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Abstract

In less than three decades, computers have evolved from bulky desktop units to tiny,

embedded chips that can communicate wirelessly with each other. Battery-powered and

stuffed with the latest sensing technologies, these networked embedded devices (NEDs)

have been pervading our world and are increasingly implanted in our cars, buildings, and

cities. From mobile phones, to surveillance systems, to contact-less payment systems –

a legion of sentient machines continuously record our behavior. Analyzing the massive

amounts of data collected by NEDs would be very valuable in many disciplines.

Unfortunately, the usage of NEDs remains cumbersome because a multitude of hardware

and software platforms have been developed – both in academia and industry – and

the communication protocols supported by these platforms are often proprietary and

incompatible with each other. Without a unified protocol to interconnect the various

devices, building and maintaining large-scale applications that integrate NED data and

services is an overly complicated process that requires extensive time, expert knowledge,

and resources. A common infrastructure that can scale and evolve as new devices are

added will be necessary to build a global network of NEDs installed and maintained by

different actors. This in turn would lower the access barrier to develop distributed sensing

applications (DSA) as devices could be shared and used easily. In this thesis, we address

the integration problem in large-scale DSAs and explore how to simplify access to data

and services of heterogeneous embedded devices.

Nowadays, access to Internet has become cheap and ubiquitous and it is very likely that

all sorts of electronic devices will increasingly possess Internet connectivity. Since the

mobile Web is rapidly becoming a commodity, this thesis suggests that the existing Web

infrastructure and its protocols should be leveraged to exchange data with NEDs. The

tremendous success of the World Wide Web as a global platform for easily sharing in-

formation and connecting people to computing services attests that simple and loosely



coupled approaches offer a high degree of scalability, robustness, and evolvability. This

success is due to a large extent to an open and uniform interface which enabled non-

experts to develop interactive hybrid applications rapidly. Unlike most protocols used in

embedded computing, Web standards in the Internet are widely used and highly flexible,

and in this thesis we suggest that this model would also be beneficial to future embedded

computing applications.

Our research bridges the fields of Web technologies and embedded sensing into a unified

vision called the Web of Things – where the Web’s well-known standards and tools are

leveraged to seamlessly blend NEDs with the existing Web infrastructure. By drawing

upon tools and techniques from both domains, we define the fundamental building blocks

of the Web of Things as an extension of the current Web paradigms. After evaluating

the limitations of current Web technologies with respect to the requirements of NED

applications, we propose practical solutions to alleviate these difficulties to enable the

development of efficient, event-driven, and scalable DSAs. Finally, we propose an end-

to-end, fully Web-based framework that fosters fast prototyping of distributed sensing

applications that run on top of heterogeneous NEDs.

In contrast to existing research in sensor networks, the central question explored in this

thesis is how much of the existing Web infrastructure can be reused to accommodate

embedded devices. We further examine the common belief that Web standards are inap-

propriate for building efficient DSAs. Experimental results and prototypes are provided

to support the hypothesis that using Web standards for NEDs is possible. Our results

further show that the Web is not only a suitable, but actually a desirable medium to

build distributed sensing applications that match the requirements for future large-scale

sensing systems.

We provide a comprehensive – conceptual and empirical – investigation of the usage of

Web standards to exchange information with embedded devices, and the contributions of

our work are multiple. First, our results are relevant to the sensor network and pervasive

computing communities, as they support the hypothesis that the existing Web ecosystem

is sufficient as is to build a new generation of scalable and flexible participatory appli-

cations on top of heterogeneous NEDs. Second, the Web community at large can build

upon our set of guidelines to push the Web into the physical world by integrating devices

in the Web fabric, thus making the idea of a Web API for the real world realistic. Third,

we explore the practical usage of Web technologies in various contexts, from smart spaces

to smart cities, and show that a fully Web-based infrastructure is an excellent basis to

build an ecosystem of reconfigurable cyber-physical systems. Finally, we hope the work

presented here will serve as inspiration for future Web developers and sensor network re-

searchers. Bridging the gap between these two worlds will very likely shed light upon an

unexplored design space to create more potent solutions for important societal problems,

from energy-efficient buildings, to catastrophe detection and response systems, to more

livable and enjoyable cities.



Résumé

En moins de trois décennies, les systèmes embarqués connectés (SEC) sont devenus om-

niprésents dans notre monde, car de plus en plus implantés dans nos maisons, voitures,

ou dans nos villes. Ces ordinateurs miniature peuvent communiquer entre eux en util-

isant différents protocoles radio et possèdent toutes sortes de capteurs qui mesurent une

myriade de paramètres (température, pression, mouvements, etc.). Des téléphones mo-

biles, aux systèmes de surveillance (CCTV), en passant par les systèmes de paiement sans

contact – une légion de machines enregistrent en continu nos comportements. L’analyse

des quantités massives de données recueillies par ces systèmes serait très utile dans de

nombreuses disciplines.

Malheureusement, l’utilisation de ces machines n’est de loin pas à la portée de tout le

monde en raison de la variété et de la complexité de plateformes matérielles et logicielles

disponibles – tant dans le milieu académique qu’industriel. De plus les protocoles de com-

munication utilisés par ces plates-formes sont souvent fermés ou sous licence, et surtout

incompatibles entre eux. Sans un protocole unique pour interconnecter ces dispositifs

hétérogènes, le développement et le maintien d’applications à grande échelle qui intègrent

les données recueillies par les SEC, resteront des processus complexes qui nécessitent

beaucoup de temps, de connaissances, et de ressources. Ces solutions compliquées sont

généralement basées sur un couplage étroit entre composants, ce qui entrave fortement la

flexibilité et la scalabilité de ces systèmes. De plus, dans la plupart des cas, ces données

collectées finissent isolées dans des applications fermées.

Une infrastructure commune qui peut s’adapter et évoluer en ajoutant de nouveaux SEC

sera un élément essentiel pour la réalisation d’un réseau mondial de SEC développé et

entretenu par différents acteurs. Cette infrastructure faciliterait l’usage des SEC et per-

mettrait à un grand nombre d’utilisateurs de créer leurs propres applications d’analyse de



données du monde réel. Dans cette thèse, nous abordons le problème de l’intégration à

grande échelle de ces systèmes afin de comprendre comment simplifier l’accès aux données

et aux services offerts par des dispositifs embarqués hétérogènes.

Aujourd’hui, l’accès à Internet est devenu omniprésent et bon marché, de plus il est

fortement probable que toutes sortes d’appareils électroniques pourront se connecter à

Internet. Étant donné que le Web mobile est sur le point de devenir une commodité, nous

suggérons que l’infrastructure existante ainsi que les protocoles du Web peuvent être mis

à profit afin d’échanger des données avec les SEC. Le formidable succès du World Wide

Web comme plateforme mondiale pour le partage facile d’informations et pour se connecter

aisément aux services informatiques atteste qu’une approche simple offre une robustesse et

une scalabilité hors pair. Ce succès est dû dans une large mesure à une interface ouverte

et homogène qui a permis à des programmateurs novices de développer facilement des

applications interactives hybrides. Contrairement à la plupart des protocoles utilisés dans

l’informatique embarquée, les standards du Web sont largement utilisés et très flexibles,

et dans cette thèse nous suggérons que ce modèle serait également bénéfique pour les

futures applications d’informatique embarquée.

La recherche présentée dans ce document de la combinaison des technologies Web et des

systèmes embarqués ont donné naissance à une vision appelée le Web des Objets où les

standards et outils du Web sont mis à profit pour intégrer ces SEC au Web de façon

transparente. En s’appuyant sur les outils de ces deux domaines, nous définissons ici les

éléments fondamentaux ainsi que des composants concret qui forment le Web des Objets.

Après avoir évalué les limites des technologies Web pour des applications en temps réel,

nous proposons des solutions pratiques pour compenser ces limitations afin de permettre

la mise en place d’applications de captage distribuées, qui sont entièrement basées sur les

technologies du Web. Enfin, nous proposons un système complet entièrement basé sur le

Web qui favorise le prototypage rapide d’applications qui se basent sur ces capteurs sans

fil. Nous discutons l’idée reçue selon laquelle les technologies Web ne sont pas adaptées

aux contraintes des réseaux sans fil et qu’il faut choisir des protocoles spécifiquement

adaptés et optimisés. Des résultats expérimentaux ainsi que des évaluations de prototypes

sont fournis afin de corroborer notre hypothèse : développer des applications de captage

distribuées en se basant uniquement sur des technologies Web est non seulement possible,

mais serait même souhaitable grâce aux nombreux avantages offerts par les standards

Web.

Les implications de notre travail sont multiples. En premier lieu, nos résultats sont

utiles aux chercheurs en systèmes embarqués car ils bénéficient de nouveaux outils pour

développer et tester de nouvelles applications distribuées rapidement. Grâce à la facilité

d’usage des standards Web ainsi que des évaluations et applications concrètes, nous of-

frons des bases solides qui confirment l’hypothèse que l’écosystème du Web permet de

construire une nouvelle génération d’applications participatives qui utilisent des capteurs



hétérogènes. En second lieu, la communauté Web au sens large peut aussi se baser sur

nos directives en permettant une meilleure intégration du monde physique dans le Web,

rendant ainsi l’idée d’une API Web pour le monde réel plausible. En troisième lieu, nous

explorons l’utilisation pratique des technologies Web dans différents contextes, en passant

de la domotique aux villes intelligentes, et montrons qu’une infrastructure entièrement

basée sur le Web serait une excellente base pour un écosystème reconfigurable de systèmes

cyber-physiques. Finalement, nous espérons que les travaux présentés ici pourront servir

d’inspiration pour les développeurs Web et chercheurs en réseaux de capteurs. Combler la

séparation entre ces deux mondes pourra très probablement donner lieu à la conception de

nouvelles solutions plus efficaces pour faire face aux problèmes majeurs de notre sociétés

tels que des bâtiments économes en énergie, les systèmes de détection et de réponse lors de

catastrophes naturelles et accidents, ou simplement créer des villes plus efficaces, moins

gourmandes en énergie, et plus agréables à vivre.
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CHAPTER 1

Introduction

“Inventions have long since reached their limit, and I see no hope for further

development. ”

Julius Sextus Frontinus (Highly regarded engineer in Rome, 1st century A.D.)

Two decades ago, a world where everyday objects can sense, analyze, store and ex-

change information existed only in science-fiction novels. Since then, the colossal progress

in embedded systems brought into the world a new class of computing devices – networked

embedded devices (NEDs) – which are tiny computers endowed with wireless communi-

cation and various sensors and actuators. NEDs make it possible to build large-scale,

distributed sensing applications (DSAs) (e.g., facilities and environmental monitoring)

with a much finer spatial and temporal resolution than previously possible. DSAs would

be an invaluable help for biology, civil engineering and many other disciplines – if only

they were simpler to program and to use. Despite the fact that companies building such
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products are blooming, the majority of academic and industrial research projects have

mainly targeted isolated, small-scale, and homogeneous networks customized for rather

specific applications. Because most projects rely on customized and often incompatible

hardware or software platforms, integration of different systems is very difficult and costly.

The vision where people, objects, and environments could be augmented with computa-

tional capabilities that provide information and services to assist us in everyday tasks was

introduced by Mark Weiser [239] and is commonly referred to as ubiquitous computing.

The pervasive availability and access to sensing and computing services embedded in the

world around us changes fundamentally the relationship and interaction between humans

and the physical world. From traditional desktop computers, digital services become de-

centralized and can follow us anywhere by allowing continuous interaction with the com-

puting infrastructure via various interfaces. New computing and interaction paradigms

such as context-aware computing [106] or natural interaction [231] are therefore required

to enable efficient interaction with digitally augmented environments.

1.1 Problem Statement

So far, little attention has been paid to the development of simple and functional

open systems for embedded devices that do not require experts that re-implement similar

functionalities over and over again. A large amount of work is still devoted to low-level

programming and to the creation of application-specific user interfaces, which is a waste

of resources that could be devoted to the development of the application logic.

Despite the increasing popularity of the Maker movement1 and the flourishing of open

source communities, the materialization of Mark Weiser’s vision [239] is still impeded

by the lack of clear, simple, and interoperable standards that allow embedded systems

to interact smoothly at a global scale. Simple tasks such as discovering dynamically

devices present in a particular location and interacting with them in an ad-hoc manner,

are unnecessarily complex problems that require customized applications. While various

protocols, as for example Universal Plug and Play (UPnP) [58], offer powerful mechanisms

for discovering and interacting with electronic appliances on a local network, a common

ground on which heterogeneous devices using different protocols could interact globally

and transparently is still missing.

A high-level, uniform, and simple protocol to connect to and interact with heterogeneous

devices is necessary to enable applications that can turn raw sensor data into social and

economic value. Such a protocol should ideally support both automated data acquisition

and direct, ad-hoc interaction with embedded devices, as shown in Figure 1.1. Finally,

scalable, distributed applications for sensor data collection, processing, and storage should

be easy to implement on top of this framework.

1See: http://radar.oreilly.com/2008/01/maker-movement-gaining-recogni.html

http://radar.oreilly.com/2008/01/maker-movement-gaining-recogni.html
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Figure 1.1: Emerging heterogeneous sensor network applications require uniform interfaces
for both automatic data acquisition and control, as well as for manual interaction.

1.2 Methods

Considering the recent progress in mobile communications, Internet access will very

likely soon become a commodity accessible from most mobile devices. According to the

IP for Smart Objects Alliance (IPSO) [111], an increasing number of embedded devices

will be supporting the IP protocol, so that many physical objects will be connected to

the Internet. This convergence of physical computing devices and the Internet provides

new design opportunities, as digital communication networks will soon not only contain

virtual data (images, text, etc.), but also real-time information from the physical world.

Early approaches for developing distributed applications were based on tightly coupled

solutions, where each element had full knowledge about the other peers and the functions

they offered (so-called RPC architectures). More recently, Web Services standards pro-

moted by organizations such as the World Wide Web Consortium (W3C) or OASIS have

become a standard solution for building distributed solutions, and an increasing number

of companies are using them for exchanging data across IT applications. Such tightly cou-

pled approaches are suited for interconnecting a few devices in controlled situations with

mostly fixed network topologies, but are not flexible enough to handle many resource-

constrained and mobile devices with unknown capabilities in dynamic environments.

In the last decade, a newer generation of Web applications – commonly referred to as Web

2.0 [193] – has become highly popular. In contrast to the early days of the Web, the focus

has shifted on the user and user-generated content on the one hand, and on the other

hand on a set of technologies (e.g., AJAX, RSS) that support the development of highly
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interactive interfaces that offer a rich user experience, comparable to common desktop ap-

plications. As shown by the high scalability of the Web, simple standards (HTTP/HTML)

can support efficient and flexible systems where a large variety of hardware and software

platforms coexist and interact smoothly.

Open access to data through Web services has enabled information to be reused across

independent systems, therefore has lowered the access barrier that allows people to develop

their own composite applications. The tremendous success of several Web 2.0 applications

(e.g., wikis, open source communities, blogs, and more recently Web mashups) illustrates

the benefits of such an open collaboration and information sharing for building large

participatory applications.

Considering the evolution of the Web and the need for a common technical infrastructure

to connect sensing devices and other smart physical objects, we propose in this thesis the

creation of the Web of Things as an evolution of the more abstract Internet of Things [182],

which extends the Web to encompass embedded computers and sensors using the same

principles and standards. Reusing the open and simple standards such as XML, HTTP, or

RSS that made the Internet so successful in order to allow physical devices (e.g., sensor

and actuator networks, mobile phones, etc.) to offer their services to the wide public

through the Web will allow any device to finally “speak” the same basic language as

other resources on the Web. This makes it much easier to integrate physical devices with

any other content – resource or service – on the Web which will enable the Internet to

reach out into the real world and sense real-time information about the everything around

us. In this thesis, we propose the development of tools which facilitate the publishing and

processing of data collected by networked embedded devices, and which promote the open

sharing of data and hardware infrastructures by maximizing reuse and scalability, while

minimizing coupling between participating devices. People, objects, and environments will

then become first class citizens of the World Wide Web, which will make them linkable,

discoverable, searchable, just like any other Web resource.

To realize the Web of Things vision, we start by dissecting the core architectural principles

the modern Web is built upon, and propose a set of patterns for implementing common

interaction types and functions commonly used in distributed sensing applications. First,

we describe the various methods for connecting NEDs to the Web by reusing the Web

model to support the different interaction types required for embedded devices. After-

wards, we design a software framework (gateways) that facilitates the integration of any

device into the Web and propose how gateways can be connected together to form a scal-

able and flexible infrastructure (the backbone) for the Web of Things. We then explore the

limitations of the request-response model of HTTP and propose a Web-based messaging

mechanism. On top of the infrastructure we implemented WISSPR, a Web-based infras-

tructure for sensor data stream collection, processing, sharing, and storage that allows to

build end-to-end distributed applications for NEDs solely using Web standards.
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1.3 Contributions

The goal of this thesis is the development of tools that facilitate the publishing and

processing of data collected by networked embedded devices, and promoting the sharing of

data and hardware infrastructures by maximizing reuse and scalability, while minimizing

coupling between participating devices.

The contributions of this thesis are multiple. First, we provide a comprehensive conceptual

and empirical investigation of the usage of Web standards as an interaction protocol for

embedded devices to date. Our results are relevant to the sensor network and pervasive

computing communities, as we show that the existing Web standards and tools can be

used as is to build a new generation of open scalable and flexible applications on top of

heterogeneous networked embedded devices. Second, the World Wide Web community

at large can build upon the set of best practices and guidelines to extend the Web as we

know it to the real world, by seamlessly integrating devices in the Web fabric, thus making

the idea of a Web API for the real-world realistic. By leveraging recent developments

in Web technologies such as real-time Web or the semantic Web, we demonstrate that

the Web is not only an appropriate – but actually a highly desirable – medium to build

distributed sensing applications that match the requirements for future, large-scale, ad-hoc

and heterogeneous sensing systems. In the long run, we expect that extending the existing

Internet to naturally integrate physical devices will reshape the Internet into a versatile

collection of physical and virtual resources that can be automatically (re)combined at

run-time.

1.4 Thesis Outline

This thesis is organized as follows: in Chapter 2 we introduce a high-level survey of

related work in device integration and data management. Chapter 3 introduces the core

architecture of the Web along with the founding principles of the Web of Things. Chapter

4 describes how to Web-enable devices, and in Chapter 5 we explore how to use smart

gateways for building scalable infrastructures. In Chapter 6 we present an application

framework for sensor data streams management. Finally, we discuss our results and

review our contributions in Chapter 7.
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CHAPTER 2

Background and Motivation

“The trouble with programmers is that you can never tell what a programmer is doing

until it’s too late.”

Seymour Cray (1925-1996)

In less than a decade, embedded devices equipped with sensors have become one of

the most promising technology for the 21st century [149, 52]. Yet, the true potentials of

this technology lies in the interconnection of isolated devices into a single unified network

– the Internet of Things. Because searching and using particular devices increases in

complexity with the size of the network, new approaches to design, deploy, and maintain

applications that run on top of a globally distributed collection of devices is needed. In

this chapter, we survey and discuss the related work in the field of integration of data and

services from embedded devices with applications.
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2.1 Motivation

Thanks to the recent progress in embedded systems, tiny embedded computers with

various sensing and communication capabilities are being increasingly used in many dis-

ciplines. From gaming [188], to logistics [142], to urban planning [203], to environmental

monitoring [223], embedded sensors and computers have become indispensable tools for

collecting and processing real-time data from the physical world. Because tremendous

benefits are to be gained from integrating the data generated by a distributed collection

of sensors with higher-level applications (business information systems, scientific analysis

frameworks, etc.), devices increasingly include wireless communication interfaces such as

Bluetooth, ZigBee, or even Wi-Fi to connect with the external world. Most mobile phones

nowadays can directly connect to the Web using 3G/EDGE, and probably soon WiMax

as well.

2.1.1 Networked Embedded Devices (NEDs)

The central elements of this thesis are networked embedded devices (NEDs), which

we define as any electronic device with constrained computational power and/or energy

resources, equipped with a wireless or wired communication interface, and various sensors

or actuators. According to this definition, the various devices shown in Figure 2.1, digital

photo frames, mobile phones, remote controls, or networked media players are all NEDs.

6. Gumstix

1. Arduino 2. Programmable router 3. Chumby

4. TMote 5. Sun SPOT

Figure 2.1: Various networked embedded devices (NEDs) that have been used in this thesis.

A NED application (also called pervasive application) refers then to any software applica-

tion that uses and combines in some way services offered by NEDs, for example real-time

and historic data from one (or many) energy meter(s) in a house displayed on a digital
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photo frame. Even though the gap between the physical and virtual world is constantly

shrinking [156], interoperability between NEDs from different manufacturers remains lim-

ited as no unique standard for connecting physical devices and applications prevails. A

wide variety of hardware platforms with diverse capabilities and functionalities have been

developed, and often because of commercial reasons most of these device use incompatible

communication protocols. As a consequence, applications that integrate data and services

from different NEDs are often complex and their development requires much time, money,

and expertise. One reason is that for each new project, sensor integration is only the first

step and much has to be developed from scratch. In particular, most services and tools

used both in the back-end and front-end of such composite applications (for example

the event detection system, data processing engine, database, or Web interface) have to

be customized for the devices at hand for each project. This results in a waste of re-

sources that could be used to design the application itself, rather than re-implementing

components that already exist and could simply be reused.

As a result of recent initiatives such as the Make magazine1, hackerspaces2, or Fa-

bLabs [129], amateurs have been increasingly empowered to build physical computing

applications. Tools such as Processing3 and Arduino4 (device No. 1. in Figure 2.1) have

lowered the barrier to use and program electronic devices, which enabled a large com-

munity of designers and developers to create interactive applications with little technical

knowledge. However, large-scale distributed sensing applications will require to reconsider

how one designs, builds, and deploys applications that take advantage of many networked

resources. Easy to use and versatile standards for interacting with embedded devices will

be essential to achieve an uniform, scalable, and robust common ground where diverse

devices and services can exchange data efficiently.

After dressing a list of requirements for an ecosystem of distributed devices derived from

general use cases and scenarios, in the remainder of this section we present existing solu-

tions for building such applications and discuss their advantages and shortcomings with

respect to our requirements.

2.1.2 Wireless Sensor Networks (WSNs)

A particular class of NEDs called Wireless sensor networks (WSNs), consist of au-

tonomous sensors (also called nodes) that monitor certain physical conditions (such as

temperature, vibration, pressure or humidity). These sensors are geographically dis-

tributed and communicate via a wireless (ad-hoc) network where data is forwarded (often

1Major magazine on practical do-it-yourself (DIY) projects. See: http://makezine.com/
2Community-operated spaces enabling amateurs to work on their projects collectively. See http:

//hackerspaces.org/.
3An electronic sketchbook for prototyping multimedia applications. See: http://processing.org.
4An open-source hardware platform for physical computing. See: http://arduino.cc.

http://makezine.com/
http://hackerspaces.org/
http://hackerspaces.org/
http://processing.org
http://arduino.cc
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Figure 2.2: A typical WSN application. Distributed sensors nodes monitor an environment,
communicate with each other using low-power radio communication, and transmit critical
information to a base-station connected via a wired connection (USB, I2C, etc), which acts
as a gateway that connects the WSN with other applications or the Internet.

via multiple hops) to a base-station, as shown in Figure 2.2. WSNs were initially used

almost exclusively for scientific or research purposes (see [70, 237, 253] for general surveys

about WSNs), but over the last decade they have gradually become invaluable tools in

many disciplines from structural health monitoring, to building automation, to industrial

automation, or even the smart grid. As this field further develops, there will be a need

for simple and standardized automated data acquisition and control mechanisms, but

also ad-hoc manual or mobile interaction mechanisms. For most of these applications,

interoperability with existing network infrastructures will be vital.

Typical WSN applications were initially based on a sense, store, and analyze pattern.

Sensor nodes transmit the data they gather to a base-station (also called sink) where

the data is stored and subsequently analyzed by domain experts, as illustrated in Figure

2.2. A typical example of this pattern is the “Macroscope in the Redwoods” project [221]

where sensor nodes were deployed on several redwood trees in California and monitored

various environmental factors such as temperature, humidity, and solar radiation over

long periods of time.

With the growing usage of WSNs in different areas (e.g., military, environmental, health

and home applications), continuous monitoring and immediate event detection became

an important requirement as well [70]. As embedded systems keep improving, more

processing power and smaller energy use will make possible to monitor environments with

higher sampling rates. As a consequence, it is very likely that sensor networks will soon

become key instruments to observe large-scale phenomena with high temporal and spatial

resolutions.

Much of the existing research in the WSN domain addressed specific problems in small-

scale deployments such as minimizing energy consumption [252, 232], routing algorithms
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and MAC protocols [105], or programming paradigms [76, 179, 247]. Because little at-

tention has been paid so far to higher level issues such as interoperability and simpler

programming models, most projects still operate in isolation are incompatible with each

other. However, as concrete use cases for these technologies appear and become finan-

cially viable (see Section 2.1.3), new research objectives for the WSN community have

appeared, for example support tools for developing, deploying, and debugging large-scale

applications. Besides, the need for sharing device data and services with more actors and

users also increases, therefore scalability, robustness, and openness are becoming critical

requirements [214].

According to the IP for Smart Objects Alliance (IPSO) [111], an increasing number of

embedded devices will be supporting the IP protocol. Many physical objects will therefore

be able to connect to the Internet, especially as IPv6 and its embedded variant 6LowPAN

reach mainstream acceptance. The convergence of NEDs and the Internet provides new

design opportunities, as digital communication networks will soon not only contain virtual

data (images, text, etc.), but also data and services from physical objects. IP-based

sensor networks have become widely adopted as a way to provide interoperability both

with existing networking infrastructure and with existing equipment [109, 110, 116, 154,

201]. Unfortunately, even though IP provides a common networking layer which allows

interoperability and evolvability of the system, application-layer interoperability is by

no means guaranteed although it is the crucial element for building scalable distributed

applications on top of heterogeneous devices.

2.1.3 Use Cases and Applications

In this section, we present a few typical use cases for NED applications that are consid-

ered in this thesis. Subsequently, we discuss the particular requirements for each scenario

in order to derive a set of common features that need to be supported by the application

protocol.

Real-time Enterprise

In today’s business landscape, manufacturing companies are facing a huge market pres-

sure for reduced production time and costs. Current industrial automation systems are

often based on proprietary communication protocols; therefore integration with enter-

prise information systems (EIS) is tedious and costly. To remain competitive, companies

need to improve end-to-end visibility in the supply, production, and delivery chains in a

timely manner, which is essential to measure and optimize industrial processes. Although

classic Web services help overcome the rigid and monolithic organization of traditional

enterprise applications and facilitate data exchanges across departments and strategic
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units [71], there is still a huge gap between the real-time status of the physical assets of

a company (equipment, inventory, machines, products, etc.) and higher level monitor-

ing systems such as enterprise resource planning (ERP) applications [102]. NEDs could

increase the efficiency of the business processes and the integration of device-level ser-

vices with enterprise systems is essential for real-time visibility with fine granularity in

the whole supply-chain. This in turn would allow critical information to be delivered

to the interested parties in a timely manner, so that appropriate measures can be taken

with minimal impact on the production process. In particular, a judicious processing

and filtering of large amounts of real-time information from the shop floor is required for

efficient business activity monitoring to help with the optimization and maintenance of

the equipment.

Digitally Augmented Environments

Home automation and building management systems increasingly rely on NEDs to im-

prove the efficiency and comfort of houses or buildings. Even though home automation

and security systems have been in use for decades, real-time monitoring via distributed

sensors is becoming more popular thanks to the drastic price reduction of these devices.

Besides, distributed monitoring applications can significantly improve security and safety

thanks to a increasingly accurate and rapid detection of incidents. For example, digitally

augmented environments are useful in various scenarios such as habitat monitoring [218],

wildfire detection [238], security and surveillance [248], healthcare [26, 59], or energy effi-

ciency [240]. Numerous projects in the pervasive community have looked directly at mo-

bile interaction and digitally augmented environments, for example museum guides [96],

location-aware applications and games (for example “Can you see me now?” [81] or “Ur-

ban Tapestries” [169] projects), or smart spaces [180, 200, 233].

Distributed Participatory Mobile Applications

Beyond small-scale applications in the Internet of Things such as smart spaces, larger sce-

narios are increasingly considered. As mobile phones and various sensors keep invading

urban spaces, creating scalable and participatory sensing applications becomes an increas-

ingly promising – but also challenging – goal. As shown by recent research [94, 117, 100,

212], new models that leverage these distributed “eyes” could significantly improve our

lives and communities, as for example Seeclickfix [47], Citysense [9], Cabspotting [8], or

Sproxil [53]. More recently, projects that explore city-scale platform to collect, process,

and share real-time have been explored [203, 227].
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2.1.4 Requirements for an Open and Scalable NED Ecosystem

In a world where billions of devices can sense, process, and exchange information with

each other, a common ground understood by all devices is crucial. WSN frameworks have

only marginally addressed the design of large-scale deployments of many heterogenous

devices. As deployments grow in size, so do the incentive to share them across various

applications and users. For this purpose, an open and flexible middleware solution that

emphasizes usability and integrability is necessary.

An infrastructure for connecting sensor networks and other existing networks will also

need to scale and evolve with minimal coupling between all its components (devices, users,

applications, etc.). These observations shape the central research question addressed in

this thesis: “how to combine heterogeneous, mobile devices to form interactive, ad-hoc

NED applications?”.

As will be shown in this chapter, various solutions to integrate devices and applica-

tions have been proposed in literature. Simplicity and interoperability have been only

marginally addressed, therefore most existing deployments have turned into isolated and

incompatible islands of functionality. Because of the nature of the use cases presented in

Section 2.1.3, the focus of this thesis is on lighter and simpler applications, where concerns

such as integrability, scalability, and programmability prime over raw performance aspects

(such as latency and/or throughput). Vinoski uses the notion of serendipity to describe

such applications, a term defined as“the occurrence and development of events by chance

in a happy or beneficial way” [235]. In essence, this is very similar to the notion of op-

portunistic programming, which emphasizes “speed and ease of development over code

robustness and maintainability” according to Brandt et al. [92]. These principles lie at the

heart of the approach defined in this thesis, which seeks to simplify the usage and inte-

gration of embedded sensors in order to enable fast prototyping of interactive and ad-hoc

applications on top of many heterogeneous devices. In our vision, we assume that future

sensor network deployments will be much larger in terms of nodes, which will require a

greater degree of flexibility in order to be manageable. In particular, future deployments

shall be participatory which means open and accessible for simultaneous users who want

to easily retrieve data from devices and use it right away in their applications. Likewise,

users could add new devices and services to the network with minimal effort thanks to

the application-level interoperability made possible by using open standards.

Based on various sensor networks projects and deployments in the real-world [221, 170,

77, 76], one realizes that all NED applications can be classified in the following general

categories:

• Ad-hoc interaction (get/set). Simple commands are sent to devices during

operation time to read and write sensors, actuators, or application state (usually

using a request-response model). This is the central pattern used in many home
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automation scenarios, where users can send commands to devices around them (for

example “turn on LEDs” or “read temperature sensor”).

• Continuous data collection (streaming). Devices stream data and sensor read-

ings at regular intervals and then all the data is analyzed on-the-fly, or stored in a

database to be processed later. This pattern is commonly used for environmental

monitoring scenarios (for example: “send the light sensor reading every 5 seconds”

or “get the temperature and humidity in this field every minute”).

• Event-based monitoring (eventing). Events are generated sporadically by de-

vices when predefined conditions are met (for example“send an SMS notification as

soon as the temperature raises above 30 degrees Celsius” or “alert me as soon as

a camera detects movement in this building”). Collected data must be analyzed in

real-time to allow timely reaction to environment state.

Such a coarse-grained abstraction certainly ignores many subtle aspects critical for each

particular application at hand, but helps in generalizing application types so that they

cover most scenarios for NED applications.

One can also observe that streaming and eventing are both based on a push model, the only

difference being that notifications are sent periodically in the former case, and sporadically

in the latter. This means that most NED applications can be entirely implemented using

only two fundamental interaction models:

• Request-Response Model. The most common interaction pattern in pervasive

applications is the get/set model, where the user can read and write directly sensors,

actuators, and applications parameters by sending commands to devices. It usually

follows a client-initiated cycle, where a server executes a command (request), and

eventually returns a a value or acknowledgement (response). This is also the core

model used by HTTP, where users can send a read request to see a Web form, and

then write the content submitted in the form to a database. This is the central

pattern for a user that wants to interact with a particular device in a given location

or with a higher-level aggregation of device data that represent the environment

state.

• Push-based Model. In some NED applications, devices must monitor the en-

vironment for a particular phenomenon to occur (for example detecting a fire or

intrusion) and then react to it via notifications or actions. Devices must send data

only if the phenomenon occurs and this as quickly as possible. In this case, polling

is ineffective because latency is limited by the polling interval and the communica-

tion overhead must be minimized for resource-constrained embedded devices. Other

NED applications have for purpose the periodic collection of data from the different

nodes, where devices must send their data to a sink to be processed and stored at

specified time intervals. This is exactly the same process as for events described
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above, the only difference is that data transmission is triggered by data a periodic

timer instead of a rule or pre-condition. For this scenario, the pull-based request-

response model of HTTP is not suited and a solution for pushing data over HTTP

is necessary to provide timely information.

In addition to supporting both interaction types, an interoperable universal protocol

suited for Internet-scale pervasive applications must also have the following properties:

• Lightweight-ness as the protocol will be running on embedded devices, therefore

small memory footprint and parsing complexity shall be preferred.

• Flexibility as the protocol must be easily extended and adapted by users to cope

with the various requirements and functions of a large spectrum of applications.

• Scalability as potentially billions of devices might be connected to each other,

the protocol and its implementations must be able to scale and gracefully handle

hundreds or thousands of concurrent users accessing these devices.

• Loose coupling as many different actors will have control over the devices and

applications in the ecosystems, it should be possible to add, remove, or upgrade

devices with minimal influence over the whole network in order to maximize the

evolvability of the system.

• Simplicity as a large community should be able to access and use these devices,

a low access barrier to develop applications must be ensured. WSN functionality

should be abstracted easily behind high-level services that hide the peculiarities of

various devices (devices are not always reachable, variable QOS, failure masking,

etc.)

• Standard as all devices and applications shall speak the same language, a widely

adopted protocol and minimal effort to access and use is needed.

As such a network shall be – at least partially – public, one needs to ensure open and

royalty-free usage of the protocol and its implementations. As shown by the success

of open-source projects such as Firefox or Apache (or the Web itself), openness, code

sharing, and reuse are properties that play a central role in the wide adoption of any

technology, therefore should be enforced. Besides, performance shall be comparable with

other proprietary approaches, or at least sufficiently scalable and efficient to support

thousands of concurrent mobile devices.

