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Abstract

This thesis is primarily concerned with the analysis of discrete-time

communication channels with intersymbol interference (ISI) and addi¬

tive white Gaussian noise (AWGN).

Complex random variables and processes are useful for describing the
baseband equivalent of bandpass communication channels with memory

and - as shown in this thesis - for deriving the capacity of ISI channels

with a complex unit-sample response and complex AWGN. The com¬

plex noise process in the equivalent baseband channel usually exhibits

certain symmetries in the autocovariance and crosscovariance function

of its real and imaginary part. We show that in order to achieve ca¬

pacity the information-carrying process must obey the same covariance

symmetries.

It is shown that the 'covariance' of complex random variables and

processes, when denned consistently with the corresponding notion for

real random variables, is specified by the conventional (complex) covari¬

ance and a quantity called the pseudo-covariance. A characterization

of uncorrelatedness and wide-sense stationarity in terms of covariance

and pseudo-covariance is given. The above covariance symmetries corre¬

spond to a vanishing pseudo-covariance. Complex random variables and

processes with a zero pseudo-covariance are called proper. It is shown

that properness is preserved under affine transformations and that the

complex-multivariate Gaussian density assumes a natural form only for

proper random variables. The maximum-entropy theorem is generalized
to the complex-multivariate case; the differential entropy of a complex
random vector with a fixed correlation matrix is shown to be maximum

if and only if the random vector is proper, Gaussian and zero-mean. The

notion of circular stationarity is introduced. For proper complex ran¬

dom variables, a discrete Fourier transform correspondence is derived

that relates circular stationarity in the time domain to uncorrelatedness
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in the frequency domain.

As an application of the theory, the capacity of an ISI channel with

complex inputs, a finite complex unit-sample response, and proper com¬

plex AWGN is determined. This derivation is considerably simpler than

an earlier derivation by Hirt and Massey for the real ISI channel with

AWGN, whose capacity is obtained as a by-product of the results for

the complex channel.

Motivated by the fact that the capacity of an ISI channel with

AWGN does not depend on the phase response of the channel filter,
we introduce a transfer-function equivalence class, whose members are

equal up to an allpass factor. It is shown that the mutual information

between a finite-length input block and the relevant channel outputs is

the same for all filters in such an equivalence class, regardless of the

input probability distribution. This result allows a simpler proof of a

lower bound on the information rate for independent, identically dis¬

tributed inputs due to Shamai, Ozarow, and Wyner.

The state transitions of a finite-state, time-invariant trellis encoder

can be described by a directed graph with exactly K branches leav¬

ing every node, called a K-ary state-transition diagram (STD). The

problem of finding all isomorphism classes of K-axy STD's with certain

topological constraints is investigated. K-axy STD's are constructed re¬

cursively from so-called partial K-axy STD's. Necessary and sufficient

conditions are derived for when a partial K-axy STD is extendable to a

(complete) strongly connected K-axy STD. We consider K-axy STD's

with maximum detour memory, i.e., with the property that the short¬

est detour in the associated trellis has maximum length. Such STD's

are shown to be strongly connected and to have the same number of

branches ending at every state. All non-isomorphic binary STD's with

maximum detour memory and N = 2M states, M < 4, are determined.

These binary STD's can be used, e.g., for the construction of matched

spectral-null codes for partial-response channels.

The performance of trellis-coded data transmission over channels

with finite ISI and AWGN is analyzed by investigating the trellis encoder

that results from the cascade of the channel encoder (the outer encoder)
with the subsequent channel filter (the inner encoder). Such a composite
trellis encoder usually has a non-uniform distance spectrum. A well-

known upper bound on bit error probability for convolutional encoders

and maximum-likelihood decoding is generalized to trellis encoders with

a non-uniform distance spectrum. The generalized upper bound involves

an average distance spectrum, which can be obtained by using a modified



Abstract vii

Viterbi algorithm. As an application, some bipolar trellis encoders for

the dicode channel are compared. It is shown that, for trellis encoders

with a non-uniform distance spectrum, the average number of bit errors

over all detours at free distance can be much smaller than one and is

therefore a more important parameter than in the case of a uniform

distance spectrum.

Keywords. Intersymbol interference, proper complex random vari¬

ables, capacity of ISI channel, information rate for i.i.d. inputs, equi¬
valent ISI channels, strongly connected state-transition diagram, non-

isomorphic state-transition diagrams, detour memory, trellis-coded ISI

channel, steady-state encoder, average distance spectrum.
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Ubersicht

Die vorliegende Dissertation befasst sich vorwiegend mit der Analyse
von zeitdiskreten Kommunikationskanalen mit Intersymbol-Interferenz

(ISI) und additivem, weissem Gauss'schem Rauschen (AWGN).

Komplexe Zufallsgrossen und -prozesse eignen sich zur aquivalenten

Basisband-Darstellung eines Bandpass-Kanals mit Gedachtnis und - wie

in der Dissertation gezeigt wird - zur Herleitung der Kapazitat von ISI-

Kanalen mit einer komplexen Impulsantwort und komplexem AWGN.

Real- und Imaginarteil des komplexen Rauschens in einem aquivalenten
Basisband-Kanal besitzen im allgemeinen gewisse Symmetrien in der

Autokovarianz- und Kreuzkovarianzfunktion. Wir zeigen, dass die Ka¬

pazitat nur erreicht werden kann, wenn der informationstragende Zu-

fallsprozess dieselben Kovarianz-Symmetrien aufweist.

Wird die 'Kovarianz' von komplexen Zufallsgrossen und -prozessen

widerspruchsfrei zum entsprechenden Begriff fur reelle Zufallsgrossen

definiert, so ist sie durch die konventionelle (komplexe) Kovarianz und

eine zweite Grosse bestimmt, die wir als Pseudo-Kovarianz bezeichen.

Unkorreliertheit und schwache Stationaritat werden mittels Kovarianz

und Pseudo-Kovarianz ausgedriickt. Die obigen Kovarianz-Symmetrien

entsprechen einer verschwindenden Pseudo-Kovarianz. Komplexe Zu¬

fallsgrossen und -prozesse mit solchen Symmetrien werden als eigentlich
bezeichnet. Es wird gezeigt, dass eigentliche komplexe Zufallsgrossen
durch affine Transformationen wiederum in eigentliche komplexe Zu¬

fallsgrossen iibergehen und dass die komplexe, multivariate Gauss-

sche Wahrscheinlichkeitsdichte nur fur eigentliche Zufallsgrossen eine

natiirliche Form annimmt. Der Satz iiber die maximale Entropie wird

verallgemeinert auf den komplexen, multivariaten Fall; die differentielle

Entropie eines komplexen Zufallsvektors mit einer gegebenen Korrela-

tionsmatrix ist maximal genau dann, wenn der Zufallsvektor eigentlich,
Gaussisch und mittelwertfrei ist. Der Begriff der zirkularen Stationa-
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Htdt wird eingefiihrt. Fur eigentliche komplexe Zufallsgrossen und die

diskrete Fourier-Transformation wird eine Korrespondenz zwischen zir-

kularer Stationaritat im Zeitbereich und Unkorreliertheit im Frequenz-
bereich hergeleitet.

Die Theorie wird angewendet zur Bestimmung der Kapazitat eines

ISI-Kanals mit komplexen Eingangen, einer komplexen Impulsantwort
und eigentlichem AWGN. Dabei ergibt sich eine wesentliche Vereinfa-

chung gegenuber einer friiheren Herleitung von Hirt und Massey fur den

reellen ISI-Kanal, dessen Kapazitat als Nebenprodukt der Resultate fur

den komplexen Kanal erhalten wird.

Die Tatsache, dass die Kapazitat eines ISI-Kanals mit AWGN nicht

vom Phasengang des Kanalfilters abhangt, legt die Einfiihrung einer

Aquivalenzklasse von Ubertragungsfunktionen nahe, deren Mitglieder
sich nur durch einen Allpass-Faktor unterscheiden. Es wird nachgewie-
sen, dass die gegenseitige Information zwischen einem Eingangsblock
endlicher Lange und den relevanten Kanalausgangen fur alle Filter in

einer solchen Aquivalenzklasse gleich ist, und zwar unabhangig von der

Eingangs-Wahrscheinlichkeitsverteilung. Dieses Resultat erlaubt einen

einfacheren Beweis einer unteren Schranke von Shamai, Ozarov und

Wyner fur die Informationsrate bei statistisch unabhangigen, gleichver-
teilten Eingangen.

Die Zustandsubergange eines zeitinvarianten Trellis-Encoders

konnen durch ein iiT-wertiges Zustandsdiagramm (STD1) dargestellt
werden, d.h. durch einen gerichteten Graphen mit genau K von je-
dem Knoten ausgehenden Zweigen. Wir untersuchen das Problem der

Bestimmung aller Isomorphie-Klassen von A"-wertigen STD's, die be-

stimmten topologischen Anforderungen geniigen. AT-wertige STD's wer¬

den durch Erweiterung gewisser unvollstandiger A"-wertiger STD's in

rekursiver Weise konstruiert. Die notwendigen und hinreichenden Be-

dingungen werden hergeleitet, unter denen ein solches Teil-STD zu ei¬

nem vollstandigen, stark zusammenhangenden iif-wertigen STD erwei-

tert werden kann. Wir untersuchen AT-wertige STD's mit maximalem

Umweg-Geddchtnis, d.h. mit der Eigenschaft, dass der kiirzeste Umweg
im zugehorigen Trellis die grosstmogliche Lange hat. Es wird gezeigt,
dass solche STD's stark zusammenhangend sind und dass in jedem Zu-

stand gleich viele Zweige enden. Alle nicht-isomorphen binaren STD's

mit maximalem Umweg-Gedachtnis und N = 2M Zustanden, M < 4,
werden bestimmt. Diese binaren STD's lassen sich zur Konstruktion

1Von englisch 'state-transition diagram'.
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von Trellis-Codes mit kanalangepassten spektralen Nullen fur Partial-

Response-Kanale verwenden.

Zur Untersuchung trellis-codierter Dateniibertragung auf Kanalen

mit endlicher ISI und AWGN untersuchen wir denjenigen Trellis-

Encoder, der aus der Kaskade des Kanal-Encoders (ausserer Encoder)
mit dem Kanalfilter (innerer Encoder) entsteht. Im allgemeinen hat

ein derartiger Encoder ein ungleichformiges Distanzspektrum. Eine be-

kannte obere Schranke fur die Bitfehler-Wahrscheinlichkeit bei Verwen-

dung eines Faltungs-Encoders und Maximum-Likelihood Decodierung
wird verallgemeinert auf Trellis-Encoder mit ungleichformigem Distanz¬

spektrum. In der verallgemeinerten oberen Schranke tritt ein gemittel-
tes Distanzspektrum auf, welches mit Hilfe eines modifizierten Viterbi-

Algorithmus bestimmt werden kann. Als Anwendung werden einige
bipolare Trellis-Encoder fur den Dicode-Kanal miteinander verglichen.
Anhand von Beispielen wird gezeigt, dass bei ungleichformigem Distanz¬

spektrum die mittlere Anzahl der Bitfehler iiber alle Umwege in freier

Distanz deutlich kleiner als eins sein kann, so dass diesem Parameter

die grossere Bedeutung zukommt als im Falle eines gleichformigen Di-

stanzspektrums.

Stichworter. Intersymbol-Interferenz, eigentliche komplexe Zu¬

fallsgrossen, Kapazitat des ISI-Kanals, Informationsrate bei statistisch

unabhangigen und gleichverteilten Eingangen, aquivalente ISI-Kanale,
stark zusammenhangendes Zustandsdiagramm, nicht-isomorphe Zu-

standsdiagramme, Umweg-Gedachtnis, Trellis-codierter ISI-Kanal,
Steady-State Encoder, gemitteltes Distanzspektrum.
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Chapter 1

Introduction

This dissertation is primarily concerned with the phenomenon of in-

tersymbol interference (ISI) on communication channels with additive

white Gaussian noise (AWGN). In the discrete-time channel created by
the modulator, the waveform channel, and the demodulator, ISI results

from processing the sequence of modulation symbols by a linear filter.

Perhaps one of the most intriguing aspects of ISI is the fact that it

can be avoided - at least in theory. For instance, Nyquist showed that

for a channel having an ideal lowpass filter characteristic with cutoff

frequency W, transmission of pulse amplitude modulation (PAM) sig¬
nals is possible without generating ISI provided that the symbol rate

does not exceed 2W [1], [2, p. 337]. More interestingly, ISI can also

be avoided on channels whose transfer function is not constant over its

passband, although not when PAM signals are used. Shannon [3, p. 169]
pointed out long ago that a continuous-time channel with a linear filter

and additive colored Gaussian noise can be divided into a large num¬

ber of parallel narrowband channels with statistically independent noise

processes, where each of the parallel channels has a small passband with

nearly constant ampUtude response and almost flat noise power spectral

density within that passband. In other words, the channel can be di¬

vided into a bank of independent AWGN channels. (Shannon concluded

from this observation that the capacity of a linear channel with colored

Gaussian noise and an average power constraint is the sum of the ca¬

pacities of the parallel AWGN channels when the transmitter power is

optimally distributed among the parallel channels.)
This might be a good place to reflect on how a discrete-time chan¬

nel can be created from a waveform channel and whether ISI can be
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avoided in this discrete-time channel. In the now classical communi¬

cation theory as formulated by Shannon [3], the waveform transmitted

over a continuous-time channel is represented as

N

X{(t) = Y^x,j </>_,(£), 1 < i < m,

i=i

where {<t>j{t) : 1 < j' < N} is a set of orthonormal functions that

are usually chosen to be convenient for modulation and demodulation,
cf. [4, pp. 223]. Each possible waveform x,(£) can thus be represented
by a point x,- = [x,-1, x,- i, ...

