
ETH Library

JAP transaction processing failure
scenarios

Master Thesis

Author(s):
Schwarz, Barbara

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-a-005798565

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005798565
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

MASTER THESIS

JAP TRANSACTION PROCESSING
FAILURE SCENARIOS

Barbara Schwarz
Department of Computer Science

Swiss Federal Institute of Technology (ETH) Zurich
bskoko@ethz.ch

September 22nd 2008 – March 22nd 2009

Supervised by:
Prof. Dr. Gustavo Alonso, ETH Zürich

Dr. Peter Schnorf, Credit Suisse
Ulv Grönquist, Credit Suisse

Dr. Roger Weber, Credit Suisse
Dr. Andreas Geppert, Credit Suisse

Abstract
Current transaction processing in Credit Suisse is implemented as a centralized
system. Now the possibility of implementing transaction processing as a distributed
system on a Java application platform is being considered. In this new environment
transactional applications communicate with each other through remote service
calls. In order to prevent high transactional complexity, remote service calls are not
executed from within the transaction. In case of a failure, atomicity is not guaranteed
any more and needs to be reestablished. Reconciliation logic, however, must not be
reinvented by each application over and over again, but provided once and for all by
the application platform.

This master thesis provides an overview of possible failure scenarios and analysis
their impact on transactional applications. The purpose of this document is to
provide the system developers and administrators with information, which is
essential for defining standard procedures and mechanism for failure handling.

Acknowledgements
First of all I would like to express my gratitude to Peter Schnorf and his team, for
their support and mentoring during the last six months. It was a great honor working
with them and I appreciate the time and effort they have invested in me and my
master thesis. Special thanks go to Ulv Grönquist and Roger Weber, who always
had time and patience for answering my questions.

I would also like to thank Prof. Gustavo Alonso for supervising and guiding me
during the work and for giving me the opportunity to write my master thesis in Credit
Suisse.

 Zürich, March 22nd 2009

 Barbara Schwarz

Table of Contents

1 INTRODUCTION .. 1

2 BACKGROUND... 2

2.1 JAP.. 2
2.2 ARCHITECTURE... 2
2.3 DISTRIBUTED TRANSACTIONS.. 4
2.4 TWO-PHASE COMMIT PROTOCOL... 5
2.5 JTA SPECIFICATION .. 5

3 PATTERNS .. 9

3.1 LOCAL RESOURCES PATTERN .. 10
3.2 READ-ONLY PATTERN ... 10
3.3 RESERVATION PATTERN .. 12

4 FAILURE SCENARIOS .. 14

4.1 LOCAL RESOURCES PATTERN .. 14
4.1.1 Timeouts .. 14
4.1.2 Exceptions during the application logic phase .. 17
4.1.3 Failures during the 2PC phase ... 21

4.2 READ-ONLY PATTERN .. 28
4.3 RESERVATION PATTERN .. 29

4.3.1 Crash or rollback after remote service call ... 29
4.3.2 Failures during 2PC... 30
4.3.3 Reservation timeout.. 30
4.3.4 Retry.. 31
4.3.5 Cancel function.. 31

5 CONCLUSION... 32

6 APPENDIX ... 33

6.1 JTA: TRANSACTION ASSOCIATION AND CONNECTION REQUESTS...................................... 33
6.2 XAEXCEPTION ERROR CODES .. 35
6.3 JTA CONFIGURATION IN WLS CONSOLE... 37

7 REFERENCES ... 38

1 Introduction 1

1 Introduction
Credit Suisse's transaction processing is nowadays mostly done on the Mainframe
TP/B (Transaction Processing / Batch) Application Platform. Data is being stored in
DB2 and IMS (Information Management System) databases and IMS or CICS
(Customer Information Control System) is being used as transaction manager. The
Java Application Platform (JAP) is being used for implementing presentation logic
and parts of the business logic. Mainframe and JAP communicate in a synchronous
manner via CORBA (Common Object Request Broker Architecture) and in an
asynchronous manner via WebSphere MQ (Message Queue).

Mainframe transaction applications are written in PL/1 (Programming Language
One), which cannot be found in course catalogs of contemporary universities any
more. Today, modern, object-oriented programming languages like C# and JAVA
have taken its place and the new generations of computer scientists are not very
enthusiastic about learning an old problem-oriented programming language, which
came out of fashion. PL/1 experts have become a scarce resource. Consequently,
Credit Suisse has difficulties finding enough manpower with skills, which are needed
for the maintenance and development of the Mainframe Platform applications.

Since Credit Suisse already has a well-established Java application platform, the
question has arisen whether transaction processing in Java, in particular on JAP
would be feasible. In 2007/2008, a Java Transaction Processing Feasibility Study [1]
has been carried out, where performance requirements of the test applications have
been exceeded and availability tests have been passed. Motivated by these positive
results, Credit Suisse has decided to invest in extensive research of transaction
processing on JAP, part of which is also this master thesis. If JAP meets all
demands, transaction processing might in the long run be migrated from Mainframe
to JAP.

Moving from centralized to distributed transaction processing implies an increase in
the number of possible failure scenarios, due to the use of remote procedure calls
for communication between the transactional applications. Failure scenarios
influencing transactional applications on JAP are being presented and analyzed in
this work, for profound knowledge of these is essential for defining standard
procedures and mechanism for failure handling.

This master thesis is organized as follows: Chapter 2 provides background
information necessary for the understanding of the following work. Chapter 3
introduces Credit Suisse patterns for transactional applications. Chapter 4 presents
the failure scenarios, which can occur in patterns and gives a detailed analysis of
their development and impact on the application. This chapter also provides
guidelines for failure handling. Chapter 5 concludes the work.

2 Background 2

2 Background

2.1 JAP
An application platform is a set of integrated technical components, processes and
guidelines for the development and operation of similar applications. Hundreds of
applications are developed, maintained and operated within Credit Suisse and this
has to be done in a cost-effective manner. Cost effectiveness cannot be achieved if
applications are built in a full-custom fashion. Instead, common and shared functions
of similar applications have to be addressed, designed and implemented once and
then reused by many applications. This approach leads to higher productivity, as
different developers do not have to search for a solution of the same problem over
and over again. Another advantage of application platforms is increased application
reliability. By following application platforms' standards and guidelines, developers
can concentrate on the business logic and leave a big part of failure handling to the
application platform. Detailed description of the JAP platform is provided in Credit
Suisse internal documents [3], [4], [5].

The Java Application Platform (JAP) is the standard platform for client/server
applications. The architecture and technology of JAP are based on the JEE standard
[7], [8].

2.2 Architecture
One architecture unit in JAP consists of a cluster of two or more WLS (WebLogic
Server) application servers, a Real Application Cluster (RAC) of two or more Oracle
database servers and a shared file system, accessible via the SAN (storage area
network). The shared file system contains Oracle database files, WLS, Oracle and
MQ transaction logs. The underlying operating system is Sun Solaris. Synchronous
communication with Mainframe is realized with CORBA and asynchronous
communication with WebSphere MQ message queue.

Server clustering enables scalability and high-availability. The incoming jobs are
being distributed equally to all instances (load balancing) and in case of a failure of
one instance, another instance can take over the failed instance's jobs (failover). A
requirement for load balancing and failover is that the needed information is stored
in such a way, that it is accessible by all instances of the cluster. This requirement is
met by keeping all data on the SAN.

In order to meet the failover, BCP (Business Continuity Planning) and SOX
(Sarbanes-Oxley Act) requirements, JAP applications are deployed on two mirrored
tracks residing in different data centers: primary site UH (Üetlihof) and disaster
recovery site BGH (Betriebsgebäude Horgen).

