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Abstract— In this paper we propose a novel approach 
which combines computational electromagnetics with 
statistics to statistically characterize the variations of the 
Radio Frequency (RF) exposure induced by inputs and 
affected by variability or uncertainty. Conventional 
numerical techniques such as the Monte Carlo Method, 
typically used to solve such a problem, are not useful in 
this case from a practical point of view since the 
computation time needed to assess the effect of the 
exposure is inordinately long for this type of problem. This 
novel approach consists of characterizing the statistical 
distribution of the output using a surrogate model which 
is employed in the numerical method. The bottleneck is 
encountered in the process of building a surrogate model 
by using a parsimonious approach, because an extensive 
set of computations are required by the Finite Difference 
in Time Domain (FDTD) method, despite the fact that the 
FDTD is a proven computationally efficient technique for 
modeling problems in bio-electromagnetism. The 
proposed method employs a truncated Generalized 
Polynomial Chaos Expansion scheme in conjunction with 
regression and Least Angle Regression (LARS) algorithms 
to identify the polynomial which has a significant influence 
and then to calculate the polynomial coefficient. The 
accuracy assessment of the surrogate model is carried out 
with the Leave-One-Out Cross Validation (LOOCV). In 
this paper this method is used to characterize the variation 
of the Specific Absorption Rate (SAR) induced in the head 
by a mobile phone having a variable position relative to 
the head. 

Index Terms— Human exposure, Specific Absorption 
Rate (SAR), Dosimetry, radiofrequency (RF), Finite 
Difference in Time Domain (FDTD), Generalized 
Polynomial Chaos Expansion, Least Angle Regression, 
Leave One Out Cross Validation.  

I.   INTRODUCTION 
Radio communication and wireless systems are part and 

parcel of our everyday life in the society in which we live 
today. Over the past three decades, we have witnessed an 
exponential increase in the use of smart mobile phones, tablets 

and home wireless LANs, and the emergence of all-pervasive 
wireless communication systems, such as body health 
monitoring sensors and large machine-to-machine 
communication networks, are contributing even further to the 
dizzying pace of this growth.  

While the wireless communication systems have 
significantly affected our daily lives, they have also raised 
public concerns about possible health-related impacts of the 
exposure to electromagnetic fields (EMFs), in particular those 
linked to radio frequencies (RFs). Although, to-date no health 
risks have yet been proven [1] the risk perception is 
nevertheless regarded as important and the EMF exposure 
assessment of wireless devices and networks remains a key 
issue to be reckoned with for the deployments and operations 
of wireless networks. 

During the past decades computational electromagnetics 
has taken advantage of the progress in computer technology 
and high performance computing. Large problems that were 
considered to be quite unmanageable even just ten years ago 
can be solved quite easily nowadays. Furthermore, significant 
acceleration of electromagnetic simulations can now be 
achieved by taking advantage of the availability of graphical 
processor units (GPUs) that did not exist only a few years ago. 
Given the availability of such enablers, computational 
electromagnetics schemes based on the Finite Difference 
Time Domain (FDTD) method in bio-electromagnetism has 
achieved great success and is being intensively used to not 
only design wireless systems but to also assess the Specific 
Absorption Rate (SAR) which quantifies the level of human 
exposure. Success in fabricating realistic human phantoms, 
including child models [2] that have details with millimeter-
level resolutions, have encouraged the use of extensive 
simulations in engineering design of mobile devices and 
wireless systems. 

Previous works have shown that human exposure depends 
on a large number of parameters, which can be variables and 
can be affected by uncertainties. For example, the dielectric 
properties used in the FDTD simulations are variables [3] [4] 
because of human variability and uncertainties linked to the 
measurement system; furthermore, the morphologies and 
human postures are also highly variable; furthermore, the 
anatomy evolves with age and this too contributes to the 
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variation. Last but not least, the sources of variability of the 
exposure induced by the wireless communication devices 
include the locations of the RF sources; the frequency bands 
that depend on their versatile use; and, on the technology as 
well. 

