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Autonomous Navigation of Hexapod Robots With Vision-based
Controller Adaptation

Marko Bjelonic1∗, Timon Homberger2∗, Navinda Kottege3, Paulo Borges3, Margarita Chli4, Philipp Beckerle5

Abstract— This work introduces a novel hybrid control
architecture for a hexapod platform (Weaver), making it
capable of autonomously navigating in uneven terrain. The
main contribution stems from the use of vision-based exte-
roceptive terrain perception to adapt the robot’s locomotion
parameters. Avoiding computationally expensive path planning
for the individual foot tips, the adaptation controller enables
the robot to reactively adapt to the surface structure it is
moving on. The virtual stiffness, which mainly characterizes
the behavior of the legs’ impedance controller is adapted
according to visually perceived terrain properties. To further
improve locomotion, the frequency and height of the robot’s
stride are similarly adapted. Furthermore, novel methods for
terrain characterization and a keyframe based visual-inertial
odometry algorithm are combined to generate a spatial map of
terrain characteristics. Localization via odometry also allows
for autonomous missions on variable terrain by incorporating
global navigation and terrain adaptation into one control
architecture. Autonomous runs on a testbed with variable
terrain types illustrate that adaptive stride and impedance
behavior decreases the cost of transport by 30 % compared
to a non-adaptive approach and simultaneously increases body
stability (up to 88 % on even terrain and by 54 % on uneven
terrain). Weaver is able to freely explore outdoor environments
as it is completely free of external tethers, as shown in the
experiments.

I. INTRODUCTION

Locomotion of mobile robots on rough terrain without
prior information of the terrain structure is an important
task. It is required for planetary exploration [1], missions
in disaster zones [2], mining [3], and others. In this field,
legged robots have gained increased attention, due to their
mechanical ability to move on various types of challenging
terrain [4].

Legged robots need to control the contact between the
foot tips and the ground in order to ensure stability on
rough terrain. Both reactive and proactive control approaches
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Fig. 1. The hexapod robot Weaver on the multi-terrain testbed.

have been used in the literature to perform leg adaptation to
achieve this [5], [6], [7]. The former control approach reacts
to ground collisions of the legs and adapts based on pro-
prioceptive sensing. In contrast, a proactive approach avoids
collisions by motion planning of all joints. However, previ-
ous investigations show that trajectory planning of the feet
without adaptive execution is insufficient for walking robots
in unstructured terrain due to unpredictable disturbances,
such as bumps and slippage [8]. Autonomous operations in
unknown terrain usually feature both reactive and proactive
control architectures to achieve practical performance in real-
world environments. The combination of these two control
strategies is referred to as hybrid control in this work in
accordance with [5].

The performance of legged robots highly depends on the
chosen gait parameters. Moreover, the transition between
different terrain types introduces conflicting objectives for
the gait parameter choice. The results presented in [9] show
the limitations of using constant gait parameters for ma-
neuvering on diverse surface types. An elastic configuration
of the leg yields benefits in efficiency and maneuverability
of the robot on rough terrain. In contrast, the same leg
configuration leads to high cost of locomotion on flat terrain.
Parameter adaptation with respect to the characteristics of the
ground is proposed to improve locomotion on varying terrain.
Parameter adaptation of legged systems is also shown in [10]
for a dynamic biped with a tether boom and for a quadruped
in [11] with a focus on implementing a neural system model
based on biological concepts.

This paper presents a hybrid control architecture that
enables a legged robot to autonomously traverse uneven
terrain and to adapt the gait parameters depending on the



terrain characteristics. The robot’s autonomy is achieved by
using visual-inertial odometry on a custom built hardware
setup. Moreover, the proposed controller is evaluated on a
real hexapod robot, Weaver (Fig. 1). The hybrid controller
introduces:

• Efficient and stable locomotion by adapting stride
height, stride frequency and virtual stiffness.

• Exteroceptive terrain perception method for parameter
adaptation of a reactive control architecture.

• Increased autonomy by combining a global navigation
system with controller adaptation.

The paper is organized as follows: The hybrid controller
is presented in Section III after introducing Weaver in Sec-
tion II. The experimental results in Section IV are discussed
by Section V and Section VI concludes the paper.