In many cases, applications might benefit from being connected to the Web, for example

to share the data they collect or to reconfigure a running system via Web APIs. Previ-

ous projects attempted to integrate only some data produced into Web applications in

a hard-wired manner, without enabling full access to devices’ data and functions. By

naturally blending the device API into the existing Web, data can be easily exported into
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Web applications using a standard format. Additionally, the entire functionality of the

device becomes an extension of the Web, therefore all the operations, sensors, actuators,

and properties of devices can be individually accessed and used in an uniform manner.

Simplifying the integration by using a unified API instead of glue code and convertors for

various protocols greatly improves the robustness and scalability of the resulting system.

In addition to these systemic properties, various higher level functions also need to be

supported to facilitate the prototyping of scalable sensing applications: devices and ser-

vices description for search and discovery, service composition and application prototyp-

ing techniques suited for mobile and embedded devices, and efficient eventing and stream

processing techniques that are simple to use and to reprogram.

Fast Prototyping Opportunistic Applications

Opportunistic programming stems from the hacking and making communities which em-

phasize fast prototyping of simple, lightweight strategic applications. In other words,

mashups and Web applications had a great success because they allowed simple integra-

tion of various data sources with a low barrier to access and design such applications.

We believe a similar model for NEDs can encourage fast prototyping as a design method,

which would be beneficial for the pervasive computing community at large:

“Opportunistic practices in interactive system design include copying and past-

ing source code from public online forums into your own scripts, taking apart

consumer electronics and appropriating their components for design proto-

types, and “Frankensteining” hardware and software artifacts by joining them

with duct tape and glue code.” in Hartmann et al. [148].

Ad-hoc Interaction with Hybrid Environments

As more devices are being embedded into the environment, many use cases require the

ability to interact with pervasive services with minimal prior knowledge about them with-

out requiring to install drivers or specific applications. On the Web, interacting with any

Web page is based on an uniform mechanism: any browser that talks HTTP can seam-

lessly interact with any server without any prior knowledge about the services or functions

offered by the Web site. A similar mechanism that allows any mobile client to search and

use services available in a physical location with minimal effort would be necessary.

Real-time Sensor Data Management

Among the use cases addressed previously, many of them would require a highly scalable

infrastructure to collect, process, share and store colossal amounts of real-time data from
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a wide variety of sensors. This will require the combination of many research areas that

have only marginally been integrated together.

2.2 Distributed Systems Architectures

Building distributed applications has been an early challenge in computer science, and

many approaches have been proposed for different application types [183]. Most of these

approaches have primarily addressed application-layer interoperability between software

components, but did not address the particular requirements of NED applications pre-

sented in the previous section. Therefore, even if a classic middleware solutions could be

used for some NED applications (e.g., in the back-end system to transport data between

a database and a processing application), they cannot be used natively on NEDs because

they do not meet most of our requirements.

In this section, we provide an overview of existing solutions for building NED applications

from various perspectives. First, we introduce the notion of architectural style as a set

of (generic) patterns and constraints for building distributed applications, describe the

major styles existing, and discuss their properties in general. Then, we evaluate how they

match the requirements of NED applications and discuss the advantages and drawbacks

of each style when it comes to integrations with other devices and applications. Finally,

we describe existing solutions that attempt to use the Web as an application protocol for

inter-device communication.

2.2.1 On Architectural Styles

An architecture is a reusable system structure composed of components and intercon-

nections and interactions between them, defined by standards and policies, and provides

a template for subsystem structure and communication between subsystems which fos-

ters reuse. An architectural style is a set of architectural constraints, that is a “family of

systems in terms of a pattern of structural organization, a vocabulary of components and

connectors, with constraints on how they can be combined” [210]. A software architecture

determines how system elements are identified and allocated, how the elements interact

to form a system, the amount of granularity of communication needed for interaction,

and the interface protocols used for communication. In other words, it is the equiva-

lent of design patterns for structures and interconnections within, and between, software

systems.

In this section, we consider only three major architectural styles (object-oriented, service-

oriented, and resource-oriented) and contrast two types of interactions (request-response

and message passing). In the request-response model, a client invokes an operation on a
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remote object (usually synchronous), and operations have well-defined input parameters

and return values. The emphasis is mainly on operation input/output and the correlation

between them. In the message passing model, the explicit notion of client-server becomes

less rigid, and the emphasis is on how to build a message (payload marshaling), how to

send it (transport), and where to send it (endpoint). This offers a much looser coupling

between consumers, which improves the scalability and evolvability of applications.

2.2.2 Object-oriented Architectures (OOA)

In OOA, applications are built upon interaction with distributed object instances. Com-

munications are stateful and interactions are primarily remote procedure calls (RPC). The

emphasis is on creating a standard definition of the interfaces between objects, and on

marshaling various data structures that are transferred between objects. RPC architec-

tures are tightly coupled and consistency throughout the system must be ensured after

any change in the interface, which makes these systems hard to scale and to maintain.

This style was used predominantly in early distributed systems, and many standards

for RPC-based communication have been proposed among which DCOM [11], RMI [17],

or JINI [18]. Unfortunately, RPC architectures often used closed or proprietary proto-

cols that are usually not Internet-friendly, thus are difficult to integrate in large-scale

cross-boundary applications (for example cross-company supply chain management ap-

plications). Although this style still prevails today for most closed scenarios and critical

applications (banking, healthcare, industry, etc.), they are being progressively replaced

by more flexible architectures such as SOA/ROA which can improve system integration

significantly and are also easier to work with.

2.2.3 Services-oriented Architectures (SOA)

SOA have been a significant improvement over RPC architectures by making distributed

applications more flexible, robust, and interoperable. Similarly to RPC, interaction with

services happen by sending messages (usually encoded using SOAP [50]) to service end-

points. Communications are usually stateless, which helps in scaling the system. Services

usually offer a machine-readable description of their interface (usually using WSDL [236])

that specifies completely the messages and payloads used to interact with the service.

This allows a looser coupling between clients and servers thanks to late binding and

machine-readable interface contracts offered. Thanks to their versatility, SOAP-based

Web services have been widely adopted by various industries in the last decade, come

with an extensive array of additional standards that extend the basic SOA model with

useful features for various types of applications. For example, WS-Discovery is a standard

that defines how to find new services, WS-Eventing to support eventing, WS-Security for
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secure interactions. All these extensions are standardized by OASIS, and we refer to

SOAP-based services and their extensions as WS-* throughout this thesis.

Although SOA usually rely on standard Internet and Web protocols (HTTP/XML over

TCP/IP), they remain overly complex for most non-experts. Besides, WS-* extensions

further augments the coupling between client/server as each party involved in interaction

needs to support all the extensions used, which makes the development of such applica-

tions a hassle. In particular, SOAP-based systems were not designed with serendipitous

interactions in mind, where various components come and go and interact in an ad-hoc

manner with each other. As such, SOA are best suited for large-scale applications that

cross organizational boundaries, but where only a limited amount of clients and services

interact with each other in a static way, as all possible interactions should be known in

advance. Obviously, every component must have a fully consistent interface description

document for each component they interact with, which is hard to ensure – and especially

to maintain – in an open, participatory network.

2.2.4 Resource-oriented Architecture (ROA)

Unlike SOA where the fundamental units are services with well-defined individual inter-

faces (RPC method signatures) all available at a unique end-point, in a resource-oriented

architecture (ROA), every basic component of an application is individually addressable

(has its own endpoint) and they all use the same uniform interface (API). As more and

more Web sites need to open up their data silos and allow direct access to their services

and data via simple Web APIs, ROA has emerged as a much lighter and simpler alter-

native to SOAP-based Web services. Interactions happen directly with data instead of

ready-made services wrapped around the data. This offers more flexibility for developers

to access data in a neutral format and with a finer granularity. Interfaces are usually fixed,

and each resource supports only a set of fixed operations that rarely change (therefore

no need to regenerate all the clients/stubs after each change, as would be the case with

SOA). Thanks to these properties, resource-orientation allows more scalable and robust

architectures, and for this reason Web sites increasingly adopt ROA to offer their data

and services (in particular using RESTful HTTP interfaces as discussed later in Section

3.2).

2.2.5 Discussion

Various architectural styles have been developed, used successfully, and cohabited for

decades. In the early days, where computer networks were comprised of a few machines

installed and maintained by the same authority, RPC-based systems were sufficient as

the tight binding they impose only marginally affected the performance and scalability



20 Background and Motivation

of the system. Besides, the high-predictability and low-evolvability was critical given the

context these early systems operated in (for example terminals in a banking system).

OOA are excellent for closed applications, where all the components interacting within

the application are controlled by the same entity, and where new devices appear rarely,

therefore ad-hoc interaction is unnecessary.

As Internet became increasingly used by various companies had to exchange data with

each other, more loosely-coupled and open middleware solutions (as for example CORBA

or JINI) have been preferred as they improved interoperability between applications by

making the API programming language-agnostic. In the last decade, as the Web has

become the most accessible medium to exchange information (both in B2B and B2C sce-

narios), SOAP-based Web services in combination with WSDL have become widely pop-

ular as they significantly improved interoperability between systems. Additionally, SOA

allows to do more complex operations and its SOAP-based implementation comes with an

exhaustive (and complex) stack of protocols and extensions that add many features from

secure communication to discovery. Most applications and programming languages sup-

port XML and HTTP, and one could easily build stubs to interact with specific services

that do not need to be upgraded as long as the WSDL file does not change. Unfortunately,

even though tools that help to automate the development of such services became widely

spread and used, SOAP-based Web services remain quite difficult to understand and use,

as in practice different implementations of the same WS-* standards are rarely entirely

compatible with each other.

Another problem persists with SOAP-based Web services: they are a legacy of RPC

style protocols, therefore are not flexible enough for highly dynamic environments where

new, unknown devices continuously appear and disappear. Besides, WS-* consider HTTP

only as a transport protocol to perform remote procedure calls instead of being directly

integrated into the Web [244], in which case there would be no need for any additional

API or descriptions of resource/function. This situation gave birth to numerous debates

about ROA versus SOA5.

In Table 2.1, we summarize the differences and properties of the various styles we pre-

sented. Based on the requirements we defined in Section 2.1.4, we suggest the ROA style

is the most suitable architectural style to implement a scalable participatory infrastruc-

ture for NED applications. In particular, as long as applications do not require custom

protocols to meet particular “hard” requirements (such as reliability, security or through-

put), the loose coupling of ROA architectures offers many advantages and features useful

for NED applications. Also, because ROA architectures tend to be simpler, they are more

appropriate to be used directly on resource-constrained devices than SOA.

5An insightful discussion about the roots of this debate can be found here:
http://www.prescod.net/rest/rest_vs_soap_overview/

http://www.prescod.net/rest/rest_vs_soap_overview/
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Attribute OOA SOA ROA

Granularity objects services data (resources)
Main focus marshaling creation of payload addressing (URI)
Addressing object instance unique endpoint individual resources

Replies cacheable No No Yes
API language-specific application-specific generic

Lightweightness +++ + ++
Flexibility + ++ +++
Scalability +++ ++ +++

Loose-coupling + ++ +++
Simplicity +(+) + +++
Standard + ++ +++

Tools available +++ +++ +
Security +++ ++ ++

Verbosity + +++ ++
Ambiguity + ++ ++

Table 2.1: Overall feature comparison of different architectural styles (+ means low, ++
means medium, +++ means high).

2.3 Middleware Solutions

The early vision of ubiquitous computing defined by Weiser [239] already mentioned

heterogenous devices that could interact with each other to offer more complex services.

Nevertheless, the integration of various devices into a common application has been a

major challenge in networked embedded systems. As mentioned in [132], the high cost of

development and deployment motivates platforms that support a broad class of applica-

tions that can host multiple independent users via resource sharing. According to [237],

the use of a middleware can help reduce the gap between the high level requirements of

pervasive computing applications and the underlying operation of WSNs. A middleware

is defined by Bernstein [84] as “a distributed system service that includes standard pro-

gramming interfaces and protocols”. These services are called middleware because they

act as a layer above the OS and networking software and below industry-specific appli-

cations. A middleware is therefore a common ground to improve interoperability when

integrating various components in distributed applications. The EM-* project at UCLA,

is such an attempt to provide an environment to develop and deploy complex applications

on top of heterogeneous sensor networks [131]. The Speakeasy [118] project at PARC has

developed a new approach to interoperability, called recombinant computing. It allows

devices and services that were not explicitly designed to interact with each other to inter-

operate fluidly. JXTA is an open network computing platform designed for peer-to-peer

computing that can be implemented on all kinds of devices [222], but is not based on the

Web architecture. Agimone [135] is a higher-level middleware that supports integration

of WSN and IP networks. It focuses on the integration and coordination of WSN applica-
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tions beyond WSN boundaries. The MiLAN middleware [150] focuses on sensor network

management to enable proactive WSN applications which support QoS requirements and

energy constraints. Sgroi et al. [209] suggest basic abstractions, a standard set of ser-

vices, and an API to free application developers from the details of the underlying sensor

networks. However, the focus is on systematic definition and classification of abstractions

and services, while issues such as scalability and integrability are only marginally con-

sidered. Several approaches that attempt to define an unified API for sensor networks

have been proposed [160, 99, 217]. Other bridging methods for sensor networks with the

Internet are proposed in [166, 172], however the bridging is only at the network level (IP

connectivity) and not at the application level.

2.4 Internet as Transport Protocol

Because of the versatility and omnipresence of the TCP/IP protocol, various projects

have attempted to leverage the Internet to build more scalable, distributed applications.

For example, Hourglass [213] provides an Internet-based infrastructure for connecting

sensor networks to applications and offers topic-based discovery and data-processing ser-

vices. HiFi [124] relies on a hierarchical tree model where sensors (leaves) are connected

through relatively powerful intermediary nodes that can perform various operations such

as filtering, data cleaning, aggregation and join, which is similar to the Tenet architecture

for tiered sensor networks proposed in [133].

To improve interoperability across systems, recent projects have focused on using Service

Oriented Architecture (SOA), in particular Web Services standards (SOAP, WSDL, etc.)

directly on devices [157, 102, 201]. Device Profiles for Web Services (DPWS) [192] is

a subset of SOAP-based Web services created to integrate devices into the networking

world and make their functionality available in an interoperable way. It offers various

useful features such as dynamic discovery, interaction, or search, and is a more open

refinement of its predecessors Jini [18] and UPnP [58]. Initially, home automation was

the main scope for these standards, but efforts within the SOCRADES project [102] have

shown its applicability to the industrial automation world as well.

2.5 Internet as Application Protocol

The term Sensor Web refers to a global network of Web-connected sensors, and several

projects have been proposed to build such a worldwide Sensor Web. With advances in

computing technology, tiny Web servers could be embedded in most devices [88]. The

idea of each thing having its own Web page is appealing because Web pages could be

indexed by search engines, then searched and accessed directly from a Web browser.
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Early approaches to linking objects with the Web were based on physical tokens (such

as barcodes or RFID tags) [174]. In the Cooltown project [167], each thing, place, and

person has an associated Web page with information about them.

IrisNet [130] proposes a two-tier architecture consisting of sensing agents which collect and

process sensor data, before storing it into a hierarchical and distributed XML database.

The model used is similar to the DNS system used in Internet stack and can be queried

using XPath. A middleware for smartphones, with event delivery, acquisition, query reso-

lution, aggregation, access control, storage, registration and availability has been proposed

in [230]. The proliferation of smartphones throughout the past few years has provided an

increasingly ubiquitous platform for intelligent services at the edge of the network. Sen-

sorbase [98] is a centralized sensor data logging system. WSN send data in plain format

(e.g., as CSV file) to a central component that acts as data logger. The data is stored

into a database from where it can be searched and retrieved via a Web-based graphical

user interface or API. Sensor updateThrough RSS feeds, changes in sensor data can be

distributed asynchronously in a publish/subscribe paradigm. Additionally, the middle-

ware can be accessed through SOAP as a traditional Web service. The SenseWeb [164]

project proposes a middleware where a central coordinator keeps track of the various de-

vices registered and handles external queries from various Web clients by caching sensor

data to avoid polling the device frequently. The Global Sensor Network (GSN) [66] is a

middleware for connecting sensors to the Internet based on the concept of virtual sensors

that can be actual raw sensor data or higher-level component such as an aggregation

from different sensors. The middleware collects sensor data streams and all data tuples

are stored into a centralized database which allows users to access and query for data

directly from the Web. Prehofer et al. [200] recently proposed a Web-based middleware,

however, Internet is used only for transport as there is no mention about using HTTP as

an application protocol.

2.6 Towards the Web of Things

Projects that specifically focus on re-using the core architectural principles of the Web

as an application protocol are still lacking. Creation of devices that are Web-enabled

by design would facilitate the integration of physical devices with other content on the

Web. According to [244], physical “items” (sensors) should be integrated directly into the

Web as resources, following the design principles of the Web (e.g., REST principles, see

Section 3.2). Sensors should be uniquely addressable via URI (comparable to hypertext

documents), and users that want to interact with any sensor can use any HTTP client

library, which lowers the access barrier significantly. As pointed out in [244], there would

then be no need for any additional API or descriptions of resource/function.
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Early mentions of the Web of Things came from Dave Raggett [202] and Erik Wilde [244],

which inspired our early work on the Web of Things, where Web technologies were used

to control robots [225] and other embedded devices [224]. Much of the Web of Things

research has been done in collaboration with Dominique Guinard, which led to key pub-

lications on the basis of the Web of Things [139, 144, 141]. While this thesis emphasizes

distributed infrastructures, gateway-based enabling, and stream processing frameworks

for the Web of Things, Guinard’s research emphasizes devices sharing with social net-

works [137], resources description and search [143, 140], and various prototypes from

Web-enabled energy monitoring [145, 240] to RFID-based supply chain applications [138].

Much of the work presented here is complementary in content – yet compatible in concept

– with his own dissertation [136]. Details about differences and references to Guinard’s

work are given throughout this thesis.

Architectures that allowed devices services to be accessible directly over the Web have

been already proposed and investigated in literature. A generic architecture for accessing

devices using SOAP-based Web services was proposed in [103], where a gateway is used to

enable access to device services, however no implementation details or evaluation results

are given. Bagnasco et al. [75] describes a two-layer architecture for accessing device

functionality using REST. The lower layer provides basic services to access heterogeneous

hardware resources using a RESTful Web service architecture. Devices run a Web server

on top of TCP/IP and the services offered are used by a more powerful gateway to expose

these services to external clients which use SOAP-based services. Although the gateway

offer a WSDL file to describe the SOAP-based services offered by the device, there is

no end-to-end REST support, which limits the Web integration of their solution. In the

tiny Web services project [201] a Web service implementation is presented that is directly

installed on devices. The implementation has a very small footprint (48kB of ROM,

10kB of RAM) and uses WSDL to describe services, but SOAP should avoided as binding

because of its overhead.

pREST [108] describes how to use REST to interlink resources in NED applications.

Everything in pREST is modeled as Web resource. Producers and consumers of sensor

data can then be connected using the pREST protocol (e.g., a camera sending an image

to the Web server to be published). TinyREST [176] also proposes a gateway to connect

directly devices as resources into the Web, thus allows clients to send Web requests to

the URI of various device service via the gateway. Unfortunately, they introduce an

additional verb (SUBSCRIBE) in addition to POST and GET to support publish/subscribe

interactions. This is contrary to the REST principles as new operators are introduce

which increases the coupling between components therefore reduces compatibility with

other RESTful applications. Besides, the paper mainly focuses on isolated experiments

and does not address the scalability of the system. Web feeds have been used to access

data provided by sensor nodes [107]. In particular, they describe an extension to RSS

suited for high-rate data streams with a Web-oriented querying interface to retrieve sensor
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data. A direct consequence of the stream abstraction is that sensors are considered solely

as data publishers, not as service providers. The approach found in [216] has a very

similar approach as well, but focuses mainly on the discovery of devices. Unfortunately, a

more systematic approach, implementation details, and a performance evaluation are all

lacking.

Various community Web sites that allow people to share their sensors using more Web-

friendly data formats (XML, JSON, CSV) have appeared in the last two years such as

Pachube [36], Sensorpedia [49], Sensor.network [146], Evrythng [13], ThingWorx [56], or

Sen.se [34]. These solutions offer various tools and services, unfortunately they are all

based a centralized application, which is contrary to the distributed nature of the Web.

2.7 Discussion

In this chapter, we have described the requirements for future distributed sensing appli-

cations and open ecosystems that foster the integration of data and services from embed-

ded devices. We have then surveyed the related work in integrating heterogenous devices

and discussed their shortcomings with respect to our requirements. In this section, we

summarize our key findings and discuss the limitations that will be addressed in this

thesis.

Early distributed programming abstractions based on Remote Procedure Calls (RPCs)

have simplified the development of complex distributed systems [204]. As seen in Section

2.2.5, RPC-based systems are not flexible enough to build evolvable and scalable net-

works of embedded devices, as they heavily rely on tight interface contracts that increase

coupling and complexity (binding devices strongly to a specific application scenario).

Connecting incompatible middleware requires expensive protocol translation and data

transformation, which makes it difficult to integrate sensors across various applications.

In the last decade, various projects proposed to leverage the Internet infrastructure al-

ready in place for building distributed applications. Although these projects proposed

original and efficient solutions for the design of such applications, they only used the

Internet protocols (TCP/IP and/or UDP) as a data transport mechanism, by enforcing

various (non-standard) application-level protocols designed for each deployment at hand.

Using Internet protocols does not guarantee application-level interoperability, as various

deployments could only exchange data with each other, but not necessarily understand

the content transmitted.

More recently, many projects have proposed to use the Web for providing access to sensor

data, in particular Web services and/or Web applications. However, most of these projects

suffer from two main drawbacks. First, these projects proposed only to integrate the
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data generated by devices into the Web, not the devices and their services themselves.

The priority was often to link physical objects with their virtual representation on the

Web, rather than actually integrating devices as actual Web resources along with an API

that allows programmatic access. Such an API would allow devices data and services

to be easily integrated, searched, browsed, and used just like any other content on the

Web. Second, HTTP was often used only as transport protocol on top of which custom

application protocols were required, whereas HTTP is in fact an application protocol.

Besides, most of these approaches required a centralized repository where all the devices

had to be registered before they can publish data. This might not be sufficient for Internet-

scale distributed applications that require large amounts of data to be processed in real-

time. Besides, using custom protocols on top of HTTP introduces a tighter coupling

that prevents ad-hoc interaction with devices, and most solutions do not support direct

interaction with devices without server mediation. Such a central point of failure is against

the distributed nature of the Web, which reduces the scalability and evolvability of NED

applications.

The various projects presented showed that Web services can provide a more elegant and

flexible approach to develop NED applications. In particular, Web technologies support

more scalable applications that integrate many devices and clients simultaneously. How-

ever, mechanisms for accessing sensor data, such as push notifications and streaming, are

not supported. Besides, an application-level infrastructure that supports semantic dis-

covery and search based on real-time sensor values have been only marginally explored.

Finally, frameworks that facilitate the integration of heterogenous devices that do not sup-

port Web protocols and end-to-end applications on top of them have are not available. In

this thesis we address these limitations, and propose the fundamental building blocks for

a scale and entirely Web-based infrastructure for building interactive NED applications.



CHAPTER 3

Web-oriented Architectures

“It is unworthy of excellent men to lose hours like slaves in the labor of calculation

which could be relegated to anyone else if machines were used.”

Gottfried Wilhelm von Leibnitz (1646-1716)

In the previous chapter, we have highlighted how NED applications benefit from the

integration of various data sources and applications by cross-organizational actors. When

devices and their services can be easily shared and reused at a global scale, tremendous

network effects will emerge, which will bring this technology to its full potentials. The

Web has been successful at building a large participatory network that enabled over two

billions users to share and retrieve information. In this chapter we explore the reasons

why it has worked and present how to leverage these benefits for NED applications as

well.
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3.1 Web-based Architectures

Because the number of embedded devices with built-in Internet connectivity is growing

exponentially, it is very likely that in the near future there will be more NEDs on the Web

than humans. The combination of increased processing power on NEDs and the flourishing

of robust and easy to use frameworks for developing Web applications, will make it simple

to fast prototype Web applications that break out from browsers and servers into the real

world. However, to realize the vision of a global network of NEDs, devices will need to be

fully integrated with the existing Web infrastructure. This means NEDs shall speak the

same language and behave just like any other Web resources. Using Web standards to

interact with NEDs will make it much easier to merge the real world with existing Web

content, and physical things could then be bookmarked, browsed, queried, or shared just

like any content on the Web.

This chapter describes the principles of the modern Web architecture and how they can

be ported on embedded devices to support efficient Internet-scale NED applications. A

common assumption is that Web technologies are inherently inappropriate for embedded

devices, which raises the central question addressed in this thesis: “is the HTTP protocol

as-is, ready to support NED applications, or are new and custom protocols on top of HTTP

unavoidable?”. Even though the current specification of the HTTP protocol has not

been updated since 1999 [121], Web applications have tremendously evolved over the last

decade. This observation motivates the core hypothesis of this thesis: Web technologies

have not been fully exploited – especially in the context of embedded devices – and further

exploration could bring the Web to its full potentials, even without upgrading the current

Web infrastructure and its standards.

3.1.1 Modern Web Infrastructure

At the core of the World Wide Web (WWW) lies the HTTP protocol, which was

designed as a substrate for building a distributed hypermedia system for linked multimedia

documents [82]. As demonstrated by the tremendous success of the Web, loosely coupled

approaches offer the greatest scalability, robustness, and evolvability. In recent Web 2.0

applications [193], the focus has been on the user and user-generated content, and many

applications (and especially the data and services within) were made accessible via open

Web APIs. This has lowered the barrier for programmers to build Web mashups, which

are hybrid applications that combine content from various sources, as for example the

chicago crime maps.

In the last two decades, various tools and techniques have transformed the Web in the most

successful and accessible information sharing platform, and we present five fundamental

pillars (or trends) that form the core foundation of the modern Web we know and use
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Figure 3.1: The Web of Things (WoT) builds upon five pillars of the modern Web architec-
ture. We define the WoT as an unexplored design space to build more efficient and flexible
distributed sensing applications built upon the combination of the pillars of the modern Web.

today. As shown in Figure 3.1, the combination of these ingredients opens up a new,

unexplored design space where new solutions to old problems can be conceived. In this

thesis, we define the Web of Things (WoT) as being the intersection of these five

trends, and propose the Web of Things as an evolution of the Web that reaches into the

physical world.

Trend 1: The Social Web. The emergence of open and participatory services on the

Web such as forums, blogs, or wikis have played a critical role in the shift from a Web

of pages towards a Web of people. Countless online services are available today to build

and support virtual communities, from social networks such as Facebook or MySpace, to

more generic social platforms (Ning, Facebook/Google connect), to authentication and

identification tools (OAuth, OpenID), to social data portability1.

Trend 2: The Semantic Web. Another component of the modern Web is the rise of

machine-readable content being embedded along or within Web sites. Various semantic

annotations are increasingly used today such as metadata header information parsed and

indexed by search engines, machine tags used on Flickr2, microformats [165], or even

elaborate semantic languages such as OWL or RDF/RDFa [69]. More generally referred

1Online: http://dataportability.org/
2See: http://www.flickr.com/groups/api/discuss/72157594497877875

http://dataportability.org/
http://www.flickr.com/groups/api/discuss/72157594497877875
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to as Linked Data [85], many tools and techniques can be used to publish, connect, and

find structure information on the Web.

Trend 3: The Real-Time Web. From finances, to news, to social networks, many do-

mains rely on real-time information delivered in a timely manner, and online services

increasingly require large amounts of information to be robustly delivered as fast as pos-

sible. Various tools and techniques have been appearing to transmit timely information

over the Web. As described in Section 6.1.2, the traditional poll-based model of HTTP

is being rapidly supplemented by techniques such as Comet or Web sockets to push data

to clients over the Web asynchronously.

Trend 4: The Programmable Web. A key feature of the Web 2.0 is the ability to

access raw data from Web applications via a Web API. Many companies have realized

the benefits of allowing their data and services to be accessed in a programmatic way, not

only deliver the finished product. Today, thousands of Web sites offer their data through

open APIs3. This has enabled developers to easily build new mashups – services built

on top of existing API by combining content and functionality from various sources (see

Section 3.4).

Trend 5: The Physical Web. The Web has been increasingly stepping out of servers

and browsers as various things 4have been connected to the Web or Twitter, such as such

as bridges, plants, houses, or even bakers. This extends the reach of the information on

the Web to real-world status of physical objects. Thanks to the proliferation of smart

phones with GPS sensors and Internet connectivity, location-aware applications have been

flourishing and services from Google Places5 to Foursquare6 make it possible to create a

physical Web, where the content delivered depends on the physical location where it is

accessed from.

3.1.2 Motivation for a Web of Things

As the size of typical NED applications will continue to increase, so will the incentives

for these applications to be more open and shareable. In this thesis, we propose the Web

of Things as a viable solution to build more scalable, open, and flexible NED applica-

tions, and investigate the hypothesis that the Web is an excellent medium to build such

applications. There are various reasons why integrating NEDs to the Web is desirable.

3As of 1 June 2011, the ProgrammableWeb directory lists of 3301 APIs and 5842 mashups [40].
4http://www.extremetech.com/internet/84236-the-five-best-twitter-feeds-by-nonhumans
5Online: http://www.google.com/places/
6Online: https://foursquare.com/

http://www.extremetech.com/internet/84236-the-five-best-twitter-feeds-by-nonhumans
http://www.google.com/places/
https://foursquare.com/
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Figure 3.2: Enabling Web developers and users to access, use, and program NEDs democra-
tizes innovation and facilitates prototyping of distributed sensing applications, which in turn
unlocks new design opportunities.

First, native integration of devices (as opposed to only integrate their data or using a Web

page to control them) allows to treat devices and their services just like any other Web

resource. This makes it easy to tap directly the expertise accumulated over the last two

decades in building massively scalable Web sites, but also benefit from other tools and

techniques widely used on the Internet such as caching, linking, search, authentication, or

scripting among others. In other words, native Web integration allows devices and NED

applications to directly leverage the five pillars of the modern Web with minimal effort.

Second, native integration diminishes the costs to network heterogeneous devices as the

Web infrastructure is already in place: TCP/IP is omnipresent, Wi-Fi routers are ubiqui-

tous in occidental households, and Web standards are efficient, well known, and used by

millions of developers and billions of users7. HTTP is a highly versatile and omnipresent

protocol thanks to its simplicity, powerful and scalable Web servers are freely available as

open-source projects, HTTP clients and libraries exist for virtually any programming lan-

guage and platform. Furthermore, using Web standards to interact with devices makes

it possible for the applications built upon them to benefit from the system properties

introduced by the modern Web architecture such as scalability, evolvability or simplicity.

Third, Web applications are often simpler and faster to develop than classic desktop soft-

ware applications. Current software for real-world integration and business applications

are tailored for specific use cases, thus are often too rigid and closed to be customized by

end-users easily. In a large ecosystem of networked devices, one could use a higher-level,

declarative approach to rewire and recombine data, in particular use tools commonly used

to develop Web mashups.

Tightly coupled back-end systems using proprietary or optimized protocols will remain

the most desirable choice for high-performance systems with specific requirements (as for

7As of 1 June 2011, over 2.1 Billion users according to: http://www.internetworldstats.com/

http://www.internetworldstats.com/
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example in the industrial automation or banking domain). Nothing prevents the func-

tionality of these systems to be exposed on the Web using a high-level API to hide the

complexity and underpinnings of the closed back-end. However, much simpler loosely

coupled approaches are to be preferred for tasks where latency and throughput are less

of a concern (which represent most use cases in building automation or environmental

monitoring), because of their inherent flexibility and intuitive use. Allowing people to

easily reuse and combine data sensed by different devices anywhere around the globe will

lower the entry barrier for developing monitoring applications. The loss in raw perfor-

mance induced by choosing HTTP over optimized protocols, is largely compensated by

the seamless Web integration, a simpler programming model, and by the availability of

tools, techniques, and expertise in building robust, secure, and massively scalable Web

applications.

In the remainder of this thesis, we describe the fundamental building blocks of the Web

of Things. We explain how interoperability at the application layer can be obtained

by leveraging the mechanisms and protocols that are successfully used by the World

Wide Web. We describe how Web patterns cab be used to support both automatic data

acquisition from, as well as manual interaction with NEDs. Automatic data acquisition

is important for integration into enterprise IT systems, such as databases, while manual

interaction enables users to interact with and to configure on-the-fly devices – or groups

of them – simply using a Web browser. This allows to turn the Web into an ecosystem of

heterogenous devices and services that can be recombined at runtime to build applications.

3.2 Representational State-Transfer (REST)

REST (Representational State Transfer) is the architectural principle that lies at the

heart of the Web and has been described in Roy Fielding’s PhD thesis [120]. Rather than

being a technology or standard, REST is an architectural style (see Section 2.2) which

attempts to increase interoperability for a looser coupling between the various components

of distributed applications. REST is the underlying principle of HTTP and consists of a

set of constraints that defines how distributed applications should be built.

In other words, REST defines the core architecture of the modern Web and emphasizes

the use of the Web (and of its central protocol HTTP) as an application protocol, and

not only as a transport protocol in the way that WS-* Web services do8. This way, Web

applications that comply to the REST architectural style are said to be RESTful and

8Many integration technologies on the Web (among which WS-* Web Services) reduce the role of
HTTP to only a transport protocol by using only a minimum set of it features (only GET/POST verbs
of HTTP, only status code 200 or 404, etc.) and redefine a complete custom application protocol on top
of HTTP (SOAP for WS-* ). This is redundant as HTTP is already an application protocol that doesn’t
require an additional layer of complexity on top.
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benefit directly from all the features of HTTP such as authentication, authorization,

encryption, compression, or caching. REST follows the principles of resource-oriented

architectures (ROA) in order to achieve simpler and more lightweight integration by

focusing on resources instead of functions. This allows to interact with services without

requiring additional service description languages (e.g., WSDL, IDL, etc.) for generating

complex source code and stubs.

The Web was designed to create a large-scale distributed hypermedia system, and accord-

ing to Roy Fielding [120]:

“REST provides a set of architectural constraints that, when applied as a

whole, emphasizes scalability of component interactions, generality of inter-

faces, independent deployment of components, and intermediary components

to reduce interaction latency, enforce security, and encapsulate legacy sys-

tems.”

REST focuses on the various components in a distributed application and their role, and

constrains the interactions between them, but ignores the implementation of the compo-

nents or protocol syntax. Components interact by exchanging representations of resources

in a format commonly agreed upon. For any distributed hypermedia system to benefit

from the emergent properties of REST (performance, scalability, simplicity, modifiability,

visibility, portability and reliability), it must comply to the REST architectural style by

applying the following five9 constraints to the architecture:

• Client-server. Clients and servers communicate via a uniform interface, which

reduces the coupling between both roles. Clients do not need to know the internals

of the server, that is how data is stored or processed. Likewise, servers are not

concerned by user interfaces and client state. This separation of concerns between

data and control logic improves scalability and portability of the client code, and

such a loose coupling enables the development of components independently, which

is desirable in a large scale Web of Things.

