
ETH Library

Explaining Outputs in Modern Data
Analytics

Report

Author(s):
Chothia, Zaheer; Liagouris, John; McSherry, Frank; Roscoe, Timothy

Publication date:
2016

Permanent link:
https://doi.org/10.3929/ethz-a-010601932

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010601932
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Technical Report

DOI: 10.3929/ethz-a-010601932

Systems Group, Department of Computer Science, ETH Zurich

Explaining Outputs in Modern Data Analytics

by

Zaheer Chothia, John Liagouris, Frank McSherry, Timothy Roscoe

March 4, 2016

This technical report is an extended version of a paper submitted to VLDB ’16, March 2016

Explaining Outputs in Modern Data Analytics

Zaheer Chothia, John Liagouris, Frank McSherry, Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zürich

firstname.lastname@inf.ethz.ch

ABSTRACT
We report on the design and implementation of a general frame-
work for interactively explaining the outputs of modern data-parallel
computations, including iterative data analytics. To produce expla-
nations, existing works adopt a naive backward tracing approach
which runs into known issues; naive backward tracing may iden-
tify: (i) too much information that is difficult to process, and (ii)
not enough information to reproduce the output, which hinders the
logical debugging of the program. The contribution of this work is
twofold. First, we provide methods to effectively reduce the size of
explanations based on the first occurrence of a record in an iterative
computation. Second, we provide a general method for identifying
explanations that are sufficient to reproduce the target output in arbi-
trary computations – a problem for which no viable solution existed
until now. We implement our approach on differential dataflow, a
modern high-throughput, low-latency dataflow platform. We add a
small (but extensible) set of rules to explain each of its data-parallel
operators, and we implement these rules as differential dataflow op-
erators themselves. This choice allows our implementation to inherit
the performance characteristics of differential dataflow, and results
in a system that efficiently computes and updates explanatory inputs
even as the inputs of the reference computation change. We evaluate
our system with various analytic tasks on real datasets, and we show
that it produces concise explanations in tens of milliseconds, while
remaining faster – up to two orders of magnitude – than even the
best implementations that do not support explanations.

1. INTRODUCTION
Work on data provenance describes methods for tracking and

querying the dependence of individual outputs of a computation on
specific inputs to the computation. Over the last decade, the idea
of provenance received considerable attention in a wide range of
application areas, including data curation [8], system debugging [46,
3, 29], access control [17], workflow analysis [20, 4, 42, 26], proba-
bilistic data management [6], network management [47, 43], data
integration [12, 28], and query result explanation [37], among oth-
ers. At the same time, the scale and scope of modern data analytics
have moved past what traditional databases were designed to handle.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Modern analytic workloads involve complex iterative computations
over rich graphs with billions of edges, while receiving updates in
real time. Now more than ever, it is important to understand the
even less obvious connections between the inputs and outputs of
these computations.

Existing works on provenance are rich and varied, but each lies
along a spectrum between (i) eager techniques which annotate each
tuple with the inputs on which it depends [24, 41, 13, 22], and
(ii) lazy techniques which determine necessary input records by
"inverting" operators in the computation [15, 2]. As their names
suggest, the techniques trade-off runtime overhead against query
latency; eager approaches must perform a great deal of work to
compute and maintain output annotations, whereas lazy approaches
may need to perform a substantial amount of work for each query.

One compromise between the two is backward tracing, in which
each operator in a dataflow graph maintains a reverse mapping from
its output records to its input records, and the dataflow structure
guides a trace backwards from queried output records to the input
records on which they depend. Each operator eagerly maintains a
reverse mapping, but the reverse mapping for the computation as
a whole is computed lazily – only when requested – rather than
being fully materialized. Backward tracing makes relatively few as-
sumptions about the structure of the operators, maintains an amount
of state no larger than the total data it has processed, and provides
query latencies that depend on the size of the query result. However,
the naïve application of backward tracing quickly runs into known
issues, even for simple dataflows; backward tracing may identify
(i) too many inputs to be helpful [18] and (ii) too few inputs to
reproduce the output [26]. We give examples for both cases.

Too much information. Consider the problem of determining the
connected components of a graph: we want to assign labels to each
node so that nodes have the same label if and only if there is a path
between them. A common algorithm for this task assigns a distinct
label to each node (often the node’s id) and then repeatedly performs
the following steps: (i) joins the label set with the set of edges in the
graph (essentially sharing each node’s label with its neighbors), and
(ii) groups by edge destination to retain the minimum label for each
destination node. After some number of iterations, each node will
have been exposed to the smallest label in its connected component.

Figure 1a presents an example graph, in which node B would
receive label A in the first iteration. Suppose that node A has the
smallest id (0) among all nodes in the graph. Although the label A at
node B never changes throughout the computation, it is recomputed
in each round from the labels of its neighbors. Now suppose that we
want to explain why node B has label A, i.e., why these two nodes are
in the same connected component. In a naïve backward tracing from
any output label, each neighbor contributes an input which depends
in turn on inputs from its neighbors, and so on until the whole

A

B

C

D

Doc1: “the quick brown fox”
Doc2: “the lazy dog”

(Doc1, “quick”),
(Doc1, “brown”),
(Doc1, “fox”),
(Doc2, “lazy”),
(Doc2, “dog”)

Documents

Unique words Unique word count
(Doc1, 3),
(Doc2, 2)

(a) An example graph (b) An example corpus

Figure 1: Examples for the discussion of challenges

connected component is implicated. However, we know that there is
a succinct explanation for why A and B are connected; specifically,
the edge (A,B). Existing systems [29, 46] with backward tracing
support for the previous computation return the whole set of paths
between A and B; this is prohibitive for large connected components
and, more importantly, the explanation is very difficult for a human
to digest.

The first contribution of this work is a backward tracing approach
that identifies concise explanations for an output record of an ar-
bitrary iterative computation, based on the first occurrence of the
record in the computation. In the connected components example,
our approach automatically reduces the explanation for “why B has
label A” into a shortest path between the two nodes A and B.

Not enough information. Consider a collection of documents for
which we want to compute the set of words unique to each document.
One algorithm to do so is to first produce all (doc,word) pairs, then
group by word and retain only pairs in singleton groups, and finally
group by doc and count the words in each group.

Figure 1b presents an example corpus where we remove all words
with count greater than one, and then simply count the number of
remaining words in each document. In the example, the resulting
count for Doc1 is 3. Tracing backwards, the three records observed
to contribute to this count derive only from Doc1. However, re-
running the whole computation on only Doc1 results in a count of
4, because the record (Doc1,"the") is no longer too frequent. We
can see that to reproduce the output we must also include Doc2, but
for a more general text processing pipeline an analyst would need
to write new queries to identify and diagnose the discrepancy.

Output reproduction is crucial for debugging purposes. The prob-
lem was first pointed out in [26] and, to the best of our knowledge,
no viable solution existed until now, even for the case of DAG
dataflows without iteration. Specifically, the central result of [26] is
a theorem about reproducing target outputs:

Theorem 1. Output Reproduction (from [26])

Consider a workflow W(I) = O with input I and output O. Let
o ∈ O be an output element and consider that the output of a naive
backward tracing from o is the set of input elements I∗ ⊆ I.

1. If all map and reduce operators in W are one-to-one and
many-to-one respectively, then o = W(I∗).

2. If there is at most one non-monotonic1 data transformation in
W, then o ∈ W(I∗).

3. Otherwise, there is no guarantee that o ∈ W(I∗).

1According to [26], a data transformation T is monotonic if for any
I1, I2 with I1 ⊆ I2, then T (I1) ⊆ T (I2).

The “unique word count” example falls into the third case of
Theorem 1 because the workflow includes a one-to-many map op-
erator – the operator that takes each input document and splits it
into individual words – followed by two non-monotonic operations:
(i) group by word and output only singleton groups, and (ii) group
by doc and count the words in each group. As pointed out in the
example, the discrepancy lies in the intermediate record that does
not appear in the reference computation W(I), but appears in W(I∗),
i.e., when replaying the computation using as input only the result
of backward tracing from o = (Doc1,3). To ensure consistency
between the reference and the replayed computation, the authors of
[26] proposed a quick fix in the replaying process (although this fea-
ture was not implemented in their system): all intermediate records
that appear in the re-executed computation but not in the reference
computation should be filtered out while replaying. Suppressing
records ensures that each operator is correctly re-simulated, but does
not solve the issue that the computation’s input does not yield the
desired output, which hinders the logical debugging of the program.
In fact, all provenance-aware systems [26, 27, 4, 31, 46, 29, 1]
provide explanations that guarantee the reproduction of the output
only when the conditions of Theorem 1 are satisfied.

The second contribution of this work is a generalized backward trac-
ing approach that provides explanations sufficient to reproduce the
output in arbitrary, even iterative, dataflows with any combination
of monotonic and non-monotonic operators.

