailed analysis of these issues. Matrix assembly in finite element
methods involves pointwise operations at quadrature points and is typically limited by instruction level
parallelism and scheduling (especially for high-order methods). The setup and solve phases are limited by
memory bandwidth on the fine levels and by network latency on the coarse levels. An important issue
is simultaneously keeping the number of levels small so that relatively little work is done on the less
efficient coarse levels while keeping the coarse operator small enough and sparse enough that it is cheap
to factor. When strong preconditioners are used so to keep the iteration count low, setup can be much
more expensive than the solve. Direct solvers are an extreme case of this, but multigrid can also have an
expensive setup step, especially with many processors and Galerkin coarse operators.

Efficient linear solvers involve a tradeoff between many iterations with cheap preconditioners and fewer
iterations with expensive preconditioners. With JFNK, the setup costs can be reduced by lagging the
preconditioner (not recomputing it on every Newton step) at the expense of additional Krylov iterations.
If matrix-free Jacobian application is inexpensive, the cost of these extra iterations may be affordable,
making lagging appealing. On the other hand, if matrix assembly and preconditioner setup is cheap, there
is no need to work with a stale preconditioner. Note that use of a stale Jacobian compromises quadratic
convergence of the Newton method while a stale preconditioner only affects the convergence rate of the
Krylov iteration.

Most of the time required to solve strongly nonlinear equations is spent before entering the neighborhood
where Newton methods are quadratically convergent. Until the final phase, it is not important to solve the
Newton step to high accuracy. In particular, J(xk)sk =−F(xk) may be “solved” so that∥∥J(xk)sk +F(xk)

∥∥≤ η
k
∥∥F(xk)

∥∥ .
and the method converges q-superlinearly as long as ηk → 0, and q-quadratically if ηk ∈ O(

∥∥F(xk)
∥∥).

Various heuristics have been developed to automatically adjust the “forcing term” ηk to avoid oversolving
without sacrificing quadratic convergence in the terminal phase, see Eisenstat and Walker (1996) for
further discussion and a particularly useful heuristic which we use in the numerical examples.

1This is a slight abuse of terminology, “taping” in the AD context refers to intermediate values stored in memory (as opposed
to checkpoints which are typically written to disk) during reverse-mode computation. We use the term more loosely to refer to
any intermediate storage that makes multiplication by J(u) and JT (u) more efficient than only storing the state vector u.

8
CHAPTER 2. EFFICIENT NONLINEAR SOLVERS FOR NODAL HIGH-ORDER FINITE ELEMENT

METHODS IN 3D

2.3 High order finite element methods

2.3.1 Discretization

Let {x̂i}p
i=0 denote the Legendre-Gauss-Lobatto (LGL) nodes of degree p in ascending order on the

interval [−1,1], with the corresponding Lagrange interpolants {φ̂p
i }

p
i=0. Choose a quadrature rule with

nodes {rq
i }

q
i=0 and weights {wq

i }. The basis evaluation, derivative, and integration matrices are B̂qp
i j =

φ̂
p
j (r

q
i), D̂qp

i j = ∂xφ̂
p
j (r

q
i), and Ŵ q

i j = wq
i δi j. In the following, we use index-free notation and suppress the

superscripts for clarity.

We extend these definitions to 3D via tensor product

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

(2.3.1)

with the diagonal weighting matrix Ŵ = Ŵ ⊗Ŵ ⊗Ŵ . With isotropic basis order p and quadrature order
q, these tensor product operations cost 2(p3q+ p2q2 + pq3) flops and touch only O(p3 +q3) memory. It
should be noted that in the special case of the spectral element method where the same LGL points are
reused for quadrature, B̂ is the identity and differentiation reduces to 2p4 operations. In the present work,
we prefer to use more accurate Gauss quadrature and do not find the extra floating point operations in
basis evaluation to be prohibitively expensive. Every other required operation will be O(p3) or O(q3) so
the performance of the operation (2.3.1) is crucial to the success of the method, see §2.3.5 for further
discussion.

Let K̂ = [−1,1]3 be the reference element and partition the domain Ω into hexahedral elements {Ke}E
e=1

with coordinate map xe : K̂→ Ke and Jacobian Je
i j = ∂xe

i /∂x̂ j. The Jacobian must be invertible at every
quadrature point so we have (Je)−1 = ∂x̂/∂xe and can express the element derivative in direction i as

De
i = Λ

(
∂x̂0

∂xi

)
D̂0 +Λ

(
∂x̂1

∂xi

)
D̂1 +Λ

(
∂x̂2

∂xi

)
D̂2

where we have used the notation Λ(x)i j = xiδi j for expressing pointwise multiplication as a diagonal
matrix. Note that forming De would ruin the tensor product structure so multiplication by De

i is done
using the definition (2.3.1) followed by pointwise multiplication and sum. The transpose is defined
similarly

(De
i)

T = D̂T
0 Λ

(
∂x̂0

∂xi

)
+D̂T

1 Λ

(
∂x̂1

∂xi

)
+D̂T

2 Λ

(
∂x̂2

∂xi

)
.

With the element integration matrixW e = ŴΛ(|Je(r)|), we are prepared to evaluate weak forms over
arbitrary elements. The global problem is defined using the element assembly matrix E = [E e] where
each E e extracts the degrees of freedom associated with element e from the global vector. In the special
case of a conforming mesh and equal approximation order on every element, E will have a single unit
entry per row. When the mesh is h- or p-nonconforming, a global basis can be chosen by using minimum
order on the largest faces and edges, then the element basis can be constrained by writing it as a linear
combination of global basis functions (Demkowicz et al., 1989).

2.3.2 Residual evaluation

We now turn to evaluation of the discrete residual statement F(u) = 0 in weak form. Since the weak form
is always linear in the test functions, it can be expressed as a pointwise algebraic operation taking values

2.3. HIGH ORDER FINITE ELEMENT METHODS 9

and derivatives of the current iterate (u,∇u) to the coefficients of the test functions and derivatives (v,∇v),
i.e. the Dirichlet problem is to find u in a suitable space VD such that

〈v, f (u)〉=
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0 (2.3.2)

for all v in the corresponding homogeneous space V0 where f0 and f1 contain any possible sources. For
an n-component problem in d dimensions, f0 ∈ Rn and f1 ∈ Rnd . Inhomogeneous Neumann, Robin, and
nonlinear boundary conditions will add similar terms integrated over boundary faces. The fully discrete
form is

∑
e

ET
e

[
(Be)TW e

Λ(f0(ue,∇ue))+
d

∑
i=0

(De
i)

TW e
Λ(f1,i(ue,∇ue))

]
= 0 (2.3.3)

where ue =BeE eu and ∇ue = {De
i E eu}2

i=0. Note that all physics is contained in the pointwise operation
(u,∇u) 7→ (f0, f1).

2.3.3 Jacobian representation

Jacobian application w 7→ J(u)w can be performed in the same way as residual evaluation. The associated
bilinear form is expressible as

〈v,J(u)w〉=
∫

Ω

[
vT ∇vT

][f0,0 f0,1
f1,0 f1,1

][
w

∇w

]
(2.3.4)

with the notation fi,0 =
∂ fi
∂u (u,∇u) and fi,1 =

∂ fi
∂∇u(u,∇u). This construction is completely general and

applies to any H1 Galerkin or Petrov-Galerkin method. The application of J(u) and JT (u) can clearly be
performed if fi, j(u,∇u) is stored at quadrature points (including similar terms at boundary quadrature
points where boundary integrals are required).

There are two extreme cases for the storage of fi, j(u,∇u). The first is to simply store (u,∇u) which
requires n(d +1) storage per quadrature point for an n-component system in d dimensions, but all the
physics must be reevaluated in each Jacobian application. This option is slightly faster than standard
use of automatic differentiation since the finite element mechanics to reevaluate (u,∇u) is not needed.
The other extreme is to fully evaluate fi, j(u,∇u) which requires [n(d +1)]2 storage per quadrature point.
Compare to n2(p+1)d per node for the Qp element matrices and (asymptotically) for globally assembled
matrices.

For many physical systems, fi, j(u,∇u) possesses structure (e.g. sparsity, symmetry, isotropic plus rank-1
update) such that compared to the naı̈ve representation, it is both cheap to store and cheap to multiply
by. Such representations may be constructed from any form between (u,∇u) and fi, j. It is common for
this efficient representation to be available at low cost during residual evaluation, and it may be stored
cheaply since the memory bus is relatively unstressed at this time. The process from (2.3.2) to (2.3.4)
is mechanical and is easily performed using symbolic algebra. Also note that AD may be used as a
complementary technique, well-isolated to pointwise operations so that it doesn’t interfere with global
software design.

Note that with this representation, the adjoint of (2.3.4) is readily available with no additional programming
effort, at exactly the same cost as the Jacobian itself. A worked example is given in §2.4.1, we find that our
matrix-free Jacobian application is significantly faster than function evaluation. Since it is full accuracy
and provides adjoints, this representation is clearly superior to finite difference Jacobians. Note that naı̈ve
automatic differentiation of F would not be aware of this efficient intermediate form, thus an AD Jacobian
J(u) would need to re-evaluate the base vector at quadrature points and compute fi, j [

w
∇w] using (u,∇u).

The intermediate form is roughly equivalent to an optimal taping strategy.

10
CHAPTER 2. EFFICIENT NONLINEAR SOLVERS FOR NODAL HIGH-ORDER FINITE ELEMENT

METHODS IN 3D

Figure 2.2: A patch of four Q5 elements with one Q1 subelement shaded.

2.3.4 Preconditioning

To precondition J, we assemble a matrix by rediscretizing the governing equations on Q1 sub-elements
defined by the LGL interpolation nodes as shown in Figure 2.2. In the notation of §2.2, this matrix is Jp

and any preconditioner P for assembled matrices can be used in the Krylov iteration. This could be a
direct solve, but that is rarely the most economical choice. When multigrid works well, such as for elliptic
problems with smooth coefficients, we find that P= MG requires very few extra iterations compared to a
direct solve P= LU . This preconditioner has received substantial attention in the collocation and spectral
element contexts (e.g. Orszag, 1980; Deville and Mund, 1985, 1990; Heys et al., 2005; Kim, 2007), but is
not widely used for Galerkin discretization with independent quadrature.

2.3.5 Performance of matrix operations

Our test platform is a 2.5 GHz Intel Core 2 Duo (T9300) which can issue one packed double precision
(two 64-bit values packed in each 128-bit register) add and one packed multiply per clock cycle with a
latency of 3 and 5 cycles respectively. If there are no data dependencies and both execution units can be
kept busy, it is possible to perform 4 flops per clock cycle resulting in a theoretical peak of 10 Gflop/s.
The memory controller has a peak read throughput of 5.3 GB/s implying that dual core performance for
matrix-vector products cannot exceed 900 Mflop/s, ignoring access costs for the vector (each matrix entry
is 8 bytes plus 4 bytes for the column index, and supplies only 2 flops for an arithmetic intensity of 1 flop /
6 bytes). Note that this is less than 5% of the theoretical dual-core peak 20 Gflop/s. Even if the stencil was
known so that column indices did not need to be stored explicitly, the operation cannot exceed 4 bytes per
flop, despite the system being capable of performing nearly 4 flops for each byte loaded from memory.

For multi-component problems, we can exploit structural blocking to reduce the bandwidth required for
column indices. For example, a 3-component problem with full coupling only needs to store one index
per 3×3 block, improving arithmetic intensity to almost 1 flop / 4 bytes. In addition, it is advantageous to
reorder the unknowns owned by each processor to reduce the matrix bandwidth (e.g. with reverse Cuthill-
McKee), thus improving cache reuse by the vector during matrix-vector multiplication and preconditioning
kernels (relaxation and solves with factors), and also the effectiveness of these preconditioning kernels.
On our 3D elasticity test, these two optimizations combined for a 75% speedup relative to scalar formats
in the natural ordering, see Gropp et al. (2000b) for further analysis of blocking and reordering.

High order methods allow much more effective utilization of today’s multicore hardware. An imple-
mentation of the tensor product operation (2.3.1) operates entirely within L1 cache for practical basis
orders and attains 5.7 Gflops for Q3 on a single core. (This was written using SSE3 intrinsics since
the author was unable to find a compiler that produced competitive code for this operation.) Since this
kernel puts no pressure on the shared memory bus, all cores are completely independent and limited only
by instruction scheduling and data dependence. Although only the tensor-product operation has been
vectorized, multiplication by the matrix-free Q3 Jacobian for a scalar-valued problem is only 2.5 times
slower than the assembled Q2 Jacobian when using one core of an otherwise idle socket.

2.4. NUMERICAL EXAMPLES 11

2.4 Numerical examples

All examples with dual-order preconditioning were implemented as part of a new C library named
Dohp, available from the author. Dohp is tightly integrated with PETSc (Balay et al., 2012a) and
uses the ITAPS (ITAPS, 2011) interfaces for mesh and geometry services. In particular, we use the
MOAB (Tautges et al., 2004) and CGM (Tautges, 2001) implementations of the iMesh and iGeom
interfaces. In the examples using algebraic multigrid, we use smoothed aggregation from ML (Gee et al.,
2006) and classical multigrid from BoomerAMG (Henson and Yang, 2002), all accessed through the
common PETSc interface. The ML interface is designed to only produce aggregates which PETSc uses
to construct the multigrid hierarchy and thus exposes all PETSc preconditioners as smoothers, while
BoomerAMG is essentially a black-box preconditioner. Smoothed aggregation is known to scale slightly
superlinearly, but in our tests ML was always significantly faster and less memory consuming than the
typically more robust BoomerAMG. We use PETSc-3.0.0, ML-6.22, and BoomerAMG from Hypre-2.4.0b.

The libMesh (Kirk et al., 2006) library is used to provide a reference for conventional methods (based
on assembling the true Jacobian). Since libMesh also uses PETSc for linear algebra, identical solver
parameters are used so that the results are representative.

2.4.1 p-Poisson

The inhomogeneous p-Laplacian is

−∇·(|∇u|p−2
∇u)− f = 0

where 1≤ p≤ ∞ (see Evans (2007) for discussion of these limiting cases). This equation is singular at
∇u = 0 when p< 2 and degenerate when p> 2, so we solve a regularized variant with weak form: find
u ∈VD such that

〈v,F(u)〉=
∫

Ω

η∇v ·∇u− f v = 0 (2.4.1)

for all v ∈ V0 where VD = H1
D(Ω) includes inhomogeneous Dirichlet conditions, V0 = H1

0 (Ω) is the
corresponding homogeneous space, and η(γ) = (ε+ γ)

p−2
2 is effective viscosity with regularization ε > 0

and γ = 1
2 |∇u|2. We manufacture the forcing term f so that

u(x,y,z) = cos(ax)sin(by)exp(cz)

solves (2.4.1) in Ω = [−1,1]3. Figure 2.1 shows convergence rates for the linear (p = 2) case a,b,c =
(16,15,14) with 1≤ p≤ 7. The expected O(hp+1) is indeed observed in the asymptotic range, but in this
section we are concerned with the time and memory needed for solution.

The Newton step for (2.4.1) corresponds to the weak form: find w ∈V0 such that

〈v,J(u)w〉=
∫

Ω

η∇v ·∇w+η
′(∇v ·∇u)(∇u ·∇w) =−〈v,F(u)〉

for all v ∈V0, where J(u) is the Jacobian of F at u. It is informative to rewrite the integrand as

∇v :
[
η1+η

′
∇u⊗∇u

]
:∇w

to clarify the effect of the Newton linearization. Since η′ < 0 for p < 2, the (heterogeneous) isotropic
conductivity tensor η1 is being squished in the direction ∇u. In the singular limit p→ 1, it flattens
completely which has the effect of allowing diffusion only in level sets of u.

To illustrate the taping strategy of §2.3.3 for the p-Laplacian, first note that it is desirable to store ∇u at
each quadrature point in order to avoid it’s expensive recomputation. Fractional powers are one of the

2We have observed that ML-6.2 produces much higher quality aggregates than ML-5.0 for the assembled Q2 case, leading to
a 50% speedup and significantly lower memory usage.

12
CHAPTER 2. EFFICIENT NONLINEAR SOLVERS FOR NODAL HIGH-ORDER FINITE ELEMENT

METHODS IN 3D

Figure 2.3: Linear solve time for 3D Poisson with relative tolerance of 10−8 using assembled Q2 elements
and unassembled Q3, Q5, and Q7 elements preconditioned by an assembled Q1 operator.

Event libMesh Q2 Dohp Q3 Dohp Q5 Dohp Q7

Assembly 41 25 24 23
Krylov 111 73 119 117
MF MatMult — 36 55 55
PCSetUp 16 10 12 9
PCApply 82 27 51 52

CG its 34 23 41 49
Mat nonzeros 111 M 44.7 M 44.7 M 44.3 M

Table 2.1: Assembly and solve time (seconds) for a 3D Poisson problem with 1213 degrees of freedom
(1203 for Q7), relative tolerance of 10−8.

more expensive mathematical operations so we would also like to avoid recomputing them. This suggests
taping (η,∇u) which are explicitly available during residual evaluation (2.4.1). If a few Krylov iterations
will be required, it becomes beneficial to amortize computation of

η
′ =

∂η

∂γ
=

p−2
2

η

ε+ γ

which involves one multiplication and one division when taped during function evaluation, very cheap
compared to the fractional power, and less expensive than recomputing γ on the first Krylov iteration.

A further enhancement3 to taping (η,η′,∇u) is (η,
√
−η′∇u) which is both compact and minimizes the

operations necessary to apply the Jacobian.

Figure 2.3 shows linear solve performance compared to conventional methods for quadratic elements.
The matrices for conventional Q2 elements were assembled using the libMesh library and the solver in
all cases was conjugate gradients preconditioned by ML. The time spent in each phase for the largest
problem size is shown in Table 2.1. Note the greatly reduced assembly time compared to conventional Q2
elements.

3sqrt requires the same number of cycles as division

2.4. NUMERICAL EXAMPLES 13

Figure 2.4: Two all-hexahedral meshes, twist and random, containing nearly degenerate elements
(element condition number shown).

Poor-quality meshes

Figure 2.4 shows two low-quality meshes, twist and random. The first was generated by stretching
and twisting a mesh of the reference cube and the second generated using the “random” feature of
Cubit (Blacker et al., 1994). Additionally, we consider flat, a uniform Cartesian mesh with dimensions
1×1×10−5. These should be compared to brick, an 83 mesh of the reference cube.

While the approximation properties of these meshes are poor, the preconditioner is still effective provided
a good preconditioner for the low-order system is available. The iteration count to oversolve the second
Newton iteration to a relative tolerance of 10−8 for a p = 1.5 case is shown in Table 2.2. With the
exception of ML on twist and flat, the mesh has a limited impact on performance.

Anisotropic meshes such as flat require semi-coarsening and/or line smoothers for multigrid performance.
Convergence on this mesh is poor with both algebraic multigrid packages. BoomerAMG allows little
flexibility in smoothers, and although some semi-coarsening was evident in the hierarchy, coarse spaces
suitable for the builtin smoothers were not produced. ML’s coarse spaces were less precisely semi-
coarsened, and iteration counts could only be marginally controlled through the use of very strong
smoothers (8-block overlap-1 additive Schwarz with direct subdomain solves).

14
CHAPTER 2. EFFICIENT NONLINEAR SOLVERS FOR NODAL HIGH-ORDER FINITE ELEMENT

METHODS IN 3D

Mesh brick twist random flat

Element ML BMG ML BMG ML BMG ML Chol

Q1 4 4 4 4 8 – 4 1
Q2 24 24 25 23 27 27 29 26
Q3 24 24 29 27 28 27 38 34
Q4 29 28 39 30 34 33 47 37
Q5 35 27 47 34 42 35 58 40
Q6 35 29 60 40 43 41 80 44

Table 2.2: Iteration counts for four different meshes using ML, BoomerAMG (BMG), and Cholesky
(Chol) preconditioning. For Q1 random, BoomerAMG failed, producing NaN. ML on the flat mesh was
run with stronger smoothers as described in the text. Note that the problem size increases with element
order.

Nonlinearities

For strongly nonlinear problems, the majority of the solve time is spent in the pre-asymptotic range. Since
a high-accuracy solve is not needed, it is very important to consider matrix assembly and preconditioner
setup time when developing an efficient solver. We consider the p = 1.2,ε = 10−8 case with an initial
guess of zero (the state at which the system is most nearly singular) which requires a fair number of
Newton steps. Table 2.3 shows the time spent in various stages of the solve for 203 Q3 elements (226981
degrees of freedom). In the most efficient configuration, roughly one third of the time is spent in matrix-
free Jacobian application with a similar amount spent in assembly. This problem demonstrates a situation
where low-accuracy linear solves slow the nonlinear convergence, but it is still not cost effective to perform
high accuracy linear solves. Lagging the preconditioner was not found to be effective for this problem,
therefore only limited returns would be provided by a method with higher assembly costs, even if that
setup enabled the use of a stronger preconditioner. We have computed a fourth order accurate solution
with essentially the same memory requirements and modest cost increase over a second order scheme
(Q1). This solution is less expensive in both space and time than a conventional third order (Q2) scheme,
the reduced assembly costs offer more flexibility in nonlinear solver, and the sparser matrix offers more
preconditioning choices.

2.4.2 Stokes

The weak form of the Dirichlet Stokes problem is: find (u, p) ∈ VD×P such that∫
Ω

ηDv :Du− p∇·v−q∇·u− f · v = 0

for all (v,q) ∈ V0 × P where Du = 1
2

(
∇u + (∇u)T

)
is the symmetric gradient, VD = H1

D(Ω) is the
inhomogeneous velocity space with V0 the corresponding homogeneous space, and P = {p ∈ L2

0(Ω) :∫
Ω

p = 0} is the pressure space. Stability requires satisfaction of the discrete inf-sup condition

inf
p

sup
u

∫
Ω

p∇·u
‖p‖0 ‖u‖1

≥ β > 0.

The finite element space Qk−Qk−2 is stable with β ∈ O(k−(d−1)/2) in d dimensions (see Schötzau et al.,
1998) and is thus quite usable for the modest orders we propose.

Indefinite preconditioning

Standard preconditioners perform poorly or fail completely when applied to indefinite problems. Block
factorization provides a general framework for constructing effective preconditioners for the Stokes

2.4. NUMERICAL EXAMPLES 15

Tolerance 10−4 relative tolerance Eisenstat-Walker

Event ILU(0) ILU(1) ILU(0) ILU(1)

Residual 35 29 57 51
Assembly 78 68 127 110
Krylov 295 274 187 166

MF MatMult 259 190 155 110
PCSetup 2 11 5 17
PCApply 26 67 27 39

Total time 413 374 377 333

Newton # 15 13 24 21
Residual # 25 20 40 36
Krylov # 911 667 545 386

Table 2.3: Time (seconds) spent in various stages of a nonlinear solve for Q3 elements preconditioned by
ILU(0) and ILU(1) applied to the corresponding Q1 matrix. The first columns solve the linear system
to a relative tolerance of 10−4 with a maximum of 60 Krylov iterations per Newton, the latter use the
Eisenstat-Walker(1996) method for adjusting solver tolerances with a maximum of 30 Krylov iterations.
The events MF MatMult (matrix-free Jacobian application), PCSetup, and PCApply are part of the Krylov
iteration. Additional Residual evaluations are needed when the line search is activated.

problem. They are based on factoring the Jacobian as

J(u) =
[

A(u) BT

B

]
=

[
1

BA−1 1

][
A

S

][
1 A−1BT

1

]
(2.4.2)

where S =−BA−1BT is the Schur complement which is dense and must be preconditioned by other means.
When GMRES is used with left (right) preconditioning, the upper (lower) block is typically dropped
(since the resulting exactly preconditioned operator has minimal degree 2, see Murphy et al. (2000)), and
all occurrences of A−1 are replaced by a suitable preconditioner. There are numerous ways to precondition
S (e.g. Benzi et al., 2005; Elman et al., 2008), here we use only the classic pressure mass matrix Mp, but
more sophisticated methods are needed for strongly heterogeneous or anisotropic problems (see May
and Moresi, 2008), for Navier-Stokes with non-vanishing Reynolds number, and for short time steps
in a time-dependent simulation. With the dual-order method, it is only necessary to assemble matrices
to precondition A and S (the latter via a diagonal approximation to the mass matrix Mp), all “matrix
multiplies” are performed matrix-free.

For the Dirichlet Stokes problem, constant pressure is in the null space of J and S. This does not impact
solver performance as long as the right hand side is consistent and the solver removes the null space
from the Krylov basis. Table 2.4 shows iteration counts for a variety of elements and meshes using
right-preconditioned GMRES and the right-triangular preconditioner resulting from the factorization
(2.4.2) with S−1 approximated by the diagonal of Mp and A−1 approximated by one V-cycle of ML with
inter-component coupling dropped. The iteration count is scalable with resolution, but deteriorates much
more rapidly with element order than for the definite problem. The corresponding solve times, shown
in Figure 2.5, confirm the asymptotics under h-refinement with each element type. More sophisticated
preconditioners for S were able to reduce the iteration count, but did not reliably reduce solve time
across the range of element orders. Further investigation of indefinite preconditioner performance under
p-refinement is needed.

16
CHAPTER 2. EFFICIENT NONLINEAR SOLVERS FOR NODAL HIGH-ORDER FINITE ELEMENT

METHODS IN 3D

Q3−Q1 Q5−Q3 Q7−Q5

Mesh dofs its dofs its dofs its

43 4118 38 22774 79 68310 92
83 37230 38 193582 75 568046 92
123 130822 38 666790 76 1942342 95
163 316382 40 1596766 77
203 625398 40
243 1089358 40
303 2144698 41

Table 2.4: Problem size and Krylov iterations to solve the Stokes problem to a relative tolerance of 10−6

with elements of different orders using right-preconditioned GMRES(30) and field-split ML on the A
block. Each restart caused an approximately 2-iteration stall.

Figure 2.5: Linear solve time for 3D Stokes with relative tolerance of 10−6. For Q2−Q1 and Q3−Q2
elements, convergence is significantly slower than with Qk−Qk−2, but apparently scalable despite being
somewhat erratic.

2.5. DISCUSSION 17

2.5 Discussion

We have presented a practical method of obtaining high-order accuracy with cost similar to conventional
methods for lower order accuracy. It is robust on highly deformed meshes and nonlinear problems provided
an effective preconditioner is available for the associated Q1 matrix. The computational kernels remove
significant pressure on the memory bus enabling more effective use of floating point units, especially in
multicore environments.

The extra structure imposed by high-order methods provides natural coarsening which suggests the use
of one or more levels of geometric multigrid. This avoids the cost of computing interpolation operators
in algebraic multigrid and enables the use of rediscretized coarse operators which preserve sparsity in
comparison to Galerkin operators. Integration with PETSc’s geometric multigrid framework is underway.

Since solve time is only weakly dependent on element order, the dual-order scheme is well-suited for
use in an hp-adaptive simulation where existing refinement strategies for minimizing degrees of freedom
will more accurately represent computational cost. Relative to conventional Q2 and higher elements,
the dual-order scheme significantly reduces the cost of matrix assembly and preconditioner setup, while
maintaining competitive iteration counts when used with preconditioners such as algebraic multigrid.

Chapter 3

Textbook multigrid efficiency for hydrostatic ice
sheet flow

This chapter is in review at the SIAM Journal of Scientific Computing: Brown, J., Smith, B., and Ahmadia,
A. (2011) Achieving textbook multigrid efficiency for hydrostatic ice sheet flow.

Abstract. The hydrostatic equations for ice sheet flow offer improved fidelity compared to the shallow ice
approximation and shallow stream approximation (SSA) popular in today’s ice sheet models. Nevertheless,
they present a serious bottleneck because they require the solution of a 3D nonlinear system, as opposed
to the 2D system present in SSA. This 3D system is posed on high-aspect domains with strong anisotropy
and variation in coefficients, making it expensive to solve using current methods. This paper presents
a Newton-Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid
efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system
at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and
the method is compared to various algebraic methods that are in use or have been proposed as viable
approaches.

3.1 Introduction

The dynamic response of ice streams and outlet glaciers is poorly represented using the shallowness
assumptions inherent in the present generation of ice sheet models. Accurate simulation of this response
is crucial for prediction of sea level rise; indeed, the inability of available models, based on the shallow
ice approximation (SIA) (Hutter, 1983) and shallow stream approximation (SSA) (Morland, 1987; Weis
et al., 1999), to simulate these processes was cited as a major deficiency in the Fourth Assesment Report
of the Intergovernmental Panel on Climate Change (Bernstein et al., 2008).

The hydrostatic equations were introduced by Blatter (1995) as a model of intermediate complexity
between the full non-Newtonian Stokes system and the vertically-integrated SIA and SSA models. A
more precise analysis, including the limiting cases of fast and slow sliding, was given in Schoof and
Hindmarsh (2010). Well-posedness was proven in Colinge and Rappaz (1999), and approximation
properties of finite-element methods were analyzed in Glowinski and Rappaz (2003); Chow et al. (2004).
Hindmarsh (2004) conducted a perturbation analysis in one horizontal dimension to study validity of
different continuum models including SIA, hydrostatic, and Stokes. Pattyn et al. (2008) contains a
model intercomparison using several implementations of the hydrostatic equations for periodic benchmark
problems with large amplitude basal topography and stickyness variability. The hydrostatic equations were
used for transient simulation in Pattyn (2002) and in 3D models in Pattyn (2003), as well as subsequent
work. These equations have been known by a variety of names in the literature including “Blatter”,
“Pattyn”, “Blatter-Pattyn”, “LMLa” (Hindmarsh, 2004), and “first order” (Greve and Blatter, 2009).

20 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

The use of hydrostatic equations in current models has been limited, however, by the cost of solving the 3D
nonlinear system for velocity. This cost comes from both slow convergence on the nonlinearities (rheology
and slip) and expensive linear solves using standard preconditioners such as incomplete factorization
and one-level domain decomposition. The poor linear solve performance is attributable to the strong
anisotropy and heterogeneity imposed by the rheology and geometry.

In the present work, we introduce a Newton-Krylov multigrid solver that demonstrates textbook multigrid
efficiency, characterized by convergence in a small multiple of the cost of a single, fine-level residual
evaluation, and typically involving an order of magnitude reduction in residual per multigrid (V or F) cycle.
The scheme converges quadratically on the nonlinearities, is rapidly globalized by using grid sequencing,
is robust to parameters and geometry, coarsens rapidly in almost all cases, and exhibits excellent parallel
scalability. Our code is freely available as part of the Portable Extensible Toolkit for Scientific computing
(PETSc) (Balay et al., 2012b).

Section 3.2 presents the equations and discretization, Section 3.3 describes the solver, and Section 3.4
demonstrates performance and scalability with numerical examples. Section 5 summarizes our conclu-
sions.

3.2 Equations and Discretization

The hydrostatic equations are obtained from the non-Newtonian Stokes equations in the limit where
horizontal derivatives of vertical velocity are small. Neglecting these terms allows incompressibility to
be enforced implicitly by eliminating pressure and vertical velocity, leaving a system involving only
horizontal components of velocity. See Schoof and Hindmarsh (2010) for a rigorous derivation and
asymptotic analysis.

Consider an ice domain Ω⊂ R3 lying between a Lipschitz continuous bed b(x,y) and surface s(x,y) with
thickness h = s−b bounded below by a positive constant. 1 The velocity u= (u,v) ∈ V =W 1,1+1/n(Ω)
satisfies conservation of momentum, which, omitting inertial and convective terms as is standard for ice
sheets, is given by

−∇·
[

η

(
4ux +2vy uy + vx uz

uy + vx 2ux +4vy vz

)]
+ρg∇s = 0, (3.2.1)

where

η(γ) =
B
2
(
ε

2/2+ γ
) 1−n

2n (3.2.2)

is the nonlinear effective viscosity with regularizing strain rate ε and

γ = u2
x + v2

y +uxvy +
1
4
(uy + vx)

2 +
1
4

u2
z +

1
4

v2
z

is the second invariant. Ice sheet models typically take n = 3 as the power law exponent. Equation (3.2.1)
is subject to natural boundary conditions at the free surface and either no-slip u= 0 or power-law slip
with friction parameter

β
2(γb) = β

2
0
(
ε

2
b/2+ γb

)m−1
2 ,

where γb =
1
2(u

2 + v2), εb is regularizing velocity, and m ∈ (0,1] is the exponent that produces Navier slip
for m = 1, Weertman (Weertman, 1957) sliding for m = 1/n, and Coulomb slip as m→ 0. In the present
work, we define ε and εb using a strain rate of 10−5 a−1 and a slip velocity of 1ma−1, respectively.

1The singular limit h→ 0 is important in the case of grounded margins, but the present work does not pursue it.

3.3. SOLVER AND IMPLEMENTATION 21

To discretize this system with a finite-element method, we introduce the test functions φ∈V and integrate
by parts to produce the weak form: Find u ∈ V such that∫

Ω

∇φ :η1 :
(

4ux +2vy uy + vx uz

uy + vx 2ux +4vy vz

)
+φ ·ρg∇s+

∫
Γbed

φ ·β2(|u|2 /2)u= 0 (3.2.3)

for all φ ∈ V , where Γbed is the slip portion of the bed.

For our numerical studies, equation (3.2.3) was discretized on a topologically structured hexahedral grid
using Q1 finite elements and standard 23-point Gauss quadrature. Length, time, and mass units were
chosen so that thickness, velocity, and driving stresses are of order 1. See Section 3.3.2 for details on the
enforcement of Dirichlet boundary conditions.

The source code for our implementation is distributed as an example in PETSc (Balay et al., 2012b)
versions 3.1 and later. 2 Several generalizations of the tests from ISMIP-HOM (Pattyn et al., 2008) are
implemented, run with the option -help for a complete list of options. Incidentally, our results for “5km
test C” in that paper (variable slipperiness on a flat bed) agree to three significant figures with the “Stokes”
results therein. This is consistent with the asympotic analysis of Schoof and Hindmarsh (2010), which
shows that slipperiness perturbations are not present in the leading-order error terms for the hydrostatic
equations (which are purely geometric); c.f. Pattyn et al. (2008, Table 4 and Figure 8), where the ensemble
range is nearly as large as the mean.

3.3 Solver and Implementation

We begin by writing the discretization of (3.2.3) as an algebraic system F(U) = 0 with Jacobian J(U).
This nonlinear system is solved with a Newton iteration that requires an approximate solution δU of

J(U)δU =−F(U). (3.3.1)

Newton methods are quadratically convergent in the terminal phase but may converge slowly or not at
all in early phases. Many applications of the present solver are in a time-stepping code where the initial
iterates start within the region of quadratic convergence; thus globalization would rarely be a concern.
But since a good initial iterate is not available in the present tests, we use grid sequencing (solving the
problem on a sequence of coarser grids) to produce an initial iterate on the fine grid. Globalization is also
a critical issue when solving steady-state problems. Grid sequencing requires a geometric hierarchy of
meshes with interpolation operators to move the solution to the next finer level. Managing this hierarchy
is often seen as a programming burden, but it exposes more robust algorithms than are available otherwise.

The Newton step (3.3.1) is solved by a Krylov method such as GMRES, for which the iteration count is
highly dependent on the quality of the preconditioner. Since J(U) is symmetric positive definite (SPD),
methods such as conjugate gradients could be used. This work always uses GMRES, however, because
it allows the use of nonsymmetric preconditioners, and the iteration counts are always kept low so that
storage and restarts are not an issue. As an SPD system, it has a wide variety of preconditioners to choose
from; however, viscosity contrasts and strong anisotropy cause most preconditioners to perform poorly.
The rest of this section describes the methods used to produce a scalable algorithm in spite of these
difficulties.

3.3.1 Anisotropic Meshes

The ratio of width to thickness for outlet glaciers (the regions of ice sheets with greatest physical interest)
ranges from order 1 to over 100. The nonlinear constitutive relation (3.2.2) produces three to four orders of

2Upon unpacking the source, which can be downloaded from http://mcs.anl.gov/petsc, see
src/snes/examples/tutorials/ex48.c.

http://mcs.anl.gov/petsc

22 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

magnitude variation in viscosity (usually with fastest variation in the vertical) and the Newton linearization
of (3.2.3) produces additional anisotropy, effectively collapsing the conductivity tensor in the direction of
the velocity gradient.

