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Abstract

Most standard machine learning algorithms require fixed-length, low-
dimensional vectors to perform well. However, when working with
text, such representations are difficult to obtain. In 2014, Le and Mikolov
presented a novel method for generating so-called word embeddings
[16]. Their work represents the foundation for this master thesis.

The main goal of this thesis is to extend and generalize the word em-
bedding model to a hierarchical paragraph vector model. This means
that different parts of the vector represent different contexts which are
shared among sibling structures originating from the same parent text
block. For example, the first part of the vector can be used to describe
the document, the second part to describe the chapter, the third part
to describe the paragraph and the last part to describe the individual
sentence.

In this thesis, we propose Hierarchical Paragraph Vectors, which exploit
hierarchical document structures. When applying this novel method
to sentiment analysis tasks, empirical results show that it can increase
the quality of the word embeddings at the cost of greater execution
overhead.

i



Acknowledgements

I would like to thank Dr. Carsten Eickhoff for his continuous support,
insightful and straightforward advice, positive criticism, proofreading,
and the supervision of my master thesis. It has been a pleasure working
with him.

Additionally, I would like to thank Prof. Dr. Thomas Hofmann for
giving me the opportunity to investigating the highly interesting topics
of NLP and word embeddings, and for his valuable feedback.

Furthermore, I would like to thank everyone who supported me during
my studies, especially my family, my business partners and colleagues1,
for their support, understanding, and positive attitude.

Finally, I would like to thank Marion for her continuous positive atti-
tude, proofreading, and for being by my side.

1https://www.renuo.ch

ii

https://www.renuo.ch


Contents

Contents iii

1 Introduction 1

2 Related Work 5
2.1 Common Representations and Methods . . . . . . . . . . . . . 5
2.2 Neural Networks for Language Models . . . . . . . . . . . . . 7
2.3 Alternative Word Embedding Models . . . . . . . . . . . . . . 7
2.4 Exploiting Hierarchies . . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries 9
3.1 Word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Neural Network Language Model . . . . . . . . . . . . 10
3.1.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Computational Optimizations . . . . . . . . . . . . . . 12

3.2 Doc2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Hierarchical Paragraph Vectors 15
4.1 Hierarchies and NLP . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Obtaining Hierarchies . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 HPV-DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 HPV-DBOW . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Experiments 21
5.1 Experimental Setup and Data . . . . . . . . . . . . . . . . . . . 21

5.1.1 IMDB Dataset . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



Contents

5.1.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Distributed Implementation . . . . . . . . . . . . . . . . 23
5.1.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Implemented HPV Hierarchies . . . . . . . . . . . . . . . . . . 25
5.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5.1 Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.2 HPV Hierarchies . . . . . . . . . . . . . . . . . . . . . . 26
5.5.3 Word Vector Dimensionality . . . . . . . . . . . . . . . 27
5.5.4 Window Size . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5.5 Negative Sampling . . . . . . . . . . . . . . . . . . . . . 27
5.5.6 Frequent Word Downsampling HPV-DM . . . . . . . . 27
5.5.7 Frequent Word Downsampling HPV-DBOW . . . . . . 27
5.5.8 Learning Rate Type . . . . . . . . . . . . . . . . . . . . . 27
5.5.9 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6.2 Execution Speed and Memory Usage . . . . . . . . . . 32

6 Conclusion and Future Work 39

A Appendix 41
A.1 Learning Rate Type . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1.1 Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.2 Exponential . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3 Technical Implementation of Hierarchy Splitting . . . . . . . . 42

Bibliography 43

iv



Chapter 1

Introduction

Words are the building blocks of natural language. Words are categorized
into word classes (for example verbs, nouns, adjectives) and any given gram-
mar only allows certain combinations and word orders to form valid sen-
tences. The meaning of these words is manifold, and naturally some words
are more similar to each other than they are to others. Consider for exam-
ple the three words “interesting”, “fascinating” and “bottle”. In this case,
the first two words are more similar to each other. Hence, the idea to rep-
resent words in a way that captures these similarities, is natural. One way
of achieving this is the use of semantically informed vector representations,
so-called word embeddings.

Finding suitable word embeddings is a challenging and interesting task. The
objective is to find a low-dimensional vector for each word and/or phrase
in the vocabulary. When done correctly, these word embeddings have been
shown to be useful to help solving difficult Natural Language Processing
(NLP) problems, including machine translation [18, 28], sentence comple-
tion [17], sentiment analysis [9], and topic modeling [10].

Recent advancements [17, 16] allow finding high-quality low-dimensional
word embeddings, while the processing speed is increased substantially due
to many optimizations and/or approximations. Furthermore, reliable and
fast implementations have been developed and released, one of them being
Gensim [30]. Therefore, training a word embedding model is now feasible
within minutes or hours, while it took days or months before [16].

For many applications, the data is formatted in a hierarchical structure, as
can be observed in Figures 1.1, 1.2 and 1.3. Therefore, it is compelling to
try exploiting these hierarchies to improve the quality of the word embed-
dings and/or to reduce the learning time while maintaining the word vector
quality. To our best knowledge, this concept has not been investigated pro-
foundly yet, using the recent advancements in [16], although there have been

1



1. Introduction

Figure 1.1: The Wikipedia article about artificial intelligence is segmented into semantic and
syntactic hierarchies (for example title, chapter, section, paragraph, sentence, clause).1

Figure 1.2: Wikipedia articles are structured in categories. For example, the article “Bayes’
theorem” can be found in the hierarchy “Bayesian statistics” < “Statistics” < “Mathematics
and logic”.2

motions towards this direction already [6].

This thesis is organized as follows: in Chapter 2, related work underlying
this thesis is discussed. Chapter 3 introduces theory needed to understand
this thesis. Chapter 4 investigates the formal core of this thesis by describing
Hierarchical Paragraph Vectors. Chapter 5 describes the conducted experi-
ments, and Chapter 6 concludes the results and previews future work.

1Source: https://en.wikipedia.org/wiki/Artificial_intelligence
2Source: https://en.wikipedia.org/wiki/Portal:Contents/Categories
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Figure 1.3: This sports article is categorized into the category “sport” and subcategory “golf”.
Additional tags (for example the name of the person who is on the picture) may also be available.3

3Source: http://www.bbc.com/sport/0/golf/33499589
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Chapter 2

Related Work

In this Chapter, the related research will be described. It will start with
traditional and common representations, and describe their advantages and
disadvantages. Next, more modern representations will be surveyed. Fi-
nally, publications describing hierarchical data will be described.

2.1 Common Representations and Methods

In NLP, probably the most widespread vector representation of text is the
bag of words (BOW) representation [8]. For every word in the vocabulary,
there is exactly one position in this vector, and if a word occurs n times in
a text, this component will be n in the vector. Since the dimensionality of
this vector is the size of the vocabulary, the BOW representation appeals
by its simplicity. However, it suffers from high dimensionality, since the
dimensionality is equal to the vocabulary size. Also sparsity is a major
drawback, because a text block only contains a small fraction of all words in
the vocabulary. Furthermore, the word order is lost, and therefore, different
sentences with different meanings can have exactly the same representation.

Another commonly used representation is the bag-of-n-grams. While it mit-
igates some shortcomings of the BOW model, it also suffers from high di-
mensionality and sparsity.