The architecture described above is illustrated in Figure 1.

2 Background 3

Figure 1: JAP architecture

Credit Suisse has a very complex application landscape, managing which is a
difficult and demanding task. A proven instrument for managing complexity is
partitioning. With respect to the application landscape, this means breaking up the
application landscape down into application domains. Application domains are
groupings of applications according to their business coherence, i.e. applications
belonging to the same functional area are assigned to a domain. Domains are
further divided into sub domains, which are the definition unit for the banking
functionality: each sub domain has a defined and assigned set of banking functions
(application objects, data, and actions).

Each WLS cluster is associated with one, and only one application sub domain. For
capacity reasons, one application sub domain can span more than one WLS cluster.
A WLS cluster together with its resources, builds a WLS domain. Each resource
belongs to one, and only one WLS domain. An application running within a WLS
domain cannot access the resources belonging to another WLS domain directly, but
only through remote service calls, through well-defined interfaces.

Figure 2: Mainframe and JAP architecture comparison

2 Background 4

2.3 Distributed Transactions
A transaction implements a logical unit of work (LUW), a sequence of operations,
preserving the ACID properties: Atomicity, Consistency, Isolation and Durability.

Atomicity requires the transaction to be executed following the "all or nothing" rule.
If the execution of some parts of the transaction fails, the whole transaction fails.

Consistency requires the resources to be in a consistent state before and after the
execution of the transaction, independent of the transaction outcome (success or
failure). Consistent state means, that no integrity constraints are violated.

Isolation implies that no transaction sees the intermediate state caused by some
other concurrent transaction. In other words, changes done by some active
transaction are not visible to other, concurrent transactions until the active
transaction completes.

Durability requires that after a successful transaction execution the new, consistent
state is persisted and not undone, even in a case of a system failure.

The operations done by a transaction are executed on one or more resources. Most
often the resource is a database, but the resource could be any other system
managing persistent state. A typical JAP Transaction reads from or writes to a
message queue and updates some information in a database.

A transaction is coordinated by a software component called transaction manager. A
transaction manager does not interact with the resource directly, but through a
component called resource manager. Many applications can request access to the
same resource, using services provided by the resource manager.

Depending on the number of involved resource managers there are single-resource
and distributed transactions. A single-resource transaction communicates only with
one resource whereas distributed transaction communicates with more than one
resource. In literature, distributed transactions are sometimes also called global
transactions.

2 Background 5

2.4 Two-Phase Commit Protocol
Preserving the ACID properties is the basis of reliable transaction processing and it
has to be guaranteed even in cases of failure. In practice, consistency is enforced
through integrity constraints, which act as a filter determining whether a transaction
is acceptable or not. Isolation is enforced by concurrency control, which makes
transaction believe there is no other transaction in the system and guarantees
serializability.

Atomicity in single-resource transactions is ensured with the help of records in the
log files. For guaranteeing atomicity in distributed transactions writing logs is not
enough. A distributed transaction executes operations on different resources and it
has to make sure that either all resources execute the changes or none of them.
Atomicity of a distributed transaction is ensured by the two-phase commit protocol.

The transaction manager runs the two-phase commit protocol with the resource
managers of the resources involved in the transaction. It has the role of a resource
coordinator. In the first phase of the protocol, the transaction manager asks the
participants to vote. Each participant sends its vote, which can be either commit or
rollback. In the second phase, depending on the received votes, the transaction
manager makes a decision on the outcome of the transaction and propagates it to
the participants. If all participants have voted commit, the transaction manager will
decide to commit. Otherwise, the transaction manager will decide to roll back the
transaction. Each participant has to react accordingly: to commit changes to
persistent storage or undo all changes.

2.5 JTA Specification
The JTA, or Java Transaction API, is a Java Enterprise API for managing distributed
transactions. It defines a Java binding for the standard XA interface (defined by the
X/Open Group): the bidirectional interface between a transaction manager and a
resource manager [2]. TheJTA Specification [3] defines the local Java interfaces
required for the transaction manager to support transaction management in the Java
enterprise distributed computing environment. The transaction manager invokes
methods of the JTA XAResource interface during the transaction execution. The
main methods are begin(), prepare(), commit() and rollback().

The WLS transaction manager implementation follows the JTA specification. The
following sequence diagram of Figure 3 illustrates the flow of events in a distributed
transaction coordinated by WLS, involving an Oracle database and a MQ message
queue. A larger version of the diagram you will find at the end of the document.
Reference elements in the sequence diagram are placeholders for the logic of
transaction association, connection requests and transaction disassociation. Their
content is not necessary for the understanding of the following work. More details,
however, you will find in the JTA specification extract in Appendix, Chapter 6.1.

When a transactional Enterprise Java Bean (EJB) is invoked, WLS application
server begins the transaction by calling the begin() method of the transaction
manager interface. Then the EJB code is executed. Within the business logic, the
EJB will request a new connection for each resource involved. Behind the scenes,
WLS will associate involved resources with the new transaction, add the resources
to the list in its transaction log (TLog) (not visible in the diagram) and return a

2 Background 6

Connection object reference to the EJB. Having the Connection object, the
application can now do the actual work on the resources (messages 5-17). In our
example, the application reads from the database or updates the database
alternatively and then puts a message into the message queue. Database updates
are recorded in the log, but not yet visible to other users. Message is effectively
inserted into the message queue, but locked to make it invisible towards other
clients of the queue. After the work is done, the application closes the JDBC and
message queue connections and gives the control to the application server.
Application server disassociates the resources from the transaction and gives the
control to the transaction manager in order to run the 2PC protocol.

In the first phase of the 2PC protocol the transaction manager asks each involved
resource manager, by invoking the method prepare(), whether it can guarantee
its ability to commit the transaction. If resource manager can commit its work, it
records stably the information it needs to do so in its log file (messages 24, 31) and
then replies affirmatively with the return value XA_OK. A negative reply
(XAException) reports failure for any reason. After making a negative reply and
rolling back its work, the resource manager can discard any knowledge of the
transaction.

Depending on the answers from the resource managers, there are two alternatives
for the transaction outcome (commit or rollback), which are illustrated in the
alternative block. The second phase of 2PC begins as the transaction manager
writes the votes of the resource managers and the final decision on the transaction
outcome into the TLog. Only now, when the decision is persisted, the transaction
manager can issue an actual request to resource managers to commit or roll back
the transaction by invoking the method commit() or rollback() respectively. In
case of a commit, the database updates are made persistent on the database and
messages inserted in the queue are unlocked, in order to make them visible for
other clients. In case of a rollback, the database updates are invalidated (they must
not be persisted) and messages are removed from the message queue. Upon
receiving the confirmation about the commit/rollback execution from all resource
managers, the transaction manager will discard its knowledge of the transaction
(delete the transaction from the TLog).

A resource manager can respond to the prepare request by asserting that it was not
asked to update resources in this transaction. In this case transaction manager will
receive the XA_RDONLY return value and will not record this RM stably in its list of
participating resources. The phase 2 dialogue with this resource manager will then
not take place.

If transaction manager knows that there is only one resource manager involved in
the transaction, it can use the one-phase commit (1PC) protocol. In this optimisation
the transaction manager makes its commit request without having made a prepare
request. The first phase is herewith omitted. When transaction manager wishes to
run the 1PC protocol, it will invoke the commit() method with parameter onePhase
set to true.

