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Abstract

In traditional database systems where the query processor operates by ”pulling”
data, a different approach of input handling is needed to deal with real-time
requirements complex event processing (CEP) applications do request. Thus
CEP Systems, which are built over a traditional database framework such as
DejaVu [11], need to support a ”pushing” mechanism where incoming data
is being pushed to and processed by the query processor on-the-fly. Since
the data rate may be extremely high or bursty, switching from ”Push” to
”Pull” reduces the ”pressure” for the query processor.
The goal of this thesis is to provide such a ”pushing” mechanism for DejaVu
and apply the switching between those two modes in an adaptive way.
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Chapter 1

Introduction

1.1 Problem Statement and Scope

Complex Event Processing (CEP) has always been a topic of interest for
both research and industry due to its complexity and applicability in many
business areas. Well-known CEP applications include financial market data
analysis, RFID-based asset tracking, operational business intelligence, and
network intrusion detection and most of them require some form of complex
pattern analysis on the data. For example an interesting pattern for financial
market analysis is looking for a price increase in a stock of a company
followed by a price decrease which is at least 30 percent of the increase.
Thus in all of these applications, pattern matching over live, archived or
their hybrid streams of events has become a key requirement and not a
small number of CEP engines have been built to serve this purpose - such
as Cayuga[9], SASE[12] or DejaVu [11]. They differ from each other in
many aspects but all of them have to ensure good performance with limited
computer resources. The goal of this thesis is to analyze and optimize the
DejaVu CEP system as it is in terms of performance with bounded memory
resources.

1.2 Related Work and Contribution

Most of the CEP systems handle the input stream in a similar way. In-
coming data is preprocessed at first for example by ”Event Receivers” [9]
or in the ”Cleaning and Association Layer”[12] and directly pushed to the
query processor for pattern detection. In DejaVu however input streams are
treated differently. Compared to existing CEP engines the focus of DejaVu
is to find patterns over live and archived event streams as well. And for that
purpose the MySQL open-source database system [4] is extended with the
ability of pattern matching according to [10]. With the MySQL database
system as its core system, the way how data gets into the query processor
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is pull-based - a thorn in the stream community’s side since in their view
[7] ”a query processor must instead react to arriving data”. As far as it
concerns simple data stream processing the statement above has surely its
validity. However for CEP applications where a complex pattern has to be
found - the query processor may not be able to react due to its workload -
pulling data, whenever the processor needs it, makes definitely sense. On
the other hand an ”under-stimulated” query processor should be able to
react to arriving data in order to face the real-time requirements of a CEP
application. Thus one of the thesis contributions is to provide a ”pushing”
mechanism for such a case. Another interesting aspect of CEP systems is
how they do handle the memory management. Since pushing data to the
query processor may exceed the internal buffer of a stream processing sys-
tem in general, every stream processing system including CEP systems has
to manage the available memory in an optimal, efficient and careful way. In
Cayuga for example a specific Garbage Collector is built for that purpose. A
radical but not uncommon strategy is to discard some data when available
memory is not enough - especially for many sensors e.g. RFID, the correct
scheme is to discard the oldest samples, as they are least relevant to the cur-
rent state of the sensor - as applied in Fjord-based[14] architecture for Input
Handling in stream processing system e.g. [7]. However since DejaVu as
an extended MySQL database system is able to operate by ”pulling” data,
switching between the modes ”Push” and ”Pull” becomes a key aspect in
memory management. Doing this adaptively may lead to an optimal way to
handle the memory resources.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 provides the necessary background information of DejaVu.

• Chapter 3 explains how incoming data is provided to the Query Pro-
cessing Engine in DejaVu

• Chapter 4 describes a strategy to switch between two Input Handling
modes adaptively

• Chapter 5 shows the difference of Pull/Push in terms of performance
and memory usage and illustrates the potential of Adaptive Switch

• Chapter 6 reviews this thesis in summary and proposes some future
works based on the conclusions from the previous chapters

7



Chapter 2

Background

2.1 The DejaVu project

DejaVu is an event processing system that integrates declarative pattern
matching over live and archived streams of events. The system is built on top
of the MySQL open-source database system [4] and uses a recent proposal
for an SQL-based declarative pattern matching language standard [15] as
its query language (Listing 2.1). A pattern is defined as regular expressions
over sequences of rows. An example pattern for financial market analysis is
specified in Listing 2.2: A falling price, followed by a rise in price that goes
higher than the price when the fall began.

Listing 2.1: MATCH RECOGNIZE clause for pattern recognition according
to the ANSI standard proposed in 2007 [15]

SELECT <select -list >

FROM <table -name > MATCH_RECOGNIZE(

PARTITION BY <field -name >

ORDER BY <field -name >

MEASURES <measure -list >

MATCH_NUMBER

CLASSIFIER

ONE/ALL ROW PER MATCH

MAXIMAL/INCREMENTAL MATCH

AFTER MATCH SKIP TO NEXT ROW/PAST LAST ROW /...

PATTERN (....)

DEFINE <define -alphabets >

)

Listing 2.2: an example pattern for financial market analysis
PATTERN (A B+ C* D)

DEFINE /* A defaults to True, matches any row */
B AS (B.Price <= PREV(B.Price))

C AS (C.Price > PREV(C.Price) AND C.Price <= A.Price)

D AS (D.Price > PREV(D.Price) AND D.Price > A.Price)

8



2.2 Architecture of DejaVu

The architecture of DejaVu (Figure 2.1) is an extension to the basic skeleton
of MySQL in support of running different forms of pattern matching queries
(one-time, continuous, and hybrid). Where one-time queries operate on
static data, continuous queries as well as hybrid queries detect patterns over
live event streams and in the later case over both live and archived data
streams. By making use of one of the key architectural features of MySQL
- the pluggable storage engine API (Section 2.4) - two new types of storage
engines for the Live Stream Store and the Archived Stream Store (Section
2.3) are built in order to support data streams for continuous and hybrid
queries. Pattern matching happens inside the Query Processing Engine
(Section 2.5), the core of DejaVu, which is able to operate in two modes
- Push and Pull (Chapter 3). By pulling the data from a particular store
whenever the Query Processing Engine needs, it’s able to find the specified
pattern and report the matches immediately to the client. Whereas in Push
Mode the query processor waits for the input stream and process it as soon
as it arrives. As one can see in Figure 2.1 the query processor is designed
to operate in Push and Pull only with the Live Stream Store.

Figure 2.1: DejaVu System Architecture

2.3 Stream Storages

DejaVu supports two storages for data streams - the Live Stream Store
(Section 2.3.1) and the Archived Stream Store (Section 2.3.2). Both stores
serve their own purpose and can be accessed through their predefined low-
level API’s. Moreover in case of bursty or high-rated streams the Archived
Stream Store can be used along with the Live Stream Store to prevent any
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data loss. More details on the Live Stream Store and its access methods are
provided in the corresponding section since one of the focuses of this thesis
is to enhance the performance of pattern matching on live streams.

2.3.1 Live Stream Store

The Live Stream Store (Figure 2.2) is an in-memory store that accepts push-
based inputs. More specifically it resides in the shared memory (paragraph
Shared Memory) which enables concurrent access for the streaming appli-
cation and the query processor. A streaming application generates an input
stream by writing data periodically to the Live Stream Store. Depending
on the input handling mode, data from the Live Stream Store is pushed to
or pulled by the Query Processing Engine. In order to operate with the
Live Stream Store, first a data schema has to be provided. For that purpose
DejaVu is extended with the following syntax:

CREATE STREAM <name>(<column_name> type(length),...);

The data schema along with other meta data like type information etc. is
stored as a shared memory resource for the access to the Live Stream Store.
And all the basic access methods such as read() or write() are provided
in a low-level API. It exists in form of a shared library which can be dy-
namically loaded by any processes such as the streaming application or the
Query Processing Engine. A queue is used as an internal structure to en-
sure the order of incoming data. Read/write-operations on the Live Stream
Store are implemented as dequeue() and enqueue() respectively. Since this
store can be accessed by two concurrent processes (streaming application
and query processor), operations on the queue are guarded by semaphores
(paragraph Semaphores). A mentionable fact is that whenever a process
attempts to read from an empty queue, its execution is blocked (by abus-
ing the semaphore mechanism) until the queue becomes non-empty. This
mechanism allows accessing threads responsible for Input Handling to be
suspended.

Figure 2.2: The Live Stream Store and its components
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Shared Memory

Advantages of using shared memory for inter-process communication (IPC)
are:

• Memory Management - when the processing rate is slower than the
arrival rate of the input stream, the internal queue grows and it leads
to a higher usage of the shared memory. In case of insufficient shared
memory, the operating system takes care by file swapping.

• Performance - since both processes can access the shared memory area
like regular working memory, this is a very fast way of communication.

On the other hand, it is less powerful, as for example the communicating
processes must be running on the same machine (whereas other IPC methods
can use a computer network). Thus streaming from other machines requires
a socket which runs on the same machine as DejaVu. In summary a stream-
ing application (itself as a local source) or its socket (for external sources)
generates the input stream by writing data to the Live Stream Store.

Semaphores

Semaphores are used to control racing conditions between the concurrent
processes. Special care has to be taken since they create too much latency
to the streaming rate. On closer observation as shown in Figure 2.3 one can
see that concurrent access is only safe if the queue contains more than one
element. Therefore the queue is only locked if its cardinality is 1 or less.

Figure 2.3: Concurrent access to the queue by Process A and B

2.3.2 Archived Stream Store

Live input events can also be fully or selectively materialized into an archive
store. Archive store respects the pre-defined order of the events, and only
allows updates in the form of appends. It is also designed to provide features
such as data compression and efficient access methods for historical pattern
matching queries. Furthermore, since the archive is a persistent store, it can
support the live store in dealing with bursts and failures.
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2.4 MySQL Storage Engine API

The Query Processing Engine uses the MySQL Storage API to access a
particular storage. This API is implemented as an abstract class, which
provides methods for basic operation such as opening, closing a table (in
the view of the query processor in MySQL, a data source is always regarded
as a table with a corresponding data schema) or reading a record. A storage
engine implements the interface methods to translate the basic operations
into low-level API calls for that particular storage. Therefore a storage
engine loads the corresponding shared library containing this low-level API
whenever it is instantiated by the query processor.

