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Abstract

We consider the problem of discovering properties (such as the diameter) of an unknown
network G(V,E) with a minimum number of queries. Initially, only the vertex set V of the
network is known. Information about the edges and non-edges of the network can be obtained
by querying nodes of the network. A query at a node q ∈ V returns the union of all shortest
paths from q to all other nodes in V . We study the problem as an online problem – an algorithm
does not initially know the edge set of the network, and has to decide where to make the next
query based on the information that was gathered by previous queries. We study how many
queries are needed to discover the diameter, a minimal dominating set, a maximal independent
set, the minimum degree, and the maximum degree of the network. We also study the problem of
deciding with a minimum number of queries whether the network is 2-edge or 2-vertex connected.
We use the usual competitive analysis to evaluate the quality of online algorithms, i.e., we
compare online algorithms with optimum offline algorithms. For all properties except maximal
independent set, 2-vertex connectivity and minimum/maximum degree, we present and analyze
online algorithms. Furthermore we show, for all the aforementioned properties, that “many”
queries are needed in the worst case. As our query model delivers more information about the
network than the measurement heuristics that are currently used in practise, these negative
results suggest that a similar behavior can be expected in realistic settings, or in more realistic
models derived from the all-shortest-paths query model.

1 The Problem and the Model

Dynamic large-scale networks arise in our everyday life naturally, and it is no surprise that they
are the subject of current research interest. Both the natural sciences and the humanities have
their own stance on that topic. A basic prerequisite is the network itself, and thus, before any
study can even begin, the actual representation (a map) of a network has to be obtained. This
can be a very difficult task, as the network is typically dynamic, large, and the access to it may be
limited. For example, a map of the Internet is difficult to obtain, as the network consists of many
autonomous nodes, who organize the physical connections locally, and thus the network lacks any
central authority or access point.

There are several attempts to obtain an (approximate) map of the Internet. A common ap-
proach, on the level of Autonomous Systems (ASs), is to inspect routing tables and paths stored in
each router (passive measurement) or directly ask the network with a traffic-sending probe (active
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measurement). All these methods are commonly called traceroute-like measurements. For exam-
ple, the Oregon Route-Views (RV) project [11] is based on the analysis of the Border Gateway
Protocol (BGP) routing tables on the level of ASs. Essentially, for each BGP router its list of
paths (to all other AS nodes in the network) is retrieved. More recently, and due to good publicity
very successfully, the Distributed Internet Measurements and Simulations (DIMES) project [6] has
started collecting data with the help of a volunteer community. Users can download a client which
collects paths in the Internet by executing successive traceroute commands. A central server can
direct each client individually by specifying which routes to investigate. Data obtained by these or
similar projects has been used in heuristics to obtain (approximate) maps of the Internet, basically
by simply overlaying possible paths found by the respective project, see e.g. [4, 7, 6, 11].

As performing such measurements at a node is usually very costly (in terms of time, energy
consumption or money), the question of minimizing the number of such measurements arises nat-
urally. This problem was formalized as a combinatorial optimization problem and studied in [2].
The map of a network (and the network itself) is modeled as an undirected graph G = (V, E).
The nodes V represent the communication entities (such as ASs in the Internet) and the edges
represent physical or logical communication links. A measurement at a node v ∈ V of the network
is called a query at v, or simply a query v. Each query q gives some information about the network.
The network discovery problem asks for the minimum number of queries that discover the whole
network. In [2] the layered-graph query model (LG for short) is defined: a query q returns the union
of all shortest paths from q to every other node. In this paper we refer to the LG query model as
the all-shortest-paths query model. Network discovery is an online problem, where the edges and
non-edges (a pair {u, v} is a non-edge, if it is not an edge) are initially not known and an algorithm
queries vertices of V one by one, until all edges and non-edges are discovered.

Having a map of a network G at our disposal, various aspects of G can be studied. For
example, the routing aspects of G are influenced by the diameter, average degree, or connectivity
of G. Other graph properties that are studied in the networking community include, for example,
a maximal/maximum independent set, minimal/minimum dominating set, shell index, the decision
whether the graph is bipartite, power-law, etc. All these properties can be computed from the map
of G.

If only a single parameter of a network is desired to be known, obtaining the whole map of the
network may be too costly. In this work we address the problem of computing (an approximation of)
network properties (such as the diameter of G) in an online way: given an unknown network (only
the nodes are known in the beginning), discover a property (or an approximation of a property)
of the network (graph) with a minimum number of queries. The properties that we address in
this paper are the diameter of the graph, a minimal dominating set, a maximal independent set,
minimum degree, maximum degree, edge connectivity and vertex connectivity. We use standard
graph-theoretic terminology and notation, as it is described for example in [5].

We assume the all-shortest-paths query model, i.e., a query q returns the union of all shortest
paths from q to every other node. The result of the query q can be viewed as a layered graph: all
the vertices at distance i from q form a layer Li(q), and the query returns all information between
any two layers, i.e., if u and v are from different layers, then the query returns whether {u, v} is
an edge or a non-edge. We depict the result of a query graphically as in Figure 1. For simplicity
we sometimes write Li instead of Li(q), if it is clear from the context which node is queried. We
denote by Eq and Eq the set of edges and non-edges, respectively, that are discovered by query q.
In the all-shortest-paths query model, Eq is the set of edges whose endpoints have different distance
from q, and Eq is the set of non-edges whose endpoints have different distance from q. By EQ and
EQ we denote the set of edges and non-edges that are discovered by queries Q, i.e., EQ =

⋃

q∈Q Eq

and EQ =
⋃

q∈Q Eq. The graph GQ is the graph on V with the edge set EQ. Finally, we denote
by comp(G, Q), the set of all graphs G′ with vertex set V containing all the edges in EQ and all
non-edges in EQ.
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Figure 1: A graph G (left) and the result of a query at node v1 as a layered graph (right)