For systems with a priori known anisotropy, semi-coarsening has been successful for attaining satisfactory
multigrid performance even with weak smoothers like SOR, but semi-coarsening is unattractive for two
reasons. First, semi-coarsening in the vertical direction would necessitate many levels because it reduces
the problem size by only a factor of 2 on each coarsening (instead of 8 for isotropic coarsening), and the
fully coarsened problem would still be far too large for a direct solver, necessitating further coarsening in
the horizontal direction. The presence of many levels leads to more synchronization in parallel, which is
detrimental to scalability and makes performance more sensitive to network latency. Second, viscosity
contrasts and anisotropy unaligned with the grid arise when the friction parameter β2 is not smooth, as is
the standard case when studying the migration of ice stream margins as the bed transitions from frozen
(no-slip or very high friction) to temperate and very slippery depending on subglacial hydrology.

To coarsen the system isotropically even on high-aspect domains, we order the unknowns so that columns
are contiguous with a natural block size of 2 (i.e. {ui, j,k,vi, j,k,ui, j,k+1,vi, j,k+1, . . .} where k is the index that
is increasing in the vertical direction) and not decomposed in parallel. This decomposition is reasonable
since the number of vertical levels used in simulations is typically between 10 and 100; it also is convenient
since it is compatible with decompositions used by other climate model components.

With this ordering, zero-fill incomplete factorization effectively performs an exact solve of the column
since all the neglected fill (relative to an exact factorization) is caused by the coupling with adjacent
columns. Pure line smoothers were also tried as a smoother on the finest level, but robustness was
significantly impacted, and the memory benefits were deemed insufficient to pursue further.

In scenarios with little sliding and gentle geometry compared to the ice thickness, the “shallow ice
approximation” (SIA) is valid, allowing the velocity field to be determined locally from the surface slope
and a column integral. If horizontal derivatives were discarded from the linearized hydrostatic equations,
the corresponding matrix would have only uncoupled tridiagonal systems for each column and the solution
of these systems would be equivalent to linearized SIA. These tridiagonal systems become singular as
basal friction β2→ 0, and furthermore, SIA is physically inconsistent if β2 is discontinuous even when it
is bounded below by a sufficiently large constant due to discontinuous velocities (Fowler, 2001). The
contribution to the hydrostatic matrix from discrete horizontal derivatives is small (order h2

z/h2
x) relative

to that from vertical derivatives when the element aspect ratio (hz/hx) is small, and therefore high energy
modes of the hydrostatic matrix, corresponding to velocity variation primarily in the vertical, become well
approximated by the block tridiagonal system representing SIA. When the bed is very slippery, there are
medium to long wavelength modes with vanishing energy in the norm induced by the (nearly singular)
SIA equations, but non-vanishing energy in the norm induced by the hydrostatic equations. These modes
are problematic if the tridiagonal SIA system is used to precondition hydrostatic because it will take many
iterations for the Krylov solver to locate all of these modes not controlled by the preconditioner.

Incomplete factorization with column ordering provides nearly exact coupling in the vertical, effectively
containing the tridiagonal SIA plus some coupling with nearby columns, and is an effective stand-alone
preconditioner when the bed is sticky and horizontal grid spacing is large, despite lack of a coarse level.
Indeed, with a typical ice thickness of 1km resting on a frozen bed and elements 5km on a side, block
Jacobi with zero-fill incomplete Cholesky converges to relative tolerance of 10−5 in about 10 Krylov
iterations independent of the horizontal extent of the domain (number of elements in the horizontal),
independent of the number of elements in the vertical, and independent of the number of subdomains
(provided they do not get too small: there is some degradation when subdomain size approaches a
single column). However, none of these favorable performance characteristics remain when the elements
become small relative to the ice thickness or when the bed becomes slippery since the usual O

(
(L/H)2

)
condition number for second-order elliptic problems preconditioned by one-level Schwarz methods
with subdomains of size H, see Smith et al. (1996), becomes apparent. Indeed, we have found low-fill
incomplete factorization to be nearly unusable as part of a one-level additive Schwarz method for problems

3.3. SOLVER AND IMPLEMENTATION 23

with slippery beds or steep geometry, even at low resolution, as investigated in Section 3.4.3.

3.3.2 Dirichlet Boundary Conditions

Multigrid is often sensitive to the enforcement of boundary conditions. Ideally, Dirichlet conditions
would be completely removed from the solution space, but doing so complicates grid management on
structured grids, so instead we leave these degrees of freedom in the system but decouple them from the
other equations. During residual evaluation in the finite-element context, this strategy corresponds to
evaluating integrals with the Dirichlet condition satisfied exactly and setting the residual on the Dirichlet
nodes to be equal to a multiple of the current solution. With this scheme, all rows and columns of the
Jacobian corresponding to Dirichlet nodes are zero except for a single diagonal entry. Thus the system
retains symmetry, and satisfaction of the Dirichlet conditions does not interfere with solving the other
equations. For good multigrid performance, the diagonal entry should be similar to the diagonal entry of
the Jacobian for nearby nodes. To ensure this, we set the residual at Dirichlet nodes to

fu = 2ηhxhyhz(4/h2
x +1/h2

y +1/h2
z)u

fv = 2ηhxhyhz(1/h2
x +4/h2

y +1/h2
z)v,

(3.3.2)

where hx,hy,hz are the local element dimensions. This scaling produces the same diagonal entries that
would appear if the domain was extended so that constant viscosity momentum equations appeared at the
formerly Dirichlet nodes.

3.3.3 Matrices

The most expensive operations are Jacobian assembly and sparse matrix kernels such as matrix-vector
multiplication and solves with incomplete triangular factors. The former involves evaluation of fractional
powers and finite element quadrature loops. While fractional powers take most of the time for residual
evaluation, they are less significant than quadrature loops for assembly. The quadrature loops were
explicitly vectorized by using SSE2 intrinsics which led to a 30% speedup on Core 2 and Opteron
architectures using both GNU and Intel compilers. There was no manual vectorization for the Blue Gene/P
results quoted in Section 3.4.2.

Assembly costs could be further mitigated by recomputing the matrix less frequently, either by using
a modified Newton method (degrades nonlinear convergence rate) or by applying the current operator
matrix-free by finite differencing the residual or using automatic differentiation in which case only the
preconditioner is lagged. These are runtime options in the present code; but since they do not offer a clear
benefit they have not been pursued in the present work. If matrix-free application of the true Jacobian is
used, several other preconditioning options become available without impacting the nonlinear convergence
rate. One could assemble only the block-tridiagonal column coupling, ignoring horizontal coupling, thus
saving the memory for the finest level(s). Additionally, a truly 2D coarse problem can be defined by
using the shallow stream equations (Morland, 1987; Weis et al., 1999; Schoof, 2006a) and restriction
operators defined by integrating the entire column. These possibilities are also runtime options, but have
not exhibited a level of robustness comparable to that of the more conventional methods pursued here.

The Jacobian is always symmetric positive definite and has a natural block size of 2, so we use a symmetric
block format (PETSc’s SBAIJ). This format stores one column index per 2×2 block in the upper triangular
part of the matrix and therefore uses about half the storage of the nonsymmetric BAIJ format, which in
turn uses 25% less memory than a scalar format (AIJ). Multiplication for symmetric storage requires twice
as much parallel communication as nonsymmetric storage, albeit with the same number of messages. In
return, the diagonal part of a parallel decomposition does twice as much work per matrix entry and thus
achieves higher throughput, as shown in Table 3.1.

There are two ways to construct matrices on the coarse levels of multigrid methods. The first, which
we use in almost all our numerical examples, is to rediscretize the system on the coarse mesh. In

24 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

Table 3.1: Throughput (Mflop/s) for different matrix formats on Core 2 Duo (P8700) and Opteron 2356
(two sockets). MatSolve is a forward- and back-solve with incomplete Cholesky factors. The AIJ format
is using “inodes” which unrolls across consecutive rows with identical nonzero pattern (pairs in this case).

Kernel
Core 2, 1 process Opteron, 4 processes

AIJ BAIJ SBAIJ AIJ BAIJ SBAIJ

MatMult 812 985 1507 2226 2918 3119
MatSolve 718 957 955 1573 2869 2858

our implementation, this involves re-evaluating nonlinearities on each level of the hierarchy, although
restricting fine-level coefficients of the linearized problem would also be possible. This procedure
produces coarse operators that are as sparse as possible on each of the levels. The Galerkin procedure is
an alternative that is mandatory for algebraic multigrid. Given an interpolation operator P : Vcoarse→Vfine
and assembled fine-level matrix Afine, the Galerkin coarse operator is Acoarse = PT AfineP. These operators
work well for some problems, but computing the sparse matrix product in parallel involves significant
communication and irregular memory access, so it is relatively expensive. Additionally, second-order-
accurate interpolation operators cause a loss of sparsity in the coarse-level operators, an effect known as
stencil growth. Stencil growth tends to blur regions where the solution has local structure and usually
reduces the effectiveness of inexpensive smoothers.

3.4 Numerical Examples

We present several numerical examples that demonstrate the algorithmic and parallel scalability of the
Newton-Krylov multigrid approach.

3.4.1 Algorithmic Scalability

We consider three model problems inspired by the periodic domain ISMIP-HOM (Pattyn et al., 2008) tests.
All use surface s(x,y) =−xsinα, where α is the surface slope (the coordinate system is not rotated) and a
bed similar to bA(x,y) = s(x,y)−1000m+500m ·sin x̂sin ŷ for (x,y)∈ [0,L)2 with x̂ = 2πx/L, ŷ= 2πy/L.
Test X uses bed bX = bA and stickiness parameter

β
2
X(x,y) =

{
2000Paam−1, if r = |(x̂, ŷ)− (π,π)|< 1
0, otherwise

which is free slip except for a sticky circle at the center of the domain, which is not aligned with the grid. A
solution cutout for L = 10km is shown in Figure 3.1. This problem exhibits shear localization at the edges
of the sticky region and is most extreme at high aspect ratio. We choose L = 80km and α = 0.05◦ which
produce velocities from 0.9kma−1 to 47kma−1. 3 To demonstrate algorithmic scalability as the problem
size is increased, this test was run on 8 processors starting from a coarse grid of 16× 16× 1, refining
twice in the horizontal by factors of 2 in both x and y, then three times in the vertical by factors of 8 each
to reach a fine mesh of 64× 64× 513, which has elements of nominal dimension 1250× 1250× 1.95
meters.

A visual representation of the nonlinear solve process is shown in Figure 3.2. In this example and the
next one, Luis Chacón’s variant of the Eisenstat-Walker (Eisenstat and Walker, 1996) method was used to
automatically adjust linear solve tolerances as the nonlinear solve converges. Solving the linear systems
to higher tolerance would have little impact on the number of nonlinear iterations and would be visible in

3This problem may be run with the options -thi hom X -thi L 80e3 -thi alpha 0.05, the other cases can be selected
with similar options.

3.4. NUMERICAL EXAMPLES 25

Figure 3.1: A cutout colored by velocity magnitude for flow over the bumpy bed of test X at L = 10km
with m = 1/10 nearly plastic basal yield model. The cut on the left shows along-flow velocity as the ice
hits the sticky region, the cut on the right shows across-flow shear structure.

the form of more × marks below the solid lines. That most × marks lie on the solid line for nonlinear
residual is an indication that effort is well balanced between linear and nonlinear solves. Note that
approximately 10 linear V-cycles on the fine level are required to reduce the residual by 10 orders of
magnitude. We remark that Picard iteration takes at least 50 iterations to reach this tolerance (cf. De Smedt
et al. (2010) in which hundreds or thousands of iterations were needed for an easier problem). When
used in a time-stepping code, the solution at the last time step is available so typically only the terminal
convergence rate is important which further favors Newton methods. For example, an initial guess might
have a residual 103 higher than the required tolerance which takes 15 Picard iterations to solve, but only
one Newton iteration. Additionally, each linear solve for this fine-level problem requires hundreds or
thousands of iterations with a one-level additive Schwarz method; see Section 3.4.3, which considers a
smaller problem.

Test Y places a 200m tower with vertical walls on the top of each bedrock bump and uses an uncorrelated
but smoothly varying stickiness resembling a dimpled sombrero:

bY (x,y) =

{
bA(x,y), if bA(x,y)<−700m
bA(x,y)+200m, otherwise

β
2
Y (x,y) = 1000Paam−1 · (1+ sin(

√
16r)/

√
10−2 +16r cos

3x̂
2

cos
3ŷ
2
.

This tests the quality of the coarse grids even when large geometric errors are committed. Note that the
hydrostatic equations cannot be considered valid in this regime since the topography is too abrupt. Such
topography is present in reality, however, so we may still desire an efficient solver. Figure 3.3 depicts
the solve for this problem in a 10km square domain. Because of the successively better resolution of the
“cliff,” performance deteriorates on each level, as can be seen by the closer spacing of linear solve marks
(×). It is entirely acceptable up to level 3, however, where the elements are approximately 12m thick and
stretch to reach over a 200m vertical cliff in 125m horizontal, a slope of 58◦. On the finest level, they are
6m thick and stretch over the cliff in 62m horizontal, a slope of 73◦. The approximation properties of

26 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

0 5 10 15 20 25 30 35 40 45

Newton iteration

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

R
es

id
ua

l

Level 1 (2,048 nodes)
Level 2 (8,192 nodes)
Level 3 (36,864 nodes)
Level 4 (266,240 nodes)
Level 5 (2,101,248 nodes)

Figure 3.2: Grid-sequenced Newton-Krylov solution of test X . The solid lines denote nonlinear iterations,
and the dotted lines with × denote linear residuals.

0 5 10 15 20 25 30

Newton iteration

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

R
es

id
ua

l

Level 1 (4,400 nodes)
Level 2 (33,600 nodes)
Level 3 (262,400 nodes)
Level 4 (2,073,600 nodes)

Figure 3.3: Grid sequenced Newton-Krylov convergence for test Y .

such elements are poor and, considering that the continuum equations are invalid here, we believe this
resolved topography is significantly rougher than will needed in applications.

Test Z sets bZ = bA, β2
Z = β2

X , and nonlinear sliding with exponent m = 0.3. It is a regime where the
hydrostatic equations are valid, provided the wavelength L is not too small. We use this case to explore
linear solve performance in Figure 3.4.

3.4.2 Parallel Scalability on Blue Gene/P

Two types of parallel scalability are considered. Strong scalability is the ability to solve a fixed problem
size faster by using more processors. It is represented by a log-log plot of time versus number of processors
where a slope of −1 is optimal. Weak scalability is the ability to solve larger problems in constant time
by using more processors with the problem size per processor remaining fixed. It is represented by a
plot of time versus number of processors where a slope of 0 is optimal. Strong scalability is important in
transient simulations with many time steps while weak scalability is more important for attaining high

3.4. NUMERICAL EXAMPLES 27

102 103 104 105 106 107

Number of nodes

100

101

102

103

K
ry

lo
v

its
.

pe
rn

on
lin

ea
r(

rt
ol

1
0
−

2
)

Newton, ICC(0), serial
Picard ASM(1)/ICC(1), 8 subdomains
Picard ICC(0) serial
Newton, V-cycle, 8 subdomains

Figure 3.4: Average number of Krylov iterations per nonlinear iteration. Each nonlinear system was
solved to a relative tolerance of 10−2.

resolution in steady-state simulations or transient simulations with fewer time steps. Optimal strong and
weak scalability together would imply that a problem with N elements could be solved in O(N/P) time
on P processors.

We investigate strong scaling using test Z at 80km with basal friction exponent m = 0.3 on Shaheen, a
Blue Gene/P at the KAUST Supercomputing Laboratory. Figure 3.5 shows strong scalability for four fixed
global problem sizes with coarse meshes of 16×16×3, 32×32×3, 64×64×3, and 64×64×1. The
first three use five levels of isotropic refinement to reach target meshes of 256×256×48, 512×512×48,
and 1024×1024×48, the latter with nominal element sizes of 78×78×21 meters. The last coarse mesh
is refined anisotropically and more aggressively to reach 1024×1024×64 with only four levels. The
smallest two coarse problems are solved redundantly and the second is also solved using the “XXT ” direct
solver of Tufo and Fischer (2001) (TFS) which exhibits significantly better scalability but the coarse-level
problem still presents a bottleneck. The largest two coarse problems are only solved approximately using
a V-cycle of the algebraic multigrid package BoomerAMG (Henson and Yang, 2002), which removes the
severe scalability bottleneck of a direct coarse-level solve. These coarse problems have been designed so
that BoomerAMG is effective, see Section 3.4.3 for BoomerAMG applied to fine-level problems.

Figure 3.6 shows weak scalability. The size of the coarse grid was held constant, and additional levels
were added as the number of processes was increased, such that the subdomain sizes remain approximately
constant. As the resolution increases, the nonlinearity strength and linear stiffness also changes, explaining
the relatively expensive solve with four processes. This effect is also apparent in the Level 3 convergence
of Figure 3.2. Four phases of the solution process dominate the runtime and are identified in Figure 3.6.
Multigrid setup costs account for less time than nonlinear residual evaluation for the larger problem sizes.

3.4.3 Algebraic Methods

Building a geometric hierarchy with rediscretization on coarse levels adds software complexity that many
developers of numerical models do not want to deal with. In this section, we summarize the performance
characteristics of several popular algebraic methods. We consider test X , L = 80km,α = 0.03, with
40×40×12 elements distributed over four processes. We compare our multigrid method with several
one-level domain decomposition methods, two algebraic multigrids, and field-split approaches. This
problem is challenging for the standard Newton iteration which requires 37 iterations and should be

28 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

101 102 103

Number of processes

102

Ti
m

e
(s

ec
on

ds
)

Redundant 16
Redundant 32
TFS 32
BAMG iso 64
BAMG aniso 64+

Figure 3.5: Strong scaling on Shaheen for different size coarse levels problems and different coarse level
solvers (see text for details). The straight lines on the strong scaling plot have slope −1 which is optimal.
Grid sequencing is used, but only the nonlinear solve on the finest level is shown since strong scalability
is most important when many time steps are needed.

1 4 32 256
Number of processes

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

Function Eval
Jacobian Eval
PC Setup
PC Apply

Figure 3.6: Weak scaling on Shaheen with a breakdown of time spent in different phases of the solution
process. Times are for the full grid-sequenced problem instead of just the finest level solve.

3.4. NUMERICAL EXAMPLES 29

Table 3.2: Average number of GMRES iterations per Newton iteration for one-level domain decomposition
with different overlap and fill.

Decomposition
Subdomain solver

ICC(0) ICC(1) ICC(4) Cholesky

Block Jacobi 367 315 220 97
ASM(1) 508 441 296 59
RASM(1) 368 306 190 52
ASM(2) 521 445 316 44
RASM(2) 365 305 189 38

accompanied by grid sequencing for efficiency. It takes the problem through a range of nonlinearities,
however. Thus the number of Krylov iterations to solve with a relative tolerance of 10−5, presented below,
is a good test of the linear solver.

We first consider one-level domain decomposition methods with incomplete factorization, which are
currently used to solve the hydrostatic equations by (Evans et al., 2010; Larour et al., 2010) among others.
To keep iteration counts representative, we use full GMRES (no restart) with modified Gram-Schmidt
orthogonalization (note that neither is practical for production use). Conventional symmetric additive
Schwarz is denoted ASM(k), where k is the overlap, restricted additive Schwarz (Cai and Sarkis, 1999) is
denoted RASM(k). The average number of GMRES iterations per Newton iteration is shown in Table 3.2.
Note that increasing overlap has no benefit when incomplete subdomain solvers are used.

The parallel algebraic multigrid packages ML (Gee et al., 2006) and BoomerAMG (Henson and Yang,
2002) provide potentially scalable alternatives. ML is based on smoothed aggregation, tends to coarsen
very rapidly, and provides its restriction and coarse-level matrices to PETSc so that that elaborate
smoothers can be used. ML does not converge for this problem with standard options; but with FGMRES
on the outside of the V-cycle and GMRES(1) with RASM(1) as the smoother, using ICC(0) for the
subdomain solve except on level 1, where a direct solve was used, we see 34 V-cycles per Newton iteration.
ML needs only three levels to reach a coarse level with 144 degrees of freedom. BoomerAMG is a
classical algebraic multigrid, which tends to coarsen slowly on anisotropic problems and does not expose
the internal details, so smoother choices are limited. BoomerAMG needs seven levels to reach a coarse
grid with 663 degrees of freedom and averages 76 iterations per Newton iteration. There were other, still
somewhat challenging, problems for which BoomerAMG was competitive with geometric multigrid in
terms of iteration count, but the setup costs and required number of levels was always large. ML never
exhibited low iteration counts, even for easy problems.

Another approach to solving multicomponent problems is to split the components and solve scalar
problems for each in hopes that the scalar problems can be more readily handled by available software
such as algebraic multigrid. The split problems can be combined additively, multiplicatively, or symmetric
multiplicatively. Unlike most Schwarz methods, additive methods are not typically implemented to expose
concurrency, but it is simpler to implement in a matrix-light way because only the “self-coupling” terms
need to be made available. Multiplicative methods need to apply the off-diagonal submatrix, and the
most efficient way to do so is usually by assembling it; but the submatrix can also be applied by finite
differencing the full residual. The results, shown in Table 3.3, are uninspiring, especially when considering
that field-split creates additional synchronization points and attains lower throughput since it works with
scalar matrices instead of block matrices (see Table 3.1).

A good geometric multigrid for this problem uses four-levels with a coarse grid of 10×10×2 elements,
which is semi-refined twice by a factor of 2 in the horizontal, then by a factor of 6 in the vertical to
reach the target 40× 40× 12 grid. The smoothers consist of a domain decomposition method and a
subdomain solver that may be exact or inexact. Direct solves for the subdomain problems on level 1
are inexpensive and tend to improve robustness so we always use a direct solve. A different refinement

30 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

Table 3.3: Average number of GMRES iterations per Newton iteration for field-split preconditioners with
different ways of combining the splits and different solvers within the splits. BoomerAMG used 7 levels
and ML had 3 with the same solver parameters as discussed in the text for the coupled approach.

Solver in Splits
Method of combining splits

Additive Multiplicative Sym. Multiplicative

Cholesky 19 9.9 9.3
ML 41 34 30
BoomerAMG 89 83 78
RASM(1)+Cholesky 186 173 84

Table 3.4: Average number of GMRES iterations per Newton for different multigrid preconditioners.

Coarse Problem
Level 1 Level 2 and 3

ItsDecomp. Subdomain Decomp. Subdomain

10×10×2 Redisc BJacobi Cholesky BJacobi Cholesky 8.9
10×10×2 Redisc BJacobi Cholesky BJacobi ICC(0) 9.6
10×10×2 Redisc BJacobi Cholesky ASM(1) ICC(0) 11.9
10×10×2 Redisc BJacobi Cholesky RASM(1) ICC(0) 6.9
10×10×2 Redisc ASM(1) Cholesky ASM(1) ICC(0) 20.2
10×10×2 Redisc RASM(1) Cholesky RASM(1) ICC(0) 5.9
10×10×2 Galerkin RASM(1) Cholesky RASM(1) ICC(0) 54.
10×10×1 Redisc BJacobi Cholesky BJacobi ICC(0) 10.3
10×10×1 Redisc ASM(1) Cholesky BJacobi ICC(0) 10.1
10×10×1 Redisc RASM(1) Cholesky BJacobi ICC(0) 6.9

involves a 10× 10× 1 coarse grid and semi-refines twice by a factor of 2 in the horizontal, then by a
factor of 12 in the vertical to reach the same target grid. The coarse levels are smaller in this case so the
refinement is more efficient provided the iteratation counts are similar. Table 3.4 explores a variety of
multigrid preconditioner configurations with each coarse level. A distinct effect is that inexact subdomain
solvers cause minimal performance degradation; cf. Section 3.2 where a factor of 5 to 10 degradation is
visible. Use of Galerkin coarse operators has a catastrophic effect on the iteration count and may help
explain the poor robustness exhibited by the algebraic multigrids. We cannot explain why symmetric
additive Schwarz performs so poorly on this problem, but the other numbers are robust to changes in
resolution, spatial domain, and number of processes.

We remark that when using grid sequencing and the method in the last row of Table 3.4, the problem can
be solved in seven Newton iterations on the fine level and an average of 5.4 V-cycles per Newton iteration.
If the Eisenstat-Walker method is used to avoid oversolving, the problem takes eight Newton iterations
with a total of 12 V-cycles.

3.5 Conclusion

Several projects (Lemieux et al., 2011; Larour et al., 2010; Johnson and Staiger, 2007; De Smedt et al.,
2010; Pattyn, 2003; Lemieux et al., 2011) have developed software to simulate ice sheets using the
hydrostatic equations. All of these projects solve the resulting algebraic equations using one-level domain
decomposition (if parallel) and incomplete factorization, and all but (Lemieux et al., 2011) use Picard
linearization. These methods are not scalable in the strong or weak sense so resolution and simulation
turn-around time has been severely limited by the cost of the solver.

3.5. CONCLUSION 31

We have presented a grid-sequenced Newton-Krylov multigrid algorithm for solving the algebraic equa-
tions resulting from a finite element discretization of the hydrostatic equations. This geometric multigrid
method demonstrates textbook multigrid efficiency for extreme topography and basal conditions and
offers thousandfold speedups relative to the methods currently in use. Algebraic multigrid and field-split
preconditioners were not found to be competitive in terms of robustness or efficiency.

The present velocity solver can be immediately incorporated in a semi-implicit ice sheet evolution model,
but the resulting scheme is only conditionally stable (time steps must satisfy a CFL condition). Fully
implicit time integration offers an alternative that has no such constraint and is thus suitable for simulations
over full ice ages and longer, but requires the solution of more difficult algebraic equations. A prototype
using the present velocity discretization has been developed, but scalable linear solvers for velocity-surface
coupled problems is the subject of future investigation.

Several models involving only a vertically-integrated elliptic solve have been proposed as less costly
alternatives to solving the hydrostatic equations, e.g. (Bueler and Brown, 2009; Goldberg et al., 2009;
Goldberg, 2011). A scalable solver has not yet been proposed for these vertically-integrated elliptic
problems so the present model is faster than existing implementations at sufficiently high resolution. To
make a useful comparison, we estimate relative costs with the assumption that a similarly optimal solver
exists for the vertically-integrated system, in which case the cost difference should be a constant factor
independent of problem size and number of processors. The “hybrid” model of Goldberg (2011) requires
evaluating effective viscosity in 3D and integrating to produce depth-averaged viscosity which appears in
the vertically-integrated equations. Evaluating effective viscosity accounts for most of the cost of residual
evaluation for the hydrostatic equations. Therefore the cost of such an evaluation is comparable to the
cost of the nonlinear viscosity evaluation required in a Picard iteration for the hybrid model of Goldberg
(2011). Our solver produces high-accuracy solutions in about 30 times the cost of a residual evaluation,
less if a good initial guess was available as when time stepping. Goldberg (2011) uses a Picard iteration
to solve the nonlinear system, requiring 50 iterations per nonlinear solve, therefore the hybrid solver is
only likely to have similar cost to our hydrostatic solver when the linear solves require negligible time.
If the hybrid equations were instead solved by Newton iteration and the linear solves required similar
or less time than evaluating viscosity, then the hybrid equations might be solved as much as 5 times
faster than the hydrostatic equations. Bueler and Brown (2009) factors depth dependent velocity and
temperature contributions out of the vertically-integrated nonlinear problem. The process only applies if
the constitutive relation can be factored and the resulting continuum equations have a lower formal order
of accuracy with respect to shallowness and stickyness distribution than the model of Goldberg (2011). In
exchange, the nonlinear elliptic solve can be completed without revisiting the 3D velocity field so the
model cost has weaker dependence on the number of nonlinear iterations and thus potential to be a few
times faster than the model of Goldberg (2011). Vertically-integrated models do not involve linear algebra
operating on the 3D velocity field so they require significantly less memory than the hydrostatic equations
when all operators are assembled.

The hydrostatic equations are well-suited to investigation of ice streams and outlet glaciers with gentle
slope and arbitrary stickyness distribution. For example, 3D ice stream thermodynamics (see Raymond
(2000) for analytic and Truffer and Echelmeyer (2003) for numerical investigation with along-flow
symmetry) could be reliably investigated using velocity defined by the hydrostatic equations. The
methods in this paper can efficiently solve the discrete hydrostatic equations in regimes with extreme
basal topography and stickyness distributions. The solution method is efficient even in regimes which
are far in excess of where the continuum hydrostatic approximation is valid as an approximation to the
Stokes equations. The latter issue of continuum validity has been partially addressed using asymptotic
analysis (Schoof and Hindmarsh, 2010) and numerical comparison (Hindmarsh, 2004; Pattyn et al.,
2008). Despite being more complete than models involving only a vertically-integrated elliptic solve, the
hydrostatic equations are not suitable for steep outlet glaciers like Jakoshavn Isbræ or Pine Island Glacier
where solution of Stokes problems appears to be unavoidable.

Comprehensive log files and the scripts used to produce the figures in this paper are publicly

32 CHAPTER 3. TEXTBOOK MULTIGRID EFFICIENCY FOR HYDROSTATIC ICE SHEET FLOW

available. They are currently hosted along with the source for this document at https:
//github.com/jedbrown/tme-ice.

3.6 Addendum: Implicit free surface and erosion

This addendum is not part of the submitted paper, but represents an extension to a stiffly-coupled
multiphysics problem with very little changes to the code, made possible by the software tools to be
introduced in Section 4.1.

Solving the transient and steady-state problems with an implicit free surface is the next step. As a proof of
concept, we consider the hydrostatic equations from Section 3.2 augmented with surface evolution and
erosion

−∇ ·
[

η

(
4ux +2vy uy + vx uz

uy + vx 2ux +4vy vz

)]
+ρg∇s = 0 (3.6.1)

ht +∇ ·
∫ s

b
(u,v) = 0 (3.6.2)

bt + ke |(u,v)|l = 0 (3.6.3)

where (u,v) is horizontal velocity, η is the nonlinear effective viscosity, h is the thickness, b is the bed
elevation, and s = b+ h is the surface elevation. The power law erosion model with nondimensional
erosion parameter ke = 10−3 and exponent l = 1 was used by Tomkin and Braun (2002); Herman and
Braun (2008); Egholm et al. (2011). The velocity equation is solved on the domain between b and h with
the basal sliding parameter held constant. This is an Arbitrary Lagrange-Eulerian (ALE) formulation
(Donea et al., 2004) in which the mesh always conforms to the current surface. The ISMIP test C (Pattyn
et al., 2008) initial geometry, periodic horizontal boundary conditions, and basal sliding parameter
distribution are used. The thickness is discretized using a cell-centered upwind finite volume method and
fluxes are computed by splitting the faces of the continuous finite element solution for the velocity and
performing numerical quadrature which is exact for affine elements. The steady-state solution with erosion
turned off is shown in Figure 3.7, computed in 19 Newton iterations (without time stepping). There is no
steady state when eroison is turned on, but the transient simulation can still take time steps dictated by the
physical process of interest instead of a CFL condition that may not be interesting. Figure 3.8 shows the
bed elevation after 300ka of evolution, with time steps of 30ka. This time step length corresponds to a
CFL number of nearly half a million. In practice, the climate changes somewhat faster than 30ka so a
smaller time step size would be used, but it is still orders of magnitude slower than the CFL constraint for
explicit advection. Since the short time-scale transient response is not of scientific interest for long-term
erosion modeling (e.g. mountain range formation), this implicit free surface is much more efficient.

https://github.com/jedbrown/tme-ice
https://github.com/jedbrown/tme-ice

3.6. ADDENDUM: IMPLICIT FREE SURFACE AND EROSION 33

Figure 3.7: A steady-state solution for ISMIP-HOM test C (Pattyn et al., 2008) at 10km computed in 19
iterations. The elevated surface is exaggerated surface height and the color in the solid domain is velocity.

Figure 3.8: Bed profile eroded from a flat bed after 300ka with test C slipperiness perturbation. Time
steps are 30ka at this point in the simulation.

Chapter 4

Software

Implementing convergent numerical models for complex physical processes such as ice streams and
grounding line dynamics is a time consuming task. If the model must also be accurate, achieve high
performance, exhibit good parallel scalability, be portable to different operating systems and hardware,
and be flexible enough to add new physics or couple to other models as part of a larger problem, the
complexity explodes. Well-designed software libraries help to manage the complexity and to greatly
reduce development time for new models. Perhaps more important than reducing initial development
time, libraries enable experimentation with different methods at extremely low effort. The best way
to experiment is entirely with run-time options, such that no code modifications or recompilation is
necessary.

Using different algorithms, each of which may be necessary for different parameter ranges or to obtain
high performance on different architectures, require the use of different data structures. A fundamental
tenet of object oriented design, and PETSc in particular, is that users should not interact directly with
the underlying data structures and should not depend on on any specific implementations of an interface.
The requirement to interact through a generic interface without impacting performance places hard
restrictions on the design of those interfaces. As a general rule, the interface should have a granularity
that is large enough to offer high performance, but is not so large that it becomes restricted to certain
data structures. All major classes in PETSc have a plugin architecture with object creation managed by a
service locator pattern Fowler (2004). This enables, for example, a vendor to compile a matrix format
and/or preconditioner that performs well on their hardware into a shared library such that an end user of
any PETSc program can select the vendor’s plugins at run-time without access to any source code.

There is a balance between “frameworks” that take control of the model (often at main()) and offer a
high-level interface to the user versus libraries that leave the user in control. Frameworks make many
assumptions about the equations and methods to be used, which allow a high level of abstraction and rapid
development of a new models, provided the equations and discretization are supported by the framework.
On the other hand, these assumptions limit the ability to solve problems and use methods that are unnatural
for the framework, as well as the ability to couple with other numerical models as part of something
larger, or to perform analysis that is not explicitly supported by the framework (e.g. bifurcation, sensitivity,
optimization). Libraries, on the other hand, take more effort (which we try to minimize) to build a working
model, but the user has much more control and the resulting code is more amenable to reuse in a larger
scope. PETSc’s solvers are purely algebraic and therefore make no assumptions about the discretization or
coupling to external systems. The scope of my new library, Dohp, is strictly limited to the task of turning
a continuum formulation and input data including a computational mesh into discrete algebraic equations.
Unlike many discretization libraries, Dohp makes no attempt to also manage the solution of algebraic
equations. PETSc’s algebraic interfaces are used exclusively. Since the data types are extensible, their use
places no restriction on functionality or performance, but having a single common interface substantially
reduces the “impedance mismatch” of mixing code from different packages.

This section discusses the design decisions and implementation of several software components that I

36 CHAPTER 4. SOFTWARE

have developed to improve the capability, performance, and verifiability of numerical simulations. These
contributions have broader scope than glaciology, but each component provides significant benefit to the
overall capability of numerical models in glaciology.

4.1 Multiphysics coupling

Ice flow and more generally, earth system models, involve many physical processes occurring on multiple
spatial domains and possessing multiple time scales. An important challenge in computational science is
addressing how to couple models of these processes in a maintainable way without sacrificing accuracy and
analysis capability. The traditional method of splitting in time and integrating each process independently
has been shown to result in low-order splitting errors (Knoll et al., 2003; Mousseau et al., 2002) for
many problems of interest, as well as fundamentally different results regarding the stability of the system
(Estep et al., 2008) and existence of steady states versus limit cycle behavior (Jardin et al., 2008). Tightly
coupled multiphysics software should enable the use of robust IMEX 1 or fully implicit methods while
permitting different physics modules to be managed independently. There are essentially two scalable
approaches to tightly coupled multiphysics: field-splitting and coupled multilevel methods such as domain
decomposition or multigrid. Field splitting is most effective when it decomposes the coupled problem
into separate ‘blocks’ of equations that are well-understood and for which known methods perform well.
Coupled multilevel methods are favored when local spectral structure and compatibility conditions of the
equations are well-understood so that effective smoothers and grid transfer operators can be defined.

In many cases (Rannacher, 2000; Jameson and Caughey, 2001; Adams et al., 2010), the monolithic
coupling approach has potential to offer the best possible performance. The general guidelines are to
define the smoother in terms of low-order discretization and to smooth all components at any node
or element of the grid at the same time, usually either by block Gauss-Seidel relaxation or by block
incomplete LU factorization. The former permits a nonlinear smoother which has higher arithmetic
intensity, but the latter tends to be more robust, especially to strong anisotropy. The purpose of the
low-order discretization (first-order upwind for hyperbolic terms) is to retain h-ellipticity, a necessary and
sufficient condition for the existence of a pointwise smoother (Brandt and Dinar, 1979; Trottenberg et al.,
2001). When an operator fails to satisfy h-ellipticity, there are high-frequency error components that are
poorly corrected by the smoother.

