
ETH Library

Implementation, evaluation and
detection of a doublespend-attack
on Bitcoin

Master Thesis

Author(s):
Herrmann, Matthias

Publication date:
2012

Permanent link:
https://doi.org/10.3929/ethz-a-007305115

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-007305115
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Implementation, evaluation and detection
of a doublespend-attack on Bitcoin

Master thesis

Matthias Herrmann

April 24, 2012

Supervisors: S. Capkun, E. Androulaki, G. Karame

Department of computer science, ETH Zürich

Abstract

Bitcoin is a peer-to-peer payment scheme with a monetary volume of over 40
million USD and estimated 60’000 users worldwide, including several businesses
like Drupal, Bitbrew, rasselzoo.ch or Meze grill.

In this master thesis, we evaluate the potential of doublespend-attacks
on Bitcoin. We analyse the Bitcoin system, in particular the doublespend-
protection procedure, and identify a weakness in certain usage scenarios.

The doublespend-protection procedure works by forming consensus about
transactions every 10 minutes, which means that the expected confirmation
time for a transaction is 5 minutes. This time frame is acceptable for online
shops like rasselzoo.ch, and in such a usage scenario, the procedure provides
sufficient protection from doublespend-attacks. However, for a restaurant like
Meze grill or for a vending machine, this time frame is too big. In such a usage
scenario, the procedure does not protect the user from doublespend-attacks.
Businesses with this usage scenario, mostly brick and mortar businesses, are at
risk of being the victim of a doublespend-attack.

We implement a doublespend-attack that functions in this usage scenario.
We evaluate the attack by performing measurements with varying parameter
settings to determine how they influence the attack. Since the attack is prob-
abilistic, we are especially interested in the success probability, and how it is
influenced by different attacker- and victim-configurations. Based on our mea-
surements, we name security parameters and determine thresholds for them.

Furthermore, we investigate the detectability of the attack, especially from
the perspective of the victim. We measure the influence the attack parameter
settings have on detectability. Even though the current Bitcoin client software
does not detect doublespend-attacks, detection can be implemented, and thus
we try to find a parameter setting which renders the attack undetectable from
the perspective of the victim.

Finally, we implement such a detection-mechanism. The mechanism informs
the user whether a doublespend-attack was detected or not within 10 seconds,
which is a huge improvement. Businesses operating in the previously vulnerable
usage scenario can most likely accept such a time frame, thus this mechanism
greatly reduces the risk for those businesses. However, the mechanism only
detects attacks on a limited set nodes, which consists of the nodes that are able
to detect the attack.

The mechanism also increases the number of nodes that are able to detect
the doublespend-attack. If sufficiently many nodes are updated, this mechanism
renders the attack detectable for all nodes in the network.

This thesis is based on the Bitcoin software version number 50000, but it
was tested in the live Bitcoin network, with the newest version number at the
time of this writing being 60000.

Acknowledgements

I would like to thank my supervisors for providing me with the resources I
required to complete this thesis, and for being very helpful whenever I had
questions.

I would also like to thank Sarah Aepli and Luka Malisa for their comments
on my work, and for interesting discussions which led to further insight into the
subject matter.

Furthermore, I would like to especially thank Hubert Ritzdorf who was ex-
tremely helpful in multiple aspects of my thesis, and whose ideas and work
allowed me to work much more efficiently.

1

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Contribution . 5
1.3 Problem description . 6
1.4 The attack . 7
1.5 Detection mechanism . 7
1.6 Thesis layout . 8

2 Related work 9

3 Background 10
3.1 Transactions . 11
3.2 Block creation / mining . 12
3.3 Doublespending . 13

4 The attack 15
4.1 Network effects . 16
4.2 Detectability . 16
4.3 Design . 17
4.4 Implementation . 18

4.4.1 Attacker side . 19
4.4.2 Helper side . 19

5 Experimental setup 22
5.1 Required resources . 22

5.1.1 Time measurements of the consensus procedure 22
5.1.2 Connection measurements of a Bitcoin node 22
5.1.3 Attack measurements . 23

5.2 Measurement methodology . 23
5.2.1 Measured data . 23
5.2.2 Data evaluation . 24
5.2.3 Problems and solutions 25

6 Experimental results 26
6.1 Measurement results . 26

6.1.1 Time measurements of the consensus procedure 26
6.1.2 Connection measurements of a Bitcoin node 26
6.1.3 Attack measurements . 28

2

6.2 Analysis . 44
6.2.1 Time measurements of the consensus procedure 44
6.2.2 Connection measurements of a Bitcoin node 44
6.2.3 Attack measurements . 45

7 Detection mechanism 49
7.1 Design . 49

7.1.1 Detection . 49
7.1.2 Detectability . 50

7.2 Implementation . 50
7.3 Evaluation . 52

8 Conclusion 55
8.1 This thesis . 55
8.2 Future work . 55

A Bitcoin logging mechanisms 57
A.1 Console logging . 57
A.2 Transaction-logging . 57
A.3 Connections-logging . 58
A.4 Doublespend-warnings . 58

B Scripts 59
B.1 Analysis of the blockchain . 59
B.2 Connectionslog post processing 59
B.3 Collection of log files . 59
B.4 Evaluation of log files . 59

List of Figures

4.1 Network effects of the attack . 16
4.2 Attack setup . 17
4.3 Attack commands . 18
4.4 Helpersfile . 19
4.5 Attacker algorithm . 20
4.6 Helper algorithm . 21

6.1 Number of connections in Switzerland 27
6.2 Number of connections in Virginia 27
6.3 Successful attacks measurement 1 29
6.4 Successful attacks measurement 2 29
6.5 Successful attacks measurement 3 30
6.6 Successful attacks measurement 4 30

3

6.7 Not found measurement 1 . 31
6.8 Not found measurement 2 . 31
6.9 Not found measurement 3 . 32
6.10 Not found measurement 4 . 32
6.11 Successful and not found measurement 1 33
6.12 Successful and not found measurement 2 33
6.13 Successful and not found measurement 3 34
6.14 Successful and not found measurement 4 34
6.15 Observed attacks measurement 1 35
6.16 Observed attacks measurement 2 35
6.17 Observed attacks measurement 3 36
6.18 Observed attacks measurement 4 36
6.19 Successful measurement 5 . 37
6.20 Not found measurement 5 . 38
6.21 Successful and not found measurement 5 38
6.22 Observed attacks measurement 5 39
6.23 Successful measurement 6 . 39
6.24 Not found measurement 6 . 40
6.25 Successful and not found measurement 6 40
6.26 Observed attacks measurement 6 41
6.27 Successful measurement 7 . 41
6.28 Not found measurement 7 . 42
6.29 Successful and not found measurement 7 42
6.30 Observed attacks measurement 7 43

7.1 Effects of the detection mechanism 51
7.2 Doublespend-warning . 52
7.3 User feedback . 52
7.4 Detection algorithm . 53
7.5 Test network for the detectability improvements 54

A.1 Addressfile . 58
A.2 Transaction log . 58
A.3 Connectionslog . 58

List of Tables

6.1 Time measurement of the consensus procedure 26

4

Chapter 1

Introduction

1.1 Motivation

Bitcoin is a digital payment scheme that can be used to purchase real goods and
services. It has estimated 60’000 users [16], including multiple businesses, and
has a monetary volume of over 40 million USD [3, 4] in Bitcoins, the currency
of Bitcoin. Bitcoin is a peer-to-peer system, so there is no central authority (i.e.
bank) that controls accounts or transactions.

If an attacker can perform a doublespend-attack on the system, they can
gain illicit access to goods and services from businesses and private people.
This poses a risk to entities using Bitcoin, in particular businesses, since they
usually have a higher transaction volume than private users.

A doublespend-attack on the Bitcoin system does not only cause direct dam-
age to the victim of the attack, but also destroys some of the trustworthiness
of the Bitcoin system. Trustworthiness is essential for any monetary system, as
people have to trust that the value of their money will not deteriorate. This is
especially the case for a system that handles transactions as well, since people
have to trust that the money transferred to them is accepted by others, so they
can transfer the money onwards if they desire.

Every attack on a system is also a risk for the attacker, since they might be
held liable if the attack is discovered. As stated, there is no central authority in
the Bitcoin system which keeps a registry of links from accounts to real people,
so the identity of the attacker is not easy to determine. Furthermore, a user
can create a new account by themselves for free and transfer money to it, so the
attacker can create an account for the sole purpose of the attack, which makes
identification even harder. We see that the risk for the attacker is small.

An attacker thus has a high incentive to perform an attack (monetary gain)
combined with small disincentive to perform an attack (low risk), which makes
an attack overall probable. We therefore think it is crucial for the Bitcoin system
and its users that we explore the potential of such an attack.

1.2 Contribution

In this thesis, we analyse the current doublespend-protection procedure in the
Bitcoin system. We describe an inherent weakness in the procedure and imple-

5

ment an attack which exploits this weakness. We perform a series of experiments
with the attack, with varying parameters, in the live Bitcoin network and collect
measurement data, which we present in this thesis. We implement a detection
mechanism that detects doublespend-attacks in certain cases and, if widely de-
ployed in the Bitcoin network, makes the attacks fully detectable in the network
without interfering with older versions of the Bitcoin client software.

1.3 Problem description

As already stated, there is no central authority in Bitcoin, so consensus about
transactions is formed in a distributed manner. This consensus procedure is
protecting against doublespending.

The procedure groups unconfirmed transactions together in a block, which
also references the previous block to form a linked list of blocks. This list is
called the blockchain. A transaction in the blockchain is considered confirmed
to a degree, which can be improved if the blockchain grows on, so a transaction
two blocks deep in the blockchain is considered more confirmed than one in the
newest block. The system is expected to create a block every 10 minutes.

All monetary data in Bitcoin is represented as transactions, so every 10
minutes consensus about the monetary situation1 of all users is formed.

Creating a block is a probabilistic process with adjustable difficulty which
depends on, among other things, the computation power of the Bitcoin net-
work. If the power increases, some parameters of the block finding process are
adjusted to keep the expected time to find a block at 10 minutes. We analyse
the blockchain in chapter 6 to investigate this claim and discover that this pro-
cess has a high standard deviation. Even with a 10 minute time frame, a payee
would, in expectation, have to wait 5 minutes until their payment is confirmed,
or even longer, if they want a stronger confirmation.