It is easy to observe that querying all vertices of G discovers all the edges and non-edges of
G and thus any property of the graph can be derived from this information. We are interested
in algorithms that deliver minimum-sized query sets that reveal the necessary information about
the sought network property. An online algorithm for the (approximate) discovery of a network
property is called c-competitive, if the algorithm delivers, for any input graph G, a query set Q of
size at most c·Opt, where Opt is the optimum number of queries that discover the (approximation of
the) property. By an approximate discovery of a property we understand a computation of a value
A which is “close” to the actual value O of the property. We require A ≥ O, if we want to approach
O from above (we call the property a minimization property), or A ≤ O, if we want to approach
O from below (we call the property a maximization property). We will treat the diameter as a
minimization property. We call an online algorithm a ρ-approximation algorithm for the problem
of discovering a minimization property if for any input graph G it discovers a ρ-approximation of
the property, i.e., if for the numerical value A returned by the algorithm, and the actual value O of
the property, we have O ≤ A ≤ ρ ·O. For example, a ρ-approximation, c-competitive algorithm for
the diameter discovery problem is an algorithm that discovers a graph GQ for which the diameter
diamGQ

is at most ρ · diamG, and queries at most c times more queries than an optimal offline
ρ-approximation algorithm.

Related Work. Deciding exactly (and deterministically) a graph-theoretic property of a given
graph where the measure of quality is the number of accessed entries in the adjacency matrix of the
graph is a well understood area. Rivest and Vuillemin [9] show that any deterministic procedure
for deciding any non-trivial monotonous n-vertex graph property must examine Ω(n2) entries in
the adjacency matrix representing the graph. Each such examination of an entry can be seen as a
query. Our approach introduces a general concept where other types of queries can be considered.
We study the case where the query at a vertex returns all shortest paths from that vertex. This is,
however, not the only possible query model to study, and we expect that other interesting query
models will be studied following this concept. Moreover, in contrast to the previous work, we study
the problem as an online problem, and thus evaluate the quality of algorithms using the competitive
ratio.

An active and related field of research is the well-established area of property testing, in which
a graph property is asked to be probabilistically examined with possibly few edge-queries on the
edges of the graph. The aim of such property-testing algorithms is to spend time that is sub-linear
or even independent of the size of the graph. In property testing, a graph possessing an examined
property P shall be declared by the algorithm to have property P with probability at least 3/4,
and a graph that is “far” from having property P should be declared by the algorithm not to have
property P with probability at least 3/4. A survey on property testing can be found for example
in [10]. Our work differs from property testing in the type of query we make, and in that we
consider deterministic strategies.

The all-shortest-paths query model was introduced by Beerliová et al. for studying the mapping
process of large-scale networks [2]. The authors studied the problem of discovering all edges and
all non-edges of an unknown network with as few queries as possible. They presented, among
other results, a randomized O(

√
n log n)-competitive algorithm, and lower bounds 3 and 4/3 on the
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competitive ratio of any deterministic and randomized algorithm, respectively. A query set that
discovers the edges and non-edges of the network is also called a resolving set and the minimum-size
resolving set is called a basis of the underlying graph, and the size of the basis is the dimension
of the graph. A graph-theoretic and algorithmic overview of this topic can be found in [3] and [1],
respectively.

Our Contribution. We consider several graph properties in the property discovery setting with
the all-shortest-paths query model. We first study the discovery of the diameter of an unknown
graph G. We present and use a new technique of querying an “interface” between two parts of
a graph G. Using k “interfaces” leads to a (1 + 1

k+1)-approximation algorithm for the discovery
of the diameter of G. The “interface” is in our case a layer of vertices which are at the same
distance from an initial query q0. Considering the competitive ratio as well, and setting k = 1,
we can present a (3

2 + 2p−1
ℓ )-approximation, ( n

2p)-competitive algorithm, where ℓ is the maximum
distance from q0 (which is at least half of the diameter of G), and p is a parameter, p < ℓ/4. We
present a lower bound

√
n − 1/2 for the competitive ratio of any algorithm computing a minimal

dominating set. We also present an algorithm which queries at most O(
√

d · n) vertices, where d
is the size of a minimum dominating set of G. For the problem of finding a maximal independent
set we show a lower bound

√
n on the competitive ratio of any algorithm. We further study the

discovery of 2-edge and 2-vertex connectivity of G, and show a lower bound n/2 on the competitive
ratio of any algorithm for discovering a bridge or an articulation vertex of G. We also present
an n/2-competitive algorithm which discovers whether G is 2-edge connected. For the problem of
discovering the maximum and the minimum degree of G, we present lower bounds n/2 and n/2,
respectively, for the competitive ratios of any algorithm.

2 Discovering the Properties

In the following we use a common approach to the (approximate) discovery of a graph property
of a given graph G: select a query set Q such that the resulting graph GQ has the same (or
approximately similar) graph property.

2.1 Discovering the Diameter

Following the general approach, we want to find a (possibly) small query set Q, such that the
resulting graph GQ = (V, EQ) has a diameter which is a good approximation of the diameter of G.

It has been previously observed [8] that a single query q ∈ V yields a 2-approximation of the
diameter of G. To see this, let q be a vertex of G. Let v be the vertex with the maximum distance
from q. Let ℓ denote this distance, i.e., d(q, v) = ℓ. Clearly, diam ≥ ℓ. Also, for any two nodes
u, v ∈ V , d(u, v) ≤ d(u, q) + d(v, q) ≤ 2ℓ. Thus, the diameter of Gq is at most 2ℓ, and therefore it
is at most twice the diameter of G.

