
ETH Library

SymPhone
Design and implementation of a VoIP peer for
Symbian mobile phones using Bluetooth and SIP

Report

Author(s):
Stuedi, Patrick; Frei, Andreas; Burdet, Luc; Alonso, Gustavo

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006780609

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 513

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006780609
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


SymPhone: Design and Implementation of a VoIP peer for Symbian
mobile phones using Bluetooth and SIP

Patrick Stuedi, Andreas Frei, Luc Burdet and Gustavo Alonso∗

Swiss Federal Institute of Technology (ETHZ)
Departement of Computer Science
8092, ETH-Zentrum, Switzerland

Abstract

VoIP is born from the growing Internet infrastructure,
which has over the years seen significant improvements in
both bandwidth and end-to-end latency. In this paper, we
explore making VoIP available on a mobile phone. For that
purpose, we propose an architecture and describe the var-
ious components involved. Data entering and leaving the
mobile phone is encapsulated in a wireless Bluetooth con-
nection. The bridge to the Internet is provided by a linux
Bluetooth access point. The system is compatible with cur-
rent VoIP standards using RTP and SIP for data and signal-
ing transmission, respectively. It has been tested to work in
combination with several known softphones. Both RTP and
SIP stack are built on top of a special IP emulation layer
on the mobile phone, which has been developed to facilitate
the migration of the application onto devices having a direct
IP binding available for Bluetooth such as BNEP (Blue-
tooth Network Encapsulation Protocol). Apart from pre-
senting design and implementation details, the paper also
provides measurement results with regard to delay and ses-
sion setup time and discusses certain limitations of the ap-
plication evolving from restrictions imposed by the mobile
phone’s programming platform.

1 Introduction

According to recent reports, a high percentage of mo-
bile phone calls occur at home or at the workplace. These
calls are often performed within meters of an existing
well-established and less expensive telecommunications in-
frastructure. Such is the price to pay for the convenience
of being ”always-available”. A major focus for research in
recent years by telecommunications companies has been in
finding marketable ways to solve this by merging telephony
technologies and provide better, less-expensive, services to
customers [4, 3, 9]. Merging VoIP technologies with tele-

∗The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Information and Com-
munication Systems NCCR-MICS. A center supported by the SwissNa-
tional Science Foundation under grant number 5005-67322.

phony infrastructures is of particular interest since it may
significantly reduce the costs.

In this paper, we explore making Voice over IP (VoIP)
available on a mobile phone using Bluetooth as the ac-
cess protocol. Bluetooth was selected because it is increas-
ingly available in mobile telephones. Most modern mobile
phones with a focus on wirelessly sharing data between the
device and a host PC come equipped with a Bluetooth adap-
tor.

Since an important goal was to implement a prototype
that runs on a broad spectrum of devices, SymbianOS [5]
was chosen to be the target platform for the mobile phone.
Symbian is an operating system for mobile devices widely
used in industry. It is designed for the specific requirements
of advanced 2G, 2.5G and 3G mobile phones and provides
a native C++ application programming interface.

Our system uses an out-of-the-box Linux PC to serve as
an Internet access point for both voice and signaling data.
When in range of a PC, a wireless Bluetooth connection to
the IP network is made available to the mobile phone, offer-
ing the choice of connecting to a conventional mobile GSM
network or to a lower-cost IP infrastructure for VoIP. The vi-
sion for the future is to make the mobile phone’s operation
fully transparent to the user by making both technologies
completely interchangeable (Figure 1).

In this paper, we discuss how the Bluetooth connection
to a mobile phone can be used to route telephony data. The
solution we provide is based on current standards for call
setup and media transmission and therefore allows the mo-
bile phone to setup phone calls with most of the currently
available soft-phones1. It is also possible to setup a VoIP
call over the internet between to Symbian mobile phones
using our application.

The main contribution of the paper is a generic architec-
ture for Bluetooth-based VoIP clients running on Symbian-
based end-user devices, such as mobile phones. The paper
also provides insight into concrete issues that arise when ac-
tually bridging the gap between the architecture and the real
implementation.

