
ETH Library

Autonomous robotic stone
stacking with online next best
object target pose planning

Conference Paper

Author(s):
Furrer, Fadri; Wermelinger, Martin; Yoshida, Hironori; Gramazio, Fabio; Kohler, Matthias; Siegwart, Roland; Hutter, Marco 

Publication date:
2017

Permanent link:
https://doi.org/10.3929/ethz-a-010870003

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICRA.2017.7989272

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-a-010870003
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICRA.2017.7989272
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Autonomous Robotic Stone Stacking with Online next Best Object
Target Pose Planning

Fadri Furrer∗,1, Martin Wermelinger∗,2, Hironori Yoshida∗

Fabio Gramazio3, Matthias Kohler3, Roland Siegwart1, Marco Hutter2

Abstract— Predominately, robotic construction is applied as
prefabrication in structured indoor environments with standard
building materials. Our work, on the other hand, focuses on
utilizing irregular materials found on-site, such as rubble and
rocks, for autonomous construction. We present a pipeline that
detects randomly placed objects in a scene that are used by our
next best stacking pose searching method employing gradient
descent with a random initial orientation, exploiting a physics
engine. This approach is validated in an experimental setup
using a robotic manipulator by constructing balancing vertical
stacks without mortars and adhesives. We show the results
of eleven consecutive trials to form such towers autonomously
using four arbitrarily in front of the robot placed rocks.

I. INTRODUCTION

Over the last decade, robotics has been introduced to ar-
chitectural construction not only for safer and more efficient
construction, but also for exploring diverse forms [1]. How-
ever, there are still intensive manual labor works involved
for on-site assembly of these components [2].

Digital fabrication has explored applications of au-
tonomous robots in on-site operation scenarios [3], but are
restricted to build with regular materials. Building structures
with irregular shaped objects was presented in [4], however
they apply glue to increase stability. To reduce the environ-
mental impact we aim to use such material without additional
adhesives, to build dry-stack compositions. Therefore, our
work focuses on developing an automated fabrication process
using irregular objects, which are not processed but found
on-site.

As a case study, discrete rigid elements, such as stones or
concrete rubble, are targeted as a building material. Our goal
is to construct a balancing vertical tower with found objects,
while maintaining the structure in static equilibrium using a
robotic manipulator. To achieve this, we developed a holistic
work-flow including precise object detection, motion control,
and planning the next target pose (see Figure 1). As part of
this work-flow, we describe an algorithm suggesting stable
poses for stacking, validated by an implementation of this
autonomous stacking work-flow in a real-world experiment.
Due to the instability of vertical tower, it is natural to observe

1Autonomous Systems Lab (ASL), ETH Zurich, Switzerland
2Robotic Systems Lab (RSL), ETH Zurich, Switzerland
3Gramazio Kohler Research (GKR), ETH Zurich, Switzerland
∗The authors contributed equally to this work. F.F. was responsible for

the object detection, M.W. for the manipulation tasks, H.Y. for the pose
searching algorithm.

This work was supported in part by the Swiss National Science Foun-
dation (SNF), the National Centre of Competence in Research Digital
Fabrication.

Fig. 1: In an offline step we scan a set of objects (top). These
objects, or a subset of it, can be distributed arbitrarily on the
work-space and get detected by our object detection pipeline
(middle-left). From the detected objects the presented pose
searching algorithm proposes the next stable stack (middle-
right). A motion planner (bottom-right) is used to generate
the trajectories to replicate the proposed stack with the
robot arm (bottom-left). After placing the object, its pose is
measured and used as base for the subsequent pose searching
step.

errors between a desired target pose and an actual stacked
pose. Thus, the work-flow puts emphasis on the resultant
pose evaluation and a dynamic re-planning of the target pose.

This paper makes the following contributions regarding
handling irregularly shaped objects:

– a pose searching algorithm considering structural sta-
bility using a physics engine

– an object detection pipeline
– an autonomous system for constructing balancing ver-

tical towers using a manipulator

II. RELATED WORK

Research in architecture and digital fabrication investigates
novel production techniques in which material behavior is
linked to fabrication and assembly tasks [5]. Recently, it has



been shown that robots bring new capabilities to construction
sites, an uncontrolled environment full of uncertainties [3].
Whereas some works, like [6], show how to localize a
mobile robot in such an environment, our work focuses on
handling building materials of arbitrary shape, such as found
irregularly shaped stones. The use of such objects reveals
the following challenges. Firstly, individual object instances
need to be identified. Secondly, grasping and stacking poses
are not obvious, requiring a novel algorithm to pick a ‘good’
next pose among infinitely many. Thirdly, the stacking task
may be performed in unstable situations; for example vertical
tower stacking in our case, requiring recurring structural
evaluation and target re-planning after each object placement.