II. HEXAPOD PLATFORM WEAVER

Weaver was specially developed in-house for rough terrain
traversal and introduced in [9]. One of the key differences to
other hexapod robots is the five joints per leg. This allows
efficient and stable locomotion on inclined surfaces, as the
last link of the robot’s leg can be aligned with the gravity
vector. In addition, Weaver with its 30 Degrees of freedom
(DoF) controls the body pose on inclinations to increase
the Normalized Energy Stability Margin [12]. The direction
of the gravity vector is determined by measurements of an
Inertial Measurement Unit (IMU). The inclination controller,
coupled with an impedance controller of the foot tip position
in Cartesian space improves Weaver’s locomotion on uneven
terrain. It reacts to forces imposed by adapting the position
of the foot tip.

The hybrid controller presented in this paper combines the
exteroceptive terrain perception introduced in [13] with the
proprioceptive controller introduced in [9] and implements an
adaptation controller which adapts not only the leg stiffness
but also the stride height and stride frequency. The following
section further describes the hybrid control architecture.

III. HYBRID CONTROLLLER

For stable and efficient rough terrain traversal, the robot’s
locomotion parameters are adapted to the structure of the
terrain it is maneuvering on. In the proposed hybrid control
architecture shown in Fig. 2, two approaches are combined
to achieve the locomotion adaptation: reactive and proac-
tive control [5], [6], [7]. The stride trajectory generator,
impedance controller and inclination controller allow reactive
ground interaction by adapting the legs’ position and orienta-
tion based on proprioceptive sensing. This is complemented
by a proactive approach to improve the maneuverability of
Weaver. The main contribution of this work consists of the
adaptation controller that uses exteroceptive sensing to adapt
the gait parameters of the reactive controller and the virtual
stiffness of the impedance controller. In addition, the reactive
controller is augmented with a navigation system (i.e. visual-
inertial odometry and path follower) that focuses on a high-
level abstraction of the path to extend Weaver’s autonomy.
This allows Weaver to perform autonomous navigation in

an unknown environment. The described hybrid controller
feeds in to a hierarchical control architecture with three
abstraction layers; 1.) the path follower in world frame, 2.)
stride trajectory generator in body frame and 3.) impedance
controller in leg frame. The following subsections describe
the functional blocks depicted in Fig. 2.

A. Visual-Inertial Odometry

The proactive adaptation controller and the path follower
in Fig. 2 require the robot’s pose with respect to a fixed
world frame (o0x0y0z0). OKVIS, an open-source, keyframe
based visual-inertial odometry algorithm is used for this
purpose [14], [15]. The choice for visual-inertial odometry
as a localization tool is motivated by the availability of the
required sensing modalities (stereo camera and IMU) on-
board the robot (Fig. 2). OKVIS uses nonlinear optimization
procedures for tightly coupled fusion of visual and inertial
measurements. The custom built sensor unit in this work
consists of a rigid mount with two cameras and an IMU.
The pitch angle of the camera mount is customized with a
lockable revolute joint for adjustable capture of the scenery.
KALIBR calibration package with an Aprilgrid is used for
spatial calibration of this setup[16]. Triggering is synchro-
nized via a GPIO cable connecting the cameras.

To the best of the authors’ knowledge, this is the first
instance of OKVIS being used on a hardware setup other than
the fully time-synchronized and factory-calibrated VI-sensor
[17] it was designed for. In contrast to reported experiments,
where the sensor unit is either hand held or mounted on
a car [15], the camera pair is tilted towards the ground
since the terrain perception requires this visual angle. This
leads to a field of view limited to objects relatively close
to the cameras, resulting in a limited number of detectable
features in the image streams. When maneuvering on uneven
terrain, motion tends to be bumpy which further influences
the performance of the algorithm.

B. Path Follower

Weaver’s low level autonomy enables it to maneuver in
rough terrain environments without using path planning of
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the individual foot tip positions [9]. Therefore, it suffices
to control the movement of the body frame (o1x1y1z1)
with respect to a world frame (o0x0y0z0) (Fig. 3). The
world frame is defined as the initial body frame. Based
on the position o1 and orientation (yaw angle) qyaw of
the body, the following algorithms derive the desired linear
velocity vector [Vx Vy]T and rotational velocity q̇yaw with
respect to the body frame. The lookahead-based steering law
based on straight line segments between waypoints is used
for autonomous underwater vehicles [18]. This approach is
adapted to the 2-D maneuvering problem of an omnidirec-
tional hexapod robot.