Our Approach. In this paper, we present a general system for
explaining outputs in iterative data analytics. Our approach is based
on differential dataflow, a data-parallel framework that supports
iterative and incremental computations. In a nutshell, we express the
explanation logic for each operator of differential dataflow (roughly
map, reduce, join, and iterate) in the form of simple rules,
and we implement these rules as differential dataflow operators
themselves. This approach allows us to identify when (i.e., the
points in the computation) and how a data collection changes, and
provide explanations for only these few changes, rather than the rest
of the unchanged data.

We evaluate our approach on several analytic tasks including:
(i) complex fixed-point computations with mutual recursion, (ii)
graph connectivity, and (iii) stable matching which is inherently non-
monotonic. For the first set of experiments we use “hard” Datalog
programs on real biomedical datasets whereas for (ii) and (iii) we
use the LiveJournal (68M edges) and Twitter (1.4B edges) graphs.
The results show that our system produces explanations in tens
of milliseconds, for computations whose inputs are interactively
updated, and remains faster – up to two orders of magnitude – than
even the best provenance-free non-interactive implementations.

The remainder of the document is organized as follows. Section 2
clarifies several important concepts of data provenance, and provides
some background on differential dataflow which is the basis of our
approach. In Section 3 we present our generalized backward tracing,
and we demonstrate how it accommodates existing works on data
provenance. In Section 4 we evaluate each aspect of our system,
and in Section 5 we provide an overview of the systems in the field.
We conclude in Section 6 with directions for future work.

2. PRELIMINARIES
Our work is strongly influenced by previous work on database

provenance. We highlight this connection in Section 2.1, where we
also clarify several important concepts used throughout the paper. In
Section 2.2 we provide an overview of differential dataflow which
serves as a basis for our framework in Section 3. The rest of the
related work on provenance-aware systems is given in Section 5.

Figure 2: Example of a Provenance Graph G

2.1 Concepts of Data Provenance
The idea of tracking the dependencies between the individual

inputs and outputs of a computation was first introduced in the
database field under the term data lineage [14]. The focus of the
first works was to provide lineage support for SPJUA queries, i.e.,
relational queries with Selection, Projection, Join, Union, and Ag-
gregation [15]. Given a tuple t in the output of a query q, the lineage
of t is the set of all tuples from the input relations of q that contribute
in having t in the result. [9] made one step further by classifying
different concepts of lineage under the term data provenance. This
work opened a whole new area of research by introducing Why
and Where provenance, which were later related to fundamental
optimization problems in [10]. More recently, [23] formalized the
term How provenance in the form of semirings and extended this
idea to Datalog. In an attempt to provide a consistent terminology,
[39] considers two general notions of provenance: (i) Provenance
of Data (PoD) that provides information about the input data items
that contribute to the result of a query q, and (ii) Provenance of a
Data Product (PoDP) that provides information about the particular
data transformations that led to the result of q. As we explain in
the following, the terms lineage, Why and Where provenance are
classified under PoD whereas the How provenance lies between PoD
and PoDP.

Consider the example in Fig. 2 with the simple database D and
the query q on the left. This query asks for the names and addresses
of all customers with an order of type Furniture. The result of
q on D contains the tuple t8 = <Bob, 99 High St>, i.e., q(D) =

{t8}. Now consider the graph G shown on the right of Fig. 2, which
we will use to clarify the different notions of provenance in the
database literature. This graph illustrates the flow of individual
tuples throughout the evaluation of q, and it is also known as the
Provenance Graph. Circular nodes in G represent input, output, and
intermediate tuples whereas rectangular nodes denote operations on
one or more tuples; in our example, nodes labeled with Z denote the
joins of pairs (t1,t3) and (t1,t4) that produce the intermediate tuples
t6 and t7 respectively. Nodes labeled with π denote the projection of
fields Name and Address from t6 and t7, both resulting in the same
output tuple t8.

The lineage of t8 is the set of highlighted tuples {t1, t3, t4} from
the two input relations Customers and Orders. The Why prove-
nance of t8 is the multi-set {{t1, t3},{t1, t4}}. Each of the two subsets

{t1, t3} and {t1, t4} corresponds to a proof or witness of t8, i.e., a
subset of the input tuples that are sufficient – but not necessary – to
have t8 in q(D). Note that the lineage is the union of data elements
in the Why provenance. According to [23], the How provenance of
t8 is expressed as a semiring of the form t1 · (t3 + t4), where ti · t j

means “both ti and t j” whereas ti + t j is “either ti or t j”. In general,
How provenance is more informative than Why provenance and the
former can be used to generate the latter. On the other hand, How
provenance provides limited information about the data transfor-
mations. In our example, this information is fully captured by the
provenance graph G; in fact, G is a more “verbose” form of How
provenance, called transformation provenance [22]. Transformation
provenance describes all possible ways of having t8 in q(D) – just
like How provenance – but also includes the actual query operators
that are involved in this process. Finally, the Where provenance is
defined at the attribute level; the Where provenance of t8.Address is
t1.Address, i.e., the field of the input tuple t1 from which the value
of the attribute Address is propagated to the output tuple t8. In this
sense, the Where provenance has the copy-contribution semantics
as explained in [22].
Our work focuses on tracking, maintaining, and querying lineage
and How provenance in the context of arbitrary iterative dataflows.
The notion of explanations we also consider in this paper is related
to the Why provenance described in the previous. Intuitively, a
witness of t8 “explains” the existence of t8 in q(D) although it does
not provide any information about the process that led t8 in q(D).

2.2 Differential Dataflow
Differential Dataflow [33] (DD) is a data-parallel programming

and execution model, layered on top of the timely dataflow model
implemented in the Naiad system [34]. Differential dataflow was
originally designed to support incremental updates to the inputs of
iterative data-parallel computations. As we explain in the following,
differential dataflow is a good fit for backward tracing, especially if
we want to update backward tracing computations efficiently. Here
we summarize how differential dataflow supports efficient updates
(and at what cost), both to inform our adaptation of backward tracing
to differential dataflow (Sections 3.2 and 3.3), and to explain the
robust performance of our general implementation in Section 4.

2.2.1 Computational Model
Differential dataflow models computation as a data-parallel data-

flow over collections of records. It includes standard operators such
as join, group, map, and filter, but also supports an iterate
operator for (arbitrarily nested) iterative computations. Each oper-
ator is data-parallel and functional: its output can be determined
by partitioning its input records according to some key and apply-
ing a function independently to each part. For example, one can
implement a data-parallel graph reachability computation using the
iterate operator whose body repeatedly joins the collection of
reachable nodes (reach) with the collection of edges (edges), and
retains distinct elements (map is used to project b):

initial.iterate(|reach| {
reach.join(edges)

.map(|(a,b)| b)

.distinct()
})

Differential dataflow transparently provides incremental execu-
tion. Although the program above appears to repeatedly re-execute
the join on the full collection reach, the implementation is actually
delta-based; work is only performed as the collections reach and

Join Distinct

Streaming Iterative

edges

reach

Map

initial

(D,+1,(0,2))((A,C),+1,0)

Figure 3: A sketch of the differential dataflow graph for the
reachability example.

edges change. This allows differential dataflow to efficiently imple-
ment iterative computations, and also to update those computations
as their inputs change.

Internally, each collection of records is represented by a trace,
a monotonically growing set of update records that describe the
collection’s content at various points in the computation. These
updates explain how records in the collection change as the compu-
tation proceeds. An update record is always defined for a specific
collection and has the following form:

collection(record,c,t)

where: (i) record is the record that is inserted or removed into/from
the collection, i.e., the actual content of the update, (ii) c ∈ Z is
the change in the count of the record in the collection, and (iii)
t is the logical time, i.e., the point in the computation at which the
update occurs. The logical time may indicate a round of input data
(e.g., in a streaming scenario where data are given in batches), a
number of iterations around a loop, or arbitrary combinations of
these – for example, describing a change at some round of input
within multiply nested loops. The collection traces maintain the
property that, at any logical time t, a collection is determined by
accumulating all update records with a logical time t′ ≤ t.

Figure 3 depicts the differential dataflow graph for the previous
reachability example. Consider the input collection of the distinct
operator, which consists of nodes produced by the previous map
operator. Suppose that, in the first round of edge data and first
iteration around the loop, this collection consists of the nodes
"a", "b", and "c", written as update records:

collection("a", +1, (0,0))
collection("b", +1, (0,0))
collection("c", +1, (0,0))

The +1 are the count values that indicate a change from the baseline
(empty) collection. The (0,0) is the logical time that indicates the
first round of input data (round 0) and the first iteration (iteration 0).
The logical time contains loop counters for each nested loop in the
computation, though in this case there is only one. Suppose that, in
the second iteration of the first round of edge data, the computation
adds node "d" as well as a second copy of "c", introducing updates
whose logical time now reflects the second iteration:

collection("d", +1, (0,1))
collection("c", +1, (0,1))

In case there are no further changes, the computation quiesces,
and the results of iterate are reported. However, suppose that in
the second round of input data an edge is removed from edges, and
the first iteration of the second round starts with a changed input for
distinct: node "c" is now removed. This may lead to a second
iteration of the second round in which "d" is also removed and added

again in the third iteration. In this hypothetical scenario, the update
records for the input trace of distinct would be:

collection("c", -1, (1,0))
collection("d", -1, (1,1))
collection("d", +1, (1,2))

In this case, the only update records we see relate to the actual
changes that occur. Records corresponding to "a" and "b" are
not re-considered if they do not change. Although this property is
common to all systems with delta-based updating (for example, in
Datalog engines that support semi-naive evaluation [30, 29]), dif-
ferential dataflow’s explicit use of timestamps extend it to arbitrary
iterative computations.