The resources participating in a 2PC protocol must be configured as XA-enabled
resources in the WLS console. 1PC protocol, on the other hand, can also be run with
a non-XA resource. It is recommended, however, to configure each resource only as
XA-enabled. With one configuration per resource, failures caused by wrong
configuration choice are avoided and one can rely on the 1PC optimization provided
by WLS.

2 Background 7

One resource manager coordinates many transactions at the same time and each
transaction can involve multiple resource managers. A resource manager always
interacts with only one transaction manager, but during this interaction, it performs
work for many transactions at the same time. Therefore, when transaction manager
invokes a XAResource method, it needs to specify to which transaction this call
refers to. This is realized by the parameter xid, which is a general transaction
identifier.

One of the primary advantages of Enterprise JavaBeans in transaction processing is
the ability to use declarative transaction management. Instead of writing the
transactional code within the business logic, which reduces the clarity of the code
and is error-prone, the transactional behavior of EJBs can be controlled by using
@javax.ejb.TransactionAtribute annotation or by modifying the EJB
deployment descriptor XML file. Both methods enable changing the transactional
behavior of an EJB without changing the business logic. When declarative
transaction management is used, the EJB container is responsible for starting,
committing or rolling back the transactions based on the directives specified in the
EJB code. The container then leverages JTA for transaction management in the
background. Using exclusively container-managed transactions on JAP is a
guideline already established by Credit Suisse [1]. User managed transactions are
forbidden.

2 Background 8

Figure 3: Distributed transaction sequence diagram

3 Patterns 9

3 Patterns
Very often a transaction needs to synchronously invoke a remote service, for the
rest of the work depends on its result. The remote service call can be a remote EJB
method call (JAP - JAP) or a CORBA call (cross-platform communication, mostly
with Mainframe). Remote procedure calls from within a transaction increase the
transaction complexity: running a 2PC protocol with remote sub-coordinators is very
expensive. Credit Suisse forbids therefore remote procedure calls from within a
transaction.

Instead of propagating the transaction context to the remote transaction manager,
the current transaction is being suspended before contacting the remote service.
The remote transaction manager will start a new transaction, do the operations on its
resources and complete its transaction. As soon as the remote call returnes, the
primary transaction is resumed. Please note, that the outcome of the primary
transaction is independent on the outcome of the remote transaction. Even if the
remote transaction has been rolled back, the primary transaction can decide to
commit. Another advantage of this model is decoupling of the two transactions. The
resources involved in the remote transaction will be locked only during the lifetime of
the remote transaction. If we would allow transaction context propagation to te
remote system, the remote resources would also be involved in the 2PC protocol,
run by the transaction manager of the primary transaction. This way, remote
resources would stay locked all the way until the whole transaction completes. Note
that such a transaction could span more than only one remote system and block a
huge number of resources, making them unnecessarily unavailable for other
transactions.

CORBA by default does not inherit the caller's transaction context from the
application server and processes the call within a separate remote transaction. The
CORBA OTS (Object Transaction Service) protocol, which is able to inherit a
transactional context from the existing application server, is not implemented within
Credit Suisse. EJB calls, on the other hand, can propagate transactional context,
which must be prevented by setting the right transaction attributes. Methods of a
remote EJB interface must be annotated with REQUIRES_NEW or NOT_SUPPORTED
transaction attribute, depending on whether the remote service is transactional or
not. Local interface methods of a transactional EJB should be annotated with the
transaction attribute REQUIRED.

In this setting, where transactional applications invoke a remote service only from
the outside of the transactional context, all the changes done on the remote system
will not be committed by the 2PC protocol run by the transaction manager of the
primary transaction. In other words, transaction manager cannot guarantee atomicity
anymore. Assuring atomicity in this case, is the responsibility of the application logic.
Even if the remote service does not change the remote state, but executes some
read-only operations, the application has to be prepared for handling situations
when the remote service is not reachable, or not available.

At the moment, most of the transactional applications on JAP make remote
procedure calls, for 90% of productive data used by JAP applications is located on
Mainframe.

3 Patterns 10

There are three types of transactional applications on JAP: 1. applications that
interact only with local resources (belonging to the same WLS domain); 2.
applications that make read-only remote service calls; 3. applications that execute
updates on remote resources. For each of these JAP application types, Credit
Suisse has defined a pattern, which models the application type and provides a
detailed description of its typical characteristics. Patterns also point out typical failure
scenarios and provide solutions, even implementations for their handling. The main
purpose of patterns is to give the application developers better understanding of the
applications and to raise their awareness of possible failures.

3.1 Local Resources Pattern
The local resources pattern models a transactional application, which interacts only
with local resources, the ones who belong to the same WLS domain. In other words,
it models common single-resource and distributed transactions, which were
described in Chapter 2.

3.2 Read-only Pattern
The read-only pattern describes how a read-only remote service should be invoked
synchronously from within a transactional application and provides a framework for
corresponding failure handling. Read-only pattern is an extension of a regular
distributed transaction described in Figure 3. Figure 4 shows a sequence diagram
describing the flow of events during the execution of a read-only pattern.

On first use the connections to the resources are established and resources are
being associated with the transaction. At some time during the transaction, the
example application in the diagram wants to invoke a remote, read-only EJB
method. The calling method is annotated with the (REQUIRES_NEW) transaction
attribute. This way, the transaction manager will automatically suspend the current
transaction before making the remote service call (messages 5-8). As soon as the
remote service call has returned, the application server will resume the transaction
(messages 16-19) and the application will continue its work in the original
transactional context. It is important to notice that messages 9-15 are not a part of
the original transaction. Upon receiving the request, the remote service will start a
new transaction, execute the service, deliver the result and close the transaction. In
our example, the remote service transaction involves only one resource (Oracle
database), so the remote transaction manager will run the 1PC protocol. The remote
service will not be involved in the 2PC protocol run by the transaction manager of
the primary transaction.

3 Patterns 11

Figure 4: Read-only pattern sequence diagram

3 Patterns 12

3.3 Reservation Pattern
The reservation pattern describes how a remote service changing the remote state
should be invoked synchronously from within a transactional application and
provides an implementation of pattern specific failure handling.

Imagine a transactional application calling a remote service, which updates a remote
state. It could be a simple version of an ATM (Automated Teller Machine). As
customer makes a withdrawal request, the ATM starts a new transaction.
Customer's account data is stored on a remote system and ATM invokes a remote
service to execute the booking. As soon as the procedure has returned without
failures, the ATM dispenses the money to the customer. If for example ATM would
crash suddenly, after the remote procedure has been executed, but before the ATM
had a chance to dispense the money, the withdrawal amount would have been
deducted from the customer's account, although the customer has never received
the money.

In order to prevent such inconsistent states after failures, updating the remote state
is done in two steps: synchronous reservation followed by an asynchronous
confirmation. Only after receiving both of them, which happens only if the transaction
commits, the remote service will execute the updates. The remote system needs to
be able to associate each incoming confirmation with the corresponding reservation
from its reservation database. Therefore, each reservation is uniquely identified by a
freshly generated UUID (Universally Unique Identifier), which also needs to be
contained in the corresponding confirmation.

With this model, in case of a failure on the client side, the transaction will be rolled
back, hence the asynchronous confirmation will not be sent. The remote service will
not receive a confirmation for the reservation and will therefore not make any
permanent changes on the system.

ATM is a typical reservation application in Credit Suisse. The ATM application is
running on JAP and all customers' account data is stored on Mainframe.

