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Shantanu Das, Beat Gfeller, Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Switzerland

Abstract. In a densely connected communication network, represented
by a graph G with nonnegative edge-weights, it is often advantageous to
route all communication on a sparse, spanning subnetwork, typically a
spanning tree of G. With the communication overhead in mind, we con-
sider a spanning tree T of G which guarantees that for any two nodes,
their distance in T is at most k times their distance in G, where k, called
the stretch, is as small as possible. Such a spanning tree which minimizes
the stretch is called an optimal tree spanner, and it can be used for effi-
cient routing. However, for a communication tree, the failure of an edge
is catastrophic; it disconnects the tree. Functionality can be restored by
connecting both parts of the tree with another edge, while leaving the
two parts themselves untouched. In situations where the failure can be
repaired rapidly, such a quick fix is preferred over the recomputation of
an entirely new optimal tree spanner, because it is much closer to the
previous solution and hence requires far fewer adjustments in the rout-
ing scheme. We are therefore interested in the problem of finding for
any possibly failing edge in the spanner T a best swap edge to replace
it. The objective here is naturally to minimize the stretch of the new
tree. We show how all these best swap edges can be computed in to-
tal time O(m2 log n) in graphs with arbitrary nonnegative edge weights.
For graphs with unit weight edges (also called unweighted graphs), we
present an O(n3) time algorithm. Furthermore, we present a distributed
algorithm for computing the best swap for each edge in the spanner.

1 Introduction

In a typical communication network, there are often more links (i.e., communica-
tion channels) available than what is useful for performing most computations.
The presence of these additional links makes it possible to deal with failures in
the network. However, at any given time, only a subset of the links are actually
used for communication. For efficiency reasons, it is beneficial to maintain such a
sub-network and route all communication through this subnet. We represent the
original network as a connected, undirected graph G = (V,E), and the subnet is
a spanning tree T of this graph G. Instead of using any arbitrary spanning tree of
G, we prefer one which has certain desirable properties supporting the required



computations. In this paper, we measure the overhead for communication as a
result of using the subnet T instead of the original network G as the largest
multiplicative increase in distance that any pair of nodes experiences. Thus, we
use a tree T which minimizes the maximum stretch between any two nodes in
T , where the stretch between nodes a, b ∈ T is the ratio of their distance in T
over their distance in G. Such a tree is called an optimal tree spanner of G. Tree
spanners are used for routing in communication networks because they achieve
a good tradeoff between the lengths of communication paths and the sizes of
routing tables needed [14].

A critical problem with which we are confronted in this context is what
happens when one of the links, say edge e ∈ T fails, thereby disconnecting
the tree. There are at least two possible (and extreme) solutions to this: (1)
recomputing an entirely new optimal tree spanner for G − e, or (2) replacing
just the failing edge e by another edge (called a swap edge) that connects the
two disconnected parts of T − e in a best possible way, i.e., so that the stretch
of the resulting tree is as small as possible. For temporary network failures, the
second approach is much better suited than the first, because it is more efficient
to use a swap edge for the duration of the failure, so that we can quickly revert
back to the original spanner T , once the fault has been repaired. Furthermore,
this approach needs only a very small adjustment of routing tables and has
therefore attracted research attention in recent years for simpler spanning trees,
under the name of “on-the-fly rerouting” [5, 7, 9]. As an aside, note also that an
entirely new optimal tree spanner might not only require a total replacement of
all routing table entries, but is in addition NP-hard to find.

When choosing a swap edge for a failing edge e, it is natural to use the same
criterion as before, that is, minimizing the stretch. We always measure the stretch
of a tree with respect to distances in the original graph G, and not with respect to
distances in the (transient) fault-free subgraph G− e 1. Interestingly enough, by
merely going for the best swap, for unweighted graphs we are guaranteed to find
a tree that is not all that bad also in comparison with an entirely new optimal
tree spanner: We show that the stretch of a new tree T ′ obtained by adding a
best swap edge is at most twice that of an optimal tree spanner of G− e (again,
measured w.r.t. distances in G). In order to quickly recover from an arbitrary
edge failure, we pre-compute the best swap edge for each possible failing edge.
The problem we consider in this paper is that of efficiently computing for every
edge in the tree T a best swap edge. This All-Best-Swaps (ABS) problem has
been studied for the cases when the tree T is a minimum spanning tree (MST),
a shortest paths tree (SPT), or a minimum diameter spanning tree (MDST),
with the corresponding different optimization criteria. Our paper is the first one
to study the problem of finding all best swaps for an optimal tree spanner. This
problem appears to be considerably more difficult than the previously studied
ones; in particular, none of the techniques used in earlier studies are applicable
to our problem.

