
ETH Library

Reasoning about Liveness
Properties in Event-B

Conference Paper

Author(s):
Hoang, Thai Son; Abrial, Jean-Raymond

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006699021

Rights / license:
In Copyright - Non-Commercial Use Permitted

Funding acknowledgement:
247277 - Automated Urban Parking and Driving (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006699021
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Reasoning about Liveness Properties in Event-B ?

Thai Son Hoang1 and Jean-Raymond Abrial2

1 Deparment of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH-Zurich), Switzerland

htson@inf.ethz.ch
2 Marseille, France

jrabrial@neuf.fr

Abstract. Event-B is a formal method which is widely used in modelling safety
critical systems. So far, the main properties of interest in Event-B are safety re-
lated. Even though some liveness properties, e,g, termination, are already within
the scope of Event-B, more general liveness properties, e.g. progress or persis-
tence, are currently unsupported. We present in this paper proof rules to reason
about important classes of liveness properties. We illustrate our proof rules by
applying them to prove liveness properties of realistic examples. Our proof rules
are based on several proof obligations that can be implemented in a tool support
such as the Rodin platform.
Keywords: Event-B, liveness properties, formal verification, tool support.

1 Introduction

Event-B [1] is a formal modelling method for discrete state transition systems and is
based on first-order logic and some typed set theory. The backbone of the method is
the notion of step-wise refinement, allowing details to be gradually added to the for-
mal models. An advantage of using refinement is that any (safety) properties that are
already proved to hold in the early models are guaranteed to hold in the later models.
This is crucial in a method for developing systems correct-by-construction. System de-
velopment using Event-B is supported by the RODIN platform [2]. It is an open and
extensible platform containing facilities for modelling and proving Event-B models.

So far, most of the properties that are proved in Event-B are safety properties, i.e.,
something (bad) never happens, which are usually captured as invariants of the models.
Although it is essential to prove that systems are safe, it might not be sufficient. Con-
sidering an elevator system, an important safety property is that the door must be closed
while the elevator is moving. However, an unusable non-moving elevator also satisfies
this safety property. Hence, it is desirable to be able to specify and prove that the sys-
tem also satisfies some liveness properties, e.g., it is always that case that a request will
eventually be served.

Currently, besides safety properties that are captured as invariants, Event-B can only
be used to model certain liveness properties, e.g., termination. More general classes of
liveness properties, such as progress or persistence are unsupported. On the one hand,

? Part of this research was supported by DEPLOY project (EC Grant number 214158).



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

we want to increase the set of properties that can be specified and verified in Event-B.
On the other hand, we aim to keep the reasoning practical, so that we can easily have
tool support to generate and discharge obligations.

We propose a set of proof rules for reasoning about three different classes of live-
ness properties. The rules are based on some basic proof obligations, that can be conve-
niently implemented in the supporting Rodin platform of Event-B. The first proof rule
is for proving existence properties stating that something will always eventually occur
(�♦P ). The second proof rule is for reasoning about progress properties: something
must eventually happen if some condition becomes true (�(P1 ⇒ ♦P2)). The third
proof rule is for proving persistence properties: eventually, something always holds
(♦�P ).

The rest of the paper is organised as follows. Section 2 gives an overview of the
Event-B modelling method and temporal logic. Our main contribution is in Section 3
including proof rules for the previously mentioned properties. Section 4 illustrates the
applicability of our rules to some realistic examples. We briefly elaborate our ideas
for tool supports in Section 3.3. Finally, we draw some conclusion (Section 6), discuss
related work (Section 5), and investigate future research directions (Section 6.1).

2 Background

2.1 The Event-B Modelling Method
A model in Event-B, called machine, contains a vector of state variables v and a set of
events evti. Each event has the form evti =̂ any x whereGi(x , v) thenAi(x , v , v

′) end ,
where x are parameters of the event, Gi(x , v) is the guard and Ai(x , v , v

′) is the ac-
tion. The guard of an event is the necessary condition for the event to be enabled. The
action of an event comprises several assignments, each has one of the following forms:
v := E(x , v), v :∈ E(x , v), and v :| Q(x , v , v ′).

Assignments of the first form deterministically update variables v with values of
E(x , v). Assignments of the latter two forms are nondeterministic. They update vari-
able v to be either some member of a set E(x , v) or satisfying a before-after predicate
Q(x , v , v ′). The first two forms of assignment can be represented using the last form
with the corresponding before-after predicates v ′ = E(x , v) and v ′ ∈ E(x , v). Assign-
ments of an action are supposed to be executed in parallel. Each event therefore corre-
sponds to a before-after predicate A(x , v , v ′) by conjoining the before-after predicate
of all assignments and the predicate u = u ′ where u is the set of variables unchanged
by the action. A dedicated event, called init, without parameters and guard is used as
the initialisation of the machine. An after predicate Init is associated with init.

Variables v are constrained by invariant I(v) which needs to be proved to hold in
every reachable state of the system. This is guaranteed by proving that the invariant is
established by the initialisation init and subsequently preserved by all events.