The characterization of such variability requires a large 
number of simulations if we use conventional methods, such 
as the Monte Carlo method. Despite the fact that considerable 
progress has recently been made toward high performance 
calculation, as mentioned previously, the FDTD algorithm is 
still highly computer-intensive and, consequently, not  
entirely compatible with Monte Carlo methods, at least from 
a practical point of view, since the computation time required 
by the FDTD/Monte Carlo simulation is totally unrealistic. 
This, in turn, prompts us to seek an innovative approach to 
circumvent this problem and we describe below a novel 
method which combines computational electromagnetic with 
statistic tools towards this end. The technique is based on the 
use of a surrogate model, which substitutes the numerical 
method—for example the FDTD in the present application— 
to characterize the statistical distribution of the output. The 
bottleneck in this approach arises from the fact that it requires 
us to build an alternative model by using a parsimonious 
approach, which is considerably more time- and memory-
efficient than the Finite Difference in Time Domain (FDTD) 
method, which is widely used in bio-electromagnetic type of 
simulations. We will use this new approach to characterize the 
variation of the Specific Absorption Rate (SAR) induced in 
the head by a mobile phone whose position varies statistically 
relatively to the head. 

The paper is organized as follows. In Section II, the 
Polynomial Chaos approximation of the random model 
response is presented. Section III, details the construction of 
the surrogate modeling based on planning experiments and 
truncated Generalized Polynomial Chaos Expansion. Section 
IV includes some numerical examples, which demonstrate the 
accuracy and the numerical efficacy of the proposed 
technique. Finally, some concluding remarks are provided in 
Section V. 

II.    POLYNOMIAL CHAOS METHOD 
In the past, a number of works [5][6][7][8] have introduced 

methods based on stochastic finite elements with applications 
in mechanical and structural engineering and only very 
recently the method has been discussed in the context of  
computational electromagnetics in [9]. Polynomial Chaos 
(PC) expansion [8] method can be divided into two basic 
categories. The first of these is an intrusive method which 
requires that the governing equations of the solver algorithm 
be modified, and such manipulations can be very complex. In 
contrast to this, the PC expansion methods belonging to the 
second category only employ non-intrusive methods and use 
the solvers solely as black boxes without modifying them. The 
complexity of intrusive approaches explains the increasing 
attention that has been given to the non-intrusive methods that 
are easily generalizable since using solvers as black boxes.  

The non-intrusive approaches can themselves be 
subdivided into two categories. The first one is these is based 

on the use of stochastic collocation approaches in which the 
polynomial approximation is constrained to precisely fit the 
model response at a suitable point set, and they rely upon well-
established methods based on the Lagrange polynomial 
interpolation technique. The second category is comprised of   
spectral methods in which the polynomial chaos coefficients 
are estimated by using either spectral projections or least-
square regressions.  In this paper we will use these spectral 
methods to analyze the variations of the outputs of a 
dosimetric problem induced by the variations of the inputs.  
      Consider a mathematical model ℳ  which has M inputs  
and generates the output y = ℳ(𝐱), and whose inputs    𝐱 =
𝑥), 𝑥+, … 𝑥-. . 𝑥/  are affected by possible random variations 

or uncertainties.  (In this paper we assume that ℳ is given by 
the FDTD calculations. We denote the probability space by 
Ω, ℱ, 𝒫 , where Ω is the event space equipped with σ-algebra 
ℱ and a probability measure 𝒫.  Note that ℒ+ Ω, ℱ, 𝒫, ℝ  is 
the space of squared integrable real valued functions in which   
the inner product is defined by: 

 

𝜓 𝑿 , 𝜙(𝑿) = 𝐸 𝜓 𝑿 𝜙 𝑿 = 𝜓 𝑿 𝜙 𝑿 𝑝𝑿(𝒙)𝑑𝒙
𝕏

 

 
where 𝐸 is the expectation operator. Using this formalism and  
assuming that the components of the input random vector are 
independent, then if the random response of the physical 
phenomena, Y ω = ℳ(𝐗(ω)), has a finite variance then Y 
can be described, as shown in [8], by using an infinite modal 
expansion usually referred to as the polynomial chaos 
expansion .  

𝑌 𝜔 = 𝛽𝜶𝜓𝜶 𝑿 𝜔
𝜶∈ℕF

                                                                          (1) 

 In the above polynomial expansion, α is the multi-index, 
βJ’s are the coefficients of the polynomial expansion 
and  ψJ sM   are  the multidimensional polynomials. These 
polynomials are constructed by tensorizing univariate 
polynomials 𝜋R

- , 𝑗 ∈ ℕ  and are defined as: 

𝜓𝜶 𝒙 = 𝜋TU
- 𝑥-

/

-V)

                                                                      (2) 

where 𝜶 denotes the M-uplet 𝛼), 𝛼+, … , 𝛼/ ∈ ℕ/ 
The univariate polynomials comprise a family of 

orthonormal polynomials with respect to the margin 
probability density functions (PDF): 

 

< 𝜋R
- 𝑋- , 𝜋[

- 𝑋- > = Ε 𝜋R
- 𝑋- , 𝜋[

- 𝑋- = 𝛿R,[      (3) 

where  𝛿R,[      is  the    Kronecker  delta. Let us denote  fkl xn  as 
the marginal PDF of the random variable Xi. The 
independence of the input random variables enables us to 
write the PDF of X as  

𝐟𝐗 𝒙 =    fkl 𝑥-

/

-V)

                                                                         4  
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In engineering, inputs with uniform or Gaussian 
distributions are often used, and the corresponding polynomial 
families are the Legendre and Hermite Polynomials families, 
respectively. 