Term frequency–inverse document frequency (TF–IDF) is a standard model
in information retrieval. The term frequency is calculated by the number of
times a word occurs in a document, while the inverse document frequency is
the inverse of how often a word occurs in the whole corpus. The product of
these two values is a weighted value, where rare words have a higher value
when occurring in documents compared to frequently appearing words, for
example stop words. Similar to the BOW model, a vector per document
can be constructed by assigning a component of the vector per word in the

5



2. Related Work

corpus. Thus, it can be applied to any text. However, it also suffers from
high dimensionality for the same reason as the BOW model does. To avoid
this problem, the words can be ordered by term frequency, and only the top
n words are considered in the TF–IDF vector. Other words in this text are
simply ignored. More information about TF–IDF can be found in A.2 and
in [29].

For example, let us assume that we would like to produce word embeddings
for the following documents.

Document Text
d1 The cat sleeps on the sofa.
d2 The mouse eats cheese.
d3 The cat tries to catch the mouse.

BOW produces the following word embeddings.

th
e

ca
t

sl
ee

ps

on so
fa

m
ou

se

ea
ts

ch
ee

se

tr
ie

s

to ca
tc

h

d1 2 1 1 1 1 0 0 0 0 0 0
d2 1 0 0 0 0 1 1 1 0 0 0
d3 2 1 0 0 0 1 0 0 1 1 1

3-gram of words produces the following word embeddings.
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d1 1 1 1 1 0 0 0 0 0 0 0
d2 0 0 0 0 1 1 0 0 0 0 0
d3 0 0 0 0 0 0 1 1 1 1 1

TF-IDF produces the following word embeddings.

ca
t

ca
tc

h

ch
ee

se

ea
ts

m
ou

se

on sl
ee

ps

so
fa

th
e

to tr
ie

s

d1 0.34 0.0 0.0 0.0 0.0 0.45 0.45 0.45 0.53 0.0 0.0
d2 0.0 0.0 0.58 0.58 0.44 0.0 0.0 0.0 0.35 0.0 0.0
d3 0.32 0.42 0.0 0.0 0.32 0.0 0.0 0.0 0.5 0.42 0.42
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2.2. Neural Networks for Language Models

Finally, all the representations discussed above (BOW, bag-of-n-grams, TF–
IDF) do not capture the semantics of words. For example, the words “fast”
and “quick” are as far apart from each other as they are from the word
“blue”, even though the words “fast” and “quick” are semantically more
similar to each other. It is even more surprising that such naı̈ve models can
perform relatively well.

2.2 Neural Networks for Language Models

The theory underlying artificial neural networks has been existing for a long
time [1, 13, 25]. The two fundamental concepts for these networks are gra-
dient descent and backpropagation. Feedforward neural network language
models (NNLM) build on this technique and have deeply studied and tuned
in recent publications [3, 4, 20, 27]. These NNLMs have been shown to out-
perform the n-gram models significantly. One major drawback of these tech-
niques is that they are computationally expensive, and thus slow to train
and test.

In 2013, Mikolov et al. published [17], where they describe the recurrent
neural network language model (RNNLM). This network helps to overcome
some shortcomings of the NNLM. Specifically, it has a short-term mem-
ory, and thus can model more complex behavior than shallow neural net-
works [11] [2]. A disadvantage of RNNs is their greater need for resources
and thus prohibitively large computational cost. However, Mikolov et al.
managed, with the help of approximate algorithms and an optimized im-
plementation, to massively reduce computational complexity. The result of
this are two new models, summarized under the name Word2vec: continu-
ous bag-of-words models (CBOW) and continuous skip-gram models (skip-
gram). More information about these models can be found in Chapter 3.

In their paper [12] in 2014, Le and Mikolov extended the CBOW and Skip-
gram model by a paragraph vector. This new vector enables arbitrary blocks
of text (for example articles, paragraphs, sentences) to learn and share a com-
mon vector, which acts as a memory to learn the word vectors. The CBOW
model that is extended by the paragraph vector (PV) is called PV-DBOW,
while the extended Skip-gram model is called Distributed Memory Model
of Paragraph Vectors (PV-DM). The name “distributed memory” originates
from the fact that the paragraph vector acts as a memory for the current
context. These two models are also known as Doc2vec.

2.3 Alternative Word Embedding Models

In [7], the authors analyze the skip-gram model with negative sampling.
They suggest that the embedding method by Mikolov et al. is implicitly

7



2. Related Work

factorizing a word-content matrix, and they attempt to implement this fac-
torization directly. They conclude that their factorization method is better
suited to optimize the objective by Mikolov et al. However, their model does
not perform well on the word anology task.

In [22], the authors present the Global Vectors model (GloVe). Their model
is a combination of matrix factorization methods and local context window
methods. Though their model works differently compared to the model by
Mikolov et al., the two models perform similarly well. In [26], the authors
link the model by Mikolov et al. with GloVe by explaining out the similarities
and the differences.

2.4 Exploiting Hierarchies

There have been many approaches to using hierarchies for NLP, specifically
with NNLMs. However, to the best knowledge of the author, hierarchies
have not yet been combined with the paragraph vectors of [12].

In [14], the authors build a hierarchy of single words by modeling the mor-
phemic compositionality, which can be seen as a specialization of HPV.

In [21], the authors use clustered words from WordNet [5] by hierarchi-
cally decomposing the conditional probabilities as an alternative for impor-
tance sampling to speed up the training of the word embeddings. Further-
more, [20] extended the ideas in [21].

In [6], the authors use word embeddings, obtained by skip-gram, to learn
semantic hierarchies. They claim that hierarchical information is encoded
in word embeddings. This encourages the use of existing hierarchies to
improve the quality of word embeddings.

8



Chapter 3

Preliminaries

In this Chapter, the models, algorithms and objectives of the two basic word
embedding algorithms Word2vec and Doc2vec are described.

3.1 Word2vec

The term Word2vec summarizes two different models: the distributed bag
of words model (CBOW) and the continuous skip-gram model (skip-gram).
Both use neural networks, and they work very similarly. However, they have
very different objectives and thus are able to capture different syntactic and
semantic patterns. Furthermore, they both have different parameters. Let us
have a closer look.

3.1.1 Objectives

In the paper, two different objectives for the CBOW model are proposed.
Mathematically, this can be expressed in two formulas, where wj is the j-th
word, and c is the window size. The first objective is to predict the next
word-based on c previously encountered words.

maximize
W

p(wt|wt−c, wt−(c−1), . . . , wt−2, wt−1)

The second objective is to predict the word in the middle of c previously
encountered words and c following words.

maximize
W

p(wt|wt−c, wt−(c−1), . . . , wt−1, wt+1, . . . , wt+(c−1), wt+c)

In this thesis, CBOW will always use the second objective, which is predict-
ing the middle word from surrounding words. This leads to the objective of
maximizing the average log probability.

maximize
W

1
T

T

∑
t=1

∑
−c≤j≤c,j¬0

log p(wt|wt+j)

9



3. Preliminaries

Figure 3.1: The window size of the sliding window defines which words are in the context of the
middle word.

While the CBOW model tries to predict the middle word given a context, the
skip-gram model tries to do the opposite, which is to predict the surround-
ing words given a single word.

maximize
W

p(wt−c, wt−(c−1), . . . , wt−1, wt+1, . . . , wt+(c−1), wt+c|wt)

Again, this leads to the objective of maximizing the average log probability.

maximize
W

1
T

T

∑
t=1

∑
−c≤j≤c,j¬0

log p(wt+j|wt)

3.1.2 Neural Network Language Model

To achieve the objectives described above, one recurrent neural network per
objective is used. In the next few paragraphs, the neural network for the
CBOW model is described. The neural network for the skip-gram model
works analogous. The differences to the CBOW model are described at the
end of this subsection.