For multi-component problems, the relative scaling between fields is important for good solver perfor-
mance. This can be difficult to achieve when different parts of the domain are in different regimes. When
the problem is indefinite, the smoother and restriction operators need to be chosen to be compatible with
the inf-sup condition. Such restriction operators are usually defined geometrically, though they have also
been defined algebraically for contact problems (Adams, 2004). The associated smoothers (Vanka, 1986)
are relatively more expensive than for definite problems, and it is difficult to handle anisotropy because
incomplete factorization as a smoother becomes problematic due to zero or negative pivots (Higham,
2002; de Niet, 2007).

It is difficult to write generic software for coupled multigrid because many fine-grained operations,
especially the definition of the local smoother, require physics- and discretization-dependent choices.
Additionally, very little theory is available for coupled multi-physics and it is unclear how to define
smoothers for multi-domain problems or surface-volume coupled problems.

A different approach is to apply a Newton iteration on the coupled problem and solve the linear system
with a Krylov method using a preconditioner defined in terms of some operator splitting such that the
physics of each part of the decomposition can be understood and efficient solvers can be provided. This
approach (Knoll and Keyes, 2004) has proven successful at reusing software, with many papers accessing

1IMplicit-EXplicit (IMEX) methods treat problems with well-separated time scales by solving slow processes explicitly and
fast processes implicitly. IMEX methods are designed so as not to suffer from the splitting errors that plague first-order operator
splitting methods.

4.1. MULTIPHYSICS COUPLING 37

such methods through PETSc (Balay et al., 2012b). However, until my recent additions to PETSc, it was
cumbersome to package separate physics separately without compromising which methods are available,
and decisions about using field-split versus monolithic methods were typically required up-front. The
enhancements to PETSc allow each physics to be packaged independently without sacrificing performance
or runtime flexibility in choice of methods. We first summarize a variety of field-split methods and their
requirements from the user, then we examine the new linear algebraic interface by which the user can
generically provide this information.

4.1.1 Field-split preconditioning

Suppose the Jacobian of the original coupled problem has block structure

J =

(
A B
C D

)
. (4.1.1)

We explain the methods for 2×2 block systems, but n×n block systems can be treated similarly. Field
split methods can be classified as block relaxation or factorization.

Relaxation methods are inspired by the classical stationary iterative methods the preconditioners taking
the forms

P−1
Jacobi =

(
A

D

)−1

P−1
GS =

(
A
C D

)−1

P−1
SGS =

(
A

1

)−1
(
1−

(
A B

1

)(
A
C D

)−1
)

which can be accessed at runtime using the PETSc option -pc fieldsplit type additive,
multiplicative, and symmetric multiplicative respectively. Relaxation is simple to use and ex-
pected to perform well when the diagonal blocks control the dynamics of the system or in which the
coupling is one-way. Heuristically, this occurs when there are few modes y in the second space for which
‖By‖ is large compared to ‖Dy‖. We expect problems if A or D is nearly singular or “small” compared
to B and C on a sizable subspace. More precisely, relaxation splitting will perform well if D is a good
approximation to the Schur complement S = D−CA−1B.

Stiff hyperbolic waves and systems with constraints are two common cases where relaxation breaks down.
The first is somewhat more benign and we use the shallow water equations as an illustrative example.
In conservative non-dimensional form with thickness h and momentum uh, the flat-bed shallow water
equations are

(uh)t +∇·
(

u⊗uh+
g
2

h21
)
= 0

ht +∇·uh = 0

where g is the gravitational acceleration. When the gravity wave speed
√

gh is much faster than the
velocity u, we are in the low Mach limit which is an especially interesting case for global circulation
models. Semi-discretizing in time using implicit Euler with step size ∆t, the Jacobian takes the form

Ĵ(uh,h) =
(

∆t−11 gh∇

∇· ∆t−11

)
(4.1.2)

where several “slow” terms in the second row have been suppressed. The off-diagonal blocks carry the
energy of the gravity wave and capture the stiffness that appears for large time steps, which explains

38 CHAPTER 4. SOFTWARE

why relaxation performs poorly for (4.1.2). The alternative is to define a factorization preconditioner for
(4.1.1) as

P−1 =

(
A B

S

)−1(1
CA−1 1

)−1

=

(
1 A−1B

1

)−1(A
C S

)−1

(4.1.3)

where S = D−CA−1B is the Schur complement. When used as a right (left) preconditioner for GMRES,
the lower (upper) triangular blocks of (4.1.3) can be dropped without changing the eigenvalues of the
preconditioner operator (Murphy et al., 2000; Ipsen, 2001) which saves one solve with A per Krylov
iteration. The resulting preconditioned operator has minimal polynomial degree 2 so that GMRES
converges in two iterations if the preconditioner is applied exactly. When the problem is symmetric, it is
possible to precondition MINRES with the positive definite

P−1 =

(
A
−S

)
which produces a preconditioned operator with minimal polynomial degree 3 so that MINRES converges
in three iterations. In practice, the inverses appearing in (4.1.3) are only applied approximately using some
scalable method such as a V-cycle of multigrid so that the outer iteration converges in a constant number
of iterations independent of grid resolution. Block factorization methods in this family are available
in PETSc through PCFieldSplit and can be accessed at run time using -pc fieldsplit type schur
-pc fieldsplit schur factorization type lower, upper, diag, and full.

In the case of the semidiscrete shallow water equations (4.1.2), S is similar to the Helmholtz differential
operator ∆t−1−∆tg∇·h∇. This “good Helmholtz” structure is characteristic of stiff wave problems and
discussed at length in the review (Knoll et al., 2005) and a variety of applications (Mousseau et al., 2002;
Chacón, 2008; Park et al., 2009). This Helmholtz operator is our first example of an “auxiliary matrix”
not explicitly present in the continuum equations, but needed by the preconditioner.

The situation becomes more delicate for problems with constraints such as contact problems and incom-
pressible flow (Elman et al., 2008). In these problems, the “important” part of the matrix A is an elliptic
operator so the Schur complement becomes dense. For isotropic variable-viscosity Stokes problems, the
Schur complement is spectrally equivalent to a mass matrix defined with respect to the inverse-viscosity
weighted inner product (Olshanskii and Reusken, 2006). This weighted mass matrix is another example of
an auxiliary matrix. Time dependence in a generalized Stokes problem with variable viscosity and density
can be accommodated by using both the weighted mass matrix and a density-weighted Neumann Laplace
operator (Olshanskii et al., 2006). For anisotropic viscosity, Navier-Stokes, and other indefinite systems,
we no longer have provable spectral equivalence and instead turn to heuristics based on approximate
commutator arguments. The idea is to find Ã operating on the dual space (e.g. pressure) such that

CA−1B≈ LÃ−1M

where L =CM−1
1 B. Here, M1 is the mass matrix in the primal space (e.g. velocity) and M is a mass matrix

in the dual space. For many problems, L is a discrete Laplacian with Neumann boundary conditions
that can be assembled independently to preserve sparsity. Applying such preconditioners requires solves
with M and L, but only multiplication by Ã. There are three common approaches to constructing such an
approximate commutator.

The first approximate commutator approach is to use physical arguments to define Ã by considering
the continuum operators without boundary conditions (though see Elman and Tuminaro, 2009). An
example of this is the “pressure convection-diffusion” preconditioner of Silvester et al. (2001); Kay et al.
(2002) for the Navier-Stokes equations. Such preconditioners, if one accounts for the action of the mass
matrix, require three auxiliary operators (M,L, Ã) to be provided by the user (although approximations in
terms of diagonals of existing matrices are possible). This approach has been shown to produce nearly
mesh independent convergence rates (Elman, 2005; de Niet and Wubs, 2007; Elman et al., 2008) for
Navier-Stokes problems, with modest dependence on Reynolds number.

4.1. MULTIPHYSICS COUPLING 39

The second approximate commutator approach is to use a least squares argument to define

Ã = ML−1CM−1
1 AM−1

1 B

where M1 is usually approximated by its diagonal (Elman, 1999; Elman et al., 2006). Application of this
preconditioner requires an additional solve with L and consequently has higher computational cost per
iteration than the first alternative, but anisotropy and other terms are naturally accommodated with no
additional effort. This method shows near mesh independence for solving the Navier-Stokes equations,
and while slightly less robust, typically has better performance than the first method when Newton
linearization is used (Elman et al., 2008). It has been used successfully for challenging variable viscosity
Stokes problems discretized using Q1−Pdisc

0 finite elements. The “least squares commutator” is available
in PETSc using PCLSC.

The third method is to define Ã using sparse approximate commutators (Elman et al., 2006), a similar
method to the sparse approximate inverse (Grote and Huckle, 1997). This approach has the attractive
property of requiring only one solve per iteration without the need for additional user-provided auxiliary
matrices.

There are several important variants of the methods above including the augmented Lagrangian (Awanou
and Lai, 2005; Dohrmann and Lehoucq, 2006; de Niet and Wubs, 2007) which accelerates convergence by
penalizing A using a multiple of BM−1C which is singular (thus making the inner problem more difficult
to solve with most methods) as well as the use of pivoting for preconditioning full-space iteration in
PDE-constrained optimization (Biros and Ghattas, 2005a,b; Akçelik et al., 2006). See Benzi et al. (2005)
for a review of methods for saddle point problems.

As a practical and architectural concern, we warn that that excessive splitting leads to lower arithmetic
intensity and more synchronization points which reduces the utilization of modern hardware. Therefore,
it usually only makes sense to split when there is a clear reward in superior algorithmic performance
such as many fewer Krylov iterations or substantially reduced storage requirements (e.g. by not needing
to assemble inter-field coupling or by taking advantage of symmetric block storage for part of a larger
problem).

4.1.2 Linear algebraic interfaces to facilitate field-split preconditioning

One ideal governing the PETSc approach is to isolate the user’s specification of the discretization and
physics from the solution methods and underlying data structures so that solver choices can be delayed
until run time. The user should not need to write any special code to support a given solver (in some cases
auxiliary matrices may still be needed), thus new solvers will automatically be available when added to
the library or present in a plugin. The seemingly simple matter of interlacing fields for high throughput
(see Section 4.2) versus splitting them for certain preconditioners motivates an interface in which “blocks”
are addressed more abstractly than by number. Instead of addressing a field by number, PETSc uses the
IS class which represents an arbitrary index set. An IS has an MPI communicator and indices which may
be represented more compactly than arrays if they have structure such as a regular stride.

There are two classes of matrix storage format relevant to field-split versus monolithic preconditioners.
The traditional compressed sparse row formats, known as AIJ (plus symmetric and node-blocked variants),
are fully assembled and stored in row-partitioned form. The Nest format does not store entries directly,
instead it stores nested matrices of any format with the action of the whole matrix defined in terms of
its nested blocks. Each nested block can use a different format, enabling optimization for symmetry and
constant block size, even for mixed discretizations or multi-domain problems where it would otherwise
not be possible.

MatGetSubMatrix() is the primary interface used by PCFieldSplit to extract blocks from the Jacobian.
This function extracts a parallel submatrix with distribution specified by the distribution of the row and
column index sets. For monolithic matrix formats like AIJ, MatGetSubMatrix() necessarily requires the
matrix entries to be copied into a new data structure that as much as doubles the memory needed by an

40 CHAPTER 4. SOFTWARE

application. In the generic parallel setting, this operation requires complex communication patterns that
are not memory scalable as currently implemented. For matrices in the Nest format, MatGetSubMatrix()
returns the submatrix without making a copy or any parallel communication.

While Schur complements needed by block factorization could be constructed from submatrices, it would
be cumbersome for the user to provide problem-specific approximations to the Schur complement this
way. Instead, PCFieldSplit uses

PetscErrorCode MatGetSchurComplement(Mat mat,
IS isrow0,IS iscol0,IS isrow1,IS iscol1,
MatReuse mreuse,Mat *newmat,MatReuse preuse,Mat *newpmat);

to extract the Schur complement of (isrow0,iscol0) restricted to (isrow1,iscol1) and an ap-
proximation to be used for preconditioning. The default implementation returns a matrix of type
SchurComplement which applies S according to its definition D−CA−1B by storing the four blocks, and
if requested by the caller, the SIMPLE (Patankar and Spalding, 1972) approximation D−Cdiag(A)−1B.
This function can be overridden by the user to return arbitrary problem-specific data.

The MatGetSubMatrix() and MatGetSchurComplement() interfaces are perfectly adequate for use by
PCFieldSplit, and Nest matrices provide an efficient storage format, but since the assembly interface
is different for creating separate blocks from a monolithic matrix, it seems to require the user to decide
up-front whether to assemble a Nest or a AIJ matrix. Additionally, if AIJ is used, assembly for a single
physics would need to “know” about the other fields in order to set the indices correctly for insertion.
These are both highly undesirable because they limit the algorithmic choices that can be made at run time.
To overcome this unsatisfactory performance and interface complexity, I introduced a new interface for
modular and generic assembly.

Before describing the interface, we need to define “local” spaces in the multi-physics context. We first
assume a non-overlapping partition of owned nodes across subdomains, where typically subdomains
are identified with MPI processes. We also assume a possibly overlapping partition of the integration
domain. In the continuous finite element context, assembly is done by integration over elements, with
each element typically integrated on exactly one process (thus the partition is non-overlapping). Note
that finite difference and finite volume methods can also be interpreted as integration with appropriate
quadratures. The local space is then defined as the set of all nodes with support on the integration
subdomain. This is also exactly the domain on which state variables need to be defined to evaluate a
subdomain’s contribution to the residual and contains the residual contribution from any given subdomain
(identical for continuous finite element methods). The local space comes with an independent ordering
(starting at zero for each subdomain) and a local-to-global mapping that translates local indices to global
indices. Matrices and vectors typically carry a local-to-global mapping so that entries can be referenced
by local index. A sub-physics local space is defined as the subset of a multi-physics local space that
contributes to a particular physics (or field or other “split”) and is uniquely represented by an index
set (IS) containing those multi-physics local indices appearing in the sub-physics local space. When
DMComposite is used to manage a multi-physics problem, each sub-physics local index set is a contiguous
range.

For the purpose of matrix assembly, the local space defines the part of the global vector and matrix into
which entries can be contributed by the method outlined below. This is a restriction relative to the standard
method of inserting any entry by global index, but the user can still define the local-to-global mapping to
allow insertion wherever they desire. In return for this restriction, partially assembled matrices required
by non-overlapping domain decomposition methods like FETI-DP (Farhat et al., 2001, 2000; Klawonn
and Widlund, 2006; Klawonn and Rheinbach, 2007b,a) and the closely related BDDC (Dohrmann, 2003;
Mandel and Dohrmann, 2003; Li and Widlund, 2006) can be assembled with no changes to user code.

Assembly of “sub-physics” blocks as well as off-diagonal coupling blocks is achieved using

PetscErrorCode MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *submat);

4.2. HIGH THROUGHPUT ON CACHE-BASED ARCHITECTURES 41

which returns a submatrix with local indices defined by the index sets. This function is not collective
and makes only weak guarantees about the functionality implemented by the returned submatrix. In
particular, the communicator is not specified and collective operations like MatMult may not be defined.
If the matrix storage format is Nest, this function simply returns the appropriate submatrix, which
usually lives on a parallel communicator and has full functionality. For matrix formats that do not
implement MatGetLocalSubMatrix(), a proxy matrix is set up on PETSC_COMM_SELF that implements
MatSetValuesLocal() and similar functions by translating sub-physics local indices to coupled local or
global (best choice depending on what is explicitly supported) indices and setting values in the parent ma-
trix. If the row and column index sets have matching block size attribute, MatSetValuesBlockedLocal()
is also implemented regardless of whether the underlying storage format uses blocks. This permits sub-
physics modules having constant block size to always speak the most specific language (blocked and/or
symmetric) regardless of the underlying format. When the underlying format specifically supports blocks,
we reap the benefits of faster insertion due to fewer searches and moves, otherwise there is negligible
performance penalty. When MatSetValuesBlockedLocal() is used recursively and the matrix imple-
mentation has no specific support, the proxy matrices are flattened so that index translation is never done
more than once. This interface allows separate physics modules to be packaged independently and gives a
run-time choice of monolithic matrix formats or Nest with the best possible format in each block and
high performance in all cases.

4.2 High throughput on cache-based architectures

The easiest way to make software scalable is to make it sequentially inefficient. (Gropp, 1999)

4.2.1 Sparse matrix kernels

This section briefly describes some optimizations I made to improve PETSc’s matrix kernels by about
30% on Intel and AMD architectures, bringing them quite close to the memory bandwidth limits. This
was implemented subsequent to the new data structures for factored matrices described in Smith and
Zhang (2010) and thus represents an additional improvement.

The following hardware descriptions generally hold across Intel Core, Core 2, and Core i7 as well as
AMD K8 and K10 microarchitectures. Most variation is due to different prefetch and TLB semantics
as well as different latencies for vector instructions. Details can be found in the optimization reference
manuals (Intel, 2011; AMD, 2011) as well as Agner Fog’s excellent resources Fog (2011b,a). See Drepper
(2007) for a more accessible introduction to the memory hierarchy.

Most of my optimizations for sparse matrices involve maximizing reuse of caches and attained fraction of
peak streaming bandwidth. Each floating point unit can issue one packed add and one packed multiply
per clock cycle, with latencies of 3 to 5 cycles. SSE instructions may have both operands in registers or
have one operand in level 1 data cache (L1D) with no throughput penalty, although a concurrently issued
add and multiply cannot both have a memory operand. AMD has a 2-cycle latency penalty for memory
operands, Intel has no latency penalty. This means that L1D is almost as good as a register, compared to
L2 with roughly 10-cycle latency and DRAM with approximately 250-cycle latency.

Assuming a 2.5 GHz clock, one packed load and store per cycle means a bandwidth to L1D of 24 GB/s
each way (48 GB/s each way for newer architectures supporting 32-byte AVX registers). We can compare
this to per-core memory bandwidth ranging from 1.75 GB/s (6-core with 2-channel DDR2-667, found
on Cray XT-5) to 9.6 GB/s (4-core with 3-channel DDR3-1600, found on Intel’s newest “Sandy Bridge”
processors). With four (SSE2) or eight (AVX) double precision floating point operations possible per
cycle, it becomes clear that memory will be the bottleneck unless many floating point operations can be
performed per value loaded. The ratio of flops per byte for a computational kernel is known as arithmetic
intensity. The previously mentioned architectures achieve balance in computation and memory accesses
when the arithmetic intensity is between 2 and 6 flops/byte.

42 CHAPTER 4. SOFTWARE

The hardware prefetch unit can recognize 16 forward-moving streams and 4 backward-moving streams,
but only one stream per 4 kB page and not across page boundaries. Additionally, the hardware prefetcher
does not resolve minor TLB misses. This is a significant issue because the TLB can only address 1
or 2 MB and TLB misses produce roughly 60 cycles of latency plus DRAM latency if the resulting
address is not in high-level cache. Software prefetch can hide these latencies and resolve TLB misses
in advance, providing roughly 20% improvement in my optimized implementations of the STREAM
benchmarks (McCalpin, 2007) discussed later in this section. In addition to improving overall bandwidth,
software prefetch instructions can set a “non-temporal access” (NTA) policy such that lines evicted from
L1D will not subsequently reside in higher level caches.

We consider four matrix formats with increasing amounts of structure: AIJ, AIJ/Inode, BAIJ, and
SBAIJ. AIJ is a standard compressed row format that stores a column index for each nonzero entry. A
matrix-vector product y← Ax is characterized by the MatMult kernel,

for (i=0; i<m; i++) {
y[i] = 0.0;
for (j=ai[i]; j<ai[i+1]; j++)

y[i] += aa[j] * x[aj[j]];
}

Assuming perfect cache reuse with m rows and an average of n nonzeros per row, MatMult has an
arithmetic intensity of

IAIJ =
2n

(n+1)sizeof(Scalar)+(n+1)sizeof(Int)
n→∞−−−→ 0.167flops/byte

where the long-row limit is calculated for double precision and 32-bit integers. In practice, the vector
will not reuse cache perfectly, so some entries of x will need to be loaded into cache more than once.
Choosing a low-bandwidth ordering such as Reverse Cuthill-McKee (Cuthill and McKee, 1969) (RCM)
improves cache reuse. This reduces end-to-end run time substantially, speeding up matrix-free operations
such as residual evaluation in addition to sparse matrix kernels, e.g. by more than a factor of 2 (Gropp
et al., 2000b). My optimization for AIJ consists of inserting software prefetch instructions to initiate
loads of every cache line holding entries in the row after the current one. The L1D cache line length is
detected during configuration so only one prefetch instruction per line is issued (it is 64 bytes on the
x86-64 microarchitectures considered here). Sparse matrix-vector products for PDEs can be thought of as
a stencil operation combined with a high-volume stream of matrix entries and column indices (the weights
and shape of the stencil). Without the NTA policy, the high-volume stream flushes the vector x out of
caches, even though the vector will be reused and the matrix entries and indices will not be.

The AIJ/Inode format simply augments the AIJ format by marking “Inodes” (clusters of consecutive
rows that have the same nonzero pattern). The matrix kernels unroll over the Inodes which reduces the
memory demands for column entries and performs more work per entry loaded from the vector. Use
of the AIJ/Inode format is automatic if the matrix has consecutive rows with the same nonzero pattern.
The column indices are not copied out of the standard AIJ storage so matrix kernels skip over b− 1
rows of identical column indices in each Inode of size b. Skipping over these rows of column indices
is especially inefficient with hardware prefetch because entries are eagerly brought into cache and then
skipped, followed by a full DRAM stall as the kernel jumps past the prefetched indices in aj and starts
b−1 new streams from aa that are not predicted by the prefetch unit. Software prefetch for AIJ/Inode
avoids bringing in the redundant column entries and prevents the stalls due to jumping over column indices
aj and starting new aa streams. The prefetch logic assumes that the next Inode size and row lengths will
be approximately the same size as the current one since this is the typical case for PDE-like problems. If
no redundant column entries are brought in, the arithmetic intensity is

IAIJ/Inode =
2nb

(n+1)bsizeof(Scalar)+(n+2)sizeof(Int)
n→∞−−−→
b=3

0.214flops/byte

4.2. HIGH THROUGHPUT ON CACHE-BASED ARCHITECTURES 43

where the example Inode size of 3 is representative of 3D elasticity or the viscous part of a Stokes problem.
We expect this performance model to be somewhat less sharp than for AIJ because it is not possible to
load less than a cache line, therefore redundant column indices are unavoidable unless all rows naturally
align with cache line boundaries.

The BAIJ format optimizes for constant block size by storing only one column index per b× b block.
With this format, the problems of skipping ahead in aj and aa go away, but issues of peak bandwidth and
enabling the vector to reuse cache remain. The arithmetic intensity

IBAIJ =
2nb

(n+1)bsizeof(Scalar)+(n/b+1)sizeof(Int)
→ n→∞−−−→

b=3
0.237flops/byte

is very close to the dense limit of 0.25. In practice, BAIJ achieves a higher fraction of the bandwidth peak
due its more regular memory access and unrolled kernels.

The symmetric block format SBAIJ stores only the upper-triangular part, in compressed row format, and
has a more involved memory access pattern. Each matrix entry is only loaded once and is used for both
upper and lower triangular contributions. The contribution from the lower-triangular part has multiple
destinations, effectively doubling the number of stencil-like streams that must be sustained. All the new
streams are read-write as opposed to the read-only streams of nonsymmetric row formats. In return, the
storage requirement is halved and arithmetic intensity is doubled compared to nonsymmetric formats,

ISBAIJ =
4nb−2b2

(n+2)bsizeof(Scalar)+(n/b+1)sizeof(Int)
→ n→∞−−−→

b=3
0.47flops/byte.

The data structure change described in Smith and Zhang (2010) caused both forward and back solves with
(incomplete) LU factors to traverse matrix entries by moving forward in memory. Even though the matrix
entries are fetched moving forward, the stencil for “back solve” still moves backward through memory so
there are much fewer hardware prefetch streams (4 instead of 16 forward-moving on Intel/AMD; note that
there is no hardware prefetch for backward-moving streams on Blue Gene/P).

For (incomplete) Cholesky, the factors are only stored once, so it is not possible for both forward and
back solves to traverse matrix entries by moving forward. Because the primary backward-moving streams
are prefetched by software, this causes relatively little performance degradation compared to ILU.

As an estimate of the peak usable bandwidth, we use the STREAM Triad benchmark with my moderately
tuned implementation (software prefetch, SSE2 arithmetic, non-temporal stores, unrolled over cache
lines). We consider two test systems, a Core 2 Duo (P8700) clocked at 2.53 GHz with a single DDR2-800
memory channel (theoretical bandwidth of 6.4 GB/s) and a two-socket Opteron 2356 (quad core) clocked
at 2.3 GHz with two channels of DDR2-677 memory per socket (theoretical peak of 5.3 GB/s per channel).
The achieved bandwidth for Triad on the Intel system is 5.4 GB/s for a single thread, there is no further
improvement for multiple threads or processes. On Opteron, the single-threaded Triad achieved 5.8 GB/s,
increasing to 11.1 GB/s for 2 processes (1 per socket), 14.8 GB/s for four processes (2 per socket), and
13.1 GB/s for 8 processes. Note that a single process very nearly saturates the usable bandwith of an
entire socket, regardless of whether one or two memory channels are available. Within a single socket,
2 processes achieve 7.6 GB/s while 4 processes see only 6.6 GB/s. Although these Opteron results are
The memory architecture of It is clear that the memory architecture within and between sockets limits the
realizable bandwidth to well below the theoretical peak.

Table 4.1 shows the performance of the three primary sparse matrix kernels with each storage format on
both test machines. With prefetch enabled, the sparse matrix kernels obtain a remarkably high fraction
of theoretical peak bandwidth, especially on Intel processors. Indeed, the scalar format performance is
competitive with the best MatMult results of Williams et al. (2007) and block formats are consistently
faster by a factor of 20 to 30 percent. Block formats provide greater benefit for MatSolve than for
MatMult, with BAIJ MatSolve frequently outperforming the corresponding MatMult. We are not aware
of previous reports of this effect and speculate that it is due to MatSolve having fewer read streams
and using only one vector at a time (MatMult reads from one vector and writes to another, MatSolve is
in-place).

44 CHAPTER 4. SOFTWARE

Core 2, 1 process
AIJ AIJ/Inode BAIJ SBAIJ

MatMult 916(103%) 855(81%) 1013(86%) 1429(62%)
MatSolve/ILU 799 742 1078 —
MatSolve/ICC 741 737 1011 1007

Opteron, 1 process
AIJ AIJ/Inode BAIJ SBAIJ

MatMult 506(53%) 592(52%) 735(58%) 744(30%)
MatSolve/ILU 460 572 845 —
MatSolve/ICC 426 427 815 814

Opteron, 4 processes
AIJ AIJ/Inode BAIJ SBAIJ

MatMult 1673(69%) 1978(68%) 2450(76%) 3089(49%)
MatSolve/ILU 1621 1896 2766 —
MatSolve/ICC 1519 1522 2700 2710

Opteron, 8 processes
AIJ AIJ/Inode BAIJ SBAIJ

MatMult 2374(111%) 2408(94%) 2897(102%) 4331(77%)
MatSolve/ILU 2321 1954 2913 —
MatSolve/ICC 2214 1854 2892 2877

Table 4.1: Throughput (Mflop/s) and percentage of STREAM Triad bandwidth, assuming optimal vector
reuse, for three matrix kernels and different matrix formats. The test machines are a Core 2 Duo (P8700)
and an Opteron 2356 (two sockets). The test problem is a Q1 finite element discretization with block size
of 2 on a 3D mesh (essentially a 27-point stencil) in which each process has 64×64×63 nodes.

4.2. HIGH THROUGHPUT ON CACHE-BASED ARCHITECTURES 45

4.2.2 Small dense tensor product kernels

A fundamental operation for computing with high order finite element and spectral element methods is
application of a 3D tensor product kernel operations y← (A⊗B⊗C)x, or, in index notation,

yi jk← AiαBbβCcγxαβγ. (4.2.1)

To evaluate a state vector at quadrature points, the Greek indices run over the basis functions in each
Cartesian direction and the Latin indices run over the number of quadrature points in that direction.
When using a Gauss quadrature that integrates the mass matrix exactly (a typical choice in finite element
computations), the range is the same. Additionally, when the approximation order is isotropic (the most
common case), all the ranges are the same. The tensor product operation can be written in various ways
as dense matrix multiplication (albeit highly non-square) so we expect it to achieve very close to the
floating point peak for sufficiently large sizes (e.g. by calling a tuned BLAS3). Increasing the number
of fields also increases the problem size which improves the efficiency of BLAS3 calls. The attainable
performance for smaller sizes is much less clear, hence we examine the scalar Q3 case. This is a very
practical approximation order: it is high enough to reap some benefits from the regular structure, but not
so high as to make resolving geometry overly difficult or to have highly non-uniform resolution (due to
clustering of interpolation nodes near the edges of elements as the approximation order increases).

In the scalar Q3 case, each of A,B,C is 4×4 and the entire operation produces 64 entries in y from 64
entries in x. We have considered a variety of unroll-and-jam optimizations as well as different register
blocking strategies. The SSE3 horizontal add instruction HADDPD has increased latency and reduced
throughput compared to the standard vector addition and multiplication instructions ADDPD and MULPD,
therefore we should try to avoid it whenever possible. Assuming lexicographic ordering, applying the first
two parts A and B of the tensor product kernel perform the same operation for all values of γ and thus
provide balanced adds and multiplies (which can be issued concurrently as long as the kernel has been
unrolled enough to cover the latency) without needing any horizontal operations. This is not possible
when applying C because packed loads (and vector arithmetic with memory operands) retrieve consecutive
entries. The input could be transposed to avoid this constraint, but the cost for small sizes overwhelms
the benefit, therefore we are forced to use one HADDPD instruction per packed result yi, j,k:k+1 and the
reduction also creates some unavoidable (without more registers) pipeline stalls. Application of A⊗B⊗1
achieve nearly 80% of floating point peak on the Core 2 Duo while C is reduced to near 60%. The full
tensor product contraction A⊗B⊗C achieves more than 70% of floating point peak on Intel and about
60% on AMD. This performance is comparable to or better than the best autotuned results of Shin et al.
(2010), though they achieve slightly higher performance for larger sizes (which have less overhead). Note
that large size tensor contractions are important for quantum chemistry and have thus received more
optimization attention (e.g. Kaushik et al., 2008; Hirata, 2003). Contrast the tensor product performance
with sparse matrix kernels that attain less than 10% of floating point peak due to low arithmetic intensity.

An old (McCalpin, 2007) but continuing trend in computer architecture is for peak floating point per-
formance to continue to improve via the use of longer registers (Intel’s AVX and the Blue Gene/Q
architecture have packed 32-byte floating point registers), more cores, and GPU-style vectorization while
memory bandwidth increases much more slowly (Keyes, 2011). An additional feature of upcoming
high-performance computing architectures is the prevalence of in-order execution; high power require-
ments no longer justify the luxury of sophisticated out-of-order execution units common on today’s
commodity hardware (Seiler et al., 2008; Pham et al., 2006). Achieving high performance on such systems
requires decomposing the computation into kernels with high arithmetic intensity (so as not to overload
the memory subsystem) and sufficient local structure to utilize vector registers and effectively schedule
instructions at compile time. We optimized streaming stencil kernels for Blue Gene/P in Malas et al.
(2012), including implementation of a static scheduler that we used to rapidly perform loop optimizations
with a small assembly-language building block that exploited the available SIMD floating point unit. With
this approach, we were able to effectively use all the floating point and general purpose registers to hide
instruction latency, delivering 93% of theoretical FPU peak for the 27-point stencil with problem sizes

46 CHAPTER 4. SOFTWARE

that fit in level 1 cache and 91% of bandwidth for larger problem sizes (72% of FPU peak). These results
are 80% better than the best previously published for Blue Gene/P.

Since the tensor product kernel has sufficient local structure to utilize vector registers, we can estimate its
performance on future architectures by computing its arithmetic intensity. For simplicity, suppose that
n = p+1 is both the number of interpolation nodes and quadrature points on an element in each Cartesian
direction, and that b is the number of degrees of freedom per node. Then direction of a contraction
performs bn4 multiplies and b(n− 1)n3 additions on the reference element. We approximate the total
across all three dimensions 3bn4 fused multiply-add (FMA) operations because FMA units are increasingly
popular. When evaluating both interpolation and gradient (most general form), it is possible to share
partial results so that both can be evaluated in 9bn4 FMAs. Translating the gradient from reference to
physical element costs another 9bn3 FMAs. The Galerkin procedure evaluates these contractions twice
per residual or matrix-free Jacobian (once to evaluate the trial function, once more in transpose for the
test functions), leading to a total of 18(bn4 +bn3)+Qn3 FMAs, where Q is the number of operations per
quadrature node. Typically we do not store the coordinate transformation, so it must also be computed at a
cost of 9 ·3n4 +31n3 (assume block size 3 and held in an equal order basis, evaluate only on the reference
element, then invert the local Jacobian at every quadrature node at a cost of 30 FMA or multiplies and one
division). Thus, for a problem with b degrees of freedom per node and no sharing between elements, we
have total operation count of 9(3+2b)n4 +(31+18b+Q)n3 with (b+3)n3 floating point values coming
in and bn3 out.

To understand these tradeoffs, we consider three block sizes at different approximation orders and plot the
memory bandwidth and number of flops (calculated as twice the number of FMAs) required to compute
each entry in the output vector. The performance model for assembled sparse matrices assumes BAIJ
storage and perfect vector reuse within the cache system. The model for unassembled storage applied by
tensor product assumes a general tensor-product quadrature of equal order, that coordinates are stored in a
function space of the same order as the independent variables and are needed to compute the coordinate
transformation but do not contribute to a result, that the physics can be represented using stored data
equivalent in size to a stored gradient plus stored function values, and that the physics can be applied
using an operation similar in structure to Newton-linearization of Navier-Stokes with power-law rheology
plus a reaction term coupling all components. This is intended to be nearly a worst-case setting for the
unassembled tensor product formulation; it is cheaper for simpler physics, simpler coefficients, collocated
quadratures, etc.

The memory and floating point costs are shown in Figure 4.1. The unassembled representation is uniformly
better in terms of memory use for all orders p ≥ 2, but has significant floating point overhead for the
smallest sizes, especially with small block size. Note that both bandwidth and computation requirements
improve for the tensor product formulation when the block size increases (because the overhead of
the coordinate transformation is reduced), while they degrade for the assembled representation. The
arithmetic intensity for unassembled representations is typically around 8 flops/byte with weak dependence
on polynomial order, block size, and even details of the physics (unless a great deal of recomputation
is required for linearization, or a nonsymmetric high-rank tensor needs to be stored). This should be
compared to the assembled sparse matrix representation which cannot surpass 1 flop/4 bytes even if
column indices were not stored. As noted in Section 4.2.1, modern hardware balances computation with
memory when the arithmetic intensity is between about 2 and 6 flops/byte and expected to increase. The
30-fold increase in arithmetic intensity while simultaneously reducing memory traffic below even the
lowest order representation bodes well for the relevance of unassembled Jacobian representations on
future architectures.

4.3 Generic finite elements

Given the performance of unassembled Jacobian representations in Section 4.2.2 and the availability of
inexpensive low-order preconditioners presented in Chapter 2, it is natural to ask how much effort is

4.3. GENERIC FINITE ELEMENTS 47

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

Figure 4.1: Memory and floating point requirements for matrix-free tensor-product application of an
operator versus representation as an assembled matrix stored in BAIJ(b) format. The same operation
y← Ax is applied in both cases, the storage is just different. A “result” is a single scalar entry in y,
regardless of the block size b.

required to use these methods. If the equations or parameters change so that a specific discretization
or solution method is no longer working well, how much effort does it take to change the method? In
this section, we outline the approach taken by the Dohp library to facilitate run-time flexibility without
sacrificing performance.

4.3.1 Dual order finite elements

Standard finite element methods define both the basis functions and the integration method in terms of
a single unit known as an element. In order to use the dual order methods of Chapter 2, we need to
define quadrature on smaller units because the low-order approximation space has more locality and less
regularity within elements. We will continue to use “element” to refer to the maximal units of structure as
with p-version finite element and spectral element methods, but introduce the new term “quadrature patch”
for the smaller units. There is always at least one quadrature patch per element. For conventional methods
and for evaluating high-order operators in Dohp, there is exactly one quadrature patch per element.
Assembly of a dual-order preconditioning matrix requires evaluating a nonlinearity on quadrature points
and then assembling an element matrix depending only on those basis functions with support on the
quadrature patch. This suggests a specific quadrature rule that is essentially the concatenation of several
low-order quadratures that define integration on each quadrature patch, which are sub-elements in this
case.