The PC coefficients can be estimated by using spectral 
projections or via the use of least-square regressions. The 
“projection” approach takes advantage of the orthogonality of 
the chaos polynomials. Assuming that the polynomials are 
normalized, the coefficients 𝛽𝜶 can be derived by using a 
projection operation, in common with the procedure followed 
in the modal approach in electromagnetics.  

Using (1), (2) and (4) the coefficients 𝛽𝜶 can be estimated 
by evaluating the integral that represents the projection of 
M(x) on  𝜓q 𝑥  

𝛽𝜶 =    ℳ 𝒙 𝜓𝜶 𝒙 𝑓𝑿 𝒙 𝑑𝑥                                                     5   
Since the relationship between y and x (𝑛𝑜𝑡𝑒:    𝑦 = ℳ(𝐱)) 

is only known through the FDTD simulations at this step, the 
integral calculation has to be done by using the Monte Carlo 
Method and a sparse grid [9],[10],[11] to reduce the 
computational cost. For instance for a problem with 4 inputs, 
the assessment of the coefficients of the polynomials having 
order below 4 requires 401 FDTD simulations. This approach 
is suitable if the complexity of the problem is not very high, 
as is the case when there are only a few polynomials involved 
in the PC expansion, or if our objective is to only assess the 
values of a few coefficients. Otherwise, for the case of 
dosimetry, for instance, the method is not really well suited; 
instead, as we will show in the following section the method 
based on least-square regressions and cross validation is more 
efficient as we will show in the following section.  

III.   SURROGATE MODELING USING TRUNCATED 
GENERALIZED POLYNOMIAL CHAOS EXPANSION 

As pointed out in the previous section, the computational 
time required by the FDTD simulations is quite high, and this 
in turn precludes its direct use with conventional statistical 
schemes such as the Monte Carlo method for statistical 
dosimetry. On the other hand, a truncation of the Generalized 
Polynomial Chaos Expansion could be an efficient way to 
ease the computational burden if the assessment coefficient is 
performed using least-square regressions and cross validation 
that require a reasonable computational effort. 

Let us consider a model 𝑦, which is an alternative candidate 
for the model constructed by using a truncation of the infinite 
polynomial expansion (1): 

𝑌 = 𝛽[𝜓[ 𝑿                                                                   (6)    
{|)

[V}

 

where P is the number of polynomials involved in the 
truncation. The estimation of the coefficient 𝛽[ can be 
performed by using the well-known regression approach to 
computing the coefficients which minimize the mean-square 
error of approximation of the model response. Let us note that 
𝒚 =    𝑦), . . , 𝑦-, . . 𝑦�  is the vector representing the output of 
simulations driven by the M inputs, 𝒙- =    𝑥)- , 𝑥+- , . . 𝑥R-, . . 𝑥/- . 
As pointed out earlier, the components of the vector y, 𝑦- =
ℳ 𝐱-  are derived by using the FDTD simulations.  

Using the above notations, the coefficients derived by using 
the regression analysis can be written: 

𝜷 =    𝚿�𝚿 |)𝚿�𝒚                                                                (7) 
where 𝚿    is a matrix whose elements  𝜓[-  that can be obatined 
numerically from the relationship 𝜓[- = 𝜓[ 𝒙- . Of course, 
not unexpectedly, the quality of the model depends n the 
truncation, and we will further discuss this point later. For 
now, we add the remark that it also depends on how well we 
have represented the vector pair 𝒙, 𝒚 .  

It is worthwhile to point out that the calculations indicated 
above should be performed in a way such that any bias is 
avoided. While we can use a fully random process for these 
computations, we cannot guarantee that the space filling 
would be uniform in this case. The Latin Hypercube Sampling 
approach[12][13], known as LHS, is often used for planning 
the experiments. This method generates                                                                                                     
a sample of plausible set of parameter values from a 
multidimensional statistical distribution while taking care of a 
uniform filling of space. 