There are businesses which can accept payment confirmation times like this,
e.g. online bookstores. Brick and mortar businesses, on the other hand, usually
rely on a much shorter time frame for payment processing. An example of this
would be a take-away restaurant which serves a lot of customers in a short time
at lunch hour. Such a restaurant probably accepts unconfirmed payments, and
may be even unaware of the risk, i.e. treating Bitcoins like cash. For such a use
case, the doublespend-protection procedure is inadequate.

We implement a doublespend-attack which tricks a victim into believing
that they have received a payment, but after 5 minutes, in expectation, they
will lose the payment again. The attack we implement could be detected by
certain nodes in the network, but there is currently no mechanism in the Bitcoin
software detecting them. Furthermore, if a node with the potential to detect
the attack is not the victim itself, no steps are taken to alert the victim, or to
make the attack also detectable for them.

Summarising, businesses which do not wait 5 minutes, in expectation, for
payment confirmation, or longer, if they want a stronger confirmation, are at
risk, with no protection and no warning mechanism. The only way to even be
aware of an attack as a victim ex post facto is to realise that some Bitcoins are
missing, which happens after 5 minutes, in expectation.

1account balance, transaction history etc.

6

1.4 The attack

As already stated, in Bitcoin, all monetary data is represented as transactions.
This applies to Bitcoins as well, there is no direct representation of a Bitcoin.
In order to doublespend, we create a pair of transactions spending the same
Bitcoins (tgenuine, trogue) with tgenuine transferring the Bitcoins to the victim
and trogue transferring the Bitcoins to some other entity, i.e. another account
controlled by the attacker.

The attacker uses another node in the Bitcoin network, which is also con-
trolled by them, called helper. To attack, the attacker sends tgenuine to the
victim and trogue to the helper. The victim and the helper then both start to
spread the transaction they received in the Bitcoin network.

Since tgenuine and trogue use the same Bitcoins, they are in conflict with each
other. Nodes in the Bitcoin network accept only one of the transactions and
ignore the other one, i.e. they accept the one arriving first, so tgenuine and trogue
will separate the Bitcoin network in two parts, with one part having accepted
tgenuine and the other part having accepted trogue.

Since both transactions are present in the network, both have a chance of
getting confirmed. The larger the part of one transaction is, the higher are its
chances of getting confirmed. It is therefore desirable for the attacker that trogue
spreads wide in the network.

The attack is considered successful if:

• The victim receives and accepts tgenuine

• trogue is confirmed, i.e. trogue is included in the blockchain

In this outcome, the victim thinks they received a payment, while, later,
consensus is reached that the payment was to some other entity. This causes
the victim to lose the payment again.

1.5 Detection mechanism

As previously mentioned, the attack splits the network in two parts. Nodes that
have only neighbours belonging to one part never see one of the two transactions,
e.g. they only see tgenuine, which, for them, is indistinguishable from a scenario
where there only exists one transaction. This means that for those nodes, the
attack is not detectable.

Nodes at the border of the two parts, i.e. nodes with at least one neighbour
which accepts tgenuine and at least one neighbour which accepts trogue, on the
other hand receive both transactions.

We implement a detection mechanism that works on those nodes and that
outputs a warning for the victim, if they are one of those nodes.

The mechanism works by comparing invalid transactions that would other-
wise simply be ignored with the local transaction pool. It checks whether the
received invalid transaction uses the same Bitcoins as a previously seen trans-
action.

This mechanism provides only limited protection for a node, since only nodes
on the border of the two network parts can detect the attack and be warned.
An attacker could potentially find parameter settings such that the victim does

7

not lie on the border. Note that the border is formed at random, since network
topology, message forwarding schedule and network delays all contain random-
ness, but we cannot exclude the possibility of an attacker finding parameter
settings that create the desired scenario with sufficiently high probability.

We thus also implement a mechanism that increases the detectability of the
attack in the network. To achieve this, a node forwards a detected doublespend-
transaction, and so increases the number of nodes that receive both transactions.
If sufficiently many nodes are updated to behave this way, every node receives
both tgenuine and trogue, thus the attack is rendered fully detectable. Note that
not all nodes need to be updated for full detectability, though only updated
nodes output a warning.

This detection mechanism requires a much smaller time frame, which can be
considered acceptable even for businesses like a take-away restaurant.

1.6 Thesis layout

In chapter 2, we present similar research on this topic and how this thesis relates
to it.

In chapter 3, we present some background knowledge about the Bitcoin
system and the doublespend-protection procedure currently in place, including
an explanation of the weakness in the latter which we exploit in our attack.

In chapter 4, we present our attack both conceptually and with detailed
information about the implementation.

We experimentally evaluate our implementation of the attack in the live
Bitcoin network with varying parameter settings. In chapter 5, we present the
setup of our experiments as well as our measurement methodology, and we also
briefly mention some problems we encountered, and how we solved them. In
chapter 6, we present the results of our experiments followed by an interpretation
of the measurement data.

In chapter 7, we present our detection mechanism both conceptually and
with detailed information about the implementation. We also present an eval-
uation of our detection mechanism.

8

Chapter 2

Related work

In this chapter, we present other research on the topic of doublespending and
Bitcoin and how this thesis relates to it.

Doublespending is a well-known problem of electronic currencies, since cre-
ating a copy of a digital object is a trivial task. Different approaches to the
problem exist.

Some systems employ a trusted central control instance (like Paypal [7])
which handles transactions. Chaum et al. presents a system that “guarantees
untraceability, yet allows the bank to trace a ‘repeat spender’” [5], based on
cryptography. Even et al. [17] propose a system relying on a hardware token,
called electronic wallet. Bitcoin itself uses a proof-of-work based system [12].

Security in Bitcoin is addressed from various perspectives. Reid [15] anal-
yses the anonymity the Bitcoin system provides and Barber et al. [2] present
several attacks on Bitcoin. There are, however, not a lot of publications about
doublespending in Bitcoin, and we could not find any implementations. The
issue is addressed in the Bitcoin wiki as a warning stating “To protect against
double spending, a transaction should not be considered as confirmed until a
certain number of blocks in the block chain confirm, or verify that the transac-
tion [sic].” [18], which amounts to 1 hour, in expectation, of waiting time. There
are some suggestions for businesses that cannot wait for a confirmation which
are not very helpful or not yet implemented [19].

One solution that does exist is to use a trusted proxy for a transaction, called
a green address [20], which transfer the risk from a merchant to the operator
of the proxy. The proxy can mitigate the risk with a service fee. Another
solution is to have a trusted service [14] that observes the network and tries to
find doublespend-attacks. Both approaches depend on trust, and change the
peer-to-peer idea of Bitcoin slightly by introducing a central service.

There is some discussion about theoretical doublespend-attacks in Bitcoin.
Finney proposes an attack [8] and Satoshi writes “if a double-spend has to wait
even a second, it has a huge disadvantage” [11]. We implement a doublespend-
attack and investigate Satoshis claim in chapter 6.

There also exists a proposal for a doublespend-warning mechanism in the
Bitcoin client software that sends doublespend-warning-messages [9]. We im-
plement a doublespend-warning mechanism similar to the proposed one, which
doesn’t use a different message type in chapter 7.

9

Chapter 3

Background

In this chapter, we present some background knowledge about the Bitcoin sys-
tem that is helpful to understand the following chapters. We begin by an
overview of the Bitcoin system followed by a more detailed explanation of certain
aspects of it.

Bitcoin is a digital payment scheme used for the transfer Bitcoins. Bitcoins
themselves can be seen as a currency in the sense that they can be exchanged
for other forms of money (e.g. USD) at exchanges [10] or for real goods [6].
However, it should be noted that there is legal concern [13] whether Bitcoin is
electronic money.

The system was proposed in 2008 by Satoshi Nakamoto [12]. Bitcoin stands
out as being a peer-to-peer system with no central authority, or bank, which
keeps a record of all the account balances or registers all the transactions, and
thus there is no central control point of the system which could potentially
freeze certain accounts or transactions. Furthermore, the system is free to use
and account creation does not require any registration.

Because of those facts, the number of users of Bitcoin is not easy to deter-
mine, but measurements [16] show about 60’000 connected nodes to the network,
which can be viewed as an estimate for the number of users. The number of
Bitcoins in the system is steadily growing by design, until it reaches a certain
amount, and is at 8’509’000 Bitcoins [3] at the time of this writing. With an ex-
change rate of 4.90 USD per Bitcoin [4] at the time of this writing, this amounts
to a total monetary volume of 41’694’100 USD.

As there is no central authority, the set of confirmed transactions is found
via a consensus procedure and stored in a distributed manner. We will explain
this procedure in detail later.

The Bitcoin network is randomly formed. A node finds (up to 125) peers in
a randomly chosen IRC channel, which is chosen from a fixed set.

The equivalent of a bank account in Bitcoin is called a (Bitcoin) address.
Each address is associated with a public/private key pair. This key pair is
everything that a user needs to send and receive Bitcoins. The key pair is,
along with user preferences etc. [21], stored in the file wallet.dat. The rest of
the data relevant to Bitcoin is stored in the network, namely in a copy on each
node.

Bitcoin stores all data (except keys etc., as mentioned) as transactions.
Transactions, which we will explain in more detail later, contain all the in-

10

formation needed by the system, e.g. the balance of an account is the sum of
incoming transactions minus the sum of outgoing transactions for this account.
Bitcoins themselves have no explicit representation, their existence is implied
by transactions.

When a new transaction is formed, it is sent from the creator to their peers
in the Bitcoin network, where it is propagated until, eventually, all the nodes
have received it. Later, it gets grouped into a new block, and thereby confirmed,
by a process which we will explain later. A block, next to new transactions, also
contains a reference the previous block, so the blocks form a linked list called
the blockchain. The complete blockchain contains all the confirmed transactions
in Bitcoin. Since the blockchain is stored in the network, the entire payment
history of the Bitcoin system is public (and even browsable1).

3.1 Transactions

A transaction is an ownership transfer of Bitcoins from one address (payer) to
another (payee). As a person can create several addresses, a transaction can
also transfer Bitcoins from a person to themselves.

A transactions contains, for each payee:

• references to previous transactions [23]

• a signature of the hash of the previous transactions and the payees public
key [12]

• a value stating how many Bitcoins should be transferred to this payee [23]

The references to previous transactions represent the Bitcoins to be trans-
ferred. As already stated, Bitcoins do not have a direct representation but are
implied by transactions.

If a single previous transaction does not represent enough Bitcoins, e.g. when
Alice wants to spend 5 Bitcoins, but only has 5 transactions transferring her 1
Bitcoin each, several references to previous transactions can be combined in one
transaction.