• Uniform interface. Loosely coupled architectures that allow the evolvability of

a system usually result from using a uniform interface between components. Un-

ambiguous, simple, and standard interfaces that can be easily extended for various

content and contexts have largely contributed to the success of the Web as a par-

ticipatory system. This is a central feature for the Web of Things to which new,

unknown devices can be added and removed at any time with little effort.

• Stateless. The client context and state should not be kept on the server, but on the

client. As each request to the server must contain the client state, visibility (moni-

toring and debugging of server), robustness (recovering from network or application

9According to [120], in fact there is an optional sixth constraint about code-on-demand, where clients
can download and execute code locally such as Java Applets or ActiveX controls, but this aspect will not
be discussed here.
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failures), and scalability are improved. Servers and applications can of course be

stateful, this constraint simply requires the state to be addressable.

• Cacheable. Caching has been a key factor in the performance (loading time), thus

usability of the Web today. Both clients and intermediaries can store data locally,

which boosts their loading time, and server can define policies when data expires and

when updates must be reloaded from the server. This results in higher performance,

as reduced client-server interactions improves server scalability and reduces latency,

while limiting the maximal data age that can be acceptable.

• Layered system. An uniform interface makes it easy to design a layered system,

which in turn allows to use intermediary servers to improve scalability and response

time via load balancing and shared caches or distributed content delivery networks

(e.g., Akamai10), as clients do not need to know if they interact with the target server

or some proxy along the way. Besides, a layered system enables encapsulation of

legacy protocols and systems (for example gateways to proprietary protocols) or

simply enforce various security policies [137].

The most important of these constraints is the uniform interface, and there are four

guiding principles that any REST interface must follow to achieve these goals:

1. Identification of Resources. A resource is every concept or piece of data in

an application that is important enough to be referenced or used. Every resource

must have an unique identifier and should be addressable using a unique referencing

mechanism in order to maximize visibility, reusability, and simplicity. On the Web

this is done using the URI specification.

2. Manipulation of resource through representations. One interacts with ser-

vices using various representations of resources suited for different uses or platforms.

Commonly used representations include (X)HTML for browsing and viewing con-

tent on the Web, XML which is more suited for machine readability, and its lighter

alternative JSON.

3. Self-Descriptive Messages When applying REST over HTTP, one must only use

the methods provided by the protocol (GET, POST, PUT, and DELETE) and stick to

their meaning as closely as possible.

4. Hypermedia as the engine of the application state. Servers should not keep

track of each client’s state, as stateless applications are easier to scale. Instead,

every possible application state should be addressable via its own URI, and each

resource contains links and information about what operations are possible in each

state and how to navigate across states.

10Online: http://www.akamai.com

http://www.akamai.com


3.2. Representational State-Transfer (REST) 35

Thanks to their simplicity, the use of a uniform interface, and the wide availability of

HTTP libraries and clients, RESTful services are truly loosely-coupled [198]. This con-

cretely means that services based on RESTful APIs can be re-used and re-combined in

a quite straightforward manner, without requiring prior knowledge about the specifics of

any resource (which can be discovered and “understood” on-the-fly, see Section 3.2.4).

Because of the underlying simplicity of this architecture, using the REST style and HTTP

as application protocol for NEDs provides many advantages desirable in pervasive com-

puting applications. First, minimal coupling helps to design more scalable and robust

applications. Second, one can use a Web-like mindset to design applications (markup lan-

guages, event-based browser interactions, scripting languages, URIs, etc.). Third, HTTP

traffic on port 80 is the only protocol that is (almost) always allowed by firewalls in com-

panies. Fourth, using REST one inherits the benefits of a resource-oriented architecture

directly on embedded devices which makes it easy to hide low-level protocol details behind

simple high-level abstractions, thus fostering openness, programmability, and reusability

of NEDs.

3.2.1 Addressable Resources

Resource-oriented architectures are well suited for data-centric applications, as every

element of an application that has to be addressed explicitly (e.g., a sensor, its sampling

frequency, a variable, etc.) can be modeled as a resource addressable via a (globally)

unique identifier. On the Web, this is done using the well-known URI [83] standard

scheme that allows granular and transparent access to data elements in a simple manner.

Using the same standard naming scheme as other Web resources allows to seamlessly

blend devices into the Web, as their functions or sensors can be linked to, shared, and

bookmarked exactly like any other Web resource.

These are examples of URIs to address different parts of an application:

1 # User with the ID No. 12

2 http://webofthings.com/users/12

3

4 # Sample No. 77654 from october 2009

5 http://webofthings.com/samples/2009/10/77654

6

7 # Device called lamp

8 http://webofthings.com/devices/lamp

These examples identify unique resources (i.e., objects). However, one can also identify

collections of resources, which are also resources themselves:
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1 # a list of sensors on a device (all the sensors on device ID 24)

2 http://webofthings.com/devices/24/sensors

3

4 # a list of devices in an area (building 4)

5 http://webofthings.com/building4/devices/

6

7 # a list of sensor readings

8 http://webofthings.com/devices/4554/samples

We illustrate this principle with an actual embedded device in Section 3.3. All the com-

ponents of a NED (Sun SPOT platform) are mapped into a resource tree, where each

sensor, actuator, and system property of the device is assigned its own URI. This way,

the physical device fully blends into the Web, as it becomes completely accessible via a

RESTful Web API.

3.2.2 Uniform Interface

REST emphasizes a uniform interface between components to reduce coupling between

operations and their implementation. This requires every resource to support a standard,

common set of operations with clearly defined semantics and behavior. HTTP defines

a fixed set of operations that every resource can support (also called verbs), the most

commonly used among them are:

• GET is a read only operation. It is both an idempotent and safe operation. Idem-

potent means that no matter how many times you apply the operation, the result

is always the same. The act of reading an HTML document shouldn’t change the

document. Safe means that invoking a GET does not change the state of the server

at all (read-only).

Example: Read a resource, for example the temperature sensor of a device (mini-

mal HTTP example).

1 GET /temperature HTTP/1.1

2 Host: mydevice.ch

3

4 200 OK HTTP/1.1

5 Content-Type: text/plain

6 Content-Length: 4

7 37

• POST is both non-idempotent and unsafe operation of HTTP. POST usually models

a factory service, where the URI of the newly created is not known in advance.
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Example: Create a new resource, for example a rule that triggers a call-back

when a threshold is exceeded encoded using a fictive rule language (the URI of the

created rule is returned in the answer via the Location: header):

1 POST /rules HTTP/1.1

2 Host: mydevice.ch

3 Content-Type: text/plain

4 IF light>150 THEN CALL http://example.com/altert-handler

5

6 200 OK HTTP/1.1

7 Location: mydevice.ch/rules/2210

• PUT is usually modeled as an idempotent, unsafe insert or update method. When

using PUT, the client knows the identity of the resource it is creating or updating. It

is idempotent because sending the same PUT message more than once has no effect

on the underlying service.

Example: Update a resource, e.g., change color of LED No. 4 with its new RGB

value as parameter encoded using comma-separated values (CSV, see next section):

1 PUT /leds/4 HTTP/1.1

2 Host: mydevice.ch

3 Content-Type: text/plain

4 0,128,128

5

6 200 OK HTTP/1.1

• DELETE is an idempotent, unsafe method used to remove a resource.

Example: Delete rule No. 24 running on a device.

1 DELETE /rules/24 HTTP/1.1

2 Host: mydevice.ch

3

4 200 OK HTTP/1.1

Although using only these four operations might seem insufficient to write distributed

applications, the success of other CRUD (Create, Read, Update, Delete) systems proves

otherwise. For example, SQL has only four main operations (SELECT, INSERT, UP-

DATE, and DELETE), or message-oriented middleware (MOM) are based on only two

core operations: send and receive. In both cases, the actual complexity is found in the

data model (SQL) or message body (MOM). Most of these systems actually define many

(optional) helper operations.

HTTP also defines a list of standard status codes to be returned by the server upon

reception of the request (see Chapter 10 in [121]). The most commonly used are:
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200 OK. Returned upon successful completion of a request.

201 CREATED. Returned when a new resource has been successful created. The header

Location contains the URI of the resource that has been created.

401 UNAUTHORIZED. The request requires user authentication or the authorization failed

using the given credentials (see [125]).

404 NOT FOUND. The requested resource or document has not been found on the server.

500 INTERNAL SERVER ERROR. The server encountered an error that prevented it to

fulfill the request.

501 SERVICE UNAVAILABLE. The request cannot be handled by the server at this time

due to maintenance of temporary overload.

Limiting all possible interactions to a subset of generic operations simplifies the overall

system architecture and improves the visibility of interactions. This makes it more difficult

to implement the complex workflows commonly used in business applications as they

must be mapped into a sequence of simple, atomic operations. Nevertheless, a standard

interface for Web services with a minimal set of operations offers desirable advantages for

building large-scale heterogeneous applications, among which:

• Interoperability. Virtually any programming language or environment comes with

an HTTP library. As long as standard data exchange formats are used (MIME types

seen in next section), interacting with RESTful services doesn’t require service-

specific libraries as is the case with WS-* services. This way, developers can focus

on data and operations and worry less about interoperability.

• Familiarity. Given the URI of any service, one knows exactly how to interact

with the URI and use the service (and find about the operations it accepts using

the OPTIONS HTTP verb) without requiring an IDL or WSDL document or specific

stubs – only an HTTP client library suffices. Following links to discover at run-time

all the services available is a straight-forward procedure.

• Scalability. The limited set of methods supported by REST makes behavior pre-

dictable which translates into performance increase. Idempotent and safe methods

such as GET make content cacheable by HTTP proxies and browsers, which drasti-

cally reduces network traffic and minimizes server load using front-end caches. The

looser coupling between client and server enabled by the generic interface makes it

also easier to interact ad-hoc with any HTTP-compliant service.
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3.2.3 Representations and Encodings

A central challenge in computer-based communication is how to encode some informa-

tion so that it can be universally decoded and understood. On the Internet, Multipurpose

Internet Mail Extensions (MIME) types have been introduced as standards to describe

various data formats transmitted over the Internet such as images, video, or audio. The

MIME type for an image encoded as png is expressed with image/png, and mp3 audio

with audio/mp3. A list of the all the official MIME media types is maintained by the

Internet Assigned Numbers Authority (IANA)11.

Web Resources are only a concept – an abstract idea of a thing, not the thing itself. The

tangible instance of a resource is called a representation, that is a standard encoding of a

resource using a MIME type. Web browser typically support a few basic representations

(HTML, GIF, MPG) or can use plugins or external applications to render them (for ex-

ample PDF, vCards, Flash). The same resource can also be available in various languages

or encodings.

HTTP defines a simple mechanism called content negotiation for allowing clients to request

preferred data format they want to receive from a specific service (see Chapter 12 in

[121]). Using the Accept header, clients can specify the format of the representation they

desire. In the same way, servers specify the format of the data they return using the

Content-Type header. To retrieve information about a user with the ID 1234, one can

issue the following request (minimal HTTP):

1 GET /users/1234 HTTP/1.1

2 Host: webofthings.com

3 Accept: texl/html

4

5 200 OK HTTP/1.1

6 Content-Type: text/html

7 <html>

8 ...

By default, browsers request HTML files they can render and allow user to interact with.

In some cases, HTTP clients might request a machine-readable document (when the client

is an application and not a Web browser), for example encoded as XML. This is done as

follows:

Recently, JSON has become the preferred12 format to encode simple information as it can

be easily parsed and processed using Javascript, and “this combination of a simple and

short specification with a dynamic programming language is probably the key to its ease of

integration and adoption across the Web community”, according to an online source13.

11Online: www.iana.org/assignments/media-types/
12See: blog.programmableweb.com/2010/12/03/json-continues-its-winning-streak-over-xml/
13See: http://blog.jclark.com/2010/11/xml-vs-web_24.html

www.iana.org/assignments/media-types/
blog.programmableweb.com/2010/12/03/json-continues-its-winning-streak-over-xml/
http://blog.jclark.com/2010/11/xml-vs-web_24.html
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1 GET /users/1234 HTTP/1.1

2 Host: webofthings.com

3 Accept: application/xml

4

5 200 OK HTTP/1.1

6 Content-Type: application/xml

7

8 <user>

9 <name>Bob Doe</name>

10 </user>

1 GET /users/1234 HTTP/1.1

2 Host: webofthings.com

3 Accept: application/json

4

5 200 OK HTTP/1.1

6 Content-Type: application/json

7

8 {

9 "name" : "Bob Doe"

10 }

Figure 3.3: Left: An XML representation of a user. Right: A JSON representation of a
user.

In order to simplify the usage of content negotiation mechanisms, an alternative method

for specifying the desired representation is to append the appropriate file extension directly

in the resource URI (e.g., spot11/sensors.json or spot11/sensors.xml). This is intuitive

to use and extend, and can be used directly in browsers to facilitate debugging.

Such a layered approach for addressability, along with flexible control of data formats,

allows a more decoupled protocol which enables a large variety of clients and applica-

tions to interact with a service in a consistent way. There are many benefits to provide

several representations for the same resource. Providing simultaneously XML, HTML,

and JSON allows not only Web browsers to consume information, but any application

that supports HTTP. Low-semantic data formats should be favored over rigidly specified

formats or newly-invented document types, else the scalability and loose coupling would

be drastically reduced. Likewise, no site-specific semantic constructs should be encoded

in URI directly (for example defining custom, well-known URI that all sites are assumed

to support), which would increase coupling between components.

URI as User Interface

Most Web applications allow users to submit queries to retrieve specific information,

usually via an HTML form to input query parameters as shown in Figure 3.4. When

users click the “Send” button, the browser will send to the server an HTTP request that

contains the form data. The HTML code behind this form is as follows:

<form action="search.html" method="GET">

Tags:<input type="text" name="tags" /><br />

Longitude:<input type="text" name="long" /><br />

Latitude:<input type="text" name="lat" /><br />

Radius:<input type="text" name="rad" /><br />

<input type="submit" value="Send">

</form>
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Figure 3.4: A simple HTML form to submit a query.

Note that the method used is GET, which instructs the browser to encode the query

parameters directly in the URI (the query being anything after the “?” symbol). This

generates the following HTTP request:

1 GET /search.html?tags=phone%2Cprinter&long=10.4&lat=-120&radius=10

2 Host: www.webofthings.com

3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

4 Accept-Language: en-us,en;q=0.5

5 [...]

If the query does have an effect on the server (for example inserts a new device in a

database), the query must use the POST verb and parameters must be encoded in the

request body and not in the URI (in which case GET on the same URI would not be

idempotent). This is usually done using application/x-www-form-urlencoded content

type, and the equivalent HTTP request is as follows:

1 POST /search.html HTTP/1.1

2 Host: www.webofthings.com

3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

4 Accept-Language: en-us,en;q=0.5

5 Accept-Encoding: gzip, deflate

6 Content-type: application/x-www-form-urlencoded; charset=UTF-8

7 Content-Length: 49

8

9 tags=phone%2Cprinter&long=10.4&lat=-120&radius=10

Forms are important for the Web of Things, because the Web application that handles

requests from an HTML form can be accessed from any HTTP client transparently over

the same Web API. This allows to maintain a single API to handle both requests from

humans via a browser or other machines, which drastically reduces discrepancies between

different APIs for different applications or clients. Using semantic annotations, one can
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turn a simple Web page into a self-explanatory, general-purpose Web API that any pro-

gram can read, interpret, and use. This allows the whole configuration API of device

functions to be accessible at the same URI via forms in a browser or via shell scripts for

example at the same.

Payload Format

In many cases, interactions between a Web client and server can be quite complex and an

efficient method to encoding structured data from devices is necessary. Various more or

less complex encodings can be use to describe sensor data so that it can be understood and

processed by other applications. For example, the Open Geospatial Consortium (OGC)

proposed the Sensor Web Enablement (SWE) standards that allow to discover, access,

and obtain sensor data and services [99]. Such standards allow to describe semantically

sensor data in a machine-readable way, nevertheless they specify a custom, SOAP-based

application protocol on top of HTTP which is not based on REST. This limits the native

Web integration of devices by introducing a stronger coupling between components, which

all need to implement SWE standards.

The simplest way to encode sensor information while retaining structure and semantics is

to use comma-separated values (CSV), which is the most efficient encoding for plain text

content. This makes it a convenient choice to encode data for embedded devices and also

it is convenient for developers to read and debug. Binary encoding of data can further

reduce the data to transmit, but this requires extra processing power. The downside of

CSV or binary encoding is their lack of flexibility, because a fixed and unambiguous data

schema must be shared between all components and known in advance and hard-wired

in the implementation. This reduces the loose coupling introduced by REST in the first

place as all participants must rigorously stick to a common schema, therefore should be

avoided unless necessary.

The alternative we suggest for Web of Things applications is JSON, which is particularly

suited for Web applications as it is lightweight, portable, self-contained, and can be easily

parsed in browsers using Javascript. It is a lighter alternative to XML which requires less

processing power and bandwidth.

3.2.4 Hypermedia as the Engine of Application State

The fourth core aspect of REST is centered around the notion of hypermedia, in other

words the idea of links to bind related ideas. Hypermedia was proposed in the early 1960’s

by Ted Nelson [190] as a generalization of hypertext that includes various media formats

in addition to text, such as video, images, or sounds. Links have become highly popular
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thanks to Web browsers and are by no means limited to human use (for example UUIDs

used to identify RFID tags).

Consider the following HTML fragment:

1 <html>

2 <h1 class="device-name">spot-living-room</h1>

3 Root <a href="http://webofthings.com/devices/spot-living-room" class

="self">URI</a> of this device.

4 View the list of <a href=’sensors/’ class="sensors">sensors</a> and

<a href=’actuators/’ class="actuators">actuators</a> on this

device.

5

6 Or read the <a href=’about/’ class="info">documentation</a>.

7 </html>

With this initial representation of a device, one can easily “follow” links to retrieve

additional information about sub-resources of the resource http://webofthings.com/

devices/spot-living-room. In a WSDL file, everything is described in a flat structure

and the whole document has to be retrieved and parsed every time the structure changes.

Using such a tree-based model, every layer in the tree acts as a proxy that hides the layer

beneath.

The application state refers to a step in a process or workflow (similarly to a state ma-

chine), and REST requires the engine of application state to be hypermedia driven14.

This means that each possible state is available though a URI where a representation of

the current state and possible transitions to other states is available. Resource state (e.g.,

the balance in a bank account) is kept on the server and each request is answered with a

representation of the current state and with the necessary information on how to change

the resource state (e.g., make a payment, file a check).

In other words, applications can be stateful as long as client state is not kept on the

server and state changes within an application happens by following links (which meets

the self-contained messages constraint). This way, each state becomes a RESTful resource

that can be seen as a step in a workflow (see [123, 15]). This allows to scale servers, as

new machines can be added to a cluster and there is no need to keep and synchronize

client states across machines, as anyone can answer requests and no session context has

to be maintained, only the state of the resources themselves.

In early RPC-based applications, a fat client was invoking functions on a central machine

where a stateless application was running. The server simply answered requests by fetch-

ing some data in a database or other applications and return it to fat clients who handled

the processing. This model was appropriate for fixed applications that were limited to a

14See: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://webofthings.com/devices/spot-living-room
http://webofthings.com/devices/spot-living-room
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
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set of operations, but it was pretty difficult to maintain large deployments as any change

in the backend (adding a new functions on the server for example or patching a bug)

required all clients to be updated. In other remote applications (e.g., VNC or remote

desktop applications), the entire client state was kept on the server and client only were

used to display the state and and send commands to the server, which drastically reduced

the server scalability. With Web applications, as the code was delivered dynamically

from a central location and rendered locally in browsers, it became easy to upgrade both

the clients and server, and in many cases state was maintained on the server which al-

lowed lightweight clients to be used. Interestingly, more performant browsers along with

frameworks such as Adobe Flex [1] or Microsoft Silverlight [27] made it easier to maintain

application state on client-side along with fat clients, yet benefited from the code-on-

demand feature introduced by the Web model. Nevertheless, these technologies are not

fully integrated into the Web as they still require plugins to interpret them, very much

like Flash.

3.3 Web-enabled Devices

After having described the core design principles of the modern Web architecture, we

now show how to apply them for interacting with embedded devices. After that, we

conclude this chapter with a discussion about the limitations of the current Web when

used to build a scalable and efficient Web of Things.

A sensor manages data from one source (temperature, acceleration, pressure, humidity,

sound level, etc.) via one or more channels (for example a 3D acceleration sensor has

three channels). As discussed in Section 3.2.1, one can easily map the functionality of

any embedded device into a RESTful application. We define Web-enabled devices as any

NED whose hardware and software resources (sensors, actuators, etc) are identified by

URIs and can be manipulated using HTTP.

The first step in Web-enabling a device consists of making every property of a NED

addressable via an URI. Devices usually have a set of common properties: an identifier

(network name, URI, etc.), a description, a location in a three dimensional space (devices

can be fixed or mobile), but also various sensors and/or actuators.

We illustrate this notion with a Sun Small Programmable Object Technology (Sun SPOT,

shown in Figure 3.5) device15, which is a small, battery-operated wireless device running

a Squawk Java Virtual Machine (VM) without any underlying operating system. Sun

SPOTs can be easily programmed using Java, and support various functions such as

mesh networking, public-key cryptography, and various data analysis routines. These

devices were designed to overcome the challenges of traditional sensor network platforms

by encouraging fast prototyping of powerful NED applications with advanced functions.

15Official Web site: http://www.sunspotworld.com

http://www.sunspotworld.com
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Figure 3.5: Sun SPOTs are small, battery-powered wireless devices with various sensors and
actuators. They run an embedded virtual machine and can be programmed using Java.
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Figure 3.6: URI structure for the representation of a Sun SPOT and its associated sub-
resources, sensors, and actuators.

Every component of the Sun SPOT is organized into the resource tree depicted in Figure

3.6, where each sensor, actuator, and system property of the device is mapped to a

hierarchical URI path. This allows to create a dynamic, resource-oriented Web API for



46 Web-oriented Architectures

Sun SPOTs, where every component can be directly accessed via its URI. For example,

the URI of the 4th LED of a device is http://[DEVICE_URI]/actuators/leds/4, where

[DEVICE_URI] is the device root URI (the equivalent of the default [...]/index.html

landing page on a Web site). Resource collections are shown within curly braces as for

example the LED number (e.g., /leds/{led#}/).

As shown previously, the various functions and properties of a device shall be accessible

via a Web API:

1 # GET to retrieve the list of events on device ID

2 http://[DEVICE_URI]/events

3

4 # POST to create a new "rule" on device ID

5 http://[DEVICE_URI]/rules/

6

7 # PUT to update the rule ID on the device

8 http://[DEVICE_URI]/rules/{rule_ID}

If the device is directly connected to the Web, the [DEVICE_URI] will be directly its IP

address, such as http://192.168.44.32 or http://device.webofthings.com. It can

also be a more complex URI path, for example when a Web gateway is used as proxy for

several devices that are not directly connected to the Web (see Section 4.3), as follows:

1 # A list of devices connected to a gateway

2 http://[GATEWAY_URI]/devices

3

4 # GET to retrieve the device page of device ID

5 http://GATEWAY_URI]/devices/{DEVICE_ID}

A typical complete URI of the light sensor on a Sun SPOT (named spot31) attached

to a gateway will look like this: http://gateway.webofthings.com/devices/spot31/

sensors/light.

Once every component of the devices is assigned a unique URI, the second step is to

implement the basic HTTP verbs to interact with each resource, as was described in

Section 3.2.2. Once a basic RESTful API has been designed for a device, more advanced

features can be implemented on top. For example, some resources could support eventing,

authentication, or resource discovery mechanisms.

As will be shown in Section 6.1, the ability for devices to generate events upon specific

preconditions is necessary for many applications. Rather than continuously polling sensor

readings on a device and analyze data on a remote application, it would be efficient to

register simple rules directly on devices who will trigger an event handler in another

application. HTTP was not designed to work as an asynchronous notification systems, and

by default it does not support push-based interactions. As will be explained in detail in

http://[DEVICE_URI]/actuators/leds/4
[DEVICE_URI]
[...]/index.html
/leds/{led#}/
[DEVICE_URI]
http://192.168.44.32
http://device.webofthings.com
http://gateway.webofthings.com/devices/spot31/sensors/light
http://gateway.webofthings.com/devices/spot31/sensors/light
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Section 6.1.2, various mechanism are possible to implement Web-based push notifications

on devices. The simplest solution is to use HTTP callbacks, that is enabling devices to

act as clients that can post notification onto callback URL specified at registration time.

The callback is a simple HTTP request handler that can process incoming HTTP requests

from devices.

Once the API is defined for each resource, various encodings can be used to represent

them. If the device should be directly accessible via a Web browser, an HTML page with

Web forms should be designed for each resource to interact with them. In the case where

only applications will interact with devices, XML or JSON formats are sufficient. For

example, events from devices can be encoded using the following JSON object:

1 {event:{

2 timestamp:309482309, /* if not specified, assigned by the server */

3 type:sample|error|trigger|critical|heartbeat,

4 value:{

5 model:"SunSpot",

6 vendor:"sun",

7 description:"this is a sunspot",

8 vendor-url:"http://webofthings.com/devices/sunspot/"

9 }

10 }

Rules do not contain an action, they only generate notifications that are forwarded to a

single endpoint (in the cloud or on a gateway), where the actual event handling (action

taking) takes place. This allows to use a publish-subscribe notification mechanism directly

on devices which decouples further the event from its reaction (device only needs to know

one endpoint to notify – or none if the gateway offers an endpoint by default to devices),

and the actual notification dispatching to subscribers operation is “outsourced” to an

external application.

Finally, the whole state of the application should be encoded in each representation, so

that users (humans or machines) can find all the possible functions available in each state

encoded using hyperlinks.

3.4 Case Study: Physical Mashups

RESTful Web services are more loosely-coupled than their SOAP-based counterparts [197].

In practice, this means that services based on RESTful APIs can be re-used and re-

combined in a quite straightforward manner. Thanks to the simplicity of HTTP and the

wide availability of HTTP libraries and clients, we believe that Web technologies are an

excellent way to interconnect the physical world with applications.
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A Web mashup is an application based on common Web languages and tools, such as

Java Script and XHTML, that combines data from two or more different sources on the

Web (e.g., RESTful services) into an integrated application. Physical mashups [139] are

composite applications involving devices that are part of the physical world such as sensor

networks. For example, a physical mashup could integrate electricity measurement data

from a sensor network, with electricity prices from an energy market data source, with

the Google maps data to form an application where a real-estate company can monitor

electricity usage and costs on a map.

1 while [ true ]

2 do

3 RANDOM_LED=$[ ( $RANDOM % 8 ) ]

4 RANDOM_R=$[ ( $RANDOM % 255 ) + 1 ]

5 RANDOM_G=$[ ( $RANDOM % 255 ) + 1 ]

6 RANDOM_B=$[ ( $RANDOM % 255 ) + 1 ]

7

8 curl --basic --request POST --data "switch=on&Green=$RANDOM_G&Blue=

$RANDOM_B&Red=$RANDOM_R" http://webofthings.com/spot31/actuators/

leds/$RANDOM_LED

9 done

Listing 3.1: A shell script that blinks periodically a random LED of a Sun SPOT by assigning

it a random color (using a random RGB combination).

3.5 Discussion

In this chapter, we have presented the basis of the Web of Things, as an accommo-

dation of the core design principles of the Web architecture to support the interaction

patterns required by NEDs. Extending the Web to the real world by enabling Web-based

interaction with embedded devices will greatly simplify the development, deployment, and

maintenance of pervasive computing applications. In practice, when using Web standards

on embedded devices, several limitations prevent the implementation of elaborate and

scalable distributed sensing applications. In particular, various shortcomings of current

Web tools and technologies need to be addressed with the requirements of scalable and

participatory ecosystems for devices. Besides, various practical issues need to be tackled

to incentivize the participation of developers to integrate devices and services into the

Web of Things.

The problems that we explicitly address in this thesis towards the development of such a

participatory ecosystem are the following:

• Generic framework for Web-enabling devices. Current prototypes implement

Web patterns directly on specific devices, in a fairly rigid and custom manner. A
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generic framework to easily integrate various devices into the Web of Things without

reimplementing the same functions anew for every different device is missing. To

address this problem, we propose in the next chapter to use gateways, which are

extensible software applications that bridge NEDs to the Web regardless of the

actual communication protocol used natively by the device. Support for various

functions (caching, optimization, data aggregation, etc.) and devices can be easily

added to gateway via plugins, thanks to the modular software architecture design.

• Extensible Web infrastructure. Gateways can then be interconnected to form

a scalable infrastructure where new devices and applications can be added easily

thanks to the RESTful interfaces used throughout the Web of Things components,

as shown in Chapter 5. The infrastructure supports various service that facilitate the

management and usage of heterogeneous devices in large applications. In particular,

we propose solutions for semantic description and discovery of devices in a way that

supports the physical location of device and their services, and also users. A query

mechanism to support location-aware search of devices is also proposed. Obviously,

the originality of our contribution relies on the fact that our infrastructure builds

naturally upon the existing network in place, by being fully integrated in the Web

thanks to its RESTful interface.

• Lightweight Web messaging. Efficient solutions for event-driven communication

between devices that fully comply with the REST and HTTP principles are lacking

in the Web of things community. Furthermore, no support for data streaming on

the HTTP level (HTTP-push) is provided/supported by existing solutions. Future

NED applications, will not only require to support scalable, push-based notification

mechanisms that are fully-based on HTTP, but also directly integrate with future

Web applications to collect, analyze, visualize, and share sensor data over social

networks. This limitation will be addressed in the first part of Chapter 6, where a

minimal Web push notification mechanism is proposed.

• End-to-end application development framework. Having an infrastructure

to integrate, search, and use heterogenous devices over the Web is necessary, but

not sufficient to develop complete applications for end-users. In particular, a pro-

gramming model that supports declarative queries over the REST will enable Web

developers to easily access, program, and integrate streaming data into traditional

Web applications. This is discussed in the second part of Chapter 6, where we

provide a modular distributed application framework to collect, process, share, and

store real-time data using only Web standards.
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CHAPTER 4

Web-enabling Embedded Devices

“A great pleasure in life is doing what people say you cannot do.”

Walter Bagehot (1826-77)

Building the Web of Things requires to implement the various patterns described in

Chapter 3 to interact with the devices. In this chapter we present and evaluate the

various approaches to connect devices to the Web and make their functions accessible

via a standard RESTful API. In particular, we propose to use a gateway-based approach

to enable Web interaction with NED regardless of the actual communication protocols

they support, and further show how performance and functions of applications can be

augmented using a smart proxy to handle complex processing.
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4.1 Web-enabling Devices

We define a Web-enabled device as any NED whose sensors, actuators, and proper-

ties are identified via an URI and can be manipulated using HTTP. As pointed out by

Wilde [244], devices that are Web-enabled by design would facilitate the integration of

NEDs with existing Web content and applications as there would be no need for any

additional API or descriptions of resources/functions. Another advantage to use Web

protocols to interact with embedded devices is that one inherits many of the mechanisms

that made the Web scalable and successful such as caching, load balancing, indexing,

and searching, as well as the stateless nature of the HTTP protocol. Besides, one can

also leverage search engines to register, index, and search for physical devices and service

(e.g., environmental monitoring sensors), for example by using semantic annotations to

describe the functionality and interaction possibilities of each device.

WebHTTP

proprietary

Bluetooth

X10

IEEE802.15.4
DLNA

HTTP

HTTP

Google 
APIs

Flickr API

Gateway
API

Figure 4.1: A gateway is a Web application that bridges embedded devices with the Web.
By abstracting the various low-power protocols used by devices behind a RESTful API, one
can interact with devices transparently using HTTP – as if they were running a Web server
and were directly accessible over the Internet (i.e., have a public URI).

Embedded devices usually have limited resources, thus often call for optimized protocols

to exchange data. Additionally, as HTTP or IP might not be available or appropriate

for such devices, gateways might be required to enable Web-based interactions with low-

power devices. A gateway (cf. Figure 4.1) is nothing more than a Web application that

enables access to heterogenous devices through a simple and uniform RESTful API. This

hides the complexity of the various protocols used natively by devices (such as Bluetooth

or ZigBee). The gateway application is lightweight enough to run on any computer with a

TCP/IP connection that can host a Java virtual machine, such as programmable wireless

routers, network-attached storage (NAS) devices, or networked media players.
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In many cases – even when an HTTP server can run on a device – serving HTML pages

directly from the device does not make much sense, unless users want to access directly a

particular device directly with their browser. When users want to interact with a set of

devices and only get their aggregated data, then devices can serve much lighter machine-

readable formats, such as JSON or XML. In that case, the data collected from a multitude

of devices can be more easily aggregated, filtered or processed at intermediate nodes in the

network or more powerful gateways. This aggregation is actually significantly facilitated

when using REST in place of other protocols – as intermediary components are supported

to reduce interaction latency, enforce security, and encapsulate legacy systems, which are

all desirable features for NED applications.

RouterProxy

Indirect Pass-through

Non Web-enabled Web-enabled

HTTP

HTTPLegacy

  Devices

Web

Gateway

Figure 4.2: Web-enablement of devices. Right: devices run an embedded RESTful Web
server on board, so the router only forwards messages across the two interfaces. Left: devices
do not support directly HTTP, therefore a protocol translation is required.

As illustrated in Figure 4.2, there are two methods for web-enabling devices:

1. Router-based: end-to-end HTTP enablement via embedded Web servers running

on the device. Requests are only routed from the Web the different physical (trans-

port) interfaces without any application protocol translation (see Section 4.2).

2. Proxy-based: a proxy translates HTTP requests from the Web into the actual

transport and application protocol. For example, the device uses a proprietary

application protocol over Bluetooth or ZigBee (see Section 4.3).

The actual location where the Web server is running (directly on the device or only on

the gateway) does not matter much (obviously besides performance issues), as long as the

interactions remain transparent to the client. This property is guaranteed by the layered

system property of the HTTP protocol, which allows a more flexible system design.
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4.2 Case I: Router-based Enablement

The simplest method to connect NEDs to the Web is to implement a lightweight HTTP

server directly on the device. Although using HTTP instead of optimized legacy communi-

cation protocols requires more resources to transmit the same amount of information due

to HTTP’s verbosity, there are many benefits for devices to understand HTTP natively

as ad-hoc interaction with unknown devices becomes greatly facilitated. This approach

is the most desirable because there is no need to use an intermediate to translate HTTP

requests from Web clients into the appropriate protocol for each device (obviously be-

yond switching data packets across physical transport interfaces, e.g., from Ethernet to

ZigBee).