1 Notice that this is a more stable definition for the stretch of a tree.



Our Contributions. We first present and analyze a brute-force algorithm for
solving the problem in Section 2. This algorithm requires O(m2n) time for a
graph having n vertices and m edges. In Section 3, we describe a more efficient
algorithm that reduces the time complexity to O(m2 log n) and requires O(m)
space. We also present an O(n3) time and O(n2) space solution for unweighted
graphs in Section 4. Finally, in Section 5, we show how to compute all the best
swaps of a tree spanner in a distributed fashion. Our distributed algorithm solves
the problem in O(D) time with a communication cost of O(n∗ log n), where D
is the diameter of T and n∗ is the size of the transitive closure of T .

Related Work. The concept of graph spanners was introduced in [13] where
the authors used it to construct good synchronizers for communication networks.
Peleg and Upfal [14] showed that using spanners as a subnet for routing helps
in optimizing both the route lengths and the space required for storing routing
information. Graph spanners (and in particular sparse spanners) are useful in
many applications such as designing communication networks, distributed sys-
tems, parallel computers and also in motion planning [2].

The problem of finding a tree spanner that minimizes the maximum stretch,
called the MMST problem, was shown to be NP-hard [2]. It can be approximated
with ratio O(log n) in unweighted graphs [4].

As mentioned before, the All-Best-Swaps problem has been studied earlier
for different optimization criteria, where the original tree is either a minimum
spanning tree (MST) or a shortest paths tree (SPT) or a minimum diameter
spanning tree (MDST). For a MST, all the best swap edges can be found in
O(m) time [3]. When the original tree is a SPT and the objective is minimizing
the (maximum or total) distance from a fixed root, the ABS problem has been
solved in O(n2) time [11]. While these solutions are centralized, there also exist
distributed solutions for computing best swaps in both the SPT [7] and the
MST [6], where the efficiency is measured in terms of the communication cost in
performing the computation. For minimum spanning trees, a stronger version of
the problem was studied in [6] where the failures were assumed to occur at the
nodes of the network, thereby disabling several edges at the same time.

In the case of minimum diameter spanning trees (MDST), there exists a
centralized solution [8] that requires O(m log n) time and O(m) space. The dis-
tributed version of the problem was solved in [9] using O(max{n∗, m}) messages
of constant size, where n∗ is the size of the transitive closure of the tree, when
the edges are directed towards the node initiating the computation.

2 Computing All Best Swaps

2.1 Some Definitions and Properties

We use the following definitions and notations throughout this paper.

1. A communication network is a 2-edge-connected, undirected graph G =
(V,E), with n = |V | vertices and m = |E| edges. Each edge e ∈ E has
a non-negative real length |e|.



2. The length |P| of a path P = 〈p1, . . . , pr〉 is the sum of the lengths of its
edges, and the distance dH(x, y) between any two vertices x, y in a graph H
is the length of a shortest path in H between x and y.

3. The stretch of a spanning tree T of G is

max
x,y∈V

{dT (x, y)/dG(x, y)}

An optimal tree spanner is a spanning tree with minimum stretch.
4. We often consider a spanning tree T to be rooted at some node u. For each

node x 6= u, we then denote the parent of x by p(x) and the set of its children
by C(x). Furthermore, let Tx = (V (Tx), E(Tx)) be the subtree of T rooted
at x, including x.

5. The removal of any edge e = (x, y) from T partitions the spanning tree into
two disjoint trees T x and T y, where T x contains node x and T y contains y. A
swap edge f for e is any edge in E\ET that (re-)connects T x and T y, i.e., for
which Te/f := (V,ET \{e}∪{f}) is a spanning tree of G−e := (V,E\{e}). Let
S(e) be the set of swap edges for e. A best swap edge for e is any edge f ∈ S(e)
for which the stretch of Te/f , defined as maxx,y∈V {dTe/f

(x, y)/dG(x, y)}, is
minimum. Any edge f ∈ E\ET is called a candidate swap edge, as it is a
swap edge for at least one edge in T .