The signature can be used by the payee to verify the “chain of owner-
ship” [12].

The value states how much of the input should be transferred to the payee.
A payer might not have the exact amount of Bitcoins to refer to, e.g. when
Alice wants to spend 5 Bitcoins, but only has a transaction transferring her 6
Bitcoins.

A transaction, once referred to as a previous transaction, cannot be referred
to as such again, and all the unspent Bitcoins are lost to the payer2.

For a single transaction, there can be up to two recipients, so for a transaction
there usually is a second recipient besides the payee, representing the payer (with
a different address). The otherwise lost Bitcoins the payer sends to themselves
is called change [23].

We extend the previous example: Alice wants to spend 5 Bitcoins to Bob,
but only has one transaction ttoAlice, which transfers 6 Bitcoins to her, to refer

1https://blockexplorer.com
2they are not lost to the system, though

11

to. She creates a transaction ttoBob by referring ttoAlice as a previous transaction
and setting two recipients. One is Bob, who should receive 5 Bitcoins, and one
is Alice, with a different address, generated just for this purpose, who should
receive 1 Bitcoin.

It should be noted that Bitcoin allows the creation of complex transactions
with a scripting language called Script3. These transactions can have complex
redeeming scenarios such as the following: “It’s [...] possible to require that
an input be signed by ten different keys, or be redeemable with a password
instead of a key.” [23]. Within the scope of this thesis, we only use standard
transactions.

3.2 Block creation / mining

Block creation is the consensus procedure used by the Bitcoin system. A trans-
action added to the blockchain can be considered confirmed by the system,
i.e. consensus is reached that this transaction is valid and has happened. This
description of confirmation is slightly simplified4.

Blocks are found (or created) by nodes. Finding a block requires some
computational work, and as the node solving the problem gains 50 Bitcoins, this
process is called mining. This is the aspect of Bitcoin where differences between
nodes exist, as a node with more computational power can mine better than a
node with less power. The reward for finding a block even led to the formation of
mining alliances (called mining pools) which are trying to find a block together
and, if they are successful, they split the reward amongst themselves5. Mining
is not required of a node, though. We didn’t mine during all the experiments
of this thesis.

To find a block, a miner has to solve a problem with adjustable difficulty.
This allows the Bitcoin system to compensate for fluctuations in computational
power in the network, e.g. due to better processors or a powerful node leaving.
The problem difficulty is adjusted such that a block is expected to be found
every 10 minutes. Note that this procedure implies that every 10 minutes, 50
new Bitcoins are created.

We now describe the problem a miner has to solve. A miner has to hash the
header of the new block [22] such that the hash has a certain number of leading
nibbles that are a zero6. The number of leading zeroes required is the difficulty
which can be adjusted, whereby a requirement of more zeroes is more difficult.
The blockheader contains a hash of all transactions that should be included in
the block, so it depends on the transactions. It also contains a nonce which the
miner can change in order to solve the problem.

A node has to try different nonces to find a solution, or they would break
the hash function. This means the block finding process is probabilistic. We
statistically analyse the time it took to find each block of the blockchain in
chapter 6.

3Script is not Turing-complete. See https://en.bitcoin.it/wiki/Script
4for a more thorough description, see https://en.bitcoin.it/wiki/Blockchain
5like https://mining.bitcoin.cz/
6e.g. the hash of blockheader of block number 123456 is

0000000000002917ed80650c6174aac8dfc46f5fe36480aaef682ff6cd83c3ca [1], with 12 leading
zeroes

12

This procedure can be described as a voting system with “essentially one-
CPU-one-vote” [12]. While an attacker might get lucky and find a hash to form
one malicious block, trying to attack the blockchain by appending malicious
blocks would need more than half of the computing power of the entire network
to succeed with a high probability. This becomes even harder for them if they
try to keep their attack up over several consecutive blocks, as “the probability
of a slower attacker catching up diminishes exponentially as subsequent blocks
are added.” [12].

It is possible that two different new blocks are created almost simultaneously
by two different nodes, which causes the blockchain to fork, so two linked lists
with the same tail exist. Eventually, one list will get longer than the other and
the nodes resolve this issue by accepting the longer list as the correct blockchain.

3.3 Doublespending

With real (paper, metal) money, it is easy to have a clear change of ownership.
If Alice gives a coin to Bob, Alice no longer has the coin and Bob has the coin,
as can be seen by anyone following the transaction, e.g. by seeing the coin in
Bobs hand. With a digital coin of any form, this is not as simple, since creating
a perfect copy of any digital object is easy.

Alice can create a copy of a digital coin before giving it to Bob, and later
give the copy to Carol without either Bob or Carol being aware they are holding
a coin that was copied, so both would agree to trade with Alice, e.g. Alice could
buy a 1-coin chocolate bar from both Bob and Carol.

The process of using the same coin twice, like described, is called double-
spending.

As previously mentioned, in Bitcoin, there is no direct representation of a
coin, as its existence is only implied by transactions. A node that receives a
transaction that transfers some Bitcoins and later receives another transaction
transferring the same Bitcoins to someone else will classify the second transac-
tion as invalid and ignore it. To create a copy of Bitcoins for later use is thus
not a successful strategy for doublespending in Bitcoin.

What is possible, though, is to create two transactions simultaneously (we
name them tgenuine and trogue), which transfer the same Bitcoins to different
payees, and to insert both transactions into the Bitcoin network at the same
time. Since a node only accepts one of the two transactions, the network will
split into two parts, as we will explain in more detail in chapter 4, with one part
accepting tgenuine and the other part accepting trogue.

Until consensus is reached in the network, i.e. a block is found including
either tgenuine or trogue, both transactions exist in the network. When a block is
found, the transaction not included in the block will be dropped by all nodes and
the one included in the block will be accepted by all nodes. This demonstrates
how the consensus procedure protects against doublespending in Bitcoin.

As described, any mining node can find a block, which means that it is
possible for both transactions to be confirmed. This implies that the described
doublespend-attack is probabilistic, as an attacker without a significant part of
the computational power of the network cannot reliably find a block with the
desired transaction in it. It is possible to influence the outcome, though, by
trying to affect the network spread of the transactions. We examine the effects

13

of different parameters on the outcome of this attack in chapter 6.
Since finding a block takes 10 minutes in expectation, a transaction takes 5

minutes in expectation to be confirmed. Before confirmation, a node has no way
of knowing if there is a doublespend-attack happening with the current Bitcoin
client software. Note that in particular, even when a node does receive both
tgenuine and trogue, the Bitcoin client software simply discards the transaction
arriving later and does not warn the user.

While some businesses can afford to wait for these amounts of time to pass
before a transaction is accepted, e.g. an online book store that doesn’t start
shipping the very moment someone orders a book, other businesses do not have
those time frames available. Most brick and mortar businesses don’t let their
customers wait for a while before they are allowed to leave the premises, and
some businesses even depend on a quick transaction of goods, e.g. a take-away
restaurant. For a business like this, accepting Bitcoins is a constant risk they are
taking and the current doublespend-protection procedure clearly isn’t providing
sufficient protection for them.

14

Chapter 4

The attack

In this chapter, we present our attack. We first explain conceptually how we
attack the system and explain the detectability of our attack. We then present
details about the implementation.

As described in chapter 3, Bitcoins are spent via a transaction, which ref-
erences them. Doublespending a Bitcoin means issuing two transactions which
reference the same Bitcoins, but differ in the recipient.

To attack, we create these two transactions and call them tgenuine and trogue.
tgenuine contains the victim as a recipient and trogue contains some address
controlled by the attacker as a recipient. We insert both transactions into the
Bitcoin network simultaneously with two goals:

• The victim receives tgenuine

• trogue becomes part of the blockchain

The first goal states that the victim thinks they received the payment, as
tgenuine is a regular transaction from the attacker to the victim. Since the
two transactions transfer the same Bitcoins, the second goal states that, in
the network, consensus is reached that tgenuine didn’t happen, but trogue did
happen.

The two transactions are in conflict with each other, so a node receiving one
of them before the other one will classify the one later one as invalid and ignore
it (see section 4.1). The goals can thus be reformulated as:

• The victim receives tgenuine first

• trogue is received by a lot of nodes in the network first

The second goal is derived from the way the network forms consensus (de-
scribed in chapter 3). Any miner trying to find a block tries to include its
locally accepted transactions into the block. If more nodes have accepted trogue
locally, then, likely, more miners have accepted trogue locally. Thus the higher
the number of nodes receiving trogue first is, the higher the chances consensus
will be formed with trogue are. We see here that the attack is probabilistic, so
success cannot be guaranteed.

15

trogue

tgenuine

border

The red nodes have accepted tgenuine locally and the blue nodes have accepted
trogue locally.
The nodes with a green circle lie on the border of the two network parts. They
received both tgenuine and trogue, while nodes with no green circle only received
one of them.

Figure 4.1: Network effects of the attack

4.1 Network effects

A node receiving a transaction will check it for well-formedness etc.. If these
checks pass, the transaction is accepted by the node to the local transaction
pool and relayed in the Bitcoin network. If, for some reason, a check fails, the
transaction is discarded as invalid and, in consequence, not relayed. tgenuine
and trogue conflict with each other, so that a node, after having received one,
the other will fail a check.

This means after receiving one transaction, the other one is discarded by
the node. The two transactions thus are competing directly in the network
for nodes, until each node either has accepted tgenuine or trogue locally. The
two transactions split the network in two parts. Since a node, having received
tgenuine first, will not relay trogue to its neighbours (and vice versa), a node with
neighbours only in one part only sees only one of transactions in the network.

This creates 3 classes of nodes:

• Nodes that have only seen tgenuine

• Nodes that have seen both transactions, lying on the border of the two
parts

• Nodes that have only seen trogue

See figure 4.1 for a graphic depiction of the three classes of nodes.

4.2 Detectability

A node receiving only one of the two transactions cannot detect our attack,
since the transaction is indistinguishable from a regular transaction (to either
the victim or someone else). For two classes of nodes mentioned in section 4.1,
our attack is not detectable.

Nodes that do receive both transactions are able to detect the attack, which
is what we use in chapter 7.

16

Attacker

Helper

Victim
Bitcoin network
Direct TCP

Figure 4.2: Attack setup

We can formulate another goal for the attack, namely that the attack should
not be detectable for the victim. However, the original Bitcoin client software
does not warn the user anyway, so this goal is not crucial to the success of our
attack.