, xj n]
t in an iV-dimensional 'signal space'.

Assuming a 'straight-wire' channel with AWGN, the modulator, the

channel, and the demodulator combine to form an equivalent1 memo-

ryless vector channel

1 = x + w,

where y is the received vector, x is a point chosen from the signal
set {x,- : 1 < i < m}, and w is a vector of independent Gaussian

random variables with zero mean and variance N0/2. Interestingly, this

vector-channel model can also be used with a nontrivial linear channel

filter [5] - the transmitted waveform x,(i) is then obtained by convolv¬

ing the modulator waveform with the impulse response of the chan¬

nel. However, such a filtering operation complicates the computation
of the orthonormal functions <j>j{i) needed to represent the transmit¬

ted waveforms Xi(t) and, typically, requires a signal space with large
dimension N. In many applications, the dependence of the <j>j(t) on the

channel impulse response is highly undesirable as this impulse response

may be unknown or time-varying.
In PAM systems, a controlled amount of ISI is sometimes introduced

to shape the transmitted power spectrum or to reduce the sensitivity
to timing errors. Such design issues have led to the proposal of partial-

response systems [6] in which ISI is deliberately introduced.

In this dissertation, we will assume that one is either not able or

not willing to create an ISI-free discrete-time channel. Assuming PAM
on a linearly distorted AWGN channel, the combination of the modu¬

lator, the channel, and the demodulator can be reduced (without loss

of information) to a time-invariant discrete-time channel called the ISI

1Here, 'equivalent' means that no information is lost by replacing the continuous

channel output with the vector y.
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channel with AWGN [or the discrete-time Gaussian channel (DTGC) ]
and described by

oo

Vi = 5Z hmXi-m + Wi, -CO<i<CO,
m=0

where {«;,} is white Gaussian noise [7], [8]. Here, the ISI is just the con¬

tribution of the past modulation symbols x,_i, x;_2,... to the current

output y,-.

A formally equivalent channel is obtained in the case of quadrature

amplitude modulation (QAM), where the modulation symbols x,- can

be complex and the noise {wi} is a complex white Gaussian process

whose real part and imaginary part are independent real white Gaussian

processes with the same sample variance. We shall have further occasion

to see the usefulness of such complex random processes.

The capacity of the DTGC with an average symbol-energy constraint

was recently computed by Hirt and Massey [9]. By introducing a hypo¬
thetical circular channel model, they were able to avoid the formidable

asymptotics of Toeplitz matrices found in other derivations. Following
Shannon's original derivation [3, p. 169] and a later treatment by Gal-

lager [10, p. 385] of the capacity of continuous-time channels with a

linear filter, additive Gaussian noise and an average power constraint,
Hirt and Massey converted the circular channel to a bank of indepen¬

dent, memoryless, frequency-domain channels by means of a real dis¬

crete Fourier transform. To simplify their derivation further, we will

introduce a complex circular channel model that allows the use of the

more familiar discrete Fourier transform (DFT).
Trellis-coded data transmission over ISI channels with AWGN is of

much current interest in various applications, e.g., mobile radio systems,

high-rate digital subscriber lines (HDSL's) [11], voiceband modems [12],
and magnetic recording [13]. Assuming that the tasks of channel cod¬

ing and modulation have been appropriately separated, we can show

the communication system of interest as in Figure 1.1. It is obvious

that a finite-state trellis encoder followed by a discrete-time channel fil¬

ter with a finite unit-sample response2 itself forms a finite-state trellis

encoder. We will show how to upper-bound the bit error probability
for maximum-likelihood decoding of this latter trellis code by using an

2We will use the more precise term 'unit-sample response' rather than the corrup¬

tion 'impulse response' for discrete-time filters, except for the standard terminology
of a 'flnite-impulse-response' (FIR) or 'infinite-impulse-response' (IIR) filter [14].
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AWGN

Channel

Encoder
H(z)

,(
\

\ Channel

Decoder)

Figure 1.1: Coded communication over an ISI channel with a

channel filter H(z) = £~=0 hm z~m and AWGN

average distance spectrum that can be evaluated efficiently by means of

a modified Viterbi algorithm.
Trellis codes designed for the 'straight-wire' channel with AWGN are

often used in the presence of ISI because of the unpredictable nature of

ISI on some channels. The design of trellis codes for a large free Eu¬

clidean distance at the output of a subsequent partial-response channel

is a relatively new idea [15], [13], [16]. In particular, matched spectral-
null (MSN) codes for partial-response channels have received consider¬

able attention recently because of an interesting lower bound on the

free squared Euclidean distance at the channel output for MSN codes

[13, Prop. 6], [16, Thm. 6]. MSN trellis encoders can be constructed

from 'canonical graphs' with the desired spectral nulls [17], [18], [13],
[16] by using state-splitting algorithms [19], [20]. However, currently
available state-splitting algorithms are unable to attain a large free Eu¬

clidean distance. Moreover, how to construct minimal MSN encoders

is an open problem and easy-to-use criteria for avoiding catastrophicity
are not available.

We propose, as an alternative to state-splitting, an exhaustive search

for (n, k) trellis codes with a first-order spectral null at zero frequency
and large free Euclidean distance. Our approach assigns code n-tuples
to the branches of 2fc-ary state-transition diagrams. (A K-ary state-

transition diagram (STD) is a directed graph with exactly K branches

leaving every node.) It turns out to be desirable to use strongly con¬

nected 2fc-ary STD's, i.e., 2fc-ary STD's in which there is a path from any

node to any other node. Our approach raises the following questions:

(i) How can we construct all strongly connected 2fc-ary STD's with

a given number of nodes?

(ii) How can we eliminate 'isomorphic' 2fc-ary STD's, i.e., 2fc-ary
STD's that differ only in the names of their nodes and
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branches?

(iii) Which strongly connected 2fc-ary STD's are well-suited for con¬

structing trellis encoders?

These questions will be pursued in a self-contained chapter on state-

transition diagrams that may be of interest for other applications of

trellis codes.

The outline of this dissertation is as follows. Chapter 2 provides a

rounded treatment of certain complex random variables and processes

that we will call proper and is motivated by the simplifications that

arise from using such random variables in the analysis of ISI channels3.

In Section 2.1, second-order statistical properties, such as uncorrelat¬

edness and wide-sense stationarity of complex random variables and

processes, are characterized in terms of the conventional covariance and

an unconventional quantity that we call the pseudo-covariance. In Sec¬

tion 2.2, we introduce the class of proper complex random variables and

processes, which is characterized by a vanishing pseudo-covariance. We
show in Section 2.2.1 that several results from the theory of real ran¬

dom variables can be generalized in a natural way to proper complex
random variables. For instance, the famous maximum-entropy theorem

[10, Thm. 7.4.1], [23, Thm. 9.6.5] is generalized to complex random vec¬

tors. It is shown in Section 2.2.2 that when a bandpass communication

channel with wide-sense stationary noise is represented by an equiva¬
lent complex baseband channel [4], then the additive noise process in

this baseband channel is proper complex. In Section 2.3, a DFT cor¬

respondence is presented that relates circular stationarity in the time

domain to uncorrelatedness in the frequency domain for sequences of

proper complex random variables.

Chapter 3 is devoted to the computation of information rates for real

or complex ISI channels with AWGN and makes extensive use of the re¬

sults derived in Chapter 2. In Section 3.1, Hirt and Massey's derivation

of the capacity of the real DTGC [9] is simplified by first generalizing
to the complex DTGC. It is shown that the DFT permits the conver¬

sion of a complex circular channel with proper complex Gaussian noise

to a bank of independent, memoryless, frequency-domain channels. To

aid in selecting the information rate for coded data transmission over a

real [or complex] ISI channel with AWGN, one often wishes to have a

'Chapter 2 together with Section 3.1 will appear in the IEEE Transactions on

Information Theory [22].
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good lower bound on the channel capacity Cs for a given 1-dimensional

real [or complex] signal set. According to [24, Eq. (4.13a), pp. 4-7],
Cs is lower-bounded by Ju.d., the per-symbol mutual information with

the same signal set under the additional constraint that the modulation

symbols are independent and identically distributed. However, comput¬

ing Ii.i.d. requires the numerical evaluation of an ./V-dimensional inte¬

gral, where N approaches infinity. In general, such an integral can only
be approximated, e.g., by Monte Carlo methods [24, pp. 4-17]. As an

alternative to computing /u.d., Shamai, Ozarow, and Wyner recently
derived a lower bound on Ii.i.d. [25] that can be interpreted as the mutual

information for a memoryless AWGN channel with the given signal set

and a degraded signal-to-noise ratio. In Section 3.2, we provide a sim¬

pler proof of this lower bound that is based on the information-theoretic

equivalence of certain allpass-transformed ISI channels.

The self-contained Chapter 4 deals with K-axy STD's. In Sec¬

tion 4.1, the framework for the investigation of K-axy STD's is de¬

veloped. The problem of constructing strongly connected K-axy STD's

from so-called partial K-axy STD's is addressed in Section 4.2, where

necessary and sufficient conditions are derived for when a partial K-axy
STD can be extended to a (complete) strongly connected K-axy STD
with N nodes. In Section 4.3, an algorithm is presented for the sys¬

tematic construction of all non-isomorphic K-axy STD's with N nodes

and given topological constraints. A particularly useful constraint for a

iiT-ary STD is the detour memory, defined in Section 4.1 as the smallest

nonnegative integer M such that the STD contains a pair of parallel
paths of length M +1. In Section 4.4, we investigate K-axy STD's with

maximum detour memory, i.e., K-axy STD's with N = KM nodes,
where M is the detour memory. We prove that such STD's are strongly
connected and have the same number of branches ending at every node.

Tables containing all non-isomorphic binary STD's with maximum de¬

tour memory for N = 1, 2, 4, 8, and 16 nodes are provided.

In Chapter 5, we study trellis-coded data transmission over ISI chan¬

nels. In Section 5.1, trellis encoders and trellis codes are characterized

by means of labeled directed graphs and an upper bound on the free

distance of a trellis code is given. In Section 5.2, we analyze the trel¬

lis encoder created by cascading an outer trellis encoder with a finite-

impulse-response (FIR) channel filter. More specifically, we show how

to obtain the so-called steady-state encoder from the composite trellis

encoder whose state contains both the state of the outer trellis encoder

and the state of the channel filter. In Section 5.3, we generalize the well-
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known upper bound on bit error probability for convolutional encoders

and maximum-likelihood decoding [26, Sec. 4.4, pp. 242], [27, Sec. 6.E]
to trellis encoders with a non-uniform distance spectrum, i.e., with a

distance spectrum that depends on the reference path. The general¬
ized upper bound involves an average distance spectrum, which can be

evaluated by means of a modified Viterbi algorithm as described in Sec¬

tion 5.4. An analysis of bipolar trellis encoders for the dicode channel

in Section 5.5 demonstrates the importance of the average number of

bit errors over all detours at free distance in the case of a non-uniform

distance spectrum.
In Chapter 6, the results obtained in this thesis are summarized.
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Chapter 2

Properness in Complex

Probability Theory

The purpose of this chapter is to provide a rounded treatment of certain

complex random variables and processes, which we will call proper, and

to show their usefulness in statistical communication theory. It will be

shown, for instance, that the probability density function of a complex
Gaussian random vector assumes the anticipated 'natural' form only for

proper random vectors.

Complex signals were introduced by electrical engineers to incorpo¬
rate phase information in a convenient way. An important application of

complex signals is the analysis of linear bandpass communication chan¬

nels. Such channels can be represented in baseband by an equivalent
two-dimensional channel with two quadrature inputs and two quadra¬
ture outputs [4], [2]. In general, for a passband channel with mem¬

ory, the quadrature components interfere so that the two-dimensional

equivalent baseband channel does not reduce to a pair of independent
quadrature channels as in the memoryless case. To simplify notation,
most communication engineers describe the equivalent baseband chan¬

nel in terms of complex signals and complex impulse responses. Formu¬

lations of linear systems for complex-valued signals are also increasingly
employed in adaptive signal processing, see e.g., [28]. Somewhat para¬

doxically, one finds in the Uterature very few treatments of complex
random variables and processes. In fact, many investigators resort to

the two-dimensional real representation of systems with complex sig¬
nals whenever a probabilistic treatment is needed. Notable exceptions
are Doob [29], who gives considerable attention to complex Gaussian
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random processes, and Wooding [30], who first derived the probabil¬
ity density function for a complex Gaussian random vector whose real

and imaginary part have certain symmetries in their autocovariance and

crosscovariance matrix - symmetries, which are equivalent to properness

in our terminology.
The organization of this chapter is as follows. In Section 2.1, we char¬

acterize second-order statistical properties such as uncorrelatedness and

wide-sense stationarity of complex random variables and processes. We

show that to specify the four covariances arising between the real and

imaginary parts of two complex random variables X and Y, one needs

both the conventional covariance cxy = E[(X — mx) (Y - my)* ] and
the unconventional quantity c~xy — E [ (X — mx) {Y - my) ], which

we will call the pseudo-covariance. Complex random variables and pro¬

cesses with a vanishing pseudo-covariance will be called proper. In Sec¬

tion 2.2, we justify the terminology 'proper' by demonstrating several

natural results for the class of proper complex random variables and

processes that do not hold in general. For instance, the probability
density function and the entropy of a proper complex Gaussian random

vector are specified solely by the vector of means and the matrix of

(conventional) covariances. For bandpass communication channels with

real wide-sense stationary noise, it is shown that the complex noise at

the demodulator output is proper. In Section 2.3, we prove a general
discrete Fourier transform correspondence between circular stationarity
in the time domain and uncorrelatedness in the frequency domain for

sequences of proper complex random variables. An application of this

correspondence will be given in Section 3.1, where an earlier deriva¬

tion of capacity for discrete-time Gaussian channels with memory [9] is

considerably simplified by first generalizing to complex channels.