To overcome the complexity in system development, Event-B advocates the use of
refinement: a process of gradually adding details to a model. A development in Event-B
is a sequence of machines, linked by some refinement relationship: an abstract ma-
chine is refined by the subsequent concrete machine. Abstract variables v are linked to
concrete variables w by some gluing invariant J(v ,w). Any behaviour of the concrete



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

model must be simulated by some behaviour of the abstract model, with respect to the
gluing invariant J(v ,w).

An Event-B machine corresponds to a state transition system: the states s are cap-
tured as tuples 〈v〉, representing the values of variables v ; and the events correspond to
transitions between states. An event evt is said to be enabled in a state s if there exists
some parameter x such that the guard G of the event hold in that state s. Otherwise, the
event is said to be disabled. A machine M is said to be deadlocked in s if all its events
are disabled in that particular state.

Given an event evt, we say a state t is an evt-successor state of s if t is a possible
after-state of the execution of evt from the before-state s. Lifting the definition to a
machine M, we say that t is an M-successor state of s if there exists an event evt of M
such that t is an evt-successor of s.

A trace σ of a machine M is a sequence of states (either finite or infinite) s0, s1, . . .
satisfying the following conditions.

– s0 is an initial state, i.e., satisfying the initial after predicate Init.
– For every two successive states si and si+1, si+1 is an M-successor state of si.
– If the sequence is finite and ends in some state sfinal then machine M is deadlocked

in sfinal.

Finally, a machine M is associated with a set of traces T (M) denoting all of its possible
traces.

2.2 Temporal Logic

We give a summary of the (propositional) LTL temporal logic similar to the one defined
by Manna and Pnueli [10]. We will consider temporal formulas to be interpreted over
the sequences of states arising from machine traces.

The basic element of the language is a state formula P : any first-order logic formula.
It describes some property that holds in some state s. It is built from terms and pred-
icates over the program variables v . The extended temporal formulas are constructed
from these basic state formulas by applying the Boolean operators ¬,∧,∨,⇒ and tem-
poral operators: always (�), eventually (♦) and until (U).

Let σ be a non-empty, finite or infinite, sequence of states of the form s0, s1, . . ..
We use the standard notation σ � φ to denote that σ satisfies formula φ. We first define
some notations that will be used in the interpretation of temporal formulas.

– States satisfying a state formula P are called P -states.
– The length of the trace σ denoted as l(σ) is defined as follows. If σ is finite, i.e.,

of the form s0, . . . , sk, l(σ) = k + 1. If σ is infinite, l(σ) = ω, the least infinite
ordinal number.

– Given a number 0 ≤ k < l(σ), a k-suffix sequence of states of σ denoted as σk

is the sequence of states obtained by dropping the first k elements from σ, i.e.,
σk = sk, sk+1, . . ..

The interpretation of the LTL formulas over σ is as follows.

– For a state formula P , σ � P iff s0 is a P -state.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

– The Boolean operators are interpreted intuitively.

σ � φ1 ∧ φ2 iff σ � φ1 “and” σ � φ2 ,
σ � φ1 ∨ φ2 iff σ � φ1 “or” σ � φ2.
σ � ¬φ iff “not” σ � φ ,
σ � φ1⇒ φ2 iff σ � φ1 “then” σ � φ2 .

– The temporal operators are interpreted as follows.

σ � �φ iff for all k where 0 ≤ k < l(σ), we have σk � φ.
σ � ♦φ iff there exists k where 0 ≤ k < l(σ), such that σk � φ.
σ � φ1 U φ2 iff there exists k, where 0 ≤ k < l(σ), such that

σk � φ2, and
for all i such that 0 ≤ i < k, we have σi � φ1.

In the case where we have some state predicates P , P1, P2, the combination with
the temporal operators can be understood as follows.

σ � �P iff every state in σ are P -state.
σ � ♦P iff there exits some P -state in σ.
σ � P1 U P2 iff there exists some P2-state sk in σ,

and every state until sk (excluding sk) is P1-state.

Definition 1 A machine M is said to satisfy property φ (denoted as M � φ) if all its
traces satisfy φ, i.e., ∀σ ∈ T (M)·σ � φ.

In subsequent proof rules, we use the notation M ` φ to denote that M � φ is provable.

3 Proof Rules

In this section we present some proof rules to reason about important classes of liveness
properties. We progress by first presenting some basic proof obligations as building
blocks for the later proof rules. We assume here that there is a machine M with events
of the general form mentioned in Section 2.1.

3.1 Proof Obligations
Machine M leads from P1 to P2 Given two state formulas P1, P2, we say M leads
from P1 to P2 if for any pair of successor states (si, si+1) of any trace of M, if si is a
P1-state then si+1 is a P2-state. We first define the leads from notion for events.

An event evt leads from P1 to P2 if starting from any P1-state, execution of ev-
ery event leads to a P2-state. This is guaranteed by proving the following (stronger)
condition.