Each differential dataflow operator maintains its input updates
indexed by key, and reacts to new inputs by ensuring that its output
updates properly describe a collection that reflects the operator’s
logic applied to the collection described by its input updates. The
operators continue receiving and producing updates until all updates
have either dissipated or reached the outputs of the dataflow (in our
example, the output of iterate). The communication between
operators and the memory footprint are both bounded by the total
number of update records circulated in the dataflow over the course
of the computation.

2.2.2 Implications for Explanations
The framework we present in Section 3 relies on the ability of

differential dataflow to efficiently execute and update iterative data-
parallel computations. Explanations are produced by iteratively
updating a fixed-point implementation of backward tracing. Dif-
ferential dataflow not only efficiently computes these explanations,
but it also updates them automatically as the source computation
changes.

Additionally, our adaptation of backward tracing to differential
dataflow’s updates (Section 3.2) is based on three important prop-
erties: (i) the graph-based structure of differential dataflow, which
allows us to easily determine the source of an operator’s input, (ii)
the functional nature of each operator, which means that an output
at a logical time is fully explained by the operator’s input at that
logical time, and (iii) the data-parallel nature of operators, which
means that, for each operator, we can restrict the relevant inputs for
an output to those with the same key. These three properties allow
us to restrict the number of updates in the provenance information
and avoid redundant computations.

3. A FRAMEWORK FOR EXPLANATION
In this section we provide the details of our approach. In Section

3.1 we present our general framework for tracking provenance in
data-parallel operators. In Section 3.2 we specialize this frame-
work for differential dataflow operators, which can be used to define
arbitrary iterative computations, including those expressed in Data-
log. Finally, in Section 3.3 we introduce our generalized backward
tracing approach that identifies meaningful explanations in settings
where the naive backward tracing fails.

3.1 Explaining Data-parallel Operators
Our goal is to create a set of recursively defined rules that deter-

mine which records in a general data-parallel computation – outputs,
intermediate records, and inputs2 – require explanation. To this end,
we consider a simple framework where all records have the form
(k, p) representing a key k and an associated payload p. The payload

2An explanation for an input record is the record itself.

may contain a value (data) along with additional metadata. In this
framework we define two operators: (i) a linear map operator, which
applies arbitrary logic on a record-by-record basis, and (ii) a reduce
operator, which maps sets of records with the same key k to output
sets with that key. The map operator can associate arbitrary keys
with its outputs (one-to-one or one-to-many), which the reduce
operator can then group and act on appropriately. In the following
section, we will also present (optimized) versions for operators like
join, top-k, distinct, and invertible map.

For each collection of records col in the computation, we intro-
duce another collection col_q of the same type, containing records
from col that require explanation. To define the contents of this
new collection, for each data-parallel operator with input collection
col and output collection out, we introduce a new join operator
whose inputs are col and out_q, and whose output is col_q. Intu-
itively, the role of this join operator is to select elements of col
matching requests in out_q. The result is a shadow copy of the
dataflow graph, with the direction of edges reversed; the inputs in
the reversed dataflow are sets of output records to explain, and the
outputs are the required inputs in the original computation.

The explanation of an operator’s output is the set of input records
that produced it. Without any assumptions on the logic of the map
operator, we can only record all observed pairs of input and output
records and index these pairs by output. The reduce operator has
a data-parallel structure, meaning that we only need to index the
input by key, and use the key when a request is made for explaining
a record in the output. The two constructs are depicted in Figure 4.
We emphasize that, although the general map and reduce operators
do maintain a second copy of their input – which can be expensive –
we have several opportunities to reduce this overhead for common
data transformations, as we show in the following section.

Map

Join

In: d Out: f(d)

In_q: d Out_q: f(d)

(f(d), d)

Reduce

Join

In: (k,v) Out: (k,v’)

In_q: (k,v) Out_q: (k,v’)

Map operator Reduce operator

Figure 4: Generic provenance tracking constructs

Discussion. Expressing the explanation logic as a join that matches
queried outputs against explanatory inputs has two major advantages.
First, we do not rely on specialized data structures for maintaining
provenance, like for example in [25]; hence, our approach can be
easily incorporated into any system. Second, the explanation join
can be implemented as a data-parallel operator itself to achieve ro-
bust and scalable provenance querying. In contrast to existing works
that query provenance outside the data-parallel system [26, 4, 31],
our implementation uses the built-in join operator of differential
dataflow, which also allows for efficient incremental evaluation.

3.2 Backward Tracing in Differential Dataflow
Besides the general map and reduce operators, differential data-

flow also introduces a data-parallel join and an iterate operator.
The join operator can be implemented as a binary reduce that

takes a pair of inputs In1: (k, v1) and In2:(k, v2), and produces an
output of the form Out: (k, (v1, v2)). Although we could implement
provenance tracking with the generic construct for the reduce op-
erator from Section 3.1, there is a significant optimization to apply.
The join has a special structure: its output bindings reveal exactly
the input records responsible for it, hence, we do not need to index
the inputs for the join because they can be recovered directly from

the outputs by projecting out the relevant attributes. The optimized
construct is shown on the left of Figure 5.

The iterate operator is used to define arbitrary loops on collec-
tion of records, and breaks into three operators: enter, feedback,
and leave [34]. These operators are applied on a record-by-record
basis and manipulate only the logical timestamp of the input record3;
respectively, extending the timestamp with a new coordinate, ad-
vancing the coordinate, and removing the coordinate. Each of these
three operators can be treated using the same construct as with
map in Section 3.1, and we will even see that the first two can be
optimized further as invertible map operators (Section 3.2.3).

We are now able to show how our framework naturally captures
existing definitions of provenance for Datalog computations [19,
23, 29, 18]. To the best of our knowledge, this is the only class of
iterative computations that have been studied so far in the context of
data provenance.

3.2.1 Provenance for Datalog
A Datalog computation is a collection of recursive rules, each of

which defines how new elements of a relation may be produced from
existing elements of other relations. By re-using variables in these
rules, the source relations are implicitly joined. A classic example
determines the transitive closure reach of a directed graph defined
by a relation edge as:

1. reach(x,y) := edge(x,y)
2. reach(x,z) := reach(x,y), edge(y,z)

An intuitive way to compute provenance for output tuples is the
approach followed by [29, 46], where each rule is rewritten as first
determining a binding of all variables involved, and then yielding
the contribution to the output relation. For example, the second rule
above can be rewritten as:

bind(x,y,z) := reach(x,y), edge(y,z)
reach(x,z) := bind(x,y,z)

It is easy to see that each Datalog rule producing a binding is
a join of the participating relations and can be implemented with
a join operator. Each rule projecting attributes from a binding
can be simply treated as a map. In Datalog, the projections for the
same relation are merged and followed by a distinct operator,
which we can be also expressed as a reduce. However, although
the distinct operator is a form of reduce, it does not need to track
its inputs: each requested output record can simply be passed back-
wards as a required input record. The optimized construct for the
distinct operator is shown on the right of Figure 5. With this
optimized construct, the only operators that require indexed state
for provenance are the projections, which must maintain maps from
projected tuples back to the full bindings that produced them.

3.2.2 Reducing the Provenance Size
So far we have focused on the backward tracing constructs with-

out considering the time dimension that is natively supported in
differential dataflow. In fact, the most important change we make
in our explanation logic is that the inputs of an operator can be
restricted to those with logical timestamp less-or-equal to that of the
required output. This allows us to put a filter on in_q in the reduce
construction in Figure 4, and substantially reduce the volume of
records in the reported provenance. The effect is that we only see
records that existed when the output was first produced; later inputs
3Recall from Section 2.2 that each record in differential dataflow
is associated with a logical timestamp that denotes the point of the
computation the record was produced.

Join

Map

In1: (k,v1) Out: (k, (v1,v2))

In1_q: (k,v1)

In2: (k,v2)

Map
In2_q: (k,v2) Out_q: (k, (v1,v2))

Distinct
In: (k,v) Out: (k,v)

In_q: (k,v) Out_q: (k,v)

Join operator Distinct operator

Figure 5: Optimized provenance tracking constructs

may also be relevant for the full provenance in the logical sense,
but they did not participate in producing the target output in the
differential dataflow computation.

3.2.3 Additional Optimizations
Several differential dataflow operators admit optimizations that

can simplify their implementations, requiring less computations and
memory. In each case, the optimizations take the form of slightly
more interesting explanation rules, which we use instead of the
generic rules of Section 3.1. We expect that other optimizations
could be added similarly, but we leave this for future work.