Two waypoints pk and pk+1 implicitly define the straight-
line path of the robot. The absolute speed of the robot
is defined by |V | =

√
V 2
x + V 2

y and the forward speed
command Vx is given by

Vx = Vx,Max ·
s√

s2 + d2
(1)

where s, d, and Vx,Max are the along-track distance, the
lookahead distance and the maximum along-track speed
respectively. The lookahead distance is given by d =√
R2 − e2 where R and e are the radius of the circle of

acceptance around the robot’s position and the cross-track
error, respectively. On uneven terrain, in particular, it is
beneficial to use the sideways motion of the hexapod to
minimize the cross-track error e since rough terrain induces
random disturbances due to slippage and moving objects on
the surface. The desired sideways motion is

Vy =

 Vy,Max ·
e

|αe|
if |αe| < αe0 (2a)

0 if |αe| ≥ αe0 (2b)

where
αe = αk − qyaw (3)
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Fig. 3. Lookahead-based steering on straight line segments between
waypoints.

The angle error between the straight-line orientation αk and
the orientation of the robot (yaw angle) qyaw is given by
αe. Vy,Max and αe0 are tuning parameters that specify the
maximum sideways speed and the range of αe for which the
sideways motion is enabled. The desired rotational velocity
centered at the vertical body axis z2 is given by

q̇yaw = −Krot · (αd − qyaw) (4)

where
αd = αk + arctan(− e

d
) (5)

Krot and αd are the P-Gain of the heading autopilot and the
desired course angle, respectively.

A switching mechanism selects the next line segment if
the waypoint pk+1 falls inside of the circle of acceptance
with radius R.

C. Stride Trajectory Generator, Impedance Controller and
Inclination Controller

The following subsection briefly discusses the stride tra-
jectory generator, impedance controller and inclination con-
troller displayed in Fig. 2. An in-depth analysis of these can
be found in [9].

The stride trajectory generator creates a gait pattern for all
six legs with a foot trajectory in the form of a Bézier curve.
This is based on the velocity inputs from the global path
follower, i.e. the gait pattern and foot trajectory are defined
relative to the body frame (o1x1y1z1). In this context, a stride
describes the combined movement of the swing and stance
phase.

The body velocity is a function of stride length SStride and
stride frequency fStride. In most of the documented work on
legged locomotion just one of the two parameters is modified
to control the speed of the robot [19]. In this work both
parameters are modified by different control instances. The
velocity command generated by the path follower sets the
stride length SStride and the adaptation controller changes
the stride frequency fStride based on the exteroceptive terrain
perception. This allows a low stride frequency and a high
stride length in rough terrain. Thus, the robot is able to
maintain its stability due to the low stride frequency while the
high stride length allows the robot to overcome challenging
obstacles. Furthermore, the stride height hStride obtained
from the adaptation controller determines the height of the
generated foot tip trajectory (Fig.2).

The impedance controller of the foot tip in Cartesian space
reacts to the shape of the terrain by transforming the impact
force at the foot tip into a resulting position. The second
order mechanical system is given by

− Fz = mvirt
¨∆zr2 + bvirt ˙∆zr2 + cvirt∆zr2 (6)

where Fz , ∆zr2, mvirt, bvirt and cvirt are the force in
vertical direction, the adapted position in vertical direction,
the virtual mass, the virtual damping and the virtual stiffness,
respectively. As described in the following sections, cvirt is
generated by the adaptation controller based on the perceived
terrain features. The reference foot trajectory zr2 of the



stride trajectory generator is adapted by zd2 = zr2 −∆zr2.
Weaver with its novel 5 DoF leg design is able to control
the Cartesian position and orientation of the foot tip. The last
link of the leg is aligned with the gravity vector using inverse
kinematics, i.e. the force ellipsoid of the foot tip is aligned
with the gravity vector. Thus, the gravitational force of the
robot is supported with the least amount of effort [20]. The
inverse kinematics transforms the desired foot tip position
[xd2 yd2 zd2]T and orientation [δd βd]T into desired motor
positions.

The inclination controller determines the orientation of the
gravity vector with respect to the body frame (o1x1y1z1)
based on the IMU signals and the six foot tip positions,
i.e. the orientation of the gravity vector is described by two
angles δd and βd that constrain the space of solutions of
the inverse kinematics. In addition, the inclination controller
shifts the center of mass (CoM) of the robot on inclined
terrain to increase stability.