To represent this in software while permitting run-time choice of quadrature method, basis order, and
choice of whether to assemble the true operator or low-order approximations, we introduce two small
immutable objects, a Rule which represents a quadrature rule which may contain multiple quadrature
patches and an “element function space” EFS. The EFS performs interpolation and differentiation, mapping
from the degrees of freedom associated with an element to all the quadrature points of a Rule, and the

48 CHAPTER 4. SOFTWARE

transpose operation. Both Rules and EFSs are created lazily (as needed) and stored in a cache that is
typically shared by all components of an application, but can be managed independently. Because these
objects are immutable, they can be safely shared an arbitrary number of times and only a single pointer
per element needs to be stored (this can be further compressed for meshes with nearly homogeneous
topology). It is possible to have multiple function spaces evaluate on the same Rule or to have a single
function space evaluate on multiple Rule. This flexibility is important for multi-physics problems in
which only select pieces are assembled.

An arbitrary amount of specialization is performed when a EFS is created so the resulting kernels can
be anywhere from completely unrolled to entirely dynamic, with the choice made as a run-time option.
Common specialization choices are to unroll completely over the last dimension and to assume even
or odd parity in earlier dimensions (for consistent handling of fringes). For lowest order elements, the
tensor product formulation offers no savings so evaluation can be implemented with the usual dense
matrix-vector product. Since the EFS evaluates all the basis functions at all the quadrature points, the
granularity is large enough to effectively hide function call overhead for all but lowest order (linear)
elements.

Evaluating residuals simply requires pointwise operations at quadrature points, using the current trial
vector to define coefficients of test functions at quadrature points. For example, residual evaluation for an
elliptic problem with weak form

v ·f(u)∼
∫

Ω

∇v · (1+u2)1 ·∇u− vexpu− v1 = 0

(the bold symbols on the left represent discrete vectors representing global state, the corresponding
continuum formulation is on the right) would be implemented as the following pointwise loop where Q is
the number of quadrature points.2

for (i=0; i<Q; i++) {
v[i] = -weight[i] * (exp(u[i]) - 1.);
for (j=0; j<3; j++)

dv[i][j] = -weight[i] * (1 + u[i]*u[i]) * du[i][j];
}

Matrix-free application of the Jacobian v · J(u)w can be implemented as a similar loop, but it requires
knowledge of the state u evaluated at quadrature points. The Jacobian is only required after residual
evaluation so this state was recently available; suppose that u and ∇u were stashed in the residual
evaluation above. In Dohp’s implementation, storage for the stash is typically managed by the iterator
which associates a user-provided number of bytes with each quadrature point and/or each element. With
u and ∇u provided inside stash[], Jacobian application would look like

for (i=0; i<Q; i++) {
v[i] = -weight[i] * exp(stash[i].u) * w[i];
for (j=0; j<3; j++)

dv[i][j] = -weight[i] * (2 * stash[i].u * w[i] * stash[i].du[j]
+ (stash[i].u * stash[i].u) * dw[i][j]);

}

We can break the above process into three pieces, PointwiseStash which may be as simple as
saving u and/or ∇u, PointwiseResidual which may use the just-computed stashed values, and
PointwiseJacobian which necessarily uses stashed values to apply the action of the continuous Jacobian.
The key to the ability to split the problem up like this is that discretization and linearization commute

2C99 variable length array pointers are used to simplify indexing here, du[i][j] is effectively translated by the compiler to
du[i*3+j] so there is no pointer indirection.

4.3. GENERIC FINITE ELEMENTS 49

for Galerkin methods. This is not generally true for non-Galerkin methods, and not easily rectifiable for
methods involving nonlinear reconstruction such as high resolution3 finite volume schemes.

For preconditioning purposes, we typically also need to assemble some approximation to the Jacobian.
The dual order method defines this matrix by modifying the high order basis functions to have more local
support (thus improving sparsity), using a quadrature that respects the reduced continuity these more local
basis functions, and exploiting the improved sparsity by assembling a separate element stiffness matrix for
each of these smaller quadrature patches. This traversal has a natural interpretation in Dohp’s language. A
Rule is defined that represents all the quadrature patches on an element. The actual storage retains the
tensor product structure on the full element so we create an EFS that evaluates the trial function and its
gradient on the quadrature points using the true basis functions, and it will be implemented by efficient
tensor product kernel. These values are used to evaluate nonlinearities at quadrature points, coefficient
filtering and other techniques can also be done. The true basis functions are also used to define geometry,
thus the geometry can reside in an arbitrarily high order space without impacting the fidelity of gradients
or volumes.4

We create another EFS that evaluates the low-order basis functions at the quadrature points in the patch.
While this EFS is capable of all the same operations described above, we do not typically use that
functionality. Instead, we get an explicit representation of the basis functions and derivatives for
each quadrature patch, as well as the node indices needed to insert values into the matrix using the
EFSGetExplicitSparse function. This is exactly what is needed for matrix assembly, but it is messy to
make the user roll the loop over quadrature patches and manage associated memory, therefore we hide the
hierarchy in our iterator. The “patch” assembly loop for any scalar second-order equation is

for (dInt q=0; q<Q; q++) { // Loop over quadrature points
struct UserStash stash;
PointwiseStash(param,x[q],u[q],du[q],&stash); // Full accuracy nonlinearity
for (dInt j=0; j<P; j++) { // Loop over trial functions

dScalar v,dv[3]; // Test function coefficients
PointwiseJacobian(param,&stash,weight[q],interp[q][j],deriv[q][j],&v,dv);
for (dInt i=0; i<P; i++) { // Loop over test functions

K[i][j] += (interp[q][i] * v
+ deriv[q][i][0] * dv[0]
+ deriv[q][i][1] * dv[1]
+ deriv[q][i][2] * dv[2]);

}
}

}
FSMatSetValuesLocal(fs,Jp,P,lidx,P,lidx,&K[0][0],ADD_VALUES);

where PointwiseJacobian applies the action of the continuous Jacobian at the current “stashed” state
to perturbations w = interp[q][j] and ∇w = deriv[q][j][:]. This generalizes readily to vector
problems and an arbitrary number of function spaces, see the examples in the Dohp source tree.

With this software design, the physics is isolated from the discretization, therefore a great deal of run-time
flexibility can be provided. Some possible choices that are automatically supported by client applications
of Dohp include

• Use the high-order method for everything including the assembled Jacobian. This is the typical
method used by p-version finite element methods.

3In the hyperbolic community, “high resolution” refers to methods that have a high order of accuracy in regions where the
solution is smooth. The actual solutions usually contain discontinuities in which case genuine high order accuracy is not possible.

4Higher order quadratures would be required to evaluate the isoparametrically mapped elements, but we typically do not raise
the integration order. This has not yet posed a difficulty and is standard practice in isogeometric analysis and extended finite
element methods, neither of which use exact integration.

50 CHAPTER 4. SOFTWARE

• Define residuals and the assembled matrix using the high-order method. Use the assembled matrix
to form a preconditioner, but apply the action of the Jacobian by tensor product because it is cheaper
(see Figure 4.1).

• Define residuals with the high-order method, assemble preconditioning matrix with low-order (and
either low- or high-order definition of nonlinearity), apply the true Jacobian matrix-free. This is the
method promoted in Chapter 2.

• As above, but use the low-order assembled matrix as the “Jacobian” inside of a defect correction
scheme. This is a sort of modified Newton method which has relatively poor convergence properties
(certainly not quadratic).

• Define residuals and the matrix in terms of the low-order approximation. This does not have
high-order convergence properties, but has local structure which reduces the overhead of a fully
unstructured mesh and permits vectorization. It is practical for problems where coefficients are
rough on a finer scale than geometric features in the domain.

• Standard low-order finite element method on an unstructured mesh. This is practical for problems
where the geometry of the domain has finer structure than coefficients.

To demonstrate that this generic formulation does not severely degrade performance for low-order
approximations, we compare Dohp’s assembly cost to that of the well-known finite element libraries
libMesh (Kirk et al., 2006) and Deal.II (Bangerth et al., 2007). Table 4.2 shows the assembly time
for a Laplacian on a cube using all three libraries. Example 4 was used from the latest versions of both
libMesh and Deal.II. For the libMesh example, the assembly loop was modified to only compute the
matrix without contributions to the right hand side or adaptivity, and to use a low order quadrature rule
when integrating Q1 elements. For Deal.II, constants in the code needed to be changed to change the
mesh resolution and element order, and timing calls (using clock_gettime(2)) needed to be added. The
Dohp results use the ellip.c example which solves the “p-Bratu” equation

−∇·
(
|∇u|p−2

∇u
)
−λexpu = f

where f is a manufactured forcing term. The Laplace equation is the special case p = 2,λ = 0, which is
chosen at run-time in the example and produces the timing results shown in the p-Bratu column. Timing
with a modified version of ellip.c specialized for the homogeneous Laplacian is also included so that the
overhead of including nonlinearity can be seen. It is clear that Dohp is faster than libMesh and Deal.II
for everything but the assembled Q2 case, including more than twice as fast for unstructured Q1 elements.
This was a surprise considering that Dohp has no special optimization for unstructured Q1 elements. Dohp
uses a very naive method for assembly of Qk elements when k > 1, so there remains significant opportunity
for optimizing the assembly of Q2 discretization. However, we consider assembly (and solves) for such
elements to be excessively expensive unless it is absolutely necessary for an application. The overhead of
using an unstructured mesh can be seen by comparing to the DMDA column which uses a structured grid
and is written specifically for Q1 elements. The unstructured Q1 case requires 30% overhead, and drops
below 7% when using a structured representation for each block of 43 Q1 elements (Q4 connectivity).

For multi-physics problems and mixed finite element formulations, there are multiple function spaces
and perhaps several quadrature rules in use at once. Dohp always stores coordinates in a bona fide
function space so the mesh geometry can naturally be made a part of the solution or not. The order of
approximation can be chosen independently for each function space, including for coordinates. When
an iterator is created, an arbitrary number of function spaces can be added. When the iterator is started,
one input vector and one output vector per function space may be provided (either one can be NULL). For
each vector, the user specifies whether it should reside in a function space with homogeneous Dirichlet
conditions or an affine function space with inhomogeneous Dirichlet conditions. Dirichlet conditions are
typically enforced by the library on a user-specified part of the boundary using (5.2.1). The API to start

4.3. GENERIC FINITE ELEMENTS 51

Library Mesh Connectivity Discretization Laplace (s) p-Bratu (s)

libMesh 643 Q1 Q1 4.8 —
libMesh 323 Q2 Q2 5.0 —
Deal.II 643 Q1 Q1 7.8 —
Deal.II 323 Q2 Q2 4.9 —
Dohp 643 Q1 Q1 2.32 2.58
Dohp 323 Q2 Q1 2.06 2.35
Dohp 323 Q2 Q2 5.44 5.78
Dohp 163 Q4 Q1 1.91 2.22
DMDA 643 structured Q1 1.79 —

Table 4.2: Assembly time for the Laplace and p-Bratu problems with different element types and libraries.
All cases have the same number of degrees of freedom, 653 = 274625. The structured problem is treated
as unstructured by libMesh, Deal.II, and Dohp, with granularity shown in the Connectivity column.
DMDA uses a structured grid and is specialized for Q1 assembly.

an iterator and to evaluate test and trial functions uses variadic functions so it is easy to add more spaces
without needing to use an excessively verbose or fine-grained API.

Finally, we mention that this software design naturally supports isogeometric analysis (IGA) (Cottrell
et al., 2009) which replaces the Lagrange interpolants with splines, usually non-uniform rational b-splines
(NURBS). Advantages of IGA relative to conventional finite element methods include higher order
continuity (especially important for equations beyond second order such as shell elements for structural
mechanics or the Cahn-Hilliard equation for separation), the ability to represent certain geometries exactly
(especially those created by computer-aided design software, thus simplifying the meshing process), and
non-negative basis functions which enable robust definitions of normals for conservative slip and better
control over positivity. Disadvantages include more nonzero entries in the assembled matrices and more
complex implementation. To support IGA under the framework above, we identify a “NURBS patch”
with Dohp’s “element” and IGA’s “element” with Dohp’s “quadrature patch”. The implementation in
Dohp will work after definition of the spline bases, though it would require additional code to support
especially large NURBS patches, such as those spanning multiple processors.

4.3.2 Input/output and visualization for high-order mixed spaces

Although there has been some work visualizing high-order basis functions (Schroeder et al., 2005, 2006;
Üffinger et al., 2010), the code has not been released and it is not supported by the popular visualization
tools such as VTK (Schroeder et al., 1998), Paraview (Henderson et al., 2004), and VisIt (Childs and
Miller, 2006). Due to this deficiency, visualization of a model that uses high-order elements requires
losing the high-order information by either representing each element as a structured grid or by replacing
it with many smaller unstructured elements. Experience from other high-order projects (Fischer et al.,
2008) indicated that VisIt (and presumably other software) had poor scaling when thousands or millions
of “grids” were defined, therefore Dohp chose to simply represent everything using unstructured low-
order elements. It is simple for an application to write it’s entire state into an unstructured file, but the
connectivity for lowest order elements is expensive to store and it is no longer possible to recover the
high-order state. Because there were no extensible formats for storing high-order mesh data, I made
a new HDF5-based (HDF5 Group, 2011) format for use with Dohp, with read and write functionality
for function spaces and vectors using PETSc’s Viewer component. My intent was for the format to be
simultaneously usable as checkpoints in forward simulation, as part of time-dependent adjoint solves, and
for visualization, without the need for custom support for each application.

This format stores unstructured time-dependent multi-domain multi-field data. The mesh topology is
contained in MOAB’s format (Tautges et al., 2004), although any iMesh implementation would, in

52 CHAPTER 4. SOFTWARE

principle, be sufficient. The tags defining the function space are stored only once, unless the connectivity
or distribution changes. A function space has a reference to the geometry it is defined on. For problems
with moving meshes, the geometry evolves, but not the topology (unless remeshing is needed, this is
not yet implemented), so we avoid storing duplicate copies. Similarly, for arbitrary vectors defined on
function spaces, only the vector values are stored at each step. The actual output for vectors is typically
done using collective or independent MPI-IO (Corbett et al., 1995) accessed through HDF5.

For each scalar or vector field, function spaces keep track of the name, units, and an arbitrary scaling
factor. The scaling factor is needed for bitwise exact recovery of serialized state when the model works
with non-dimensionalized fields, otherwise rounding error contaminates the low bits. This is bitwise-
reproducible file IO is a stated objective of the Community Earth System Model (Collins et al., 2006) and
other projects, despite the fact that parallel implicit solvers cannot produce bitwise-reproducibile results
on a different number of processors due to the non-associativity of floating point arithmetic (Goldberg,
1991) and algorithmic changes resulting from domain decomposition (Smith et al., 1996).

I implemented a reader plugin for VisIt to read this format. It works by reading in the function space
and vector state (as requested by the VisIt client) and placing the topology and field data in VTK data
structures. The implementation is a very thin C++ layer atop the standard C library. If at some point in the
future, VisIt adds native support for high-order elements, the storage format would not need to change and
the VisIt plugin would need only minor changes to support the new API. The field and mesh names are
visible in the VisIt graphical user interface. Determining what fields are defined on a given part of the
domain at a given time is not an especially simple task using HDF5’s hierarchical structure. In particular,
it involves walking the hierarchy in different ways to determine what is fundamentally relational data.
Since these queries could be answered faster and more extensibly in one-line SQL queries instead of
about a page of C code, it seems likely that a simpler, more user-friendly, and possibly more performant
format could be defined using a small relational database for relational metadata and plain binary blobs
for everything else.

4.4 Verification

How reliable are the results of a numerical simulation? Under what circumstances can decisions be
made based on the results of a calculation? Answering these questions involves two distinct steps known
as Verification and Validation (Babuška and Oden, 2004; Roache, 1998). Verification is the purely
mathematical endeavor of determining if a computational model obtained by discretizing a mathematical
model of a physical process can be used to represent the mathematical model with sufficient accuracy—
solving the equations right. It is an essential prerequisite for Validation which is the process of assessing
whether a mathematical model is a sufficiently accurate model of a physical process—solving the right
equations (Roache, 1998). To quote Babuška and Oden (2004),“any validation exercise that is based
on a computational model in which discretization error is not quantified is futile, because modeling and
approximation error are then intertwined in an indecipherable way.” The distinction, and uncertainty
quantification in general, has been largely overlooked by numerical modeling efforts in glaciology. Many
problems in geophysics, and especially in glaciology, lack accurate observations of material parameters,
boundary conditions, or geometry, and thus, can only rigorously be modeled as stochastic processes. The
field of stochastic PDEs (Deb et al., 2001; Ghanem and Spanos, 2003; Chow, 2007) is however, quite
young, and despite promising work on challenging prototype application problems (Asokan and Zabaras,
2006; Ganapathysubramanian and Zabaras, 2007; Zabaras and Ganapathysubramanian, 2008; Mishra
et al., 2011), is not yet mature enough for analysis of ice flow problems. Therefore, we are limited to
deterministic models in which uncertainty in material parameters, boundary conditions, and geometry
are handled in a more heuristic way. Inability to measure and/or control these sources of uncertainty,
as well as the diversity of measurement types, each with its own (often sparse) spatial and temporal
distribution, makes validation an ongoing process that can never truly be completed. Verification of a
deterministic numerical model for a known class of input parameters, on the other hand, is a process that

4.4. VERIFICATION 53

can be completed.

It is useful to distinguish between verification of code and verification of a calculation (Roache, 2002).
The first is concerned with demonstration that all terms, including boundary conditions and source terms,
are implemented correctly and exhibit the designed order of accuracy for the method. It is a check for
consistency between the analysis and the implementation. Verification of a calculation involves the
estimation of uncertainty for a particular problem, usually by demonstrating mesh independence and the
use of a posteriori error estimators (Ainsworth and Oden, 1997). The former can be done using exact
solutions (provided they exercise all terms and options in the code), but exact solutions are generally not
available for the latter.

This section is devoted to code verification and in particular, the design of software so that the model is
readily verifiable. We focus on the method of manufactured solutions (MMS) (Roache, 2002) which has
been shown to be an extremely robust methodology. The method relies on the simple observation that the
correctness of a numerical method for discretizing and solving a nonlinear system

F(u) = b

must be independent of the source term b(x,y,z, t), and in particular, that there is no requirement that b
have physical significance. Therefore, for the purpose of code verification, we need not obtain analytical
solutions with physically realizable source terms. This is fortuitous because such solutions are nearly
impossible to find for complex problems. Instead, MMS chooses a solution u(x,y,z, t), independent of
the domain and even the physics F . There is no need for u to have any similarity to reality, but it should
possess a sufficient number of derivatives for the strong form of the PDE or variational problem F to
be valid. Ideal candidates involve transcendental functions such as tanh and log, shifted or scaled so as
to break any possible symmetries. Once u has been chosen, a compatible forcing term b is found using
analytical methods. This does not involve discretization and can be readily performed with symbolic
algebra systems. With the chosen u and symbolically computed b in hand, we have an analytic solution to
F(u) = b that has no degeneracies and no symmetries, thus exercising all terms in the equations.

At this point, we choose a domain and boundary conditions, and a sequence of discrete approximation
spaces. The discrete problem is solved using the manufactured forcing term b and the discrete solution is
compared to the exact solution in whichever norms the user is interested in. If the numerical approximation
converges at the rate predicted by the analysis, the code has been verified and the process moves on to
verification of calculations and validation. The only requirements MMS imposes on the code is that it be
possible to solve with arbitrary user-provided forcing terms and inhomogeneous boundary conditions, and
to evaluate the error as compared to a user-provided solution (Roache, 2004).

It is argued by Roache (2002) that this methodology constitutes an “engineering proof” to the extent that
the chance of a computer program delivering correct orders of convergence with even one manufactured
solution, whilst possessing implementation errors affecting the quality of solution is vanishingly small.
Indeed, Knupp and Salari (2002) conducted a blind study in which one author sabotaged a previously
verified Navier-Stokes solver (compressible and incompressible, steady and unsteady) developed by the
other. Every introduced error affecting quality of solution was detected by MMS. A pointwise error
degrading the order of a boundary condition at a single corner node a domain is still visible in the global
error and correspondingly degrades the global error. For the purpose of verifying a calculation (in which
the answer is not known), MMS provides confidence in the assertion that if a the code is self-convergent
under grid refinement, then it is converging to the correct solution. In other words, numerical evidence
that a sequence of computational results on successively refined approximation spaces is Cauchy becomes
a convincing argument that the sequence converges to the correct solution of the governing equations, and
even at the rate predicted by the theory.

As an example, we consider large deformation elasticity and implement the weak form in Python using
the SymPy (Certik et al., 2011) symbolic algebra package as

def weak_form(u, du, v, dv):
I = eye(3) # Identity tensor

54 CHAPTER 4. SOFTWARE

F = I - du # Deformation gradient
E = (F.T*F - I)/2 # Green-Lagrange tensor
S = lmbda*E.trace()*I + 2*mu*E # Second Piola-Kirchoff tensor
Pi = F * S # First Piola-Kirchoff tensor
return dv.dot(Pi)

where lmbda and mu are material parameters and a St. Venant-Kirchoff constitutive model has been used
(neo-Hookean and other models are handled simply by changing the definition of S). Further discussion
of finite element methods for large-deformation elasticity can be found in Wriggers (2008) or Bathe
(1996). The homogeneous weak form above is symbolically differentiated to produce a strong form of the
governing equations. A manufactured solution is defined in Python as

def solution(x,y,z, a,b,c):
return Matrix([cos(a*x) * exp(b*y) * z + sin(c*z),

sin(a*x) * tanh(b*y) + x * cosh(c*z),
exp(a*x) * sinh(b*y) + y * log(1+(c*z)**2)])

with free parameters a, b, and c. The strong form of the governing equations is then applied to this exact
solution, with spatial differentiation performed symbolically, and a forcing term is generated. The forcing
term for this model involves more than a thousand transcendental functions, but C code for its evaluation is
automatically generated and does not need to be examined. The same governing equations are discretized
by the C code, the manufactured forcing term is incorporated in the residual, and errors in several norms
are computed once the nonlinear solve has converged. This methodology is implemented for all PDE
examples in Dohp.

We continue with the large-deformation elasticity problem using manufactured solution described above
and solve the problem on a sequence of refined meshes with different orders. Continuous norms of the
discrete errors uh−u are shown in Table 4.3. These norms are estimated using a standard quadrature, as
was used to integrate the manufactured forcing term. The expected convergence rate for a Qk discretization
of this problem is of order k+1 in Lp and of order k for the gradients. The noisiness in the sup norms
are due to the inexact quadrature since neither the exact solution nor the manufactured forcing term can
reasonably be integrated exactly. The highest order cases are also sensitive to iterative solver tolerance
and floating point rounding error, but it is clear in each case that the expected order of accuracy is being
attained. The computed solution on the 43 mesh with Q5 elements is shown in Figure 4.2. We note that
the attained accuracy of this method for ‖∇uh−∇u‖2, which is equivalent to the strain, of 2.59 ·10−5

would require a 1000003 mesh with Q1 elements (1015 nodes) and a 4003 mesh with Q2 elements (half a
billion nodes), but the computation runs in a few seconds on a single core with Q5 elements.

There are some implementation errors that MMS will not detect. Such mistakes do not affect the quality
of the solution, but they may affect the speed at which convergence is achieved. This is especially clear
when one considers the recommended way to write a new PDE code in which implicit methods are used.
The first step is to implement the nonlinear residual. This nonlinear system is solved by matrix-free
Newton-Krylov methods and the solution can be verified using MMS. At this point, the residual will never
be modified again, therefore programming and/or mathematical in pursuit of getting a solution fast will
not affect the quality of the solution that is eventually obtained. If the nonlinear solve converges, the
solution will have whatever accuracy the underlying discretization provides. Of course unpreconditioned
methods are not fast so practical simulation requires further effort, which is typically the most complicated
and error-prone part of an application. This is not tested by MMS, but consistency can be checked in
other ways, such as by comparing to an explicit Jacobian computed using finite differences, by confirming
that application of an “exact preconditioner” results in convergence in one or two or three iterations as
predicted by theory (e.g. Murphy et al., 2000; Ipsen, 2001), or by confirming that a Newton method is
converging quadratically.

Finally, a note on automation. The Python function weak_form contains the governing equations, therefore
it need not be necessary to manually write the same equations in C. Indeed, it would be very little effort to

4.4. VERIFICATION 55

Table 4.3: Convergence rates for the large-deformation elasticity problem with manufactured solution.

‖uh−u‖2 ‖uh−u‖∞
‖∇uh−∇u‖2 ‖∇uh−∇u‖

∞

Mesh # Nodes Error O Error O Error O Error O

Q1 13 8 1.79e+00 — 6.50e-01 — 3.70e+00 — 1.08e+00 —
Q1 23 27 5.49e-01 1.71 3.40e-01 0.93 1.61e+00 1.20 6.92e-01 0.64
Q1 43 125 1.53e-01 1.84 1.26e-01 1.43 8.01e-01 1.01 4.51e-01 0.62
Q1 83 729 3.94e-02 1.96 3.73e-02 1.76 3.98e-01 1.01 2.81e-01 0.68
Q1 163 4913 9.95e-03 1.99 1.01e-02 1.88 1.98e-01 1.01 1.57e-01 0.84
Q1 323 35937 2.49e-03 2.00 2.61e-03 1.95 9.92e-02 1.00 8.32e-02 0.92

Q2 13 27 2.44e-01 — 1.82e-01 — 9.48e-01 — 4.60e-01 —
Q2 23 125 3.71e-02 2.72 4.47e-02 2.03 2.86e-01 1.73 1.54e-01 1.58
Q2 43 729 4.48e-03 3.05 6.23e-03 2.84 6.94e-02 2.04 4.34e-02 1.83
Q2 83 4913 5.60e-04 3.00 9.31e-04 2.74 1.74e-02 2.00 1.29e-02 1.75
Q2 163 35937 7.01e-05 3.00 1.23e-04 2.92 4.34e-03 2.00 3.52e-03 1.87

Q3 13 64 4.14e-02 — 2.71e-02 — 2.90e-01 — 1.63e-01 —
Q3 23 343 2.06e-03 4.33 2.06e-03 3.72 2.39e-02 3.60 1.14e-02 3.84
Q3 43 2197 1.81e-04 3.51 2.06e-04 3.32 4.23e-03 2.50 2.88e-03 1.98
Q3 83 15625 1.22e-05 3.89 1.87e-05 3.46 5.79e-04 2.87 5.84e-04 2.30

Q5 13 216 3.76e-03 — 2.90e-03 — 4.69e-02 — 3.16e-02 —
Q5 23 1331 7.58e-05 5.63 5.92e-05 5.61 1.62e-03 4.86 1.05e-03 4.91
Q5 43 9261 7.33e-07 6.69 6.61e-07 6.48 2.59e-05 5.97 1.76e-05 5.90

Q7 13 512 4.46e-04 — 3.59e-04 — 8.15e-03 — 5.83e-03 —
Q7 23 3375 2.95e-06 7.24 2.95e-06 6.93 8.21e-05 6.63 6.05e-05 6.59
Q7 43 24389 7.65e-09 8.59 1.07e-08 8.11 4.09e-07 7.65 3.95e-07 7.26

Q9 13 1000 5.81e-05 — 5.04e-05 — 1.42e-03 — 1.05e-03 —
Q9 23 6859 6.27e-08 9.86 7.59e-08 9.38 1.63e-06 9.77 1.60e-06 9.36

56 CHAPTER 4. SOFTWARE

Figure 4.2: Solution of the large-deformation nonlinear elasticity problem with manufactured solution on
a Q5 mesh.

automatically generate C code from a weak form written in Python, in much the same spirit as has been
done by the FEniCS project (Logg et al., 2011). For example, it would be possible to use physical models
implemented in the “unified form language” (UFL) (Alnaes et al., 2009), but generate pointwise physics
kernels for Dohp instead of the assembly code used by DOLFIN (Logg and Wells, 2010). UFL is based on
Python and looks very similar to the symbolic weak_form above, but includes specification of the function
space. The FEniCS project considers that to be an advantage because it permits optimizations that involve
mixing the discretization with the physics, such as tabulation of element matrices on the reference element
and mapping them to physical elements by dense matrix-matrix product (Kirby et al., 2005). While such
methods can provide substantial speedup for simple physics on affine elements (DOLFIN only handles
simplicial meshes), the method becomes untenable for more general nonlinear problems on non-affine
meshes, and a quadrature representation must be adopted. As seen by comparing the matrix assembly
performance of Dohp to the structured grid with inlined Q1 discretization in Table 4.2, there is very little
benefit to mixing physics with discretization when using a quadrature representation. Separating physics
from discretization, as Dohp’s interface encourages, has the benefit that element types can be changed at
run-time (skipping possibly time-consuming compilation steps) and that meshes of mixed topology and/or
element order can be handled transparently. Automation is frequently convenient, but it is the author’s
opinion that in order to manage complexity and maintain extensibility, that the automation process must
be as transparent as possible. Furthermore, the C API for which code is to be automatically generated
must be sufficiently clean that a human can easily use it. The ability to “get dirty” and incrementally
explore the entire software stack is important.

The specification of elements can also be automated. The FEniCS project makes it very easy to specify
new elements on simplicial topologies using the formalism of Ciarlet (1978), and implemented in the
Finite Element Automatic Tabulator (FIAT) (Kirby, 2004, 2006). The FIAT implementation could be
extended to handle more general element topologies, but would need non-trivial modification to support
preservation of structure like tensor products. A unification of isogeometric analysis (e.g. NURBS)
and extended finite element basis functions is presented by Benson et al. (2010), with a simple way to
tabulate basis functions for a variety of element types including shells, with complex continuity conditions
such as T-splines (Sederberg et al., 2003; Bazilevs et al., 2010). Once again, this tabulation does not

4.5. TIME INTEGRATION 57

retain structure such as tensor products and thus gives up the algorithmic and performance advantages of
preserving the structure. However, the philosophy of these recent papers appears useful in a specification
capable of preserving structure like tensor products without impacting genericity.

4.5 Time integration

Most problems in glaciology have elliptic constraints that apply at all times. Therefore, semi-discretization
in space results in a system of differential algebraic equations (Hairer and Wanner, 2010) instead of
ordinary differential equations. I converted the implicit methods in PETSc’s TS package to work with
differential algebraic equations, and implemented some recently developed general linear methods from
Butcher (2006); Butcher et al. (2007).

Differential algebraic equations (DAE) are written in implicit form

F(t,x, ẋ) = 0, x(t0) = x0 (4.5.1)

where the nonlinear function F represents the spatial discretization for PDE problems. If the matrix
Fẋ(t) = ∂F/∂ẋ is nonsingular then it is an ODE and can be transformed to the standard explicit form,
although this transformation may not lead to efficient algorithms. For ODE with nontrivial mass matrices
such as arise in FEM, the implicit/DAE interface significantly reduces overhead to prepare the system for
algebraic solvers by having the user assemble the correctly shifted matrix, therefore it is also useful to
solve ODE systems by writing them in the implicit form (4.5.1). Preconditioning is usually necessary for
stiff systems and requires an approximation to the Jacobian

J = Fx+aFẋ

which is the Jacobian of G(x) = F(t,x,z+ax) where G(x) = 0 is the nonlinear system solved internally
by the time integrator. Internally, the DAE integrator approximates ẋ as z+ax for some vector z and
scalar “shift” a. For example, the implicit Euler method uses ẋ= (x−x−)/h which is z =−x−/h and
a = 1/h where x− is the value of the solution at the beginning of the time step and h = ∆t is the time step
size. Other methods have more complicated expressions for ẋ in these implicit systems (e.g. using several
previous steps) and may combine the results of these implicit solves in different ways.

Two important properties for DAE and singularly perturbed ODE with mixed diffusive and transport
phenomena are A-stability which ensures stability for time steps with length independent of parameters
and L-stability which ensures that high-frequency oscillations are rapidly damped (to prevent “ringing” as
seen when, e.g. the trapezoid rule is used for stiff diffusive processes). Additionally, all stages should be
evaluated to some minimum order of accuracy, known as the stage order, to prevent order degredation.
Most conventional methods for stiff systems are either linear multi-step or Runge-Kutta methods. These
classes have certain undesirable properties such as Dahlquist’s second barrier which precludes A-stable
linear multi-step methods of order greater than 2 and that diagonally implicit Runge-Kutta (DIRK)
methods have stage order at most 1. A traditional alternative is to use singly implicit Runge-Kutta (SIRK)
methods, but these place absicassa outside the time step interval which tend to produce poor results in the
presence of bifurcations. Fully implicit Runge-Kutta methods such as the Radau schemes (Hairer and
Wanner, 1999) are highly successful when used with direct solvers, but must solve with all stages coupled
together which increases the dimension of the Krylov space. The fully implicit Lobatto schemes have
attractive stability properties and are self-adjoint which is desirable for adjoint sensitivity analysis (Sandu,
2006; Sandu et al., 2003). There appears to be significant room for algorithmic development using fully
implicit Runge-Kutta methods with parallel iterative solvers.

General linear methods provide access to methods of arbitrary order with A and L-stability while retaining
diagonally implicit structure. One such example is the family of general linear methods with “inherent
Runge-Kutta stability” (Wright, 2002; Butcher, 2006). The methods from this family that are designed
for stiff systems have A- and L-stability as well as stage order equal to classical order. In addition, they

58 CHAPTER 4. SOFTWARE

come with asymptotically correct error estimates for the current method and methods of order one higher.
General linear methods can be written in a tablea similar to Runge-Kutta methods[

Y
Xn+1

]
=

[
A U
B V

][
hẎ
Xn

]
.

where the Nordsieck vector
X = {x1, . . . ,xr}= {x,hẋ,h2ẍ, . . .}

is passed between steps. Because A is lower triangular, the stage values Y = {y1, . . . ,ys} can be computed
sequentially be solving F(tn

i ,yi, ẏi) = 0 with ẏi written in terms of yi using the top block. I implemented
these methods for DAE in the TS component of PETSc. Methods of orders 1 to 5 are available and new
methods can be added by providing the entries of the tableau A U

B V . The error estimators and rescale-and-
modify scheme for changing step size are computed automatically using the methods in Butcher et al.
(2007). An adaptive-order adaptive-step controller is available with a plugin architecture for extending or
using user-provided controllers.

Unfortunately, despite great properties on paper, the tableaus published in Butcher and Podhaisky (2006);
Podhaisky (2006) seem to have rather noisy error estimates and poor monotonicity properties. The great
freedom in optimizing coefficients for these metheds is both a blessing and a curse since the additional
free parameters make the tableaus difficult to optimize. It is likely that more robust tableaus will be
published in the future which will make this implementation more practical. Since all linear multistep and
Runge-Kutta methods are general linear methods, they can be used simply by providing the tableau for
the desired scheme.

For hyperbolic problems such as transport phenomena discretized using a method of lines approach, it is
important for the ordinary differential equation solvers to be Strong Stability Preserving (SSP) (Gottlieb
et al., 2009). The SSP property, when combined with a spatial discretization that is TVD (LeVeque, 2002)
or TVB (e.g. (weighted) essential non-oscillatory, Shu (2003)), ensures that the full discrete method is
also TVD or TVB (Gottlieb et al., 2001). For linear multistep and Runge-Kutta methods, it is known
that implicit methods of order greater than 1 have a time step restriction in order for the SSP property to
be satisfied (Spijker, 1983) and it is conjectured that this holds for general linear methods and that the
maximum coefficient is only twice as large as for explicit methods (Gottlieb et al., 2009), therefore explicit
methods appear to be more practical when SSP methods are required. I implemented a new family of
optimal explicit SSP methods of second, third, and fourth order with various numbers of stages (Ketcheson,
2008). These methods are low-memory in the sense that memory usage is independent of the number of
stages (usually two vectors), but methods with more stages have better effective CFL coefficients allowing
longer stable time steps. These have been extremely practical methods.

Chapter 5

Discretization issues

The flow of ice sheets and especially outlet glaciers like Jakobshavn Isbræ presents several challenges to
mathematical analysis and numerical methods. The “shallow” continuum forumlations traditionally used in
glaciology, as well as the stronger results in mathematical analysis and convergence of numerical methods,
require assumptions that do not hold for more demanding ice flow problems. Weaker assumptions that
remain physically valid for the problems of interest require substantially more technical analysis. This
analysis often takes place on the “purer” side of applied mathematics, and is thus quite far removed from
glaciology. This section surveys the known results on several technical matters and explains how they
relate to problems of interest in glaciology.

5.1 Regularity and approximation

Realistic bathymetry posesses little regularity, thus, at every resolution that could be used for a numerical
model, the slip boundary will be “rough”. If the roughness is smoothed significantly, then bathymetric
features such as the deep channel at Jakobshavn Isbræ will be under-resolved unless an excessively fine
mesh is used. But if a slip boundary is rough on the same scale as the mesh, it becomes critical that
the discretization preserve local conservation across the interface exactly instead of merely up to some
mesh-dependent truncation error.