The remainder of this paper is structured as follows. We
present in section 2 the architecture of the system, putting

1Kphone [6],Linphone [7],Twinkle [8]

1



GSM

Internet

User B

User A

Infrastructure

switch

SIP

Server

Base station

Access Point

Figure 1. VoIP infrastructure

into context the main components necessary to achieve our
goal. Section 3 discusses the concept of tunnelling IP data
through a Bluetooth connection from the mobile phone to
a Linux access point. In section 4.1 we give some detailed
information on how SIP signaling can be used to establish
calls into the Internet. The voice engine recording and play-
ing audio streams is described in section 4.2. Section 5
shows some measurement results. A short review of related
work is given in section 6 and section 7 concludes the paper.

2 System Architecture

2.1 Background

VoIP applications typically comply with several protocol
standards. This is, either H.323 [12] or SIP [21] for setting
up the call, and RTP/RSCP [18] for realtime audio data ex-
change. After a long and at times heated debate about what
call setup protocol is best suited to replace ISDN’s SS7 in-
frastructure, the industry has now settled on the Session Ini-
tiation Protocol (SIP), an IETF standard. While most Voice
over IP (VoIP) systems deployed in the enterprise as a re-
placement of aging PBX systems still remain proprietary,
carriers and ISPs have started to invest heavily in their next
generation infrastructure based on SIP. In order to stay com-
patible with this trend, we decided to also use SIP as the sig-
naling protocol for the VoIP application, together with RT-
P/RTCP for audio communication. Compatibility with cur-
rent standards certainly is an absolute must to allow the sys-
tem to be used in combination with already available VoIP
clients.

While the protocol interface is relatively straightforward,
its implementation is quite challenging because of restric-
tions in the Symbian operating system:

1. A specific feature of the Bluetooth specification [13]
is BNEP [11](Bluetooth Network Encapsulation Pro-
tocol). BNEP allows IP traffic to be transmitted over

RTP
SIP

Stack

Application

Symbian Proxy

IP/UDP

L2CAP

Bluetooth SDP

Access Point

IP/UDP

L2CAP

Bluetooth

Registration

VoIP Peer

SIP Server

SIP

RTP

Figure 2. Architecture

a Bluetooth L2CAP connection. Unfortunately, BNEP
is not yet available on SymbianOS 7.0, which is the
version we have used for this work.

2. According to the Nokia 6600 specification, a maxi-
mum of one Bluetooth connection at a time may be
active at the mobile device.

3. The SymbianOS streaming API allows for stream-
ing audio data with variable granularity in the buffer
size. However, the SymbianOS Multimedia Frame-
work (MMF) does not use the specified buffer size di-
rectly for sampling data, but fills the variable size ap-
plication buffers from an internal 700ms buffer.

The first point requires some sort of IP emulator to be
implemented on the mobile phone in order to support send-
ing and receiving of SIP and RTP packets. The second point
requires the mobile phone to multiplex several data connec-
tion onto one single Bluetooth channel. The next section
shows how our design addresses these two restrictions. The
third point imposes a firm lower bound to the delay of the
VoIP application, as we will see in section 5 when we dis-
cuss experimental results.

2.2 Main components

The architecture of our VoIP system is divided into three
main parts (Figure 2): TheSymbian proxy, the Bluetooth
access point, and the actual VoIP application.

The Symbian proxy provides transparent IP connections
to remote destinations, hiding all the lower layer Bluetooth
functionality. Applications create new IP tunnel endpoints
by using a dedicated register interface. After having cre-
ated such an endpoint, applications can use regular sockets
to communicate with the outside world. Besides IP emula-
tion, the proxy is also responsible for multiplexing different



IP connections onto the single Bluetooth channel. The mul-
tiplexed data stream is later de-multiplexed on the access
point for further processing.

The Bluetooth-connected access point serves as a dual-
interface router for all IP packets between the mobile phone
and the target destination(s). While the Bluetooth interface
offers a simple wireless connection to the mobile device, the
access point’s IP-connected interface will be the component
communicating directly with the mobile phone’s intended
peers, namely the SIP server in the case of a VoIP call setup
and the VoIP client in the case of RTP data transmission. In
order to be easily identified by the mobile phone, the access
point publishes an SDP [13] service advertisement helping
theSymbian proxyto dynamically look up the access point’s
location and establish a connection to it.