P1(v) ∧G(x , v) ∧ A(x , v , v ′)⇒ P2(v
′)

(We adopt the convention that free variables in proof obligations are universally quan-
tified.)

Given the above definition, M leads from P1 to P2 if every event evt of M leads
from P1 to P2.

Proof. From the definition of machine trace in 2.1 and of leads from notion for events.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

In subsequent proof rules, we use the notation M ` P1 y P2 to denote that this
fact is provable. Note that the property can be stated in terms of k-suffix as follows. For
any pair of successor state si, si+1 of any k-suffix of any trace of M, if si is a P1-state
then si+1 is a P2-state.

Machine M is convergent in P The obligation allows us to prove that any trace of
M does not end with an infinite sequence of P -states. Equivalently, the property can be
stated as: any k-suffix of any trace of M also does not end with an infinite sequence
of P -state. This can be guaranteed by reasoning about the convergence property of the
events in M as follows.

– An integer expression V (v) (called the variant) is defined.
– For every event evt of M, we prove that

1. When in a P -state, if evt is enabled, V (v) is a natural number3.

P (v) ∧G(x , v)⇒V (v) ∈ N

2. An execution of evt from a P -state decreases V (v).

P (v) ∧G(x , v) ∧ A(x , v , v ′)⇒V (v ′) < V (v)

Proof. If a trace ends with an infinite sequence of P -states, then V (v) will be de-
creased infinitely (condition 2). However, since in P -states, V (v) is a member of a
well-founded set (condition 1), this results in a contradiction.

In the subsequent proof rules, we use M ` ↓ P to denote that this fact (i.e., M is con-
vergent in P ) is provable.

Machine M is divergent in P This obligation allows us to prove that any infinite
trace of M ends with an infinite sequence of P -states. An equivalent property is that any
infinite k-suffix of any trace of M also ends with an infinite sequence of P -states.

– An integer expression V (v) (called the variant) is defined.
– For every event evt of M, we prove the following conditions.

1. When in a ¬P -state, if evt is enabled, V (v) is a natural number.
2. An execution of evt from a ¬P -state decreases the value of the variant.

¬P (v) ∧G(x , v) ∧ A(x , v , v ′)⇒V (v ′) < V (v)

3. An execution of evt from a P -state does not increase V (v) if the new value of
the variant V (v′) is a natural number.

P (v) ∧G(x , v) ∧ A(x , v , v ′) ∧V (v ′) ∈ N⇒V (v ′) ≤ V (v)

Proof. Condition 1 and 2 guarantees that the variant V is a member of an well-founded
set (e.g., N) and decreases when ¬P holds, and condition 3 ensures that this decreasing
cannot be undone when P holds. Hence if M has an infinite trace, then ¬P -states will
eventually disappear from it.

In the subsequent proof rules, we use M ` ↗ P to denote that this fact (i.e., M is
divergent in P ) is provable.

3 More generally, the variant can be a member of any well-founded set.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

variables: r ,w

invariants:
inv1 : r ∈ N
inv2 : w ∈ N
inv3 : 0 ≤ w − r
inv4 : w − r ≤ 3

init
begin

r ,w := 0, 0
end

read
when

r < w
then

r := r + 1
end

write
when

w < r + 3
then

w := w + 1
end

Fig. 1. Machine RdWr: Reader/Writer

Machine M is deadlock-free in P This obligation allows to prove that any (finite)
trace of M does not end in a P -state. This is guaranteed by proving that in a P -state, at
least one event of M is enabled, i.e., M is deadlock-free in any P -state.

P (v) ⇒
∨
i

(∃x ·Gi(x , v))

Proof. From the definition of machine trace in Section 2.1.

Note that an equivalent property is as follows: any k-suffix of any trace of M is also
deadlock-free in P , i.e., does not end in a P -state.

In the subsequent proof rules, we use M ` 	 P to denote that this fact is provable.

3.2 Proof Rules
We are going to use the example of Reader/Writer in Fig. 1 to illustrate our proof rules
in this section. The machine models a system with two processes Reader and Writer
sharing a common bounded buffer. The machine has two variables, namely r and w
(both initialised to 0), representing the current pointer of the reader and the writer. The
“buffer” is the range [r + 1,w ] representing the data that have been written but not yet
read. The size of the buff is w − r . Assuming that the buffer can hold a maximum of 3
pieces of data, we must have 0 ≤ w − r and w − r ≤ 3 as invariants of the model.

There are two events: read and write for reading and writing, respectively. Event
read increases the read pointer r by 1, when there are some unread data. Similarly,
event write advances the writer pointer w , when there is still some space in the buffer.

Invariance Safety properties are usually captured in Event-B machine as invariants.
The proof rules for invariance properties are well-known and already built-into for
Event-B. They are also used in [10]. We restate the rules mentioned in Section 2.1
in terms of the above proof obligations as follows.