4.3 Design

A single node can only accept and relay either tgenuine or trogue locally, so this
attack requires a second attacker-controlled node in the Bitcoin network.

We call these two nodes the attacker and the helper. In order for the goals
of the attack to be reached, the node inserting tgenuine into the network should
be connected directly to the victim. We decide that the attacker should be this
node.

If the attacker is connected to nodes other than the victim, they help to
spread tgenuine in the network, which works directly against the second goal, so
the attacker should only be connected to the victim.

The attack should also not be detectable on the victim, which means that
the helper should be far away from the victim, in network hops. Since network
formation is random (see chapter 3), the simple heuristic we use is to disconnect
the helper from the victim, if they are connected.

See figure 4.2 for a graphic depiction of the attack setup.
After the network is set up as described, the attack continues as follows. The

attacker creates the two transactions (tgenuine, trogue). They relay tgenuine via
Bitcoin network to the victim, and send trogue to the helper via a direct TCP
connection. The helper then starts to relay trogue via Bitcoin network.

For experimental purposes, we add a parameter delay to the attack. Let
the time when tgenuine is relayed in the Bitcoin network (by the attacker) be
timegenuine, and let the time when trogue is relayed in the Bitcoin network
(by the helper) be timerogue. delay is defined as the time difference between
timegenuine and timerogue.

delay = timerogue − timegenuine

Note that delay can be negative.
In addition to the delay, the attack requires multiple other parameters. The

attack is initialised via command line, so several parameters are supplied as
command line arguments, while others are supplied in textfiles which are read
when needed.

Supplied via command line are the following parameters; the format of the
command can be seen in figure 4.3.

17

Attacker:
./bitcoind makedoublespend $address 1 $address 2 $amount

$victim ip $delay

Where $address 1 and $address 2 are the Bitcoin addresses of the victim and the
doublespend-target, in that order, $amount is a float representing the amount
of Bitcoins to doublespend, $victim ip is the IPv4 address of the victim in dot-
decimal notation and $delay is an integer representing the delay to be used in
the attack, in milliseconds. Note that $delay can be negative.
Helper:
./bitcoind doublespendlisten $port $attacker ip $victim ip

Where $port is the port the helper should listen on and $attacker ip and $vic-
tim ip are the IPv4 address of the attacker and the victim, respectively, in
dot-decimal notation.

Figure 4.3: Attack commands

Attacker:

• Bitcoin address of the victim

• Doublespend address

• Amount of Bitcoins to doublespend

• IPv4 address of the victim

• Delay

Helper:

• TCP port to listen on

• IPv4 address of the attacker

• IPv4 address of the victim

Supplied via textfile are the following parameters (on the attacker only); the
format of the textfile can be seen in figure 4.4.

• IPv4 addresses of the helpers

• TCP ports the helpers are listening on

Note that, since the helper listens for a connection, the helper command
(figure 4.3) needs to be executed first on the helper, followed by the attacker
command on the attacker.

4.4 Implementation

As described in section 4.3, the attack uses several machines. We implement
the attack in the same software, i.e. the attacker and the helper nodes both run
the same modified Bitcoin client software, but we present the behaviour of the
two nodes separately.

18

Location of the file: $bitcoin/helpers.txt. Format of helpers.txt:

file = (line’\n’)*line | ’’

line = ’$ip $port’

Where each line represents one helper node. $ip is the IPv4 address of a helper
node in dot-decimal notation and $port is the port this helper is listening on.

Figure 4.4: Helpersfile

4.4.1 Attacker side

When given the attack command, the modified Bitcoin client software checks
the user supplied parameters and stops the attack, if there is a problem. Oth-
erwise, the attacker disconnects from all its peers in the Bitcoin network and
prevents the creation of new connections. To this end, the function creating
new connections, which runs in a separate thread, is modified.

The attacker then connects to the victim node in the Bitcoin network via its
IPv4 address. If this fails, the attack is aborted.

After the network setup phase, the attacker creates the two two transactions
(tgenuine, trogue). This is done like the creation of regular transactions, except
that two transactions are created in parallel (sharing randomness etc.). The
two transactions differ in the recipient address, and related fields, but otherwise
are equal.

After both transactions are created, the attacker tests whether delay is pos-
itive or negative.

If delay ≥ 0, tgenuine is added to the local transaction pool and relayed via
Bitcoin network. Additionally, a time measurement (timestart) is taken. If a
problem arises while adding tgeuine to the local transaction pool, the attack is
aborted.

For each helper node, a TCP connection is opened consecutively. Another
time measurement is taken, and the adjusted delay is calculated by considering
the time elapsed since tstart. The adjusted delay and trogue are then sent to the
helper via TCP, and then the TCP connection to the helper is closed again.

If delay < 0, for each helper node, a TCP connection is opened consecutively.
A delay of 0 and trogue are sent to the helper via TCP, and then the TCP
connection to the helper is closed again.

The attacker then sleeps for −delay (delay is negative), adds tgenuine to the
local transaction pool and relays it via Bitcoin network. If a problem arises
while adding tgenuine to the local transaction pool, the problem is reported, but
trogue is already in the network and the attack cannot be aborted anymore.

The attacker part in algorithm notation can be seen in figure 4.5.

4.4.2 Helper side

When given the listen command, the helper disconnects from both the attacker
and the victim in the Bitcoin network, if it is connected to them. They then
listen for a TCP connection.

When a TCP connection is opened, the helper receives delay and trogue and
then sleeps for delay.

19

error ← check(parameters)
if error then

return ”Error”
end if
disconnect and prevent new connections
error ← BitcoinConnect(victim)
if error then

return ”Error”
end if
(tgenuine, trogue)← CreateTransactions(addresses, amount)
if delay ≥ 0 then

error ← AddToLocalPool(tgenuine)
BitcoinRelay(tgenuine)
if error then

return ”Error”
end if
timestart ← GetTimeOfDay()
for all helper ∈ helpers do

TCPConnect(helper)
timenow ← GetTimeOfDay()
delayadjusted ← delay − (timenow − timestart)
delayadjusted ← max(0, delayadjusted) . so it is ≥ 0
TCPSend(trogue, delayadjusted)
TCPDisconnect(helper)

end for
else . delay < 0

for all helper ∈ helpers do
TCPConnect(helper)
TCPSend(trogue, 0)
TCPDisconnect(helper)

end for
Sleep(−delay) . delay is negative
error ← AddToLocalPool(tgenuine)
BitcoinRelay(tgenuine)
if error then

return ”Error” . Attack is already on its way
end if

end if

Figure 4.5: Attacker algorithm

20

if connected to attacker or victim then
disconnect and prevent new connections to either one

end if
TCPListen(port)
(trogue, delay)← TCPRead
Sleep(delay)
error ← AddToLocalPool(trogue)
if error then

return ”Error”
end if
BitcoinRelay(trogue)

Figure 4.6: Helper algorithm

The helper adds trogue to the local transaction pool and relays it via Bitcoin
network. If a problem arises while adding trogue to the local transaction pool,
the transaction is not relayed and the problem is reported. This can abort the
attack, but if another helper doesn’t encounter a problem, the attack continues
without this helper participating.

The helper part in algorithm notation can be seen in figure 4.6.

21

Chapter 5

Experimental setup

In this chapter, we present how we set up our experiments, what data we mea-
sure and how we evaluate it.

We conduct several different experiments, so there are several setups. We
present each setup independently, although there might be some overlap between
them.

5.1 Required resources

All the experiments require an internet connection. Additionally, some software
might be used to run an experiment:

• Scripts are written in Python version 2.7.2+

• The modified Bitcoin client software is based on the Bitcoin client software
version 50000. For a list of required libraries for the Bitcoin client software,
please consult the INSTALL file of the Bitcoin client software distribution.

• LATEXis generated with pdfTeX version 3.1415926-1.40.10

5.1.1 Time measurements of the consensus procedure

For this experiment, a script running on a single local machine is used.

5.1.2 Connection measurements of a Bitcoin node

Several experiments are conducted. Each experiment is running a modified
Bitcoin client software on a single machine. Each experiment is conducted in
one of the following configurations:

• A local machine is used

• A rented machine in Virginia, USA is used

22

5.1.3 Attack measurements

Several experiments are conducted with many different configurations, and not
all of them are listed here. For a detailed description of the configuration used
in each experiment, please refer to chapter 6. All experiments share some char-
acteristics, which are listed here:

An experiment involves running a modified Bitcoin client software on several
machines.

The rented machines are at one of the following locations: Virginia, USA;
Oregon, USA; Singapore; Tokyo, Japan; São Paulo, Brazil.

For each experiment the following setup is used:

• The attacker runs on a local machine

• One or more helpers run on a rented machine

• A victim runs on a rented machine, in a different location than the helpers

• Five observers, each on a rented machine, run on one machine in each
location

5.2 Measurement methodology

5.2.1 Measured data

Time measurements of the consensus procedure

The data gathered for this experiment consists of the following:

• Timestamp of the creation of a block in the Bitcoin system

This data is saved in the blockchain and does not need to be measured. It is
accessed via https://blockexplorer.com. A script is used to collect the data
and analyse it (see appendix B).

Connection measurements of a Bitcoin node

The data gathered for this experiment consists of the following:

• Number of connections a Bitcoin node has, with a timestamp

This data is gathered by a modified Bitcoin client software (see appendix
A). The data gathered this way is processed for easier plotting by a script (see
appendix B).

Attack measurements

The data gathered for this experiment consists of the following:

• Location of the victim

• Location of the helpers

• Number of peers of the victim

23

• Number of helpers used

• Delay used

• Transaction id of a transaction sent through the Bitcoin network from the
attacker, with a timestamp

• Transaction id of a transaction sent through TCP directly from the at-
tacker, with a timestamp

• Transaction id of a transaction sent through the Bitcoin network from
each of the helpers, with a timestamp

• Transaction id of a transaction received through the Bitcoin network on
the victim, with a timestamp

• Transaction id of a transaction received through the Bitcoin network on
each observer, with a timestamp

• Number of the newest block found in the blockchain before the start of
the experiment

• Block data for each block from the starting block (data item above) until
enough block data is acquired (see below what that means), namely a
timestamp of the creation of each block and the transaction ids in each
block

Some data can be chosen and has to be noted down, i.e. the location of
the victim and the location of the helpers. Number of connections data can be
chosen, but is also gathered by a modified Bitcoin client software (see appendix
A).