The neural network consists of four layers: one input layer I, one projection
layer P, one hidden layer H, and one output layer V. To model the weights
of the connections between each connected layer, we use matrices. Since
each two connected layers are fully connected to each other, the dimension-
ality of these matrices is the dimensionality of the upper layer times the
dimensionality of the lower layer.

In the input layer, all words in the context of a word are listed, while the
context is defined by the window size c. For example, if c = 3, then the
context for the word “playing” of the sentence “The cat is playing with a
mouse in the garden” is [the, cat, is, with, a, mouse], and the context for the

10



3.1. Word2vec

word “with” is [cat, is, playing, a, mouse, in], see Figure 3.1. Therefore, the
dimensionality of I is two times the window size c.

dim(I) = 2c

Next, every word in the context is mapped to a d dimensional vector, where
d is the word vector dimensionality. The weights of this projection define
the resulting word vector. The dimensionality of the projection layer is the
dimensionality of the input layer times the word vector dimensionality.

dim(P) = dim(I)× d = 2c× d

An equivalent model of the input and projection layer is to use the whole
vocabulary U as input layer, while the words in the context are encoded
with a 1 and the ones not in the context with a 0. Then the projection layer
consists of all word vectors, and thus does not have to be changed when
the context words change. Since the words that are not in the context are
encoded as 0, the corresponding word vectors are multiplied by 0 and thus
do not contribute to the prediction.

The hidden layer is fully connected to the projection layer, and has arbitrary
dimensionality, usually between 500 and 2000.

dim(H) = x ∈ [500, 2000]

Finally, the output layer has the same dimensionality as U, where the j-th
value vj is a score to calculate the conditional probability that the j-th word
wj occurs given the context wx−c, . . . , wx+c. In the next subsection, we
describe how to calculate these conditional probabilities.

dim(V) = dim(U)

Now let us consider the skip-gram model. The input layer consists of only
one word, and the projection and the hidden layer have the same architec-
ture and meaning as in the CBOW model. However, instead of having only
one multinomial distribution, we have 2c multinomial distributions, one for
each word in the context. Thus, the dimensionality of the neural network
for CBOW is different.

dim(I) = 1
dim(P) = d
dim(H) = x ∈ [500, 2000]
dim(V) = 2c× dim(U)

11



3. Preliminaries

3.1.3 Algorithm

As in the common neural network, the weights are learned via gradient
descent and backpropagation. Let us again consider the algorithm for the
CBOW. First, each word vector (one per word) is initialized randomly. Next,
the documents are processed using a sliding window of size c (usually be-
tween 5 and 20). Then, the word vectors of the context are set as the pro-
jection layer, and the network tries to predict the middle word. The error
gradient is then calculated and backpropagated by using soft-max. vj is the
value in the output layer per word in the vocabulary U.

p(wt|wt−c, . . . , wt+c) =
evj

∑dim(U)
j′=1 evj′

This conditional probability is then compared to the actual output (the mid-
dle word). Based on the result (overestimation or underestimation), the error
is backpropagated through the neural network, and the weights for the word
vectors in this context are updated accordingly.

For example, consider again the sentence “The cat is playing with a mouse
in the garden” with a window size c = 3 and the word to predict being
“mouse”. If the network predicts that the word “cat” is probable to appear
(however, “cat” does not appear in the context of “mouse”), then this error is
backpropagated and the word vectors for [playing, with, a, in, the, garden]
are updated. In contrast, if the word “mouse” is predicted to be appearing in
this context, the error is small and thus the backpropagation will not change
the vectors [playing, with, a, in, the, garden] significantly.

The skip-gram algorithm works analogously to the CBOW model. It tries to
predict the context of wj, and backpropagates the mean error to change the
word vector of wj accordingly.

The two architectures are sketched in Figure 3.2. For a more extensive de-
scription on how exactly the Word2vec parameters are learned, see [17, 16,
19, 24, 7].

3.1.4 Computational Optimizations

While the two models CBOW and skip-gram discussed above are useful for
understanding the basic models, these algorithms are computationally very
inefficient. This is especially true when the vocabulary is large. Since there
are nearly infinite amounts of written text available (for example Wikipedia,
books, news, blogs) to train word embeddings on, it is imperative to mini-
mize computational complexity in order to maximize accuracy by process-
ing more text in less time. In this subsection, we will briefly describe the

12



3.2. Doc2vec

(a) CBOW (b) Skip-gram

Figure 3.2: The architecture of the neural network for CBOW and skip-gram. On the top is the
input layer, in the middle the hidden layer, and in the bottom the output layer.

theoretical optimizations. As we will later see in Chapter 5, additional opti-
mizations regarding the implementation are also key to good results.

Since these optimizations are not necessary for understanding this thesis,
we will only very briefly describe each concept. Interested readers can refer
to [16, 24, 7] to understand these optimizations in greater depth.

Hierarchical soft-max [21, 20] calculates an approximated soft-max more effi-
ciently.

Negative sampling [16, 7] is a replacement for the soft-max and samples for
every word wj n words (usually between 5 and 20) from the vocabulary
which are assumed not to appear with wj.

Finally, sub-sampling of frequent words [16] favors rare words compared to
frequent words, as rare words are more probable to contribute important
information compared to frequent words like stop words. This is similar to
the IDF part of TF-IDF.

3.2 Doc2vec

As described in the previous section, Word2vec works with a sliding win-
dow of a fixed size. Again, let us consider the sentence “The cat is playing
with a mouse in the garden.”. If c = 3, the words “cat” and “garden” will
never occur together, and thus their respective word vectors will not be close
to each other.

Doc2vec changes exactly that by adding an additional paragraph vector to
each “paragraph”. But let us first describe what is meant by a paragraph:

13



3. Preliminaries

(a) PV-DM (b) PV-DBOW

Figure 3.3: The architecture of the neural network for PV-DM and PV-DBOW. On top is the
input layer, in the middle the hidden layer, and in the bottom the output layer.

a “paragraph” is a text block with arbitrary length, for example a chapter, a
section, a text paragraph or a sentence. In this section, the word “paragraph”
should describe such a text block of arbitrary length, and a paragraph vector
(PV) is a vector for such a paragraph, like a word vector is to a word.

Let us continue with the paragraph vector characterization. This paragraph
vector serves as a common context, which is shared within the paragraph.
In the previous example “The cat is playing with a mouse in the garden.”,
the paragraph vector allows to share a context between “cat” and “garden”.
This vector can also be thought of as a word which appears in the context of
a larger entity than the sliding window size allows.

One key advantage of Doc2vec is that it can easily be built into Word2vec.
Essentially, each paragraph vector is a word vector which appears in every
context of the current paragraph. It can be trained the same way as the
word vectors through gradient descent and backpropagation, using the same
neural network.

The PV enhanced CBOW model is called paragraph vector distributed mem-
ory (PV-DM) to stress the role of the PV to act as distributed memory. For
the skip-gram model, the PV enhanced model is called PV-DBOW and is
illustrated in Figure 3.3.

