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Summary 

Rockfall is one of the major natural hazards that occur regularly in mountainous areas, the 
risk associated with which, tends to increase due to climate change. The consequences of 
rockfall hazards can be severe, which makes them important to consider, even though the 
overall risk may be low. Rockfall protection galleries are one of the adequate structural 
measures that provide protection against rockfalls.  

In the past, the galleries were designed to sustain impact energies of up to 3 MJ, and recent 
developments allow energies up to 6 MJ by improving the performance through the use of 
alternative cushion layers as well as high strength materials and shear stirrups for the slab. 
The question is, whether if these structures are actually capable of sustaining the impacts they 
are designed for. Many of the existing galleries are designed based on oversimplification by 
engineers and may not be able to uphold the mentioned energy limit, and they are not 
designed following the Swiss design guideline, which was established only in 1998. However, 
it is important to be able to rationally design new protection galleries, besides being able to 
accurately determine the capacity of the existing ones. The Swiss design guideline considers 
application of a static equivalent force, which is formulated by conservatively extrapolating 
experimental results using elastic numerical analyses, and the dynamic behavior of the 
structure is not well incorporated. 

This dissertation contributes to the improvement of the predictive accuracy of the impact 
capacity of rockfall protection galleries and to the establishment of a performance-based 
design procedure for these structures. Furthermore, it facilitates the understanding of the 
dynamic response of cushion layers and slabs subjected to impact loading. A numerical 
method using explicit finite element analyses is proposed in this study in order to investigate 
the dynamic response of reinforced concrete rockfall protection galleries. The applicability of 
the method to predict the response of slabs covered by soil is verified by comparison with 
suitable experimental data.  

The main challenges tackled in this respect are appropriate modeling of the soil cushion, 
failure of the slab, as well as incorporating stress histories for consecutive rockfall impacts. A 
material model is adapted, which considers shear yielding of the soil as well as its hardening 
properties. A failure criterion is established in this study to account for failure of reinforced 
concrete slabs using elastic-plastic finite element analysis, which is based on the ratio 
between the maximum and residual deflection of the slab. In addition, a new numerical 
analysis procedure is developed to model consecutive impact loading on reinforced slabs.  

Using the failure criterion and the numerical analysis procedure proposed, finite element 
analyses are applied for extension of the available physical tests that covered input energy 
levels of up to 0.3 MJ (Schellenberg 2008), and the influence of the boulder shape, shear 
reinforcement, and consecutive impact loading on the response of slabs is investigated. The 
finite element method is utilized as a tool to improve the assumptions made for an existing 
analytical model based on a system of multiple degrees of freedom proposed by Schellenberg 
(2008). In addition, a simplified new method using a two degrees of freedom system is 
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proposed. A case study is performed, which enabled comparison of different numerical 
methods, and finite element methods are used to simulate the gallery subjected to high impact 
energies of up to 2.7 MJ. The response of the gallery subjected to energies higher than 2.7 MJ 
is studied using analytical models. 

A performance-based design procedure, called elastic recovery-based design (ERBD) is 
established, which incorporates the failure criterion suggested in this research to define the 
performance of galleries based on numerical modeling. 

 



 

v 

Zusammenfassung 

Steinschlag ist eine der Naturgefahren in Bergregionen, deren Eintrittswahrscheinlichkeit sich 
durch klimatische Veränderungen erhöht. Die Folgen von Steinschlag können schwerwiegend 
sein, weshalb es wichtig ist, diese Gefahr nicht zu vernachlässigen, auch wenn die 
Eintrittswahrscheinlichkeit eines schwerwiegenden Falles verhältnismässig niedrig ist. 
Steinschlagschutzgalerien sind eine der wirksamen Strukturen, die Schutz vor Steinschlag 
bieten.  

In der Vergangenheit wurden Galerien so gebaut, dass sie Einschlagenergien bis zu 3 MJ 
aushalten konnten. Durch neue Erkenntnisse im Bereich alternative Eindeckungsmaterialen, 
sowie hochfester Materialen, und Verbügelung der Platten kann das Verhalten auf bis zu 6 MJ 
erhöht werden. Die Frage ist, ob die Bauwerke tatsächlich die Einschläge aushalten, für die 
sie konzipiert wurden. Viele der bestehenden Galerien wurden von Ingenieuren auf Basis 
stark vereinfachter Annahmen bemessen und könnten die genannten Anforderungen unter 
Umständen nicht erfüllen. Die meisten wurden auch nicht gemäss der aktuellen Schweizer 
Richtlinie, die erst seit 1998 besteht, berechnet. Das Ermöglichen rationaler Entscheidungen 
beim Neubau und genauerer Ergebnisse bei der Überprüfung bestehender Galerien ist  
unbestritten von höchster Wichtigkeit. Die Richtline berücksichtigt die Belastung als eine 
statische Ersatzkraft, die durch konservative Extrapolation der experimentellen Ergebnisse 
mit Hilfe von elastischen numerischen Analysen bestimmt wird. Das dynamische Verhalten 
des Tragwerks wird dabei nicht genügend berücksichtigt. 

Diese Dissertation trägt zur Verbesserung der Vorhersagegenauigkeit der Tragfähigkeit von 
Steinschlagschutzgalerien bei und schlägt die Etablierung eines verhaltensbasierten 
Bemessungsverfahrens für den Bau dieser Tragwerke vor. Desweiteren wird zu einem 
besseren Verständnis des dynamischen Tragverhaltens der Eindeckung und der Platten 
beigetragen. In dieser Arbeit wird eine numerische Analysemethode, welche explizite Finite 
Elemente Methoden nutzt, verwendet, um die dynamische Tragfähigkeit von 
Steinschlagschutzgalerien zu untersuchen. Die Einsetzbarkeit dieser Methode zur 
Einschätzung des Verhaltens von mit Lockergestein bedeckten Betonplatten wird durch den 
Vergleich mit experimentellen Bemessungen verifiziert.  

Die grössten Herausforderungen, die in dieser Hinsicht gemeistert werden mussten, sind die 
Modellierung der Eindeckung, der Bruch der Platte sowie die Berücksichtigung der 
Spannungsgeschichte bei wiederholten Einschlägen. Dabei wird ein Materialmodell so 
angepasst, dass Scheren des Lockergesteins sowie seine Verfestigungseigenschaften 
einfliessen. Ein Kriterium zur Untersuchung des Versagens der Platte mit elastisch-plastischer 
Finite Elemente Analyse wird vorgeschlagen, welches auf einem Quotienten von maximaler 
zu residualer Verschiebung der Platte basiert. Zusätzlich wird ein numerischer Ansatz für die 
Modellierung bewehrter Stahlbetonplatten, die wiederholten Einschlägen ausgesetzt sind, 
vorgeschlagen. 

Unter Anwendung des Ausfallkriteriums und der vorgeschlagenen numerischen Analyse 
werden Finite Elemente Analysen zur Erweiterung der von Schellenberg (2008) 
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durchgeführten Fallversuche, mit simulierten Energien bis zu 0.3 MJ, benutzt. Dabei wird der 
Einfluss der Form des Felsblocks, der Bügel und wiederholter Einschläge auf das Verhalten 
der Betonplatte untersucht. Der Einsatz der Finiten Elemente Methode dient der 
Untersuchung der Einflüsse verschiedener Eingabeparameter, wobei das von Schellenberg 
(2008) vorgeschlagene analytische Modell, welches auf einem nichtlinearen 
Dreimassenschwinger basiert, verbessert wird. Zusätzlich wird ein simplifiziertes Modell mit 
einem nichtlinearen Zweimassenschwinger vorgeschlagen. Eine Fallstudie, welche den 
Vergleich verschiedener numerischer Methoden ermöglicht, wurde durchgeführt. Um das 
Verhalten der Galerie bei hohen Aufprallenergien bis zu 2.7 MJ zu simulieren, wurden Finite-
Element-Methoden eingesetzt. Die Bauwerksantwort der Galerie bei Energien grösser als 2.7 
MJ wurde mittels analytischer Modelle untersucht. 

Abschliessend wird ein verhaltensbasiertes Bemessungsverfahren genannt „Elastic Recovery-
Based Design“ (ERBD) als Kriterium zur Definierung der Leistung von Galerien in 
numerischen Modellen vorgeschlagen. 
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1 Introduction 

Mountainous areas have a complicated topography, and exhibit geological and environmental 
conditions, which combined with climate changes, cause a variety of natural hazards. Rockfall 
is one of the hazards, the risk associated with which, tends to increase in Alpine areas of 
Switzerland. In addition to the large uncertainties involved in the prediction of their 
occurrence, rockfalls involve high energies and not enough time for taking an action once 
they occur, and they may lead to severe consequences. Therefore, it is important to consider 
rockfall hazards, even though the ones that are very significant do not occur frequently. 

Rockfall protection research requires an interaction among different disciplines including 
natural sciences, engineering, and risk assessment. These disciplines contribute to the 
following: 

• identification of the problem, i.e. identification of potential detachment zones and 
unstable slopes; 

• estimation of occurrence frequencies of rockfalls of different magnitude; 
• determination of potential of special propagation of falling rocks;  
• risk assessment and definition of protection levels; 
• risk mitigation and management. 

Once these risks are identified and assessed for a given location, they can be managed by 
different means. For instance, if there are no existing infrastructure and transportation 
networks, such locations can probably be avoided by land use planning. If infrastructure and 
transportation networks exist and the risk due to rockfall is exceeding certain acceptance 
criteria, protection measures need to be taken. 

The most appropriate protection measure can be chosen for the rockfall initiation zone as well 
as the transit path and the deposit zone based on the geology and topography of the location, 
and the frequency and intensity of rockfall. At the initiation zone, the measures can be taken 
by stabilizing the slope and removal of unstable volumes of rock. Along the transit path, 
planting can be used as a protection measure as well to form hybrid barriers. Figure 1-1 shows 
some of the common protection measures at disposal for the deposit zone to manage the risk 
associated with rockfall with respect to their absorption of kinetic energy. 

Smaller rockfalls are more frequent than the large rockfall events or landslides. Usually 
magnitude-cumulative frequency relationships are used for bed-rock derived movements, 
which can be obtained from the observed data for a specific location. The shape of such 
curves on a log-log plot (see Hungr et al. 1999) is developed in a way that the cumulative 
frequency becomes lower with increase in the landslide volume. Rockfall protection galleries 
are one of the few adequate types of structures that provide protection against rare events of 
relatively high level of impact energies and at the same time, they require low maintenance 
after more frequent events of low energy. 
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The kinetic energy is commonly used to indicate the impact load carrying capacity, or in other 
terms, the absorption capacity of these structures. The energies for which protection galleries 
are considered to be adequate vary from 0.2 to 3.0 MJ, according to Swiss Federal Road 
Office classifications (ASTRA 2003). Flexible barriers are also capable of absorbing high 
energies up to 5 MJ, and they are well suited for less frequent events. There has been a 
significant improvement of capacity of newly designed structures, such as flexible barriers 
and galleries in recent years by augmenting their capacity for energy absorption. An extension 
of the capacity in terms of kinetic energy dissipated based on the latest developments is 
shown in dotted lines in Figure 1-1 (proposed by Vogel et al. 2009). 

 

Figure 1-1: Rockfall protection measures (ASTRA 2003) and latest development in dotted lines 
(Vogel et al. 2009) 

1.1 Background and motivation 
A survey of about 350 existing rockfall protection galleries in Switzerland has shown that 
most of them are covered by a soil cushion layer (Schellenberg 2008). The most common type 
of the galleries has a cast in situ reinforced concrete flat roof slab without prestressing with a 
typical span of 9 m and a slab thickness of approximately 0.70 m. Figure 1-2 shows a typical 
rockfall protection gallery. The back side of such galleries is continuously supported on a 
retaining wall, and the valley side is supported on columns, with a typical spacing of 7 m. 

Many rockfall events have occurred in Switzerland with kinetic impact energies ranging from 
1 up to 450 MJ over the last two decades (Chikatamarla 2006), and some of the events lead to 
the failure of the galleries. The rockfall protection galleries are supposed to withstand 
rockfalls with energies up to 3 MJ, which is the limit in Switzerland according to Swiss 
Federal Road Office (ASTRA 2003) classifications. However, many galleries are designed 
based on oversimplifications by engineers and may not be able to sustain the mentioned 
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energy limit. Some of the rockfall incidents, as outlined by Chikatamarla (2006) and 
Schellenberg (2008), have led to fatalities. These incidents have shown that rockfall 
protection needs to be improved in order to reduce fatalities and damage to infrastructure. The 
prediction of impact load carrying capacity of existing structures should be improved to 
enhance the protection against rockfalls. Rockfall events may also happen in areas that were 
not classified as rockfall hazard zones so far, so it is necessary to improve the basis for the 
design of new structures in order to sustain rockfall impacts without severe damage. 

 

Figure 1-2: A typical rockfall protection gallery in Switzerland (Tanzenbein Gallery, Gotthard pass) 

The impact capacity of rockfall protection galleries has already been a topic of interest among 
civil engineers in Switzerland. The Swiss design guideline for rockfall galleries (Section 2.3) 
is based on falling-weight impact experiments carried out at the laboratory of the Swiss 
Federal Institute of Technology, Lausanne (EPFL) (Section 2.1.4), which examined the 
impact on a concrete slab covered by a cushion layer with variation of impact velocity, 
boulder size, etc. (Montani 1998). The maximum impact energy achieved was 0.1 MJ due to 
size restrictions and it can only present the real situation partially. Higher energies were 
conservatively extrapolated by means of elastic numerical simulations (Bucher 1997) and an 
empirical equation was proposed for the evaluation of an equivalent static force for design. 
The design assumptions are outlined in Section 2.3 and the application of the guideline is 
limited to a penetration depth of a maximum of half of the cushion thickness. 

Further studies related to the cushion layer were done at ETH Zurich. Experimental, 
numerical, and analytical studies (Section 2.1.4) were carried out to investigate damping 
properties of cushion layers (Chikatamarla 2006). Laboratory physical modeling of the impact 
in the centrifuge was carried out to determine physical, dynamic and geotechnical parameters 
of different cushion material and full-scale events, during which impact energies of up to 
20 MJ were replicated. The study contributes largely to the understanding of behavior and 
stress distribution of different types of cushion materials. However, the structural model was 

Soil cushion 

Roof slab 

Retaining wall 

Column 
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very simple and the influence of the stress distribution on the behavior of the gallery roof 
needs further investigations. 

In order to improve the predictive accuracy of the impact load capacity of rockfall protection 
galleries and to calibrate an analytical model (Section 2.4), large-scale falling-weight tests on 
reinforced concrete slabs covered by a cushion layer (Section 2.1.2) were carried out at a scale 
of 1:2 in April 2007 (Schellenberg 2008). Impact energies of up to 0.3 MJ were achieved 
during these experiments, which can be used to calibrate numerical models within limits. 
These are used here to extend the analysis for higher energies (up to 2.7 MJ) and to simulate a 
full scale gallery, as well as to validate the assumptions made for different parameters of the 
analytical model. 

1.2 Objective and scope of work 
The current work focuses on the dynamic capacity of rockfall protection galleries covered by 
a soil cushion (Figure 1-2). The kinetic energies and velocities of impacts (design levels) are 
assumed to be known. The focus of the study is on the capacity of the reinforced concrete 
slab. Therefore, only the vertical component of the impact forces, which is critical for slabs, is 
considered here. It is assumed that the horizontal components can be treated separately. The 
impact location is defined to be at mid-span and a plane loading surface is considered.  

This work is a direct continuation of the research carried out in the Institute of Structural 
Engineering at ETH Zurich (Schellenberg 2008), where experimental studies were carried out 
in order to develop and calibrate an analytical model. The current work aims at improving the 
design method proposed, and investigating the dynamic behavior of reinforced concrete slabs 
using numerical studies. Numerical analyses are carried out using the finite element method 
with the following objectives: 

• to investigate the potential of finite element analysis techniques to predict the behavior 
of slabs covered by soil, by comparing the results to the experiments; 

• to establish a failure criterion to account for failure using elastic-plastic dynamic finite 
element analysis; 

• to establish a numerical analysis procedure to model consecutive impacts on 
reinforced concrete structures; 

• to use finite element analyses for a parametric study of impact on reinforced concrete 
slabs and galleries for different material models, support conditions, mesh sizes, 
spacing of shear reinforcement, and for consecutive impact loading; 

• to apply the finite element method as a tool to investigate the influence of the input 
parameters and to improve the assumptions made for the existing analytical model; 

• to establish a new simple analytical approach that can be applied for design of new 
galleries and evaluation of existing ones; 

• to further provide recommendations for a performance-based design of rockfall 
protection galleries and recommendation to study the influence of the different 
assumptions on the design of galleries. 
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1.3 Methodology 
The structure of this dissertation follows the methodology used in establishing the entire 
research project. The state of the art of the research on dynamic analysis of reinforced 
concrete members and the relevant topics for the design of protection galleries are discussed 
in Chapter 2. 

This work demonstrates the use of finite element methods to model rockfall impact on 
reinforced concrete protection galleries, and interprets the numerical results. The general 
aspects of the simulation, the method and the software used, as well as the material models 
adapted for the finite element simulations, are described (Chapter 3). 

The results obtained from finite element analyses are compared with available experimental 
data in Chapter 4. The applicability of finite element methods for simulating impact on 
concrete members is reviewed in Section 2.2.1. This work further investigates the efficiency 
of the method in modeling reinforced concrete slabs covered by a layer of soil, which is 
achieved by simulating the experiments. A numerical analysis procedure for modeling 
consecutive impacts on reinforced concrete slabs is proposed and its applicability is 
investigated. Moreover, the potential of the finite element methods to model the global and 
punching behavior of the slab is investigated. A criterion can be established based on this 
comparison to account for failure of reinforced concrete members using elastic-plastic finite 
element analysis. 

Once the applicability of the finite element method is investigated and a failure criterion is 
established, the analyses can be extended beyond the range of the experiments conducted 
(Chapter 5). Various finite element models developed to study the behavior of slabs are 
described in this chapter. Sensitivity analyses are carried out in order to decide on various 
input parameters for finite element models, such as material models and mesh sizes. Results 
of these extensions are employed for calibration of parameters of the system of multiple 
degrees of freedom proposed by Schellenberg (2008) in Chapter 6. In addition, an analytical 
model using a system with two degrees of freedom is proposed. This chapter provides a 
summary of the results obtained using the improved and the proposed analytical models and 
gives an overview on the most important findings. 

A case study combining the analyses of the finite element method and the analytical method is 
explained in Chapter 7. Finally, the last chapter outlines the conclusions and suggestions for 
future research, as well as recommendations for a performance-based design procedure. 

 





 

7 

2 State of the art 

This chapter provides an insight into the past findings and research into the dynamic capacity 
of reinforced concrete members, as well as rockfall protection galleries. Moreover, it 
highlights the research gaps and shortcomings, as well as the need for further work. The 
following aspects are presented here: 

• experimental impact studies carried out on reinforced concrete beams, slabs and 
galleries, as well as selected impact experiments on soil layers (2.1); 

• numerical analyses of the performance of structures under impact (2.2); 
• a short reference to existing design guidelines and recommendations (2.3); 
• analytical models for analyzing the dynamic response of rockfall protection galleries 

(2.4). 

A more general state of the art review of rockfall protection measures can be found in the 
literature (e.g. Montani 1998, Chikatamarla 2006, Schellenberg 2008, Vogel et al. 2009). 

2.1 Experimental studies 
This section outlines various impact tests conducted on reinforced concrete beams, slabs, and 
galleries. In addition, impact experiments on soil and gravel layers or cushions, as well as on 
reinforced concrete slabs and galleries covered by soil, are described. Figure 2-1 shows the 
range impact energies for impact tests outlined in the following sub-sections. 

Figure 2-1: Overview of impact experiments 

2.1.1 Impact tests on reinforced concrete members 

Various impact tests have been carried out on reinforced concrete beams. A series of impact 
tests was performed on reinforced concrete beams to investigate their response (Yamamoto et 
al. 2001) and suggestions were made on suitable measurement methods for impact tests. 
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Furthermore, crack patterns, response of the beam, and absorbed energies were discussed. 
Additionally, reinforced concrete beams were subjected to falling-weight impact tests by 
Kishi et al. (2002a). Twenty-seven simply supported reinforced concrete beams, of 150 mm 
width and 250 mm depth without shear reinforcement, were subjected to the impact of a 
300 kg spherical steel weight (Figure 2-2 a). Impact velocities between 1 to 6 m/s were used. 
The impact forces, reaction forces, mid-span displacements and crack patterns were observed 
during the experiment. The ratio of absorbed energy and input kinetic energy was studied for 
these experiments, and a mean value of 0.6 was observed.  

These tests provide a good understanding of the behavior of reinforced concrete beams 
subjected to impact loading. However, it is of great importance to study the performance of 
slabs subjected to impact loading, when designing for the impact behavior of reinforced 
concrete slab-type rockfall protection galleries. The experiments on reinforced concrete slabs 
can further highlight the three dimensional behavior of these structures. 

Additional experiments are reported on reinforced concrete beams and slabs subjected to an 
impact of a cylindrical drop mass, in order to study the impact behavior of reinforced concrete 
members (May et al. 2005). Beams with a maximum span of 3 m and slabs of 2.3 m2 were 
subjected to the impact of weights up to 200 kg being dropped from heights up to 4 m 
(Figure 2-2 b). The load-time-histories, impactor accelerations, strain in reinforcement and 
concrete, crack formations and propagations were obtained. The global behavior, the order of 
crack formation, and the local behavior in the vicinity of the impact were studied for the 
reinforced concrete beams. For the slab tests, the modes of failure including scabbing were 
investigated as well. The beam tests confirmed that the beam span has a higher influence on 
the impact forces than the supports. 

a)     b) 

 
Figure 2-2: View of impact test on reinforced concrete beams in a) Japan (Kishi et al. 2002a), and 
b) United Kingdom (May et al. 2005) 
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Experimental investigation on reinforced concrete slabs subjected to impact loading was 
reported by Uchida et al. (1985). About 30 square shaped slabs, supported on four points, with 
a 1.5 m span length, including specimens for static loading, were tested. An impact loading 
method was developed, which enabled the control of peak values and duration of contact 
force. A rubber pad was installed on the specimen at the contact point of the falling-weight to 
limit the peak value of the impact force for the given impact velocity, and the impact duration 
by the thickness of the rubber pad. The impact duration was mainly affected by the thickness 
of the rubber pad and was kept constant regardless of the input impact velocity. The 
maximum impact force varied almost linearly with increase in the impact velocity for the 
same thickness of the rubber. Maximum impact force of up to 84 tonnes and maximum 
impact duration up to 8.5 ms were achieved during experiments. The energies absorbed under 
static and impact loadings were compared. It was observed that the energies absorbed in the 
slabs subjected to impact increase in proportion to the loading rate, up to almost twice the 
static values. 

Seven 1:7.5 scale models of different types of reinforced concrete slabs used in industrial 
facilities were loaded vertically with a 15 cm2 steel loading plate (Saito et al. 1995). Static, 
low speed and high speed loadings with vertical loading rates of 3·10-5, 3·10-2, and 3 ms-1, 
respectively, were used for this experiment. The relationships between the load and the 
displacement at the loading point, as well as the slab failure modes, were studied. When the 
slab was subjected to static loading, punching shear failure occurred. During the experiment 
with high speed loading, bending compression failure occurred and the specimen cracked at 
the center. It was observed that the strength of the slab increased with the increase in the 
loading rate. 

Three different sets of impact tests, using the same test setup, were performed on reinforced 
concrete slabs (Zineddin & Krauthammer, 2007). The slabs were 90 x 1524 x 3353 mm in 
size. The impact tests were performed with a cylindrical drop hammer device of 
approximately 2608 kg dropped from heights of up to 610 mm at the center of the slab. 
Changes in mechanism from a fracture mode from a ductile mode (bending failure) at lower 
drop heights (152 mm), to a brittle mode (shear failure) under higher drops (610 mm) was 
observed using a high-speed video camera. The tendency for local shear failure or brittle 
failure increases with increase of the loading rate, thus when a local failure is not desirable 
(since it leads to a sudden failure) the, favorable increase in the strength due to the loading 
rate can be offset. For rockfall protection galleries, however, local punching should be the 
governing mode of failure since a bending failure and the collapse of the whole gallery is not 
favorable. The impact load histories, deflections, reinforcement strains, and accelerations 
measured during experiments were presented as well in this study. 

The above mentioned experiments describe the behavior of reinforced concrete slabs 
subjected to impact loadings. In most cases a local damage can be expected due to the direct 
impact of the loading device, which can be minimized for rockfall protection galleries by the 
use of appropriate damping materials such as soil. This also can enhance the energy 
absorption of the slabs. Therefore, it is important to perform experimental studies on slabs 
covered by a soil cushion. The experiments mentioned herein were carried out at small scale. 
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It is important to carry out large-scale testing to fully explore the dynamic response of 
structures. 

It is also possible to reduce the damage to rockfall protection galleries, which are not covered 
by a soil cushion. A new concept was proposed for rockfall protection (Berthet-Rambaud et 
al. 2004, Mougin et al. 2005) by providing reinforced concrete slabs with special supports to 
absorb rockfall energy. An experimental approach using this system to analyze the response 
of this type of slab to impact loading was presented, in which the damage due to an impact of 
a rock would mainly be concentrated at dissipating supports, which can be replaced when it is 
required. However, the slab will still sustain some local damage, which may need to be 
assessed and repaired. The system has already been used for several galleries in France. There 
may still be a more economic solution combining this system with a thin layer of soil on top 
of the slab to reduce local damage and spalling. 

2.1.2 Impact tests on slabs covered by a soil cushion 

As many existing galleries are covered by soil, establishing experimental studies for slabs 
covered by a soil layer is desirable, especially for large-scale and full-scale tests at equivalent 
energy levels given for galleries (Figure 1-1). This facilitates the prediction of the protection 
level of existing structures. 

Large-scale falling-weight impact tests were carried out at a scale of 1:2 compared to an 
average Swiss rockfall protection gallery. During these experiments, six reinforced concrete 
slabs, with lateral dimensions of 3.5 x 4.5 m and a thickness of 0.25 or 0.35 m, covered by a 
gravel cushion were subjected to falling-weight impacts with increasing impact energy until 
the slabs failed. The slabs had one line and two single supports. Two steel beams welded to an 
elbow were cast-in over the single supports to avoid a shear failure. Concrete boulders of 
800 kg and 4000 kg were dropped from heights of up to 15 m and 7.5 m, respectively 
(Schellenberg et al. 2007, Schellenberg 2008). The test setup is shown in Figure 2-3. The slab 
thickness was varied to explore its influence on the behavior. Shear reinforcement was placed 
in two of the slabs. Acceleration of the boulders, reaction forces at the load cells, crack 
patterns at the soffit of the slabs, as well as acceleration and strains within the slabs were 
measured during the experiment. A combined bending shear failure mode that developed 
close to simply supported corners was observed. 

 
Figure 2-3: Experimental setup for large-scale impact tests carried out in Switzerland (Schellenberg 
et al. 2007) 
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A series of falling-weight impact tests with predefined impact velocities was carried out to 
study the punching failure due to impact load (Kishi et al. 2008). Four reinforced concrete 
slabs having 2 m side length and a thickness of 0.18 m were subjected to impact by a 300 kg 
mass (Figure 2-4 a). Reinforcing bars of 16 mm diameter were placed at 150 mm spacing in 
both directions. Two impacting cylinders of diameters 60 and 150 mm were used. A 100 mm 
thick sand cushion was placed on top of two of the slabs. Two slabs impacted by the 60 mm 
diameter cylinder, were subjected to an impact velocity of 6 m/s. The other two slabs were 
impacted by the 150 mm diameter cylinder. Impact velocities of up to 10 m/s were applied. 
The impact forces and the reaction forces were measured using load cells placed within the 
falling-weight and below the line supports, respectively. The strains in the reinforcement, and 
the deflections at the slab center were measured as well. Punching failure was reached in all 
slabs. 

a) 

 
b) 

 
Figure 2-4: Experimental setup of a) 2 m x 2 m slab under falling-weight impact (Kishi et al. 2008), 
and b) large-scale falling-weight tests on a slab with a 4 m span (Yamaguchi et al. 2010) 

Large-scale falling-weight impact tests on reinforced concrete slabs covered with sand and 
gravel cushions have been performed recently at a scale of 2:5 to typical rockfall protection 
galleries in Japan (Yamaguchi et al. 2010). Reinforced concrete slabs having a lateral clear 
span of 4 m and a thickness of 0.4 m, were subjected to impact of a 5000 kg boulder dropped 
from heights up to 12.5 m, as shown in Figure 2-4 b. The slabs were placed on steel supports 
equipped by load cells for measuring support reactions. The impact forces, reaction forces, 
and displacements at the slab centers were compared for different drop heights, for the slabs 
covered with two different cushion materials. A relationship was established between the slab 
response and input energy. Therefore, values of maximum impact forces, maximum slab 
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deflection, and residual displacements were compared to the input impact energies. It was 
found from these results that the impact forces for slabs covered by sand can be evaluated 
approximately using Hertz’s contact theory with a Lamé constant λ = 1000 kN/m2. It was 
observed from experimental results that the penetration of the boulder into the cushion layer 
increased linearly with increase in the impact energy within the range investigated. 

The large-scale falling-weight impact tests outlined in this section covered impact energies of 
up to 613 kJ. Impact energies of up to 5 MJ, however, are relevant for the real structures, and 
the behavior of galleries under higher impact energies needs to be investigated. These 
experiments provide a benchmark for numerical analyses of rockfall protection galleries, 
which can be used for extrapolation of the physical tests. Therefore, some of these 
experimental data are used to calibrate the finite element analyses in the current study, which 
will be explained in following chapters. The finite element analysis can further be used to 
simulate the slabs subjected to higher impact energies as well as the real-scale galleries, which 
is difficult and expensive to simulate physically. 

2.1.3 Impact tests on rockfall protection galleries 

The support conditions of large-scale tests are designed to resemble the boundaries of 
galleries as closely as possible. However, the load distribution may differ from that of the real 
case. Therefore, some experiments have been carried out on large-scale models of galleries, in 
order to study the impact behavior of rockfall protection galleries (Kon-No et al. 2010). Two 
gallery models were tested with, and without, a sand cushion. They represented an average 
Japanese gallery at a scale of 2:5 (Figure 2-5). A cylindrical impacting mass of 2 tonnes with 
a spherical bottom, was dropped from heights of up to 1.25 m on the gallery that was not 
covered by a sand cushion. The impacting mass was increased to 10 tonnes, dropped from 
heights of up to 10 m for the gallery covered by a 500 mm thick layer of sand. 

The reaction forces, displacements, and cracks were obtained from experiments. The 
experiments explored the impacts at various locations on the slab (some closer to supports) 
and the forces as well as the cracking at the supporting columns were studied. The roof of the 
gallery without cushion collapsed in a punching shear failure mode. It was found that the 
impact forces for the gallery covered by a sand cushion can be estimated using a design 
formula derived on the basis of Hertz’s contact theory with a Lamé constant λ = 1000 kN/m2. 
The roof of the gallery with the sand cushion reached its ultimate limit state subjected to an 
impact energy of 1000 kJ with punching shear failure. 
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Figure 2-5: Experimental setup for falling-weight impact tests on 2:5 scale galleries (Kon-No et al. 
2010) 

It would be desirable to carry out full-scale tests on real rockfall protection galleries. There 
have been limited possibilities for performing such experiments. Full-scale impact tests on a 
reinforced concrete gallery were reported by Kishi et al. (1994). The experiments were 
conducted so that the concrete roof of the gallery remained in its elastic range and the gallery 
was not cracked. 