The following example shows that in general, unless we discover the whole network, we cannot
hope for a better approximation than 2. Consider two graphs: G1 = Kn, the complete graph, and
G2 = Kn \ {u, v}, the complete graph minus one edge {u, v}. The diameter of G1 is 1, and the
diameter of G2 is 2. For any query q, but u or v, the result looks all the same, a star graph centered
at q. Thus, we know that the diameter is at most 2, but cannot obtain a better approximation
until all the vertices (but one) are queried. As any deterministic algorithm can be forced to query
V \ {u, v} first, the example shows that there is no deterministic (2− ǫ)-approximation algorithm
with less than n− 1 queries.

If the diameter of the graph is larger than two (e.g. a growing function in n, such as log n), the
following strategy guarantees a better approximation ratio. We first make an arbitrary query q ∈ V .
This splits the vertices of V into layers Li, i = 1, 2, . . . , ℓ, where Li contains the vertices at distance
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Figure 2: The initial query q splits the vertices of G into ℓ layers L1, L2, . . . Lℓ. The distance d(u, v)
between any two nodes u, v ∈ V is at most d(u, q)+ d(q, v) ≤ 2ℓ, but can be shorter if edges within
the same layer are present

i from q. As a next step we query all vertices at layer Lk (we will show that k = 3
4ℓ is a good choice).

See Figure 2 for an illustration of the upcoming discussion. From the information that we gain
after querying all vertices in Lk we want to improve the upper bound or the lower bound for the
diameter, and thus the approximation ratio of our algorithm. Thus, the algorithm computes the
diameter of G′ := G{q}∪Lk

(the discovered part of G), and reports it as the approximate solution.
In the following we discuss the quality of such an approximation. Let u and v be the vertices whose
distance is the diameter of G′.

If a shortest path between u and v in G goes via vertices of the queried layer Lk, the actual
distance (in G) between u and v will be discovered in G′ (and the approximation ratio will be 1).
Thus, we concentrate on the cases where the shortest path between u and v does not go via Lk.

Case 1. If u and v lie both within layers L1, . . . , Lk−1, then clearly dG′(u, v) ≤ 2(k − 1). This
type of nodes guarantees an approximation ratio of 2(k − 1)/ℓ (as the diameter of G is at least ℓ).

Case 2. If both u and v lie within layers Lk+1, . . . , Lℓ, and every shortest path in G between
u and v goes via vertices of layers Lk+1, . . . , Lℓ, we can obtain the following bounds on dG(u, v).
Trivially, dG(u, v) ≤ dG(u, q′) + dG(q′, v) = dG′(u, q′) + dG′(q′, v), for any q′ ∈ Lk ∪ {q}. Let P be a
shortest path in G between u and v. Let s ∈ V be a vertex on P that is closest to Lk and let q′ be
a vertex in Lk which is closest to s. We obtain dG(q′, u) ≤ dG(q′, s) + dG(s, u) ≤ (ℓ− k) + dG(s, u),
and similarly dG(q′, v) ≤ dG(q′, s) + dG(s, v) ≤ (ℓ − k) + dG(s, v). Thus, dG(q′, u) + dG(q′, v) ≤
2(ℓ−k)+dG(s, u)+dG(s, v) = 2(ℓ−k)+dG(u, v). As dG(q′, u) = dG′(q′, u) and dG(q′, v) = dG′(q′, v),
we obtain dG′(q′, u)+dG′(q′, v)−2(ℓ−k) ≤ dG(u, v) ≤ dG′(q′, u)+dG′(q′, v), and the approximation

ratio obtained for this type of vertices is at most
dG′ (q′,u)+dG′ (q′,v)

max{ℓ,dG′ (q′,u)+dG′ (q′,v)−2(ℓ−k)} . We now distinguish

two cases. First, if dG′(q′, u) + dG′(q′, v) − 2(ℓ − k) ≤ ℓ, then the approximation ratio is at most
ℓ+2(ℓ−k)

ℓ = 3ℓ−2k
ℓ . Second, if dG′(q′, u)+ dG′(q′, v)− 2(ℓ− k) > ℓ, then the approximation ratio is of

the form x
x−2(ℓ−k) , which is maximized (under the condition that x−2(ℓ−k) ≥ ℓ) for x = ℓ+2(ℓ−k).

Thus the approximation ratio is at most 3ℓ−2k
ℓ .

Taking all cases into account, the approximation ratio of the algorithm is max{1, 2(k−1)
ℓ , 3ℓ−2k

ℓ }.
To minimize the approximation ratio, we need to set 2(k− 1) = 3ℓ− 2k, i.e., k = 3ℓ+2

4 , which leads
to diamGQ

/diamG ≤ 3
2 − 1

ℓ .

We assume, for simplicity of presentation, that every fractional computation results in an inte-
gral number (such as the query level k = 3ℓ+2

4 ). In reality one has to round the numbers, which
can “shift” the queried layer by half, i.e., |[k]− k| ≤ 0.5 (by [k] we denote the rounding of k). This
results in a small additive error of order 1

ℓ in the approximation ratio of the diameter. Observe
that this error approaches zero, as ℓ (and the diameter) grows with n. For instance, we obtain

that diamGQ
/diamG ≤ 2([k]−1)

ℓ =
2([ 3ℓ+2

4 ]−1)

ℓ ≤ 2( 3ℓ+2

4
+0.5−1)

ℓ = 3
2 . Therefore diamGQ

≤ 3
2diamG

(compare with the original bound diamGQ
≤ (3

2 − 1
ℓ )diamG). Thus, for simplicity, we sometimes

omit these small rounding errors in the statements about approximation ratios.
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Theorem 1 Let G be any graph. A query set Q = {q} results in a graph GQ = (V, EQ) such
that diamGQ

≤ 2 · diamG. Let ℓ be the maximum distance from q to a vertex of G. Setting
Q = {q}∪Lαℓ(q), α < 1, then the approximation ratio ρ of the algorithm (which computes diamGQ

as the approximation of diamG) is max{2α, 3− 2α}. For α = 3
4 + 1

2ℓ , the approximation ratio is 3
2 .