6. The All-Best-Swaps problem for a given graph G and a given optimal tree
spanner T of G consists of finding for every edge e ∈ ET a best swap edge.

The following property simplifies the computation of the stretch for a given swap
edge f with respect to a given failing edge e:

Observation 1 (follows from Lemma 16.1.1 in [12].) Let G = (V,E) be a
weighted, undirected graph and let T be an optimal tree spanner of G with stretch
k. Consider the spanning tree Te/f which results in deleting edge e from T and
inserting f instead. Let a, b ∈ V be two non-adjacent nodes in G, i.e., (a, b) /∈ E,
whose stretch in Te/f is k′ > k. Then, there exists an edge (x, y) ∈ E such that
the stretch of the pair (x,y) in Te/f is at least k′.

This observation motivates the following concepts, which we use for the descrip-
tion of our algorithms:

1. Each pair of nodes a, b with (a, b) ∈ E is called a stretch pair. A stretch pair
g = (a, b) is relevant for measuring the stretch of any swap edge replacing a
given failing edge e if the cycle which g forms with T contains the edge e (in
other words, if g is also a swap edge for e).

2. For any edge e ∈ T and any swap edge f = (u, v) ∈ E\ET for e, the stretch
of a relevant stretch pair (a, b) is the ratio of the distance between a and b
in Te/f , over the distance between them in G (i.e. dTe/f

(a, b) / dG(a, b)). We
can then express the stretch of Te/f as the maximum over the stretches of
all the stretch pairs which are relevant for f replacing e.
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Fig. 1. An example showing that minimizing detour length does not minimize the
stretch: On the left side, the 2-edge-connected graph G is shown, and on the right side
the given tree spanner with stretch 8 is shown. Assuming that all edges have equal
weight, the swap edge f minimizes the stretch to the value 9. However, the swap edge
minimizing the detour length is g, which yields a stretch of 10 (attained by the stretch
pair (a, b)), worse than choosing swap edge f .

2.2 Naive Approach

To compute the best swap edge for an edge e ∈ T , we need to compare the
Ω(m) possible candidate swap edges that are relevant for the failing edge e. Un-
fortunately, there is no straightforward way of selecting the best among these
candidates without evaluating each possible candidate. A simple trick such as
choosing the swap edge minimizing the detour around the failure, does not al-
ways give the optimal solution. For instance, see the counter-example shown in
Figure 1 (This example can be generalized to obtain an arbitrary large difference
between the stretch for the best swap f and the minimum detour edge g.)

The brute-force method for solving the All-Best-Swaps problem in a tree
spanner, is to compute the stretch of Te/f for every edge pair (e, f) where e ∈ T
and f is a candidate swap edge for replacing edge e. There are O(nm) such pairs
and for each pair (e, f), the stretch of the tree Te/f can be computed in O(m)
time due to the following lemma.

Lemma 1. After preprocessing in time O(mn + n2 log n), for any failing edge
e ∈ ET , swap edge f ∈ E\ET , and relevant stretch pair (u, v), the stretch of
(u, v) in Te/f can be computed in O(1) time.

The following preprocessing is required for the above computation. First we
obtain distances between all pairs of nodes in G in time O(nm+n2 log n), using
the standard “all-pairs shortest paths” algorithm. Next, we root the tree T at
an arbitrary node r and compute the “to-root” distance dT (r, v) for each node
v ∈ V (G), with a single pre-order traversal of T . Finally we construct a data
structure which provides the nearest common ancestor of any two given nodes
in constant time. (Such a data structure can be computed in O(n) time, for
example using the method described in [10].)



After the preprocessing, we consider each relevant stretch pair (u, v), i.e.
each (u, v) ∈ E\ET where u and v lie on different sides of the failing edge2.
For each such pair (u, v) we have dTe/f

(u, v) = dT (u, p) + |f | + dT (q, v). where
f = (p, q) and p lies on u’s side of the cut induced by e. In general, dT (u, p) =
dT (v, nca(u, p)) + dT (p, nca(u, p)). Both of these two terms can be computed as
the absolute difference between the “to-root” distance of the two nodes involved.
To summarize, dTe/f

(u, v) and thus, the stretch of (u, v) can be computed in
constant time, for each of the O(m) relevant stretch pairs, for a particular e and
f . This implies the following:

Theorem 1. The All-Best-Swaps problem in a tree spanner can be solved in
O(nm2) time.