14



Chapter 4

Hierarchical Paragraph Vectors

4.1 Hierarchies and NLP

Today, there is a vast amount of text available to be used in NLP. Many
texts (for example articles, websites, books, comments, reviews and mes-
sages), are naturally divided into sub-texts (for example chapters, sections,
paragraphs and sentences). Furthermore, they are usually also categorized
or tagged (for example by authors, publishers, domain names, references,
topics and genres).

Consider for example a book about how to learn programming Ruby. This
book is divided into multiple chapters, which, in turn, are divided into mul-
tiple sections and sentences. Furthermore, this book is found on Amazon in
the category “Programming”, which, in turn, can be found in “Computers
& Technology”, as can be observed in Figure 4.1.

Now what do these hierarchies represent? The structure represents concepts
and abstractions, which represent potentially useful information. For exam-
ple, if a person reads multiple articles about the French revolution, they can
better predict which words will appear the next article about the French rev-
olution. Thus, if this information can be used to learn the word embeddings,
it lends itself for exploitation in the training of word embeddings.

4.2 Obtaining Hierarchies

From the perspective of a document, there are potentially two directions in
which hierarchies are found. One is “upwards”, and the other is “down-
wards”. Let us define what we mean by that, and how these hierarchies can
be obtained.

“Upwards” refers to hierarchies across multiple documents. As stated above,
natural hierarchies are for example author names, publishers, domain names,
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Figure 4.1: This book is categorized into “Programming” (on the very top of the image), “Ruby”,
“Object-Oriented Software Design” and “Software Design & Engineering”, which, in turn, can
be found in their respective parent category. There are also additional attributes, for example
the language of the book and the authors.1

references, topics or genres. Where available, these can be obtained directly
from the data. If this data is not available, it could be generated artificially
by standard machine learning methods, for example by Latent Dirichlet Al-
location (LDA).

“Downwards” describes hierarchies to be found within a single document.
These could for example be chapters, paragraphs or sentences. These hier-
archies are also often available directly through the data, or can be obtained
by parsing the text or markup. For example, when an HTML document is
given, the HTML tags (for example h1, h2, h3, p, br) can be used to split the
text into multiple blocks, and the resulting text blocks can be parsed and
split up by sentence.

4.3 Algorithms

4.3.1 HPV-DM

HPV-DM builds upon PV-DM. Instead of only allowing one paragraph vec-
tor per context, it allows multiple hierarchical paragraph vectors for the
same context, as can be seen in Figure 4.2. Additionally, some hierarchical
paragraph vectors appear multiple times in different contexts. Similar to the
paragraph vectors, the hierarchical paragraph vectors can be thought of as
additional memory for the current context, or as additional words which are
always present in some context.

1Source: http://www.amazon.com/gp/product/1937785491
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4.3. Algorithms

Figure 4.2: The architecture of the neural network of HPV-DM. Multiple HPVs contribute to
the prediction of the word in the context.

The algorithm works as follows. We split the text into multiple text blocks,
according to the hierarchies we want to use. Every item in the hierarchy
receives a unique HPV identifier across the whole dataset. Next, we add each
resulting text block with the HPV annotations as paragraph vectors for train-
ing. Then, we train each sentence the same way we would train it with
PV-DM, but now each text block has multiple HPVs (paragraph vectors),
and each HPV is shared among text blocks which have the same HPV an-
notation. Therefore, each HPV annotation is expected to contribute to the
prediction task. As a bonus, the algorithm generates an embedding for each
HPV annotation.

For example, when we want to use category (upwards), document (the ele-
ment for which we would like to have an embedding) and sentence (down-
wards), we generate, for example, “CAT-10” for category #10, “DOC-2” for
document #2, and “DOC-2-SEN-3” for sentence #3 in document #2. Next,
when sentence #3 in document #2 belongs to the categories #10 and #5, we
generate “CAT-10”, “CAT-5”, “DOC-2” and “DOC-2-SEN-3” for this sen-
tence. When we now train the sentences in document #2, the vector for
annotation “DOC-2” is shared among the sentences.

4.3.2 HPV-DBOW

HPV-DBOW works analogously to the HPV-DM, but it enhances the PV-
DBOW algorithm instead of the PV-DM algorithm. For the implementation,
the only difference is that we use PV-DBOW instead of PV-DM for train-
ing. The neural network architecture is described in Figure 4.3. We notice
that HPVs in higher hierarchies must support more abstract and general
concepts.
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Figure 4.3: The architecture of the neural network of HPV-DBOW. Every HPV predicts the
context around it. HPVs in higher hierarchies represent more abstract concepts. For example,
the lower HPV on the left side captures the behavior of cats, and the lower HPV on the right
side captures the behavior of mice. The middle HPV must capture both concepts, which is the
behavior of mammals.

4.3.3 Parameters

Because HPV-DM and HPV-DBOW directly extend HP-DM and HP-DBOW
respectively, they directly inherit the parameters from these models. How-
ever, they introduce a new parameter that dictates which hierarchies should
be exploited for learning. While this parameter is limited by the data avail-
able, it is important to consider only using the ones which improve the end
result, as will be illustrated later.

4.4 Resources

When using HPV, we expect to extract additional information at the cost of
greater overhead. To estimate how much overhead is introduced, we will
discuss how the resources required change when running HPV compared
to running PV. Therefore, we must first understand how PV influences the
resources needed.

Let us start with some definitions. D is the (hierarchical) paragraph vector
dimensionality, E is the word vector dimensionality, G is the number of
unique different hierarchy elements used, K is the number of paragraph
vectors per document, N stands for the number of documents used and U
is the vocabulary.

For the Word2vec model, we need to store one word vector per word, which
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is E× dim(U). The paragraph vector models need to additionally store the
paragraph vectors, which is D × K × N additional memory. Finally, HPV
needs to store D×G additional hierarchical paragraph vectors. Let us write
down the formula for the approximate additional memory consumption.

D× G
E× dim(U) + D× K× N

Now, let us briefly discuss what these formulas mean by three typical ex-
amples. Let us assume N = 100′000 documents, Z = 1′000 average words
per document, D = E = 100 dimensions, dim(U) = 25′000 vocabulary size,
W = 20 window size, K = 1 paragraph vectors per document. For the first
example, let us assume that we go up in the hierarchy, having 10 topics and
100 subtopics in total. This means G = 110. In this case, only about 0.009%
additional memory is used. For the second example, assuming that we go
downwards, we have 5 sentences per paragraph. This results in G = 50′000,
which means that 143% additional memory is required. For the third exam-
ple, let us assume that in addition to the sentences of the second example,
there are 4 sub-sentences (in total 200’000) per sentence. Thus, G = 250′000,
which results in 714% additionally required memory.

Because of the non-trivial optimizations of Word2vec, the runtime implica-
tions are more difficult to estimate. Thus, they are not estimated theoreti-
cally, but evaluated empirically in Chapter 5 instead.

4.5 Research Questions

As we have seen, HPV introduces additional model complexity. Depending
on the number of implemented hierarchy layers, the model gains additional
freedom. Can the neural network use this additional complexity to pre-
dict better values in the output layer? How many hierarchy layers improve
the quality of the word embeddings, and which layers should be chosen?
How much overhead is introduced in term of computational complexity
and memory usage? Do some layers improve the learning speed of the neu-
ral network through the context sharing? We will address these questions
in the Chapter 5.
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Chapter 5

Experiments

The goal of the experiments is to evaluate the word vector quality. First,
we briefly describe the data, preprocessing and evaluation metrics. Next,
we describe the testing environments (hardware and software). Moreover,
the baseline methods are outlined. Furthermore, the implemented HPV hi-
erarchies are described, and the possible hyperparameters will be outlined.
Finally, the results will be shown.