Computational structural analysis methods have been ex-
plored with rigid discrete elements, such as simple brick-
like geometries. Livesley [7], [8] set a basis of a numerical
method for limit analysis of discrete rigid block structures.
Block and colleagues employed graphical statics in inter-
active design tools with structural analysis feedback [9],
and Whiting et al. [10] extended the limit analysis by
Livesley to design a guidance system by adding infeasibility
metrics. While these works analyzed a static equilibrium
of given geometric configuration with obvious geometric
contact surfaces (or support polygons), in our case with
irregularly shaped elements, we need to start from contact
detection, which is a core function of physics engines, and
then acquire a contact surface.

From an architectural design motivation, simulation with
physics engine has been explored by Nielsen et al. [11]
but their construction input was to place the next stone at
the lowest possible location. As for design with irregularly
shaped objects, Lambert and Kennedy developed an appli-
cation for guiding masonry construction with a geometric
packing algorithm in two dimensional convex shapes, but it
is limited to two dimensional tiling [12].

Humans synthesize the Center of Mass (CoM) position
and the support polygon to infer the stability of objects [13].
On the other hand, physics engines, such as Open Dynamics
Engine (ODE), have been used for evaluating structural
stability of object compositions [14]. Similarly, our algorithm
employs a physics engine to extract the CoM position and
dynamic characteristics, as well as the contact points between
the irregularly shaped objects.

Integrated autonomous systems dealing with object de-
tection and picking these objects with robotic arms have
been proposed for industrial applications [15], [16]. These
works have successfully detected irregularly shaped stone-
like objects for geometric packing, but are limited to place
these objects in containers, and hence, did not need to
consider structural stability.

III. OBJECT DETECTION

Before starting with the stacking algorithm, we need to
find the objects in the scene. Additionally, during the course
of the object stacking, we want to be able to track the
locations of the objects. In the scope of this work, we
are only considering pre-scanned (the scanning method is

described in Section V) models of the objects to be detected
in the scene. Therefore, we present an object detection
pipeline that consists of the following steps. We start by
extracting 3D keypoints from raw point clouds of an RGB-
D sensor. These keypoints are then described using keypoint
descriptors and matched to keypoints from a pre-scanned
object in a descriptor matching step. Using these matches
and a clustring step, we find an initial alignment of the scene
and the pre-scanned object, which is then refined by applying
an Iterative Closest Point (ICP) algorithm. As a final step of
the object detection pipeline, we verify that we have enough
inlier points by applying the identified pose transform of the
object to the scene.

Keypoint Extraction and Description

From an RGB-D sensor we get a scene point cloud PC , in
camera frame C. To get keypoints, we used two methods, a
simple voxel based subsampling, as well as the Point Cloud
Library (PCL) implementation of Intrinsic Shape Signatures
(ISS) [17], which can not only describe the keypoints, but
also used as a keypoint detector. Besides the ISS descriptor
we tested two additional descriptors, namely the Fast Point
Feature Histogram (FPFH) descriptor [18] and the Rotational
Projection Statistics (RoPS) descriptors [19]. Here, the RoPS
descriptors were giving us the best results in the matching
step, at a slightly higher computational cost.

Descriptor Matching and Clustering

We compare a keypoint kC,scene of a scene point cloud
with a keypoint of a point cloud of a pre-scanned object
kO,object in object frame O. To find a pair of corresponding
keypoints kC,scene and kO,object, we set up a kd-tree in
descriptor space to find the nearest neighbors. Then we use
an approach, presented in [20], to verify that the matched
keypoints are geometrical consistent. We select the b best
transforms TCO,j,matching, j ∈ {1, . . . , b} that give the most
geometrical consistent matches. The transforms TCO,j,matching
project the object point cloud PO,object into the camera frame
C.

