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On the Information Theory of Caching Networks
Giuseppe Caire

Abstract

Caching is a well-known general principle for which, if some information message is likely to be requested by
a user (or network node) in the future, this can be pre-stored in the node itself or in its “vicinity” (in some
topological sense) at a favorable time, such that when the request comes, it can be satisfied with low latency and/or
without causing congestion in the network. Building on the fact that media content requests are highly predictable,
caching has allowed the implementation of content distribution networks (CDNs), which are at the basis of vastly
popular video streaming services over the Internet, such as Netflix, iTune and Amazon Instant Video. More recently
(in the past 2-3 years), caching has attracted also a significant attention in information theory. In this talk, we
shall review in a tutorial fashion some popular “basic” information theoretic models for caching networks and the
corresponding known results on their fundamental limits. Interestingly, the achievability results are constructive and
have an algebraic network coding flavor, and come at a fixed multiplicative penalty factor (independent of the size
of the network and size of the message library) from information theoretic outer-bounds.
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Aspects of Random Linear Network Coding
in Layered Networks

Michael Cyran1, Birgit Schotsch2, Johannes B. Huber1, Robert F.H. Fischer3
1Lehrstuhl für Informationsübertragung, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

2Institute of Communication Systems and Data Processing, RWTH Aachen University, Aachen, Germany
3Institut für Nachrichtentechnik, Universität Ulm, Ulm, Germany

cyran@LNT.de, schotsch@ind.rwth-aachen.de, huber@LNT.de, robert.fischer@uni-ulm.de

ABSTRACT

Random linear network coding (RLNC) [1]–[5] is a method
to maximize the information flow in a communication network
by forming random linear combinations over some finite field
Fq of the received information packets at each intermedi-
ate node. The network between one source node and one
destination node acts as a linear mapFn

q → FN
q , which is

represented by thenetwork channel matrix. Since the linear
factors, i.e., the coding coefficients at each intermediatenode
are drawn independently at random, there is no need of a
central processor or of sharing side information between the
nodes.

Currently, in RLNC there coexist different approaches for
generating the linear combinations at intermediate nodes.
Therefore, we classify and characterize the existing essentially
two distinct variants and show their equivalence. In variant 1
each intermediate node calculatesone linear combination and
transmits it on its outgoing edges whereas in variant 2 the
intermediate nodes computeindividual linear combinations for
each of their outgoing edges. Other variants can be seen as
hybrids of these two variants. We show that each network
which makes use of variant 2 (or of any hybrid variant)
can be transformed into an equivalent network which applies
variant 1, by splitting up intermediate nodes which transmit
different messages on their outgoing edges into several single
output edges.

Besides this classification into two encoding variants at
node level, we introduce further structure in terms of layers
into seemingly disparate and unstructured network topologies.
By inserting redundant intermediate single input/single output
nodes, arbitrary acyclic networks can be transformed into
layered networks. Such layered networks constitute a special
class of networks, where the intermediate nodes are arranged
in L layers. Nodes in layerl only receive packets from
nodes in layerl − 1, i.e., there are no direct connections
between non-adjacent layers. The three major advantages of
the transformation of an arbitrary acyclic network into a
layered network, which we denotelayering, are:

I. The network channel matrix can be factorized into so
called inter-layer matrices.

II. An inherent synchronization is provided, i.e., all paths
that connect the source node and the destination node

are equally long, i.e., each path has lengthL.
III. Layering simplifies or even enables an accurate analysis

of RLNC systems.

We present two RLNC setups, which can be thoroughly
analyzed because of their layered structure. At first, we exam-
ine the effects of joining or leaving nodes on the network
channel matrix. This allows to derive a statistical network
channel model forslowly varying networks which considers
additive packet errors as well as changes in the network
topology due to leaving or joining nodes [6]. In the second
setup we derive an upper bound on the outage probability
of two-layer network channel matrices, i.e., the probability
that the network channel matrix does not have full column
rank [7], [8]. This upper bound is particularly important for
networks whose network channel matrix is sparse, i.e., in cases
where the well known results for dense matrices do not apply.
We numerically evaluate the proposed bound, compare it with
corresponding Monte Carlo simulations and thereby show
that this upper bound almost coincides with the simulations.
Finally, we discuss the generalization of the bound to multi-
layer networks.
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Interactive Multiterminal Communication
Prakash Narayan

Dept. of Electrical and Computer Engineering
and Institute for Systems Research

University of Maryland
College Park, MD 20742, USA

Email: prakash@umd.edu

Abstract—Information theoretic models for multiuser source
and channel coding usually take the communication among
multiple terminals to be “simple" or autonomous. On the other
hand, studies of multiparty function computation, especially in
computer science, emphasize the useful role of interactive com-
munication. We shall describe basic structural properties of inter-
active communication. “Single-shot" bounds will be presented for
the amount of common randomness, i.e., shared information, that
can be generated among the terminals using such communication.
A few simple consequences with applications will be discussed.
This talk is based on joint works with Imre Csiszár, Sirin
Nitinawarat, Himanshu Tyagi and Shun Watanabe.
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{Detection and Estimation} and Information Theory
Sergio Verdú

Princeton University
Princeton, NJ 08544, USA

verdu@princeton.edu

Abstract—Teaching a course on Detection and Estimation from
the perspective of information theory is a fun thing to do. This
abstract collects some of its nuggets.1

I. NOTATION

• In the statistics and signal processing literatures it is
common to use X to denote the observable, which is the
input to the statistical inference algorithm. Instead, we
abide by the widespread usage in the information theory
literature where noisy observations are denoted by Y .

• Relative information:

ıP‖Q(x) = log
dP

dQ
(x) (1)

The cdf of the relative information is denoted by

FX‖Y (α) = P
[
ıX‖Y (X) ≤ α

]
(2)

• Information density:

ıV ;Y (θ; a) = log
dPY |V=θ

dPY
(a) = ıPY |V=θ‖PY (a) (3)

• h(·) is the binary entropy; d(·‖·) is the binary relative
entropy.

• Markov chain: V− −Z− −Y means that V and Y are
conditionally independent given Z.

• PY → PZ|Y → PZ means that the second marginal of
the joint distribution PY PZ|Y is denoted by PZ .

II. SUFFICIENT STATISTICS

Given sets (Y,Z,Θ) (we omit reference to the correspond-
ing σ-fields for brevity) and
• {PY |V=θ, θ ∈ Θ}: a collection of distributions on Y ,
• a random transformation PZ|Y : Y → Z ,

Z is a sufficient statistic of Y for V if PY |Z,V=θ does not
depend on θ, where PY Z|V=θ = PY |V=θPZ|Y .

The classical notion of sufficient statistic was introduced by
Ronald Fisher [8] as a deterministic function of the data such
that “no other statistic which can be calculated from the same
sample provides any additional information as to the value of
the parameter to be estimated." Therefore, we would expect
that information theory would have something to say about it.
For example, Cover and Thomas [5] give the necessary and
condition for sufficient statistic as

I(V ;Y ) = I(V ;Z) (4)

1Supported by the NSF Science and Technology Center for Science of
Information under Grant CCF-0939370

which is equivalent to V− −Z− −Y . Unfortunately, the
scope of this is limited to the Bayesian setting where a
distribution PV on Θ is specified. Even in the non-Bayesian
setting, information theory has something to say. To that end,
we define information densities with an auxiliary distribution
PY that dominates the collection {PY |V=θ, θ ∈ Θ} (and does
not depend on θ), and we denote PY → PZ|Y → PZ . Then,
Z is a sufficient statistic of Y for V if

ıV ;Y (θ; y)− ıV ;Z(θ; z) is invariant to θ. (5)

except possibly for (y, z) in an event of zero measure
PY Z|V=θ for all θ. A corollary (useful for the conventional
setting of deterministic sufficient statistics) is that if ıV ;Y (θ; y)
depends on y only through f(y), then Z = f(Y ) is a sufficient
statistic of Y for V , a statement which is equivalent to the
factorization theorem of Halmos and Savage [12]. The case
|Θ| = 2 deserves particular attention.

Theorem 1. Assume PY � QY . Z is a sufficient statistic of
Y for {PY , QY } if and only if

ıPY ‖QY (Y ) = ıPZ‖QZ (Z) (6)

where PY → PZ|Y → PZ , QY → PZ|Y → QZ and (6) holds
with probability one according to PY PZ|Y and QY PZ|Y .

Furthermore, if D(PZ ‖QZ) <∞, then

D(PY ‖QY ) = D(PZ ‖QZ) (7)

is necessary and sufficient for Z to be a sufficient statistic.

III. BINARY HYPOTHESIS TESTING

In some applications (including those that originally moti-
vated the study of hypothesis testing in statistics), the hypothe-
ses play asymmetrical roles, with one of them representing
the truth of a postulated scientific theory, the presence of
an illness, anomaly, target, etc. This asymmetry led to the
adoption of the following terminology:
H0: null hypothesis.
H1: alternative hypothesis.
π0|1: type II probability; probability of missed detection;

1 − π0|1 is also referred to as the probability of
detection, power, or sensitivity of the test.

π1|0: type I probability; false-alarm probability; size;
specificity. The maximum allowable pre-specified
value of π1|0 is called the significance level.

For a communications/information theory audience it is ill-
advised to stick to that classical terminology since such
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asymmetry between the nature of the hypotheses is alien to
most of the applications that the student of the course will
encounter.

The fundamental tradeoff is characterized by the set of
achievable error probability pairs:

C(P0, P1) =
⋃

φ : Y→{0,1}
{(E[φ(Y0)], 1− E[φ(Y1)])} (8)

with Y0 ∼ P0 and Y1 ∼ P1. The lower boundary of (8) is

αν(P1, P0) = min{y ∈ [0, 1] : (ν, y) ∈ C(P0, P1)} (9)
= min
φ : π1|0≤ν

π0|1 (10)

The role of relative entropy and Rényi divergence in asymp-
totic results such as the Chernoff(-Stein) Lemma is well-
known in the information theory community, particularly since
the work by Blahut [3]. I find that giving the proof of Sanov’s
large deviations theorem in the finite-alphabet setting using
the method of types is a nice illustration of the power of that
method. But in keeping with our philosophy most of the real
work is done providing bounds for the non-asymptotic single
shot version.