The transaction id data with respective timestamps is gathered by a modified
Bitcoin client software on the respective machine (see appendix A). The data
gathered this way can be copied to the local machine for evaluation by a script
(see appendix B).

Some data can be chosen and has to be noted down, but noting it in a certain
way enables a script to parse it. Which data to note down in a certain way and
how to note it down is shown here:

• Number of helpers used in ’helpers.txt’

• Number of the newest block found in ’blockcount.txt’

• Delay used (in ms) in ’delay.txt’

Transactions are grouped in pairs (tgenuine, trogue) and enough block data
means that from each pair, one of the transactions is found in the block data.
Block data is saved in the blockchain and does not need to be measured. This
data is accessed via https://blockexplorer.com.

A script is used to collect the necessary block data, combine it with the other
data (if stored in the suggested format) and analyse it (see appendix B).

5.2.2 Data evaluation

In this section, we describe how data was aggregated and combined.

24

Time measurements of the consensus procedure

The average, standard deviation, minimum and maximum of the timestamp
data are calculated.

Connection measurements of a Bitcoin node

This data is used directly.

Attack measurements

Transaction id data from a helper is used to determine transaction ids that
didn’t encounter a problem (see section 5.2.3), namely the ones that are relayed
on the helper. Based on this data, transaction id data from the attacker is
used to determine the pair-relationship (tgenuine, trogue), for which trogue didn’t
encounter a problem on the helper. The relationship is formed by timestamp,
e.g. a transaction relayed through the Bitcoin network and the next transaction
relayed through TCP are paired.

Transaction id data from the victim is then used to determine the time
difference between the arrival of the two paired transactions on the victim.
Note that it could be that one transaction didn’t arrive at all.

The average of the absolute of the time differences is calculated, as well as
the number of times one of the transactions didn’t arrive at all.

The same process we apply to the victim data is repeated for each observer.
In addition, the number of observers that see trogue is determined. The fraction
of observers receiving trogue is calculated.

Block data is used to determine which of the two paired transactions is con-
firmed by the Bitcoin network. The number of successful doublespend-attacks
is determined, with successful being defined as when trogue gets confirmed.

Also extracted from the block data are the block number of confirmation
for each pair, as well as the time delay between sending and confirming the
transaction. The average of the absolute of the time delay is calculated.

5.2.3 Problems and solutions

trogue is not accepted on the helper node

After several transactions, starting the attack will result in trogue being rejected
on the helper. The problem is solved by waiting for a new block to be found,
which will clear some inconsistencies if downloaded. However, this can make
measuring quite tedious. A way to reduce the chance of this problem occurring
is to have a lot of small transactions sent to the attacker before starting the
attack, e.g. instead of sending 5 Bitcoins to the attacker in preparation for the
attack, one should send 50 times 0.1 Bitcoins.

Wallet of the attacker is corrupted

After executing the attack several times, the local data of the attacker can get
corrupted. The problem can be solved by using a backup from a consistent
state (suggested: a copy of the whole directory ˜/.bitcoin). The backup should
be updated from time to time, since the suggested directory also contains the
blockchain data, which has to be downloaded if its not present.

25

Chapter 6

Experimental results

In this chapter, we present the results of our experiments introduced in chapter
5. We first present the pure data and follow up with an interpretation of the
data.

6.1 Measurement results

6.1.1 Time measurements of the consensus procedure

We analyse the whole blockchain at the time of writing, consisting of 173563
blocks. The result can be found in table 6.1. Time refers to the difference in
timestamps from a block to the next one. The data can be found in ./logs/block-
analysis/.

6.1.2 Connection measurements of a Bitcoin node

We measure two data sets, one in Switzerland and one in Virginia. The result
for the measurement in Switzerland can be seen in figure 6.1 and the result
from the measurement in Virginia can be seen in figure 6.2. Note that the
measurements are over time periods of different length. The data can be found
in ./logs/connection/.

Field Value

Analysed blocks 173563
Mean (time) 595 seconds (9 minutes, 55 seconds)
Standard deviation (time) 854.32 seconds (14 minutes, 14.32 seconds)
Minimum (time) 0 seconds
Maximum (time) 90532 seconds (25 hours, 8 minutes, 52 seconds)

Table 6.1: Time measurement of the consensus procedure

26

 0

 20

 40

 60

 80

 100

 120

 140

02-06 02-07 02-08 02-09 02-10 02-11 02-12 02-13 02-14 02-15

N
u
m

b
e
r

o
f

c
o
n
n

e
c
ti
o
n
s

Time

Node in Switzerland

Figure 6.1: Number of connections in Switzerland

 0

 20

 40

 60

 80

 100

 120

 140

01-26 01-27 01-28 01-29 01-30 01-31 02-01

N
u

m
b
e
r

o
f
c
o

n
n

e
c
ti
o

n
s

Time

Node in Virginia, USA

Figure 6.2: Number of connections in Virginia

27

6.1.3 Attack measurements

Mass measurements

For each measurement, the victim is on one of the rented servers, which one is
denoted in the figures. Each of the helpers is on a different server than all the
other helpers used in this experiment, if there is more than one helper.

A helper in a measurement is fully connected, they have 125 connections to
other Bitcoin nodes. The number of connections of the victim is mentioned in
the figures.

Each measurement consists of 10 attacks. We use one or two helpers for the
measurement, how many is indicated in the figures.

Figures 6.3, 6.4, 6.5 and 6.6 show the number of successful attacks, defined
as those attacks where trogue gets confirmed by the system.

Figures 6.7, 6.8, 6.9 and 6.10 show the number of times the pair
(tgenuine,trogue) is not received on the victim, which corresponds to the attack
not being detectable on the victim.

This only includes immediate receives. E.g. if trogue gets confirmed by the
system, it will be distributed to the victim in a block. If the victim receives the
transaction for the first time in a block, it will be counted as not received.

Figures 6.11, 6.12, 6.13 and 6.14 show the number of successful attacks in
which the pair (tgenuine, trogue) is not received by the victim, which corresponds
to a successful attack that is not detectable on the victim. Again, only direct
receives are counted.

Figures 6.15, 6.16, 6.17 and 6.18 show the fraction of all trogue transactions
that are received by all observers combined. Again, only direct receives are
counted. Each trogue is counted individually, so with 10 attacks per measure-
ment and 5 observers, one observed trogue on one observer evaluates to a fraction
of 0.02.

The data can be found in ./logs/mass measurement/.

28

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u

c
c
e
s
s
fu

l
a

tt
a
c
k
s
 [

o
u
t
o

f
1
0
]

Delay [s]

1 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.3: Successful attacks on victim in Virginia (1 helper)

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u
c
c
e

s
s
fu

l
a
tt
a
c
k
s
 [
o
u
t
o
f
1
0
]

Delay [s]

1 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.4: Successful attacks on victim in Oregon (1 helper)

29

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u

c
c
e
s
s
fu

l
a

tt
a
c
k
s
 [

o
u
t
o

f
1
0
]

Delay [s]

2 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.5: Successful attacks on victim in Singapore (2 helpers)

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u
c
c
e

s
s
fu

l
a
tt
a
c
k
s
 [
o
u
t
o
f
1
0
]

Delay [s]

2 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.6: Successful attacks on victim in Tokyo (2 helpers)

30

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

N
o
t

fo
u
n

d
 [

o
u

t
o

f
1

0
]

Delay [s]

1 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.7: Not found on victim in Virginia (1 helper)

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

N
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

1 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.8: Not found on victim in Oregon (1 helper)

31

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

N
o
t

fo
u
n

d
 [

o
u

t
o

f
1

0
]

Delay [s]

2 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.9: Not found on victim in Singapore (2 helpers)

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

N
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

2 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.10: Not found on victim in Tokyo (2 helpers)

32

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u

c
c
e
s
s
fu

l
a
n

d
 n

o
t
fo

u
n

d
 [
o
u

t
o
f
1

0
]

Delay [s]

1 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.11: Successful and not found attacks on victim in Virginia (1 helper)

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u
c
c
e
s
s
fu

l
a
n
d
 n

o
t

fo
u
n
d
 [
o
u
t
o
f
1
0
]

Delay [s]

1 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.12: Successful and not found attacks on victim in Oregon (1 helper)

33

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u

c
c
e
s
s
fu

l
a
n

d
 n

o
t
fo

u
n

d
 [
o
u

t
o
f
1

0
]

Delay [s]

2 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.13: Successful and not found attacks on victim in Singapore (2 helpers)

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5 2

S
u
c
c
e
s
s
fu

l
a
n
d
 n

o
t

fo
u
n
d
 [
o
u
t
o
f
1
0
]

Delay [s]

2 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.14: Successful and not found attacks on victim in Tokyo (2 helpers)

34

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2

O
b
s
e

rv
e
d

 [
o

b
s
e

rv
e
d

/t
o
ta

l]

Delay [s]

1 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.15: Observed attacks on victim in Virginia (1 helper)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2

O
b
s
e
rv

e
d
 [
o
b
s
e
rv

e
d
/t
o
ta

l]

Delay [s]

1 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.16: Observed attacks on victim in Oregon (1 helper)

35

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2

O
b
s
e

rv
e
d

 [
o

b
s
e

rv
e
d

/t
o
ta

l]

Delay [s]

2 helper - measurement 1

8 connections
40 connections

125 connections

Figure 6.17: Observed attacks on victim in Singapore (2 helpers)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2

O
b
s
e
rv

e
d
 [
o
b
s
e
rv

e
d
/t
o
ta

l]

Delay [s]

2 helper - measurement 2

8 connections
40 connections

125 connections

Figure 6.18: Observed attacks on victim in Tokyo (2 helpers)

36

 0

 2

 4

 6

 8

 10

 2 2.5 3 3.5

S
u
c
c
e

s
s
fu

l
a

tt
a
c
k
s
 [
o

u
t
o
f

1
0
]

Delay [s]

41 connections

1 helper
2 helper

Figure 6.19: Successful attacks on victim with 41 connections

Exploring measurements

For these measurements, we chose 3 number of connections of the victim, derived
from our connection measurement (figure 6.1). The 3 used values are:

125 connections full connectivity

83 connections the median of the measured number of connections

41 connections is as far from the median as 125 is (41 = 83− (125− 83))

For each measurement, the victim is in Singapore, one of the helpers is in
Tokyo, and the other helper, if present, is in Virginia.

A helper in a measurement is fully connected, they they have 125 connections
to other Bitcoin nodes.

Each measurement consists of 10 attacks. We use one or two helpers for the
experiments, how many is indicated in the figures.