Recall the non-Newtonian Stokes problem which is the preferred kinematic model for the flow of ice
streams and outlet glaciers,

−∇·(ηDu)+∇p−f = 0 (5.1.1a)

∇·u= 0 (5.1.1b)

with nonlinear viscosity

η(γ) = B(θ, . . .)
(
ε+ γ

) p−2
2 (5.1.2)

where Du= 1
2

(
∇u+(∇u)T

)
is the strain rate, γ(Du) = 1

2 Du :Du is the second invariant, p= 1+ 1
n ≈

4
3

in terms of Glen’s (1955) exponent n, B is a hardness parameter depending on enthalpy θ and perhaps
other variables (e.g. grain size, dust content, damage), and ε is the second invariant of a reference strain
rate that provides regularization to prevent viscosity from becoming infinite.

Common boundary conditions for (5.1.1) include u = 0 at a frozen bed, ηDu− p1 = 0 at the free
surface, and ηDu− p1=−ρwzn at the ice-ocean interface underneath an ice shelf where n is the unit
outward-facing normal. Open boundary conditions are also needed for regional models, but should be
applied in places where the shallow ice approximation is accurate, thus causing the flow to be defined by
local geometry. A final, and much more difficult boundary condition, is slip at the bed. Slip is a Dirichlet

60 CHAPTER 5. DISCRETIZATION ISSUES

condition on the normal component and a nonlinear Robin condition on the tangent components,

u ·n= gmelt(Tu, . . .) (5.1.3a)

T (ηDu− p1) ·n= gslip(Tu, . . .) (5.1.3b)

where T = 1−n⊗n is a projector into the tangent space. Melt rate and basal traction generally depend on
a basal hydrology model, involve spatially-variant parameters, and are coupled because sliding produces
heat at a rate Tu · (ηDu− p1) ·n. The precise form of the sliding relation is a subject of extensive debate,
but is often taken to have the form

gslip(Tu,θ, · · ·) = βm(θ, · · ·) |Tu|m−1 Tu

where m = 1 is Navier slip, m = 1/3 is the popular “Weertman sliding” (Weertman, 1957) and m→ 0
is the Coulomb limit. See Iverson et al. (1998) for empirical support of the Coulomb limit and Schoof
(2006a,b, 2007) for analysis of the associated variational inequalities. Some continuum models for basal
hydrology are discussed in Flowers and Clarke (2002a,b); Johnson and Fastook (2002), but basal processes
are poorly understood and outside the scope of the present work, see Clarke (2004) for a review.

Classical solutions to the linear constant-coefficient Stokes problem with frictional slip boundary con-
ditions do not exist in general. For example, in addition to C2 continuity on Dirichlet boundaries, Saito
(2004) required much higher C4 continuity for slip surfaces; see also the analysis by Fujita (2002). Since
the boundaries of interest for our problems are merely Lipschitz and change type abruptly, we cannot use
the strong form (5.1.1). To discuss regularity issues at boundaries and our discretization, we need the
weak form which is formally obtained by introducing test functions v,q and integrating by parts. Given a
Lipschitz domain Ω⊂ R3 and open subsets Γs and Γb of the boundary ∂Ω which we identify as “surface”
and “non-frozen bed”, the problem is to find (u, p) ∈W 1,p

D (Ω)×L2(Ω) such that∫
Ω

Dv :η1 :Du−q∇·u− p∇·v−v ·f −
∫

Γb

v · (ηDu− p1) ·n= 0 (5.1.4)

for all (v,q) ∈W 1,p
0 (Ω)×L2(Ω). Readers unfamiliar with Sobolev spaces may think of W 1,p simply

as the space with sufficiently well-behaved first derivatives. The subscripts in W 1,q
D ,W 1,q

0 indicate that
inhomogeneous and homogenous Dirichlet boundary conditions respectively are built into the space. That
is, all components of velocity are specified in regions where the bed is frozen and normal components are
specified at places where sliding may take place. The implementation of Dirichlet conditions is somewhat
different from its definition here and will be discussed later. For well-posedness, it remains to specify
(ηDu− p1) ·n on Γ as an algebraic function g(u) to enforce stress conditions on tangent components at
slip surfaces and on all components at free surfaces in which case g is independent of u. Provided the
surface Γs is non-empty, the pressure is uniquely determined so there is no constant null space to remove,
c.f.Section 2.4.2. Although it is not used directly in our work, (5.1.4) corresponds to the minimization
of the viscous energy

∫
Ω

1
2 Du : η1 : Du over the subspace where ∇·u = 0. In particular, it is the first

variation of the Lagrangian obtained when pressure p is introduced as a Lagrange multiplier to enforce
the constraint. Boundedness of the Lagrangian requires coercivity of the viscous energy term which
follows from Korn’s inequality1 which controls ‖u‖W 1,p using the symmetric gradient ‖Du‖Lp and an
inf-sup condition to control pressure using divergence of velocity (Evans, 1998; Brenner and Scott, 2008).
These conditions are easily satisfied by the continuum spaces, but they place important restrictions on the
discrete spaces, an issue which we revisit in Section 5.1.2.

5.1.1 Singularities in the continuum formulation

The transition from no-slip to slip boundary conditions is exactly analogous to mode II and III fracture in
nonlinear elasticity theory, transition from no-slip to an unconstrained stress condition (e.g. floating) is

1See Kondrat’ev and Oleinik (1988) for Korn’s inequality in Lp. I am not aware of a priori error estimates for finite element
methods that apply for solutions in W 1,p, but expect that similar results to the p= 2 case hold.

5.1. REGULARITY AND APPROXIMATION 61

the mode I case. In the case of linear rheolgy, this is the classical inverse square root stress singularity
σ ∼ r−1/2 in fracture mechanics (Anderson, 2005), where r is the distance from the transition, see
Erdogan and Biricikoglu (1973) for two bonded materials. For nonlinear rheology, the same energy
estimates (Rice, 1968) apply and the singularity becomes |σ| ∼ r(1−p)/p and |Du| ∼ r−1/p as shown by
Rice and Rosengren (1968); Hutchinson (1968). These functions are all integrable and the singularity
does not pose a fundamental regularity problem for the continuum equations, but the velocity in this latter
case behaves as |u| ∼ r(p−1)/p which is a fourth root for the typical p= 4/3, thus difficult to approximate
with a polynomial basis. Note that in reality, there is not a true singularity because of friction and plastic
failure in the immediate vicinity of the transition, but micro-scale physical processes are fundamentally
different, therefore the meso-scale asymptotics are most relevant when designing an approximation space.

The singularity is stronger for the heat production term σ : Du, of order 1/r regardless of rheology.
Enthalpy cannot have infinite slopes because there is always physical diffusion, but the approximation
problem is more difficult because of the need to represent a “spike” instead of a “kink”. The most
important case for glaciology is mixed mode II and III which occurs at the margins of ice streams, the
thermal structure of which was investigated in Jacobson and Raymond (1998); Raymond (2000).

Reentrant corners in the ice domain caused by incompletely resolved bathymetry are the source of the
other important singularity. For second order elliptic equations, solutions around reentrant corners of
angle ω > π have singularities of order rπ/ω sin πφ

ω
where (r,φ),r < 0,0 < φ < ω are polar coordinates

centered at the corner, see Grisvard (1985); Nazarov and Plamenevskiı̆ (1994), also Bacuta et al. (2003)
which has new sharp finite element convergence estimates. In the strongest case ω→ 2π, this singularity
becomes r1/2 which is the same as a crack in linear media. Nonlinear rheology is analogous and indeed,
the singularity for flow past a reentrant corner is never worse than for a transition from no-slip to free slip.

Although not considered here, viscoelastic flows have the further difficulty that the Weissenberg number
blows up at viscous stress singularities, see Lipscomb et al. (1987); Davies (1988); Hinch (1993); Owens
and Phillips (2002).

5.1.2 Approximation spaces

The Banach space W 1,p in (5.1.4) has the correct regularity for investigating the singularities discussed
in the last section, but many approximation results are not known in this setting, therefore we will fall
back to the smaller space H1 when necessary. Approximation spaces in the present work will always be
piecewise polynomial so this is not as egregious as it would be with non-polynomial bases. Ainsworth and
Kay (1999) have proven an interesting result for a class of problems including the p-Laplacian (a useful
model problem for power-law fluids): in the presence of reentrant corner singularities, p-version finite
element methods attain twice the order of accuracy of h-version methods that use any fixed order p. I
believe that the rational bases used in isogeometric analysis (Hughes et al., 2005; Cottrell et al., 2009) and
physics-adapted bases in extended finite element methods (Belytschko et al., 2009; Mohammadi, 2008;
Elguedj et al., 2006; Jiang et al., 2011) are very promising and should be explored for treating several
boundary singularities in the ice flow problem.

Finite element methods choose a discrete subspace VD,Q of the continuous trial spaceW 1,p
D ×L2 from

(5.1.4), discrete spaces for the test functions, and a way of approximately2 evaluating integrals. The
present work considers only Galerkin methods for which case the test and trial spaces are equivalent except
for inhomogenous boundary values. Galerkin methods for elliptic problems come with a property called
Galerkin orthogonality which asserts that the error in a discrete approximation is within a constant of the
minimum error within the discrete space. In other words, the PDE is solved to within a constant of the
pure approximation problem for the exact solution. This is a powerful property and not generally available
for nonsymmetric problems or non-Galerkin methods. Error estimators, adaptivity, and uncertainty

2Inexact quadrature is a “variational crime” (Brenner and Scott, 2008), but nonlinear rheology produces terms that cannot
reasonably be integrated exactly.

62 CHAPTER 5. DISCRETIZATION ISSUES

quantification for both smooth and non-smooth problems are also most mature in the Galerkin context,
see Ainsworth and Oden (1997); Matthies and Keese (2005); Babuška et al. (2005); Barth et al. (2011).

We consider two classes of finite element space defined on hexahedral meshes. The first is spanned by
a tensor product of 1D polynomials of degree k ≥ 1 that have been pushed forward from the reference
cube [0,1]3 to the physical element. This has a variant Qk that is continuous between elements and a
discontinuous variant Qdisc

k . The other is a Pdisc
k which is spanned by polynomials of maximum degree k

and is discontinuous between elements.

Stability of the Galerkin approximation depends on discrete versions of Korn’s inequality and the inf-sup
condition. Korn’s inequality bounds the W 1,p norm in terms of the Lp norm of symmetric gradient and is
easily satisfied by C0 vector-valued spaces such as Qk. The inf-sup condition is more troublesome. Given
a velocity space V and pressure space Q , the inf-sup constant

β = inf
p∈Q

sup
u∈V

∫
p∇·u
‖p‖‖u‖

(5.1.5)

is a measure of how well the velocity space spans the pressure space. If β is bounded below by a positive
constant as the mesh is refined, then the finite element method will converge at an optimal rate. More
precisely, given discrete solutions (uh, ph) ∈V ×Q with inf-sup constant β and exact solution (u, p), the
velocity and pressure errors satisfy the a priori estimate (Brezzi and Fortin, 1991)

η‖u−uh‖H1 ≤C
[

η

β
inf
v∈V
‖u−v‖H1 + inf

q∈Q
‖p−q‖L2

]
(5.1.6a)

‖p− ph‖L2 ≤
C
β

[
η

β
inf
v∈V
‖u−v‖H1 + inf

q∈Q
‖p−q‖L2

]
. (5.1.6b)

The H1 norm is used here because I am not aware of an analogous result in W 1,p. This shows that the
error in the discrete solution is bounded in terms of how well the true solution can be represented in the
discrete space. For problems posed in anisotropic domains or containing thin boundary layers, the true
solution is most efficiently represented by highly anisotropic meshes, therefore we desire uniform inf-sup
stability with respect to aspect ratio.

For many choices of V ×Q , such as using the same basis functions, β is zero meaning there is a discrete
pressure mode that is untested by the velocity space, thus the Stokes system is singular. Other choices,
such as Q1−Pdisc

0 have positive values of β on most grids, but β decays under mesh refinement so spurious
pressure modes appear and convergence rates suffer (Brenner and Scott, 2008; Chapelle and Bathe, 1993;
Babuška and Narasimhan, 1997). It is important to recognize that if the pressure space contains the
piecewise constant functions, the constraint equation will force the discrete velocity field u to be exactly
divergence-free when integrated over an element e,∫

e
∇·u=

∫
∂e
u ·n.

This local conservation property is important for free surface flows, density-driven flows, and for long
time integration. Note that although it is possible to solve incompressible flow problems by introducing
stabilization (e.g. residual-based (Hughes et al., 1986) or polynomial projection (Dohrmann and Bochev,
2004)), these formulations sacrifice local conservation and perform poorly on problems with sharp
structure.

In the following, let d ∈ {2,3} be the number of spatial dimensions. A particularly useful and robust
element pair is Qk−Pdisc

k−1 where k ≥ 2, for which local conservation holds and the inf-sup constant is
uniformly bounded with respect to mesh resolution and independent of the polynomial degree (Bernardi
and Maday, 1999). This result also holds for non-affine hp-adaptive meshes under modest adaptivity
assumptions (Schieweck, 2008), see also Matthies and Tobiska (2002). For smooth solutions, the Qk−Pdisc

k−1
element produces velocity and pressure errors of order k in H1 and L2 respectively, which is optimal.

5.2. IMPLEMENTATION OF BOUNDARY CONDITIONS 63

Unfortunately, the inf-sup constant β degrades as O(ε1/2) where ε > 0 is the aspect ratio of the mesh.
While this is acceptable for some fluid dynamics problems, it is unusable for those geophysical flows in
which extreme aspect ratio is inherent in the problem, as well as for wall-resolved large eddy simulation
where boundary layer elements have aspect ratio on the order of 10−6. An alternative is Qk−Qdisc

k−2 which
is locally conservative and has uniform inf-sup stability independent of aspect ratio (Stenberg and Suri,
1996; Schötzau et al., 1998), albeit with O(k

1−d
2) dependence on polynomial degree (Maday et al., 1992).

On affine meshes with corners and/or hanging nodes, this k-dependence is sharp in 2D (Schötzau et al.,
1999), but degrades to k−3/2 in 3D (Toselli and Schwab, 2003). We are not aware of an analogous result
for non-affine meshes. This element is more “squishy” inside elements than with Pdisc

k−1 pressure, and has
suboptimal order of accuracy k−1 in H1 for velocity and in L2 for pressure due to poor representation of
the pressure space exhibited in the rightmost terms in (5.1.6).

For high-aspect ratio meshes around corners, the uniform inf-sup stability of Qk−Qdisc
k−2 for edge-refined

meshes is lost and ε1/2 dependence appears (Schötzau et al., 1998). In two dimensions, Ainsworth and
Coggins (2000) propose ways to improve inf-sup stability for edge and corner refinement. In the first
case, if Qk−Pdisc

k−1 is augmented by increasing the polynomial degree of the velocity in the direction
tangent to the stretched edge element to k+1, uniform inf-sup stability is recovered. For corners, the ε1/2

dependence is due to a single pressure mode which is also critical for representing the solution near the
corner, therefore the velocity space must once again be augmented. A single velocity mode that stabilizes
the problematic pressure mode is identified by Ainsworth and Coggins (2000), thus achieving uniform
inf-sup stability independent of aspect ratio and polynomial degree. Unfortunately, this mode is only
defined for affine corner macroelements and is thus difficult to use in practice. The brute-force method of
simply raising the polynomial degree with the aspect ratio, k ∼ ε−1/2, improves the stability to β∼ ε1/4

(or even to β∼ (1+ log1/2 k)−1 min(1,k
√

ε) if the velocity space is allowed to grow slightly faster than
the pressure space, though this result is less practical). To our knowledge, this analysis has not been
extended to three dimensions, but remains the best known result for highly anisotropic meshes.

“Rotated” non-conforming elements were proposed in Rannacher and Turek (1992) that have uniform
stability on affine meshes (Becker and Rannacher, 1994). These methods are amenable to very efficient
coupled multigrid solvers (Rannacher, 2000). Unfortunately, these elements do not satisfy a discrete Korn’s
inequality and thus need complex edge stabilization techniques (Brenner, 2004; Turek and Ouazzi, 2007).
This stabilization impacts sparsity and makes the multigrid solution process more complicated (Turek et al.,
2002; Ouazzi and Turek, 2006). Note that stabilization is not required if one uses the “vector Laplacian”
formulation for viscous stresses instead of the proper formulation in terms of symmetric gradient. While
it is inexpensive and does not require stabilization, the vector Laplacian formulation cannot be used for
variable viscosity and violates objectivity when used with certain boundary conditions (Limache et al.,
2008).

5.2 Implementation of boundary conditions

5.2.1 Dirichlet boundary conditions

In the continuum context, Dirichlet boundary conditions are built into the approximation space and thus do
not explicitly appear in the weak form. There are many ways to implement Dirichlet boundary conditions
in the discrete context including removal from the ansatz space, penalties, “lifting” the known part to the
right hand side for the linear problem, zeroing rows of the Jacobian, and zeroing both rows and columns
by suitable evaluation of the residual. Most of these methods perform similarly for simple problems and
simple preconditioners, but have serious deficiencies for more difficult problems and sophisticated solvers.
When possible (e.g. the Dirichlet part of the domain is not itself part of the solution such as occurs with a
frozen bed or contact problem), removal of Dirichlet unknowns is a robust solution, but it introduces some
complexity in managing vectors residing in the ansatz space versus vectors residing in the closure (used
for output and visualization) and prevents direct addressing of neighbors in structured grid computation.

64 CHAPTER 5. DISCRETIZATION ISSUES

Removal of Dirichlet degrees of freedom is the standard way to enforce Dirichlet conditions in Dohp, the
function space provides access to the state as part of a homogeneous or inhomogeneous space. When
removal is not practical, other approaches requiring user involvement must be used.

Penalties are easy to implement, but a penalty parameter must be chosen which contributes to ill-
conditioning which reduces the accuracy of the solution (ability to converge to very high tolerance),
can contaminate Schur complements, requires the Krylov method to work in the preconditioned norm
(usually means left preconditioning instead of right), and must always be paired with a preconditioner that
corrects the contribution from the penalty. “Lifting” can be performed directly on the linear system and is
performed transparently using PETSc’s PCRedistribute, but the method does not compose well with
field-split and hierarchical preconditioners, and the sparse matrix manipulations require extra memory
and time. Simply replacing rows of the Jacobian matrix with rows of the identity is easy to perform
independent of the element assembly loop. Unfortunately, it destroys symmetry and pollutes the spectrum
of the operator which has very problem-dependent effects on the iteration count.

Zeroing both the rows and columns corresponding to Dirichlet degrees of freedom is the best alternative
when the degrees of freedom are not eliminated, but there are several implementation details to consider.
Assembling into the matrix without observing boundary conditions and zeroing afterward is not efficient
with sparse matrix representations since columns are difficult to address in a compressed row format (and
rows are difficult to address for compressed column formats). A better approach is to discard contributions
to those rows and columns during insertion of the element stiffness matrix and then simply place the
diagonal entry afterward. This requires a compatible residual evaluation which we now consider.

Let VD be a discrete ansatz space with inhomogeneous Dirichlet boundary conditions implicitly built
in, V0 be the corresponding space with homogeneous conditions, VΓ be the trace space on the Dirichlet
boundary, and V = V0×VΓ the space of all functions in the finite element space defined on the closure
of the domain. We define three projectors on V , R0 projects to the V0 subspace of V with zero values on
the boundary VΓ, RD projects to the affine subspace VD, and RΓ projects to the trace space VΓ with zero
in the interior. We can now write the discrete residual F in terms of the “interior” residual f that does not
recognize boundary conditions as

F(u) = R0 f (RDu)+αRΓ(u−RD0). (5.2.1)

The value of the possibly spatially varying scaling factor α 6= 0 does not affect the correctness of the
formulation, but weighting it to be of similar magnitude to nearby diagonal entries in the matrix (e.g.
by using local viscosity and the mesh size) is preferred to improve the conditioning of the linear system
including boundary conditions and more importantly when geometric multigrid is used with rediscretized
(non-Galerkin) coarse level operators. The Jacobian of (5.2.1) isolates the Dirichlet degrees of freedom
from the rest of the system. The implementation of (5.2.1) and its derivative is straightforward, local
element residuals and Jacobians are evaluated with correct Dirichlet values imposed on the state u, the
result is inserted with contributions to Dirichlet nodes discarded. Then a loop over the boundary places
the α-scaled difference from the correct boundary values into the residual vector and inserts α on the
diagonal of the Jacobian.

5.2.2 Slip

Slip boundary conditions are a combination of Dirichlet on the normal component and (usually nonlinear)
Robin on the tangent component. When the slip surface is curved, there are multiple ways to define
the normal direction. Geometric averages such as those advocated by Walkley et al. (2004) can be very
accurate and appear to be preferable for problems with surface tension in which conservation is not
essential. When exact conservation is critical, there is no choice but to use “conservative normals” (Lynch
and Gray, 1980). Conservative normals are defined at an arbitrary node (or mode) i in which the basis
function φi has support on the boundary Γ by

ni =

∫
Γ

φin

|
∫

Γ
φin|

. (5.2.2)

5.2. IMPLEMENTATION OF BOUNDARY CONDITIONS 65

If the velocity field is constrained so that ui ·ni = 0 for a node i with support on the boundary, then node
i will contribute zero flux through the boundary. We enforce this condition for all boundary nodes so
the total flux is also zero across the boundary:

∫
Γ
u ·n = 0. Note that we do not in general have that∫

f u ·n= 0 for all mesh faces f for the same reason that continuous Galerkin methods are not locally
conservative. However, a weaker local conservation statement similar to that in Hughes et al. (2000) still
holds.

There is a technical difficulty observed by Walkley et al. (2004) when using conservative normals with
inf-sup stable spaces. In particular, the velocity space must be at least quadratic for stability reasons
and the corner basis functions of P2 triangles (appearing on the surface of a tetrahedral mesh) have the
property that ∫

Γ

φi = 0.

This means that the normal need not be constrained on any flat element face (but having no constraint
admits non-physical recirculation within elements) and that for isoparametrically mapped elements with
small face curvature, the definition of the normal becomes unstable due to near cancellation and can flip
direction as the surface evolves. This problem does not occur for non-deformed quadrilaterals (on the
surface of a hexahedral mesh), but may arise for sufficiently deformed elements. The extra constraint on
element quality is inconvenient for moving mesh simulations and for meshing complex structures, but
it is a limitation that we accept in the present work. An interesting alternative is to eschew Lagrange
interpolants in favor of non-negative bases such as Bernstein polynomials or more generally, the spline
bases used in isogeometric analysis (Cottrell et al., 2009); see Akkerman et al. (2011) for recent results
with free surface flows.

When implementing the normal constraint in slip boundary conditions, it is not practical to remove the
normal component from the ansatz space so we prefer to leave them in as described in Section 5.2.1. To
enforce Dirichlet conditions on the normal component, we rotate coordinates in the global vector so that
the normal component is isolated. The rotation is undone at the element level so that local operations
need not be aware that the solution vector contains rotated blocks. This rotation affects the construction of
coarse level spaces in multigrid and domain decomposition methods. The ML (Gee et al., 2006) algebraic
multigrid package allows the user to specify low-energy modes to be represented in the coarse space.
These modes should respect the change of basis so that their energies remain low. The impact on domain
decomposition methods such as FETI-DP is more delicate, see Klawonn and Rheinbach (2007b); Klawonn
and Widlund (2006); Dohrmann and Widlund (2010) for details on the construction of coarse spaces.

While use of conservative normals provides exact conservation across the interface, there is no guarantee
that it will preserve realistic steady states, particularly for free surface flows where the hydrostatic
contribution to pressure cannot be removed. Indeed, with a smooth curved boundary and a level surface,
the momentum residual will not point in the same direction as the conservative normal. The tangent
component of the momentum residual is a spurious tangent force that causes non-physical recirculation
within the fluid domain that can not be prevented simply by adding artificial friction to the slip surface.
This issue is addressed in Behr (2004) which we follow below. Recall the boundary integral appearing in
the weak form of the Stokes problem (5.1.4)

−
∫

Γ

v · (ηDu− p1) ·n (5.2.3)

where well-posedness of the continuous weak form requires specifying the stress (ηDu− p1) ·n as an
algebraic function of u. We are only concerned with the tangential part of the stress since the normal
components have Dirichlet conditions imposed. The approach of Behr (2004) integrates (5.2.3) “as is”,
without applying any boundary condition at all. This has the effect of extending the PDE to include
the boundary. It is completely invalid for the continuum problem, resulting in non-uniqueness since
the solution to the same PDE on any extended domain with any applied boundary conditions is also a
solution on the initial domain, but turns out to be valid in the discrete context. The idea was introduced
in the context of open boundary conditions for natural convection in Papanastasiou et al. (1992) and

66 CHAPTER 5. DISCRETIZATION ISSUES

later refined in the restricted context of outflow boundary conditions for advection-diffusion by Griffiths
(1997) and Renardy (1997). In particular, Griffiths (1997) showed that the boundary condition produces
O((h+ 1/Pe)p+1) errors in L∞ for mesh size h, Peclet number Pe, and finite elements of polynomial
degree p, a result distinctly better than the O(hp+1 +1/Pe) obtained for Neumann outflow conditions.

Chapter 6

Steady-state viscous heat transport at Jakobshavn
Isbræ

Jakobshavn Isbræ is representative of many similar outlet glaciers which control the response of the
Greenland and Antarctic ice sheets to changing climate. Understanding the effect of changing boundary
conditions, especially ocean conditions near the grounding line and subglacial processes influenced by
surface melt, is critical for predictive modeling of ice sheets. Models that do not support polythermal ice
cannot describe the refreezing process and are thus thermodynamically inconsistent. Additionally, the
viscosity model cannot be dependent on moisture content, and will thus appear too viscous in regions
where moisture is present. At Jakobshavn Isbræ, the stress and strain rate is sufficiently high to melt a
thick layer near the bed (Funk et al., 1994), then in the last few kilometers, the ice rises several hundred
meters to the grounding line. The pressure change associated with that rise causes an increase in the
pressure melting temperature of about 0.4 ◦C, leaving the ice supercooled. This refreezing of internal
moisture may cause healing of ice that was damaged by the very high strain rates encountered in the
region. Along with the supercooled ice, basal water is also becoming supercooled as it flows up the incline,
which may lead to refreezing at the bed, sealing basal cracks.

This process involving polythermal ice and basal hydrology suggests a possible explanation for the
seasonal calving cycle at Jakobshavn. From observations over the past few years (Joughin et al., 2008;
Amundson et al., 2008), there is no calving until late February or March when rapid calving begins. This
is long before surface temperatures are above freezing, and the calving stops abruptly in August, before
surface melt has ceased. Sea ice breaking up offers a possible mechanism for the rapid breakup observed
in early spring (Joughin et al., 2008; Amundson et al., 2008, 2010), but does not explain why calving
ceases in late summer, before sea ice arrives and while air temperature is still quite warm. I propose that
increased surface melt leads to more supercooled flow up the bed near the incline, thus more effectively
sealing basal cracking and healing damaged ice. The presence of frozen rocks on the top of inverted
icebergs during our 2008 field campaign supports the hypothesis that significant refreezing occurs at the
bed. Although this hypothesis is not discussed further in the present work, a model capable of testing
this hypothesis would require a polythermal ice flow model and a basal hydrology model. The former is
considered in more detail.

Funk et al. (1994) provided an early model of polythermal ice at Jakobshavn Isbræ. This was a 2D
flowline model using the shallow ice approximation for momentum balance and assuming steady state
flow conditions, but with high vertical resolution and explicitly tracking the cold-temperate interface (CTS)
which is assumed to be a single-valued function of horizontal position, as in Hutter (1982); Greve (1997).
More recent work with polythermal ice has used an enthalpy method to avoid the need to explicitly track
the interface (e.g. Aschwanden and Blatter, 2009; Aschwanden et al., 2011) and includes more complete
momentum balance than the shallow ice approximation. Enthalpy-based methods are well-established for
heat transfer problems with phase change (e.g. Shamsundar and Sparrow, 1975; White, 1982) and have
been used for geophysical problems such as magma dynamics (Katz, 2008) which is has very similar form
to polythermal ice. Such methods are simpler than explicitly tracking the CTS because only a single field

68 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

is needed and no jump conditions need to be evaluated inside the domain. Our formulation, explained in
Section 6.1 is distinct in that it tracks total energy density instead of enthalpy, thus allowing a system that
is conservative due to its geometric structure, thus making conservation more feasible to enforce up to
rounding error (instead of truncation error) in numerical methods.

For predictive modeling, we need to determine a thermal field that is in general, non-equilibrium (informed
by reconstructed climate and borehole measurements) and compatible with current flow conditions, such
that forward modeling does not involve an initial non-physical transient. This problem of determining a
compatible thermal field is coupled to that of determining basal boundary conditions. These problems
have not yet been solved together, but more principled inverse methods have been applied to the latter
problem. Bayesian inferrence is an especially elegant approach to inverse problems in glaciology, but
unfortunately, the usual formulation (e.g. Tarantola, 2005) involves dense matrices which prevent the
use of scalable algorithms. Consequently, use of these techniques (Gudmundsson and Raymond, 2008;
Raymond and Gudmundsson, 2009), while offering theoretical insight, could not be applied to full-scale
problems. An alternative approach is the use of deterministic inversion methods initially developed for
optimal control problems (Büskens and Maurer, 2000) for which there are efficient, scalable solution
algorithms (Akçelik et al., 2006). MacAyeal (1992, 1993) introduced adjoint-based methods for parameter
inversion to glaciology, and more recent work (Johnson et al., 2004; Morlighem et al., 2010) have scaled
the methods up to more complete continuum models and larger problem sizes. Related methods have been
used by Heimbach and Bugnion (2009) to estimate the sensitivity of total ice volume to uncertain model
inputs (basal, surface, and initial conditions).

6.1 Formulation and methods

We consider the problem of computing a steady-state energy (in the form of temperature, moisture,
and kinetic energy) field coupled to a Stokes problem with rheology depending on strain rate, pressure,
temperature, and melt fraction. This problem is most important as part of inversion for a temperature field
that is compatible with the observed geometry, flow field, borehole temperature measurements, and any
other field observations. Time-stepping a transient model to steady state is extremely expensive, therefore
it will never be feasible as part of the functional to be minimized by an optimization algorithm. The
implicit method used for the steady-state prbolem can also be used to solve the transient system with
time steps of arbitrary length, with no CFL stability limitation. The transient system produces algebraic
systems that are somewhat easier to solve numerically.

6.1.1 Problem description

We choose a formulation for polythermal ice that is unconventional in glaciology, but is similar to that
used for compressible gas dynamics and other hyperbolic and viscous conservation laws (Liu, 2000;
Toro, 2009; LeVeque, 2002). Instead of writing evolution equations for primitive (directly observable)
quantities such as velocity or temperature, we write evolution equations only for conserved quantities
such as total momentum and energy. When integrated over a reference cell, this formulation leads to
an exact conservation statement in terms of integrals through cell faces. If a discretization containing
the piecewise constants is used, the amount of each conserved quantity will be written using numerical
evaluation of these integrals, with an equal amount flowing out of one cell and into another. This leads to a
discretization that is locally conservative for topological reasons, independent of accuracy or constitutive
relations. The fluxes are identified with physical processes such as thermal diffusion or viscosity, for
which we provide constitutive relations. Constitutive relations are usually written in terms of primitive
variables, so we must solve an equation of state to determine the primitive variables from the conserved
quantities. Any equation of state can be used, provided that the primitive variables are a single-valued
function of the conserved variables. This is typically the case, but would not be if, for example, the
ice/melt mixture was not assumed to be in local thermodynamic equilibrium. Extending the present model

6.1. FORMULATION AND METHODS 69

to avoid the assumption of local thermodynamic equilibrium would require additional state variables (e.g.
independent ice momentum and melt momentum), such that the primitive variables once again became a
well-defined function of the state variables. As usual in the study of conservation laws, our exposition
begins by stating the conservative structure of the equations to be solved, then identifying the physical
meaning of the fluxes, and finally “closing” the system by stating constitutive relations and an equation of
state.

Given a Lipschitz domain Ω with surface Γs and time interval (0,τ), the strong form is to find total
momentum, pressure, and total energy density (ρu, p,E) ∈W 1,p×L2×H1 such that

(ρu)t +∇·(ρu⊗u−ηDui + p1)−ρg = 0 (6.1.1a)

ρt +∇·ρu= 0 (6.1.1b)

Et +∇·
(
(E + p)u− kT ∇T −L(1−ω)

ρi

ρ
κω∇ω

)
−ηDui :Dui−ρu ·g = 0 (6.1.1c)

on Ω⊗ (0,τ), with Dirichlet flow boundary conditions except at the free surface, and all Dirichlet
boundary conditions for energy E. These equations represent conservation of momentum, mass, and
energy respectively. Note that ρt appears in (6.1.1b), but ρ is not an explicit variable and only depends on
pressure when the melt fraction is positive, therefore this system is still differential algebraic. The energy
equation consists of a transport term, thermal diffusion, moisture diffusion, and heat production due to
strain heating. We switch immediately to the steady-state form of (6.1.1) in which (ρu)t , ρt , and Et are all
zero. Constitutive relations are needed for total density ρ (kgm−1), ice velocity ui (ms−1), temperature
T (K), volumetric moisture fraction (porosity) ω (nondimensional), and viscosity η (Pas = kgm−1 s−1).
In general, each constitutive relation is a function of all field variables. The thermal conductivity kT

(Jm−1 K−1 s−1) and hydraulic diffusivity κω (kgms−1) are taken to be constant because experimental data
are sparse, but this assumption is in no way critical.

The constitutive relations for temperature and moisture fraction are usually defined piecewise. It is
preferable for the convergence of Newton methods (c.f. Gropp et al., 2000a; Kelley, 1995) to have a
discretization with C1 continuity and it is simpler for manufactured solutions if the constitutive relation
has a global (i.e. not piecewise) definition in terms of analytic functions. To achieve this, we decompose
the function S(x) = x into two globally smooth parts

S−
δ
(x) =

x
2
− x

2
erf

x√
2δ
− δ√

2π
exp
−x2

2δ2

S+
δ
(x) =

x
2
+

x
2

erf
x√
2δ

+
δ√
2π

exp
−x2

2δ2

(6.1.2)

which satisfy S−
δ
(x)< 0, S+

δ
(x)> 0 and S−

δ
(x)+S+

δ
(x) = x. These functions arise from integrating the

error function with standard deviation δ. Taking δ→ 0 recovers the piecewise linear decomposition
S−0 (x) = min(x,0), S+

0 (x) = max(x,0). In applications where a single global function is not important,
the decomposition S± could be defined using a spline which would reduce the high computational cost
of evaluating erf. This decomposition will be used to separate internal energy into thermal and melt
contributions.

For convenience in defining constitutive relations, we introduce specific internal energy e (Jkg−1) which
is related to total and kinetic energy through

E = ρe+
1
2
(1−ω)ρi |ui|2 +

1
2

ωρw |uw|2

which we approximate as

E = ρe+
1

2ρ
|ρu|2 . (6.1.3)

This approximation may be violated, for example, at moderate porosity when the velocity of the melt
fraction is very high compared to the bulk velocity, such as in an actively draining moulin. In such

70 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

circumstances, it is likely unavoidable to add additional variables for water momentum and energy.
Consistent with exact incompressibility, the internal energy is independent of pressure even though
observable quantities like temperature and moisture fraction are dependent on pressure. Removing this
assumption would produce acoustic waves and a conservative formulation would require that density
be an explicit degree of freedom. When combined with the closure for ρ(p,e), shown below, (6.1.3)
requires solving an implicit equation involving the decomposition S±. This implicit equation can always
be reduced to one dimension and can be solved explicitly for some definitions of S±. For some purposes,
it is acceptable to simply take ρ≈ ρi. The convective contributions to momentum balance ρu⊗u and
kinetic energy 1

2ρ
|ρu|2 have vanishing influence in glaciology, but are easy to accommodate so we keep

them for completeness. An alternative would be to discretize using ρ instead of p as the independent
variable, but near incompressibility and the variation due to moisture content causes the resulting system
to be extremely ill-conditioned.