2.5 Query Processing Engine

The Query Processing Engine is the centerpiece of DejaVu and extends
the MySQL query processor with pattern matching capability. As such
it is able to handle the input in MySQL style - by pulling data with the
Storage API and evaluating it one by one. But when it comes to pattern
matching queries the execution model and logic differ from the original query
execution. Based on Finite State Machines (FSM) (Section 2.5.1) the Query
Processing Engine in combination with the DejaVu Router (Section 2.5.3) is
able to detect patterns within a (non-)contiguous dataset which is buffered
in the InputHolders (Section 2.5.2).

2.5.1 Finite State Machines

A FSM consists of three main components (Figure 2.4):

Figure 2.4: a Finite State Machine and its main components

• Pattern - the target pattern specified in the query is represented as
a set of states and edges. For example given the following pattern
(A, B+, C*), the corresponding FSM has a singleton state A, a plus
state B+, a star state C* and a final state F as shown in Figure
2.5. Transitions from a state X to a state Y can only happen if the
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corresponding edge predicate evaluates to true where Y can be X itself
(reflexive transition e.g. C* in the figure). The target pattern is found
whenever the FSM reaches the state F.

• MatchBuffer - holds the current partial matches. Whenever the whole
match is found, the FSM reports the match immediately and empties
the MatchBuffer.

• InputBuffer - holds two pointers which represent the begin and the
current status of the semantic window.

Figure 2.5: pattern (A, B+, C*) represented as states

Given a ’MATCH RECOGNIZE’ query, the query processor executes one or
more instances of a FSM - referred to as a run - for (non-)contiguous pattern-
search within the data set. (In case of a contiguous pattern matching only
one FSM will be running.)

2.5.2 InputHolder

Data records are preprocessed to tuples and stored in memory buffers called
InputHolders. Each InputHolder has a corresponding FSM which looks for
the specified pattern within the buffered data (Figure 2.6). Since a record
may belong to more than one pattern matches, each tuple has to be buffered
until it is no more needed. This happens when the tuple is not in the range
of the semantic window any longer (paragraph Sliding the window).

Sliding the window

There are two cases where a FSM resets itself and moves the semantic win-
dow according to a particular strategy:

13



Figure 2.6: a FSM during its execution on an InputHolder

• pattern match - after a match has been found by the FSM inside
the window, sliding happens according to the strategy specified in the
query.

• pattern non-match - when the processed data does not fulfil the pat-
tern condition, the sliding strategy AFTER MATCH SKIP TO NEXT
ROW is applied.

Currently DejaVu supports two different sliding strategies:

• AFTER MATCH SKIP TO NEXT ROW - the FSM starts to search
for a new pattern with the tuple after the first tuple of the previous
data inside the InputBuffer.

• AFTER MATCH SKIP PAST LAST ROW - pattern search starts
with the tuple after the last tuple of the previous data inside the
InputBuffer.

Figure 2.7 illustrates a FSM before and after sliding according to the men-
tioned strategies. Sliding the window has a great impact on memory man-
agement since it increments the set of ”already processed” tuples at least
by 1. Those tuples are considered as ”garbage” in the view of the Query
Processing Engine.

2.5.3 DejaVu Router

In case of non-contiguous pattern matching, an InputHolder along with a
FSM is created for each partition and incoming tuples are forwarded by
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Figure 2.7: Effect on a FSM and its InputHolder after Sliding

the DejaVu Router [13] to those buffers wrt. their partition. Figure 2.8
illustrates the routing mechanism for incoming data tuples. Currently all
runs are executing in a single thread and scheduled by a simple loop through
the runs. As for the contiguous case all the data is considered as a single
partition - therefore only one FSM and one InputHolder exist in run-time.
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Figure 2.8: Input Handling in DejaVu
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Chapter 3

Input Handling in DejaVu

In the previous chapter we have seen that DejaVu is able to handle push-
based inputs (paragraph Never-ending stream) with the Live Stream
Store in two modes: Pull and Push. Both methods describe different ap-
proaches how input streams reach the Query Processing Engine. And both
of them have pros and cons in terms of memory usage and performance
(Chapter 5). The following sections describe the two input handling modes
in detail and compare them based on a simple cost model.

Never-ending stream

An input stream is considered as an endless data stream. Thus its ending
has to be defined explicitly. For that purpose the low-level API of the Live
Stream Store includes such a method for a streaming application which
indicates the ”end” of the stream table in the view of the Query Processing
Engine. As a future work a signal mechanism has to be implemented to
catch the event of abrupt unplugging of a streaming source.

3.1 Pull mode

In traditional database systems where data sets exist in form of static ta-
bles, the query processor operates by pulling record by record from a table
source. DejaVu is able to handle streaming and static data in a similar
way. Whenever data is needed for a pattern search, it pulls data from the
(stream) table using the MySQL Storage API. A record is preprocessed
to a data tuple and forwarded by the DejaVu Router to an InputHolder.
If the corresponding InputHolder does not exist at that time, the router
creates a new InputHolder and instantiates a new FSM running on that
data holder. In case of non-contiguous pattern matching, there are as many
FSM’s/InputHolders as partitions. A record requested by a FSM may be
routed to other partitions. In that case the demander run is skipped and
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the next FSM in the waiting list is executed. Figure 3.1 illustrates a general
view of DejaVu’s architecture in terms of Input Handling in pull-mode while
Figure 3.2 shows the Input Handling and Event Processing in a work-flow
diagram.

Figure 3.1: DejaVu in Pull-Mode: from Streaming to Processing

Figure 3.2: DejaVu in Pull-Mode: Work-flow of Event Processing
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Remark - Operating with Live Stream Store

Since runs are currently operating in the same thread and scheduled
by a simple loop, a traditional pull may block all the running FSM’s
when the Live Stream Storage contains no data. A small modification
is needed for non-blocking pulling (Listing 3.1):

Listing 3.1: Non-blocking Pull
/*
* sql_select.cc
* MySQL Optimizer module
*/
/* procedure call for executing a run*/
static enum_nested_loop_state run_window(JOIN *join ,JOIN_TAB

*join_tab , int time_tick)

{

...

/* info represents the MySQL Storage API (handler object)*/
READ_RECORD *info= &join_tab ->read_record;

...

/*
* Modification:
* Whenever the query processor wants a new record,
* it checks the queue status of the Stream Storage
*/

if (info ->file ->get_record_no () >0){

error= info ->read_record(info);

...

}

The first read by the query processor is a blocking operation in case the
streaming application is not fully initialized (Section 2.3.1). Stream-
ing data accesses the Live Stream Store using its low-level API. Once
the queue is non-empty, read-operations become non-blocking as shown
above.

3.1.1 Cost Analysis

In order to find the ”weakness” of running in Pull Mode, it’s important to
analyze the operating cost for the Query Processing Engine. As shown in
Figure 3.3, the basic work-flow of the query processor can be simplified to
the following four processing steps:

1. read record() - read a record from a table source using the MySQL
Storage API.

2. forward record() - forward a record to the corresponding InputHolder
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Figure 3.3: a simplified architecture and its work-flow in Pull Mode for Cost
Analysis

3. process record() - read a record from InputHolder and evaluates it by
a FSM

4. report record() - reports a record

For step 1 and 2, their maximal number of calls equals the cardinality of
the input set |D|. Whereas in step 3 and 4 this is not the case. Each data
tuple can be processed or reported several times - depending on the sliding
strategy and the match mode - denoted by Xi and Yi respectively. Based on
the assumption (paragraph Assumption) that those four operations run in
a constant time, the overall cost for the query processor CQPtot would be:

CQPtot = |D|×(Cread+Cforward)+
|D|∑
i=1

Xi×Cprocess+
|D|∑
i=1

Yi×Creport (3.1)

Assumption

It must be pointed out that the cost model above does not match the reality
exactly. In case of the reading cost Cread for example, an access time of a
record in a table or stream - which exists in disk or memory - varies from
record to record because of spatiality (see also Operating with Stream
Storage). As long as the fragmentation remains low, the differences in ac-
cess time are negligible. The cost to forward a data tuple varies as well.
Because of the fact that when a corresponding InputHolder doesn’t exist
at that time, the query processor - more specifically the DejaVu Router -
has to create a data holder and instantiate a FSM. As for the processing
cost - especially the evaluation part since reading from an InputHolder in
memory is regarded as constant (same as Cread) - its variation depends on
the pattern specification or more detailed on the edge condition. If an edge
condition consists of more than one pattern variable, then the correct tuple
in the MatchBuffer has to be found for comparison. Thus the difference in
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cost for forwarding and processing is in general not negligible. But for sim-
plicity of the cost formula Cforward as well as Cprocess are noted as constant.
Especially in terms of the processing cost Cprocess it doesn’t matter whether
it is constant or not since the variation remains the same for both modes
(Push/Pull) and thus no impact for their comparison (Section 3.3). The
only operation, which can be regarded as really constant, is Creport.

Run scheduling

The fact that runs are scheduled in a simple loop generates a latency for each
FSM execution. Moreover each run has its own total latency cost Zi since
some terminates earlier and some not. Thus the total latency for all runs due
to the current scheduling for the query processor is Crun latency tot =

∑K
i=1 Zi

where K is the total number of runs which equals the number of partitions.

Operating with Live Stream Store

Since the access to the Live Stream Store is based on semaphores, the corre-
sponding storage engine may have to wait until the semaphore is increased
(released). This implicates a waiting cost for each reading. Thus:

Cread = Csem latency + Creal read

3.2 Push Mode

Operating in Pull Mode the query processor has to read and forward the
data in order to get it processed. Comparing to other CEP systems like
Cayuga or SASE where Input Handling and Event Processing happen in
separated layers, this kind of additional workload affects the reactiveness
of the Query Processing Engine negatively. The following sections propose
an architectural approach and its implementation to avoid this problem.
Furthermore a cost analysis for the Push Mode is presented based on the
same cost model in Section 3.1.1.

3.2.1 Architecture

With the proposed architecture as shown in Figure 3.4 Input Handling - read
records from a table through the MySQL Storage API and forward them
using the DejaVu Router - is done in a separated thread and the Processing
Engine can concentrate on its main task - to process records for pattern
matching.
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Figure 3.4: Push Mode Architecture

3.2.2 Implementation

The MySQL core system already uses a thread-based model to handle multi-
ple client connections to the server. This model is implemented according to
the POSIX standard [6] for Unix-systems. By following the same practice,
the DejaVu Push Thread is created and cleaned (paragraph Push Thread
Creation and Termination). Since the Query Processing Engine and
the Push Thread may access global data at the same time and thus cause
race conditions, special care has to be taken for running them in parallel
(paragraph Parallelization).