2.1 Preliminaries

2.1.1 Complex Random Variables

A complex random variable X is defined as a random variable of the

form

x = xc+jxs , j = V=i,

where the real and imaginary parts, Xc and Xs, axe real random vari¬

ables [29, p. 7]. The subscripts 'c' and 's', borrowed from [4] and [2],
suggest the cosine and sine components of an equivalent baseband sig-
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nal. The expectation of a real random variable is naturally generalized
to the complex case [31, p. 472] as E[X] 4 E[Xc] + j E[XS}. The

statistical properties of X = Xc + j Xs are determined by the joint

probabiUty density function (p.d.f.) pxcx.(xc,xs) of Xc and Xs, pro¬

vided of course that the p.d.f. exists. For convenience, we introduce the

notation px(xc + j xa) = pXc x. (xc, xs).
Let F be a complex-valued function whose domain includes the range

X(fi) of the complex random variable X, where Q is the sample space.

The expectation of F(X) can be expressed in terms of two expectations
of real functions in the real random variables Xc and Xa as

E[F(X)]±E[Tte{F(Xc + jXa)}]+jE[lm{F(Xc + jXs)}].

Equivalently,

/oo
roo

/ F(xc + j xs) px(xc + jxa) dxc dxs.
•oo J—oo

To specify the 'covariance' of two complex random vectors

2L — 2LC + j 2LS an(i Y- — Y.C + JX.S1 *ne fQur covariance matrices

Cov[£c,yc]; Cov^r.]; Cov[2CX]; Cov[Xc,Ys] (2.1)

are needed, where the covariance matrix of two real random vectors U_
and V_ is defined as

Cov[n,y]4E[(i/-E[u;])(y-E[y])T]. (2.2)

The covariance matrix

AxY = E[(X-mx)(Y-myY], (2.3)

where mx — E[X_], my_ = E [Y_] and '*' denotes conjugate-transpose,
is widely used in the Uterature. We define also the pseudo-covariance
matrix

Axy = E [ (X - mx) (Y - my)T ], (2.4)

which will play a key role in what foUows. To simpUfy the notation for

(pseudo-)autocovariance matrices, we wiU write A^ (or Ax) instead of

Axx (or Axx)> The 'covariance' of two complex random vectors can
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be specified alternatively by the complex covariance and the pseudo-
covariance since it follows from (2.2) - (2.4) that

Cov [2£c, Yc} = 1 Re {Axy + Axy}
Cov[Xs,Yc] = I ImJAxr+ Axy)

? (2-5)
Cov [XS,YS ] = -Re {Axy - Axy}
Cov [XC,YS} = \lm{Axy - Axy} •

To define uncorrelatedness consistently with the corresponding no¬

tion for real random vectors, the complex random vectors X_ and Y are

called uncorrelated if all four covariances in (2.1) vanish. From (2.5) we
now obtain the following simple result.

Lemma 2.1: The complex random vectors X and Y are uncorrelated

if and only if Axy = 0 and Axy = 0, i.e., if and only if both the

covariance matrix and the pseudo-covariance matrix vanish.

2.1.2 Complex Random Processes

A continuous-time (or discrete-time) complex random process is defined

as a random process of the form X(t) = Xc(t) + j Xa(t) (or X[k] =

Xc[k] + j Xa[k]), where Xc(t) and Xa(t) (or Xc[k] and Xa[k]) are a

pair of real continuous-time (or discrete-time) random processes. By

definition, a complex random process is wide-sense stationary (w.s.s.)
if its real and imaginary parts are jointly w.s.s.. The foUowing result

[32, p. 121] characterizes wide-sense stationarity in terms of the mean

mx(t) = E[X(f)], the autocorrelation function

rx(T,t)±E[X(t + T)X*(t)],

and the pseudo-autocorrelation function

rx(T,t)±E{X(t + T)X(t)]

of the complex random process X(.).

Lemma 2.2: A complex random process X(.) is w.s.s. if and only if

>x(fy, rx(T,t) and fx{T, t) are independent of t.

The corresponding result for discrete-time processes is obvious.
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2.2 Proper Complex Random Variables

and Processes

2.2.1 Proper Complex Random Variables

Definition 2.1: A complex random vector Z_ = Z^. + j Z_a will

be called proper if its pseudo-covariance Kg_ vanishes. The complex
random vectors Zy and Z2 will be called jointly proper if the composite
random vector having Z_x and Z_2 as subvectors is proper.

Note that any subvector of a proper random vector is also proper.

However, two individually proper random vectors are not necessarily
also jointly proper. Defining Acc = Cov[Z^.,^], Aas = Cov[2^,^],
A3C = Cov[Zs, Zj, Aca = Cov[ZcZj] and using the fact that Aca =

Aic, the covariance and the pseudo-covariance of a complex random

vector Z_ can be written as

Az = Acc + Aaa + j (Aac - A£) (2.6)

and

Az = Acc-A„ + i(AJC + Aje), (2.7)

respectively. Thus, the vanishing of Az is equivalent to the conditions

that

Acc = Aaa and Aac = -Aac, (2.8)

i.e., Ajj vanishes if and only if Z^. and Z_a have identical autocovariance

matrices and a skew-symmetric crosscovariance matrix. We conclude

that a proper complex random vector Z_ has the covariance matrix

Az = 2(Acc + jA,c). (2.9)

Note that the skew-symmetry of Aac implies that Aac has a zero main

diagonal, which means that the real and imaginary part of each compo¬

nent Zk of Z_ are uncorrelated. The vanishing of Az^ does not, however,

imply that the real part of Z*. and the imaginary part of Zi are uncor¬

related for k ^ /. It should be pointed out that a real random vector

is a proper complex random vector if and only if it is constant (with
probabiUty 1), since Asa = 0 and (2.8) imply Acc = 0.

The appropriateness of the term 'proper' in connection with complex
random vectors is supported by the following lemmadealing with closure
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under affine transformations as well as by a number of other results to

follow.

Lemma 2.3: Let Z_ be a proper complex n-dimensional random vector,

i.e., A^ = 0. Then any random vector obtained from Z_ by a Unear or

affine transformation, i.e., any random vector Y_ of the form Y_ = AZ.+b,
where A e <CTOXn and b e Cm are constant, is also proper.

Proof: Since my_ = A m^ + b and Y_ — my = A (Z — mz), we have

AI = E[(y-mI)(I-raI)r]=AAzAT = 0.

Note that Y_ and Z as in Lemma 2.3 are automatically jointly proper,

since the vector having Y_ and Z as subvectors is obtained by the affine

transformation

'

Y
'

Z
= AZ +

'

b
"

A.
,
A^

"

A
'

In

Lemma 2.4: Let Z_x and Z2 be two independent complex random

vectors and let Z2 be proper. Then the Unear combination Y_ = a\Z_x +

a2Z_2, where a\ and a2 are complex numbers and ai ^ 0, is proper if

and only if Z_x is also proper.

Proof: The independence of Z_x and Z_2 an<i *ne properness of Z_2 imply

Ay = a\ Azt + a\ Az2 = a\ Az,.

Thus, Ay vanishes if and only if Az vanishes. D

Lemma 2.1 immediately impUes the following result.

Lemma 2.5: Two jointly proper, complex random vectors Z_x and

Z2 are uncorrelated if and only if their covariance matrix Az z van¬

ishes.

A complex Gaussian random vector Z_ is defined as a vector with

jointly Gaussian real and imaginary parts. Following Feller [31, p. 86],
we consider Gaussian distributions to include degenerate distributions
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concentrated on a lower-dimensional manifold. In such degenerate cases,

the 2n x 2n-covariance matrix

*^Cov lie
Z„

1 ]
_

[ Acc Ac

J J [ Aac Aa
±Lc II I ii-cc Jlc«

z„ (2.10)

is singular and the probabiUty density function (p.d.f.) does not exist

unless one admits generalized functions.

Note that two jointly proper Gaussian random vectors Z_x and Z2 are

independent if and only if Az z = 0, which foUows from Lemma 2.5

and the fact that uncorrelatedness and independence are equivalent for

Gaussian random variables.

Wooding [30] was apparently the first to derive the p.d.f. of a com¬

plex Gaussian random vector satisfying the conditions (2.8), i.e., of a

proper complex Gaussian random vector. Goodman [33] gave an alter¬

native derivation based on the observation that the multipUcation of

certain orthogonal 2 x 2-matrices is isomorphic to the multipUcation of

related complex numbers. The complex-multivariate Gaussian p.d.f. is

also found in [34], [35], and [36]. The results can be stated as foUows.

Theorem 2.1: Let Z be a proper complex n-dimensional Gaus¬

sian random vector with mean m and nonsingular covariance matrix

A = E [ (Z - m) (Z - m)* ]. Then the p.d.f. of Z is given by

p*U) = p*.*U..*.) = ^r^ *-<*-*>'A_1 (£_m)- (2-H)

Conversely, let the p.d.f. of a complex random vector Z be given

by (2.11), where A is Hermitian and positive definite. Then Z is proper

complex and Gaussian with covariance matrix A and mean m. More¬

over, for a proper complex Z,

A = 2(Acc + jAac)
A"1 = iA"1 (1-jA.cA-1)
A 4 Ace + A^A^A.e (2.12)

det(A) = 2n <y/det(Acc) det(A).

Note that the p.d.f. (2.11) is completely specified by the vector of

means and the conventional covariance matrix. The fact that the func¬

tion (2.11) integrates to one over z^. and z.a for any positive-definite Her¬

mitian matrix A was proved by Bellman without connection to p.d.f.'s



16 Chapter 2: Properness in Complex Probability Theory

[37, Chap. 6, § 10]. This property of (2.11) can be used also to prove

that det(A) is convex—O over the positive-definite Hermitian matrices

A [37, Chap. 8, § 5]. The matrix A defined in (2.12) is known as the

Schur complement [38, p. 46] of Acc in the matrix «& of (2.10) .
A proof

of Theorem 2.1 is included in Appendix 2.A.

To specify that a random variable X is Gaussian [or proper com¬

plex Gaussian] with mean m and variance a2, we will sometimes write

X ~ J\f(m,o2) [or X ~ Afp(m,o~2)]. Analogous notation will be used

for Gaussian [or proper complex Gaussian] random vectors.

Example 2.1: Let Z ~ ^(0, N0 I) so that the components of Z are

independent and have equal variance No. Then the p.d.f. of Z is given

As an application of Theorem 2.1, we generalize the maximum-

entropy theorem [10, Thm. 7.4.1], [23, Thm. 9.6.5] to the complex
multivariate case. The result will be used in Section 3.1 to compute
the capacity of a channel with proper complex Gaussian noise. For a

complex Gaussian random vector Z = Z^+jZ^, the differential entropy
is appropriately defined as the joint differential entropy of its real and

imaginary part, i.e., h(Z_) = h{Z_cZ_s).

Theorem 2.2: Let Z be a complex, continuous, n-dimensional random

vector with nonsingular correlation matrix R^ = E [ZZ* ]. Then

h{Z) < log [(7re)n det (Rz)]

with equality if and only if Z is proper and Gaussian with zero

mean.

Note that no real random vector maximizes entropy for a given corre¬

lation matrix R^ when complex random vectors are allowed. The proof
of the analog to Theorem 2.2 for real random variables [10, p. 336],
[23, p. 234] can be easily generalized to a proof of Theorem 2.2 by using
the Gaussian density (2.11). For a scalar complex random variable, we

give a different proof of Theorem 2.2 that better illustrates the role of

properness.
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Proof of Theorem 2.2 (scalar case): Let Z = Zc + j Zs be a scalar

complex random variable with the constraint E [ |Z|2 ] = S. According
to the maximum-entropy theorem for real random vectors [23, p. 234],
the real random vector W_ = [Zc, ZS)T, for which % = E []£W;T] is

nonsingular, satisfies

h(Z) = h(W_) < \ log [(27re)2 det(Rw1)]

with equality if and only if W_ is zero-mean Gaussian. By hypothesis,

E[|Z|2] =E[Z2]+E[Z2] = Sand thus

det(RK) = E [Z2] E [Z2] - (E [ Zc Zs ])2 < E [Z2] E [Z2] < S2/4,

where equality holds at both places if and only if E [ Zc Z„ ] = 0 and

E [Z2] = E [Z2]. Therefore, h(Z) = h(Zc Zt) = h(W_) < log [?reS] with

equality if and only if Z is proper and Gaussian with zero mean.