As many powerful NEDs have an Ethernet of Wi-Fi connectivity, implementing a Web

server on them is straightforward. However, the devices used in traditional WSN appli-

cations have much more constrained resources and are usually battery-powered, in which

case a protocol that minimizes data to transmit should be preferred. Nevertheless, recent

work has shown that embedded Web servers on resource constrained devices is feasible

with a very low footprint [112, 115, 142]. Besides, it is likely that in the near future most

NEDs will have native support for TCP/IP connectivity, therefore a Web server on each

device is a plausible scenario.

4.2.1 IP-based NEDs

Internet connectivity has become increasingly cheap and ubiquitous and most mobile

devices today have support for TCP/IP networking and even embedded HTTP clients. IP-

based communication to connect embedded devices has become a viable solution even for

sensor networks, and lightweight IP implementations have been successfully implemented

on different platforms [110]. Support for IP connection is desirable because it allows

sensor networks to become an integral part of the Internet and behave just like any

other computer connected to it. In particular, tools such as ICMP could come for free,

which would significantly facilitate the development of larger WSN applications [154].

Unfortunately, TCP/IP only allows connectivity at the physical layer (how they exchange

data with each other), but a common application layer (how they understand each other)

is still needed for a global interoperability of IP-based sensor networks.

Many NEDs increasingly come with an embedded Ethernet or Wi-Fi interface such as

printers, alarm clocks, digital photo frames, or networked multimedia player. In spite

of its drawbacks, Wi-Fi is becoming popular for embedded applications as it reduces

significantly the cost to network devices, because the technology is well-known and the

equipment required is inexpensive and omnipresent. Recently, several companies have pro-

posed Wi-Fi embedded chips that can be directly connected to the Web (Microchip [25],
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Lantronix [22], Gainspan [14], or Round solutions [46]), or even products based on such

chips (Aginova [2]). This makes it easy to implement full HTTP servers directly on de-

vices, especially when only a Web API is needed, without also serving HTML pages and

multimedia content.

4.2.2 Embedded Web Servers

HTTP was designed as an application protocol, not a transport protocol. Even though

HTTP is mostly used over TCP/IP, nothing prevents HTTP requests to be transported

over other protocols such as 802.5.14 or ZigBee, therefore IP-based sensor networks are

useful – but not required – to “give the impression” that devices are directly connected

to the Web.

Many NEDs can serve directly Web pages, and various lightweight HTTP servers for

embedded devices have been designed as for example RESTduino [42], SMEWS [114], or

Lighttpd [24]. Because of the constrained resources on sensor nodes, some components

such as the HTTP server or XML parser are optimized or limited to set of minimal

functions. As a proof of concept, we have implemented oREST (optimized REST), a

lightweight RESTful framework running both on TinyOS and Contiki that allows to send

HTTP requests to resource constrained sensor nodes (TMotes, see Section 4.2.3). In

essence, oREST is similar to RESThing [250], but uses an optimized RESTful application

protocol (easily mappable to HTTP by a gateway) adapted for devices, very much along

the lines of CoAP [211]. This work has been used in [161, 163] to explore Web-enabled

devices, but this thesis does not address the implementation of an embedded Web server,

and more information about native Web integration of embedded devices can be found in

[201, 251, 250].

According to [154], it is likely that in the near future a lot of embedded devices will

natively support TCP/IP connectivity as 6LoWPAN introduces an adaptation layer that

enables efficient IPv6 communication over IEEE 802.15.4 LoWPAN links. This approach

is desirable from an architectural standpoint as devices can be directly integrated into the

Web and HTTP requests must no longer be translated to device-specific protocols [139].

4.2.3 Evaluation

In this section we measure various aspects of Web-enabling objects using an embedded

Web server to evaluate and discuss the feasibility and performance of using HTTP to

interact with embedded devices.
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Hardware and Software

We have explored the router-based Web enablement with a simple gateway that connects

classic sensor nodes the Web. Using the TMote nodes [28] (Device No. 4 in Figure 2.1),

we have implemented a simple application where Web clients can send read/write HTTP

requests to different nodes that sample the environment. TMotes are equipped with a

8MHz TI MSP430 micro controller with 10 kB RAM, and an integrated antenna with a

250kbps 2.4GHz IEEE802.15.4 Chipcon Radio.

Contiki 
Base station

Contiki 
node

Proxy with simulated 
clients 

HTTP

USB

USB

TinyOS 
Base station

TinyOS 
node

IEEE 
802.15.4

IEEE 
802.15.4

GET 
localhost/device/sensor/4

Figure 4.3: System setup for the proxy-based evaluation. The resources of TMotes are
randomly accessed by Web clients simulated on a machine

The experimental setup we used is shown in Figure 4.3, where the proxy has been installed

on a laptop (Intel Core Duo 2.2 GHz). To illustrate the flexibility of our approach we

used both TinyOS and Contiki nodes running oREST (a minimal subset of HTTP that

uses only the server URI, a service name, an HTTP verb, and an optional list of key-value

pairs as parameters). Two TMotes were plugged in the USB ports of the gateway to

serve as base stations – one for TinyOS and the other for Contiki. Both Base Stations

forwarded IEEE802.15.4 wireless packets from/to the gateway via the serial-over-USB

port. A simple multithreaded application that simulated 50 concurrent clients was run

on the same machine, and each client accessed once per minute a random service on one

of the devices. The application was run for 15 minutes (totaling 750 requests).

Figure 4.4 shows a typical measured response time for 400 requests, and one can see

that even though most requests are answered within 100-350 ms, there is quite some

variation up to 800 ms. The cumulative density function (CDF) of the response time is

shown in Figure 4.5 (No cache), and one can see that 99% of the request were answered

within 737 ms. This shows that even with no optimization on router beyond simply

transforming HTTP requests into oREST and buffering requests for the same device,

a sub-second latency to query resource-constrained devices using a subset of HTTP is

feasible. Afterwards, we have done the same experiment again but with using a cache on

the router to answer read requests from devices (sensor readings were cached for 1 minute),
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Figure 4.4: Measured response time of 50 clients accessing randomly a service on two devices
(each client does it randomly once per minute).

and the CDF is in Figure 4.5 (Cache). In this case, 95% of all messages were returned

within 148 ms (mean response time 43 ms). This is an excellent result which shows that

with additional optimizations, a gateway could efficiently handle many concurrent users

accessing a sensor network, while minimizing the actual communication with devices.

These aspects are further explored in the next section.

4.3 Case II: Proxy-based Enablement

Embedded HTTP servers running on resource-constrained devices are not always pos-

sible or desirable because of the large overhead of HTTP. In this case, Web integration

is done via a proxy (also called gateway), which is a stand-alone application that ab-

stracts the actual communication protocol used to interact with devices (e.g., Bluetooth

or ZigBee) behind a RESTful API. From the Web clients’ perspective, the actual Web-

enablement process is fully transparent, as interactions are HTTP regardless whether the

RESTful server resides directly on devices or on an intermediate gateway.

In many cases, gateways are a better integration choice because they can virtually support

any kind of device regardless whether the device supports HTTP or not. Besides, a

gateway can be the best (or only) solution for Web-enabling an existing NED deployment

with little or no change to the system in place. As part of the research presented in

this thesis, we have built various gateways [243, 199, 101, 184], and Web-enabled various

devices ranging from sensor networks [142], to energy meters such as Ploggs [162, 240], to

RFID tag readers [138], or even robotic development kits such as LEGO Mindstorms [186].
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Figure 4.5: Response time CDF for 50 clients accessing randomly sensors on two TMotes
running a oREST (each client issues one GET request per minute). When a cache is used, the
most recent sensor value is returned from the cache if available, else every single request is
forwarded and executed on a device. qX% refers to the Xth quantile (e.g., q99%=Y , means
that 99% of the requests have a response time below Y .)

4.3.1 Proxy-based Architecture

Our proxy has been implemented in Java using a modular approach. As illustrated in

Figure 4.6, three central modules have been implemented. The Device Layer implements

the actual connection between devices and the the proxy using connectors (TinyOS/-

Contiki), along with their management. The Control Layer is the core applications that

handles and does the protocol translation between Web requests and issuing their cor-

responding low-level messages. Finally, the Presentation Layer handles requests from

the Web, and implements both the Web API and an HTML-based GUI to control and

visualize the status of the sensor network through any Web browser.

Device Layer handles the actual communication with the devices. Using a connector

architecture, it can interface with various WSN devices, where each connector (driver)

implements the native communication protocol used by a device (for example TinyOS

and Contiki). First, drivers handle the low-level discovery of devices using a custom

discovery procedure for each connector. Then it keeps monitoring the presence of these

devices using a heartbeat mechanism, removing them in case they do not respond within

a predefined time.

As soon as a new device has been discovered, a new device thread (DT) is created for

that device, which acts as the internal (local) representation of the device. We have used
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Figure 4.6: High-level architecture of the proxy, with interactions between the control, pre-
sentation, and device layer. Various devices interact via specific drivers, and for each device
an associated device thread (DT1,2) is associated. Each device is then accessible via specific
URIs.

threads because they simplify the management and implementation of device-level inter-

action, and offers a generic and performant metaphor to interact with objects. The thread

handles all the events and messages received from the device, and sends them to the Con-

trol layer using callbacks (handlers). The same threads are used in the whole system and

all have the same behavior, API, functionality, independently of the connector, therefore

they are protocol agnostic. Connectors are simple software modules that must implement

a specific API used internally and implement the various functions and callbacks defined

(details about the implementation can be found in [101, 184]).

Every thread stores information about its own device, a description of the device (device

metadata, see Section 5.3.2) and the services and functions offered by the device, along

with the API description of the services. Besides, threads also handle (and buffer) all

the requests from Web clients to the devices. Many other features can be implemented

in each driver (for example WSN transmission failure, load balancing, etc.) or directly a

gateway module (authentication, multi-device data aggregation, debugging, etc.) which

can significantly improve the performance of the WSN or simply augment a basic WSN

deployment with various features.

Control Layer. This layer is the core processing unit of the proxy. It manages the threads

spawning and freeing them as new devices appear or disappear, and coordinated the

interactions between the device layer and presentation layer. This module is responsible
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for the interaction between the upper layers and the device threads. It maintains a list

of all the devices which are bound to the system, as well as all the information covering

the services they offer. Higher layers are directly informed through querying that module

about all the necessary information concerning the devices connected to the system. In

other words, it offers an abstract way of reaching the devices by means of a simple internal

and generic interface. This module runs in the background, initializes and monitors the

various modules, and other “administrative” tasks.

Presentation Layer. This layer is the Web-facing part of the proxy and handles the

HTTP interaction from Web clients. It implements a Web server that handles all the

incoming HTTP requests from the Web. In particular, it implements a REST engine

(RESTlet [43]) to enable RESTful access for interacting with devices. More details about

the presentation layer are presented in [243, 101].

4.3.2 A Smart Proxy for the Web of Things

An initial version of the Sun SPOT gateway has been implemented in the context of

the EU project Socrades [199, 142], where Sun SPOTs were running a full HTTP server

that hosted HTML pages. Because of the various performance and stability issues of this

gateway, an improved version has been designed and presented in [184]. This improved

version has been used as a component of the proxy for Web-enabling and augmenting the

Sun SPOT platform presented in this thesis.

The Sun SPOT driver is based on a synchronization-based architecture where a virtual

copy of the device is maintained on the gateway and the status is updated (pushed)

by the device. Updates are sent either sporadically when specific events are detected

or periodically according to a fixed synchronization interval depending on the specific

applications and devices at hand which calls for a tradeoff between data freshness (i.e.,

how old is the cached sensor value), latency, and battery lifetime. This allows to decouple

the HTTP requests to the proxy and the actual communication between the device and

proxy, which doesn’t need to be HTTP-based. Every HTTP request from clients that

access resources from devices (for example reading the temperature sensor using a GET)

is served directly by the proxy, which returns the most recent state from the virtual copy

that acts a cache. This way only a fraction of all read requests will be forwarded to the

device and the communication between devices and the proxy is minimized.

The Sun SPOT runs a small java application that handles the communication with the

proxy to update its virtual representation (datagram-based on top of IEEE 802.15.4).

A simple discovery module looks for proxies nearby on a predefined port and uses a

handshake protocol to negotiate the port that will be used to send updates to the proxy
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and receive commands from it. Once the connection with the proxy is open, the SPOT

will periodically monitor the sensors and update the proxy periodically or every time an

event is detected. The device will push its newest status update encoded using JSON,

and the acknowledgment for the update can also contain requests that were buffered for

the device from the proxy. Using only device-initiated communication allows devices to

use low duty cycles as they do not need to listen for incoming requests all the time.

In this section, propose the notion of smart proxy, which is refined version of the gateway

presented in Section 4.3, but has been implemented using the OSGi framework, and

augmented with various additional functions. A modular software architecture has been

used and the overall software architecture is shown in Figure 4.6. The various modules

interact with each other using OSGi Declarative Services (DS), which is a mechanism

to share services offered by various bundles inside the same OSGi framework. More

details about the implementation of specific parts of the smart proxy can be found in

[161, 184, 101].

The main function of the device driver bundle is to handle the actual communication

with the Sun SPOT, which is based on JSON-encoded messages. Each device driver must

implement a generic interface declared as an OSGi DS interface that can be accessed by

any module of the smart proxy. This interface defines generic methods to retrieve the

list of connected devices to the driver, their resources and informations (metadata), and

generic read and write methods for any of the resources offered by each device. It also

contains more generic driver-specific functions, for example the synchronization interval or

various key-value pairs to specify how the driver should connect to the physical interface

(for example on which serial port is connected the base-station).

New devices are found by listening to a pre-defined port for connection requests from

devices. For every new device found, a connection attempt will take place which consists

of sending to the device in response to the connection parameters chosen by the proxy

(e.g., the datagram port that will be used for that device and the synchronization interval),

and a device thread (from the device threads pool) is allocated for that device. The thread

will create and keep updated the local representation of the device, buffer incoming write

HTTP requests for the device, and answer read requests directly with the data from the

representation similarly to a cache.

4.3.3 Evaluation

Although a Smart Proxy is not necessary when devices support HTTP and/or TCP/IP

directly, in many cases proxies can help to improve the performance of an existing NED

deployment by handling locally processing and scalable notification when many users

want to access sensor data and services. Besides, Web integration can be further im-

proved by offering additional functions such as Web-based authentication, social-network

integration, data caching, or simply load balancing.
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Figure 4.7: Handshake and synchronization between a Sun SPOT and the Driver Core Bundle.
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Figure 4.8: Experimental setup for the proxy-based evaluation. The resources of a Sun SPOT
are randomly accessed by Web clients running on the gateway machine.

Response Time

In many use cases, human users are the main actors that read data from and send com-

mands to NEDs. A major challenge in early Web design has been responsiveness of Web

sites, which was perceived as an essential component in interaction quality. As long as

the response time can be below 100 ms, users hardly perceive any latency1.

As discussed in the previous section, the actual response time for accessing NED can

vary largely depending on many factors, a major one being the instability of the ra-

dio communication, which might require elaborate acknowledgement and retransmission

mechanisms. If every single request has to be executed on the device, the response time

will grow significantly for many concurrent users, as all write requests have to be queued

to be transmitted to the device one at a time.
1See discussion: http://www.useit.com/papers/responsetime.html.

http://www.useit.com/papers/responsetime.html
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Figure 4.9: Comparison of the two driver architectures with respect to the round-trip time
of local HTTP requests (400 requests shown out of 5000).

In many pervasive computing applications, sub-second response times are necessary. We

measured the actual response time via an experiment where 5’000 consecutive read re-

quests are sent to a Sun SPOT one hop away from the proxy, as seen in Figure 4.8.

The requests are all run from the same machine and are simple sensor read requests

(“GET http://localhost/sunspot/sensors/light”). Figure 4.9 shows the measured

response time for a subset of 400 requests (embedded), and the extrema is between 159

ms (min) and 3075 ms (max), with an average response time of 203 ms. The distribution

of measures is shown in Figure 4.10, where one can see that over 99% of the request are

answered within 244 ms.

We contrasted these measures with the average response time using the same setup, but

with a sync-based architecture to cache the most recent state of the device. As explained

earlier, the proxy receives periodically updates from each device and keeps an local copy

of the device data that is used to serve read requests. The synchronization-based drivers

differs from a cache because all the data sent from devices via update messages is kept

in memory regardless if they are requested or not (caches only keep data already served

to clients, and this for a limited amount of time). In this case, the average response time

was 3.9 ms (min 2 ms, max 36 ms), and 99% of requests are returned within 19 ms.

Our measurements show that extremely low response time can be obtained. As all the data

is served directly by the proxy application, one can leverage easily Web load balancing

techniques to support thousands of concurrent users. Obviously, this is not possible for

write access, where commands have to be queued.

Our results do not directly leverage the caching techniques used commonly on the Web

(see Chapter 13 in [121]), but future work in this area will enable direct integration

http://localhost/sunspot/sensors/light
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Figure 4.10: Response time CDF for 5’000 consecutive GET requests on the machine hosting
the proxy.

with the Web. This allows to leverage standardized caching control mechanisms used

for traditional Web sites (ETag headers) directly within the Web of Things, this way

applications and devices can specify individual preferences regarding maximal response

time and data staleness they are willing to tolerate.

Age of Retrieved Data

Even though caching by the smart proxy reduces considerably the response time, another

major issue to consider is the age of the data clients are willing to tolerate. Pushing

updates periodically from the devices minimizes network traffic, but the downside is that

the data in the cache grows old until a new update arrives. The maximal age of data is

bound by the update frequency (assuming no transmission delays occur), and we have

compare the data age for both driver architectures. Using the same experiment as above,

we have also measured the data age, which gives the typical pattern shown in Figure

4.11. With the embedded architecture, the data age varies little around the average radio

propagation delay and has the advantage to minimize the data age as every response

contains the most recent sensor reading.

One can see in Figure 4.12 the CDF of the data age for both architectures. In the worst

case, the age of the sync architecture is bound by the update period (200 ms), which added

to the transmission delay gives an upper age limit of 308 ms for 99% of all requests. In

comparison, the age of data in embedded architectures is mainly bound by the radio

transmission, in which case the maximal age for 99% of all requests is 140 ms.
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Figure 4.11: Age of the sensor data when using HTTP and sync-based architectures (400
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Figure 4.12: Left: Cumulative density function of the age of retrieved data when using the
embedded HTTP and synchronization-based driver. Right: q-80, q-95, q-99 quantiles for the
sensor data age.

4.4 Case Study: Energy Monitoring Mashups

As a proof of concept for Web-enabled devices, we have implemented a fully Web-based

energy monitoring application that leverages the advantages offered by the Web protocols.
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A handy feature of HTTP is the ability to encapsulate legacy systems behind a uniform

HTTP interface. Because of that, support for HTTP on sensor nodes is not necessary

and traditional WSN protocols and applications can be used for the sensor network. The

application consists of two networks of TMote sky motes that simulate smart meters

measuring the energy consumption of electronic appliances on two floors of a building.

In this case, a proxy (Figure 4.13, Floor A) must be implemented to translate HTTP

request into the legacy WSN protocol and vice-versa, which can be a tedious process.

Each time a device has a new reading it will issue a HTTP request (either directly or

generated by the proxy) and POST its data on the internal Web interface of the gateway.

The internal part of the gateway implements a simple publish/subscribe broker where

devices can publish their data that are tagged with the devices’ physical location and

name (tags use a URI-like structure, such as FloorA/tmote4/energy). The main role of

the gateway is to offer a publicly accessible Web interface to an intranet where different

sensor networks are connected (see Figure 4.13), and serve as a gate keeper where security

and data access information for the different deployments could be implemented, and

offers the data produced by the sensors with the desired granularity (e.g., authenticated

administrators can read and write data to any device, whereas unregistered can only read

the high-level energy consumption). For this prototype, a GET request on the public URI

of the gateway http://myWSN.com/energy fetches the following JSON file containing

energy-related data of the two floors in a building:

1 [{"name": "FloorA","currentWatts": 406.4, "KWh": 2.119,

2 "time": "2001 JAN 01 06:57:05","status": "on", "maxWattage": 6192},

3 {"name": "FloorB","currentWatts": 3506,"KWh": 1190,

4 "time": "2001 JAN 01 06:57:05","status": "on","maxWattage": 4092}]

Finally, we have used an existing mashup called Energie Visible2 to illustrate how very

simple interactive Web applications can be built to interact with heterogeneous sensor

networks directly from your browser [240]. Energie Visible is a Web mashup (written

in AJAX using Google App) that fetches energy data from a gateway of the network of

sensors and plots in real-time the energy consumption of the two floors of the building

collected by the two different sensor networks.

4.5 Discussion

In this chapter, two different paradigms for connecting devices to the Web of Things

have been demonstrated and compared with respect to several different metrics. The

evaluation of these architectures regarding the average data age, power consumption

and concurrency shows that one can provide strong real-time guarantees on the data

2Online: http://www.webofthings.com/energievisible

FloorA/tmote4/energy
http://myWSN.com/energy
http://www.webofthings.com/energievisible
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Figure 4.13: Complete system architecture of a multi-layered energy monitoring application.
The first layer is a standard Web application (mashup), that fetches energy consumption data
from a gateway using HTTP. The gateway offers machine-readable aggregated data from
different sensor networks on the intranet through a proxy or router.

retrieved from a device by directly embedding an HTTP server but that this leads to

disadvantages regarding scalability, response time and battery lifetime. An advantage of

the synchronization-based architecture is its increased flexibility that allows to employ

it within a wider range of applications, specifically in deployments where a higher data

refresh period is tolerable and/or long battery lifetimes are desirable. However one has to

keep in mind that this architecture introduces the need for a host software gateway that

translates incoming HTTP requests to device-specific synchronization messages whereas

the alternative is HTTP-compatible without compromise. Due to the decoupling of the

communication between the HTTP client and the host on the one side and the synchro-

nization between the host and the device on the other, synchronization-based drivers

allow for considerably lower data-access times and thus faster servicing of HTTP clients.

Besides, the distinction between embedded and synchronization server could be blurred

by using the cache control feature of HTTP. Clients can specify the staleness they are

willing to tolerate, and depending on the data age of individual sensor readings, the proxy

can serve directly data from the cache or trigger updated values from the device.
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CHAPTER 5

Distributed Infrastructures for the Web of Things

“In these days, a man who says a thing cannot be done is quite apt to be interrupted by

some idiot doing it.”

Elbert Green Hubbard (1865-1915)

The previous chapter has explored the usage of gateways and proxies to enable Web-

based interactions with NEDs. We have further described how gateways can add func-

tionality and improve the performance of distributed sensing applications. However, as

the size of applications and networks grow, a large-scale infrastructure (backbone) for

connecting heterogeneous NEDs and applications will be necessary. This infrastructure

will also need to offer services useful for the Web of Things such as ad-hoc search, dis-

covery, and interaction with physically distributed NEDs. Finally, to encourage reuse

and flexibility a modular software architecture will be required to allow users to integrate

their devices in this common infrastructure easily. To move beyond Intranets of Things
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towards a unique and unified Web of Things, we propose a solution for binding disparate

gateways, routers, and other components together to form an application-level distributed

infrastructure for NEDs. Using a hierarchical tree mapped to physical locations, we can

create a location tree that enables to easily implement location-aware applications for the

Web of Things that build upon the existing network infrastructure. As our solution fully

integrates with the Web, users can use URIs as a flexible context-aware search method

to find and use things in specific location. Parts of this chapter have been reproduced

from our early work published in [229, 226, 228], however, we detail and propose further

refinements over our previous work here.

5.1 Structuring the Web of Things

On the Web, the location of data is irrelevant, since a powerful mechanism (URIs) is in

place for accessing data regardless of where it is stored. In contrast, physical objects are

always somewhere, and their location or state can change quickly. In addition, people also

often change location (home, office, car, etc.), and to fully leverage the physical nature of

objects and people their current location must be known. Search engines made it possible

to index and search the static content of the whole Web which contributed largely to

its success. However, the use of centralized repositories to keep track of the location

and state of billions of NEDs would not scale. As access to timely information becomes

indispensable in many disciplines, tools to search and filter information about the physical

world in real time are needed. Such tools would be particularly useful in a large-scale

Web of Things, where physical objects must be be searchable in real-time [205], in other

words one needs a “Google for the real-world”.

Localization of objects and people has always been a tedious technical challenge, and

only recently GPS receivers have become a commodity allowing objects to be localized

more easily in outdoor environments. However, for indoor applications GPS are unus-

able, thus indoor localization system based on Wi-Fi fingerprinting [168, 86] have become

popular as they require no hardware infrastructure to be installed other than a Wi-Fi

network. With a localization accuracy of a few meters, this technique allows room-level

localization, which is sufficient for most pervasive applications, as shown in ubiquitous

computing surveys [67]. Although indoor localization techniques improve over time, adop-

tion of location-aware applications is hindered by the lack of robust and open standards for

modeling and representing locations on the Web beyond geographical coordinates [245].

Due to the lack of support for modeling the physical location of things, discovering devices

present in a location and interacting with them in an ad-hoc manner is a complex prob-

lem that requires customized applications. While solutions such as Bluetooth, Apple’s

Bonjour or Universal Plug and Play support discovery of devices on the same network and

interacting with them, a common ground on which devices using different protocols could

be discovered, searched, and interacted with globally and transparently is necessary.
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As demonstrated by the success of the Web, loosely-coupled distributed applications are

massively scalable. In this chapter, we explore how to leverage this characteristic to build

a scalable location-aware infrastructure for the Web of Things. The general idea is to

interconnect the gateways described in the pervious chapter and their associated devices,

in order to form a large distributed infrastructure for interconnecting seamlessly all kinds

of heterogenous devices. Using the Web as middleware enables to search and use devices

depending on their current state, location or overall context on a global scale and in real

time regardless of the actual protocols used natively by the devices.

5.1.1 Hierarchical Location Modeling

Although no formalized standard for modeling indoor locations prevails, one can find

many location models in the literature [80, 93]. However, most of these location mod-

els have been designed to match the specific application needs of these projects. The

NEXUS project [78] proposed an open platform for context-aware applications, with a

location model that supports hierarchical naming schemes and different levels of detail

for indoor and outdoor applications. In the AURA project [158], a hybrid location model

and a formal representation that combines the advantages of symbolic and geometric

location models is proposed. The clear separation of model and representation is what

separates this approach from others. Consequently, the AURA Location Identifier (ALI)

uses a formatted URI to represent both geometric and symbolic locations. Ubisworld

[215] describes an interesting Web-based hierarchical model for locations, however it was

not explicitly designed to be used on mobile Web devices. Other approaches for location

modeling on the Web have been proposed to build a geographic Web that merges abstract

information with geographical, such as KML [21] or GeoRSS [63]. Unfortunately, they

were designed primarily for spatial (geometric) locations and are not suited for hierarchi-

cal models. Besides, their integration with the Web is limited, as they are not based on

a RESTful architecture (see Section 3.2).

A central property of the Web is the use of hyperlinks to connect related resources on

the Web, possibly using semantically annotated links, for example using the friend of a

friend (FOAF) standard [55]. To create a distributed infrastructure for smart things,

we propose to bind gateways together in a similar manner. In previous work, we have

explored how gateways can be linked to realize a distributed location-aware infrastructure

for devices [226]. By mapping each gateway to a unique location and linking gateways

together according to their spatial disposition, one can model the relations between places

in the real world. In practice, this requires each gateway to maintain a list of links (URI)

to the gateways of (physically) adjacent places, and optionally to annotate semantically

the nature or type of these links.

As illustrated in Figure 5.1, such a Web-based hierarchical model of places enables inter-

action with the real world with different levels of granularity (country, region, city, street,
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building, floor, room, object). Thanks to the layered system constraint of the REST archi-

tecture, each node (i.e., gateway) in the tree offers a layer of abstraction to interact with

the devices and gateways contained in its subtree, thus refines its parent by offering a finer

granularity to clients of the infrastructure. By restricting component behavior such that

nodes cannot see beyond the nodes in the layer above or below (nodes only know about

their direct parents and children), we bound the overall system complexity and promote

substrate independence, as layers can encapsulate legacy services or protocols.

Such location-aware gateways are also called location proxies, and both terms are used

interchangeably throughout this chapter. We differentiate between two types of gateways:

virtual and physical. Although identical from a software point of view, the difference

lies in the fact that physical gateways (also called terminal gateways) must run on a

computer (e.g., a wireless router, a PC, etc.) physically present in the area it maps

to and can connect with devices in that location using short-range radio protocols such

as Wi-Fi, ZigBee or Bluetooth. Terminal gateways can discover mobile devices in their

surroundings and turn them – and their resources – into Web resources accessible over

HTTP at runtime. Virtual gateways on the other hand, do not need to be installed at

the location they map to, unless they need to connect directly to NEDs in that location.

The virtual gateways in the tree shown in Figure 5.1 can be hosted anywhere in the world

transparently as long as the logical structure of the tree is maintained.
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Figure 5.1: Example hierarchical tree of gateways from our building. The top gateway
covers the gateways for each floor, and is composed only of virtual gateways. The southWing

gateway runs on the router that bridges the local sub-network of that area, thus can access all
terminal gateways running on computers physically located in each room. Terminal gateways
have various physical interfaces to access mobile devices nearby.

The mapping process that assigns the logical place name (“room 44”, “floor D”, “east
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wing”, etc.) to gateways must be done once manually by an operator at setup time.

Fortunately, since gateways are not mobile and the structure of their connections is rather

static, little effort is required to maintain the tree structure once in place. The tree can

be navigated by following links to surrounding gateways simply by clicking the links on a

Web page or typing a URL in any Web browser.

On top of such an infrastructure, one can easily build a system that supports range and

lookup queries for mobile devices that allow to restrict the scope of search to a fixed

radius from a given point or to polygonal area [181]. Unlike most other hybrid models for

spatial queries, our approach does not rely on a centralized database to store information

about the system. Thanks to their RESTful interfaces, gateways are loosely-coupled

components responsible for managing the devices (and other gateways) located in the area

they are associated with. The higher up in the hierarchy, the less often things are likely to

change, which forms naturally an efficient load-balancing system, as users only access the

location proxies for the area of interest without soliciting the rest of the system for each

request. The loose coupling between location proxies increases scalability, robustness, and

flexibility of the infrastructure, which makes it particularly suited for ad-hoc interaction

with/from mobile devices that move across locations.

5.1.2 Localization

Given that many different localization techniques exist for different applications, the

representation of the location information must be kept agnostic of the localization tech-

nique used in order to maximize flexibility and interoperability. Although many formats

to represent outdoor locations have been developed recently, no standard has been pro-

posed to represent indoor locations using both symbolic and geometric models that is

based on Web technologies. As geographic coordinates (longitude/latitude) are not prac-

tical for dealing with location concepts used in everyday life (for example a room number

or a building name), a flexible model that supports user-generated symbolic annotations

of places is needed. Sharing semantics of places can be a tedious problem in case a central

authority has to maintain a repository of place names, besides it would conflict with the

Web’s decentralized nature.

To solve this problem, we propose to use the Web itself as a lookup service to find and

explore locations, as well as to obtain information about places and the devices therein.

Following the idea formulated in [158], we use URIs to represent locations and their

containment relations as a logical path according to the URI definition. Consequently,

RESTful URIs can be created dynamically by navigating the hierarchical tree formed

by the gateways. For each URI, both machines and people should be able to retrieve a

description of the identified resource. This is essential for a shared understanding about

the location identified by the URI, where machines can retrieve semantically annotated
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data (e.g., using RDFa or Microformats) while people can retrieve a human readable

representation (HTML).

../CNB

../room102

../floorD

../room103

tags=floor

tags=building

tags=roomtags=room

1 <h1 class="current:name">floorD</h1>

2 <h2>Parents<h2>

3 <span class="parent" tags="building">

4 <a href="../CNB">CNB</a>

5 </span>

6 <span class="children" tags="room">

7 <a href="room102">room102</a>

8 </span>

9 <span class="children" tags="room">

10 <a href="room103">room103</a>

11 </span>

Figure 5.2: Left: An simple location tree. Right: The semantically annotated HTML page
of the “floorD” location proxy (HTTP GET at the URI ../CNB/floorD).

Once the gateway hierarchy is in place, a simple mechanism to determine the current

location of a mobile device on the tree is required. In other words, one needs a method to

retrieve the URI of the location proxy associated to any specific location. We call this the

bootstrap problem, and a simple method to associate the URI of a gateway to any location

is necessary. One possibility would be to always connect automatically to the gateway

with the highest signal strength. In practice this turns out to be very unstable as the

signal strength is subject to significant and unpredictable fluctuations. Another solution

would be to attach a bar code or an RFID tag into each room which acts as a physical

bookmark that points to the URI of the location proxy associated with that room, but

this requires to use an external application to read the tag. The actual spatial localization

process is not part of this thesis and is not discussed further. We only assume an indoor

localization system in place that can be leveraged to retrieve one’s position with room-

level accuracy. For example, RedPin [86] can be used as lookup service to retrieve the URI

of the location proxy associated with the current location based on Wi-Fi fingerprinting.

In addition to using standard URIs, we introduce a concept called here/*. The idea is

to use a fixed symbolic string (namely “here”) in place of the host name in the URI to

identify the current location proxy of the client accessing the URI. This is conceptually

similar to a dynamic bookmark that is constantly updated so that it always points to the

URI of the gateway associated to that physical location. Such a location-dependent URI

can be constructed using the following syntax:

http://here/{location}[query]

The generic here hostname is automatically mapped to the URI of the gateway of the

location the resource been accessed from (i.e., IP address or network name). To traverse

the location structure, location is used to represent a hierarchical path of arbitrary

../CNB/floorD
here/*
here
here
location
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length (for example /building44/room3/). Finally, by specifying an optional query, the

user can search for devices and services that match a specific expression. To instruct a

gateway to return all the links to its sub-resources (devices or gateways directly connected

to it), the wildcard character “*” can be appended to the URI. With this simple syntax,

URIs become a flexible search bar to browse and search the physical world. For example,

to retrieve all the devices tagged with the keyword phone located on the same floor, one

can simply type the following URI in any browser:

http://here/floor/phone/*

This URI can be resolved by any location proxy, which will often be the Wi-Fi router the

user is connected to. Such requests are routed to the appropriate proxy using either the

name of the gateway explicitly (for example “floorD”, which will be mapped to the closest

– in number of hops – gateway that matches this name) or by leveraging the semantic

annotations on links between gateways (using the generic tag “floor”), which is more

flexible but also more ambiguous. The same URI will return different results depending

on the node in the network that it is routed from. This allows to create fixed URIs

that actually point to different resources depending on the geographic location where it

is issued, which is a useful and flexible metaphor many location-aware Web applications

could benefit from, as will be shown in the case study presented in Section 5.6.1.