The closures for (6.1.1) are

ρ(p,e) =
(
1−ω(p,e)

)
ρi +ω(p,e)ρw (6.1.4a)

ui(u, p,e) = u+ρ(p,e)−1
κω∇ω(p,e) (6.1.4b)

T (p,e) = T0 +
em(p)+S−

δ

(
e− em(p)

)
ci

(6.1.4c)

ω(p,e) =
ρiS+

δ

(
e− em(p)

)
ρwL− (ρw−ρi)S+

δ

(
e− em(p)

) (6.1.4d)

η(γ, p,e) = B(p,e)
(

ε
2 +

γ

γ0

) p−2
2

(6.1.4e)

with second invariant γ = 1
2 Du :Du and the additional constitutive relations

Tm(p) = T3−βCC p

em(p) = ci
(
Tm(p)−T0

)
T ∗(p,e) = T (p,e)−Tm(p)+T3

B(p,E) = B0 exp
(

Q− pV
nRT ∗(p,e)

− Q
nRT0

)(
1+Bωω(p,E)

)−1/n

with physical constants given in Table 6.1. Since dimensional units are used here unlike in earlier sections,
the strain rate regularization ε is now a fraction of γ0 which is the second invariant of a reference strain rate.
The Arrhenius relation is normalized to zero pressure and a reference temperature T0. This formulation is
not conventional in glaciology, but permits more intuitive understanding of parameters because they are
no longer sensitive to the power law exponent p and large exponential terms.

The definitions of the moisture flux in (6.1.1c) and ice velocity ui require further explanation. The total
momentum can be defined in terms of constituent momenta as

ρu= (1−ω)ρiui +ωρwuw

= (1−ω)ρiui +ωρwui +ωρw(uw−ui)

= ρui +ωρw(uw−ui).

(6.1.5)

The second term is the momentum of the moisture content in the reference frame of the ice. The mass flux
of the moisture is −κω∇ω which is also the momentum density. That is, the integral of −κω∇ω over a
surface element is the mass flux (kgs−1) through that surface, while the integral over a volume element is
the momentum (kgms−1) of that volume. Substituting ωρw(uw−ui) =−κω∇ω into (6.1.5) and solving
for ui yields

ui = u+ρ
−1

κω∇ω

6.1. FORMULATION AND METHODS 71

Symbol Value Description

ci 2009Jkg−1 K−1 Specific heat capacity of ice
kT 2.1Wm−1 K−1 Thermal conductivity of ice
ρi 910kgm−3 Density of ice
ρw 1000kgm−3 Density of liquid water
L 3.34×105 Jkg−1 Latent heat of fusion
g 9.81ms−2 Gravitational acceleration

κω 1.045×10−4 kgm−1 s−1 Hydraulic diffusivity of ice
βCC 7.9×10−8 KPa−1 Clausius-Capeyron gradient
T3 273.15K Triple point of water
T0 260K Reference temperature
γ0

1
2(10−10 s−1)2 Second invariant of reference strain rate

B0 8.56×1014 Pas Viscosity at reference strain rate and temperature
Q 6.0×104 Jmol−1 Activation energy for creep
V −13.0×10−6 m3 mol−1 Activation volume for creep
R 8.31441Jmol−1 K−1 Ideal gas constant

Bω 181.25 Influence of water content on viscosity (Greve and Blatter, 2009)

Table 6.1: Physical constants used for the viscous heat transport problem. The same constants are used in
Aschwanden et al. (2011).

as in (6.1.4b). In (6.1.1c), we need the energy flux in the reference frame of the total velocity. Starting
from the mass flux in the reference frame of total velocity,

ωρw(uw−u) = ωρw(uw−ui)+ωρw(ui−u)

=−κω∇ω+
ωρω

ρ
κω∇ω

=−
(

1− ωρω

ρ

)
κω∇ω

=−(1−ω)
ρi

ρ
κω∇ω

(6.1.6)

where the moisture flux and (6.1.4b) was used on the second line. The mass flux in (6.1.6) is converted to
energy flux by multiplying by the latent heat L to produce the moisture flux appearing in (6.1.1c). The use
of constant hydraulic conductivity κω is a poor approximation for large amplitude ω since intraglacial
conduits form for higher melt fractions, thus conductivity becomes nearly infinite. For such cases, it would
likely be better to use a Darcy-type constitutive relation accommodating the gravitational contribution
and with conductivity dependent on moisture, perhaps of the form κ(ω) = κ0 exp ω

ω0
where κ0 is the

conductivity for vanishing moisture fraction and ω0 is a characteristic melt fraction on the order of 1%.

The volumetric flux pu appearing in (6.1.1c) could have been written as part of a single heating term.
For single-phase compressible flows, the heat production can be written (ηDu− p1) :∇u from classical
definitions of work (e.g. Hutter and Jöhnk, 2004), plus a kinetic energy contribution −u ·∇p. These can
be manipulated as

(ηDu− p1) :∇u−u ·∇p = ηDu :∇u− p∇·u−u ·∇p

= ηDu :Du−∇·(pu)
(6.1.7)

which is the form appearing in (6.1.1c). Although both expressions are equivalent for the continuous
equations, the discrete equations are different because numerical solutions only satisfy partial differential
equations weakly. Only the latter formulation is conservative. This formulation is also more amenable to
discretization and is mandatory for stability when density is dependent on pressure (as it is here when melt

72 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

content is available, though the underlying physical process still does not support acoustics) and diffusion
is poorly resolved on the mesh. The first term in (6.1.7) is non-reversible dissipation while the second can
be recovered through volume change and thus does not affect the global entropy. The ice velocity ui is
used in (6.1.1c) because the melt fraction is assumed to be able to move through the ice matrix without
viscous dissipation. Perhaps this is a reasonable assumption because the viscosity of ice is 1015 times
larger than water, but for relatively stagnant ice with high moisture velocity, it is likely to be significant
and the equations can be augmented with an additional diffusive term.

The present formulation is similar to Aschwanden et al. (2011) and approaches their model in the limit
ω→ 0, but is more conservative. The formulation here uses a 3D momentum balance and conserves
mass, momentum, and energy, regardless of large amplitude moisture content and presence of numerical
diffusion. We have intentionally neglected to write constitutive relations of the form e(T,ω, p) because
such relationships are superfluous for the purpose of solving the equations. They can be obtained by
inverting the constitutive relations presented here and, depending on the experimental setup, may be useful
for model validation.

For the purpose of determining cell Peclet numbers (a diagnostic tool and possible input to numerical
stabilization methods), it is useful to write the thermal and moisture fluxes using

∂T
∂E

=
∂T
∂e

∂e
∂E
≈ 1

ci

1
ρ

Cold ice

∂ω

∂E
=

∂ω

∂e
∂e
∂E
≈ 1

L
1
ρ

Temperate ice

so that the diffusive energy flux driven by energy gradient can be written as −KT ∇E−Kω∇E with

KT ≈
kT

ρci
= 1.15×10−6 m2 s−1 (6.1.8)

Kω ≈
Lκω

ρL
= 1.15×10−7 m2 s−1. (6.1.9)

Note that we have neglected kinetic energy and density dependence in this approximation. For an element
with streamline length h = 1km and velocity v = 1kma−1, the cell Peclet number is Peh = hv/K =
2.8×104 for cold ice and ten times larger for temperate ice. Numerical methods for such systems require
upwinding to prevent non-physical oscillations. Godunov’s Theorem (1954, see e.g. LeVeque, 2002) states
that non-oscillatory linear methods for hyperbolic equations are at most first-order accurate. Higher order
accuracy requires a nonlinear method, even if the equation being solved is linear. Robust methods for
such systems are based on finite volume methods of total variation diminishing (TVD) and total variation
bounded (TVB) type, as well as discontinuous Galerkin methods with limiters when necessary (LeVeque,
2002; Harten, 1983; Boris and Book, 1973; Zalesak, 1979; Harten et al., 1987; Liu et al., 1994; Jiang
and Shu, 1996; Shu, 2003; Hesthaven and Warburton, 2008). In comparison, continuous finite element
methods are much less robust, and most efforts to stabilize finite element methods for transport-dominated
processes have used linear stabilization (Brooks and Hughes, 1982; Hughes et al., 1989, 1998; Matthies
et al., 2008). Attempts to use nonlinear stabilization with continuous finite element methods have not
been very successful. The best methods, according to the recent comparisons (John and Knobloch, 2007,
2008; John and Schmeyer, 2008), involve extreme restrictions on element types and suffer from difficulty
in converging the nonlinear systems (Mizukami and Hughes, 1985) or an algebraic construction (Kuzmin
et al., 2004) that is difficult to apply with mesh anisotropy and material nonlinearity. For simplicity, we
adopt the streamline upwind Petrov-Galerkin method of (Brooks and Hughes, 1982), but a discontinuous
Galerkin method would be a better choice for discretization of the energy equation on unstructured grids.

An additional detail appears in the finite element discretization of (6.1.1). The symmetric gradient of ice
velocity Dui is needed to define the stress, but only the gradient of momentum

∇(ρu) = u⊗∇ρ+ρ∇u

= u⊗∇ρ+ρ∇(ui−ρ
−1

κω∇ω)
(6.1.10)

6.1. FORMULATION AND METHODS 73

is avialable. Density is not an explict variable in this formulation and the definition of density involves the
gradient of the explicit variables, therefore solving for ∇ui in (6.1.10) produces a second order term. This
term can be evaluated using the second derivative of the basis functions or using a local projection, but
neither of these methods are conveniently available in Dohp at present, therefore we approximate ∇ui

using
∇(ρu)≈ u⊗∇ρ+ρ∇ui

of (6.1.10).

Although this simulation is run using realistic geometry on a section of the Jakobshavn Isbræ channel,
not all boundary conditions necessary for a realistic simulation have been implemented in Dohp. More
sophisticated lateral boundary conditions, energy conditions, and free-surface evolution are not considered
in the present model. See Aschwanden et al. (2011) for further discussion of boundary conditions for
energy transport. The output of this simulation is not intended as a predictive model, instead it is a
demonstration of the capability of the methods to handle systems that were previously not possible or too
computationally expensive due to the need for short time steps.

6.1.2 Numerical solution

As discussed above and in Section 5.1, the equation system (6.1.1) must be interpreted weakly because
the fields have insufficient regularity. Dropping the transient terms, the weak form is: find (ρu, p,E) ∈
W 1,p

D ×L2×H1
D such that

∫
Ω

[
∇m̂ :(−ρu⊗u+ηDui)− p∇·m̂−ρm̂ ·g− p̂∇·ρu

+∇Ê ·
(
− (E + p)u+ kT ∇T +L(1−ω)

ρi

ρ
κω∇ω

)
− Ê (ηDui :Dui−ρu ·g)

]
= 0 (6.1.11)

for all momentum, mass, and energy test functions (m̂, p̂, Ê) ∈W 1,p
0 ×L2×H1

0 . The trial spaces W 1,p
D and

×H1
D have inhomogeneous Dirichlet boundary conditions built in on ∂Ω\Γs and ∂Ω respectively, where

Γs is the free surface. The corresponding test spaces have homogeneous boundary conditions built in. We
assume that the free surface Γs ⊂ ∂Ω is non-empty, therefore the pressure trial space and corresponding
mass test space do not need a constraint.

The finite element method solves (6.1.11) by introducing discrete test and trial spaces as well as a method
of numerical integration. The numerical examples in this section use Q3−Q2−Q3, but other choices
are possible. In the present implementation, the order of each approximation space can be chosen
independently through run-time options. Many of the more complicated spaces discussed in Section 5.1.2
are not yet implemented in Dohp, but would automatically become available through run-time options
once the library support is added. Discontinuous Pdisc

k spaces are not used here because the visualization
support is not complete.

Evaluation of the discrete equations and components needed by the solver are implemented using the
methods discussed in Section 4.3.1. The discrete residual is evaluated monolithically, by evaluating all
fields on a single set of quadrature points and computing the coefficients of the test functions at those
points. For manufactured solutions, the artificial source terms are also evaluated at the quadrature points.
During residual evaluation, certain intermediate quantities including the velocity u, temperature T , and
melt fraction ω, as well as the derivatives of these quantities with respect to the independent variables ρu,
p, E and their gradients, are stashed away in quadrature-local storage managed by Dohp. These stashed
values are used to apply the Jacobian and blocks of the Jacobian matrix-free. The memory and asmyptotic
flops benefits of this approach were discussed in Section 4.3. Computation of the gradients was done by
hand, but is an error-prone process that should be automated using reverse-mode automatic differentiation
in a highly local manner (a single quadrature point at a time). An alternative would be to simply store the
independent variables and their gradients, then evaluate the action of the Jacobian using forward-mode

74 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

(automatic or by-hand) differentiation. The disadvantage of this is that constitutive relations would have to
be re-evaluated during Jacobian application. Since constitutive relations be quite expensive, it is preferable
to store some intermediate values. Another alternative is to store the full Jacobian at each quadrature point.
This would be a nearly dense matrix of size 17×20 (20 comes from the state and gradients of all five
fields, three rows are dropped because the gradient of the pressure/mass test function does not appear),
or slightly smaller if momentum convection and other symmetry-breaking terms were dropped. This
matrix would be more effort to compute, would require more storage, and would involve more floating
point operations to apply than the present method. On today’s hardware, the hybrid method of storing
coefficients of specific intermediate quantities is clearly preferable to these alternatives. However, on
some vector hardware, or for other problems with less compact representations, this explicit form could
still be desirable.

The Jacobian resulting from Newton linearization of (6.1.11) has the block structure

J =

Juu Jup JuE

Jpu 0 0
JEu JE p JEE

 . (6.1.12)

The contents of these blocks is summarized below.

Juu The viscous and (much smaller for ice) momentum convection terms. This block is nearly symmetric
positive definite and has variable coefficients and anisotropy created by differentiating the power-law
constitutive relation.

Jup The weak pressure gradient, viscosity dependence on pressure (directly and through density,
temperature, and melt fraction), and the gravitational contribution from pressure-induced density
variation (from changing the pressure melting temperature which may change the melt fraction).
This block is large in magnitude, mostly due to the weak pressure gradient which is nearly balanced
by the gravitational forcing source term.

JuE The viscous dependence on energy (via temperature, melt fraction, and density) as well as the
gravitational contribution due to energy-induced density variation. This term comes from a highly
nonlinear term (the Arrhenius and moisture-dependent constitutive relations) but is typically not
especially large in glaciology. For bouyancy-driven flows such as mantle convection, the density
variation is the crucial driving force for circulation. However, despite the crucial coupling provided
by this block and it’s significant nonlinear influence, it contributes quite little to linear stiffness.

Jpu The divergence of momentum density which enforces mass conservation. It is nearly equal to JT
up

and is thus also large in magnitude. Being the only non-zero block in its row, this is of critical
importance.

JEu The sensitivity of energy on momentum, which is mostly the advective transport (the gradient of
energy divided by density). This term is very large in boundary layers containing large thermal and
moisture gradients. In particular, due to the high Peclet numbers involved, the boundary layers will
often never be fully resolved at a practical resolution, thus mesh refinement is capable of resolving
ever-larger gradients. This results in the size of this term being essentially mesh-dependent. This
block also contains a similar term involving the pressure gradient, but pressure does not contain the
same boundary layers as energy (indeed, the pressure gradient is approximately equal to ρg), so its
contribution is much smaller and more benign (provided the pressure discretization is stable so that
there are no oscillations).

JE p The contribution to thermal and moisture diffusion as well as the advective contribution u ·∇. If
the transition width δ in (6.1.2) is made small, small changes in pressure can move the pressure
melting which locally switches from thermal to moisture diffusion. According to (6.1.8), this is
an order of magnitude change in coefficients, but could be different depending on the constitutive
relation for moisture diffusion.

6.1. FORMULATION AND METHODS 75

JEE An advection-diffusion system for energy. It is generally advection-dominated except in boundary
layers and regions of stagnant ice where diffusion driven by temperature and moisture gradient
become significant. It is typical that the velocity is almost parallel to the bed in which case vertical
diffusion remains significant compared to vertical advection while horizontal (nearly streamline)
diffusion is negligible. In such cases, the thermal gradients in the horizontal direction are very
small. There are also advection-like terms arising from differentiating through S±

δ
which appear as

transport in the directions ∇T and ∇ω (usually nearly vertical).

All blocks in this system are available in unassembled form, using the reduced storage at quadrature points
discussed above.

The discussion above suggests that the blocks Juu, Jup, Jpu, JEu, and JEE account for most of the linear
stiffness, therefore the multiplicative preconditioner

P =

(Juu Jup

Jpu 0

)
(
JEu JE p

)
JEE

 (6.1.13)

should be an effective preconditioner for (6.1.12). Indeed, if applied exactly,

P−1J =

1
(

Juu Jup

Jpu

)−1(JuE

0

)
0 1


which satisfies (P−1J−1)2 = 0 ensuring that left-preconditioned GMRES converges in two iterations.
Computing

(JP−1−1)2 = JP−1JP−1−2JP−1 +1

= P(P−1JP−1J−2P−1J+1)P−1

= P(P−1J−1)2P−1

= (P−1J−1)2 = 0

ensures that right-preconditioned GMRES also converges in two iterations. Since GMRES convergence
is more reliable for matrices that are not too far from normal (Nachtigal et al., 1992; Embree, 1999;
Trefethen and Embree, 2005) and because we intend to apply P only approximately, it is beneficial that
the off-diagonal part of P−1J is relatively small. This preconditioner can be applied with one (anisotropic
variable-coefficient) Stokes solve and one advection-diffusion (variable-coefficient, with anisotropy due
to stabilization) solve.

Due to the mechanics of GMRES, three preconditioner applications are required for two iterations. By
storing more information, the flexible variant FGMRES (Saad, 1993) can extract the solution after two
right-preconditioned iterations without a third preconditioner application. The generalized conjugate
residual method GCR (Eisenstat et al., 1983) has the same property and has equivalent convergence
properties to GMRES when the preconditioner is linear Saad and Schultz (1986). Both of these methods
store two vectors per Krylov iteration which enables them to be tolerant of variable preconditioners.
They both work with the right-preconditioned form, have convergence tests in terms of unpreconditioned
residuals, and are commonly restarted to bound the total storage requirement. FGMRES defines the
residual and its norm through a recurrence relation similar to GMRES which has the advantage of requiring
less arithmetic per iteration, but means that the residuals are expensive to compute during the iteration,
therefore the norm estimated by the algorithm may be unstable. Classical Gram-Schmidt orthogonalization
is not stable, but it is much faster than modified Gram-Schmidt, especially in parallel where reductions
are very expensive. Since GCR computes the norm of the true residual explicitly instead of through a
recurrence relation, the CGR convergence test is independent of inaccuracy in the classical Gram-Schmidt
process. GCR with an inexact iterative preconditioner was introduced in Van der Vorst and Vuik (1994)

76 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

under the name GMRESR and a variant using the same amount of arithmetic per iteration as FGMRES
was presented in Vuik (1995). See also Brakkee et al. (1998) for practical comparisons with domain
decomposition methods for incompressible flow.

For the Stokes solve in the application of (6.1.13), we start with the factorization(
Juu Jup

Jpu 0

)
=

(
1 0

JpuJ−1
uu 1

)(
Juu Jup

0 S

)
where S =−JpuJ−1

uu Juu. Since S is dense and will be solved with approximately, it is reasonable to drop
the lower-triangular block, leaving

Ps =

(
Juu Jup

0 S

)
(6.1.14)

since the preconditioned operator also has a minimal polynomial of degree 2.

Three assembled matrices are used in the solver defined using approximate solves with (6.1.13) and
(6.1.14). The first is Buu which is an approximation of the momentum block Juu assembled using the
same physics with truncated basis functions and sub-element 23-point Gauss quadrature. This matrix
corresponds to a Q1 discretization on the sub-elements. We approximate the inverse of Juu by 10 conjugate
gradient iterations preconditioned by block incomplete Cholesky applied to Buu.

An approximation of the energy coupling BEE is assembled using the same methodology and the inverse
of JEE is computed using GMRES preconditioned by incomplete LU. This system is converged to a
reasonable tolerance of 10−5 because it is relatively inexpensive compared to the Stokes solve.

Approximating the inverse of S and the greater Stokes system is more involved. Following the results
of (Olshanskii and Reusken, 2006) extrapolated to viscosity variation that is not isotropic or piecewise
constant, we approximate S by assembling Bpp, the mass matrix weighted by the inverse of effective
viscosity η. The quadrature for this operator in the pressure space is defined using local 23-point Gauss
quadratures on the sub-elements associated with the Q3 basis functions. While this quadrature has a lower
order of accuracy than a Gauss quadrature with similar number of points on the whole element, it is
more local and more robust to sharp viscosity variation. It also has the advantage of reusing the same
constitutive relation evaluations as the assembled momentum and energy operators. The inverse of S
is approximated using incomplete Cholesky applied to the the scaled mass matrix Bpp which has been
significantly more robust than the lumped variant in common use (e.g. Burstedde et al., 2008; May and
Moresi, 2008).

We converge the Stokes solve to a relative tolerance of 10−3 using GCR with the upper-triangular pre-
conditioner (6.1.14) where S is replaced by Bpp and Juu solved inexactly. The Eisenstat-Walker Eisenstat
and Walker (1996) method is used to adjust the linear solve tolerance of the outer Krylov iteration as
the Newton iteration converges. Since the inner solves are relatively accurate and the JuE block has little
linear stiffness, this usually converges in one iteration.

A natural alternative preconditioner which was proposed by Elman et al. (2011) for Picard linearization of
2D isoviscous bouyancy-driven flows with the Boussinesq approximation using Q2−Q1 elements avoids
nested iteration by using

P1 =

Juu Jup JuE

0 Bpp 0
0 0 JEE

 .

Despite several attempts, this preconditioner and many variants were not found to deliver the robustness
desired for the present model. Among other deficiencies, it tended to have very poor behavior under
GMRES restarts and often triggered instability in classical Gram-Schmidt. Since full orthogonalization
using modified Gram-Schmidt is not practical, this approach is not used in the present numerical study.
However, through the compositional algebra implemented in PETSc, especially the PCFieldSplit
component, all such variants remain available as run-time options.

6.1. FORMULATION AND METHODS 77

If a scalable preconditioner such as multigrid is available for Buu and Bpp, and if the results of Olshanskii
and Reusken (2006) carry over to the present setting, then the methods used here will also be scalable.
Unfortunately, Bpp does not capture the anisotropy appearing due to Newton linearization, therefore we
cannot expect it to be spectrally equivalent to S. An alternative is the least-squares commutator of Elman
et al. (2006); Elman (1999) discussed in Section 4.1.1. Experiments with the LSC preconditioner (of
which there are many variants) have not shown a clear advantage for this problem. Since the present tests
have a sticky bed, are not especially high resolution, and algebraic multigrid tends not to be robust for
vector problems with anisotropy and variable coefficients or for advection-dominated problems, we are
using incomplete factorization preconditioners for Buu, Bpp, and BEE . Multigrid is likely necessary for
other problems, especially those having large regions with a slippery bed, and I believe that pervasive
support for various forms of geometric multigrid is important.

6.1.3 Verification

To verify the correctness of the implementation, we consider a manufactured solution with rich structure
and choose a parameter range to activate all the terms in (6.1.1) and constitutive relations. Instead of the
physical parameters in Table 6.1, we take all parameters to be of order one, with solid and melt densities of
1 and 2 respectively. For this problem, the melt fraction rises as high as 28% and temperature ranges 11%
of its absolute value. Since the activation volume V and Clausius-Capeyron gradient βCC are relatively
large, the pressure plays a significant, and occasionally dominant role in defining the temperature and the
material rheology. The large moisture content and large density contrast also increase the strength of the
nonlinearity. The chosen solution is given by

ρu =
1
3

sin
πx
2
· sin

πy
2
· sin

πz
2

ρv =−1
3

cos
πx
2
· cos

πy
2
· sin

πz
2

ρw =−2
3

cos
πx
2
· sin

πy
2
· cos

πz
2

p = 1+ cos
πx
2
· sin

πy
2
· sin

πz
2

E = sinπ
x+ y+ z2

2
· cosπ

x2 + y+ z
2

.

(6.1.15)

Due to the non-uniform flow and various constitutive nonlinearities, nondimensional numbers are spatially
variable. The Reynolds number ranges up to about 2.4, the Peclet number ranges up to 5.3, and the Prandtl
number ranges from 0.6 to 1. A computed solution, accurate to 0.5% is shown in Figure 6.1. As usual,
this manufactured solution is not physically realizable, but it excercises all the terms.

We consider norms for a Q3−Q2−Q3 approximation under h-refinement. Due to the direct appearance of
pressure in the equations, we cannot expect to realize fourth order convergence, at least not for the energy
equation. Figure 6.2 shows the observed convergence behavior in which energy clearly converges with
only third order accuracy. I do not have an explanation for why the convergence for the energy equation
eventually stagnates. It could be an artifact of the manufactured solution process (perhaps rectifiable using
more accurate quadrature for the forcing term), other quadrature errors due to nonlinearity, or stability of
the continuum equations or discretization.

The nonlinear solver converges quadratically as seen in Table 6.2. All subsequent examples have exhibited
similar convergence behavior.

Numerical experiments with nonlinear solver convergence and pseudo-transient continuation (Coffey
et al., 2003; Kelley and Keyes, 1998) indicates that this system does not always have steady-state solutions,
and when steady-state solutions exist, they may be non-unique. It would be interesting to explore these
uniqueness properties using bifurcation techniques such as those in Allgower and Georg (2003). However,
these phenomena have not been observed in parameter ranges that are realistic for ice flow, so we do not

78 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

Figure 6.1: The numerical approximation to the manufactured solution (6.1.15) as computed using a
Q3−Q2−Q3 finite element discretization on a 12× 12× 12 mesh. The converging streamlines are
symmetric from below. Energy isosurfaces are shown, with the phase transition occuring at approximately
E = 0. The numerical solution is accurate to 4 digits for momentum and energy and 2 digits for pressure,
evaluated using the maximum norm and a higher order quadrature rule. The gradients are accurate to 3
digits for momentum and energy, with 3% error in the pressure gradient.

Iteration Mass Momentum Energy Total

0 2.142762e-01 1.431024e+01 2.742861e+01 3.093796e+01
1 1.086178e-05 8.386431e+00 8.412471e+00 1.187863e+01
2 2.928430e-06 4.103421e+00 3.579857e+00 5.445497e+00
3 1.744093e-06 3.059956e+00 6.853340e-01 3.135764e+00
4 8.688964e-07 1.891518e+00 2.980380e-01 1.914854e+00
5 4.952597e-07 6.852763e-01 7.214378e-02 6.890634e-01
6 1.430063e-07 4.827890e-02 6.381075e-03 4.869877e-02
7 1.057706e-08 3.257086e-05 3.007905e-05 4.433521e-05
8 1.759267e-11 4.249319e-10 1.387815e-10 4.473666e-10

Table 6.2: Nonlinear convergence rates.

6.1. FORMULATION AND METHODS 79

10−1 100

Mesh size

10−6

10−5

10−4

10−3

10−2

10−1

100

101
C

on
tin

uo
us

no
rm

of
er

ro
r

slope=2

slope=3

slope=4

Momentum L2

Momentum H1

Pressure L2

Pressure H1

Energy L2

Energy H1

Figure 6.2: Convergence rates for Q3−Q2−Q3 under h-refinement.

explore them further. Note that such nonlinear effects do occur in glaciology, but generally involve sliding
and/or geometry change. With thermally-induced density variation, gravity, and a boundary heat source,
there are not steady-states above a critical Rayleigh number. This is seen in mantle convection and other
fields, for which (6.1.1) is also valid, therefore it is no surprise that steady-states are not present.

For Dirichlet problems, pressure is only determined up to a constant. As far as the solver is concerned, this
is easy to handle by applying the Krylov iteration with null space removed and using a preconditioner that
is tolerant of the one dimensional null space. Most preconditioners other than direct solvers are suitable,
and the methods of Section 4.1.1 perform fine as long as inner solvers (if used) are also informed of the
null space. However, unlike for linear and power-law Stokes problems, the absolute value of pressure
affects the other variables. Thus there is a one-parameter family of solutions in which all variables change
rather than only the pressure. Additionally, it is possible to compute a negative pressure during the
nonlinear solve. This is most common at higher viscosity because the forcing terms in the manufactured
solutions become huge, thus producing extreme values of pressure. Negative pressures produce feedback
through the activation volume V to generate exponentially large viscosity.

6.1.4 A simple problem

To help understand the equations, we consider a block of size [0,1]3 resting on a plate inclined at 30◦.
The block flows under its own weight with density variation due to moisture content. No-slip boundary
conditions are imposed at the bottom, the sides and surface are free. This problem is nondimensional
with densities of 1 and 2 for “ice” and “water” respectively. The conductivities are κω = 2×10−2 and
kT = 4×10−2 which produces a Peclet number of 120. Streamline stabilization similar to SUPG (Brooks
and Hughes, 1982) was used (SUPG does not apply directly to this sort of problem). The power law
exponent is p = 1.5 with reference viscosity B0 = 5, leading to a Reynolds number of 0.24. Dirichlet
energy boundary conditions E(x,y,z) = −x(1− y2) are used, where energy is measured relative to
T0 = T3 = 10 at zero pressure. The latent heat of fusion is L = 10 which produces a maximum moisture
fraction of 15%.

80 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

Figure 6.3: Energy isosurfaces and velocity streamlines for the block on an inclined plate. The energy
scale has been shifted so that the phase transition occurs at approximately E = 0. The warmest region
(inside the red isosurface) occurs where the singular viscous heat production (see Figure 6.4) balances
advection and combined thermal and moisture diffusion.

The computed energy and flow fields are shown in Figure 6.3 with the corresponding viscous dissipation
ηDu :Du in Figure 6.4. Note that these steady states are not realizable because this configuration does
not have steady solutions.

Streamline diffusion such as SUPG is not a robust stabilization for this problem and it breaks down for
this problem when the Peclet number exceeds about 200. This seems to be due to the localized shear
region near the downstream corner with high viscous dissipation. The velocity in this region is very
small, so the streamline diffusion proportional to |u|h 1 is small, but there are still sharp gradients. There
is a 1/r singularity in the viscous heat production term ηDui :Dui, as discussed in Section 5.1.1. The
precise mechanism for numerical instability with low diffusivity at the corner that SUPG appears unable
to stabilize has not been identified, but it is less pronounced when the angle of incline is reduced. It is
conceivable that a steady state solution to the continuum problem no longer exists.

1More precisely, the streamline diffusion is proportional to velocity times the length of the cell in the streamline direction,
which can be computed using the transform from the reference coordinates as |∇Xx ·u|.

6.1. FORMULATION AND METHODS 81

Figure 6.4: Isosurfaces of the viscous heat production rate ηDui :Dui and velocity streamlines for the
block on an inclined plate. Viscous heat production has a 1/r singularity at both the upstream and
downstream corners, clearly stronger at the downstream corner.

82 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

6.2 Jakobshavn Isbræ

6.2.1 Scaling

For the purpose of improving the conditioning for numerical stability and iterative solvers, it is desirable
that all field variables assume values of similar size and that the residuals also have similar size. Since we
can choose the overall norm of the system arbitrarily, we choose to make field variables and residuals
both of order 1. For the field variables, we choose characteristic sizes for the independent variables ρu, p,
and E. These are just meant to identify the order of magnitude so we choose powers of ten for simplicity.
We would like the following characteristic quantities to have nondimensional size 1.

[ρu] = 103 kgm−3 10−4 ms−1 = 10−1 kgm−2 s−1

[p] = ρ |g| 103 m = 107 Pa = 107 kgm−1 s−2

[E] = ρci 5K = 107 Jm−3 = 107 kgm−1 s−2

(6.2.1)

This is degenerate because energy density and pressure have the same units, therefore we can ask for one
further constraint. We choose to make a viscous stress of 100kPa integrated over an area of 1km2 have
nondimensional size 1 which ensures that the viscous part of the momentum residual will be of order 1.
Asking for momentum, pressure, and viscous flux over a characteristic area to be of order unity amounts
to solving

0.1kgm−2 s−1 = 1

107 kgm−1 s−2 = 1

1011 kgms−2 = 1

which has the unique solution

kg = 103 m = 10−2 s = 106. (6.2.2)

In other words, the characteristic scales are 1g, 100m, and 1µs. Due to the Lagrange-multiplier coupling
of the pressure, this also ensures that the pressure is well-behaved relative to the velocity. Independently
changing the scaling for the mass continuity equation would cause the Stokes problem to be non-symmetric.
The energy equation, however, is very poorly scaled by this choice. For example, the advective energy
flux [E][u] integrated over an are of size 1km2 has size

(106 m2)(107 kgm−1 s−2)(10−4 ms−1) = 109 kgm2 s−3 = 10−10.

We scale the energy equation by 1010 to correct this. With nondimensionalization defined by (6.2.2), all
solution variables have order unity and the unconverged residuals (after balancing the hydrostatic mode
which is about 100 times larger) also have the same order. As a consequence, the Jacobian has norm of
order unity in the subspace where the hydrostatic mode is balanced.

6.2.2 Meshing

For the surface, we use the digital elevation model compiled by Motyka et al. (2010) using aerial
photography taken 24 July 1985 and ground control points resurveyed during our field campaigns in
summer 2007 and 2008. The bedrock location was provided by CReSIS Plummer et al. (2011). A smooth
geometric model based on an unstructured triangular mesh was constructed from these rasters using
MOAB (Tautges et al., 2004) and other tools being developed as part of the MeshKit project (Tautges,
2011). This unstructured triangular mesh was decimated to reduce size while preserving features. The
boundary of the region of interest was described with a polygon in the map plane. Figure 6.5 shows the
decimated and meshed regions.

6.2. JAKOBSHAVN ISBRÆ 83

Figure 6.5: Regions of interest for Jakobshavn Isbræ. The outer black line marks the area on which bed
and surface measurements were accurate enough to perform decimation. The inner (thick) black line
marks the meshed region.

84 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

Figure 6.6: The volume to be meshed resting on the geometric model for the bed.

The bed, surface, and lateral cut defines three geometric surfaces and a volume which is shown in Figure 6.6
resting on the decimated geometric model for the bed. Mesh generation involves two phases, unstructured
quadrilateral meshing in the horizontal followed by graded sweeping in the vertical. Bed slope was used
as a refinement indicator for the horizontal, the quadrilateral surface mesh was generated using the CUBIT
Adaptive Meshing Algorithm Library (Blacker et al., 1994). This mesh was swept to create a hexahedral
mesh, but the quadrilateral elements on the surfaces were still stored, along with association to the
geometric model. In the future, this geometric model will be used to improve geometric fidelity and define
high-order slip conditions that allow the mesh to move along the geometry. Additionally, we intend to
further improve mesh quality, especially in the vicinity of steep bed and surface slopes, by solving elliptic
smoothing equations (Liseikin, 2009) (e.g. Laplace-Beltrami using the methods of Chacón and Lapenta
(2006); Hansen and Zardecki (2007); Berndt et al. (2008), though we are investigating a modification of
the recently proposed mesh motion formulations based on Monge-Kantorovich optimization Delzanno
et al. (2008); Chacón et al. (2011) that would be favorable for evolution problems). See Budd et al. (2009)
for a recent survey of moving mesh methods.

6.2.3 Solutions

The mesh is read by the analysis code and high-order function spaces for velocity and pressure were
defined on it according to runtime parameters, usually Q3 momentum, Q2 pressure, and Q3 energy with
SUPG-style stabilization. We solve the steady-state problem (6.1.11) using boundary conditions defined
using the three tagged boundary sets. For boundary conditions for momentum are free surface, no-slip at
the bed, and velocity at the lateral boundary given by the shallow ice approximation. Due to surface and
bed roughness, these lateral boundary conditions are noisier than desired, but the noise can be seen to
dissipate in one to two ice thicknesses and thus has little influence on the flow in the vicinity of the ice
stream. The boundary conditions for energy are all Dirichlet, with a temperate bed 273.15K, intermediate
temperature 260K surface, and a cold upstream region at 246.85 A computed flow field is shown in
Figure 6.7. A side view of momentum density and energy field is shown in Figure 6.8. Figure 6.9 is a
contour plot of temperature/moisture looking upstream. The isosurfaces show the effect of tributaries on
thermal structure inside the ice stream.

6.2. JAKOBSHAVN ISBRÆ 85

Figure 6.7: Computed momentum density streamlines for the ice stream region at Jakobshavn Isbræ. The
highest velocity occurs in a deep, narrow region of the ice stream.

86 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

Figure 6.8: Computed energy density (top) and momentum density (bottom) with flow streamlines for the
ice stream region at Jakobshavn Isbræ.