Transform Refinement and Verification

Using an ICP step we refine these transforms TCO,j,matching,
to get better alignments of the two complete filtered point
clouds PC,scene and PO,object. We denote these refined trans-
forms by TCO,j,refined. In a last step, we check for the inlier
ratios of the transformed point clouds and we then select
the one which has the highest ICP-score, given that we have
an inlier ratio of the model points larger than a threshold
value; in our application we set this threshold value to 20 %
resulting in the final transform TCO.

Object in Robot Arm Frame

To transform the point cloud of the localized object
PO,object into the robot arm frameR, we apply the previously
detected best transform TCO, a fixed pre-calibrated transform
TT C from the camera frame C to the robot arm tooltip frame



Fig. 2: Illustration of our pose searching algorithm to find
the best pose for object oi. The valid pose search sub-
routine is described in Algorithm 1 and the cost calculation
in Algorithm 2. The gradient descent sub-routine is further
depicted on the right.

T , and the transform given by the robot state TRT between
the robot arm frame R and the tooltip frame T :

PR,object = TRT · TT C · TCO ·PO,object. (1)

IV. POSE SEARCHING

The global goal is to construct a vertical tower consisting
of irregularly shaped objects from a subset S of available
objects oi ∈ S ⊆ O, where O denotes the complete set
of given objects. Within the set S, we want to find the
best object and its target pose. The search space is twofold:
discrete object space and continuous pose space. To find a
stable pose on a vertical stack, our pose searching method
places each object oi on the top object of the existing stack in
a dynamic simulation using a physics engine. For evaluating
each object’s ‘goodness‘ with a certain pose pi, we introduce
a cost function that maximizes the support polygon Si’s
area Ai of the newly placed object oi and minimizes other
considerable parameters, such as kinetic energy. Throughout
this process, several initial poses are tested with fixed initial
positions but randomized orientations. We are sampling our
initial orientations randomly, to keep the problem viable in
large problem sets, where a holistic pose sampling would be-
come intractable. The returned cost value is interchangeable
among available objects in S, thus we find the best object
o∗ with the best pose p∗.

Fig. 3: (1) The initial position rinit,i of object oi is set along
the normal direction nj of Sj of the previously placed object
oj . (2) The initial pose of object oi with attraction force F.

Overview of the algorithm

The pose searching algorithm iteratively evaluates poses
with valid contacts (support polygon) between a newly
placed object oi and the existing stack. Once a pose with
valid contacts is found, the algorithm refines the pose with
gradient descent. To find a valid contact pose, we set the
object to an initial pose in simulation that is close to the
existing stack, but not yet touching it. The initial pose pinit,i
of a new object oi ∈ O consists of its initial position rinit,i
and its initial orientation qinit,i. The initial position is set with
an offset from the centroid Cj of the last placed object’s
support polygon Sj along the normal direction nj of Sj

(see Figure 3). To obtain the initial orientation, the detected
object orientation is rotated around a randomized axis with
the random angle θ ∈ [−θinit, θinit].

Based on the initial pose pinit,i, the valid contact pose
pcontact,i is found by a sub-routine named valid pose search
by applying an attraction force F parallel to a thrust line
input (in our case along the gravitational axis). We then run
gradient descent (see the right in Figure 2) to iteratively
improve the contact pose pcontact,i using the cost function
presented below. After the local optimum pose p∗local,i is
found, the orientation of the initial pose pinit,i is randomized
again to find the next valid contact pose pcontact,i. After
computing certain number x of local minima, we find the
pose p∗i with the lowest cost as the solution pose of oi. We
iterate the process over the available subset S to find the best
object o∗.

To avoid jittering effect in physics simulation, the whole
algorithm performs physics engine update steps only when
it is necessary. Objects in an existing stack are set to be
immobile in the whole process, except when the cost is
calculated.

Valid pose search

For evaluating physical stability of object oi, it is a valid
approach to analyze whether P ′i , the projection of the CoM
position Pi onto the support polygon Si, is inside the support
polygon or not (see Figure 4). In order to find a valid support



Fig. 4: (3): Projection P ′i of the CoM position Pi onto the
support polygon Sj . (4): Contact pose pcontact,i resulting from
the valid pose search algorithm.

Algorithm 1 Valid pose search algorithm

1: function VALIDPOSESEARCH(oi,pinit,i)
2: set oi’s pose to pinit,i
3: do
4: apply force F to oi
5: step physics simulation once
6: if P ′i 6∈ Sj then return false
7: while Ncontact(pi) < 3
8: pause physics simulation
9: pcontact,i ← current pose

10: if Ekin(pcontact,i) < Ekin,stable then return true
11: else return false

polygon Si for an irregularly shaped object oi, we consider
the contact points of the object to other objects. The assumed
contact situations are simple; either on a flat surface for the
first stack, or collision between two rigid body objects with
parallel contact normals.