Push Thread Creation and Termination

Whenever the extended DejaVu Query Processing Engine - referred to as the
parent thread - runs in Push Mode , it initializes and executes the DejaVu
Push Thread encapsulated in an MySQL THD object - referred to as the
child thread - with some static information e.g. table, join, FSM, pointer to
the thread procedure etc. needed for Input Handling. Since a newly created
POSIX thread shares all of the calling process’s global data with the other
threads in this process (although it has its own set of attributes and private
execution stack.), an access to shared resources e.g. InputHolders is provided
by default. In case the streaming ends (paragraph Never-ending stream),
the Push Thread terminates and cleans itself by joining its parent.

Remark - Pools of equals and their scheduling
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In the section above and also in Figure 3.4 the terms parent/child thread
are used for simplicity, e.g. to illustrate the order of the thread initializa-
tions. But with POSIX threads this hierarchical relationship doesn’t ex-
ist. While a main thread may create a new thread, and that new thread
may create an additional new thread, the POSIX threads standard views
all your threads as a single pool of equals. So the concept of waiting for
a child thread to exit doesn’t make sense. The POSIX threads standard
does not record any ”family” information. This lack of genealogy has
one major implication: if you want to wait for a thread to terminate, you
need to specify which one you are waiting for by passing the proper tid
to pthread join()On the other hand a newly created thread inherits the
calling thread’s signal mask, possibly, and scheduling priority by default
(Pending signals for a new thread are not inherited and will be empty).
In this sense the usage of the terms parent/child is thoroughly suitable.
The scheduling of the DejaVu Push Thread works like in other MySQL
threads - the scheduling properties are left untouched, each thread runs
with the same priority by the operating system.

Parallelization

Since two threads are working on the same resource - namely the set of
InputHolders - one may notice the lack of locks. The reason behind this is
to make full parallelization for the two concurrent threads possible. After
careful consideration one can see that no race condition exists at all as shown
in Figure 3.5. In view of the DejaVu Router (executed by Push Thread) only
the last element of an element is of interest. Either the last tuple is at the
end of the semantic window or not. In both cases no real concurrent access
exists since the router changes the target of the next pointer where the other
thread may process the record inside this tuple. Forwarding a tuple may lead
to a run creation. Here again information about a run is encapsulated in
an element with a next pointer. Thus the router modifies the next pointer
of the last element in the list of runs, leaving the rest untouched while the
processing run reads the run information.
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Figure 3.5: No race condition due to the Data Tuple structure

3.2.3 Basic Work-flow

The basic work-flow of Event Processing consists of two independent work-
flows as separated by the fine dotted line in the middle of Figure 3.6. First
of all the Query Processor Engine is initialized and started. Once it’s done,
it creates the DejaVu Push Thread for Input Handling. Its work-flow starts
right after the initialization and keeps on reading and forwarding records
until the streaming ends (paragraph Never-ending stream). In the mean-
time the Query Processor executes available runs one by one until there are
no more tuples in the InputHolders AND the end of the stream table is
indicated as true. At that point it waits for the Push Thread to join. A
FSM execution basically consists of the following main steps:

• get a data tuple

• if there is a data tuple, process it

• return to query processor

Processing means - as mentioned earlier - evaluating the edge condition and
if possible, report any pattern matches found.
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Figure 3.6: Basic work-flow of CEP in Dejavu operating in Push mode

3.2.4 Cost Analysis

With the proposed architecture - Figure 3.7 illustrates a simplification of
Push Mode - the overall system cost can be separated into cost of query
processing CQPtot and cost of input handling CPTtot. Based on the same
assumptions and idea as for Pull Mode (section 3.1.1), the formulas would
look like:

CPTtot = |D| × (Cread + Cforward) (3.2)

CQPtot =
|D|∑
i=1

Xi × Cprocess +
|D|∑
i=1

Yi × Creport (3.3)
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Figure 3.7: a simplified architecture and its work-flow in Push Mode for
Cost Analysis

3.3 Conclusions

From the cost formulas for Pull (3.4) and Push (3.5) one can see that the
overall cost for the query processor operating in Push mode is less - especially
the overhead of pulling (3.6) comes to appearance when the size of the data
set |D| is large. As already mentioned in Section 3.1.1 the variation of
Cprocess as well as the variables Xi and Yi depend on the semantics and thus
remain the same for Push and Pull.

CQPtot Pull = |D| × (Cread +Cforward) +
|D|∑
i=1

Xi ×Cprocess +
|D|∑
i=1

Yi ×Creport

(3.4)

CQPtot Push =
|D|∑
i=1

Xi × Cprocess +
|D|∑
i=1

Yi × Creport (3.5)

COverhead = |D| × (Cread + Cforward) (3.6)

Operating in Pull mode, the Query Processing Engine requests data when
necessary. Along with the cost model the following conclusions can be made:

+ A low memory usage in the query processor can be expected. Since
the InputHolders are only filled if there are no more tuples for the
current FSM execution.

- Since the query processor has to handle the inputs by itself, it makes
the processing rate slower. Thus the Query Processing Engine is
less reactive in terms of incoming data.

- When the input stream becomes high-rated or bursty, the usage of the
shared memory increases.

As for Push Mode where data is pushed to the Query Processing Engine by
a separated thread, the following pros and cons can be concluded:
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+ The query processor doesn’t have to deal with Input Handling. Thus
the processing rate is higher which affects the reactiveness of the
Query Processing Engine in a positive way.

+ The data load of the Live Stream Store - which resides in the shared
memory - is lower since the DejaVu Push Thread will forward in-
coming data directly to the relevant InputHolders.

- The Query Processing Engine claims more memory than it’s actually
needed.

- An additional thread has to be created for the pushing architecture
which requires context switches of threads during runtime.
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Chapter 4

Adaptive Switch

In the previous chapter the two operating modes for Input Handling are
presented in detail. Each mode has its pros and cons. As it concerns the
Pull Mode the Query Processing Engine uses less memory. On the other
hand pushing data to the query processor leads to a better performance in
pattern detection. Therefore switching between those modes according to
the context is the optimal way to handle the trade-off between performance
and memory usage. The remainder of this chapter explains the motivation
behind the switching condition, the condition itself and provides detailed
information about the switching mechanism in terms of its architecture and
implementation.

4.1 Motivation

The only reason to go from Push to Pull is because of the memory constraint
every system has. Thus a straightforward strategy to switch to Pull is when
a certain limit of available memory is exceeded and to toggle back when
enough memory is freed (Memory blocks are only freed whenever a pattern
is found or a non-match happens):

# define a threshold T
If mem_usage <= T Then doPush
Else doPull

The main disadvantage of following this simple plan is illustrated in Fig-
ure 4.1. Let’s assume the specified query uses the sliding strategy AFTER
MATCH SKIP PAST LAST ROW and there is one InputHolder with one
FSM running on it to detect the patterns. The InputHolder has already
allocated τ percent of its available memory. Thus by applying the switching
condition above all the following data tuples 6,7,8 are pulled until the mem-
ory usage goes down below τ . Now the following happens: the latest tuple 8
pulled by the Query Processing Engine produces a match. Thus after sliding
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all the tuples of the semantic window can be discarded and switching back
to Push is applied. As one can see under such a circumstance staying in
Push from the beginning would have been worthwhile since 6,7,8 could have
been pushed.

Figure 4.1: simple switch and its weakness

Remark - An Analogy to ”Tetris” I

Tetris is a very popular game during the 90’s and challenged by young
and old. Especially in advanced levels where the blocks fall very quickly.
And at the moment where only small spaces are left to maneuver the
pieces, not a few had wished that they might come a little slower. De-
jaVu can grant you this wish comparing to other CEP engines. By
pulling data by data whenever the Query Processor needs, the system
has enough time to prepare and react to the worst case. Furthermore
by switching the modes adaptively, the good pieces come in high speed
where the bad ones are slowed down. The difficulty is to make a decision
for each block whether it’s good or bad...

4.2 Introduction

The idea behind the switching condition is try to predict whether the incom-
ing data is ”good” or ”bad” based on some statistic information collected
during run-time. ”Good” tuples are those who fulfill the corresponding edge
conditions and can potentially complete a pattern. The bad ones don’t fit
the right edge conditions and thus the causes for non-matches. The key to
switch is the probability of a ”good” sequence to appear. For example in
combination with a tumbling window the good ones should be pushed as
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soon as possible to the corresponding FSM’s in the hope to get a match
along with a memory reduction caused by a slide. Even the bad ones can be
used as shown later. Such a strategy is kind of risky since it assumes that
data underlies a certain distribution and thus the naming ”Go4Risk”. The
next subsection shows the run-time status of a FSM and its InputHolder in
order to understand when and what to predict.

4.2.1 Run-time status

A running FSM with n states has a current state Scur and divides its In-
putHolder into three parts during run-time as illustrated in Figure 4.2. L
elements are already processed and can be deleted right away. N elements
reside inside the semantic window and match the states S1 until Scur. Note
that N equals the number of edge transition made from S1 until Scur. Fi-
nally R unprocessed tuples are left and may fulfill the edge conditions for
the states Scur+1 until Sn.