5.1 Experimental Setup and Data

5.1.1 IMDB Dataset

The Internet Movie Database (IMDB) dataset is a collection of movie reviews
which have been written and rated by people. Each movie review consists
of a text, which, in turn, consists of some sentences and has one or multiple
paragraphs.

Additionally, half of the movie ratings have a rating r ∈ [1, 10] ⊆N, where a
higher rating indicates that the reviewer likes the movie better. Furthermore,
the movie ratings are divided into negative ratings (numeric rating of 1, 2, 3
or 4) and positive ratings (numeric rating of 7, 8, 9 or 10). Neutral ratings with
a numeric rating of 5 or 6 have been excluded from the dataset. The task is
to perform sentiment analysis on the movie reviews: for a given review text,
predict if the sentiment is positive or negative.

Besides the rated reviews, the other half of the reviews do not contain a
rating and thus can only be used to learn the word embeddings, as we
will see later. The distribution of the 100’000 movie rating can be seen in
Figure 5.1. More detailed information about the dataset can be found in [15].
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Figure 5.1: The movie review ratings consist of an equal amount of positive and negative ratings.
For half of the dataset, the rating is unknown.

5.1.2 Preprocessing

Preprocessing of text can lead to significant differences in the outcome of the
results. Additionally, it can also help to reduce computational complexity,
for example by removing invalid characters, which would be used as words,
or by converting some similar characters to one general character. However,
preprocessing is not the focus of this master thesis, and is therefore only
applied limitedly.

First, different single quote symbols (for example ’, ”, ‘) are consolidated,
and so are different double quote symbols. Next, frequently used HTML
tags are converted to text symbols. Furthermore, common smilies are re-
placed by text symbols. Finally, punctuation, brackets, and commonly used
special characters (for example dollar, hashtag) are replaced by text symbols.
Other invalid symbols and uncommonly used characters are removed from
the text. Finally, all text is converted to lowercase.

5.1.3 Software

The original implementation by Mikolov only works for Word2vec, and
would have to be extended to work with Doc2vec. Furthermore, this imple-
mentation is written in pure C, and is therefore difficult to modify, extend,
and interact with.

There exist many implementations for Doc2vec. One of the fastest, if not
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the fastest implementation, is Gensim1. Furthermore, the implementation
has a well-defined and simple interface to Python2, and is well documented.
For these reasons, Gensim was chosen as a library for the paragraph vector
calculation. The exact versions are 3.4.3 for Python, and 0.12.1 for Gensim.
The source code produced in the course of this thesis project can be found
here3.

5.1.4 Distributed Implementation

To run a large amount of experiments and to record the results, the experi-
ments needed to be run on a cluster. Thus, an implementation, which can
distribute jobs and record results, was required. One job that consists of
the parameters described below is executed on exactly one node, and is run
through the whole dataset. Thus, the computation is not distributed in the
traditional map-reduce way.

Running one batch of experiments works as follows: on one central server,
the experiments are scheduled. Then, a client requests the parameters for
one experiment to run, runs the experiment with these parameters, and
submits the result to the central server. This process is executed as long as
there are scheduled experiments. An overview of the architecture can be
found in Figure 5.2.

The central server is implemented in Ruby on Rails4. In addition to the
scheduling and result collection, the server also implements an interface
to analyze the results and to generate charts. The client is implemented
in Python, see 5.1.3. Multiple clients request, run and submit experiments
concurrently.

5.1.5 Hardware

The software was developed on an “Apple MacBook Pro, Core i7 2.8 (I7-
4980HQ), 15-Inch, Mid-2014, Dual Graphics”, model id “MacBookPro11,3”5.
Also, the performance tests in 5.6.2 have been conducted on this laptop. The
operating system of the laptop was OS X Yosemite 10.10.5.

The restricted and unrestricted best configuration experiments in 5.6.1 have
been executed on 8 nodes of the DCO cluster at ETH. Each machine has 16
physical cores and 128 GB of physical RAM. The operating system of the
servers was Fedora 216.

1https://radimrehurek.com/gensim/
2https://www.python.org/
3https://github.com/lukaselmer/hierarchical-paragraph-vectors
4https://github.com/lukaselmer/simple-job-runner
5http://www.everymac.com/systems/apple/macbook_pro/specs/

macbook-pro-core-i7-2.8-15-dual-graphics-mid-2014-retina-display-specs.html
6https://getfedora.org/
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Figure 5.2: Architectural overview of the distributed implementation. The tiers communicate
via HTTPS and JSON.

5.2 Evaluation Metrics

Recall that the dataset is balanced between positive and negative ratings.
Therefore, a random estimator would guess the sentiment of 50% of the
ratings correctly. The balanced dataset allows us to use accuracy as the first
evaluation metric. We use the following definition to calculate the mean
accuracy from the predicted reviews R.

accuracy =
1

dim(R) ∑
r∈R

{
1 when rpredicted sentiment = ractual sentiment

0 otherwise

Note that this is a binary classification task.

The second and third evaluation metrics are training speed (computational
complexity) and memory footprint which are measured empirically. The
training speed is calculated by measuring the time from starting one training
epoch until the training epoch has ended. Here, it is important to note that
during the test, only one active program is being run on the machine, and no
other computationally intensive programs are being run in the background.
The memory footprint is measured by the size of a file to which the model
is serialized.
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Table 5.1: Overview of the implemented hierarchies.

Abbreviation Hierarchies

NO-HPV None
HPV-TOP Topics
HPV-TOP-PAR Topics, Paragraphs
HPV-TOP-PAR-SENT Topics, Paragraphs, Sentences
HPV-PAR Paragraphs
HPV-PAR-SENT Paragraphs, Sentences
HPV-PAR-SENT-SUB Paragraphs, Sentences, Sub-sentences

HPV-PAR-SENT-SUBNV
Paragraphs, Sentences, Sub-sentences (but
without training the sub-sentence vectors)

5.3 Baseline Methods

There are two methods which draw a baseline to compare HPV to. The first
baseline is to generate the word embeddings by using the commonly used
term frequency - inverse document frequency (TF–IDF) method [23]. For
the TF–IDF vectors, the features are ordered by term frequency across the
corpus, and only the top n features are used to get a low-dimensional vector.
More details about the implementation can be found in A.2.

The second baseline method is the standard implementation of Doc2vec pro-
vided by Gensim. As we will see, the same hyperparameters are used for
the baseline and the HPV enhanced implementation.

Both baseline methods use the same classifier as the HPV implementations,
which is a support vector classifier (SVC), see Table 5.3.

5.4 Implemented HPV Hierarchies

As we have seen before, there are two directions from which hierarchies can
be obtained (upwards and downwards). Let us first investigate the upwards
direction and thereafter continue with the downwards direction.

The IMDB movie rating dataset has natural hierarchies (for example the
movie category, actors, year), but unfortunately, these hierarchies are not
annotated in the dataset. Therefore, we use LDA to extract a synthetic hier-
archy. We extract 20 topics from the data by running LDA for 20 iterations.
Then we assign the two most corresponding topics, which have a probability
greater 25% to occur per movie review. This topic is then stored as a special
word. Runs using these topics are labeled as “TOP”.