It is not difficult to imagine that querying more layers leads to a better approximation of
the diameter. This is indeed the case. For example, if we query two layers Lk and Ls, k < s,
we obtain the following bounds on the approximation ratio. The query q, layer Lk and layer
Ls divide the nodes naturally into three parts P1, P2 and P3 (where P1 consists of nodes with
distance less than k from q, part P2 consists of nodes with distance from q between k and s, and
part P3 consists of nodes with distance from q greater than s). For nodes u and v that lie in
different parts or in the queried layers, the upper bound on their distance is the actual distance
and hence they are not critical for the approximation ratio. If the nodes u and v are from P1,
we get a bound 2(k−1)

ℓ , if they are from P3 we get a bound ℓ+2(ℓ−s)
ℓ = 3ℓ−2s

ℓ , and if they are from

P2 we get a bound ℓ+2(s−k−1)
ℓ on the approximation ratio. The first two bounds can be obtained

analogously as in the case where only one layer was queried. The bound for vertices within P2

is derived similarly as the bound for vertices in P3. Observe that if the shortest path between u
and v lies completely within P2, then there is a query q′ from Lk which is at distance at most
(s − k − 1) from the path. Thus, similarly as in the case where we queried a single layer Lk,
dG′(q′, u) + dG′(q′, v) − 2(s − k − 1) ≤ dG(u, v) ≤ dG′(q′, u) + dG′(q′, v). Setting k = 4

6ℓ + 1
3 ,

s = 5
6ℓ + 2

3 , the graph GQ has a diameter diamGQ
≤ 4

3diamG.

We can generalize the approach to s layers. The previous discussion of case 1 shows that
querying a layer k ≤ ℓ/2 does not bring any improvement in the analysis of the approximation of
the diameter. Hence, all the s queried layers shall lie within layers Lj , j > ℓ/2. To obtain the best
approximation ratio, the queried layers Lk1

, Lk2
, . . . , Lks

have to be chosen evenly from the layers
Lℓ/2, . . . , Lℓ, so that the queried layers and the layers Lℓ/2 and Lℓ are uniformly spaced. It is not

difficult to verify that such a choice of s queries leads to a (1 + 1
s+1)-approximation.

Theorem 2 Let ℓ be the maximum distance from an initial query q to a vertex of G. Let Q =
{q} ∪ Lk1

∪ Lk2
∪ . . . Lks

, s ≥ 1, ki < ki+1, i = 1, . . . , s − 1, where ki = ℓ/2 + i · ℓ
2(s+1) . Then the

query set Q leads to a graph GQ for which the diameter diamGQ
is a 1 + 1

s+1 approximation of the
diameter of G.

So far we have been mainly concerned with the quality of the approximation but we did not
consider the number of queries we make. A problem of the previous algorithm is that the right
choice of layer Lk where we make the queries may result in many queries (say, n−ℓ in the worst case,
if the layer Lk contains almost all vertices of G). If we want to maintain a bounded competitive
ratio, we have to be careful about the choice of Lk, which leads to a bi-criteria optimization problem.

Bi-criteria Optimization. To keep some control over the number of queries, a natural idea
is to allow some freedom in the choice of the layer Lk. Thus, we do not set k = 3

4ℓ + 0.5, but
parametrize the choice of k and allow k to be in the range {3

4ℓ + 0.5− p, . . . , 3
4ℓ + 0.5 + p}, where p

is a parameter. The algorithm now picks the layer Lk with the minimum number of vertices among
all layers Li, i ∈ {3

4ℓ+0.5− p, . . . , 3
4ℓ+0.5+ p}. Thus, the size of Lk is at most n/2p, which is also

the upper bound on the competitive ratio of the algorithm. Relaxing p allows to keep the number
of queries small, but can harm the approximation quality, while setting p very small improves the
approximation but leaves no control over the number of queries. Clearly, a meaningful choice of p
is in the range {0, 1, 2, . . . , 1

4ℓ− 0.5}.
Repeating the previous case analysis, the upper bounds on the approximation ratio for the

different cases are 1, 2(k − 1)/ℓ, and 3ℓ−2k
ℓ . As 3ℓ − 2k ≤ 3ℓ − 2(3

4ℓ + 0.5 − p) = 3
2ℓ − 1 + 2p and
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2(k−1) ≤ 2(3
4ℓ+0.5+p−1) = 3

2ℓ+2p−1 we obtain that the approximation ratio is max{1, 3/2+
2p−1

ℓ , 3/2 + 2p−1
ℓ } = 3/2 + 2p−1

ℓ . The parameter p can be used to tweak the approximation ratio

and the competitive ratio of the algorithm, which are 3/2 + 2p−1
ℓ and n/2p, respectively.

Theorem 3 Let G be any graph and q a query which results in ℓ layers. Then there is an algorithm,
parametrized by p ∈ {0, 1, 2, . . . , ⌊14ℓ − 0.5⌋}, which delivers a (3/2 + 2p−1

ℓ ) approximation of the
diameter of an unknown graph, and is n/2p competitive.

2.2 Discovering a Minimal Dominating Set

In this section we consider the problem of discovering a minimal dominating set in G. We provide
an algorithm that discovers a minimal dominating set of G with O(

√
d · n) queries, where d is the

size of a minimum dominating set of G. The algorithm, which we simply call Alg, works as follows.
It starts from an empty set D and grows it by adding vertices step by step so that D will eventually
be a minimal dominating set. At each step, Alg queries two vertices x and y (an x-vertex and a
y-vertex, respectively). The first vertex x is chosen arbitrarily among the vertices that are not yet
dominated by D. The algorithm queries x and the information of the query decides the next choice
of vertex y; y is chosen among the set of neighbors of x in such a way that it maximizes the set of
newly dominated nodes by y (i.e., the subset of neighbors N(y) of y which are at distance 2 from
x and which are not neighbors of any vertex belonging to our partial solution D). Both x and y
are put into D. It can happen that the query x has only one layer, and hence y does not dominate
any new vertex, and thus D is not minimal (y can be removed from D). Similarly, if y dominates
all neighbors of x and some vertices from L2(x), x is obsolete, and D is not minimal. Thus, at the
end, we modify D to make it minimal. The procedure is described in Algorithm 1.