Figure 4.2: FSM runtime status

4.2.2 Impact of an unprocessed data sequence

Let’s assume the following scenario (Figure 4.3) and the fact that this FSM
completes a pattern when a k-length sequence of good tuples are coming.
T is the number of blocks that has been allocated so far. No unprocessed
tuples exist at the moment (R=0).
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Figure 4.3: Impact of an unprocessed data sequence

Table 4.1 shows the impact of an input sequence with size k. Depending on
the incoming data and the sliding strategy, moving the semantic window - as
a consequence of a pattern match or non-match - affects the corresponding
InputHolder differently. In this context Told and Tnew are the numbers
of allocated blocks before and after the sliding respectively, R represents
the unprocessed tuples after the slide and G resp. B denotes the good
and bad tuples of a sequence. Here one can see that a good sequence of
length k (G,G,G,..,G) (Figure 4.4) does not always affect the InputHolders
in a positive way. In combination with a tumbling window it’s obviously
optimal since this sequence leads to a pattern along with a slide which
makes Tnew = 0. After the FSM-reset R becomes 0 as well. On the other
hand sliding to NEXT ROW decreases the holder size by one but increases
it as well by the length of the sequence. Thus Tnew = Told+k−1. The FSM
starts with the next tuple which means R = Tnew − 1 = Told + k − 2.
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Figure 4.4: Impact of a good sequence of length k (G,G,G,..,G)

Having one bad tuple ((B); k=1) (Figure 4.5) is not really bad since a
non-match leaves T unchanged (1 tuple comes to cause a non-match and 1
tuple leaves because of the non-match). But this is not true for a sequence
containing a bad tuple (k 6= 1) (Figure 4.6) since the first bad one causes a
non-match and due to the FSM reset the other tuples of this sequence can
not be considered as good G? or bad B? anymore because of the changed
context.

Figure 4.5: Impact of one bad tuple ((B); k=1)
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Figure 4.6: Impact of a sequence containing a bad tuple

In summary whenever a sequence contains a tuple which doesn’t satisfy the
corresponding edge condition, all the tuples of this sequence including itself
lose their context property (good/bad) due to the FSM reset. On the other
hand when no unprocessed data exist (R=0), processing a bad tuple won’t
cause any harm since the number of allocated blocks remains unchanged.
The biggest impact however happens when a sequence of tuples completes a
pattern in combination with a tumbling window. Thus data prediction may
help to slow down (Pull mode) or speed up (Push Mode) the impact of an
incoming data sequence.

tuple sequences with length k NEXT ROW PAST LAST ROW

(G,G,G,..,G)
R = Tnew − 1; R = 0;
Tnew = Told + k − 1; Tnew = 0;

(B) (k=1)
R = Told − 1;
Tnew = Told;

(B,B?, B?, ..)
(B,G?, .., B?, ..) R = Tnew − 1;
(G?, .., B,G?) Tnew = Told + k − 1;

...

Table 4.1: Impact of incoming tuple sequences in combination with the two
sliding strategy: NEXT ROW and PAST LAST ROW
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4.3 Data Prediction

It seems almost impossible to predict whether a data tuple is good or not
since these properties are tightly coupled with the current FSM context as
mentioned in the previous section. But first let’s start with a simple example.
Given a pattern (A) and the stream s=A:X:A:X:A:X the probability of the
next tuple being a good one (=A) is 1

2 since the input size is 6 and the
match found is 3. One may conclude that the probability of a data tuple
”belonging” to state Si is

pSi =
nrSi

|s|
,

where nrSi is the number of tuples ”assigned” to Si and |s| denotes the
size of the considered tuples so far. The flaw of this model is that a tuple
may be processed several times and thus it may ”belong” to several states as
shown with the next example. Given the pattern specification (A < 50, B <
40) and the stream s={T1(=10),T2(=20),T3(=30)}, T2 may be considered
as B and A as well. A more appropriate model is to make the switching
decision based on the selectivity of the states (defined in Section 4.3.1).
Applying this model changes the focus of prediction. Instead of predicting
whether incoming tuples are good or bad this approach tries to foresee the
selectiveness of the query processor and thus the way how it will react to
unknown data based on historical information.

4.3.1 Statistic Model

The statistic model behind the prediction is based on the selectivity of the
states inside a FSM. A state corresponds to a pattern variable specified in
the query and three basic types of the states are differentiated:

• Singleton - holds one single match tuple

• Star - holds zero or more match tuples

• Final - represents the end of the pattern and does not contain any
tuples

(Note that in the previous sections, the Plus state is mentioned which holds
one or more tuples. It is a composite type (Singleton and Star) and thus
not listed.) Two states Si and Sj are attached to each other by an edge
ei,j and in order to transit from state Si to Sj , the condition on ei,j has to
be evaluated to true. In case of Star state, reflexive transitions are allowed
to hold more than one tuple. The Final state has no outgoing edge and
represents the end of the pattern search. Figure 4.7 shows the three basic
types of states and their edges. Note that the outgoing non-reflexive edge
of a Star state evaluates always to true - denoted as ε − condition - and
therefore the following assumption has to be made:
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Assumption 1 (Mutual exclusiveness of edge predicates). Consecutive edge
predicates are mutual exclusive. This assumption prevents a tuple from
being ”selected” by more than one state. For example given the pattern
(A*,B) a tuple may be ”consumed” by A* or by B since a transition to B
by the non-reflexive edge of A* can always happen. In the implementation
of FSM the edge predicates are evaluated in a particular order to avoid this
scenario.

Figure 4.7: three basic types of states

A common definition of selectivity Sop(R) of an operator op on a set R in
the database community [8] is the percentage of number of tuples in R that
satisfy the condition of op. For our purpose a similar formula is deduced.
The selectivity selSi of a state Si is defined as (Definition 4.1), where nrin
denotes the number of tuples coming in and nrout the number of tuples
leaving the state Si. In order for a tuple to leave a State either the outgoing
edge is evaluated successfully (Singleton) or the condition of the reflexive
edge is not fulfilled (Star). Note that selSi can also be seen as the probability
of leaving the state Si and each of them are conditionally independent
[3]. Thus multiplication of selectivities is allowed analog to the Bayesian
network [1].

Definition 1 (Selectivity of a State Si).

selSi =
nrout
nrin

(4.1)

Let’s consider a simple example to see how prediction and selectivities of the
states are connected. Given the pattern (A,B), the stream s=A1,A2,B1,B2
and tumbling window behavior, the first window w1 opens with A1. A1
fulfills CondA and the FSM moves to B. Therefore nrin = nrout = 1 and
selA = 1

1 . A2 can not match the pattern variable B and no further transition
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happens. Thus the selectivity of state B after processing w1 is selB = 0
1 . The

second window w2 starts with A2 and ends with B1. The match (A2,B1) is
found and selA resp. selB changes to 2

2 and 1
2 . At the end the last window

w3 is processed and closes with a non-match of B2 to state A. selA resp.
selB has the value 2

3 and 1
2 . So what do selA and selB actually mean? selA

says that from 3 opened windows (w1,w2,w3) only 2 of them (w1,w2) fulfill
the A condition. For selB it means that whenever the previous state A
has been passed, 1 (w2) out of 2 (w1,w2) windows contains another tuple
matching B as well. Thus selA ∗ selB = 1

3 represents the so-called Overall
Match Statistic (Definition 2) - from 3 opened window (w1,w2,w3) only
1 (w2) contains the pattern (A2,B1).

Definition 2 (Overall Match Statistic). The Overall Match Statistic is de-
fined as the number matches found divided by the number of windows opened.

As mentioned earlier selectivities of the states can also be seen as probabil-
ities of the successful outgoing edge evaluations - illustrated in Figure 4.8.
From state A’s point of view, a new data tuple gets to state B with proba-
bility 2

3 since the FSM opened a window 3 times but only for windows w1
and w2 a tuple could be found for transition A→B. The same is valid when
the FSM’s current state is B and it has to predict whether the next tuple
is selected or not. Based on the collected data the probability to finish the
pattern starting from B is 1

2 .

Figure 4.8: pattern (A,B) and the edge probabilities gained after processing
A1:A2:B1:B2

In general for a FSM in the current state Scur the multiplication of selectiv-
ities from Scur to the last state (before Final state) Sn describes how likely
it is to leave those states to complete the pattern (4.2). Thus when the
remaining selectivity Selremain is high (>= K), the more likely it is to have
the FSM finished the pattern search.

Selremain =
n∏

i=cur

selSi >= K (4.2)

But how to determine K? Let’s start with a simple example. Given a sin-
gleton pattern (A), the remaining selectivity is exactly the selectivity of the
state A Selremain = selA. For a singleton there are only two options: leave or
stay. Leaving means that a tuple has been found that satisfies the outgoing
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edge condition. Following a uniform distribution, the expected outcome K
would be 0.5 and thus if Selremain >= 0.5, the system has high acceptance.
For a Star State however it’s more difficult as shown in Figure 4.9.

Figure 4.9: Selectivity of a Star state following an uniform probability dis-
tribution

Assume that the probabilities for Stay and Leave are uniformly distributed
and both 0.5. But unlike a singleton, Leaving can also happen after a Stay.
Consider the state A* and the data sequence X,Y. Processing X remains in
A* with probability 1

2 and Y will cause a non-match and leave A* with the
same probability. Thus the probability to leave A* is 1

2 ∗
1
2 . The chance to

leave (or selectivity) is 1
2 + 1

4 + 1
8 + ... which converges to 1 as well as the

expectation K. The formula (4.2) has to be rewritten as:

Definition 3 (Selectivity of the remaining states).

Selremain =
n∏

i=cur

selSi, selSi = 1 if Si is Star. (4.3)

Definition 4 (High/Low Selremain).

Selremain is

{
high if Selremain >= K

low otherwise
(4.4)

Definition 5 (Expected Outcome K following a uniform distribution).

K =
n∏

i=cur

ai

{
ai = 0.5, if Si is Singleton,
ai = 1, otherwise.

(4.5)

On the first sight that seems not very helpful since it only says that the
FSM will leave the state for sure after some time. But exactly this conver-
gence - for any distribution as shown in the following proof - guarantees that
the FSM must leave this state at a point of time.
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Selectivity of a Star state converges to 1. As shown above the chance to
leave a Star state (uniform distributed) is selStar = 1

2 + 1
4 + 1

8 + .... This
is actually a geometric series s =

∑∞
i=1

1
2i with its limes lim

n→∞
s = 1.

For any distribution with the probabilities α to Stay and β = 1 − α to
Leave, selStar = β + α ∗ β + α2 ∗ β + ... =

∑∞
i=1 β ∗ αi. The limes is

lim
n→∞

selStar = α
(1−β) = α

(1−(1−α)) = 1

As an example the following pattern (A*,B,B*,C) and the stream s={A1,A2,B1,C1}
are considered to calculate the selectivities of each state step by step as
shown in Table (4.2). Figure 4.10 shows the corresponding states and their
edges.