The valid pose search method is detailed in Algorithm 1.
To assure that pinit,i results in a valid contact pose pcontact,i,
we apply an attraction force F along the thrust line direction
vector vi to the object oi (see Figure 3). During this process,
we continuously check whether the projection P ′i of the
CoM position lies within the support polygon (see Figure 4).
As soon as the number of contacts Ncontact(pi) between oi
and the existing stack is at least three (see Figure 4), the
resulting pose pcontact,i is evaluated by oi’s kinetic energy
Ekin(pcontact,i) with a threshold value Ekin,stable. By evaluating
the kinetic energy, we limit the viable set of poses to the
ones that cause minimal motion of the existing stack. This
approach for finding a valid contact pose pcontact,i guarantees
to satisfy the following constraints:

Ekin(pcontact,i) ≤ Ekin,stable

P ′i ∈ Sj

Ncontact(pcontact,i) ≥ 3.

(2)

Cost calculation

We assign a cost to each valid contact pose pcontact,i to
compare its ‘goodness’ in terms of a robust object poses,
which allows further stacking. Therefore, we maximize the

area of the support polygon Si as well as minimize other
considerable parameters, such as kinetic energy Ekin, and
surface normal deviation from the thrust line ni for reducing
sheer forces. To robustly find the support polygon Si from the
sparse contacts between oi and the existing stack, contacts
over several simulation update steps, in our case 10 steps,
are collected and simplified [21]. After acquiring 3D point
sets, Principal Component Analysis (PCA) is performed for
dimension reduction from 3D to 2D point set. Processing the
2D point set with Delaunay triangulation [22], the polygon
mesh Si is created for calculating its area Ai and surface
normal nc,i (see Figure 4).

Given the area Ai of the support polygon Si, the kinetic
energy Ekin(pcontact,i), the dot product ‖ni ·vi‖, where vi is
the thrust line direction vector, the length ‖rPjPi

‖ between
Pi and the CoM of the previously stacked object Pj , we
define the cost function as

f(pcontact,i) = w1A
−1
i + w2Ekin(pcontact,i)

+ w3‖rPjPi‖+ w4‖ni · vi‖
s.t. wj ≥ 0 ∀j ∈ 1, . . . , 4

, (3)

where wj are manually selected weights of the individual
energy function components. An overview of the cost calcu-
lation algorithm can be seen in Algorithm 2.

Algorithm 2 Cost calculation

1: function CALCULATECOST(oi,pcontact,i)
2: set all objects in stack mobile
3: contactsArray[] ← 0
4: for k ← 0, k < 10 do
5: step physics simulation once
6: contactsArray[] ← current contacts set
7: contacts ← simplify(contactsArray[])
8: contactPlane ← PCA(contacts)
9: contacts ← projection(contacts,contactPlane)

10: Si ← 2D DelaunayTriangulation(contacts)
11: get Ai(Si), Ekin(pcontact,i), ‖rPjPi‖, ‖ni · vi‖
12: reset poses of all objects in stack
13: set all objects in stack immobile
14: cost ← f(pcontact,i)
15: return cost

After assigning the cost to the valid contact pose pcontact,i,
gradient descent is performed for searching the local opti-
mum pose p∗local,i, as depicted in the right of Figure 2. In
this process, we iteratively calculate a small pose step ∆p
consisting of δr̂ and δq̂, as given in Eq. (5) and Eq. (6),
to obtain an updated initial pose for valid contact pose
searching:

plocal init,i[n+ 1] = plocal contact,i[n] + ∆p

s.t. ∆p = (δr̂, δq̂)
, (4)

where plocal contact,i[0] = pcontact,i. The translation δr̂ assigns
a positive constant offset zconst in contact normal direction
to avoid placing the object oi at invalid poses overlapping



with the existing stack. Given εr as a small value, Ti as a
homogeneous transformation matrix from world frame to the
thrust line aligned frame at Cj (see Figure 3), and zconst, we
obtain δr̂ as:

δr = Ti(
∂f

∂rx

−1
,
∂f

∂ry

−1
, zconst),

and δr̂ = εr
δr

‖δr‖
, s.t. zconst ≥ 0.