In the next few sections, we present some techniques to reduce this time
complexity.

3 An O(m2 log n) Time Solution for Weighted Graphs

In the following, we describe an algorithm which computes all best swap edges
of a tree spanner in O(m2 log n) time and O(m + n) space.
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Fig. 2. The cycle that a non-tree edge f forms with the given spanning tree.

The idea of the algorithm (called BestSwaps) is sketched in the following. We
consider each potential swap edge f ∈ E\ET separately, focusing on the cycle
which f = (u, v) forms with T (see Figure 2). This cycle consists of the edges
e1, e2, . . . ek which form a path in T . Note that all nodes of V which are not
on the path in T from u = d1 to v = dk+1 lie in some subtree Ti of T which is
rooted at node di. For a given failing edge ei = (di, di+1) for which f is a relevant
swap edge, the set of relevant stretch pairs contain all pairs(edges) where one
endpoint lies in some tree attached to any of d1, . . . , di, and the other endpoint
lies in some tree attached to any of di+1, . . . , dk+1. We associate with each node
the index i of the subtree Ti containing it. For any edge (a, b) ∈ E \ ET , this

2 This can be checked using a “preorder/inverted preorder” labelling. For details, see
e.g. [7], Section 3.2.



Algorithm 1: BestSwaps
Initialize Current-Best(e) for all e ∈ T
for f = (u, v) ∈ E\T do

Relabel the vertices in G
Initialize Data Structure H
for ei ∈ PathT (u, v) do

Add to H stretch pairs in Starti

Remove from H stretch pairs in Endi

St(ei, f) ← GetMax(H)
if St(ei, f) < Current-Best(ei) then

Update Current-Best(ei)

defines an order of the endpoints: we say that a is the lower endpoint if its index
is smaller than the index of b. In order to evaluate f as a potential swap edge,
we need to compute the stretch for every relevant stretch pair with respect to f
and some failing edge ei. Notice that irrespective of the failing edge, any relevant
stretch pair for f , would be an edge (a, b) ∈ E \ ET where the endpoints a and
b would have different indices. We maintain a data structure H described below
which stores these relevant stretch pairs.

We consider the potential failing edges e1, e2, . . . , ek, in that order and evalu-
ate f as potential best swap with respect to each ei in turn. To that end, observe
the following: if S(ei−1) is the set of relevant stretch pairs when considering f
as a swap for ei−1, then S(ei), the set of relevant stretch pairs when considering
f as a swap for ei, is S(ei) =

(
S(ei−1) ∪ Starti

)
\ Endi, where Starti is the

set of stretch pairs whose lower endpoint is di, and Endi is the set of stretch
pairs whose upper endpoint is di. We store the set S(ei) in our data structure
H and update it as we move from ei to ei+1. To compute S(ei) from S(ei−1),
all stretch pairs that become relevant are added to H and all stretch pairs that
become irrelevant are deleted from H. The data structure H we use to store
the set S(ei) can be implemented as a priority queue (or heap) where priority is
defined by the stretch value. The largest element in H yields the worst stretch
pair for f replacing ei. We simply check whether this value is smaller than the
stretch of the current best swap edge for ei (we maintain these in a separate
data structure) and update the current swap edge for ei if required. Once we
have repeated the above process for each edge f ∈ E \ET , we have obtained for
each edge in T a best swap edge. We have:

Theorem 2. The Algorithm BestSwaps computes all the best swap edges of a
tree spanner in O(m2 log n) time and using O(m) space.

Proof. We first show that the algorithm takes O(m2 log n) time.
For each swap edge f = (u, v) ∈ G \ T , the algorithm does the following.

The nodes of the tree are re-labelled in O(n) time. The non-tree edges of the
graph G are partitioned into sets Starti and Endi, corresponding to vertices di

in the path from u to v. This can be done in O(m) time. Further for each pair



(f, e) of swap edge f and failing edge e, the algorithm does some insertions and
deletions3 to the heap H. For any swap edge f and all possible failing edges ei,
any edge is inserted at most once and deleted at most once. Thus we require
O(m) heap operations, i.e. O(m log m) time corresponding to each such edge
f ∈ G\T . Note that we also need to compute the stretch of a stretch pair before
inserting it. However this takes constant time using the techniques described in
Section 2. Thus, overall the algorithm requires O(m2 log m) = O(m2 log n) time.