The exact flow of events in a reservation pattern is shown in the sequence diagram
of Figure 5. This example application is a transactional EJB doing some local work
on its local database and message queue, and invoking a remote EJB, which
executes some updates on the remote system. Before forwarding the reserve()
method call, the WLS application server suspends the transaction. As remote
service is invoked, a new, remote transaction is started and the reservation is saved
into the reservations database. In this example there is only one resource involved in
the remote transaction, so remote transaction manager will run the 1PC protocol
with the database. After closing the transaction, the remote server will return the
result to the caller. Upon receiving the result, the local transaction will be resumed.
Finally, the application will create a confirmation message and put it into the
message queue. Before, after or between the synchronous reservation and
asynchronous confirmation the application can optionally do some other work on its
local resources. At the end, the transaction manager will run the 2PC protocol with
the local resources and application server will close the transaction.

3 Patterns 13

Figure 5: Reservation pattern sequence diagram

4 Failure Scenarios 14

4 Failure Scenarios

4.1 Local Resources Pattern
The local resources pattern is logically divided in two phases. In the first phase, the
application is executing the business logic. In the second phase, the transaction
monitor is running the 2PC protocol. Failures that can occur in these two phases
have a large impact on the outcome of the transaction, but are handled differently,
so they will be discussed separately.

4.1.1 Timeouts

WLS, Oracle and MQ transactional timeouts shorten the time during which
transactions are blocking the resources in case of a failure. They should be
configured in a way that they do not abort healthy transactions during their
execution, but only transactions, that are not processing their work properly and are
blocking the resources. The timeouts setup should also guarantee that during the
second phase of the 2PC protocol no automatic heuristic decisions are made. Here
is the list of configurable timeouts in the application layer that influence transactions.
There are also timeouts defined in underlying layers (for example TCP/IP timeouts),
but they are not in the scope of this work.

TimeoutSeconds (default = 30 seconds): WLS
If the transaction has not reached the prepared state after this time, counting from
the beginning of the transaction, it is automatically rolled back. It spans the
application part of the transaction and the first phase of the 2PC protocol. On JAP
this attribute is set to 60 seconds and can be configured on the Domain ->
Configuration -> JTA tab of the WLS console (see Appendix, Chapter 6.3 for more
details). This timeout can also be set for each EJB individually in the weblogic-ejb-
jar.xml descriptor file.

<transaction-descriptor>
 <trans-timeout-seconds>20</trans-timeout-seconds>
</transaction-descriptor>

AbandonTimeoutSeconds (default = 86400 seconds = 24 hours): WLS
As soon as the transaction is in the prepared state, the second phase of the 2PC
protocol starts. During this phase, the transaction manager will continue trying to
complete the transaction until all resource managers indicate that the transaction is
completed. This timeout defines the maximum period of time a transaction manager
is allowed to persist in attempting to complete the transaction. Once this timeout is
reached, the transaction will be abandoned. WLS will throw and log a
HeuristicMixedException.

This timeout can be configured on the Domain -> Configuration -> JTA tab of the
WLS console. See Appendix, Chapter 6.3 for more details.

4 Failure Scenarios 15

KeepAliveInterval: MQ
This WebSphere MQ attribute defines how often the availability of the channel with
WLS is checked. An unavailable channel denotes a failure of WLS. In such case all
transactions that have not been prepared yet will be rolled back immediately.
Prepared transactions will not be affected by the channel failure – they will stay in
prepared state until WLS transaction manager contacts the MQ or manual
transaction completion takes place. On JAP the value of the KeepAliveInterval
attribute is set to 300 seconds, which applies to all existing channels. When not
specified, the value of the underlying TCP/IP protocol is used. Note that, after a WLS
crash, the messages involved in the transaction will stay locked and herewith not
visible to other users for up to 300 seconds. The exact impact of such configuration
on the overall system needs to be thoroughly analysed and taken into account. The
result might be an adjustment of the standard value of this attribute.

distributed_lock_timeout (default = 60 seconds): Oracle
After this time period, counting from the beginning of the transaction, Oracle
resource manager will roll back the transaction if it is not in a prepared state yet.
This value can be configured for each resource manager separately and is then valid
for all its transactions. On JAP distributed_lock_timeout is set to 100.

XAResource.setTransactionTimeout
WLS can propagate the TimeoutSeconds attribute to its resources by calling the
method boolean setTransactionTimeout(int seconds) of the XAResource
interface. Once set, this timeout value is effective until this method is invoked again
with a different value. To reset the timeout value to the default value used by the
resource manager, set the value to zero. If a resource manager does not support
transaction timeout value to be set explicitly, this method returns false.

The effective implementation of the method defines how the value is used by a
resource manager. WebSphere MQ, for example, does not support explicit setting of
the transaction timeout. It ignores the propagated value and returns false. Oracle
resource manager adapts the value of its distributed_lock_timeout attribute to the
propagated value, if the propagated value is smaller than the current value of the
attribute.

It is not clear yet, if this method should be used. The TransactionTimeout attribute
can be set for each EJB individually, but when propagated to the Oracle database,
the distributed_lock_timeout is set to a new value, which is then valid for all
transactions. The consequences of such configuration must be thoroughly analysed.

4 Failure Scenarios 16

Figure 6: Timeouts overview

4 Failure Scenarios 17

4.1.2 Exceptions during the application logic phase

Many things can go wrong during the execution of the business logic: a method call
with invalid input parameters, a reference to a non existing object, an attempt to
change a record in the database violating integrity constrains, etc. All these errors
result in an exception.

Java exceptions are categorized in two groups: system exceptions and application
exceptions. System exceptions include java.lang.RuntimeException,
java.rmi.RemoteException, and all its subclasses. They can be thrown by the
EJB container, when it detects an internal application server failure. The container
handles system exceptions thrown from a bean method automatically: it rolls back
the transaction, throws and logs an EJBException or
EJBTransactionRolledbackException (depending on whether the transaction
context has been propagated or not) and discards the EJB instance.
EJB*Exception is a subtype of RuntimeException, so it is considered a system
exception. In contrast to other system exceptions, EJBException cannot be turned
into an application exception using the @ApplicationException annotation.

All other exceptions, that are not system exceptions, are application exceptions.
Application exceptions can, but do not have to roll back the business process. If not
stated explicitly with @ApplicationException(rollback=true) annotation, an
application exception will not cause the transaction to roll back.

It is a Credit Suisse guideline that each transaction throwing an application
exception must be rolled back by calling the setRollbackOnly() method. Further
on, after calling the setRollbackOnly() method, an exception has to be thrown
or a state has to be returned, informing the caller about the negative outcome of the
transaction.

There are three types of application exceptions in JAP: technical, business and other
application exceptions. A technical exception should be thrown, when a technical
failure prevented the system from executing the work. If the failure was of a business
nature, the business exception should be thrown. This distinction between the two
types provides some additional information to the caller. Throwing a technical
exception tells the caller that the procedure could not be executed because of some
internal failure. Throwing a business exception on the other hand, puts the blame of
failing on the caller. Other application exceptions are thrown by subsystems (for
example SQLException thrown by JDBC).

Very generally, an application can catch or not catch an exception. Once the
exception is caught, the application can handle it or throw a new exception and pass
the problem to its caller. An exception can be handled in three ways. The first option
is ignoring the exception, which is a good choice when the result of the failed
method is not crucial. If the result is necessary, but there are alternative ways of
getting to the information, the application will compensate the failed method call by
calling another method. Finally, if the result is necessary and cannot be obtained by
any other means, the application might retry the method call. The following decision
making tree in Figure 7 illustrates the options described above.