Prototype impact tests were conducted on two types of prestressed concrete frames, namely 
an inverted L frame and a rigid frame having similar dimensions (Kishi et al. 2002b). 
Cylindrical steel boulders having a spherical bottom and weights of 3000 and 5000 kg were 
dropped from heights of up to 30 m onto the center of a 90 cm thick sand cushion (Figure 2-
6). The ultimate impact resistance capacities of both frames were compared. It was seen that 
the fully rigid frame has more than 1.7 times impact resistance capacity than the inverted L 
frame subjected to the same impact energy. The fully rigid frame and inverted L frame, 
designed based on a allowable stress design procedure, had more than five and three times the 
margin against collapse referring to the design input energy, respectively, since they were 
initially designed to withstand the impact of a 1000 kg boulder falling from 30 m height (0.3 

H 

m 

a is the ratio between thickness of 
sand and diameter of the boulder 
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MJ). The collapse energy was 1.5 MJ and 0.9 MJ for fully rigid frame and inverted L frame, 
respectively. 

Similar full-scale experiments on slab type rockfall protection galleries subjected to high 
impact energies, can make a significant contribution to understanding the response of these 
structures. 

 
Figure 2-6: Full-scale experimental setup for prestressed concrete rock-sheds (Kishi et al. 2002b) 

2.1.4 Impact tests on cushion layers 

As the dynamic load distribution onto the galleries depends on the energy dissipation in the 
cushion layer covering the gallery, a review of the relevant experiments on such soil layers is 
given here. The impact energy is dissipated by shearing and compaction of the soil, as well as 
crushing of soil grains, if the soil is subjected to impact of a falling boulder. Discussion on 
soil behavior under impact and the modeling aspects are provided in Section 3.3.3 and 
Section 6.1.1. 

An experimental study was carried out by dropping blocks from various heights on a 
reinforced concrete slab covered with three different cushion materials in order to study the 
damping achieved through soil cushions (Labiouse et al. 1996, Montani 1998). These 
laboratory tests (Figure 2-7 a) were restricted to a maximum drop height of 10 meters and an 
input impact energy of 100 kJ. Falling blocks of 100, 500, and 1000 kg were dropped on a 
3.4 x 3.4 x 0.2 m slab covered by 0.35, 0.5, and 1 m thick cushion layers. The slab was 
restrained from lifting during these impact tests. The acceleration of the boulder was 
measured by the accelerometer installed on the falling boulder, and the velocities and the end 

(mm) 
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state penetration of the boulder were determined based on the measured accelerations. The 
penetrations were checked against the measurements of the final distance the boulder traveled 
compared to the surface of the cushion. The soil pressures were measured on the top surface 
of the slab using five soil pressure gages fixed unto the slab, and the resultant forces acting on 
the slab were evaluated by integrating the soil pressure. In addition, the reaction forces were 
measured in the slab by summing up the recorded values at four load cells and the deflections 
were obtained by means of four displacement transducers. A formula was proposed to 
calculate the maximum impulsive force based on the experimental observations. The 
experiments were numerically extended (Bucher 1997), which is explained in Section 2.3, and 
the formula for calculation of equivalent static impact forces acting on galleries was suggested 
and modified based on the extrapolations. The formula based on the extrapolations mentioned 
was later adapted as the Swiss guideline (see Section 2.3, Equation 2-1), and is only 
applicable for impact velocities, which do not lead to low penetration depth (less than half of 
the thickness of the cushion layer). It is obtained based on a rather conservative extrapolation 
of the slab behavior by means of numerical simulations based on elastic material models and 
simplified boundary conditions. 

A study on the energy absorption of cushion materials has been carried out in a geotechnical 
centrifuge using small-scale models at enhanced gravity (Chikatamarla 2006). Experimental, 
analytical, and numerical modeling of rockfall was carried out. The laboratory tests were 
performed to determine physical, dynamic, and geotechnical parameters of different cushion 
materials. Physical modeling of the impact in the centrifuge (Figure 2-7 b) was carried out to 
replicate full-scale events with impact energies of up to 20 MJ. The knowledge gained from 
these experiments is useful in understanding the response of various cushion materials 
(Figure 2-7 c) in order to improve the stress distribution and to reduce the impact forces on 
top of galleries. Carefully instrumented small-scale model tests can be conducted as part of a 
parametric study on the effect of key damping variables. Most important in any estimation of 
soil response is the effect of stress level. Numerical modeling was performed to calculate the 
stresses and forces induced in the gallery. Rigid base simulations were carried out in order to 
validate the centrifuge tests and the tests performed by Montani. The numerical study carried 
out was a preliminary investigation using a simplified material model for soil and can be 
developed further. An analytical model was proposed using lumped mass parameters and 
considers the elastic, plastic, and visco-elastic behavior, which can be applied for modeling 
impact on soil. 

 

 

 

 

 

 

 



State of the art 

16 

a)     b) 

   
c) 

 
Figure 2-7: a) Falling-weight impact test on concrete slab covered by soil (Montani 1998) b) 
Centrifuge test (Chikatamarla 2006), and c) Maximum deflection of the slab for different cushion 
materials for 1.25 MJ impact (Chikatamarla 2006) 

Experiments to study the impact of boulders onto gravel have also been carried out by Pichler 
et al. (2005), where cubic boulders of up to 18’260 kg were dropped from heights of up to 
18.85 m such that they hit the ground with a face, an edge, or a tip. The impact characteristic 
of soil was studied incorporating and extrapolating the knowledge about projectiles impacting 
concrete (Li & Chen 2003). In order to calculate the penetration depth into a layer of soil, the 
dimensionless formulae for penetration depth of the concrete target impacted by a non-
deformable projectile were calibrated using the impact experiments on soil. The formulae 
proposed by Li & Chen (2003) consider slip line fields for a flat nose projectile as shown in 
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Figure 2-8 a. An arbitrary shaped projectile head is assumed to penetrate into concrete 
(Figure 2-8 b). The slip lines can resemble the shear planes in soil, but soil crushing and 
compaction can’t be considered by this assumption. On the other hand, the depth of the shear 
zone in soil is different from the depth of the plastic zone for concrete.  

a)       b) 

 
Figure 2-8: Slip line field for a) flat-nose, and b) conical projectiles impacting concrete (Li & Chen 
2003) 

The penetration depth of an impacting mass has been studied by falling-weight impact tests 
on granular material (Gerber & Volkwein 2010). Fifty-four impact tests were carried out, 
using two blunt boulders with masses of 800 and 4000 kg, dropped from heights up to 15 m 
on two different ground layers. These layers were prepared with thicknesses of 0.5 and 1.3 m 
above the bedrock (Figure 2-9). Three samples of ground layer material were sieved and 
prepared according to Swiss code SN 670 008a. The analysis indicated material of well 
graded gravel with silt and sand (GW-GM). The maximum penetration depth and acceleration 
were measured during the experiments. The dependency of the penetration depth and the 
maximum deceleration on the drop height was studied and a formula was proposed according 
to the work-energy principle for maximum deceleration, as a function of impact velocity and 
penetration depth. 

 
Figure 2-9: Falling-weight impact test on soil layer with hard underlying bedrock (Gerber et al. 
2010) 
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2.2 Numerical studies 
Numerical methods help in analyzing and visualizing the effects of static and dynamic loads 
on structures. They can provide an approximate but accurate solution of a system of 
differential equations. If the numerical model of the structure is adequately developed based 
on appropriate assumptions and sound validation (e.g. calibration with the experimental data), 
it can help minimizing the experimental costs. There has been a tremendous improvement in 
numerical analysis techniques in recent years, which corresponds to the development of 
computer systems. Various numerical analysis methods can be applied for the simulation of 
impact loading on structures. A number of these methods, especially finite element 
simulations of reinforced concrete members subjected to impact loading, are outlined here.  

2.2.1 Finite element method 

Pioneering work in the still evolving field of finite element analysis of reinforced concrete 
structures was initiated by Ngo and Scordelis (1967) and Nilson (1968). Nilson introduced an 
incremental load method for nonlinear analysis of reinforced concrete. Nonlinear material 
properties for concrete and steel and nonlinear bond-slip relationship were also introduced by 
Nilson (1972). There has been considerable progress ever since regarding finite element 
procedures for reinforced concrete members, which include consideration of cracking, 
damage, and strain rate for the concrete material models, layered two-dimensional and full 
three-dimensional analysis, etc. A detailed description of the early development of finite 
element analysis of reinforced concrete structures can be found in an ASCE report (1982). 
The application of the finite element method to study the impact on reinforced concrete 
members is outlined in this section. 

2.2.1.1 Layered finite element analyses 
The structural analysis of slab-type structural members is usually done by applying plate or 
shell elements. Shell elements need to be divided into layers in order to model the behavior 
realistically. This allows the application of different material properties for different layers. 
Each layer can represent concrete and reinforcement, respectively. 

A nonlinear dynamic layered finite element analysis was used for reinforced concrete 
guardrails and slabs (King et al. 1990, and Miyamoto et al. 1991). Reinforced concrete slabs 
with doubly reinforced sections were analyzed using this method. The types of slabs 
simulated in this study were normal strength concrete slabs and high strength concrete slabs 
(King et al. 1990). Doubly reinforced concrete slabs were modeled, applying the external 
impulsive load at slab mid-span (Miyamoto et al. 1991). The layered finite element mesh is 
shown in Figure 2-10 a. Concrete was modeled using a four parameter triaxial failure model, 
and was treated as an orthotropic material after cracking. The slab was divided into eight 
layers, six of concrete and two of reinforcement. Four-node Mindlin type rectangular 
elements were used. Impulse load versus mid-span deflection curves for different ranges of 
loading rates, and the failure modes were produced (King et al. 1990). The shapes of curves 
(Figure 2-10 b) were used to classify the failure mode. The shear failure curves had a larger 
gradient, small deflection, and a high impulse load at failure. The curves for flexural failure 
had a smaller gradient, large deflection, and a higher impulse load. 
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a)         b) 

 
Figure 2-10: Layered finite element analysis a) mesh of a slab, and b) impulsive load-deflection 
curves up to failure for various loading rates (King et al. 1990) 

Using shell elements is a suitable approach for global analysis of structures, but they ignore 
the contribution of local shear deformations. There are some formulations using layered shell 
elements, which account for transverse shear effects (Polak 1998). It is possible to model 
reinforced concrete slabs subjected to high concentrated loads with such a concept.  

2.2.1.2 Three-dimensional finite element analyses 
Three dimensional solid elements are appropriate for modeling details of structures because 
they consider punching at the impact location and are able to model transverse shear. A three-
dimensional simulation of reinforced concrete members subjected to impact loading was 
performed using a triaxial failure criterion (Thabet & Haldane 2000). An elastic-plastic 
fracture model was used to simulate concrete nonlinearity, loading and unloading. A smeared 
crack model with tension-softening was used for concrete in tension. Reinforced concrete 
beams and portal frames were analyzed. A microconcrete beam with a span of 442 mm 
subjected to impact of a steel projectile was modeled. The width and depth of the beam were 
44 mm and 65 mm, respectively. Solid elements were used to model the concrete. The impact 
forces and crack patterns were predicted. The simulations produced results that were in 
reasonable agreement with the experimental ones.  

A reinforced concrete slab with dimensions of 12 x 4.4 x 0.25 m was analyzed using finite 
element methods (Berthet-Rambaud et al. 2003). Structural response was studied using three 
dimensional elements for the slab and its supporting elements; the reinforcement was 
represented using bar elements. A model based on damage mechanics represented concrete 
response. The vertical displacements of the slab were calculated and compared to the 
experimental measurements. Deformed shapes of the supports provided a similar shape to 
those obtained during the experiment. 
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Nonlinear analysis of large-scale and prototype reinforced concrete girders subjected to 
falling-weight impact loading has also been a recent topic of research (Kishi et al. 2006, Kishi 
& Bhatti 2010). A three-dimensional elastic-plastic explicit finite element analysis was 
applied to analyze a reinforced concrete girder (Kishi et al. 2010). The finite element mesh 
including the girder dimensions is shown in Figure 2-11 where a quarter of the beam is 
modeled based on symmetrical arrangement and symmetrical boundary conditions have been 
applied. Stress-strain response of concrete is assumed to be a bilinear model in compression, 
and a cut-off model in tension. An equivalent fracture energy concept was proposed in order 
to reduce the mesh size dependency of the analysis. When the strain energy accumulated in 
the concrete element reaches the value of the tensile fracture energy, smeared cracking occurs 
in the whole element and the tensile stress cannot be transferred. Assuming that the tensile 
fracture energy is the same for all elements irrespective of their sizes, fictitious tensile 
strengths are defined for the elements. It was observed that similar results can be obtained 
irrespective of element sizes when applying this method. 

 
Figure 2-11: Finite element mesh of a reinforced concrete girder (Kishi et al. 2010) 

Three-dimensional, quasi-static, elastic-plastic finite element analysis has been used to model 
steel pipes buried in gravel and subjected to rockfall (Pichler et al. 2006) as shown in 
Figure 2-12 a (the figure is reprinted with the permission from The American Society of Civil 
Engineers). The pipeline was covered by a well graded gravel layer, and was subjected to 
impact of single boulders of up to 18’260 kg. The cubic shape rock boulders were dropped so 
that they impacted the gravel with a corner. The diameter of the pipe was 1016 mm, and it 
was buried by gravel with overburden to diameter ratio of up to 3.  
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An elastic-plastic cap model (DiMaggio and Sandler 1971) is used to represent the gravel 
layer in finite element analysis (see Section 3.3.3). The relevance of the model was discussed 
by comparing the numerical predictions to the experimental measurements, where the stresses 
in the pipeline obtained from finite element analysis were compared with stresses determined 
in a real-scale structural test. The relative errors based on this comparison are illustrated in 
Figure 2-12 b. 

Five impact events with the same impact energies as in the real-scale test (E = 3’880 kJ), were 
investigated. In regions with highest loading of the steel pipes, good agreement was observed 
between the numerical predictions and experiments. It was concluded that, in the case of 
rockfalls with potential energies up to 3’500 kJ, gravel was an effective energy absorbing 
system for pipelines due to the high stiffness of trench embedment and the large cover to 
diameter ratio of the pipe. However, for higher energies it was less effective as a protection 
system. In the modeling the dead weight of the gravel backfill over the pipe was neglected 
and only stresses due to the impact are considered. This assumption is not valid for large 
heights of backfill. Dynamic simulations are more favorable than quasi-static ones when the 
duration of impact is short. 

 

a)       b) 

 
Figure 2-12: Simulation of pipes buried in gravel: a) finite element model (Pichler et al. 2006), and 
b) relative error of stresses in pipe by comparing the numerical simulations and experiments 

Reinforced concrete structures were analyzed under severe high speed impact loads using 
different finite element programs, and the results were compared with each other and with 
those from large-scale impact tests (Zinn et al. 2007). The mass of the projectile was 1000 kg, 
and the impact velocities were in the range of 200-250 m/s. The displacement results obtained 
from two different finite element programs SOFiSTiK and ADINA showed good agreement 
with the experimental data. However, ADINA showed a better representation of the post peak 
displacements. The concrete elements were modeled using shell elements and volume 
elements, respectively. A limitation of the shell element is that shear deformations are only 
partially included, the experiments simulated in this study, however, showed bending 
deformations and the shear and punching effects were not significant. 
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A nonlinear finite element analysis procedure employing Disturbed Stress Field Model-
DSFM (Vecchio 2000), as an advanced method of modeling shear behavior under impact 
conditions, was presented (Saatci & Vecchio 2009). The DSFM method is a formulation for 
describing the cracked behavior of reinforced concrete elements, which considers modeling of 
shear slip along cracks. Simply supported reinforced concrete beams, subjected to impact of 
drop-weights with masses of 600 and 211 kg, falling from a height of 3.26 m, were modeled 
(Figure 2-13 a). Mid-span displacements (Figure 2-13 b), crack profiles, and longitudinal 
reinforcement strains at mid-span were well predicted using finite element analysis. The 
methodology based on the DSFM could predict the shear-dominant behavior of the specimens 
under impact loads and performed well in predicting displacements, damage levels, and 
reinforcement strains. Local damage such as penetration, perforation, or scabbing under high 
velocity impacts could not be predicted using this methodology, which is the disadvantage of 
finite element modeling. 

 

Figure 2-13: Reinforced concrete beam subjected to impact: a) Finite element model, and b) mid-
span deflection of a beam with 0.3 % transverse reinforcement ratio (Saatci & Vecchio 2009) 

Further finite element analyses investigating drop weight impact test on reinforced concrete 
slabs were carried out by Sangi & May (2009). Four 0.76 m square slabs, subjected to impact 
of masses of up to 380 kg and velocities of up to 8.7 m/s, were analyzed in this study 
(Figure 2-14 a). Three dimensional solid elements were used to model the concrete and the 
impacting body. Two different material models were used for concrete: the concrete damage 
model and the Winfrith concrete model (Broadhouse & Neilson 1987), respectively. The 
crack patterns using Winfrith model showed a better agreement with test results, impact force 
histories using both material models showed good agreement with the tests. However, the 
maximum impact forces were overestimated using finite element analysis (Figure 2-14 b). 
The slabs simulated in this study were rather small and were subjected to small impact 
energies (14.5 kJ). 

The simulations carried out in various research projects discussed previously, represent 
behavior of reinforced concrete members, and of pipes buried in gravel that have been 
subjected to impact loading. However, in order to investigate the behavior of rockfall 
protection galleries, it is important to simulate the impact on slabs, which are covered by soil, 
and not only the direct impact on slabs. 
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a)      b) 

 
Figure 2-14: Impact on a slab: a) finite element mesh, and b) comparison of impact force-time 
histories (Sangi & May 2009) 

Numerical simulation using three-dimensional finite element analysis of a prototype rockfall 
protection gallery covered with a sand cushion, subjected to falling-weight impact load, has 
also been discussed by Kishi et al. (2009). The concrete was modeled using a bilinear elastic-
plastic model based on the Drucker-Prager yield criterion. The influence of the reinforcement 
was defined through a bilinear isotropic hardening model. Figure 2-15 shows the finite 
element mesh of the gallery. Penetration depth of the boulder, impact forces, support reaction 
forces, displacements, and the crack patterns obtained from analysis were discussed. The 
study confirmed that, in terms of impact energy, the galleries that have been designed, based 
on Japanese guidelines, have very high safety margins. The safety margin is about 35 times 
for the serviceability limit state and up to 60 times for the ultimate limit state. A similar 
simulation using gravel as cushion material is carried out in the current study, to resemble 
typical rockfall protection galleries in Switzerland. 

 
Figure 2-15: Finite element model of a prototype rockfall protection gallery (Kishi et al. 2009) 
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2.2.2 Discrete element method 

The discrete element method (Cundall & Strack 1979) is one of the numerical approaches, 
which is based on the use of an explicit numerical scheme. The method is used for calculating 
motion of a large number of particles. While widely used for modeling granular material, the 
method has been applied to rock, soil, and concrete mechanics subsequently. The application 
of a discrete model to analyze the behavior of reinforced concrete structures under impact is 
outlined here.  

A reinforced concrete slab with dimensions of 12 x 4.4 x 0.25 m, subjected to impact of a 
450 kg cubic block, released from a height of 30 m, analyzed using finite element methods by 
Berthet-Rambaud et al. (2003, see Section 2.2.1.2) was also modeled using the discrete 
element method (Hentz et al. 2003). The discrete element model of the slab is shown in 
Figure 2-16 a. The modeling of the impact test did not give satisfying agreement between 
maximum displacement values for this study. Further numerical investigation of these slabs 
was carried out (Daudeville et al. 2005), and three impacts with 15 and 30 m drop heights 
were simulated (Figure 2-16 b). The mismatch of the maximum displacement of the slab 
computed by Hentz et al. (2003) with the experimental measurements, is due to the high 
stiffness of the slab in the simulations. The displacement results were also compared by 
Daudeville et al. (2005) and the relative errors concerning the displacements ranged between 
5 to 8% (Figure 2-16 c). 

This approach provides an insight into concrete fracture, but makes the real structure 
modeling impossible as the computation cost becomes “gigantic” (Dauville et al. 2005). It still 
remains time consuming to analyze a whole rockfall gallery using this method, with the 
computer capacities in 2011, but it may be possible in future. On the other hand, if developed 
accurately, a combined discrete element method and finite element method analysis can 
combine both local and global modeling of structures. Such a combined distinct element 
(explicit discrete element method) and finite element approach has been proposed for the 
analysis of rock-sheds by Nakata et al. (1997). A reinforced concrete slab, with dimensions of 
3.4 x 3.4 x 0.2 m, covered by a 0.5 m layer of sand, was analyzed using this method. The sand 
cushion was represented by discrete elements, and the slab was modeled using finite beam 
elements. The action forces between the cushion elements and the distinct-finite-combination 
elements were calculated at each time step. The rock-shed was analyzed on the basis of these 
action forces, using the finite element method. The energy transmission to the gallery can be 
studied as well using such a simulation. Considering the behavior of slab and plates, the 
forces are distributed in the transverse direction as well, and simulating a slab using beam 
elements is not the best approximation to analyze the behavior of the slab. The method can be 
extended to three dimensional modeling of rockfall protection galleries in future.  
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a) 

 

b) 
 

 
c) 

 
Figure 2-16: Discrete element modeling of a) slab and its supports (Hentz et al. 2003), b) 
reinforcement, slab, and supports (Daudeville et al. 2005), and c) comparison of results (Daudeville 
et al. 2005) 

A combined method has also been applied to model block impacts on rockfall protection 
embankments (Breugnot et al. 2010). A part of the embankment in the vicinity of the impact 
zone was modeled in this study using the discrete element method and a continuum approach 
was used to model the rest of the embankment.  

2.2.3 Mesh-free method 

The mesh free approach (Belytschko et al. 1994) is another method that has been applied to 
study the dynamic failure of concrete structures under blast and impact loading (Rabczuk & 
Eibl 2006). Reinforced concrete slabs with dimension of 0.61 x 0.61 x 0.178 m were 
subjected to impact of a steel projectile and were analyzed using this method (Figure 2-17). 
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Figure 2-17: Deformed configuration of the slab subjected to projectile impact at 0.1 ms, using the 
mesh-free method (Rabczuk et al. 2006) 

Mesh-free methods offer a promising solution for computation of many problems, especially 
for crack propagation and fracture mechanics. They have an advantage over finite element 
analysis for dynamic problems concerning the spalling of concrete, as large deformations can 
be easily handled. This method uses moving least square approximation (Lancaster & 
Salkauskas 1981), which makes it computationally expensive and it is better applied to 
problems where its unique advantages can be used. From the viewpoint of computational 
time, it is more convenient to make use of an element-free method only on the part of the 
domain where a better approximation of the solution is required, and to make use of the finite 
element method for the remaining part of the domain (Hegen 1996). The procedure to 
combine element-free methods with finite element approaches was already developed in the 
1990s (Belytschko et al. 1995 and Hegen 1996). However, the application of a combined 
method to analyze reinforced concrete members subjected to impact loading can be studied 
further. 

2.2.4 Material point method 

The Material Point Method (MPM) is a finite element-based method (Sulsky et al. 1993), with 
capability to detect the contact without inter-penetration, and thus can be applied to dynamic 
problems with large deformations. Even though the MPM method is less complex than other 
methods, it has a computational cost factor of two compared to the finite elements, since it is a 
particle based method (Chen & Brannon 2002). Therefore, it is more appropriate for solving 
problems with small domains. 

2.3 Codes, guidelines, and recommendations 
The Swiss and Japanese guidelines have been developed to quantify the measures required to 
dimension a gallery and any other energy reducing components such as a soil cushion. These 
documents are briefly discussed in this section. 

The Federal Road Office of Switzerland (FEDRO) provides a guideline for the design of 
rockfall protection galleries. The FEDRO guideline is based on falling-weight impact tests 
carried out in 1996 (Montani 1998), which are explained in Section 2.1. The laboratory tests, 
which were conducted only for impact energies up to 100 kJ, were extrapolated numerically 
for higher impact energies (Bucher 1997). Concrete and soil were modeled as a linear elastic 
material. The results were used as a basis to derive empirical equations for an equivalent static 

Projectile 
Concrete slab 



  Codes, guidelines, and recommendations 

27 

impact force on galleries, as well as the calculation of the penetration depth of the boulder 
into the soil. These simulations involved various simplifications. The slabs were assumed to 
be circular with supports along the circumference; this assumption does not represent the 
support conditions of rockfall protection galleries. Moreover, the contact forces between the 
cushion and the slab as well as the effect of slab deflection on the impact forces have been 
neglected. 

The guideline was first published in 1998 (ASTRA 1998) and was later adapted to a new 
generation of SIA codes (Swiss structural codes) in 2008 (ASTRA 2008). However, the 
technical content does not differ from the 1998 guideline. 

The impact force Fk, which is the maximum value of impulse action of the boulder on the 
gallery, is calculated according to equation (2-1). Please note that characteristic angle of 
internal friction of the cushion layer is represented by ϕκ in ASTRA 2008. 
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Where: 

• e  Thickness of cushion layer [m] 

• R0 Radius of an equivalent sphere [m] 

• ME,k Soil modulus of the cover layer [kN/m2] 

• ϕκ Internal friction angle of the cover layer [°] 

• mk Characteristic block mass [t] 

• vk Characteristic impact velocity [m/s] 
An equivalent static force Ad is calculated using a coefficient C, based on ductile (C = 0.4) or 
brittle (C = 1.2) failure of the structure, according to equation (2-2): 

kd FCA ⋅=           (2-2) 
As explained earlier, this formulation was based on experiments with limitation of the input 
impact energy to 100 kJ where the soil remains in elastic range, and the numerical 
extrapolations were oversimplified. Surcharging the galleries with a static equivalent force 
provides a simple approach for use in practice. However, it is important to adequately 
consider the dynamic behavior of the galleries and the nonlinear response of all its 
components. This provision limits the application of the Equation 2-1 to cushion layers with a 
thickness of at least the double of the calculated penetration depth, which limits its 
applicability. 

The Japanese Road Association provides a handbook including recommendations for all types 
of protective measures, which was published in 1983. This handbook provides 
recommendations for different types of protection measures. Hokkaido Development Bureau, 
Ministry of Land, Infrastructure and Transportation also published some recommendations in 
2001, which are used by local engineers. 
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Dynamic design for impact is highlighted in European Standards (EN 1991-1-7 Annex C). 
Recommendations are provided for the approximate dynamic design of structures, subject to 
accidental impact by road vehicles, rail vehicles and ships, on the basis of simplified or 
empirical models. In addition, hard and soft impacts on structures are discussed. For soft 
impacts, where the structure is designed to absorb the impact energy by plastic deformations, 
it suggests that the ductility should be sufficient to absorb the total kinetic energy of the 
colliding object. In the limit case of rigid-plastic response of the structure, this requirement is 
satisfied by the following expression: 

00
2

2
1 yFmvr ≤           (2-3) 

Where: 

• F0  Plastic strength of structure, i.e. the limit value of the static force F 

• y0 Deformation capacity, i.e. the displacement of the point of impact that the 
structure can undergo 

 
Detailed description of Swiss and Japanese guidelines, as well as other formulations for 
calculation of impact forces, can be found in Schellenberg (2008). A brief introduction to the 
design basis, and various empirical formulae for assessment of the impact performance of 
concrete structures, are outlined in CEB bulletin N° 187 (1988), which contains a general 
introduction to impact problems. It should be noted that CEB bulletin defines the soft impact 
as the case where the energy is absorbed mainly by deformation of the impacting body, which 
is in contradiction to the definition soft impact by EN 1991-1-7 mentioned earlier. 

2.4 Analytical models 
There are various ways of analyzing the dynamic response of structures, which are subjected 
to rockfall loading. Some of the analytical approaches are addressed here. In general, one 
degree simple elastic systems, simple degrees of freedom analysis, multiple degrees of 
freedom analysis, continuous systems without transformation to equivalent lumped mass, 
intermediate and advanced computational methods are some of the approaches used. Some 
details of the above mentioned approaches can be found in Biggs (1964) and Krauthammer 
(2008). The application of advanced computational methods, for impact analysis is explained 
separately in Section 2.2. This includes finite element, discrete element, and mesh-free 
methods. The application of single and multiple degrees of freedom systems to model rockfall 
protection galleries, with and without a cushion layer, as well as the rockfall impact on a pure 
soil layer, are discussed in this section. 

Roesset et al. (1994) applied a simple mass-spring-dashpot model to evaluate the forces 
transmitted by impact of a weight falling onto the ground (soil layer). It uses soil stiffness and 
damping properties as proposed by Lysmer (1965). It was concluded that a simple mass-
spring-dashpot model is not satisfactory if inelastic effects are neglected, as the falling-weight 
always rebounds. According to this study, the drop height does not affect the duration of 
contact, but an increase in the drop weight leads to an increase in contact time. The larger 
drop mass affects the stiffness and damping constant of soil since it’s generally associated 



  Analytical models 

29 

with a larger contact area with the soil. This leads to increase in the natural period. Increases 
in the drop weight increase the coefficient of restitution (ratio of rebound velocity and impact 
velocity) and the energy actually transferred to the ground grows at a rate slower than the 
mass. 

In order to investigate the response of reinforced concrete slabs subjected to impact, a variety 
of analytical methods are compared to experiments (Abdel-Rohman & Sawan 1985). The 
methods used in this study are the impact factor method, the equivalent mass method, and the 
continuous mass method. A moving object collides with a stationary slab in the impact factor 
method, in which the impact is considered to be completely plastic. An upper bound on results 
was obtained, which is very conservative. Impact happens at the center of the panel 
represented as one degree of freedom system for the equivalent mass method. The results 
using this method were in good agreement with experimental ones, but the response of the 
slab was assumed to be elastic. The continuous mass method considers the slab as a 
continuous elastic system of infinite degrees of freedom, which also provided results that 
were in agreement with experiments. Comparison of dynamic deflection of the slab using all 
three models with the experimental data is shown in Figure 2-18 b. 

A one-dimensional simple degree of freedom was proposed for modeling the motion of a 
gallery under a vertical rockfall impact, as shown in Figure 2-18 a (Sonoda 1999). In order to 
provide a simple equation for practical application, the dynamic energy of the rockfall impact 
is set to be equal to the static energy dissipated by deformation of the slab. This energy (Es) is 
expressed using the following equation: 

uBsBbs WgMHWE δα )( ++=         (2-4) 

Where: 

• WB Weight of falling rock mass 

• H Height of fall 

• αb Energy transfer rate to the gallery 

• Ms Effective mass of the gallery for motion 

• g Acceleration due to gravity 

• δu Ultimate static vertical deflection of rock-shed 

An elastic-plastic response is assumed for a slab, in which Fy is the first yielding load and Fu 
is the ultimate load. δy is the static vertical deflection of the gallery at first yielding. 
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a)      b) 

Figure 2-18: Analytical models: a) one degree of freedom system and its static load deflection curve 
(Sonoda 1999), and b) deflections of a slab using various models (Abdel-Rohman & Sawan 1985) 

An analytical model was proposed for the evaluation of the response of reinforced concrete 
beams subjected to vertical impact loading (Fujikake 2007). The model was based on a two 
degree of freedom mass-spring-damper system (Figure 2-19 a). In this model, k1 represents 
the load-deflection relationship of the beam, and k2 is the contact spring based on Hertz’s 
contact theory. m1 and m2 refer to the equivalent mass of the beam and of the drop hammer.  

a) 

 
b) 

 
Figure 2-19: Two-degree-of-freedom mass-spring-damper system: a) model representation, and b) 
comparison of results (Fujikake 2007) 
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The validity of the method was investigated by analyzing experiments carried out on a 
reinforced concrete beam with dimensions of 2.4 x 0.15 x 0.25 m subjected to impact of a 
drop hammer with a mass of 300 kg and a velocity of 4 m/s. The results obtained using the 
analytical model, were in good agreement with the experiments (see Figure 2-19 b) when a 
high damping ratio (20%) was assumed for the local response at the contact point. 

A simplified mass-spring model was proposed by French researchers for the simulation of the 
impact of a block falling onto a reinforced concrete slab (Delhomme et al. 2007). The slab 
displacement and contact forces obtained from this model can be used for the design of slabs 
(Figure 2-20).  

 
Figure 2-20: Analytical method with two “mass-spring” models: “contact” model and “post impact” 
model (Delhomme et al. 2007) 

These analytical methods can be developed further to incorporate the energy dissipation in the 
soil, in order to apply them to the design of rockfall protection galleries. A Spring-Mass-
Slider-Dashpot system (SMSD) was proposed for modeling impact on soil (Chikatamarla 
2006) as shown in Figure 2-21, which represents elasto-plastic as well as visco-elastic 
behavior of the soil. The system was extended for 2-D by adding a horizontal slider. 
However, the thickness of the cushion material covering a gallery is limited and development 
of a full shear slip surface in such a case may not be expected. An analytical model which 
incorporates different thicknesses of cushion material should be used for modeling the 
behavior of the cushion material covering a gallery.  