6.2. JAKOBSHAVN ISBRÆ 87

Figure 6.9: Contours of potential temperature (◦C) and velocity streamlines (colored by speed measured
in ma−1). Variability in layer thickness is clearly caused by tributaries and geometry. The maximum
potential temperature is 7.3 ◦C which corresponds to a maximum melt fraction of 4.8%. The sharp
transition from cold upstream boundary condition is just visible at the top of this plot.

88 CHAPTER 6. STEADY-STATE VISCOUS HEAT TRANSPORT AT JAKOBSHAVN ISBRÆ

The main weakness with the energy transport scheme is that it is overly diffusive and that the boundary
layer near the surface is poorly resolved. The cold region in Figure 6.8 does not extend far into the
downstream region with warm boundary conditions. The maximum cell Peclet number, after accounting
for crosswind numerical stabilization terms, was computed to be 81. As discussed earlier, a physical value
for the Peclet number is on the order of 104. Unfortunately, SUPG is not capable of delivering stable
low-diffusion solutions for such advection-dominated systems. One partial solution is to refine the mesh
near the surface, but this is computationally expensive and wasteful in the vast majority of an ice sheet
where there is no thermal boundary layer near the surface. In contrast, the velocity field has a boundary
layer near the bed almost everywhere, so refinement near the bed is certainly desirable. An additional
source of thermal diffusion in Figure 6.8 is the velocity field which is not in equilibrium with the surface.
Therefore streamline diffusion, which necessarily produces a stabilized cell Peclet number no larger than
1, causes extra diffusion normal to the surface.

Chapter 7

Conclusion and Outlook

We have presented a variety of numerical methods and software tools for the simulation of ice dynamics.
These methods provide increased accuracy, improved performance (especially on emerging hardware),
and make the use of more advanced analysis techniques viable. There are still many open problems
in the design of computational methods for glacier flow, and many methods known to other fields and
widely used for problems with similar characteristics, that have not yet been applied to glaciology. Robust
software libraries are often not yet available for many of these techniques, or are not in a form that is
directly usable for glaciological problems. The software developed in the present work is often applicable
to other problems, and wherever possible, has been generalized and placed into libraries, especially PETSc.
This ensures that the maintained library implementations are directly usable for glaciological problems.

7.1 Future directions

Any worthwhile research creates more questions than it answers.

A recurring theme of this thesis has been that computational infrastructure for glaciological problems is
immature, thus impeding the use of better numerical methods and limiting the scope of scientific inquiry.
The US Department of Energy’s Office of Advanced Scientific Computing Research took notice of this
issue in 2009 by creating an initiative to improve the software library support and availability of modern
computational methods for addressing the scientific problems posed by the IPCC AR4 (Lemke et al.,
2007), namely the dynamic response of ice sheets to climate change. The Scalable Ice-sheet Solvers
and Infrastructure for Petascale High-resolution Unstructured Simulations (SISIPHUS) (Brown et al.,
2009) project was funded under this initiative for 2M USD over three years. I wrote a large fraction of
the technical content for the SISIPHUS proposal and there is some overlap with this thesis. Objectives
that I will be pursuing in collaboration with other SISIPHUS personnel include an implicit ALE free
surface for the Stokes model, automated remeshing after topological changes and large deformations,
semi-smooth Newton methods for sliding and grounding line contact problems, bifurcation analysis, and
adjoint sensitivity analysis. The rest of this section elaborates on some of these and other techniques
useful for analysis of ice dynamics.

There are many periodic processes in glaciology, including ice stream margin migration and shut-
down (Raymond, 2000; Bueler and Brown, 2009), Heinrich events (Heinrich, 1988; Calov et al., 10),
and grounding line migration (Schoof, 2007; Schoof et al., 2009). All numerical studies to date have
explored these phenomena by direct time integration. This involves large spin-up times and many time
steps (sometimes millions) to complete a period. An alternative is to pose the time-periodic problem as
a nonlinear rootfinding problem and apply Newton-Krylov techniques. This was done by (Merlis and
Khatiwala, 2008) for the spin-up of an ocean general circulation model and provided a factor of 10 to
100 speedup compared to direct time integration. Furthermore, it provided access to stable limit cycles
and equilibrium solutions that could not be accessed by direct time integration. With such a method, it

90 CHAPTER 7. CONCLUSION AND OUTLOOK

would also be possible to efficiently explore the effect of parameters on these cycles. For example, using
multi-parameter continuation methods (Allgower and Georg, 2003) to find combinations of parameters
that cause a qualitative change in the structure of the periodic solution.

Glacier dynamics are greatly influenced by the basal hydrology which can account for rapid changes in
boundary conditions. Basal hydrology is undoubtedly a stiff process, with recent modeling efforts (e.g.
Pimentel et al., 2010; Pimentel and Flowers, 2011) requiring very short time steps. The current continuum
formulations are not known to be entropy-stable and numerical simulations in two horizontal directions ex-
hibit strong grid dependence (Schoof, 2010). The equations of basal hydrology are variational inequalities
in which part of the domain may by strictly hyperbolic (e.g. producing shocks) while other regions may
be highly diffusive. The lack of entropy and mixed characteristic makes it difficult to formulate robust
discretizations and solvers. I believe that the semi-smooth Newton methods for variational inequalities
that were recently added to PETSc will be effective at solving these discrete systems implicitly, and
coupled to a flow model.

The symbolic manipulations done to compute manufactured solutions are near their practical limit for the
coupled transport problem in Section 6.1 because the symbolic expressions may grow exponentially. The
first implementation required half an hour to generate a manufactured solution; the resulting C source
file was 11MB and crashed the compiler when optimization was turned on. The symbolic structure was
manipulated somewhat by hand to identify certain intemediate expressions and defer their evaluation to
bring code generation time under 1 minute and produce more manageable code size, but this approach
will not scale indefinitely. Such limits of symbolic differentiation for finite element computations have
been identified by Wang (1986); Fritzson and Fritzson (1992); Korelc (1997, 2002); Wriggers (2008).
Algorithmic differentiation Griewank (2003); Griewank and Walther (2008) offers an alternative way to
generate high-performance code for these operations. Algorithmic differentiation tools are based either on
operator overloading or source transformation, and can run in forward or reverse (adjoint) mode. For high-
performance unassembled methods, both forward and reverse mode are needed. Those based on operator
overloading, such as Griewank et al. (1996, 1999); Walter (2011), are relatively unintrusive to use, but less
scalable and less performant, especially when adjoints are needed. The Python package AlgoPy (Walter,
2011; Walter and Lehmann, 2010) could be used to differentiate the Python code discussed in Section 4.4
and used again in Section 6.1 almost without modification, but the derivatives would still be evaluated in
the Python interpreter rather than by compiled C or Fortran code.

Source transformation tools (Bischof et al., 1997; Utke et al., 2008) produce higher performance code
and are much more scalable. They can even be applied at a higher level, for example to differentiate the
MIT global circulation model (Heimbach et al., 2005). Unfortunately, source transformation AD currently
imposes a complicated build process and would be more awkward to use than the current symbolic
representations. I am investigating maintainable and less intrusive, but still performant, ways to automate
the simultaneous generation of manufactured forcing terms and physics components with Jean Utke, a
primary author of OpenAD (Utke et al., 2011; Utke, 2004) and collaborator on the SISIPHUS project.
We also intend to use AD for adjoint sensitivity analysis, but with AD applied only in localized parts of
the code rather than at a higher level. For example, automatically differentiating iterative solvers is not
desirable for performance and algorithmic reasons. Additionally, AD places unacceptable constraints on
the software design that can be used when developing discretization and solvers libraries.

An implicit arbitrary Lagrangian-Eulerian (ALE) formulation for the free surface is desirable for accuracy
reasons and because it enables the use of more powerful methods for stability, sensitivity, and parameter
inversion. ALE formulations for free surface flows have been investigated by several authors, Braess and
Wriggers (2000); Walkley et al. (2004); Behr (2004); Cairncross et al. (2000); Baer et al. (2000, e.g.).
From a solvers perspective, the most difficult problem is accounting for the “bobbing” mode for a long
ice shelf. The transient behavior associated with this mode is much faster than any other dynamics in
the system, but it is very poorly captured by the Stokes problem alone. Indeed, the Stokes problem for a
detached floating ice berg at equilibrium has six rigid body modes, three in-plane (two translations and
one rotation) that have zero energy when coupled to displacement and three modes (two rocking, one

7.1. FUTURE DIRECTIONS 91

bobbing) that are also zero energy for the Stokes problem, but high energy when the domain is allowed to
move under the buoyancy force. When a long thin ice shelf is connected to land, the three in-plane modes
are well-constrained due to the strength of in-plane viscous deformation, but rocking and bobbing remains
low energy for the Stokes problem while being high energy when the domain moves due to buoyancy This
heuristic argument explains why a split preconditioner that separates the mesh motion from the Stokes
problem will struggle for long ice shelves and long time steps. This is also the explanation for the transient
instability observed by Durand et al. (2009) and stabilized by introducing large non-physical damping. If
the buoyancy force is approximately balanced locally by using a coupled solver for both mesh motion
and Stokes instead of segregated multigrid on each problem separately, and if a suitable coarse space is
chosen, then these bobbing and rocking should be well-controlled by the preconditioner and no artificial
damping or time-step restriction should be present.

Scalable methods for large-scale parameter inversion generally come from posing the (ill-posed) inversion
as a (well-posed, regularized) deterministic PDE-constrained optimization problem for which Newton and
multigrid methods can be applied (Biros and Ghattas, 2005a,b; Akçelik et al., 2006). A significant recent
development on this front is Akçelik et al. (2011) which offers the ability to use the Hessian structure
from deterministic inversion to rapidly converge on Bayesian (Tarantola, 2005) statistics which were
otherwise unattainable in a scalable way. The problem of determining the thermal state or basal conditions
from primarily surface observations can be written as such a problem. The reduced Hessian for these
problems is spectrally equivalent to a Fredholm integral operator of the second kind. Such operators
are well-approximated by low-rank updates to the identity, which means that iterative methods can, in
principle, converge very quickly. In practice, despite having rapid decay in the spectrum, a large number
of iterations are still required unless the reduced Hessian is preconditioned. Fortunately, the multigrid
method, with some modifications relative to differential operators, is effective for Fredholm integral
operators of the second kind (Hackbusch, 1985). The key distinction is that for differential operators, the
short wavelength modes of the error are also the high energy modes so there is no problem of a smoother
polluting the long wavelength components. In contrast, the long wavelength modes are high energy for
integral operators, so the smoother needs to be restricted to operating on the short wavelength modes only
in order to prevent pollution. In return, multigrid of the second kind converges even faster than multigrid
for differential operators. This form of multigrid preconditioning has been used successfully for a variety
of inverse and optimization problems of similar flavor to parameter inversion in glaciology, (Akçelik et al.,
2005; Biros and Dogan, 2008; Rees et al., 2010). Regardless of the details of the optimization method,
the adjoint of the PDE is a required ingredient. Therefore the adjoint of the PDE serves at least three
purposes: error estimation, sensitivity analysis, and optimization/inversion.

References

Adams, M. (2004). Algebraic multigrid methods for constrained linear systems with applications to
contact problems in solid mechanics. Numerical Linear Algebra with Applications, 11(23):141–153.

Adams, M., Samtaney, R., and Brandt, A. (2010). Toward textbook multigrid efficiency for fully implicit
resistive magnetohydrodynamics. Journal of Computational Physics, 229(18):6208–6219.

Ainsworth, M. and Coggins, P. (2000). The stability of mixed hp-finite element methods for Stokes flow
on high aspect ratio elements. SIAM Journal on Numerical Analysis, 38(5):1721–1761.

Ainsworth, M. and Kay, D. (1999). The approximation theory for the p-version finite element method and
application to non-linear elliptic PDEs. Numerische Mathematik, 82(3):351–388.

Ainsworth, M. and Oden, J. (1997). A posteriori error estimation in finite element analysis. Computer
Methods in Applied Mechanics and Engineering, 142(1-2):1–88.

Ainsworth, M. and Senior, B. (1998). An adaptive refinement strategy for hp-finite element computations.
Applied Numerical Mathematics, 26(1):165–178.

Akçelik, V., Biros, G., Draganescu, A., Hill, J., Ghattas, O., and van Bloemen Waanders, B. (2005). Dy-
namic data-driven inversion for terascale simulations: real-time identification of airborne contaminants.
Proceedings of the 2005 ACM/IEEE conference on Supercomputing.

Akçelik, V., Biros, G., Ghattas, O., Hill, J., Keyes, D., and van Bloemen Waanders, B. (2006). Parallel
algorithms for PDE-constrained optimization. Parallel Processing for Scientific Computing, pages
291–322.

Akçelik, V., Flath, H., Ghattas, O., Hill, J., van Bloemen Waanders, B., and Wllcox, L. (2011). Fast
algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on
low-rank partial Hessian approximations. SIAM Journal on Scientific Computing, 33(1).

Akkerman, I., Bazilevs, Y., Kees, C., and Farthing, M. (2011). Isogeometric analysis of free-surface flow.
Journal of Computational Physics, 230(11):4137–4152. Special issue High Order Methods for CFD
Problems.

Allgower, E. and Georg, K. (2003). Introduction to Numerical Continuation Methods. Society for
Industrial and Applied Mathematics Philadelphia, PA, USA.

Alnaes, M., Logg, A., Mardal, K., and Skavhaug, O. (2009). Unified framework for finite element
assembly. International Journal of Computational Science and Engineering, 4(4):231–244.

AMD (2011). Software Optimization Guide for AMD Family 10h and 12h Processors. Number 40546-3.13
in AMD Technical Report. Advanced Micro Devices.

American Society of Mechanical Engineers (2004). ASME Journal of Fluids Engineering editorial policy
statement on the control of numerical accuracy.

94 REFERENCES

Amundson, J., Truffer, M., Lüthi, M., Fahnestock, M., West, M., and Motyka, R. (2008). Glacier, fjord,
and seismic response to recent large calving events, jakobshavn isbræ, greenland. Geophys. Res. Lett,
35(22):L22501.

Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J. (2010). Ice
mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys.
Res, 115:F01005.

Anderson, T. (2005). Fracture mechanics: fundamentals and applications. CRC.

Aschwanden, A. and Blatter, H. (2009). Mathematical modeling and numerical simulation of polythermal
glaciers. Journal of Geophysical Research-Earth Surface, 114(F1):F01027.

Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H. (submitted 2011). An enthalpy formulation for
glaciers and ice sheets. Journal of Glaciology.

Asokan, B. and Zabaras, N. (2006). A stochastic variational multiscale method for diffusion in heteroge-
neous random media. Journal of Computational Physics, 218(2):654–676.

Awanou, G. and Lai, M. (2005). On convergence rate of the augmented Lagrangian algorithm for
nonsymmetric saddle point problems. Applied Numerical Mathematics, 54(2):122–134.

Babuška, I. and Narasimhan, R. (1997). The Babuška-Brezzi condition and the patch test: an example.
Comput. Methods Appl. Mech. Engrg, 140(1-2):183–199.

Babuška, I., Nobile, F., and Tempone, R. (2005). A stochastic collocation method for elliptic partial
differential equations with random input data. ICES Report, pages 05–47.

Babuška, I. and Oden, J. (2004). Verification and validation in computational engineering and science:
basic concepts. Computer Methods in Applied Mechanics and Engineering, 193(36-38):4057–4066.

Bacuta, C., Bramble, J., and Xu, J. (2003). Regularity estimates for elliptic boundary value problems in
Besov spaces. Mathematics of Computation, 72(244):1577–1595.

Baer, T., Cairncross, R., Schunk, P., Rao, R., and Sackinger, P. (2000). A finite element method for free
surface flows of incompressible fluids in three dimensions. Part II. Dynamic wetting lines. International
Journal for Numerical Methods in Fluids, 33(3):405–427.

Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,
L. C., Smith, B. F., and Zhang, H. (2012a). PETSc users manual. Technical Report ANL-95/11 -
Revision 3.3, Argonne National Laboratory.

Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,
L. C., Smith, B. F., and Zhang, H. (2012b). PETSc Web page. http://www.mcs.anl.gov/petsc.

Bangerth, W., Hartmann, R., and Kanschat, G. (2007). deal.II—A general-purpose object-oriented finite
element library. ACM Transactions on Mathematical Software (TOMS), 33(4):24–es.

Barth, A., Schwab, C., and Zollinger, N. (2011). Multi-level Monte Carlo finite element method for elliptic
PDEs with stochastic coefficients. Numerische Mathematik, 119:123–161. 10.1007/s00211-011-0377-0.

Bathe, K. (1996). Finite element procedures. Englewood Cliffs, New Jersey.

Bazilevs, Y., Calo, V., Cottrell, J., Evans, J., Hughes, T., Lipton, S., Scott, M., and Sederberg, T. (2010).
Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering,
199(5-8):229–263.

http://www.mcs.anl.gov/petsc

REFERENCES 95

Becker, R. and Rannacher, R. (1994). Finite element solution of the incompressible Navier-Stokes
equations on anisotropically refined meshes. Interdisziplinäres Zentrum für Wissenschaftl. Rechnen,
Univ.

Behr, M. (2004). On the application of slip boundary condition on curved boundaries. International
Journal for Numerical Methods in Fluids, 45(1):43–51.

Belytschko, T., Gracie, R., and Ventura, G. (2009). A review of extended/generalized finite element
methods for material modeling. Modelling and Simulation in Materials Science and Engineering,
17:043001.

Benson, D. J., Bazilevs, Y., Luycker, E. D., Hsu, M.-C., Scott, M., Hughes, T. J. R., and Belytschko,
T. (2010). A generalized finite element formulation for arbitrary basis functions: From isogeometric
analysis to XFEM. International Journal for Numerical Methods in Engineering.

Benzi, M., Golub, G., and Liesen, J. (2005). Numerical solution of saddle point problems. Acta Numerica,
14:1–137.

Bernardi, C. and Maday, Y. (1999). Uniform inf-sup conditions for the spectral discretization of the Stokes
problem. Mathematical Models and Methods in Applied Sciences, 9(3):395–414.

Berndt, M., Moulton, D., and Hansen, G. (2008). Efficient nonlinear solvers for Laplace-Beltrami
smoothing of three-dimensional unstructured grids. Computers & Mathematics with Applications,
55(12):2791–2806.

Bernstein, L. et al. (2008). Climate Change 2007: Synthesis report, Intergovernmental Panel on Climate
Change. www.ipcc.ch/ipccreports/ar4-syr.htm.

Biros, G. and Dogan, G. (2008). A multilevel algorithm for inverse problems with elliptic PDE constraints.
Inverse Problems, 24:034010.

Biros, G. and Ghattas, O. (2005a). Parallel Lagrange-Newton-Krylov-Schur methods for PDE constrained
optimization. Part I: The Krylov-Schur solver. SIAM Journal on Scientific Computing, 27(2):687–713.

Biros, G. and Ghattas, O. (2005b). Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained
optimization. Part II: The Lagrange Newton solver, and its application to optimal control of steady
viscous flows. SIAM Journal on Scientific Computing, 27(2):714–739.

Bischof, C., Roh, L., and Mauer-Oats, A. (1997). ADIC: an extensible automatic differentiation tool for
ANSI-C. Urbana, 51:61802.

Blacker, T., Bohnhoff, W., Edwards, T., Hipp, J., Lober, R., Mitchell, S., Sjaardema, G., Tautges, T.,
Wilson, T., Oakes, W., et al. (1994). CUBIT mesh generation environment. Technical report, Sandia
National Labs., Albuquerque, NM. Cubit Development Team.

Blatter, H. (1995). Velocity and stress fields in grounded glaciers: A simple algorithm for including
deviatoric stress gradients. Journal of Glaciology, 41(138):333–344.

Boris, J. and Book, D. (1973). Flux-corrected transport. I. SHASTA, a fluid transport algorithm that
works. Journal of Computational Physics, 11(1):38–69.

Braess, H. and Wriggers, P. (2000). Arbitrary Lagrangian Eulerian finite element analysis of free surface
flow. Computer Methods in Applied Mechanics and Engineering, 190(1-2):95–109.

Brakkee, E., Vuik, C., and Wesseling, P. (1998). Domain decomposition for the incompressible Navier-
Stokes equations: solving subdomain problems accurately and inaccurately. International Journal for
Numerical Methods in Fluids, 26(10):1217–1237.

www.ipcc.ch/ipccreports/ar4-syr.htm

96 REFERENCES

Brandt, A. and Dinar, N. (1979). Multigrid solutions to elliptic flow problems. Numerical Methods for
Partial Differential Equations, pages 53–147.

Brenner, S. (2004). Korn’s inequalities for piecewise H1 vector fields. Mathematics of Computation,
73:1067–1088.

Brenner, S. and Scott, L. (2008). The mathematical theory of finite element methods. Springer Verlag.

Brezzi, F. and Fortin, M. (1991). Mixed and hybrid finite element methods. Springer Series In Computa-
tional Mathematics; Vol. 15, page 350.

Brooks, A. and Hughes, T. (1982). Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput.
Methods Appl. Mech. Eng., 32:199–259.

Brown, J., Heimbach, P., Jacob, R., Karpeev, D., Lipscomb, W., Smith, B., Tautges, T., and Utke, J. (2009).
SISIPHUS: Scalable Ice-Sheet Solvers and Infrastructure for Petascale, High-Resolution, Unstructured
Simulations.

Budd, C., Huang, W., and Russell, R. (2009). Adaptivity with moving grids. Acta Numerica, 18(-1):111–
241.

Bueler, E. and Brown, J. (2009). Shallow shelf approximation as a “sliding law” in a thermomechanically
coupled ice sheet model. Journal of Geophysical Research-Earth Surface, 114(F3):F03008.

Burstedde, C., Ghattas, O., Gurnis, M., Stadler, G., Tan, E., Tu, T., Wilcox, L., and Zhong, S. (2008).
Scalable adaptive mantle convection simulation on petascale supercomputers. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, page 62. IEEE Press.

Büskens, C. and Maurer, H. (2000). Sqp-methods for solving optimal control problems with control and
state constraints: adjoint variables, sensitivity analysis and real-time control. Journal of Computational
and Applied Mathematics, 120(1-2):85–108.

Butcher, J. (2006). General linear methods. Acta Numerica, 15:157–256.

Butcher, J., Jackiewicz, Z., and Wright, W. (2007). Error propagation of general linear methods for
ordinary differential equations. Journal of Complexity, 23(4-6):560–580.

Butcher, J. and Podhaisky, H. (2006). On error estimation in general linear methods for stiff odes. Applied
numerical mathematics, 56(3-4):345–357.

Cai, X. and Sarkis, M. (1999). A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM Journal on Scientific Computing, 21(2):797.

Cairncross, R., Schunk, P., Baer, T., Rao, R., and Sackinger, P. (2000). A finite element method for
free surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh motion.
International Journal for Numerical Methods in Fluids, 33(3):375–403.

Calov, R., Greve, R., Abe-Ouchi, A., Bueler, E., Huybrechts, P., Johnson, J., Pattyn, F., Pollard, D., Ritz,
C., Saito, F., and Tarasov, L. (10). Results from the Ice-Sheet Model Intercomparison Project–Heinrich
Event INtercOmparison (ISMIP HEINO). Journal of Glaciology, 56(197):371–383.

Certik, O. et al. (2011). SymPy Python library for symbolic mathematics. http://code.google.com/
p/sympy/.

Chacón, L. (2008). An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional
viscoresistive magnetohydrodynamics. Physics of Plasmas, 15:056103.

http://code.google.com/p/sympy/
http://code.google.com/p/sympy/

REFERENCES 97

Chacón, L., Delzanno, G., and Finn, J. (2011). Robust, multidimensional mesh-motion based on Monge-
Kantorovich equidistribution. Journal of Computational Physics, 230(1):87–103.

Chacón, L. and Lapenta, G. (2006). A fully implicit, nonlinear adaptive grid strategy. Journal of
Computational Physics, 212(2):703–717.

Chapelle, D. and Bathe, K. (1993). The inf-sup test. Computers and Structures, 47:537–537.

Childs, H. and Miller, M. (2006). Beyond meat grinders: An analysis framework addressing the scale and
complexity of large data sets. Simulation Series, 38(1):181.

Chow, P. (2007). Stochastic partial differential equations. Chapman & Hall/CRC.

Chow, S., Carey, G., and Anderson, M. (2004). Finite element approximations of a glaciology problem.
Mathematical Modelling and Numerical Analysis, 38(5):741–756.

Ciarlet, P. (1978). The finite element method for elliptic problems. North-Holland.

Clarke, G. (2004). Subglacial processes. Annual Review of Earth and Planetary Sciences, 33(1):247.

Coffey, T. S., Kelley, C. T., and Keyes, D. E. (2003). Pseudotransient continuation and differential-
algebraic equations. SIAM Journal on Scientific Computing, 25(2):553–569.

Colinge, J. and Rappaz, J. (1999). A strongly nonlinear problem arising in glaciology. Mathematical
Modelling and Numerical Analysis, 33(2):395–406.

Collins, W., Bitz, C., Blackmon, M., Bonan, G., Bretherton, C., Carton, J., Chang, P., Doney, S., Hack, J.,
Henderson, T., et al. (2006). The community climate system model version 3 (CCSM3). Journal of
Climate, 19(11):2122–2143.

Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J., Snir, M., Traversat, B., and Wong,
P. (1995). Overview of the MPI-IO parallel I/O interface.

Cottrell, J., Hughes, T., and Bazilevs, Y. (2009). Isogeometric Analysis: Toward Integration of CAD and
FEA. Wiley.

Cuthill, E. and McKee, J. (1969). Reducing the bandwidth of sparse symmetric matrices. In ACM Annual
Conference/Annual Meeting: Proceedings of the 1969 24th national conference, pages 157–172. ACM.

Davies, A. (1988). Reentrant corner singularities in non-Newtonian flow. Part I: Theory. Journal of
Non-Newtonian Fluid Mechanics, 29:269–293.

de Niet, A. (2007). Solving large linear systems in an implicit thermohaline ocean model. PhD thesis,
University of Groningen.

de Niet, A. and Wubs, F. (2007). Two preconditioners for saddle point problems in fluid flows. Int. J.
Numer. Meth. Fluids, 54:355–377.

De Smedt, B., Pattyn, F., and De Groen, P. (2010). Using the unstable manifold correction in a Picard
iteration to solve the velocity field in higher-order ice-flow models. Journal of Glaciology, 56(196):257–
261.

Deb, M., Babuška, I., and Oden, J. (2001). Solution of stochastic partial differential equations using
Galerkin finite element techniques. Computer Methods in Applied Mechanics and Engineering,
190(48):6359–6372.

Delzanno, G., Chacón, L., Finn, J., Chung, Y., and Lapenta, G. (2008). An optimal robust equidistribution
method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. Journal of
Computational Physics, 227(23):9841–9864.

98 REFERENCES

Demkowicz, L., Oden, J., Rachowicz, W., and Hardy, O. (1989). Toward a universal hp adaptive finite
element strategy. I: Constrained approximation and data structure. Comput. Methods Appl. Mech.
Engrg, 77:79–112.

Demkowicz, L., Rachowicz, W., and Devloo, P. (2002). A fully automatic hp-adaptivity. Journal of
Scientific Computing, 17(1):117–142.

Deville, M. and Mund, E. (1985). Chebyshev pseudospectral solution of second-order elliptic equations
with finite element preconditioning. Journal of Computational Physics, 60:517.

Deville, M. and Mund, E. (1990). Finite-element preconditioning for pseudospectral solutions of elliptic
problems. SIAM Journal on Scientific and Statistical Computing, 11:311.

Dohrmann, C. (2003). A preconditioner for substructuring based on constrained energy minimization.
SIAM Journal on Scientific Computing, 25:246.

Dohrmann, C. and Bochev, P. (2004). A stabilized finite element method for the Stokes problem based on
polynomial pressure projections. International Journal for Numerical Methods in Fluids, 46(2):183–
201.

Dohrmann, C. and Lehoucq, R. (2006). A primal based penalty preconditioner for elliptic saddle point
systems. SIAM Journal on Numerical Analysis, 44(1):270–282.

Dohrmann, C. and Widlund, O. (2010). Hybrid domain decomposition algorithms for compressible
and almost incompressible elasticity. International Journal for Numerical Methods in Engineering,
82(2):157–183.

Donea, J., Huerta, A., Ponthot, J.-P., and Rodrı́guez-Ferran, A. (2004). Arbitrary Lagrangian-Eulerian
Methods, chapter 14, pages 413–437. John Wiley & Sons, Ltd.

Drepper, U. (2007). What every programmer should know about memory. Linux Weekly News, http:
//people.redhat.com/drepper/cpumemory.pdf.

Durand, G., Gagliardini, O., de Fleurian, B., Zwinger, T., and Le Meur, E. (2009). Marine ice sheet
dynamics: Hysteresis and neutral equilibrium. Journal of Geophysical Research, 114(F3):F03009.

Egholm, D., Knudsen, M., Clark, C., and Lesemann, J. (2011). Modeling the flow of glaciers in steep
terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical
Research, 116(F2):F02012.

Eisenstat, S., Elman, H., and Schultz, M. (1983). Variational iterative methods for nonsymmetric systems
of linear equations. SIAM Journal on Numerical Analysis, 20(2):345–357.

Eisenstat, S. C. and Walker, H. F. (1996). Choosing the forcing terms in an inexact Newton method. SIAM
Journal on Scientific Computing, 17(1):16–32.

Elguedj, T., Gravouil, A., and Combescure, A. (2006). Appropriate extended functions for X-FEM
simulation of plastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering,
195(7-8):501 – 515.

Elman, H. (1999). Preconditioning for the steady-state Navier-Stokes equations with low viscosity. SIAM
Journal on Scientific Computing, 20(4):1299–1316.

Elman, H. (2005). Preconditioning strategies for models of incompressible flow. Journal of Scientific
Computing, 25(1):347–366.

Elman, H., Howle, V., Shadid, J., Shuttleworth, R., and Tuminaro, R. (2006). Block preconditioners based
on approximate commutators. SIAM Journal on Scientific Computing, 27(5):1651–1668.

http://people.redhat.com/drepper/cpumemory.pdf
http://people.redhat.com/drepper/cpumemory.pdf

REFERENCES 99

Elman, H., Howle, V., Shadid, J., Shuttleworth, R., and Tuminaro, R. (2008). A taxonomy and comparison
of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. Journal
of Computational Physics, 227(1):1790–1808.

Elman, H., Mihajlovic, M., and Silvester, D. (2011). Fast iterative solvers for buoyancy driven flow
problems. Journal of Computational Physics, 230(10):3900 – 3914.

Elman, H. and Tuminaro, R. (2009). Boundary conditions in approximate commutator preconditioners for
the Navier-Stokes equations. Electronic Transactions on Numerical Analysis, 35:257–280.

Embree, M. (1999). How descriptive are GMRES convergence bounds. Technical Report 08, Oxford
University Computing Laboratory.

Erdogan, F. and Biricikoglu, V. (1973). Two bonded half planes with a crack going through the interface
1. International Journal of Engineering Science, 11(7):745–766.

Estep, D., Ginting, V., Ropp, D., Shadid, J., and Tavener, S. (2008). An a posteriori-a priori analysis of
multiscale operator splitting. SIAM Journal on Numerical Analysis, 46(3):1116–1146.

Evans, K., Salinger, A., Barker, E., Holland, D., Knoll, D., LeMieux, J. F., Lipscomb, B., Nong, R., Price,
S., Roddy, K., White, T., and Worley, P. (2010). A Scalable, Efficient, and Accurate Community Ice
Sheet Model. www.csm.ornl.gov/SEACISM.

Evans, L. (1998). Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. American
Mathematics Society.

Evans, L. (2007). The 1-Laplacian, the ∞-Laplacian and differential games. Perspectives in Nonlinear
Partial Differential Equations: In Honor of Haim Brezis, 446:245.

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., and Rixen, D. (2001). FETI-DP: a dual–primal unified
FETI method—Part I: A faster alternative to the two-level FETI method. International Journal for
Numerical Methods in Engineering, 50(7):1523–1544.

Farhat, C., Lesoinne, M., and Pierson, K. (2000). A scalable dual-primal domain decomposition method.
Numerical linear algebra with applications, 7(7-8):687–714.

Fischer, P., Kruse, J., Mullen, J., Tufo, H., Lottes, J., and Kerkemeier, S. (2008). NEK5000–open source
spectral element CFD solver.

Flowers, G. and Clarke, G. (2002a). A multicomponent coupled model of glacier hydrology 1. Theory
and synthetic examples. Journal of Geophysical Research, 107(B11):2287.

Flowers, G. and Clarke, G. (2002b). A multicomponent coupled model of glacier hydrology 2. Application
to Trapridge Glacier, Yukon, Canada. Journal of Geophysical Research, 107(B11):2288.

Fog, A. (2011a). Instruction tables: Lists of instruction latencies, throughputs and microoperation
breakdowns for Intel, AMD and VIA CPUs.

Fog, A. (2011b). The microarchitecture of Intel and AMD CPU’s: An optimization guide for assembly
programmers and compiler makers.

Fowler, A. (2001). Modelling the flow of glaciers and ice sheets. Continuum Mechanics and Applications
in Geophysics and the Environment, pages 201–221.

Fowler, M. (2004). Inversion of control containers and the dependency injection pattern.

Fritzson, P. and Fritzson, D. (1992). The need for high-level programming support in scientific computing
applied to mechanical analysis. Computers & structures, 45(2):387–395.

http://www.csm.ornl.gov/SEACISM

100 REFERENCES

Fujita, H. (2002). A coherent analysis of Stokes flows under boundary conditions of friction type. Journal
of Computational and Applied Mathematics, 149(1):57–69.

Funk, M., Echelmeyer, K., and Iken, A. (1994). Mechanisms of fast flow in Jakobshavns Isbrae, Greenland;
Part II: Modeling of englacial temperatures. Journal of Glaciology, 40(136):569–585.

Ganapathysubramanian, B. and Zabaras, N. (2007). Sparse grid collocation schemes for stochastic natural
convection problems. Journal of Computational Physics, 225(1):652–685.

Gee, M., Siefert, C., Hu, J., Tuminaro, R., and Sala, M. (2006). ML 5.0 smoothed aggregation user’s
guide. Technical Report SAND2006-2649, Sandia National Laboratories.

Ghanem, R. and Spanos, P. (2003). Stochastic Finite Elements: A Spectral Approach. Dover Publications.

Glen, J. W. (1955). The creep of polycrystalline ice. Proceedings of the Royal Society of London, Ser. A,
228(1175):519–538.

Glowinski, R. and Rappaz, J. (2003). Approximation of a nonlinear elliptic problem arising in a
non-Newtonian fluid flow model in glaciology. Mathematical Modelling and Numerical Analysis,
37(1):175–186.

Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys, 23(1):5–48.

Goldberg, D. (2011). A variationally derived, depth-integrated approximation to a higher-order glaciologi-
cal flow model. Journal of Glaciology, 57(201):157–170.

Goldberg, D., Holland, D., and Schoof, C. (2009). Grounding line movement and ice shelf buttressing in
marine ice sheets. Journal of Geophysical Research, 114(F4):F04026.

Gottlieb, S., Ketcheson, D., and Shu, C. (2009). High order strong stability preserving time discretizations.
Journal of Scientific Computing, 38(3):251–289.

Gottlieb, S., Shu, C., and Tadmor, E. (2001). Strong Stability-Preserving High-Order Time Discretization
Methods. SIAM Review, 43:89.

Greve, R. (1997). A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 355(1726):921–974.

Greve, R. and Blatter, H. (2009). Dynamics of ice sheets and glaciers. Springer Verlag.

Griewank, A. (2003). A mathematical view of automatic differentiation. Acta Numerica, 12(-1):321–398.

Griewank, A., Juedes, D., Mitev, H., Utke, J., Vogel, O., and Walther, A. (1999). ADOL-C: A package for
the automatic differentiation of algorithms written in C/C++.

Griewank, A., Juedes, D., Srinivasan, J., et al. (1996). Adol-c, a package for the automatic differentiation
of algorithms written in c/c++. ACM Trans. Math. Software, 22:131–167.

Griewank, A. and Walther, A. (2008). Evaluating derivatives: principles and techniques of algorithmic
differentiation. Society for Industrial and Applied Mathematics (SIAM).

Griffiths, D. (1997). The “no boundary condition” outflow boundary condition. International Journal for
Numerical Methods in Fluids, 24:393–411.

Grisvard, P. (1985). Elliptic problems in nonsmooth domains. Pitman Advanced Pub. Program.

REFERENCES 101

Gropp, W. (1999). Exploiting existing software in libraries: Successes, Failures, and Reasons Why.
In Proceedings of the SIAM Workshop on Object Oriented Methods for Interoperable Scientific and
Engineering Computing, pages 21–29. Soc for Industrial & Applied Math, SIAM.