5.2 InfraWoT - an Infrastructure for the Web of Things

A central requirement for the Web of Things is a meaningful structure on top of indi-

vidual resources attached to the WoT. Because it matches the layered architecture of the

Web [120], we opted for the hierarchical location model described above where each node

is responsible for all the resources (devices, gateways, etc.) in its vicinity and the lower

levels. When physical locations are mapped to URIs, networks of gateways form rooted

trees, where the root represents the highest level of hierarchical location (for example

the headquarters of an international organization). The hierarchical approach has been

proposed in early research [229, 226] and shows benefits with respect to load balancing

and scalability as users mostly access devices located in their surroundings and regarding

the loose coupling between the infrastructure nodes. An important design choice was that

every communication between proxies is local (i.e., forwarded across neighboring nodes

in the tree). This helps to scale the infrastructure, as each gateway only needs to know

about its direct neighbors and can ignore the rest of the hierarchy. Further efforts in

designing and implementing such an infrastructure eventually led to the development of

the InfraWoT system with Simon Mayer, which is proposed in [184].

/building44/room3/
query
*
phone
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5.2.1 Modular Software Architecture

A fundamental design choice is that every node in the tree must be a RESTful resource

itself, regardless of its implementation. As long as every component comes with a single,

uniform RESTful API, every node can be directly accessed both by other nodes using

a machine readable format (JSON) or by humans users using a Web browser. This

is a necessary condition for integrating the components of the infrastructure into the

fabric of the Web. As flexibility is a key requirement for such an infrastructure, location

proxies could be reconfigured on-the-fly without requiring a restart. To achieve this level

of flexibility, we have chosen the OSGi framework [35] as its highly modular approach

enables every component to be developed and upgraded individually at runtime. This

ensures “hot-pluggability” with other software developed for the Web of Things which

allows dynamic reconfiguration of the network and its applications.

ch/

etzh/

europe/

de/

tum/

cab/cnb/

Declarative Services

Web interface 
service

Infrastructure 
service

Registry 
service

Messaging 
service

Querying 
service

Discovery
 service

OSGi Framework

Figure 5.3: Modules of the gateway software powering each InfraWoT node. Modules can
access each others’ services using OSGi Declarative Services.

The software applications running on each node consists of several modules that can

interact with each other via OSGi-based messages. The gateway software is a refinement

of the gateway proposed in the previous chapter augmented with additional functions

and modules. Each module is responsible for a specific task and implements an interface

that gives access to a limited set of infrastructure-wide functions. Figure 5.3 presents an

overview of the different modules in each InfraWoT node.

• Infrastructure Service Module (ISM). This module maintains the correct tree

structure with respect to the hierarchical locations of other proxies within its scope.

It takes care of registering parents and children and monitor the traffic between

proxies (i.e., between parents and their children).

• Discovery Service Module (DSM). This component handles the discovery of

resources, in particular the retrieval of information on resources that are to be
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integrated into the infrastructure and the mapping of this data to internal repre-

sentations. Through this process, newly discovered resources get attached to the

tree hierarchy via an InfraWoT node and thus can benefit from infrastructure-wide

services.

• Registry Service Module (RSM). This component manages data about attached

resources (both locally connected devices and neighboring gateways) and stores this

information into an embedded database.

• Messaging Service Module (MSM). This module offers a transparent interface

to set up a messaging (i.e., publish/subscribe, see Section 6.2) system between client

applications, gateways and physical devices attached to the Web of Things.

• Querying Service Module (QSM). This module is responsible for handling in-

coming queries. It retrieves local resources that correspond to the query and for-

wards the query to suitable sub- or super-nodes.

• Web Interface Module (WIM). This module provides a Web interface that

allows to access the various functions offered by the gateway, either via a RESTful

API or via an HTML user interface accessible from any browser.

We describe briefly the Infrastructure and the Web interface services in the remainder of

this section. The Discovery and Querying services are detailed in Sections 5.3 and 5.4.

More technical details about InfraWoT are available in [184].

Infrastructure Service

The Infrastructure Service Module (ISM) is used to initialize the tree structure at startup

time and ensures that the correct structure is maintained during operation. In particu-

lar, this service allows the overall structure to recover from node failures and eventually

re-establish the initial tree configuration (self-stabilization). After the initial setup, all

gateways initialize their IS bundles which start the registration process with their assigned

parents by sending an HTTP POST request that includes their own URI. Every gateway

that receives such requests, forward the received URI to the Discovery Service Module

(DSM) which will parse and analyze the information about the resource, as described in

Section 5.3.

Furthermore, the ISM is responsible for the process of attaching new sub-resources (i.e.,

other proxies or devices) that are found by the DSM or registered manually. Any re-

source that is encountered and analyzed by the DSM is passed to the ISM which uses

the resource’s hierarchical location information to determine whether to attach it to the

current proxy or forward the request to a more appropriate gateway. In the latter case,
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the infrastructure takes care of routing that resource to the proxy whose hierarchical lo-

cation corresponds best to the resource’s, as shown in Figure 5.4. If a registering resource

does not provide explicitly a location information within its Web representation, the DSM

automatically assigns the location of the proxy itself.

../ethz

../CNB

/zurich/ethz/CNB/room102

../CAB

23

4

1

"Please register me! 
My root URI is http://129.28.2.1, 
and I'm at ../ethz/CNB/room102"

/zurich

../CNB/room103

Figure 5.4: Infrastructure-assisted discovery. Any device can POST its root URI (where a
semantically annotated description of the device properties can be found) to any node in
InfraWoT. If an optional location is specified, the registration command is forwarded to the
node corresponding to that location.

The ISM also serves as garbage collector by regularly contacting the sub-resources (or

receiving heartbeats from them) and removing them from InfraWoT when they become

unavailable. The Infrastructure Service starts two threads that regularly contact the

parent node, all registered children nodes, and all attached resources. If the connection

to any of these resources is lost, the corresponding entity gets black-listed and will be

removed if contact cannot be re-established after a timeout period.

The Web Interface Module (WIM) enables to access the infrastructure and the various

resources connected to InfraWoT using only RESTful requests. In particular, the Web

Interface Service enables the RESTful configuration of InfraWoT location proxies. The

Web server is built upon Restlet [43] and offers various device- and gateway-specific func-

tions. The root page of any gateway (the URI of the gateway, abbreviated as “/” for

clarity) provides general information on the current proxy (name, hierarchical location,

connected sub-nodes, attached resources, etc.). From the root, one can access four differ-

ent sub-resources (in addition to /query described in Section 5.4):

• /locations is the list of all attached location proxies. Child nodes send HTTP POST

requests to this address to be registered by the proxy. The HTML representation

of this resource can be used to navigate (browse) the infrastructure. The individual

gateways registered to any node are represented as child resources of the /locations

/
/query
/locations
/locations
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resource and are mainly used to configure child nodes. For instance, to remove the

gateway called floorD, an HTTP DELETE request should be sent to the resource

/locations/floorD.

• /resources resource represents a list of all sub-resources attached to the current

gateway. Similarly to the /locations resource, Web of Things resources may send

HTTP POST requests to this resource to be registered by the gateway. Likewise,

these resources are represented as children of the /resources resource and can be

interacted with via requests to their respective endpoints within the local gateway.

• /infrastructure is mainly used internally by the InfraWoT software to send and

receive maintenance information. One of its sub-resources plays an important role

in the Web-based configuration system of InfraWoT that enables clients to con-

figure a proxy by sending HTTP PUT requests to its configuration interface at

/infrastructure/configuration. When a client PUTs a string of data to this

endpoint, the proxy relays that data to the Infrastructure Service to retrieve the

resource encoded in the transmission and applies that information to its own rep-

resentation. Although the currently preferred way to configure a gateway is to PUT

the desired configuration as a JSON-encoded resource, a gateway can be configured

using any representation that is supported by the Infrastructure Service (using the

strategy pattern as is done in the Discovery Service).

• /wms resource and its sub-resources handle all the interactions related to the In-

fraWoT Messaging Service, that is the creation, updating, and deletion of queues

and all the messages received or transmitted by the gateways, client applications or

devices (see Section 6.2 for more about messaging).

5.3 Ad-hoc Device and Service Discovery

When a new device is connected to a network, an automated mechanism to detect the

device and to extract information about it is necessary. For example, Universal Plug

and Play (UPnP) [58] and Zeroconf/Bonjour [7] support convenient network-level device

discovery mechanisms and service interaction primitives. Although, they are widely used,

their usage is limited to internal networks (LANs) and are not interfaced with HTTP.

UDDI [57] and similar Web service repositories run on top of HTTP and are usable on

the global Internet network, but are heavyweight, overly complex, and in conflict with

REST. Many other device and service discovery standards and protocols are available,

each specialized for a single or a few particular problems, but are not appropriate as a

general solution for RESTful discovery.

HTTP does not define any discovery mechanism (on the Web, resources are discovered

by following URIs). However, an HTTP-based automated discovery method is necessary

/locations/floorD
/resources
/locations
/resources
/infrastructure
/infrastructure/configuration
/wms


80 Distributed Infrastructures for the Web of Things

to support ad-hoc interaction and integration of heterogeneous NEDs into the Web of

Things. Although, various methods for describing RESTful services have been proposed

[147, 134], none of those focus on the requirements of NEDs as autonomous and mobile

entities.

In the next section, we propose a simple two-step RESTful discovery procedure for con-

necting automatically Web resources (in particular Web-enabled NEDs) to the InfraWoT

system that can be implemented with minimal infrastructure changes. This simple pro-

cedure can be used as a basis for a searchable, large-scale Infrastructure for the Web of

Things. The advantage of the procedure we propose is that devices do not need to imple-

ment any specific discovery protocol, only provide semantic information about themselves

in their root document using semantic annotations or an external document/format that

can be understood by the gateway as shown in the next section.

5.3.1 Step I: Network-level Device Discovery

The first step of the discovery process is in charge of monitoring any new WoT de-

vices that are being connected to a network. For simplicity reasons, we only consider

Ethernet/Wi-Fi-enabled devices, as for other physical interfaces a gateway is necessary.

Router

Gateway DeviceLAN (Ethernet)

Mobile client
interaction

Wi-Fi
Raw data collection 
from applications

Figure 5.5: Setup of the experimental network.

Most existing discovery solutions rely on devices multicasting UDP messages over the

network [126]. However, as such messages are not part of HTTP, they can often be

blocked by firewalls. SoaM [234] is an HTTP-based architecture for semantic devices,
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however, it was not based on a RESTful architecture, therefore its integration with the

Web is limited. We therefore propose a REST-based protocol to perform network device

discovery. We assume that in each network, the router is always knowledgeable of the

connected network devices (usually a table of automatically assigned IP addresses), and

as such can provide all required discovery information. To access this information, we

used an ASUS WL-500G Premium router on which we installed OpenWrt1, which is a

widely used open source Linux distribution available as firmware for many modern network

routers. Its user interface, LuCi2, exposes some of its libraries and functions to external

applications through a JSON-RPC API.

Gateway Router

2

Device

3

4

3

1

2

1

4

Figure 5.6: Sequence diagram of the RESTful discovery process of devices. 1. Device
connects to LAN/Wi-Fi and gets an IP address from the router using DHCP. 2. The gateway
monitors the router’s DHCP table. 3. For each new device found, the gateway retrieves
the root device page (by default a HTTP server running on port 80) and parses it to find
information about the device. 4. The gateway retrieves the semantic description of the
device.

To retrieve the list of all connected devices, the following HTTP request3 is sent to the

router:

POST http://router/cgi-bin/luci/rpc/sys?auth=

EBAE1814FA625E73CA0514004428D64A

1Online: http://www.openwrt.org
2Online: http://luci.subsignal.org
3Note that this is a typical RPC and not RESTful use of HTTP, as a GET should be used (read-

only operation), and the resource id (“method”) should be part of the URI, not encoded in the message
payload. The current version of the LuCi is not RESTful, but as it is an open source project, the RESTful
equivalent of this procedure can be easily implemented.

http://www.openwrt.org
http://luci.subsignal.org
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Content-type: application/json

Content: {"jsonrpc": "2.0", "method": "net.arptable", "id": 1}

This request will execute the RPC method net.arptable on the router, which will return

a list of all the devices connected to the router encoded using JSON:

{"id":1,"jsonrpc":"2.0","result":[

{"Flags":"0x2","HW type":"0x1","Device":"br-lan","Mask":"*","HW address":

"00:E0:4C:45:57:EF","IP address":"192.168.1.114"},

{"Flags":"0x2","HW type":"0x1","Device":"br-lan","Mask":"*","HW address":

"00:1C:B3:25:F6:9B","IP address":"192.168.1.149"},

{"Flags":"0x2","HW type":"0x1","Device":"eth0.1","Mask":"*","HW address":

"00:0D:66:22:38:01","IP address":"89.211.57.1"}]}

The response includes a list of the IP addresses allocated by the DHCP server on the

router. Once this list is retrieved by a gateway, the root page of all newly allocated IP ad-

dresses (by default on port 80) is parsed by the Discovery Service to find a WoT-compliant

semantic description of the devices and its services using the procedure described in the

next section.

This is certainly an inefficient procedure, and a refined version should enable the gateway

to subscribe to changes in the DHCP allocation so that every time a new device connects,

the router will trigger a callback procedure described in the next section, which would

eliminate the need to poll the DHCP table manually.

5.3.2 Step II: Resource Discovery

Once a new device has been connected to the network and found, the second discovery

step (resource discovery) is carried out to retrieve various information about the device

(metadata about functions/services, description, etc.) and make this information available

within InfraWoT. In case it cannot be triggered automatically by the device discovery

process described in the previous section (for example when the IP allocation table is not

available on the router via a Web API), one needs to manually POST the URI of the device

root page to the /resources endpoint of a gateway. Such requests are processed by the

Web Interface module, which forwards the root URI of the device to the Discovery Service

module. Once the Discovery Resource module is triggered with an URI, it retrieves the

device root page and searches for semantic about the device in the root HTML page.

Microformats4 are a set of lightweight open standards that leverage XHTML to “make

it easier to publish, index, and extract semi-structured information such as tags, calendar

entries, contact information, and reviews on the Web” [165]. Microformats were designed

4Online: http://microformats.org/2010/07/08/microformats-org-at-5-hcards-rich-snippets

/resources
http://microformats.org/2010/07/08/microformats-org-at-5-hcards-rich-snippets
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to enable and encourage the sharing, distribution, syndication, and aggregation of various

content on the Web using a simple, human-centric format. Similarly to RDFa [68], Mi-

croformats can be directly embedded in the HTML code of the page in such a way that it

does not change the rendering of the visual elements. However, an application can parse

exactly the same HTML code to extract and “understand” these annotations. In this

section, we propose to extend the microformat metaphor to publish information about

devices, by simply embedding a machine-readable minimal description about the device

(metadata). Likewise, we can embed a machine-readable description of the RESTful re-

sources on the device, in particular which verbs and parameters each resource accepts and

returns. For example, the semantically annotated HTML description of the light sensor

resource of a NED is shown in Listing 5.1 (a more complete description of the NED is

given in Listing A.1). It is worth noting that most of this information could be inferred by

crawling the HTML representation of a device by following the links to all the resources

and using the HTTP OPTIONS method to retrieve the verbs supported by each of them.

Embedding directly this information in the HTML representation of a device presents

some advantages such as minimizing the HTTP calls on the device (similarly to retrieve

a WADL description) or being able to generate user interfaces on the fly based on the

parameters accepted, their type, and range among others.

<span class="hrests">

<span class="service">

<span class="operation">

The

<span class="label">Light Value</span>

operation returning the

<span class="output">current light value</span>

can be invoked using a

<span class="method">GET</span>

at

<span class="address">../{device}/sensors/light</span>

</span>

</span>

</span>

Listing 5.1: Microformats annotations used to describe a device and its operations, in this

case a photovoltaic sensor of a sensor node.

In some cases, a more structured and rigid format might be required to fully describe

the API of a device, for example WADL [147]. For this, we use a technique called feed

autodiscovery which was popularized by blogs to reference machine-processable resources

associated with a particular web page (e.g., its RSS or ATOM feeds). This technique has

been recently standardized as the link types in the HTML 5 specification5. This is done

5See Section 4.12.4 in http://www.whatwg.org/specs/web-apps/current-work/

http://www.whatwg.org/specs/web-apps/current-work/
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by using the <link> tag in the header of the root page of a device (http://device-ip/),

which informs the spider that the resource http://device-ip/about contains a meta-

description of the device and its services, as follows:

<html>

<head>

...

<link rel="meta" type="application/rdf+xml" title="about" href="about" />

<link rel="meta" type="application/text" title="about" href="about" />

...

</head>

This advertises that the meta description is available both in text (HTML documentation

with microformat annotation) or RDF (whose format/namespace will be specified in the

RDF document). In order to minimize the coupling for the discovery procedure, we do not

enforce any particular standard to encode this information (many formats are available).

Instead, we propose to use the strategy pattern (see [128]) to allow users to extend the

discovery procedure by adding their own formats to describe the device and implement

an associated discovery strategy to parse it.

When InfraWoT parses the header above, it will iterate over each <link> element to

find the first one which it can understand (similarly to when a browser tries to find an

appropriate external application that can open a document type not supported by the

browser). Once a matching strategy to parse one of those documents is found, it will

launch a specific handler to parse the document, retrieve the metadata about the device,

create a virtual entity (representation) and attach it to the gateway.

In the current version of InfraWoT, two strategies have been implemented. The first

one is the default strategy where InfraWoT searches the HTML resource representation

found at the device URI for Microformats as described above. Several Microformats

can be used, each for a particular domain; a geo and adr Microformat for describing

places or an hProduct and hReview microformat for describing products and what people

think about them. The default InfraWoT understands a compound of several (optional)

Microformats that can be used to better describe devices. This helps for devices to be

searched by humans using traditional or dedicated search engines6, but it also helps them

being “discovered” and understood by InfraWoT in order to automatically index and

use them. Currently, InfraWoT supports five Microformats; hProduct is used to describe

the device itself (brand, name, picture, etc.). hReview reflects the quality of service or

experience users or applications had with the device, hCard, Geo, and adr specify the

location context of the device (address, region, country, latitude, longitude, etc.)

The second type of discovery strategy that is currently supported by InfraWoT is based

on interpreting the resource representation as a JSON object according to a pre-defined,

6Google, Yahoo, or Bing are building a common HTML markup schema, see: http://schema.org/

http://device-ip/
http://device-ip/about
http://schema.org/
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fixed, schema. While this is not realistic on a Web scale, it can be used in controlled

environments (e.g., in an intranet or behind proxies such as gateways) as it is much more

efficient than the Microformats-based discovery because there is no need to parse the

entire device root page to find the embedded semantic annotations.

The semantic description and discovery is not the topic of this thesis, but it is one of

the core motivation for the Web of Things. It is a powerful method for introducing

programmable semantics into the Web, and for this reason has been briefly described in

this section. A more thorough investigation on this topic have been done by Dominique

Guinard and Simon Mayer, and further information can be found in [184, 185, 136].

5.4 Querying Service

Querying for resources within the scope of specific locations (such as “find all printers in

this room”) is a central feature of any infrastructure for smart devices. InfraWoT enables

such queries using various parameters such as the name of resources, their description, or

the RESTful operations and parameters they accept. Additionally, InfraWoT defines sev-

eral query types that encapsulate scoping information (i.e., where to search for resources).

The handling of a search request is thus a two-step procedure that consists of routing a

query to the most appropriate gateway first (e.g., the location proxy responsible for a

specific building or a certain room) and then execute it there and return the discovered

resources.

A client can submit a query by sending an HTTP GET request to the /query endpoint of a

proxy that contains a description of the query either as a JSON object or using a collection

of form parameters. Each query may contain various parameters such as a device ID, tags,

or the URI of the initial gateway that issued the query. HTTP responses to client queries

can be delivered in multiple formats, depending on the HTTP Accept header specified

in the request (usually JSON/XML in queries from another node/application, HTML for

queries given as a URI in the browser).

To illustrate this principle, we show in Figure 5.7 a typical InfraWoT search query. The

mechanism used is inspired and leverages the practical implementation of standard HTTP

request, which heavily relies on intermediate proxy nodes and caches. This way, not every-

thing has to be retrieved from the original node each time, and the actual communications

remains transparent. In particular, we suggest to use the URI forwarding mechanism,

which uses the 3XX range for error codes, in particular the 302 Found status code used

to indicate a temporary redirection. Browsers follow these redirections automatically and

also update the address bar with the new URI. The example shown in Figure 5.7 is based

on the following (minimal) HTTP interactions:

/query
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../ethz

../CNB

../CAB

"GET all smart meters 
 at ../ethz/CNB/"

/zurich

../room103 ../room102

"Here you are: 
 ../room102/meter,
 ../room103/meter"

../meter ../meter ../spot

query scope

Figure 5.7: A client at location ../zurich/ethz/CAB wants to issue a search query at
location ../zurich/ethz/CNB. When the request is issued at any node in InfraWOT, the
nodes will first route the query to the appropriate location where the query shall be executed.
The mechanism used to forward a query is the same as the original query, but by proving a
target location as a parameter and keeping the original endpoint where the answer should be
transmitted, one ensures the response can be sent back to the original query issuer.

1 # Initial request to CAB gateway

2 GET /query

3 Host: [CAB]

4 Content: location=../ethz/CNB&keyword=meter

5

6 HTTP/1.1 302 FOUND

7 Location: [CNB]

8

9 # Request is posted again to CNB gateway

10 GET /query

11 Host: [CNB]

12 Content: location=../ethz/CNB&keyword=meter

13

14 HTTP/1.1 200 OK

15 Content:{"results":["../room102/meter","../room103/meter"]}

This is a two-step procedure, where the client (mobile phone browser) must follow the

redirect information, and post the same request to the resulting gateway, which is usually

done automatically (therefore only one request is issued explicitly by the clients).

In principle, proxies should enable querying for all parameters that occur in the internal

../zurich/ethz/CAB
../zurich/ethz/CNB
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representation of resources. Structured queries (i.e., classical database queries) are quite

complex for humans, who would rather provide textual information about the object

in demand, and let the querying mechanism carry out the interpretation of this data.

Our implementation simply uses key-value parameter pairs that can commonly occur in

InfraWoT. There are several types of query that are supported in InfraWoT (note that

they can be combined as all of them can be encoded using key-value pairs):

• Keyword Queries. This is the most general type of queries that are specified

using key-value pairs as parameters that are matched. For example, this type of

query is used to search for keywords, tags, device names, or UUID (machine-friendly

resource IDs, for example EPC codes).

• Spatial Queries. This type of queries enable to specify the scope (location) where

a query should be carried out. This can be done explicitly (either using a parameter

to specify a symbolic or geometric location or by appending it to the resource URI)

or implicitly (if no scope is given, the location proxy which processes the request is

assumed to be the query scope by default).

• REST Service Queries. This type of queries allows to specify the application-

level (REST) properties supported by resources (e.g., the input or output format of

a resource, or the HTTP verb it accepts).

Support for complex and expressive queries to search for specific devices is an essential

feature for the Web of Things, and in addition to the discovery service, is another core

service that will be needed. Nevertheless, querying for the Web of Things is not the

core focus of this thesis, thus has been only marginally investigated in Sections 6.3.2 and

6.4. More information about querying and search are to be found in Guinard’s work

[143, 140, 136].

5.5 Web-based Ad-hoc Interaction

An essential feature of an infrastructure for interconnecting smart objects is to en-

able ad-hoc interaction with the infrastructure with minimal knowledge. As mobile Web

browsers have become common, we suggest to use the Web to enable such interactions.

Recently, frameworks such as jQtouch [19] and Sencha [48] have become a popular alter-

native to native code for developing mobile applications. Mobile Web applications based

solely on (X)HTML, Javascript, and CSS are faster and simpler to develop, run on mul-

tiple devices without changing the application code, and benefit from direct integration

with the Web. Besides, as Javascript frameworks for mobile applications keep improving,

the touch and feel of these applications and use of mobile touch interactions are becoming

comparable to those of a native application. In combination with Phonegap [38], which
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NIWEA

NIWEA =
native
interoperable
web
applications

Figure 5.8: NIWEA. A standard mobile Web application accessed with a smart phone is a
more flexible user interface to interact with pervasive services present in any location.

allows to turn a Web application into a native one, this development method lowers the

access barrier to develop mobile applications rapidly.

Hannes Gassert coined the term NIWEA (Native Interoperable WEb Applications) to

refer to these hybrid native applications7, and we will use this name throughout this

thesis as well. NIWEA is an excellent paradigm for the Web of Things, as it enables

fast prototyping of user interfaces that integrate natively with the Web of Things. The

Microformats embedded in device pages can be easily parsed using Javascript to auto-

matically generate user interfaces to control devices based on the semantic descriptions

of the services and their controls. As an example, in Figure 5.8 a mobile user into an

unknown hotel room in Japan can connect to the Wi-Fi network of the hotel, and log in

to the Web application of his room. A simple Web interface is then generated that allows

him to control the various Web-enabled devices in his room, from the entertainment, to

the lightning, to the heating and air conditioning systems.

5.6 Location-aware Physical Mashups

Once devices are part of the Web, one can easily develop a new type of physico-digital

applications that merge resources from the Web and from the real-world seamlessly [139].

In this section, we describe a prototype implemented on top of the patterns introduced

earlier.

7See: http://liip.to/niwea

http://liip.to/niwea
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5.6.1 Case Study: Mobile Ambient Meter

As proof of concept, we illustrate how simple location-aware applications can be built

by using a Web-based infrastructure. Our system is composed of a mobile energy meter

that displays the energy consumed in the room it is located in.

1

3

2

../ethz

../CNB

../room103../room102
4

Figure 5.9: The prototype deployment on the floor of a building, with two physical gateways
in two different rooms and a third one in the hallway. Two energy meters are connected to
the gateways in the rooms. As and Ambient Energy Display moves from one room to the
other, its color changes according to the level of energy consumption in the current location
(À - Â). Mobile users can also interact directly with the infrastructure and pervasive services
in their current location using a mobile phone (Ã).

As shown on Figure 5.9, two gateways are deployed in rooms 102 (../room102) and 103

(../room103), and communicate wirelessly with the Ambient Energy Display (AED). The

AED is simply a Sun SPOT sensor node with an embedded Web server to enable HTTP-

based access to its various functionalities, for example by entering their URI in any Web

browser. The energy consumption of electric appliances are monitored using Ploggs8,

which are sensor nodes that combine an electricity meter and a data logger (white boxes

next to the laptop and the kettle in Figure 5.9). Ploggs connect to the gateway in the

room using Bluetooth which turns them into URI-identified resources that can be fully

controlled using HTTP.

The AED meter is located in room 102 and is connected with the gateway of that room

À (we assume that only one gateway is within signal reach in each room). The AED

8Online: http://www.plogginternational.com.

../room102
../room103
http://www.plogginternational.com
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GET /energy HTTP/1.1
Host: here

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: XXX
{"name": "room102","currentWatts": 
47.4, "KWh": 2.119,
"time": "2001 JAN 01 
06:37:05","status": "on", 
"maxWattage": 6192}

GET /energy HTTP/1.1
Host: here

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: XXX
{"name": "room103","currentWatts": 
406.4, "KWh": 21.33,
"time": "2001 JAN 01 
06:57:05","status": "on", 
"maxWattage": 6192}

Figure 5.10: The AED retrieves periodically the same URI (here/energy), which gets
routed automatically to the gateway of the location the AED is in. Depending on the current
consumption in that room an appropriate color pattern is displayed on the Sun SPOT.

gets the energy consumption of the electric appliances in that room from the gateway

that aggregates the individual consumption of all Ploggs in the room. Depending on

the total amount of energy consumed, the Ambient Meter changes its color from green

(little energy is consumed) to red (a lot of energy is consumed), as shown in Figure 5.10.

The meter retrieves this information by periodically issuing a HTTP GET request on the

here/energy resource. Since the gateway knows its location, it automatically resolves this

URI to: http://192.168.99.6:8081/energy, which refers to a resource that aggregates

dynamically the energy consumption collected by all the Ploggs present in that room. The

meter is then moved into another room. On its way, the meter connects to the gateway

of the CNB building, so that it displays the energy consumed in the area Á, which is the

aggregation of the individual consumption of each room. The AED is then taken to room

103, where it reconnects automatically to the gateway of that room Â. The consumption

of a lamp and a desktop computer located in room 103 is then displayed on the AED.

Note that the AED does not actually deal with any explicit location since it only asserts

the energy consumption its current location – which depends on the closest gateway and

is always accessible at the URI here/ as explained in Section 5.1.2.

In the last part of this scenario, a user enters room 103 Ã. The user connects to the

gateway of that room (../room102) using his mobile phone, and gets back a Web page

containing links to the resources in the current room, but also to neighboring locations

(e.g., room 102, CNB, etc.). By clicking on the room103/meter he retrieves the amount

of energy consumed by the lamp and the desktop computer. As the AED is also currently

located in this room the user can click on its URI (room103/spot) to access its services,

for example the temperature currently sensed by the AED in room 102 or 103. This

illustrates how users can leverage the gateways’ structure and the concept of Web of

Things to browse (and bookmark) their physical location as they would with other Web

pages.

here/energy
here/energy
http://192.168.99.6:8081/energy
here/
../room102
room103/meter
room103/spot
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5.7 Discussion

In this chapter, we have described how the gateway software proposed in Chapter 4 can

be extended to allow several gateways to be interconnected and form a large distributed

infrastructure for NEDs. This network of gateways forms a flexible backbone for the Web

of Things that can overlay on top of the current Web infrastructure with minimal changes.

By structuring the connections between gateways, one can create a hierarchical tree that

can be mapped to physical locations (for example symbolic place concepts in a building

such as floors, rooms, etc). When new devices connect to this network through a gateway,

they inherit automatically the location of the gateway that gateway.

Using RESTful patterns to interact with gateways, flexible and self-stabilizing models of

the spatial hierarchy between places and things can be integrated into the Web fabric in

a natural and efficient manner. Thanks to the layered system offered by REST, which

bounds the overall system complexity and promotes the loose coupling between compo-

nents, different parts of the network can be implemented independently according to the

specific requirements of different applications. On top of this hierarchical place model,

we illustrate how Web clients can use the HTTP/URI mechanism as a lightweight and

simple, yet powerful, flexible, and expressive combo to perform context-aware searches to

find and use relevant objects at specific locations in real-time. Various scenarios are made

possible by enabling RESTful access to this infrastructure and its sensors, for example

searching for restaurants in the vicinity according to their real-time situation (crowded,

noise, etc.). By turning the local network infrastructure into an ad-hoc query service, one

does not require centralized Web sites to mediate all the information anymore.

By describing how various functions useful for building more interactive pervasive appli-

cations can be implemented using REST, we have shown the practical advantages and

flexibility offered by REST when applied to physical computing. In particular, we describe

why a RESTful architecture is an excellent solution for leveraging an existing Wi-Fi in-

frastructure to build a loosely-coupled infrastructure for searching and interacting with

networked devices. Even though the Web was designed as a hyper-linked system for mul-

timedia documents, this chapter shows that a distributed location-aware infrastructure

for embedded devices can be built solely using Web standards.

A world where every device, gateway, or router in a network could host a local Web server

offering a JSON-based API for applications and an HTML-based user interface for human

users, is technically feasible today. As evidenced by the increasing number of routers,

printers, and consumer appliances on the market today have embedded Web servers, or at

least a Wi-Fi/Ethernet interface, Web-enabled devices are likely to become commonplace.

This way network-level information (e.g., routing tables or network load) and real-time

data from the physical world (through sensors, etc) could be seamlessly integrated into

Web applications, therefore opening a whole new range of design possibilities to make the

Web more physical and more real-time.
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CHAPTER 6

Web-based Sensor Data Streams Processing

“There ain’t no rules around here! We’re trying to accomplish something!”

Thomas Edison (1847-1931)

So far, we have described an infrastructure for interconnecting, searching, and using het-

erogenous embedded devices using only Web standards. Nevertheless, to build end-to-end

pervasive interactive applications, a low-latency and scalable push mechanism combined

with an expressive and flexible querying system is needed for event-driven and streaming

applications. In the first part of this chapter, we explore push-based messaging for the

Web to evaluate their suitability for the Web of Things and propose a minimal Web-based

messaging framework for NED applications. In the second part, we explore the state of

the art in stream processing systems and propose a framework for collecting, processing,

sharing and storing real-time sensor data streams, which facilitate the development of

end-to-end applications for the Web of Things.
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6.1 Part I: Event-driven NED Applications

Ensuring low-latency push communication between various actors in large distributed

applications (e.g., Internet chats, music and video streaming, social networks, etc.) has

been throughly explored for decades. As discussed in Chapter 2, interactive and reactive

applications for NEDs require a lightweight notification mechanism suited for resource-

constrained embedded devices. The need for an event driven infrastructure in the context

of smart objects has been already proposed a decade ago by Langheinrich et al. [171].

Various solutions and tools have been proposed for many-to-many communication and

event notification, as we describe later in this section. Nevertheless, to become part of

the Web of Things, this messaging solution must be Web-compliant – that is not only

use HTTP to transport data encoded with other protocols, but actually use HTTP as

an application protocol by implementing the messaging system solely using RESTful

patterns. This way, the framework can be integrated seamlessly with the deployed Web

infrastructure. Finally, various interaction patterns must be supported (one-to-one, one-

to-many, etc.) so that a unified framework suffices to build almost any type of application.

Before exploring the related work, we first present the basic terminology and introduce the

core mechanisms commonly used in messaging systems. A common technique to deal with

this problem is to use a publish/subscribe (hereafter: pub/sub) system to decouple data

consumers from the publishers [119, 152]. Publishers send messages that encapsulate the

data to be transmitted to a broker which is in charge of routing messages to the various

subscribers, depending on the type or content of messages. Most messaging systems allow

publishers to specify topics or keywords that are used for routing purposes. According

to [189], four basic mechanisms of event notification – each with different strategies to

determine the type of the event and the routing procedure:

• Channels: A publisher selects a named channel and publishes its notifications into

this channel. Consumers subscribe to a channel and then receive all the notifications

pushed by producers in that channel. This approach can somehow be compared to

television, where the consumer tunes into a specific channel.

• Subject-Based Filtering: Each notification is annotated with a subject string

that denotes a rooted path in a tree of subjects. Subjects can also be mapped

directly into channels.

• Type-Based Filtering: Notifications are modeled in a type hierarchy with pos-

sibly multiple inheritance. The filtering process checks subtype inclusions and can

use XPath expressions on the type hierarchy to determine the notification.