Note that h(Z_) = h(Z_cZ_s) = h(Z.c) + h{Z_s\Z^) for a complex
random vector Z = Z^. + j Zs and, when Z is Gaussian,

h(Zc) = \ log [(2 7T e)n det(Acc)], (2.13)

where Acc is as in Theorem 2.1. It foUows from (2.13), the proof of

Theorem 2.1 (see (2.A.9) in Appendix 2.A), and from Theorem 2.2

that, for a proper complex Gaussian random vector Z,

HZS\ZJ =
i log[(27re)»det(A)].

Example 2.2: Let Z = Zu+3 Zu ~ ^(Q, Az), where Im {Az} = 0.

Then (2.9) impUes Asc = 0 so that the 'quadrature vectors' Z^. and Z,
are independent and Ajj = 2 Acc. It follows from Theorem 2.2 that

h(£) = log[(7re)" det(2Acc)] = log[(27re)n det(Acc)]
= 2h(Zc) = 2h(Zs).

For a complex Gaussian random vector Z with zero mean and covari¬

ance matrix A = Ac+jAa, Theorem 2.2 impUes the foUowing nontrivial

result in matrix theory, kindly suggested to us by Roger Cheng [private
communication]:
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Corollary 2.1: For any symmetric matrix Ac e RnXn and skew-

symmetric matrix As R"x such that Ac + j Aa is positive definite,

22n

max det

l>o

Acc Kc
=

-^ det(Ac) det(Ac + A^AJT1 A,),

A<c A„J

ACc+Ass=Ac

a»c-aJc=a,
aJc=acc, Aj,=A„

where the maximum is achieved if and only if Acc = Aaa = | Ac and

i\-sc = 2~ •^s*

As one might expect, the differential entropy of real and complex
random variables is affected differently by scaling. For any matrix A =

= BAc + j As e CnX", we can represent Y_ = AX_ by

where B = [^c ~A*] .
The scaling property for real random vectors

[23, p. 234] and the fact that det(B) = | det(A)|2 [33, p. 156] now imply

ft(AI) = h(2LcXs) + log|det(B)| = h(2Q + 2 log|det(A)|. (2.14)

For a complex, non-degenerate, scalar random variable X, (2.14) yields

ehW = \a\2eh(x\ a C,

which is plausible since the entropy power of a random variable can be

interpreted as the effective size of its support set and the support set

of X is an area in the complex plane.

2.2.2 Proper Complex Random Processes

The covariance function of a complex random process is defined as

cz(t, <) = E [ (Z(t + T)-mz{t + t)) (Z(t) - mz(t))* ] (2.15)

for continuous-time processes and as

cz[k,n] 4 E[(Z[n + k]- mz[n + k]) (Z[n] - mz[n])*] (2.16)

for discrete-time processes, where obvious notation has been used for

the means. Analogously, we will define the pseudo-covariance function
of a complex random process as

cz(r, t)±E[(Z(t + T)-mz(t + r)) (Z(t) - mz(t))] (2.17)
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for continuous-time processes and as

cz[k, n] 4 E [ (Z[n + k] - mz[n + k]) {Z[n} - mz[n})} (2.18)

for discrete-time processes.

Definition 2.2: A complex random process wiU be called proper if

its pseudo-covariance function vanishes identically.

Using similar arguments as in Section 2.2.1 one can show that any

linear or affine transformation of a proper complex random process is

proper and that a Unear combination of independent proper complex
random processes is also proper. Moreover, any vector of samples taken

from a proper complex random process is also proper.

Proper complex random processes arise in equivalent baseband rep¬

resentations of bandpass communication systems, as we show next.

Consider the (real) additive noise channel together with the receiver

front-end shown in Figure 2.1. The real process Xq(.) is assumed to be

X0(t)

Zo(t)
1 1

(L %« <fc
*(0 Y(t) = X(t) + Z(t)^ Q9

\ / N
\r

Receiver fi

/
V

Additive noise channel ront- end

Figure 2.1: Additive noise channel and receiver front-end

w.s.s. and bandUmited to frequencies u such that ||w| — u>o| < 2nW,
where wo > 2ttW, and the real noise process Zo(.) is w.s.s. with zero

mean and power spectral density SZt(u)- The channel output lo(-)>
another real process, is converted to baseband by a complex demodula¬

tor and an ideal lowpass filter g(r) with frequency response

G{u) =
flifH<2^
^ 0 otherwise. v '

Let the complex random processes X(t) and Z(t) denote the response

of the receiver-front-end, which is a time-varying linear system, to the
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real random processes Xo(t) and Zo(t), respectively. Wozencraft and

Jacobs have shown that Y(t) = X(t) + Z(t) provides sufficient statistics

for an optimum receiver [4, pp. 496]. Of particular interest here are

the properties of the demodulated noise Z(.), which were proved in

[4, pp. 498] and can be summarized in our terminology as follows.

Theorem 2.3: Let the real w.s.s. process Zq(.) with zero mean and

power spectral density SZo (u>) be the input to a complex demodulator

with angular frequency luq followed by an ideal lowpass filter (2.19).
Then, if a>o > 2ir W, the complex random process

/oo Z0{u)e-^aug{t-u)du
•oo

at the lowpass filter output is w.s.s., proper, zero-mean, and has the

autocorrelation function

rz(T)±E[Z(t + T)Z*(t)] = - / SZo(u + uo)ejUTcLj. (2.20)

In particular, if Z0(.) is white noise with power spectral density
SZo(u) = N0/2, then

, x „T
sin 2nW t

.„ „„.

tz{t) = N0 . 2.21

7TT

Since Z(.) is w.s.s., proper and zero-mean, cz(r) = rz(r) and the

pseudo-covariance vanishes, i.e.,

cZ(t) = fz(r) = 0. (2.22)

Property (2.22) is equivalent to the symmetry relations 1

rzczXT) = rz.z.{T) a^d rz,Zc{r) =-rz,Zc(-r), (2.23)

i.e., the real and imaginary part of Z(.) have the same autocorrelation

function and an odd crosscorrelation function. Equivalent symmetry
relations were found by Dugundji and Zakai for a real process X(.)

xWe define ruv{r,t) = E[U(t + t)V{t)] for any real processes U(.) and V(.)
and write ruv(r) when U(.) and V(.) are jointly w.s.s..
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and its Hilbert transform X(.) [39], [40], [41]2. The process Z(.) =

X(.)+jX(.) was called the 'pre-envelope' of X(.) or an 'analytic signal'
and satisfies (2.22). However, the requirement that the imaginary part
is the Hilbert transform of the real part is more stringent than the

symmetry relations (2.23) and the concept of the pre-envelope, unUke

properness, is not appropriate for single random variables.

It should be mentioned that baseband complex random processes

with nonzero mean are usually not of interest, since a 'complex en¬

velope' X(.) with nonzero mean corresponds to a non-stationary band¬

pass process. To see this, let Xo(t) = Re {X(t) v/2eJWo1} and note that

E[X0(t)] = Re {E[X(t)] vy2V"*'1} # constant if E[X(t)} ^ 0.

We are particularly interested in the class of proper complex Gaus¬

sian random processes. Doob has given conditions that in our termi¬

nology are the necessary and sufficient conditions for the existence of

such processes [29, Thm. 3.1]. Theorem 2.3 shows that demodulated

Gaussian noise belongs to this class. The proper complex AWGN chan¬

nel wiU be denned as a channel of the form Y(.) = X(.) + Z(.), where

X(.) and Z(.) are independent complex processes and Z(.) is proper

complex AWGN with power spectral density No- The proper complex
white noise ideaUzation is supported by the foUowing consideration. If

we choose a large bandwidth W and a carrier frequency ujq > 2ir W in

Theorem 2.3, then the correlation function rz(r) closely approximates
N0 6{t).

2.3 Circular Stationarity

In this section, upper-case and lower-case letters denote frequency-
domain and time-domain variables, respectively. For convenience, a

length-AT sequence x[0], x[l], ...
, x[N-1] wiU be written as x[0, N-1].

AU indices in square brackets are understood in this section to be taken

modulo the integer N.

Definition 2.3: A sequence of complex random variables z[0,iV-l]
wUl be called circularly wide-sense stationary (c.w.s.s.), if E [ z[n] ] = mz

is independent of n and if

E[z[n]z*[i]] = r2[n--i] and E[z[n]z[i]] = fz[n - i] (2.24)

21. Bar-David is gratefully acknowledged for providing the references [39], [40],
and [41].



22 Chapter 2: Properness in Complex Probability Theory

holds for 0 < i,n < N, i.e., if the correlation of two samples de¬

pends only on their time difference modulo N. We wiU call r2[0, N—l]
and fz[Q, N—1] the circular correlation sequence and circular pseudo-
correlation sequence, respectively, of the c.w.s.s. sequence z[0, N—1].
Analogously, a sequence of real random variables x[0, N—1] wiU be

called c.w.s.s., if E [x[n] ] = mx is independent of n and if

E[x[n]x[i]] = rx[n-i], 0<i,n<N.

A proper complex, non-trivial c.w.s.s. sequence z[0, N—1] can be

generated as the circular convolution of a proper complex white noise

sequence w[0, N—1] with some complex weighting sequence h[0, N—1],

i.e., z[n] = Y!ik=o Mn — ^] w[k], where mw = 0 and rw[i] = a2 6[i] with

m-l1 fT=0
10 otherwise.

A simple calculation shows that z[0,iV-l] is c.w.s.s. with mz = 0 and

circular correlation function

JV-l

rz[i\ = E[z[n + i] z*[n]] = a2 J2hlk + ^ h*^-
fc=o

We now show that circular stationarity of a proper complex time-

domain sequence corresponds to uncorrelatedness of the components of

its discrete Fourier transform (DFT). This fact wiU be used in Sec¬

tion 3.1 to find the capacity of an ISI channel with proper complex
AWGN.

Recall that the DFT of a complex sequence z[0, N—1] is the sequence

Z[0,N-1] given by

JV-l

Z[k] 4 J2 *[*] ^fc", 0<k<N, (2.25)
n=0

where fijv — e^2vlN is a primitive iV-th root of unity. The time-domain

sequence z[0, N—1] can be recovered from the frequency-domain se¬

quence Z[0, N—1] by the inverse discrete Fourier transform (IDFT)

N-l

ZW -

AT H ZW Qk*> 0<n<N. (2.26)
fc=0
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Note also that
JV-l

Y,nnN=N6[k]. (2.27)
n=0

If z[0, iV—1] is a sequence of complex random variables, then so also is

Z[0,N-1]. Clearly, z[0,iV-l] is zero-mean if and only if Z[0, JV-l] is

zero-mean. Moreover, by Lemma 2.3 and the invertibiUty of the DFT,

z[0, N—1] is proper if and only if Z[0, N—l) is proper.

Theorem 2.4: Let z[0,iV-l] and its DFT Z[0,iV-l] be proper

complex sequences with zero mean. Then the time-domain sequence

z[0, N—1] is c.w.s.s. if and only if the frequency-domain sequence

Z[0, N—1] is uncorrelated, i.e., if and only if

E[Z[k] Z*[l]] = NRz[k] S[k - I], (2.28)

where RZ[0,N-1] is the DFT of the circular correlation sequence

r,[0,AT-l],i.e,

JV-l JV-l

*.[*] = E r*M n~Nkn ; rz[n] = ± £ Rz[k] UkNn. (2.29)
n=0 fc=0

Proof: Suppose that the proper complex random sequence z[0,iV—1]
is c.w.s.s. with circular correlation sequence rz[0,N—1] and let

RZ[0,N-1] be the DFT of rz[0,N-l]. Then

JV-l JV-l

\—knE[z[k]z*[i]] =

E^EE^N^11^fc
»"=0 n=0

JV-l JV-l

= E^Er*["-*in^n
»'=0 n=0

JV-l

= Rz[k] E fijv"fc)i = N R*[k] 6ik ~ fl.
i=0

where the second, third and last equality follow from (2.24), the shift¬

ing property of the DFT [14, p. 92] and from (2.27), respectively. It

now follows from the properness of Z[0,iV—1] and from the fact that
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Z[0, N—1] has zero mean that the components of Z[0,AT—1] are un¬

correlated. Conversely, suppose that Z[0, N— 1] satisfies (2.28) and let

r,[0,JV-l] be the IDFT of RZ[0,N-1]. Then

E[*M**[i]] = ij]X]E[^]rp]]nr
it=o (=o

fc=0 (=0

fc=0

The circular pseudo-correlation sequence of z[0, AT—1] vanishes because

z[0, N—1] is proper with zero mean. It follows that z[0, N—1] is

c.w.s.s..

Note that circular stationarity of z[0, N—1] generaUy does not also

imply circular stationarity of Z[0,N-1] since in general E [|Z[A;]|2] de¬

pends on k. Since uncorrelatedness and independence are equivalent for

Gaussian random variables, we immediately have the following result.

Corollary 2.2: Let z[0,iV-l] and its DFT Z[0,iV-l] be proper

complex Gaussian sequences with zero mean. Then the time-domain

sequence z[0, N— 1] is c.w.s.s. if and only if the components of the

frequency-domain sequence Z[0,N—1] are independent.