As stated previously, the complexity of the problem is 
unknown a priori; hence the accuracy of the model which we 
build by using a truncation approach needs to be tested and 
compared with a target value. To achieve this objective, we 
can use methods such as bootstrap [14] or Leave-One-Out 
Cross Validation (LOOCV) algorithms. The latter is a very 
intuitive method, which is often implemented to assess the 
accuracy of a model. Let us consider N experiments  𝑦- =
ℳ 𝐱- . One can use N-1 experiments to build a model and the 
last one experiment to test the accuracy of the model. Let us 
consider the FDTD outputs of N simulations, represented by 
𝒚 =    𝑦), . . , 𝑦-, . . 𝑦� , corresponding to the output the N sets 
of M inputs ( 𝒙- =    𝑥)- , 𝑥+- , . . 𝑥R-, . . 𝑥/- ). If we remove one 
element for this set, 𝑦), . . , 𝑦-, . . 𝑦� − 𝑦R   , we can build M 
sets of vectors having M-1 elements that can be used to build 
a surrogate model. We can then use 𝑦R, 𝒙R  to assess the 
difference between the prediction and the sample. Performing 
this operation for M samples enables us to assess the actual 
mean-square error of the model and to check its quality. If the 
accuracy is below our expectation, then we would introduce a 
new sample, via FDTD simulations, to build an advanced 
surrogate model. 

Depending on the complexity of the physical problem, not 
all the polynomials involved in the polynomial chaos 
expansion would be equally important. Therefore, it is of great 
interest, from computational efficacy point of view, to 
iteratively build a sparse polynomial chaos expansion. The 
objective is to select the most important polynomials, taking 
into account the constraint of a constant cardinal of the 
polynomials basis. The sparse polynomial chaos, based on 
least angle regression method [15] and Least absolute 
shrinkage and selection operator method [16] (often used 
under the same “LARS”), are well adapted for engineering 
problems. They can be used to identify the polynomials 
having a significant influence on the sensibility indices and 
the statistical distribution of the output. 

Among the methods that can be used to perform the 
sensitivity analysis which provides the relationship between 
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the uncertainty of the output and those of the inputs, the 
analysis of variance [17], known as ANOVA, with the 
“Sobol” decomposition [18] is often used. With this approach, 
the response of a process having finite variance and 
independent inputs can be decomposed into main effects and 
interactions, and the global variance can be decomposed into 
partial variances. Thanks to the orthonormality of the 
polynomial chaos basis, the global variance 𝐷 and the partial 
variance Dn�,…n� , are respectively given by: 

𝐷 = 𝑉𝑎𝑟 𝑌 = 𝛽[+
�|)

[V}

           ;       Dn�,…n� = βJ+
J∈𝒯l�,…l�

                              (8) 

Where       𝒯-�,…-� = 𝛼:  𝛼[ > 0, , 𝑘 ∈ (𝑖), … 𝑖�)      
The Sobol indices are given by  

𝑆-�,…,-� =
𝛽T+T∈�U�,…U�

𝛽T+}� T ��

              (9) 

The total sensitivity indices 𝑆-� which quantify the total 
effect of an input parameter on the output are as the sum of all 
partial sensitivity indices given by: 

 

𝑆-� = 1 −
𝐷|-
𝐷
                                                                                              (10) 

where D|n is defined as the sum of all Dn�,…n� that do not 
include the index i. 

 

IV.   APPLICATION IN NUMERICAL DOSIMETRY 
The tissue exposure to a radio frequency (RF) 

electromagnetic field is quantified by using the specific 
absorption rate (SAR), which is defined as the ratio of the 
electromagnetic power absorbed by human tissues and the 
mass of these tissues. Locally the SAR is given by 

  SAR =
σE+

2ρ
                                                                            (11) 

In this formulation σ, ρ and E represent, respectively, the 
conductivity of the body tissue (S/m), the mass density of the 
tissue (kg/m3) and the peak electric field strength in the tissue 
(V/m). International bodies such as ICNIRP or IEEE have 
defined limits that are quantifying exposure using the SAR 
over whole the body or over a mass of 10 grams. The electric 
field strength can be assessed either by using measurements 
or by employing numerical methods such as the FDTD, thanks 
to the progress in high performance computing. The FDTD 
enables us to consider specific tissues exposures, for instance 
exposure of brain tissues.  