Figure 4.10: pattern (A*,B,B*,C) and their edges

In Step 1 the first tuple A1 fulfills CondA. Thus its selectivity is 0
1 and the

others remain 0. The same happens in Step 2 for A2 and selA∗ = 0
2 . When

the third tuple B3 comes, condA is false and the outgoing edge from A* to
B is taken, therefore selA∗ = 1

3 . In state B, B3 makes the transition from B
to B* possible and thus selB = 1

1 . For the last tuple C1 since it can’t fulfill
CondB of the state B* but the other condition to C, the selectivity for B*
is selB∗ = 1

1 . C1 also causes the transition from C to F, therefore selC = 1
1

and the pattern (A1:A2:B1:C1) is found by the FSM. In combination with a
tumbling window, the pattern search is finished. In that case the remaining
selectivity and K for the next window with current state A* is calculated as
follows according to (4.3) and (4.5):

• Selremain =
n∏

i=cur
selSi = 1× selB × 1× selC = 1

• K =
n∏

i=cur
ai = 1× 0.5× 1× 0.5 = 0.25

Steps 5-10 show the further development when the sliding TO NEXT ROW
is used.
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Step processed tuples transitions made selA∗ selB selB∗ selC

1 A1 A*→A* 0
1 0 0 0

2 A1:A2 A*→A* 0
2 0 0 0

3 A1:A2:B1 A*→B→B* 1
3

1
1 0 0

4 A1:A2:B1:C1 B*→C→F 1
3

1
1

1
1

1
1

Sliding: TO NEXT ROW - discard A1, start with next tuple A2

5 A2 A*→A* 1
4

1
1

1
1

1
1

6 A2:B1 A*→B→B* 2
5

2
2

1
1

1
1

7 A2:B1:C1 B*→C→F 2
5

2
2

2
2

2
2

Sliding: TO NEXT ROW - discard A2, start with next tuple B1

8 B1 A*→B→B* 3
6

3
3

2
2

2
2

9 B1:C1 B*→C→F 3
6

3
3

3
3

3
3

Sliding: TO NEXT ROW - discard B1, start with next tuple C1

10 C1 A*→B 4
7

3
4

3
3

3
3

Sliding: TO NEXT ROW - discard C1

Table 4.2: Evolution of the Statistic

Now having these tuples processed (TO NEXT ROW) the remaining se-
lectivity and K for the next window with current state A* is calculated as
follows according to (4.3) and (4.5):

• Selremain =
n∏

i=cur
selSi = 1× selB × 1× selC = 3

4

• K =
n∏

i=cur
ai = 1× 0.5× 1× 0.5 = 0.25

One may ask for what purpose the selectivities of Star states are calculated
since they are considered as 1 as stated above. The clou is that their recip-
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rocals (4.6) are the average numbers of tuples ”needed” per window avgSi

to leave the star state.

Definition 6 (Average Number of Tuples inside a Star State ).

avgSi = selS
−1
i if and only if Si is a Star state. (4.6)

All in all based on this model first we can determine whether the re-
maining selectivity is high or low and second to predict the number of tu-
ples needed to leave the Star State - both as part of the Go4Risk strategy
introduced with the next section.

Excursus - Overall Match Statistic

In general the overall match statistic of singletons pattern is calculated
as 4.7 where n denotes the number of states and pSi the selectivity of a
state Si.

Matchoverall = Seloverall =
n∏
i=1

pSi (4.7)

Proof of 4.7. The proof is based on induction. The base case (n=1)
holds always since the Match Statistic of a singleton state is exactly its
selectivity. Let’s say the Matchoverall = out

in where out are the numbers
of tuples leaving Sn when in tuples are fed. Now the pattern is extended
by one singleton state with a selectivity of pSn+1. Exactly out tuples are
passed to Sn+1 and only pSn+1∗out are not filtered out and can leave the
final state Sn+1. Thus the new overall Match Statistic is Matchoverall =
pSn+1∗out

in = out
in ∗ pSn+1 =

n∏
i=1

pSi ∗ pSn+1 =
n+1∏
i=1

pSi.

The main difference between a Star and a Singleton state in terms of
Match Statistic is that the selectivity of a Star state may consider zero,
one or more tuples for an open window. Whereas for a singleton state
there is exactly one tuple per window, if possible. Thus the formula
above is only correct if the selectivities of Star states are ignored and
the last pattern variable is a singleton.

4.4 Go4Risk

From the previous chapter it’s shown that the Query Processing Engine has
a better performance when operating in Push Mode due to the separated
Input Handling. On the other hand the memory usage is very high from the
query processor’s view since incoming data is forwarded right away with the
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speed of the input rate. But actually it’s not necessary to push all of the
data as soon as possible, especially when the processing rate is slower than
the input rate. In this case the amount of unprocessed tuples increases and
remains untouched until they get processed. At worst these tuples reserve
such an amount of memory that other FSM executions are blocked until the
corresponding run hopefully can find a match or non-match and releases the
obsolete tuples. Thus in Push mode the number of tuples to forward should
be bounded by RBound. If the number of unprocessed tuples R is higher
than RBound (R > RBound) then the query processor should operate in Pull
Mode - which actually means that Pushing is stopped until R <= RBound.
Actually in order to avoid a permanent toggling between the two modes
- since the difference between the conditions is only 1 - Push should be
suspended until R <= 1. (Note that a run executing in Pull Mode is slower
if and only if R equals 0 because in this case the FSM has to request data
by itself and causes some latency to the processing time.)

4.4.1 Match Length Prediction

But how should RBound look like? Let’s analyze the FSM and its In-
putHolder run-time status. Let M tuples reside in the semantic window
and the number of unprocessed tuples R=0. If the selectivity of the remain-
ing states is high - which means that it’s likely to have a match with the
next lseq tuples - then a slide will happen. When a tumbling window is used,
no data is left to be processed and the FSM has to pull the next tuple. To
prevent this from happening RBound should be lseq +1. Additional to that if
the overall Match Statistic is high (>= 0.5), a constant U can be specified
along with lpattern to reduce the switching cost (see Excursus - User spe-
cific RBound). On the other hand when the probability of a match is low -
which means it’s likely to have a non-match - then the next lseq tuples cause
a slide by 1 (and the number of unprocessed tuples is R = M + lseq − 1).
RBound is set to lseq although the memory increases by lseq−1. These tuples
have to be tested anyway to cause the non-match.
In case of a sliding window (NEXT ROW) - where a match and a non-match
have the same effect - RBound is set to lseq +U ∗ lpattern and lseq respectively
similar to a tumbling window. Table 4.3 shows the boundary of R according
to the situation in summary.
Now what are lseq, U and lpattern? Since the data sequence with length lseq
will ”test” the remaining states, it should be as described in Formula (4.8)
with avgSi as the average number of tuples needed by the Star state to leave.
Since the Star state may cause many tuple allocations, the first one should
be passed first.
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Definition 7 (Match Length Prediction - Calculation of lseq).

lseq =
n∑

i=cur

ai


ai = 1 if Si is Singleton,
ai = davgSie else if Si is the first Star state
ai = 0 otherwise

(4.8)

As for the constant U and lpattern - where they are used to predict the length
of future matches (see Excursus - User specific RBound) - they are defined
as follows:

Definition 8 (Future Match Length Prediction - Constant U and Calcu-
lation of lpattern).

U ∈ ℵ0 [Default: U = 0; ] (4.9)

lpattern =
n∑
i=1

ai


ai = 1 if Si is Singleton,
ai = davgSie else if Si is the first Star state
ai = 0 otherwise

(4.10)

TO NEXT ROW PAST LAST ROW

Selremain high & Matchoverall > 0.5 lseq + U ∗ lpattern lseq + 1 + U ∗ lpattern

otherwise lseq lseq + 1

Table 4.3: Values of RBound according to the situation

Based on the Statistic Model and the conclusion made for prediction, the
switching strategy ”Go4Risk” works as follows: Whenever a tuple is pro-
cessed by a FSM, it updates the Statistic Model, calculates the selectivities
of the remaining states and set RBound according to Table 4.3. If the num-
ber of unprocessed tuples R is smaller than RBound, more tuples should be
forwarded (Push Mode). Otherwise the Adaptive Switch should stop push-
ing (Pull Mode) more data to the InputHolders. Let’s make an example
based on the previous one (Table 4.2) starting with the current State A*.
The remaining selectivity is high since Selremain = 3

4 and the expectation
K=0.25. Thus RBound is calculated as follows:

• RBound = lseq =
∑n

i=1 ai+bi = (d34
−1e+0)+(1+0)+(0+0)+(1+0) = 3

Now if R is larger than 3 pushing is stopped since there is no need to push
more data and will be resumed if R decreases to < 3.
With this setup Adaptive Switch should reach a performance close to ”al-
ways pushing” (since R is at least 1) but with less memory usage in average
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in the query processor’s perspective. Note that in combination with a tum-
bling window, staying in Push is more likely compared to the sliding TO
NEXT ROW since R decreases slow in the later case and may not fulfill the
criteria R <= RBound.

Excursus - User specific RBound

Actually if RBound is set to 1, it leads to the best memory household
possible since this guarantees that R is never 0 and thus the query
processor always reads from InputHolder instead from the Storage. But
the problem is the switching cost since a permanent Push/StopPush may
happen. Reducing this switching cost is the only reason for prediction.
If the predicted selectivity is high, we make a gamble if the proposed
data sequence lseq can end the pattern search or not. But we can still go
further and say: if it’s likely to find a match, then why not pushing more
data to reduce the number of switching. For that purpose the length of
the future match lpattern is predicted similar to lseq but starting with the
first pattern variable (Formula 4.10). The constant U represents the
number of future matches and is specified by the user when he wants
more performance in cost of memory. The tradeoff here is:

the higher U (and therefore RBound) the less the switching
cost but also the risky the memory management

4.4.2 Coordination with non-contiguous data set

In case of non-contiguous data where several FSM’s and InputHolders exist
in run-time, special care has to be taken since the FSM executions are
scheduled in a single thread inside a loop. Thus a decision for Push/Pull
made during a run affects the other FSM’s as well. The idea to overcome this
problem is to analyze only those InputHolders to which data is forwarded
mostly. By following this approach the impact of switching should also
appear on those InputHolders instead of the other ones. For this purpose
the statistic model has to be extended with the global data distribution to
each holder and that partition is chosen with the best distribution. Once
the target InputHolder is set, the Go4Risk strategy is applied to it.