Converse results include (for simplicity we assume hence-
forth that P0 �� P1):

Theorem 2. The error probabilities (π1|0, π0|1) of any test
must satisfy

d(π0|1‖1− π1|0) ≤ D(P1‖P0) (11)
d(π1|0‖1− π0|1) ≤ D(P0‖P1) (12)

Theorem 3. The error probabilities (π1|0, π0|1) of any test
must satisfy for all τ ∈ R:

π0|1 + exp(τ)π1|0 ≥ max{FP1‖P0
(τ), exp(τ)FP0‖P1

(−τ)}
The following result is inspired by an idea due to Shannon,

Gallager and Berlekamp [22].

Theorem 4. Suppose that the positive scalars (θ0, θ1, τ0, τ1)
are such that

(θ0 exp (−τ0) , θ1 exp (−τ1)) ∈ C(P0, P1). (13)

Then, they must satisfy

θ0 + θ1 ≥ P
[
ıPα‖P0

(Yα) ≤ τ0, ıPα‖P1
(Yα) ≤ τ1

]
(14)

where Yα ∼ Pα, for all α ∈ [0, 1], and the tilted distribution
is defined through

ıPλ‖R(a) = λ ıP1‖R(a) + (1− λ)ıP0‖R(a)

+ (1− λ)Dλ(P1 ‖P0). (15)

where Dλ(P1 ‖P0) is the Rényi divergence.

Achievability results include:

Theorem 5. For all ν ∈ (0, 1),
1)

αν(P1, P0) ≤ FP1‖P0

(
log

1

ν

)
(16)

2) If τ is such that FP0‖P1
(τ) ≤ ν, then

αν(P1, P0) ≤ exp(−τ)
(
1− FP0‖P1

(τ)
)

(17)

Theorem 6. Let P1 � P0. For all α ∈ (0, 1) there exists a
deterministic test such that

π1|0 ≤ exp (−D(Pα‖P0)) (18)
π0|1 ≤ exp (−D(Pα‖P1)) (19)

IV. M -ARY HYPOTHESIS TESTING

While in the statistical inference literature, testing among
more than two hypotheses receives scant attention (except
as a bounding technique in estimation), it has fundamental
importance in communications and information theory, since
the role of a receiver in a communication system, particularly
one that uses error correcting codes, is to guess which message
was transmitted out of a finite number of alternatives.

Suppose that we are given the random transformation
PY |V : M = {1, . . . ,M} → Y and the task is to guess V
based on the observation y ∈ Y . This is an M -ary hypothesis
testing problem where the observation is generated under one
of M distributions:

H1: y ∼ P1 = PY |V=1

...
HM : y ∼ PM = PY |V=M

For brevity, here I only consider the Bayesian case in which
there is a prior distribution PV . Optimizing over the test, the
minimal error probability is a function of (P1, . . . , PM ) and
the prior distribution PV , which we denote, as εV |Y . We give
upper and lower bounds in terms of information measures.
Tebbe and Dwyer [23] and Gallager [10, p. 521] gave the
upper bound

εV |Y ≤
1

2
H(V |Y ) bits (20)

which can be further tightened by the following result.

Theorem 7. Let k be a positive integer. If log k ≤ H(V |Y ) ≤
log(k + 1), then

εV |Y ≤
H(V |Y ) + (k2 − 1) log(k + 1)− k2 log k

k(k + 1) log k+1
k

(21)

The idea behind the following upper bound is prominent in
the analysis of the fundamental limits of data transmission, and
in particular Shannon’s original channel coding achievability
approach.

Theorem 8.

εV |Y ≤ inf
γ>0
{P[ıV ;Y (V ;Y ) ≤ ıV (V ) + γ] + exp(−γ)} .

(22)

with the information ıV (a) = log 1
PV (a) .

As far as lower bounds are concerned, Fano’s inequality
yields
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Theorem 9. If V takes M possible values, then

εV |Y ≥ ϕ−1M (H(V |Y )) (23)

with ϕ−1M denoting the inverse function of ϕM : [0, 1− 1
M ]→

[0, logM ]:

ϕM (t) = t log(M − 1) + h(t). (24)

from which we can get as a corollary that

εV |Y ≥
log M

2

log(M − 1)
− 1

M2 log(M − 1)

M∑

i=1

M∑

j=1

D (Pi‖Pj) ,

which is reminiscent of Birgé’s lower bound [1] on the
minimax error probability:

d

(
ε
∥∥ 1− ε

M − 1

)
≤ 1

M − 1
min
j

∑

i 6=j
D(Pi‖Pj) (25)

Another bound based on H(V |Y ) is due to none other than
Shannon [21].

Theorem 10.

εV |Y ≥
1

6

H(V |Y )

logM + log logM − logH(V |Y )
(26)

The following is due to Poor and Verdú [19]

Theorem 11.

εV |Y ≥ sup
0≤α≤1

(1− α)P
[
PV |Y (V |Y ) ≤ α

]
(27)

= sup
γ>0

(1− exp(−γ))P [ıV ;Y (V ;Y ) ≤ ıV (V )− γ]

(28)

Weakening Theorem 11 we arrive at the following pleasing
companion to Theorem 8:

Theorem 12.

εV |Y ≥ sup
γ>0
{P [ıV ;Y (V ;Y ) ≤ ıV (V )− γ]− exp(−γ)}

(29)

The following lemma (which modulo conceptually minor
variations is the “meta-converse" due to Polyanskiy et al. [18,
Theorem 26]) offers a way to lower bound the error probability
of an M -ary hypothesis testing problem by means of the
analysis of an auxiliary binary hypothesis testing problem.

Lemma 1. Fix
• PV on M and PY |V : M→ Y ,
• QV on M and QY |V : M→ Y ,
• test P

V̂ |Y : Y →M.
Denote the average error probability attained by the M -ary
test under PY |V PV (resp. QY |VQV ) by ε (resp. ε′). Then,

ε ≥ α1−ε′(PV Y , QV Y ) (30)

Originating in Barcelona [26], the next result shows that, in
fact, Lemma 1 is tight by appropriate choice of the auxiliary
distribution.

Theorem 13. Fix PY |V : M → Y , and PV on M such
that PV (m) > 0 for all m ∈ M. Then, the minimal error
probability is equal to

εV |Y = α 1
M

(
PV PY |V , PU × PY

)
(31)

where
• PU is equiprobable on M;
• PY is defined through

ıY ‖Y (y) = log κ− min
m∈M

ıV |Y (m|y), (32)

with PV → PY |V → PY and κ > 1 chosen so that PY
is a probability measure.

One of the uses of Theorem 13 is to sharpen Theorem 12
to actually yield an exact result.

Theorem 14. Denote ı
V ;Ŷ

(v; y) = log
dPY |V=v

dP
Ŷ

(y). Then,

εV |Y = max
γ>0

{
max
P
Ŷ

P
[
ı
V ;Ŷ

(V ;Y ) ≤ ıV (V )− γ
]
− exp(−γ)

}

(33)

V. MINIMUM MEAN-SQUARE ERROR ESTIMATION

A. Non-Bayesian

In the setting of non-Bayesian minimum-variance unbiased
estimation where we have
• Unknown real-valued parameter: θ ∈ Θ ⊂ R
• Set of observations: Y
• Model for the data: PY |V=θ : Θ→ Y
• Loss function: L(θ, θ̂) = (θ − θ̂)2

it is advisable to bring up the following elegant result due to
Blackwell [2], Kolmogorov [14], and Rao [20].

Theorem 15. Given PY |V : Θ→ Y , suppose that
• P

V̂ |Y : Y → Θ is an unbiased estimator of V ;
• PZ|Y : Y → Z is a sufficient statistic of Y for V .

Then,
1) the estimator PV |Y defined by

V = E[V̂ |Z, V = θ] (34)

is an unbiased estimator of V ;
2) for all θ ∈ Θ

E[(V − V )2|V = θ] ≤ E[(V − V̂ )2|V = θ] (35)

(In the literature, it is common to find V = E[V̂ |Z] in lieu
of (34) but that quantity is not defined in the non-Bayesian
setting. Note that (34) is indeed a function of the data only
since Z is a sufficient statistic.) In addition, it is convenient to
introduce the notion of complete sufficient statistic and give
the Lehmann-Scheffé theorem [16], [17] which guarantees
that any function of a complete sufficient statistic yielding an
unbiased estimator is a uniform minimum-variance unbiased
estimator.

The Crámer-Rao bound, also known as the information
inequality, follows from the Cauchy-Schwartz inequality. I do
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not know of an information theoretic proof, but in a departure
from convention, I prefer to give an information theoretic
definition of Fisher’s information:

Definition 1. Given PY |X : R→ Y , and θ ∈ R, suppose that

lim
α→θ

1

α− θ D
(
PY |X=α‖PY |X=θ

)
= 0 (36)

Then, the Fisher information of PY |X at θ is

J(θ, PY |X) =
d2

dα2
D
(
PY |X=α‖PY |X=θ

)
|α←θ (37)

= lim
α→θ

2

(α− θ)2 D
(
PY |X=α‖PY |X=θ

)
(38)

where the relative entropy is in nats. When the parameter θ
has a probability distribution, we define the conditional Fisher
information as

J(Y |X) = E
[
J(X,PY |X)

]
. (39)

As is well-known since [15], under appropriate technical
sufficient conditions that ensure the validity of swapping of
expectation-differentiation and Taylor series expansion, we can
express (37) in its conventional, less insightful, form:

J(θ, PY |X) = −E
[
∂2

∂α2
ıPY |X=α‖PY |X=θ

(Yθ)

]
|α←θ (40)

where Yθ ∼ PY |X=θ and the relative information is in nats.
The original concept of Fisher information [9] of a den-

sity function fZ , simply corresponds to the special case of
Definition 1 with PY |X=θ = PZ+θ, yielding

J(Z) = −E
[
∇2 loge fZ(Z)

]
(41)

which is not invariant to reversible transformations.

B. Bayesian

The estimation topic that benefits the electrical engineering
graduate student the most is minimum mean-square error
estimation in the Bayesian setting, in which we are given
• a priori distribution PX on R for the unknown real-valued

random variable to be estimated, known as the estimand;
• a model for the data PY |X : R→ Y .

The minimum mean-square error for estimating X given Y is

mmse(X|Y ) = minE[(X − X̂)2] (42)

where the minimum is over all Borel-measurable random
transformations P

X̂|Y : Y → R, and X− −Y− −X̂ , and
is achieved by the conditional mean E[X|Y ].

Theorem 16. .
1) If f : R→ R is an injective mapping, then

mmse(X|f(X)) = 0. (43)

2) If E[X2] <∞, then

mmse(X|Y ) ≤ σ2
X , (44)

achieved with equality if X and Y are independent.