` Init⇒ I
M ` I y I

M ` � I

INVinduct



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

The above rule INVinduct allows us to prove invariance properties which are induc-
tive. Otherwise, i.e. when invariance properties are not inductive, the following proof
rule can be used.

` J ⇒ I
M ` � J

M ` � I

INVtheorem

Informally, rule INVtheorem allows us to prove that I is an invariance property relying
on a stronger additional invariant J . Subsequently, we can make use of the inductive rule
INVinduct to prove that J is an invariance property,

Invariance properties are important in reasoning about the correctness of our models
since it limits the set of reachable states. In the subsequent proof rules, we adopt the
convention that already proved invariance properties can be assumed and hence, do not
mention them explicitly.

Existence An existence property states that some (good) property, say P , will always
eventually hold. The following proof rule allows us to prove that a machine M satisfies
an existence property �♦P by reasoning about convergence and deadlock-freedom.

M ` ↓ ¬P
M `	 ¬P

M ` �♦P

LIVE�♦

Proof. Consider a trace σ of machine M. Consider a k-suffix σk of σ. If σk is an infi-
nite sequence of states, according to the first antecedent, it cannot end with an infinite
sequence of (¬P )-states, hence a P -state eventually appears. The second antecedent
ensures that in the case where σk is finite, it does not end in a (¬P )-state, i.e., it must
end in a P -state.

Example 1 We want to prove that for RdWr, eventually r ≥ L for some natural number
L. Our reasoning is as follows.

RdWr ` �♦ r ≥ L
LIVE�♦−−−−−−−→


RdWr ` ↓ (¬r ≥ L) (1)

RdWr `	 (¬r ≥ L) (2)

(1) RdWr ` ↓ (¬r ≥ L) : we propose a variant V1 = (L− r) + (L + 3− w), a sum
of two terms, which are decreased accordingly by read and write. The fact that the
variant is a natural number when the events are enabled in a (¬r ≤ L)-state is a
consequence of invariant inv4.

(2) RdWr ` 	 (¬r ≥ L) : According to the proof obligation for proving deadlock-
freedom, we have to prove that ¬r ≥ L ⇒ r 6= w ∨ w 6= r + 3 which holds
trivially.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

Progress A progress property states that a P1-state must always be followed eventually
by a P2-state. For a machine M, the property can be formalised as follows M ` �(P1⇒
♦P2). In order to reason about progress properties, we introduce two proof rules. The
first one Until deals with a special form of progress properties where P1 is stable (i.e.,
holds until P2 holds). The second one LIVEprogress deals with a more general form
of progress properties by “inventing” an auxiliary property.

M ` (P1 ∧ ¬P2) y (P1 ∨ P2)
M ` �♦(¬P1 ∨ P2)

M ` �(P1⇒ (P1 U P2))

Until

M ` �(P1 ∧ ¬P2⇒ P3)
M ` �(P3⇒ (P3 U P2))

M ` �(P1⇒♦P2)

LIVEprogress

Proof. The rules are justified as follows.

– Until: Consider a trace σ of machine M. Consider a k-suffix σk of σ where sk is
a P1-state. We have to prove that there exists a state P2-state sm in trace σ (with
k ≤ m) such that any state between sk and sm (excluding sm) is a P1-state.
• If sk is also a P2-state, then we can take m to be k.
• If sk is a ¬P2-state, then it is also a (P1 ∧ ¬P2)-state. From the second an-

tecedent, we know that eventually, there is a (¬P1 ∨ P2)-state. Let sm be the
first such state (hence k ≤ m). We will prove that sm is indeed the state that
we are looking for.
∗ Since sm is the first state after sk satisfying ¬P1∨P2, any state in between
sk and sm excluding sm is a (P1 ∧ ¬P2)-state, i.e., is a P1-state.

∗ Since sk is a (P1 ∧ ¬P2)-state, and sm is a (¬P1 ∨ P2)-state, they must
be different, i.e., k 6= m, hence sm−1 is a state in between sk and sm.
Subsequently, sm−1 must be a (P1 ∧ ¬P2)-state. Together with the first
antecedent of the rule, sm is a (P1 ∨ P2)-state. Since sm is both a (¬P1 ∨
P2)-state and a (P1 ∨ P2)-state, it must be a P2 state.

– LIVEprogress: Rule LIVEprogress relies on auxiliary state predicate P3 and its
justification is as follows. The first antecedent states that P1 ∧ ¬P2 ⇒ P3 is an
invariant of machine M and the second antecedent states an until-property where
P3 holds until eventually P2 holds. Consider any k-suffix σk of a trace σ of machine
M, where sk is a P1-state. If sk is also a P2-state then the progress property holds
trivially. Otherwise, i.e., if sk is a ¬P2-state, according to the first antecedent, sk
must be a P3-state. The second antecedent then allows us to conclude that there
exits a P2-state sm where k ≤ m.