 

Figure 2-21: SMSD model after Chikatamarla (2006) 
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The application of a System of Multiple Degrees of Freedom (SMDF) was proposed by 
Schellenberg (2008) for modeling the dynamic behavior of rockfall protection galleries 
covered by a cushion layer. The SMDF consists of three masses and three nonlinear springs, 
similar to the model proposed for analysis of aircraft collisions with reactor containments 
(Eibl et al. 1988). The model is explained in Chapter 6. In this model an additional spring is 
added for the simulation of punching failure of the reinforced concrete slab. 
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3 Numerical models 

Application of different numerical methods for modeling large reinforced concrete rockfall 
protection galleries involves various complexities (Section 2.2). Finite element methods have 
been used in the current research due to the advantages in handling complex geometry, 
loading, and restraints with a reasonable computation time. 

A preliminary study was carried out to investigate the applicability of finite element methods 
to model the behavior of concrete slabs covered by soil, subjected to impact (Ghadimi 
Khasraghy 2008). A simplified model using multilayered shell elements with nine integration 
points representing concrete and smeared reinforcement was used to represent the reinforced 
concrete slab. Two impacts of low energies (40 & 60 kJ) on a reinforced concrete slab were 
modeled. Comparing the reaction forces and the strains at specific locations in the concrete 
slab to the experimental data, it was observed that shell elements performed well to simulate 
the overall behavior of the slab. Full three dimensional modeling using solid elements for the 
concrete slabs is required to obtain a detailed insight to the local behavior of slabs, to study 
the effect of shear reinforcement on the increase of load carrying capacity of slabs, and to 
study the behavior of slabs subjected to higher impact energies. Therefore, only the three 
dimensional analyses of slabs will be outlined here. 

3.1 Method and software 
There is a variety of finite element analysis software available for analysis of the structures 
subjected to dynamic loading including LS-DYNA, AUTODYN, ABAQUS, etc. LS-DYNA 
and ABAQUS are widely used for analysis of impact on reinforced concrete members since 
they are powerful in nonlinear dynamic analysis using explicit time integration and include a 
range of constitutive models, which can be applied for modeling reinforced concrete 
structures. The explicit finite element program LS-DYNA is used here for three-dimensional 
structural analyses of rockfall impacts on reinforced concrete slabs. The program was 
developed in 1976 and it is widely used for by automotive industry, sheet-metal forming, 
aerospace industry, as well as civil and earthquake engineering. The explicit time integration 
algorithms used in LS-DYNA are in general much less sensitive to machine precision than 
other finite element solution methods (LS-DYNA 2007). LS-DYNA is a finite element code 
for analyzing the large deformation dynamic response of structures. More information about 
LS-DYNA can be found in the LS-DYNA Keyword User’s Manual (LS-DYNA 2007) and the 
LS-DYNA Theory Manual (LS-DYNA 2006).  

JVISION and LS-PrePost are used as pre- and post-processers for use with LS-DYNA. 
JVISION is a multipurpose pre- and post-processor produced by JSOL Corporation, Japan. 
LS-PrePost is an advanced pre- and post-processor that is available from LS-DYNA. 
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3.2 Element types 
Different elements can be used for discretization of a continuum media. Reinforced concrete 
slabs are represented by solid elements for concrete, beam elements for reinforcement as well 
as stirrups for shear. The impacting bodies, cushion layers, and supporting systems are also 
modeled by solid elements. 

Eight-noded hexahedron constant stress solid elements, and two-noded beam elements with 
Hughes-Liu beam formulation are used for modeling. The beam element formulation is based 
on the shell element formulation introduced by Hughes & Liu (1981a, 1981b). The Hughes-
Liu beam element is based on a degeneration of an isoparametric eight-noded solid element. 

3.3 Material models 

3.3.1 Concrete 

A bilinear model is assumed for concrete in compression; the concrete is assumed to yield 
after having reached its compressive strength. The model adapted is similar to the one used 
for modeling reinforced concrete members (Kishi et al. 2006, Kishi et al. 2009, Kishi & Bhatti 
2010). In general, the values for the compressive strength and the elastic modulus of concrete 
are taken from experiments on concrete cylinders or cubes. The values adapted for different 
models are explained in the respective sections in Chapter 4. 

Concrete in tension is assumed to behave linearly until a tension cutoff value of 10% of its 
compressive strength is reached (Figure 3-1 a). If the stresses drop below the mentioned 
cutoff value, they are reset to the tension cutoff value and the deviatoric stress tensor is 
zeroed. This facilitates tracing the crack patterns of concrete members, by plotting the 
contours of stresses small enough to be considered zero. 

a)    b)    c) 

 

Figure 3-1: Material model for a) concrete, b) reinforcement, and c) gravel layer. 

The von-Mises yield criterion (von Mises 1913) is used for its simplicity and efficiency in 
modeling a bilinear response of concrete. The Drucker-Prager yield criterion (Drucker & 
Prager 1952) has been considered as well, and the results obtained did not differ much from 
the original von-Mises formulations. Dynamic material property has been integrated in terms 
of strain rate effects on concrete, which were found to have had virtually a small influence 
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(see Section 5.1). Therefore, strain rate effects are not considered for further analysis. A 
parametric study of the concrete material properties is given in Chapter 5. 

3.3.2 Reinforcement 

The constitutive model for the longitudinal bars and stirrups is bilinear, with strain hardening 
(Figure 3-1 b). The concrete and reinforcement elements are assumed to have a perfect bond, 
and the concrete solid elements are connected to the reinforcement beam elements at nodal 
points. The same nodes are defined for reinforcement and concrete where they are in contact 
with each other. The assumption of the perfect bond can be justified for members critical in 
bending since using a bond link element may not have a great influence on results (see 
Ghadimi Khasraghy 2005). However, for members critical in shear the results can differ, and 
the load-deflection response of the structure is stiffer when a perfect bond is assumed. It is 
worthwhile to consider the bond for modeling shear critical structure (e.g. deep beams) if a 
detailed investigation at disturbed regions is desired. 

3.3.3 Soil cushion 

When soil is subjected to impact of a falling boulder, the impacting energy is dissipated by 
shearing and compaction of the soil as well as crushing of soil grains. The three modes of 
shear failure identified in soil, namely, general shear, local shear, and punching shear 
mechanisms are shown in Figure 3-2 (Vesic 1963). General shear failure can be expected in 
dense soils that exhibit low compressibility. The local shear failure refers to significant 
compression of loose soil and partial development of slip surfaces, which is associated with 
soils of high compressibility and results in relatively large settlements. The punching shear 
failure occurs when soil is under high compression loading, and shearing forms in the vertical 
direction around the edges of a footing (impacting boulder in this case). It occurs in soils of 
very high compressibility like clays. The ultimate bearing capacity of soil in shear can be 
defined as the pressure which can cause shear failure immediately below the impacting 
boulder (Craig 1997). 

If the depth of the shear failure mechanism is larger than the thickness of the soil layer, a 
shear slip surface cannot be fully developed in the same form and the mechanism will change. 
In that case, the behavior is governed by a combination of compression beneath the boulder 
and a subsequent partial shearing in the soil. When the thickness of the soil layer is small (e.g. 
less than half of the size of the boulder) the behavior of soil is mainly governed by 
compression below the boulder, crushing of the grains, and the shear at the sides of the 
boulder. The grain crushing contributes to the phenomenon of plastic compression of brittle, 
granular media (McDowell et al. 1996). When there is a high compression load below the 
impacting body, particle crushing contributes to the reduction of volume. Particle crushing is 
the main contributor to energy dissipation for brittle materials with low strength. The 
mechanism of the failure in soil also changes if it is composed of different layers with 
different properties, so in the case of a layered soil cushion a mechanism of failure should be 
investigated based on the individual case (see Nater 2005). Therefore, it is important to 
incorporate the real mechanism of soil failure for different thicknesses and properties of the 
soil cushion. 
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Figure 3-2: Modes of soil failure: a) general shear b) local shear, and c) punching shear according 
to Vesic (1963) 

It must be noted that the dilatancy of soil and its strength parameters are affected by the 
effective stress and soil density. Therefore, the angle of internal friction of soil which forms 
the slip surface as shown in Figure 3-2 a, is not constant as the stresses in different locations 
below the impacting boulder are not the same. The value of angle of internal friction of soil 
that is derived from a single triaxial test can provide a conservative value for design and a full 
range of soil strength should be expressed in terms of variation of the angle (see Bolton 1986). 
The angle of internal friction of soil, if set as a constant value for numerical modeling should 
be chosen carefully. Figure 3-3 a (Lau 1988) shows the variation of the angle of internal 
friction under circular footings with diameters of 0.4, 1.42, and 5 m, respectively. It can be 
seen that the angle varies between 39 to 57 degrees for these cases. An average value of 45 
degrees is thus assumed for the current study, since the sizes of the boulders modeled vary 
within the range of footing sizes shown in this figure. The Poisson’s ratios of sand and 
gravelly sand, range from 0.3 to 0.4 (Bowles 1996). A value of 0.33 is assumed in this study. 

It is challenging to carry out triaxial tests on materials used as a cushion layer for rockfall 
protection galleries, due to the size effect relating the maximum particle size to the diameter 
of the platen. The triaxial device should be large enough that the largest particle size does not 
highly influence the outcome of the test. Prior work by Guldenfels (1995) on aging of the 
grains used for construction of railway ballast and a study on soil properties of moraines by 
Teysseire (2007), have been carried out by testing soil samples in a large triaxial apparatus of 
25 cm diameter. The results of the tests by Teysseire (2007) were studied in order to assess 
the selection of the parameters in the zones for which there is dilatancy occurring at low 
values of porosity as shown in Figure 3-3 b. It can be seen that the angle of internal friction of 
about 45 degrees was obtained for triaxial tests on the soil with a maximum grain size of 
30 mm, when the porosity was about 20%. 
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a)        b) 

 
Figure 3-3: The angle of internal friction: a) variation under rough circular footings with different 
sizes (Lau 1988), and b) relation with porosity and maximum grain size (Teysseire 2007) 

The material model adapted for soil cushion considers shearing and compression (hardening) 
of the material, using a cap-hardening model. The grain crushing is not considered in this 
model. The model is similar to the one used for the simulation of gravel material behavior for 
pipes buried in gravel (Pichler et al. 2006). The material model for granular materials based 
on the classical plasticity theory is proposed by DiMaggio and Sandler (1971). This combines 
an ideally plastic Drucker-Prager yield condition with a strain hardening cap. The parameters 
of the model are determined by curve fitting through experimental data for the respective soil. 
Details of the model as well as the definition of the parameters can be found in DiMaggio and 
Sandler (1971), and Chen and Baladi (1985). The model is shown in Figure 3-1 c; where J1 is 
the first invariant of the stress tensor, and J2 is the second invariant of the deviatoric stress.  

Depending on the stresses acting in the soil element, either plastic yielding behavior or 
hardening can be expected using this model. The behavior of the assumed cap hardening 
model under isotropic compression as well as the shear behavior is shown in Figure 3-4, in 
which εkk is the volumetric strain. Isotropic compression behavior is shown in Figure 3-4 a for 
the stress following the path 1-2-3-1. Shear behavior (Figure 3-4 b) can be illustrated for the 
path 1-2-3, which is the state of developing bearing capacity failure. An ideal isotropic 
hardening behavior cannot be expected for cushion material subjected to impact loading in 
reality. The elastic-plastic idealization provides an estimate for the shear failure of the soil, 
after plastic yielding the strains keep increasing while subjected to the same or higher loading. 
The limitation to the modeling is the element size, once the plastic yielding is reached, the 
strains increase, and thus the volume of the elements keep decreasing. The calculation 
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becomes unstable and is terminated when the element volumes become small or equal to zero. 
Therefore, using this model it is not possible to model the post-failure behavior of soil. 

a)       b) 

 
Figure 3-4: Behavior of assumed cap hardening model under a) isotropic compression following 
path 1-2-3-2-1, and b) shear behavior for a constant mean normal stress following path 1-2-3 
(following a representation by Chen & Baladi 1985). 

The stress invariants J1 and J2 are defined as: 

pJ 31 =   and 
32
qJ =        (3-1) 

where, p is the mean stress and q is the deviatoric stress and can be calculated as: 

3
2 31 σσ +

=p  and 31 σσ −=q        (3-2) 

where σ1 and σ3 are axial and lateral stresses. 

Table 3-1 lists the parameters used for the elastic-plastic cap-hardening model of gravel. The 
failure coefficient αs is a material constant related to the friction angle (Equation 5-2). W 
defines the maximum plastic volumetric compaction that material can experience under 
hydrostatic loading. R is a curved shape function for an elliptical cap, and Ds is a material 
constant. The parameters of the compaction (hardening cap) surface can be calibrated using 
the strain data from uniaxial compression, and triaxial compression tests. A fitting procedure 
is obtained by trial and error procedure in which some initial parameters are assumed and are 
varied until a best fit is obtained. 
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Table 3-1: Parameters selected for the cap hardening model 

Parameter 
 
 
Symbol 

Bulk 
modulus 
 
K 

Shear 
modulus 
 
G 

Failure 
envelope 
coefficient 
αs 

Cap surface 
axis ratio 
 
R 

Hardening 
law exponent 
 
Ds 

Max. plastic 
strain 
 
W 

Unit MPa MPa - - MPa-1 - 

Value 192 88.5 0.356 4.15 0.04 0.2 

 

The parameters used in Table 3-1 are calibrated based on the oedometric test carried out on a 
gravel sample with a diameter of 0.25 m and a height of 0.188 m. The test set-up is shown in 
Figure 3-5. The sample was prepared based on the grain size distribution of the gravel used 
for the falling-weight experiments (Schellenberg 2008). The experimental results as well as 
the calibration of the parameters shown in Table 3-1 are outlined in Appendix A. 

 
Figure 3-5: Oedometric test on a gravel mix 

3.4 Loading 
Impact loads defined here occur due to acceleration of the mass under gravity, and forces 
measured using finite element analyses result from the contact forces between the members. 

3.4.1 Single impact 

To save computational time, the initial position of all impacting bodies is defined at the 
surface of the cushion layer, or in case of slabs without a cushion layer, on the surface of the 
slab. The impacting body is subjected to a pre-defined initial velocity. At the same time the 
rest of the model is subjected to acceleration due to gravity, in order to account for self-weight 
of the structure. 
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3.4.2 Consecutive impacts 

As slab softening and plastic deformation affect the reaction forces of the slab during 
consecutive impacts, a method is established to model a slab subjected to repeated loading. 
The modeling aims at following the load history and related deterioration in the slab due to 
the consecutive loading. The procedure developed is explained in Section 4.1.2.2 (see 
Figure 4-3). 

3.5 Support conditions and contacts 
The impacting bodies, and the supporting systems are modeled using linear elastic material 
models, since there were no plastic deformations observed in the supporting systems during 
the experiments (Schellenberg 2008). The supporting systems for various slabs and galleries 
are modeled accurately according to the real shapes of the supports. 

Symmetrical arrangements have been taken into consideration for slabs and galleries analyzed 
in this study. Half or a quarter of the structures are modeled based on symmetrical 
arrangements. Symmetrical boundary conditions have been applied accordingly. 

The contact forces between relevant members are calculated by applying the penalty method, 
which was developed by Fiacco & McCormick (1968) for solving a constrained optimization 
problem. The method is also used for colliding surfaces, and it consists of placing normal 
interface springs between all penetrating nodes and the contact surface. Inner pairs of forces 
are applied at the locations where penetrations are observed. These forces are calculated based 
on penetration depth and contact stiffness. In theory, the procedure is neutral in energy. 
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4 Finite element results and validation with experimental 
studies 

This chapter presents results obtained from finite element modeling of some of the 
experiments, in order to validate and calibrate the numerical approach. While considering the 
impact load carrying capacity of reinforced concrete slabs, two failure mechanisms are of 
importance, namely bending failure (global response) of the slabs, and punching shear under 
impact (local response). Both modes of behavior are outlined here. Discretization of some of 
the finite element models has been carried out in collaboration with Muroran Institute of 
Technology, Japan. Parts of the work presented in this chapter have already been published in 
Ghadimi Khasraghy et al. (2009a and 2009b). 

4.1 Prediction of bending failure 
Bending (the global response) is studied for slabs with and without shear reinforcement in this 
section. Shear reinforcement increases the capacity of the slab in the zones where the shear 
forces are critical. Punching shear was not the governing failure mode for the experiments 
mentioned here. There were zones above the supports, however, where shear forces were 
governing the response.  

As the capacity of the slab is increased by adding shear reinforcement, these slabs are also 
mentioned here. Shear reinforcements increase the punching capacity of the slab as well; this 
needs to be further investigated by conducting direct impact experiments on shear reinforced 
slabs (which are not covered by soil). 

4.1.1 Test description 

The large-scale falling-weight impact tests carried out in Switzerland (Schellenberg 2008) are 
used as benchmark for finite element analyses (see Section 2.1.2 and Figure 2-3). The 
experimental series A, B and E refer to two slabs without, and one with, shear reinforcement, 
respectively, and are discussed in the sub-sections hereinafter. The slab A had a thickness of 
0.25 m, slabs B and E were both 0.35 mm thick. Table 4-1 gives an overview of these 
experiments. The slabs had lateral dimensions of 3.5 x 4.5 m and were covered by a 0.4 m 
thick layer of gravel. 

Tensile reinforcement of 18 mm in diameter with a spacing of 150 mm was used for Slab A. 
The B and E slabs had tensile reinforcement of 22 mm in diameter placed at 150 mm spacing. 
The compressive reinforcement of all slabs was of 10 mm in diameter with a spacing of 
300 mm. The shear reinforcement used for slab E had a diameter of 10 mm and a spacing of 
150 mm. 
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Table 4-1: Experiment details 

Series A, impact No: A1 A2 A3 A4 A5 A6 A7 A8 

Falling weight [kg] 800 800 800 800 800 800 800 800

Falling height [m] 2 5 5 5 7.5 10 12.5 15

Impact energy [kJ] 16 39 39 39 59 78 98 118

Series B, impact No: B1 B2 B3 B4 B5 B6 B7  

Falling weight [kg] 800 800 800 800 800 4000 4000  

Falling height [m] 5 7.5 10 12.5 15 2 5  

Impact energy [kJ] 39 59 78 98 118 78 196  

Series E, impact No: E1 E2 E3      

Falling weight [kg] 800 4000 4000      

Falling height [m] 15 5 7.5      

Impact energy [kJ] 118 196 295      

4.1.2 Discretization and finite element model 

4.1.2.1 Single impact loading 
The impact due to a single impact loading implies that it is assumed to act on a virgin slab, 
and the effect of consecutive loading and pre-damage on the slab is not considered. The finite 
element models of B1 and E2 are shown in Figure 4-1 and Figure 4-2, respectively. A 
concrete compressive strength of 35 MPa, and a tensile strength of 3.5 MPa are used for these 
models. The yield strength of steel is 550 MPa. A global damping ratio of 1.5% is assumed 
for the structure, which is the coefficient for the fundamental natural vibration in vertical 
direction. The free oscillation of the slab without cushion layer, subjected to a short impulse at 
the slab’s center is used for obtaining the damping ratio (Schellenberg 2008). The impactor is 
modeled as elastic material with a Young’s modulus of 30 GPa. 

 

Figure 4-1: Impact B1: a) finite element model, and b) reinforcement layout 
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The reaction forces during the experiment were measured with load cells. The load cells and 
supporting beams were further supported by four reinforced concrete footings (Figure 4-1 a). 
No visible damage and deformation was noticed in these footings, so they are assumed to be 
rigid and their stiffness is assumed to have no significant influence on the results. Therefore, 
they are not modeled for the impact E2 (Figure 4-2 a) and the supports are simplified. The 
load cells are set to have fixed support conditions. A 50 mm mesh is used for the slab. The 
reinforcement and their spacing is similar to the impact B1 (Figure 4-1). U-shaped shear 
reinforcement of diameter 10 mm with spacing of 150 mm are placed additionally (Figure 4-
2 b). 

 
Figure 4-2: Impact E2: a) finite element model, and b) bending and shear reinforcement layout  

4.1.2.2 Consecutive impact loading 
All seven impacts of series B are modeled. The slab was subjected to impacts of an 800 kg 
boulder, with increasing falling height to a maximum of 15 m, then to impacts of a 4000 kg 
boulder, with increasing falling height until the slab failed (Table 4-1). 

The gravel layer was loosened and compacted after every impact during the experiment. 
Furthermore, the falling height (input impact velocity) was increased for every impact and 
after reaching the maximum operational falling height, the size and mass of the boulder was 
increased to 4000 kg. This loading history should be incorporated into the finite element 
model for the slab; the loading history can’t be developed for the soil, since the properties of 
cushion was changed after the impact. All the impacting boulders and the soil cushion layers 
need to be defined at the same location from the beginning, each set representing the boulder 
and soil cushion during a specific impact. However, only the boulder and the cushion layer 
relevant for the individual impact are activated at each step. 

To eliminate the effect of the self-weight of these members on the slab at the initial stage and 
to allow only the relevant members to be active during each impact, fictitious members called 
“stoppers” are defined for every boulder and cushion layer. The stoppers are defined to be 
elastic with a high stiffness and have fixed support conditions. The stoppers provide a way of 
controlling the motion of the members. The method can be described in the following steps: 

1. Initially the model is run solely for gravity loading, so the slab is subjected to its self-
weight only. During this step, all the boulders and the cushion layers are inactive as 
their motion is controlled by the stoppers; 
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2. The stoppers of the first boulder and the first cushion layer, as well the contact 
between the respective members and their stoppers are removed, and the first boulder 
is subjected to its initial velocity; 
 

3. Using a “restart” option, the model continues to run and the calculation restarts from 
the previous termination point. The calculation time is reset to the next termination 
time during this step. The “restart” allows the analysis to be portioned into several 
steps. The results of calculation can be checked after every step. The global damping 
ratio is set to be 1.5% during calculation; 
 

4. After the analysis under the first impact is completed, the first boulder is removed. 
During this step, the slab is subjected to the critical damping until it stops vibrating, 
then the first cushion layer is removed and the next loading step can be applied; 
 

5. The fifth step is similar to the second one concerning the boulders, the corresponding 
cushion layers, and their stoppers. The calculation is made as the second boulder is 
subjected to its initial velocity. The global damping ratio is again set to be 1.5% during 
this step; 
 

6. When the slab is subjected to more than two impacts, steps 2 to 4 are repeated for 
further impacts, and the same procedure is applied until the slab is loaded to its final 
impact loading. The slab is subjected to the critical damping after every impact. 

 
Figure 4-3: Modeling two consecutive impacts on a slab 
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Figure 4-3 shows the application of the consecutive impact simulation method developed to 
model two consecutive impacts on a slab. As shown in the figure, there are two boulders, two 
boulder stoppers, two layers of soil cushion, and two soil stoppers set at the same location. 

4.1.3 Results 

4.1.3.1 Single impact loading 
A comparison between the reaction force time histories for the finite element and test results 
for impact B1 are shown in Figure 4-4 a. The results obtained from finite element simulation 
match the shape of the measured total reaction forces at the load cells and the time duration of 
the impact is similar to the experiments. The experimental data was filtered by a Bessel low-
pass filter with a cut off frequency of 150 Hz, and therefore is strongly smoothed. The curve 
obtained from finite element analysis is also smoothened using the Bessel low-pass filter 
(Appendix C1) for a better comparison as represented in the figure. The maximum slab 
deflection under impact B1 at the longer span of the slab, between the two simple supports 
(Figure 4-4 b) shows that the finite element results match the shape of the impact time history 
measured by video camera, but the maximum value of the deflection obtained from analysis is 
higher than the one measured. This may imply that the stiffness of the slab modeled is lower 
than the experiment. On the other hand, the experimental measures of deflection are at 5 ms 
time intervals and may underestimate the actual deflection of the slab. 

a) 

 
b) 

 
Figure 4-4: Comparison between results for impact B1 (E = 39 kJ): a) reaction force time histories, 
and b) slab deflection time histories at the longer span 
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The reaction force time histories obtained from finite element analysis are displayed in 
Figure 4-5 for each of the three impacts on the shear reinforced slabs. The reaction force time 
histories follow the shape measured during the tests. The impact duration is well predicted, 
but the peak values of the reaction forces obtained from analysis are higher than the 
experimental values.  

 
Figure 4-5: Comparison between the reaction force time histories for a slab with shear 
reinforcement (E series) 

To study the influence of shear reinforcement on increasing the capacity of the slabs 
(series E), finite element results of the impacts on slabs with and without shear reinforcement 
are compared. These consist of a 0.35 m thick slab with shear reinforcement, and slabs having 
0.35 and 0.25 m thickness without shear reinforcement. 

Figure 4-6 a shows a comparison of maximum deflection load histories obtained from finite 
element analyses for the slabs with and without shear reinforcement at the longer span of the 
slab between the two simple supports. For the slab with shear reinforcement (E series), the 
maximum deflections due to bending under the same impact energy are reduced and the slab 
could eventually dissipate greater impact energy leading to more ductile behavior. The slab 
without shear reinforcement (B series) shows a high residual deflection and lower elastic 
recovery under the impact energy of 196 kJ, which lead to the slab failure. During the 
experiment both slabs had failed due to bending as well as excessive shear over the supports. 
The slab with shear reinforcement subjected to the same impact energy could sustain the 
impact with a higher elastic recovery; this slab failed when exposed to higher impact energy 
of 294 kJ. The numerical results match the shape of the deflection time histories observed 
during experiments (Figure 4-6 b). However, the maximum values cannot be directly 
compared here as the numerical simulations are carried out considering the single impact on 
the slab and does not consider the damage history of the slab due to the previous loading. 

 

 

 

 

 

 

118 kJ 196 kJ 295 kJ
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a)       b) 

 
Figure 4-6: Maximum deflections in two different slabs under similar impact (E =196 kJ) a) 
numerical simulation of single impact, and b) experimental results (consecutive loading) 

4.1.3.2 Consecutive impact loading 
The applicability of the proposed method to model consecutive impact loading is discussed 
here by comparison between the numerical results and the experimental ones. Figure 4-7 
represents the comparison of the reaction force-time histories, which are in a good agreement 
regarding the form of the curves, time duration of the reaction forces, and the peak values. 
The peak values show a larger difference for impacts B3, which gives about 45% relative 
error. The average relative error of the peak value for other six tests amounts to 23%. 

 
Figure 4-7: Comparison between reaction force time histories for all tests in the B series 

Figure 4-8 shows the comparison between the final crack pattern after impacts B1-B6 (the 
slab failed subjected to impact B7 during the experiment) obtained from finite element 
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analysis with those observed during the experiment (Schellenberg et al. 2008). The line 
supported sides are depicted at the top edge in the figures.  

The crack patterns observed at the bottom surface of the slab during the experiments are 
compared to the distribution of the 1st principal tensile stresses obtained from the simulations. 
The contours in light color show the stresses small are enough to be considered as zero. These 
may refer to elements that are fully cracked or are subjected to no significant stresses (Kishi et 
al. 2009). The cracks are formed under the impact zone during impact B1. Finite element 
results for this impact show more cracking than the experiments. During impact B2, the 
cracks propagate towards the edges between two single supports and the span between the 
line and single supports. A few shear cracks are formed above the supports. For impacts B3 to 
B6, the number of bending cracks and shear cracks above the supports increases at each 
impact. The slab is cracked extensively during impact B7. The finite element results show 
relatively good agreement with the experimental ones except for impact B1. 

  

  

  

B1 (39 kJ) 

B2 (59 kJ) 

B3 (78 kJ) 

Line support 

Simple supports 
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Figure 4-8: Comparison of crack patterns in the bottom surface of the slab for series B 

Figure 4-9 is a graphical representation of the reinforcement strains at the center of the slab in 
the direction of both the larger and the shorter span, and maximum slab deflections at the 
center of the free edge of the slab between two simple supports, obtained from analysis and 
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measured during the experiment. The numerical results for reinforcement strains vary on 
average about 23% from the experimental ones. However, the experimental measures using 
strain gauges may not be very accurate due to the cracking of the concrete. The maximum 
slab deflections obtained from analysis are in a very close agreement with the experimental 
measurements. 

 
Figure 4-9: Comparison of slab response values for series B 

The comparison of the penetration depth of the boulder into the soil for all seven impacts as 
shown in Table 5-5 provides a good agreement to experiments.  

Nodal displacement vectors of soil after impact B1 and B7 as shown in Figure 4-10 are used 
to understand the response of the cushion material to the boulder impact. The sizes of the 
boulder used for B1 and B7 are 700 and 1200 mm, respectively, and the soil layer has a 
thickness of 400 mm. The slab and the rest of the structure beneath the soil cushion are not 
shown in this figure.  

The displacement vectors for B1 show a combined uniaxial compression and shear behavior, 
where compression is observed below the boulder and the soil has moved to the side 
developing a shear surface. For impact B7, the behavior is governed mainly by compression 
below the boulder. Since the boundary conditions at two opposed edges of the slab are 
different, the soil is displaced less on the side where the slab is supported continuously on the 
girder. 
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Figure 4-10: Maximum displacements [mm] in soil during impacts B1 and B7 

4.2 Prediction of punching failure 

4.2.1 Test description 

One of the punching impact tests carried out in Japan, which is explained in Section 2.1.2, is 
modeled using finite elements. The experimental setup is shown in Figure 2-4 a. The 
impacting body had a diameter of 0.15 m and was subjected to a velocity of 6 m/s. 

Initially, the impact on a slab without a cushion layer is being considered in order to explore 
the applicability of the finite element method in modeling punching behavior. Since, the 
cushion layer usually distributes the impact on a larger area, the local capacity for punching 
failure increases. 

4.2.2 Discretization and finite element model 

Symmetrical conditions of loading cell, specimen, and support conditions allow only a quarter 
of the slab to be modeled. Figure 4-11 shows the finite element model of the experiment. The 
loading setup and the support conditions are modeled to represent the experimental setup. 

A 25 mm mesh size is used for the slab. Impact loads are modeled as single impacts. A 
concrete compressive strength of 26.2 MPa, and a tensile strength of 2.6 MPa are used for this 
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model. The yield strength of steel is 423 MPa. The cylindrical impactor with a tapered base is 
modeled as an elastic material with a Young modulus of 206 GPa. 

 

Figure 4-11: Punching impact test by Kishi et al. (2008): a) Finite element mesh of the slab, and b) 
reinforcement layout 

4.2.3 Results 

The impact force time histories, reaction force time histories, and displacement time histories 
obtained from the experiment as well as the finite element simulations are compared 
(Figure 4-12). The reaction forces were measured at the load cells placed below the line 
supports during the experiment. As observed from the diagrams, the impact force histories, 
the reaction force histories, and the displacement time histories below the impact zone show 
good agreement with the experimental data. The impact force was measured by using a load 
cell within the impacting boulder. 

 

Figure 4-12: Impact force history, reaction force history, and displacement history for a slab 
without a cushion (E = 5.4 kJ) 
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The crack patterns observed in the slab cross section and its bottom surface during the 
experiment are compared to those obtained from simulations (Figure 4-13). The cracks are 
shown using the contour in light color, which are the stresses small enough to be considered 
as zero. The punching cracks at the soffit of the slab match well with the patterns during the 
experiments. The cross sectional cracks cannot be observed using finite element analysis, 
since the section at this location is fully cracked. The shape of the diagonal crack, however, 
follows the formation of cracks during the experiment. 

 

Figure 4-13: Cracks in cross section, and bottom surface of the slab  

It was observed for concrete slabs, when different mesh sizes were analyzed, that elements of 
about 25-50 mm in size give a reasonable agreement to the experiments (see Section 5.2).  