3) If E[X2] <∞, then

mmse(X|Y ) = E[X2]− E[E2[X|Y ]]. (45)

4)

E[X|Y = y] = E[X exp(ıX;Y (X; y))] (46)

5) Suppose X− −Y− −Z. Then,

mmse(X|Y ) ≤ mmse(X|Z) (47)

with equality if Z is a sufficient statistic of Y for X .
6) [24] Assume that X is a continuous random variable

with density function fX , whose Fisher information is
J(X) and whose mean is finite. Then,

mmse(X|Y ) ≥ 1

J(X) + J(Y |X)
. (48)

7) [29] mmse(X|Y ) is a concave functional of PXY .

Of great special interest is the model

Y =
√
γX +N (49)

where N ∼ N (0, 1), independent of X . Then, we abbreviate
the notation as

mmse(X, γ) = mmse(X|√γX +N) (50)

Beyond those in Theorem 16, mmse(X, γ) satisfies the fol-
lowing properties.

Theorem 17. .
1)

mmse(aX + b, γ) = a2 mmse(X, a2γ) (51)

2)

mmse(X, γ) ≤ σ2
X

1 + σ2
Xγ

(52)

achieved with equality if X ∼ N
(
µ, σ2

X

)
.

3) Even if E[X] does not exist,

mmse(X, γ) ≤ 1

γ
(53)

4) [7] The conditional mean estimator is given by

E[X|√γ X +N = y] = − 1√
γ
∇ıX;Y (0; y) (54)

5) [13] The conditional mean-squared error is given by

E
[
(X − E[X|Y ])

2 |Y = y
]

= − 1

γ
∇2ıX;Y (0; y) (55)

6) [4]

γmmse(X, γ) = 1− J(
√
γX +N) (56)

7) If X has a density function, then

mmse(X, γ) ≥ 1

J(X) + γ
(57)
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8) [27]2 If X1 and X2 are independent and α ∈ [0, 2π],

mmse((cosα)X1 + (sinα)X2, γ) (58)

≥ (cos2α)mmse(X1, γ) + (sin2α)mmse(X2, γ)

9) If N1, N2 ∼ N (0, 1) and (N1, N2, X) are independent,
then

mmse
(
X|√γ1X +N1,

√
γ2X +N2

)

= mmse
(
X,
√
γ1 + γ2

)
(59)

10) [29] mmse(X, γ) is strictly concave in PX .
11) [25] Let X1, . . . , Xn be independent and let

(λ1, . . . , λn) be a probability distribution. Then,

mmse

(
n∑

i=1

Xi, γ

)
≥

n∑

i=1

λi mmse

(
X\i√

(n− 1)λi
, γ

)

where X\i = −Xi +
∑n
j=1Xj .

12) [28] The bound in (53) is tight asymptotically if X is
absolutely continuous:

lim
γ→∞

γmmse(X, γ) = 1 (60)

13) [28] If X is discrete, then the MMSE dimension satisfies

lim
γ→∞

γmmse(X, γ) = 0 (61)

14) [11], [29] Let X be a real-valued random variable
independent of N ∼ N (0, 1). Then, for any snr ≥ 0,
in nats,

I(X;
√
snrX +N) =

1

2

∫ snr

0

mmse(X, γ) dγ (62)

15) [11] Let X be a discrete random variable taking values
on X . Then, in nats,

H(X) =
1

2

∫ ∞

0

mmse(g(X), γ) dγ (63)

for any injective function g : X → R.

In addition, it is useful to consider the vector, discrete-time
and continuous-time versions of (49) and give the non-causal
Wiener filter and the Kalman filters as examples.

Finally, we mention the universal relationship between the
causal and noncausal continuous-time MMSE achieved by
arbitrary input processes [11] for which only an information
theoretic proof is known. The full proof is beyond the scope of
the course as the verification of Duncan’s formula [6] requires
stochastic calculus.

2This property is the gateway to the simplest proof of Shannon’s entropy-
power inequality.
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Why and How to Estimate Mutual Information?
Tsachy Weissman
Stanford University
tsachy@stanford.edu

Mutual information emerged in Shannon’s 1948 masterpiece
as the answer to the most fundamental questions of compres-
sion and communication. Since that time, however, it has been
widely used and estimated in a variety of other disciplines. The
two parts of this talk will respectively address two questions:
why should we care about estimating mutual information, and
how should we go about estimating it?

The first part will present a recent set of results establishing
the status of mutual information as a “canonical” measure
of relevance. Specifically, we show that, when measuring
relevance by the extent to which one variable is helpful in
estimating the other, the only loss function for estimation
satisfying a natural invariance requirement is the logarithmic
loss, and mutual information is the resulting dependence
measure. Other objects with mutual information at their core
inherit analogous justifications. A notable example is directed
information, which emerges as the only measure of the ‘degree
to which one process is helpful in predicting the other’ to
satisfy the natural invariance requirement.

The second part of the talk will showcase a new approach
to the estimation of mutual information between random
objects with distributions residing in high-dimensional spaces
(e.g., large alphabets), as is the case in increasingly many
applications. We will discuss the shortcomings of traditional
estimators, and suggest a new one achieving essentially op-
timum worst-case performance under L2 risk (i.e., achieves
the minimax rates). We will exhibit a couple of examples
illustrating the benefits afforded by this estimator in practice.

The talk is based on humbling recent collaborations with
Jiantao Jiao, Kartik Venkat, Thomas Courtade, Yanjun Han,
and Albert No reported on in [1], [2], [3], [4], and [5]
(available on arXiv).
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Error Probability and Hypothesis Testing
Albert Guillén i Fàbregas
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Consider two random variables V and Y , where V takes
values in a finite set V of cardinality |V| = M , and Y is
arbitrary. The joint distribution of these two random variables
is described by PV Y . The problem of estimating V from an
observation of Y is an M -ary hypothesis-testing problem.
Since the joint distribution PV Y defines a prior distribution
PV over the alternatives, the problem is naturally cast within
the Bayesian framework.

An M -ary hypothesis test is defined by a (possibly random)
transformation Y → V described by the conditional distribu-
tion PV̂ |Y . The average error probability of a test PV̂ |Y can
be expressed as

ε̄(PV̂ |Y ) , Pr{V̂ 6= V } (1)

=
∑

v,y

PV Y (v, y)
(

1− PV̂ |Y (v|y)
)
. (2)

Minimizing over all possible conditional distributions PV̂ |Y
gives the smallest average error probability, namely

ε̄ , min
PV̂ |Y

ε̄(PV̂ |Y ). (3)

The minimum in (3) is achieved by the test choosing the
hypothesis v with largest maximum a posteriori (MAP) metric
given the observation y, i.e.,

ε̄ = 1−
∑

y

max
v′

PV Y (v′, y). (4)

For a binary hypothesis test between distributions P and
Q, let αβ (P,Q) be the minimum type-I error for a maximum
type-II error β ∈ [0, 1].

Theorem 1: The average error probability of a M -ary
hypothesis-testing problem satisfies

ε̄ = max
QY

α 1
M

(PV Y , Q
?
V ×QY ) (5)

= max
QY

sup
γ≥0

{
Pr

[
PY |V (Y |V )PV (V )

QY (Y )
≤ γ

]
− γ
}

(6)

where Q?V (v) , 1
M for all v. Moreover, a maximizing

distribution QY in both expressions is

Q?Y (y) , 1

µ
max
v′

PV Y (v′, y) (7)

where µ ,
∑
y maxv′ PV Y (v′, y) is a normalizing constant.

This result shows that the error probability of Bayesian M -
ary hypothesis testing can be expressed as the best type-I
error probability of a binary hypothesis test discriminating
between the original distribution PV Y and an alternative
distribution Q?V × Q?Y with type-II-error constraint equal to
1
M . We conclude that the MAP criterion, that minimizes the
average error probability of an M -ary hypothesis test, can be
alternatively used to solve a binary hypothesis-testing problem
upon appropriately defining the alternative distribution. In the
channel coding setting (5) coincides with the metaconverse
bound [1, Th. 26] for the choice QV Y = Q?V ×QY . Theorem
1 thus shows that the metaconverse is tight after optimization
over the auxiliary distribution QV Y .

Theorem 1 also provides an alternative characterization
based on information-spectrum measures. In particular, the
probability term in (6) corresponds to the tail probability of
the information density log PV Y (v,y)

PY (y) being below a threshold

log γQY (y)
PY (y) which, in general, is allowed to depend on the

observation y. By choosing QY = PY in (6) we recover
the Verdú-Han lower bound in the channel [2, Th. 4] and
joint source-channel coding settings [3, Lem. 3.2]. By setting
QY = Q?Y and γ = µ, the identity (6) can be interpreted
as the error probability of an M -ary hypothesis test that, for
each v, compares the posterior likelihood PV Y (v, y) with a
threshold equal to max

v′
PV Y (v′, y), i. e., this test emulates the

MAP test yielding the exact error probability.
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Subspace methods:
An old technique and some recent developments

Ezio Biglieri
Department of Communication and Information Technologies

Universitat Pompeu Fabra, Barcelona, Spain

We examine the problem of identifying the active antennas
in a receiver-training mode of space-modulated MIMO [3],
where only N out of Nt antennas are allowed to transmit.
The problem is formally identical to that of identifying the
active users in synchronous CDMA multiuser detection. Since
direct use of Random-Set Theory [2] may be too complex, we
examine the use of subspace methods [13], [14], as advocated
for example in [15].

These methods involve evaluation of the covariance matrix
R of the observed signal, and the estimation of its eigenvalues
and eigenvectors. Once these quantities are made available,
signal subspace and noise subspace can be separated. The
number N of active antenna is derived as the rank of the signal
subspace, while the identity of the active antennas require
deriving the covariance of the transmitted signal.

We examine in particular three subproblems to be solved in
order to apply subspace methods: ¬ Reliable estimation of the
covariance matrix,  Reliable estimation of its eigenvalues and
eigenvectors, and ® Separation of the signal subspace from the
noise subspace.

¬ The sample covariance matrix Rn is known to converge
to the true matrix R almost surely as the number n
of samples involved grows to infinity. Now, what is the
minimum sample size n that guarantees approximation
with a given accuracy? Random-matrix theory can be
used to solve this problem. Yet, while asymptotic random-
matrix theory offers remarkably accurate predictions as n
grows to infinity, their sharpness at infinity is often coun-
terweighted by lack of understanding of what happens in
finite dimensions. Recent results involving nonasymptotic
random-matrix theory [8], [9], [11], [12] will be reviewed
in relation to problem ¬.