Example 2 Consider machine RdWr. We want to prove that the reader can always
make some progress, which is formalised by RdWr ` �(w = L⇒♦ r = L) , for some
natural number L. Our reasoning starts by applying rule LIVEprogress with the aux-
iliary state predicate P3 to be r < L.

RdWr ` �(w = L⇒♦ r = L)
LIVEprogress−−−−−−−−−−→


RdWr ` �(w = L ∧ ¬r = L⇒ r < L) (3)

RdWr ` �(r < L⇒ (r < L U r = L)) (4)

(3) The fact that w = L ∧ ¬r = L⇒ r < L is a consequence of invariant inv3, i.e.
proved by rule INVtheorem.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

(4) We apply rule Until as follows.

RdWr ` �(r < L⇒ (r < L U r = L))

Until−−−−→


RdWr ` (r < L ∧ ¬r = L) y (r < L ∨ r = L) (4.1)

RdWr ` �♦(¬r < L ∨ r = L) (4.2)

(4.1) This sub-goal can be simplified as RdWr ` (r < L)y (r ≤ L) , i.e., we must
prove that read and write lead from r < L to r ≤ L, which is trivial. For read,
we need to prove r < L ∧ r 6= w ⇒ r + 1 ≤ L.

(4.2) This sub-goal is equivalent to RdWr ` �♦(r ≥ L) which we proved in Ex-
ample 1.

Persistence A persistence property states that P must eventually hold forever. For-
mally, this is expressed for a machine M as M ` ♦�P .

M `↗ P
M `	 ¬P

M ` ♦�P

LIVE♦�

Proof. Consider any trace σ of machine M. The first antecedent guarantees that if the
σ is infinite, it will end with an infinite sequence of P -states. The second antecedent
ensures that if σ is finite, it cannot end with a (¬P )-state. Together, we know that the σ
ends with (finite or infinite) sequence of P -states.

Example 3 Consider machine RdWr. We want to prove that ♦�(L ≤ w) for some
natural number L. We start by applying rule LIVE♦�.

RdWr ` ♦�(L ≤ w)
LIVE♦�−−−−−−−→


RdWr `↗ (L ≤ w) (5)

RdWr `	 (¬L ≤ w) (6)

(5) We use V2 = (L− w) + (L− r) as our variant.
1. In (¬L ≤ w)-states, V2 is a natural number (thanks to invariant r ≤ w ).
2. Both read and write decrease V2, hence, they satisfy conditions for decreasing

the variant in (¬L ≤ w)-states and not increasing the variant in L ≤ w)-
states.

(6) We have to prove that ¬L ≤ w ⇒ r 6= w ∨ w 6= r + 3, which is trivial.

3.3 Tool Support
Our proof rules are based on several basic proof obligations that can be easily realised
in a tool support such as the Rodin platform. In particular, the proof obligations related
to our illustrated examples in Section 4 are indeed simulated within the current Rodin
platform, relying on the standard proof obligation generators. For example, the proof
obligations for proving that a machine M is convergent in P is encoded by adding P
to guards of all events and prove the new events are convergent with some variant V .



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

Other proof obligations, e.g., deadlock-freedom, are mostly encoded as theorems in the
models. The generated obligations are discharged using the current proving support
within the platform.

We propose to extend the Event-B models with clauses corresponding to the dif-
ferent liveness properties. For example, the existence property in Example 1 can be
specified as follows.

existence:
exst1 : r ≥ L

variant (L− r) + (L + 3− w)

Note that we also need to include the declaration for the variant used in proving con-
vergence properties. With this declaration, related proof obligations for ensuring the
existence property can be generated accordingly.

Similarly, we can define the following clauses for progress and persistence prop-
erties. Note that we also indicate the auxiliary invariant for the progress property, in
addition to the declaration of the variant.

progress:
prog1 : from w = L to r = L

invariant r < L
variant (L− r) + (L + 3− w)

persistence:
stbl1 : L ≤ w

variant (L− w) + (L− r)

We are working on extending the Rodin platform to include these newly proposed
clauses.

4 Examples

We illustrate our application of proof rules for existence and progress properties with
Peterson’s mutual exclusion algorithm (Section 4.1). The proof rule for persistence is
illustrated in our example of a device calibration in Section 4.2.

4.1 Peterson’s Algorithm

Description Peterson’s algorithm [13] involves two processes P a and P b. It is a
mutual exclusion algorithm: at most one process shall be in the, so-called, ”critical
section”. It uses three variables: w a , w b, and turn , elements of the set {0, 1}.

When w a = 1 (resp. w b = 1), it means that P a (resp. P b) wishes to enter the
critical section or is in the critical section. When turn = 0, it means that it is P a’s turn
to enter the critical section (if it wishes to do so), and similarly with turn = 1 for P b.