4.3 Failure criterion for finite element analysis 
Validation of the finite element results with the experimental data provided a benchmark for 
the analyses, which are extended beyond the range of experiments in the following chapters. 
In order to set a criterion to attribute failure using elastic-plastic finite element analysis, the 
residual deflections in the slabs obtained from finite element analysis of the slab experiments 
have been studied further. The maximum deflections for three different types of slabs used in 
the experimental series conducted by Schellenberg (2007), as shown in Figure 4-14 are 
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obtained from finite element analyses of the impacts, which led to failure of slabs during the 
tests. 

 

Figure 4-14. Maximum deflections at ultimate load at mid span and in the shear zone for a) slab E 
b) slab B and c) slab A 

Based on the results obtained, the slab that has not been reinforced for shear can be 
considered to have failed when the residual deflection is larger than 80% of the peak 
deflection of the slab under the impact, at any location within the slab. The limit that is used 
to define failure in a shear reinforced slab is considered to be 60% of the peak deflection. In 
other terms, the failure is considered to be associated with an elastic rebound of less than 20% 
for the slabs without shear reinforcement. Low elastic rebound can refer to a state in which 
the slab is cracked and the reinforcement has yielded. The results, summarized in terms of 
percentage elastic recovery of the slabs, are shown in Table 4-2. 

Table 4-2: Percentage of elastic recovery of the slab deflections at failure 

Impact  At mid-span [%] At “shear crack” [%] 

E3 40 41

B7 17 0

A8 36 18

 

This can also be used to account for the failure mode of the slabs. As cracks occurred close to 
the single supports during the experiment due to shear, the residual deflections of the slab at 
the location where these “shear cracks” developed have also been plotted and studied. The 
ratio of residual deflection to the initial peak value at failure for the slab with shear 
reinforcement is almost the same at mid-span as in the shear zone. This can indicate that the 
slab has reached failure at both of the bending and shear zones. This ratio is higher for shear 
zones compared to mid-span for the slabs without shear reinforcement, so there is a small or 
no elastic recovery in the shear zone. Therefore, it can be concluded that shear was the 
governing failure mode for these slabs. However, slab B has also reached failure in the 
bending zone (mid-span), showing an elastic recovery of less than 20%. 
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The concept of elastic recovery of the slab is illustrated in Figure 4-15 using a typical 
deflection time history at any location of a slab, where RD, MD, and ER refer to residual 
deflection, maximum deflection, and elastic rebound, respectively. 

01 ≥−=
MD
RDER

 

Figure 4-15: Failure criterion used in finite element analysis 

The elastic recovery vs. the maximum impact force transmitted through the soil to the slab for 
experimental series B, as demonstrated in Figure 4-16, shows that the elastic recovery reduces 
with increase in the impact force until it drops below the ER failure criterion. Therefore, such 
a curve can be used to demonstrate the performance of a slab or gallery subjected to different 
impact forces. The curve is the plot of finite element results for impacts B1 through B7 with 
the exception of impact B6. Impact B6 is shown as a single point in this plot, since the impact 
energy and thus the impact force was lower than for impact B5. The elastic recovery is also 
shown vs. the input impact energy. The failure criterion is shown as a dotted line in these 
diagrams. 

 
Figure 4-16: Slab performance diagram for series B 

Failure is initiated at any point in the slab where the elastic rebound falls below the chosen 
criterion. The values of ER along the simply supported edge of slab B is shown in Figure 4-
17. Comparison is made for the 800 kg boulder falling from 5 m and 25 m, respectively. It is 
seen from the figure that the mid-span is the critical for the section here. This means that 
bending behavior governs these impacts. The sudden change in the slope of the curve may 
indicate that the shear forces at the given location lead to the failure. During the experiments 
the slab was only in contact with the supports and was not restrained from bouncing up. The 
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ER values are set to zero at the supports and they are only measured from the points next to 
the supports where deflections occurred in the direction of loading. 

 

 
Figure 4-17: Plot of elastic recovery along the length between the two simple supports of the slab 
for series B 

A similar approach can be implemented, when using finite element analysis, to identify the 
punching failure mode in slabs. The ratio of residual deflection to peak deflection or the 
elastic rebound of the slabs can be compared at different locations in a slab to identify the 
governing failure mode using finite element analysis. However, if the critical section for 
punching and bending is at the same location, it is possible to identify the failure but not the 
governing failure mode. This criterion will be used in the following chapters to account for 
failure in the slab, while extending the simulations beyond the range of the experiments 
carried out. Looking at the deflection histories obtained from some other experiments 
(Yamaguchi et al. 2010), the criterion seems reasonable, and can be investigated further by 
conducting more experiments. 
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5 Sensitivity analyses and extrapolations 

Sensitivity studies using finite element analysis and extrapolation of numerical analysis 
beyond the range of the physical experiments performed are presented to study the variation 
of results with respect to the input data. Finite element analyses can provide an extension of 
the tests performed as well as a basis for acquiring proper assumptions for the model, but their 
applicability needs to be validated in comparison with experimental data. Sensitivity analyses 
are carried out in order to provide a basis to decide on the appropriate input parameters for 
finite element models, such as material models and mesh sizes. In addition, the influence of 
the boulder shape, reinforcement behavior, and consecutive impact loading on the response of 
slabs and different influences on the response of soil layers is investigated. The selection of 
the test used as reference for each case of sensitivity analysis and extrapolations is based on 
the influence of the parameter studied. 

5.1 Material model for concrete 
A von Mises material model is adapted for concrete (Section 3.3.1) and is compared to the 
Drucker-Prager yield criterion. Moreover, the influence of considering strain rate effects on 
the capacity of the structure is investigated. The aim here was to adapt a simple but still 
effective material model for concrete that can provide good results in comparison with the 
experimental data. Sophisticated material models, which may produce more accurate results, 
have not been a focus of this study and are not considered. 

5.1.1 Drucker-Prager yield criterion 

Drucker and Prager extended the von Mises criterion to incorporate the effect of hydrostatic 
pressure on the shear resistance of the material (Drucker & Prager 1952). The criterion was 
originally introduced to deal with the plastic deformation of soils. 

The yield criterion f takes the following form: 

MM kJJf =−= 12 α          (5-1) 

where J1 and J2 are stress invariants; αM and kM are material constants. In a three dimensional 
principal-stress space, the constants are obtained as: 
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=M    
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ϕ
ϕ

−
=

ckM     (5-2) 

ϕ and c are the angle of internal friction and the cohesion, respectively. A detailed explanation 
of the model can be found in Drucker & Prager (1952), and Chen (1982). 

5.1.2 Strain rate effect 

The strain rate during a falling-weight impact is observed to be between 10-3 and 10-2 s-1 for 
concrete, and from 10-2 to 10-1 s-1 for reinforcement, based on the experimental results of 
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Schellenberg (2008). The values are shown in comparison to the different strain rates for a 
range of impact loadings (Schmidt-Hurtienne, 2001) in Figure 5-1. 

 

Figure 5-1: Comparison of rockfall strain rates (in italic) with typical strain rates for different 
impacts, as classified by Schmidt-Hurtienne (2001) 

The influence of strain rate is studied by applying the provisions of the FIB model code (FIB 
2010) to investigate the necessity of considering the effect for modeling the impact.  

Impact B1 is used for the parametric study of the concrete material model, since cracking of 
concrete occurred during this impact. The input strain rate is calculated based on preliminary 
finite element results observed for concrete during impact for B1. The maximum strain rate in 
the concrete obtained from a first impact simulation was 0.023 s-1. This value is then used as 
the input strain rate to modify the material properties of concrete for impact B1 using von-
Mises yield criterion, meaning that the entire slab is modified using concrete properties, for 
this particular strain rate.  

According to the code, the compressive strength of concrete under high rates of loading may 
be estimated as: 
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The tensile strength may be estimated from: 
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and the effect of strain rate on the modulus of elasticity may be estimated from: 
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and 16
0 101 −−⋅≤ sctε&  for tension       

5.1.3 Results and comparison 

The comparison of deflections for impact B1 obtained by applying the von Mises and the 
Drucker-Prager yield criteria, as well as those obtained considering strain rate effects for 
concrete, are shown in Table 5-1. The deflections and residual deflections are compared in the 
bending zone between the two single supports, since the deflections of the concrete slab have 
been the highest at this location. 

The maximum deflections and maximum residual deflections in the slabs for the three models 
are close to each other and differ slightly from the experimental data obtained by a highspeed 
camera. The experimental data was measured at 5 ms time interval and may underestimate the 
maximum deflection. The values for the elastic recovery (ER) of the slab is compared in order 
to investigate its response. The behavior of the slab using all three material models has been 
softer compared to the value seen during the experiment. The simulation results not 
considering the strain rate effets are conservative and on a safer side, since they predict the 
failure earlier. Therefore, the resistances considering the strain rate effects are higher and the 
effect of strain rate is not taken into consideration. This approach is simplified and a strain 
rate dependent material model would be required for a deeper investigation of strain rate 
effects on modeling. 

Table 5-1: Comparison of results between the experimental and numerical prediction with von 
Mises, Drucker-Prager yield criteria, and the strain rate effect 

 Experiment von Mises Drucker-Prager Strain rate effect 

Max. deflection [mm] 6 9.3 9.3 7.6 

Residual deflection [mm] 1 3.1 4.0 2.2 

Elastic recovery [%] 83 67 57 71 

 

Crack patterns obtained from finite element analyses (contours of zero stresses) using the von 
Mises criterion, the Drucker-Prager criterion, and the strain rate effects are compared to those 
observed during the experiment (Figure 5-2). The crack patterns obtained from the von Mises 
and Drucker-Prager criteria are similar to each other. Fewer cracks are obtained by modifying 
the strength based on strain rate effects, as expected. All three cases show more cracking than 
observed during the experiments, thus the slab exhibits less strength during the numerical 
simulations. The slab modeled using von Mises’ criterion shows more cracking than when the 
slab was modeled using the consecutive impact method (Figure 4-8). The slab was first 
subjected to its self-weight during the consecutive impact load and then subjected to an 
impact load. The slab modeled here by single impact loading was subjected simultaneously to 
the impact loading and gravity due to the self weight, which is the reason for the greater 
number of cracks seen in this case. However, the damage to the slab is overestimated by 
assuming the slab to crack earlier than in the real situation, which means the analysis results 
are conservative. 
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a)      b) 

  
c)      d) 

  
Figure 5-2: Crack patterns a) von Mises criterion b) Drucker-Prager criterion c) strain rate effect 
d) experiment (Schellenberg 2008) 

In addition to the investigation of different material models for concrete on the finite element 
results, the influences of the concrete properties using von Mises criterion on the results are 
investigated here. This includes the tensile strength fctm and the Young’s modulus of concrete 
Ec. The comparison of deflections for impact B1 is shown in Table 5-2. The initial values of 
fctm and Ec are 3.5 MPa, and 42’000 MPa, respectively. The values are modified for ± 10% 
and the new results using the modified values are shown.  

The maximum deflection remained the same for Ec (-10%). However, it is important to look 
at residual deflections with reference to the dynamic behavior of the slab. The residual 
deflections become higher in this case, since the slab is softer and the elastic recovery of the 
slab is reduced. The ER becomes higher for Ec (+10%) since the slab behaves more stiffly. 
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Table 5-2: Sensitivity analysis for the concrete material model 

 Max. deflection Residual deflection ER [%] 

 [mm] Δ [%] [mm] Δ [%] [%] Δ [%] 

Reference value 9.3 -- 3.1 -- 67 --

fctm (+10%) 8.87 -5 2.8 -10 68 1

fctm (-10%) 10.4 12 3.9 23 63 -4

Ec (+10%) 9.9 6 3.1 0 69 3

Ec (-10%) 9.3 0 4 29 57 -15

5.2 Mesh size for concrete 
The mesh size sensitivity of the model is studied with cubic solid elements with a side length 
of 25, 50, and 150 mm for the in-plane (along the surface) mesh. The model of impact B1 is 
analyzed using these three different mesh sizes. In addition, two mesh sizes are studied with 
respect to the thickness. Impact B1 is modeled using 25 and 50 mm thick elements for the 
out-of-plane mesh (along the cross section).  

Comparisons of deflections obtained using the different mesh sizes to the experimental 
measurements are shown in Table 5-3. All residual deflections obtained from finite element 
analysis are higher than the experimental values indicating that the slab cracks earlier than in 
the experiments. Comparing the elastic recovery of the slab obtained from the analysis to the 
experiments, it is seen that the closest agreement is achieved for the slab using an in-plane 
mesh of 25 and 50 mm. The out-of-plane mesh size of 25 mm is used, while considering in-
plane mesh sizes. Both, maximum and residual deflections decrease with the increase in the 
mesh size, since the larger sizes of elements lead to a stiffer behavior. 

Table 5-3: Comparison between deflections obtained using different mesh sizes for impact B1 

In-plane mesh size: Experiment 25 mm 50 mm 150 mm 

Max deflection [mm] 6 10.9 9.8 6.9 

Residual deflection [mm] 1 4 3.4 3.5 

Elastic recovery [%] 83 63 65 49 

Out-of plane mesh size: Experiment 25 mm 50 mm  

Max deflection [mm] 6 9.8 9.3  

Residual deflection [mm] 1 3.4 3.1  

Elastic recovery [%] 83 65 66  
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While considering the out-of-plane mesh sizes, an in-plane mesh size of 50 mm is used. The 
deflections and elastic recoveries using an out-of-plane mesh of 25 and 50 mm have been 
rather similar. However, using a larger out-of-plane mesh size, it is difficult to get a good 
distribution of shear forces and cracks. The results obtained emphasize the fact that modeling 
of reinforced concrete slabs is sensitive to the mesh size selection and the results of the 
displacements obtained may vary considerably. This underlines the need of a mesh size 
independent method for the analyses. An equivalent fracture energy concept as proposed by 
Kishi & Bhatti (2010) or similar approaches can be used to eliminate the mesh size 
sensitivity. The approach uses equivalent tensile fracture energy for elements, regardless of 
their size. A reference element size of between 25 and 50 mm can be used for applying such a 
concept.  

The in-plane mesh size effects the location and the distribution of the cracks along the surface 
of the slab, while the out-of-plane mesh size influences the development of the crack in the 
cross section. A better distribution of the crack pattern can be obtained in the cross section of 
the slab if finer out-of-plane mesh is used, especially for smaller slab thickness. The slab 
investigated here had a thickness of 350 mm and the selection of out-of-plane mesh did not 
have a big influence on the results. A cross sectional mesh size of smaller than 25 mm may be 
chosen when the thickness of the slab is small (e.g. less than 200 mm). 

5.3 Material model for reinforcement 
The sensitivity analysis is performed, varying the yield strength fs and the hardening modulus 
Hy, with initial values of 550 MPa, and 1% of the elastic modulus of steel, respectively (see 
Figure 3-1 b). The influences of these parameters on finite element results are shown in 
Table 5-4. Slab B is subjected to the impact of an 800 kg boulder falling from a height of 
25 m for this study. Based on finite element results, it is concluded that the reinforcement 
reached yielding during impact B5 for the first time, where the 800 kg boulder fell onto the 
slab from a height of 15 m (118 kJ). To study the influence of the reinforcement material 
model on the slab behavior, it is important to model the post yielding behavior of the slab. 
Therefore, a falling height of 25 m is chosen here. The initial maximum rebar stress is 
560 MPa, which exceeds the yield stress by 10 MPa. Increasing the yield stress by 10% (to 
605 MPa), it is seen that the maximum stress in a rebar exceeds the increased yield stress by 
5 MPa. If the yield stress is reduced by 10% (to 495 MPa), the maximum stress in a rebar 
exceeds the decreased yield stress by 15 MPa. The maximum deflections in the slab are not 
affected much by small changes in yield stress and hardening. 
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Table 5-4: Sensitivity analysis for the reinforcement material model (E = 200 kJ) 

 Max. rebar stress Max. reaction force Max. deflection 

 [MPa] Δ [%] [kN] Δ [%] [mm] Δ [%] 

Reference value 560 -- 3660 -- 30.5 --

fs (+10%) 610 9 3530 -4 30.4 -0.5

fs (-10%) 510 -9 3530 -4 30.7 1

Hy = 5% 600 7 3630 -1 30.3 -1

Hy = 10% 625 12 3660 0 30.2 -1

 

5.4 Material model for soil 

5.4.1 Elastic-plastic model 

A bilinear elastic-plastic material model proposed by Muroran Institute of Technology, Japan, 
is used to represent the behavior of soil. The model was calibrated using one of the falling-weight 
impact tests carried out at Swiss Federal Institute of Technology, Lausanne (Montani 1998). 
Based on these calibrations, a yield strength of 1.23 MPa, an elastic modulus of 200 MPa, and a 
hardening modulus of 15 MPa have been obtained (Figure 5-3). However, the model is developed 
based on simple curve fitting and does not exhibit the physical behavior of the soil cushion. 

 

Figure 5-3: Elastic-plastic model for soil, as proposed at Muroran Institute of Technology, Japan 

5.4.2 Cap hardening model 

The cap hardening model as explained in Section 3.3.3 is also used to study the behavior of 
soil. The shape of the cap hardening model in stress strain space depends on the stress path of 
the elements (see Figure 3-4). A perfect plastic or a hardening curve can be expected 
depending on the stress path, which is the difference in comparison to the elastic-plastic curve 
shown in Figure 5-3. The yield strength using the cap hardening model is not a constant value. 
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5.4.3 Results and discussions 

Results of the maximum penetration depth of the boulder into the soil obtained from both 
models are shown in Table 5-5 in comparison with the experimental measurements. This is 
the only comparison that can be made related to the soil behavior, since there were no other 
measurements made within the soil layer during the experiments. 

Table 5-5: Maximum boulder penetration depth 

Penetration depth B1 B2 B3 B4 B5 B6 B7 

Experiment [m] 0.046 0.067 0.089 0.084 0.09 0.092 0.104

Elastic-plastic model [m] 0.128 0.191 0.231 0.245 0.265 0.128 0.196

Cap hardening model [m] 0.047 0.066 0.077 0.084 0.094 0.075 0.116

 

The penetration depths obtained using the cap hardening model, demonstrate a reasonable 
agreement with the experiments with respect to the final penetration of the boulder into the 
soil. Therefore, this material model was adapted for modeling soil in the finite element 
analysis. The model represents a better agreement to the physical behavior of soil, as it 
considers plastic yielding as well as hardening of the material below the shear failure line in 
the cap region. The bilinear model on the other hand, provides a mathematical solution 
through curve fitting and it does not represent the physical behavior of the material in all 
respects. 

The sensitivity analysis for the soil cap hardening model is performed varying the bulk 
modulus K, the failure envelope coefficient αs, the cap surface axis ratio R, the hardening law 
exponent Ds, and the maximum volumetric plastic strain W, once at a time. The variations are 
outlined in Table 5-6. The initial values of these parameters are shown in Table 3-1. 
Maximum impact force and maximum transmitted force obtained from finite element analysis 
refer to the peak value of the impact forces and transmitted impact forces on the force time 
history diagram. The transmitted impact force is the total force that is transferred through the 
soil to the top of the slab. 

As seen from the results of the sensitivity analysis, the soil bulk modulus K and the failure 
envelope coefficient αs have the highest influence on the penetration depth. The plastic 
behavior of the cap model is governed by the value of αs ,which depends on the angle of 
internal friction of soil and it refers to the slope of the shear failure line in the cap hardening 
model. The lower value of αs implies that the soil reaches the shear failure at a lower value of 
deviatoric stress. The elastic behavior of the model is governed by the response functions K 
and G (which is defined here depending on K). The elastic bulk modulus K is defined as a 
function of the first invariant of the stress (or mean stresses) and plastic strains. The elastic 
shear modulus G is a function of second invariant of the deviatoric stress as well as elastic 
strains. The changes in the values of K and G influence the mean stresses, deviatoric stresses, 
and plastic strains. Therefore, the material properties of the soil should be well evaluated for 
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proper application of the cap hardening model. The results are not very sensitive to small 
changes in Ds, R, and W, respectively. 

Table 5-6: Sensitivity analysis for the soil material model during impact B5 (E = 118 kJ) 

 Max. penetration depth Max. impact force Max. transmitted force 

 [mm] Δ [%] [kN] Δ [%] [kN] Δ [%] 

Reference value 82 -- 1940 -- 2530 --

K (+10%) 81 -1 2020 4 2610 3

K (-10%) 86 5 1880 -3 2430 -4

αs (+10%) 81 -1 1960 1 2530 0

αs (-10%) 92 14 1950 0.5 2540 0.3

R (+10%) 84 2 1940 0 2500 -1

R (-10%) 81 -1 1960 1 2600 3

Ds (+10%) 84 2 1930 -0.5 2500 -1

Ds (-10%) 81 -1 1980 2 2590 2

W (+10%) 84 2 1930 -0.5 2480 -2

W (-10%) 80 -2 1980 2 2620 4

 

5.5 Mesh size for soil 
The mesh size for soil was selected based on the mesh sizes adapted for concrete and was set 
to be 50 mm. This is due to the fact that the interfaces are defined to calculate the contact 
forces between soil and concrete. The contact forces for each segment are calculated using the 
penetration of the nodes of the other contacting segment. For a detailed investigation of soil 
behavior, however, it is recommended to carry out a mesh size sensitivity analysis for soil. 

5.6 Soil response to impact 
The influence of boulder shape, boulder weight, and soil depth on the behavior of a layer of 
soil subjected to a falling-weight impact is investigated using finite element analyses. A flat 
boulder and a spherical one are considered for this study. The finite element models are 
shown in Figure 5-4. Only a quarter is modeled due to symmetry. Spherical boulders with 
masses of 1, 2, and 4 tonnes and four different thicknesses of soil layer are used for this 
investigation. The length of cube in the horizontal direction and the diameter of sphere 
(described as boulder size) are both 1 m. 
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a)        b) 

 

Figure 5-4: Finite element models for impact on a soil layer a) spherical and b) cubic boulder 

The variations of penetration depth with respect to impact velocities are shown in Figure 5-5 a 
for three different masses of boulder having the same geometry. The boulders are spherical, 
with a diameter of 1 m impacting a 1 m thick layer of soil. HB/HS = 1, where HB is the size of 
the boulder and HS is the thickness of the soil. The assumption of the different masses having 
the same geometry may not be realistic but allows the effect of variation of mass and velocity 
to be explored, while other parameters are kept constant. It can be seen that the maximum 
penetration depth increases almost linearly with increase in the impact velocity for the 
impacts that lead to a maximum penetration of 30% of the depth of soil cushion. The ratio of 
the difference of the penetration for a given velocity (Δ1/Δ2 ratio in Figure 5-5 a) remains the 
same for different velocities and is about 1.4 for this diagram. The maximum displacement 
varied by a factor of two when the weight of the boulder was increased from 1 tonne to 
4 tonnes. 

Figure 5-5 b shows the variations of penetration depth with respect to impact velocities for 
four different thicknesses of soil. For these impacts, a spherical 2 tonne boulder with a 
diameter of 1 m is used. The penetration depth changes as the ratio of boulder size to soil 
depth changes. This change is smaller for a ratio of higher than one, since the influence of 
boundary condition on development of the mechanism in soil is minimized. However, both 
the thickness as well the lateral extension of the soil layer is limited in reality to the dimension 
of the gallery.  

The nodal displacement vectors for impact of the 2 tonne boulder subjected to a velocity of 
4 m/s on soil layers with thicknesses of 0.5 and 1.5 m when the maximum penetration of 
boulder occurred, as illustrated in Figure 5-5 c demonstrates the difference of the soil 
response. Heaving of the material around the impact area is higher for the thinner layer of 
soil, since the boundary conditions limit the penetration of the boulder. The maximum 
penetration for the boulder increased about 20% for 1.5 m thick soil. 

 

 

Boulders

Soil layers
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a)       b) 

 
c) 

 
Figure 5-5: Penetration depth of a 1 m diameter boulder into the soil for a) different masses for 
cushion thickness of 1 m (HB/HS = 1), b) different soil thicknesses 0.5 < HB/HS < 1.5 for a 2 tonne 
boulder, and c) displacement vectors for HB/HS = 0.5 and HB/HS = 1.5 

The influence of the impact velocity on the soil stiffness is also investigated. Figure 5-6 a 
shows the impact force (contact forces between the boulder and the soil cushion) vs. 
penetration depth of the boulder for a 4 tonne boulder impacting a 1 m thick layer of soil with 
different impact velocities. It is seen that the stiffness of the soil increases with increases in 
the impact velocity, but this increase is rather small for the range of this simulation (up to 
E = 162 kJ). The maximum penetration for this calculation was about 30% of the total 
thickness of soil. 

The impact force defined as the contact forces between the boulder and the soil cushion, vs. 
penetration depth diagram for different thicknesses of soil subjected to impact of a 2 tonne 
boulder with a velocity of 4 m/s is plotted in Figure 5-6 b. The slope of force-displacement 
diagram changes with the increase in the thickness of soil layer, since the displacements are 
increased due to the change in boundary conditions. 
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a)       b)  

 
Figure 5-6: Influence of a) impact velocity for HB/HS = 1 (4 tonne boulder - 1 m thick layer), and b) 
soil layer thickness for 0.5 < HB/HS < 1.5 (2 tonne boulder - 4 m/s velocity) 

The displacement vectors for soil subjected to impact from different shapes of boulder are 
shown in Figure 5-7 a. Both boulders have a weight of 2 tonnes and are subjected to an impact 
velocity of 4 m/s. The maximum penetration depth is more than three times higher for the 
spherical boulder, but the deflections are more localized. 

a) 

 
b) 

 
Figure 5-7: Impact of blunt and spherical boulder (HB/HS = 1) onto the soil: a) displacement 
vectors, and b) distribution of mean stresses 

-350

-300

-250

-200

-150

-100

-50

0
0 200 400 600 800 1000 1200

Pe
ne

tr
at

io
n 

de
pt

h 
[m

m
]

Force [kN]

4 m/s 5 m/s 6 m/s
7 m/s 8 m/s 9 m/s

-350

-300

-250

-200

-150

-100

-50

0
0 100 200 300 400

Pe
ne

tr
at

io
n 

de
pt

h 
 [m

m
]

Force [kN]

0.5m soil 1m soil 1.5 m soil

HB =1 m HB =1 m 

2 m 1.2 m

Displacement [mm] 

Stress [MPa] 



  Soil response to impact 

69 

Figure 5-7 b shows the distribution of the mean stresses in the soil. The stresses on the bottom 
of the soil layer are distributed over a larger area for the blunt boulder compared to the 
spherical one. The stresses are also higher at the base of the soil layer when it is subjected to 
the impact of the blunt boulder, since the impact forces are higher due to lower penetration 
depth. There is a high compression stress directly below the blunt boulder, which combined 
with the shear at the edges of the boulder lead to a limited penetration of boulder and thus to 
higher impact forces. 

Figure 5-8 shows the distribution of the mean stresses for a 2 tonne boulder impacting 
different thicknesses of soil with a velocity of 4 m/s. The ratios of boulder size to thickness of 
soil are 0.5 and 1.0, respectively. The figure represents the stress state when the impact forces 
are maximum. For a smaller thickness of cushion, there is a higher concentration of stresses 
over a smaller area. The stresses are lower and are distributed over a larger area at the bottom 
of the thicker soil layer.  

It is seen from the analysis that the area over which the maximum stresses were concentrated 
was almost equal to the contact area of the boulder for smaller thicknesses of cushion. The 
total area over which the stresses were transmitted was equal to the size of the boulder (dotted 
line in Figure 5-8 a). 

 
Figure 5-8: Distribution of mean stresses [MPa] for 0.5 and 1.0 m thicknesses of soil 

It is seen that when the cushion layer has a smaller thickness than the boulder diameter, 
concentrated punching forces acting on the slab should be assumed in a small distribution 
area. This area can be equal to or smaller than the contact area of the boulder itself. Moreover, 
the stresses are lower and more distributed for the thicker soil layer, which means the impact 
forces transmitted through the soil to the slab are lower. The stresses were three times less for 
the thicker layer of the soil shown in Figure 5-8, compared to the thinner one, and were 
distributed over an area with twice the diameter. 

The impact B1 (E = 39 kJ) is modeled using 800 mm and 1200 mm thick layers of soil. The 
nodal displacement vectors of soil are shown in Figure 5-9 for both models. The size of the 
boulder and the impact velocity are 700 mm and 9.9 m/s, respectively. A difference between 
the responses of the cushion layers subjected to the same impact energy can be observed.  

The maximum penetration depth directly below the impacting boulder is higher for the case 
with a thicker cushion layer. The distribution of the load to the slab for the thinner layer of 
soil is larger (see Figure 6-11) since less energy can be absorbed due to the lower penetration 
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of the boulder and fewer soil elements incorporated in a shear dissipation mechanism. In the 
case of the B1 impact, as shown in Figure 4-10, since the thickness of the soil is the least, the 
least penetration of the boulder is observed. Heaving of the material around the impact area is 
almost the same for soil thicknesses of 800 and 1200 mm. On the other hand, heaving is the 
highest for 400 mm soil cushion subjected to the same impact energy (Figure 4-10), due to the 
boundary conditions which limit the displacements, and the development of a bearing 
capacity mechanism.  

The maximum total energy of the impacting boulder is 38.8 kJ, and for 400, 800, and 
1200 mm soil layers the energies of soil are 30.8, 33.6, and 34.4 kJ, respectively. This implies 
that the energy in 1200 mm soil layer was 12% higher compared to the 400 mm thick soil 
layer. The maximum energy in the slab covered by a 400 mm thick cushion was about 3 kJ, 
which is three times higher than the one covered by a 1200 mm thick cushion (1 kJ). The rest 
of the energy is absorbed by the supporting system of the slab. 

a) 
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b) 

Figure 5-9: Response of different thicknesses of soil for impact energy E = 39 kJ: a) Displacement 
vectors and idealization of the bearing capacity mechanism (scale 1:25), and b) Distribution of 
vertical stresses (scale: 1:50) 

The distribution of the vertical stresses on the bottom of the soil layer for 800 mm and 
1200 mm thick layers of soil as shown in Figure 5-9 b represent the stresses that are 
transferred to the gallery roof. The total distribution area has almost an equal diameter for 
both cases, which is twice the size of the impacting boulder. There is a high concentration of 
stresses at the middle below the impact zone for the 800 mm thick layer of soil and the 
stresses reduce in radial direction. The 1200 mm thick layer of soil transferred the stresses 
constantly over the section and the transferred stresses are lower than for the thinner layer of 
soil cushion. 

5.7 Shear reinforcement 
Punching behavior due to impact E1 (E = 118 kJ) with a stirrup spacing of 150 mm (Figure 5-
10) is compared to similar impacts on slabs having 200 and 250 mm stirrup spacings. 

 
Figure 5-10: Finite element model of impact E1 and the reinforcement layout in the slab 

The values of the elastic recovery (ER) are compared at the punching location (where the 
punching cracks occurred) for three slabs with different stirrup spacings. Table 5-7 shows this 

Reinforcement: 

Top: 10 mm @ 300 mm spacing 

Bottom: 22 mm @ 150 mm spacing 

Stirrup: 10 @ 150 mm spacing 
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comparison. The elastic recovery of the slab in punching is reduced with increase of the 
stirrup spacings. Finite element analysis confirms that the punching capacity of the slab is 
lowered by increasing the spacing of the stirrups. The ER of the slab without shear 
reinforcement subjected to the same impact (B5) was 45%, which is increased by 30% when 
stirrups with a spacing of 150 mm are used. The presence of stirrups helps in reducing the 
residual deflections when they are not yielded and so the gap between residual and maximum 
deflection, and thus ER becomes larger. The stirrups remained elastic under this impact for all 
three cases. 

Table 5-7: Percentage elastic recovery for different spacing of stirrups (E=118 kJ) 

Spacing of stirrups [mm] 150 200 250 

Elastic recovery (ER) [%] 75 70 65 

 

5.8 Boulder shape 
The impact on a slab without a cushion layer is investigated comparing two different shapes 
of impacting boulder: a blunt (as used in experiments) and a spherical boulder. A direct 
impact on a slab, similar to series B of the experiments (Schellenberg 2008) is considered 
here. The support conditions are kept similar as well. The finite element models for the two 
cases are shown in Figure 5-11. Both boulders have a similar size of 700 mm, which is the 
diameter of the sphere and the length of the blunt boulder, respectively. The masses of the 
boulder and the falling height are 800 kg and 7.5 m, respectively (E = 59kJ). 