 The standard estimate of eigenvalues and eigenvectors of
R consists of the eigenvalues and eigenvectors of Rn.
These estimators are designed to yield good estimates
when the sample size n is sufficiently large with respect to
the observation dimension Nr. Now, when n is compara-
ble in magnitude to Nr, better estimators can be obtained
using a variety of approaches. Recent results by Xavier
Mestre [6], [7] are reviewed, showing that estimators can
be designed which outperform their standard counterparts
in the small-sample regime.

® Determining the dimension of the signal space, and hence
N , requires the evaluation of the multiplicity of the
smallest eigenvalue of R. Now, if Rn is used in lieu of R,

the smallest eigenvalues may not be equal, but rather they
tend to cluster around their true value. The determination
of this dimension can be obtained by using model-order
selection theory, based on Akaike results [1], [4], [5],
[10].
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ML and CS Processing for
DOA Estimation of Bird Sources

Kung Yao
UCLA

Abstract—For some years, we have been conducting
research on the algorithms and applications of acoustical
beamforming for source localization, enhancement, and
separation of multiple bird sources with colleagues in
the UCLA Evolutionary Biology and Complexity Dept.
The ultimate goal of this NSF sponsored research is to
permit humans to understand the language, grammar,
and meanings of bird songs. Our specific efforts have
been in the design, analysis, and fabrication of multiple
acoustical arrays to serve as the front-end of data collecting
systems to operate in diverse jungle and realistic field
conditions in providing data for verifying various language
modeling conjectures of bird songs. Spectra of radar and
communication systems (including cellular applications)
are narrow-band, while human speech and bird wave-
forms are wide-bands. By using sub-band methodologies,
narrow-band beamforming techniques can be modified
for our purposes. After DFT/FFT transformations, our

beamformer uses ML estimation methods to perform
far-field direction-of-arrival (DOA) estimation, as well
as multiple source separation and enhancement. In this
talk, we will summarize various algorithms and practical
arrays we have built and their applications. Since the
number of possible source DOA’s is sparse relative to
the azimuth and elevation search space, we provide some
preliminary results on possibly using recent Compressive
Sensing methodology to tackle this problem. Desirable RIP
property in the selection of the randomizing operation in a
CS scheme need not easily be met with the small number of
sensors in our array. The Johnson–Lindenstrauss Lemma
on transforming the sparse condition in a high dimensional
space to a low dimensional space and still preserving the
sparse condition may be relevant for us. Computational
complexity of the `1 optimization needed in a CS operation
also poses a challenge if we want real-time applications.
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Pattern Detection Filtering with Spiking Signals
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ABSTRACT

A new model of self-timed pulse-based computation is
proposed. The basic unit of computation is a feature detection
filter, which looks for some feature in its multichannel-input
signal and produces some sort of a score signal (or likelihood
signal); whenever the score signal exceeds some threshold, an
output pulse is generated. A layered network of such feature
detection filters can be used for multiscale signal parsing. The
feasibility of the proposed approach is demonstrated with a
network that understands Morse code.
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Abstract—A unified approach to the derivation of rate regions

for one-hop wireless networks is presented. The transmission

scheme, derived for any memoryless, single-hop, k-user channel
with or without common information, is obtained in two steps.

The first step is user virtualization: each user is divided into
multiple virtual sub-users using rate-splitting to preserve the

rates of the original messages. This results in an enhanced
channel with a possibly larger number users, for which more

coding possibilities are available. Moreover, user virtualization
provides a simple mechanism to encode common messages to

any subset of users. Following user virtualization, the message of
each user in the enhanced model is coded using any combination

of coded time-sharing, superposition coding and binning. The in-
terdependencies between the coding strategies at each node leads

to exponential growth in the number of possible coding schemes,
which has precluded general achievable schemes to date. A novel

graph-based approach is used to represent all coding strategies,
thereby circumventing this problem; nodes in the graph represent

codewords while edges represent coding operations. This graph is
used to construct a graphical Markov model which represents the

statistical relationship among codewords based on the mapping
between virtual users and actual users. Using this statistical

representation of the overall codebook distribution, the error
probability of the code is shown to vanish via a unified analysis

based on the packing and covering lemmas. The rate bounds that
define the achievable rate region are obtained by linking the error

analysis to the properties of the graphical Markov model.
Given any single-hop network, the largest achievable rate

region under random coding is obtained by considering all
possible rate-splitting strategies and taking the union over all

possible ways to superimpose or bin the associated codewords
via the graphical model. The achievable rates obtained based on

this unified method encompass the best random coding achievable
rates for all memoryless single-hop networks known to date,

including broadcast, multiple access, interference, and cognitive
radio channels, as well as new results for topologies not previously

studied. We demonstrate the technique for several single-hop
network topologies to either obtain the first known achievable

rate regions for these topologies or to improve upon known
achievable regions. Upper bounds and extensions to multi-hop

networks will also be discussed.
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Abstract—This presentation deals with 5th-generation wireless
networks, and with the role that information theory may play
on their design.

I. EXTENDED ABSTRACT

With the 4th generation of wireless systems still being rolled
out, challenges keep mounting: traffic demand doubles yearly
and user needs and expectations keep growing at a very fast
pace. Against this backdrop, the debate is open as to what
shall come next in the evolution of wireless systems—what
is loosely referred to as the 5th generation—and this debate
stage can be a very fertile time for ideas to take root. This
presentation intends to contribute to the ongoing discussion,
and specifically on the role that information theory might play
on the design of 5G wireless networks. The presentation is
organized around several reflections that touch on this subject,
but that also have broader conceptual implications for research.
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Abstract—It is natural to view Arıkan’s 2-by-2 polar con-
struction as an operation that transforms a sequence of chan-
nels to a new sequence of channels, by combining the odd
indexed members of the source sequence with their even indexed
partner. The successive applications of this operation (with
appropriate shuffling in between the applications) thus results
in a ‘sequence of sequence-of-channels’. We will show that the
limiting states of this procedure are those sequences of channels
for which mediocre channels forever avoid meeting each other.
This observation yields a simple proof that Arıkan’s procedure,
when seeded with a sequence of identical channels (the classical
stationary scenario) necessarily results in polarization. With a
bit of help from combinatorics, one can further show that the
same procedure when started with any sequence of channels also
necessarily results in polarization.
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Abstract—The network information theory literature contains
many beautiful results describing capacity and source coding
bounds for a variety of network types and topologies. While the
literature develops and employs a host of common tools and
strategies, to some extent, each new network model engenders
its own new theory. This work explores “reduction” as a tool
for network information theory research. The focus is on the
use of reduction for demonstrating new relationships between
seemingly disparate problems and the potential of this approach
for deriving a new kind of unifying theory for the field.

I. INTRODUCTION

Reduction is a proof strategy for transforming one problem
into another. Problem A reduces to a distinct problem B
if it can be shown that the availability of a solution for B
would enable the construction of a solution for A. The power
of the reductive strategy is that it enables the derivation of
relationships between disparate problems even when solutions
to both problems are unavailable. That is, one need not have
a solution for problem B in order to demonstrate the above-
described reduction; instead, it suffices to demonstrate that if
a solution to B were available, then it could be used to derive
a solution to A.

While reduction proofs are more commonly applied in the
context of computational complexity theory and cryptography,
a host of recent results demonstrates the power of reduction in
information theory. Here the emphasis is not on algorithmic
complexity but instead simply on showing that one problem
can be solved by the solution of another. For example, [1]
proves that 0-error code design for any multiple multicast
network coding instance can be solved through the solution
of 0-error code design for a corresponding multiple unicast
network coding instance. Related later work [2] proves that
the capacity region of any memoryless network with multiple
multicast demands can be derived by finding the capacity
region of a related memoryless network with multiple unicast
demands. These results are derived despite the fact that both
0-error code design for multiple unicast network coding and
capacity derivation for memoryless multiple unicast networks
remain open problems.

Many of the information theoretic results derived to date
focus on code design. For example, linear code design for
network coding networks reduces to linear code design for
index coding networks [3]. Code design (without the restric-
tion to linear codes) for network coding networks reduces

to code design for index coding networks [4]. Code design
for k-unicast network coding networks reduces to code design
for 2-unicast network coding networks in the 0-error coding
regime [5].

In some but not all cases, reductions in code design have
been used to derive corresponding reductions in the problem
of solving network capacity regions. For example, solving the
linear capacity region (i.e., the set of rate vectors asymp-
totically achievable by linear codes) for multiple multicast
network coding networks reduces to solving the linear capacity
region for multiple unicast index coding networks [6]. Linear
capacity calculation for memoryless networks under multiple
multicast demands reduces to linear capacity calculation for
memoryless networks under multiple unicast demands [7]. Ca-
pacity calculation for networks of memoryless point-to-point
channels reduces to capacity calculation for network coding
networks [8]. Capacity calculation for memoryless networks
with finite, known delays at each receiver [9] reduces to
capacity calculation for memoryless networks without delays.

II. POTENTIAL

Rather than focusing on any specific reductive argument or
result, this talk is intended to explore the potential of reductive
strategies for uncovering important new connections between
existing information theoretic problems and for inspiring new
questions that may enrich the field.

One key area for advance is in understanding the relation-
ships between information theoretic problems. For example, it
would be useful to understand which problems are equivalent
from the perspective of code design. Reductions are useful
for uncovering such relationships: If A reduces to B and
B reduces to A, then A and B are equivalent under the
given reduction type. Reductive strategies are also useful for
deriving hierarchical relationships between problems: If A
reduces to B and B reduces to C, then A reduces to C.
Combining equivalences and hierarchical relationships can
yield rich taxonomies of problems. Even the short list of
reductive results derived to date hints at such a taxonomy
and suggests new questions for investigation. For example,
existing results start the process of deriving independent (yet
almost identical) taxonomies for the code design and capacity
calculation problems. It would be useful to understand how the
taxonomies are related. Does every reduction in code design
imply a corresponding reduction in capacity calculation?
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Reductive arguments can also be used to identify canonical
problems whose solution would solve all problems in some
larger class. Two types of canonical problems for information
theory are discussed in [10]. An information theoretic problem
A is said to be “hard” with respect to some class S of
information theoretic problems (written “A is S-hard”) if
solution of problem A would solve all problems in class S.
Problem A is said to be “complete” for S (written “A is S-
complete”) if A is S-hard and A is in S. Completeness results
may serve to focus our attention on a particularly important
subset of the space of problems. Hardness results demonstrate
the existence of a problem outside the class whose solution
would solve all problems in the class.