The VoIP application sits on top of theSymbian Proxy
using the Session Initiation Protocol (SIP) to setup calls
with other peers and RTP for audio communication. At
startup, the application creates two IP endpoints for both
the SIP and the RTP channel using theSymbian Proxy. The
Application is responsible for setting up the call and interac-
tion with the Symbian Multimedia Framework that provides
access to the microphone and the loudspeakers. Instead of
including Bluetooth functionality directly into a VoIP client,
we opted for separating functionality and stacking them one
atop another. This facilitates the migration of the applica-
tion onto devices having a direct IP binding available for
Bluetooth.

In the following sections we explore each of these com-
ponents in more detail.

3 Bluetooth IP Tunnel

3.1 Protocols and Registration mechanism

While the Symbian Proxyprovides transparent IP ac-
cess and multiplexes different IP streams onto Bluetooth,
the Bluetooth access point(Figure 2) is in charge of de-
multiplexing these streams for further transmission into the
Internet. Both parts build a so called Bluetooth IP tun-
nel. In order for the tunnel to provide the multiplexing/de-
multiplexing capability, a common header is used for trans-
mission over a Bluetooth L2CAP connection (see Table 1).
The ThreadID allows to properly forward the packets to
their intended tunnel endpoint and final destination. Note
that this packet format is not reserved for Bluetooth exclu-
sively, but could be applied to other forms of wireless (or
wired) links to the mobile phone. The common header was
kept as small as possible, so as to keep its relative size in-
significant when compared to the size of the actual pack-
ets sent over the connection. The current implementation is
not optimal because it includes non-essential payload length
and synchronization sequence fields, which are, however
needed when building an IP tunnel on top of the Bluetooth
RFComm layer. The header format is further designed to
support both control and data channels using theHdrType

Application

Symbian Proxy

Access Point

RegE IpE

create

create

UdpE

ACK REG Data

Data

Internet

Socket Library

Multiplex
Table

Multiplex
Table

Insert

Insert

BtE

Figure 3. Symbian Proxy and IP tunnel end-
point registration

field. Data packets may contain SIP or RTP packets. Con-
trol packets on the other hand, are used internally to sig-
nal the creation of new IP endpoints. As mentioned, the
proxy allows to create IP endpoints through a register inter-
face. Signaling these registrations to both proxy and access
point is necessary since both parts have to agree on a certain
mapping between the endpoint socket and the correspond-
ing ThreadID. For this purpose, a special control message
is sent over an IP tunnel control channel (HdrType=REG).
The format of such a message is shown in Table 2. A regis-
tration message has to be sent to the access point by the
proxy every time a new endpoint is created. The proxy
binds locally a so calledIP engine(IpE) to the application’s
intended destination port, and inserts a special association
(application-id, IpE) into its own internal multiplex/demul-
tiplex construct (multiplex table). The access point uses the
registration message’s contents (source and destination ad-
dresses, ports) to establish a communication channel with
the intended target of each message by binding locally to
the provided source port, and sending to the intended desti-
nation address and ports. Figure 3 illustrates the registration
process. After a registration is correctly set up at both ends,
the local binding information is accessed (from the multi-
plex table) upon packet arrival to determine (based on the
packet’s headerThreadID) which tunnel endpoint the data
must be forwarded to. From the application point of view,
the whole tunnelling mechanism is fully transparent due to a
special socket library hiding all the proxy registration calls.
For migrating the application to a BNEP-capable device,
only the socket library has to be replaced.

3.2 Symbian Proxy

From an operating system point of view, the Symbian
proxy is a stand-alone application implementing a server
process. It is centered around a so called ”engine” princi-



Offset Field Type Length Description

0 ThreadId int16 2 bytes the unique ID of endpoint and application data is for/from
2 HdrType int16 2 bytes the type of data being transported in this packet: 0x01=REG

message, 0x02=normal data
4 PayloadLength int32 4 bytes the length of the payload in number of bytes
8 Separator char 4*1 bytes end of header (synchronisation) sequence ’++++’

Table 1. Packet format for IP data tunneling (common header) .

Offset Field Type Length Description

0 Id int16 2 bytes a unique ID for each application, used for mux/demux
2 SrcPort int16 2 bytes the IP port to bind to at the AccessPoint
4 DestAddr uint32 4 bytes the remote IP address for UDP packets (send toand receive

from)
8 DestPort int16 2 bytes the remote IP port for UDP packets (send to and receive from)
10 DataType int16 2 bytes the type of data being tunnelled: 0x01=binary, 0x02=ASCII

Table 2. Registration message format.

ple. Namely, the service consists of a central coordination
engine and a series of satellite engines to do all the actual
work (Figure 3).