As for the space requirements, the data structure H requires O(m) space for
storing at most m elements. The additional data structure storing the current
best for each edge e ∈ T requires O(n) space. ut

4 An O(n3) Time Solution for Unweighted Graphs

In this section we consider a dynamic programming approach for computing all
best swaps in an unweighted graph. We compute the best swap edge for each
of the n − 1 edges of T in a separate computation, each requiring O(n2) time
and O(n2) space. For each failing edge e = (l, r), we root the two trees T l (for
“left”) and T r (for “right”) of T − e at the nodes l and r, respectively. Recall
that by Observation 1, the stretch of a swap edge f = (a, b) is obtained at some
stretch pair x, y, whose stretch is dTe/f

(x, y)/dG(x, y). In unweighted graphs,
dG(x, y) = 1 and hence the maximum stretch is obtained by the stretch pair
x, y for which dTe/f

(x, y) is maximum. Furthermore, for a, x ∈ T l and b, y ∈ T r

we have dTe/f
(x, y) = dTe/f

(x, a) + |(a, b)| + dTe/f
(b, y) = dT−e(x, a) + |(x, y)| +

dT−e(b, y). Therefore, the stretch of a swap edge f = (a, b) is equal to the
length of a longest simple path from a to b in G, using only edges of T − e
plus either exactly one candidate swap edge (x, y) ∈ E\ET , or the edge e 4.
In the following, we call paths of this nature the stretch paths of the node pair
a, b. In our approach, we compute the length of a longest stretch path for each
of the O(n2) node pairs a, b, even for those which are not linked by an edge
in G. It turns out that by partitioning the set of all stretch paths into nine
different types, and by computing the length of the longest stretch paths of a
particular type for each node pair a, b in a suitable order, all these lengths can
be computed in O(n2) time by dynamic programming. That is, the length of
a longest stretch path of a type i for a given node pair a, b can be computed
in constant time, given only information that was previously computed. In the
following, we describe this approach in detail.

The type of a stretch path P depends on which of the edges incident to a ∈ T l

and b ∈ T r it includes. If P contains the edge (a, p(a)), we say it goes up on
the left side. If P contains an edge (a, q) for some q ∈ C(a), we say it goes
down on the left side. Furthermore, if P uses a candidate swap edge incident to
3 For the deletions, we assume that whenever an element is inserted into the heap, a

pointer to its position in the heap is stored, such that the element can later be found
in constant time and then removed efficiently.

4 We have to include e here because the stretch is measured with respect to G, not
with respect to G − e.



a (and hence does not contain any other edge from T l), we say it stays at a.
The corresponding definitions hold for the right side of stretch paths. Hence, we
have the following nine types of paths (where the first word corresponds to the
left side of the path, and the second to the right side): Stay-Stay, Stay-Down,
Down-Stay, Stay-Up, Up-Stay, Down-Down, Down-Up, Up-Down, Up-Up. For each
TypeA-TypeB and each node pair a, b, we denote by TypeA-TypeB(a, b) the length
of a longest stretch path from a to b of type TypeA-TypeB. If no stretch path from
a to b of type TypeA-TypeB exists, then we define TypeA-TypeB(a, b) := −∞.

We compute the longest path of each type with an inductive computation
(dynamic programming) requiring O(n2) time. To that end, we first explain the
necessary recursive equations. We start with Stay-Stay paths: for a given node
pair a, b, the only possible path of that type is composed of the edge (a, b) (if
present). Thus, we have

Stay-Stay(a, b) =
{

1 if (a, b) ∈ E\ET

−∞ otherwise.

Clearly, Stay-Stay(a, b) for all a, b ∈ V can be obtained in O(n2) time.
It is easy to see that the length of a longest stretch path of type Stay-Down

satisfies the following recursion:

Stay-Down(a, b) = 1 + max
q∈C(b)

{
max{Stay-Stay(a, q), Stay-Down(a, q)}

}
.