Figures 6.19, 6.20, 6.22 and 6.21 show the results for a victim with 41 con-
nections.

Figures 6.23, 6.24, 6.26 and 6.25 show the results for a victim with 83 con-
nections.

Figures 6.27, 6.28, 6.30 and 6.29 show the results for a victim with 125
connections.

Note that the measurements use different delays.
The data can be found in ./logs/exploring/.

37

 0

 2

 4

 6

 8

 10

 2 2.5 3 3.5

N
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

41 connections

1 helper
2 helper

Figure 6.20: Not found on victim with 41 connections

 0

 2

 4

 6

 8

 10

 2 2.5 3 3.5

S
u
c
c
e
s
s
fu

l
a

n
d

 n
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

41 connections

1 helper
2 helper

Figure 6.21: Successful and not found attacks on victim with 41 connections

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5

O
b

s
e
rv

e
d
 [

o
b

s
e
rv

e
d
/t

o
ta

l]

Delay [s]

41 connections

1 helper
2 helper

Figure 6.22: Observed attacks on victim with 41 connections

 0

 2

 4

 6

 8

 10

 1.5 2 2.5 3 3.5 4 4.5

S
u
c
c
e
s
s
fu

l
a

tt
a

c
k
s
 [
o

u
t

o
f

1
0

]

Delay [s]

83 connections

1 helper
2 helper

Figure 6.23: Successful attacks on victim with 83 connections

39

 0

 2

 4

 6

 8

 10

 1.5 2 2.5 3 3.5 4 4.5

N
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

83 connections

1 helper
2 helper

Figure 6.24: Not found on victim with 83 connections

 0

 2

 4

 6

 8

 10

 1.5 2 2.5 3 3.5 4 4.5

S
u
c
c
e
s
s
fu

l
a

n
d

 n
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

83 connections

1 helper
2 helper

Figure 6.25: Successful and not found attacks on victim with 83 connections

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.5 2 2.5 3 3.5 4 4.5

O
b

s
e
rv

e
d
 [

o
b

s
e
rv

e
d
/t

o
ta

l]

Delay [s]

83 connections

1 helper
2 helper

Figure 6.26: Observed attacks on victim with 83 connections

 0

 2

 4

 6

 8

 10

 1.5 2 2.5 3 3.5

S
u
c
c
e
s
s
fu

l
a

tt
a

c
k
s
 [
o

u
t

o
f

1
0

]

Delay [s]

125 connections

1 helper
2 helper

Figure 6.27: Successful attacks on victim with 125 connections

41

 0

 2

 4

 6

 8

 10

 1.5 2 2.5 3 3.5

N
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

125 connections

1 helper
2 helper

Figure 6.28: Not found on victim with 125 connections

 0

 2

 4

 6

 8

 10

 1.5 2 2.5 3 3.5

S
u
c
c
e
s
s
fu

l
a

n
d

 n
o
t
fo

u
n
d

 [
o

u
t

o
f

1
0

]

Delay [s]

125 connections

1 helper
2 helper

Figure 6.29: Successful and not found attacks on victim with 125 connections

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.5 2 2.5 3 3.5

O
b
s
e

rv
e
d
 [
o
b
s
e
rv

e
d
/t
o
ta

l]

Delay [s]

125 connections

1 helper
2 helper

Figure 6.30: Observed attacks on victim with 125 connections

43

6.2 Analysis

6.2.1 Time measurements of the consensus procedure

The standard deviation is very high. What is more surprising about this data,
though, is the maximum and, to a smaller extent, the minimum value. Finding
two blocks immediately one after the other and finding no block for such a long
time both seem very unlikely.

There are other possible explanations than pure chance for this data. A
mechanism inside the consensus procedure adjusts the difficulty to find a new
block based upon the past performance of the miners. If the Bitcoin network
gains a lot of computation power and thus starts to find blocks fast, the adjust-
ment mechanism will increase the difficulty to find a block.

The following might have happened: Blocks were getting found quickly, by
chance or by a lot of computation power, so the difficulty was increased. Then
a part of the Network with a lot of computation power stopped, so the total
computation power of the Network was reduced by a large amount, and the rest
of the network struggled for a long time with the very difficult problem. This
is just speculation.

What the data shows us is that the desired mean block finding time of 10
minutes is achieved well. With a standard deviation of about 15 minutes, having
longer waiting times for a new block is very probable. This falls in line with our
experience during our measurements, as we encountered several waiting times
of more than 30 minutes as well as very short ones of less than 10 seconds.

6.2.2 Connection measurements of a Bitcoin node

The limit of 125 connections observed in the Virginia dataset comes from the
Bitcoin software as a standard value for the maximum number of connections.

Other than that we can only speculate as to why the node from Virginia
gets so many connections so fast, and the node from Switzerland doesn’t. The
setup process for both nodes is the same, with no obvious differences in network-
related parameters (network speed etc.), and some parameters are even in favour
of the node in Switzerland (processing power, RAM).

Since the node in Virginia runs on a rented server, there could be a lot of
nodes close to it, since other people might have also rented servers there with
Bitcoin running on them. Those nodes could prefer to connect to it.

Another effect we observed (but this effect is not in the data, so this is
speculation) is that a node which was connected before has a smaller growth
rate of connections. It could be that the network setup process recognises IP
addresses it has seen before, and gives the respective nodes less priority.

What the data tells is is that a node, even when running for several days,
might not reach 100 connections. This has implications with regard to the
doublespend-attack which we discuss in section 6.2.3.

The Switzerland scenario can be considered more realistic, since some busi-
nesses might shut down their operation overnight, which results in exactly this
scenario. Even if the reason for the lower growth rate is different from what
we speculate, a node cannot be expected to always have the standard maximal
connectivity of 125 peers.

44

6.2.3 Attack measurements

Successful attacks

As explained in chapter 3, the results of these measurements are probabilis-
tic. Several observations have to be attributed to this fact (especially counter-
intuitive ones).

We observe a decline in the number of successful attacks when the delay is
increased, most prominently displayed in figure 6.4. This meets our expecta-
tions, as with a low delay tgenuine and trogue are spread in the network at the
same time. With a higher delay tgenuine has more time to spread uncontested
in the network, so the probability that tgenuine gets confirmed is higher, which
corresponds to a not successful attack.

A low (or even negative) delay favours trogue. We think the cause for the
fact that a delay of 0 does show a high number of successful attacks, and not
5 out of 10, is the Bitcoin transaction-relay mechanism. The relay-mechanism
doesn’t immediately relay a transaction, but waits a random amount of time
before doing so. This happens twice for tgenuine, once when the attacker relays
it to the victim and once when the victim relays it to its peers, but only once
to trogue, when the helper relays it to its peers. This might be enough to give
trogue a crucial advantage.

What we did not expect, and probably happens because of the randomness
involved, is that a higher connectivity of the victim doesn’t seem to lead to a
lower number of successful attacks. In some measurements, the scenario with
a victim with only 8 connections has the highest number of successful attacks,
which is the expected result, but in other measurements this is not the case. It
is also not monotone, e.g. in figure 6.3 the victim with 40 connections has the
highest number of successful attacks. This indicates that the results are this
way due to randomness.

With a delay of 2 seconds and one helper node, the chance of an attack being
successful is very low (figures 6.3, 6.4). When we use two helper nodes, the
number of successful attacks stays much higher, even for a delay of 2 seconds
(figures 6.5, 6.6). An additional helper increases the number of nodes which
receive trogue in the first hop significantly so it to spreads in the network much
faster, so we expect this result.

Not found

As explained in chapter 3, the results of these measurements are probabilis-
tic. Several observations have to be attributed to this fact (especially counter-
intuitive ones).

The number of times when not both transactions are received by the victim
is named not found.

Not found is higher for victims with a lower connection count (most promi-
nently in figure 6.7). This meets our expectations, since for a victim to not
receive trogue, all of its neighbours must have received tgenuine before trogue.
The victim spreads tgenuine to its neighbours, and if there are fewer neighbours,
the chance that all get tgenuine before trogue is higher.

What seems counterintuitive is the fact that not found falls first, and then
raises again (see figure 6.7). We expected not found to raise monotonically with
the delay. This might be caused by the following: trogue arrives at the attacker

45

(via Bitcoin network) when they still sleep. If the attacker then tries to add
tgenuine to its local transaction pool, they fail and tgenuine is discarded by the
attacker, and as a consequence, not relayed. This is not a doublespend-attack
anymore, since one of the transactions never entered the network. Note that
the attack can also fail this way if not the attacker, but just the victim receives
trogue first. However, in this case, the victim receives both transactions .

With the previous statement in mind, we expect not found to increase with
a higher delay. With a higher delay, the victim has more time to spread tgenuine
to all its neighbours, which lowers the chance of one of them receiving trogue
first, and relaying it to the victim. In some measurements (figures 6.7, 6.8) we
almost reach the point where all neighbours receive tgenuine first reliably in the
8-connections-scenario.

When we add a helper node, we expect not found to be lower (see figures
6.9, 6.10), since trogue is spread better in the network and thus more likely to
be seen first by one of the neighbours of the victim.

Successful and not found

As explained in chapter 3, the results of these measurements are probabilis-
tic. Several observations have to be attributed to this fact (especially counter-
intuitive ones).

Since this data is just a combination of the previous two data sets, many
effects are already explained in their respective sections.

As explained before, with a higher delay we observe a lower number of suc-
cessful attacks. We do, however, expect that trogue is less likely to be received by
the victim. The low number of successful and not found attacks is probably due
to the fact that, for an attack to be not found, each neighbour of the victim needs
to have seen tgenuine first, which means that each neighbour spreads tgenuine in
the network. This scenario likely results in a very wide spread of tgenuine in the
network, which means trogue has a low chance of getting confirmed.

While there are some successful and not found attacks, they are very unlikely.
In figure 6.14 there are some for the 8-connections measurement, but there are
still only 2 out of 10. Even when the victim has only 8 neighbours which
have to receive tgenuine first, and the attacker has two helpers, both with 125
connections, it is not enough to tip the favour in the network towards trogue
reliably.

Observed

As explained in chapter 3, the results of these measurements are probabilis-
tic. Several observations have to be attributed to this fact (especially counter-
intuitive ones).

The observers measure the presence of trogue in the network.
We expect the measurement to decrease with a higher delay, since tgenuine

has a larger amount of time to spread in the network uncontested, resulting in
a smaller spread of trogue, and thus in a smaller presence.