• Content-Based Filtering: Evaluates the notification as a whole by applying

XPath expressions, matching templates, arbitrary programs and mobile code.
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The channels, topics or subjects can be simple keywords or tags, but can also be more

elaborate semantically annotated tags (machine tags, see Trend 2 in Section 3.1.1), for

example room:empty for all the empty rooms, error:battery for all messages that are re-

lated to a problem with batteries. One can also use hierarchical topics, that is a structured

subject tree that models the hierarchical relations between concepts, which is exactly the

model introduced in Section 5.1.1. This way, all the events generated in ‘Room 202‘

which uses the topic /switzerland/zurich/ethz/buildingCNB/room202 are automat-

ically forwarded to all the subscribers of that node, but also to the subscribers of the

higher nodes such as /switzerland/zurich/ethz or /switzerland/zurich.

These strategies only govern the semantics of the message routing and what messages

should be forwarded to which subscribers. The actual communication is taken in charge

by an underlying messaging protocol, which can be simply a custom socket-based data

exchange protocol, or an elaborate middleware that offers additional functions, such as

quality of service control or secure authentication.

6.1.1 Message-oriented Middlewares

Different messaging protocols to carry out the underlying communication in publish-

subscribe systems have been designed to meet the requirements of various use cases. In

this thesis, we only consider Internet-based protocols that rely on the TCP and/or UDP

transport protocols, therefore do not discuss non-IP or proprietary messaging systems

that are often used in industrial applications. Nonetheless, the general principles we

discuss here can be applied on top of any transport protocols, as long as the messaging

abstractions presented above can be implemented on top of the primitives offered by the

transport protocol.

More or less elaborate middleware solutions have been proposed for promoting code reuse

by allowing people to work with pub/sub primitives without the need to re-implement

similar functionality for each project. Among them, Open Sound Control (OSC) [32] is

a protocol for real-time communication among computers, sound synthesizers, and other

multimedia devices. OSC provides an open-source alternative to the highly successful

MIDI protocol1. OSC uses subject-based filtering to deliver notifications to a group of

listeners. The Java Message Service (JMS) [16] provides a message-oriented middleware,

connecting producers and consumers by means of queues. Connections between producer

and consumer can be either point-to-point (producer knows consumer and delivers the

message directly to it) or publish/subscribe (with an intermediary JMS Provider). Pro-

ducers select a channel (JMS topic) and deliver the message to the JMS provider which

will then dispatch the message to all the clients subscribed to that channel.

1See: http://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface

/switzerland/zurich/ethz/buildingCNB/room202
/switzerland/zurich/ethz
/switzerland/zurich
http://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface
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The Advanced Message Queuing Protocol (AMQP) [5] is an open standard for message-

oriented middleware. While most messaging protocols attempt to standardize the mid-

dleware at the API level only, AMQP is a wire-level protocol which only defines how the

data is transmitted as a stream of octets. This means that is anything that can read and

write this format can interoperate which each other regardless of the API or implemen-

tation language. Among others, AMQP features secure and reliable communication, and

various message routing and queueing techniques (point-to-point and pub/sub). ZeroMQ

(0MQ) [62] is a very lightweight embedded library for socket-based connection, but with

support for various message-centric interaction patterns, such as N-to-N, pub/sub, and

multicast. It acts as a powerful concurrency framework particularly suited for developing

clustered applications as its asynchronous message-based model allows to build scalable

processing tasks. The main difference with other messaging middleware solutions is that

the socket centric approach it follows (explicit connection between components) emphasize

a broker-less architecture2

The messaging protocols we have described above are well-known and widely used in in-

dustrial applications. Besides, various implementations are available for all them (both

commercial and/or open source) that provide additional QOS (delivery guarantee, per-

sistence, transactions, etc.). Unfortunately, they were all primarily designed for desk-

top computers and mainframes, with little concern about lightweight and simple mes-

saging required for NED applications. More recently, pub/sub solutions for resource-

constrained devices have been proposed. For example, IBM’s MQ Telemetry Transport

protocol (MQTT) [29] is a system to enable messaging for tiny devices such as sensors

and actuators. MQTT uses a channel-based eventing scheme, where devices publish their

events together with a topic (channel). In the background, a message broker3 receives the

events and dispatches them to all the subscribers. MQTT-S [155] is an extension of the

MQTT that supports hierarchical topics and attempts to integrate WSNs into traditional

computer networks. MQTT-S was designed to be integrated with any message broker that

supports MQTT using a gateway to translate between both protocols. The difference lies

in the fact that MQTT-S is a simplification of MQTT that requires much less memory and

processing this way it can run directly on resource-constrained devices. TinyDDS [87] is a

topic-based pub/sub mechanism designed for sensor networks, which attempts to reduce

the coupling in traditional WSN deployments. Based on the Data Distribution Service

standard [194], TinyDDS provides a higher level library for data aggregation and event

detection to simplify the development of WSN applications. Messo and Preso are two

protocols for messaging in WSN applications [206]. Messo is a publishing protocols that

uses MAC layer acknowledgments to guarantee delivery at the application level, which

might not be suited for all applications. Preso is a subscription protocol which distributes

reliably messages to all subscribers of a topic.

2See discussion: http://www.zeromq.org/whitepapers:brokerless
3For example IBM MQ WebSphere http://www.ibm.com/software/websphere/.

http://www.zeromq.org/whitepapers:brokerless
http://www.ibm.com/software/websphere/
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6.1.2 Web-based Streaming and Messaging

As mentioned in Section 3.1, the client-server nature of HTTP makes the Web a priori

an excellent candidate to read/write data from/to embedded devices [139]. However,

this paradigm falls short when it comes to support the event-driven nature of many

NED applications. The request-response (pull-based) interaction type is of limited use

for devices that usually have low-duty cycles (i.e., sleep most of the time), and limited

bandwidth or energy.

Various media streaming have been used on the Internet to transmit video and audio

content, using protocols such as the Secure Real-time Transport Protocol (RTSP) [79]

or the Real-Time Transport Control Protocol (RTCP) [159]. Streaming media protocols

have enabled transmission of potentially infinite multimedia documents, such as Internet

radio stations or video streaming. Sensor streams are similar to streaming media in this

respect, however, streaming media mainly support ‘play ’ and ‘pause’ commands, which

is insufficient for sensor streams where more elaborate control commands are needed.

Other Internet-based protocols such as DPWS were designed to support more elaborate

streaming and eventing for embedded devices. Unfortunately, these solutions were not

designed for resource-constrained devices such as sensor nodes, but for more powerful

appliances that are connected using Wi-Fi/Ethernet and have fairly powerful CPUs, such

as video games consoles or set-top boxes. Besides, as mentioned in Chapter 2, these

protocols do not integrate with the Web as they reduce the role of HTTP only as transport

and use a custom, complex application protocol on top of it.

To fill this gap, different Web-compliant techniques for implementing asynchronous, push-

based interaction patterns have been developed and help realize the real-time Web. We

survey the various techniques for real-time Web-based messaging and discuss their appli-

cability to the data-centric, stream-based nature of sensor-driven applications.

RSS/ATOM

Feeds have become the most popular format for machine-readable data on the Web and

are increasingly used for any time-ordered information streams of different content types.

For example, photo management services such as Flickr or Picasa provide access to the

stream of published photos with any service or tool supporting feeds. Feeds can be

based on various data formats, such as RSS or the more well-defined Atom. The Atom

Publishing Protocol (AtomPub) is an extension of Atom which covers all REST verbs, so

that users can interact with an AtomPub-enabled collection by creating, updating, and

deleting entries. This model is interesting for sensor data streams, which are usually a

time-ordered collection of sensor readings. Using the same paradigm to interact with that

data – both from the application and sensors’ point of view – is appealing as it simplifies
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greatly data integration and development of new applications. Devices could POST new

data to a collection using AtomPub, and clients pull the data from the collection using

Atom feeds.

Even though AtomPub provides an interesting metaphor and concrete tools to access

time-ordered data, it is based on a polling model (see Figure 6.1) which is inappropriate

for low-latency notifications. Besides, it increases network traffic because clients need to

continuously request updates without knowing when they are available. This is inefficient

for embedded devices, where a push-based model is necessary to minimize resources and

extend battery lifetime.

Client Server Application

Event

Event

Event

Response
Request

Response
Request

Response
Request

Figure 6.1: Classic Web polling. Usually implemented using AJAX, the client polls the
server for new data periodically at a fixed time interval (e.g., “fetch new data every second”).
This generates much traffic in both directions even when there is nothing new on the server
for a while. New events will be received at the next polling period only (so the delay to receive
an event is bound by the polling frequency).

Extensible Messaging and Presence Protocol (XMPP) is an open communication

protocol for messaging based on XML messages and powers a wide range of applications

including instant messaging4. Although successfully used by various services, XMPP is

an overly complex standard that is too heavy for the limited resources of devices used in

sensor networks. Various attempts to use it for sensor data have been proposed [60, 195,

153], unfortunately, no concrete implementation and along with a performance evaluation

of the usage of XMPP on embedded devices has been found in literature.

4Google Talk is based on XMPP, see: http://code.google.com/apis/talk/open_communications.
html

http://code.google.com/apis/talk/open_communications.html
http://code.google.com/apis/talk/open_communications.html
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Comet

Comet is an umbrella term that refers to a range of increasingly popular techniques for

circumventing the limitations of HTTP polling, by introducing a real-time dimension to

the Web with push-based communication. This model enables a Web server to push

data back to the browser without the client requesting it explicitly. Since browsers are

not designed with server-sent events in mind, Web application developers have tried to

work around several specification loopholes to implement Comet-like behavior, each with

different benefits and drawbacks.

Client Server Application

Request
Event

Event

Event
Response

Request
Response

Request
Response

Figure 6.2: Long polling. The client issues a new request as soon as it receives the answer
from its previous request. The new request remains pending until the server receives a new
event from the application. The network traffic is reduced and the latency is minimized,
however, the client must be put on hold with an open HTTP request that is waiting for an
answer (the loading icon in a browser.)

The first technique, called long polling is shown in Figure 6.2, where a client requests

information from a server using a classic HTTP request, but instead of receiving the

response immediately with no updates, the server will hold the request until an update is

received from the application, at which time it will finally return the update to the client

by answering to the request which was being held idle. As soon as the client received the

response, it will immediately send a new request for an update which will be held until

the next update comes from the application.

Another general class of techniques called HTTP server push (or also HTTP streaming)

exploits the possibility for a Web server to keep the TCP connection open after the re-

sponse data has been served to a client, and then use it to send further events to one or

multiple clients, as shown in Figure 6.3. BOSH [196] is a long-lived HTTP technique used

in XMPP/Jabber that defines a transport protocol that emulates a long-lived, bidirec-

tional TCP connection between two entities (such as a client and a server) by efficiently

using multiple synchronous HTTP request/response pairs without requiring the use of
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frequent polling or chunked responses. Another specification called Bayeux [207] is a

protocol for transporting asynchronous messages over HTTP, with low latency between

Web servers and clients. Infinite responses are used to send multiple messages via one

single HTTP response, by sending chunks of incomplete HTTP responses to the client.

This could be also done using the MIME type multipart/x-mixed-replace, which is

interpreted by browsers as a document that would change every time the server had an

update to push to the clients. These techniques have been implemented by the Opera

browser in 2006 under the name of server-sent events, which has led to the development

of WebSockets in HTML 5.

Client Server Application

Request

Event

Event

Event

Response

Response

Response

Figure 6.3: Comet push. The client opens a TCP-IP connection with the server, which
is then kept open by the server. Subsequently, each new event from the application is then
pushed to the client over the connection kept open, therefore the client does not need to issue
further requests. Both event delivery latency and network traffic are minimized.

Various online services that support server side eventing and particularly Comet, have

been recently appearing such as Lightstreamer [23] or Ajax push engine (APE) [3]. Some

of those are highly scalable (for example, APE supports over 100K simultaneous users

according to their Web site). A core advantage of such frameworks is a cross-browser

support and the ability to integrate real-time streaming data in any Web-page using

Javascript and other Web technologies.

Even though push solutions are known as more reactive, but less scalable [91], recent work

has shown that Web push notifications on embedded devices are not only possible (for

example Yaler5 uses ReverseHttp [45] on Arduinos), but also present various advantages.

Using an embedded Web server, Duquennoy et al. [113] showed that Comet-based stream-

ing is actually quite scalable even the most scalable solution, as their solution can support

256 simultaneous clients using only 10kB of RAM. The reason is that the event-driven

nature internally used by embedded applications – especially the embedded Web server

5Online: http://yaler.net

http://yaler.net
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– supports efficiently event-driven notifications. The actual limitation in scalability of

push-based systems seems to come from the traditional OS constraints that break the

native event-driven model of the hardware. This might be changing as event-driven ap-

plications will become increasingly performant and robust, especially when designed for

the increasingly popular multicore processors.

The messages are routed via named channels and can be delivered between between servers

and clients. By default, pub/sub routing semantics are applied to the channels, but other

routing models are also supported. Comet servers and clients make frequent use of topics

which are useful when different objects want to send data to various interested parties

subscribed to updates.

The major advantages of Comet beyond low-latency over the Web is that communications

is considered as normal HTTP, that is it works even though proxies, NATs, and firewalls

where everything else than Web traffic (on port 80) is blocked. Besides, as all Comet

interactions are initiated by the client, every client can be individually addressed from

the server, even when they do not have a publicly visible URI or IP address. The major

drawback of Comet techniques is that they only specify a polling-free data transport and

not a complete messaging protocol with elaborate routing strategies.

Web Hooks

Another solution for clients and applications to receive notifications from external Web

sites is to use HTTP callbacks. By “subscribing” to an event, users specify a callback

URL where the application will POST data to each time an event occurs. This mechanism

has been used by PayPal online service which allows to specify a URI on your Website

that will be triggered by PayPal servers once a payment has been confirmed. Although

cleaner and simpler than Comet as it only requires clients to also have a Web server, this

model is not suited for clients that do not have a public URL where data can be posted

to (which is usually the case when clients are behind a firewall or in a private network).

The pubsubhubbub (PuSH) protocol [122] focuses on server-to-server publish/subscribe

functionality. It uses Web hooks and leverages the Atom feed format. A data provider

(e.g., a blog) declares a number of hubs in its feed using the <link> element (see Section

5.3.2). A subscriber initially fetches the Atom URL of the content provider, and if the

Atom file declares its hubs, the subscriber can then subscribe the feed’s hub(s) to be

notified when new content is available. To subscribe, the client has to include a callback

URL in the subscription request. The hub then sends a HTTP POST request including the

most up-to-date feed to that callback URL whenever the feed was updated. The publisher

side of the protocol works by the feed server pinging all hubs as soon as the feed was

updated. The configured hubs then fetch the updated feed and multicast the new content

out to all registered subscribers. The authors of the protocol claim that by using many
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hubs, the protocol allows a very scalable and reliable mechanism for publish/subscribe

over the Web. One disadvantage of PuSH is that because a HTTP callback mechanism is

used, clients have to be accessible from the Internet and they have to run a Web server,

which makes PuSH suited mostly for server-to-server communication in the open Web.

RestMS [44] provides messaging (support for queuing and routing) via an asynchronous

RESTful interface over HTTP. On top of HTTP, a RESTful transport layer is defined

which allows to use long polling to receive events from the server. The RestMS protocol

also can be extended via various “profiles”, which are different routing strategies allowing

interoperability with other messaging protocols, such as AMQP. The idea of providing

a Web-level messaging system is promising, however, it seems that the specification has

been overly complicated, which limited its adoption. At the time of writing, the project

seems frozen (no updates for over two years), no known complete implementation exists,

nor services that use it.

WebSockets

The Web Hypertext Application Technology Working Group (WHATWG), which is cur-

rently working on the HTML 5 specification, included a polling-free server to client data

transport mechanism called WebSockets [151]. Along with the embedded Web server in

the Opera unite browser, these recent boom and development in Web push techniques

illustrate that server-sent events are to become popular very soon. The following example

shows how to open a WebSocket and process messages using Javascript:

1 var socket = new WebSocket("ws://webofthings.com/channels/ethz/CNB");

2 socket.onopen = function() {

3 alert("Socket is open");

4 }

5 socket.onmessage = function(msg) {

6 [... do something with the msg received ...]

7 }

8 socket.onclose = function() {

9 alert(" Socket is closed");

10 }

In practice, a WebSocket connection is established via an upgrade from the HTTP pro-

tocol to WebSockets during the initial handshake connection between client and server,

which allows both parties to send messages in full-duplex mode over a single TCP/IP con-

nection initiated by the client. The upgrade is done using the Upgrade: WebSocket and

Connection: Upgrade headers in the initial request, which allows a smooth integration

with the Web and facilitates proxy (firewalls, routers, etc.) transversal.
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6.1.3 Discussion: Messaging

Nowadays, integration of different WSNs is done in a fairly rigid manner: gateways

are highly customized for specific protocols, therefore devices can not be integrated into

another WSN’s gateway easily. As identified above, the loose coupling introduced by a

publish/subscribe mechanism offers many advantages, among which a better scalability

and a simpler programming model thanks to higher level abstractions. These advantages

are desirable for the Web of Things, where a pub/sub mechanism to exchange sensor data

and commands between devices and applications will allow more scalable and flexible

applications to be built.

Messaging protocols such as JMS or AMQP have been successfully used to build large-

scale systems in areas such as banking and e-commerce. XML-based messaging system

(XMPP) introduces artificial overheads to increase interoperability, which results in larger

bandwidth usage, even though binary XML encoding can be used to compress data.

As illustrated earlier, the Web is becoming an ecosystem of services that can be queried

using standard and uniform Web APIs (increasingly based on REST). However, Web

content still largely follows the multimedia document-based model, which is not suited

for the stream-based nature of sensor data. To support the complex data-centric queries

commonly used in stream processing systems, one must explore more transparent data

models to expose sensor data streams over the Web so that highly expressive queries can

be expressed using simple and open Web standards. With the advent of the real-time

Web, numerous protocols are making this possible. While there are HTTP bindings to

most of these protocols, client libraries for these protocols are still overly complex and

rather immature, which makes the adoption barrier to messaging protocols quite high.

By keeping the complexity at the broker in a very simple pub/sub system, one can more

easily benefit from the looser coupling offered by a messaging system. A fully Web-based

messaging middleware would allow devices, gateways, brokers, and all interested appli-

cations to interact easily without any prior knowledge about each other. Furthermore,

as gateways are optional, they can easily be bypassed in case they fail, increasing the

robustness of the whole system.

In the next section, we propose a messaging solution designed to seamlessly blend into the

existing Web. We borrowed the core ideas from the messaging semantics used in tradi-

tional message-oriented middleware and also the notion of intermediate nodes to decouple

producers from consumers. Brokers are Web resources linked via URI, simplifying (re)use

and at the same time providing a loose coupling. The interface between the intermedi-

aries follows the REST principles by using HTTP. The payload of messages can then be

encoded as JSON objects that are Javascript-friendly, which makes it easy to integrate

streaming data into Web mashups.
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6.2 Web Messaging System (WMS)

According to our discussion in the previous section, designing a flexible and scalable

push-based notification and streaming mechanism will be necessary would be desirable

for the Web of Things as devices could directly benefit from it without requiring an

additional layer on top of HTTP (as is the case when using XMPP or WS-Eventing).

To provide a simple solution for Web-based messaging, we developed Web Messaging

System (WMS), a lightweight pub/sub messaging system that can be used with embedded

devices. Rather than developing a custom messaging protocol on top of HTTP, WMS

only specifies the core functions of a pub/sub system using RESTful design patterns over

HTTP interactions. In essence, WMS is similar (and hence directly mappable) to RestMS

or pubsubhubbub, but it is more generic and simpler so it can be easily understood and

implemented on devices with constrained resources. Being a genuine RESTful protocol,

it can be used in many other contexts, including typical Web applications.

The central idea behind WMS is to shift the perspective by considering devices not only

as passive HTTP servers that only answer requests, but also as active clients that can

issue requests towards other servers, just like Web Hooks. External clients can then

subscribe to events on devices and will be notified via Web hooks every time a specific

event is triggered. Devices will emit events via a HTTP POST message to a callback URL

specified at subscription time. The following (simplified) HTTP request example will add

a subscriber to a fire detector device:

1 POST /subscriptions

2 Host: DEVICE-URI

3 Content-type: application/x-www-form-urlencoded

4 Content:

5 keyword=alert&wms.cb=http://[SUBSCRIBER-URI]/callback

6

7 201 CREATED

8 Location: http://[DEVICE-URI]/subscriptions/32746

The Location header contains the URI of the newly created subscription RESTful re-

source (which can then be updated with PUT or deleted with the DELETE HTTP methods).

Every time an event is generated, that is it matches the keyword “alert”, it will trigger

the device to POST the event sequentially to all the callback URLs registered for that par-

ticular keyword. This allows a simple fully-HTTP publish-subscribe mechanism directly

on devices. Although the scalability of this mechanism is very limited and depends on the

resources available on each device, using a RESTful messaging for sending notifications

facilitates the outsourcing of the notification process to more powerful reverse proxies or

intermediate nodes.

One possible usage scenario for WMS is a back-end infrastructure with many NEDs con-

nected to a gateway that hosts a simple WMS broker, as shown in Figure 6.4. Devices
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Figure 6.4: The general model of Web-based messaging. Devices push their data to gateways
using standard HTTP POST, AtomPub, or other proprietary protocols. Gateways will then
forward it to other gateways or to a powerful broker using WMS. External users can fetch the
data using the most appropriate method for their needs - depending on the protocols supported
by the broker.

could be individually addressed using any Web client and a secure authentication mech-

anism, for example to reconfigure the smart meter. At the same time, devices can be

configured to send notifications based on simple rules (every n seconds, if above a thresh-

old, etc.) to a specific endpoint in the cloud, or simply to the WMS broker on the gateway

it is attached to (by default), which will forward it to the building gateway (that bridges

the network with the external world).

The gateway offers a RESTful API to use the eventing system and provides the following

resources to manage interactions:

• /channels every sub-resource under this resource (for ex. /channels/ethz/CNB/

room102) represents a hierarchical channel where entities can post data to.

• /subscriptions contains each subscription of entities to individual channels.

• /channels/[channel]/publishers contains all entities that are publishing data

on the channel.

• /channels/[channel]/subscribers contains all entities that are subscribed to

events on the channel.

A user that wants to subscribe to notifications about a channel, creates a new subscription

by POSTing the following HTTP request to the channel it wants to subscribe to:

/channels
/channels/ethz/CNB/room102
/channels/ethz/CNB/room102
/subscriptions
/channels/[channel]/publishers
/channels/[channel]/subscribers
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1 POST /channels/ethz/CNB/room102

2 Host: GATEWAY-URI

3 Content-type: application/x-www-form-urlencoded

4 Content: wms.cb=http://[SUBSCRIBER-URI]/callback

where the wms.cb parameter denotes the callback URI messages shall be posted to. Note

that wms. specifies the format that should be used for the callback. Each new mes-

sage posted on the channel will be POSTed back to this subscriber at the URL wms.cb.

Publishers can then push data to the gateway by POSTing the following request on the

broker:

1 POST /channels/ethz/CNB/room102

2 Host: GATEWAY-URI

3 Content-type: application/x-www-form-urlencoded

4 Content: pub-url=http://device1&temperature=21

This device has never been registered with the gateway, so it includes its root URI in the

posted parameters, providing the gateway with a possibility to automatically scan it for

Microformats to retrieve required information to be able to register it using the procedure

described in Section 5.3. The message is posted directly to the channel /ethz/CNB/

room102 without any need to previously create it. Other parameters are treated as tags

(in this example temperature), which can be used by publishers to annotate data they

send and subscribers to filter out messages that do not contain tags they are interested

in.

The modular approach used to implement the gateway allows users to easily extend the

messaging module using the strategy pattern. Just like the discovery strategies proposed

in Section 5.3.2, users can easily add new messaging protocols to the gateway (for example

support for Comet, WebSockets, XMPP, email, etc.), which allows to bind the proposed

network with other applications that do no support HTTP or WMS natively. Obviously,

support for other protocols should only be considered at the main gateway (bridge between

LAN and Internet) for external clients.

6.2.1 Web Messaging Evaluation

We have been interested by evaluating the performance of a pure Web-based messaging

system, and how various parameters affect Web-based messaging throughput and response

times. First, we evaluate the performance of a Web push system to understand how they

perform with NED applications. In the second evaluation, we explore more in detail our

implementation of WMS and evaluate how it works with a complete application. Unlike in

part A, where the evaluation is done in isolation (we focus only on the message exchanges),

part B evaluates the whole end-to-end messaging, including the broker.

/ethz/CNB/room102
/ethz/CNB/room102
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Evaluation Part A - Minimal Web Messaging

To assess the suitability of Web-based push messaging for NED application, we have

evaluated the performance of a simple callback based notification initially presented in

[243, 229] using a custom setup shown in Figure 6.5. We have implemented a lightweight

Web hook-based notification mechanism on a gateway running on a server with 1.1GHz,

2GB RAM, Gigabit Ethernet, and running Gentoo GNU Linux. The client machine

used to simulate HTTP clients has 2 x 2.13GHz, 8GB RAM, Gigabit Ethernet and runs

Gentoo GNU Linux. As we are interested in the scalability of Web-based messaging not

at the WSN level, but at the infrastructure level, we do not explore in this section the

scalability in the WSN, and measure only notifications between two desktop machines

and not directly on the device.

Gateway machine
1.1 GHz, 2GB RAM

Client machine
(2x2.13 GHz, 8GB RAM) 

HTTP 

HTTP 

Simulated
publishers (devices)

running on the gateway

Simulated
subscribers

running on client 
machine

Client

Client

Client

...

LAN (Gigabit Ethernet)

Subscription 
requests

Notifications 
(Web hooks)

Figure 6.5: Network structure used in the evaluation of HTTP messaging. A client machine
that simulates subscribers is connected to a gateway that simulates publishers (virtual devices).
Both machines are wired using Gigabit Ethernet and are on the same local network.

Many Subscribers. In many scenarios, one can expect a small number of entities pub-

lishing data that is interesting to wider audience, for example a pollution sensor installed

by local authorities shared openly with citizens. For obvious performance reasons, requests

should not be answered from the device directly, but the load should be outsourced to a

proxy that handles the notifications to many subscribers. We first evaluate the scalability

of Web messaging in such a scenario, where many clients subscribe for events sent by a

device.

The test client started an event sink to receive events on respectively 50, 100, and 200

different ports, and for each port an event subscription was posted to the gateway. The

gateway then generated artificial events (containing the generation timestamp) that were

delivered to all the subscribed ports. The test client measured the arrival time and from
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Figure 6.6: Many subscribers (HTTP): CDF of event delivery times measured for respec-
tively 50, 100, and 200 subscribers.

that computed the delay for each arriving event based on the timestamp. Figure 6.6

shows the Cumulative Distribution Function (CDF) of the delivery time to notify all the

subscribers, and key statistics about the measurements are given in Table 6.1.

50 Subscribers 100 Subscribers 200 Subscribers

Min 34 ms 35 ms 34 ms
Max 396 ms 553 ms 1347 ms
Mean 97 ms 180 ms 360 ms
q80% 128 ms 239 ms 330 ms
q95% 154 ms 416 ms 489 ms
q99% 177 ms 511 ms 1169 ms

Table 6.1: Many subscribers (HTTP): Various statistics for delivery times of events to
many subscribers (q−X = Y means that X% of the events are delivered with a latency below
Y.)

One can see that the performance is acceptable given a custom-made application, and in

average it scales linearly with the number of subscribers. For 50 subscribers, the average

time needed to send a notification to a client is 97 ms, and 360 ms for 200 subscribers,

which remains very reasonable. However, the scalability of the “worst-case” conditions

scales less linearly as 99% of messages are sent within 177 ms for 50 subscribers, but takes

1.17 seconds for 200 subscribers. One can see that our simplistic implementation starts to
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behave erratically for some messages as the number of subscribers increase. One reason

can be that all the simulated subscribers run on the same machine, therefore this causes

a bottleneck at the network and application-level which degrades the performance. This

could be solved by using a more through implementation of both the client and server.

Many Events. In this experiment, we have measured the gateway performance when

many different events are triggered simultaneously and have to be delivered to subscribers.

A virtual device generated different events (containing the time the event was received on

the gateway) at regular intervals. The test client received the events and computed the

delay between arrival time and generation time. Table 6.2 contains statistical measures

of the measured response times, and Figure 6.7 shows the cumulative density function of

the time needed for the subscriber to receive respectively 150, 300, and 600 events.
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Figure 6.7: Many events (HTTP): Response time to deliver events to a client, with
respectively 150, 300, and 600 events.

In this case, one can see that the performance remains acceptable for many events sent to

the subscriber (99% of messages are sent within 268 ms). However, for many events (600),

the performance degrades significantly, and it takes in average 1019 ms per message when

all the messages are to be delivered simultaneously (and 1% of messages need more than

3.76 seconds to be delivered). The reason is very likely the client cannot handle so many

messages to be delivered per second, and a more efficient handler could be required.

Many Publishers. In this experiment, we evaluate the situation where many different

devices (publishers) are attached to the gateway, and each device generate events at ran-
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150 Events 300 Events 600 Events

Min 75 ms 74 ms 79 ms
Max 268 ms 3515 ms 4353 ms
Mean 166 ms 408 ms 1019 ms
q80% 216 ms 573 ms 1481 ms
q95% 266 ms 695 ms 1906 ms
q99% 268 ms 947 ms 3762 ms

Table 6.2: Many events (HTTP): Various statistics for delivery times of many events to
a single client.

dom intervals comprised between one and five seconds. Three runs have been performed

with respectively 50 devices, 100 devices, and 200 devices attached. The delivery time

was computed as the delay between the event generation and arrival times, and results

are shown in Table 6.3, with the CDF plotted in Figure 6.8.
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Figure 6.8: Many publishers (HTTP): Response time to deliver events to a client with
respectively 50, 100, and 200 publishers.

In this case, we observe that up to 100 publishers, the performance is reasonably low

and scales linearly with the number of publishers (devices), as 99% of messages are sent

within 253 ms, with 125 ms in average. The performance degrades significantly with the

number of publishers, as when doubling the publishers (200) it now takes in average 0.7

seconds to deliver all the message, and 1% of messages need more than 1.09 seconds to

be delivered.
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50 Publishers 100 Publishers 200 Publishers

Min 29 ms 30 ms 418 ms
Max 127 ms 284 ms 1087 ms
Mean 52 ms 125 ms 699 ms
q80% 75 ms 179 ms 821 ms
q95% 92 ms 221 ms 880 ms
q99% 98 ms 253 ms 1087 ms

Table 6.3: Many publishers (HTTP): Various statistics for delivery times from many
publishers to a single client.

Evaluation Part B: WMS

This second evaluation explores the performance of a complete embedded WMS implemen-

tation in an end-to-end scenario, not only the messaging in isolation. We have performed

various experiments using the simulation environment designed by Vlatko Davidovski

for his masters thesis [101]. Using the experimental setup shown in Figure 6.9, various

parameters of WMS as a messaging system have been evaluated, but only the relevant

summary of these results is provided here. A more detailed analysis of WMS according

to different parameters such as message size or local storage usage is available in [101].

LAN (Ethernet)

WMS WMSWMS

Client Gateway 1 Client Gateway 2 Client Gateway 3

Time Server
Sink Gateway

Router

Figure 6.9: Network structure used in the evaluation of WMS. Three client gateways are
connected to a sink messaging connector. All connections are wired using Ethernet and are in
the same local network.
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Many Subscribers. In this experiment, we explore the scalability of the system with

respect to the number of subscribers. One sink (laptop) and three gateways (Norhtecs6),

each containing one virtual entity are used in the experiment. Each entity continuously

generates messages of 1KB size during the whole duration of the experiment. These

messages are generated at random intervals based on the Poisson distribution (mean

value 500 ms). The sink (a laptop machine) simulates respectively 20, 40, and 80 clients

that subscribe each to all the events of each gateway (that is respectively a total of 60, 120,

and 240 subscriptions in total), therefore each message will be sent to the sink multiple

times (but to different channels).

Pub/sub
broker

Gateway
(broker)

WMS

Gateway
(broker)

WMS

Gateway
(broker)

WMS

WMS

Simulated publishers 
running on the gateway

Gateway with minimal
 WMS brokers

Gateway with 
 WMS broker 

simulated subscribers

Figure 6.10: Application structure of the application. Each gateway runs locally a minimal
pub/sub broker that receives messages from the devices. Simulated devices send data to the
gateways using WMS, thus are not directly integrated in the gateway code as in the Part A.
This reduces the performance, but also decreases the binding between the devices and the
gateway, which allows these interactions to be RESTful.

We measured the message life cycle time (MLCT), which is the time between an event has

been generated and transferred to the last subscriber (only internal times in the gateway,

therefore does not take into account the network transmission time). Key statistics are

shown in Table 6.4, and a CDF of the MLCT is shown in Figure 6.11

With 60 subscriptions, the system performs reasonably well (average 873 ms, 95% of

messages are delivered under 1054 ms), and the MLCT scales linearly with the number

of subscribers in average (3.365 seconds with 240 subscribers).

6NorhTec MicroClient Sr. http://www.norhtec.com/products/mcsr/index.html

http://www.norhtec.com/products/mcsr/index.html
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Figure 6.11: Many subscribers (WMS): Message Life Cycle Time for various subscribers,
respectively 60, 120, and 240.

60 Subscribers 120 Subscribers 240 Subscribers

Min 653 ms 1382 ms 2930 ms
Max 8760 ms 7965 ms 11876 ms
Mean 873 ms 1617 ms 3365 ms
q80% 835 ms 1613 ms 3378 ms
q95% 1054 ms 1943 ms 4056 ms
q99% 4500 ms 4715 ms 9475 ms

Table 6.4: Many subscribers (WMS): Various statistics for delivery times from an event
to many subscribers.

Many Publishers. Another important aspect is the behavior of the system when many

devices (publishers) are connected. This second test evaluates the effect of the number of

concurrent devices (publishers) on the overall performance of the gateway. The setup is

the same, with three gateways containing each respectively 10, 25, and 50 virtual entities

(simulated devices), each generating a 1KB message with at a random time defined with

a Poisson distribution (500 ms mean). The sink registers to each entity, therefore receives

all the messages emitted by respectively 30, 75, and 150 simulated devices.

Statistics about the MLCT are given in Table 6.5, and the CDF of the MLCT is shown

in Figure 6.12. Even with 150 devices each generating a message every 0.5 seconds in

average, the total delivery time remains reasonable (99% of messages are delivered under

5.4 seconds).
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Figure 6.12: Many publishers (WMS):Message life cycle time for various messaging load,
resp. 30, 75, and 150 publishers.

30 Publishers 75 Publishers 150 Publishers

Min 29 ms 39 ms 31 ms
Max 3970 ms 4043 ms 7189 ms
Mean 570 ms 1520 ms 3133 ms
q80% 663 ms 1771 ms 3950 ms
q95% 770 ms 2027 ms 4695 ms
q99% 972 ms 2284 ms 5388 ms

Table 6.5: Many publishers (WMS): Various statistics for delivery times from many pub-
lishers to a single client.