 

Figure 5-11: Finite element models to study the influence of the boulder shape for E = 59 kJ 

The influence of boulder shapes on the punching behavior of slabs is studied by comparing 
deflection contours for both cases (Figure 5-12). It is observed that the punching behavior is 
dominant for the slab subjected to impact by a blunt boulder (Figure 5-12 a). Maximum 
deflection occurs directly under the impact zone. The deflection at the center of the slab is 
approximately three times higher compared to the slab subjected to the impact from a 
spherical boulder. 

 

 

700 mm 700 mm 

Line support Simple support 
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a) Blunt boulder 

 

b) Spherical boulder 

 

Figure 5-12: Comparison of slab deflections [mm] for a) blunt and b) spherical boulder 

Bending behavior is observed for the slab subjected to the impact of a spherical boulder as the 
maximum deflection occurred at the free end of the slab between the two simple supports 
(Figure 5-12 b). In this case, high deflections are observed directly at the impacted surface of 
the slab, which may be due to the local damage and crushing of concrete. This comparison is 
made based on a relatively small impact energy of 59 kJ. The local damage for the slab 
subjected to impact of the spherical boulder may be very severe when the boulder delivers a 

Soffit of the slab Top of the slab 

Soffit of the slab Top of the slab 

Displacement [mm] 

Displacement [mm] 

Section of the slab 

Section of the slab 
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higher impact energy and this slab may exhibit a brittle mode of failure rather than developing 
a deformation response in bending, as seen for this case. 

Figure 5-13 shows the crack patterns of slabs (contours of zero stresses) subjected to the 
impact of different shapes of boulder, as obtained from finite element analyses. This confirms 
the deduced behavior of the slabs, since punching and bending cracks are formed for both 
slabs. Two cracked zones are observed in the cross section for the slab subjected to the impact 
of the blunt boulder (Figure 5-13 a). These may form due to the high concentration of stresses 
exactly under the impact zone. A second cone is formed, which represents the punching of the 
slab under the impact of boulder. Cracks representing a bending pattern are formed at the 
soffit for the slab subjected to the impact of the spherical boulder. 

a) Blunt boulder           b) Spherical boulder 

 

Figures 5-13: Comparison of cracks for the soffit of the slabs subjected to impact of a) a blunt and 
b) a spherical boulder (E = 59 kJ) 

5.9 Consecutive impacts 
Consecutive impacts with impact energies of 39 kJ and 118 kJ, respectively, are modeled 
using finite element analyses. Boulders of 800 kg are assumed to fall five times from a height 
of 5 m, on slab B of the experimental series. The same slab is also analyzed, when subjected 
to five impacts with heights of fall of 15 m. 

Figure 5-14 a shows the comparison between the maximum deflection that occurred during 
each impact, for five consecutive impacts with energies of 39 kJ and 118 kJ, respectively. It 
can be seen that irrespective of previous impact histories of the slab, the maximum deflection 
remains almost the same for all impacts. 

Idealization 

Soffit of the slab Soffit of the slab 
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a)       b) 

 
Figure 5-14: Consecutive impacts: a) Maximum deflection for consecutive impacts with similar 
energies, and b) residual deflection for consecutive impacts with energies of 39 kJ 

The comparison between the residual deflections due to each impact is shown in Figure 5-
14 b. The residual deflection in the slab is large during the first two impacts. This is due to the 
fact that before the first impact the slab has not cracked yet. Once the slab has cracked, the 
additional residual deflection in the slab subjected to a similar impact becomes lower. The 
additional residual deflection for the last two impacts remained similar. The slab subjected to 
the impact, can be considered as failed, when the elastic recovery of the slab due to n number 
of impacts, which is defined based on the ratio of the cumulative residual deflection to the 
cumulative maximum deflection is less a certain threshold. 
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6 Recommendations for analytical models 

Calibration of input parameters of an analytical model using a Three Degrees of Freedom 
System (3DFS) is presented here. In addition an analytical model using a Two Degrees of 
Freedom System (2DFS) is proposed. 

6.1 Three degrees of freedom system 
The application of a System of Multiple Degrees of Freedom (SMDF), as proposed by 
Schellenberg (2008), is discussed here. The model consists of three masses corresponding to 
three nonlinear springs (Figure 6-1) and is referred to as the Three Degrees of Freedom 
System (3DFS) in order to differentiate between the models with two and three degrees of 
freedom, as used in this study. The model is similar to the model proposed by Schlüter (1987) 
and Eibl et al. (1988) for the analysis of aircraft collisions with reactor containments. The 
influence of the input parameters is summarized in this section, and it aims at improving the 
assumptions made for the proposed analytical model. Therefore, the assignment of masses 
and spring properties discussed incorporates these improvements. 

a)        b) 

  

Figure 6-1: System of multiple degrees of freedom (SMDF) a) the section of a gallery and b) the 
model definition (Schellenberg 2008) 

Based on the dynamic equilibrium, the equation of motion can be formulated as: 

)(tFyCyMyK ggg =++ &&&         (6-1) 

where, Kg, Mg, and Cg are the stiffness, mass, and damping matrices of the gallery. y is the 
displacement matrix and F(t) represents the externally applied force. 

6.1.1 The first degree of freedom 

The first degree of freedom demonstrates the behavior of soil subjected to impact. The 
boulder is subjected to an initial velocity and the impact forces are calculated based on 
deceleration of the boulder and the stiffness of the soil. 
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6.1.1.1 Mass 
The first mass M1 is the mass of the impacting block, which is provided by the design 
requirements. 

6.1.1.2 Spring 
The behavior of the soil as proposed in the initial model (Schellenberg 2008) was assumed by 
a hardening curve based on an initial stiffness value with an assumed impact area of the 
boulder. The behavior of the soil subjected to impact is influenced by various parameters such 
as the thickness of soil layer, size and weight of the boulder, modulus of soil, and the angle of 
internal friction.  

The soil spring is modified and improved here in order to account for the change in stiffness 
of soil for different thicknesses of soil cushion as well as to account for the shear behavior of 
the soil. The depth of failure for the shear zone Hf refers to the minimum depth required that 
the soil layer develops a general shear failure behavior based on Terzaghi’s formulation for 
ultimate bearing capacity of the soil (Terzaghi & Peck 1948), and it can be calculated as: 

)
2
'45tan(2 0

ϕ
+= RH f          (6-2) 

where R0 is the radius of an equivalent spherical boulder and ϕˈ is the angle of internal 
friction of soil, respectively. The depth of the shear failure is 1.7 times the size of the boulder 
for a friction angle of 30°. The ratio of the soil thickness (after penetration) to the boulder 
size, therefore, is important in predicting the soil behavior.  

The load distribution of the soil on the slab for different thicknesses of soil cushion, as shown 
in Figure 6-2, is assumed for the analytical model, where Øsl, e, and ymax are the diameter of 
loading area on the slab, the thickness of soil layer, and the maximum penetration depth of the 
boulder, respectively. The influence of the slab deflection on the load distribution is neglected 
here, since the impact forces transmitted through the soil on a rigid base are higher than the 
forces transmitted to a flexible slab. The assumed distribution is compared to the 
displacement vectors in soil for three different cases (see Figure 4-10 and Figure 5-9). These 
cases can be listed as: 

Soil embedment 1: e-ymax > 3.4R0 

Soil embedment 2: R0 < e-ymax < 3.4R0 

Soil embedment 3: e-ymax < R0 

The maximum penetration depth at the end of a given impact ymax is an initial value set for the 
expected penetration depth of the boulder. This can be calculated using a single degree of 
freedom system for impact of a boulder onto the soil with a soil modulus according to 
Equation 6-5, or using any empirical formula for calculating the penetration depth. A single 
degree of freedom system is used in this study in order to quantify an initial value for the 
expected penetration depth. The soil embedment case is therefore chosen based on this initial 
assumption and the actual penetration depth is later calculated for the chosen behavior. 
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Figure 6-2: Assumed load distribution cone for soil cushion 

Even though the soil cushion can decrease the impact stresses on the gallery, the thickness of 
the soil layer is usually limited since it also increases the dead load on the slab. In many cases, 
development of a full shear slip surface cannot be expected if the gallery is hit by a large 
boulder. 

a)       b) 

 
Figure 6-3 Force settlement diagram for a) shear failure of the soil and b) its idealization for loose 
soil developed based on Pietsch (1982) 
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The shear behavior (soil embedment 1) is considered by applying an idealized curve 
(Figure 6-3 b) similar to the one proposed by Pietsch (1982), which is outlined in Studer et al. 
(2007). The idealization is shown in Figure 6-3 b, where F and s are the force and settlement 
of a loose soil, respectively. qB, K1s, and AB represent the bearing capacity of soil, the 
frequency dependent stiffness of soil (when the thickness of the soil is not limited), and the 
contact area of the boulder, respectively. 

s/F can be calculated as: 

BBs qA
yy

KF
yy

F
s 21

11

21 1 −
+=

−
=         (6-3) 

Therefore, the spring force can be calculated as: 

BBs qA
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K
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+

−
=          (6-4) 

The application of Equation 6-3 is limited since the penetration cannot exceed the thickness of 
the cushion layer. The soil modulus K1s [N/mm] can be evaluated using the formulation 
proposed by Lysmer (1965) and by Wolf (1997). The stiffness of the spring for the case 
impact of a spherical boulder is calculated at each time step as a function of penetration depth 
of the boulder according to the following formula: 

ν−
=

1
4

1
GrK s           (6-5) 

))(2)(( 21021 yyRyyr −−−=         (6-6) 

where G, and r are the soil shear modulus [MPa], and the loading radius [mm], respectively. 
This formulation does not take the velocity of the impact and the shape of the impacting body 
into consideration. It must be noted that the behavior can be different for soils in different 
states, for example for the dense soil as shown in Figure 6-3 a. The idealized curve cannot be 
used for such individual cases and they should be treated separately. 

The Terzaghi formula (Terzaghi & Peck 1948) can be used to calculate the bearing capacity 
of the material. Incorporating the dynamic impedance of the material the bearing capacity can 
be calculated based, on Chikatamarla (2006), as follows: 

sgccqsqsB EvNcsNyysNrsq ργγ γγ 021 ')( ++−+=      (6-7) 

Where: 

• γs, ρs  Unit weight [N/m3] and the density [kg/m3] of the soil  

• sγ, sq, sc Shape factors 

• r  Radius of the contact area of the boulder [m] 

• Nγ, Nq, Nc Constants depending on the friction angle 

• c’  Cohesion in the soil [N/m2] 
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• v0  Initial impact velocity [m/s] 

• Eg  Young’s modulus of soil [N/m2] 
 
a)       b) 

 
c) 

 
Figure 6-4: Soil spring: a) spring properties for hardening of soil cushion, b) stiffness of different 
thicknesses of soil, and c) damping for different thicknesses of soil (E = 39 kJ) 

The assumed hardening behavior of the soil cushion as shown in Figure 6-4 a (for soil 
embedment 2 and soil embedment 3) is approximated by a hyperbola with an initial stiffness 
of K1h and a linear unloading path with stiffness K11 that refers to the maximum stiffness 
reached during loading. The maximum possible penetration is assumed to be equal to the 
thickness of the cushion layer. For pre-compacted and pre-consolidated soil layers, a full 
depth penetration of a boulder is not likely to be reached due to the lateral pressure of the 
surrounding soil. The slopes of the curve, as well as the maximum force tend to change with 
the thickness of the soil layer as shown in the figure. The model for hardening is modified to 
account for different responses of soil when the thickness of the cushion later changes, and no 
initial stiffness is needed to be defined compare to the initial model proposed. 
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For the hardening behavior, the stiffness for a limited thickness of soil can be calculated as 
follows for a spherical boulder, which is based on the stiffness of rigid embedded cylindrical 
foundations (Gazetas 1983): 
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   (6-8) 

r is calculated using Equation 6-6. The equation is valid for y1-y2 < 2r, and y1-y2 ≤ 0.5e. The 
formula under-predicts the actual increase in the stiffness for foundations with deeper 
embedment according to Gazetas (1983). 

An example of impacts on soil using an 800 kg boulder with radius of 350 mm, falling from a 
height of 5 m is illustrated in Figure 6-4 b to show the applicability of the model. Three 
different thicknesses of soil are used. The stiffness of the soil reduces with increase in the soil 
thickness as expected. However, this variation of the stiffness with respect to the thickness of 
soil is only considered for hardening part of the curve. The unloading stiffness of K11 is 
simply assumed here based on the maximum stiffness of the material reached during loading 
and does not take the variation of the soil thicknesses into consideration. This implies that the 
maximum values of the penetration depth, as shown in this figure, depend on the thickness of 
the soil layer but the final penetration depths do not.  

6.1.1.3 Damping 
The damping coefficient of soil, Cs [Ns/m] can be defined as (Wolf 1997): 

Bvss AcC ρ=           (6-9) 

where ρs is the density of the soil [kg/m3], cv is the wave velocity [m/s], and AB is the loading 
area [m2], respectively. Therefore, the above equation can be formulated as a function of 
penetration depth as: 

))(2)(( 21021
2 yyRyycrcC vsvss −−−== πρπρ       (6-10) 

So the damping force increases with increasing penetration depth of the boulder at each time 
step. The damping coefficient for different thicknesses of soil according to the example used 
for stiffness of soil in the previous section is shown in Figure 6-4 c. The coefficient increases 
with increase of the thickness of soil, since the penetrations are higher. 

6.1.2 The second degree of freedom 

The second degree of freedom corresponds to the punching behavior of the slab. The forces 
obtained from this spring provide the sectional forces due to punching. The critical section for 
punching must be preselected by the engineer and the contributing structural mass, as well as 
the spring forces, are calculated accordingly. 
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6.1.2.1 Mass 
M2 corresponds to the mass of the assumed punching cone under the loading location. The 
mass of the soil compacted between the boulder and the slab is included in M2. As mentioned 
in Section 6.1.1.2, the distribution of the forces transmitted through the soil to the slab 
depends on the thickness of soil layer. Therefore, two different cases are assumed here, which 
correspond to different thickness of soil layer and diameter of boulder, as shown in Figure 6-
5. 

a)     b) 

 
Figure 6-5: Geometry of punching cone for a) R0 ≥ e-ymax, and b) R0 < e-ymax 

For R0 ≥ e-ymax: 

02Ø Rsl =           (6-11) 

and for R0 < e-ymax: 
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2
'45tan()[(22Ø maxmax

ϕ
−−+= yersl        (6-12) 

Therefore, M2 can be expressed as: 

For R0 ≥ e-ymax: 
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and for R0 < e-ymax: 
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6.1.2.2 Spring 
Spring K2 describes the shear stiffness for the assumed punching shear failure of the concrete 
slab. With increasing relative displacements of the punching cone compared to the 
surrounding part of the slab, the behavior is controlled by three contributors: K21: the 
contribution of the concrete, K22: the contribution of shear reinforcement if existing, and K23: 
the membrane effect of the bending reinforcement. K2h is the hardening of shear 
reinforcement, a perfect yielding can be assumed for simplification. The assumed behavior is 
shown in Figure 6-6 a. The membrane effect represents the post-ultimate behavior of the 
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reinforced concrete structure and is of importance while evaluating the capacity of the 
existing structure. It can be neglected while designing new galleries for simplification. 
Therefore the behavior can be assumed as shown in Figure 6-6 b. The details of the 
calculation of the spring properties are provided in Schellenberg (2008) and Schlüter (1987). 

a)         b) 

 
Figure 6-6: Spring properties for K2: a) according to Schellenberg (2008), and b) simplified 

6.1.2.3 Damping 
A damping ratio of ξ = 5% is used for the local behavior of the concrete slab (Schellenberg, 
2008). For medium stress intensity (fully cracked) reinforced concrete structures, a damping 
ratio of ξ = 1-4% is suggested (Bachmann et al. 1995). The ratio is between 0.5 and 0.8% for 
high stress intensity structures. The damping effects of the structure are not of great 
importance, since usually the first peak is the most relevant one for the analysis of slabs 
subjected to rockfalls. Therefore, the damping properties of the structure have not been a 
focus of this study and the proposed values have been used. 

6.1.3 The third degree of freedom 

The third degree of freedom represents the global response of the slab. The spring forces are 
calculated based on the contributing modal mass of the structure and the bending stiffness of 
the slab. The global response also influences the forces in the second degree of freedom. 

6.1.3.1 Mass 
M3

* is the modal mass of the surrounding structure. The modal mass depends on the boundary 
conditions of the slab. Therefore, the bending behavior of the slab is scrutinized here for 
different support conditions.  

 
Figure 6-7: Different support conditions for slabs with one line and two simple supports, 2 line 
supports, and four simple supports 

K2h K2h 
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A slab with a line support and two single supports, a slab with two line supports, and a slab 
with four point supports, refer to case 1, 2, and 3, respectively (Figure 6-7). Case 1 is used as 
a benchmark to compare with the other cases, as it resembles the experiments carried out. All 
three slabs have dimensions of 4.5 x 3.5 x 0.35 m and are covered by a 0.4 m thick layer of 
soil. 

Reaction force time histories for different support conditions are shown in Figure 6-8. As 
expected, the slab with two line supports (case 2) behaves stiffer than the other two, leading to 
a higher value of maximum reaction forces. 

 
Figure 6-8: Reaction force time histories of impact on slabs with different support conditions 

The mid-span deflections for the three cases are shown in Table 6-1. The deflection is lowest 
for the stiffest slab with two line supports. The value is highest for the slab having four point 
supports, which behaves with the most flexibility. 

Table 6-1: Mid-span deflections of impact on slabs with different support conditions 

 Case 1 Case 2 Case 3 

Max mid-span deflection [mm] 8.5 7.0 12 

The crack patterns are compared in Figure 6-9. For case 3 with four single supports there were 
no cracks formed directly over the supports. This may be due to the low impact energy 
(E = 39 kJ) the slab is subjected to. The ER of the slab at mid-span under this impact was 
60%, which implies that the slab is far from failure. 

  Case 1        Case 2             Case 3 

 
Figure 6-9: Crack patterns of impact on slabs with different support conditions 
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Table 6-2: Modal mass factor α for loading in center for elastic response using finite element 
analysis with v = 0.2, as well as for plastic response 

Boundary 
condition 

Yield lines Mass factor α [-] 
Elastic [based on FEM] 

Plastic [Biggs 1964] 
Ratio of spans Lz/Lx 

1.4 1.2 1.0 0.8 0.6 

4 restrained 0.10 
0.23 

0.11 
0.20 

0.12 
0.17 

0.11 
0.20 

0.10 
0.23 

2 lines 
2 restrained 

0.12 
0.23 

0.13 
0.20 

0.14 
0.17 

0.15 
0.20 

0.15 
0.23 

4 lines 0.18 
0.23 

0.19 
0.20 

0.20 
0.17 

0.19 
0.20 

0.18 
0.23 

2 restrained 0.12 
0.33 

0.14 
0.33 

0.18 
0.33 

0.23 
0.33 

0.26 
0.33 

1 line 
1 restrained 

0.19 
0.33 

0.21 
0.33 

0.28 
0.33 

0.33 
0.33 

0.37 
0.33 

2 lines 0.30 
0.33 

0.33 
0.33 

0.40 
0.33 

0.44 
0.33 

0.47 
0.33 

1 lines 
2 points 

0.36 
 

0.37 
 

0.43 
 

0.43 
 

0.48 
 

4 points 0.45 
 

0.46 
 

0.47 
 

0.46 
 

0.45 
 

 

The modal mass of the structure can be calculated as: 

3
*

3 MM α=           (6-15) 

where α is the modal mass factor, and can be computed by evaluating (Biggs 1964): 
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where mg is the mass per unit area, and ϕ(x,y) is the normalized deformed shape of the slab. 
The initial values of modal mass factors proposed by Schellenberg (2008) are updated here 
for different support condition and for a Poisson ratio similar to that of concrete. For a slab 
with a Poisson ratio of 0.2, the elastic modal mass of slabs having different support conditions 
is investigated using static and elastic finite element analyses (Table 6-2). Finite element 
analysis software SAP 2000 (2006) is used for these analyses. SAP 2000 is a commercial 
finite element analysis software produced by Computers and Structure, Inc., USA. The modal 
mass factor for plastic behavior as mentioned by Biggs (1964) is also listed in the table. 

6.1.3.2 Spring 
The third spring K3 describes the global stiffness of the concrete slab taking into account an 
elastic-plastic behavior of the structure. Initially a bilinear model was adapted, which is 
replaced here by a curve with three different stiffnesses to account for pre- and post-cracking 
as well as the post yielding of reinforced concrete slabs (Figure 6-10). The stiffness for the 
elastic part of the curve up to cracking can be evaluated using the following formulation 
(Stiglat et al. 1993): 

2

3

30
12 z

cw

L
zEkK =           (6-17) 

This can be modified for the second part of the curve up to yielding to count for effective 
moment of inertia of the section as follows: 

231
zx

ecw

LL
IEkK =           (6-18) 

where kw, Ie, and Lx,z are the stiffness factors, effective moment of inertia of the slab, and the 
slab span in x and z directions, respectively. The third part of the curve can be calculated by 
choosing a ductility factor for post-yielding behavior of the structure. 

 
Figure 6-10: Spring properties of K3 for the global bending 

The value of kw can be calculated for different boundary conditions for elastic slabs for a 
single load at the slab center as follows: 
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c

z
w Ez

LFk 3

2)/(12 Δ
=          (6-19) 

where F, Δ, and z are the static point load, the maximum deflection under the point load, and 
the thickness of the slab, respectively.  

The stiffness factor kw is calculated using the above equation for slabs with a Poisson ratio of 
0.2, and for different supports conditions. Elastic finite element analyses are applied using 
SAP2000 software. These values are listed in Table 6-3, and can be used in equations 6-17 
and 6-18 for calculating the stiffness of the slab. 

Table 6-3: Stiffness factor kw for loading in center from elastic finite element analysis with v = 0.2 

Boundary 
condition 

Yield lines Stiffness factor kw [-] 

Ratio of spans Lz/Lx 

1.4 1.2 1.0 0.8 0.6 

4 restrained 150 157 184 157 150 

2 lines 
2 restrained 

142 143 147 104 89 

4 lines 70 75 89 75 70 

2 restrained 141 140 135 81 61 

1 line 
1 restrained 98 96 89 50 37 

2 lines 54 51 45 24 17 

1 lines 
2 points 26 30 34 21 16 

4 points 15 19 26 19 15 
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6.1.3.3 Damping 
A damping ratio of ξ = 20% was used for the global behavior of the concrete slab by 
Schellenberg (2008). When the expected response of a structure may include plastic 
deformations a ratio between 5 to 20% can be assumed (Sircovich-Saar 2006). 

6.2 Two degrees of freedom system 
An analytical model is proposed here using a Two Degrees of Freedom System (2DFS), 
which replaces the soil spring with a triangular pulse load. This is a simplification of the 
previously described model and thus is similar to the model proposed by Eibl et al. (1988). 
The model incorporates an externally applied pulse load on the gallery, which represents the 
impact forces transmitted through the soil cushion onto the roof slab of a gallery. 

6.2.1 Pulse load 

The impact of a boulder onto the soil produces impact forces, which differ from the 
transmitted impact force through the soil to the slab. Based on the finite element analysis 
results, the maximum values of the transmitted impact force (defined as transmitted force) for 
the experiments on slab A and B were on average 1.2 times higher than the maximum values 
of the impact force. For these experiments, the thickness of the soil is smaller than the boulder 
size. As discussed in Section 5.6, the forces transmitted through the soil are higher for a 
thinner layer of soil. To investigate such an influence, impact B1 was modeled using an 
800 mm thick layer of soil. Figure 6-11 shows the plot of impact forces and transmitted forces 
for impact B1 on 400 mm and 800 mm thick soil layers. It can be seen that when the thickness 
of soil is almost half of the boulder size (700 mm), the maximum transmitted forces are about 
1.3 times the impact forces. On the other hand, for the thickness of soil almost equal to the 
boulder size, the transmitted forces are 0.7 times the impact forces.  When a 800 mm thick 
layer of soil is used, the duration over which the force is transferred to the slab is almost 3 
times longer compared to the slab covered with a 400 mm thick layer of soil. 

a)       b) 

 
Figure 6-11: a) impact forces and b) transmitted impact forces obtained from finite element analysis 
for impact B1 
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method, using a two degree of freedom system, is proposed here. External forces are applied 
on the slab, which resemble the transmitted impact forces. This would require the 
establishment of a rational method to define such a load on the structure. The analytical 
method can be used to solve the equation of momentum for two degrees of freedom once the 
external force is defined, which in this case represents the punching and global behavior of 
the slab, respectively. The model using a simplified triangular load pulse is shown in 
Figure 6-12. The abbreviations for bending and punching behavior are kept similar in order to 
keep it consistent with the 3DFS model.  

 
Figure 6-12: System of two degrees of freedom: model definition and load pulse 

Figure 6-13 shows the transmitted impact load history obtained from finite element analysis 
for impact B1. The integral of the force with respect to the time for the first peak of impact 
load history is defined as impulse. The mean force is defined by dividing the impulse by the 
time duration of impact. The simplified triangular load pulse diagram is defined as having a 
maximum impact force, and a maximum time duration impact equal to that of the transmitted 
impact force history.  

 
Figure 6-13 Transmitted impact load history on the slab (impact B1), and a simplified load pulse 
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In order to quantify the triangular pulse load rationally, an application of the work energy 
theorem is used here and the results obtained are compared to the transmitted force obtained 
from finite element analysis. According to the work energy principle, the mechanical force is 
equal to the change in kinetic energy, E. 

2
02

1 mvEWE ==          (6-20) 

Assuming an ideal plastic behavior of soil under impact, the kinetic energy of the falling body 
is equal to the dissipated energy. Since the work done equals the average impact force times 
the distance traveled by the boulder, assuming slab deflections do not influence the impact 
force the following equation can be formulated: 

D
EFE =           (6-21) 

where v0, and D are the velocity of the impact, and the maximum penetration of the boulder 
for the given impact energy, respectively. D can be calculated using empirical formulae when 
the thickness of cushion layer is larger than the penetration depth. Since the penetration of the 
boulder was measured for each impact during experiments, FE values can be calculated for 
two experimental series (slab A and B). A comparison between the average forces calculated 
using the work energy concept FE and the mean transmitted impact force Fm obtained from 
finite element analysis (Figure 6-14 a) shows that both are almost equal. 

a)       b) 

 
Figure 6-14: Comparison of average impact forces from the work energy principle with a) mean 
transmitted impact forces, and b) maximum transmitted impact forces obtained from finite elements 
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Comparison of the maximum transmitted impact force obtained from finite element analysis 
with average impact forces, on the other hand shows that they vary linearly by a factor of two.  

D
mvFF E

2
0

max 2 =≅          (6-22) 

Therefore, it is possible to estimate the maximum transmitted impact force when the 
maximum penetration depth is known. The transmitted forces are larger than the impact 
forces for these experiments, since the thickness of soil was smaller than the boulder depth. 
Forces calculated using this equation are larger than the cases with thicker soil layers and are 
therefore on the safe side. The values of maximum transmitted impact force obtained from 
finite element analysis Fmax, and twice the average impact forces 2FE for experimental series B 
are compared to the maximum impact forces calculated based on the Swiss guideline in 
Figure 6-15. 

 
Figure 6-15: Comparison of maximum impact forces for experimental series B 

There are various formulae proposed for calculation of the penetration depth of the boulder 
into the soil. A few of these formulae are discussed herein according to their applicability for 
three different assumed responses, as shown in Figure 6-2. 
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surface as explained in Section 2.1.4. However, the depth of the slip line using this formula is 
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*3
0 )2( BNR
mN

sρ
=          (6-24) 

where ρs is the mass density of soil, B is a dimensionless compressibility of soil (B = 1.2 for 
gravel), N* is the nose shape function, k is the dimensionless length of surface crater, and I is a 
dimensionless impact function, respectively. The nose shape function is in the range of 
0 < N* ≤ 1, with, N* = 1 for flat, and N* = 0.5 for hemispherical nose, respectively. I and k can 
be defined as: 

3
0

2
0

)2( RR
mvI

i
=           (6-25) 

and 

02
707.0

R
Hk i+=           (6-26) 

where R is the indentation resistance of the target material, 2R0 is the diameter of the 
impacting body, and Hi is the height of the impactor nose, respectively. The value of Ri used 
in this formula, however, needs quantification based on experiments. Pichler et al. (2005) 
carried out some impact experiments on gravely soil and proposed a median value of 9.22·106 
Pa. Back calculating from the experimental series of slab A and B, the average value of R is 
6.33·107 Pa. The formula proposed by Pichler can be used to calculate the penetration depth. 
However, a typical value of indentation resistance Ri should be validated by further 
experiments on soil. This formula can underpredict the soil behavior based on the selection of 
the value of indentation resistance. In addition, it does not include the effect of draining and 
pore water pressure of the soil layer. 

Another formula for calculating the maximum impact force is provided by the Swiss guideline 
according to Equation 2-1. The penetration depth for the maximum impact force, therefore, 
can be calculated according to Equation 6-21. The range of the experiments, on the bases of 
which the formula is developed, corresponds to soil embedment 2 (see Section 6.1.1.2). 

One of the well known formulations for penetration of projectiles into the soil has been 
summarized by Young (1967). There is an update to the equation published in 1997 (Young 
1997). According to this equation, the penetration depth of a projectile into a uniform layer of 
concrete or soil (excluding frozen soil) is given by: 

for v0 < 200 fps (61 m/s) 

)1021ln()(3.0 52
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where, S, N, Wb, and A are the penetrability of the target (dimensionless), nose performance 
coefficient (dimensionless), weight of the impacting body (lbs), and cross-sectional area (in2), 
respectively. 

If the weight of boulder is low, both equations have to be multiplied by a factor Ks; for soil: 

4.0)(2.0 bs WK =    when Wb < 60 lbs (27 kg)    (6-29) 

For tangent ogive nose shapes, the nose performance coefficient can be obtained from:  

56.018.0
0

+=
R
HN i          (6-30) 

and for conical shapes: 

56.025.0
0

+=
R
HN i          (6-31) 

where, Hi is the length of the penetrator nose. 

S ranges between 4 and 6 for gravel deposits and sands without cementation and from 8 to 10 
for soil fill material, depending on compaction. The equation was developed based on more 
than 160 full-scale earth penetration tests with different shapes of projectile and with impact 
velocities ranging between 33 to 325 m/s. When a projectile impacts the earth surface and 
moves through the soil, it punches through the soil layer. Therefore, this formula is used for 
soil embedment 3 (see Section 6.1.1.2). 

The results of the penetration depths obtained from the formula of Pichler et al. (2005) 
assuming the average R for experimental series A (impact energies up to 118 kJ) and B 
(impact energies up to 196 kJ) are plotted against experimental data in Figure 6-16. In 
addition, the penetration depths obtained from the formula of Young (1997) and the Swiss 
guideline (ASTRA 2008) are shown. Compared to the diagonal line denoting parity, it is seen 
that since the experiments were in the range of the case soil embedment 2, the values obtained 
from the formula of the Swiss guideline provides the best match. Values of N and S using 
Young’s formula are assumed to be 1 and 10, respectively. N using Pichler’s formula is set to 
1.4. Young’s formula is not used for the 2DFS, since it provides a large scatter from 
experimental data. 

According to Bucher (1997), the impact time can be estimated using the following formula: 

%302

0
±=

v
Dtd           (6-32) 

This model can incorporate other load pulse diagrams easily. For example, a synthetic input 
impact force time history is also proposed by Calvetti & di Prisco (2009). The definition of 
the proposed curve depends on reference impact force and reference impact energy. 
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Figure 6-16: Penetration depths obtained from different formulae for experimental series A and B 

6.2.2 The first degree of freedom 

Once Fmax and td are evaluated, the triangular pulse load can be defined. The structure is then 
analyzed for this load using two masses and two springs. The first spring is similar to the 
second spring defined when using a three degrees of freedom system, as outlined in 
Section 6.1.2. M2 is the mass of the punching cone of concrete. Since the soil mass is not 
included in the punching cone for this model, the mass M2 can be expressed as: 

)]4Ø6Ø3([
12

22
2 zzzM slslc ++= γπ        (6-33) 

where Øsl is calculated according to equations 6-11 to 6-12. 