4 Failure Scenarios 18

Figure 7: Exception handling decision tree

The following table gives an overview of exception handling recommendations for
JAP transactions. Each exception type has been considered separately as well as
the options of propagating or not propagating the transaction context. The
transaction attributes denote the value, which annotates the EJB throwing the
exception. The calling EJB is always transactional. As opposed to EJBException
and application exceptions, system exceptions caught by an EJB do not originate
from another EJB, but from a method of its own.

REQUIRES_NEW

REQUIRED

A: Do not catch the exception -
let the container rethrow it as
EJBException and rollback the
transaction automatically

A: Do not catch the exception - let the
container rethrow it as
EJBTransactionRolledback-
Exception and rollback the
transaction automatically

B: Catch the exception and handle
it – the transaction will not be rolled
back

B: Catch the exception and handle it
– the transaction will not be rolled
back

system
exception

C: Catch the exception, call
setRollbackOnly() method and
throw an application exception –
the transaction will be rolled back

C: Catch the exception, call
setRollbackOnly() method and
rethrow it as an application exception
– the transaction will be rolled back

A: Catch the exception and handle
it – the transaction of EJB1 will not
be rolled back

EJBException
/ application
exception

B: Catch the exception, call
setRollbackOnly() method and
throw an application exception - the
transaction of EJB1 will be rolled
back

Catch the exception and rethrow it as
an application exception - the
transaction of EJB1 will also be rolled
back

Table 1: Exception handling

4 Failure Scenarios 19

Figure 8, Figure 9, Figure 10 and Figure 11 visualize the content of Table 1:

Figure 8: System exception handling - transaction attribute "RequiresNew"

Figure 9: System exception handling – transaction attribute "Required"

4 Failure Scenarios 20

Figure 10: EJBException and application exception handling –
transaction attribute "RequiresNew"

Figure 11: EJBException and application exception handling –
 transaction attribute "Required"

Although it is technically possible, EJBExceptions and application exceptions
should not be left unhandled or rethrown as EJBExceptions. Rethrowing these
exceptions as technical or business exceptions gives the caller more information
about the context of the failure that occurred, in terms that the caller can understand.
In addition, in case of transaction propagation with the Required attribute,
EJBExceptions and application exceptions should not be ignored within a catch
block. The transaction of the calling EJB is at that moment already marked for
rollback and any changes done after ignoring the exception, will be a part of a
transaction which is not valid any more.

4 Failure Scenarios 21

As Table 1 shows, exception are handled differently when transactional context is
propagated or not, but the difference is very slight. Handling a system exception is in
both cases the same. Rethrowing a EJBException or an application exception in
case of propagated transaction context does not require a setRollbackOnly()
method call, for the transaction of the calling EJB has already been marked for
rollback. An explicit call, however, would do no harm. The developer still has to
check if it makes sence to continue computation on behalf of the current transaction
or not. This check should be done by calling the getRollbackOnly() method of
the EJBContext interface. Therefore, in order to make the exception handling
guidelines clear and brief, we summarize them as follows:

A: Do not catch the exception - let the container rethrow it as
EJBException or EJBTransactionRolledbackException and roll
back the transaction automatically
B: Catch the exception and ignore it – the transaction will not be rolled
back

system
exception

C: Catch the exception, call setRollbackOnly() method and rethrow it
as an application exception – the transaction will be rolled back

A: Catch the exception and call the getRollbackOnly() method. If the
transaction is not marked for rollback, handle the exception EJBException

/ application
exception B: Catch the exception, call the setRollbackOnly() method and throw

an application exception

Table 2: Exception handling guidelines

4.1.3 Failures during the 2PC phase

Timeouts described in Chapter 4.1.1 are one example of failures that can happen
during the execution of the 2PC protocol. Another one is heuristic transaction
completion. This happens when a resource manager's work is manually committed
or rolled back, independently of the transaction manager. After heuristically
completing the transaction, the resource manager is not allowed to forget the
transaction, in order to be able to inform the transaction manager about the situation
as soon as it is contacted again. If the manual decision does not match with the
decision the transaction manager has made, the resource will be left in an
inconsistent state and the ACID properties will not be preserved.

Problems can also occur, when one of the resource managers fails. The damage
done depends very much on the exact moment during the 2PC, where the failure
happened. In some cases, the transaction manager can roll back the transaction and
lead it to the consistent state, in some cases not. If the transaction ends with an
inconsistent state, manual intervention is needed for restoring the consistence.

A failure of the transaction manager is also a big challenge for atomic commitment.
Also here, the impact of the failure on the outcome of the transaction is very
dependent on the exact moment when the failure happened.

The goal of this work is not to deliver an extensive list of all possible failures, but to
give an overview of the faulty states the transaction can end in. The set of possible
failures is huge, but many of them are handled in the same way and they cause the
transaction to end in the same state. In order to define the end states and
understand how they are reached, I have analysed the interaction of

4 Failure Scenarios 22

TransactionManager and XAResource JTA interfaces. WLS transaction manager
implements the TransactionManager interface, while WebSphere MQ and Oracle
resource managers implement the XAResource interface.

Each failure in the system that cannot be repaired by a single component results in
an exception. If the transaction manager and its resource managers cannot repair
the failure through their interaction, the transaction will be affected. The question is:
Which exceptions are there, and which of them are hazardous for the transaction
and under which circumstances.

XAException is an exception thrown by a resource manager to inform the
transaction manager of an error encountered during transaction processing. The
errCode parameter gives a description of the error cause. You can find a complete
list of all possible error codes according to the JTA specification in Appendix,
Chapter 6.2. Here are the ones relevant for this work:

XA_RB*
The resource manager has rolled back the transaction work and has released all
held resources. WLS transaction manager treats all XA_RB* error codes equally, it
does not distinguish between them.

XAER_RMERR, XAER_RMFAIL
These error codes denote an error on the resource manager, which makes it
unavailable. The action requested by the transaction manager may or may not have
been executed. The WLS transaction manager treats these two error codes equally
and therefore they are summarized as XAER_RM* in this work. XAER_RM* will be
returned in cases when all RAC nodes have failed and there is not a single healthy
RAC node, which can serve the transaction requests.

XAER_NOTA
The resource manager returns this error code if the transaction manager has made
a request for a transaction with an xid, which the resource manager does not
recognize.
XAER_HEUR* = XAER_HEURCOM, XAER_HEURRB, XAER_HEURMIX, XAER_HEURHAZ
The resource manager returns the XAER_HEUR* error codes after completing the
transaction work heuristically: XAER_HEURCOM if the heuristic decision was commit,
XAER_HEURRB if the heuristic decision was rollback, XAER_HEURMIX if some parts of
the transaction work have been committed and some rolled back and XAER_HEURHAZ
if the transaction work might have resulted in a heuristic mix, but resource manager
cannot confirm the mixed outcome.

XAER_INVAL, XAER_PROTO
These two error codes are never treated separately, but are handled in the last catch
block with all other XAExceptions.

4 Failure Scenarios 23

Following are the most important methods of the XAResource interface, which can
be invoked by the transaction manager during the 2PC protocol:

int prepare(Xid xid) throws XAException

Transaction manager calls this method to request a resource manager to prepare for
committing any work done on behalf of the transaction specified by xid (global
transaction identifier). The return value indicates the resource manager's vote on the
outcome of the transaction: XA_RDONLY or XA_OK. After returning XA_RDONLY the
resource manager may release all resources and forget about the transaction. If all
resource managers vote with XA_RDONLY, the transaction manager will not run the
second phase of 2PC, but commit the transaction immediately. If any resource
manager returns a XAException, no matter of which error code it contains, the
transaction manager will roll back the transaction.