Top k

Join

In: (k,v) Out: (k,v)

In_q: (k,v) Out_q: (k,v)

Map

Map

In: d Out: f(d)

In_q: d Out_q: f(d)

Top k operator Invertible map operator

Figure 6: Additional optimized provenance tracking constructs

Invertible map operators. We see many instances of invertible
map operators used to rearrange which fields of a tuple are the key
and which are the value. An invertible map operator doesn’t need to
maintain the mapping from output to input record explicitly since
it can be computed using the inverse function. For example, this
optimization applies to enter, which adds a timestamp coordinate
that is easily removed, and to feedback, which increments a times-
tamp coordinate that can simply be decremented. The optimized
construct is show on the right of Figure 6.

Top-k. We often see the generic reduce operator used with logic
that looks at only the first element when ordered by some metric.
This happens in connected components, where each node selects
the smallest value it sees, and in stable matching, where each node
selects proposals by rank-order. More generally, operators that just
restrict each group to the top-k elements do not need all inputs to
explain outputs; the outputs (which are themselves inputs) suffice.
Not only are they sufficient, but the other records are literally never
exposed to user logic; the outputs cannot depend on them if they
are never observed. The optimized construct is show on the left of
Figure 6. In Section 4.2, we will see how the top-k optimization can
effectively reduce the size of the explanation in the computation of
connected components of a graph.

Join. The binary join operator matches key-value pairs with com-
mon keys, producing the triple (key, first value, second value). In
differential dataflow, the timestamp of the output is the least upper
bound of the timestamps of the input records. Although we do not
know the timestamps of the input records from the output alone,
we can just produce requests for the appropriate inputs using the
timestamp of the output record. All identified input records must

have been present at the logical time the output was produced.

3.2.4 Space Overhead
Provenance tracking does not come for “free”, meaning that

additional state has to be kept by the operators, as we explained in
the previous section. We emphasize that the incurred space overhead
increases linearly to the total amount of data in the computation
(including the intermediate records), and this overhead is the same
in all existing systems with fine-grained provenance tracking. In
this sense, we do not invent a new approach for storing provenance-
related information here; our contribution lies in the time-based
filtering of records (Section 3.2.2), and the techniques we described
for optimizing the naive materialization of dependencies in specific
operators (Figures 5 and 6).

Reference

Re-execution

Join Back tracing

input

output
query

exhaust

exhaust

output

Figure 7: Iterative process to find explanations. The backward
tracing and re-execution is iterated to a fixed-point for each in-
stance of the reference computation. Any changes to the input
and reference computation propagate to changes in the itera-
tive explanation finding process.

3.3 Iterative Backward Tracing
In general data-parallel computations, the input records identified

by backward tracing may not be sufficient to reproduce the output.
As pointed out in [26], the issue lies in intermediate records that
appear in the re-executed computation but are not seen in the ref-
erence computation. These records may interfere in downstream
computation and change the results of operators, suppressing impor-
tant outputs. This problem doesn’t occur in dataflows of monotonic
operators, as they have the property that additional input records
only lead to additional output records.

Although it appears difficult to identify the records that deviate
from the reference computation early, we can discover them through
their main defective property: to affect the output they must intersect
the backwards trace. If we maintain a second instance of the com-
putation, re-executed only on the inputs identified by the backwards
trace, then any new records it produces that intersect the backwards
trace can themselves be traced backwards, and ultimately corrected
through the introduction of more input records. Concretely, we
introduce a second copy of the dataflow graph, structured as for the
reference computation. For each of our explanation rules, we merge
the streams from the two computations leading into the explanation
logic. This has the effect of propagating requirements for explana-
tions of inputs in either the test or the reference computation. Each
new record intersecting the backwards trace is added to the back-

wards trace and traced backwards itself, possibly resulting in more
required inputs, and this is repeated until convergence. When the
fixed-point is reached, the set of explanatory input records collected
by the iterative backward tracing is sufficient to reproduce the output
we wanted to explain. Figure 7 sketches the overall process.

For the approach to be useful, it must also be reasonably efficient
to re-execute both the computation and the backward tracing on the
test inputs. Here we rely on the incremental updating infrastructure
of differential dataflow, which is designed to handle this task. The re-
execution of the backward tracing operates by propagating changes:
newly introduced requirements are propagated, but old requirements
are not re-processed. The same delta-based approach is followed for
the re-execution of the computation.

Example. Let us go through the example of Figure 1b in the intro-
duction to make the process more concrete. Recall that we have a
document corpus and we want to compute, for each document, the
number of its terms that are unique in the corpus. The output we
want to explain is (Doc1,3), and each of the three contributions
traces back directly to Doc1. Including only the input Doc1 cre-
ates the three records we are interested in, but also creates a fourth
record: (Doc1,"the"). At this point, the backwards trace may
have changed (we have new records) and so it is re-performed. We
discover the new record in the backwards trace, which turns into a
request to explain (Doc1,"the"). The record is the result of the
reduce operator, which keeps only singleton groups, and the inputs
associated with the key "the" in the reference computation include
both (Doc1,"the") and (Doc2,"the"). The latter record leads
back to Doc2, which is now included in the set of inputs that are
sufficient to explain the output.

Convergence. The process we described increases the set of ex-
planatory input records monotonically, with an upper bound the
whole set I of input records of the reference computation, so it does
converge. Given a reference computation f that converges to a fixed-
point (for any subset of the input I), and an output O′ ⊆ f (I) of the
computation that has to be explained, our iterative backward tracing
performs the following steps: (i) traces O′ backwards and collects
a set of input records I′ ⊆ I, (ii) re-executes the second copy of
computation only for I′, (iii) identifies new records that are not seen
in the reference computation, (iv) traces these records backwards
to a set of input records I′′ ⊆ I, and (v) repeats the same process
for the set I′′ \ I′, until a fixed-point. The latter is reached due to
the finite number of possible new records produced by the second
copy of the computation; these records are finite since the reference
computation converges on any subset of the input I.

Correctness. We still need to argue that, when the iterative back-
ward tracing reaches a fixed-point, the output is correctly reproduced.
Let f (I) = O be the reference computation with input I and output
O, and O′ ⊆ O be the output we want to explain. Let also I′ ⊆ I be
the input records returned by the backward tracing. Assuming that
O′ is not included in f (I′), then along the backwards trace there is
some first point of divergence between the reference and re-executed
computations: an operator, key, and timestamp for which the inputs
are not the same. The inputs from the reference computation must
be present, as they are part of the reference trace and this is assumed
to be the first point of divergence; the difference must lie in inter-
mediate records of the re-executed trace. However, a backwards
trace from the different intermediate records should have included
additional input records from I, otherwise it would agree with the
reference computation in which the intermediate records do not
exist. The following holds: f (I′) = O′′ where O′ ⊆ O′′.

Dataset Input facts Derived facts Derivations

SNOMED CT 1,030,336 12,970,258 238,078,602
GALEN8 976,552 24,483,561 441,464,399

Table 1: Size of the provenance graph (cf. Section 2.1) after
evaluating the Datalog program of Section 4.1 on each dataset.
Facts and derivations correspond to nodes and edges resp.

4. EXPERIMENTAL EVALUATION
This section provides an experimental evaluation of our prove-

nance tracing techniques. To highlight all aspects of our approach,
we divide the experiments into three classes. In the first class (Sec-
tion 4.1), we evaluate our backward tracing with lineage and How
provenance queries on iterative computations with complex mutual
recursion expressed in Datalog. In the second class of experiments
(Section 4.2), we evaluate our backward tracing on the problem of
graph connectivity to show how we can efficiently reduce the size
of explanations using the techniques of Section 3.2. Finally, in Sec-
tion 4.3, we evaluate the iterative backward tracing of Section 3.3 on
a representative non-monotonic computation, i.e., stable matching
in graphs, and we show that, although explanations require many
iterations of tracing in this case, they are still largely concise and
interactive. In all experiments, we also measure the overhead caused
by provenance tracking, and we compare the performance of our
system with the state-of-the-art implementations.

Implementation and Setting. Our prototype was implemented on
top of the open-source prototype of Differential Dataflow compiled
with Rust v1.4. All experiments of this section were done on a
machine with an AMD Opteron 6378 at 2.4GHz, 16 physical cores
(32 with Hyper-Threading) and 512GB RAM, running Debian v7.9.
We noticed substantial variation in performance when we used 32
threads, finding the best measurements for all systems at 16 threads.

4.1 Provenance in Datalog
For our Datalog experiments we use two real-world ontologies,

SNOMED CT [21] and GALEN8 [36], which are the standard on-
tologies for representing and exchanging knowledge in the biomedi-
cal domain. Each of these ontologies describes a schema for medical
terms, which have complex dependencies expressed by the following
mutually recursive Datalog rules:

p(X,Y) :- p_initial(X,Y)
q(X,P,W) :- q_initial(X,P,W)
p(X,Z) :- p(X,Y), p(Y,Z)
p(X,W) :- p(X,Y), p(X,Z), c(Y,Z,W)
q(X,Y,Z) :- p(X,W), q(W,Y,Z)
p(X,W) :- q(X,R,Y), p(Y,Z), u(R,Z,W)
q(X,P,W) :- q(X,R,W), r(R,P)
q(X,Y,Z) :- q(X,R,W), q(W,P,Z), t(R,P,Y)

These rules generate a large number of results (facts), whose sizes
are summarized in Table 1.