Considerable amount of effort has been invested during the 
last 20 years toward the development of experimental methods 
and measurement facilities that enable us to perform tests to 
ascertain that the safety limits of the devices are indeed within 
compliance prior to releasing these devices into the 
marketplace.  

For mobile phones operating in close proximity of the 
human head, technical standards have been defined for both 

the methodologies as well as protocols involving two test 
positions, referred to as the cheek and tilt of the phones [16]. 
While following this approach is useful for carrying out 
compliance tests, the approach is not helpful for 
characterizing the distribution of the exposure linked to the 
phones whose use is variable, as is typically the case in 
practice.   

As we have already pointed out earlier, despite significant 
recent progress in computational electromagnetics, the highly 
computer-intensive nature of the FDTD, it is not well suited 
for such characterization performed by using the Monte Carlo 
method. The PC can be used to overcome this limitation by 
using a surrogate model to analyze the influence of variable 
position of a phone on the SAR10g (i.e., the maximum SAR 
over 10 grams in the head) induced in the “duke” head model 
[19][20].  

 

 
 

Fig. 1. Configurations used to assess the influence of the position of the 
phone on the head exposure 

    Figure 1 shows the configurations investigated in this work. 
The phone position relatively to the head is assumed to be 
governed by four uncertain and independent input parameters, 
X), X+, X¡, X¢, namely rotations and translations, uniformly 
distributed over 0°, 30° , −15°, +15°  and 5  𝑚𝑚, 30  𝑚𝑚 , 
−10  𝑚𝑚,+10  𝑚𝑚 ,  respectively. The X), X+, X¡, X¢ inputs 

are transferred to the range [-1, 1] by using iso-probabilistic 
functions [18], so that they can be used with PC and Legendre 
[19] polynomial types of basis. The LHS method has been 
used to select the suitable FDTD simulations to be carried out. 
Figure 2 shows the probability distribution function (PDF) of 
these simulations, 

 
Fig. 2. PDF of FDTD simulations 
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The FDTD simulations have been used to construct a sparse 
and truncated PC expansion, first by using the hyperbolic 
index sets [23], and second by employing LARS [15].  Figure 
3 shows that the PDF of SAR obtained by using these different 
surrogate models are equivalent even though, as explained 
previously, the computational effort associated with a non-
sparse PC is significantly higher. The LARS is much more 
efficient than other sparse approaches. In the present example 
a LOOCV accuracy of 1% is obtained with a 7th order and 71 
simulations (15 significant polynomial coefficients to 
compare with the 330 that are required when we use a full 
GPCE). We obtain a 0.1% accuracy with 103 simulations ( 78 
simulations added iteratively to the 25 initial ones when using 
the NLHS) and, in this case, 27 polynomials are involved in 
the surrogate model.   

 
Fig.3: Pdf of SAR obtained using the surrogate model 

Figure 3 is also of interest from an application point of view, 
since the shape of this PDF was not predictable before we 
carried out the study. A sensitivity analysis has been carried 
out to identify the important parameters. 

The coefficients assessed with PC, LARS and LOOCV 
have been used to carry out the sensibility analysis. Figure 4 
shows the Sobol indices. This sensitivity analysis shows that 
S1 S3, S12 and S13 are the most significant indices, and that 
the S1 index has a very strong influence. This serves to 
confirm the fact that the angle X1 governing the angle toward 
the cheek is the most influential parameter. This analysis is 
important for RF dosimetry, as it helps to know on which 
parameters we should focus on when studying’ the exposure 
to RF-EMF from mobile phones.  

 
 

 
 

Fig 4.  Sobol indices 

V.   CONCLUSIONS 
This paper has presented a novel approach for efficiently 

assessment of the statistical distribution of the outputs of 
computer-intensive electromagnetic numerical calculations 
with inputs that are affected by variability.  The proposed 
approach consists of building a meta-model based on the 
sparse Polynomial Chaos representation using LARS 
algorithm. This model is then employed to characterize the 
variation of the Specific Absorption Rate (SAR) induced in 
the head by a mobile phone whose position relatively to the 
head is variable. The proposed method enables us to 
significantly reduce the computational effort by performing 
fewer simulations number and carrying out a sensitivity 
analysis. The results show that the method is suitable for 
computational electromagnetics and that it has the potential to 
develop stochastic dosimetry techniques for complex 
configurations which cannot be handled by usual 
deterministic computational methods. Another example in 
which the technique described this work has been found useful 
has been described in a companion paper in which a 
Frequency Selective Surface (FSS) whose cells have random 
perturbations. The interested reader is referred to [24] for 
further information and details. 
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