It was recently shown by Hirt and Massey that the real DFT of a

sequence of real, i.i.d.3, zero-mean Gaussian random variables is an¬

other sequence of real, i.i.d., zero-mean Gaussian random variables [9,
Lemmas 1, 2]. Similarly, it was shown that the inverse real DFT of

a (non-stationary) frequency-domain sequence with real, independent,
zero-mean Gaussian components is a sequence of real, correlated, zero-

mean Gaussian random variables [9, Lemma 3]. Note that the Lem¬

mas 1-3 of [9] are special cases of the analog to Corollary 2.2 for real

random variables. Thus, to establish a correspondence between circular

stationarity and uncorrelatedness, the real DFT is needed in the case of

real random variables, while the ordinary DFT is adequate for proper

complex random variables.

'independent, identically distributed
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Note that Theorem 2.4 is easily generalized to K-channel systems,
K > 2, if the length-iV sequences z[0, N—1] and Z[0, N—l] are replaced

by length-iV sequences z[0, N—1] and Z[0, AT—1] of K-dimensional vec¬

tors, the correlation sequences rz[0,N—1] and Rz[0, N—1] are replaced

by K x /f-matrix sequences rz[0,N-l] and R*[0,iV-l], and the DFT

of a vector (or matrix) sequence is defined to be the vector (or matrix) of

DFT's. This generalization is useful in the study of multi-user channels

with finite memory.

Appendix 2.A Proof of Theorem 2.1

To prove Theorem 2.1, the foUowing result on quadratic forms is needed:

Lemma 2.A.1: Let Mcc, Mss, Mac and MC4 be real n x n-matrices,
where Mcc and Maa are symmetric and M^ = Mac. Define the Her-

mitian n x n-matrix

M = Mc + j M, 4 Mcc + M„ + j (Mac - Mjc)
and the symmetric 2n x 2n-matrix

*42

Then the quadratic forms

Mcc M„
M3C M„ (2.A.1)

S±z*Mz

and

£'±[£*J] * (2.A.2)

are equal for all z == z<. + j z^ if and only if

Mcc = Maa and M,e =-Mfc. (2.A.3)

Moreover, under the conditions (2.A.3) M is positive (semi)defmite if

and only if ty is positive (semi)definite.

Proof: Since S is a Hermitian form, it is real for all z. Hence

£ = Re {z* M z} = £Mc z,. + zj Mc za + zJ Ma z,. - zj Ma zs

Mc -M,
M. M. ][£]
Mcc + M„ -Mse + M£
Msc - MT„ Mcc + Maa ][£]•

(2.A.4)
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by definition of M. Comparing (2.A.4) to (2.A.2) shows that (2.A.3)
gives the necessary and sufficient conditions for the two quadratic forms

to be identical. But £ — £' shows that M is positive (semi)definite if

and only if this is also true for \&.

Proof of Theorem 2.1: We first prove the direct part for m = 0. Recall¬

ing that any covariance matrix A is positive semidefinite, we see that

det(A) 7^ 0 implies that A is in fact positive definite. Thus, <& denned

by (2.10) is positive definite by Lemma 2.A.I. Since Zc and Z_a are

jointly Gaussian,

'"<««*>-p^CT"*{-*^ *"'[£]}
(2.A.5)

We now show that the exponents of (2.11) and (2.A.5) are equal. Us¬

ing a standard result for inverting block matrices [42, p. 656] and the

properness of Z, which impUes Acc = Asa and Acs = Aac = —Aac, we

obtain

*"* =

A"1 A^A.cA"1
-A^A.cA"1 A"1 (2.A.6)

where A, defined by (2.12), is symmetric. Note that <&-1 is nonsin-

gular since <& is nonsingular, which implies that A~* and A-1 exist.

Moreover, $-1 is symmetric, since the inverse of a symmetric matrix is

symmetric. Next, we show that the upper-right block of $-1 is skew-

symmetric. Observing that

A A~c Aac = Asc + Aac A"1 Aac A"1 Aac = Aac A"1 A,

we obtain

A"1 AJC A"1 = A"1 Aac A"1 = (A"1 A£ A"1)7 = -(A"1 Aac A"1)7",

i.e., the upper-right block, and thus also the lower-left block, is skew-

symmetric. Thus, <&-1 has the same properties as $ in (2.A.1), namely
symmetry, equal diagonal blocks, and skew-symmetry of off-diagonal
blocks. Therefore Lemma 2.A.1 applies for ^ = \ <l>-1 and M =

\ A-1 (I — j Aac A~c). By the properness of Z, A is given as in (2.12).
Multiplying out M A yields the identity matrix. Therefore M = A-1

and the exponents of (2.11) and (2.A.5) are equal. It remains to show

that 2n ^/det(<&) = det(A). Note that the determinant of a Hermitian
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matrix is always real. Using a weU-known result for the determinant

of block matrices (cf. [42, p. 650] or [38, p. 46]) and the fact that

Acs = —Aac, we obtain

det(*) = det(Acc) det(A). (2.A.7)

We now determine det(A). Note that A =2 (Acc — j Aac) =

2 (I - j Aac A"1) Acc. Therefore A-1 = ± A-1 AT A"1. But

1 - det (A A-) . d* (j A A- A' A-) -

pn Jffff^j.
(2.A.8)

Combining (2.A.8) and (2.A.7) yields

det(A) = 2" Vdet(Acc) det(A) = 2" y/det(*). (2.A.9)

Now let Z have nonzero mean m. Then Z — m is zero-mean Gaussian

and has the p.d.f. (2.11).

We now turn to the converse part. Since A is positive definite, so

also is M = A-1. According to Lemma 2.A.1, there exists a unique

symmetric, positive-definite matrix & such that in the case m = 0 one

has £ = £' for all z = z,. + j z,. In the words of Feller [31, p. 84], *
induces a normal density in 2n dimensions. Thus, the composite vector

[Z_c , Z_s ]T is Gaussian with mean [mj , m£]T and covariance matrix

$ = | \t-1. By Lemma 2.A.1, \Sr has equal diagonal blocks and skew-

symmetric off-diagonal blocks, and by the argument in the direct part
of the proof, the matrix $ enjoys the same properties. This impUes the

properness of Z and the claim follows.
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Chapter 3

Capacity and Information

Rates of Channels with

Intersymbol Interference and

White Gaussian Noise

3.1 Capacity of the Intersymbol-Interfer¬
ence Channel with AWGN - A Simpli¬

fied Derivation

Hirt and Massey [9] recently computed the capacity C of the

intersymbol-interference (ISI) channel with AWGN or, to use their ter¬

minology, of the discrete-time Gaussian channel (DTGC), assuming
finite ISI and an average symbol-energy constraint. Their derivation

was based on a hypothetical channel model, the N -circular Gaussian

channel (NCGC). Using a real version of the DFT, they showed the

equivalence of the NCGC to a set of N parallel, decoupled memoryless
channels. The per-symbol capacity Cjy of the NCGC was then ob¬

tained using the 'water-filUng theorem' [10, Thm 7.5.1]. Moreover, they

proved that the DTGC and the NCGC are asymptotically equivalent in

the sense that

C= Urn CN. (3.1)

JV—oo
V ;

Verdii [43] independently used a circular convolution approach to deter¬

mine the capacity region of the symbol-asynchronous Gaussian multiple-
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access channel.

As an application of proper complex random variables, Hirt and

Massey's derivation is simplified in this section and their results are gen-
eraUzed to channels with proper complex AWGN and a complex unit-

sample response. A similar approach can be used to simplify the com¬

putation of capacity of Gaussian multiple-access channels with memory

[44] as well as their complex generaUzations. The notation is as in Sec¬

tion 2.3. We first consider a real DTGC whose channel filter has a real

unit-sample response (ho, hi, ... , /im) and assume further that h0 ^ 0

and hM f^ 0- Consider now that one has available two instances of this

DTGC, viz.,

M

Vcn = E km Xcn-m + cn, - OO < n < OO, (3.2)
m=0

and

M

Don = E hrn%sn-m + wsn, ~ OO < n < OO, (3.3)
m=0

where {wcn} and {wsn} are independent zero-mean white Gaussian

noise (WGN) sequences, each sample of which has variance No/2, and

where the real inputs are subject to the symbol-energy constraints

E [x2Cn ] < Es/2 and E [x2Sn ] < Es/2, - oo < n < oo. (3.4)

This pair of real DTGC's can be represented by the (one-dimensional)
complex (or two-dimensional real) channel

M

Vn = E hmxn.m + wn, -co<n<oo, (3.5)
m=0

where xn = xcn+jxsn, wn = wcn+jwsn, and yn = yCn +jySn. Since

{wcn} and {tvsn} have the same autocorrelation function, a vanishing
crosscorrelation function and zero means, it follows that {tvn} is a proper

complex WGN sequence. Moreover, E[u;n] = 0 and E [|wn|2] = -No,
for all n. The constraints (3.4) are now replaced by the weaker condition

E[|xn|2] <Ea, -oo<n<oo.
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Clearly, capacity can be achieved on the channel (3.5) by indepen¬
dent sequences {xcn} and {xan}, since a real unit-sample response pro¬

duces no 'crosstalk' between the real and imaginary component chan¬

nel and because the real and imaginary noise sequence are indepen¬
dent. If the capacity-achieving input distribution also satisfies (3.4),
then C2D = 2 C1D, where C1D and C2D are the capacities of the one-

dimensional real channel (3.2) [or (3.3)] and the two-dimensional real

(or complex) channel (3.5), respectively. We obtain additional general¬
ity by allowing the unit-sample response in (3.5) to be complex. The

resulting channel (3.5) will be called the complex DTGC. FoUowing [9],
we define the complex NCGC1 by

N-l

y[n] = ^2h[i]x[n-i] + w[n], 0<n<N, (3.6)
t=0

where N > M, where the sequence h[0,N—1] is obtained by padding
ho, h\, ... , hit with zeros in the manner

AK, if0<i<M
1J

|0, if M < i < N

and where w[0, N—1] is proper complex c.w.s.s. Gaussian noise with

zero mean and circular correlation sequence

rw[i] = E[w[n + i]w*[n]} = N0 6[i], 0<i<N.

For brevity, u;[0, AT—1] will be called a proper complex WGN sequence.

Moreover, the input data x[0,AT-l] are subject to the symbol-energy
constraint

E [ W«]|2] <Es, 0<n<N. (3.7)
It can be easily shown that the complex DTGC and the complex NCGC
are asymptotically equivalent in the sense of (3.1) by essentially the same

argument as given in [9].

Theorem 3.1: The per-symbol capacity of the complex NCGC (3.6)
under the symbol-energy constraint (3.7) is given by

C"° = jf E l0S (max (/> \H[k]\2/No , 1)], (3.8)
fc=o

1 As in Section 2.3, a length-iV sequence x[0], x[l], ...
, x[N — 1] is written in this

section as x[0, N— 1] and all indices in square brackets are understood to be taken

modulo N.
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where H[Q,N-1] is the DFT of h[0,N-l] and where the parameter /3
is determined from the condition

JV-l

E#] = W£3 (3.9)
fc=o

in which the spectral energy distribution e[0, AT—1] depends on /3 through

e[k] = max (/3 - N0/\H[k]\2 , 0), 0<k<N. (3.10)

Moreover, capacity is achieved if and only if the input sequence

x[0, N—1] is proper, Gaussian, and c.w.s.s. with zero mean and circular

correlation sequence equal to the IDFT of e[0, iV—1], i.e.,

JV-l

rx\i] 4 E [x[n + i] x*[n] ] = — ^ e[k] tt% 0<i<N. (3.11)
fc=0

Notice that the spectral energy distribution e[0, AT— 1] determined by
(3.9) and (3.10) has the water-filling interpretation given in [3, p. 169]
and [10, p. 389].