Provenance Queries. The results of the above Datalog computation
are derived facts in relations p and q. The How provenance of a
fact is the graph of facts (both initial and derived) containing all
derivations of that fact. A derivation indicates not only the facts
involved, but also the rules that were applied. The lineage of a fact
is the intersection of the set of facts in its How provenance with
the input set of facts. Figure 8 presents the latencies to produce the
How provenance and lineage for 1,000 randomly chosen facts in
relation p. The queries on the x-axis are given in ascending order

of their latencies from left to right. The observed latencies range
from sub-millisecond, in the best case, up to 100 milliseconds for
SNOMED CT, and one second for GALEN8. The latencies smooth
out as more cores are used, because the work required for the more
expensive queries can be effectively shared among multiple workers.
Figure 9 plots query latencies against result sizes, and demonstrates
that the variation in query latencies is explained by the variation in
the result sizes. The latter can be as large as 105 for SNOMED CT
and 106 for GALEN8.

Observations
10-4

10-3

10-2

10-1

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) SNOMED CT (b) GALEN8
Figure 8: Observed latencies for 1,000 How-provenance
queries (top) and 1,000 lineage queries (bottom), for the Dat-
alog program of Section 4.1 with varying number of workers.
The lineage is derived from the How-provenance by intersect-
ing the latter with the set of input facts, thus, it has a small
additional latency. As more workers are introduced, work is
shared, and the minimum and maximum times close in.

Provenance Overhead. Our provenance tracking requires the ma-
terialization and indexing of the intermediate results of the computa-
tion (variable bindings for rule firings in the case of Datalog) which
has an impact on derivation time. Figure 10 presents the derivation
times with and without provenance tracking. Our implementation
(DD-x) exploits the parallelism of differential dataflow, and scales
well with the number of threads (from x=1 to x=32), imposing an
approximately fixed relative overhead. For SNOMED CT, prove-
nance tracking increases derivation time from 42% (1 thread) to
32% (32 threads). For GALEN8, the results are similar: from 44%
(1 thread) to 29% (32 threads).

Comparison with other systems. Figure 10 also presents deriva-
tion times for two state-of-the-art Datalog engines: single-threaded
DLV [30], and multi-threaded LogicBlox (LBX) [5] that was al-
lowed to use all resources of the machine. These systems do not
have native provenance support, but we implemented the techniques
in [29], which essentially keep the same intermediate results as we
do. Overall, our approach is up to two orders of magnitude faster
than even the provenance-free versions of these engines. Note that
DLV did not terminate on GALEN8 after 12 hours.

Incremental Updates. Provenance tracking affects the derivation
time also in the case of updates. Figure 11 present the observed
latencies when applying 1,000 batches of 1, 10, and 100 updates
to the set of base facts for each dataset. The updates on the x-axis
are given in ascending order of their latencies from left to right.
For these experiments, we introduced all but a small fraction of the

10-4 10-3 10-2 10-1

Query Time (sec)

10-1
100
101
102
103
104
105

R
e
su

lt
 S

iz
e

10-4 10-3 10-2 10-1 100

Query Time (sec)

10-1
100
101
102
103
104
105
106

R
e
su

lt
 S

iz
e

(a) SNOMED CT (b) GALEN8
Figure 9: Query result sizes plotted against query latencies
on one core for How-provenance. The correlation between re-
sponse time and result size indicates that the variation in query
latencies is explained by the volume of data returned.

facts U, chosen randomly. With the smallest batch size, 500 update
rounds were addition of single facts from U and the remaining 500
rounds were removal of existing facts. For larger batch sizes of 10
and 100 updates, the addition and deletion of facts were interleaved
within each batch. Elapsed times are measured from the introduction
of the batch of updates until the derivation reaches a fixed-point.
For small batches, the single core is fastest because there is not
much parallel work, whereas for large batches multiple cores bring
down the maximum latency. The largest latency is 62.18s, for
a single core on batch size 100 for GALEN8, but generally the
update latencies are both small and not much larger than without
provenance tracking; 99% of the latency measurements increase
by less than 40%, and the time to process all updates increases by
at most 37%. The distributions of latencies without provenance,
and the distribution of point-wise latency ratios with and without
provenance appear in the Appendix.

DLV LB
X

DD-1
DD-2

DD-4
DD-8

DD-1
6

DD-3
2

100

101

102

103

104

T
im

e
 (

se
cs

)

No Provenance

Overhead

LB
X

DD-1
DD-2

DD-4
DD-8

DD-1
6

DD-3
2

100

101

102

103

104

T
im

e
 (

se
cs

)

No Provenance

Overhead

(a) SNOMED CT (b) GALEN8
Figure 10: Derivation times for the Datalog program of Sec-
tion 4.1 with and without provenance tracking. DLV is a single-
threaded Datalog engine, and LBX (LogicBlox) is a multi-
threaded Datalog engine. The DD-x measurements correspond
to our approach with x numbers of workers (cores).

4.2 Explanations for Connected Components
We now study the problem of providing explanations for the com-

putation of connected components in a graph. This task highlights
the first challenge from the introduction: applied naïvely, backwards
tracing produces explanations of enormous sizes. We will show
that our approach reduces the data dramatically, to the point that
the connectivity between two nodes is explained by a shortest path
between them. We use a variation on the well-known “label propa-
gation” algorithm: each graph node maintains a label (initially its
own identifier), and repeatedly exchanges its label with neighbors,
updating the label each time it receives an improved value. In the
pseudo-code below, we start from initial labels init, and repeatedly
join the valueswith the set of edges, change the tuples to be keyed
by destination dst, add these tuples in the original values, and
then keep only the first (smallest) record for each destination node.

Observations
10-4

10-3

10-2

10-1

100
U

p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

101

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-2

10-1

100

101

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) SNOMED CT (b) GALEN8
Figure 11: Observed latencies to perform 1,000 updates of size
1, 10, and 100 (top to bottom) to the input of the Datalog pro-
gram of Section 4.1. The updates remain interactive, and 99%
of the latency measurements increase by less than 40%. The
time to process all updates increases by at most 37%. The la-
tencies without provenance, and the point-wise ratios with and
without provenance appear in the Appendix.

The implementation of label propagation in Differential Dataflow
is straightforward:

init.iterate(|values| {
values.join(edges)

.map(|(src,(lbl,dst))| (dst,(lbl,src)))

.concat(values)

.topk(1, |(lbl,src)| (lbl,lbl))
})

The properties of the datasets we used in the experiments of this
section are shown in Table 2.

Dataset Nodes Edges

LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182

Table 2: Graphs used in the experiments of Section 4.2 and 4.3.

Remark. In the above algorithm, labels are introduced in iterations
that depend on their magnitude, rather than all in the first iteration.
This has the effect of giving smaller labels a “head start” and re-
duces the amount of churn among nodes with large identifiers. It
accomplishes the same goal as asynchronous systems, like Myria
[40] and SociaLite [38], that propagate more successful labels.

Explanation Queries. The result of the label propagation algorithm
includes pairs (node, label), where label denotes the smallest node

Observations
10-3

10-2

10-1

100

101

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

Observations
10-1

100

101

102

103

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

10-3 10-2 10-1 100 101

Query Time (sec)

10-1
100
101
102
103
104
105

S
iz

e
 o

f
E
x
p
la

n
a
ti

o
n

10-1 100 101 102 103

Query Time (sec)

100
101
102
103
104
105
106
107

S
iz

e
 o

f
E
x
p
la

n
a
ti

o
n

(a) LiveJournal (b) Twitter
Figure 12: Explanations for label propagation using the naïve
reduce explanation logic. The top figure plots the observed la-
tencies for 1,000 output explanations using one core; the bottom
figure plots the query latencies against the explanation sizes,
demonstrating that some explanations require as many as one
million edges. We show that the topk optimization of Section
3.2.3 resolves this in Figure 13.

id contained in the connected component of node. An explanation
of an output pair using naïve backwards tracing includes the edges
of all paths from label to node, which in a symmetric graph would
be all edges in the component. The graphs of Table 2 are largely
connected, and the explanations are roughly the full set of edges in
the graph, so we do not evaluate the performance of this technique.
Figure 12 presents both the query latencies (top) and the correlation
between query latency and explanation size (bottom) for the label
propagation algorithm, using the generic reduce explanation logic
of Section 3.1. The queries on the x-axis of the two plots on top
are given in ascending order of their latencies from left to right.
The observed latencies are manageable for LiveJournal, but still too
large for Twitter, even though the input of the reduce operator is
filtered on the logical time as we explained in Section 3.2.2.