Naturally, the symmetric equation holds for Down-Stay(a, b). Note that this
recursion can be translated into a dynamic program: as Stay-Stay(a, q) for any
a, q ∈ V is already available from the previous computation, we only need to
ensure that Stay-Down(a, q) is available for all q ∈ C(b) when Stay-Down(a, b) is
computed. This is guaranteed if we consider the pairs a, b in an order in which
the b’s occur in postorder. Thus, Stay-Down(a, b) and Down-Stay(a, b) for any
a, b ∈ V can be computed in O(n2) time.

To compose all the Stay-Up paths, we need paths of type Stay-Stay as well
as of type Stay-Down. More precisely:

Stay-Up(a, b) = max
{

1 + Stay-Stay(a, p(b)), 1 + Stay-Up(a, p(b)),

2 + max
q∈p(b),q 6=b

{Stay-Down(a, q)}
}

.

Naturally, the symmetric equation holds for Up-Stay(a, b). Again, this recursion
can be used for dynamic programming: all Stay-Stay and Stay-Down have been
previously computed. In order to guarantee that Stay-Up(a, p(b)) is available,
we consider the pairs a, b in an order where the b’s occur in preorder. Thus,
Stay-Up(a, b) and Up-Stay(a, b) for any a, b ∈ V can also be computed in O(n2)
time.
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Fig. 3. Three of the possible stretch path types of the node pair a, b: (i) Down-Down,
(ii) Down-Up, (iii) Up-Up

Consider now a Down-Down stretch path from a to b (see Fig. 3(i)). We have:

Down-Down(a, b) = 1 + max
{

max
q∈C(a)

{Stay-Down(q, b), Down-Down(q, b)},

max
q′∈C(b)

{Down-Stay(a, q′), Down-Down(a, q′)}
}

.

In order to write a dynamic program corresponding to this recursion, the node
pairs a, b must be ordered such that both the a’s and the b’s occur in a postorder
(note that this is easily possible). Hence, Down-Down(a, b) for all a, b ∈ V can be
computed in O(n2) time.

Next, let us focus on the Down-Up paths (see Fig. 3(ii)). Here, we have

Down-Up(a, b) = max
{

1 + Down-Stay(a, p(b)), 1 + Down-Up(a, p(b)),

2 + max
q′∈C(p(b)),q′ 6=b

Down-Down(a, q′)
}

.



We omit the equation for Up-Down(a, b), which is completely symmetric. By
considering all pairs a, b ∈ V such that the b’s occur in preorder, Down-Up(a, b)
and Up-Down(a, p(b)) is obtained in O(n2) time.

Finally, the length of a longest Up-Up stretch path for a, b can be expressed
as (see Fig. 3(iii))

Up-Up(a, b) = max
{

1 + Up-Stay(a, p(b)), 1 + Up-Up(a, p(b)),

1 + Stay-Up(p(a), b), 1 + Up-Up(p(a), b),
2 + max

q′∈C(p(b)),q′ 6=b
Up-Down(a, q′),

2 + max
q∈C(p(a)),q 6=a

Down-Up(q, b)
}

.

To obtain Up-Up(a, b) for all a, b ∈ V in O(n2) time, the pairs are considered in an
order in which both the a’s and the b’s occur in preorder. Each of these dynamic
programs fills an (n × n)-matrix, and thus needs O(n2) space. As mentioned in
the beginning, we repeat these computations for each of the O(n) edges e ∈ ET .
Then, the algorithm computes, for each swap edge candidate f = (u, v), the
stretch of Te/f as

max
{

Stay-Stay(u, v), Stay-Down(u, v), Down-Stay(u, v),

Stay-Up(u, v), Up-Stay(u, v), Down-Down(u, v),

Down-Up(u, v), Up-Down(u, v), Up-Up(u, v)
}

,

in constant time. After each computation, we can delete the computed matrix
from memory, only storing the best swap edge found for the considered failing
edge e. Thus, the total space complexity of our approach is O(n2). In short, we
have the following:

Theorem 3. In unweighted graphs, all best swap edges of a tree spanner can be
computed in O(n3) time and O(n2) space.