The previously discussed results highlight multiple unicast
index coding as a complete network coding problem from
the perspective of network code design and linear capacity
calculation. These results also raise a number of interesting
questions. For example: Are there additional special instances
of network coding (of perhaps a completely different nature)
that are complete for the class of network coding problems?
Do there exist other natural classes such as network coding
for which there exist complete problems?

Prior results also hint at the existence of “hard” problems
for information theory. For example, the “edge removal”
problem [11], [12] asks whether removing a single edge of
capacity δ can ever change the capacity of a network coding
network by more than δ in every dimension. For all but
a few special cases, the edge removal problem is unsolved
even in the case where δ approaches 0. In [13], [14], the
edge removal problem is tied to the “network coding zero-
vs-ε error” question, which asks how much (if at all) the
capacity region of a network coding instance can change if
we insist on zero- rather than asymptotically negligible error
probability. Specifically, in [13], [14] it is established that
if the removal of a single edge with vanishing capacity (in
the block length) has a vanishing effect on the achievable
capacity, then zero-error and vanishing error are equivalent
for network coding capacity. The opposite direction of this
connection, tying the network coding zero-vs-ε error problem
to the edge removal problem, appears in [14]. In [15], the edge
removal problem is tied to the problem of source dependence
in networks. Here it is shown that the edge removal problem
captures the difference between communicating over network
coding instances in which the sources are independent (as
commonly assumed) and instances in which the sources may
be dependent. In [2] connections between edge removal and
the completeness of the index coding problem with respect
to capacity reductions are established. These rich connections
demonstrate the potential impact of solving the edge removal
problem on a wide variety of other open questions. They
also raise a number of new questions: Are there other natural
problems that are connected to the edge removal problem? Are
there other canonical problems in the context of information
theory that have such broad and diverse connections?

While the preceding discussion treats solutions of one
problem through solution of another, reduction can also be

used for bounding the solution of one problem through the
derivation of solutions or bounds for another problem. The
“network equivalence" paradigm of [8], [16] illustrates such an
approach. Specifically, network equivalence seeks to study the
capacity region of networks built from independent memory-
less channels by designing bounding models for each channel
in the network. Channel A is an upper bounding model for
channel B if replacing channel B by channel A in any network
yields a new network whose capacity region is a superset
of the capacity region of the original network. Similarly,
replacing channels by their lower bounding models yields a
new network whose capacity region is a subset of that of the
original network. Several channel models and their bounding
counterparts were studied in [8], [16], including point-to-point
channels, broadcast channels, and multiple access channels.

III. SUMMARY

Existing recent studies in the context of information theory
hint at an emerging classification of communication problems
through the lens of reductions. This talk is intended to survey
existing reductive arguments in the context of information
theory and to outline some of the intriguing possibilities for
future studies.
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Information Age
Anthony Ephremides

Abstract

A neglected figure of merit in network system performance is the so-called "Age of Information". This is not the
same as message delay. Rather, it reflects the time lapse between the instant of the generation of the most recent
available value of a process at the receiver and the current time. This is an especially useful performance index for
applications where an on-going process is being monitored. Also, there are similar issues in surveillance applications
and machine-to-machine communications. We provide an overview of what has been accomplished so far in this
exciting new direction and outline the challenges that lie ahead.
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ABSTRACT

The goal of the talk is to give basic insight into wiretap
channels. For this purpose, we first review Shannon’s channel
coding theorem, Wyner’s common information, and Han and
Verdú’s resolvability. We then consider Wyner’s wonderful
wiretap channel and list several secrecy measures. Yet another
security measure is introduced that is based on informational
divergence and that includes both strong secrecy and stealth (or
covert) communication. The new measure leads to a capacity
region that we relate to Wyner’s secrecy region. The converse
follows by a short proof that uses a telescoping identity. The
coding theorem is established by using a simple proof whose
key step is applying Jensen’s inequality to the logarithm, as
well as a few standard typicality arguments. An operational
meaning for stealth follows in the usual way by using binary
hypothesis testing.

The talk is based on joint work with Jie Hou from TUM.
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Abstract—We consider real lattices built from error-correcting
codes. After recalling the definition of a lattice, we review
Construction A over a prime field. Construction A combined
with non-binary low-density parity-check (LDPC) codes gives
rise to the family of LDA lattices. Generalized low-density (GLD)
codes are another interesting type of codes on graphs yielding
the ensemble of GLD lattices. This manuscript ends with the
analysis of the goodness of LDA and GLD lattices when used for
communication over a Gaussian channel.

I. INTRODUCTION

Lattice are mathematical structures with specific algebraic
and topological properties. We consider the simplest form of
lattices, i.e. lattices in real Euclidean spaces equipped with
the standard scalar product. In communication theory, lattices
can play different roles in the processing and the transmission
of information. They are suitable for vector quantization of
analog sources, for channel coding as coded modulations, and
also for joint source-channel coding. In the recent literature,
lattices are found to be good tools in network coding and
secure coding at the physical layer. More information can be
found in [1] and references therein.

A lattice is a Z-module of the Euclidean vector space RN .
Concretely, it is simply a discrete additive subgroup of RN ,
according to the following definition:

Definition 1: Given M and N two natural numbers,
M ≤ N , and given a set of M linearly independent vectors
b1,b2, . . . ,bM ∈ RN , an M -dimensional lattice Λ is defined
as the set of all integer linear combinations of the bi’s:

Λ =

{
x ∈ RN : x =

M∑

i=1

zibi, zi ∈ Z

}
. (1)

The set {bi}Mi=1 is a basis of Λ and M is the rank of Λ.
We consider full rank lattices (M = N ) in this paper. The
N×N matrix G whose rows are the bi’s is a generator matrix.

Given a generator matrix G, the lattice Λ is

Λ =
{
x ∈ RN : x = zG, z ∈ ZN

}
= ZNG. (2)

We define the fundamental volume of the lattice as Vol(Λ) =
| det(G)|. Let H = G−1. Another definition of Λ is

Definition 2:

Λ =
{
x ∈ RN : xH is an integer vector

}
. (3)

This second definition of a lattice appeared in modern
coding theory with a sparse matrix H . The sparsity of H is

essential for the iterative decoding of Λ in high dimensions
via message passing over its factor graph [2].

In the literature on mathematics and coding theory, the
pioneering work by Leech and Sloane [3] opened new ways for
building lattices out of error-correcting codes. More than four
decades later, Construction A proposed by Leech and Sloane
is considered to be the most promising lattice construction
both for theoretical and practical reasons. Other algebraic
constructions are found in the bible of sphere packings and
lattices [4]. Construction A is described in the next section.
Section III elucidates the construction of LDA [5] [6] [7] and
GLD [8] [9] lattices considered to be among the most powerful
families of lattices nowadays due to their reduced-complexity
decoding and their excellent error rate performance.

II. CONSTRUCTION A OVER Fp

Let C[N,K]p be a linear code of dimension K and length
N defined over Fp, where Fp is a prime finite field [10].
Elements of Fp can be embedded in Z by two standard
mappings. The first mapping is natural, it identifies elements
of Fp with the most common coset leaders of Z/pZ which
is the set of integers {0, 1, . . . , p − 1}. The second mapping
is centered on 0 and corresponds to the set of integers
{−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2}, for p odd prime,
which is more convenient to study the distribution of Euclidean
distances. The lattice pZN has pN cosets in ZN . A subset of
size pK cosets is selected among the pN cosets via the code
C. This yields a lattice, a coset code in Forney’s terminology
with the formula [11]:

Λ = C[N,K]p + pZN . (4)

The ring Z can be replaced by other rings such as the ring
of Gaussian integers Z[i] and the ring of Eisenstein integers
Z[ω]. Construction A can also be used to build Λ from the
ring of integers OK of a number field K by Λ = C[N,K]p +
IN , where I is a prime ideal of OK and C[N,K]p should be
correctly embedded in OK [4].

Construction A defined by (4) should be thought of as
drawing pK points representing the codewords of C inside
the cube [0, p[N and then paving the whole space RN by
translating the cube by multiples of p in all directions. The
volume of Λ is Vol(Λ) = pN−K and its theta series coincides
with the theta series of C inside the ball of radius (p− 1)/2
centered on the origin.
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III. LDA AND GLD CONSTRUCTIONS

Let Λ be a lattice built via formula (4). If C[N,K]p is
an LDPC code [12] defined over Fp, then Λ is called an
LDA lattice. The family of LDA lattices was studied in
[5] [6] [7]. Assume that the variable node degree and the
check node degree are chosen such that the LDPC graph
has good expansion properties. Under such a condition, the
LDA ensemble defined by random coefficients in Fp associated
to LDPC check nodes is capable of attaining Poltyrev limit
for infinite constellations [6] and Shannon capacity for finite
constellations [7].

If C[N,K]p is a GLD code defined over Fp, then Λ is called
a GLD lattice. See [13] [14] for a definition of GLD codes. We
will focus in the remaining part of this section on the newly
proposed family of GLD lattices [8]. We start by introducing
notations to reach a general definition of GLD lattices that is
not necessarily related to Construction A.

Consider two lattices Λ1 and Λ2 of same rank N . Our ob-
jective is to create a better lattice Λ by taking their intersection

Λ = Λ1 ∩ Λ2 (5)

The intersection implies a superposition of the constraints
on a lattice point x given by the two matrices H1 = G−1

1 and
H2 = G−1

2 , where G1 and G2 are generator matrices for Λ1

and Λ2 respectively.

Λ =
{
x ∈ RN : xH is integer, where H = [H1H2]

}
. (6)

Do we get an improvement from (5) or (6)? Think about
the figure of merits of Λ, e.g. the Hermite constant defined
as the ratio of the minimum Euclidean distance of Λ by its
normalized fundamental volume

d2Emin(Λ)

Vol(Λ)2/N
. (7)

The intersection results in an increase of both d2Emin(Λ) and
Vol(Λ). It is not sure whether we get a better figure of merit.
Other issues encountered while making the intersection are

• For large dimensions N , how can we build Λ = Λ1 ∩Λ2

if we do not know how to build the two lattices Λ1 and
Λ2 in advance?