Proof: It was proved in [9] that the capacity of the (real) NCGC equals
the supremum of the (average) mutual information between the input
and output sequence over all p.d.f.'s satisfying a weaker block-energy
constraint. Analogously, we will show for the complex NCGC that

ChD = %D, (3-12)

where

I ±svLj>±-I(x[0,N-l];y[0,N-l]),
PN -iV

and where the supremum is over all p.d.f.'s pjv for x[0, N—l] satisfying
the block-energy constraint

JV-l

EE[|*[n]|2]<iV£,. (3.13)
n=0

Because (3.7) implies (3.13), it suffices to show that the maximizing p^
under the constraint (3.13) also satisfies the stronger constraint (3.7).
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Taking the DFT of (3.6) yields a set of N parallel, memoryless Gaus¬

sian channels (MGC's) described by

Y[k] = H[k] X[k) + W[k), 0<k<N, (3.14)

where H[0,N-1] is the DFT of ft[0,JV-l] and where the W[k] are

i.i.d.2 proper complex Gaussian random variables with zero mean and

variance3 NNo by Corollary 2.2 and (2.28). Using Parseval's relation

[14], the constraint (3.13) becomes

JV-l

J2^[\X[k]\2]<N2Ea (3.15)
fc=Q

in the frequency domain. By (3.13) and the invertibiUty of the DFT,

InD = sup ^ I(X[0,iV-l]; Y[0, JV-l]), (3.16)
<IN -<V

where the supremum is over all p.d.f.'s qn for X[0, N—l] satisfy¬

ing (3.15). By a standard information-theoretic argument,

JV-l

J(X[0,JV-l]; r[0,AT-l]) < £/(*[*]; Y[k]) (3.17)
fc=o

with equality if and only if the outputs Y[k] are independent [10, p. 321].
By using (3.17), (3.16) can be written as a supremum over the allowed

spectral energy distributions e[0, N—1], viz.,

i$> = <*p jz E cw> (3-18)
e[0,JV-l]: N £J

where

C[k]± sup I(X[k];Y[k]) (3.19)
q[k]:

E[|X[fc]|3]<JV£[fc]

is the capacity of the fc-th MGC (3.14). The average energy at the

output of this MGC is bounded by

E [\Y[k]\2] < N {\H[k]\2e[k) + N0) = S[k]. (3.20)

2independent, identically distributed

3In accordance with (2.3), the variance of a scalar complex random variable is

denned as Var[X] £ E [\X - mx\2].
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When H[k] = 0, equality holds trivially in (3.20); when H[k] ± 0,

equality holds in (3.20) if and only if E [ \X\k)S?) = Ne[k].
It foUows from the maximum-entropy theorem (Theorem 2.2) that

I(X[k]; Y[k]) = h(Y[k))- h(Y[k] \X[k))< log [S[k]/(N N0)] (3.21)

with equaUty if and only if Y[k] is proper and Gaussian with zero mean

and variance S[k]. When H[k] = 0, equaUty holds trivially in (3.21).
Now consider the case when H[k] ^ 0. According to Cramer's Theo¬

rem [31], which states that the sum of two independent random variables

is Gaussian if and only if each of the two random variables is itself Gaus¬

sian, and by Lemma 2.4, equality holds in (3.21) for H[k] ^ 0 if and

only if X[k] is proper and Gaussian with zero mean and variance A/e[fc].
Therefore,

C[k] = log [1 + |if [fc]|2 e[k]/N0] . (3.22)

To complete the maximization in (3.18), it remains to choose

e[0,N—1] so as to maximize the sum J3fc=o C[k] under the equality

constraint $Zfcro e[k] = NEa. The solution to this maximization prob¬
lem can be adopted from [10] without change and yields (3.8)-(3.10).
Since capacity is achieved only for proper Gaussian inputs X[k] and

since the noise samples W[k] are independent, the necessary and suffi¬

cient condition for equality in (3.17) is equivalent to the independence
of the inputs X[k]. Thus, capacity is achieved if and only if the in¬

puts X[k] are independent, proper, and Gaussian with zero mean and

variance Ne[k]. Invoking Theorem 2.4 once more shows that capacity is

achieved if and only if the input sequence x[0, N—l] is proper, Gaussian,
and c.w.s.s. with zero mean and circular correlation sequence (3.11). It

foUows from rx[0] = E [ |x[n]|2] = Ea, 0 < n < N, that the maximizing
p.d.f. for the block-energy constraint (3.13) also satisfies the symbol-

energy constraint (3.7), which confirms (3.12).

We now return to the special case of the real NCGC

JV-l

v[n] = ]T h[i] u[n - i] + z[n], 0<n<N, (3.23)
«=o

treated in [9], where the unit-sample response and all random variables

are real. The noise sequence z[Q, N—1] is assumed to be white Gaussian

with zero mean and energy

E[(*[n])2] =AT0/2, 0<n<AT,
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and the inputs are subject to the symbol-energy constraint

E[(u[n])2] <Es/2, 0<n<N. (3.24)

Corollary 3.1: The per-symbol capacity of the real NCGC (3.23)
under the symbol-energy constraint (3.24) is given by

ChD = C2ND/2, (3.25)

where CjyD is given in Theorem 3.1. Moreover, capacity is achieved if

and only if the input sequence u[0, N—1] is Gaussian and c.w.s.s. with

zero mean and circular correlation sequence equal to

i
N~1

r/ci
ru\i] iE[«[n + i] u[n] ] = — E

9
cos (2wik/N)» ° < « < N-

N f^
2

fc=o

(3.26)

Note that our j3 is related to the parameter 6 used in [9] by /3 = 9No-
Note also that our e[k) is defined to be twice the "e[fc]" defined in [9].

Proof of Corollary 3.1: Theorem 3.1 applies when the sequence

h[0,N-l] is real, in which case no crosstalk is produced from the real

(imaginary) part of the channel input to the imaginary (real) part of the

channel output. Since capacity is achieved by zero-mean proper complex

inputs and since rx[0] = E„,-we obtain E [x2[n]] = E [x^[n]] = Ea/2,
0 < n < N. Further, since h[0, N—1] is real, H[0] is also real and

H[k] = H*[N - k), 1 < k < N [14, p. 110]. Therefore, (3.10) yields

e[k] = e[N - k], l<k< N, and (3.11) gives

W =
ITr
1_
N

1_
JV

JV-l

#]+Ee[fc]^
fc=i

/JV-l

1

/JV-l

JV-l

[o]+2 Ew^+E^-*]^
\/c=l fc=l

1
N~1

= — EeW cosi^ik/N), 0<i<N.

fc=o

Since the capacity-achieving inputs are proper, Gaussian and zero-

mean and since the circular correlation sequence is real, the sequences

xc[0,N—1] and xa[0,N—l] are independent4 and ru[i] = rXc[i] =

4cf. Example 2.2.
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rXt[i] — rx[i]/2, 0 < i < N. We have thus shown that the complex
NCGC (3.6) under the constraint (3.7) and used with the capacity-

achieving input distribution reduces to a pair of independent real

NCGC's (3.23) on each of which the constraint (3.24) is satisfied with

equality. Hence, 2C^D is lower-bounded by CjyD.
Conversely, two instances of the real NCGC (3.23) under con¬

straint (3.24) can be represented by a complex NCGC under con¬

straint (3.7) so that 2C^D is upper-bounded by, and therefore equal
to, Cjj,D. U
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3.2 On a Lower Bound for the Informa¬

tion Rate of Intersymbol-Interference
Channels with i.i.d. Inputs

Shamai, Ozarow, and Wyner [25] recently obtained a lower bound

for the information rate that can be achieved with i.i.d.5 inputs on

intersymbol-interference (ISI) channels with AWGN. In this section,
we present a new derivation of their result, avoiding the inversion of

the channel transfer function and the subsequent innovation argument

as weU as the use of asymptotic properties of ToepUtz matrices that

were employed in the original proof. The new derivation is based on

the information-theoretic equivalence of certain aUpass-transformed ISI

channels. We are interested in both the real and the complex version of

the ISI channel with AWGN, both of which can be described formally
in the same way by

oo

Yn=J2hmXn-m + Wn, -oo<n<oo. (3.27)
m=0

The unit-sample response {hm} is assumed to be causal and delayless6.
Its 2-transform X)m=-oo ^"» z~m w^ ^e called *ne channel filter. The

real channel is characterized by a real input sequence {X„}, a real

unit-sample response (ho,hi,...), and a real AWGN process {Wn},
whereas the complex channel has complex inputs, a complex unit-sample

response, and proper complex AWGN. For the complex channel, the

inputs may stiU be real as, e.g., with binary antipodal signaling. For

both versions of the channel, we assume a finite-energy unit-sample

response and a zero-mean noise process with sample variance cr2^. The

noise sample variance a^ is given by AT0/2 and No for the real channel

and the complex channel, respectively.
As in Section 2.2, we wiU write X ~ N~(m, o2) [or X ~ N"p(m, a2)]

to specify a Gaussian [or proper complex Gaussian] random variable

with mean m and variance a2. Analogous notation wiU be used for

random vectors. In this section, we will use the terminology 'probabiUty
function' to stand for a probabiUty moss function Px(-) in tQe case of a

discrete random variable X and for a probabiUty density function px(-)
in the case of a continuous random variable X.

5independent, identically distributed

6A sequence {hm} is called causal if hm = 0 for m < 0. Moreover, a causal

sequence is called delayless if ho jt 0.
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For channels with finite memory M and unbounded memory, re¬

spectively, we define the information rate for i.i.d. inputs governed by
a probabiUty function Px(-) or px(-) as

Ii.i.d. ± Urn 11(X0Xi...Xjy-i; Y0Yi... YN+M-i) (3.28)
JV—>oo 1\

and

Ju.d. 4 Urn Urn ^ HXoXi... Xjv_i; Fo^i.. • Vjv+m-i), (3.29)
JV-*oo li—*oo Jy

where the inputs Xq, Xi, ... ,Xm-i are assumed to be preceded and

followed by an all-zero sequence7. The lower bound of Shamai, Ozarow,
and Wyner [25, Thm. 1], generalized to include the complex version of

the channel, can be stated as follows.

Theorem 3.2: Let the real [or complex] ISI channel with AWGN

(3.27) have a channel filter H(z) = N(z)/D(z) whose numerator and

denominator, respectively, are given as N(z) = ho Tln=i(^~ZnZ~1) an°1

D(z) = n"=i(l ~Pnz~1), where h0 ^ 0, 0 < |z„| < oo for 1 < n < nz,

0 < bn| < 1 for 1 < n < np, and where the region of convergence of

H(z) is {z : |z| > maxi<n<np |pn|}- Then the information rate (3.28)
(when Tip = 0) or (3.29) (when np > 0) for i.i.d. inputs with a probabiUty
function Px(-) or px(-) satisfies

/i.i.d. > h = I(X ; p X + W), (3.30)

where X is a real [or complex] random variable with probability function

Px(-) or px(-), where W ~ ^(0,(7^) [or W ~ JV^O,^) for the

complex channel], and where the degradation factor p is given by

P=\h0\- J] |*m| = exp{^y'*lGg|ir(e'"n)|<m}
= exp|^y^log|AT(e^)|dn|

m:|*m|>l --. -

^^

7It was shown by Gallager [10] that, in the limit as JV —v oo, such a constraint

has no influence on the information rate.
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Remarks on Theorem 3.2:

• The assumptions on the poles pn and on the region of convergence

of H(z) imply that H(z) is stable [14] and that it is the z-transform

of a causal sequence {hm}. Moreover, limz_>00 H(z) = ho ^ 0

implies that {hm} is delayless.

• It seems somewhat remarkable that knowledge either of \ho\ and

the magnitudes of the zeros of H(z) outside the unit circle or of

the amplitude response |Af(ejn)| is sufficient for the computation
of the degradation factor p.

• The first expression for the degradation factor p in (3.31), which

was not given in [25, Thm. 1], considerably simpUfies its compu¬

tation. From the second and third expression in (3.31), it foUows

that p is invariant to an aUpass transformation of the transfer

function H(z) and is independent of D(z). Thus, the first expres¬

sion for p in (3.31) implies that p equals |/imino|> the magnitude of

the leading coefficient of the minimum-phase version [14] Hmin(z)
of H(z), which is obtained from H(z) by replacing every zero zm

outside the unit circle with a zero 1/z^- Therefore, p = \ho\ if

H(z) is minimum-phase.

• As iUustrated in Figure 3.1, the lower bound Ii in Theorem 3.2

can be interpreted as the mutual information

I(Xn ; Y„) = I(Xn ; hmia0 Xn + Wn),

where Y£ is the output of a memoryless AWGN channel with

input X„ and gain equal to the leading coefficient /imino °f the

minimum-phase version Hmia(z) of H(z). This memoryless chan¬

nel can be thought of as created by the combination of an ISI

channel with channel filter Hmin(z) = hmin0 + z~x G(z) and addi¬

tive noise Wn ~ N~(0, er2^) [or Wn ~ Afp(0, cr2^) for the complex

channel] with a subsequent 'correct-decision-feedback receiver' in

which the ISI is canceled by subtracting the output of a filter

G(z) from y„ when this filter is fed with the true past data Xn-i
that are assumed to be provided by a 'magic genie'. Figure 3.1

also indicates that the memoryless channel from Xn to Yn can be

approximated by a realizable decision-feedback 'equalizer' (upper
switch position) in which a hard decision Xn-\ is substituted for

Xn.i (cf. [25, p. 1529]).
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Figure 3.1: Interpretation of the lower bound on

Iu.d. in Theorem 3.2

Example 3.1: Consider an ISI channel with AWGN whose normalized

(to energy 1) unit-sample response is

h = (1, -1, 3, -1, 1)/VT3
= (0.2774, -0.2774, 0.8321, -0.2774, 0.2774).

The corresponding transfer function H(z) is not minimum-phase (it is

in fact linear-phase [14], as follows from the symmetry of h about its

middle coefficient) and has the zeros z\^ = 0.3516±j 1.4985 (outside the

unit circle) and 23,4 = 0.1484 ± j 0.6325 (inside the unit circle), where

23 = l/z{ and Z4 = 1/^2- From the first expression for the degradation
factor in (3.31), one gets p = \zi\ |22| /\Zl3 = 0.6571. The same result

can be obtained by first converting H(z) to its minimum-phase version

H„ ,(*) = (|za| \z2\ /y/u) [1 - (23 + z4) z-1 + z3z4 2-2]2 ,

which corresponds to

£mi„ = (0.6571, -0.3900, 0.6126, -0.1646, 0.1171)

so that p = |hmiiiol> as required.

In Section 3.2.1, we prove that, for the ISI channel with AWGN, the

mutual information between a finite-length input block and the relevant

channel outputs is the same for all transfer functions in a certain equiv¬
alence class, regardless of the input distribution. An alternative proof of

this result for channels with finite memory is provided in Appendix 3.A.
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The results of Section 3.2.1 wiU be used in Section 3.2.2 for the proof
of Theorem 3.2. Appendix 3.B contains some useful properties of all-

pass filters and related matrices, while Appendix 3.C contains Jensen's

integral formula that wiU be used for proving Theorem 3.2.