Algorithm 1 The algorithm for discovering a minimal dominating set in G

Input: The vertex set of a graph G = (V, E).
Output: A minimal dominating set D ⊆ V of G.
1: D ← ∅ // dominating set
2: X ← ∅
3: Y ← ∅
4: U ← V // set of uncovered nodes
5: while U 6= ∅ do

6: Query any node x ∈ U
7: X ← X ∪ {x}
8: Let y ∈ L1(x) be a node that maximizes |N(y) ∩ U ∩ L2(x)|
9: Query y

10: Y ← Y ∪ {y}
11: D ← D ∪ {x, y}
12: U ← U \

(

{x} ∪ L1(x) ∪ {y} ∪ L1(y)
)

13: end while

14: Make D minimal
15: return D

Theorem 4 The set D returned by Alg is a minimal dominating set in G. Moreover, in order
to discover D, the algorithm makes O(

√
d · n) queries, where d denotes the size of a minimum

dominating set in G.

Proof. It is clear that the returned set D is a minimal dominating set. It remains to show the
bound on the number of queries. Let {z1, . . . , zd} ⊆ V be a minimum dominating set in G. We
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partition the set V into subsets Ci, i = 1, . . . , d: The set Ci ⊆ V contains zi and all the neighbors
of zi that are not in {z1, . . . , zd} and that are not in any of the previous sets Cj , j < i.

Let X and Y denote the x-vertices and y-vertices, respectively, produced by the algorithm.
Every x-vertex belongs to a single set Ci. Let Xi, i = 1, . . . , d, denote the vertices of X that belong
to Ci. We consider the vertices of Xi in the reverse order in which they have been queried by the
algorithm. Let ki denote the size of Xi and let xi

1, . . . , x
i
ki

denote the reverse order. For each vertex

xi
j we denote by yi

j the corresponding y-vertex (which was chosen in the same step as xi
j). Now

observe that (i) there are at least ℓ uncovered vertices in Xi (and thus in Ci, too) before querying
xi

ℓ, (i.e., at least the vertices xi
1, . . . , x

i
ℓ); and (ii) at least ℓ uncovered vertices are covered during

the iteration of the while loop in which xi
ℓ and yi

ℓ are queried (as zi, a neighbor of xi
ℓ, has at least

ℓ undominated neighbors in Ci at that time, and yi
ℓ is chosen to maximize the number of newly

dominated vertices).
Consequently, we have that all vertices of the graph are covered when

∑d
i=1

∑ki

ℓ=1 ℓ = n, i.e.,

when
∑d

i=1 ki(ki + 1) = 2n. The algorithm queries at most |X|+ |Y | = 2|X| = 2
∑d

i=1 ki vertices.

We are thus interested in how big the sum
∑d

i=1 ki can be. We consider the following maximization
problem:

max
d

∑

i=1

ki

s.t.
d

∑

i=1

ki(ki + 1) = 2n

ki ≥ 0 ∀i = 1, . . . , d.

An optimal solution of this maximization problem is k1, . . . , kd =

q

8n
d

+1−1

2 which is at most
√

2n
d . This implies that |X| = ∑d

i=1 ki ≤ d
√

2n
d =

√
2dn. �

Now we construct an example in which it is possible to compute a minimal dominating set of
size d ≥ √n − 1/2 after querying one specific vertex, but any algorithm needs at least d queries
before being able to compute a minimal dominating set.

The graph G has the following structure (see Figure 3 for an illustration). The vertices in V are
partitioned into three sets L0 = {q}, L1 = {q∗, x1, . . . , xd−1}∪{v1, . . . , vd−1} and L2 = Y1∪· · ·∪Yd−1,
where all the sets Y1, . . . , Yd−1 have cardinality d. All vertices but those in L2 are connected to q.
Moreover, for all i = 1, . . . , d− 1, vertex xi is also connected to the vertex vi and all vertices in Yi.
It is easy to see that both {q, x1, . . . , xd−1} and {q∗, x1, . . . , xd−1} are minimum dominating sets
of G.

.... .... ....

x1 x2 xd−1v1 v2 vd−1 q∗

q

Y1 Y2 Yd−1

Figure 3: The lower bound construction for a minimal dominating set

First we prove it is enough to query q∗ to find a minimal dominating set of G. Indeed, after
querying q∗, we discover all edges of G except the ones linking xi with the vertex vi. The layers
of q∗ are {q∗}, {q}, L1 \ {q∗}, L2 (ordered according to the distance from q∗). The query q∗ also

8



discovers that q∗ is connected to q only, and that, considering only the edges between the layers,
vertices of Yi are adjacent with xi only. It is now an easy observation that from the information of
query q∗ the algorithm can infer that {q, x1 . . . , xd−1} is a minimal dominating set in G.

Now let Alg be any deterministic algorithm and let us assume that it has queried any set
Q ⊆ V \ {q∗} with |Q| < d and such that Q contains q (notice that we can always ensure that q is
the first vertex queried by the algorithm). We will show that the algorithm cannot guarantee the
minimality of any dominating set of GQ; moreover, it can be proved that the set of vertices that
are indistinguishable to the algorithm and that contains q∗ has size at least d−|Q|+1. Finally, we
prove that there are at least d − |Q| + 1 indistinguishable vertices in every Yi. As a consequence,
we can claim that Alg needs at least d queries for discovering a minimal dominating set of G, as
we can force the algorithm to make the next query not equal to q∗. Expressing d in terms of n, we

obtain a lower bound of d =
√

n + 1
4 − 1

2 ≥
√

n− 1/2.