Gropp, W., Keyes, D., Mcinnes, L., and Tidriri, M. (2000a). Globalized Newton-Krylov-Schwarz algo-
rithms and software for parallel implicit CFD. International Journal of High Performance Computing
Applications, 14(2):102.

Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. (2000b). Performance modeling and tuning of
an unstructured mesh CFD application. In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing, page 34, Washington, DC, USA. IEEE Computer Society.

Grote, M. and Huckle, T. (1997). Parallel preconditioning with sparse approximate inverses. SIAM
Journal on Scientific Computing, 18(3):838–853.

Gudmundsson, G. and Raymond, M. (2008). On the limit to resolution and information on basal properties
obtainable from surface data on ice streams. The Cryosphere, 2:167–178.

Hackbusch, W. (1985). Multi-grid methods and applications. Springer Verlag.

Hairer, E. and Wanner, G. (1999). Stiff differential equations solved by Radau methods. Journal of
Computational and Applied Mathematics, 111(1-2):93–111.

Hairer, E. and Wanner, G. (2010). Solving ordinary differential equations II: Stiff and differential-algebraic
problems, volume 14. Springer Verlag.

Hansen, G. and Zardecki, A. (2007). Unstructured surface mesh adaptation using the Laplace-Beltrami
target metric approach. Journal of Computational Physics, 225(1):165–182.

Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal of Computational
Physics, 49(3):357–393.

Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. (1987). Uniformly high order accurate essentially
non-oscillatory schemes, III. Journal of Computational Physics, 71(2):231–303.

HDF5 Group (2011). HDF5 web site. http://www.hdfgroup.org/HDF5/.

Heimbach, P. and Bugnion, V. (2009). Greenland ice-sheet volume sensitivity to basal, surface and initial
conditions derived from an adjoint model. Annals of Glaciology, 50(52):67–80.

Heimbach, P., Hill, C., and Giering, R. (2005). An efficient exact adjoint of the parallel mit general
circulation model, generated via automatic differentiation. Future Generation Computer Systems,
21(8):1356–1371.

Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during
the past 130,000 years. Quaternary Research, 29(2):142 – 152.

Henderson, A., Ahrens, J., and Law, C. (2004). The Paraview Guide. Kitware.

Henson, V. and Yang, U. (2002). BoomerAMG: A parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41(1):155–177.

Herman, F. and Braun, J. (2008). Evolution of the glacial landscape of the Southern Alps of New Zealand:
Insights from a glacial erosion model. J. Geophys. Res, 113:F02009.

Hesthaven, J. and Warburton, T. (2008). Nodal discontinuous Galerkin methods: algorithms, analysis,
and applications. Springer Verlag.

http://www.hdfgroup.org/HDF5/

102 REFERENCES

Heys, J., Manteuffel, T., McCormick, S., and Olson, L. (2005). Algebraic multigrid for higher-order finite
elements. Journal of Computational Physics, 204(2):520–532.

Higham, N. (2002). Accuracy and stability of numerical algorithms. Society for Industrial Mathematics.

Hinch, E. (1993). The flow of an Oldroyd fluid around a sharp corner. Journal of Non-Newtonian Fluid
Mechanics, 50(2-3):161–171.

Hindmarsh, R. (2004). A numerical comparison of approximations to the Stokes equations used in ice
sheet and glacier modeling. Journal of Geophysical Research, 109(F1):F01012.

Hirata, S. (2003). Tensor contraction engine: Abstraction and automated parallel implementation of
configuration-interaction, coupled-cluster, and many-body perturbation theories. The Journal of
Physical Chemistry A, 107(46):9887–9897.

Hughes, T., Cottrell, J., and Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Computer methods in applied mechanics and engineering,
194(39-41):4135–4195.

Hughes, T., Engel, G., Mazzei, L., and Larson, M. (2000). The continuous Galerkin method is locally
conservative. Journal of Computational Physics, 163(2):467–488.

Hughes, T., Feijóo, G., Mazzei, L., and Quincy, J. (1998). The variational multiscale method–a paradigm
for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166(1-2):3–
24.

Hughes, T., Franca, L., and Balestra, M. (1986). A new finite element formulation for computational fluid
dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the
Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics
and Engineering, 59(1):85–99.

Hughes, T., Franca, L., and Hulbert, G. (1989). A new finite element formulation for computational
fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations. Computer
Methods in Applied Mechanics and Engineering, 73(2):173–189.

Hutchinson, J. (1968). Singular behaviour at the end of a tensile crack in a hardening material. Journal of
the Mechanics and Physics of Solids, 16(1):13–31.

Hutter, K. (1982). A mathematical model of polythermal glaciers and ice sheets. Geophysical and
Astrophysical Fluid Dynamics, 21:201–224.

Hutter, K. (1983). Theoretical glaciology: material science of ice and the mechanics of glaciers and ice
sheets. Springer.

Hutter, K. and Jöhnk, K. (2004). Continuum methods of physical modeling. Springer.

Intel (2011). Intel 64 and IA-32 Architectures Optimization Reference Manual. Number 248966-024 in
Intel Technical Report. Intel.

Ipsen, I. C. F. (2001). A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput.,
23:1050–1051.

ITAPS (2011). Interoperable Technologies for Advanced Petascale Simulations. http://www.itaps.org/.

Iverson, N., Hooyer, T., and Baker, R. (1998). Ring-shear studies of till deformation: Coulomb-plastic
behavior and distributed strain in glacier beds. Journal of Glaciology, 44(148):634–642.

REFERENCES 103

Jacobson, H. and Raymond, C. (1998). Thermal effects on the location of ice stream margins. Journal of
Geophysical Research, 103(B6):12111.

Jameson, A. and Caughey, D. (2001). How many steps are required to solve the Euler equations of steady,
compressible flow: in search of a fast solution algorithm. AIAA paper, 2673:2001.

Jardin, S., Bateman, G., Hammett, G., and Ku, L. (2008). On 1D diffusion problems with a gradient-
dependent diffusion coefficient. Journal of Computational Physics, 227(20):8769–8775.

Jiang, G. and Shu, C. (1996). Efficient implementation of weighted ENO schemes. Journal of Computa-
tional Physics, 126(1):202–228.

Jiang, Y., Liu, G., Zhang, Y., Chen, L., and Tay, T. (2011). A singular ES-FEM for plastic fracture
mechanics. Computer Methods in Applied Mechanics and Engineering, In Press, Accepted Manuscript:–
.

John, V. and Knobloch, P. (2007). On spurious oscillations at layers diminishing (SOLD) methods for
convection-diffusion equations: Part I—A review. Computer Methods in Applied Mechanics and
Engineering, 196(17-20):2197–2215.

John, V. and Knobloch, P. (2008). On spurious oscillations at layers diminishing (SOLD) methods for
convection-diffusion equations: Part II—Analysis for p1 and q1 finite elements. Computer Methods in
Applied Mechanics and Engineering, 197(21-24):1997–2014.

John, V. and Schmeyer, E. (2008). Finite element methods for time-dependent convection-diffusion-
reaction equations with small diffusion. Computer Methods in Applied Mechanics and Engineering,
198(3-4):475 – 494.

Johnson, J. and Fastook, J. (2002). Northern hemisphere glaciation and its sensitivity to basal melt water.
Quaternary International, 95(96):87–98.

Johnson, J., Prescott, P., and Hughes, T. (2004). Ice dynamics preceding catastrophic disintegration of the
floating part of Jakobshavn Isbræ, Greenland. Journal of Glaciology, 50(171):492–504.

Johnson, J. and Staiger, J. (2007). Modeling long-term stability of the Ferrar Glacier, East Antarctica:
Implications for interpreting cosmogenic nuclide inheritance. Journal of Geophysical Research,
112(F3):F03S30.

Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R. B., Stern, H., , and Truffer, M.
(2008). Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical
Research, 113:F04006. doi:10.1029/2008JF001023.

Karniadakis, G. and Sherwin, S. (2005). Spectral/hp element methods for computational fluid dynamics.
Oxford University Press, Oxford.

Katz, R. (2008). Magma dynamics with the enthalpy method: Benchmark solutions and magmatic
focusing at mid-ocean ridges. Journal of Petrology, 49(12):2099.

Kaushik, D., Gropp, W., Minkoff, M., and Smith, B. (2008). Improving the performance of tensor matrix
vector multiplication in cumulative reaction probability based quantum chemistry codes. In Proceedings
of the 15th international conference on High performance computing, pages 120–130. Springer-Verlag.

Kay, D., Loghin, D., and Wathen, A. (2002). A preconditioner for the steady-state Navier-Stokes equations.
SIAM Journal on Scientific Computing, 24(1):237–256.

Kelley, C. (1995). Iterative methods for linear and nonlinear equations. Society for Industrial Mathemat-
ics.

104 REFERENCES

Kelley, C. and Keyes, D. (1998). Convergence analysis of pseudo-transient continuation. SIAM Journal
on Numerical Analysis, 35:508.

Ketcheson, D. (2008). Highly efficient strong stability preserving Runge-Kutta methods with low-storage
implementations. SIAM Journal on Scientific Computing, 30(4):2113–2136.

Keyes, D. (2011). Exaflop/s: The why and the how. Comptes Rendus Mécanique, 339(2-3):70–77.

Kim, S. (2007). Piecewise bilinear preconditioning of high-order finite element methods. Electronic
Transactions on Numerical Analysis, 26:228–242.

Kirby, R. (2004). Algorithm 839: FIAT, a new paradigm for computing finite element basis functions.
ACM Transactions on Mathematical Software (TOMS), 30(4):502–516.

Kirby, R. (2006). Optimizing FIAT with level 3 BLAS. ACM Transactions on Mathematical Software
(TOMS), 32(2):223–235.

Kirby, R., Knepley, M., Logg, A., and Scott, L. (2005). Optimizing the evaluation of finite element
matrices. SIAM Journal on Scientific Computing, 27(3):741–758.

Kirk, B., Peterson, J. W., Stogner, R. H., and Carey, G. F. (2006). libMesh: A C++ library for parallel
adaptive mesh refinement/coarsening simulations. Engineering with Computers, 22(3–4):237–254.
http://dx.doi.org/10.1007/s00366-006-0049-3.

Klawonn, A. and Rheinbach, O. (2007a). Inexact FETI-DP methods. International Journal for Numerical
Methods in Engineering, 69(2):284–307.

Klawonn, A. and Rheinbach, O. (2007b). Robust FETI-DP methods for heterogeneous three dimensional
elasticity problems. Computer Methods in Applied Mechanics and Engineering, 196(8):1400–1414.

Klawonn, A. and Widlund, O. (2006). Dual-primal FETI methods for linear elasticity. Communications
on Pure and Applied Mathematics, 59(11):1523–1572.

Knoll, D., Chacon, L., Margolin, L., and Mousseau, V. (2003). On balanced approximations for time
integration of multiple time scale systems. Journal of Computational Physics, 185(2):583–611.

Knoll, D. and Keyes, D. (2004). Jacobian-free Newton–Krylov methods: a survey of approaches and
applications. Journal of Computational Physics, 193(2):357–397.

Knoll, D. and McHugh, P. (1998). Enhanced nonlinear iterative techniques applied to a nonequilibrium
plasma flow. SIAM Journal on Scientific Computing, 19(1):291–301.

Knoll, D., Mousseau, V., Chacon, L., and Reisner, J. (2005). Jacobian-Free Newton-Krylov methods for
the accurate time integration of stiff wave systems. Journal of Scientific Computing, 25(1):213–230.

Knupp, P. and Salari, K. (2002). Verification of computer codes in computational science and engineering.
CRC Press.

Kondrat’ev, V. and Oleinik, O. (1988). Boundary-value problems for the system of elasticity theory in
unbounded domains: Korn’s inequalities. Russian Mathematical Surveys, 43:65.

Korelc, J. (1997). Automatic generation of finite-element code by simultaneous optimization of expres-
sions. Theoretical Computer Science, 187(1-2):231–248.

Korelc, J. (2002). Multi-language and multi-environment generation of nonlinear finite element codes.
Engineering with Computers, 18(4):312–327.

Kuzmin, D., Moller, M., and Turek, S. (2004). High-resolution FEM-FCT schemes for multidimensional
conservation laws. Computer Methods in Applied Mechanics and Engineering, 193(45-47):4915–4946.

http://dx.doi.org/10.1007/s00366-006-0049-3

REFERENCES 105

Larour, E., Morlighem, M., and Seroussi, H. (2010). Ice Sheet System Model. issm.jpl.nasa.gov.

Lemieux, J.-F., Price, S. F., Evans, K. J., Knoll, D., Salinger, A. G., Holland, D. M., and Payne, A. J.
(2011). Implementation of the Jacobian-free Newton-Krylov method for solving the first-order ice
sheet momentum balance. Journal of Computational Physics, 230(17):6531 – 6545.

Lemke, P., Ren, J., Alley, R., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.,
and Zhang, T. (2007). Observations: Changes in snow, ice and frozen ground. In Solomon, S., Qin, D.,
Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., editors, Climate Change
2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, volume WG I, chapter 4, pages 337–383. Cambridge
University Press, Cambridge, UK.

LeVeque, R. (2002). Finite volume methods for hyperbolic problems. Cambridge Univ Press.

Li, J. and Widlund, O. (2006). BDDC algorithms for incompressible Stokes equations. SIAM Journal on
Numerical Analysis, 44(6):2432–2455.

Limache, A., Sánchez, P., Dalcı́n, L., and Idelsohn, S. (2008). Objectivity tests for Navier-Stokes
simulations: The revealing of non-physical solutions produced by Laplace formulations. Computer
Methods in Applied Mechanics and Engineering, 197(49-50):4180–4192.

Lipscomb, G., Keunings, R., and Denn, M. (1987). Implications of boundary singularities in complex
geometries. Journal of Non-Newtonian Fluid Mechanics, 24(1):85–96.

Liseikin, V. (2009). Grid generation methods. Springer Verlag.

Liu, T. (2000). Hyperbolic and viscous conservation laws. Number 72. Society for Industrial Mathematics.

Liu, X., Osher, S., and Chan, T. (1994). Weighted essentially non-oscillatory schemes. Journal of
Computational Physics, 115(1):200–212.

Logg, A., Ølgaard, K., Rognes, M., Wells, G., Jansson, J., Kirby, R., Knepley, M., Lindbo, D.,
and Skavhaug, O. (2011). The FEniCS project. A continually updated technical report. http:
//fenicsproject.org.

Logg, A. and Wells, G. (2010). DOLFIN: Automated finite element computing. ACM Transactions on
Mathematical Software (TOMS), 37(2):1–28.

Lottes, J. and Fischer, P. (2005). Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method.
Journal of Scientific Computing, 24(1):45–78.

Lynch, D. and Gray, W. (1980). Finite element simulation of flow in deforming regions. Journal of
Computational Physics, 36(2):135–153.

MacAyeal, D. (1992). The basal stress distribution of Ice Stream E, Antarctica, inferred by control
methods. Journal of Geophysical Research, 97:595–603.

MacAyeal, D. (1993). A tutorial on the use of control methods in ice-sheet modeling. JGlac, 39(131):91–
98.

Maday, Y., Patera, A., and Rønquist, E. (1992). The PN −PN−2 method for the approximation of the
Stokes problem. Laboratoire d’Analyse Numérique, Paris VI, 11(4).

Malas, T. M., Ahmadia, A. J., Brown, J., Gunnels, J. A., and Keyes, D. E. (2012). Optimizing the perfor-
mance of streaming numerical kernels on the IBM BlueGene/P PowerPC 450 processor. International
Journal of High Performance Computing Applications, accepted.

http://issm.jpl.nasa.gov
issm.jpl.nasa.gov
http://fenicsproject.org
http://fenicsproject.org

106 REFERENCES

Mandel, J. and Dohrmann, C. (2003). Convergence of a balancing domain decomposition by constraints
and energy minimization. Numerical Linear Algebra with Applications, 10(7):639–659.

Matthies, G., Skrzypacz, P., and Tobiska, L. (2008). Stabilization of local projection type applied to
convection-diffusion problems with mixed boundary conditions. Electronic Transactions on Numerical
Analysis, 32:90–105.

Matthies, G. and Tobiska, L. (2002). The inf-sup condition for the mapped Qk−Pdisc
k−1 element in arbitrary

space dimensions. Computing, 69(2):119–139.

Matthies, H. and Keese, A. (2005). Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations. Computer Methods in Applied Mechanics and Engineering, 194(12-16):1295–
1331.

May, D. A. and Moresi, L. (2008). Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics. Physics of the Earth and Planetary Interiors, 171(1-4):33 – 47. Recent
Advances in Computational Geodynamics: Theory, Numerics and Applications.

McCalpin, J. D. (1991-2007). STREAM: Sustainable memory bandwidth in high performance computers.
Technical report, University of Virginia, Charlottesville, Virginia. A continually updated technical
report. http://www.cs.virginia.edu/stream.

Merlis, T. and Khatiwala, S. (2008). Fast dynamical spin-up of ocean general circulation models using
Newton-Krylov methods. Ocean Modelling, 21(3-4):97–105.

Mishra, S., Schwab, C., and Šukys, J. (2011). Multi-level Monte Carlo finite volume methods for nonlinear
systems of conservation laws in multi-dimensions. Technical Report 2011-02, ETH Zürich.

Mizukami, A. and Hughes, T. (1985). A Petrov-Galerkin finite element method for convection-dominated
flows: An accurate upwinding technique for satisfying the maximum principle. Computer Methods in
Applied Mechanics and Engineering, 50(2):181–193.

Mohammadi, S. (2008). Extended finite element method. Wiley Online Library.

Morland, L. (1987). Unconfined ice-shelf flow. In van der Veen, C. and Oerlemans, J., editors, Dynamics
of the West Antarctic ice sheet, pages 99–116. Kluwer Academic Publishers.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Dhia, H., and Aubry, D. (2010). Spatial patterns
of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island
Glacier, West Antarctica. Geophysical Research Letters, 37(14):L14502.

Motyka, R., Fahnestock, M., and Truffer, M. (2010). Volume change of Jakobshavn Isbrae, West
Greenland:: 198519972007. Journal of Glaciology, 56(198):635–646.

Mousseau, V., Knoll, D., and Reisner, J. (2002). An implicit nonlinearly consistent method for the
two-dimensional shallow-water equations with Coriolis force. Monthly Weather Review, 130(11):2611–
2625.

Murphy, M., Golub, G., and Wathen, A. (2000). A note on preconditioning for indefinite linear systems.
SIAM Journal on Scientific Computing, 21(6):1969–1972.

Nachtigal, N., Reddy, S., and Trefethen, L. (1992). How fast are nonsymmetric matrix iterations? SIAM
Journal on Matrix Analysis and Applications, 13:778.

Nazarov, S. and Plamenevskiı̆, B. (1994). Elliptic problems in domains with piecewise smooth boundaries.
Walter de Gruyter.

http://www.cs.virginia.edu/stream

REFERENCES 107

Oden, J., Demkowicz, L., Rachowicz, W., and Westermann, T. (1989). Toward a universal hp adaptive
finite element strategy. II: A posteriori error estimation. Comput. Methods Appl. Mech. Engrg, 77:113–
180.

Olshanskii, M., Peters, J., and Reusken, A. (2006). Uniform preconditioners for a parameter depen-
dent saddle point problem with application to generalized Stokes interface equations. Numerische
Mathematik, 105(1):159–191.

Olshanskii, M. and Reusken, A. (2006). Analysis of a Stokes interface problem. Numerische Mathematik,
103(1):129–149.

Orszag, S. (1980). Spectral methods for problems in complex geometries. J. Comput. Phys., 37:70–92.

Ouazzi, A. and Turek, S. (2006). Efficient multigrid and data structures for edge-oriented FEM stabilization.
Numerical Mathematics and Advanced Applications, pages 520–527.

Owens, R. and Phillips, T. (2002). Computational Rheology. Imperial College Press.

Papanastasiou, T., Malamataris, N., and Ellwood, K. (1992). A new outflow boundary condition. Interna-
tional Journal for Numerical Methods in Fluids, 14(5):587–608.

Park, H., Nourgaliev, R., Martineau, R., and Knoll, D. (2009). On physics-based preconditioning of the
Navier-Stokes equations. Journal of Computational Physics, 228(24):9131–9146.

Patankar, S. and Spalding, D. (1972). A calculation procedure for heat, mass and momentum transfer in
three-dimensional parabolic flows. Int. J. Heat Mass Transfer, 15:1787–1806.

Pattyn, F. (2002). Transient glacier response with a higher-order numerical ice-flow model. Journal of
Glaciology, 48(162):467–477.

Pattyn, F. (2003). A new three-dimensional higher-order thermomechanical ice sheet model: Basic
sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res, 108(2382):10–
1029.

Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., De Smedt, B., Gagliardini, O., Gudmundsson, G.,
Hindmarsh, R., Hubbard, A., Johnson, J., Kleiner, T., Konovalov, Y., Martin, C., Payne, A., Pollard,
D., Price, S., Rückamp, M., Saito, F., Souček, O., Sugiyama, S., and Zwinger, T. (2008). Benchmark
experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). The Cryosphere, 2(1):95–
108.

Pham, D. C., Aipperspach, T., Boerstler, D., Bolliger, M., Chaudhry, R., Cox, D., Harvey, P., Harvey,
P. M., Hofstee, H. P., Johns, C., Kahle, J., Kameyama, A., Keaty, J., Masubuchi, Y., Pham, M.,
Pille, J., Posluszn, S., and Yazawa, K. (2006). Overview of the architecture, circuit design, and
physical implementation of a first-generation cell processor. Solid-State Circuits, IEEE Journal of,
41(1):179–196.

Pimentel, S. and Flowers, G. (2011). A numerical study of hydrologically driven glacier dynamics and
subglacial flooding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 467(2126):537.

Pimentel, S., Flowers, G., and Schoof, C. (2010). A hydrologically coupled higher-order flow-band model
of ice dynamics with a coulomb friction sliding law. Journal of Geophysical Research, 115(F4):F04023.

Plummer, J. et al. (submitted, 2011). A high-resolution bed elevation map for Jakobshavn Isbræ, west
greenland. Journal of Glaciology.

Podhaisky, H. (2006). Atlas of general linear methods with inherent Runge-Kutta stability. http:
//www.math.auckland.ac.nz/˜hpod/atlas/.

http://www.math.auckland.ac.nz/~hpod/atlas/
http://www.math.auckland.ac.nz/~hpod/atlas/

108 REFERENCES

Rachowicz, W., Oden, J., and Demkowicz, L. (1989). Toward a universal hp adaptive finite element
strategy. III: Design of hp meshes. Comput. Methods Appl. Mech. Engrg, 77:181–212.

Rannacher, R. (2000). Finite element methods for the incompressible Navier-Stokes equations. Funda-
mental Directions in Mathematical Fluid Mechanics, page 191.

Rannacher, R. and Turek, S. (1992). Simple nonconforming quadrilateral Stokes element. Numerical
Methods for Partial Differential Equations, 8(2):97–111.

Raymond, C. (2000). Energy balance of ice streams. Journal of Glaciology, 46(155):665–674.

Raymond, M. and Gudmundsson, G. (2009). Estimating basal properties of ice streams from surface
measurements: a non-linear Bayesian inverse approach applied to synthetic data. The Cryosphere,
3:265–278.

Rees, T., Dollar, H., and Wathen, A. (2010). Optimal solvers for PDE-constrained optimization. SIAM
Journal on Scientific Computing, 32:271.

Renardy, M. (1997). Imposing “no” boundary condition at outflow: Why does it work? International
Journal for Numerical Methods in Fluids, 24(4):413–417.

Rice, J. (1968). A path independent integral and the approximate analysis of strain concentration by
notches and cracks. Journal of Applied Mechanics, 35(2):379–386.

Rice, J. and Rosengren, G. (1968). Plane strain deformation near a crack tip in a power-law hardening
material. Journal of the Mechanics and Physics of Solids, 16(1):1–12.

Roache, P. (1998). Verification and validation in computational science and engineering. Computing in
Science Engineering, pages 8–9.

Roache, P. (2002). Code verification by the method of manufactured solutions. Journal of Fluids
Engineering, 124:4.

Roache, P. (2004). Building PDE codes to be verifiable and validatable. Computing in Science &
Engineering, 6(5):30–38.

Roache, P., Ghia, K., and White, F. (1986). Editorial policy statement on the control of numerical accuracy.
Journal of Fluids Engineering, 108:2.

Saad, Y. (1993). A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific
Computing, 14:461–461.

Saad, Y. and Schultz, M. (1986). GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869.

Saito, N. (2004). On the Stokes equations with the leak and slip boundary conditions of friction type:
regularity of solutions. Publ. Res. Inst. Math. Sci, 40:345–383.

Sandu, A. (2006). On the properties of runge-kutta discrete adjoints. Computational Science–ICCS 2006,
pages 550–557.

Sandu, A., Daescu, D., and Carmichael, G. (2003). Direct and adjoint sensitivity analysis of chemical
kinetic systems with KPP: Part I–theory and software tools. Atmospheric Environment, 37(36):5083–
5096.

Schieweck, F. (2008). Uniformly stable mixed hp-finite elements on multilevel adaptive grids with
hanging nodes. Modélisation mathématique et analyse numérique, 42(3):493–505.

REFERENCES 109

Schoof, C. (2006a). A variational approach to ice stream flow. Journal of Fluid Mechanics, 556:227–251.

Schoof, C. (2006b). Variational methods for glacier flow over plastic till. Journal of Fluid Mechanics,
555:299–320.

Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of
Geophysical Research, 112(F3):F03S28.

Schoof, C. (2010). Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325):803–806.

Schoof, C. and Hindmarsh, R. (2010). Thin-film flows with wall slip: an asymptotic analysis of higher
order glacier flow models. The Quarterly Journal of Mechanics and Applied Mathematics, 63:73–114.

Schoof, C., Hindmarsh, R., and Pattyn, F. (2009). MISMIP: Marine ice sheet model intercomparison
project. in preparation.

Schötzau, D., Schwab, C., and Stenberg, R. (1998). Mixed hp-FEM on anisotropic meshes. Mathematical
Models and Methods in Applied Sciences, 8:787–820.

Schötzau, D., Schwab, C., and Stenberg, R. (1999). Mixed hp-FEM on anisotropic meshes II: Hanging
nodes and tensor products of boundary layer meshes. Numerische Mathematik, 83(4):667–697.

Schroeder, W., Bertel, F., Malaterre, M., Thompson, D., Pebay, P., O’Barall, R., and Tendulkar, S. (2005).
Framework for visualizing higher-order basis functions. In Visualization, 2005. VIS 05. IEEE, pages
43–50. IEEE.

Schroeder, W. et al. (2006). Methods and framework for visualizing higher-order finite elements. IEEE
transactions on visualization and computer graphics, pages 446–460.

Schroeder, W., Martin, K., Martin, K., and Lorensen, B. (1998). The Visualization Toolkit. Prentice Hall
PTR.

Schwab, C. (1998). p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid
Mechanics. Oxford University Press.

Sederberg, T., Zheng, J., Bakenov, A., and Nasri, A. (2003). T-splines and T-NURCCs. In ACM
SIGGRAPH 2003 Papers, pages 477–484. ACM.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman,
J., Cavin, R., et al. (2008). Larrabee: a many-core x86 architecture for visual computing. ACM
Transactions on Graphics (TOG), 27(3):1–15.

Shamsundar, N. and Sparrow, E. (1975). Analysis of multidimensional conduction phase change via the
enthalpy model. J. Heat Transfer, 97(3).

Shin, J., Hall, M., Chame, J., Chen, C., Fischer, P., and Hovland, P. (2010). Speeding up Nek5000
with autotuning and specialization. In Proceedings of the 24th ACM International Conference on
Supercomputing, pages 253–262. ACM.

Shu, C. (2003). High-order finite difference and finite volume WENO schemes and discontinuous Galerkin
methods for CFD. International Journal of Computational Fluid Dynamics, 17(2):107–118.

Silvester, D., Elman, H., Kay, D., and Wathen, A. (2001). Efficient preconditioning of the linearized
Navier-Stokes equations for incompressible flow. Journal of Computational and Applied Mathematics,
128(1-2):261–279.

Simon, H., Zacharia, T., Stevens, R., et al. (2007). Modeling and Simulation at the Exascale for Energy
and the Environment. Technical report, Department of Energy.

110 REFERENCES

Smith, B., Bjørstad, P., and Gropp, W. (1996). Domain decomposition: parallel multilevel methods for
elliptic partial differential equations. Cambridge Univ Press, New York.

Smith, B. and Zhang, H. (2010). Sparse triangular solves for ILU revisited: data layout crucial to better
performance. International Journal of High Performance Computing Applications, pages 1–6.

Spijker, M. (1983). Contractivity in the numerical solution of initial value problems. Numerische
Mathematik, 42(3):271–290.

Stenberg, R. and Suri, M. (1996). Mixed finite element methods for problems in elasticity and Stokes
flow. Numerische Mathematik, 72(3):367–389.

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. Society for
Industrial Mathematics.

Tautges, T. J. (2001). CGM: a geometry interface for mesh generation, analysis and other applications.
Engineering with Computers, 17(3):299–314. Journal Article.

Tautges, T. J. (2011). MeshKit. https://trac.mcs.anl.gov/projects/fathom/wiki/MeshKit.

Tautges, T. J., Meyers, R., Merkley, K., Stimpson, C., and Ernst, C. (2004). MOAB: a Mesh-Oriented
database. Technical report, Sandia National Laboratories.

Tomkin, J. and Braun, J. (2002). The influence of alpine glaciation on the relief of tectonically active
mountain belts. American Journal of Science, 302(3):169.

Toro, E. (2009). Riemann solvers and numerical methods for fluid dynamics: a practical introduction.
Springer Verlag.

Toselli, A. and Schwab, C. (2003). Mixed hp-finite element approximations on geometric edge and
boundary layer meshes in three dimensions. Numerische Mathematik, 94(4):771–801.

Trefethen, L. and Embree, M. (2005). Spectra and pseudospectra: the behavior of nonnormal matrices
and operators. Princeton Univ Press.

Trottenberg, U., Oosterlee, C., and Schüller, A. (2001). Multigrid. Academic Press.

Truffer, M. and Echelmeyer, K. (2003). Of Isbræ and Ice Streams. Annals of Glaciology, 36(1):66–72.

Tufo, H. and Fischer, P. (2001). Fast parallel direct solvers for coarse grid problems. Journal of Parallel
and Distributed Computing, 61(2):151–177.

Turek, S. and Ouazzi, A. (2007). Unified edge-oriented stabilization of nonconforming FEM for incom-
pressible flow problems: Numerical investigations. Journal of Numerical Mathematics, 15(4):299–322.

Turek, S., Ouazzi, A., and Schmachtel, R. (2002). Multigrid methods for stabilized nonconforming finite
elements for incompressible flow involving the deformation tensor formulation. Journal of Numerical
Mathematics, 10(3):235–248.

Üffinger, M., Frey, S., and Ertl, T. (2010). Interactive high-quality visualization of higher-order finite
elements. Computer Graphics Forum, 29(2):337–346.

Utke, J. (2004). Openad: Algorithm implementation user guide. Technical report, Technical Memorandum
ANL/MCS–TM–274, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill.

Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., and Wunsch, C. (2008).
Openad/f: A modular open-source tool for automatic differentiation of fortran codes. ACM Transactions
on Mathematical Software (TOMS), 34(4):1–36.

https://trac.mcs.anl.gov/projects/fathom/wiki/MeshKit

REFERENCES 111

Utke, J., Naumann, U., and Lyons, A. (2011). OpenAD/F: User Manual. Technical report, Argonne
National Laboratory. latest version available online at http://www.mcs.anl.gov/OpenAD/openad.
pdf.

Van der Vorst, H. and Vuik, C. (1994). GMRESR: A family of nested GMRES methods. Numerical
Linear Algebra with Applications, 1(4):369–386.

Vanka, S. (1986). Block-implicit multigrid solution of Navier-Stokes equations in primitive variables.
Journal of Computational Physics, 65(1):138–158.

Vuik, C. (1995). New insights in gmres-like methods with variable preconditioners. Journal of Computa-
tional and Applied Mathematics, 61(2):189–204.

Walkley, M., Gaskell, P., Jimack, P., Kelmanson, M., Summers, J., and Wilson, M. (2004). On the
calculation of normals in free-surface flow problems. Communications in Numerical Methods in
Engineering, 20(5):343–351.

Walter, S. (2011). AlgoPy – algorithmic differentiation in Python.

Walter, S. and Lehmann, L. (2010). Algorithmic differentiation of linear algebra functions with application
in optimum experimental design (extended version). Arxiv preprint arXiv:1001.1654.

Wang, P. (1986). FINGER: A symbolic system for automatic generation of numerical programs in finite
element analysis. Journal of Symbolic Computation, 2(3):305–316.

Washington, W., Bader, D., Collins, B., Drake, J., Taylor, M., Kirtman, B., Williams, D., and Middleton,
D. (2009). Scientific grand challenges: Challenges in climate change science and the role of computing
at the extreme scale. Technical report, Department of Energy, Office of Biological and Environmental
Research and the Office of Advanced Scientific Computing Research.

Weertman, J. (1957). On the sliding of glaciers. Journal of Glaciology, 3:33–38.

Weertman, J. (1974). Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology,
13(67):3–11.

Weis, M., Greve, R., and Hutter, K. (1999). Theory of shallow ice shelves. Continuum Mechanics and
Thermodynamics, 11(1):15–50.

White, R. (1982). An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal, 19(6).

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J. (2007). Optimization of sparse
matrix-vector multiplication on emerging multicore platforms. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing. ACM New York, NY, USA.

Wriggers, P. (2008). Nonlinear finite element methods. Springer Verlag.

Wright, W. (2002). General linear methods with inherent Runge-Kutta stability. PhD thesis, University of
Auckland.

Zabaras, N. and Ganapathysubramanian, B. (2008). A scalable framework for the solution of stochas-
tic inverse problems using a sparse grid collocation approach. Journal of Computational Physics,
227(9):4697–4735.

Zalesak, S. (1979). Fully multidimensional flux-corrected transport algorithms for fluids. Journal of
Computational Physics, 31(3):335–362.

http://www.mcs.anl.gov/OpenAD/openad.pdf
http://www.mcs.anl.gov/OpenAD/openad.pdf

Curriculum Vitae

Contact

Name Jedediah Aspen Kallen-Brown
Address Box 84056

Fairbanks, AK 99708, USA
Email jed@59A2.org
Date of birth 4 June, 1983, in Alaska
Citizenship United States

Education

2007 - 2011 Versuchsanstalt für Wasserbau,
Hydrologie und Glaziologie (VAW), ETH Zürich:
PhD-thesis “Computational methods for ice flow simulation
with applications to Jakobshavn Isbræ”

2004 - 2006 University of Alaska Fairbanks:
M.S. in Mathematics

2000 - 2004 University of Alaska Fairbanks:
B.S. in Mathematics
B.S. in Physics

mailto:jed@59A2.org

	Abstract
	Zusammenfassung
	Introduction
	Efficient nonlinear solvers for nodal high-order finite element methods in 3D
	Introduction
	Newton-Krylov
	The Newton iteration
	Krylov methods
	Performance

	High order finite element methods
	Discretization
	Residual evaluation
	Jacobian representation
	Preconditioning
	Performance of matrix operations

	Numerical examples
	p-Poisson
	Stokes

	Discussion

	Textbook multigrid efficiency for hydrostatic ice sheet flow
	Introduction
	Equations and Discretization
	Solver and Implementation
	Anisotropic Meshes
	Dirichlet Boundary Conditions
	Matrices

	Numerical Examples
	Algorithmic Scalability
	Parallel Scalability on Blue Gene/P
	Algebraic Methods

	Conclusion
	Addendum: Implicit free surface and erosion

	Software
	Multiphysics coupling
	Field-split preconditioning
	Linear algebraic interfaces to facilitate field-split preconditioning

	High throughput on cache-based architectures
	Sparse matrix kernels
	Small dense tensor product kernels

	Generic finite elements
	Dual order finite elements
	Input/output and visualization for high-order mixed spaces

	Verification
	Time integration

	Discretization issues
	Regularity and approximation
	Singularities in the continuum formulation
	Approximation spaces

	Implementation of boundary conditions
	Dirichlet boundary conditions
	Slip

	Steady-state viscous heat transport at Jakobshavn Isbræ
	Formulation and methods
	Problem description
	Numerical solution
	Verification
	A simple problem

	Jakobshavn Isbræ
	Scaling
	Meshing
	Solutions

	Conclusion and Outlook
	Future directions
	References