The coordination engine implements a state machine
(Figure 4) which keeps track of the connection status of
all sub-engines: the registration engine, the Bluetooth en-
gine and all the IP engines representing tunnel endpoints.
The current state of the proxy is an indicator of the readi-
ness level for tunnelling data from connecting applications.
When unconnected, the proxy receives ’Connect’ com-
mands from the user interface, and initiates connection at-
tempts in both the registration engine (regE) and the Blue-
tooth engine (btE), which in turn initiate internal connect
procedures depending on their current state. TheSymphone
application may start initiating a VoIP call setup as soon as
the proxy’s state is switched to ’Connected’.

TheBluetooth engine (btE) is in charge of communicat-
ing with a remote peer over a wireless Bluetooth link. When
asked to ’Connect’,btE initiates a search to seek out a suit-
able peer using Bluetooth SDP [13] discovery queries. It
queries for a custom ’AccessPoint’ service which the Blue-
tooth access point defines upon start, as will be explained
in section 3.3. The Bluetooth engine further providesread
and write functionality to transmit and receive packets to
and from the Bluetooth link. Incoming packets are stripped
off the tunnelling header and passed on to the correspond-
ing IP engine (IpE), based on theThreadIDand the local
binding for that ID.

Theregistration engine (regE) represents an external in-
terface made available to applications for signalling intent
to create a new IP tunnel endpoint. Upon reception of a
registration request, the engine notifies the proxy’s coordi-
nation engine, which in turn forwards the request over the

RegE::Error

Proxy Not
Connected

Proxy
Connected

RegE
Connected

BtEngine
Connected

RegE::Success
BtE::Success

BtE::Error

BtE::Success

BtE::Error RegE::Error

RegE::Success

Figure 4. The proxy’s internal state machine

(connected) Bluetooth engine and creates an instanceIpE
using the remote port provided in the request.

The IP engine (IpE) communicates with the applica-
tion on the mobile phone by abstracting the underlying IP
medium. However, the application does not interact with
theIpE directly. It uses a special socket library as described
in section 3.1. TheIP engine does little more than shuffling
application data down the Bluetooth engine and vice versa.

3.3 Access Point

As mentioned, the Bluetooth access point acts as a
bridge between the wireless Bluetooth link and the Inter-
net. The first important role of the access point is to ad-
vertise to passing-by mobile phones the service it provides.
It does so by using the Bluetooth Service Discovery Proto-
col (SDP) [10]. In SDP, a dynamic network of Bluetooth
devices may browse remote devices for their services, and
properties, allowing for better network dynamism and re-



Application

Access Point

SIP

Multiplex
Table

Application

ApplicationSymbian Proxy

RTP

SDP BT_Thread

O
u

t_
b

u
f

In
_

b
u

f

SIP Proxy

RTP

VoIP Peer

Lookup/
Insert

Find Packet including
common header

Figure 5. Internal structure of the access point

placing the need for a central repository. SDP services are
characterized by their service class and their service record
(a set of attributes). The access point acts as an SDP server
for a new service class. It publishes a service record for the
”A P” service with the most important characteristics listed
in Table 3.

Internally, the access point implements a traditional
multi-threaded server process. Abt listener creates new
bt reader andbt writer threads upon connection attempt.
The threads are then responsible for processing registra-
tion and data messages. Using the application ID of the
message, a btreader creates or updates a new tunnel end-
point. This is done by creating two newip udp reader and
ip udp writer threads, looking up the IP address and port
information in the registration message, and subsequently
inserting the corresponding association (application-id,
thread) into an internal dictionary structure (multiplex ta-
ble). For regular data, btreader is a producer over the syn-
chronizedout buf data buffer, notifying the ipudp writer
thread specified by the tunnelling header. The ipudp reader
and ipudp writer are producer and consumer threads over
the out buf and in buf synchronized buffers, respectively.
For an illustration on the access point’s internal structure
see Figure 5.

4 SymPhone Application

SymPhoneis a multi-view Symbian Series 60 applica-
tion [22, 20]. It uses the underlying Symbian proxy for
transparent IP communication over Bluetooth. Its internal
structure can be subdivided into two parts: a SIP signaling
engine and an audio engine (Figure 6).