Now let us turn our attention to the “downwards” hierarchies. First, we
use paragraphs as a hierarchy, which we denote as “PAR”. Next, we parse
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Table 5.2: The number of extracted elements from the data after preprocessing and splitting
considering the HPV Hierarchies.

Variable Value

Topics 20
Documents 100’000
Paragraph Vectors per Document 1
Vocabulary Size 185’957
Total Words 27’527’432
Average Words per Document 275
Paragraphs 303’448
Sentences 1’613’409
Sub-sentences 3’061’360

the sentences, denoted as “SENT”. Finally, “SUB” stands for sub-sentences,
and “SUBNV” stands for sub-sentence splitting, but not learning a vector
per sub-sentence. Finally, the hierarchies are combined. An overview can
be found in Table 5.1. When we preprocess and split up the dataset, we
extract the following number of elements displayed in Table 5.2. The exact
implementation of the splitting is described in A.3.

5.5 Hyperparameters

Hyperparameter search is known to be a key challenge in applied machine
learning. There are known procedures, such as grid search, but in prac-
tice, this problem is more difficult than it is in theory. The climax of this
challenge is the explosive count of combinations of hyperparameters, where
each combination could potentially outperform a very distant other combi-
nation, making it a non-convex problem. What makes it even more difficult
is that it takes much time for one combination to evaluate, which we will
see later.

In Table 5.3, the values of the most important hyperparameters are stated.
Furthermore, the ranges, in which these values have been searched in, are
described.

5.5.1 Epochs

The number of iterations the dataset is processed. For each iteration, the
order of the texts is shuffled.

5.5.2 HPV Hierarchies

The hierarchies which should be exploited, see 5.4.
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5.5.3 Word Vector Dimensionality

The dimensionality of the word vectors and paragraph vectors for HPV-DM
and HPV-DBOW each.

5.5.4 Window Size

The window size in each direction (left and right), see Figure 3.1.

5.5.5 Negative Sampling

The number of negative samples per positive sample.

5.5.6 Frequent Word Downsampling HPV-DM

Threshold to downsample frequent words for HPV-DM.

5.5.7 Frequent Word Downsampling HPV-DBOW

Threshold to downsample frequent words for HPV-DBOW.

5.5.8 Learning Rate Type

The function that shows how to decrease the learning rate. Exponential
(exp) or linear (lin). More details can be found in the Appendix A.1.

5.5.9 Classifier

The classifier used to learn (from the word embeddings and given ratings)
to predict the rating (for new word embeddings / the test set). Addition-
ally, different classifiers have different hyperparameters. Different classifiers
have been tried.

RBF Radial basis function approximation using the Nystroem method7.

LOG1 Logistic regression using scikit-learn8.

LOG2 Logistic regression using statsmodels9.

SVC Support vector classifier using scikit-learn10.

7http://scikit-learn.org/stable/auto_examples/plot_kernel_approximation.

html
8http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegressionCV.html
9http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.discrete.

discrete_model.Logit.html
10http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.

html
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Table 5.3: The value ranges and the values chosen from the most important hyperparameters.
The step sizes for the value ranges were exponential at first, and after a reasonable hyperparam-
eter combination was found, they were linear for fine-tuning.

Name Range / Options Best / Chosen

Epochs [5, 50] 20

HPV Hierarchies
TOP, PAR, SENT,
SUB, SUBNV

TOP

Word Vector Dimensionality [16, 2000] 200, 48
Window Size [5, 25] 10
Negative Sampling [5, 30] 25
Frequent Word Downsampling
HPV-DM

[10−10, 0.1] 10−5

Frequent Word Downsampling
HPV-DBOW

[10−10, 0.1] 10−3

Learning Rate Type exp, lin exp
Classifier RBF, LOG1/2, SVC SVC

NN A neural network classifier using scikit-neuralnetwork11.

5.6 Results

For this master thesis, more than 23’000 runs have been recorded system-
atically. Before that, the algorithm and framework have been developed,
and the hyperparameters which should vary have been defined. Then, the
first 10’000 runs have been used to find the best hyperparameters for NO-
HPV and HPV-PAR-SENT-SUB using grid search. For the next 2’000 runs,
HPV-PAR-SENT-SUBNV and HPV-PAR-SENT have been compared against
NO-HPV and HPV-PAR-SENT-SUB. During the next 3’000 runs, the TF–IDF
baseline has been evaluated, also in combination with NO-HPV, HPV-PAR-
SENT-SUB, HPV-SUBNV and HPV-SENT-SUB. Furthermore, HPV-TOP and
HPV-TOP-PAR-SEN were implemented, and 2’000 runs were conducted to
compare them against NO-HPV. Moreover, HPV-TOP-PAR and HPV-PAR
were implemented and compared against NO-HPV for the next 2’000 runs.
Finally, the best performing configurations have been chosen to perform sig-
nificance tests by executing multiple runs using the same configuration for
the next 3’000 runs, before running the TF–IDF baseline for another 1’000
runs.

In this section, we will first investigate the accuracy. After this, we will turn
our attention to the runtime and memory usage.

11https://github.com/aigamedev/scikit-neuralnetwork
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Figure 5.3: The accuracy increases when the TF–IDF dimensionality is increased.

5.6.1 Accuracy

In this subsection, we will compare the accuracy of the HPV implementa-
tions to each other and to the baselines Doc2vec and TF–IDF. First, TF–IDF
is compared to Doc2vec. Next, the different HPV implementations are com-
pared to each other. Finally, the best configurations are compared to the
Doc2vec baseline NO-HPV.

Term Frequency - Inverse Document Frequency (TF–IDF)

As we can see in Figure 5.3, the accuracy increases when we increase the
TF–IDF dimensionality. We also notice a linear increase between the 100 and
600 dimensions. When increasing the dimensionality further, the accuracy
flattens out. The best accuracy of 87.9% for TF–IDF was measured with a
dimensionality of 2700. When increasing the dimensionality even further up
to 4000 dimensions, the accuracy stayed between 87.5% and 87.9%.

When we compare the result to the values after 10 epochs of Doc2vec with
48 dimensions, see Figure 5.6, we notice that the accuracy is approximately
88.5% in the Doc2vec case (using a total of 96 dimensions), compared to
only 73.5% accuracy in the TF–IDF case (using 96 dimensions). This means
that Doc2vec outperforms TF–IDF by a substantial margin when using low-
dimensional vectors.

Let us now compare TF–IDF to Doc2vec with 200 dimensions, see Figure 5.5.
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The accuracy for Doc2vec is approximately 90% after multiple epochs. When
we compare this to the TF–IDF score using 400 dimensions, we find an accu-
racy of 82.7%. Again, Doc2vec beats the TF–IDF baseline by a considerable
margin.

Different HPV Implementations

To compare the different HPV implementations against each other, the hy-
perparameters described in Table 5.3 have been used. Because some HPV
implementations clearly outperformed other implementations in multiple
different configurations, instead of using multiple runs and taking the av-
erage accuracy, only one run per implementation has been conducted with
this configuration. Furthermore, some HPV implementations have a slow
execution speed, as we will see in 5.6.2. Therefore, the additional compu-
tational cost to run multiple experiments for HPV implementations, which
performed poorly, was not justified.