Message Payload Size. An important factor to take into consideration is the amount of

data transmitted with each message. While tiny payloads are suited for battery-powered

sensor nodes, large packet sizes are usual for less constrained sensors, as for example Wi-

Fi or Ethernet Webcams. In this experiment, we evaluate the influence of the payload

upon end-to-end latency.

In this experiment, three publishers send data to a sink at random times, and a single

client subscribes to every message received by the sink. Three runs are performed for

various payload size, where each message has a payload of respectively 30, 60 and 120

Kilobytes. Key statistics are given in Table 6.6, and the cumulative density function of

the message life-cycle time is shown in Figure 6.13

With a payload of 30 KB, the message life cycle is short (under 477 ms for 99% of all

messages and less than 260 ms in average). Even for large messages of 120 KB over 99%

of messages are sent within a second.
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Figure 6.13: Message life cycle time for various payload sizes, resp. 30, 60, and 120 KB in
each message.

30 KB 60 KB 120 KB

Min 193 ms 328 ms 575 ms
Max 4420 ms 4537 ms 4875 ms
Mean 253 ms 399 ms 668 ms
q80% 252 ms 398 ms 690 ms
q95% 314 ms 471 ms 772 ms
q99% 477 ms 752 ms 933 ms

Table 6.6: Message life cycle time for three publishers to a single client, and various message

6.2.2 Discussion: Web Messaging

In this section, we have measured the performance of HTTP push when used as mes-

saging protocol to implement a low-latency notification and streaming mechanism. We

do not explicitly address the low-power radio communication used in NEDs as it is out

of scope for this thesis. We are only concerned with how to collect sensor data once it

is on the Web – that is a gateway has received the data from device using various radio

protocols and then needs to transmit it over the Web. It is important to note that we

tested the system with a load a few degrees of magnitude higher than usually required

by long-lived WSN deployments for environmental monitoring described in litterature,

as we tested our system with a few hundreds of messages per second, while WSN nodes

report data usually less than once per minute (one message every 5 minutes per device is

common).
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When a few clients subscribe to the events generated by a gateway, the subscription

process is very fast and the time required to notify all client is reasonably low (95% of

messages are sent to 200 concurrent subscribers in less than 0,5 s). When 600 events had

to be delivered to the same subscriber over 95% of them arrived within 2 seconds. Even

with large messages, the delivery times remains less than a second for a few messages per

second. In most cases, the performance scales linearly with the number of subscribers,

publishers or events, but tends to become unstable and large variations in delivery time

occur as the load increases. However, the load remains largely acceptable for a few

hundreds messages per second delivered to a few hundreds of subscribers.

Higher throughput could be easily obtained by optimizing the implementation of the

messaging broker. One of the major bottlenecks in our implementation of a WMS broker

on gateways is that all messages are stored locally into an embedded database (in our

implementation we used db4o [10]). Via measurements performed in [101, 184] we have

shown that the latency of delivery for all messages is 3-4 times higher when messages

are stored in a database, instead of simply being forwarded as they come without any

persistence. Other results show that more subscriptions have a smaller impact on the

scalability than publishers, and the internal total load (msg/s) that can be handled by

the broker is the bottleneck of the system. Besides, thanks to the modular approach used

in our gateway software, the actual database implementation is decoupled from the actual

application, as it is implemented inside an OSGi bundle. It could be easily replaced by

an optimized storage solution or completely outsourced to a dedicated message broker

solution that will only handle distribution of many messages to many users, as will be

shown in the next chapter.

Also, in other experiments not shown here we have shown that the performance of Restlet

degrades significantly when handling more than 500 requests per second. Using a faster

NIO-based connector (Grizzly or Jetty), much higher throughput could be attained. Nev-

ertheless, the performance we obtained is sufficient for many small scale NED applications

where a few hundreds of devices posting one message per second each with a few param-

eters (that is a total payload of 20-30 bytes), given that our tests were performed with

messages that have 1KB of payload. In particular, the performance we obtained is cer-

tainly sufficient for many home automation scenarios where all the devices in a house or

a building could be connected together in a unique application.

According to the increasing interest in real-time communication and messaging over the

Web, future Web standards are planned to support elaborate and efficient push-based

Web communication. This is already the case with HTML 5 Web Sockets API [151], but

it is very likely that efficient libraries, servers, and brokers that support scalable messag-

ing will flourish. The combination of standard Web-based bidirectional messaging and

their implementations for embedded devices that rely heavily on cross-layer optimization

[115], will make it possible the develop more open and efficient NED applications entirely
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built upon Web standards. As more efficient implementations and solutions, along with

optimized protocols for the Web (e.g., SPDY [51]) will likely increase the performance of

Web messaging in large-scale application with thousands of concurrent users and messages

per second to be handled.

6.3 Part II: Stream Processing Engines

Database management systems (DBMS) have become a central component in almost

any Web application today to help managing huge amounts of persistent data. Complex

queries expressed in query languages such as SQL are used to retrieve and process stored

data. These types of queries are executed once and a result is returned, and work well

for rather static data (read queries occur much more often than write/update queries).

Data Stream Management Systems (DSMS) emerged a decade ago from the increasing

need to process large amounts of continuous streams of data in many disciplines from

remote sensing, to finance, to network security monitoring [74, 95]. A data stream is a

potentially infinite sequence of data items (called tuples) from any source, be it sensors

or other applications.

Aurora [65] and Borealis [64] were among the earliest stream processing applications

and defined a variation of relational algebra extended with various operators for process-

ing continuous data streams (e.g., aggregation and grouping). Although, these systems

did not define a query language, they used the boxes and arrows paradigm known from

workflow systems to specify the processing operations over continuous data. Another

early system was TelegraphCQ [97] which explored distributed queries over data streams

and also handled data loss. TelegraphCQ already provided a basic query language, but

queries were only a definition of the data flow using basic building blocks (i.e., the query

operators). The STREAM system [187] was among the first ones that provided a query

language that abstracted more from the basic query operators. Early research lacked a

common ground where the stream semantics could be defined without ambiguity, and

most of them did not specify the semantics of the query language formally. The Continu-

ous Query Language (CQL) [72] formally specified the semantics of windowing operations

(i.e., only process “recent” chunks of incoming data as an approximation), using a SQL-

like query language which supports both relations and streams. It supports selection,

projection, join and aggregation operations over streams using windowing functionality

(sliding windows). Furthermore, stream-to-relation and relation-to-stream operators were

defined. Using CQL, simple declarative queries can be used, and the following example

shows a query to report the light reading of several sensors every second:

1 SELECT Rstream (id, sample1(light) as light)

2 FROM Sensors [RANGE 5 SECONDS SLIDE 5 SECONDS]

3 GROUP BY id
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Originally, WSN applications were based on a sense-store-process workflow (see Figure

2.2). This behavior was usually hardcoded at the node level, therefore it was difficult to

reconfigure the application once a WSN has been deployed [247]. This rigidity led to the

development of a new paradigm that enable interaction with sensor networks in a data-

centric way, rather than device-centric. Among them, Cougar [249] and TinyDB [178]

were early distributed query processing systems that enable data retrieval from a sensor

network via simple queries and provided powerful runtime optimizations to make such

operations more efficient. With TinyDB, a declarative SQL-like query interface could be

used to specify the data collected by a sensor network deployment and various parameters

could be configured, such as sampling rates or windowing operations. Furthermore, it was

also possible to define event-based queries that are useful for scientific sensor networks

where various physical properties are to be monitored (e.g., temperature, light or vibration

thresholds). We illustrate this process with the example used in the original paper [177],

which is a query to report the average light and temperature level at sensors nearby a

bird nest where a bird has been detected:

1 ON EVENT bird-detect(loc):

2 SELECT AVG(light), AVG(temp), event.loc

3 FROM sensors AS s

4 WHERE dist(s.loc, event.loc) < 10m

5 SAMPLE INTERVAL 2 s FOR 30 s

Although TinyDB provided a useful, higher-level interface for querying sensor networks,

it focused mainly on processing raw sensor data. Even when using TinyDB, it remained

difficult for non-technical users to develop and deploy, analyze and interpret the data

collected, and share it with the world.

Semantic Streams is a framework to facilitate the semantic interpretation of sensor data,

which is modeled as asynchronous flows of events [242]. Queries are defined using logical

predicates and represent first-order logic descriptions of event streams. A simpler declar-

ative language based on Prolog is used to describe and compose inferences over sensor

data, but also to specify various quality of service parameters (e.g., confidence interval,

total latency or energy consumption) for the result. The benefits of the framework are

the abstraction it provides from low-level distributed programming and that it makes the

output of sensor networks more understandable to non-experts. Semantic Streams go one

level higher than TinyDB because they provide a semantic interpretation of the sensor

data. However, the framework lacks flexibility, because all sensor data must be collected

on a central server where all the processing took place. A unique sink is a limitation and

is very different from the approach taken by TinyDB where each sensor node can gather

sensor data (also from other nodes) and execute queries on it.
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6.3.1 Query Languages and Data Models

With the multiplication of commercial and open source stream processing engines such

as Streambase [54] or Esper [12], it was expected that a standard query language for

streams would be agreed upon. Although many of the languages used by these engines

are similar to CQL, no single language stands out as a standard language for stream

processing. Various applications had very different requirements and no single model

that works for all these applications has been found.

Another approach to implement a data stream processing application is to extend the

classic messaging system to allow event-detection or continuous queries over data streams.

The simplest way to do this is to specify a filter over messages for each subscription. Tian

et al. [220] presented such a publish/subscribe system based on XML, which allows to

specify an XPath expression along with the subscription, to filter out message that do

not match the expression. This mechanism provides only little more functionality than

traditional messaging systems as it lacks support for complex events. A system with

slightly more expressive power is Cayuga [104] because it supports not only conditions on

subscriptions, but also the union of such conditional streams. PADRES [173] proposed

a mechanism to detect events where users could register subscriptions described using

predicates, and complex patterns could be detected by combining various subscriptions.

In summary, there are three main categories one can consider. First, classic stream pro-

cessing application that support various query operators over data streams, that support

windowing or aggregation operations (among many others) defined using predicated or

declarative, SQL-like languages. Second, there are complex event processing system,

which are more focused on detecting specific event types or temporal patterns. Third,

pub/sub systems allow various users to subscribe to raw or processed data using various

parameters.

6.3.2 Web-based Querying

Although the various query processing models and languages briefly presented in the

previous sections allow to implement elaborate data stream processing applications, they

remain overly complex to use for the average technical user. Besides, the integration

between various data sources and applications remains a tedious procedure. The Web

of Things will benefit greatly from stream processing capabilities, which will require the

Web to support various stream processing primitives that can be expressed in a RESTful

manner. This will significantly lower the access barrier for users to work with real-time

stream directly using HTTP and easily integrate streaming data and operations into

mashups, using simply Javascript. We survey in this section existing methods for exposing

query primitives on the Web.
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The Google Data Protocol (GData)7 is a RESTful protocol proposed by Google to read

and write information on the Web, in particular is used to access the various online services

offered by Google (such as Blogger, Google Docs, Analytics, etc.). Data is stored as a

collection of items represented using the Atom syndication format and HTTP is used to

handle communication. GData extends AtomPub for processing queries, authentication,

and batch requests. In addition to categories, GData supports full-text queries, author

searches, range queries on the updated and published timestamps. This is sufficient to

retrieve stored data using logical expressions to filter the results, however, it is not meant

for processing complex queries over streaming data. Yahoo Pipes [61] is a visually oriented

tool that allows users to connect various feed-processing modules and aggregate or filter

feed data (or other data providers which are turned into feeds) to generate one result feed.

Unfortunately, Pipes only work at the feed level and not on the collections behind them.

Yahoo Query Language (YQL) also supports various data inputs (including feeds), but

the output is YQL-specific XML or JSON, therefore does not provide access to various

data sources through a uniform data model (such as ATOM/feeds).

OpenSearch [33] is a widely recognized approach that offers a standardized API for search

engines. The interesting fact is that OpenSearch uses feeds with extensions as the result

format. For the query format, OpenSearch defines XML formats (one for describing the

interface, and one for the query itself), as well as URI templates. The main limitation of

OpenSearch is its focus on full-text search only. As discussed in Section 5.3 the utility

of only keyword-based search is limited as more and more real-world objects will also

become part of the Web. Feeds are a popular way to distribute timely information on the

Web and they can be considered as services that represent a view on a collection as they

expose only parts of the collection in a specific way. This metaphor is useful as it can serve

as the fundamental meta-model for a variety of services offered by sensors, as proposed

in [246]. Feed Item Query Language (FIQL) [191] also specifies a query syntax for feeds,

but defines a more general set of operators, datatypes, and values which can be used for

queries. FIQL also specifies how a feed provider can advertise the query capabilities of

the underlying collection in the feed itself using a query interface. Although FIQL is an

interesting approach, the initial and expired draft has never been updated, and no known

implementations exist.

Feeds are a powerful and highly scalable mechanism to distribute efficiently timely data,

as a simple document that is updated a few times a day needs to be distributed. Things

become more complex on the server side when complex feeds have to be created on the fly

for every specific user (for example subscribing to all the new bookmarks tagged with a

specific keyword on the social service del.icio.us8). According to [107], the Web model with

feeds does not fit the sensor data streams abstraction, nor do existing streaming protocols

such as multimedia streaming protocols. In many scenarios, users want to access historical

7See: http://code.google.com/apis/gdata/
8Online: http://del.icio.us

http://code.google.com/apis/gdata/
http://del.icio.us
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data in both a pull and push fashion. The paper proposes Stream Feeds which represent

sensor streams by an URL. Streams can be accessed using a RESTful (or SOAP) interface

over HTTP. A HTTP GET request can be used to get historical data from a stream. To

subscribe to streams a HTTP PUT request is used (which can contain filters on the stream

data).

6.3.3 Stream Processing for the Web of Things

How to expose sensor data streams on the Web remains an open research question–

should one use a feed model or rather a pub/sub one? Or a combination of both? Besides,

how to advertise the Web querying constructs supported over each streams using standard

stream processing constructions (filtering, aggregation, etc.)?

Early approaches in data stream processing were mainly considering homogeneous data

sources, therefore interoperability among different devices and deployments has been only

marginally addressed. As the typical size of NED applications will increase, so will the

need to build scalable infrastructures to integrate different systems (see Section 2.3).

Indeed, as more and more sensors will be interconnected, tremendous network effects

could be obtained if aggregating, filtering, analyzing, and republishing heterogeneous

sensor data in real-time could be done in a simple and universal way. To meet the

scalability requirements for future Internet-scale sensor networks, loose coupling between

actors is essential to ensure sufficient robustness and flexibility. When applied to the

Web of Things vision, where heterogeneous devices come and go, it becomes essential to

integrate NEDs into stream processing applications using Web standards.

A clean standard to define the connection between devices, the data and notification they

produce, and the semantics of the connection between users and devices is clearly missing.

This makes interpreting the data a client receives more difficult which results in more

complexity on the client side. Extending current solutions for stream processing in such

a way that data streams can be manipulated using the well-known and widely supported

Web standards such as HTTP, XML, or Atom without compromising the expressive power

of the query capabilities of these applications would allow to lower the barrier of entry

to collect, use, share, and store sensor data. The ATOM feed model – along with its

extensions and basic data types – is an efficient metaphor to access collections of time-

ordered (sensor) data. Although the basic feed model is limited to retrieval and filtering

of stored data, it could be combined with a pub/sub system over the Web and mapped

to various query mechanisms, from general-purpose query languages such as SQL, to

more specialized ones for special types of data streams, such as sensor network query

languages [127] or more general stream processing languages such as CQL [72].

One can observe that the typical tradeoff between scalability and query expressiveness

present in stream processing application remains in the Web world. However, as the
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recent developments in Web technologies have enabled to build efficient and scalable

publish/subscribe systems, we suggest that a Web-based pub/sub model could be used

to connect sensor networks with applications. On top of this raw pub/sub substrate, one

needs to an expressive query environment suited for embedded devices and exposed over

the Web. This leads us to formulate the following requirements for a Web-based query

model that can handle both the static data used in relational databases and real-time

streaming data used in stream processing applications:

• Windowing support. The continuous queries used in stream processing heavily

operate on time windows (see more in [73]), therefore a native Web pattern to model

and manipulate time windows is essential. Windows are the very basic mechanism

that allows to introduce more advanced query functionality (aggregation, grouping)

afterwards.

• Opaque queries. Declarative queries describe what has to be done, not how. This

allows to decouple the query from its execution, which can take place remotely on an

external, specialized stream processing engine optimized for specific data formats

and processing operations. Using a Web-level construct for queries, rather than

specific queries bound to the implementation of the processing engine, allows a

looser coupling in the systems which improves the flexibility and scalability.

• Static data support. Because many Web of Things applications might use both

real-time data and stored data, a common model to access both will be necessary to

simplify the design process. Because query languages used for relational databases

are not compatible with the time windowing constructs used in stream processing,

a common ground is needed for combining static data with streaming data using

the same operators.

• Query Capability Advertisement. Another desirable feature is the ability to

describe the various functions and primitives supported by each node (similarly

to OpenSearch [33]). Some modules support only simple filtering over tuples, while

other can support more complex window-based processing and a method to describe

in the stream itself what it supports would facilitate ad-hoc use of feeds and their

functions.

In a data-centric Web of Things, typical applications are concerned with collecting and

processing real-time sensor data streams. However, such applications often also have to

handle historical data and metadata about the formats, therefore it is important that the

language allows to combine streams with relational data stored in a database. How to

RESTify a query language in a way that combines both streaming and historical data

remains an open problem. Unlike typical HTTP requests, a continuous query does not

return a result, but is kept running in memory. Because various stream processing engines

have been designed for various applications in mind, the question of how much should be



6.4. WISSPR – Web-based Stream Processing 123

“standardized” as a query language on top of HTTP becomes essential. In the following

section, we build upon the discussions in this section to design a framework to develop

end-to-end applications for the Web of Things that supports both static and real-time

data.

6.4 WISSPR – Web-based Stream Processing

Processing the huge amounts of data generated on the Web of Things will require to

easily integrate heterogeneous data sources into stream processing applications. While

research in data streams processing has considerably progressed in the last decade, a

standard method to simply share and integrate data streams from various sources still

remains a significant challenge [219]. Recent solutions that tackled this problem in the

context of sensor data do not cope with the scalability requirements of a participatory

infrastructure, as these solutions are based on tightly-coupled distributed architectures.

Given the lack of flexible standards to describe and transmit streaming data over the Web,

integration of data from heterogenous sensors remains a complex process that requires

much attention. This limits the development and consumer adoption of stream processing

applications outside of industrial or business contexts. A lower access barrier to use stream

processing systems and integrate sensor data streams on the Web is a necessary component

for building interactive and event driven applications on the Web of Things.

In this section, we address the limitations of existing stream processing solutions by

exposing the functions they offer over the Web. Little is known about which data model

and query language would be optimal to expose streaming sensor data over the Web,

therefore we discuss Web standards can be used to model real-time data streams and

build data processing services upon them. This implies both what has to be exposed

(actual raw data streams, only high level aggregates, or both) and how to expose it

(query languages, push/pull, etc.).

In collaboration with Oliver Senn during his master’s thesis [208] we laid the basis for Wis-

spr (Web Infrastructure for Sensor Streams PRocessing), which is a Web-based framework

built upon a pub/sub system to facilitate the development of event-driven and real-time

processing applications for the Web of Things. Our contribution is to bring sensor data

into the Web in its true form – as real-time data streams – and make it easy to process

and share that data with many users in a timely manner. Even though the Web has not

been designed to cope with sensor streams, we show that HTTP is sufficient for building

applications that can collect, process, share, and store hundreds of sensor readings per

second, with sub-second end-to-end latency.

The novelty of our approach resides in our usage of HTTP as application protocol, which

makes ad-hoc integration with the Web straightforward. This contrasts with existing
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solutions that reduced the role of HTTP to a mere data transport protocol to implement

a custom application layer on top. By using HTTP as an application protocol, our solution

minimizes the coupling between components which makes it easy to develop more flexible

and scalable distributed applications.

6.4.1 General Design Principles

Programming sensor networks is challenging because devices are small and crash-prone,

and their limited resources must be managed carefully. In particular, energy consumption

and radio transmission must be optimized to cope with the transient nature of sensor

networks where connectivity is often unpredictable. Despite the different application-

specific features and hardware platforms, sensor network applications share a common

goal: periodic delivery of data collected by different sensors towards a common place to

be processed, stored, and acted upon.

Pub/sub systems have gained in popularity in many domains as they allow more scalable

and flexible distributed applications by decoupling data producers and consumers through

intermediary message brokers. Industrial and open source implementations can scale to

millions of registered subscriptions and very high event rates, however they have limited

expressive power beyond filtering content using simple logical expressions. In contrast,

full-fledged stream and event processing systems have powerful query languages that al-

low to express more complex filtering than pub/sub systems; however, this limits their

scalability with the number of subscriptions and number of queries that can be evaluated

simultaneously. Because of this fundamental tradeoff, the integration of heterogenous

data sources with powerful and expressive stream processing is difficult to do in a suf-

ficiently loosely coupled manner to cope with the dynamic and ad-hoc nature of future

Internet-scale distributed sensing applications.

Efficient messaging system can be implemented on low-power sensor/actuator devices

and operate over bandwidth-constrained radio communication. In this case, the pub/sub

paradigm is leveraged to simplify the integration of sensor networks with other distributed

applications [155]. Comet provides low traffic overheads and great reactivity, while polling

scales better on the client side [91]. Classic Web servers allocate a thread per incoming

connection TCP connection, which is fine for request/response interactions, but does not

scale with concurrent clients when using Comet. Embedded Web servers such as SMEWS

[115] can serve Comet directly from common sensor nodes as it uses a pool of events

instead of threads. As software for embedded devices are usually based on event-driven

architectures, this model fits well with event notification mechanisms which allows efficient

support for Web push techniques directly on sensor nodes.

A Web-based pub/sub system with an elaborate subscription mechanism that allows com-

plex streaming data processing would provide an efficient abstraction for sensor streams
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Client Wisspr Broker Devices

1:Register 
query [X]

2:Subscribe to stream Y [CBK=Z]

1':Registered. 
Stream [URI=Y]

2':Subscribed

3.1:X-Event
3.1':Event(s) from devices

3.2:X-Event
3.2':Event(s) from devices

1.1:Create channel
1.1':OK [URI=Y]

1.2:Register query X [CBK=Y]
1.2':OK

4:Unsubscribe from Y
4':Unsubscribed

3.3:X-Event
3.3':Event(s) from devices

Figure 6.14: Complete lifecycle of a Web stream query. A Client sends a query registra-
tion request with the query [X] as parameter to a Wisspr query processor node (1). The node
creates a channel on pub/sub broker where the stream will be available (1.1) and receives the
URI of the stream (Y) in response (1.1’). The node then forwards the query to the concerned
devices (1.2) with the channel URI (Y) as callback [CBK] URI (where the devices will post
events that match the query using Web hooks), and finally the URI (Y) of the resulting stream
is returned to the client (1’). The client then registers to channel Y on the broker (2), and
all the events posted from devices that match query X (called X-events, 3.1, 3.2, 3.3), will be
forwarded to the client by the pub/sub broker using the callback URI (Z) he registered with
(3.1’,3.2’, 3.3’), until the client unsubscribes from the stream (4).

as a first class citizen on the Web. Although HTTP was not designed for real-time stream

processing, we have shown promising results when using Web standards to interact with

distributed sensors and actuators [139, 227]. The loss in raw performance and latency

due to verbose HTTP requests is compensated by allowing sensor networks to be exposed

in an easily accessible and universal way. Besides, thanks to the many advantages of-

fered by Web standards such as transparent proxies, declarative Web-based queries can

be mapped to the specialized processing features of sensor networks, therefore one can still

take advantage of the optimizations and advanced processing implemented within sensor

networks and other stream processing systems. We present how full-featured stream pro-

cessing engines and scalable messaging systems can be integrated into Wisspr, to leverage

both the expressiveness and performance of such systems. First, in Section 6.4.2 we de-

scribe how the stream model can be adapted using Web paradigms by describing how
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data can be exposed and encoded. Second, in Section 6.4.3 we describe the overall system

architecture of Wisspr built upon the Web stream model we propose.

6.4.2 Web Streams

To simplify the development of sensor network applications, data-centric approaches to

retrieve specific data using declarative SQL-like queries have been proposed. Considering a

network of sensors as a distributed database allowing queries over the data offers various

advantages, as seen in TinyDB [178]. Sensor data is inherently stream-oriented, as it

is a potentially unbounded sequence of events or sensor readings. Although streaming

abstraction has not been much used in sensor networks, it has become increasingly popular

in other domains such as finance. We now describe the Web stream abstraction, which

is a first class Web citizen, therefore can directly benefit from security, authentication, or

caching mechanism of the Web. Moreover, Web streams can be crawled and indexed by

search engines, shared with friends or social networks and bookmarked just like any other

Web resource.

Data Stream Abstraction

Sensor data on the Web of Things can be transferred as a sequence of Web messages.

Each message contains is a tuple of data sent from the device, that can be either sensor

readings or other internal properties. Each device has therefore a certain number of data

fields, each having a name and a type (string, integer, float, etc.). Devices manufacturers

and programmers know in advance the nature of data measured by the device (units,

type, range, etc.), therefore a schema could be used to define the structure of data sent

by devices. This way, devices can send just a subset of all their data (as the most recent

sensor reading every time a message is sent), which can be matched to the schema for

interpreting the data. For example, a sensor node (called D1) could send its light and

temperature readings as the following JSON object:

1 {"Device ID":"D1", "data":{"light":4,"temp":22}}

The semantic interpretation of this message requires a schema to understand the data

fields. JSON allows to send data without necessary a schema (the XSD equivalent for

JSON) to specify the structure of the message, therefore the client needs a mechanism

to “understand” what light and temp refers to. CSV or binary encoding could also be

used in case the schema is predefined and does not change. The device identifier (D1)

could also be the device URI, which would allow any client receiving the message above

to retrieve the schema from the root page of that device.

A more complex example is shown in Figure 6.15, where a stream is created and contains

the aggregate of all light and temperature readings from three devices. The same stream
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could also consist of the individual messages as they come from the three devices, but the

stream should accommodate both.

t4 t3 t2

Devices

t1 Client

D1

D2

D3

Data Stream
sensors=light,temperature&
devices=D1,D2,D3

{"time":123223,
 "data":
 [{D1:{"light":4,
        "temp":22}},
  {D2:{"light":21,
        "temp":22}},
  {D3:{"light":200,
        "temp":33}}
 ]
}

Figure 6.15: Data stream which contains light and temperature measurements from three
devices (D1, D2, D3).

Data streams are created on demand, that is a user will request specific data and will

receive it. First of all, one specifies the device one wants to use (D1-3) using their URI:

1 POST /streams

2 Host: wisspr.net

3 devices=D1,D2,D3

or parametrically, by using some keywords or other attributes that identify a set of devices:

1 POST /streams

2 Host: wisspr.net

3 devices={spots}

To simplify the design and usage of Wisspr, we suggest to use typed streams. This

means that each tuple in a given stream can be described by the same schema, as every

tuple has the same data fields. In turn, typed streams facilitate the automatic parsing

and understanding of data with little effort, which would be necessary for querying and

storing high volumes of data. Therefore, each stream should have a basic description

available in a machine-readable format that allows to attach semantics to data fields of a

tuple.
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Sampling Frequency

Different applications might require to access the same data source with different granu-

larity in the temporal domain. For example, an application that needs to detect a fire in

a building might sample a temperature sensor every second. An application that auto-

matically regulates heating based on current temperature will only need an update once

per minute, and an application that only needs to log the temperature in a potato field

over a year for statistical purpose will only require an update per hour. The update fre-

quency can be specified using as a parameter of the subscription request, and the sampling

frequency of the stream is independent from the actual sampling frequency of the sensor.

Using the example shown in Figure 6.15, to limit the messages received to one message

every five seconds, one can use the following request:

1 POST /streams

2 Host: wisspr.net

3 data=light,temperature&devices=D1,D2,D3&frequency=5s

or its equivalent in Hertz (Hz), which is 0.2 Hz:

1 POST /streams

2 Host: wisspr.net

3 data=light,temperature&devices=D1,D2,D3&frequency=0.2Hz

These commands will create a stream that contains all the data matching the query, and

users can simply subscribe to this stream using WMS or PuSH. The URI of the stream

will be returned in the response using the 201 Created response code using the Location

header.

Filtering

More elaborate properties can be specified at subscription time using a filter that processes

incoming raw data and only forwards messages that match a specific criteria. The filter

is specified as a predicate that can operate over the various data fields, keywords, sensor

data or frequency of various data sources, and evaluates as a boolean value. As an

example, imagine a rule to select messages where the temperature in the house is above

20 degrees only if the window is closed and somebody is in the house. Using the data

fields temperature, light, and window from a sunspot (window is a high-level composite

function assumed to be provided by the sunspot using the accelerometer and gyroscope

sensors) would be: (temperature >= 20 && light < 15) || window = CLOSED. This

request is expressed with the following HTTP request:
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1 POST /streams

2 Host: wisspr.net

3 data=light,temperature,window&device=sunspot&frequency=2Hz&filter=(

temperature>=20&&light<15)||window=CLOSED

Note that the last line is encoded by browsers as follows:

1 data=light%2Ctemperature%2Cwindow&device=sunspot&frequency=2Hz&filter=(

temperature>%3D20%26%26light<15)||window%3DCLOSED

Sampling frequency and filters are both optional, and if these parameters are not specified

in the subscription, by default all the messages from selected devices will be included in

the stream, using the default sampling frequency of each device. If both a frequency and a

filter are specified, then one cannot guarantee that a message will arrive at every tick, but

only that the specified frequency will not be exceeded. This also means that regardless of

how many messages match the filter, at most one per sampling period (the most recent

or an aggregated version, depending on the aggregation request) will be included in the

stream. The procedure is illustrated in Figure 6.16.

L=25 L=18 L=28 L=22

Client

Raw Data Stream

L=25L=22

sampling
period

L=22L=25

YES YESNO

Resulting Stream
data=light,temperature&
filter=light>20&
frequency=2

Figure 6.16: Messages contained in a data stream with specified frequency and filter: the
most recent message is published if several messages match the filter (L is the light sensor
reading, which should be L > 20); no message published otherwise.

The combination of filter and frequency is especially relevant for applications where sen-

sors are sampling at high frequencies to detect anomalies (for example an accelerometer

sampled at 50Hz to detect a sharp onset), but only a fraction of those needs to be stored

(for example once every 5 minutes). This is particularly useful to limit data rate when

many messages match the filter.
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6.4.3 Wisspr System Architecture

Different applications that use data from physical sensors present a wide variety of

requirements. For simple use cases, easy configurability, installation and usage are vital.

In more complex use cases where many devices and users interact, scalability, message

latency, and robustness are often more important in order to ensure a certain level of

performance. On one hand, a simple processing node might have only limited query pro-

cessing capabilities or no local storage and are designed to handle only a few simultaneous

connections. On the other hand, some processing nodes might be full-featured stream pro-

cessing engines designed to process thousands of data points from many heterogeneous

sources. The fabric of the Web of Things, must be able to accommodate both extremes

and allow seamless and transparent interaction between them. The layered design of

HTTP makes it easy to abstract the nature and physical location of the nodes behind a

unified paradigm and we leverage this property to implement a scalable framework for

distributed stream processing applications.

The core idea of Wissprs’ architecture is to separate the overall functionality of applica-

tions into different modules that exchange data with each other using a common, Web-

based format. Applications are then built by wiring (or piping) the different modules

together to form complex processing chains that link raw data from devices to various

processing, storage, or notification elements as shown in Figure 6.17. We have identi-

fied four classes of modules that are sufficient for building most types of sensor network

applications:

• Devices. This module allows physical devices to be connected to our system.

It offers information about and data from devices that are currently connected.

Furthermore, it allows the messaging module to access the data produced by devices.

• Messaging. Client applications as well as the storage and query processing modules

can compose data streams from the device sensor data. The management and the

distribution of those streams is the responsibility of the messaging module.

• Query processing. This module allows to process the sensor data streams by

running continuous queries over the streams. The query output streams can be then

fed back into Wisspr and made available to client applications and other modules

via the messaging module.

• Storage. Many use cases need to store sensor data, which is handled by the storage

module that allows to persist data streams.

Modules are in fact simply connectors to different specialized processing units, and their

role is mainly to serve as Web proxies that abstract the different functionalities of the

actual units behind a common RESTful Web API. This way modules can interact trans-

parently with each other over the Web, regardless of the specific implementation of each
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module. Besides, modules can be replaced at run time with little effect on the overall

functionality, and no need to reprogram the application. The connector nature of modules

is important both for flexibility (e.g., one can use different storage engines) as well as for

scalability (because the modules will often not be the bottleneck, but rather the engines

behind them, therefor the implementation can run on a cluster or in the cloud). Moreover,

the functionality of each module can be scaled from embedded computers to server farms,

depending on the requirements at hand with little or no change to the overall application

because the API remains identical (the actual performance of the module will of course

depend on its implementation).

MCDC

various data 
acquisition protocols

1. raw 

2. raw data

Client SC

QC

2'. processed 

5. raw & processed 

Client

3. raw 
4. processed 

Sensors 1. Device 
Connector

2. Messaging 
Connector

3. Query 
Connector

4. Storage 
Connector

Figure 6.17: Overall Wisspr Architecture. Four types of modules used in Wisspr.

The possibility of distributing and accessing modules over the Web is a significant advan-

tage offered by our architecture over traditional sensor sharing protocols. A common Web

API would allow different organizations to implement, run, and control different parts of

the system just the way they want. Companies that offer cloud storage (such as Amazon’s

SimpleDB) could run highly scalable and efficient storage modules, whereas companies

with more modest requirement (or budget) might only use simpler, less performant stor-

age solution that would be sufficient for their needs such as a Networked Attached storage

(NAS).

Although, we propose HTTP as universal protocol to connect modules from different

actors, other protocols can be used when all modules involved into a particular process are

owned by the same actor or run in the same local network, or even on the same machine.
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As modules have been implemented in OSGi (also called bundles in OSGi terminology)

when they run on the same machine, OSGi declarative services – rather than local REST

calls – can be used for inter-module communication which leads to significantly higher

performance.

Underlying Messaging System

A messaging system provides the glue to bind different the different nodes (processing,

storage, clients, etc.) together via a common asynchronous communication infrastructure.

The idea is that several message brokers are distributed all over the Web (in a similar

fashion to DNS, where many organizations would operate their own message brokers for

their devices). To ensure adaptability and reuse, we have used pubsubhubbub (PuSH) in-

stead of WMS, because it is an existing protocol for Web messaging available off-the-shelf.