D. Exteroceptive Terrain Perception

Visual-inertial odometry uses the stereo camera and the
IMU to generate the pose of the robot with respect to the
world frame (o0x0y0z0). The stereo camera and the IMU are
further used to characterize the terrain in front of the robot.
This analysis serves as input for the adaptation controller.
The following section is a summary of the work conducted in
[13]. This work contains a detailed description of the applied
stereo vision system and terrain feature extraction.

The generated point cloud in 3D space which is generated
from the stereo image streams is aligned with the gravity
vector based on the IMU. This allows for terrain intrinsic
feature extraction [21]. In order to represent terrain elevation
by a Digital Elevation Model (DEM), the horizontal plane
is discretized into quadratic cells. The maximum terrain
elevation within each cell is marked by a DEM point [22].
A plane is then fitted to the DEM points using a least
squares method. From this plane and the elevation data of
the DEM, a set of features fi are extracted from a terrain
patch, approximately the size of the robot’s footprint, in front
of the robot (Fig. 4).

From subsets of the extracted features fi descriptive terrain
characterization parameters, roughness ra and step height
ha, are derived. They serve as input for the adaptation
controller. Fig. 4 summarizes the overall terrain perception
procedure. The roughness characterization transforms the
extracted features fi into a single estimate of the surface
roughness ra. The mathematical expression is given by

ra =
1

anorm,1

5∑
i=1

ai · fi (7)

and the step height ha is calculated by

ha =
1

anorm,2
(a6 · f6 + a7 · f4 · f7) (8)

The weighting parameters ai used to calculate the roughness
ra and step height ha estimation are set empirically, i.e.
generating suitable ra and ha for a number of example
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Fig. 4. Exteroceptive terrain perception diagram.

surface types. In addition, ra and ha are normalized by
anorm,i between zero (i.e. even terrain, low step height)
and one (i.e. uneven terrain, high step height). In the next
section these generalized terrain characterization parameters
are mapped into physical adaptation parameters.

E. Vision-based Controller Adaptation

Increasing or respectively decreasing the virtual stiffness
cvirt, stride frequency fStride and stride height hStride leads
to more difficulties during rough terrain traversal. Often the
robot gets stuck and is unable to proceed at all. On flat
terrain high virtual stiffness, high stride frequency and low
stride height allow smooth and efficient locomotion, whereas
the energy efficiency and velocity decreases for a different
set of parameters. The following controller is designed
for adaptation of the gait parameters and the impedance
controller based on the exteroceptive terrain characterization
parameters ra and ha.

Similarly to the terrain characterization, the stiffness adap-
tation in Fig. 4 derives a suitable mapping between roughness
ra and the virtual stiffness cvirt in (6) of the impedance
controller. The stiffness adaptation is defined as

cvirt = b0 + b1 · ra + b2 · r2
a + b3 · r3

a (9)

The stride frequency fStride and stride height hStride of the
stride trajectory generator are adapted by

fStride = c0 + c1 · ra + c2 · r2
a (10)

hStride = d0 + d1 · ha + d2 · ra (11)

The parameters bi, ci and di are the coefficients of poly-
nomial functions. Moreover, the polynomial functions are
derived empirically for a number of exemplary terrain types.
By this means, the roughness ra and step height ha are
measured for different terrain structures. In addition, a de-
sired (optimized with respect to locomotion speed) virtual
stiffness cvirt, stride frequency fStride and stride height
hStride are chosen for these terrains. Polynomial functions
are fitted to the data points (Fig. 5). A least square fit gives
the coefficients and degree of the polynomials in (9), (10)
and (11).

As the robot perceives terrain features at a given distance
in front, information on ego-motion is needed (Fig. 3). The
body trajectory and orientation given by the visual-inertial
odometry are used to update a spatial map of roughness and
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step height values in the world frame. A circular area around
the center of the body frame which is relevant for the robot’s
foot tip placement is searched for the highest roughness and
step height values. Thus, the most conservative set of gait
parameters is set so that the robot can safely traverse the
given area.