(5)

For rotation, we describe the orientation with a quaternion
q in axis-angle representation as (axis, angle). Given εq as
small rotation angle, and Ti, we obtain δq̂ as:

vaxis = Ti(
∂f

∂qx

−1
,
∂f

∂qy

−1
,
∂f

∂qz

−1
)

and δq̂ = (vaxis, εq)

(6)

For minimization of the cost, we iterate the process
described in Eq. (4) until the difference of returned cost
becomes smaller than the threshold γ as f(plocal contact,i[n])−
f(plocal contact,i[n + 1]) < γ. We write the optimization
process as,

p∗local,i = argmin
plocal contact,i

f(plocal contact,i)

s.t. Ai(Si) ≥ Amin,
(7)

where Amin is the minimal support polygon area.
After finding a local optimum pose p∗local,i, a new ran-

domized rotation is assigned to the initial pose pinit,i and
the process is repeated until x local solutions are found, as
shown in the left of Figure 2. The pose with minimum cost is
selected as a solution p∗i for object oi. We iterate the entire
process over all objects of the available subset S, returning
the best object o∗ with the best pose p∗.

V. EXPERIMENTAL SETUP

To show the applicability and repeatability of the presented
pose searching and object detection methods, we imple-
mented the algorithms, using Robotic Operating System
(ROS) [23], on a robotic platform to perform autonomous
dry-stacking as in Figure 1. The goal is to create a vertical
tower out of randomly placed irregularly shaped objects
whose mechanical and geometric properties are known.

A. Experimental Setup

We use a set of six natural lime stones (Figure 5) as
objects because they show challenging properties for the
stacking task like irregular shape and low friction coefficient.
The point cloud and mesh model of the object’s geometric
shape were previously acquired with an ATOS Core high
precision scanner. These models are used for detecting the
objects in the scene, as well as for simulating in a physics
engine used in the pose searching algorithm. To lower the
computation cost, we reduced the mesh model for the pose
searching algorithm to a homogeneously triangulated mesh
with 500 faces. This showed to be a reasonable trade-off
between reducing the computation cost and being able to

Fig. 5: Lime stones with irregular shape are used to create
vertical stacks.

Fig. 6: An overview of the used hardware setup: a ROBO-
TIQ 3-finger gripper, a FT150 force torque sensor, and a
Intel®RealSense™ SR300 RGB-D camera are attached to a
UR10 arm.

generate a contact situation that correlates with the real
world. The weight, CoM position, and moment of inertia of
each stone were measured and added to the geometric model
description. The friction coefficient was estimated with a
low value of µstone = 0.1. For manipulating the objects, we
use a robotic arm equipped with a three-finger gripper as
depicted in Figure 6. The object detection is performed with
an RGB-D depth camera mounted on the robot arm. The size
of the objects are selected to fit in the finger stroke of the
gripper. We are using MoveIt! [24] to generate collision free
motions of the robot. A force-torque sensor mounted at the
attaching point of the gripper is used to detect impact during
the placing of the object.

The work-flow of autonomously creating a vertical stack
of arbitrarily placed stones is shown in Figure 1. This task
is performed by continuously executing a loop consisting
of object detection, pose searching and object manipulation.

TABLE I: Parameters

Parameter Value Parameter Value

w1 0.179 Amin 1e−5 m2

w2 0.472 F 100 N
w3 0.094 Ekin,stable 20 J
w4 0.255 θinit

π
4

rad
x 5



0 1 2 3 4 5 6
Cost

Success
Fail

First stone

Second stone

Third stone

Fourth stone

1

5

2
3
4

6
7
8
9

11
10

1

5

2
3
4

6
7
8
9

11
10

1

5

2
3
4

6
7
8
9

11
10

1

5

2
3
4

6
7
8
9

11
10

Run

Fig. 7: The cost of the selected target pose of an individual
stone for all eleven runs at each level of the stack. A higher
cost indicates a less preferable target pose. ’+’ denotes a
successful stacking, failed attempts are represented with a
’x’. Each color corresponds to an individual run.