4.5 Architecture

The Adaptive Switch acts as an intermediate between the Push Thread and
the Query Processing Engine as shown in Figure 4.11. When the query
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processor operates in Pull Mode, it calls the Adaptive Switch (Go4Risk)
before executing a FSM to decide whether it should keep operating in the
same mode or switch to Push. In the later case the Push Thread is resumed
for Input Handling. To switch back from Push to Pull the Push Thread
checks after forwarding a data tuple whether it is worthwhile to stay in Push
by asking the Adaptive Switch. If Push does not pay off, the Push Thread
suspends itself and signalizes the Query Processing Engine to operate in
Pull Mode again.

Figure 4.11: Adaptive Switch Architecture

4.6 Implementation

The implementation of the Adaptive Switch consists of a mechanism to
suspend/resume the Push Thread and to set the operating mode of the
Query Processing Engine in a consistent way. In POSIX this mechanism
is realized using a condition variable (Listing 4.1). Whenever the Push
Thread is active, it asks the Adaptive Switch whether the pushing condition
R <= RBound still holds or not. In the first case nothing happens and the
next data tuple is pushed but for the later case (R > RBound) the operating
mode changes to Pull and the thread is suspended by pthread cond wait().
At the same time the particular FSM (Section 4.4.2) checks the condition
R <= 1 after each tuple evaluation. If it is true, the Push Thread is revoked
by pthread cond signal(). Otherwise nothing happens.
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Listing 4.1: Suspend/Resume mechanism in Adaptive Switch
1 /*
2 * Suspend/Resume mechanism of the Adaptive Switch
3 * adaptive_switch_proc() in sql_select.cc
4 */
5

6 if ((router ->current_mode ()== PushMode)&& sw_cond_pull){

7 // Switch From Push Mode to Pull Mode
8 router ->set_mode(PullMode);

9

10 pthread_cond_wait (& ad_switch_cv ,& ad_switch_mutex);

11 }

12 else{

13 if ((router ->current_mode ()== PullMode)&& sw_cond_push){

14 //Switch From Pull Mode to Push Mode
15 router ->set_mode(PushMode);

16 pthread_cond_signal( &ad_switch_cv );

17 }

18 }

In addition to the suspend/resume mechanism a statistic module is imple-
mented to collect all the relevant information in run-time. More specifically
each FSM holds an instance of this statistic module which is updated after
a tuple evaluation. Besides some update functions the module also provides
basic methods to calculate RBound and the overall match statistic. All the
public methods are guarded by locks which allow concurrent accesses by the
Push Thread (get RBound) or query processor (update information). Listing
4.2 shows the calculation of RBound according to the selectivity.

Listing 4.2: Calculation of RBound
1 /*
2 * getRbound()
3 * public method of class AdSwitch_statistic in

dejavu_statistic.h
4 */
5 int getRbound(int cur){

6 int i=0;

7 pthread_mutex_lock (& _mutex);

8 if (FullMatch > 0){

9 // calculate llseq
10 i=calcllseq(cur);

11 // calculate Sel_remain and K to check the selectivity
12 if (calcSelRemain(cur) >=calcK(cur)){

13 i+=llm;

14 // in case U is set >1 and high matching rate
15 if (( OpenWindow > 0)&&(( FullMatch/OpenWindow) >= 0.5))

16 i+=U*calcllseq (0);

17 }

18 }

19 else{

20 // if no match statistics are available
21 i=nr_states;

45



22 }

23 pthread_mutex_unlock (& _mutex);

24 return i;

25 }
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Chapter 5

Measurements

From previous chapters we know that DejaVu is able to handle inputs in
two different ways: Pull and Push. Both have their pros and cons in terms
of memory usage and performance. While pulling data allows an optimal
memory management on the query processor’s side, the push mode offers
a better performance for pattern matching. With the introduction of the
Adaptive Switch their strengths are combined by predicting the query pro-
cessor’s speed and only pushing a certain amount of tuples at a given time.
Therefore the query processor should demonstrate a performance close to
”Always Push” with a careful memory usage when switching is applied adap-
tively according to the context. In this chapter we present some experimen-
tal results to first show the difference between Push and Pull and second to
signify the potential of Adaptive Switch.

5.1 Experimental Setup

All the following experiments were conducted on a laptop with a Intel Pen-
tium Core2 Duo 1.8 Ghz and 2.0 GB memory on Ubuntu Intrepid 9.04 (Ker-
nel 2.6.28-16-generic). The installed version of DejaVu is based on mysql-
6.0.3-alpha. Measurements are divided into two sections: ”Pull vs. Push”
(Section 5.2) and ”Adaptive Switch vs. Pull/Push” (Section 5.3). In both
sections the memory usage and performance are evaluated with increasing
data rates. More specifically they are measured with a particular data rate
within the interval [50;5000] (tuples per second) and plotted with the Bezier
curve [2] which is widely used to show an approximation of the data trend.
In terms of memory usage we calculated the average number of tuples
allocated by the query processor during run-time. That means whenever a
new tuple is routed to the InputHolders, a memory snapshot of all current
holders is taken and summed to the previous snapshots. At the end the
average is computed by dividing the sum through the number of data tu-
ples. For performance evaluation in general we measured on the one hand
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the throughput of the system by dividing the total processing time of the
query through the number of input tuples. In some experiments we also
quantify the latency in average - the average time for a tuple residing
in the storage until the first time being selected by the FSM - in order to
support the conclusions made in the corresponding sections.

5.1.1 Data Set Specification

A real financial dataset from NYSE TAQ (Trade and Quote) database for
January 2006 [5] is used for the experiments. Therefore all the entries can
be regarded as randomly distributed. We set the size of the data to 5000
records.

5.1.2 Query Specification

The following code snippets describe our test queries Q1 (Listing 5.1), Q2
(Listing 5.2), Q3 (Listing 5.2) and Q4 (Listing 5.2). They are of financial
nature and try to detect a tic-shape pattern within a data set. Q1 and
Q3 consider the data as a single partition (contiguous pattern matching)
whereas Q2 and Q4 looks for tic-patterns for each company (non-contiguous
pattern matching) - partitioned by their names. As one may have noticed
the only difference between Q1 and Q3 resp. Q2 and Q4 lies on the sliding
strategy - using either a sliding (TO NEXT ROW) or a tumbling window
(PAST LAST ROW). Both of them have to be considered in the experiments
since they have great impact on the memory usage and performance. The
choice fell upon a varying pattern instead of a fixed pattern to make the
experiments more generally.

Listing 5.1: Test query Q1
SELECT * FROM trade MATCH_RECOGNIZE(

MEASURES MATCH_NUMBER AS matchno

AFTER MATCH SKIP PAST LAST ROW

ALL MATCHES

PATTERN(A B+ C* D+)

DEFINE /* A defaults to True, matches any row */
B AS (B.Price < A.Price AND B.Price <= PREV(B.Price))

C AS (C.Price > B.Price AND C.Price >= PREV(C.Price) AND C.

Price <= A.Price)

D AS (D.Price > PREV(D.Price) AND D.Price > A.Price)

);

Listing 5.2: Test query Q2
SELECT * FROM trade MATCH_RECOGNIZE(

PARTITION BY symbol

MEASURES MATCH_NUMBER AS matchno

AFTER MATCH SKIP PAST LAST ROW

ALL MATCHES
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PATTERN(A B+ C* D+)

DEFINE /* A defaults to True, matches any row */
B AS (B.Price < A.Price AND B.Price <= PREV(B.Price))

C AS (C.Price > B.Price AND C.Price >= PREV(C.Price) AND C.

Price <= A.Price)

D AS (D.Price > PREV(D.Price) AND D.Price > A.Price)

);

Listing 5.3: Test query Q3
SELECT * FROM trade MATCH_RECOGNIZE(

MEASURES MATCH_NUMBER AS matchno

AFTER MATCH SKIP TO NEXT ROW

ALL MATCHES

PATTERN(A B+ C* D+)

DEFINE /* A defaults to True, matches any row */
B AS (B.Price < A.Price AND B.Price <= PREV(B.Price))

C AS (C.Price > B.Price AND C.Price >= PREV(C.Price) AND C.

Price <= A.Price)

D AS (D.Price > PREV(D.Price) AND D.Price > A.Price)

);

Listing 5.4: Test query Q4
SELECT * FROM trade MATCH_RECOGNIZE(

PARTITION BY symbol

MEASURES MATCH_NUMBER AS matchno

AFTER MATCH SKIP TO NEXT ROW

ALL MATCHES

PATTERN(A B+ C* D+)

DEFINE /* A defaults to True, matches any row */
B AS (B.Price < A.Price AND B.Price <= PREV(B.Price))

C AS (C.Price > B.Price AND C.Price >= PREV(C.Price) AND C.

Price <= A.Price)

D AS (D.Price > PREV(D.Price) AND D.Price > A.Price)

);

5.2 Pull vs. Push

Figure 5.1 and 5.2 show the memory usage and performance of Q1 (con-
tiguous pattern matching, tumbling window) denoted by their y-axis where
the x-axis represents the interval of the data rate from 0 to 5000 tuples per
second.
What we expect is that the query processor operating in Pull Mode uses a
constant amount of memory for all the input rates (Figure 5.1). The reason
behind this is because of the nature of pulling. It only allocates new tuple
if there is no unprocessed data left in the InputHolders. On the other hand
in Push Mode the usage of the memory increases along with the data rate
since more data is pushed at a given time.
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Figure 5.1: Pull vs. Push: Memory Usage of Q1 (contiguous, tumbling
window), Result size: 7457

As it concerns the performance (Figure 5.2) one can conclude that for input
rates below ∼2000 tuples/sec the query processor is under-stimulated. It
could have processed more tuples (and thus could have a higher throughput)
at a given time but the data was not coming fast enough. We also can see
that the throughput remains almost constant (∼1100 tuples/sec) when the
data rate is higher than 2000 tuples/sec. That’s the maximal throughput
a query processor can achieve in Pull mode in this example. On the other
hand operating in Push mode, where the query processor does not have
to handle the inputs, the throughput grows with increasing data rate until
∼1500 tuples/sec. Thus by having the data pushed into the InputHolders,
the query processor is able to show off its true capability - an increase of the
throughput by almost 30 percent. This performance gain is also reflected in
latency as shown in Figure 5.3. Note that the latency for Pull is also ∼30
percent higher than Push and the curves increase with the data rate because
the query processor cannot cope with the higher speed.
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Figure 5.2: Pull vs. Push: Performance Evaluation of Q1 (contiguous,
tumbling window), Result size: 7457

Figure 5.3: Pull vs. Push: Latency of Q1 (contiguous, tumbling window),
Result size: 7457

As for the non-contiguous case (Q2 shown in Figure 5.4 and 5.5) the curves
may seem a little bit strange at first sight since they don’t cope with the
statements above. But on closer observation the graphs surely make sense
since routing a tuple in Pull mode to other holders has a similar effect as
pushing. Whenever a FSM requests data and the next tuple of the queue
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does not ”belong” to the caller’s partition, the data will be forwarded to the
corresponding run instead. Next time when this run’s turn comes, its FSM
does not need to handle any inputs since there is already an unprocessed
tuple in the InputHolder forwarded in a previous step. As one can see in
the figures the mentioned side effect leaves a great impact on the memory
usage and performance. Although the query processor is operating in Pull
mode, the curves in memory usage and performance are very push-like - the
increase of memory allocation and throughput are only around 20 and 12
percent respectively.