Let us now compare the different HPV implementations in Figure 5.4. First,
we notice that after one epoch, all HPV implementations using the topic
(TOP) as a hierarchy significantly outperform NO-HPV by about 2%. Also,
HPV-TOP outperforms NO-HPV here. However, this gap is not significant
for all epochs, which we will see later on. Next, we notice that the more we
move down in the hierarchies, the worse the accuracy develops. For example,
when using paragraphs, sentences and sub-sentences, the model performs
significantly worse than NO-HPV. Finally, when combining the topic with
the lower hierarchies, the topic seems to boost the accuracy throughout all
epochs, and the additional hierarchies prevent a strong increase in accuracy
compared to NO-HPV.

The best HPV implementations from this comparison (NO-HPV, HPV-TOP,
HPV-PAR) are compared in more detail in the next two subsections. HPV-
TOP-PAR is left out for this comparison, because it is a combination of HPV-
TOP and HPV-PAR, which both are compared against each other in the next
subsections.

Unrestricted Best Configuration

To compare the accuracy of the best HPV implementations to NO-HPV, the
best two configurations have been chosen. The first configuration is unre-
stricted and thus can use an arbitrary word vector dimensionality. It uses
a word vector dimensionality of 200 and the hyperparameters described in
Table 5.3. The experiment has been repeated for 30 times with random ini-
tializations. Because these results represent the most important results of the
empirical evaluation, significance tests have been conducted. We are using a
wilcoxon signed rank test, and our hypothesis is that HPV-TOP outperforms
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Figure 5.4: The accuracy increases when increasing the epochs for every HPV implementation,
using a word vector dimensionality of 48. TOP boosts the accuracy significantly in the beginning.
Low hierarchies do not increase the accuracy.

NO-HPV, which makes it a directional test. We use a level of significance of
0.025, which corresponds to a minimum z-score of 1.96012.

As we can see in Figure 5.5 and Table 5.4, HPV-TOP clearly outperforms NO-
HPV when only one epoch is run. When increasing the epochs, the accuracy
of the prediction increases significantly for both of these implementations.
HPV-TOP outperforms NO-HPV slightly by only about 0.1%. We also notice
that we reach a plateau after about 9 epochs, after which the accuracy only
fluctuates marginally.

When we compare HPV-PAR to NO-HPV, we notice that after only one
epoch of training, they perform very similarly. However, as the epochs
progress, HPV-PAR loses steam and cannot increase the accuracy as much as
NO-HPV can. Thus, NO-HPV and HPV-TOP clearly outperform HPV-PAR.

12http://vassarstats.net/textbook/ch12a.html
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Figure 5.5: The mean accuracy of 30 experiments when increasing the epochs for the best
configuration, using a word vector dimensionality of 200.

Restricted Best Configuration

The second best configuration is restricted to use a low word vector dimen-
sionality of 48 dimensions for HPV-DM and HPV-DBOW each. For the signif-
icance tests, we apply the same strategy as in the best unrestricted configu-
ration above, using 30 experiments with random initializations, a 0.025 level
of significance, and the hypothesis that HPV-TOP outperforms NO-HPV.

In Figure 5.6 and Table 5.5, we again see an initial boost when using HPV-
TOP compared to NO-HPV. However, after 8 epochs, the accuracy of HPV-
TOP and NO-HPV converge. Also, in contrast to the 200 dimensional exper-
iment, the accuracy increases slightly with further training.

For HPV-PAR, we notice similar behavior as before. After one epoch, the
accuracy of HPV-PAR is the same as NO-HPV, and after that, HPV-PAR
stays below NO-HPV and HPV-TOP.

5.6.2 Execution Speed and Memory Usage

In this subsection, we compare the execution speed and the memory usage
of the different HPV implementations. For the memory usage, we try to
validate our theoretical calculation from 4.4.
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Table 5.4: The data displayed in Figure 5.5, which is the unrestricted best configuration, using
word vector dimensionality of 200. The values, where HPV-TOP outperforms NO-HPV with a
level of significance of 0.025, are marked with a *.

Accuracy [%]
Epoch HPV-NO HPV-TOP HPV-PAR

1 83.05 *84.8 83.06
2 87.66 *87.89 87.31
3 88.76 *88.86 88.43
4 89.26 *89.33 88.93
5 89.53 89.58 89.18
6 89.68 *89.74 89.33
7 89.77 *89.85 89.38
8 89.84 *89.9 89.44
9 89.86 *89.94 89.45
10 89.87 *89.96 89.44
11 89.9 *89.96 89.45
12 89.89 *89.96 89.43
13 89.9 89.96 89.42
14 89.88 *89.96 89.4
15 89.87 *89.96 89.39
16 89.87 *89.95 89.39
17 89.87 *89.95 89.38
18 89.86 *89.95 89.37
19 89.86 89.94 89.36
20 89.85 *89.94 89.35

Execution Speed

To evaluate the execution speed, we ran 20 experiments with a word vector
dimensionality of 48. The HPV implementation and the model influences
the runtime substantially, which can be seen in Table 5.6. Furthermore, as
we can see in Table 5.7, in total, all HPV implementations are slower than the
Doc2vec baseline. However, we notice that some [HPV, model] combinations,
for example [NO-HPV, HPV-DM] or [HPV-TOP, HPV-DM], have comparable
execution speed.

Overall, the advantage HPV gains by training “faster” compared to PV
when using a fixed amount of epochs, it is overshadowed by the slower
training speed of HPV per epoch. This effect is displayed in Figure 5.7,
where the epochs are scaled according to the execution overhead.
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5. Experiments

Figure 5.6: The mean accuracy of 30 experiments when increasing the epochs for the best
configuration, using a word vector dimensionality of 48.

Memory Usage

Recall the formula for the additionally needed memory from 4.4.

D× G
E× dim(U) + D× K× N

We ran the memory usage test with a window size W = 10 and D = E = 48
dimensions. From Table 5.2 we know N = 100′000 documents, Z = 275
average words per document, dim(U) = 185′957 vocabulary size, and K = 1
paragraph vectors per document. G depends on the HPV implementation.
From the results displayed in Table 5.8 we notice that the formula for the
memory usage overhead only fits approximately, and fails to predict the
difference between HPV-PAR-SENT and HPV-PAR-SENT-SUBNV. At the
time of writing, the source of this discrepancy is unknown, and may be
caused by the implementation. Thus, it is not recommended to rely on the
formula for the memory usage prediction.
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5.6. Results

Table 5.5: The data displayed in Figure 5.6, which is the restricted best configuration, using
word vector dimensionality of 48. The values, where HPV-TOP outperforms NO-HPV with a
level of significance of 0.025, are marked with a *. NO-HPV never outperforms HPV-TOP with
a level of significance of 0.05 or lower.

Accuracy [%]
Epoch HPV-NO HPV-TOP HPV-PAR

1 82.59 *84.38 82.65
2 87.04 *87.38 86.62
3 88.08 *88.3 87.68
4 88.6 *88.76 88.22
5 88.9 *89 88.54
6 89.07 *89.13 88.76
7 89.2 89.21 88.91
8 89.28 89.3 88.99
9 89.34 89.34 89.04
10 89.37 89.37 89.11
11 89.4 89.39 89.15
12 89.43 89.42 89.15
13 89.44 89.43 89.18
14 89.45 89.44 89.2
15 89.47 89.45 89.21
16 89.48 89.46 89.22
17 89.49 89.46 89.23
18 89.49 89.47 89.24
19 89.5 89.47 89.25
20 89.5 89.47 89.25
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5. Experiments

Table 5.6: Execution speed for training the word embeddings with a word vector dimensionality
of 48 per epoch. 20 experiments per HPV implementation and model (HPV-DBOW, HPV-DM)
have been conducted to calculate the average duration in seconds.