Initially, we have w a = 0, w b = 0 (i.e., no process wishes to enter the critical
section), and turn takes any value in {0, 1}. Here are the skeletal sequential programs
supposed to be executed concurrently:



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

P a
while true do

// Wishing to Enter the Critical Section
w a := 1;
turn := 1;
// Busy Waiting
while ¬ (w b = 0 ∨ turn = 0) do

SKIP
end
// Enter Critical Section
...
w a := 0
// Leave Critical Section
...

end

P b
while true do

// Wishing to Enter the Critical Section
w b := 1;
turn := 0;
// Busy Waiting
while ¬ (w a = 0 ∨ turn = 1) do

SKIP
end
// Enter Critical Section
...
w b := 0
// Leave Critical Section
...

end

As can be seen, each process enters a “busy waiting” loop before entering the critical
section. Each of them waits until the proper conditions to enter the critical section hold.
For P a, it corresponds to waiting either that P b does not wish to enter the critical
section (w b = 0) or that it is P a’s turn to enter the critical section (turn = 0). We
have similar busy waiting conditions for P b.

We would like to prove two things:

Mutual exclusion At most one process can be in the critical section at a time.
Progress A process wishes to enter the critical section will eventually do so.

Refinement Strategy We shall proceed with three models. The initial model will han-
dle the mutual exclusion problem: it is independent from the Peterson’s algorithm.
The first refinement deals with Peterson’s algorithm: we shall have to prove that this re-
finement indeed refines the initial model and thus obeys the mutual exclusion property.
Finally, the second refinement deals with the progress property.

The Initial Model

Variables and Invariants In this initial model, besides variables w a and w b as defined
in the description, we introduce two more variables, a and b, members of the set {0, 1}.
When a = 1, it means that P a is in the critical section, and similarly with b for P b.

variables: a, b,w a,w b

invariants:
inv0 1 : w a = 0⇒ a = 0
inv0 2 : w b = 0⇒ b = 0
inv0 3 : a = 0 ∨ b = 0

Invariant inv0 1 says that when P a does not wish to enter the critical section (w a =
0) then it is certainly not in the critical section (a = 0). Invariant inv0 2 defines a
similar property for P b. Invariant inv0 3 formalises the mutual exclusion property: at
most one process can be in the critical section at a time.

Events All variables are initialised with 0. Next are events associated with P a. There
are three events describing the way P a can enter and leave each phase: wishing to enter
the critical section, entering the critical section, or leaving it. The sequentiality of the
events is ensured by the fact that P a can be in exactly one situation at a time, either
w a = 0 or w a = 1 ∧ a = 0 or w a = 1 ∧ a = 1.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

wish a
when

w a = 0
then

w a := 1
end

enter a
when

w a = 1
a = 0
b = 0

then
a := 1

end

leave a
when
a = 1

then
a := 0
w a := 0

end

The events for P b are similar. The two processes are obviously concurrent as there is
clearly some non-determinacy between the events of one and those of the other.

As can be seen, process P a enters the critical section if it is not in it (a = 0) and if
process P b is also not in it (b = 0): the mutual exclusion property is ensured. However,
we have two problems here: (1) the checking by P a of the situation of P b by looking
at b, (2) we have no guarantee that one process does not always enter the critical section
while the other one wants to do it as well. These problems will be addressed in the
subsequent refinements.

Proofs There are 25 proof obligations all discharged automatically by the Rodin prover.

First Refinement

Variables and Invariants Besides variables introduced in the initial model, we add now
the variable turn as defined in the description.

variables: . . .
turn

invariants:
inv1 1 : turn = 0 ∧ w a = 1⇒ b = 0
inv1 2 : turn = 1 ∧ w b = 1⇒ a = 0

Invariant inv1 1 is needed in order to prove guard strengthening in event enter a. This
is because in this event we remove the reference to variable b. Invariant inv1 2 plays a
similar role for P b.

Events These events deal with P a. In the event enter a, the guard b = 0 has been
replaced by the guard w b = 0 ∨ turn = 0 that does not make any reference to b.

wish a
when

w a = 0
then

w a := 1
turn := 1

end

enter a
when

w a = 1
a = 0
w b = 0 ∨ turn = 0

then
a := 1

end

leave a
when

a = 1
then

a := 0
w a := 0

end

We have similar events for P b which are omitted.

Proofs The Proof Obligation Generator of the Rodin platform produces 18 proof obli-
gations all discharged automatically.

Second Refinement In this refinement, we shall prove the progress property for process
P a by encoding the proof obligations in the Rodin platform (see Section 3.3). The
property can be stated as follows:



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

Peterson ` �(w a = 1⇒♦ a = 1)

i.e. if process P a wishes to enter the critical section (w a = 1) then it will eventually
be able to do so. In fact P a remains wishing to enter the critical section until it enters it.
Hence we can apply proof rule LIVEprogress with w a = 1 as the auxiliary invariant.
The first subgoal is trivial, proving that w a = 1 ∧ ¬a = 1⇒ w a = 1, the second
subgoal is Peterson ` �(w a = 1 ⇒ w a = 1 U a = 1) .