Let D be any minimal dominating set the algorithm can compute in GQ, and, without loss of gen-

erality, let us assume that the algorithm has not queried any vertex in {q∗}∪⋃(d−1)−(|Q|−1)
i=1 ({xi, vi}∪

Yi). Thus, there is at least one index i (i = 1) for which there is no query in {xi, vi} ∪ Yi. Observe
that if D does not contain {x1, . . . , xd−1}, then there is a set Yj , j ∈ {1, . . . , d − 1} which is not
dominated by the corresponding vertex xj . Thus, all vertices of Yj should be in D in order to be
dominated. However, there can be at most |Q| − 1 queries within Yj , and thus there are at least
d− |Q|+ 1 vertices in Yj which are indistinguishable to the algorithm. Among these indistinguish-
able vertices (Yj \Q) the algorithm does not know about possible edges, and thus it cannot claim
D is a minimal dominating set as if there is such an edge, removing one of its endpoints from D
results in a smaller dominating set.

In the case in which D contains {x1, . . . , xd−1}, observe first that D cannot contain any vertex
from Yi, i = 1, . . . , d− 1, otherwise D cannot be a minimal dominating set D. We now argue that
there has to be at least one more vertex x in D (not equal to a vertex in Yi, i = 1, . . . , d − 1), as
{x1, . . . , xd−1} is not a dominating set on its own. At the same time, the algorithm cannot claim
the minimality of D: Among the vertices {x1, x2, . . . , xd−1} there is certainly at least one vertex xi

not in Q. Thus, the algorithm does not know whether {q∗, xi} is an edge or not, and hence cannot
know whether x is necessary to dominate all vertices of G.

Theorem 5 There is a graph for which any algorithm needs to query at least
√

n − 1/2 vertices
before it discovers a minimal dominating set, while an optimum offline algorithm needs only one
query. Thus no algorithm can achieve a better competitive ratio than

√
n− 1/2 for the problem of

discovering a minimal dominating set.

2.3 Discovering a Maximal Independent Set

In this section we consider the problem of discovering a maximal independent set in G. We construct
an example where Opt needs one query, and any algorithm can be forced to make at least

√
n queries

before it discovers any maximal independent set.
Let Alg be any deterministic algorithm. Let us assume that its first query is at node q1 (out of n

nodes v1, . . . , vn). The graph G has the following structure (see Figure 4 for an illustration). There
exists a central node c which is connected to every node in V , and forms a maximal independent set
on its own. Thus, Opt can make a query at this node and discover that c is a maximal independent
set. We add other edges to G to make it impossible for any algorithm to find a maximal independent
set with less than

√
n queries. First, we split the vertices of V into three groups: L0 = {q1}, L1,

and L2. Vertex q1 is in L0,
√

n vertices are in L2, and the rest of the vertices is in L1. The central
vertex c is in L1. Vertex q1 is connected to every vertex in L1, and all vertices in L1 are also
connected to L2, and c is connected to every vertex in L1 (hence, c is indeed connected to every
vertex). There is no edge within vertices in L2. The query at q1 splits the vertices into two layers
L1 and L2. Observe first that X1 := {q1} ∪ L2 is a maximal independent set and there is no other

9



L2

L1c

q1

L2

L1c

q1

L1,1L1,2

q2

Figure 4: Construction of a graph G for which any algorithm needs
√

n queries to discover a
maximal independent set

one containing a vertex from X1. Any algorithm discovering X1 as an independent set needs to
query all but one nodes in L2, which is

√
n − 1 (no query in L1 can discover any information on

non-edges within L2). Observe that any such query does not discover any information about edges
and non-edges within L1. If Alg does not query only in L2 (and thus cannot discover X1 with less
than

√
n queries), let q2 be the first node that is queried in L1. Because all the nodes in this layer

look the same to the algorithm, the algorithm can be forced to query q2 at any node of L2. The
edge construction within L2 is a recursive construction: the query q2 splits L1 into two layers: L1,1

and L1,2, where, L1,2 has
√

n− 1 nodes, c is in L1,1, q2 is connected to every node in L1,1, and L1,1

is connected to every node L1,2. There is no edge in L1,2. Again, X2 := {q2} ∪ L1,2 is the only
maximal independent set containing a vertex from X2, and any algorithm needs |L1,2|−1 =

√
n−2

nodes to discover X2. If Alg queries also in L1,1, the nodes within L1,1 are split recursively into
three parts {q3}, L1,1,1, and L1,1,2, with the obvious size and edge-set. This recursive splitting can
obviously run for at least

√
n times, which shows that no deterministic algorithm can guarantee to

find a maximal independent set of a graph with less than
√

n queries.

Theorem 6 There is a graph for which any algorithm needs to query at least
√

n vertices before
it discovers a maximal independent set, while an optimum offline algorithm needs only one query.
Thus there is no o(

√
n)-competitive algorithm for the problem of discovering a maximal independent

set.

2.4 Discovering a Bridge or an Articulation Node of G

In this section we discuss two related properties of G. We want to discover whether the graph
G has an articulation node or a bridge. An articulation node of G is a vertex v such that the
induced graph on V \ {v} is not connected. A bridge is an edge e for which the graph G \ e is
not connected. We show that if the graph contains an articulation node, no algorithm is better
than n/2-competitive, and if the graph contains a bridge, similarly, no algorithm can achieve a
competitive ratio better than n/2. We also present an n/2-competitive algorithm for the bridge
discovery problem.