We also expect that the number of connections of victim has very little
influence on the measurement, since trogue is spread almost independently of
the connection count of the victim.

46

When we look at the measurements with two helpers (figures 6.17, 6.18), we
see that even with a delay of 2 seconds, almost all observers saw trogue. This
falls in line with our previous interpretation that a second helper increases the
network presence of trogue significantly.

What we have to keep in mind is that these measurements only show the
presence of trogue in the network, and not if the observers have accepted trogue
locally. For an observer, a single neighbour that has accepted trogue locally is
sufficient to measure the transaction as present, which is a very small require-
ment, considering that each observer has 125 neighbours.

Even with that in mind, we see a decline of the network presence of trogue
at a delay of only 2 seconds (more prominent in the 1-helper scenarios, figures
6.15, 6.16).

What we can see is that even with high delays, the chance that any observer
sees trogue is high. With a high probability, at least one of the 5 observers lies
on the border of the two network parts (described in chapter 4). It is possible
that an observer simply lies inside the part where trogue is accepted locally, but
that is highly unlikely, since that part is probably small, and an observer has
125 neighbours. In either case, an observer sees trogue

This suggests that a doublespend-detection mechanism based on a few sen-
tinel nodes, like the 5 observers, in the network might be possible. The sentinels
would be special-purpose Bitcoin nodes with a very high peer count a node could
connect to. The sentinels could then forward all transactions they receive, even
ones they would discard as a normal Bitcoin client, to that node. This would
very likely make an attack detectable on the node, as with very high probability,
at least one observer receives and forwards trogue.

Something similar is implemented in [14], but this service runs in parallel to
Bitcoin, i.e. there is no direct Bitcoin interface. The service does not provide
sentinels for other nodes, but uses them for themselves, to update a website
according to the observed transactions.

We decide on another approach to detect doublespending.

Exploring measurements

As explained in chapter 3, the results of these measurements are probabilis-
tic. Several observations have to be attributed to this fact (especially counter-
intuitive ones).

In these measurements, the goal is not to gather data in a systematic way
and gain insight into the influence of parameters on the attack, but to find a
parameter setting which produces a desired result. The desired result is a high
number of successful and not found attacks. This corresponds to successful
attacks which are not detectable on the victim.

The process we use to find the desired setting is to increase the delay until
the transactions are not found with a high probability, and to see if any attacks
are still successful.

In both the 83 and the 125 connection scenario (figures 6.24, 6.28), the delay
needed for a high number of not found is very high, beyond the used values of
4.5 and 3.5 seconds, respectively.

With a delay this high, the attack fails most of the time (figures 6.23, 6.27).
As we see in figures 6.26 and 6.30, trogue is almost not present in the network
anymore.

47

There are 0 successful and not found attacks in both settings (see figures 6.25,
6.29). Even adding another helper node does not change these results much,
but for completeness, a measurement for all the delay settings is included.

In the 41 connection setting, the delay needed to have a high number of not
found is smaller, and some attacks are still successful with this delay (see figure
6.20, 6.19). Still, there are 0 successful and not found attacks (see figure 6.21).

With the addition of a second helper, more attacks are successful, even with
a high delay. In figure 6.22 we see that even with a delay of 3.25 seconds, trogue
is present in the network, but at the same time the number of transactions not
found decreases again. When we increase the delay to adjust for this, we cause
the number of successful attacks to decrease, and so there are still 0 successful
and not found attacks (see figure 6.21).

Our exploration didn’t yield a parameter setting with the desired properties,
but the parameter space is large and we only explored a small part of it. We
don’t want to exclude the possibility of such a parameter setting existing.

What we see is that, with sufficiently many connections on the victim, it is
very unlikely to find such a setting. We thus decide that the number of connec-
tions is a security parameter, which is reflected in our detection mechanism in
chapter 7.

48

Chapter 7

Detection mechanism

In this chapter, we present our detection mechanism. At first we explain it
conceptually and then provide insight into the implementation. We conclude
this chapter with an evaluation of our new mechanism.

7.1 Design

The detection mechanism we present consists of two parts. One part is the
actual detection part which runs just on the local node, and the other part
increases detectability in the network by sending additional messages.

As described in chapter 4, our attack works by creating two transactions
(tgenuine,trogue) which are almost identical, except for the recipient. In partic-
ular, they reference the same previous transactions.

Also described in said chapter is the concept of detectability, summarised as
the statement that only nodes which receive both transactions can detect our
attack. Those nodes are not necessarily the entire network.

7.1.1 Detection

Transactions that are received on a node via the Bitcoin network and are ac-
cepted locally, but are not yet confirmed, i.e. they do not appear in a block yet,
shall be named open transactions.

When a transaction is received, we add a test to the end of the reception
procedure. If the checks (for well-formedness etc.) the Bitcoin client software
performs pass, we do nothing. The transaction, even if it were part of an attack,
is the first one to arrive, and thus is indistinguishable from a regular transaction.

If one of the checks fails, we compare the previous transactions field of this
transaction with the same field of all open transactions. We confirm that we
are not comparing a transaction to its duplicate, which can happen when two
different nodes send us the same transaction at different times. If we find two dif-
ferent transactions which refer to the same previous transactions, we have found
a doublespend-attack. This procedure is sufficient to detect our doublespend-
attack on a node, provided that the attack is detectable for this node.

We implement a mechanism that gives positive or negative feedback to the
user. When a transaction arrives for a user, i.e. the user is the recipient,

49

the mechanism starts to monitor this transaction. If no doublespend-attack is
detected for this transaction after a certain amount of time, the mechanism will
tell the user that this transaction is probably fine. If there is a doublespend-
attack detected for this transaction, the mechanism will warn the user. Based
on the observations in section 6.2 we monitor a transaction for 10 seconds.

As an additional security feature we also inform the user if their Bitcoin client
is connected to less than 100 peers, as we identified the number of connections
as a security parameter.

7.1.2 Detectability

When a doublespend-attack is is detectable on a node, it only relays one of
the two transactions. We change this behaviour, so the node also relays the
second transaction it receives. This relay happens after the relay of the first
transaction, so we don’t change the reception order on any neighbour nodes.

A node lying on the border between the two network parts (described in
section 4.1) behaving as described changes the shape of the border. It will push
the border towards (at least) one of its neighbours that was not on the border
before, and thus increase the number of nodes for which the attack is detectable.
Note that in this scenario, the term border doesn’t really fit the situation any
longer.

If sufficiently many nodes (note: not necessarily all of them) are modified to
behave as described, the attack becomes fully detectable in the network.

See figure 7.1 for a graphic depiction of the effects the detection mechanism
has on the network.

7.2 Implementation

The implementation of the two parts of the detection mechanism are interleaved,
so they we don’t present them separately.

The Bitcoin client software already stores open transactions. When a new
transaction arrives it is checked by the original Bitcoin client. If these checks
pass, we inspect if the transaction is for the user, and if so, we monitor the
transaction (explained later).

If these checks fail for some reason, we check the transactions against all
open transactions and compare their previous transactions field. If they are
equal, the hashes of the transactions are compared, and if the hashes are equal,
the two colliding transactions are duplicates. In that case, no further action is
taken. If the hashes differ, a doublespend-attack is detected.

In this case we put the conflicting transaction into a data structure (a map
with the hash of the transaction as key and a boolean indicating the double-
spending status as value), or update the data structure if the transaction is
already present. A warning is logged. The format of the warning can be seen
in figure 7.2. The conflicting transaction is then relayed in the Bitcoin network.

Monitoring a transaction consists of putting the transaction into the men-
tioned data structure and starting a thread. This thread waits for 10 seconds
and then check the status of the transaction in the data structure. Depending
on the status of the transaction, positive or negative feedback is output to the
console (see figure 7.3).

50

Original:

trogue

tgenuine

border

Modified:

trogue

tgenuine

border
updated

The red nodes have accepted tgenuine locally and the blue nodes have accepted
trogue locally.
The pink node runs our modified Bitcoin client software. It still has trogue
accepted locally.
The nodes with a green circle receive both tgenuine and trogue, while nodes with
no green circle only receive one of them. Note that in the modified version the
number of green circles increases.

Figure 7.1: Effects of the detection mechanism

51

Location of the file: $bitcoin/doublespendwarnings.txt. Format of a warning:

$timestamp registered doublespending, conflicting transactions:

$hash_1

$hash_2

Where $timestamp is a Unix timestamp with millisecond resolution and $hash 1
and $hash 2 are the hashes of transaction 1 and 2, respectively.

Figure 7.2: Doublespend-warning

Positive feedback format:

transaction $hash seems okay

Where $hash is the hash of the transaction.
Negative feedback format:

a doublespend-attack was detected for transaction $hash

Where $hash is the hash of the transaction.
Connection warning format:

you currently have $number connections

it is recommended to wait for 100 connections

Where $number is the number of peers of the node.

Figure 7.3: User feedback

As an additional security feature, if there is no doublespend-attack detected
for a transaction and the number of peers of the node is below 100, a warning
is output (see figure 7.3).

The detection mechanism in algorithm notation can be seen in figure 7.4.

7.3 Evaluation

For testing purposes, we run the implementation of the detection mechanism on
five nodes in the Bitcoin network for 4 days.

No problems, such as unwanted interaction with regular transactions or
crashes of the Bitcoin client software, appeared during this test.

To test the detectability mechanism, we create a small private Bitcoin net-
work by forcing 4 nodes to connect in a certain manner. The resulting network
consists of the following 4 nodes: the attacker, helper, victim and messenger
node. When the messenger node behaves like the original Bitcoin client soft-
ware, i.e. dropping either tgenuine or trogue upon reception, the attack is not
detectable on the victim and positive feedback is output. With the mechanism
we implemented active on the messenger node, the attack becomes detectable
on the victim and negative feedback is output.