IV. EXPERIMENTS AND RESULTS

A. Performance Criteria

The dimensionless energetic cost of transport (CoT) is
a popular performance indicator for wheeled and legged
robots. For more information about the cost of transport
please refer to [9], [23]. The instantaneous cost of transport
CoT and the overall cost of transport over a travelled
distance CoT are given by

CoT =
UI

mgv
, CoT =

1
n

n∑
i=1

UiIi

mg∆x
∆t

, (12)

where U is the voltage of the power supply, I is the instanta-
neous current drawn from the power supply, m is the mass, g
is the gravitational acceleration, v is the velocity of the robot
and ∆t is the time needed for the travelled distance ∆x. The
CoT in this work captures the overall energy consumption
of the robot based on the voltage and current of the power
supply. This includes mechanical energy, heat dissipation
and other losses like friction. The energy efficiency highly
depends on the characteristics of the servomotors (e.g. PID
gains, resistance, induction, reduction ratios). Since this work
compares the CoT of two control algorithms on the same
robotic platform, it is assumed that the influence of these
characteristics remain unchanged between evaluation runs.

The percentage reduction of variance Si comes from ship
control assessment [24] and it is given by

Si = 100 ·
(

1− V ar(Xi,a)

V ar(Xi,na)

)
(13)

where i is a place holder for the movement in pitch and
roll. The function V ar(·) is the variance and the variable
Xi is the set of observed values in radiant. The subscripts
a and na stand for adaptive and non-adaptive, respectively.
Maximizing (13) leads to stable movement of the body.

B. Experimental Setup

As discussed in Section III, Weaver has no a priory infor-
mation about its environment and no exteroceptive sensors
were used for path planning of the foot tips. All computation

Fig. 6. Hardware structure of Weaver.

is processed on-board and online using two mini PCs. A
human operator specifies a desired waypoint for the robot to
reach via an off-board PC (connected via WiFi). The robot
used a tripod gait during experimentation. As the robot is
powered by battery, it does not require any external wires
to operate. Weaver operates for approximately 1 hr with the
current hardware configuration. Figure 6 shows the overall
structure of Weaver during experimentation and Table I
summarizes the main specifications of Weaver.

The CoT in (12) requires the measurement of the robot’s
velocity v and overall power consumption P . Therefore, the
velocity v of the robot was tracked at 4 Hz using a robotic
total station (Leica TS12) with a target prism mounted
on the robot. The power consumption P was measured at
20 Hz by an Arduino based system sensor. The range of
the adaptive parameters and the constant values of the non-
adaptive approach are summarized in Table II.

To generate comparable experimental results, a multi-
terrain testbed in Fig. 7 was built. The robot starts on
flat ground (segment A) and then passes an inclined plane
(segment B) before entering the rough terrain (segments C
to F). Segment C of the testbed contains wooden blocks of
various heights and segment D-E-F is a mixture of sand,

TABLE I
HARDWARE SPECIFICATIONS OF WEAVER.

Type Description

General Mass: 9.3 kg (without battery), 10.3 kg (with battery)
Servomotors Dynamixel MX-64 and MX-106
Power supply 7-cell LiPo battery (25.9 V, 5000 mAh)
On-board PC 2× Intel NUC mini PC (Intel Core i7 processor,

16 GB RAM) running Robot Operation System (ROS)
in an Ubuntu environment

Sensors IMU (Microstrain GX3 - 100 Hz) and 2× Cameras
(Pointgrey Grasshopper3)



Fig. 7. Multi-terrain testbed with maximum height difference: 113 % (segment C), 28 % (segment D), 11 % (segment E) and 72 % (segment F) of Weaver’s
body height. 2.93 m of flat ground (segment A) followed by 1.2 m of inclined planar section (10◦) (segment B) are traversed before entering segment C.
Weaver finishes its run on flat ground (segment G). The width of the testbed is 145 % of Weaver’s start-up width.

pebbles, river stones, crumbled concrete and bigger stones.