The topk optimization of Section 3.2.3 resolves this problem by
retaining only the path which followed backwards has the least node
identifiers. The result is a simple shortest path from label to node.
The derivation of this path is roughly equivalent to repeated pointer
chasing: looking up a key in the topk explanations, projecting out
the current node identifier as the explanation request passes through
the join, and repeating with the new node identifier as a key. All
explanations are paths with size bounded by the diameter of the
graph; in practice, we see explanation sizes from three to five edges,
and this is consistent with our understanding of large social networks
as having small diameter. Figure 13 presents query latencies for the
explanations of 1,000 randomly chosen outputs of the connected
components computation on the LiveJournal and Twitter graphs.
Again, the explanation queries on the x-axis are given in ascending
order of their latencies from left to right. We see that the latencies
are consistently small, with the exception of a few queries that upon
inspect are among the first issued, suggesting some warm-up issues.

Explanation Overhead. Figure 14 shows the execution times with
and without provenance tracking for connected components on the
LiveJournal and Twitter graphs for our approach (DD) with 1 to 32
threads. The relative overheads for LiveJournal range from 169%
(1 thread) to 188% (32 threads). The relative overheads for Twitter
range from 88% (1 thread) to 84% (32 threads). These overheads
are large because the reference connected components computation

Observations
10-3

10-2

10-1

100
Q

u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

101

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter
Figure 13: Observed query latencies for 1,000 output explana-
tions for the label propagation algorithm. Response times are
largely within 10 milliseconds, other than a small number of
initial samples. The single-core latencies are consistently small-
est, because there is almost no parallel work to perform. The
explanation sizes range from three to five edges.

So
ci
aL

ite

M
yr

ia
-1

6
DD-1

DD-2
DD-4

DD-8

DD-1
6

DD-3
2

100

101

102

103

T
im

e
 (

se
cs

)

No Provenance

Overhead

M
yr

ia
-1

6
DD-1

DD-2
DD-4

DD-8

DD-1
6

DD-3
2

101

102

103

104

T
im

e
 (

se
cs

)

No Provenance

Overhead

(a) LiveJournal (b) Twitter
Figure 14: Execution times for label propagation with and with-
out provenance tracking, for several systems and configura-
tions. The provenance overhead is non-trivial for our approach
(DD), still, our system remains faster than the state-of-the-art
systems (SociaLite and Myria) which do not offer explanations.

is well optimized: its data-parallel operators use dense integer keys
and avoid hash maps, whereas in provenance-tracking mode we
spend the bulk of the time populating hash maps with input records.
The overheads of provenance tracking in Figure 6 are much smaller
because the reference Datalog computation uses the same hash join.

Comparison with other systems. Figure 14 also depicts the perfor-
mance of the state-of-the-art systems for graph analytics, Myria [40]
and SociaLite [38], on the label propagation algorithm. Note that
we were unable to get SociaLite to report more than 1.7M labels
for the Twitter graph, thus, we do not report its elapsed time for
this dataset. As a general comment, these systems do not support
provenance tracking or incremental computations. Still, our system
(DD-x) is 50x faster than Socialite on LiveJournal, and 4x faster
than Myria on both datasets using x=16 threads.

Incremental Updates. Figure 15 presents the observed latencies
to perform 1,000 updates of size 1, 10, and 100 to the LiveJournal
and Twitter graphs for the label propagation algorithm. The updates
on the x-axis are given in ascending order of their latencies from
left to right. As in the previous experiment, introduced all but a
small fraction of the edges U, chosen randomly. With the smallest
batch size, 500 update rounds were addition of single edges from U
and the remaining 500 rounds were removal of existing edges. For
larger batch sizes of 10 and 100 updates, the addition and deletion
of edges were interleaved within each batch. Elapsed times are
measured from the introduction of the batch of updates until the
derivation reaches a fixed-point. The largest update time is 2.9s,

Observations
10-4

10-3

10-2

10-1

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

101

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter
Figure 15: Observed latencies to perform 1,000 updates of size
1, 10, 100 (top to bottom) to the input graphs of the label prop-
agation algorithm. Although 1% of the updates increase by
more than 20x, the update times remain interactive, typically
tens of milliseconds. Excluding the 32-core measurements, the
time to process all updates increases by at most a factor of 8.6x.
This relative increase is largely due to the very low update laten-
cies for the reference computation, which each take only tens to
hundreds of microseconds. The latencies without provenance,
and the point-wise ratios with and without provenance appear
in the Appendix.

for 32 threads with batch size 100 on Twitter. The update times
can increase substantially; Although 1% of the updates increase by
more than 20x, the update times remain interactive, typically tens of
milliseconds. Excluding the highly-variant 32-core measurements,
the time for all updates increases by at most 8.6x. These large
relative numbers are due to the optimized nature of the reference
computation; the update latencies are within 10 milliseconds for
each batch. The update latencies without provenance, and the point-
wise ratios with and without provenance appear in the Appendix.

4.3 Explanations for Stable Matching
We now evaluate our generalized backward tracing of Section

3.3, which provides explanations sufficient to reproduce the output
in arbitrary non-monotonic computations. We use a representative
non-monotonic computation, stable matching in graphs, that applies
to a bipartite graph and a list of candidate matchings (edges), which
are rank-ordered by each of the incident nodes. The goal is to find
a matching (a subset of the edges where each node is incident on
at most one edge) with the property that no excluded edge is more
appealing to both of its endpoints than the matchings they actually
received. According to Theorem 1, naive backward tracing does
not necessarily identify a sufficient explanation here, and we need
multiple iterations of tracing to do so.

We model the input to the computation as a collection of quadru-
ples: (a, b, pa, pb) where a and b are node identifiers, and pa and pb

are their respective rank orderings (0 being best) for this particular
matching. The standard algorithm for this task has each node a
“propose” to its most prefered b, at which point the b either “rejects”
or “tentatively accepts” the proposal, determined by whether it has
received a better proposal. Each declined proposal is crossed off

the list, and the process continues. We can write this algorithm as a
fix-point computation in differential dataflow, where we repeatedly
determine the best proposal for each a in parallel, from those deter-
mine the best proposal for each b in parallel, and cross of proposals
in the former but not the latter. Iterated to a fix-point, this emulates
the above algorithm, as differential dataflow only communicates
updates when proposals change. The pseudo-code is given below.

initial.iterate(|active| {
// key records by a, order by pa.
let props =
active.map(|x| (x.a,(x.pa,x.b,x.pb)))

.topk(1, |x| x);

// key records by b, order by pb.
let accpt =
props.map(|x| (x.b,(x.pb,x.a,x.pa)))

.topk(1, |x| x);

// discard unaccepted proposals.
active.except(props.except(accpt))

});

Remark. For the experiments we used tuples of the form (a, b, pa, pb),
where a, b are ids of adjacent nodes in the graphs of Table 2, and pa,
pb are randomly generated unsigned integers. We run the compu-
tation on the LiveJournal graph, but we observed that explanations
can be enormous for the Twitter graph, since its maximum degrees
are substantially larger than preference lists we might expect. To
report measurements, we restricted the Twitter graph to those nodes
with degree at most 1,000. We denote this dataset as Twitter*. This
reduces the number of edges by roughly a factor of three but, more
importantly, reduces the maximum explanation size to something
manageable.

Observations
10-4

10-3

10-2

10-1

100

101

102

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

Q
u
e
ry

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter*
Figure 16: Observed query latencies for 1,000 output explana-
tions for the stable matching algorithm. The latencies are gen-
erally bounded by one second, but some variation does exist,
and is explained in Figure 17.

Explanation Queries. Figure 16 presents the observed latencies for
1,000 explanation queries for stable matching on the LiveJournal and
Twitter* graphs. The explanation queries on the x-axis are given in
ascending order of their latencies from left to right. The latencies are
largely interactive, and only a small fraction of explanation queries
takes more than a second. We also see that additional threads bring

little benefit. This is because iterated backward tracing introduces
considerable sequential work.

Figure 17 plots explanation latencies against both result size and
rounds of backward tracing required, demonstrating that the latency
is explained by the complexity of the explanation we must derive.
We are not aware of prior work on explaining the results of stable
matching, and have less clear intuition for whether the explanations
should be small than we have in the case of connected components.
It may be that there are simpler explanations, and it is an open
question whether we could hope to find them automatically. We
leave this for future work.

10-3 10-2 10-1 100 101

Query Time (sec)

10-1

100

101

102

103

104

S
iz

e
 o

f
E
x
p
la

n
a
ti

o
n

10-3 10-2 10-1 100 101

Query Time (sec)

10-1

100

101

102

103

104

S
iz

e
 o

f
E
x
p
la

n
a
ti

o
n

10-3 10-2 10-1 100 101

Query Time (sec)

10-1

100

101

102

103

N
u
m

b
e
r

o
f

R
o
u
n
d
s

10-3 10-2 10-1 100 101

Query Time (sec)

10-1

100

101

102

103

N
u
m

b
e
r

o
f

R
o
u
n
d
s

(a) LiveJournal (b) Twitter*
Figure 17: Stable matching explanation query latencies on one
core plotted against result sizes (top) and the required number
of rounds in backward tracing (bottom). The correlations in-
dicate that the variation in query latencies seen in Figure 16 is
explained by the complexity of the explanations. We also see
that some outputs require as many as one hundred rounds of
backward tracing to explain.