3.2.1 Allpass Filters and Equivalent Intersymbol-
Interference Channels

The ampUtude response |.ff(eJ'n)| of a channel filter H(z) with nz zeros

is preserved upon replacing any zero zn of H(z) by I/2*, i.e., when a

zero is reflected at the unit circle. If H(z) has ni zeros on the unit

circle, any subset of the remaining zeros may be reflected at the unit

circle, which yields 2n*-ni transfer functions with the same ampUtude
response. For a nonzero constant Co, for a possibly empty set of zeros

{Cn : 0 < |C„| < 00, 1 < n < nz},

for an np > 0, and for a denominator D(z) = l+di2-1-|-.. .+d„p z~nr all

of whose zeros are inside the unit circle, we define the transfer-function

equivalence class

IC.I**i

where \a\ = 1 and in e {0,1} >
. (3.32)

Here and hereafter, the convergence regions of the transfer functions

in H are taken as {z : \z\ > #max}, where i?max is the largest magnitude
of a zero of D(z). Note that A(z) in (3.32) is an allpass filter (cf.
Appendix 3.B) associated with the subset of zeros not on the unit circle

and that the indicators in specify whether or not a zero £„ is reflected

at the unit circle. Transfer functions in the same equivalence class have

the same ampUtude response. For np = 0 and for M = nz, a transfer

function H(z) in H corresponds to a finite-length unit-sample response

(ho,hi, ... ,/im) with ho j* 0 and /im f^ 0 and is called an M-th order

FIR filter [14]. In this case, H wiU be caUed an M-th order FIR-filter

equivalence class.
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The following two theorems for channels with finite and infinite

memory, respectively, show that ISI channels with channel filters in

the same equivalence class and with AWGN processes having the same

sample variance are equivalent with respect to mutual information. It

should be remembered, however, that two channels equivalent with re¬

spect to mutual information might not be equally convenient for coding
and decoding!

Theorem 3.3: For the class of real [or complex] ISI channels (3.27)
with a channel filter H(z) in an M-th order FIR-filter equivalence
class Ti and with AWGN, for any N >1 and for any (fixed) probability
function for the real [or complex] input sequence (Xo,Xi,... ,Xm-i)
(which is assumed to be preceded and followed by all-zeros),

I(XqXi ... Xn-i ;Y0Yi ... Y/v+m-i)

is the same for all H(z) in 7i.

For ISI channels with an M-th order FIR channel filter and AWGN,

i.e., for ISI channels with finite memory M, note that the outputs Yo,Yi,

..., Yn+m-i are the only relevant observations. AU other outputs are

not affected by the inputs and do not depend on the noise components
of Y0,Yi,... ,YN+M-i-

Given the fact that the capacity of an ISI channel with AWGN is pre¬

served under an allpass transformation of the channel output, one might
have expected that the per-symbol mutual information is preserved in

the limit as N approaches infinity for (asymptotically) stationary Gaus¬

sian inputs. However, it is somewhat surprising that mutual informa¬

tion is preserved for any input probabiUty function and - although the

allpass filters involved may have unbounded memory - for finite-length

sequences.

Proof of Theorem 3.3: Consider the transfer functions H(z) and

H(z) = A(z)H(z) in H, where A(z) = EfcL-oo ak z~k is ^ all-

pass filter as specified in (3.32). Let {Yn} be the output sequence

of the channel with channel filter H(z) for some finite-length input

(X0,Xi,... , XN_i) and let Yn = J2T=-oo ak Yn-k- Then, {Yn} can be

interpreted as the output sequence of a channel with channel filter H(z)
for the same input sequence. Starting from the channel with channel
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filter H(z) gives

I(X0Xi ... Xn-i ;YoYi ... Fat+m-i)

= Um I(X0Xi ... Xn-i ; V-/iY-,,+1 ... Yn+m+h-i)
li—KX

= Um I(X0Xi ... Xn-i ; Y-nY-n+i ... Yn+m+(i-i)
fi—HX>

= I(Xo Xi... XN-i ;Y0Yi... Yn+m-i). (3.33)

For any p. > 0, note that the observations YL^ ... Y_i and Yjv+Af • •

Yn+m+h-i are irrelevant since H(z) corresponds to a causal, finite-

length sequence (ho, hi ... /ijif) and because the additive noise is white

Gaussian. Similarly, for any p > 0, the observations Y_M ... Y_i and

Yn+m • • • Yn+m+h-i are irrelevant since H(z) corresponds to a causal,

finite-length sequence (ho,hi ... Jim) sequence and because the noise

component of {Yn} is white Gaussian as weU. The first and the last

equaUty in (3.33) are due to the fact that adding or omitting irrelevant

observations does not change mutual information and the second equal¬

ity in (3.33) follows from the invertibiUty of the allpass filtering.

For the reader suspicious of the addition or omission of an infinite

number of (irrelevant) observations in the above proof, an alternative

proof that avoids such operations is provided in Appendix 3.A.

Theorem 3.4: For the class of real [or complex] ISI channels (3.27)
with a channel filter H(z) in an equivalence class H given by (3.32) and
with AWGN, for any N > 1, and for any (fixed) probability function
for the real [or complex] input sequence (-Xo,-Xi,... ,Xn-i) (which is

assumed to be preceded and foUowed by all-zeros),

Um I(X0 Xi... XN.i ;Y0Yi... YN^.i)

is the same for all H(z) in H.

It should be pointed out that the statement in Theorem 3.4 does not

in general hold for any finite p,.

Proof of Theorem 3.4: Consider the transfer functions H(z) and

H(z) = A(z)H(z) in H, where A(z) = Y^'kL-oo ak z~k *s an a^"

pass filter as specified in (3.32). Let {Yn} be the output sequence



44 Chapter 3: Capacity and Information Rates
...

of the channel with channel filter H(z) for some finite-length input

(X0, Xu ...
, XN-!) and let Yn = Efcl-oo o-k Yn-k- Then, {Yn} can be

interpreted as the output sequence of a channel with channel filter H(z)
for the same input sequence. Starting from the channel with channel

filter H(z) gives

Um I(X0Xi ... XN-! ;Y0Yi ... Y/v+/J_i)
/J—»oo

= lim I(X0 Xi ... Xn-i ; Y-fi Yl^+i ... Y/v+^-i)

= Um I(X0Xi ... XN-i ; Y-^ Y-M+i ... Yjv+^-i)
fl— OO

= Um I(X0 Xi... XN_i ;Y0Yi... YV+„-i). (3.34)
/J—>oo

For any p > 0, note that the observations F_^ ... Y_i are irrelevant

since H(z) corresponds to a causal sequence and because the additive

noise is white Gaussian. Similarly, for any p > 0, the observations

Y-n ... y_i are irrelevant since H(z) corresponds to a causal sequence

and because the noise component of {Yn} is white Gaussian as weU.

The first and the last equality in (3.34) are due to the fact that adding
or omitting irrelevant observations does not change mutual information

and the second equality in (3.34) follows from the invertibility of the

allpass filtering.

3.2.2 Proof of the Lower Bound

Theorem 3.2 will be proved by first deriving a simple and straightfor¬
ward lower bound, which is then maximized over all transfer functions

in the associated equivalence class.

Lemma 3.1: For the real [or complex] ISI channel (3.27) with a

channel filter H(z) of the form given in Theorem 3.2 and with AWGN,

hi.d. >I(X;h0X + W), (3.35)

where ho = limz_+0O H(z), where X is a real [or complex] random vari¬

able with probability function Px(-) or px(-) that specifies the i.i.d.

input sequence, and where W ~ N~(0, afy) [or W ~ A/"p(0, crfy) for the

complex channel].

Notice that ho = \\vaz-^0OH(z) is the leading coefficient of the

Laurent-series expansion of H(z). Notice also that I(X ; ho X + W) =
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I(X; \ho\X+W) since W has an even [or rotationally symmetric] p.d.f.
for zero-mean real [or proper complex] Gaussian noise.

Proof: For a finite-length input sequence (Xo, Xi,... , Xn-i) and any

p > 0, we have

I(X0 .. -Xff-i; Yq . ..Yn+h-i)
= h(Y0 ... Vjv+a1_i) - h(Y0 ... Vjv-Hx-i | X0 ... Xn-i)
= h(Y0 ... YN+li-i) - h(W0 ... Wn+h-i), (3.36)

where h(.) denotes differential entropy. By the chain rule,

N+ft-l

h(Y0...YN+ll-i)= E h(Yn\Y0...Yn.i).
n=0

Each term in this expansion can be lower-bounded as

h(Yn \Y0... y„_i) > h(Yn | y0 • • • Yn.i , Xo ... Xn.i)

= h \J2m=0h Xn-m + Wn X0 Xn-i , W0 • • • W„_iJ
= h(h0Xn + Wn\Xo...Xn-i, W0...Wn.i)
= h(h0Xn + Wn). (3.37)

The inequality in (3.37) foUows from the fact that further condition¬

ing cannot increase entropy. The first equality foUows from (3.27) and

the fact that (i) (Xo-..Xn-i) and (y0...Y„_i) uniquely determine

(W0... Wn-i) and (ii) (Xo ... X„-i) and (W0 ... Wn-i) uniquely de¬

termine (Yo .. .y„_i). The second equality holds since the conditional

entropy of a random variable is not changed upon adding a deterministic

function of conditioning random variables, and the last equaUty holds

since both (Xo ... Xn) and (Wo .. Wn) are sequences of i.i.d. random

variables. Since {Wn} is WGN, the entropy of the noise sequence is

JV+/i-l

h(W0...WN+li-i)= E h(W")-
n=0

Substituting these expressions into (3.36) and using the fact that Xn = 0

for n > N yields

— I(X0 XN-i ;Y0...Yn+h-i) >

1
JV+/1-1

- E h(h0Xn + Wn)-h(Wn) = I(X;h0X + W), (3.38)
n=0
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where we have introduced the generic random variables X and W with

distributions as described in the lemma. Let nz and np be the num¬

ber of zeros and poles of H(z), respectively. For channels with finite

memory M = nz, i.e., when np = 0, the proof is completed by setting

p = M and then taking the limit of (3.38) as N —> oo. For channels

with unbounded memory, i.e., when np > 0, we first take the limit as

p —» oo and then let A^ — oo.

Lemma 3.2: Let "H be an equivalence class as in (3.32) for transfer

functions with nz > 0 zeros and denominator D(z) = 1 + diz~x + ... +

dnp z~n". Then h0 = \imz^<x>H(z) for a member H(z) = N(z)/D(z)
of 7i with zeros zi, z-i, ... , z„t satisfies

N < P, (3.39)

where

p = n • n i*»i
n: |2„|>1

h jys\H(ejn)\d^
= exp{±£log\N(e&)\dny

and equaUty is achieved in (3.39) if and only if J2n| < 1,
1 < n < nz.

Note that the condition for equaUty in (3.39) is also the condition for

H(z) to be a minimum-phase filter [14]. Hence p = \hmin0\, where hmin0
is the leading coefficient of the Laurent-series expansion of a minimum-

phase version Hmin(z) of H(z).

Proof: We express H(z) as

H(z) = A(z) Hmin(z), (3.40)

where Hmin(z) is a minimum-phase version of H(z), i.e., the zeros

ci, C2,... , c„x of Hmin (z) all Ue inside or on the unit circle, and A(z) is

an allpass filter of the form

= exp
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where the indicator in is 0 when |cn| = 1 and in {0,1} otherwise.

Therefore, H(z) has a zero at 1/c* for all n such that in — 1 and at cn

for all other n, i.e., the zeros z„ of H(z) are given by

jcn, if in = 0

[1/c*, lfl„ = l

Note that a zero zn is outside the unit circle if and only if in = 1. RecaU

from Section 3.2.1 that all transfer functions in H have the same poles
and that Z?max < 1, where i?max is the largest magnitude of a pole. The

transfer functions in H are thus analytic in the region {z : \z\ > i?max},
which is their region of convergence.

For the foUowing, it wiU be convenient to define H+(z) = H*(l/z*),
whose region of convergence is given by TZ = {z : \z\ < l/i?max}-
Note that H+(z) is the 2-transform of the time-reversed and conjugated

sequence {fo*_fc}, which is anticausal8.

We wiU apply Jensen's integral formula (cf. Lemma 3.C.1 in Ap¬

pendix 3.C) to H+(z), which is analytic in the region H. Consider the

singularities of H+(z). Let Ri, Ri < 1, be the largest magnitude of a

zero of H+(z) inside the unit circle. If H+(z) has no zeros inside the

unit circle, we take Ri = 0. Further, let i?2, 1 < #2 < 1/Rmax, be

the smallest magnitude of a singularity (either zero or pole) of H+ (z)
outside the unit circle. If H+(z) has no singularities outside the unit

circle, we take R2 = oo. Clearly, H+(z) is analytic for |z| < i?2- We wiU

apply Jensen's integral formula twice, first for 1 < R < R% and then for

Ri < R < 1. This will allow us to write the degradation factor either

as a left-sided or as a right-sided limit as R approaches one. Showing
that both limits exist and are equal will prove the convergence of the

integrals in (3.31), even if these integrals are improper because of zeros

on the unit circle.