Spring K2 represents the shear stiffness for the assumed punching shear failure of the concrete 
slab, which is calculated according to Section 6.1.2.2. 

6.2.3 The second degree of freedom 

The second degree of freedom can be defined similar to the third degree of freedom using a 
three degrees of freedom system, which is outlined in Section 6.1.3. 

M3
* is the modal mass of the structure which can be calculated according to Section 6.1.3.1.  

Spring K3 describes the global stiffness of the concrete slab, which can be defined according 
to Section 6.1.3.2. 
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6.3 Comparison of results and discussions 
The analytical models using the three degrees of freedom system and the two degrees of 
freedom system are validated against the experimental results, in order to verify the 
simplifications made for the selection of the physical parameters. The experimental series B 
(Section 4.1.1) is used for this validation. The parameters for both models (2DFS and 3DFS) 
are chosen according to sections 6.1 and 6.2, and are outlined in Table 6-4. The input 
parameters listed in the table are used for calculating spring forces using the MATLAB codes 
(Appendix C). 

Table 6-4: Input parameters used for analytical models and their definition 

Input parameters for 2DFS 

Parameter Unit Definition 

B [-] Dimensionless compressibility of soil (Pichler’s formula) 

Hi [m] Height of the impactor nose

Ri [MPa] Indentation resistance of the target material 

S [-] Penetrability of the target (Young’s formula) 

Input parameters for 3DFS 

Parameter Unit Definition 

c [N/m2] Cohesion in the soil 

E [MPa] Young’s modulus of soil

G [MPa] Shear modulus of soil

Nγ, Nq, Nc [-] Constants depending on angel of friction

sγ, sq, sc [-] Shape factors according to Terzaghi’s formula 

Common input parameters for both models 

Parameter Unit Definition 

Asg [%] Ultimate strain of reinforcement 

e [m] Thickness of the cushion layer

Ec, Es [MPa] Young’s modulus of concrete, and steel reinforcement 

fcm [MPa] Mean compressive strength of concrete

fy [MPa] Yielding stress of steel reinforcement

g [m/s2] Acceleration due to the gravity

kw [-] Stiffness factor calculated according to Section 6.1.3.2 

Lx, Lz [m] Length of the slab in x or in z direction



  Comparison of results and discussions 

97 

m [kg] Mass of the impacting boulder, M1 in 3DFS 

Qu/Mu [-] The ratio of ultimate load to ultimate moment based on yield line 
theory 

R0 [m] Equivalent radius of a sphere with similar volume as the 
impacting body 

R1 [m] Size of the impacting body (radius or half of the length) 

s, s' [m] Spacing of tensile, and compressive reinforcement 

u, u’ [m] Concrete cover for bottom and top layer of reinforcement 

v0 [m/s] Impact velocity of the boulder

z [m] Slab thickness

α [-] Modal mass factor calculated according to Section 6.1.3.1 

γc [kN/m3] Unit weight of concrete

ν [-] Poisson’s ratio of the cushion layer

ξ [-] Damping ratio of the structure for punching or bending 

ϕ [°] Angle of internal friction of the cushion layer 

ρs [kg/m3] Density of the cushion layer

Ø, Ø’ [m] Diameter of tensile, and compressive reinforcement 

Øs, ss [m] Diameter, and spacing of shear reinforcement 

Maximum slab deflections and maximum reaction forces obtained for test series B, using the 
analytical models, are compared to the experiments in Figure 6-17 a and b. The maximum 
displacement of the spring representing the global behavior of the slab is compared to the slab 
deflections. These are maximum values of displacements y23 using both models. The slab 
deflections obtained using 2DFS and 3DFS methods are overestimated compared to the 
experiments. However, the ones using 2DFS provide a closer agreement. The deflections 
obtained from analytical models depend on the stiffness defined for the global behavior of the 
slab. The model considers the stiffness of the full section before cracking and effective 
stiffness of the cracked section up to yielding. The post yielding stiffness is roughly obtained 
assuming a ductility factor for the slab, therefore the value for the ultimate deflection is 
overestimated. This puts the evaluation of the ultimate load on a safe side. The resulting 
forces in the spring representing the global behavior of the slab are compared to the maximum 
reaction forces. These are the maximum values of the spring forces F3 using 2DFS and 3DFS. 
The maximum reaction forces obtained using 2DFS and 3DFS are in good agreement with the 
experiments. The reaction forces and deflections are important while considering the global 
response of the structure; therefore, analytical models perform well in predicting the overall 
behavior of structure.  

A plot of the reaction forces of the slab vs. slab deflection for the first peak of the slab 
response, for impact B7 is shown in Figure 6-17 c, which corresponds to the force and 
displacement of the spring representing the global behavior of the slab. The post peak 
response of the slab is highly influence by its damping, thus only the first peak is considered 



Recommendations for analytical models 

98 

here. The maximum and the residual displacement of the slab during impact B7, which led to 
slab failure, is shown. The elastic recovery (ER) of the slab calculated using the criterion 
(introduced for FE in Section 4.3) amounts to 22 and 19% for the model using 2DFS and 
3DFS, respectively. This indicates that a failure criterion using the ER concept can also be 
applied to account for failure using the analytical model. It can be noticed that the upper 
bound solution overestimating the global behavior stiffness after yielding is on the safe side 
when establishing the failure criteria based on the ratio of ultimate to yielding load 
(Schellenberg 2008). On the other hand, this would lead to a lower value of residual 
deflection and it would not be on the safe side if the failure criterion is based on the residual 
deflections (ER concept). Therefore, a higher margin of safety should be used, while applying 
the criterion to the analytical model. An ER ratio of 25 to 30 can be used to account for failure 
using the analytical models. 

a)       b) 

 
c) 

 
Figure 6-17: Slab response values for the B series obtained using different analytical models a) 
maximum slab deflections, b) maximum reaction forces, and c) force deflection for impact B7 
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The maximum penetration depth of the boulder in the soil and the maximum impact forces are 
compared to the experiments in Figure 6-18 a. The penetration depth for the 2DFS is 
calculated on the basis of the pulse load definition using different empirical formulae based 
on the thickness of the soil layer as explained in Section 6.2. The maximum relative 
displacement of the first spring y1-y2 using the 3DFS accounts for a penetration depth 
calculated based on this model. The penetration depth of the boulder is not well predicted 
using the analytical model. The empirical formulae used for 2DFS provide a better match. 
The values calculated based on 3DFS are conservative since the model represents 
compression hardening behavior for the range of this experimental series (Figure 6-4 a). The 
finite element results for penetration depth are in good agreement with the experimental ones. 

a)       b) 

  
c) 

  
Figure 6-18: Response of soil for B series obtained using different analytical models a) maximum 
penetration depths, b) maximum impact forces, and c) maximum transmitted impact forces 

A comparison between the impact forces obtained using 3DFS and FE with the experiments is 
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not shown on this diagram. The resulting forces in the first spring of the 3DFS are referred to 
impact forces of the boulder onto the soil and are compared to impact forces calculated based 
on the acceleration measured in the experiments, which shows the values obtained from 3DFS 
are more conservative (since they underestimate the penetration depth). The maximum impact 
forces using finite element analysis are smaller than the experimental data. The forces using 
finite element analysis are calculated as the interface forces between the impacting boulder 
and the layer of soil based on the penalty method (see Fiacco & McCormick 1968) by 
defining master and slave segments. The element size and aspect ratio as well as the stiffness 
of both master and slave segment influence the results. The contact stiffness is computed for 
each segment on master and slave side and the smaller value is used. However, the soil 
response in terms of maximum penetration depth of the boulder into the soil is accurately 
predicted using finite element analysis (6-18 a). The impact forces obtained using 2DFS on 
the basis of the empirical formulae are compared to the transmitted impact forces obtained by 
using finite element analysis in Figure 6-18 c. A good agreement is shown between the two. 
From the comparison of the above results, it is seen that the overall behavior of a slab can be 
evaluated by using both analytical models. However, the penetration depth of the boulder and 
the impact forces are hard to obtain accurately. This implies that a deeper look into the soil 
behavior is necessary in order to evaluate the capacity of the reinforced concrete galleries. 

The failure criterion using the 3DFS model was proposed using relative values for punching 
and bending failure (Schellenberg 2008). For punching failure, the ratio of maximum 
punching forces to ultimate punching capacity ηp is used, where ηp = 1 corresponds to the 
ultimate limit state. The ratio of maximum reaction forces to the reaction forces at yielding ηb 
is used for flexure. Ultimate limit state in bending is assumed by ηb = 1.2. The prediction of 
yield load using an upper bound solution is on a safe side. The yield load calculated for series 
B was about 1420 kN. This is based on static yielding of the section and is lower than the 
actual yielding load of the slab under dynamic load. Considering a factor of 1.2, the slab 
should fail when the reaction force is 1700 kN. During the experiment, this value was reached 
under impact B4, therefore this assumption overestimates the forces at failure. The maximum 
reaction force obtained during impact B7 was 2500 kN. A dynamic increase factor can be 
added to the factor of 1.2 to reach a closer agreement. The punching failure can be evaluated 
using the forces in the spring representing the punching cone. Punching failure occurs when 
the punching force reaches the maximum force concrete can take in tension, once the tensile 
strength of the concrete is reached the failure is assumed to happen for slabs without shear 
reinforcement. 

The values using the 2DFS do not incorporate Young’s formulation since, as explained 
earlier, it did not provide a good agreement with the experiments. Therefore, for a thin layer 
of soil (case soil embedment 3, see Section 6.1.1.2) the formula of the Swiss guideline is used 
for the penetration depth less than half of the soil thickness, and for larger penetration depth, 
the formulation proposed by Pichler is used. 

To verify the physical parameters of the model further, large-scale experiments carried out by 
Yamaguchi et al. (2010) are validated using the analytical model. The test setup is shown in 
Figure 2-4 b. Two falling-weight impact tests are carried out on 5 x 4 x 0.4 m slabs (see 
Section 2.1.2). A 5 tonne boulder is dropped on the center of each slab from heights of 10 and 
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15 m, respectively. The slabs were covered by a 0.5 m thick layer of soil and were simply 
supported on two sides. Tensile and compression reinforcement of 19 mm in diameter are 
placed at a spacing of 125 mm in both directions. The comparison of the maximum response 
values are shown in Table 6-5. 

It is seen from this comparison that the analytical methods overestimate the response values 
of the structure. The maximum impact forces calculated using 2DFS and 3DFS are on average 
2 and 3 times higher than the experimental measurements. It should be noted that the 
maximum impact force using 2DFS is calculated based on empirical formulae and represents 
the maximum transmitted impact forces, which may be higher than the impact forces. The 
slab deflections are 1.6 and 2.3 times higher using 2DFS and 3DFS, respectively. The main 
challenge here is to choose the appropriate parameters for the soil cushion in order to obtain a 
reasonable agreement for impact forces. Both methods are, however, on the safe side by 
overestimating the impact force, but the behavior of soil needs to be further investigated in 
order to obtain a closer agreement. The soil cushion used during the experiments was rather 
loose, which also contributes to the mismatch of results. In addition, the 2DFS model 
predicted accurately the cases with impact energies up to 200 kJ where the Swiss guideline is 
valid. The results are rather conservative for energies up to 600 kJ since the equation of Swiss 
design guideline has been extrapolated conservatively. Time durations of the impact forces 
calculated using analytical models are smaller than in the experiments. However, the time 
duration of the main triangular peak during the experiments was less than 40 ms. The time 
durations of the modeled reaction forces are in good agreement with the experiments. 

Table 6-5: Comparison of results for large-scale experiment (Yamaguchi et al. 2010) 

H = 10 m (E = 490 kJ) Experiment 2DFS 3DFS 

Max. impact force [kN] 2510 4000 7700 

Time duration of impact [ms] 75 35 20 

Max. reaction force [kN] 1490 2560 3240 

Time duration of reaction [ms] 70 61 57 

Max. slab deflection [mm] 64 101 157 

H = 12.5 m (E = 613 kJ) Experiment 2DFS 3DFS 

Max. impact force [kN] 2970 7420 8900 

Time duration of impact [ms] 75 21 18 

Max. reaction force [kN] 1522 3000 3540 

Time duration of reaction [ms] 80 57 58 

Max. slab deflection [mm] 86 137 181.5 
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7 Case study 

The rockfall protection gallery Axen-Süd was analyzed by applying a system of multiple 
degrees of freedom (SMDF) proposed by Schellenberg (2008). The same gallery is used for 
the current case study in order to compare the numerical results with those derived from the 
analytical solutions. Moreover, the gallery is analyzed using the three degrees of freedom 
system (Section 6.1), as well as the two degrees of freedom system (Section 6.2). In addition, 
a probabilistic analysis of the gallery, as performed by Schubert et al. (2010), is also used for 
this comparison. 

The gallery is composed of a reinforced concrete slab, monolithically connected to a back 
wall at the rock face, and supported on columns with a spacing of 7.5 m on the valley side 
(Figure 7-1 a). The slab has a variable thickness of 0.4-0.7 m. The cushion layer has a variable 
thickness with a maximum of 1 m at the supporting back wall. The impact location is assumed 
to be at mid-span of the slab, and the thickness of soil at this location is about 0.8 m. 

7.1 Finite element model 
The behavior of the gallery is studied using finite element analysis. The finite element model 
of the gallery is shown in 7-1 b. The finite element mesh of the gallery is prepared in 
collaboration with Muroran Institute of Technology, Japan. Finite element modeling aspects 
as explained in Chapter 3 are incorporated and the material models for concrete, 
reinforcement, and soil cushion are adapted accordingly. 

 

Figure 7-1: Gallery at Axenstrasse a) cross sectional view, and b) finite element mesh 

The impact due to single loading is considered, and the effect of consecutive loading and pre-
damage on the slab is not incorporated. The columns and the back wall are assumed to have 
fix support conditions. A concrete compressive strength of 35 MPa, and a tensile strength of 
3.5 MPa are used for these models. The yield strength of steel is 500 MPa. A global damping 
ratio of 2% is assumed for the structure. The impactor is modeled as elastic material with a 
Young modulus of 30 GPa. A bilinear material model as used for reinforcement 
(Section 3.3.2) is adapted for the steel columns with a yield strength of 500 MPa. The soil 
parameters, as listed in Table 3-1, are used for the modeling. 
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The three-dimensional model and the reinforcement layout of the gallery are shown in 
Figure 7-2. Impact energies up to 2.7 MJ are modeled using finite element analysis. Boulders 
with weights ranging from 2500 to 4000 kg are assumed to fall on the slab from heights up to 
90 m. All boulders have a diameter of 1.2 m and only the density of the boulders is varied. 

a) 

 
b) 

 
c) 

 
Figure 7-2 Gallery at Axenstrasse a) finite element model b) reinforcement diameters at mid-span 
section between two columns, and c) overview of reinforcement at various locations (not scaled) 
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The concept of elastic recovery (ER), as mentioned in Chapter 4, is used here to evaluate the 
capacity and response of the gallery using finite element analysis. The ER-values used here 
are approximate since the slab did not come to a full rest and continued oscillating during the 
analysis. The slab should be subjected to a critical damping ratio after the impact, using the 
consecutive impact modeling method proposed in Section 4.1.2.2, for a more accurate 
evaluation. Since the procedure for a full gallery model requires a large computational time, 
only the approximate values are used here. A typical curve for the elastic recovery of the 
section obtained by finite element analysis is shown in Figure 7-3. The rapid change of shape 
of the curve below the impact zone may refer to a concentration of punching forces at this 
section. 

 

 
Figure 7-3: Elastic recovery distribution along the section of the gallery for E = 1.76 MJ 

7.2 Results and discussions 
The results obtained from analyses of the gallery using the analytical models (2DFS and 
3DFS), as well as the finite element analysis, are compared in this section. 
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carrying capacity of the slab is evaluated using the analytical models for different sizes of 
rocks and different falling heights of the boulder. The bending failure for this calculation is 
reached when the maximum forces in the third spring exceed the maximum ultimate capacity 
of the slab.  

The differences in the bending capacity between the SMDF and the 3DFS are due to several 
factors, one of which is the selection of input parameters for the modal mass of the slab and 
the stiffness factor for the global behavior of the slab. The modal mass factors, α used for the 
old and the improved models are 0.2 and 0.33, respectively. The stiffness ratios, kw are 33 and 
26 using the old and the improved models. It is seen that the choice of the modal mass and 
stiffness factors has a very high influence in predicting the global response of the gallery. A 
proper selection of these factors, therefore, is important in order to estimate the bending 
capacity. By selecting a smaller value for the modal mass, for instance by assuming a plastic 
behavior, the prediction is on the safe side. The bending stiffness of the gallery, in addition to 
the mentioned factors, has a high influence on the behavior. The effective stiffness of a 
cracked section is considered for 3DFS, while elastic stiffness is considered for the SMDF 
model assuming the whole concrete section is effective before yielding. The yielding of the 
slab happens at a lower deflection if elastic behavior is assumed, which is adding up to the 
difference between the two curves. An additional influence is the difference of soil models 
used and specially the soil damping. A constant soil damping of 7000 Ns/m is assumed in the 
SMDF model. The soil damping using 3DFS changes depending on the penetration depth and 
is different. For example, for a 3000 kg boulder falling from a height of 90 m the maximum 
value of soil damping is 236’000 Ns/m. The accelerations in the other springs are not 
influenced by this damping in the 3DFS analysis. 

 

Figure 7-4: Load carrying capacity of the gallery at Axenstrasse using 3DFS 
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The punching capacity evaluated using the 3DFS model shows more conservative estimates 
than the SMDF model. The punching failure using the 3DFS is reached when the concrete has 
reached its tensile strength. The SMDF model considers tension softening for the concrete 
after this point and therefore the punching failure happens later than in case of the 3DFS. 

A further comparison of the load carrying capacity of the gallery is shown in Figure 7-5. A 
ratio of boulder mass to contact area is used here since the punching capacity of the gallery 
depends not only on the mass of the boulder but also on the area of the boulder hitting the 
gallery. In a real situation, a gallery may be hit by an arbitrary boulder where the dimension of 
each edge would be different. The 2DFS, the 3DFS, and the finite element analysis are used 
for this comparison. Punching is evaluated to be the governing mode of failure using both 
2DFS and 3DFS for this gallery.  

It is not possible to distinguish between bending and punching failure mode using finite 
element analysis for this gallery, since both happen at the same location. Estimates for three 
different impacts, which led to an ER of 40% are shown as single points in this figure. The 
slab has not reached a failure using finite element analysis based on this criterion for all three 
points (ER = 20% for failure). These points are above the line which represents punching 
failure using 3DFS and 2DFS. The 3DFS seems to largely overestimate the impact forces and 
lead to very conservative estimates of the punching capacity of the gallery. The bending 
capacity of the gallery obtained using the 2DFS and the 3DFS show a smaller difference 
compared to the punching capacity. This indicates that the soil behavior (the impact load time 
history) has higher influence on the local behavior of the slab than on its global behavior. The 
gallery was designed to sustain the impact of a 2500 kg boulder falling from a height of 70 m. 
According to the 3DFS analysis, the gallery should fail in punching if this boulder is falling 
from a height of 33 m. The 2DFS shows that the gallery can fail in punching subjected to the 
impact of a 2500 kg boulder falling from a height of 80 m. The finite element results for the 
gallery subjected to its design load show that the gallery can sustain this impact without 
failure. The ER ratio of the slab at the zone below the impact is determined to be 44% using 
finite element analysis, which has not reached the failure criterion of 20% for the slab without 
shear reinforcement. The ER threshold value for failure for this gallery must be set to be 
larger than 20%. The gallery has some bent bars, which help to restore the residual 
deflections, even though it does not have shear reinforcement. A value of ER = 30% can be 
assumed for this case. 
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Figure 7-5: Load carrying capacity of the Gallery at Axenstrasse using 2DFS and 3DFS 

A further comparison is made for evaluating the capacity of the gallery using finite element 
methods as well as the 2DFS, and the 3DFS. A boulder of 3000 kg with a radius of 600 mm is 
dropped from a height of 90 m on the center of the gallery. This is one of the FE points shown 
on Figure 7-5, where the gallery did not failed based on finite element results (ER = 40%). 
The maximum penetration of the boulder during impact obtained from finite element analysis 
is compared to the results obtained from 2DFS and 3DFS in Table 7-1. The soil model using 
3DFS behaves very stiffly and the penetration depth obtained using this formula is about 3 
times lower than those obtained from finite element analysis. The value is obtained using 
3DFS assuming a shear modulus of 50 MPa for soil. The penetration depth will increase to 
192 mm if the modulus is reduced to 30 MPa, since the soil stiffness is reduced. 

Table 7-1: Comparison of penetration depth of the boulder for Axen-Süd (E = 2.7 MJ) 

H = 90 m M = 3000 kg FE 2DFS 3DFS 

Max. penetration [mm] 554 414 162 

 
The comparison of the response of the gallery using the finite element analysis, and analytical 
models is demonstrated in Figure 7-6. The impact force time history obtained from the 3DFS 
(Figure 7-6 a) shows a peak that is four times higher than the value obtained from finite 
element analysis, whereas the duration of the impact is four times shorter. The transmitted 
impact force time history obtained from 2DFS is demonstrated in comparison with the curve 
obtained from finite element analysis (Figure 7-6 b). The peak value and shape of the curve 
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faster. The second peak of the FE curve is due to the contribution of the self weight of the 
soil, since some part of the soil cushion is detached from the slab initially and reimpacts the 
slab later. The time duration of the transmitted impact using the 2DFS is shorter compared to 
the FE curve. 

The comparison of the slab deflection, using all three models as demonstrated in Figure 7-6 c, 
shows that the peak value and the time duration of the maximum deflections are similar to 
each other. The 2DFS provides a closer match to the finite element results for the peak value 
of slab deflections. The analysis must run for a longer time duration using analytical models 
until the slab comes to a full rest. 

a)       b) 

 
c) 

 
Figure 7-6: Comparison of the response of the Gallery at Axenstrasse using numerical and 
analytical models 
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treated separately while designing the gallery using analytical methods, since they model the 
overall bending behavior of the gallery. The spring forces F3 obtained from the 2DFS and the 
3DFS models can be used for the shear evaluation at the column, by assuming the amount of 
global reaction force taken by the column.  

 
Figure 7-7: Crack patterns of the gallery at Axenstrasse for E = 2.7 MJ 

The bending capacity of the gallery is illustrated in terms of the elastic recovery obtained 
from 2DFS in Figure 7-8 for two different boulder masses. The initial ER value of 60% here 
refers to the cracking of concrete; after cracking the value decreases slightly until the yielding 
is reached. After this, the ER reduces at a large rate until the failure is reached. The punching 
failure as shown in the figure happened at much lower impact energy (2.2 or 2.5 MJ), before 
the bending capacity is reached. The punching limit has been reached between the cracking 
and the yielding of the slab in bending. The slab subjected to impact of a smaller boulder had 
a lower punching capacity. 

 

Figure 7-8: Bending capacity of the gallery using 2DFS 
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A study of probability of failure of the gallery was carried out by Schubert et al. (2010). The 
SMDF model was used to define the failure for a probabilistic model in order to obtain 
vulnerability curves. The vulnerability curve for the gallery, assuming an average slab 
thickness of 0.55 m and a 0.55 m thick cushion layer using the material properties based on 
the Swiss design code SIA 262 (2003), is shown in Figure 7-9. A C30/37 concrete and 
B500B/A reinforcement characterized as per the Swiss design code is chosen for the 
calculation. The evaluation of punching failure for different masses of boulder and impact 
velocities for this case obtained using the 2DFS model is shown by black squares on the 
diagram. The probability of the failure for these evaluations is between 0.5 and 1.0 for all the 
points. These points should fall into the zone with 100% failure probability, if calculated 
using the SMDF model, which implies that once the uncertainties were incorporated in to the 
predication, the failure could be roughly predicted, even if different prediction model or 
different assumptions are used for determining the capacity of the gallery. Such vulnerability 
curves can also be generated using probabilistic analysis based on the 2DFS and the 3DFS. 
Probabilistic analysis enables us to incorporate different uncertainties, which for example 
design related or material related. 

 

Figure 7-9: A two-dimensional vulnerability curve of the gallery with 0.55 m thick layer of soil 
(Schubert et al. 2010)  
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8 Conclusions and prospects 

8.1 Overview 
This dissertation deals with the numerical simulation of rockfall impacts on reinforced 
concrete slabs, most of which were covered by a soil cushion. A numerical analysis method 
using finite element analysis is proposed and the applicability of the method is verified in 
comparison with existing experimental data up to an impact energy of 300 kJ. A failure 
criterion is established in order to account for failure using elastic-plastic finite element 
analysis. In addition, a numerical analysis procedure is developed to model consecutive 
impacts on reinforced concrete slabs. The finite element analyses are applied to extend the 
physical tests performed numerically, by using the failure criterion suggested. The influences 
of the boulder shape, reinforcement behavior, and consecutive impact loading on the response 
of slabs are investigated. Finite element analyses are used to calibrate the input parameters 
and to acquire suitable assumptions for an existing analytical model using a system with three 
degrees of freedom. In addition, an analytical model using two degrees of freedom is 
proposed. The validity applicability of the analytical models is discussed by comparison to 
experiments and using a case study.  

The main findings of this study, based on the numerical and the analytical methods, and 
further research opportunities and an outlook are discussed in the following sections. A new 
performance-based design procedure, called elastic recovery-based design, is proposed to 
define the performance of galleries on the basis of the knowledge gained and the findings 
presented in this research. 

8.2 Conclusions 
It can be concluded, based on the results obtained that finite element methods perform well in 
predicting the impact capacity of rockfall protection galleries subjected to single and 
consecutive impact loadings. Suitable modeling of soil cushion was performed by applying a 
cap-hardening model, which takes the shear and hardening behavior of the soil into 
consideration. The model represented the behavior of the soil under impact loading well. 

The analysis method used here has limitations regarding the post-yielding behavior of 
concrete, since it does not consider the failure. Therefore, it was important to establish the 
definition of a failure criterion to limit the design of the concrete slab, rather than only 
considering the resulting sectional stresses. A residual/maximum displacement-based failure 
criterion was proposed in this dissertation, which can be used to account for failure using both 
finite element analysis as well as analytical models. 

It is suggested that an elastic recovery threshold of less than 20% using finite element analysis 
and less than 30% using the analytical models may be used to account for the failure of slabs 
without shear reinforcement. 
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The physical models available were able to simulate the impact on the slab covered by a 
gravel layer only up to energies of 600 kJ. The finite element analyses based on the mentioned 
failure criterion could extrapolate the simulations numerically for higher input energy levels 
of up to 2700 kJ for the case study of a real scale gallery. 

A new numerical analysis procedure was established, which enables modeling of the slabs 
subjected to consecutive impact loading. This has facilitated the understanding of the slab 
response after previous rockfall impacts, by incorporating their loading history. It is seen that 
if the slab is subjected to consecutive impacts with the same energy, the maximum deflection 
the slab sustains during every impact remains the same. 

Analytical models using two and three degrees of freedom systems can be applied to evaluate 
the response of the galleries. The effect of the soil thickness on the distribution of the stresses 
in the soil cushion was studied using numerical analyses, and different distribution of the load 
on the slab was assumed for analytical model based on this comparison. It was found that the 
three degrees of freedom system overestimates the impact forces in the spring representing the 
soil, which puts the evaluation of the response on the safe side.  

The new model using a system of two degrees of freedom has been defined by applying 
external forces to the slab, which resemble the transmitted impact forces between the cushion 
layer and the slab. This can be calculated by assuming that the slab behaves like a rigid 
boundary and the behavior of the slab is then analyzed independently of the behavior of the 
cushion layer. The results obtained from this model show a closer agreement to the 
experimental data compared with the model using a three degrees of freedom system, but it is 
still on the safe side by overestimating the forces acting on the gallery.  

The analytical models are developed on the basis of physically justified behavior (punching 
and bending) of the galleries and offer an efficient way to carry out a performance based 
design of these structures. 

8.3 Proposed elastic recovery-based design (ERBD) procedure 
A performance-based design procedure is proposed for the design of rockfall protection 
galleries, incorporating the knowledge gained in this dissertation. A short overview of the 
background of the performance-based concept that is used for seismic design is presented, 
before discussing the procedure established for the design of the rockfall impact problem. 

Performance-based design procedures were initially introduced for seismic design of 
buildings by Gulkan & Sozen (1974), and Shibata & Sozen (1976). The structural 
performance was considered on the basis of displacements in terms of the level of the damage 
to the structure and a displacement-based seismic criterion was proposed by Priestley (1993). 
Therefore, the seismic design of buildings shifted towards a displacement-based design. 
Performance-based design of frame structures based on residual displacements, which 
measure the residual drifts of single degree of freedom (SDOF) systems as well as multiple 
degrees of freedom (MDOF) systems are proposed by Christopoulos et al. (2002) and 
Pampanin et al. (2003).  
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It is important to select an appropriate performance level for each structure when carrying out 
performance-based design of structures. Traditionally, the performance level for seismic 
design is chosen based on a residual deflection of the building. On the other hand, a criterion 
using a performance level based on residual/maximum displacement ratios was proposed to 
compute the residual displacement for a number of SDOF systems, which are then extended 
to the response of MDOF systems through a series of nonlinear analyses (Christopoulos & 
Pampanin 2004).  

A performance-based design procedure is established in this study, which can be applied to 
the design of rockfall protection galleries using a residual/maximum design ratio. The design 
criterion based on elastic recovery of the slab, as suggested in Chapter 4, is used for this 
purpose. The criterion considers not only the residual deflections of rockfall protection 
galleries under impact, but also the maximum deflection of the slab under the impact loading. 
The procedure proposed in this study is called elastic recovery-based design, since the elastic 
recovery is used as the criterion to define the performance of galleries. 2DFS, 3DFS, or finite 
element methods as outlined in earlier chapters, can be applied for modeling the structure 
using the ERBD design procedure. Finite element methods can be used when higher accuracy 
is desired. The 2DFS or 3DFS can be chosen depending on the duration of impact and the 
natural period of the structure. When the duration of impact is lower than the natural period of 
the structure, the structure does not yet deform when the impact forces are acting on the soil 
and an uncoupled solution using 2DFS can be used. Otherwise, 3DFS should be used in 
analyzing the response of the gallery. 

The procedure flow chart for design of rockfall protection galleries is shown in Figure 8-1. 
The resulting procedure can be summarized as follows: 

1.  A design criterion is set based on the target performance level, depending on the 
acceptable probability of failure for a given rockfall event; 
 

2. The geometry and the material properties are defined and the gallery is modeled using 
numerical methods (2DFS, 3DFS, or finite element analyses); 
 

3. Analysis is performed to calculate the elastic recovery for the given design criterion. If 
the target performance level is met, the resulting forces are determined and the 
performance of the structural elements is checked against the design requirements. 

The elastic recovery of a typical reinforced concrete slab is shown in step 3 of the procedure 
(Figure 8-1), where ER, MD, and RD, are the elastic recovery, maximum deflection, and 
residual deflection of the slab, respectively. It must be noted that punching must be treated 
separately to bending for analysis using 2DFS and 3DFS. 
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Figure 8-1: ERBD procedure for a rockfall protection gallery using numerical modeling 



  Outlook 

117 

8.4 Outlook 
The study on the dynamic capacity of the protection galleries can be projected further by a 
follow-up research, which has been started in 2011 by Christina Röthlin. This study can 
combine the expertise gained by the experimental, analytical, numerical, and probabilistic 
modeling and apply them to a round-robin prediction of a full-scale experiment. A full-scale 
falling-weight test will be performed on a real gallery either making sure that the concrete 
roof of the gallery remains elastic and does not crack, or for large energies until the collapse 
of the roof, if the galley is no longer used. A full-scale experiment can validate the 
assumptions made for the numerical and the analytical models. 

The knowledge gained from different rockfall research projects carried out in Switzerland and 
abroad should be applied for development of a simple design procedure for engineers in 
practice and to improve the existing guideline. The elastic recovery-based or any other 
appropriate failure criterion can be used in order to develop a static equivalent design 
procedure, which corresponds to the dynamic response of a gallery leading to the same 
probability of failure. Therefore, the modeling uncertainties have to be considered by 
variation of all parameters involved. 