4.1 Signaling Engine

The SIP engine takes all the steps necessary to initiate or
tear-down SIP sessions with a remote peer. It handles in-
coming requests and propagates decisions to the GUI only
when user interaction is necessary (pick-up or hang up a
call). One issue with the SIP engine is that it could not be
built on the Nokia SIP stack since the library is based en-
tirely on the use of Internet Access Providers (IAPs). On
Symbian mobile phones, the only IAPs available are stored
in the system-wide storage for communication-related set-
tings and refer to the GSM network interface for IP. With-
out providing a specific IAP, the Nokia SIP stack never re-
ceives a valid IP address. Unfortunately, the main part of the
SIP library is closed, so simply recompiling it for a differ-
ent transport mechanism is not possible. The solution that
we chose was to re-use some of the existing structure and
objects of the library to re-implement the communication
functionality needed. This facilitates a potential replace-
ment of the SIP stack with an official Bluetooth capable SIP
library at a later point in time. The new SIPSocketStack we
provide is a very basic SIP message parser and supports the
sending of REGISTER, INVITE, ACK and BYE requests.
These messages correspond to the four basic SIP protocol
primitives needed for a SIP call setup.

4.2 Audio Engine

The audio engine in the SymPhone application imple-
ments a VoIP specific use of the Symbian Multimedia
Framework (MMF) [19]. The engine processes incoming
RTP audio streams and feeds raw audio data into the loud-
speaker. It also reads consecutive audio data from micro-
phone and transmits RTP streams to the remote peer. Raw
audio is referred to as uncompressed, 16-bit PCM16 en-
coded data. Audio data entering and leaving the network
is 8-bit encoded and has to be transformed at reception and
transmission respectively. Due to the lack of a Symbian
RTP library, a subset of such a library has been imple-
mented as part of this work. The library stays true to the
specification when it comes to RTP headers, but leaving out
completely such functionalities as packet counting and re-
ordering. Outgoing packets will be correctly labelled for
the peer’s RTP stack, but the headers of incoming packets
are stripped and ignored. Similar to the SIPSocket stack
described in section 4.1, the library approach facilitatesthe
replacement with an official RTP library at a later point in
time. The audio engine accepts recorded audio data in a
buffer, and splits it according to a pre-determined RTP pay-
load size, which is currently 160 bytes. Each packet starts
with a valid header containing a sequence number and a
timestamp before being forwarded to the underlying RTP/IP
interface. Unfortunately, the Nokia 6600 we are using does
not have full-duplex audio capabilities. Symbian specifies
that this is because of the ’one-shot’ recording or playback
design policy opted for by most phone manufacturers [17].



attribute ID value

SDPATTR RECORDHANDLE 0x0 random
SDPATTR SVCLASSID LIST 0x1 ACCESSPOINT SVCLASS(0x1334), GENERICTELEPHONY SVCLASSID
SDPATTR PROTODESCLIST 0x4 L2CAPUUID
Name 0x100 ”AccessPoint”
Description 0x101 ”Bluetooth-to-IP access point for tunnelling binary&ASCII packets”
Provider 0x102 ETHZ::IKS::LAB

Table 3. Access Point SDP record

Symbian Proxy

ApplicationAccess Point

SymPhone

SIPEngine RTPEngine

AudioIN AudioOut

MMF

RtpE

MMF

RtpE
SIPSocket

Nokia
SIP
Stack

Socket Library

Figure 6. The SymPhone application

The solution taken with this problem was to implement the
application in a push-to-talk manner.

5 Evaluation

Several aspects are of interest when testing a VoIP appli-
cation: setup time, end-to-end latency and packet loss. Fur-
thermore, to objectively measure the speech quality, the ITU
PESQ [16] method could be have been employed. How-
ever, PESQ measurements are complex and require explicit
equipment which we did not have available. Furthermore,
PESQ includes many parameters like filtering, distortions,
channel errors which can be ignored when evaluating the
very generic behavior of an application. We therefore con-
centrated on SIP setup time and latency measurements.

Our setup consists of a mobile phone, a linux access
point, a sip proxy/registrar and a softphone application2.
To avoid introducing additional delay, the access point, the
proxy and the softphone were all located on the same phys-
ical machine. After having registered both the softphone
and the mobile phone with the sip proxy/registrar, a VoIP
call is initiated from the mobile phone to the softphone. In
our 10 consecutive experiments, we measured an average

2We have used Kphone[6]

dial-to-ring latency of about 300ms. The dial-to-ring la-
tency includes the time from the moment the first SIP Invite
message is triggered on the mobile phone, until a 180 SIP
Ringing message is received. The exact message flow is
illustrated in Figure 7.