C. Results

The first experiment evaluates the performance of OKVIS
and the path follower. Fig. 8 shows the behavior of Weaver
on flat terrain by following a pattern of straight lines (black
dashed line) which are implicitly defined by five waypoints.
The path follower uses the position and orientation signals
of OKVIS to navigate on the desired path. It can be seen
that the path follower reduces the position error between the
robot’s position given by OKVIS (blue line) and desired path
(black/dashed line). The error at the waypoints originates
from the switching mechanism described in Section III-B.
Here, the radius R of the circle of acceptance is 0.5 m. In
this experiment, the position returned by the Leica system
is used as ground truth for the robot’s position. The OKVIS
position error, being the difference between this ground truth
(red line) and OKVIS position (blue line) increases as the
robot moves along the desired path. It can be noticed that the
odometer mainly drifts in the direction of travel. Therefore,
the real position of the robot deviates from the desired path
(black/dashed line). The final position error on flat terrain is
0.64 m for a travelled distance of 20.94 m. Since the robot
is supposed to move on rough terrain, Fig. 9 evaluates the
performance of OKVIS on the mulit-terrain testbed of Fig. 7.
Weaver walked 30 times over the testbed with its navigation
system. It can be seen that the testbed induces drift mainly in
the forward direction (x1 direction) of Weaver (upper plot).
This enables the robot to navigate through the narrow testbed
since the drift in the side ways direction (y1 direction) of
Weaver is negligible. Moreover, three standard deviations
of the robot’s path over 30 runs stays inside of the testbed
(middle plot). The lower plot shows how the OKVIS error
propagates over the testbed and the mean of the total error
in the end of the testbed is 0.36 m.

These 30 autonomous runs were also used to evaluate
the performance of the adaptation controller on the multi-

TABLE II
RANGE OF THE ADAPTIVE PARAMETERS AND CONSTANT VALUE OF THE

NON-ADAPTIVE CONTROLLER.

Adaptive parameters Min value Max value Const. value

Virtual stiffness (Nm−1) 0.75 103 70.34 103 1.06 103

Stride frequency (Hz) 0.6 1.1 0.6
Stride height (m) 2.31 10−2 13.18 10−2 9.89 10−2

terrain testbed. Two sets of 15 runs have been conducted
to compare the CoT using adaptive against non-adaptive
control as a reference. These are referred to as adaptive
set and non-adaptive set respectively. The parameter set of
the non-adaptive controller is tuned to match the locomotion
behaviour of the adaptive controller on the roughest terrain
part (segments C to F). As can be seen in [9], a non-
adaptive controller tuned to match the locomotion of the
adaptation controller on flat terrain (segment A) is incapable
of finishing the terrain task. Fig. 10 shows the CoT (upper
figure) and the corresponding adaptation parameters (lower
figure). The lines depict the mean CoT of the 15 runs
whereas the grey shading visualizes one standard deviation
of the CoT of the adaptive set. The difference in CoT
in segments A and B can be explained by angular and
vertical robot body motion which occurs when walking on
even ground with a low stiffness. Additional factors for
the reduction of energy consumption are a higher stride
frequency as well as reduced stride height, as flat terrain can
be traversed without excessively lifting the legs. The rough
terrain of segment C, E and F shows just a small reduction of
CoT. This is as expected since almost equal gait parameters
are applied in both sets. In segment D, the adaptive approach
has clear advantages compared to the non-adaptive set. High
CoT values in the non-adaptive set imply that the robot has
difficulties in traversing the terrain. Table III summarizes
the CoT reduction for each segment of the multi-terrain
testbed. The overall CoT over the multi-terrain testbed are
36.43 ± 1.68 (adaptive set) and 51.74 ± 3.46 (non-adaptive
set). Therefore, the adaptive controller reduces the overall
CoT by 29.59 %. On flat terrain the minimum CoT of the
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Fig. 9. Walking 30-times autonomously over the multi-terrain testbed:
The upper figure shows the robot and OKVIS position of all runs. The
figure in the middle shows the mean of robot positions (red line) and three
standard deviations of robot’s path (grey shading). The means of the total
error (black line), error in x-direction (red line) and error in y-direction (blue
line) between robot’s and OKVIS position is presented in the lower figure.
One standard deviation of the total error is given by the grey shading.

adaptive controller is approximately 10 and the maximum
velocity is 0.35 m/s.

The percentage reduction of variance (13) in Table III
is calculated as the mean of the 15 runs of each set. The
roll and pitch movement is distinctly reduced in segment A.
On the inclined terrain (segment B) the variance of the
pitch movement of the adaptive controller is greater than the
variance of the non-adaptive approach. This can be explained
by considering the right plot of Fig. 11. The pitch angle of
the non-adaptive approach increases already on flat terrain
(segment A) due to the low virtual stiffness of each leg. Thus,
on the inclined terrain (segment B) the pitch angle does not
increase as much as the pitch angle of the adaptive approach.
This also explains the negative Spitch value in segment C.
For the remaining part of the testbed (segment C to F) it can
be seen that on average the angular movement is reduced by
the adaptation controller.