The focus of this study was on reinforced concrete galleries. The analytical models proposed, 
can be applied to other cases, such as prestressed or composite galleries, by evaluating their 
global stiffness and by adequately defining the spring representing the global behavior of the 
gallery. The influence of prestressing on the punching capacity of slabs subjected to the 
impact loading should be incorporated in terms of the membrane action. 

There is a possibility that the columns at both ends of a gallery sustain direct impacts of 
falling rocks and their capacity should be investigated for such cases and the robustness of the 
rest of the gallery should be considered. The impact at mid-span was evaluated in this study. 
When the impact location is close to the supports, the global stiffness is high and the punching 
forces are critical. The local effects need to be considered for such cases. 

The behavior of the cushion material has a major influence on the behavior of the gallery, 
especially on the punching behavior. The punching behavior of the slab is highly influenced 
by the shape, size and form of the impacting boulder. An accurate calculation of the 
penetration depth of the boulder and the impact forces is important in order to determine the 
punching forces acting on the gallery. The maximum penetration of the boulder and the 
maximum impact forces according to the Swiss guideline provide a good estimate compared 
to the experimental data (up to 300 kJ) and a reasonable estimate compared to numerical data 
(up to 2.7 MJ). The formula can be modified for different shapes of boulders and for higher 
impact energies leading to penetration of more than half of the thickness of the soil cushion, 
and by incorporating crushing and dilatancy of soil. Full-scale falling-weight experiments 
using different thicknesses of the soil cushion and different boulder shapes can facilitate 
understanding of different influences on the penetration depth and the transmitted impact 
force as well as acquiring proper assumptions for soil modeling. A closer collaboration 
between geotechnical and structural engineers, thus is required in order to improve prediction 
of the overall behavior of the gallery and the soil structure interaction, e.g. to quantify the 
forces transmitted to the slab and the area over which these forces are distributed.  
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Notion 

Capital letters 

AB   Contact area of the boulder 
Ad  Equivalent static force for design of galleries 
B  Dimensionless compressibility of soil 
C  Ductility coefficient for the response of the gallery 
Cg  damping matrices of the gallery 
Cs  Damping coefficient of soil 
D  Penetration depth of the boulder into the soil 
Ds  Hardening law exponent for soil 
E  Impact energy 
Ec,imp  Dynamic Young’s modulus of concrete 
Ec,s,g  Young’s modulus of elasticity for concrete, steel, and gravel 
ER  Elastic recovery 
F0   Plastic strength of structure 
F1,2,3  Forces in springs K1,2,3 of the analytical model 
F3y  Yielding load 
FE  Average impact force calculated based on the work-energy principle 
Fk  Maximum value of impulse action of the boulder on the gallery 
Fmax  Maximum transmitted impact force 
F(t)  Matrix of applied force of a gallery 
Fu  Ultimate load acting on the structure 
Fy   First yielding load acting on the structure 
G  Shear modulus 
H  Falling height of the impacting body 
HB  Size of the boulder 
Hi  Height of the impactor nose 
Hf   Depth of failure for the shear zone of soil 
Hs  Thickness of the soil cushion 
Hy  Hardening modulus of steel reinforcement 
I   Dimensionless impact function 
Ie  effective moment of inertia of the slab 
J1, J2  Stress invariants 
K  Bulk modulus 
K1,2,3  Stiffness of spring for cushion, shear and bending properties 
K11  Unloading stiffness of the soil 
K1h   Hardening stiffness of the soil 
K2h  Hardening of shear reinforcement 
K1s  Frequency dependent stiffness of soil (when the thickness of the soil is not limited) 
Kg  Stiffness matrix of a gallery 
L(k)  Intersection of the ellipse curve with the failure envelope 
Lx,z  Slab span in x and z directions 
M1,2,3  Mass of the impacting body, punching cone, and rest of the slab 
M3

*  Modal mass of the rest of the slab 
MD  Maximum deflection of slab 
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ME,k  Soil modulus of the cover layer 
Mg  Mass matrix of a gallery 
Ms  Effective mass of the gallery for motion 
N  Nose performance coefficient 
Nγ, Nq, Nc Constants depending on the friction angle 
N*   Nose shape function 
R  Cap surface axis ratio for soil 
R0   Radius or size of the boulder 
Ri  Indentation resistance of the target material 
RD  Residual deflection of slab 
S  Penetrability of the target 
Ss  Degree of saturation of soil 
W  Maximum volumetric plastic strain of soil 
Wb  Weight of the impacting body 
WE  Work done according to work-energy principle 
X(k)  Intersection of the ellipse curve with the J1 axis 

Small letters 

a1,2,3  Accelerations of masses M1,2,3 
c  Cohesion 
cv  The wave velocity 
e   Thickness of cushion layer 
f  Yield criterion 
fc,imp,k  Compressive strength of concrete modified for strain rate effects 
fct,imp,k  Tensile strength of concrete modified for strain rate effects 
fcm,  Mean compressive strength of concrete 
fctm  Mean tensile strength of concrete 
fs  Yield strength of steel 
g  Acceleration due to gravity 
k  Dimensionless length of surface crater 
kM  Material constant 
kw  Stiffness factor for bending 
m  Mass of the impacting block 
mg   Mass per unit area of the gallery 
mk  Characteristic block mass 
ns  Porosity of soil 
p  Mean stress 
q  Deviatoric stress 
qB  Bearing capacity of the soil 
R0  Radius of an equivalent sphere 
r  The loading radius (radius of contact area of the boulder) 
s  Settlement of the soil 
sγ, sq, sc  The shape factors for soil bearing capacity 
td  Time duration of the transmitted impact force 
v0  Initial impact velocity 
vk  Characteristic impact velocity 
y  Displacement matrix of a gallery 
y0  Deformation capacity of the structure 
y1,2,3  Displacement of masses M1,2,3 
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ymax   Expected penetration depth of the boulder 
z  Thickness of the slab 

Greek letters 

α  Factor for modal mass 
αb   Energy transfer rate to the gallery 
αs  Failure envelope coefficient of soil 
αM  Material constant 
δy   Static vertical deflection of the gallery at first yielding 
δu   Static ultimate vertical deflection of the gallery 
γc  Unit weight of the concrete 
γs  Unit weight of the soil 

c
.
ε   Dynamic strain rate of concrete 

0
.

cε   Static strain rate for concrete in compression 

0
.

ctε   Static strain rate for concrete in tension 
p
kkε   Volumetric plastic strain 

ν  Poisson’s ratio 
σ1  Axial stress 
σ3  Lateral stress 
ξ2,3  Damping coefficients for punching and bending behavior 
ϕ  Internal friction angle of concrete 
ϕ’  Internal friction angle of the cushion layer 
ϕk  Characteristic value of internal friction angle of the cushion layer 
ρs  Density of the soil 

Special symbols 

Øsl  Diameter of the loading area on the slab 
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A: Calibration of parameters of the cap model 

Calibration of parameters shown in Table 3-1, which are used for defining the cap hardening 
model in finite element analyses are explained here. 

The shear modulus G of soil is related to the density, the current stress level, and the velocity 
of shear waves (see Viggiani & Atkinson 1995). The bulk modulus K of soil is a function of 
its shear modulus and is also stress dependent. The cap hardening model, however, does not 
incorporate the variation of shear and bulk modulus of soil and is defined by selecting a 
constant value. The bulk modulus of soil as shown in Table 3-1 is selected based on the slope 
of loading-unloading curve of oedometric test result (Figure A-1). The shear modulus of soil 
is then calculated as a function of bulk modulus and the Poisson’s ratio. 

The failure envelope coefficient αs is the slope which defines the failure envelope and can be 
calculated as a function of the angle of internal friction according to the Equation 5-2. This 
relates to the slope of the critical state line according to critical state soil mechanics (e.g. 
Atkinson 1993). 

The maximum volumetric plastic strain of soil W is assumed to be a material constant, which 
is related to the porosity ns and the degree of saturation Ss of soil and follows the relation 
(Chen & Baladi 1985): 

)1( ss SnW −=           (A-1) 

The degree of saturation of the soil was zero for the experiments (Schellenberg 2008) and the 
porosity of the soil is 0.2 (with a specific gravity of 2.7). 

 
Figure A-1: Oedometric test a) selection of bulk modulus, and b) stress-strain diagram in log-scale 

The cap surface axis ratio R and the hardening law exponent Ds can be calibrated using curve 
fitting to the experimental data. The yield surface for the selected cap model is shown in 
Figure 3-1, where k is defined as (Chen & Baladi 1985): 
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p
kkk ε=            (A-2) 

In which, p
kkε  is the volumetric plastic strain. That means the L(k) is the value of J1 at which 

the plastic strain is obtained and defines the intersection of the ellipse curve with the failure 
envelope. The intersection of the ellipse curve with the J1 axis is defined by X(k) as follows: 
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s

ε
α −−=+=        (A-3) 

The volumetric plastic strain is given as: 

[ ]{ })(exp1 kXDW s
p
kk −−=ε         (A-4) 

The value of Ds and R can be chosen by trial and error comparing the plastic strains obtained 
from the experimental data and those obtained using Equation A-4, as well as to obtain an 
equal value for both sides (1) and (2) of the equation for the given data set according to 
Equation A-3. The oedometric test represent the stress state in the soil where the lateral strains 
are zero, therefore, the curves are plotted for the respective situation (Figure A-2). The triaxial 
compression test data can be used in addition for data fitting. However, the cap data are only 
fitted here for oedometric test results and the stress trajectories for other stress states are 
extrapolated based on calibrated parameters and the Poisson’s ratio. 

 

Figure A-2: Selection of cap surface parameters 

The uniaxial stress trajectory intersects the cap surface but not the shear failure surface. The 
stress trajectory is related to the Poisson’s ratio ν using the Hooke’s law for linear part of 
uniaxial stress (Schwer 2001): 
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Therefore, the mean and deviatoric stresses can be computed as: 
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141 

B: Input parameters for finite element model in LS-DYNA 

Typical input parameters of LS-DYNA for material model as well as sectional properties are 
shown in here. A few different blocks are chosen as example of input blocks. 

B1: General options 

B2: Material models 

B3: Sections 
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B1: General options 
 

List of the parameters used: 
 
dt  = Death time when contact surface is deactivated (default=1.0E+20) 
endtim  = Termination time 
fsf  = Coulomb friction scale factor (default=1.0) 
msid  = Master segment set ID 
nsid  = Node set ID 
sfm  = Scale factor on default master penalty stiffness 
sfmt  = Scale factor for master surface thickness 
sfs  = Scale factor on default slave penalty stiffness 
sfst  = Scale factor for slave surface thickness 
ssid  = Slave segment set ID 
vsf  = Viscous friction scale factor (default=1.0) 
vz  = Initial velocity in z-direction 
 
List of the default or unused parameters (zero values) 

boxid  = All nodes in the box which belong to node set ID are initialized 
bt  = Birth time when contact surface becomes active 
dc  = Exponential decay coefficient of friction 
dtimin  = Reduction (or scale) factor for initial time step size to determine minimum time step 
endcys  = Termination cycle 
endenf  = Percent change in energy ratio for termination of calculation 
endmas = Percent change in the total mass for termination of calculation 
fd  = Dynamic coefficient of friction 
fs  = Static coefficient of friction 
irigrid  = Option to overwrite predefined rigid body velocities 
mboxid = Includes in contact definition only for master segments within a defined box 
mpr  = Includes the master side in the interface force files 
mst  = Optional thickness for master surface 
mstyp  = Master segment type 
nsidex  = Node set ID doe excepted nodes from imposed velocity 
penchk  = Small penetration in contact search option 
sboxid  = Includes in contact definition only for slave segments within a defined box 
spr  = Includes the slave side in the interface force files 
sst  = Optional thickness for slave surface (overrides true thickness) 
sstyp  = Slave segment set or node set type 
vc  = Coefficient for viscous friction 
vdc  = Viscous damping coefficient in percent of critical 
vx  = Initial velocity in x-direction 
vxr  = Initial rotational velocity about the x-axis 
vy  = Initial velocity in y-direction 
vyr  = Initial rotational velocity about the y-axis 
vzr  = Initial rotational velocity about the z-axis 
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Termination 
*CONTROL_TERMINATION 
$-------------------------------------------------------------------------------------------------------------------------------------$ 
$     CONTROL BLOCK 
$-------------------------------------------------------------------------------------------------------------------------------------$ 
$#  endtim      endcyc       dtmin      endeng     endmas 
  0.300000           0        0.000       0.000       0.000 

Contact 
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID 
$-------------------------------------------------------------------------------------------------------------------------------------$ 
$     CONTACT BLOCK 
$-------------------------------------------------------------------------------------------------------------------------------------$ 
$#     cid                                                                 title  
         1     Boulder to Sand           
                                         
$#    ssid      msid      sstyp      mstyp     sboxid     mboxid        spr      mpr 
         1         2          0          0          0           0           0      0 
 
$#      fs         fd         dc         vc        vdc     penchk         bt       dt 
     0.000      0.000      0.000     0.000     0.000         0       0.000  1.0000E+20 
 
$#     sfs       sfm        sst        mst       sfst       sfmt         fsf       vsf 
1.000000   1.000000      0.000     0.000  1.000000  1.000000   1.000000   1.000000 
 

Initial velocity 
INITIAL_VELOCITY 
$#    nsid    nsidex     boxid    irigid 
         2         0            0            0 
 
$#      vx        vy         vz         vxr       vyr       vzr 
     0.000     0.000  -9900.0000      .000     0.000     0.000 
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B2: Material models 
 

List of the parameters used: 
 
a0  = Yield function constant for plastic yield function 
beta  = Factor for considering hardening 
bulk  = Bulk modulus 
d  = Hardening law exponent 
e  = Young modulus of elasticity 
esp  = Strain 
etan  = Hardening modulus 
g  = Shear modulus 
mid  = Material ID 
P  = Stress corresponding to the strain value 
pc  = Pressure cutoff for tensile fracture 
pr  = Poisson’s ratio 
r  = Cap surface axis ratio 
ro  = Density 
sigy  = Yield stress 
theta  = Failure envelope coefficient 
w  = Maximum plastic strain 
 
List of the default or unused parameters (zero values) 

a1  = Yield function constant 
a2  = Yield function constant 
alpha  = Failure envelope parameter 
beta  = Failure envelope exponent 
c  = Kinematic hardening coefficient 
da  = Axial damping factor (for Belytschko-Schwer beam, only) 
db  = Bending damping factor(for Belytschko-Schwer beam, only) 
fs  = Failure strain for eroding elements 
gmma  = Failure envelope exponential coefficient 
n  = Kinematic hardening parameter 
ref  = Use reference geometry to initialize the pressure 
src  = Strain rate parameter, C, for Cowper Symonds strain rate model 
srp  = Strain rate parameter, P, for Cowper Symonds strain rate model 
toff  = Tension Cut Off, TOFF < 0 (positive in compression) 
vcr  = Volumetric crushing option (=0.0: on ) 
vec  = Vectorization flag 
vp  = Formulation for rate effects 
x0  = Hardening law exponent 
 
Boulder 
*MAT_ELASTIC_TITLE 
Boulder 
$#     mid         ro          e          pr          da         db   not used 
         6   2.4300E-9  30000.000   0.200000      0.000     0.000         0 
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Steel beams / load cells 
*MAT_ELASTIC_TITLE 
Steel Girder 
 
$#     mid         ro           e          pr          da         db   not used 
         2   7.8500E-9  2.0600E+5   0.300000      0.000     0.000         0 

Steel reinforcement 
*MAT_PLASTIC_KINEMATIC_TITLE 
Rebars 
 
$#     mid         ro           e          pr        sigy        etan            beta 
         7   7.8500E-9  2.0600E+5   0.300000  550.00000 2 060.000   1.000000 
 
$#     src       srp        fs        vp 
     0.000     0.000     0.000     0.000 

Soil cushion 
*MAT_GEOLOGIC_CAP_MODEL_TITLE 
Soil Layer 
 
$#     mid         ro        bulk          g       alpha     theta         gamma   beta 
         5   2.1750E-9  192.00000  88.599998      0.000   0.356000     0.000   0.000 
 
$#       r          d           w          x0          c            n 
4.150000   0.040000   0.200000      0.000     0.000     0.000 
 

$#    plot      ftype        vec       toff 
2.000000   1.000000      0.000     0.000 
 

Concrete 
*MAT_SOIL_AND_FOAM_FAILURE_TITLE 
Concrete 
 
$#     mid          ro           g       bulk              a0            a1         a2     pc 
         1        2.3500E-9  19900    23333.000    408.32999     0.000     0.000 -3.500000 
 
$#     vcr       ref 

0.0 0.000 
1.0  

$#    eps1      eps2       eps3        eps4      eps5      eps6      eps7    eps8 
     0.000     0.0015   1.000000      0.000     0.000    0.000    0.000    0.000 
 
$#    eps9     eps10 

0.000       0.000 
 
$#      p1        p2         p3          p4          p5          p6          p7         p8 
     0.000       35.000000  35.000000      0.000     0.000     0.000     0.000    0.000 
 
$#      p9       p10 
     0.000     0.000 
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B3: Sections 
 

List of the parameters used: 
 
cst  = Cross section type 
elform  = Element formulation equation 
nip  = Number of through shell thickness integration points 
propt  = Printout option 
secid  = Section ID 
setyp  = 2D solid element type (1=Lagrangian) 
shrf  = Shear factor 
t  = Shell thickness at different nodal points 
ts  = Beam thickness 
 
List of the default or unused parameters (zero values) 

aet  = Ambient element type 
edgeset = Edge node set required for shell type seatbelts. 
icomp  = Flag for orthotropic/anisotropic layered composite material model 
idof  = Applies to shell element types 25 and 26 
marea  = Non-structural mass per unit area 
nloc  = Location of reference surface (default is at mid surface) 
nsloc  = Location of reference surface normal to s axis (default is at center) 
nsm  = Nonstructural mass per unit length 
ntloc  = Location of reference surface normal to t axis (default is at center) 
qr/irid  = User defined rule for integration of beam 
scoor  = Location of triad for tracking the rotation of the discrete beam element 
tt  = Beam thickness (inner diameter for hollow section) 
 
Boulder 
*SECTION_SOLID_TITLE 
Boulder 
 
$#   secid    elform        aet 
         6         1          0 

Steel beams 
*SECTION_SOLID_TITLE 
Boulder 
 
$#   secid    elform        aet 
         6         1          0 

Steel reinforcement 
*SECTION_BEAM_TITLE 
Rebar 1 
 
$#   secid    elform       shrf           qr/irid        cst     scoor       nsm 
         7         1    0.830000         0          1       0.000     0.000 
 
$#     ts1       ts2        tt1         tt2         nsloc      ntloc 
 10.000000 10.000000     0.000     0.000     0.000     0.000 
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Soil cushion 
*SECTION_SOLID_TITLE 
Soil Cushion 
 
$#   secid    elform       aet 
         5          1             0 

Concrete 
*SECTION_SOLID_TITLE 
Concrete 
 
$#   secid    elform       aet 
         1         1               0 

UNP steel section 
*SECTION_SHELL_TITLE 
UNP 
 
$#    secid    elform      shrf        nip     propt   qr/irid     icomp    setyp 
        11         2          0.833000       2         1           0           0            1 
 
$#      t1           t2         t3             t4                    nloc      marea      idof    edgset 
 20.000000   20.000000   20.000000   20.000000     0.000     0.000     0.000     0 
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C: MATLAB files 

The MATLAB files used for the calculation of Bessel filter, as well as the 2DFS and 3DFS 
models are listed here. 

C1: Bessel filter 

C2: Two degrees of freedom system 

C3: Three degrees of freedom system 
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C1: Bessel low-pass filter 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Bessel low-pass filter 
%   Coded by Sara Ghadimi Khasraghy 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all; 
n = 6; 
w0 = (130)*pi*2; %The frequency with constant group delay 
                 %(it isn't cut-off frequency); 
  
%Calculating the filter 
[b,a]= besself(n,w0); 
 
%Defining the sampling frequency. 
fs = 1/0.1*1000; 
  
[num,den] = bilinear(b,a,fs); 
  
%Filtering the signal Y. 
y = filter(num,den,Y); 
plot(X,y); 
hold on 
plot(X,Y,'r') 
  
d=[X,y]; 
xlswrite('Bessel.xls', d, 'Load History', 'A1'); 
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C2: Two degrees of freedom system 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                      2DFS with triangular pulse load 
%   Coded by Sara Ghadimi Khasraghy 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%  Input block %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc; 
%%%%%%%%%%%%%%%%%%% Impacting Boulder%%%%%%%%%%%%%%%%%%%%%%%%%% 
NN = 0.68; % Nose shape coefficient Young 
W = 4000; % kg weight of the boulder 
A = 1120000; % mm2 area of the boulder 
R0 = 732; % mm equivalent sphere radius of the impacting body 
R1 = 600; % mm size of the boulder 
%%%%%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 9900; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 3500; % mm 
Lz = 4500; % mm 
z = 350; % mm 
kw = 30; % [-] 
alpha = 0.37; % [-] 
PMfactor = 4; % Ratio of ultimate load to ultimate unit moment 
u1 = 20; % mm concrete cover for tensile reinforcement 
u2 = 15; % mm concrete cover for compression reinforcement 
dia1 = 22; % mm tensile reinforcement diameter 
dia2 = 10; % mm compression reinforcement diameter 
s1 = 155; % mm tensile reinforcement spacing 
s2 = 300; % mm compression reinforcement spacing 
dias = 0; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 150; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.05; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel 
Pi=3.141592; 
%%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
HN = 0.4; %m height of the impactor nose. 
B=1.2; % a dimensionless compressibility of soil  
R=63.3; %MPa indentation resistance of the target material 
e = 400; % mm thickness of soil layer 
phi = 33; % angel of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
Den = 1700; %kg/m3 density of soil 
ysoil=20; %kN/m3 
ME=60000;%kN/m2 
S = 8; % penetrability of the target 
%%%%%%%%%%%%%%%%%%% Material properties %%%%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 35; % MPa, mean compressive strength of concrete 
fy = 500; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
Dmax= 16; % mm, maximum diameter of aggregate 
%Allocate space all vectors 
F0=zeros(TS,1); 
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T=zeros(TS,1); 
y2=zeros(TS,1); 
FC2=zeros(TS,1); 
strainrate=zeros(TS,1); 
fctmd=zeros(TS,1); 
K21=zeros(TS,1); 
K22=zeros(TS,1); 
K2=zeros(TS,1); 
DeltaFK2=zeros(TS,1); 
FK21=zeros(TS,1); 
DeltaFK21=zeros(TS,1); 
FK22=zeros(TS,1); 
DeltaFK22=zeros(TS,1); 
Deltay3=zeros(TS,1); 
y23=zeros(TS,1); 
Deltay23=zeros(TS,1); 
FK2=zeros(TS,1); 
a2=zeros(TS,1); 
v2=zeros(TS,1); 
y3=zeros(TS,1); 
FC3=zeros(TS,1); 
K3=zeros(TS,1); 
DeltaFK3=zeros(TS,1); 
FK3=zeros(TS,1); 
a3=zeros(TS,1); 
v3=zeros(TS,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 calculation of pulse load 
%%%%%%%%%%%%%%% Pichler's formula %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ks=0.707+HN/(2*R1/1000); % dimensionless length of crater surface 
I=W*(v0/1000)^2/((R*1000000)*((2*R1/1000)^3)); % dimensionless impact function 
N1=1/(1+4*(HN/(2*R1/1000))^2); % nose shape factor 0<N1<1 
N=W/(Den*(2*R1/1000)^3*B*N1); % projectile geometry function 
D1=2*R1*sqrt(((1+ks*Pi/(4*N))*4*ks*I)/((1+I/N)*Pi));  
term=(1+I/N)/(1+ks*Pi/(4*N)); 
if D1/(2*R1)>ks; 
   D1=2*R1*((2/Pi)*N*log(term)+ks); 
end 
if D1>e 
    D1=e; 
end 
%%%%%%%%%%%%%%%%%%Montani's formula %%%%%%%%%%%%%%%%%%%%%%%%%% 
FSwiss=1000*2.8*(e/1000)^(-0.5)*(R0/1000)^0.7*(ME)^0.4*tan(phi*Pi/180)*((W/1000)*(v0/1000)^2/2)^0.6; 
%N 
D2=1000*W*(v0/1000)^2/FSwiss; 
%%%%%%%%%%%%%%%%%%Young's formula %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               Conversion of units 
W10=W*2.2046; % lbs 
v10=v0*3.28084/1000; % fps 
A10=A*1.55e-3; %in2 
%               calculation 
if v10<200; 
    D10=0.3*S*NN*(W10/A10)^0.7*(log(1+2*v10^2*10^-5)); 
elseif v10>=200; 
    D10=0.00178*S*NN*(W10/A10)^0.7*(log(v10-100)); 
end 
%               Conversion of D 
D3=D10*304.8; 
if W10<60; 
    D3=304.8*D10*0.2*(W10)^0.4; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Fmax=FSwiss; 
D=D2; 
if e-D1>3.4*R1; 
    D=D1; 
    Fmax=W*(v0/1000)^2/(D1/1000); 
end 
if D>e/2; 
   D=D1; 
  Fmax=W*(v0/1000)^2/(D1/1000); 
end 
if D>e 
    D=e; 
end 
Td=2*D/v0; % s the impact duration 
%%%%%%%%%%%%%%%%%%%% Sectional calculations %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% Bending %%%%%%%%%%%%%%%%%%%%%%%%%% 
fctm=0.3*fcm^(2/3); 
d = z-u1-dia1/2; % mm 
ds2=u2+dia2/2; % mm 
n=Es/Ec; % [-] 
As1=1000*(dia1/2)^2*Pi/s1; % mm2/mm 
As2=1000*(dia2/2)^2*Pi/s2; % mm2/mm 
ro1=As1/(b*d); % [-] 
ro2=As2/(b*d); % [-] 
%%%% cracking of concrete 
ycrack=((b*z*z/2)+((n-1)*As1*d)+((n-1)*ds2*As2))/((b*z)+((n-1)*(As1+As2))); 
Icrack=(Lz*(ycrack)^3)/3+n*As1*(d-ycrack)^2+(n-1)*As2*(ycrack-u2)^2; 
Ig=Lz*z^3/12; 
Mcrack=fctm*Icrack/(z-ycrack)/1000000; 
straincrack=fctm/Ec; 
y3crack=straincrack*z; 
%%%% yielding of reinforcement 
%%%% assuming elastic concrete at yielding 
k=(((ro1+ro2)^2*n^2)+(2*(ro1+ro2*ds2/d)*n))^0.5-(ro1+ro2)*n; % [-] 
cy=k*d; % mm 
strains1=fy/Es; % [-] 
strainc=strains1*cy/(d-cy); % [-] 
fc=strainc*Ec; % MPa 
strains2=strainc*(cy-ds2)/cy; % [-] 
fs2=strains2*Es; % Mpa 
Cc=0.5*fc*b*cy; % N 
Cs=As2*fs2; % N 
ybar=((ds2*Cs)+(Cc*cy/3))/(Cc+Cs); % mm 
jd=d-ybar; % mm 
My=As1*fy*jd/1000000; % kNm/m 
%%%%%%%% effective moment of intertia 
Ie=Ig*(Mcrack/My)^3+(1-(Mcrack/My)^3)*Icrack; 
if Ie>Ig; 
    Ie=Ig; 
end 
%%%%% Ultimate state 
cu=(As1*fy-As2*fy)/(0.85*b*fcm); % mm 
TSu=As1*fy/1000; %kN/m 
CSu=As2*fy/1000; %kN/m 
jdu=d-0.4*cu; % mm 
Mu=TSu*jdu/1000; % kNm/m 
Qu=PMfactor*Mu; % kN ultimate force 
Qy=PMfactor*My; % kN yielding force 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Intermediate calculations %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
rmax=sqrt(D*(2*R0-D)); 