• Λ1 ∩ Λ2 may be equal to aZN , i.e. it is an uncoded
modulation. A bi-dimensional illustration is given in
Figure 1.

• Λ1 ∩ Λ2 may have a lower rank. A bi-dimensional
illustration is given in Figure 2.

• Λ1 ∩ Λ2 may be reduced to {0}. A bi-dimensional
illustration is given in Figure 3.

In order to solve the issues listed above, let Λ0 be an
elementary lattice of small dimension n. Let L = N/n, L large
enough. Define Λ1 = Λ⊕L

0 , i.e. the direct sum of L copies of
Λ0. Finally take Λ2 = π(Λ1), where π is a permutation of
{1, 2, . . . , N}. Our definition of a GLD lattice is

Definition 3:

Λ = Λ1 ∩ Λ2 = Λ⊕L
0 ∩ π(Λ⊕L

0 ). (8)

Figure 1. D2 ∩ Z2 = D2 =
√
2Rot(Z2) (uncoded rotated modulation).

Figure 2. A2 ∩ Z2 = Z (rank was reduced).

Figure 3. A2 ∩ π(A2) = {0} (collapse to 0).

For Λ1, its matrix H1 has L copies of H0. For Λ2, H2 has
the same rows as H1 but their order is defined by π (row
permutation).

H1 =




H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0


 (9)

and H = [H1H2] = [H1 π(H1)] is N × 2N . A good
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choice for the elementary lattice Λ0 is to use Construction A.
Λ0 = C0[n, k]p + pZn. We get an integer GLD lattice

Λ = (C0 + pZn)⊕L ∩ π((C0 + pZn)⊕L)

=
(
C⊕L

0 ∩ π(C⊕L
0 )

)
+ pZN

= CGLD[N,K]p + pZN . (10)

Proposition 1: The integer GLD lattice satisfies pZN ⊆
Λ ⊆ ZN , Λ has rank N , Vol(Λ) = pN−K = p2N(1−k/n), and
min(p2, dH(CGLD)) ≤ d2Emin(Λ) ≤ p2 where dH(CGLD) is
the minimum Hamming distance of CGLD.
Non-binary GLD codes CGLD[N,K]p are asymptotically
good as shown in [9]. This property of their minimum
Hamming weight has a direct effect on their gap to capacity
on unconstrained Gaussian channels.

The performance of a GLD lattice under iterative decoding
in dimensions N = 1000 and N = 32000 is plotted in
Figure 4. It shows the symbol error rate (error probability on
lattice coordinates) versus the gap in decibels to Poltyrev limit
on a Gaussian channel. The finite field size is p = 11.
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Figure 4. Numerical results for a GLD lattice, Λ0 = [4, 3, 2]11 + 11Z4 .

Let Λf be a lattice and Λ a sublattice both built from
Construction A with codes of rate Rf and R respectively.
A finite Voronoi constellation is built from the quotient group
Λf/Λ and its size is [11]

|Λf/Λ| = pN(Rf−R). (11)

In the next section, we discuss the goodness of finite LDA
and GLD lattice constellations.

IV. GOODNESS OF LDA AND GLD CONSTELLATIONS

A finite Voronoi constellation carved from the LDA ensem-
ble is proven to achieve Shannon capacity [7]. An overview
and discussion of the proof is given below. The same strategies
can be applied to GLD ensembles with similar results. See [9]
as an intermediate step for the proof of GLD goodness on
the unconstrained Gaussian channel. In this section, we try to
give a general description of the exact proof in [7], by the

means of a heuristic argument that does not take into account
all the probabilistic and asymptotic aspects of the rigorous
demonstration. Our result is based on the following facts:

• The points of the Voronoi constellation typically have the
same norm and lie very close to the surface of a sphere
of a given radius (see Lemma 4.3 in [7]).

• The AWGN noise is typically orthogonal to the sent vec-
tor, in the sense that, if x is our transmitted constellation
point and w is the noise, then xwT is relatively small in
norm (cf. Lemma 4.4 in [7]).

• The effective noise due to MMSE scaling and the sent
point are not decorrelated. Consequently, it is not possible
to show that lattice decoding works with very high
probability independently of the sent point. Nevertheless,
Theorem 4.1 in [7] is based on the fact that the number of
points for which this does not happen is not big enough
to perturb the average error probability of the family.

• For a certain channel output (MMSE-scaled, in this case),
we look for lattice points inside a sphere centered at it
and with a typical radius to be specified later. There will
be no decoding error if the only point in this decoding
sphere is the transmitted one.

Consider that when we use the adverb “typically”, we mean
“with probability tending to 1 when N tends to infinity”. The
accurate proof is treated in all detail in [7], but let us try to
understand the geometric sense of the elements that we have
just listed. So, suppose that the channel input is a point x
whose norm is fixed to be ||x|| =

√
NP , for some P > 0.

Suppose also that xwT = 0; if y = x + w is the channel
output, then ||y||2 = ||x||2 + ||w||2. Now, let us multiply y
by a scalar value α = P/(σ2 + P ) (Wiener coefficient) such
that the distance between x and αy is minimized. This lets
us guess that MMSE lattice decoding helps in bringing the
decoder input closer to the sent point.

0

x

y

w

αy

h

Figure 5. Geometric interpretation of MMSE scaling.

The receiver passes αy to the lattice decoder and there will
be no decoding error if there is no other lattice point closer
to αy than x. We will show that this typically happens if:

1) SNR > 1.
2) P ≈ p2(1−R)/2πe;
3) ||αy − x||2 asymptotically does not exceed

Np2(1−Rf )/2πe.
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Notice that the previous bound concretely means that our
constellation tolerates an “effective” noise after MMSE scaling
whose variance per dimension is at most as strong as the noise
corresponding to Poltyrev capacity. We intuitively understand
that this can be the good condition, admitting that no issue
comes from the fact that the “effective” noise and the sent
point x are not decorrelated (here, we have no dither to
guarantee that).

The condition on the signal-to-noise ratio can be simply
understood with the following argument: let us call h = αy−x
and suppose that it takes the maximum value according to
the third condition above here, ||h||2 = Np2(1−Rf )/2πe =
Nσ2

dec. We use the index “dec” to indicate that the quantity
corresponds to the (upper bound of the) “decodable” effec-
tive noise. If we want good decoding, we need αy to be
closer to x than to 0, because the latter always belongs to
the lattice constellation; in other terms, it is necessary that
||αy||2 > ||h||2. Again, a Euclidean geometry argument based
on Figure 5 shows that (always supposing that xwT = 0)

Nσ2
dec = ||h||2 =

||x||2||w||2
||y||2 =

N2Pσ2

NP +Nσ2
=

NPσ2

P + σ2
,

(12)
while

||αy||2 =
P 2(NP +Nσ2)

(P + σ2)2
=

NP 2

P + σ2
.

Then, ||αy||2 > ||h||2 becomes

NP 2

P + σ2
>

NPσ2

P + σ2
,

that is P > σ2 or, equivalently, SNR > 1.
Taking ||h||2 = Nσ2

dec corresponds to a maximum rate for
the constellation that equals capacity, as can be understood
from the following calculation (that, again, is based on the
approximations done till now and has only a demonstrative
purpose): from (12) we can derive that

σ2 =
Pσ2

dec

P − σ2
dec

.

This implies that

SNR =
P

σ2
=

P

σ2
dec

− 1.

To conclude, recall that we make the hypothesis that P =
p2(1−R)/2πe; this, together with (11) leads to

1

2
log2(1 + SNR) =

1

2
log2

(
P

σ2
dec

)
(13)

≈ 1

2
log2(p

2(Rf−R))

=
1

N
log2(p

N(Rf−R)), (14)

which is the rate of our constellation.

Originality of our proof and lattice decoding of αy: what
we have explained till now gives an intuitive description of
the typical geometry that characterizes the AWG noise and

the random Voronoi constellations of Construction A nested
lattices. Now we drop a hint on the original idea behind our
proof that allows to avoid dithering. The main argument is
the following: if αy is the real point that the receiver passes
to the lattice decoder, we would like to ensure that the only
lattice point inside the decoding sphere Bαy,N (

√
Nσdec) is

the sent point. It was shown in [7] that the probability of a
decoding failure (without MMSE) is asymptotically negligible
for the unconstrained channel, independently on the sent point
x. This last feature makes the big difference with the case of
MMSE lattice decoding. Indeed, the average argument that we
apply will lead to the estimation of (a more elaborated version
of) the following sum:

∑

z∈Bαy,N (
√
Nσdec)

P{z ∈ Λf | x ∈ Λf}. (15)

The multiplication by α adds some correlation between x and
αy. One can interpret Erez and Zamir’s dithering technique
as a method of eliminating this correlation [1].

We do not use dither and consequently there will be some
points x’s for which the previous sum takes a “big” value. Our
analysis shows that the proportion of this kind of x’s in the
constellation is very small and the total error probability still
goes to 0 when N tends to infinity.
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Abstract—We give an overview of the history of the field of
“codes on graphs," including a survey of recent developments.

I. INTRODUCTION

The subject of “codes on graphs" is concerned with the
representation of codes by efficient graphical models. Such a
model may be used to specify a decoding algorithm, whose
complexity is governed by the complexity of the model. It
may also give insight into structural properties of the code.

In the style of behavioral system theory [25], these models
involve three kinds of elements: external (symbol) variables,
representing code symbols; internal (state) variables, which
may be freely specified by the model designer; and constraint
codes, each of which involves a subset of the external and
internal variables. The behavior B of the model is the set of all
symbol/state variable configurations that satisfy all constraints.
The code C represented by the model is the set of all symbol
variable configurations that appear in some valid symbol/state
configuration in B.

For example, Figure 1 shows three graphical models for
the well-known (24, 12, 8) Golay code: a conventional trellis
(state-space) model, represented by a simple chain graph [19];
a cycle-free representation on a simple “cubic" graph [22];
and a tail-biting trellis model on a single-cycle graph [1]. All
parameters are the best possible (smallest) for the model type.

Linear codes are often used for Hamming-space coding,
whereas group codes are often used for Euclidean-space
coding (e.g., lattice codes, trellis codes). Consequently, we
generally consider linear or group models; i.e., the variable
alphabets are vector spaces or groups, and the constraint codes
are linear or group codes. Interestingly, almost all results in
this field apply equally to linear or group models, and are most
easily and insightfully proved by elementary group-theoretic
techniques.