We begin with the bridge discovery problem. Consider the graph G from Figure 5. G has
an even number of vertices, and consists of one node q0 connected to all remaining n − 1 vertices
v1, . . . , vn−1. The vertices v2i−1 and v2i, i = 1, . . . , (n − 2)/2, form an edge. The graph contains
exactly one bridge – the edge {q0, vn−1}. Any algorithm can be forced to make the first query at
q0. Thus, all the remaining vertices lie within the same layer L1, and look indistinguishable to the
algorithm. We can force the next query to be at v1. This query keeps the vertices v3, v4, . . . , vn−1

indistinguishable to the algorithm, and does not give any information on the bridge {q0, vn−1}.
Hence, next time the algorithm queries a vertex in this group of vertices, we can force it to query
v3. Thus, using the recursive approach, any algorithm can be forced to query at least vertices
v1, v3, v5, . . . , vn−3, which then together discover the bridge {q0, vn−1}. Observe that an optimum
algorithm can query vn−1 to discover the bridge. This shows the lower bound n/2.

For the problem of discovering an articulation node we prove a lower bound of n/2 by modifying
the input graph G according to the vertices queried by the algorithm (i.e., we assume that the
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q0

v1 v2 vn−1

Figure 5: Bridge discovery

adversary is adaptive to the algorithm). The graph G will be a super-graph of a star centered at q
such that a node q∗ 6= q is incident with q only. In this case, by querying q∗ we can claim that q is
an articulation node as we discover that q∗ has degree 1. Before explaining how the idea behind the
proof of the lower bound works, we provide some new definitions. First, given a set of queries Q,
we define a Q-block as a maximal set of vertices in V \{q} that are connected in the graph GQ \{q}.
Clearly, if Q = V , we discover the whole graph, and thus G has an articulation node if and only if
there are at least two Q-blocks in the original graph G. The idea of the lower bound is to prevent
any algorithm from learning this information soon. In every Q-block B of GQ we consider a special
vertex – an anchor. An anchor is a vertex for which the query set Q does not reveal whether the
anchor is connected to another anchor in the original graph, i.e., Q is not enough to distinguish G
from another G′ ∈ comp(G, Q) (recall that comp(G, Q) is the set of all graphs G′ which give the
same query results for queries in Q), i.e., we do not know whether all Q-blocks are connected to one
another after querying Q, hence we cannot claim that G is (is not) 2-vertex connected. Clearly, in
order to claim that G is 2-vertex connected, the algorithm has to prove that V \ {q} is a Q-block,
i.e., all the graphs in comp(G, Q) are 2-vertex connected. Conversely, in order to claim that G is not
2-vertex connected, the algorithm has to prove that all the graphs in comp(G, Q) are not 2-vertex
connected.

Now, let us consider any deterministic algorithm. As all vertices are indistinguishable, we may
assume that the algorithm starts by querying Q = {q0 = q}. Clearly, for each vertex x in V \ {q},
we have that {x} is a Q-block whose anchor vertex is x. As all vertices V \{q} are indistinguishable,
we can assume that the algorithm queries q1 6= q∗, q. In this case we grow the Q-block B = {q1}
by merging it with two other Q-blocks B′ = {x′} and B′′ = {x′′}, with x′, x′′ 6= q∗. Basically,
we add the edges {q1, x

′} and {x′, x′′} to G. Notice that there are 2-vertex connected graphs in
comp(G, {q0, q1}) as we do not know whether there are edges connecting two anchor vertices to each
other. Finally we let x′′ be the new anchor vertex of the Q′-block B, where Q′ = Q ∪ {q1}. At
a generic step, let us assume that the algorithm queried all the vertices in Q, and let us assume
that comp(G, Q) contains a 2-vertex connected graph and a graph with an articulation node. The
algorithm can either choose to query a vertex q′ in the Q-block B we grew so far or not. In the first
case, notice that the new information discovered is maximized when q′ is exactly the anchor vertex
of the Q-block B. In the case where q′ is from B and is the anchor vertex a of B, we merge B with
two other blocks B′ = {x′} and B′′ = {x′′}, where x′, x′′ 6= q∗ (it is worth noticing that all vertices
but q and those in B are indistinguishable in GQ) by simply adding edges {a, x′}, and {x′, x′′} to G.
Let Q′ = Q ∪ {q′}. In the new graph, x′′ is the new anchor of the enlarged Q′-block B′ containing
the old block B. In the case where query q′ is outside B, we merge two singleton Q-blocks {q′}
and {x′} to B by adding edges {q′, x′}, and {x′, a} to G, where a is the anchor vertex of B, and
x′ is any vertex outside B and not equal to q′. Notice that in this new construction, a remains the
anchor of the new Q′-block B′ that contains the original Q-block B (where Q′ = Q ∪ {q′}). The
lower bound of n/2 follows from the fact that the algorithm queries at least (|B| − 1)/2 vertices
of B.

Theorem 7 For the problem of discovering a bridge or an articulation node there is no better
deterministic algorithm than n/2-competitive.

We now present a simple algorithm for determining whether a graph G is 2-edge connected.
The algorithm needs at most ⌈n

2 ⌉ queries. The algorithm makes an arbitrary initial query q0. The
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Figure 6: Assigning vertex w′ to the query qi

resulting layered graph G{q0} is used by the algorithm to choose the next queries. We denote by
qi the query that is made by the algorithm in the i-th step, and by Qi all the queries (including
qi) made so far. Observe that if there is i such that there is only one edge e between Li and Li+1,
the edge e is a bridge of G. Observe also that if G has a bridge e ∈ E, it has to appear as an
edge in the result of the query q0. Thus, choosing query qi+1, we can concentrate on those edges
of Gq0

, which are not part of any cycle of GQi
. While there are such edges (and thus candidates

for a bridge), the algorithm picks among all such edges the farthest endpoint from q0, and queries
it. We claim that this algorithm terminates, and that the algorithm knows at the end whether the
graph has a bridge or not, and that it makes at most ⌊(n− 1)/2⌋ queries on top of q0 (and is thus
⌈n/2⌉-competitive).