According to rule Until, we have to prove the following two statements:

Peterson ` (w a = 1 ∧ a = 0)y (w a = 1 ∨ a = 1)
Peterson ` �♦(w a = 0 ∨ a = 1)

The first statement generates 6 proof obligations that are all discharged trivially.
According to the proof rule LIVE�♦, the second statement leads to the following:

Peterson ` ↓ (w a = 1 ∧ a = 0)
Peterson ` 	 (w a = 1 ∧ a = 0)

The first of these statement requires finding a decreasing variant, which we propose

V3 = 2 ∗ w b + 3 ∗ turn − b− a4

The fact that this variant is a natural number whenever an event is enabled and under
the assumption w a = 1 ∧ a = 0 generates 6 proof obligations that are easily
discharged. The fact that this variant is decreased by every event under the assumption
w a = 1 ∧ a = 0 generates 6 proof obligations that are easily discharged provided
we add the following additional invariant:w a = 1 ∧ w b = 0 ⇒ turn = 1. The
second statement requires to prove that the model is deadlock free under the assumption
w a = 1 ∧ a = 0. It is easily discharged.

Proofs We have to prove 24 proof obligations. The prover of the Rodin platform proves
them all automatically except two easy ones that were proved interactively. All in all,
we have 67 proof obligations all proved automatically except two of them.

At this level of details, our Event-B model allows common variables to be accessed
and modified concurrently. If we are interested in the precise atomicity assumption on
common variables, e.g. turn , it is possible to decompose the events wish a, wish b,
enter a, and enter b so that some new events treat with turn only (together with some
address counters for sequencing). Introducing these details would only add some com-
plication to the illustration of our proof rules.

4.2 Device Calibration
We now consider a second example. A certain device can be either on or off . Calibra-
tion allows the device to be adjusted. During calibration, the status of the device can
alternate. We assume that the duration of the calibration process is limited and model
the system as follows. A Boolean variable s denotes the status of the device, and an
integer variable t denote the current time, initialised to be 0. The machine Calibration
contains three events, each of them advances t by 1. When t is less than some con-
stant M then calibration happens, alternating the status s between on and off (events

4 V3 is a lexicographic variant: (turn,w b,−(a+ b)), with decreasing order of precedences.



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

calibrate on and calibrate off). When t is greater than M and the device is on then
the device works normally, no more calibration occurs, only the time t advances (event
working)

calibrate on
when

s = off
t ≤ M

then
s := on
t := t + 1

end

calibrate off
when

s = on
t < M

then
s := off
t := t + 1

end

working
when

s = on
M ≤ t

then
t := t + 1

end

We want to prove that eventually, the device will be persistent in the on state, i.e.
Calibration ` ♦� s = on . Applying our LIVE♦� results in two sub-goals.

– Calibration ` ↗ (s = on) . We propose the following variant V4 = M − t .
• To prove that V4 is a natural number when ¬s = on , we add the following

invariant inv0 1 stating that s = off ⇒ t ≤ M .
• All events increase t hence decrease the variant V4, hence they certainly de-

crease V4 when ¬s = on and do not increase V4 when s = on .
– Calibration ` 	 (s = off ) . For this, we must prove that when s = off then one

of the events is enabled, and in our case, it is calibrate on, according to inv0 1.

We encode the verification conditions in the Rodin platform, resulting in 19 proof
obligations, all of them are discharged automatically by the built-in provers.

5 Related Work

The idea of combining different reasoning features, e.g., invariant, event convergence
and deadlock-freedom to prove liveness properties has been presented in our earlier
work [8]. There we prove liveness properties characterising when a system reaches
stable states. Here, we extend this idea to prove some other important classes of liveness
properties. In designing our proof rules, we have been inspired by the pioneering work
of Chandy and Misra [4], of Lamport [9], and in particular of Manna and Pnueli [10].

Our proof rules for progress properties are similar to that of Manna and Pnueli [10],
in the sense that we both use the variant technique to reason about convergence of
events. However, our Until rule for proving P1⇒(P1 U P2) has the additional assump-
tion ¬P2 in its sub-goals, i.e., we need to prove the sub-goal only when the desirable
condition P2 has not yet been established. The use of the variant technique is clearly
an advantage over the proof lattices approach from Owicki and Lamport [12] when the
systems have infinitely many states. In UNITY [4], reasoning about progress properties
is embedded within its logic by several proof rules. Our proof rules are comparable to
a combination of their transitivity, implication and induction rules. An important mo-
tivation for us is to be able to realise the reasoning about liveness properties in a tool
support. In our opinion the rules from [10,4] are not at the level which can be realised
practically.

In [3], Abrial and Mussat have addressed the problem of verifying progress proper-
ties, by formulating the problem in terms of proving loops termination. Our proof rules



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

are stronger than those in [3]. In particular when proving P1⇒ (P1 U P2), we allow the
triggering condition P1 to be invalidated as soon as the desirable condition P2 holds,
i.e., proving that M ` (P1 ∧ ¬P2)y (P1 ∨ P2) , whereas in [3], a stronger condition
was proposed, i.e., M ` (P1 ∧ ¬P2)y P1 .