II. HISTORY

The earliest “codes on graphs" were Gallager’s low-density
parity-check (LDPC) codes [14] (although Gallager never
drew a graph). Gallager also invented the iterative sum-product
(’“belief propagation”) decoding algorithm. These remarkable
achievements were largely forgotten for many decades. Twenty
years later, Tanner [20] restarted the field with actual graphs
(bipartite “Tanner graphs") and many important results, includ-
ing the optimality of the sum-product algorithm on cycle-free
graphs; however, his work was also forgotten.

The first “codes on graphs" of practical interest were linear
convolutional codes. In the 1960s, it was recognized that
linear convolutional codes could be understood as discrete-
time linear systems over finite fields, and analyzed using
discrete-time linear systems theory [4]. A unique feature of
convolutional codes was their depiction using a trellis diagram,
due to the discrete finite alphabets used in coding [5].

In the 1980s, the emergence of Euclidean-space codes (e.g.,
lattice and trellis codes) led to increased interest in block and
trellis codes over groups as “coset codes" [2], [6]. It was found
that many of the results of discrete-time linear systems theory
could be rederived using only their group properties [12].

The 1990s saw much research towards finding efficient
trellis representations of linear block codes, well summarized
in [21]. The main result is that a code with a given symbol
ordering has an essentially unique minimal trellis representa-
tion; the main problem is therefore to find the best ordering
for a given code. The same result holds for group codes [12].

A more important practical development in the 1990s was
the invention of turbo codes, which used linear convolutional
codes, and the rediscovery of Gallager’s LDPC codes, which
were both shown to be capacity-approaching in a practical
sense. The important thesis of Wiberg [23], [24], entitled
“Codes and decoding on general graphs," reawakened the field
of “codes on graphs" by rediscovering many of the results of
Tanner, and generalizing them to systems with state variables,
thereby developing a unified theory of LDPC codes, turbo
codes, trellis codes, and their decoding algorithms.

One offshoot of this work was increased interest in tail-
biting trellis codes, which may be understood as trellis codes
on a circular time axis. Wiberg showed that the maximum state
space size for a tail-biting trellis model could be as small as
the square root of the best maximum state space size for a
conventional trellis model. For example, for the (24, 12, 8)
Golay code, the best conventional trellis model, shown in
Figure 1(a), has a state space size of 256 at its center, whereas
the tail-biting trellis model shown in Figure 1(c) has all state
space sizes equal to 16. A general theory of linear tail-biting
trellis representations was developed in [16].

These developments triggered the development of “factor
graphs" as a general method of representing “sum-of-products"
expressions (e.g., partition functions) by graphical models
[17]. If all “factors" are indicator functions of codes, then a
factor graph is isomorphic to a graphical model of a code, but
the factor graph formalism is much more general.
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Fig. 1. Graphical models for (24, 12, 8) Golay code: (a) conventional trellis; (b) cycle-free; (c) tail-biting trellis.

III. MORE RECENT DEVELOPMENTS

In [7], the foundations of the subject were revisited. It
was shown that any realization R defined by sets of symbol
variables, state variables and constraints could be made into
a normal realization by trivial modifications. Furthermore, a
normal realization has a natural representation by a normal
graph, in which constraints are represented by vertices, state
variables by edges, and symbol variables by half-edges. (The
three examples of Figure 1 are normal graphs.) Loeliger [18]
subsequently integrated these conventions into “normal factor
graphs."

An important consequence of this reformulation is normal
realization duality: if R is a normal realization that realizes a
linear or group code C, then a dual normal realization R◦ may
be defined by a set of simple local substitutions (i.e., replace
each constraint Ci by its dual constraint (Ci)⊥, each variable
by its dual variable, and each edge by a sign-inverting edge);
then R◦ realizes the dual code C⊥. For example, in each of the
binary linear realizations of Figure 1, each of the constraint
codes is self-dual, so R◦ = R, implying C⊥ = C. This
general theorem has myriad applications, including showing
how to decode a graph by Fourier-transforming variables and
decoding the dual graph (of which a particular instance is the
“tanh rule" of turbo decoding).

In [7], the cut-set bound of Wiberg [23], [24] was rederived
for normal realizations. It follows that for normal realizations
on cycle-free graphs, there is a canonical minimal realization
that is unique up to isomorphism; furthermore, for general
graphs, the cut-set bound constrains the product of the sizes
of state spaces in a cut set. The three realizations of Figure 1
meet all possible cut-set bounds with equality.

In [8], similar cut-set bounds are developed for constraint
codes in cycle-free realizations, rather than for state spaces. It
is shown that the minimum maximum constraint code size
can always be achieved by a “cubic" realization in which

no constraint code (vertex) has degree greater than 3. Figure
1(b) is an example of such a “cubic" realization in which
the maximum constraint code size is 29, which is believed to
be the best possible for the Golay code, and in addition the
maximum state space size is only 26.

More recently, [11] studied the system-theoretic properties
of trimness, properness, observability and controllability of
linear and group realizations. Trimness means that in any
constraint code, each state alphabet consists only of the
values that occur in some allowable configuration, and thus is
obviously desirable. Properness means that in any constraint
code, knowledge of all input variables and all but one state
variable determines the final state variable; it has been much
less appreciated. It is shown that trimness and properness are
dual properties, so both should be valued equally. Moreover,
it is shown that if any constraint code is not trim and proper,
then the realization is reducible. Finally, a finite cycle-free
realization is minimal if and only if every constraint code is
trim and proper.

A realization R is called observable if there is precisely one
configuration in B for each codeword in C, which seems obvi-
ously desirable. R is called controllable if it has independent
constraints; e.g., in an LDPC realization, if the parity checks
are independent. Controllability is not so obviously desirable;
indeed, practical LDPC codes sometimes use redundant parity
checks. Nonetheless, it is shown in [11] that a linear or group
realization R is observable if and only if its dual realization
R◦ is controllable.

A trim and proper (i.e., minimal) cycle-free realization is
observable and controllable; thus unobservable or uncontrol-
lable behavior must be supported on cycles in a trim and
proper normal realization. Any unobservable or uncontrollable
realization may be locally reduced, eventually to a trim, proper,
observable and controllable realization.

In [9], many of these results are simplified and generalized.
It is shown that the single external state space of a trim and
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proper leaf fragment is uniquely determined, up to isomor-
phism. This result leads to a simple proof of the “minimal ⇔
trim + proper" theorem of [11]. It is also observed that a cyclic
realization may be partitioned into a number of cycle-free leaf
fragments, which act as static interface nodes, and a leafless
cyclic 2-core, which is the essential dynamical core of the
realization, as illustrated in Figure 2. A new proof is given of
the result of [11] that any unobservability or uncontrollability
of a trim and proper realization R must reside within its 2-
core.

An ←↩→��
XX Ãn ↔ Sn
· · ·

A2 ←↩→��
XX Ã2 ↔ S2

A1 ←↩→��
XX

�

�

�

�
C̃

Ã1 ↔ S1
interface nodes 2-core R̄

Fig. 2. Partition of a graphical realization R into its 2-core R̄ and n cycle-
free leaf fragments.

Very recently, Conti and Boston [3] have given a simpler
and more insightful proof of the Koetter-Vardy Factorization
Theorem for linear tail-biting trellis realizations. In [10], this
result has been generalized to group tail-biting trellis realiza-
tions, and it has been shown that there is unique factorization
into “controller granules" as in [12], except that the granules
arise from the behavior B rather than the code C.

IV. FUTURE WORK

An immediate objective is to dualize the results of [10],
using a nice dual observer granule decomposition. However,
as discussed in [13], such a dualization is not straightforward,
even for minimal conventional trellis realizations.

It would also be nice to extend the results of [10] to non-
trellis realizations. However, it is known (see [11, Appendix
A]) that unique factorization does not generally hold for non-
trellis linear and group realizations, even simple cycle-free
realizations. New ideas will therefore be needed.

Finally, an ultimate goal for our research is to redevelop all
of the principal results of classical discrete-time linear systems
theory using a purely group-theoretic approach. However, the
classical theory generally assumes an infinite time axis. A
possible approach would be to regard a time-invariant or
periodically time-varying linear or group system on an infinite
time axis as the “limit" of a sequence of covers of a linear or
group tail-biting trellis realization on a sequence of finite time
axes of increasing length. Such an approach would hopefully
be purely algebraic, and thus avoid the subtle topological
issues discussed in [13].
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Positivity, Discontinuity and Finite Resources for
Arbitrarily Varying Quantum Channels

Holger Boche
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Abstract

This work is motivated by a quite general question: Under which circumstances are the capacities of information
transmission systems continuous? The research is explicitly carried out on finite arbitrarily varying quantum channels
(AVQCs).
We give an explicit example that answers the recent question whether the transmission of messages over AVQCs can
benefit from assistance by distribution of randomness between the legitimate sender and receiver in the affimative.
The specific class of channels introduced in that example is then extended to show that the unassisted capacity
does have discontinuity points, while it is known that the randomness-assisted capacity is always continuous in the
channel. We characterize the discontinuity points and prove that the unassisted capacity is always continuous around
its positivity points.
After having established shared randomness as an important resource, we quantify the interplay between the
distribution of finite amounts of randomness between the legitimate sender and receiver, the (nonzero) probability
of a decoding error with respect to the average error criterion and the number of messages that can be sent over a
finite number of channel uses.
We relate our results to the entanglement transmission capacities of finite AVQCs, where the role of shared
randomness is not yet well understood, and give a new sufficient criterion for the entanglement transmission capacity
with randomness assistance to vanish.
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Abstract—We compute the supremum of the Rényi entropy
rate over the class of stationary stochastic processes having
autocovariance sequences that begin with p+1 given values. Our
results are closely related to Burg’s maximum entropy theorem
on the supremum over the same class but of the Shannon entropy
rate.

I. INTRODUCTION

Motivated by spectral estimation, Burg found the maximum
of the differential Shannon entropy rate over the class of sta-
tionary stochastic processes whose autocovariance sequences
begin with p+1 given values [1], [2, Theorem 12.6.1]. Here we
consider the same class, but we maximize a different objective
function: the Rényi entropy rate.

To recall the definition of the Rényi rate of a stochastic
process, we begin with the Rényi entropy of a random vector
or of a (joint) density. The order-α Rényi entropy of a
probability density function (PDF) f is defined as

hα(f) =
1

1− α log

∫ ∞

−∞
f(x)α dx, (1)

where α can be any positive number other than one. The
integral on the RHS of (1) always exists, possibly taking on
the value +∞, in which case we define hα(f) = +∞ if
0 < α < 1 and hα(f) = −∞ if α > 1. When a random
variable (or random vector) X is of density fX we sometimes
write hα(X) instead of hα(fX).