Possible error codes: XA_RB*, XAER_RM*, XAER_NOTA, XAER_INVAL,
XAER_PROTO

Error code Best outcome Worst outcome

any RollbackException HeuristicMixedException

void commit(Xid xid, Boolean onePhase) throws XAException

Transaction manager calls this method to request the resource manager to commit
the work done on behalf of the transaction specified by xid. Any changes made to
resources on behalf of this transaction are made permanent and resource locks are
released.

Possible error codes: XA_HER*, XAER_RM*, XA_RB*, XAER_NOTA, XAER_INVAL,
XAER_PROTO

XA_RB* error codes can be returned only if the transaction manager is running the
1PC protocol (onePhase parameter is set to true).

If a resource manager returns the XAER_HEURCOM error code, the heuristic decision
of the resource manager matches the decision of the transaction manager, so the
transaction manager will call the forget() method on this resource manager and
lead the transaction to normal commit. The transaction will end in a consistent state.

If some resource manager returns the XAER_HEURRB error code, the transaction
manager cannot lead the transaction to a consistent state any more and has to
throw a HeuristicMixedException. It will not call the forget() method on this
resource manager, for the transaction context needs to be saved for the subsequent
manual intervention.

If some resource manager returns a XAER_RM* error code, the transaction manager
cannot lead the transaction to a consistent state until this resource manager is
available again. Note that other resource managers will have committed their work
already and have forgotten the transaction. The transaction manager will try calling
the commit() method three times in a row on the failed resource manager. If the
method call still does not succeed, transaction manager will throw a
SystemException, which will abort the application. WLS transaction manager,

4 Failure Scenarios 24

however, will keep trying calling the commit() method every 60 seconds until the
AbandonTimeoutSeconds timeout is reached. Then the forget() method is called
and HeuristicMixedException thrown and logged.

Any other XAException will make the transaction manager throw a
HeuristicMixedException and leave the transaction in an inconsistent state.
Manual intervention for restoring the consistent state is then necessary.

Error code Best outcome Worst outcome

XAER_RM* commit HeuristicMixedException

XAER_NOTA
XAER_HEURCOM commit commit

other HeuristicMixedException HeuristicMixedException

void rollback(Xid xid) throws XAException

Transaction manager calls this method to request the resource manager to roll back
the work done on behalf of the transaction specified by xid. Any resources held by
the resource manager for this transaction are released and all outstanding updates
are invalidated.

Possible error codes: XA_HER*, XAER_RM*, XAER_NOTA, XAER_INVAL,
XAER_PROTO

If a resource manager returns the XAER_HEURRB error code, the heuristic decision of
the resource manager matches the decision of the transaction manager, so the
transaction manager will call the forget() method on this resource manager and
lead the transaction to normal roll back. The transaction will end in a consistent
state.

If some resource manager returns the XAER_HEURCOM error code, the transaction
manager cannot lead the transaction to a consistent state any more and has to
throw a HeuristicMixedException. It will not call the forget() method on this
resource manager, for the transaction context needs to be saved for the subsequent
manual intervention.

If some resource manager returns a XAER_RM* error code, the transaction
manager cannot lead the transaction to a consistent state until this resource
manager is available again. Note that other resource managers will have rolled back
their work already and have forgotten the transaction. The transaction manager will
try calling the rollback() method three times in a row on the failed resource
manager. If the method call still does not succeed, transaction manager will throw a
SystemException, which will abort the application. Transaction manager,
however, will keep trying calling the rollback() method every 60 seconds, until
the AbandonTimeoutSeconds timeout is reached. Then the forget() method is
called and HeuristicMixedException thrown and logged.

Any other XAException will make the transaction manager throw a
HeuristicMixedException and leave the transaction in an inconsistent state.
Manual intervention for restoring the consistent state is then necessary.

4 Failure Scenarios 25

Error code Best outcome Worst outcome

XAER_RM* RollbackException HeuristicMixedException

XAER_NOTA
XAER_HEURRB commit commit

other HeuristicMixedException HeuristicMixedException

Xid[] recover(int flag) throws XAException

Transaction manager calls this method to obtain a list of xids for which the resource
manager is in prepared or in heuristically completed state. WLS TM will invoke this
method only in a situation, when it does not know in which status the resources are.
This happens when the transaction manager crashes before writing its decision into
the TLog. After the restart, the transaction manager reads the TLog in order to
detect the state in which the transaction was before the crash. It sees then the list of
all resource managers involved in the transaction and notices that the decision about
the outcome of the transaction has not been made yet. At this moment, transaction
manager decides to roll back the transaction. It calls the recover() method on
every resource manager involved in the transaction and then sends a rollback
request to each resource manager, which returned the xid of the current
transaction.

If WLS crashes after writing its decision into the TLog, it will read the decision from
the TLog upon restart and continue leading the transaction towards this outcome.

The return value is a list of zero or more xids. It is the transaction manager's
responsibility to ignore the xids that do not belong to it.

Possible error codes: XAER_RM*, XAER_INVAL, XAER_PROTO

It has not been ascertained yet, how WLS transaction manager reacts to
XAExceptions after this method call. The likelihood for such a failure scenario, where
a resource manager fails very shortly after the WLS has crashed, is very slight.
However, it is still necessary to analyse this case and define the impact it can have
on the transaction outcome.

void forget(Xid xid) throws XAException

A resource manager that heuristically completes work done on behalf of the
transaction must keep track of the transaction along with the heuristic decision until
told otherwise (by transaction manager or by human, manual intervention).
Transaction manager then calls forget() method to permit the resource manager
to erase its knowledge of the xid transaction. Any effort to contact the resource
manager concerning the transaction specified with xid upon successful return of the
forget() method will result with resource manager returning the XAER_NOTA error
code.

If, after a heuristic decision, the transaction ends in an inconsistent state,
consistency needs to be restored manually. The information about the transaction
held by the resource manager is crucial for successful manual recovery. In such
case, transaction manager is not allowed to call the forget() method. This can and

4 Failure Scenarios 26

must be prevented by setting the ForgetHeuristics attribute on the JTA panel of the
WebLogic Console to false (see Appendix, Chapter 6.3).

Possible error codes: XAER_RM*, XAER_NOTA, XAER_INVAL, XAER_PROTO

Transaction manager will ignore all XAExceptions, no matter of the error code. If
XAException has been thrown, the resource manager might have or might have not
forgotten the transaction. If the transaction has been completed heuristically, the
person who made the heuristic decision has to make sure that the transaction is not
visible any more.

The logic of the WLS transaction manager during the 2PC protocol described above
is depicted in the state diagram of Figure 12. A larger print of the diagram you will
find at the end of the document. This model of the XA protocol is a very useful tool
for getting an overview of the possible failure scenarios and their impacts on the
transaction outcome. The most interesting part of the diagram is the red area on the
right, containing failure scenarios, which end in an inconsistent state. In such a case,
manual intervention is necessary.

4 Failure Scenarios 27

Figure 12: WLS transaction manager state diagram (2PC)

4 Failure Scenarios 28

4.2 Read-Only Pattern
Read-only pattern is an extension of a distributed transaction described in Chapter
2. All failure scenarios occurring during the 2PC protocol described in Chapter 4.1
also apply to the read-only pattern, but the additional remote service call entails
some new failure scenarios.