First, the objects are detected and localized in the scene,
resulting in a set of available stones S. For each trial we
used an alternating subset of four stones from the complete
set of the six lime stones. From this set S, the presented
pose searching algorithm proposes the next stable stack.
To replicate the proposed stack, a collision free grasping
configuration from a predefined set of feasible configurations
is chosen and a motion planner generates executable trajecto-
ries. After placing the stone at the proposed pose, we detect
the updated pose and validate if the stacking was successful.
The updated stone pose is used as a foundation for the
next pose searching step. If the robot could successfully
execute the proposed stack, the next proposed stable stack is
computed from the remaining set of stones. The stacking task
is terminated once the pose searching does no longer find a
feasible solution from the available objects or the stacking
was not successful.

B. Results

The robotic system performed the vertical stacking task
in eleven consecutive runs with an alternating set of four
stones1. In two of these runs, the system succeeded to
construct a stack out of all four available stones. In six cases
the system was able to vertically stack three stones, but failed
to place the fourth stone, and in three cases the system did
not succeed to stack the third stone. For the pose searching
algorithm presented in Section IV, we used the parameters
given in Table I. The average cost of the last pose the system
was able to successfully stack was 0.7425. Whereas, in the
case where the robot failed to place the object the average
cost was 1.8018, which shows that these poses were already
identified as less favourable compared to the ones that were
successfully stacked. If the cost at a previous step is high,
the probability increases that the following stone placement

1Watch the accompanying video: https://www.youtube.com/
watch?v=bXz52KMGUng

TABLE II: Mean execution times.

Task Mean time (s) σ time (s) Fraction (%)
Pose search 66.2 7.0 24.4
Object detection 17.0 4.4 6.3
Manipulation 166.7 17.2 61.5
Other tasks 21.1 4.1 8.8

will fail. See for example the high cost of the second stone
in run 6 and 7 (see Figure 7).

Table II shows the mean execution times of the different
parts of the presented approach, although computational and
execution speed was not a focus of this paper. On average,
a trial to construct a vertical stack lasted 271.0 s. The main
fraction of this time is spent for the manipulation task that
includes path planning, arm and gripper motion. This is
mainly due to the fact that the robot, for safety reasons, is
operated with reduced speed. The remaining time is spent for
the pose searching algorithm itself, object detection and other
tasks, such as visualization and stopping the motion before
capturing depth images. The stacking work-flow is not yet
optimized in terms of construction time and could be greatly
improved by parallelizing manipulation with pose searching
and object detection, and by increasing the operation speed.

VI. CONCLUSION

In this paper, we introduced an autonomous robotic system
that constructs a balancing vertical tower out of irregularly
shaped stones without using mortars or extra materials.
Its work-flow consists of a continuous loop with object
detection, target pose search, physical manipulation, and
evaluation. We presented an object detection pipeline suited
to localize irregularly shaped objects in a scene and a target
pose searching algorithm to generate stable stacks. The
proposed algorithms were implemented on a robotic system
and tested in an experimental setup (a fixed platform in a
controlled environment with a flat terrain, and pre-scanned
objects). The system showed to be able to perform stacking
tasks autonomously, contributing to a preliminary setup for
detecting irregularly shaped objects and also validating the
proposed pose searching algorithm.

As a next step to improve the stability of the planned stack
in this setup, the pose searching could consider the future
cost by simulating several steps ahead. Aiming at more prac-
tical situations, we want to focus on construction with unseen
objects. This involves the segmentation of unknown objects
in a scene and their handling with incomplete information.

Furthermore, we aim at creating more complex target
shapes, such as arches or walls. These shapes can create
structures where each object is in contact with more than
two objects. In such a situations, not just a vertical or single
thrust line, but a more complex thrust line network needs to
be analyzed.

VII. ACKNOWLEDGEMENT

The authors would like to thank Mirjan Ammar for his
feedback throughout the project, Jemin Hwangbo for dis-
cussions on the optimization methods, and Luca Forni and
Yves Zimmermann for their great work in setting up the
demonstrator.

https://www.youtube.com/watch?v=bXz52KMGUng
https://www.youtube.com/watch?v=bXz52KMGUng


REFERENCES

[1] M. Kohler, F. Gramazio, and J. Willmann, The Robotic Touch: How
Robots Change Architecture. Park Books, 2014.

[2] U. Knaack, S. Chung-Klatte, and R. Hasselbach, Prefabricated sys-
tems: Principles of construction. Walter de Gruyter, 2012.

[3] K. Dörfler, T. Sandy, M. Giftthaler, F. Gramazio, M. Kohler, and
J. Buchli, Mobile Robotic Brickwork. Cham: Springer International
Publishing, 2016, pp. 204–217.