5 A Distributed Solution to All-Best-Swaps for Spanners

In this section, we consider the scenario when each node in the network has
only local information about the network. We are interested in a distributed
algorithm which enables each node to compute the information required by it
to modify its local routing table whenever any of the edges in T fails. More
specifically, a node v having incident edges e1, e2, . . . et ∈ ET must compute the
best swap edges f1, f2, . . . ft corresponding to these incident edges. Note that
the information about the best swap edge for any particular edge e ∈ T , needs
to be stored only at the endpoints of e [9]. For the following, let n∗ denote the
size of the transitive closure of the tree T , when the edges are directed towards
the root node.
We make the following assumptions:



– The tree T is rooted at fixed node r, which is know to every node x ∈ G.
– Each node x ∈ G knows which of its incident edges connect to its children

in T and which edge connects to its parent in T .
– Each node x knows the weights of all edges in G that are incident to it.
– Each node x knows the distance dT (x, v) to any node v ∈ T . (Note that this

can be easily pre-computed using O(n∗) messages.)
– The nodes of the tree T are labelled in such a way that given the labels of

two nodes a, b ∈ T , it is possible to find the label of the nearest common
ancestor of a and b (i.e. nca(a, b)). This can be done using labels of size
O(log n) as shown in [1].

Given a rooted spanning tree T of G and any node v ∈ T , we define Tv as
the subtree of T that is rooted at v and we denote by Start(T, v) the set of all
non-tree edges whose one end-point is in Tv and the other end-point is outside
Tv. At each node x and for each edge e = (x, y) ∈ T , we wish to compute a list
of all swap edges with one end-point in T x and the other endpoint in T y. If x is
a child of y, then this list is same as Start(T, x). Otherwise this list is same as
Start(T, y).

The idea of our algorithm is to compute all these lists using the converge-cast
technique on the tree, once propagating information from the leaves of T up to
the root and then from the root back to the leaves again. Notice that each leaf
node already has the required information.

From the above computation, node x has a list of all potential swap edges
connecting Tx to Ty (along with their weights). Given any two such edges f =
(u, v) and g = (a, b), it is possible to compute the stretch dTe/f

(a, b) as follows:

dTe/f
(a, b) = (dT (a, u) + |f | + dT (v, b))/|g|

dT (a, u) can be computed as dT (a, u) = dT (a, x) + dT (x, u) − 2·dT (x, nca(a, u)).
Similarly dT (v, b) can also be computed. Thus node x can compute the stretch
of every swap edge and thus determine the best swap edge for e.

Complexity of the Algorithm. The above algorithm requires only O(D)
time for trees of diameter D (measured as the number of “hops”), because the
message from the farthest leaf has to reach the root and vice versa. Note that
the only information exchanged between the nodes is the list of candidate swap
edges. Information about each swap edge f = (u, v) travels only along the path
in T from u to v. So the overall communication complexity is O(n∗) times the
size of node labels (and edge weights).

6 Swapping versus Recomputing a New Tree Spanner

In this section, we investigate how a best swap tree compares with a newly
computed optimal tree spanner of G − e, with respect to the maximum stretch.
We show that at least for unweighted graphs, the stretch is at most twice as
large in the swap tree as in the tree spanner. (Recall that the stretch for both
trees is computed with respect to G, and not G − e.)
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Fig. 4. An example of a graph where the stretch of the best swap tree is 2 times worse
than the best newly computed tree spanner.

Lemma 2. For any failing edge e of an optimal tree spanner of an unweighted
graph G, the maximum stretch of the swap tree is at most 2 times larger than
the stretch of an optimal tree spanner of G − e. The bound of 2 is tight.

Proof. Let T be the optimal tree spanner of G, let k be the maximum stretch of
T , and let T ′ be the best swap tree when e fails. Let (a, b) be the pair of nodes
for which the stretch with respect to T ′ is maximum, i.e.

(a, b) = arg max
(i,j)∈E

dT ′(i, j)
dG(i, j)

.

Further, let (u′, v′) be the best swap edge for e. We have

dT ′(a, b)
dG(a, b)

≤ dT (a, b) − |(u, v)| + dT (u′, v′) + |(u′, v′)|
dG(a, b)

≤ k +
dT (u′, v′)
dG(a, b)

≤ 2k.

For any other spanning tree of G (including the optimal spanner of G − e), the
stretch must be at least k, and hence the result follows. An example that achieves
the bound of 2 is shown in Figure 4. ut
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