Let qi be the query of the algorithm in step i, and let ei = {ui, qi} be the bridge of GQi−1
with

qi the farthest endpoint from q0 among all bridges of GQi−1
. Let ℓi denote the distance of qi from

q0. Let R(qi) be the set of vertices from layers Lj , j ≥ ℓi, which can be reached from qi by a path
which uses at most one vertex from each Lj , j ≥ ℓi. (i.e., if we orient the edges according to the
increasing distance from q0, the set R(qi) is the set of all vertices for which there exists a directed
path from qi). Thus, R(qi) forms a component of GQi−1

\ {ei}, as there cannot be any edge with
endpoints in the same layer leaving R(qi) (otherwise ei would no longer be a bridge in GQi−1

). Let
us assume that ei is not a bridge in G. Then there exists a cycle C in G which contains the edge
ei. The cycle C has to contain a not yet discovered edge ec = {w, w′} which is adjacent to a vertex
w in R(qi), and to a vertex w′ /∈ R(qi). The vertices w and w′ have to be from the same layer Lj ,
j ≥ ℓi (as the edge {w, w′} was not discovered by q0). Clearly, qi discovers this edge {w, w′}, as
the distance from qi to w is j − ℓi (as w ∈ R(qi)), and the distance from qi to w′ is bigger than
j − ℓi (as w /∈ R(qi)). As {w, w′} is a newly discovered edge, it follows that w′ was not queried
before. To show that at most ⌊(n− 1)/2⌋ queries are made by the algorithm after the query q0, we
want to assign one unqueried vertex to one queried vertex. In our case we assign w′ to qi (notice
that w could possibly be equal to qi, and thus cannot be assigned to qi). We now show that w′

is not already assigned to a previously queried vertex qk, k < i, with ℓk ≥ ℓi. Figure 6 depicts
the situation. If this is the case, w′ is assigned to query qk because w′ is an endpoint of an edge
{w′, w′′} which was discovered by query qk, and which is a part of a cycle that shows that qk is not
an endpoint of a bridge in G. Thus, w′′ ∈ R(qk) and w′ /∈ R(qk). Clearly, the distance between qk

and w′ is j− ℓk +1. The distance between qk and w has to be j− ℓk +1 as well, as the edge {w, w′}
is not discovered by qk. But this is not possible. The shortest path from qk to w cannot go via a
vertex from layer Ls, s < ℓk (the distance would be bigger than j − ℓk + 1). Thus, the shortest
path between qk and w goes only via vertices of layers Ls, s ≥ ℓk. But then ei cannot be a bridge
in GQi−1

: The shortest path from qk to w, the shortest path from w to qi, and the path from qi

to qk via q0 induce a cycle with ei, using edges known after query qk. This is a contradiction, and
thus w′ is not assigned to qk and can be assigned to qi.

Thus, if ei is not a bridge, we will discover at least one new edge ec that includes ei into a
cycle of G, and one of the endpoints of ec can be assigned to qi. If we do not discover any such
edge, the edge ei is a bridge of G. The assignment argument shows that after q0 we query at most
⌊(n− 1)/2⌋ vertices. The termination of the algorithm follows from the fact that we can query at
most n vertices, and from the fact that if GQi

contains a bridge, then its endpoint further from q0
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Figure 7: A graph for the lower bound of maximum-degree discovery. The dotted lines depict the
missing (deleted) edges in the graph

was not queried yet, and we still have a vertex to query in step i + 1.

Theorem 8 There is an ⌈n/2⌉-competitive algorithm for the problem of discovering a bridge of a
graph.

2.5 Discovering the Min/Max Degree of G

We investigate how many queries are needed in order to discover the minimum degree of G, and
the maximum degree of G. The lower bound construction for the problem of finding an articulation
node (Section 2.4) shows an example where any deterministic algorithm needs at least n/2 queries
to discover the minimum degree of G, whereas an optimum algorithm needs only one query, yield-
ing a lower bound n/2 on the competitive ratio of deterministic algorithms. For the problem of
discovering the maximum degree we similarly present a lower bound n/2 on the competitive ratio
of deterministic algorithms. Consider a graph G with n = 2k + 1 vertices, which is constructed
from a complete graph Kn by deleting the “even” edges {v2i, v2i+1}, i = 1, . . . , k from the cycle
v1, v2, v3, . . . , vn. An example of such a graph for n = 9 is in Figure 7. Observe that v1 is the only
vertex of the graph which has degree n− 1, and thus the maximum degree of G can be discovered
by one query at v1. On the other hand, any other vertex vi has exactly n − 2 neighbors, which
are indistinguishable with the query. Thus, every deterministic algorithm can be forced to query k
vertices before it can distinguish v1 from other vertices, and therefore the algorithm makes at least
k + 1 queries before it reveals the maximum degree of G.

3 Conclusions

We have introduced the online problem of discovering graph properties with all-shortest-paths
queries, and considered in more detail the discovery of the diameter, a minimal dominating set, a
maximal independent set, the 2-edge connectivity, the 2-vertex connectivity, the maximum degree,
and the minimum degree of an unknown graph. We have presented lower bounds for the problems,
and also an O(

√
d · n)-competitive algorithm for the minimal dominating set discovery, and an

optimal n
2 -competitive algorithm for the bridge discovery problem. We have also introduced a

technique of querying an interface of a graph GQ, which may prove to be helpful in other discovery
settings. Furthermore we have shown an adaptive-adversary lower bound construction, which is
the first adaptive construction in the discovery setting as introduced in [2].

Our work was motivated by the current intensive activities in the area of mapping the Internet.
The all-shortest-path queries model the information that is obtained from routing tables of BGP
routers. Of course, our assumption of getting all shortest paths is not reflected fully in reality –
it certainly is a simplification which helps to analyze the problem. In reality, we would assume to
get much less information. The lower bounds presented in this paper suggest, however, that in any
realistic situation we cannot hope for better results.
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