Explanation Overhead. Stable matching is not commonly im-
plemented by graph processing systems, in part because its non-
monotonic nature makes it more challenging to express. Figure 18
presents the elapsed times to compute the stable matching, with and
without our explanation tracking, for varying numbers of cores. The
derivations are non-trivial; for example, on the LiveJournal graph,
our system takes more than 2,000 iterations to reach a fix-point.
The relative overheads for LiveJournal range from 358% (1 thread)
to 316% (32 threads). The relative overheads for Twitter* range
from 348% (1 thread) to 328% (32 threads). The overheads are
non-trivial, largely due to the two except operations.

DD-1
DD-2

DD-4
DD-8

DD-1
6

DD-3
2

100

101

102

103

T
im

e
 (

se
cs

)

No Provenance

Overhead

DD-1
DD-2

DD-4
DD-8

DD-1
6

DD-3
2

100

101

102

103

104

T
im

e
 (

se
cs

)

No Provenance

Overhead

(a) LiveJournal (b) Twitter*
Figure 18: Execution times for stable matching with and with-
out provenance tracking.

Incremental Updates. Figure 19 presents the observed update
times for the stable matching problem with batch sizes 1, 10, and
100. The updates on the x-axis are given in ascending order of their
latencies from left to right. For these experiments, we introduced
all but a small fraction of the matchings U, chosen randomly. With
the smallest batch size, 500 update rounds were addition of single
matchings from U and the remaining 500 rounds were removal of
existing matchings. For larger batch sizes of 10 and 100 updates,
the addition and deletion of matchings were interleaved within each
batch. The largest update latency is 52 seconds, for two threads with
batches of size 10 on Twitter*. For 99% of the updates, the latencies
increase by at most 2.85x, and the absolute latencies remain largely
interactive. The time to process all updates increases by at most
1.8x on LiveJournal, and by at most 4.5x on Twitter*. The latencies
without provenance, and the point-wise ratios with and without
provenance appear in the Appendix.

Observations
10-4

10-3

10-2

10-1

100

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

101

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-2

10-1

100

101

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter*
Figure 19: Observed latencies to perform 1,000 updates of size
1, 10, 100 (top to bottom) to the input graphs for the stable
matching algorithm. The update times remain largely interac-
tive, and 99% of the time increase by less than 2.85x. The time
to process all updates increases by at most 1.8x for LiveJour-
nal, and at most 4.5x for Twitter*. The latencies without prove-
nance, and the point-wise ratios with and without provenance
appear in the Appendix.

5. RELATED WORK
Provenance has a long history in databases and scientific work-

flows, and there are several comprehensive surveys in both fields
[11, 16]. Here we provide an overview of the related works on
provenance in (i) NoSQL systems, and (ii) Datalog engines. Table 3
summarizes the features of the most prominent systems.

Provenance in NoSQL Systems. The first work on providing
provenance support in MapReduce jobs is RAMP [26]. This work

describes a methodology on building wrappers around Map and
Reduce functions in order to track lineage dependencies between
input and output records. The authors implement their ideas on
Hadoop and provide experiments with word count and sorting jobs,
showing that provenance tracking has an acceptable overhead in
both space and time. Following the ideas of RAMP, [1] extends
Hadoop operators with native provenance support that results in even
smaller runtime overheads. Recently, Newt [31] has been introduced
as a general framework for tracking lineage in big data platforms.
Newt requires the manual instrumentation of the system for which
lineage has to be captured, and provides a separate MySQL cluster
where users can query the collected lineage data with SQL. A major
drawback of RAMP and Newt is that they do not provide access
to the intermediate data of the computation (in contrast to [1] that
offers this functionality); consequently, these two systems cannot
provide the How provenance of an output record. Based on this
limitation, Titian [27] made some nice progress in extending Spark
[45] with step-by-step provenance tracking. Titian materializes the
dependencies between individual records in a Spark job (including
the intermediate ones), and offers an API for interactive forward
and backward tracing of dependencies. Similarly to RAMP and
Newt, the authors provide experiments with word count and grep
jobs, showing the efficiency and scalability of their system. An-
other interesting work is [4], which extends Pig Latin operators with
built-in provenance tracking. This approach tracks the complete
state of Pig Latin operators, i.e., both data and execution parameters,
and represents provenance dependencies as a graph G, similar to
the one shown in Fig. 2. The evaluation of provenance queries
requires the construction of the whole How provenance graph G in
advance; then, provenance queries are expressed as graph-matching
queries on G. A nice feature of [4] is that it allows users to query
provenance information at multiple levels of granularity through a
form of zoom-in/out operations on G. Finally, [35] provides limited
lineage support in Pig by propagating user-defined tags from the
input to the output records in an eager fashion.

Provenance for Datalog. Database-style provenance has also re-
ceived considerable attention in the context of fixed-point Datalog
computations. The recursive nature of Datalog goes beyond the
SPJUA queries of relational algebra, making the application of tra-
ditional provenance techniques even more challenging. After the
seminal work in [23], [19] was the first to identify that annotation-
based approaches explode in size when applied to recursive com-
putations. To provide more concise provenance information, [18]
proposed an algorithm for retrieving sub-graphs of the How prove-
nance graph based on user-defined patterns. [29] presents an early
effort to add How provenance support in a general-purpose opera-
tional Datalog engine (LogicBlox). This work augments Datalog
rules automatically with additional predicates that are used to track
the dependencies between inputs and outputs. An experimental
comparison with [29] is given in Section 4.1.

Network Provenance. Data provenance is a versatile concept and
has also been used for network management, most notably in ExS-
PAN [47] and DTaP [46]. Both these systems are based on NDlog, a
variation of Datalog with aggregation (e.g., MIN), which was first in-
troduced in [32] for the declarative definition and analysis of routing
protocols. These works extend NDlog with support for How prove-
nance, in a way similar to [29], and they also provide incremental
tracking of provenance through semi-naive evaluation – which is
equivalent to differential dataflow for Datalog. Driven by debugging
needs, DTap adopts a time-aware provenance model where each
node in the provenance graph is associated with a logical timestamp
that denotes the point a tuple was generated during the execution.

Computational Provenance Storage Provenance Intermediate Incremental Output
Model & Query Engine Tracking Data Tracking Provenance Reproduction

Granularity Maintainance

this paper Arbitrary Dataflows Native Operator Level X X X

(even nested iterations) (Differential Dataflow) (Section 3.2) (Section 4) (Section 4) (Section 3.3)

RAMP [26]
DAG Dataflows

Native Storage (HDFS)
Map & Reduce Level -

-
According to

(no iteration support)
External Query Engine

(Hadoop) (see also [27]) Theorem 1
(Java implementation)

Titian [27]
DAG Dataflows1

Native (Spark) Spark Stage Level X -
According to

(no iteration support) Theorem 1

Newt [31]
DAG Dataflows2

External (MySQL)
Multiple Levels -

-
According to

(no iteration support) (instrumentation-based) (see also [27]) Theorem 1

Lipstick [4]
DAG Dataflows

Native Storage (Pig)
Operator Level

X -
According to

(no iteration support)
External Query Engine

(Pig Latin) Theorem 1
(Java implementation)

ExSPAN* [47]
Datalog-based

Native Operator Level
X X

According to
DTaP* [46] (NDlog Engine on ns-3) (NDlog) Theorem 1

1 The current version of Titian does not support iteration through GraphX [44].
2 Newt has been applied to Hyracks and Hadoop [31], and to Spark [27], all of which support DAG dataflows.
* These systems are not general-purpose data processing systems but they offer interesting features regarding provenance management.

Table 3: Summary of features in NoSQL systems with provenance support

Logical timestamps can then be used to query provenance within
time windows (snapshots) specified by the user. The notion of time
in DTaP is similar to the one natively used in differential dataflow
(cf. Section 2.2), however, time metadata are not exploited to pro-
vide concise explanations as we do in Section 4.2. In the connected
components example, DTaP explains a label r at node n by returing
all paths between nodes n and r in the graph. As a final comment,
NDlog is not well-suited for data analytics, e.g., it is unclear how it
can express stable matching (Section 4.3). In addition, the NDlog
engine is built as an extension of ns-3 (Network Simulator) and
cannot be used as a standalone distributed engine.

6. CONCLUSIONS
In this paper we presented a framework for explaining outputs in

modern data analytics, with a particular focus on iterative dataflows.
We introduced a generalized form of backward tracing which guar-
antees concise explanations of outputs in computations where naive
backward tracing approaches fail. The experiments indicate that our
framework is suitable for a variety of data analysis tasks, on realistic
data sizes, and with very low overhead in performance, even in the
case of incremental updates.