[4] N. Napp and R. Nagpal, “Distributed amorphous ramp construction in
unstructured environments,” Robotica, vol. 32, no. 02, pp. 279–290,
2014.

[5] C. Feng, Y. Xiao, A. Willette, W. McGee, and V. Kamat, “Towards
autonomous robotic in-situ assembly on unstructured construction sites
using monocular vision,” in Proceedings of the 31th International
Symposium on Automation and Robotics in Construction, 2014, pp.
163–170.

[6] T. Sandy, M. Giftthaler, K. Dörfler, M. Kohler, and J. Buchli, “Au-
tonomous repositioning and localization of an in situ fabricator,” 2016.

[7] R. K. Livesley, “Limit analysis of structures formed from rigid blocks,”
International Journal for Numerical Methods in Engineering, vol. 12,
no. 12, pp. 1853–1871, 1978.

[8] R. Livesley, “A computational model for the limit analysis of three-
dimensional masonry structures,” Meccanica, vol. 27, no. 3, pp. 161–
172, 1992.

[9] P. Block, T. Ciblac, and J. Ochsendorf, “Real-time limit analysis of
vaulted masonry buildings,” Computers & structures, vol. 84, no. 29,
pp. 1841–1852, 2006.

[10] E. Whiting, J. Ochsendorf, and F. Durand, “Procedural modeling of
structurally-sound masonry buildings,” ACM Transactions on Graphics
(TOG), vol. 28, no. 5, p. 112, 2009.

[11] S. A. Nielsen and A. Dancu, “Fusing design and construction as
speculative articulations for the built environment,” 2015.

[12] M. Lambert and P. Kennedy, “Using artificial intelligence to build with
unprocessed rock,” in Key Engineering Materials, vol. 517. Trans
Tech Publ, 2012, pp. 939–945.

[13] S. A. Cholewiak, R. W. Fleming, and M. Singh, “Perception of
physical stability and center of mass of 3-d objects,” Journal of vision,
vol. 15, no. 2, pp. 13–13, 2015.

[14] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Simulation as an
engine of physical scene understanding,” Proceedings of the National
Academy of Sciences, vol. 110, no. 45, pp. 18 327–18 332, 2013.

[15] M.-C. Ko, “Algorithms and automated material handling systems
design for stacking 3d irregular stone pieces,” Ph.D. dissertation, 2011.

[16] V. Sujan, S. Dubowsky, Y. Ohkami et al., “Design and implementation
of a robot assisted crucible charging system,” in Robotics and Automa-
tion, 2000. Proceedings. ICRA’00. IEEE International Conference on,
vol. 2. IEEE, 2000, pp. 1969–1975.

[17] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object
recognition,” in ICCV Workshops, 2009.

[18] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in ICRA, 2009.

[19] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan, “Rotational
projection statistics for 3D local surface description and object recog-
nition,” International Journal of Computer Vision, vol. 105, no. 1, pp.
63–86, 2013.

[20] H. Chen and B. Bhanu, “3D free-form object recognition in range
images using local surface patches,” Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on, vol. 3, pp.
136–139 Vol.3, 2004.

[21] P. Alliez, C. Jamin, Q. Mérigot, J. Meyron, L. Saboret,
N. Salman, and S. Wu, “Point set processing,” in CGAL User
and Reference Manual, 4.8.1 ed. CGAL Editorial Board, 2016.
[Online]. Available: http://doc.cgal.org/4.8.1/Manual/packages.html#
PkgPointSetProcessingSummary

[22] M. Karavelas, “2D segment delaunay graphs,” in CGAL User
and Reference Manual, 4.8.1 ed. CGAL Editorial Board, 2016.
[Online]. Available: http://doc.cgal.org/4.8.1/Manual/packages.html#
PkgSegmentDelaunayGraph2Summary

[23] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[24] I. A. Sucan and S. Chitta, “Moveit!” Online Available:
http://moveit.ros.org, 2013.

http://doc.cgal.org/4.8.1/Manual/packages.html#PkgPointSetProcessingSummary
http://doc.cgal.org/4.8.1/Manual/packages.html#PkgPointSetProcessingSummary
http://doc.cgal.org/4.8.1/Manual/packages.html#PkgSegmentDelaunayGraph2Summary
http://doc.cgal.org/4.8.1/Manual/packages.html#PkgSegmentDelaunayGraph2Summary