Figure 5.4: Pull vs. Push: Memory Usage of Q2 (non-contiguous, tumbling
window), Result size: 3493
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Figure 5.5: Pull vs. Push: Performance Evaluation of Q2 (non-contiguous,
tumbling window), Result size: 3493

A different story it is when a sliding window is applied for the pattern search.
Let’s have a look at the results of Q3 (Figure 5.6, 5.7 and 5.8). Although the
statements for contiguous pattern matching remain still valid (i.e. memory
usage), the performance gain was less than 20 percent. This is because
of the fact that whenever a match (or non-match) happens, all the tuples
inside the semantic window are considered as unprocessed except the first
one (which will be discarded by the slide). Thus the query processor does
not have to request a tuple from the storage at that time comparing with Q1
(tumbling window) where a FSM has to request for data after every match
in Pull mode.
Analog to Q1 the performance gain is also reflected in latency. It has to be
mentioned that the time lags for Q1 and Q3 are different. Using a sliding
window may increase the latency of a tuple a lot since at worst it processes
the data in the semantic window several times before getting to a new tuple.
In this example the latency in Q3 is multiplied by almost 600 times. But
still one can recognize the same trends as for Q1.

53



Figure 5.6: Pull vs. Push: Memory Usage of Q3 (contiguous, sliding win-
dow), Result size: 13083

Figure 5.7: Pull vs. Push: Performance Evaluation of Q3 (contiguous,
sliding window), Result size: 13083
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Figure 5.8: Pull vs. Push: Latency of Q3 (contiguous, sliding window),
Result size: 13083

In Figure 5.9 and 5.10 the evaluation of Q4 are illustrated. Here again one
can observe that Pull and Push behave very similar in case of non-contiguous
pattern search because of the same reason as in Q2. But in addition to that
the performance gain is also dampened by the ”TO NEXT ROW” effect to
around 5 percent. Table 5.1 shows the experiment results in summary.

Figure 5.9: Pull vs. Push: Memory Usage of Q4 (non-contiguous, sliding
window), Result size: 5180
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Figure 5.10: Pull vs. Push: Performance Evaluation of Q4 (non-contiguous,
sliding window), Result size: 5180

Query Sliding Data Set
Memory Throughput

Push Push

Q1
PAST LAST ROW

contiguous +∼100% +∼30%

Q2 non-contiguous +∼20% +∼12%

Q3
TO NEXT ROW

contiguous +∼100% +∼20%

Q4 non-contiguous +∼20% +∼5%

Table 5.1: Push compared to Pull in summary

5.3 Adaptive Switch vs. Pull/Push

As concluded from the previous comparison the performance and memory
usage of Pull and Push are similar when pattern matching happens on a non-
contiguous data set. Therefore to show the potential of Adaptive Switch only
the queries Q1 and Q3 are evaluated. From the results we can see that by
using the Adaptive Switch the memory usage can be kept very low as well
(Figure 5.11 and 5.14) but the increase of performance vary from interval
[0;∼ 30] percent (tumbling window) and [0;∼ 20] percent (sliding window)
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(Figure 5.12 and 5.15). In terms of latency one can see that its curve takes
course between Push and Pull as expected (Figure 5.13 and 5.16).

Figure 5.11: Adaptive Switch in action: Memory Usage of Q1 (contiguous,
tumbling window), Result size: 7457

Figure 5.12: Adaptive Switch in action: Performance Evaluation of Q1 (con-
tiguous, tumbling window), Result size: 7457
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Figure 5.13: Adaptive Switch in action: Latency of Q1 (contiguous, tum-
bling window), Result size: 7457

Figure 5.14: Adaptive Switch in action: Memory Usage of Q3 (contiguous,
sliding window), Result size: 13083
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Figure 5.15: Adaptive Switch in action: Performance Evaluation of Q3 (con-
tiguous, sliding window), Result size: 13083

Figure 5.16: Adaptive Switch in action: Latency of Q3 (contiguous, sliding
window), Result size: 13083

In combination with the specification of value U, the performance gain tends
more to ”Always Push”. However the memory usage is still more than ac-
ceptable comparing to Push. The figures 5.17 show the memory and perfor-
mance evaluation of Q1 with U varying from 1,2 and 10. They are focused on
the data rate interval from [3000,5000] in order to see the difference between
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the curves more clearer.

Figure 5.17: Adaptive Switch with varying U: Memory and Performance
Evaluation of Q1 (contiguous, tumbling window), Result size: 7457
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Chapter 6

Conclusions and Future
Work

DejaVu used to handle streaming data and static data in the same way -
whenever the Query Processing Engine needs data it tries to ”pull” the tu-
ples from the storage. But exactly this effects the processing time negatively
- the more data is requested the clearer the latency a pull operation causes.
By introducing a pushing mechanism where data is forwarded as soon as
they arrive all the FSM’s don’t need to care about Input Handling anymore.
In the view of the query processor the data is ”magically” put into the In-
putHolders. Based on the cost models and also on the experiments one can
see that separation of independent tasks like Pattern Detection and Input
Handling increases the performance of processing considerably. Thus similar
to Input Handling, reporting the matches should also happen in a separate
layer like other CEP systems e.g. [9] and [12].
A problem that gives current CEP systems a headache is the memory con-
straint. Although they optimize the memory management e.g. by running
an efficient Garbage Collector or reusing existing data structure, it’s still
not enough. There may be a point where the processing rate cannot keep
up with the streaming rate and causes the arriving data to be buffered to
nowhere. The system may still be able to allocate some bytes based on the
concept of virtual memory and file swapping. But the access operations are
slower since data has to be swapped from disc to memory and vice versa.
In DejaVu it is not different. When the process memory is insufficient the
same has to be done. However DejaVu is able to postpone this ”worst-case”
by using the Adaptive Switch. It tries to predict the query processing rate
in advance and pushes only the needed amount of data at once. In this case
only those tuples are allocated in the process memory area whereas the rest
of the data stays in the Stream Storage. The memory household is more
economic. Note that there is a big difference if data are in the process mem-
ory area e.g. InputHolders or in the Stream Storage. Although the store
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resides in the shared memory (and therefore in the process memory area as
well), its engine is able to redirect the data stream to the Archive Stream
Store according to its usage and for example making it persistent. Still this
feature leaves some question opened and requires some further research.
From the measurements one can conclude that the Adaptive Switch works
well on a contiguous data set where a single FSM is working on one parti-
tion. But as it concerns multiple partitions with more than one runs, the
selection of one InputHolder according to the global data distribution fails
when data is uniformly distributed to the partitions. Besides that having
multiple runs operating in a single thread reduces the performance dramat-
ically. (A FSM has to wait for its turn until the other ones have finished
theirs - although they could have run independently of each other.) Thus
the introduction of multi-threaded runs does not only solve the performance
problem but also allows Adaptive Switch working on each FSM separately.
Another interesting aspect is to see how Adaptive Switch works when data
is partitioned in a lower level. Currently whenever a FSM requests data
from the Storage Engine, the record is routed to the corresponding runs - a
side effect which may not be wanted by the concerned FSM’s and disturbs
the memory management of the particular runs.
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Appendix A

Experimental Results

The following tables show the experimental results of Q1, Q2, Q3 and Q4
in numbers with the header described below:

• Data Rate - the input rate in tuples per second

• Avg Mem - the average memory usage in ] tuple allocations

• Max Mem - the maximal memory usage in ] tuple allocations

• Avg Queue - the average queue usage in ] tuple allocations

• Max Queue - the maximal queue usage in ] tuple allocations

• Result - the size of result set in tuples

• Time (ms) - the overall processing time in milliseconds

• Throughput - the throughput of the system in tuples per second

• Records - the size of input set in tuples

• Latency (only in certain sections) - the latency in milliseconds
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A.1 Pull Mode

A.1.1 Contiguous Pattern Matching

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
98 3 13 1 85 7457 50901.96 98.23 5000
285 3 13 1 23 7457 17556.43 284.8 5000
461 3 13 3 41 7457 10885.86 459.31 5000
881 3 13 82 345 7457 5989.09 834.85 5000
1241 3 13 641 1277 7457 5081 984.06 5000
1584 3 13 1074 1965 7457 4854.87 1029.89 5000
2106 3 13 1297 2885 7457 4726 1057.87 5000
2552 3 13 1647 3453 7457 5122 976.16 5000
2995 3 13 1709 3576 7457 4640 1077.69 5000
3420 3 13 1788 3666 7457 4420 1131.15 5000
7793 3 13 2283 4562 7457 4540 1101.2 5000

Table A.1: Evaluation of Q1 in Pull Mode

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
99 3 11 0 52 13083 50808.84 98.41 5000
286 3 11 19 178 13083 17546.9 284.95 5000
466 3 11 26 114 13083 10859.47 460.43 5000
871 3 11 645 1371 13083 7477.35 668.69 5000
1224 3 11 1103 2421 13083 8674 576.43 5000
1544 3 11 1495 3133 13083 7497.35 666.9 5000
1765 3 11 2047 4160 13083 8328 600.35 5000
2078 3 11 1743 3687 13083 7065 707.67 5000
2544 3 11 1975 4038 13083 7171 697.21 5000
3030 3 11 1991 3995 13083 6911 723.43 5000
3334 3 11 2113 4254 13083 7012 713.07 5000
7586 3 11 2367 4746 13083 6660 750.77 5000