User
Agent A IP Proxy

User
Agent BSIP Proxy

Access
Point

INVITE

100
TRYING

180
RINGING

REGISTER REGISTER

Mobilephone Fixed Network InfrastructureBluetooth

D
ia

l-
to

-r
in

g
 d

e
la

y

Figure 7. SIP setup message flow

A dial-to-ring latency of 300ms is comparable to the
setup time needed for an overseas call in a fixed network
infrastructure [15]. The overhead is introduced by the slow
Bluetooth connection and the various components (proxy,
access point) involved.

For measuring end-to-end latencies we made use of a
simple mixer, mixing the sound recorded at the mobile
phone’s microphone towards the left channel, and the sound
received at the softphone’s loudspeaker towards the right
channel (Figure 8). The final stereo signal was recorded
with 48200Hz into a WAV-file, as illustrated in Figure 9.
The difference between two consecutive amplitudes refers
to the latency between the signal recorded at the mobile
phone and the signal received by the softphone. With re-
spect to the sampling frequency of 48200Hz, the latency
computes to approximately 770ms, which is far beyond
what would be acceptable for interactive voice.

We have investigated the cause of this problem as fol-
lows. The Symbian OS’ multimedia API providing access
to the low level audio devices, like microphone and loud-
speakers, contains an internal sample buffer of 11200 bytes.
When sampling audio with 8000Hz, it takes 700ms to fill
the buffer, regardless of the buffer size used in the audio



0 0.5 1 1.5 2 2.5 3

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
signal
recorded with
microphone

signal
received at
softphone

Figure 9. Measured latency

Mixer

a
LeftIn RightIn

StereoOut

Recording

Softphone and
Bluetooth
Access Point

SymPhone

Figure 8. The evaluation setup

engine3. This behavior has been confirmed in a small ex-
periment, where we only tested the SymbianOS callback
function, as shown in Figure 10. We have measured call-
back interval times for two different buffer sizes, 320 bytes
and 620 bytes. In the presence of an internal buffer, the rel-
ative frequencies of large 700ms callback latencies can be
expected to grow linearly with the size of the application
buffer passed to the API. Table 4 shows the result of the ex-
periment. Let us look at the 320 bytes case first. While
sampling 320 bytes took0ms in 95.12% of all cases, it
took 700ms in2.86% of the cases. If we neglect the cases
where the sampling time was slightly above 0ms (< 15ms),
we observe that the SymbianOS internal buffer has to be
re-filled after every approximately0.9512/0.0286 ≈ 33

consecutive sampling requests, which results in an internal
buffersize of320 × 33 = 10560 bytes. If we pass a buffer
of size640 bytes instead, the internal buffer is re-filled after
every0.9193/0.0556 = 16 sampling request, hence twice
as much, which is what we expected. In the future, one
might be able to bypass this problem by using the latest
Symbian API for audio sampling. We nevertheless we be-

3The buffer the audio engine passes to the Symbian multimedia API
contains space for 160 bytes of raw 16bit PCM audio data

Time Buffer Size
in ms 320 bytes 640 bytes

0 0.9512% 0.9193%
< 15 0.0203% 0.0252%
≈ 700ms 0.0286% 0.0556%

Table 4. Relative frequencies of audio record-
ing callbacks

lieve that the design we have presented has acceptable over-
head, since once the problem with the buffer is solved, the
additional overhead amounts to 70ms. This is more than
acceptable and is within the limit of applications support-
ing interactive voice, even when considering the additional
latency from the access point to some peer located in the
internet.