We believe that our approach is here to stay and there are several
directions for future work. Besides the further optimization oppor-
tunities, we are especially interested in understanding the structure
of explanations for general data-parallel computations; while our
intuition serves us well for tasks like graph connectivity, our un-
derstanding of explanations for problems like those in [7] has huge
potentials for improvement.

7. REFERENCES
[1] S. Akoush, R. Sohan, and A. Hopper. HadoopProv: Towards

provenance as a first class citizen in MapReduce. In TAPP, 2013.
[2] B. Alexe, L. Chiticariu, , and W.-C. Tan. Spider: A schema mapping

debugger. In VLDB, 2006.
[3] P. Alvaro, J. Rosen, and J. M. Hellerstein. Lineage-driven fault

injection. In SIGMOD, 2015.

[4] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, and
J. Stoyanovich. Putting lipstick on Pig: Enabling database-style
workflow provenance. PVLDB, 5(4):346–357, 2012.

[5] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic,
T. L. Veldhuizen, and G. Washburn. Design and implementation of the
LogicBlox system. In SIGMOD, 2015.

[6] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In SIGMOD, 2006.

[7] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie,
M. Weimer, and R. Ramakrishnan. Scaling datalog for machine
learning on big data. CoRR, abs/1203.0160, 2012.

[8] P. Buneman, A. P. Chapman, and J. Cheney. Provenance management
in curated databases. In SIGMOD, 2006.

[9] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[10] P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions
and annotations through views. In PODS, 2002.

[11] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases,
1(4):379–474, 2007.

[12] L. Chiticariu and W.-C. Tan. Debugging schema mappings with routes.
In VLDB, 2006.

[13] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNotes: A post-it
system for relational databases based on provenance. In SIGMOD,
2005.

[14] Y. Cui and J. Widom. Lineage tracing for general data warehouse
transformations. VLDBJ, 12(1):41–58, 2003.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in
a warehousing environment. TODS, 25(2):179–227, 2000.

[16] S. Davidson, S. Cohen-Boulakia, B. L. A. Eyal, T. McPhillips,
S. Bowers, M. K. Anand, and J. Freire. Provenance in scientific
workflow systems. 2007.

[17] S. B. Davidson, S. Khanna, T. Milo, D. Panigrahi, and S. Roy.
Provenance views for module privacy. In PODS, 2011.

[18] D. Deutch, A. Gilad, and Y. Moskovitch. Selective provenance for
datalog programs using top-k queries. PVLDB, 8(12):1394–1405,
2015.

[19] D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for Datalog
provenance. In ICDT, 2014.

[20] D. Deutch, Y. Moskovitch, and V. Tannen. Provenance-based analysis
of data-centric processes. VLDBJ, 24(4):583–607, 2015.

[21] K. Donnelly. SNOMED-CT: The advanced terminology and coding
system for eHealth. Studies in Health Technology and Informatics,
121:279–290, 2006.

[22] B. Glavic and G. Alonso. Perm: Processing provenance and data on
the same data model through query rewriting. In ICDE, 2009.

[23] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, 2007.

[24] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and
V. Tannen. Orchestra: Facilitating collaborative data sharing. In
SIGMOD, 2007.

[25] T. Heinis and G. Alonso. Efficient lineage tracking for scientific
workflows. In SIGMOD, 2008.

[26] R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and
reduce workflows. In CIDR, 2011.

[27] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim,
T. Millstein, and T. Condie. Titian: Data provenance support in Spark.
PVLDB, 9(3), 2015 (to appear).

[28] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data
provenance. In SIGMOD, 2010.

[29] S. Köhler, B. Ludäscher, and Y. Smaragdakis. Declarative Datalog
debugging for mere mortals. In Datalog 2.0, 2012.

[30] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. The DLV system for knowledge representation and
reasoning. TOCL, 7(3):499–562, 2006.

[31] D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for
debugging DISC analytics. In SOCC, 2013.

[32] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: language, execution and optimization. In SIGMOD, 2006.

[33] F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differential dataflow.
In CIDR, 2013.

[34] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A timely dataflow system. In SOSP, 2013.

[35] C. Olston and B. Reed. Inspector Gadget: A framework for custom
monitoring and debugging of distributed dataflows. PVLDB,
4(12):1237–1248, 2011.

[36] J. Rogers, A. Roberts, D. Solomon, E. van der Haring, C. Wroe,
P. Zanstra, and A. Rector. GALEN ten years on: Tasks and supporting
tools. In MEDINFO, 2001.

[37] S. Roy and D. Suciu. A formal approach to finding explanations for
database queries. In SIGMOD, 2014.

[38] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed SociaLite: A
Datalog-based language for large-scale graph analysis. PVLDB,
6(14):1906–1917, 2013.

[39] W. Tan. Research problems in data provenance. IEEE Data
Engineering Bulletin, 27(4):42–52, 2004.

[40] J. Wang, M. Balazinska, and D. Halperin. Asynchronous and
fault-tolerant recursive Datalog evaluation in shared-nothing engines.
PVLDB, 8(12):1542–1553, 2015.

[41] J. Widom. Trio: A system for integrated management of data,
accuracy and lineage. In CIDR, 2005.

[42] E. Wu, S. Madden, and M. Stonebraker. SubZero: A fine-grained
lineage system for scientific databases. In ICDE, 2013.

[43] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing
missing events in distributed systems with negative provenance. In
SIGCOMM, 2014.

[44] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A
resilient distributed graph system on spark. In GRADES, 2013.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In HotCloud, 2010.

[46] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo,
and M. Sherr. Distributed time-aware provenance. PVLDB,
6(2):49–60, 2012.

[47] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
querying and maintenance of network provenance at internet-scale. In
SIGMOD, 2010.

8. APPENDIX
Here we present the augmented form of the Datalog program used

in Section 4.1 to track provenance in [30] and [5]. We also present
additional measurements describing the distribution of ratios of up-
date latencies for Datalog (Figure 21), label propagation (Figure 22),
and stable matching (Figure 23). Figure 24 depicts the latencies for
label propagation without tracking explanations.

p(X,Y) :- p_base(X,Y).
q(X,P,W) :- q_base(X,P,W).
Rule_1(X,Y,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- Rule_1(X,Y,Z).
Rule_2(X,Y,Z,W) :- p(X,Y),p(X,Z),c(Y,Z,W).
p(X,W) :- Rule_2(X,Y,Z,W).
Rule_3(X,W,Y,Z) :- p(X,W), q(W,Y,Z).
q(X,Y,Z) :- Rule_3(X,W,Y,Z).
Rule_4(X,R,Y,Z,W) :- q(X,R,Y),p(Y,Z),u(R,Z,W).
p(X,W) :- Rule_4(X,R,Y,Z,W).
Rule_5(X,R,W,P) :- q(X,R,W),r(R,P).
q(X,P,W) :- Rule_5(X,R,W,P).
Rule_6(X,R,W,P,Z,Y) :- q(X,R,W),q(W,P,Z),t(R,P,Y).
q(X,Y,Z) :- Rule_6(X,R,W,P,Z,Y).

Figure 20: The Datalog program used to track provenance in
DLV and LBX (LogicBlox). This program is a simple augmen-
tation of the Datalog program in Section 4.1

Observations
10-1

100

101

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-2

10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-2

10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) SNOMED CT (b) GALEN8
Figure 21: Ratios of observed latencies with and without prove-
nance tracking for 1,000 updates of sizes 1, 10, and 100 (top
to bottom) to the input of the Datalog program of Section 4.1.
The ratios on the x-axis are given in ascending order from left
to right. The vast majority of ratios are close to 1.

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter
Figure 22: Ratios of observed latencies for 1,000 updates of
sizes 1, 10, and 100 (top to bottom) for label propagation on the
LiveJournal and Twitter graphs (Section 4.2). The ratios on the
x-axis are given in ascending order from left to right. The large
ratios are due to the optimized nature of the reference compu-
tation: the update latencies without provenance tracking are
given in Figure 24. We also abserved substantial variation in
performance when using 32 threads.

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-1

100

101

102

R
a
ti

o
 o

f
U

p
d
a
te

 L
a
te

n
ci

e
s

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter
Figure 23: Ratios of observed latencies for 1,000 updates of
sizes 1, 10, and 100 (top to bottom) for stable matching on the
LiveJournal and Twitter* graphs (Section 4.3). The ratios on
the x-axis are given in ascending order from left to right. The
vast majority of ratios are close to 1.

Observations
10-5

10-4

10-3

10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-5
10-4
10-3
10-2
10-1
100
101
102
103

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

102

103

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-4

10-3

10-2

10-1

100

101

102

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

Observations
10-3

10-2

10-1

100

101

102

103

U
p
d
a
te

 L
a
te

n
cy

 (
se

c)

1 cores
2 cores

4 cores
8 cores

16 cores
32 cores

(a) LiveJournal (b) Twitter
Figure 24: Times to perform 1,000 updates of size 1, 10, 100
(top to bottom) to the LiveJournal and Twitter graphs for the la-
bel propagation algorithm, without provenance tracking. The
updates on the x-axis are given in ascending order of their la-
tencies from left to right.