TABLE III
COMPARISON OF PERCENTAGE REDUCTION IN VARIANCE OF COT FOR

MULTI-TERRAIN TESTBED SEGMENTS.

Segments of
the testbed

CoT reduction
in %

Sroll

in %
Spitch

in %

A 65.82 81.41 87.70
B 36.93 34.86 -155.26
C 12.87 2.4 -23.00
D 27.11 -2.28 22.91
E 15.76 13.85 53.91
F 16.01 3.77 3.50

Fig. 10. The CoT of the adaptive and non-adaptive controller show the
results of 15 runs each on the multi-terrain testbed. Upper figure: The black
line and the grey shading are the mean and one standard deviation of the
CoT of the adaptive set. The red line shows the mean of the CoT of the non-
adaptive set. Lower figure: The percentage values of adaptation parameters
are shown. The solid lines are the mean parameters of the adaptive set and
the dashed lines show the values of the non-adaptive approach.

V. DISCUSSION

The results demonstrate that Weaver is able to au-
tonomously overcome challenging terrain with the adaptive
as well as with the non-adaptive approach. Nevertheless,
adaptive control significantly reduces the CoT compared to
the non-adaptive approach and improves the body stability by
reducing the angular movement in roll and pitch. The hybrid
controller adapts the impedance controller complemented by
adaptation of stride frequency and stride height. The adapta-
tion method is based on online exteroceptive terrain percep-
tion and thus, does not require any prior information of the
environment. This control architecture solves the problem of
conflicting objectives when traversing different terrain struc-
tures, e.g. transition from even to uneven terrain. Moreover,
Weaver automatically chooses optimized parameters of the
reactive controller based on proactive terrain analysis. The
results of the odometry evaluation (Section IV-C) shows that
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Fig. 11. Mean (x) and one standard deviation (ellipse) of the limit cycles
of the roll and pitch movement projected onto the phase plane during
traversal on the multi-terrain testbed. Solid, dashed and dotted line refers
to segment A, B and C to F, respectively.



the robot is able to autonomously reach a given waypoint.
Odometer drift mainly depends on detectable features in the
camera images and on the robot’s motion characteristics.
Global navigation accuracy is limited by the accuracy of
the odometer. However, the drift of the spatial translation
from the perception location to the robot’s location which
is needed by the adaptation controller (see Section III-E)
is negligible due to the small travelled distance (<1 m).
The global navigation system for omnidirectional vehicles
combined with adaptive control increases the autonomy of
Weaver on rough terrain. The robot adapts its speed by con-
trolling the stride length and stride frequency simultaneously,
i.e. the stride length is set by the path follower and the stride
frequency changes based on terrain perception. As shown
in Fig. 7, the testbed is rather narrow with respect to the
robot’s walking width. The path follower effectively reduces
the error between the desired path and the robot’s trajectory
and therefore prevents the robot from stepping out of the
testbed during experimentation.

VI. CONCLUSIONS

This work presented a hybrid control architecture for the
Weaver hexapod, combining reactive and proactive control
paradigms to enhance the performance in rough terrain in
terms of reduced CoT and increased body stability. Weaver’s
controller adapts the locomotion parameters using stereo-
vision based perception of the terrain. In addition, this work
extends the control architecture with a navigation system
that uses a high-level abstraction of the robot’s path. The
reactive controller complemented with the adaptive controller
handles the low-level autonomy on rough terrain. This avoids
the use of complex planning algorithms based on detailed
maps of the environment. The experimental results illustrate
that Weaver is capable of autonomously maneuvering on
uneven terrain in an effective manner. Moreover, Weaver’s
current configuration is self-contained in terms of processing
and energy (i.e. tether free) making it suitable for fully
autonomous operation. This lends itself to applications such
as short distance exploration tasks in remote and challenging
environments, extending the scope and utility of legged
robots. However, stereo vision may lead to wrong estimations
from conditions such as walking in high grass, bad illumi-
nation, motion blur, or dynamic scenes. The authors aim to
address this by adding proprioceptive sensing in future work.
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