6 Related Work

Although there is a clear trend towards merging the tele-
phony and Internet technologies, we do not know of any SIP
based VoIP application on the mobile phone that runs over
a low cost Bluetooth connection. In a recent work [1], a
VoIP phone was developed running on Symbian OS putting
a proprietary non-SIP-based protocol for call establishment.
A SIP-based phone communicating over Bluetooth was an-
nounced by British Telecom (BT) [14]. However, their ap-
proach includes special equipment like a BT access point
and a customized mobile phone. The idea of tunneling
IP based communication using Bluetooth has also been
adopted by GnuBox [2], an open source project of the Sym-
bian OS Communitiy.



void CDeviceIoMmfEngine::Read(){
startTimer()
iInputStream = CMdaAudioInputStream::NewL(...);
// read a buffer from the audio input stream
// upon completion we will receive a callback in MaiscBufferCopied()
iInputStream->ReadL(iStreamBuffer[iStreamIdx]->Data());
// start a timer to measure latency
startTimer()

}
...
void CDeviceIoMmfEngine::MaiscBufferCopied(TInt aError, const TDesC8& aBuffer*){

// measure latency of callback
stopTimer()
Read()

}

Figure 10. Measuring the latency of the Symbian MMF API

7 Conclusion

In this paper we presented the design and architecture
of a VoIP client on a Symbian mobile phone. We have de-
scribed how the lower-cost Bluetooth connection to a mo-
bile phone can be used to route telephony data. The solution
we provide is based on current standards for call setup and
media transmission and therefore allows the Symbian mo-
bile phone to setup phone calls with most of the currently
available softphones. In the paper we also provide detailed
information about software issues and restrictions related to
the Symbian OS audio interface. The most important re-
striction was found in the Multimedia Framework provided
by Nokia’s Symbian OS, which causes a large sample delay
due to the large internal buffer. In our evaluation we have
shown however, that the end-to-end delay does not signifi-
cantly exceed the sample time. Another issue is that current
versions of Symbian OS do not allow multimedia devices to
be read/written in full-duplex mode. Once these issues are
addressed by later versions of the Symbian API and more
flexible hardware, the design we propose provides a viable
solution to connect mobile phones to a VoIP network using
Bluetooth as the access protocol.

References

[1] Bluesox, bridging distances. http://bluesox.eidelen.ch.
[2] GnuBox. http://gnubox.dnsalias.org/gnubox/.
[3] My mobile phone is also a fixed network.

http://www.teltarif.de/arch/2005/kw24/s17460.
[4] Net2Phone VoiceLine XJ100 Wi-Fi VoIP Phone.

http://www.mobilemag.com/content/100/340/C3309.
[5] The Symbian Operating System. http://www.symbian.org.
[6] The Symbian Operating System.

http://www.wirlab.net/kphone.
[7] Telephony on linux. http://www.linphone.org/.
[8] Telephony on linux. http://www.twinklephone.com.
[9] The WIreless Directory. Blue-

tooth enterprise access infrastructure.
http://www.thewirelessdirectory.com/Bluetooh-
Product/Bluetooth-Enterprise-Access-Infrastructure.htm.

[10] Specification of the Bluetooth System.
http://www.bluetooth.com, 1999.

[11] Bluetooth Network Encapsulation Protocol, June 2001.
http://grouper.ieee.org/groups/802/15/Bluetooth/BNEP.pdf.

[12] Packet-based multimedia communications systems.
http://www.itu.int, 2003.

[13] Specification of the Bluetooth System, Core Package ver-
sion 1.2, Nov. 2003. https://www.bluetooth.org/spec/.

[14] British Telecom, http://www.bt.com.Bluephone.
[15] I. Curcio and M. Lundan. Sip call setup delay in 3g net-

works. In ISCC’02: Proceedings of the Seventh Inter-
national Symposium on Computers and Communications,
2002.

[16] N. M. For. Perceptual evaluation of speech quality (pesq) –
a.

[17] Forum Nokia.Developer Platform 2.0: Known Issues v2.0,
May 2005.

[18] A.-V. T. W. Group, H. Schulzrinne, S. Casner, R. Frederick,
and V. Jacobson. RTP: A Transport Protocol for Real-Time
Applications. RFC 1889 (Proposed Standard), Jan. 1996.
Obsoleted by RFC 3550.

[19] N. Johnson.Audio Streaming: How to successfully stream
audio on Symbian OS v7.0s v1.1. Symbian Ltd., July 2004.

[20] Nokia Corporation.Developer Platform 2.0 for Series 60:
Application Framework Handbook v1.0, December 2003.

[21] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. SIP:
Session Initiation Protocol. RFC 3261 (Proposed Standard),
June 2002. Updated by RFCs 3265, 3853.

[22] Symbian Ltd., http://www.forum.nokia.com/main.Symbian
OS Series 60 Service Development Kit for 2nd Edition.