The failures from the remote service call can be categorized in two groups:

1) Calls that result with an exception
2) Calls that return an error code
3) Calls that do not return within a predefined time

When a remote service call returns an exception or does not return at all within a
specified time window, the application can decide to execute the remote call once
again and hope for a better outcome. Since the read-only service does not change
the remote state, executing the service multiple times will also not change it.
However, there is one side effect that developers have to be aware of. Each retry
call will be executed within a separate remote transaction. Hence the results of
multiple consecutive calls might differ, for some other remote transaction might have
changed the remote state between the calls. Note that the isolation property is not
preserved.

Retrying the remote service call however is not always the right solution. After
receiving a deadlock exception, retrying after some reasonable period is a very sinful
reaction. If the remote service call returns a fatal error on the other hand, the retry
call will not make much sense, for the service will most probably not have recovered
yet. Even in case of a timeout, consecutive retries might not be the best solution.
Timeouts happen mostly when the service is overloaded. Imagine all applications
requesting the same, overloaded service running in a time out and retrying the calls
consecutively. The situation would get even worse: the service would get even more
overloaded and the server would get overloaded too. One suggestion for
improvement could be exponential growing retry intervals and even more important,
only a finite number of retries. One could also observe the timeout occurrence
frequency and after a certain threshold decide to declare the service unavailable and
prevent future calls.

4 Failure Scenarios 29

4.3 Reservation Pattern
As described in Chapter 3.3, the reservation pattern application executes an update
on a remote system in two steps: synchronous reservation followed by an
asynchronous confirmation. Updates executed on the local and remote system in the
reservation pattern are not a part of the same transaction.

4.3.1 Crash or rollback after remote service call

When a remote service call fails, if the application knows that the service has not
been executed, the application can try to execute the remote service again and
commit, or it can decide to roll back the transaction by calling the
setRollbackOnly() method. In the opposite case, when the local transaction
decides to rollback or the application server crashes after the remote service call
was successfully executed, the application will be in an inconsistent state. In both
cases (application server crash or rollback), the local updates will be lost, but the
reservation will be persisted. If such a failure happens before the remote service call,
the consistency is not endangered.

In case of an error-free execution of the reservation pattern, the application sends
the confirmation message and commits the transaction. At this moment, the remote
service, however, has not processed the confirmation message yet and hence has
not committed the updates. Anyway, new service requests during this period, will
see the new, consistent state, which the service combines from the current
(inconsistent) state and the changes announced in the reservations database. This
transition period will last until the remote service reads the confirmation message
from its message queue, matches the confirmation with the corresponding
reservation and executes the final action.

In case of a successful commit, this is not a problem. But what happens, when the
application decides to roll back the transaction or application server crashes?

The remote service now has the reservation in its database, but the confirmation is
not there yet. When a new request arrives, the service will simulate the "new" state,
which it assumes to be valid, any time the confirmation arrives. The service cannot
know that the transaction has been rolled back and that the confirmation will not
arrive at all. The local and remote state are inconsistent.

At the first moment, it seems like we have not solved the problem, which the simple
implementation of the ATM had. But this is not the case. The inconsistency after
such a failure cannot be avoided, but the duration of the inconsistency period can be
shortened. This is done by introducing a time to live attribute for reservations. If a
reservation does not get confirmed within this period, it will be deleted from the
database and the updates will never take place. The time to live attribute can be
configured for each service individually, so that each service can fulfill its own
business requirements. Too short time-to-live attribute configuration might lead to a
"false negatives" situation: the reservation was made, the confirmation has been
sent, but the time-to-live is so short, that the confirmation message does not always
reach the remote service during the reservation's life time. Handling of such a failure
is application specific and depends heavily on the business requirements. If, on the
other hand, the time-to-live attribute is too long, the inconsistent state after a failure
will last longer than necessary and affect the customer's convenience.

4 Failure Scenarios 30

In the real Credit Suisse ATM application, the reservations can live up to a couple of
days. Imagine a client with 150 CHF on his account making a withdrawal of 150
CHF. During the transaction processing the ATM crashes after the reservation has
been processed. The client sees that this machine is not working any more and goes
to another ATM. He tries again. This time however, the ATM will decline the
transaction, because the balance is too low, namely 0 CHF. This client will not be
able to withdraw his money, until the reservation time to live has elapsed or a bank
operator manually cleans up.

Another example is a unmanned gas station. Before being able to use the gas
pump, the client must insert his bank card into the machine, which then makes a
reservation for 150 CHF on the client's account. After refueling, the confirmation,
including the effective amount the client has spent, is sent. The client's balance,
however, is lower for 150 CHF. Reservations and confirmations are matched once a
day, on business days. If the transaction has taken place on a Saturday, the balance
will be inconsistent until next Monday.

However, ATM withdrawals are typically relative small amounts and this kind of
failures is very rare.

4.3.2 Failures during 2PC

Failures that can occur during the 2PC protocol execution have been thoroughly
analyzed in Chapter 4.1.3. Also their impact on the transaction outcome of the local
resources pattern and read-only pattern has been discussed. Such failures within a
reservation pattern cause much more trouble.

The application executes its work and decides if it wants to commit or roll back the
transaction. Then the transaction manager takes over and tries to lead the
transaction to the final state, as requested by the application. If failures occur, the
transaction manager might not be able to achieve its goal and the transaction might
end in one of the following states: rolled back or mixed outcome. At this point in time,
the transaction context does not exist any more. The application server will inform
the caller of the application about the failure by throwing an appropriate exception:
EJBTransactionRolledbackException if the transaction has been rolled back
or SystemException in case of a mixed outcome. In such case, the caller does
not know in which state the remote system really is: Have both, reservation and
confirmation, been executed? Or just the reservation? Or none of them?

4.3.3 Reservation timeout

As in read-only pattern, the remote service call in reservation pattern can result in an
exception or the call may not return at all. The remote service call of the reservation
pattern, in contrast to read-only pattern, updates the remote state and is therefore
not idempotent. If the application cannot decide on the success of the remote
service call, it will mark the transaction for rollback and inform the caller about the
failure.

4 Failure Scenarios 31

4.3.4 Retry

In the last three chapters, different failure scenarios, typical for the reservation
pattern, have been presented. The question now is: how should the caller react to
these failures? Can the pattern be executed once again? For most of the
applications, the inconsistency after a failure is acceptable, but the impact of the
inconsistency grows with number of unsuccessful executions. How many retries can
business logic tolerate? Answers to these questions are very application specific and
need to be seriously considered by developers.

4.3.5 Cancel function

For most of the existing applications in Credit Suisse, which implement the
reservation pattern, the transient inconsistent state after a failure is not an issue. For
the other applications, the reservation pattern framework offers an additional feature,
which can shorten the inconsistency period – the cancel function.

The cancel function can be explicitly enabled by calling the right method on the
reservation pattern framework interface. The framework will then automatically
generate a wrapper, an intermediate element between the transactional EJB, which
implements the reservation pattern, and its caller. In case of a failure, it is the
wrapper's responsibility to catch all exceptions thrown by the EJB and its container,
cancel the reservation and then forward the exceptions to the caller. The reservation
is canceled in a separate transaction, asynchronously, by sending a cancelation
message through the message queue. The cancel function is executed only once. In
case of failures, no further attempts will be made.

In order to spare application developers from generating and managing UUIDS, the
reservation pattern framework takes over that work. This is also necessary for the
cancelation execution. The wrapper needs to have access to the used UUIDS, for
the cancelation message needs to contain the same UUID as its corresponding
reservation.