Because WMS is a subset of PuSH, switching between these protocols is straightforward.

All device data and query result streams are available from message brokers via a uniform

RESTful interface, which allows to easily publish and consume device data. Devices

capable of sending HTTP requests can directly publish their data to the message broker,

either to a queue that already exists and is predefined or by creating a new queue (or

exchange) on one of the message brokers. The device has to be configured beforehand to

know which message broker to use. The device can then simply send a POST message with

the new data to the message broker which then forwards the data to all the subscribers

of the queue. Devices that do not directly have HTTP support can connect to a gateway

which acts as a small scale minimal broker that serves as proxy for an actual broker.

Because Wisspr relies on third-party stream/event processing engines, connectors are used

to subscribe to streams and transform the common stream data format used throughout

Wisspr into the native format used by the processing engines. Additionally, the connector

is also responsible to re-publish the resulting output stream of the SPE to a message broker

so that the query result stream can then be re-injected into Wisspr to be used further.

The location where the resulting stream should be send to (which queue on which message

broker) can be specified at the query registration time.

Query Registration

Clients should be able to leverage the uniform interface of a RESTful API to register their

queries in Wisspr. We consider two types of queries in Wisspr, first are simple queries

that only perform a few simple operations (filtering via simple rules, e.g., JSR-94 [20])

that are implemented in the different connectors, and second are more complex rules that

are run and processed by external stream processing applications (usually expressed in

CQL or other engine-specific language). Minimal rules support the input streams, the
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query in the language of the engine, and the location where the output stream should be

POSTed. Figure 6.18 shows how a simple query is processed by a device connector. All

applications that want to access the resulting stream, need to subscribe to the location of

the output stream. The following cURL9 subscribes to a device called spot11 to receive

its temperature and light sensor readings only if the temperature is above 20 (degrees

Celsius, if unit not specified uses SI units by default):

user@host~$ curl -d "devices=http://devices.wisspr.net/spot11&data=

temperature,light&filter=temperature>10" http://wisspr.net/streams

In practice, the following HTTP excerpt illustrates the request-response cycle generated

by the previous command:

1 POST streams/

2 Host: wisspr.net

3 Content-Type: application/x-www-form-urlencoded

4 devices=http://devices.wisspr.net/spot11&data=temperature,light&filter=

temperature>10

5

6 201 CREATED

7 Location: http://wisspr.net/streams/239048

8 Connection: close

The Location header is used the return the URI of the stream that has been created

and will contain the query results. Afterwards, many clients only need to subscribe to

the stream URI using a supported mechanism. For example, this command allows a

pubsubhubbub client to subscribe to the stream:

user@host~$ curl -d "hub.mode=subscribe&hub.callback=http://example.org/

callback_handler&hub.topic=&hub.verify=sync" http://wisspr.net/streams

/239048

Afterwards, the stream will simply push JSON data to the client handler:

1 POST http://example.org/callback_handler

2 {"timestamp":1267370567, "name":"spot11", "temperature":25.5,"light":120}

3 ...

4 POST http://example.org/callback_handler

5 {"timestamp":1267371293, "name":"spot11", "temperature":10.2,"light":50}

Ideally, the connector can automatically determine where the resulting stream can be

posted to and in which format (the sink endpoint URL, which can be a broker or directly

an application endpoint if no other users need to subscribe to the stream) and return it to

9cURL is a command-line tool for transferring data using URL-centric protocols. Online: http:

//curl.haxx.se/

http://curl.haxx.se/
http://curl.haxx.se/
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the query registration request using the Location HTTP header. Note that the format of

the subscription is not given as a parameter, but is deducted by Wisspr which recognizes

the hub.* as being the syntax used by the PuSH protocol. Alternatively, one could use a

1-step stream creation request, by giving a call-back URI as well as query parameter as

follows, with optionally specifying the format (WMS by default defined using the wms.*

syntax), as follows:

user@host~$ curl -d "devices=http://devices.wisspr.net/spot11&data=

temperature,light&filter=temperature>10&wms.callback=http://example.org

/callback_handler" http://wisspr.net/streams

This allows more flexibility for creating and using streams, but it also increases coupling.

To minimize coupling clients should not need to know where the query is actually pro-

cessed and in what underlying language the specific implementation requires because it

uses a higher-level processing language. The actual federation of stream processing en-

gines is an active research topic [90, 89], but it is out of scope of this project and will not

be discussed further in this thesis.

Since all streams are identified by an URL and are published over HTTP, one can reuse

existing mechanisms such as SSL and HTTP authentication mechanisms. Also, popular

streams can be cached by intermediaries or distribution networks (see more about about

messaging scalability in Section 6.4.5).

6.4.4 Module 1: Device Connector (DC)

The device connector (DC) module is essentially a simple gateway that uses various

device drivers to connect sensors with the Web. In this respect, it is nothing more than

the proxy described in Section 4.3 with a minimal messaging broker that supports a sim-

ple query-based subscription mechanism. It allows a few clients to subscribe to sensor

data streams from the devices associated. In our implementation, users can specify a

combination of data fields from the devices, a frequency and simple filter using rule, as

defined in Section 6.4.2. A thread is created for each stream and it notifies subscribers

using Web hooks. The scalability of this approach is very limited, but is already suffi-

cient for a dozen of rules with hundreds of subscribers per rule with a standard desktop

computer. Obviously, the scalability of this module depends on the machine it is actually

implemented on.

As shown in Figure 6.18, the device connector is an augmented gateway that allows

to subscribe to queries that will be pushed to a callback URI provided by the client at

registration time ([CBK-URI]). Obviously, the callback URI must point to any Web server

than can receive, understand, and act upon Web hook notifications posted by Wisspr.
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Figure 6.18: Device connector (DC). A gateway running on a single machine allows users
to register simple queries on devices (1). The client callback URI [CBK-URI] where the
resulting stream will be posted to (2), must be provided as parameter.

6.4.5 Module 2: Messaging Connector (MC)

The messaging connector (MC) module enables device data to be made available as

Web streams in a more flexible and especially scalable manner. Using an uniform Web

messaging system, any module can subscribe to the output data produced by any other

module. Our implementation currently supports the RabbitMQ message broker with

RabbitHub (a plugin for enabling PuSH support in RabbitMQ). Since the actual message

broker is an external component of our system, other brokers could easily be substituted.

External brokers could either use PuSH to enable Web-based access, or could support

more optimized protocols such as AMQP or 0MQ for improved performance.

We illustrate our system in Figure 6.19. Users who want to receive certain data can

request the creation of a data stream from the messaging connector module. The module

then creates the data stream and will filter the data received from the device connector

and will route the data matching the request to the message broker, who will then notify

the user on the callback URL (with a HTTP POST request).

Messaging Scalability

In an open, Internet-scale Web of Things, many users could need to access various real-

time data generated by many sensors, therefore massive output scalability is needed. In

order to handle many data streams and many users, the messaging connector has to be

scalable well beyond current requirements. More machines and processing power should

be easily added to support higher throughput and more users with only slight increase

in latency, which is acceptable since latency is not the critical bottleneck for the NED

applications considered in this thesis.

Even if processing and filtering can reduce the number of messages that will have to be

sent to clients, situations where many clients will require customized content streaming
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Figure 6.19: Messaging connector (MC). Clients can register a query with an HTTP POST

request on a Wisspr machine with a messaging connector (1). The request is then forwarded
to the DCs of the requested devices and all the messages corresponding to the request will be
published to a pub/sub broker (2), which will forward them to the stream subscribers (2’).

will be commonplace, thus a mechanism to distribute lots of message quickly to many

consumers is essential.

It is essential that both the components of our architecture and the communication mech-

anism between them scales well, and the loose coupling of a RESTful architecture can

help in this respect. For obvious performance reasons, the message broker is running on

a separate machine, but could easily also be running on a cluster of machines or in the

cloud, as illustrated in Figure 6.20. The messaging broker implementation we have chosen

(RabbitMQ) supports this off-the-shelf [41], and it can be easily replaced with alternatives

as long as its Web API does not change. Obviously, the implementation of the various

processing modules (for example filtering on data streams) in the whole system must also

scale similarly.

Example

To illustrate how requests and messaging works, Listing 6.4.7 shows a typical subscription

HTTP request a user can issue on the messaging bundle to receive particular device data.

The messaging connector module processes the request by creating a data stream with the

temperature and light data from a sensor, with a frequency of two samples per second.

After that, the user will get notifications (HTTP POST requests to the callback URI

specified when registering the query) with the most recent data from the devices, at the

frequency he specified (2 msg/s.). The filtering criteria specifies that data will be sent to

the broker only if the temperature reading is above 19 and light lower than 200.
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Figure 6.20: The messaging connector (MC) is a Web-level abstraction of any messaging
broker. The messaging connector enables Web-based messaging to glue Wisspr components
together regardless of the implementation of the pub/sub broker, which can range from a
minimal broker running on a router to an industrial-scale solution running on a cluster or in
the cloud.

1 POST streams/ HTTP/1.1

2 Host: wisspr.net/

3 Content-Type: application/x-www-form-urlencoded

4 devices=http://devices.wisspr.net/spot11 &

5 data=temperature,light &

6 frequency=2 &

7 filter=light < 200 && temperature > 19 &

8 hub.callback=http://example.com/client_callback_handler

Listing 6.1: A complete subscription request with data filtering

6.4.6 Module 3: Query Processing Connector (QC)

The messaging connector is suited for small scale scenarios that require limited process-

ing, that is simple filtering of raw data from a few devices. Many emerging applications
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will require much more elaborate and complex stream processing and data analysis ca-

pabilities over huge volumes of real-time data streams. As mentioned in Section 6.3,

although commercial stream processing engines have been flourishing in the last decade,

most of them operate in closed systems, therefore integrating heterogenous data sources

is a tedious process.

To benefit from the ease of integration offered by our architecture, so that Web data

streams can be easily used within different SPE, we developed a query processing connector

(QC) module which enables the integration of such elaborate processing engines within

Wisspr. As a proof of concept we have integrated the query connector module with Esper,

which is a widely used open source SPE. Queries are written in CQL, which is the query

language supported by Esper. The query will work on the data streams available in

Wisspr using an internal binding that matches the variables used by Esper with the URI

of the data streams used in Wisspr. One could send an aliasing command to the query

connector module:

1 http://wisspr.net/streams/225 as streamA, http://wisspr.net/streams/228 as

streamB

This creates the variable streamA and streamB that actually refer to two streams available

in wisspr and that can be accessed in the query connector module (and the request sent

to it). Then, we consider that each stream contains messages from devices which are all

encoded using the following XML format:

1 <DEVICE>

2 <ID>..</ID>

3 <time>..</time>

4 <sensors>

5 <temperature>22</temperature>

6 <light>200</light>

7 ...

8 </sensors>

9 </DEVICE>

One could then simply use the following query to ask for the average of all light sensors

readings from devices streaming to channel streamA every 5 seconds, and the average

temperature from streamB every 30 seconds:

1 SELECT avg(streamA.sensors.light), avg(streamB.sensors.temperature)

2 FROM streamA.win:time(1 seconds), streamB.win:time(30 seconds)

This will result in a new stream where each message contains two fields (float) that can be

pushed back in Wisspr to be further reused by other modules. This can be done as long

as the schema of the messages are known in order to be able to create queries, and for this

reason we suggested for each stream to adhere to a strict schema. Future work will include
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how to loosen this constraint to support schema-less streams (although a schema will be

necessary to understand the semantics and content of those messages). Furthermore, an

easy mechanism that does not require the aliasing

Unfortunately, no query language has been standardized so far for querying continuous

data streams, therefore we cannot build an unified RESTful interface that would work

with any SPE. For this reason, queries must be written in the language supported by the

SPE, not in a generic Web-based query language, which would require the development

of specific connectors for each engine and an elaborate, generic, and Web-based stream

processing language with support for many common constructs (windowing, etc.).
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Figure 6.21: Query Processing Connector (QC). For elaborate applications, a dedicated
stream processing engine provides much better performance and specific functions, therefore
easy integration of Web stream with external engines is essential. Clients register a query and
provide a call-back URI where the resulting stream should be posted to (1). The query is then
registered into the SPE, and the required data streams are pushed into the SPE as well.

The process for registering a continuous query is very similar to the one to persist a certain

data stream. What the user is conceptually doing is creating the query output data stream

on the messaging connector. The process is depicted in Figure 6.21 (everything on one

machine) and described here in more detail.

6.4.7 Module 4: Storage Connector (SC)

Many use cases require raw and/or processed data in Wisspr to be persisted for archival

or analysis purposes. The storage connector (SC) module offers a Web-level abstraction

for storing arbitrary Web streams with minimal effort. As illustrated in Figure 6.22,

storage of an existing stream is done simply by subscribing the storage connector to it.
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This can be done either by POSTing a storage request directly to any given SC module

(1a), along with the stream URI to store as parameter. Additional parameters can also be

given to specify how and where the stream should be stored, along with access credentials

and other properties. Because our stream data model has a well-defined structure, it can

be easily mapped to a relational database, object or document database. The response

to the request contains the URI to access the stored data.

Users create a stream as follows:

user@host:~$ curl -d "devices=http://devices.wisspr.net/spot31&data=

temperature,light&filter=temperature>20" http://wisspr.net/streams/34

Users can then subscribe the storage connector to any stream in the system using the

following request:

# Request 1a. to subscribe the storage connector to a stream:

user@host:~$ curl -d "datastreamURL=http://wisspr.net/streams/34" http://

store.wisspr.net/

The storage connector also has a list of stores, each one associated with a particular storage

configuration and having its own URI, that can be used as call-backs when manually

subscribing the SC to a stream. The following command allows to create a new store on

the storage connector:

user@host:~$ curl -d "database=mysql&username=john&pwd=doe&tableName=

store31" http://store.wisspr.net/stores/31

The database parameter refers to an internal connector (using exactly the same principle

as the drivers used in the DC as seen in Section 6.4.4), which handles the actual inter-

action with the storage solution (e.g., JDBC connector or Amazon Web Service client).

Obviously, as with any Web application, developers of every SC can implement detailed

APIs for creating and configuring elaborate storage scenarios that specify a specific storage

strategy for each stream (for example how the database should store the data internally)

or simply hardcode specific data pre-processing routines for each connector. However, as

more coupling is introduced between a stream and the way it is stored, the less RESTful

it becomes, therefore this topic is not elaborated here any further and left for future work.

The only constraint is that each store must be able to handle any Web stream in Wisspr

by acting as a callback for the subscription. That means, a storage request can also be

sent to a stream directly (1b. in Figure 6.22), as follows:

user@host:~$ curl -i -d "callbackURI=http://store.wisspr.net/stores/31"

http://wisspr.net/streams/34

This way, all the messages in the stream will be forwarded to the SC, which will persist

them using the store configuration.
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Figure 6.22: Persisting a data stream. A client issues a request to the storage connector
(SC), instructing it to store a given data stream (1a). The connector will then subscribe to
the stream on the messaging connector (MC) giving its own callback URI as parameter (1a’).
Alternatively, the client can also directly subscribe the SC to the MC (1b), but then it needs
to also specify the call-back URI of the storage connector. Data is then send to SC (2), who
will store it locally in a database, or on cloud storage services such as Amazon SimpleDB.

For security purposes, it is very likely that the messaging connector will require credentials

to access and use the storage, however we don’t want the user to disclose his credentials

to the messaging connector. To avoid disclosing any credential, OAuth can be used

for delegated authentication [31]. The user authenticates himself against the storage

connector and authorizes its use by the messaging connector, this way the credentials are

not transferred to the messaging connector. Given that all interactions are HTTP-based,

one can use use HTTPS to secure requests.

Exposing Stored Data over the Web Making data available over the Web is a central

aspect of our project with a particular emphasis on dynamic data rather than stored,

static data. Cloud databases such as Amazon SimpleDB already offers data access over

the Web [4] by providing a language similar to SQL to query a database. If data was

stored using a storage system that already provides a Web interface then the storage

connector only forwards the user to that interface.

For traditional relational databases, Web access can be provided by publishing data in

RDF or HTML formats, and by allowing to query the data using the SPARQL query
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language. There has been a recent boom in Web interfaces on top of relational DBs and

document oriented data stores (Persevere [37], CouchDB [6]), where RESTful APIs can

be used to read and write data in stores. As our architecture emphasizes the use of REST

for interacting with the storage connector, future research in providing efficient storage

could be directly integrated with our system.

So far, only relational database management systems (MySQL [30], PortgreSQL [39], Sim-

pleDB [4]) are supported in Wisspr, but additional storage engines could be added easily.

Cloud databases and other Web-enabled databases are particularly easy to integrate with

Wisspr, because they support a RESTful interface directly.

6.5 Prototypes and Evaluation

In this section, we describe two test applications we have developed to evaluate the abil-

ity of Wisspr to match various requirements. These evaluations have been undertaken in

collaboration with Oliver Senn to be considered for publication10, and have been proposed

in [208]. We reproduce the results of these evaluations here for informational purpose. In

the first scenario (which was inspired by [241]), a couple of devices monitor the seismic

activity and must send an event to a base station as soon as possible when an anomaly

has been detected, therefore low end-to-end latency (in the order of a second) at a mod-

erate sampling frequency (50 Hz) is essential, while scalability is less of a concern. In the

second scenario, many smart meters in a building or neighborhood have to send energy

consumption data periodically to the energy company to be logged for billing. Assuming

secure and encrypted interactions, sampling period can be relatively low (in the order of

a minute), however the ability to support a large amount of devices is essential.

6.5.1 Case Study I: Detection Applications

Our first case study address detection applications. This class of applications covers sen-

sor deployments for detecting abnormal activity and notify as quickly as possible external

applications or human operators. These applications are concerned with low-latency and

high reliability, and we arbitrarily limit the maximal latency to 5 seconds. For example,

any solution to detect incidents or security fall in this category (fire detectors, burglar

alarms, etc.).

In our experiment, we replicate the famous volcano monitoring experiment by Werner-

Allen et al. [241] where a sensor network was deployed to monitor seismic11 activity. We

simulate 20 devices with acceleration sensors shared in 5 streams (each stream will contain

10Unpublished work.
11Obviously, the nodes are deployed in our lab and not on a real volcano like in the original deployment.
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SF [Hz] Msgs/s Processing [ms] Fetching [ms] Total [ms]
5 100 1.5 5.6 7.3
25 500 2.5 17.3 20.0
50 1000 3.4 98.0 101.5
75 1500 4.2 250.8 255.1
100 2000 5.2 1177.7 1183.0

Table 6.7: Scenario 1 results: average end-to-end delay for event detection with various
sampling frequencies.

an event every time a sensor in the group detects motion above a threshold). We want

to be informed as soon as any device in a group detects an acceleration above threshold

in any dimensions. Machine A (Core 2 Duo processor with 2GB Ram) runs a device

and messaging connector modules and the message broker. Machine B (connected via a

100MBit/s LAN with the first one) acts as the client and registers a data stream for each

of group of devices.

The client is then notified over HTTP each time a seismic event is detected. We are

interested in the end-to-end latency, that is the time between a device detects abnormal

activity and the time when the client application has received the notification. Because

we are interested by the infrastructure behavior and not the particularities of wireless

communication and the issues faced by a real application (external and environmental

factors) we do not address here the details of the timing and other issues involved at the

WSN level, which can be significant, but are out of scope of this thesis.

To measure the performance of the filtering mechanism on the messaging connector, we

simulate 20 sensor nodes that sample the environment at a fixed rate and create four data

streams that get notifications (each stream contains the aggregated data from a group of

five devices) when acceleration in one dimension exceeds a predefined threshold (for this

experiment the filter is true, so all messages are forwarded and maximal load reached).

Results

The sampling frequency (SF) of the sensors is varied from 5 to 100 Hz, and Table 6.7 shows

the sampling rate in Hz for each device and the corresponding overall load in messages per

second (msg/s) and then the internal processing time (time data from sensor is queued in

Wisspr before it is send to the broker as a message) and the fetching time (delay between

the message is sent to the broker and arrives at the client).

With our implementation and setup, we have observed small delays (below 100 ms) for

up to 1000 msgs/s (sampling frequency of 50Hz), and the delay starts degrading pretty

quickly with more messages. One can see that the internal processing time for each

message is much smaller than the sending and fetching over HTTP (Figure 6.23). Besides,
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Figure 6.23: Average time required by the internal processing in Wisspr and for fetching and
processing the message on the client for each message. As seen by the logarithmic scale, the
processing time scales well with higher load (msg/s), while the fetching times degrades much
faster.

one can see that the fetching time increases much faster with more messages that the

internal processing time. This means that fetching the messages via RabbitHub takes

most of the time and that the limitation comes from HTTP messaging itself and not

from our implementation of Wisspr. Another cause of the performance degradation was

that the client side could not handle the reception of more than 500 messages per second

(which means receiving more than 500 HTTP POSTs per second) as the default Web server

used on the client to receive notifications (grizzly) was not tuned for such high loads, as

we found out during our tests. With optimized versions of RabbitHub and of the Web

server used by clients, superior performance could be easily obtained.

6.5.2 Case Study II: Data Collection Applications

In this second case study, we consider the scenario of an energy company that wants to

monitor the electricity consumption of their customers. Each apartment in a residential

building (see Figure 6.24) is equipped with several energy monitors that measure periodi-

cally the energy consumed. All the measurements are collected by a local device connector

in each apartment that processes the data locally and forwards it to the energy company
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through a common message broker shared by the whole building. The business applica-

tion of the energy supplier company (for example an ERP system) will then subscribe to

the energy consumption in each apartment via the messaging connector of the building

(whose URI is http://buildingA.ch).

../room1

../room2

http://buildingA.ch

http://energy-provider.ch
POST energy 

readings

Building LAN

Building gateway 
with pub/sub broker

DC

DC

MC

MC

SC
QC

Gateway to the 
energy company Intranet

Energy company 
Intranet

HTTP

Figure 6.24: Data Collection Application Architecture. Each room of a building has
a local device connector (for example running on a wireless router) that collects the energy
readings of the smart meters in the apartment. A central broker (implemented within a
Messaging Connector) in the building subscribes to the gateways of each apartment, processes
the data (aggregates) and transmits it in an encrypted format to the subscribers (among which
the energy company).

The energy supplier would also like to store the generated data for later analysis. For

that, the company sets up an internal storage connector on their own cluster. The storage

connector is then configured to receive the energy data and then forwards it to the storage

engine. The supplier set up a MySQL server to store the data. Furthermore, the data

is also stored in an Amazon SimpleDB so that it can be used by a university which is

conducting a study regarding energy consumption. The supplier can then integrate a

query processing engine to filter the data that is stored on the SimpleDB instance, for

example to anonymize the data before being publicized.

http://buildingA.ch
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Results

As in this scenario, throughput and reliability is the most important aspect, so we only

focus on the storage of data from sensors, with very little processing on the messages

and simply put all the data collected into the database. To evaluate this this scenario,

we use two desktop machines and using RabbitHub as message broker (network setup is

the same as in Figure 6.22). Machine A runs the device connector with simulated energy

meters and the RabbitHub message broker, while machine B runs a storage connector and

MySQL to store the data, and subscribes to all the messages from the simulated devices

on machine A. We ran three tests with respectively 50, 100, and 200 simulated devices

and varied the sampling frequency of each simulated device from 1 to 16 Hz (50 to 800

msgs/s in total).
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Figure 6.25: Data Collection Application End-to-end latency in milliseconds. With high
data load, the storage connector significantly increases the latency because persisting data in
a database requires much time.

The experiment uses three data fields and to store each message we need 473 bytes (aver-

aged). The data throughput can simply be calculated by multiplying the messages/second

rate with the size of each message. From our results shown in Figure 6.25 and Table 6.8,

the delay is very small (160 ms) for up to 500 msgs/s (sampling frequency of 10Hz). The

problem is the huge variation incurred by more messages (i.e., when the message fetching

is too slow). Because this test is very similar to the end-to-end test in the previous section
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#D 1 Hz 2 Hz 4 Hz 10 Hz 14 Hz 16 Hz
50 51.8 53.3 82.66 163.74 906.63 8269.2
100 69.0 169.4 246.51 23477 44226 57095
200 218.1 294.4 3585.5 66905 89510 90561

Table 6.8: Scenario 2 results: Average end-to-end delay (milliseconds) for different numbers
of devices (#D) and sampling rates.

(only with an additional database insert operation), the additional delay comes from the

storage connector which handles the transformation of the JSON object and the insertion

of its content into the database.

6.6 Discussion

In this chapter, we have proposed two essential components for a programmable Web

of Things. First, we have designed and evaluated WMS, a simple protocol for Web-

based messaging, and showed that it can handle hundreds of messages per second with

sub-second latency. Second, on top of this messaging system, we have built Wisspr,

a complete framework for collecting, processing, sharing, and storing sensor data using

Web standards in near real-time.

We proposed a model that allows to conveniently expose sensor on the Web in its true

form: real-time data streams. The flexibility offered by the combination of a messaging

system and a stream processing engine, allows to easily integrate data streams into Web

applications and allow the community of Web developers to access and use real-time

sensor data easily. The advantages of REST for decoupling components, facilitates the

implementation of a modular architecture. Each component (connector) can offer high-

level services directly exposed over Web APIs, while the implementation of the module can

implement various third party applications, either general-purpose open source engines or

specific ones designed for particular applications and requirements.

Certainly, higher data rates will be easily attainable with more powerful hardware and

software optimizations. Wisspr can process several hundreds of messages per second,

while exhibiting sub-second event delivery latency. Although this is inferior to the raw

performance of optimized stream processing engines, it is certainly sufficient for most

sensor-driven applications that can tolerate a few seconds of delay with hundreds of devices

and thousands of concurrent users.

Large deployments used for environmental monitoring reported in sensor network litera-

ture (e.g., [170, 221]), rarely had more than 200 devices. Besides, the sampling frequency

used in these deployment was rarely faster than one sample per minute. Low sampling

rates in the order of a few samples per hour are common for the battery-powered devices
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used in sensor network deployments. Our experiments with Wisspr have shown that it

can support thousands of messages per second with less than a second of end-to-end de-

lay, which is sufficient to support the data throughput of most monitoring applications

reported in sensor network literature.

No previous study has combined the three domains of Web programming, sensor networks,

and stream processing. Even though much research will be needed for a flexible and

exhaustive manner to expose and process streaming data over the Web, our research

enables already a flexible manner to handle both raw sensor data and high-level, processed

information using the same paradigm (Web messaging).

Our results show that the Web represents an excellent tradeoff between performance and

features. To our knowledge, Wisspr is significantly simpler to use than existing solutions.

Once installed, a complete application that collects, processes, and stores real-time sensor

data can be developed with only three HTTP requests. In the meanwhile, the applications

developed will scale well thanks to the loosely coupled nature of the Web. In addition to

a functional prototype scheduled for release as open-source project, our results show that

Web technologies are an excellent choice for building more flexible and open infrastructures

for handling real-time sensor data.
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Conclusion

Traditionally, research in networked embedded sensing has mainly addressed particular

problems within isolated deployments. Little effort has been addressing the issue of in-

teroperability and integration of heterogenous devices to form large-scale participatory

applications. As the actual rewards of networked sensors will stem from the integration

of data from various sources, new models for building more scalable and open distributed

sensing applications are required. In the meanwhile, the World Wide Web has been con-

tinuously evolving and today allows much richer and more complex interaction patterns,

and modern Web applications offer to users the look-and-feel that was once reserved to

desktop applications. The Web can be considered as one of the most successful distributed

information infrastructure, and one of the main reason is that developing simple Web ap-

plications is easier and faster than with classical software projects, especially when it

comes to data and services integration. As a consequence of the growing trend of Web

2.0 applications, the World Wide Web is experiencing two fundamental transformations.

First, an expansion into the physical world as more and more appliances and other objects

are being connected to the Internet (e.g., GPRS or WiFi). Second, the emergence of a

real-time Web, where timely information is made available just after being produced using

real-time messaging such as Twitter and RSS feeds. This real-time trend is significantly

popularized by mobile phones with messaging applications.

In this thesis, we have addressed the limitations of existing solutions for building large-

scale sensing applications, in particular the tight coupling of these solution that prevent

the development of an open participatory infrastructure. By building upon the state-

of-the-art developments in Web technologies, we have designed the building blocks for
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an infrastructure that allows to develop complete sensing applications solely using Web

standards. Our solution allows heterogenous devices to interact with each other using

the same design patterns and standards that made the success of the Web, but with an

additional layer of services (search, discovery, or caching) and interaction types (eventing

and streaming) that are particularly suited to the requirements of future applications for

embedded devices. The rationale behind using Web standards to connect devices is to

benefit from the experience and tools gathered in the last two decades around building

highly scalable and efficient Web applications for millions of concurrent requests. The

openness and simplicity of REST facilitates the integration of real-time data from the

physical world into any Web application with much less effort that required by existing

solutions.

We have shown that the loss in performance caused by using Web standards in place of

custom, optimized protocols commonly used for embedded devices does not prevent to

develop complex and highly scalable stream processing applications with sub-second la-

tency requirements. These results support the hypothesis that fully Web-based solutions

are a promising solution for a new generation of open and scalable sensor data process-

ing platforms that leverage all the advantages of Web technologies for an acceptable loss

of performance. In a recent publication [175], it was mentioned “The Web of Things is

still just an architectural conceptualization and not a design for an integration architec-

ture.”. In this thesis, we have proposed, designed, implemented, and evaluated the core

components to remedy to the situation and laid concrete basis of an entirely Web-based

integration architecture.

7.1 Future Work

The research and the solutions developed in this thesis are only an initial exploration

of the future Web of Things. Much research and prototyping is still required to realize an

efficient and global open sensing infrastructure, and we briefly highlight the future chal-

lenges that need to be tackled. First of all, an open-source project that further develops

the gateway-based infrastructure we proposed in Chapters 4 and 5 will provide an initial

software basis developers can build upon. In particular, drivers that allow Web-based

access to the atomic services offered by many existing and future networked embedded

devices will be required. Further exploration of the caching and scalable access to these

services will need to be investigated to design a generic gateway that allows powerful,

optimized, and transparent access to devices. In the meanwhile, an additional layer of

cross-device services that augment the atomic functions offered by individual devices will

be necessary. In particular, modules that handle automated analysis to offer data-centric

access at different levels of granularity to the information collected by aggregating and

processing information from heterogenous devices will be required. Similarly to an app
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store, various processing routines that are tailored for various domains from environmen-

tal monitoring, to home automation, to supply chain optimization will greatly augment

the value offered by the Web of Things.

The obvious challenge this implies is how to efficiently and unambiguously describe the

services and meta-information about devices and services offered by applications and de-

vices. In particular, further exploration of how semantic technologies can encode this

information to be read and understood by machines will greatly benefit automatic inte-

gration of new devices and their interaction with the other resources on the Web. Wisspr

will need to further developed and better integrated with existing stream processing appli-

cations and messaging solutions to allow more scalable and heterogenous applications. In

particular, much more research will be needed to understand how real-time data streams

can be efficiently exposed, processed, queried, and searched using Web standards.

Security and privacy issues have only been marginally addressed in this thesis, yet they will

be a fundamental challenge for future open sensing applications and need to be tackled.

Fortunately, because the Web of Things builds upon the existing Web infrastructure, one

can directly leverage all the tools and techniques for building scalable and secure Web

applications developed over the last two decades. As we have shown in [137], one can

for example use HTTPS and OAuth to enable authenticated and secure communication

between mobile clients and gateways. Besides, one can use social networks to facilitate

the sharing process with various circles of relatives, colleagues, and business partners.

Needless to say, a methodical and thorough performance and scalability evaluation with

large deployments of machines and real sensors is necessary to carefully understand and

quantify the behavior and limitations of a Web-based data collection infrastructure. Fur-

thermore, techniques to improve the robustness and flexibility of such heterogenous dis-

tributed applications, particularly for business and industrial applications will be required.

Nevertheless, our initial results support the idea that a fully Web-based system is able

to process several hundred messages per second, while allowing concurrent users to pose

continuous queries for monitoring heterogenous sensor data streams and operators to be

notified in a timely manner about anomalies. Our experimental results suggests that

Wisspr is sufficient for most sensor-driven application where a few seconds of delay are

acceptable.

This thesis offers a window on what the future Web might look like, and we hope our

results will inspire Web developers and sensor network researchers to think about new

possibilities that arise when combining a truly location-aware infrastructure with the Web.

The work presented here shall not be taken as a finite solution, but a mere prototypical

draft to foster the exploration of a future Web of Things. Much applied research and

prototypes will be required before device-oriented standards for the Web become widely

adopted. However, we hope our initial results and positive experiences with REST on

embedded devices will stimulate further efforts to construct the Web of Things.
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APPENDIX A

Microformat Example

<h1>Sample Device: Light Controller</h1>

<span class="hentity">

<h2>Device information:</h2>

<h3>Device name</h3>

<p><span class="fn n">light-controller</span></p>

<h3>Device description:</h3>

<p><span class="description">Smart home light controller.</span></p>

<h3>Device tags:</h3>

<ul>

<li><span class="tag">light</span></li>

<li><span class="tag">lamp</span></li>

</ul>

<h3>Device UUIDs:</h3>

<ul>

<li><span class="uuid"><span class="type">epc</span>:<span class="

value">5465464554646354164</span></span></li>

</ul>

<h3>Available operations:</h3>

<ul>

<li><span class="hoperation"><span class="fn n">mode</span>[<span

class="acceptable-value">on</span>, <span class="acceptable-value"

>off</span>]</span></li>

<li><span class="hoperation"><span class="fn n">brightness</span>[<

span class="acceptable-value"><span class="range">0-100</span></

span>]</span></li>
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</ul>

<h3>Web hook calllback URLs:</h3>

<ul>

<li><span class="rms"><a class="url" href="/rms/callback">/rms/

callback</a>, filtering values: <span class="tag">entrance</span><

span class="tag">alarm</span></span></li>

</ul>

<span class="hproduct">

<h2>Product information:</h2>

<ul>

<li>Brand: <span class="brand"><span class="fn n"><span class="given

-name">Philips</span></span></span></li>

<li>Category: <span class="category">HVAC devices</span></li>

<li>Price: <span class="price">CHF 1995</span></li>

<li>Description: <span class="description">Web enabled light control

system.</span></li>

<li>Product name: <span class="fn">PH10654654.</span></li>

</ul>

</span>

<div class="geo">

<h2>Geographical location</h2>

<ul>

<li>Latitude: <span class="latitude">37.386013</span></li>

<li>Longitude: <span class="longitude">-122.082932</span></li>

<li>Altitude: <span class="altitude">750</span></li>

</ul>

</div>

<div class="indoor-location">

<h2>Indoor location</h2>

<p><span class="hierarchy">/ETHZ/IFW/4/49.2</span></p>

</div>

</span>

Listing A.1: Microformats annotations used to describe a device and its operations, in this

case a photosensor of a sensor node.
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