Within our knowledge, there are no practical proof rules existing for persistence
properties. A stronger persistence property can be defined in the work of Chandy and
Misra [4] by combining an existence property, e.g., ♦P and a stable properties, e.g.,
P⇒�P . Whereas in their work a persistence predicate remains hold once it holds, we
allow a persistence predicate to be invalidated, before becoming stable. In particular,
our notion divergence by proving a non-increasing variant is novel.

Proving general LTL properties in Event-B has been consider in [6]. The approach
taken is to encode in B the Büchi automata equivalent to the LTL properties, and then
synchronise the resulting machine with the original event system. Several analyses are
done on the combined machine, including proving that eventually some accepting state
of the Büchi automata will be reached. The downside of this approach is that the reason-
ing is done on the combined machine containing the original machine with the represen-
tation of the LTL property, which increases the complexity of the verification process,
for example, finding the appropriate variant.

6 Conclusions

We have presented our proposed proof rules for reasoning about three types of liveness
properties in Event-B: existence, progress and persistence. These classes cover a sig-
nificant numbers of properties that are used in practice. According to the survey done
by Dwyer, Avrunin and Corbett [5], amongst over 500 examples of property specifica-
tions that they have collected, 27% are invariance properties (in terms of global absence
and universality properties). The class of existence and progress properties cover 45%.
Altogether with our extension, we can model in Event-B 72% instead of 27% of the
collected properties.

Another practical aspect of our proof rules is that they rely on some basic reasoning
obligations which can be implemented straight away in a tool support such as the Rodin
platform. This requires only to add to the platform a new declaration and to extend the
proof obligation generator for generating appropriate proof obligations. These condi-
tions can be proved within the scope of the existing provers, i.e., there is no need for
extending the proving support of the platform.

6.1 Future Work
The main difference between our proof rules and those in [10,12,4] is that we have
not yet considered (strongly/weakly) fairness assumptions. This will be necessary later,
especially in modelling concurrent and distributed systems. At the moment, we regard
this as future work and expect to have some proof rules using similar proof obligations.

In this paper, we do not attempt to have a complete set of proof rules (even for the
set of properties under consideration). We rather to come up with some practical rules
for some reasonable important subset of properties. Future work along the direction of
having a relative complete set of rules can be inspired from [11].



To appear in: Proc. of ICFEM 2011, Oct. 26-28, 2011, Durham, U.K. c©Springer

A direct extension of our proof rules is to include the notion of probabilistic con-
vergence [7]. This allows us to model systems with probabilistic behaviours and reason
about properties such as “eventually certain condition holds with probability one”. An
example is the proof of Rabin’s choice coordination algorithm to guarantee that even-
tually, with probability one, all processes agree on a particular alternative [14].

An important future research direction is to investigate how liveness properties can
be maintained during refinement. While safety properties are maintained by refinement
in Event-B, more investigation need to be done to ensure that liveness properties are
preserved during refinement with the possibility of strengthening the refinement notion.
In [6], the author proposes a notion of refinement oriented by the property. Since the
definition depends on the LTL property of interest, references to this property will need
to be carried along the refinement chain. We are looking for a notion of refinement pre-
serving our interested set of liveness properties without confining to similar restriction.

Acknowledgement We would like to thank anonymous reviewers for their constructive
comments. We also thank David Basin, Andreas Fürst, Dominique Méry and Matthias
Schmalz for their help with various drafts of the paper.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
Press, 2010.

2. J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: an open
toolset for modelling and reasoning in Event-B. International Journal on Software Tools for
Technology Transfer (STTT), 12(6):447–466, 2010.

3. J-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In B, volume 1393 of
LNCS, pages 83–128. Springer, 1998.

4. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.
5. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state

verification. In ICSE, pages 411–420, 1999.
6. J. Groslambert. Verification of LTL on B event systems. In B, volume 4355 of LNCS, pages

109–124, 2007.
7. S. Hallerstede and T.S. Hoang. Qualitative probabilistic modelling in Event-B. In iFM,

volume 4591 of LNCS, pages 293–312, Oxford, U.K., July 2007. Springer Verlag.
8. T.S. Hoang, H. Kuruma, D. Basin, and J-R. Abrial. Developing topology discovery in Event-

B. Sci. Comput. Program., 74(11-12):879–899, 2009.
9. L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–

923, 1994.
10. Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness properties of

concurrent programs. Sci. Comput. Program., 4(3):257–289, 1984.
11. Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comput. Sci., 83(1):91–

130, 1991.
12. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst., 4(3):455–495, 1982.
13. G. Peterson. Myths about the mutual exclusion problem. Inf. Process. Lett., 12(3):115–116,

1981.
14. E. Yilmaz and T.S. Hoang. Development of Rabin’s choice coordination in Event-B. Tech-

nical report, University of Dusseldorf, 2010. Proceedings of AVoCS’10.