Please note, that the remote service can never receive a confirmation and a
cancelation for a certain reservation. It either receives a confirmation, a cancelation
or none of them. The cancelation will be triggered only if an exception has been
thrown and an exception implies that the transaction has been rolled back.
Transaction rollback further implies that the confirmation message could not have
been sent. Also note that the failure, which aborted the confirmation, might also
cause the cancelation to fail. Hence, when the caller receives an exception, it cannot
assume that the reservation has been canceled, although the framework was told to
do so. Application developers therefore need to keep in mind, that the cancel
function is a best-effort service.

5 Conclusion 32

5 Conclusion
There are different teams within Credit Suisse working on JAP transaction
processing. Although they work on the same project, they all have different
perspectives. The lack of documentation and communication, in addition, results
with each team having its own definition of the interfaces and protocols between the
components. And sometimes, these definitions do not match.

In order to be able to define the failure scenarios, we had to understand the
implementation of the 2PC protocol first. The documents on the implementation of
the XA protocol in WLS, Oracle and MQ are internal, non-disclosure documents, not
available to Credit Suisse employees. Through numerous interviews with external
WLS, Oracle and MQ specialists in Credit Suisse, we have collected, merged,
filtered and summarized the information, which has now been published in this
master thesis. Summarizing this information and making it available was the first and
necessary step towards the understanding of transaction processing on JAP.

The WLS transaction state diagram, the model of the 2PC protocol implementation
is a good visual tool for analyzing the 2PC failure scenarios. Looking at the diagram,
one can easily define failure scenarios, which lead to an inconsistent transaction
state and require manual handling. For such cases, standardized procedures and
mechanisms for failure handling need to be designed.

Next step towards the goal of building an operational model is answering the
following questions: What information is necessary for manual recovery and must
therefore be provided to the operator? Where does this information reside and how
is it accessible? Which log record patterns indicate an occurrence of a specific
failure? How can the log information be accessed by the monitoring system? Which
logs need to be observed? In case of a failure detection, who and how should be
informed?

The knowledge summarized in this master thesis might be a helpful information
source for implementing automatic failure handling system as a part of the JAP
platform.

6 Appendix 33

6 Appendix

6.1 JTA: Transaction Association and Connection
Requests

This session provides a brief walkthrough of how an application server may handle a
connection request from the application. The figure that follows illustrates the usage
of JTA. The steps shown are for illustrative purposes, they are not prescriptive:

1. Assuming a client invokes an EJB bean with a TX_REQUIRED transaction
attribute and the client is not associated with a global transaction, the EJB container
starts a global transaction by invoking the TransactionManager.begin method.

2. After the transaction starts, the container invokes the bean method. As part of the
business logic, the bean requests for a connection-based resource using the API
provided by the resource adapter of interest.

3. The application server obtains a resource from the resource adapter via some
ResourceFactory.getTransactionalResource method.

4. The resource adapter creates the TransactionalResource object and the
associated XAResource and Connection objects.

5. The application server invokes the getXAResource method.

6. The application server enlists the resource to the transaction manager.

7. The transaction manager invokes XAResource.start to associate the current
transaction to the resource.

8. The application server invokes the getConnection method.

9. The application server returns the Connection object reference to the
application.

10. The application performs one or more operations on the connection.

11. The application closes the connection.

12. The application server delists the resource when notified by the resource adapter
about the connection close.

13. The transaction manager invokes XAResource.end to disassociate the
transaction from the XAResource.

14. The application server asks the transaction manager to commit the transaction.

6 Appendix 34

15. The transaction manager invokes XAResource.prepare to inform the
resource manager to prepare the transaction work for commit.

16. The transaction manager invokes XAResource.commit to commit the
transaction. This example illustrates the application server’s usage of the
TransactionManager and XAResource interfaces as part of the application
connection request handling.

6 Appendix 35

6.2 XAException error codes
public class javax.transaction.xa.XAException extends
java.lang.Exception
{
public XAException();
public XAException(String s);
public XAException(int errCode);
}

XA_RBBASE
public final static int XA_RBBASE = 100
The inclusive lower bound of the rollback code.

• XA_RBROLLBACK
public final static int XA_RBROLLBACK = XA_RBBASE
The rollback was caused by an unspecified reason.

• XA_RBCOMMFAIL
public final static int XA_RBCOMMFAIL = XA_RBBASE + 1
The rollback was caused by a communication failure.
Java Transaction API

• XA_RBDEADLOCK
public final static int XA_RBDEADLOCK = XA_RBBASE + 2
A deadlock was detected.

• XA_RBINTEGRITY
public final static int XA_RBINTEGRITY = XA_RBBASE + 3
A condition that violates the integrity of the resources was detected.

• XA_RBOTHER
public final static int XA_RBOTHER = XA_RBBASE + 4
The resource manager rolled back the transaction branch for a reason not on this list.

• XA_RBPROTO
public final static int XA_RBPROTO = XA_RBBASE + 5
A protocol error occurred in the resource manager.

• XA_RBTIMEOUT
public final static int XA_RBRBTIMEOUT = XA_RBBASE + 6
A transaction branch took too long.

• XA_RBTRANSIENT
public final static int XA_RBTRANSIENT = XA_RBBASE + 7
May retry the transaction branch

• XA_RBEND
public final static int XA_RBEND = XA_RBTRANSIENT
The inclusive upper bound of the rollback codes.

• XA_NOMIGRATE
public final static int XA_NOMIGRATE = 9
Resumption must occur where suspension occurred.

6 Appendix 36

• XA_HEURHAZ
public final static int XA_HEURHAZ = 8
The transaction branch may have been heuristically completed.

• XA_HEURCOM
public final static int XA_HEURCOM = 7
The transaction branch has been heuristically committed.

• XA_HEURRB
public final static int XA_HEURRB = 6
The transaction branch has been heuristically rolled back.
Java Transaction API

• XA_HEURMIX
public final static int XA_HEURMIX = 5
The transaction branch has been heuristically committed and rolled back.

• XA_RDONLY
public final static int XA_RDONLY = 3
The transaction branch was read-only and has been committed.

• XAER_RMERR
public final static int XAER_RMERR = -3
A resource manager error occurred in the transaction branch

• XAER_NOTA
public final static int XAER_NOTA = -4
The XID is not valid.

• XAER_INVAL
public final static int XAER_INVAL = -5
Invalid arguments were given.

• XAER_PROTO
public final static int XAER_PROTO = -6
Routine invoked in an improper context.

• XAER_RMFAIL
public final static int XAER_RMFAIL = -7
Resource manager unavailable.

• XAER_DUPID
public final static int XAER_DUPID = -8
The XID already exists.

• XAER_OUTSIDE
public final static int XAER_OUTSIDE = -9
Resource manager doing work outside global transaction.

6 Appendix 37

6.3 JTA configuration in WLS console

7 References 38

7 References

[1] Java Transaction Processing - Feasibility Study
A. Geppert - Credit-Suisse

[2] Distributed Transaction Processing: The XA Specification
X/Open Company Ltd.

[3] Java Transaction API (JTA) Specification, Version 1.1 2002
Susan Cheung, Vlada Matena - Sun Microsystems Inc.

[4] Application Platform Architecture
 A. Geppert – Credit Suisse

[5] Java Application Platform (JAP) Overview
 R. Weber – Credit Suisse

[6] JAP AR5 Transaction Study
 U. Tonazzi, H. Leiser, A. Meyer – Credit Suisse

[7] Java Enterprise in a Nutshell, Third Edition
 J. Farley, W. Crawford

[8] Enterprise JavaBeans 3.0, Fifth Edition
B. Burke, R. Monson-Haefel

[9] Transaction Patterns: Design & Java-Framework
 Marco Stöckli - ETH Zürich