HPV Model Average
Duration [s]

Standard
Deviation

NO-HPV HPV-DBOW 23.71 0.36
HPV-DM 18.01 0.65

HPV-TOP HPV-DBOW 65.61 0.61
HPV-DM 18.7 0.42

HPV-TOP-PAR HPV-DBOW 88.85 0.72
HPV-DM 27.2 0.55

HPV-TOP-PAR-SENT HPV-DBOW 118.62 9.19
HPV-DM 89.98 4.3

HPV-PAR HPV-DBOW 45.91 0.83
HPV-DM 26.98 0.23

HPV-PAR-SENT HPV-DBOW 76.63 3.56
HPV-DM 78.85 0.22

HPV-PAR-SENT-SUBNV HPV-DBOW 111.79 5.7
HPV-DM 135.13 1.17

HPV-PAR-SENT-SUB HPV-DBOW 120.08 2.84
HPV-DM 140.72 1.6

Table 5.7: Execution speed for training the word embeddings with a word vector dimensionality
of 48 per epoch. Here, the results from Table 5.6 are summarized.

Total Average Duration
HPV [s] [%]

NO-HPV 41.72 100
HPV-TOP 84.31 202
HPV-TOP-PAR 116.05 278
HPV-TOP-PAR-SENT 208.60 500
HPV-PAR 72.89 175
HPV-PAR-SENT 155.48 373
HPV-PAR-SENT-SUBNV 246.92 592
HPV-PAR-SENT-SUB 260.80 625
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5.6. Results

Figure 5.7: The mean accuracy of 30 experiments when increasing the epochs for the best
configuration, using a word vector dimensionality of 200, where the epochs are scaled in relation
to the execution overhead compared to NO-HPV. When considering this overhead, HPV-TOP
trains considerably slower than NO-HPV, despite the initial boost in the first training epoch of
HPV-TOP.

Table 5.8: Predicted memory usage vs. measured memory usage, using a word vector dimen-
sionality of 48. RAM is the measured “real memory” as reported by task info. It was measured
during the training of the word embeddings model by using “ps aux” and represents a single
observation.

Memory Overhead [%]
Serialized Model RAM

HPV G Predicted Measured Measured

NO-HPV 0 0 0 0
HPV-TOP 20 0 0 2
HPV-TOP-PAR 303468 161 121 15
HPV-TOP-PAR-SENT 1916877 1019 780 110
HPV-PAR 303448 161 121 18
HPV-PAR-SENT 1916877 1019 780 93
HPV-PAR-SENT-SUBNV 1916857 1019 1657 120
HPV-PAR-SENT-SUB 4978237 2647 2039 217
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Chapter 6

Conclusion and Future Work

To summarize, we introduced a novel method for generating high-quality
low-dimensional word embeddings by extending the state-of-the-art meth-
ods PV-DM and PV-DBOW, using hierarchical data. We compared the novel
algorithms HPV-DBOW and HPV-DM to the baselines PV-DM, PV-DBOW
and TF-IDF.

We evaluated the word embeddings by applying HPV-DBOW and HPV-DM
to the IMDB movie review dataset and measured the accuracy of the pre-
dicted sentiment. To retain comparable results, we conducted a broad search
to find suitable hyperparameter combinations. We reached an accuracy of
90%, using only elementary preprocessing.

Moreover, we implemented 7 different hierarchical paragraph vector vari-
ants, and conclude that using high-level hierarchies, such as topics and cat-
egories, we can increase the quality of the word embeddings at a cost of
greater execution overhead. Low-level hierarchies, such as paragraphs and
sentences, do not contribute to improving the quality of the word vectors.
Furthermore, when using few training epochs, we have shown that hierar-
chical data can boost the quality of the word embeddings, but when scaled
according to the execution speed, HPV trains slower than PV.

Finally, we analyzed the memory and runtime overhead when using HPV
with different layers of hierarchies, and we compared it to PV-DM and PV-
DBOW. While the overhead is significant, it is still feasible to process large
amounts of text.

For future work, we suggest that HPV is evaluated on more datasets, where
other hierarchies are available for training, and where HPV be evaluated
on other tasks besides sentiment analysis. Furthermore, the embeddings
should be trained and evaluated on larger corpora, so that multiple passes
through the data may not be necessary.
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6. Conclusion and Future Work

Regarding the runtime and memory usage, we suggest that the implemen-
tation be analyzed in more detail. This can lead to optimizations which
improve training speed and memory efficiency. Also, we recommend imple-
menting different dimensionalities for word vectors and hierarchical para-
graph vectors, ideally so that a different dimensionality can be defined per
hierarchy layer.

Finally, more combinations of models and parameters should be evaluated,
and HPV-DBOW and HPV-DM should be tested independently and in com-
bination with other models.
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Appendix A

Appendix

A.1 Learning Rate Type

For all final experiments, a maximum learning rate of lmax = 0.025 and
a minimum learning rate of lmin = 0.001 = 10−3 have been used. In the
beginning, we used lmin = 10−4, but after the learning rate decreased to
below 10−3, the accuracy did not change anymore. Thus, the minimum
learning rate was set to 10−3).

When only one epoch is scheduled, we use lmax. Otherwise, the learning
rate is decreased after each epoch, using either a linear or an exponential
function, see below.

A.1.1 Linear

By linear learning rate we mean a function which decreases linearly from the
maximum learning rate lmax to the minimum learning rate lmin. To calculate
the learning rate for each step, we first set the learning rate of the first step
to lmax, and the learning rate of the last step n to lmin. The learning rate for
epoch i is calculated as follows.

l(i) = lmax − (i− 1)× lmax − lmin

n− 1

A.1.2 Exponential

The exponential case works analogously to the linear case. The learning rate
for epoch i is calculated as follows.

l(i) = lmax ×
(

lmax−1

√
lmin

lmax

)i−1

41



A. Appendix

A.2 TF-IDF

We use scikit-learn version 0.16.1 for the TF-IDF calculation1 with all default
options, except the option “max features”, which represents the maximum
vector dimensionality.

From the documentation: “The actual formula used for tf-idf is t f × (id f +
1) = t f + t f × id f , instead of t f × id f . The effect of this is that terms with
zero idf, i.e. that occur in all documents of a training set, will not be entirely
ignored. [ . . . ] Parameter max features: If not None, build a vocabulary
that only consider the top max features features ordered by term frequency
across the corpus.”

A.3 Technical Implementation of Hierarchy Splitting

Hierarchy splitting is implemented in a modest fashion, which essentially
works using regular expressions and is tuned towards the IMDB dataset. We
use the following expressions to split each hierarchy. The implementation
can be found here2.

Paragraphs “<br /><br />”, “<br />”, “<hr>”.

Sentences “!”, “?”, “.”, and consecutive combinations of these symbols, for
example “!!” and “!?!”.

Sub-sentences “,”, “;”, “:”, “(”, “)”.

1http://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.TfidfVectorizer.html
2https://github.com/lukaselmer/hierarchical-paragraph-vectors
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