The order-α Rényi entropy rate (or “Rényi rate” for short)
of a stochastic process (SP) {Xk} is defined as

hα({Xk}) = lim
n→∞

1

n
hα
(
Xn

1

)
,

whenever the limit exists. Here we use the notation Xj
i to

denote the tuple (Xi, . . . , Xj).
The Rényi entropy rate of finite-state Markov chains was

computed by Rached, Alajaji, and Campbell [3] with exten-
sions to countable state space in [4].1 The Rényi entropy rate
of stationary Gaussian processes was found by Golshani and
Pasha in [5]. Extensions to other types of rate are explored in
[6].

The Rényi entropy is closely related to the differential
Shannon entropy:

h(f) = −
∫ ∞

−∞
f(x) log f(x) dx. (2)

1In the discrete case the density in (1) is replaced by the probability mass
function, and the integral is replaced by a sum.

(The integral on the RHS of (2) need not exist. If it does
not, then we say that h(f) does not exist.) Under some mild
technical conditions [7],

hα(f) ≤ h(f), for α > 1; (3)
hα(f) ≥ h(f), for 0 < α < 1; (4)

and
lim
α→1

hα(f) = h(f). (5)

The entropy of a pair of independent random variables is
the sum of the individual entropies. This is true for both
differential Shannon entropy and Rényi entropy. But the two
entropies behave differently when the random variables are
dependent. While the differential Shannon entropy of a pair is
always upper-bounded by the sum of the individual entropies,
this need not hold for Rényi entropy: the Rényi entropy of a
random vector can exceed the sum of the Rényi entropies of
its components. Consequently, the random vector of highest
Rényi entropy among all those whose components have some
prespecified distribution need not have independent compo-
nents. This is, of course, also true if the distributions of the
components are not specified but only constrained.2 Likewise,
the supremum of the Rényi rate subject to constraints on the
marginal distribution is not achieved by memoryless processes
[8].

Here we focus on the supremum of the Rényi rate subject to
autocovariance constraints. We show that the solution exhibits
a dichotomy: when the order α is smaller than one, the supre-
mum is infinite; and when it is greater than one the supremum
is the same as if we were maximizing the Shannon rate (with
the supremum thus being computable using Burg’s theorem).
Note, however, that the supremum—unlike the supremum in
Burg’s theorem—is not achieved by a Gauss-Markov process.
It is, however, approachable by stochastic processes having the
same autocovariance sequence as the Gauss-Markov process.

II. PRELIMINARIES

Key to our results is the following proposition [8, Corol-
lary 4]:

Proposition 1 (Rényi Rate under a Variance Constraint).
1) For every α > 1, every σ > 0, and every ε > 0 there

exists a centered stationary SP {Yk} whose Rényi entropy

2Nevertheless, the maximization of Rényi entropy subject to linear con-
straints does typically have a simple solution [8].
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rate exceeds 1
2 log(2πeσ

2)− ε and which satisfies

E[YkYk′ ] = σ2 I{k = k′}, (6)

where I{statement} is 1 when statement is true and 0
when it is not.

2) For every 0 < α < 1, every σ > 0, and every M > 0
there exists a centered stationary SP {Yk} whose Rényi
entropy rate exceeds M and which satisfies (6).

To address some technical boundary issues we shall also
need the following lemma.

Lemma 2. Let f1, . . . , fp be probability density functions
on Rn, and let q1, . . . , qp ≥ 0 be nonnegative numbers that
sum to one. Let f be the mixture density

f(x) =

p∑

`=1

q`f`(x), x ∈ Rn.

Then

hα(f) ≥ min
1≤`≤p

hα(f`).

Proof. For 0 < α < 1 this follows by the concavity of Rényi
entropy. Consider now α > 1:

log

∫
fα(x) dx = log

∫ ( p∑

`=1

q`f`(x)

)α
dx

≤ log

∫ p∑

`=1

q`f
α
` (x) dx

= log

(
p∑

`=1

q`

∫
fα` (x) dx

)

≤ log max
1≤`≤p

∫
fα` (x) dx

= max
1≤`≤p

log

∫
fα` (x) dx,

from which the claim follows because 1/(1− α) is negative.

III. RESULTS

Given α0, . . . , αp ∈ R, we consider the family of all
stochastic processes X1, X2, . . . for which

E[XiXi+k] = αk,
(
i ∈ N, k ∈ {0, . . . , p}

)
. (7)

We assume that the (p + 1) × (p + 1) matrix whose Row-`
Column-m element is α|`−m| is positive definite. This implies
[9] that there exist constants a1, . . . , ap, σ2 and a p×p positive
definite matrix Kp such that the following holds:3 if the
random p-vector (W1−p, . . . ,W0) is of second-moment matrix
Kp (not necessarily centered) and if {Zi}∞i=1 are independent
of (W1−p, . . . ,W0) with

E[Zi] = 0, i ∈ N, (8a)
E[ZiZj ] = σ2 I{i = j}, i, j ∈ N, (8b)

3The Row-` Column-m element element of the matrix Kp is α|`−m|.

then the process defined inductively via

Xi =

p∑

k=1

aiXi−k + Zi, i ∈ N (9)

with the initialization

(X1−p, . . . , X0) = (W1−p, . . . ,W0) (10)

satisfies the constraints (7).
By Burg’s maximum entropy theorem [2, Theorem 12.6.1],

of all stochastic processes satisfying (7) the one of highest
(differential) Shannon entropy rate is the p-th order Gauss-
Markov process. It is obtained when (W1−p, . . . ,W0) is a
centered Gaussian and {Zi} are IID ∼ N

(
0, σ2

)
. Its Shannon

entropy rate is

lim
n→∞

1

n
h(X1, . . . , Xn) =

1

2
log(2πeσ2).

Our interest is in the maximum Rényi entropy rate.

Theorem 3. The supremum of the order-α Rényi entropy rate
over all stochastic processes satisfying (7) is +∞ for 0 < α <
1 and is equal to the Shannon entropy rate of the p-th order
Gauss-Markov process for α > 1.

Proof. We first consider the case where α > 1. Let
a1, . . . , ap, σ

2 and Kp be as above, and let ε > 0 be arbitrarily
small. By Proposition 1 there exists a stochastic process {Zi}
such that (8) holds and such that

lim
n→∞

1

n
hα(Z1, . . . , Zn) ≥

1

2
log(2πeσ2)− ε. (11)

The matrix Kp is positive definite, so by the spectral repre-
sentation theorem we can find vectors w1, . . . ,wp ∈ Rp and
constants q1, . . . , qp > 0 with q1 + · · ·+ qp = 1 such that

Kp =

p∑

`=1

q`w`w
T
`. (12)

(The vectors are eigenvectors of Kp, and the constants
q1, . . . , qp are the scaled eigenvalues of Kp.) Draw the random
vector W independently of {Zi} with

Pr[W = w`] = q`,

so that, by (12),

E[WWT] = Kp.

Construct now the stochastic process {Xi} using (9) initialized
with (X1−p, . . . , X0)

T being set to W.
The resulting stochastic process thus satisfies the constraints

(7). We next study its Rényi entropy rate. To that end, we study
the Rényi entropy of the vector Xn

1 . Let fX denote its density,
and let fX|w`

denote its conditional density given W = w`,
so

fX(x) =

p∑

`=1

q`fX|w`
(x), x ∈ Rn.
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Consequently, by Lemma 2,

hα(fX) ≥ min
1≤`≤p

hα(fX|w`
). (13)

We next study hα(fX|w`
) for any given ` ∈ {1, . . . , p}.

Recalling that W and {Zi} are independent, we conclude that,
conditional on W = w`, the random variables X1, . . . , Xn are
generated inductively via (9) with the initialization

(X1−p, . . . , X0)
T = w`.

Conditionally on W = w`, the random variables X1, . . . , Xn

are thus an affine transformation of Z1, . . . , Zn. The transfor-
mation is of unit Jacobian, and thus

hα(fX|w`
) = hα(Z1, . . . , Zn), ` ∈ {1, . . . , p}. (14)

From this and (13) it follows that

hα(fX) ≥ hα(Z1, . . . , Zn).

Dividing by n and using (11) establishes the result.
We next turn to the case 0 < α < 1. For every M > 0

arbitrarily large, we use Proposition 1 to construct {Zi} as
above but with

lim
n→∞

1

n
hα(Z1, . . . , Zn) ≥ M.

The proof continues as for the case where α exceeds one.

IV. DISCUSSION

Theorem 3 has bearing on the spectral estimation problem,
i.e., the problem of extrapolating the values of the autocovari-
ance sequence from its first p + 1 values. One approach is
to choose the extrapolated sequence to be the autocovariance
sequence of the stochastic process that—among all stochastic
processes that have an autocovariance sequence that starts with
these p+ 1 values—maximizes the Shannon rate, namely the
p-th order Gauss-Markov process (Burg’s theorem).

A different approach might be to choose some α > 1 and to
replace the maximization of the Shannon rate with that of the
order-α Rényi rate. As we next argue, Theorem 3 shows that
this would result in the same extrapolated sequence. Indeed,
inspecting the proof of the theorem we see that the stochastic
process {Xi} that we constructed, while not a Gauss-Markov
process, has the same autocovariance sequence as the p-
th order Gauss-Markov process that satisfies the constraints.
And, for α > 1 the supremum can only be achieved by a
stochastic process of this autocovariance sequence: for any
other autocovariance function the Rényi rate is upper bounded
by the Shannon rate (because α > 1), and the latter is upper
bounded by the Shannon rate of the Gaussian process, which,
unless the autocovariance sequence is that of the p-th order
Gauss-Markov process, is strictly smaller than the supremum
(Burg’s theorem).
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Abstract

We develop a unified framework for understanding the fundamental limits of a wide range of signal reconstruction
problems such as image inpainting, super-resolution, signal separation, denoising, and recovery of signals that
are impaired by, e.g., clipping, impulse noise, or narrowband interference. An information-theoretic formulation
allowing for random signals leads us to an almost lossless analog signal separation problem and reveals Minkowski
dimension as the foundational element of the theory. As a byproduct, we discover a new technique for showing that
the intersection of generic subspaces with subsets of sufficiently small Minkowski dimension is empty. This result
can be viewed as a measure-theoretic version of the null-space property widely used in compressed sensing theory.
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