C: MATLAB files 

156 

if R0>=(e-D); 
    phiSL=2*R0; 
elseif R0<(e-D); 
    phiSL=2*rmax+2*((e-D)*tan((45-phi/2)*Pi/180)); 
end 
if stype>=1; 
    phiSL=2*R0; 
end 
if phiSL<=0;  
     phiSL=2*R0; 
end 
if phiSL>Lz-2*z; 
    phiSL=Lz-2*z; 
end 
K210=Pi*Ec*(z+phiSL); %N/mm 
K30=(kw*Ec*z^3)/(12*Lz^2); %N/mm 
Fcrack=K30*y3crack; 
if R0<(e-D); 
M2=Pi/12*(yc*(z/1000)*(3*(phiSL/1000)^2+6*(phiSL/1000)*(z/1000)+4*(z/1000)^2))*100+Pi/12*((e-
D)/1000)*ysoil*(4*(rmax/1000)^2+2*(rmax/1000)*(phiSL/1000)+(phiSL/1000)^2)*100; % kg 
end 
if R0>=(e-D); 
    M2=Pi/12*(yc*(z/1000)*(3*(phiSL/1000)^2+6*(phiSL/1000)*(z/1000)+4*(z/1000)^2))*100+Pi*((e-
D)/1000)*ysoil*((R0/1000)^2)*100; % kg 
end     
    M2P=Pi/12*(yc*(z/1000)*(3*(phiSL/1000)^2+6*(phiSL/1000)*(z/1000)+4*(z/1000)^2))*100; 
M3=(Lx/1000)*(Lz/1000)*(z/1000)*yc*100; % kg 
M3modal=alpha*M3-M2P; % kg 
if M3modal<0; 
    M3modal=alpha*M3; 
end 
if dias<=0; 
    row=0; 
elseif dias>0; 
row=(dias/2)^2*Pi/(ss^2); 
end 
if dias<=0; 
    Asw=0; 
elseif dias>0; 
Asw=row*Pi*(z^2+(z*phiSL)); 
end 
F2y=Asw*fy; 
F3y=Qy*1000; 
F3u=Qu*1000; 
K220=Asw*Es/z; 
TT2=2*Pi*sqrt(M2/(K210*1000)); 
TT3=2*Pi*sqrt(M3modal/(K30*1000)); 
C2=2*c2*sqrt(M2*K210*1000); % damping coefficient in punching 
C3=2*c3*sqrt(M3modal*K30*1000); % damping coefficient in punching 
if dias<=0; 
y2sy=0; 
elseif dias>0; 
    y2sy=z*fy/Es; 
end 
%%%%%%%%%%%%%%%%%%%%% Initial values %%%%%%%%%%%%%%%%%%%%%%%%%% 
v2(1)=0; 
v3(1)=0; 
a2(1)=0; 
a3(1)=0; 
FC2(1)=0; 
FC3(1)=0; 
strainrate(1)=0; 
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fctmd(1)=0; 
FK21(1)=0; 
DeltaFK21(1)=0; 
FK22(1)=0; 
DeltaFK22(1)=0; 
K21(1)=K210; 
K22(1)=K220; 
FK2(1)=0; 
K3(1)=K30; 
K2(1)=K210+K220; 
y3(1)=(g*M3modal/1000)/K30; 
Deltay3(1)=0; 
y2(1)=y3(1)+(g*M2/1000)/K210; 
FK3(1)=y3(1)*K30; 
y23(1)=0; 
Deltay23(1)=0; 
DeltaFK2(1)=0; 
DeltaFK3(2)=0; 
T(1)=0; 
%%%%%%%%%%%%%%%%%%%% Calculations %%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=2:TS 
    T(i)=DT+T(i-1); 
%%%%%%%%%%%%%%%%%%%% Calculate displacements %%%%%%%%%%%%%%%%%%%%%% 
y2(i)=y2(i-1)+(v2(i-1)*DT); %mm 
y3(i)=y3(i-1)+(v3(i-1)*DT); %mm 
Deltay3(i)=y3(i)-y3(i-1); %mm 
y23(i)=y2(i)-y3(i); 
Deltay23(i)=y23(i)-y23(i-1); %mm 
%%%%%%%%%%%%%%%%%%%% Calculate Stiffnesses %%%%%%%%%%%%%%%%%%%%%%% 
strainrate(i)=Deltay23(i)/(z*DT); %[1/s] 
%Calculation of fctmd(i) 
if strainrate(i)>0 
    fctmd(i)=fctm*(1+0.54*((log10(strainrate(i))+5)/5)); %[N/mm2] 
end 
if strainrate(i)<=0 
    fctmd(i)=fctm; %[N/mm2] 
end 
if y23(i)<=z*fctmd(i)/Ec; 
    K21(i)=K210; 
elseif y23(i)>z*fctmd(i)/Ec; 
    K21(i)=0; 
end 
%Calculation of K22(i) 
if y23(i-1)>y2sy 
        K22(i)=Hard*K220/100; %[N/mm] 
elseif y23(i-1)<y2sy 
    K22(i)=K220; 
end 
if y23(i-1)>z*Asg/1000; 
    K22(i)=0; %[N/mm] 
end 
K2(i)=K21(i)+K22(i); 
%Calculation of K3(i) 
    if FK3(i-1)>F3y 
        K3(i)=(Duct)*K30; %[N/mm] 
    end 
if FK3(i-1)<F3y 
    K3(i)=(kw*Ec*Ie)/(Lx*Lz^2); 
end 
if FK3(i-1)<=Fcrack; 
    K3(i)=K30; 
end 
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if y3(i)<y3(i-1); 
    K3(i)=K30; 
end 
%%%%%%%%%%%%%%%%%%%% Calculate Forces %%%%%%%%%%%%%%%%%%%%%%%% 
if T(i)<Td/2; 
    F0(i)=2*(Fmax*T(i))/Td; 
elseif T(i)>Td/2; 
    F0(i)=2*(Fmax*(-T(i)+Td))/Td; 
end 
if T(i)>Td; 
    F0(i)=0; 
end 
%Calculation of FK2(i) 
DeltaFK21(i)=Deltay23(i)*K21(i); %[N] 
FK21(i)=DeltaFK21(i)+FK21(i-1); 
FK22(i)=y23(i)*K22(i); 
FK2(i)=FK21(i)+FK22(i); 
if K2(i)==0; 
    FK2(i)=0; 
end 
%Determine FK3(i) 
FK3(i)=Deltay3(i)*K3(i)+FK3(i-1); 
%Determine FC(i) 
FC2(i)=C2*(v2(i-1)-v3(i-1))/1000; %[N] 
FC3(i)=C3*v3(i-1)/1000; %[N] 
%%%%%%%%%%%%%%%%%%%%%% Calculate accelerations and velocities %%%%%%%%% 
a2(i)= ((F0(i)-FK2(i)-FC2(i))*1000/M2)+g; %mm/s2 
v2(i)=v2(i-1)+a2(i)*DT; %mm/s 
a3(i)= ((FK2(i)+FC2(i)-FK3(i)-FC3(i))*1000/M3modal)+g; %mm/s2 
v3(i)=v3(i-1)+a3(i)*DT; %mm/s 
end 
plot (T,FK2) 
hold on 
plot (T,FK3,'r') 
hold on 
plot (T,F0,'g') 
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C3: Three degrees of freedom system 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                     Three degree of freedom system 
%   Coded by Sara Ghadimi Khasraghy/ Manuela Kaufmann 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%% Input block %%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
clc; 
%%%%%%%%%%%%%%%%%%%% Impacting Boulder %%%%%%%%%%%%%%%%%%%%%%%% 
W = 4000; % kg mass of the boulder 
A = 1120000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 9900; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 600; % mm radius of the impacting body 
%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Gs = 50; % N/mm2 Shear modulus of soil 
Esoil = 192; % N/mm2 Young modulus of soil 
Poisson = 0.3; %Pisson ratio of soil 
Den = 0.0000017; % kg/mm3 density of soil 
ysoil = 18; % kN/m3, density of soil 
e = 400; % mm thickness of soil cushion 
phi = 33; % angle of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
sy = 0.6; % shape factor 
sq = 1.6; % shape factor 
sc = 1.6 ;% shape factor 
Ny = 18.1; % constant depending on friction angle 
Nq = 18.4; % constant depending on friction angle 
Nc = 30.1; % constant depending on friction angle 
coh = 0; % cohesion in the soil [N/m2] 
Pi= 3.141593;% 
%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 3500; % mm 
Lz = 4500; % mm 
z = 350; % mm 
kw = 30; % [-] 
alpha = 0.54; % [-] 
PMfactor = 4.0; % Ratio of ultimate load to ultimate unit moment 
u1 = 20; % mm concrete cover for tensile reinforcement 
u2 = 15; % mm concrete cover for compression reinforcement 
dia1 = 22; % mm tensile reinforcement diameter 
dia2 = 10; % mm compression reinforcement diameter 
s1 = 155; % mm tensile reinforcement spacing 
s2 = 300; % mm compression reinforcement spacing 
dias = 0; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 100; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.05; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel  
%%%%%%%%%%%%%%%%%%% Material properties %%%%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 35; % MPa, mean compressive strength of concrete 
fy = 500; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 



C: MATLAB files 

160 

Dmax= 16; % mm, maximum diameter of aggregate 
%Allocate space all vectors 
y0=zeros(TS,1); 
y1=zeros(TS,1); 
r=zeros(TS,1); 
r0=zeros(TS,1); 
C1=zeros(TS,1); 
C0=zeros(TS,1); 
FC1=zeros(TS,1); 
FC0=zeros(TS,1); 
K1=zeros(TS,1); 
K0=zeros(TS,1); 
DeltaFK1=zeros(TS,1); 
DeltaFK0=zeros(TS,1); 
FK1=zeros(TS,1); 
FK0=zeros(TS,1); 
SF1=zeros(TS,1); 
DeltaSF1=zeros(TS,1); 
a1=zeros(TS,1); 
a0=zeros(TS,1); 
v1=zeros(TS,1); 
v10=zeros(TS,1); 
T=zeros(TS,1); 
y12=zeros(TS,1); 
y2=zeros(TS,1); 
FC2=zeros(TS,1); 
QB=zeros(TS,1); 
strainrate=zeros(TS,1); 
fctmd=zeros(TS,1); 
K21=zeros(TS,1); 
K22=zeros(TS,1); 
K2=zeros(TS,1); 
DeltaFK2=zeros(TS,1); 
FK21=zeros(TS,1); 
DeltaFK21=zeros(TS,1); 
FK22=zeros(TS,1); 
DeltaFK22=zeros(TS,1); 
Deltay3=zeros(TS,1); 
y23=zeros(TS,1); 
Deltay23=zeros(TS,1); 
FK2=zeros(TS,1); 
a2=zeros(TS,1); 
v2=zeros(TS,1); 
y3=zeros(TS,1); 
FC3=zeros(TS,1); 
K3=zeros(TS,1); 
DeltaFK3=zeros(TS,1); 
FK3=zeros(TS,1); 
a3=zeros(TS,1); 
v3=zeros(TS,1); 
%%%%%%%%%%%%%%%%%% Sectional calculations %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% Bending 
fctm=0.3*fcm^(2/3); 
d = z-u1-dia1/2; % mm 
ds2=u2+dia2/2; % mm 
n=Es/Ec; % [-] 
As1=1000*(dia1/2)^2*Pi/s1; % mm2/mm 
As2=1000*(dia2/2)^2*Pi/s2; % mm2/mm 
ro1=As1/(b*d); % [-] 
ro2=As2/(b*d); % [-] 
%%%% cracking of concrete 
ycrack=((b*z*z/2)+((n-1)*As1*d)+((n-1)*ds2*As2))/((b*z)+((n-1)*(As1+As2))); 
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Icrack=(Lz*(ycrack)^3)/3+n*As1*(d-ycrack)^2+(n-1)*As2*(ycrack-u2)^2; 
Ig=Lz*z^3/12; 
Mcrack=fctm*Icrack/(z-ycrack)/1000000; 
straincrack=fctm/Ec; 
y3crack=straincrack*z; 
%%%% yielding of reinforcement 
%%%% assuming elastic concrete at yielding 
k=(((ro1+ro2)^2*n^2)+(2*(ro1+ro2*ds2/d)*n))^0.5-(ro1+ro2)*n; % [-] 
cy=k*d; % mm 
strains1=fy/Es; % [-] 
strainc=strains1*cy/(d-cy); % [-] 
fc=strainc*Ec; % MPa 
strains2=strainc*(cy-ds2)/cy; % [-] 
fs2=strains2*Es; % Mpa 
Cc=0.5*fc*b*cy; % N 
Cs=As2*fs2; % N 
ybar=((ds2*Cs)+(Cc*cy/3))/(Cc+Cs); % mm 
jd=d-ybar; % mm 
My=As1*fy*jd/1000000; % kNm/m 
Ie=Ig*(Mcrack/My)^3+(1-(Mcrack/My)^3)*Icrack; 
if Ie>Ig; 
    Ie=Ig; 
end 
%%%%% Ultimate state 
cu=(As1*fy-As2*fy)/(0.85*b*fcm); % mm 
TSu=As1*fy/1000; %kN/m 
CSu=As2*fy/1000; %kN/m 
jdu=d-0.4*cu; % mm 
Mu=TSu*jdu/1000; % kNm/m 
Qu=PMfactor*Mu; % kN ultimate force 
Qy=PMfactor*My; % kN yielding force 
%%%%%%%%%%%%%%%%%%%%%% Initial soil calculations %%%%%%%%%%%%%%%%%%%% 
%                               using single degree of freedom 
v10(1)=v0; 
a0(1)=0; 
r0(1)=0; 
K0(1)=0; 
C0(1)=0; 
FC0(1)=0; 
FK0(1)=0; 
y0(1)=0; 
Deltay0(1)=0; 
DeltaFK0(1)=0; 
for i=2:TS 
T(i)=DT+T(i-1); 
y0(i)=y0(i-1)+(v10(i-1)*DT); %mm 
if y0(i)< 0; 
    y0(i)=0; 
end 
cv0=sqrt(Esoil/Den/1000); %mm/s 
r0(i)=sqrt(y0(i)*(2*R0-y0(i))); %mm 
C0(i)=Pi*Den*cv0*((r0(i)^2)); %Ns/mm 
FC0(i)=v10(i-1)*C0(i); %N 
K0(i)=4*r0(i)*Gs/(1-Poisson); %N/mm 
if K0(i)<K0(i-1); 
    K0(i)= K0(i-1); 
end 
DeltaFK0(i)=K0(i)*(y0(i)-y0(i-1)); % N 
FK0(i)=FK0(i-1)+DeltaFK0(i); %N 
if FK0(i)<0; 
    FK0(i)=0; 
end 
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a0(i)= -(1000*(FC0(i)+FK0(i))/W)+g; %mm/s2 
v10(i)=v10(i-1)+a0(i)*DT; %mm 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% Intermediate calculations %%%%%%%%%%%%%%%%%%% 
D=max(y0); 
rmax=sqrt(D*(2*R0-D)); 
if R0>=(e-D); 
    phiSL=2*R0; 
elseif R0<(e-D); 
    phiSL=2*rmax+2*((e-D)*tan((45-phi/2)*Pi/180)); 
end 
if stype>=1; 
    phiSL=2*R0; 
end 
if phiSL<=0;  
     phiSL=2*R0; 
end 
if phiSL>Lz-2*z; 
    phiSL=lz-2*z; 
end 
K210=Pi*Ec*(z+phiSL); %N/mm 
K30=(kw*Ec*z^3)/(12*Lz^2); %N/mm 
Fcrack=K30*y3crack; 
if R0<(e-D); 
M2=Pi/12*(yc*(z/1000)*(3*(phiSL/1000)^2+6*(phiSL/1000)*(z/1000)+4*(z/1000)^2))*100+Pi/12*((e-
D)/1000)*ysoil*(4*(rmax/1000)^2+2*(rmax/1000)*(phiSL/1000)+(phiSL/1000)^2)*100; % kg 
end 
if R0>=(e-D); 
    M2=Pi/12*(yc*(z/1000)*(3*(phiSL/1000)^2+6*(phiSL/1000)*(z/1000)+4*(z/1000)^2))*100+Pi*((e-
D)/1000)*ysoil*((R0/1000)^2)*100; % kg 
end     
    M2P=Pi/12*(yc*(z/1000)*(3*(phiSL/1000)^2+6*(phiSL/1000)*(z/1000)+4*(z/1000)^2))*100; 
M3=(Lx/1000)*(Lz/1000)*(z/1000)*yc*100; % kg 
M3modal=alpha*M3-M2P; % kg 
if M3modal<0; 
    M3modal=alpha*M3; 
end 
if dias<=0; 
    row=0; 
elseif dias>0; 
row=(dias/2)^2*Pi/(ss^2); 
end 
if dias<=0; 
    Asw=0; 
elseif dias>0; 
Asw=row*Pi*(z^2+(z*phiSL)); 
end 
F2y=Asw*fy; 
F3y=Qy*1000; 
F3u=Qu*1000; 
K220=Asw*Es/z; 
TT2=2*Pi*sqrt(M2/(K210*1000)); 
TT3=2*Pi*sqrt(M3modal/(K30*1000)); 
C2=2*c2*sqrt(M2*K210*1000); % damping coefficient in punching 
C3=2*c3*sqrt(M3modal*K30*1000); % damping coefficient in punching 
if dias<=0; 
y2sy=0; 
elseif dias>0; 
    y2sy=z*fy/Es; 
end 
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%%%%%%%%%%%%%%%%%%%  Initial values %%%%%%%%%%%%%%%%%%%%%%%%%% 
v1(1)=v0; 
a1(1)=0; 
r(1)=0; 
K1(1)=0; 
C1(1)=0; 
FC1(1)=0; 
FK1(1)=0; 
y12(1)=0; 
Deltay1(1)=0; 
DeltaFK1(1)=0; 
SF1(1)=1/(4*rmax*Gs/(1-Poisson)); % mm/N 
DeltaSF1(1)=0; 
T(1)=0; 
v2(1)=0; 
v3(1)=0; 
a2(1)=0; 
a3(1)=0; 
FC2(1)=0; 
FC3(1)=0; 
QB(1)=0; 
strainrate(1)=0; 
fctmd(1)=0; 
FK21(1)=0; 
DeltaFK21(1)=0; 
FK22(1)=0; 
DeltaFK22(1)=0; 
K21(1)=K210; 
K22(1)=K220; 
FK2(1)=0; 
K3(1)=K30; 
K2(1)=K210+K220; 
y3(1)=(g*M3modal/1000)/K30; 
Deltay3(1)=0; 
y2(1)=y3(1)+(g*M2/1000)/K210; 
y1(1)=y2(1); 
FK3(1)=y3(1)*K30; 
y23(1)=0; 
Deltay23(1)=0; 
DeltaFK2(1)=0; 
DeltaFK3(2)=0; 
%%%%%%%%%%%%%%%%% Calculations %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=2:TS 
    T(i)=DT+T(i-1); 
%%%%%%%%%%%%%%%% Calculate displacements %%%%%%%%%%%%%%%%%%%%%%%%% 
y1(i)=y1(i-1)+(v1(i-1)*DT); %mm 
y2(i)=y2(i-1)+(v2(i-1)*DT); %mm 
y12(i)=y1(i)-y2(i); %mm 
y3(i)=y3(i-1)+(v3(i-1)*DT); %mm 
Deltay3(i)=y3(i)-y3(i-1); %mm 
y23(i)=y2(i)-y3(i); 
Deltay23(i)=y23(i)-y23(i-1); %mm 
%%%%%%%%%%%%%%%%% Calculate Stiffnesses %%%%%%%%%%%%%%%%%%%%%%%%%% 
cv=sqrt(Esoil/Den/1000); %mm/s 
r(i)=sqrt(y12(i)*(2*R0-y12(i))); %mm 
if (e-D)>=(3.4*R0); 
   K1(i)=4*r(i)*Gs/(1-Poisson); %N/mm 
    if y1(i)<y1(i-1); 
    K1(i)= Esoil*D; 
    end 
end 
if (e-D)<(3.4*R0); 



C: MATLAB files 

164 

    K1(i)=(4*r(i)*Gs/(1-Poisson))*(1+1.28*(r(i)/e))*(1+y12(i)/(2*r(i)))*(1+(0.85-
0.28*(y12(i)/r(i)))*((y12(i)/e)/(1-y12(i)/e))); 
end 
if K1(i)<K1(i-1); 
    K1(i)= K1(i-1); 
end 
strainrate(i)=Deltay23(i)/(z*DT); %[1/s] 
%Calculation of fctmd(i) 
if strainrate(i)>0 
    fctmd(i)=fctm*(1+0.54*((log10(strainrate(i))+5)/5)); %[N/mm2] 
end 
if strainrate(i)<=0 
    fctmd(i)=fctm; %[N/mm2] 
end 
if y23(i)<=z*fctmd(i)/Ec; 
    K21(i)=K210; 
elseif y23(i)>z*fctmd(i)/Ec; 
    K21(i)=0; 
end 
%Calculation of K22(i) 
if y23(i-1)>y2sy 
        K22(i)=Hard*K220/100; %[N/mm] 
elseif y23(i-1)<y2sy 
    K22(i)=K220; 
end 
if y23(i-1)>z*Asg/1000; 
    K22(i)=0; %[N/mm] 
end 
K2(i)=K21(i)+K22(i); 
%Calculation of K3(i) 
    if FK3(i-1)>F3y 
        K3(i)=(Duct)*K30; %[N/mm] 
    end 
if FK3(i-1)<F3y 
    K3(i)=(kw*Ec*Ie)/(Lx*Lz^2); 
end 
 if FK3(i-1)<=Fcrack; 
    K3(i)=K30; 
end 
if y3(i)<y3(i-1); 
    K3(i)=K30; 
end 
%%%%%%%%%%%%%%%% Calculate Forces %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if (e-D)>=(3.4*R0); 
        
QB(i)=((r(i)/1000)*sy*ysoil*1000*Ny+sq*(y12(i)/1000)*ysoil*1000*Nq+sc*coh*Nc+(v0/1000)*sqrt((Esoil*10
00000)*(Den*1000000000)))/1000000; %N/mm2 
       DeltaSF1(i)=y12(i)/(Pi*r(i)^2*QB(i)); 
        SF1(i)=DeltaSF1(i)+1/(4*rmax*Gs/(1-Poisson)); 
        FK1(i)=y12(i)/SF1(i); 
        if FK1(i)>=(QB(i)*Pi*r(i)^2); 
            FK1(i)=(QB(i)*Pi*r(i)^2); 
        end 
        if y1(i)<y1(i-1); 
            FK1(i)=K1(i)*(y12(i)-y12(i-1))+FK1(i-1); 
        end 
        if FK1(i)<0; 
            FK1(i)=0; 
        end 
end 
if (e-D)<(3.4*R0); 
    DeltaFK1(i)=K1(i)*(y12(i)-y12(i-1)); % N 
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    FK1(i)=FK1(i-1)+DeltaFK1(i); %N 
end 
if FK1(i)<0; 
      FK1(i)=0; 
end 
%Calculation of FK2(i) 
DeltaFK21(i)=Deltay23(i)*K21(i); %[N] 
FK21(i)=DeltaFK21(i)+FK21(i-1);%[N] 
FK22(i)=y23(i)*K22(i); 
FK2(i)=FK21(i)+FK22(i); 
if K2(i)==0; 
    FK2(i)=0; 
end 
%Determine FK3(i) 
FK3(i)=Deltay3(i)*K3(i)+FK3(i-1); 
%Determine FC(i) 
C1(i)=Pi*Den*cv*((r(i)^2)); %Ns/mm 
if C1(i)<0; 
   C1(i)=0; 
end 
FC1(i)=(v1(i-1)-v2(i-1))*C1(i); %N 
FC2(i)=C2*(v2(i-1)-v3(i-1))/1000; %[N] 
FC3(i)=C3*v3(i-1)/1000; %[N] 
%%%%%%%%%%%%%%%%%%%%%% Calculate accelerations and velocities %%%%%%%%%%%%% 
a1(i)= -(1000*(FC1(i)+FK1(i))/W)+g; %mm/s2 
if FK1(i)<=0; 
    a1(i)=g; 
end 
v1(i)=v1(i-1)+a1(i)*DT; %mm 
a2(i)= ((FK1(i)-FK2(i)-FC2(i))*1000/M2)+g; %mm/s2 
v2(i)=v2(i-1)+a2(i)*DT; %mm/s 
a3(i)= ((FK2(i)+FC2(i)-FK3(i)-FC3(i))*1000/(M3modal))+g; %mm/s2 
v3(i)=v3(i-1)+a3(i)*DT; %mm/s 
end 
plot (T,FK1) 
hold on 
plot (T,FK2,'r') 
hold on 
plot (T,FK3,'g') 
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D: Input blocks for analytical models 

A typical input block used for analytical models for calculations listed in chapters 5 and 6 is 
provided. 

D1: Experiments (Schellenberg 2008) 

D2: Experiments (Yamaguchi et al. 2010) 

D3: Case study 
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D1: Experiments (Schellenberg 2008) 
 

2DFS 

%%%%%%%%%%%%%%%%%%%%%  Input block %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% Impacting Boulder 
NN = 0.68; % Nose shape coefficient Young 
W = 4000; % kg weight of the boulder 
A = 1120000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 9900; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 732; % mm equivalent sphere radius of the impacting body 
R1 = 600; % mm size of the boulder 
%%%%%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 3500; % mm 
Lz = 4500; % mm 
z = 350; % mm 
kw = 30; % [-] 
alpha = 0.37; % [-] 
PMfactor = 4; % Ratio of ultimate load to ultimate unit moment 
u1 = 20; % mm concrete cover for tensile reinforcement 
u2 = 15; % mm concrete cover for compression reinforcement 
dia1 = 22; % mm tensile reinforcement diameter 
dia2 = 10; % mm compression reinforcement diameter 
s1 = 155; % mm tensile reinforcement spacing 
s2 = 300; % mm compression reinforcement spacing 
dias = 0; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 150; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.05; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel  
Pi=3.141592; 
%%%%%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
HN = 0.4; %m height of the impactor nose. 
B=1.2; % a dimensionless compressibility of soil  
R=63.3; %MPa indentation resistance of the target material 
e = 400; % mm thickness of soil layer 
phi = 33; % angel of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
Den = 1700; %kg/m3 density of soil 
ysoil=20; %kN/m3 
ME=60000;%kN/m2 
S = 8; % penetrability of the target 
%%%%%%%%%%%%%%%%%% Material properties%%%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 35; % MPa, mean compressive strength of concrete 
fy = 500; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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3DFS 

%%%%%%%%%%%%%%%%%%%  Input block %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%     Impacting Boulder%%%%%%%%%%%%%%%%%%%%%%%%% 
W = 4000; % kg mass of the boulder 
A = 1120000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 9900; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 600; % mm radius of the impacting body 
%%%%%%%%%%%%%%%%%%%%%% Soil%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Gs = 50; % N/mm2 Shear modulus of soil 
Esoil = 192; % N/mm2 Young modulus of soil 
Poisson = 0.3; %Pisson ratio of soil 
Den = 0.0000017; % kg/mm3 density of soil 
ysoil = 18; % kN/m3, density of soil 
e = 400; % mm thickness of soil cushion 
phi = 33; % angle of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
sy = 0.6; % shape factor 
sq = 1.6; % shape factor 
sc = 1.6 ;% shape factor 
Ny = 18.1; % constant depending on friction angle 
Nq = 18.4; % constant depending on friction angle 
Nc = 30.1; % constant depending on friction angle 
coh = 0; % cohesion in the soil [N/m2] 
Pi= 3.141593;% 
%%%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 3500; % mm 
Lz = 4500; % mm 
z = 350; % mm 
kw = 30; % [-] 
alpha = 0.54; % [-] 
PMfactor = 4.0; % Ratio of ultimate load to ultimate unit moment 
u1 = 20; % mm concrete cover for tensile reinforcement 
u2 = 15; % mm concrete cover for compression reinforcement 
dia1 = 22; % mm tensile reinforcement diameter 
dia2 = 10; % mm compression reinforcement diameter 
s1 = 155; % mm tensile reinforcement spacing 
s2 = 300; % mm compression reinforcement spacing 
dias = 0; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 100; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.05; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Material properties 
%%%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 35; % MPa, mean compressive strength of concrete 
fy = 500; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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D2: Experiments (Yamaguchi et al. 2010) 
 

2DFS 

%%%%%%%%%%%%%%%%% Input block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% Impacting Boulder  %%%%%%%%%%%%%%%%%%%%%%%%%%% 
NN = 0.623; % Nose shape coefficient Young 
W = 5000; % kg weight of the boulder 
A = 785000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 14000; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 500; % mm equivalent sphere radius of the impacting body 
R1 = 500; % mm size of the boulder 
%%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 5000; % mm 
Lz = 4000; % mm 
z = 400; % mm 
kw = 24; % [-] 
alpha = 0.44; % [-] 
PMfactor = 5; % Ratio of ultimate load to ultimate unit moment 
u1 = 30; % mm concrete cover for tensile reinforcement 
u2 = 30; % mm concrete cover for compression reinforcement 
dia1 = 19; % mm tensile reinforcement diameter 
dia2 = 19; % mm compression reinforcement diameter 
s1 = 125; % mm tensile reinforcement spacing 
s2 = 125; % mm compression reinforcement spacing 
dias = 13; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 450; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c2 = 0.02; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel 
Pi=3.141592; 
%%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
HN = 0.175; %m height of the impactor nose. 
B=1.2; % a dimensionless compressibility of soil  
R=63.3; %MPa indentation resistance of the target material 
e = 500; % mm thickness of soil layer 
phi = 30; % angel of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
Den = 1700; %kg/m3 density of soil 
ysoil=17; %kN/m3 
ME=40000;%kN/m2 
S = 10; % penetrability of the target 
%%%%%%%%%%%%%%%%%% Material properties %%%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 34.2; % MPa, mean compressive strength of concrete 
fy = 393; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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3DFS 

%%%%%%%%%%%%%%%%%%% Input block %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Impacting Boulder %%%%%%%%%%%%%%%%%%%%%%%%% 
W = 5000; % kg mass of the boulder 
A = 785000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 14000; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 500; % mm radius of the impacting body 
%%%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Gs = 30; % N/mm2 Shear modulus of soil 
Esoil = 50; % N/mm2 Young modulus of soil 
Poisson = 0.3; %Pisson ratio of soil 
Den = 0.0000017; % kg/mm3 density of soil 
ysoil = 18; % kN/m3, density of soil 
e = 500; % mm thickness of soil cushion 
phi = 30; % angle of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
sy = 0.6; % shape factor 
sq = 1.6; % shape factor 
sc = 1.6 ;% shape factor 
Ny = 18.1; % constant depending on friction angle 
Nq = 18.4; % constant depending on friction angle 
Nc = 30.1; % constant depending on friction angle 
coh = 0; % cohesion in the soil [N/m2] 
Pi= 3.141593;% 
%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 5000; % mm 
Lz = 4000; % mm 
z = 400; % mm 
kw = 24; % [-] 
alpha = 0.44; % [-] 
PMfactor = 5.0; % Ratio of ultimate load to ultimate unit moment 
u1 = 30; % mm concrete cover for tensile reinforcement 
u2 = 30; % mm concrete cover for compression reinforcement 
dia1 = 19; % mm tensile reinforcement diameter 
dia2 = 19; % mm compression reinforcement diameter 
s1 = 125; % mm tensile reinforcement spacing 
s2 = 125; % mm compression reinforcement spacing 
dias = 13; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 450; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.02; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel 
%%%%%%%%%%%%%%%%%% Material properties %%%%%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 34.2; % MPa, mean compressive strength of concrete 
fy = 393; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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D3: Case study 
 

2DFS 

%%%%%%%%%%%%%%%%%% Input block %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% Impacting Boulder %%%%%%%%%%%%%%%%%%%%%%%%%% 
NN = 0.74; % Nose shape coefficient Young 
W = 6000; % kg weight of the boulder 
A = 1592000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 82800; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 712; % mm equivalent sphere radius of the impacting body 
R1 = 712; % mm size of the boulder 
%%%%%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 8600; % mm 
Lz = 7500; % mm 
z = 550; % mm 
kw = 26; % [-] 
alpha = 0.33; % [-] 
PMfactor = 8.6; % Ratio of ultimate load to ultimate unit moment 
u1 = 30; % mm concrete cover for tensile reinforcement 
u2 = 30; % mm concrete cover for compression reinforcement 
dia1 = 30; % mm tensile reinforcement diameter 
dia2 = 22; % mm compression reinforcement diameter 
s1 = 150; % mm tensile reinforcement spacing 
s2 = 300; % mm compression reinforcement spacing 
dias = 0; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 150; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.05; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, hardening of steel 
Pi=3.141592; 
%%%%%%%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%% 
HN = R1/1000; %m height of the impactor nose. 
B=1.2; % a dimensionless compressibility of soil  
R=63.3; %MPa indentation resistance of the target material 
e = 800; % mm thickness of soil layer 
phi = 33; % angel of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
Den = 2000; %kg/m3 density of soil 
ysoil=20; %kN/m3 
ME=50000;%kN/m2 
S = 8; % penetrability of the target 
%%%%%%%%%%%%%%%%%%%% Material properties %%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 35; % MPa, mean compressive strength of concrete 
fy = 500; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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3DFS 

%%%%%%%%%%%%%%%%% Input block %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%% Impacting Boulder %%%%%%%%%%%%%%%%%%%%%%%%%%% 
W = 3000; % kg mass of the boulder 
A = 1130000; % mm2 area of the boulder 
%%%%%%%%%%%%%%%%%% Loading %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
v0 = 42000; % mm/s velocity of impact 
DT = 0.00008; % s time step size 
TS = 1000; % Number of timesteps 
g = 9810; % mm/s2 acceleration due to gravity 
R0 = 600; % mm radius of the impacting body 
%%%%%%%%%%%%%%%%%%%% Soil %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Gs = 50; % N/mm2 Shear modulus of soil 
Esoil = 100; % N/mm2 Young modulus of soil 
Poisson = 0.3; %Pisson ratio of soil 
Den = 0.0000020; % kg/mm3 density of soil 
ysoil = 20; % kN/m3, density of soil 
e = 800; % mm thickness of soil cushion 
phi = 33; % angle of internal friction 
stype = 0; % 0 for dense soil and 1 for loose soil 
sy = 0.6; % shape factor 
sq = 1.6; % shape factor 
sc = 1.6 ;% shape factor 
Ny = 18.1; % constant depending on friction angle 
Nq = 18.4; % constant depending on friction angle 
Nc = 30.1; % constant depending on friction angle 
coh = 0; % cohesion in the soil [N/m2] 
Pi= 3.141593;% 
%%%%%%%%%%%%%%%%%%%%%% Slab %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Lx = 8600; % mm 
Lz = 7500; % mm 
z = 550; % mm 
kw = 26; % [-] 
alpha = 0.33; % [-] 
PMfactor = 8.6; % Ratio of ultimate load to ultimate unit moment 
u1 = 30; % mm concrete cover for tensile reinforcement 
u2 = 30; % mm concrete cover for compression reinforcement 
dia1 = 30; % mm tensile reinforcement diameter 
dia2 = 22; % mm compression reinforcement diameter 
s1 = 150; % mm tensile reinforcement spacing 
s2 = 300; % mm compression reinforcement spacing 
dias = 0; % mm shear stirrups diameter; dias = 0 if there are no stirrups 
ss = 100; % mm shear stirrups spacing; ss = 0 if there are no stirrups 
c2 = 0.05; % damping ratio for local behavior 
c3 = 0.05; % damping ratio for global behavior 
b = 1000; % mm, slab stip 
Duct= 0.1; % [-] ratio of stiffness after yielding 
Hard=1; % %, global hardening 
%%%%%%%%%%%%%%%%%%%% Material properties %%%%%%%%%%%%%%%%%%%%%%% 
Asg = 55; % promil, ultimate strain of the reinforcement 
fcm = 35; % MPa, mean compressive strength of concrete 
fy = 500; % MPa, yielding strength of steel 
Ec = 30000; % MPa, E-modulus of concrete 
Es = 210000; % MPa, E-modulus of steel 
yc = 25; % kN/m3, density of concrete 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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