See figure 7.5 for a graphic depiction of the test network.
There is an additional network load cost of the detectability mechanism, but

it is minor. The cost is less or equal than the cost of sending one additional

52

transactionerror ← BitcoinClientTests(transaction)
if transactionerror = true then . There was an error

(doublespend, conflict)← TestDoublespend(transaction)
if doublespend ∧ (hash(transaction) 6= hash(conflict)) then

doublespendmap[Hash(conflict)]← true
Log warning(transaction, conflict)
Relay(transaction)

end if
else . There was no error

if IsForMe(transaction) then
doublespendmap[Hash(transaction)]← false
Monitor(transaction)

end if
end if

function TestDoublespend(transaction)
for all tx ∈ OpenTransactions do

if tx.previous = transaction.previous then
return (true, tx)

end if
end for
return (false, NULL)

end function

function Monitor(transaction) . Is run in a separate thread
Sleep(10 seconds)
check ← doublespendmap[Hash(transaction)]
if ¬check then . No doublespend-attack detected

Output positive feedback
if connectioncount < 100 then

Output connection warning
end if

else . doublespend-attack detected
Output negative feedback

end if
end function

Figure 7.4: Detection algorithm

53

Bitcoin network
Direct TCP

Attacker

Messenger

Victim Helper

Figure 7.5: Test network for the detectability improvements

Bitcoin transaction in the network, as all upgraded nodes (not necessarily the
whole network) relay one additional transaction.

Our tests show that the mechanism works properly, as described.

54

Chapter 8

Conclusion

8.1 This thesis

We evaluated the doublespend-protection procedure in Bitcoin. While the pro-
cedure is not vulnerable, it imposes a long transaction confirmation time of
(in expectation) 5 minutes on the Bitcoin system. We mentioned businesses
for which this waiting time is infeasible, and we claimed that they are putting
themselves at risk of being the victim of a doublespend-attack.

We continued to implement such a doublespend-attack on the Bitcoin system
and run several experiments with it. We systematically run one set of measure-
ments to determine the impact attack parameters have on the attack, and we
run another set of measurements to achieve certain attack properties by finding
the right attack parameters.

While we were able to grasp and explain the effects of the parameters on
the attack, we were not successful in discovering a parameter setting which lead
to the desired results. We only explored a small part of the parameter space,
though, and we think that there might exist a parameter setting which results in
the desired properties. Even without achieving all the desired attack properties,
we still consider the attack as successful.

We continued to implement a detection mechanism which improves the
current doublespend-protection procedure in Bitcoin by warning a user if a
doublespend-attack is detected. The mechanism also improves the detectability
of the attack in the network at a low network load cost. If our upgrade is de-
ployed wide enough in the network, it will make the attack fully detectable in
the network.

Summarising, we have shown a vulnerability for a certain usage type of the
Bitcoin system and implemented a mechanism which greatly reduces the risk
businesses with this usage type have to take with Bitcoin.

8.2 Future work

There might be a parameter setting which results in the desired, but not
achieved attack properties of our attack. Further exploration of the parame-
ter space would be needed to find such a setting. This setting might not exist at
all if the detection mechanism we developed is deployed widely in the network.

55

We implemented a basic version of a doublespend-attack, but attacks can
be more sophisticated. We currently doublespend all the Bitcoins of a single
transaction, and we detect a doublespend-attack under this assumption. A more
sophisticated attack could, for example, doublespend only some of the Bitcoins
of a single transaction which our detection mechanism would not recognise as a
doublespend-attack. Describing such attacks might lead to more sophisticated
detection mechanisms, or to the conclusion that no detection mechanism could
ever be sufficiently complex, so the risk of a doublespend-attack cannot be
mitigated in the time before transactions are confirmed.

56

Appendix A

Bitcoin logging mechanisms

In this appendix, we present a logging mechanism we implemented to collect
data for the experiments mentioned in chapter 5. We do not explain any details
about the design or implementation, but just give an overview.

We implement the logging mechanism in the Bitcoin client software. Some
behaviour of the mechanism can be modified, as we will show.

A.1 Console logging

By default, console log output is disabled. It can be enabled with the command
./bitcoind setlog 1 and disabled with the command ./bitcoind setlog

0. Enabling console logging will cause the Bitcoin client software to output log
messages to the console, namely:

• additional output for detected doublespend-attacks, in particular for
transactions not concerning the user

• transaction log messages

A.2 Transaction-logging

Transaction-logging logs all transactions involving user-specified addresses.
Transaction-logging uses a configuration file that is loaded at program start.
The format of the configuration file can be seen in figure A.1.

Which events are logged is fixed in the software, but templates for other types
of events exist in the code as well. See the source file $bitcoin/src/main.cpp and
the function void writelog(int type, CTransaction tx) for details. The follow-
ing events are logged:

• reception of a transaction via Bitcoin network

• relay of a transaction via a direct TCP connection

• relay of a transaction via Bitcoin network

Note that “relay of a transaction via Bitcoin network” also includes detected
doublespend-transactions. The format of the log can be seen in figure A.2.

57

Location of the file: $bitcoin/addresses.txt. Format of addresses.txt:

file = (line’\n’)*line | ’’

line = ’$address’

Where each line represents one address. $address is the Bitcoin address to be
logged.

Figure A.1: Addressfile

Location of the file: $bitcoin/log.txt. Format of a log entry:

$timestamp $message $hash (address: $address)

Where $timestamp is a Unix timestamp with millisecond resolution, $message is
text depending on the type of event logged, $hash is the hash of the transaction
and $address is the Bitcoin address involved.

Figure A.2: Transaction log

A.3 Connections-logging

We log the number of connections a node has. This information is never output
to the console, but is written to a file. The format of the connectionslog can be
seen in figure A.3.

A.4 Doublespend-warnings

Doublespend-warnings are logged, as has been already covered in chapter 7.
The format of the warnings can be seen in figure 7.2.

Location of the file: $bitcoin/connectionslog.txt. Format of connectionslog.txt:

$timestamp $incoming incoming connections ($total total)

Where $timestamp is a Unix timestamp with millisecond resolution, $incom-
ing is the number of incoming connections and $total is the total number of
connections.

Figure A.3: Connectionslog

58

Appendix B

Scripts

In this appendix, we present several scripts we create to facilitate different
aspects of the work related to this thesis.

We just present the scripts briefly.For a more thorough description, please
consult the respective README file.

B.1 Analysis of the blockchain

We write a script that accesses data about the Bitcoin blockchain via https://

blockexplorer.com/. It collects the timestamps when the blocks were created
and evaluates the block finding times (the time from a timestamp to the next)
statistically. It can be found in ./scripts/blockanalysis/.

B.2 Connectionslog post processing

We write a script that processes the connectionslog and generates a file which
can be plotted directly. It can be found in ./scripts/plot/.

B.3 Collection of log files

We write a script that collects various log files (connectionslog, transaction log)
from multiple sources which have been set up according to our experiment setup
and stores them in a way such that the script presented in appendix B.4 can
evaluate them. It can be found in ./scripts/downloadlogs/.

B.4 Evaluation of log files

We write two script that evaluates logs stored in a certain format (described
in section 5.2) and creates a PDF report. The one script, for delay ≥ 0, can
be found in ./scripts/evaluatelog/ and the other script, for delay < 0, can be
found in ./scripts/negevaluatelog/.

59

Bibliography

[1] Blockexplorer. https://blockexplorer.com/b/123456. Block 123456,
looked at on 2012-03-13.

[2] Xavier Boyen and Elaine Shi. Bitter to better - how to make bitcoin a better
currency. In Financial cryptography and data security 2012, February 2012.

[3] Bitcoin charts. http://bitcoincharts.com/bitcoin/. A bitcoin eco-
nomic status analysis, looked at on 2012-03-08.

[4] Bitcoin charts. http://bitcoincharts.com/markets/currencies/. A
bitcoin currency value analysis, looked at on 2012-03-08.

[5] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash.
In Shafi Goldwasser, editor, Advances in Cryptology CRYPTO 88, volume
403 of Lecture Notes in Computer Science, pages 319–327. Springer Berlin
/ Heidelberg, 1990.

[6] CNN. Bitcoins uncertain future as currency. http://money.cnn.com/

video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/, July
2011. A newscast.

[7] Frerk-Malte Feller. Paypal globales zahlungssystem mit kompetenz fr
lokale zahlungsmrkte. In Thomas Lammer, editor, Handbuch E-Money,
E-Payment & M-Payment, pages 237–247. Physica-Verlag HD, 2006.

[8] Hal Finney. https://bitcointalk.org/index.php?topic=3441.

msg48384#msg48384. Finney attack, looked at on 2012-04-18.

[9] jevonx. https://github.com/bitcoin/bitcoin/issues/1034. Double-
spend alerts for fast transactions and added security, looked at on 2012-04-
19.

[10] Mt.Gox K.K. https://mtgox.com/. A bitcoin exchange, looked at on
2012-03-08.

[11] Satoshi Nakamoto. https://bitcointalk.org/index.php?topic=423.

msg3819#msg3819. Reply to “Bitcoin snack machine (fast transaction prob-
lem)”, looked at on 2012-04-18.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:

//www.bitcoin.org/bitcoin.pdf, October 2008.

60

[13] Peio Popov. Electronic money: The road to bitcoin and a
glimpse forward. http://mirror.fem-net.de/CCC/28C3/mp4-h264-HQ/

28c3-4668-en-electronic_money_h264.mp4, December 2011. A talk.

[14] Transaction radar. http://transactionradar.com/. A Bitcoin network
observing service, looked at on 2012-04-19.

[15] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system.
In Privacy, security, risk and trust (passat), 2011 ieee third international
conference on and 2011 ieee third international conference on social com-
puting (socialcom), pages 1318–1326, October 2011.

[16] RowIT. http://bitcoinstatus.rowit.co.uk/. A bitcoin network status
analysis, looked at on 2012-03-08.

[17] O. Goldreich S. Even and Y. Yacobi. Electronic wallet. In Kevin McCurley
and Claus Ziegler, editors, Advances in Cryptology 1981 - 1997, volume
1440 of Lecture Notes in Computer Science, pages 383–386. Springer Berlin
/ Heidelberg, 1999.

[18] Bitcoin wiki. https://en.bitcoin.it/wiki/Confirmation. Confirma-
tion, looked at on 2012-04-18.

[19] Bitcoin wiki. https://en.bitcoin.it/wiki/Myths#Point_of_sale_

with_bitcoins_isn.27t_possible_because_of_the_10_minute_wait_

for_confirmation. Myths, looked at on 2012-04-18.

[20] Bitcoin wiki. https://en.bitcoin.it/wiki/Green_address. Green ad-
dress, looked at on 2012-04-18.

[21] Bitcoin wiki. https://en.bitcoin.it/wiki/Wallet. Wallet, looked at
on 2012-03-12.

[22] Bitcoin wiki. https://en.bitcoin.it/wiki/Block_hashing_algorithm.
Block hashing algorithm, looked at on 2012-03-12.

[23] Bitcoin wiki. https://en.bitcoin.it/wiki/Transaction. Transaction,
looked at on 2012-03-13.

61