Table A.2: Evaluation of Q3 in Pull Mode
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Latency

Data Rate Latency
1558 920
2144 1324
2589 1577
3049 1795
3688 1953
4225 2084
7063 2213

Table A.3: Latency of Q1 in Pull
Mode

Data Rate Latency
1574 124058
2106 124824
2585 125424
3006 125609
3654 126040
4060 125961
6811 126646

Table A.4: Latency of Q3 in Pull
Mode

A.1.2 Non-Contiguous Pattern Matching

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
98 674 1041 0 60 3493 51351.76 97.37 5000
282 808 1217 5 193 3493 18640.79 268.23 5000
464 1176 1940 11 225 3493 11993.29 416.9 5000
885 1417 2695 1 50 3493 7624.48 655.78 5000
1257 1646 3199 3 97 3493 6334.2 789.37 5000
1547 1786 3454 9 140 3493 5843.65 855.63 5000
2122 1896 3703 166 576 3493 5331.05 937.9 5000
2571 1925 3750 261 1105 3493 5291.28 944.95 5000
3009 1945 3763 624 1685 3493 5248.72 952.61 5000
3411 1947 3771 678 1622 3493 4993.04 1001.39 5000
7208 1948 3766 1871 3743 3493 6321.12 791 5000

Table A.5: Evaluation of Q2 in Pull Mode

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
98 659 986 0 47 5180 51583.78 96.93 5000
241 792 1277 0 17 5180 21920.26 228.1 5000
460 1233 2303 21 366 5180 12951.07 386.07 5000
875 1586 3068 1 45 5180 8575.19 583.08 5000
1252 1769 3489 9 120 5180 7180 696.38 5000
1592 1840 3670 35 283 5180 6797.87 735.52 5000
2156 1960 3859 314 834 5180 6314 791.87 5000
2570 1998 3893 613 1404 5180 6250 800.03 5000
3042 2008 3903 508 1356 5180 7321 682.97 5000
3238 2009 3909 926 2137 5180 6174 809.84 5000
7246 2008 3903 1826 3823 5180 5981 835.93 5000

Table A.6: Evaluation of Q4 in Pull Mode
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A.2 Push Mode

A.2.1 Contiguous Pattern Matching

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
98 8 197 0 3 7457 51328.03 97.41 5000
278 7 41 0 10 7457 18078.12 276.58 5000
426 10 63 0 21 7457 11807.11 423.47 5000
608 65 371 0 24 7457 8490.27 588.91 5000
695 249 587 0 47 7457 7561.15 661.28 5000
793 70 280 0 11 7457 6366.84 785.32 5000
1237 1096 2145 0 25 7457 5220.51 957.76 5000
1534 1079 2685 0 34 7457 4773 1047.63 5000
1868 1467 3151 0 32 7457 4561.09 1096.23 5000
2324 1912 3874 1 105 7457 4280.07 1168.21 5000
2434 1661 3405 1 37 7457 3886.25 1286.59 5000
2676 1645 3330 2 66 7457 3654 1368.49 5000
3200 1782 3662 2 115 7457 3642 1372.69 5000
3675 1907 4019 1 55 7457 3596 1390.39 5000
6815 2206 4368 55 483 7457 3140 1592.16 5000

Table A.7: Evaluation of Q1 in Push Mode

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
98 5 133 0 4 13083 51206.78 97.64 5000
360 46 218 0 13 13083 13942.3 358.62 5000
503 491 985 0 17 13083 10539.32 474.41 5000
807 1338 2637 0 38 13083 9260.1 539.95 5000
977 1574 3163 0 26 13083 8379.19 596.72 5000
1568 1744 3660 0 49 13083 6923.65 722.16 5000
2107 1902 3936 4 75 13083 6494 769.99 5000
2163 2078 4253 1 47 13083 7494.28 667.18 5000
2566 2018 4118 1 58 13083 6283.92 795.68 5000
3009 2119 4310 1 77 13083 6070.07 823.71 5000
3202 2126 4293 2 87 13083 5963 838.52 5000
7587 2399 4760 7 217 13083 5469 914.19 5000

Table A.8: Evaluation of Q3 in Push Mode

67



Latency

Data Rate Latency
1604 134
2172 778
2660 950
3200 1183
3801 1351
4209 1539
5718 1608

Table A.9: Latency of Q1 in Push
Mode

Data Rate Latency
1615 123362
2236 124400
2698 125014
3116 124991
3838 125935
3860 125351
6180 125649

Table A.10: Latency of Q3 in Push
Mode

A.2.2 Non-Contiguous Pattern Matching

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
97 742 1139 0 5 3493 52431.23 95.36 5000
278 1180 2070 0 13 3493 19352.94 258.36 5000
458 1457 2755 0 11 3493 14386.26 347.55 5000
830 1829 3571 0 4 3493 8736.87 572.29 5000
1248 1949 3864 0 0 3493 7039.14 710.31 5000
1532 2187 4349 1 53 3493 6605.33 756.96 5000
1617 2028 4075 0 10 3493 7430.87 672.87 5000
1656 2097 4156 0 1 3493 6295.29 794.24 5000
2144 2184 4333 3 96 3493 5643.69 885.94 5000
2487 2218 4368 2 123 3493 5333.54 937.46 5000
2983 2187 4429 0 25 3493 4987.61 1002.48 5000
3132 2205 4483 0 25 3493 4983.15 1003.38 5000
3460 2242 4515 5 91 3493 4792.7 1043.25 5000
3870 2295 4606 2 128 3493 4986.5 1002.71 5000
6241 2339 4692 23 339 3493 4989.27 1002.15 5000

Table A.11: Evaluation of Q2 in Push Mode
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Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
98 753 1191 0 3 5180 51947.74 96.25 5000
420 1519 2998 0 4 5180 14647.47 341.36 5000
701 1760 3492 0 30 5180 10428.05 479.48 5000
1278 2036 3964 0 59 5180 7888.75 633.81 5000
1421 2063 4101 0 19 5180 8754.08 571.16 5000
2025 2189 4347 0 0 5180 6812.58 733.94 5000
2204 2225 4524 1 107 5180 6715 744.57 5000
2241 2153 4308 2 127 5180 6525.74 766.2 5000
2809 2210 4444 0 37 5180 6022.59 830.21 5000
3154 2250 4525 3 147 5180 5999.53 833.4 5000
3722 2286 4594 4 183 5180 5792 863.26 5000
7578 2356 4739 51 478 5180 6226 803.05 5000

Table A.12: Evaluation of Q4 in Push Mode

A.3 Adaptive Switch

A.3.1 U=0

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
97 4 15 3 137 7457 51685.17 96.74 5000
187 5 17 8 243 7457 26778.18 186.72 5000
349 6 16 23 376 7457 14369.79 347.95 5000
613 6 17 7 67 7457 8198.17 609.89 5000
840 7 18 31 145 7457 6000.82 833.22 5000
1125 7 16 1318 2641 7457 6219.45 803.93 5000
1522 7 16 887 1587 7457 4579.9 1091.73 5000
1810 7 17 1149 2345 7457 4309.48 1160.23 5000
2456 7 16 1389 2675 7457 3959 1262.93 5000
2885 7 16 1588 3214 7457 5587 894.91 5000
3163 7 16 1906 3842 7457 4385 1140.19 5000
3515 7 17 1838 3651 7457 4006 1248.13 5000
7229 7 16 2298 4602 7457 4205 1188.94 5000

Table A.13: Evaluation of Q1 with Adaptive Switch
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Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
96 4 13 4 147 13083 52137.61 95.9 5000
271 5 14 2 42 13083 18511.46 270.1 5000
450 6 14 18 120 13083 11145.35 448.62 5000
855 6 13 730 1605 13083 7935.95 630.04 5000
1210 6 13 1440 2831 13083 7868.55 635.44 5000
1506 6 13 1508 3096 13083 7212.54 693.24 5000
1792 6 14 1744 3444 13083 8566.06 583.7 5000
2120 6 13 1783 3539 13083 6774.67 738.04 5000
2486 6 13 1848 3670 13083 6492.91 770.07 5000
2859 6 13 2025 4131 13083 6685.82 747.85 5000
3286 6 13 2059 4095 13083 6426.35 778.05 5000
3670 6 13 2118 4221 13083 6547.52 763.65 5000
6531 6 14 2352 4675 13083 6552.91 763.02 5000

Table A.14: Evaluation of Q3 with Adaptive Switch

Latency

Data Rate Latency
1508 455
2055 1076
2477 1270
2815 1452
3480 1692
3725 1785
5298 2039

Table A.15: Latency of Q1 with Adap-
tive Switch

Data Rate Latency
1526 123687
2095 124571
2500 125070
2863 125232
3527 125641
4021 125671
6825 125884

Table A.16: Latency of Q3 with Adap-
tive Switch

A.3.2 U=1

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
1480 34 83 662 1129 7457 4133.31 1209.68 5000
2107 35 83 1050 2152 7457 3852.67 1297.8 5000
3017 35 83 1569 3220 7457 3824.47 1307.37 5000
3696 34 81 1889 3697 7457 3703.46 1350.09 5000
6835 36 83 2186 4487 7457 3631 1376.97 5000

Table A.17: Evaluation of Q1 with Adaptive Switch, U=1
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A.3.3 U=2

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
1480 34 83 662 1129 7457 4133.31 1209.68 5000
2107 35 83 1050 2152 7457 3852.67 1297.8 5000
3017 35 83 1569 3220 7457 3824.47 1307.37 5000
3696 34 81 1889 3697 7457 3703.46 1350.09 5000
6835 36 83 2186 4487 7457 3631 1376.97 5000

Table A.18: Evaluation of Q1 with Adaptive Switch, U=2

A.3.4 U=10

Data Rate Avg Mem Max Mem Avg Queue Max Queue Result Time (ms) Throughput Records
1480 34 83 662 1129 7457 4133.31 1209.68 5000
2107 35 83 1050 2152 7457 3852.67 1297.8 5000
3017 35 83 1569 3220 7457 3824.47 1307.37 5000
3696 34 81 1889 3697 7457 3703.46 1350.09 5000
6835 36 83 2186 4487 7457 3631 1376.97 5000

Table A.19: Evaluation of Q1 with Adaptive Switch, U=10
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