For 1 < R < i?2, the sum in (3.C.1) must be taken over all zeros of

F(z) = H+(z) inside and on the unit circle. Thus,

log|tf+(0)| = log|Ao|

= ^- f iog|ff(irVn)|dn + E i°g(M/*)
l* J-*

n:,„=l

or |cn|=l

A sequence {<%} is called anticausal ii gk —0 for k > 0.
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or, equivalently,

m=p(r) n M/i*,
n: j„=l

or |c„|=l

where

p(R) ±exp{±J\g\H(R-le*)\ dfi}. (3.41)

Notice that the integral in (3.41) becomes improper as R — 1 when

there are zeros on the unit circle. Nevertheless, the right-sided limit of

p(R) exists and is given by

Um p(R) = \h0\ /TT |cn|. (3.42)
R—*1+

.
,

n: z„=l

When Jensen's integral formula is applied to H+(z) for Ri < R < 1,
the sum in (3.C.1) is over all zeros of H+(z) inside the unit circle, so

that

\h0\ = p(R) IJ |c„|/i?. (3.43)
n: !„ = 1

Hence, the left-sided limit Um^^- p(R) exists as well and is equal to

the right-sided Umit (3.42). Thus, p = p(l) is weU-defined and given by

p=\h0\ i n w=n • n i^i
n:«'n=l n:|z„|>l

= exp |i- J* log \H(e^)\ dfij = p{±£log |jV(e*'n)| dfi} ,

where the last equality follows from the facts that the poles of H(z) =

N(z)/D(z) do not appear in the expressions on the first Une and that

the denominator D(z) has a leading coefficient 1. Noting that |cn| < 1,
we obtain the upper bound

\h0\=p n w ^ p- (3-44)
n: j'„ = l

Thus, |/io| is largest when (3.44) holds with equality, i.e., when in = 0

for all n or, equivalently, when |2n| < 1 for 1 < n < nz. D
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We now turn to the proof of Theorem 3.2.

Proof: Let H be the transfer-function equivalence class of which H(z) is

a member. We know from Theorem 3.3 (or Theorem 3.4) and Lemma 3.1

that, for any H(z) in H,

h.iA.(H(z)) = Ii.i.a.(H(z)) >I(X;h0X + W), (3.45)

where hQ is the leading coefficient of the Laurent-series expansion
of H(z). We are thus free to maximize the lower bound by choosing
the H(z) with the largest \ho\. According to Lemma 3.2, the magni¬
tude of the leading coefficient is maximized when all zeros of H(z) are

inside or on the unit circle, i.e., when H(z) equals a minimum-phase
version Hmin(z) of H(z). The proof is completed by noting that in

Lemma 3.2 all transfer functions in H have the same upper bound p on

their \h0\. D
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Appendix 3.A Alternative Proof of Theo¬

rem 3.3

In the foUowing proof, some allpass-filter properties from Appendix 3.B

will be used.

Proof of Theorem 3.3: We begin with the proof for complex channels.

Assuming an FIR channel filter H(z) = X)m=o hm z~m with associated

(N + M)x N Toeplitz matrix

Hi

h0

0

0

ho

h

hM

0

0

ho

hi

hM

and defining 2L = [-Xc-Xi,..
andy 4 [Y0,Yi,...,YN+M-
outputs as

,XN.i]T, W_ 4 [W0,Wi,...,WN-i]T,
i]T, we may write the relevant channel

y=Hi+i (3.A.1)

where W_~ Afp(Q,a2v I).
We now take any allpass filter A(z) of the form given in (3.32) and

of order K < M so that H(z) = A(z)H(z) is another M-th order

FIR filter in the equivalence class H. Note that K zeros are reflected

at the unit circle by multiplying H(z) with A(z). Correspondingly,
we transform the observation vector Y_ by premultiplying it with the

(N+M)x (N+M) allpass matrix A associated with A(z) (cf. (3.B.4)).
Notice that the noise component AW_ of AY_ = AHX_ + AW_ has

the correlation matrix1 o\y AA*, which is not equal to a\y I in general.
Nevertheless, an observation vector with a white noise component can be

obtained from Ay by adding an independent, proper complex Gaussian

random vector V ~ N~p(0, $v), where 4>v; — &w (* — AA*), to give

y^Ay+z. (3.A.2)

xWe use A* to denote the conjugate-transpose of a matrix A.
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As required for a covariance matrix, <&y is nonnegative definite, since

the eigenvalues of AA* do not exceed one by Lemma 3.B.22. We wiU

show that the addition of V results in no information loss. Substituting
(3.A.1) into (3.A.2) yields

£ = HI + i, (3.A.3)

where H = A H and W_ = A W_ + V_. Since H corresponds to the

transfer function H(z), it must be a ToepUtz matrix with the same

structure as H. Moreover, it foUows from

*£ = a2wAA*-ra2w (I - AA*) = a2wl

and from Lemma 2.4 that W_ is a segment of proper complex white

Gaussian noise. Thus, Y_ is the observation vector obtained at the out¬

put of an ISI channel with channel filter H(z) and with the same noise

statistics as the original channel.

Now observe from (3.A.1) and (3.A.2) that the sequence (X, Y_, Y)
is a Markov chain. Hence, the data-processing inequality [23, p. 32]
yields

I(X;Y) > I(X;Y). (3.A.4)

But had we started with the channel filter H(z) and its associated

Toeplitz matrix H, the transformation of the observation vector by the

aUpass matrix A* (which is shown in Appendix 3.B to be associated

with 1/A(2)) and the subsequent addition of an independent, proper

complex Gaussian random vector with covariance matrix a^ (I — A*A)
would have led to the ISI channel with channel filter H(z) and AWGN,
which proves that (3.A.4) also holds in the reverse direction. Hence

(3.A.4) must hold with equaUty.
To prove the theorem for real channels where aU filter coefficients are

real3 and, in all transfer functions, zeros and poles appear in complex

conjugate pairs, we simply replace the proper complex distributions by
real distributions, i.e., V_ ~ jV(0, $y) and W_ ~ jV(Q, &w)- ^

2Lemma 3.B.1 shows further that $y has at most K nonzero eigenvalues.
3Notice that Lemma 3.B.2 used above applies to real matrices A for which A*

can be replaced by AT.
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Appendix 3.B Allpass-Filter Properties

For K > 1, a K-th order allpass filter A(z) = X^-oo Oj z~x is given by

K
_

^w^n^T' h=i' o<w<oo, i2fc^i,
fc=i zzk

~ l
(3.B.1)

where, for each zero zk, there is a corresponding pole at I/2*. that is

obtained by reflecting this zero at the unit circle. An allpass filter of

order zero is simply A(z) — a. It is sometimes convenient to use the

equivalent form

^)=a'n4-^' ia'i=i' °<i4i<°°, i«ii #1,
fc=i z~zk (3.B.2)

where the poles are at z'k.
For the foUowing, it wiU be convenient to define A+(z) = A*(l/z*),

which is the 2-transform of the time-reversed and conjugated sequence

{a*_,}. It is easy to check that

A+(z) = <**U fp^\ = ^fl T^2 = 1MW- (3-B.3)
** ZhZ — I CV "* 2 — Zk
fc=i

K
fc=i

K

This impUes that A(z)A+(z) = 1 and hence that |A(eJ")| = 1,
0 < fi < 2-k, which is the reason for the name 'allpass filter'.

If all poles of A(z) are inside the unit circle and I/2* is the pole
closest to the unit circle, we take {2 : |2| > |l/^i|} to be the region of

convergence (ROC) of A(z) so that the sequence {a,} is causal. More¬

over, {a,} is delayless since Um2_>00A(2) = 0,0 ^ 0. If all poles are

outside the unit circle and I/2* is the pole closest to the unit circle, we

take {2 : |2| < |l/2i|} to be the ROC of A(z) so that the sequence {a,}
is anticausal1. Moreover, lim2_>0 A(z) = a0 ^ 0. Finally, if there are

poles inside and outside the unit circle, we let the ROC of j4(2) be the

largest ring centered at the origin and containing the unit circle but no

poles. In this case, the sequence {a,} is two-sided and is neither causal

nor anticausal.

A sequence {a,} is called anticausal if o, = 0 for i > 0.
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In the following, we investigate, for all N > 1, some properties of

the AT x AT ToepUtz matrix

Ai

ao a_x

ai ao a_i

0,1 ao

O—N+l

.
ajv-i ai

a-i

(3.B.4)

associated with A(z). Notice that the NxN ToepUtz matrix associated

with 1/A(z) — A+(z) is given by A*.

Lemma 3.B.1: Let A(z) = Y^^l-ooaiz~' ^e a %-& order allpass
filter with poles at zi, 22,.. •

, zk and define the if-th order FIR filter

K K

H(z)±ho H(l-zkz-1) = J2hkz-k

fe=l fc=0

For N > K+l, let A be the AT xN ToepUtz matrix associated with A(z)
as defined in (3.B.4). Then A*A has a unit eigenvalue of multipUcity
at least N — K and the corresponding eigenvectors can be selected as

vn = [Pj_i : hT : QN-K-n]T, l<n<N-K,

where h = [ho,hi,... ,hx]T and 0n denotes an all-zero vector of

length n.

Proof: The transfer function H(z) = A(z)H(z) is a K-th order FIR

filter since the poles of A(z) and the zeros of H(z) cancel out. ExpUcitly,

H(z) = h0 rifc=i(l - ^l(zzk))- ^ne coefficients of H(z) are denoted by
h = [ho, hi,... , hjc]T. Expressing the convolution of {a,} and {hi} in

matrix form gives

Q„_i
k

Q-N-K-r,

fl»-l
k

L QjV-iC-n
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where 1 < n < N - K. Using (3.B.3) gives H(z) = A~1(z)H(z) =

A+ (z)H(z). Therefore,

Q„_i
hA*

where 1 < n < N - K.

Q.N-K-n

= A*A

Q„_i
h

Q-N-K-n

0„_i
h

Q-N-K-n

Notice that Lemma 3.B.1 holds also for A+(z). It follows that,
iox N > K + 1, the matrix AA* has a unit eigenvalue of multiplicity
at least N — K and the corresponding eigenvectors can be chosen as

2>n = [Oj-i : kT : Ql-K-nY-

Lemma 3.B.2: Let A(z) = ]CS-ooa»z_' be a K-i\x order allpass
filter and let A be the N x. N ToepUtz matrix associated with A(z), as

defined in (3.B.4). Then the eigenvalues An of the matrix AA* satisfy
0<^n<lil<n<-^i and are all nonzero if the sequence {ctj}
is causal or anticausal. Moreover, for N > K + 1, at least N — K

eigenvalues equal one.

Proof: Consider the experiment in Figure 3.B.1, where a white, proper

complex random process {Wn} with zero mean and unit sample vari¬

ance is input to the upper allpass filter A(z) for 0 < n < N and to

the lower identical allpass filter at all other times2 and where the out¬

puts of these allpass filters are added to form the process {Wn}, where

Wn = Z„ + V„ for all n. It foUows that {W„} is another white, proper

complex random process with unit sample variance. Since the two all-

0 < n < JV ]
Wn

Figure 3.B.1: AUpass experiment

pass filters are fed by uncorrelated subsequences of {W„}, the vectors

2While a filter is not connected to Wn, zeros are assumed to be the input.



3.C Jensen's Integral Formula 55

Z_ = [Z0, Zi,..., ZN-i]T ± AW (where W = [W0, Wu... , WN-i]T)
and Y_ = [Vo,Vi,... , Vn-i]T are uncorrelated as weU. Thus, the covari¬

ance matrices (cf. (2.3)) of the vectors W = [Wo, Wi,... , Wjv-i]t, Z_

and V are related by &$? = I = $_z + <fr v;. From this and since <&z and

$v_ are nonnegative-dennite Hermitian matrices, the eigenvalues An of

$.z = AA* satisfy 0 < An < 1. When the sequence {a,} is causal [anti¬
causal], the matrix A is lower-triangular [upper-triangular] with ao ^ 0

on the main diagonal and therefore nonsingular, which implies An > 0,
1 < n < AT. Moreover, ior N > K + 1 the matrix AA* has at least

N — K unit eigenvalues by Lemma 3.B.I.

Appendix 3.C Jensen's Integral Formula

For the proof of Theorem 3.2, we need the foUowing result [45, p. 424]:

Lemma 3.C.1 (Jensen's integral formula): Let F(z) be a function

of a complex variable that is analytic in a region containing the disk

Vr — {z : \z\ < R} and that has finitely many (not necessarily distinct)
zeros ci, C2,... , c„ in the interior of Dr. Then, if F(0) ^ 0,

log|F(0)| = ~£log\F(Re&)\dn + J2log(\ci\/R). (3.C.1)
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Chapter 4

Construction of K-ary State-

Transition Diagrams for

Trellis Encoders

In this chapter, we investigate directed graphs with exactly K branches

emanating from every node, referred to as K-axy state-transition dia¬

grams (STD's), for the construction of trelUs encoders. (A trelUs en¬

coder will be defined as a labeled K-axy STD in Chapter 5.) Our original
motivation for the investigation of K-axy STD's was their usefulness in

finding good matched spectral-nuU codes [13], [16] by exhaustive search.

However, K-axy STD's are also potentially useful for searching trelUs

codes with other properties.

An algorithm wiU be presented for finding all K-axy STD's that

satisfy certain topological constraints. Various constraints can be im¬

posed in order to keep the number of K-axy STD's manageable and to

identify the K-axy STD's best suited for coding. For practical reasons,

one usually desires a controllable (n,k) trelUs encoder, i.e., a trelUs en¬

coder, which can be driven to any state from any given initial state

by some information sequence. This encoder property is equivalent to

the requirement that the underlying 2fc-ary STD is strongly connected

[46, p. 132], [47, p. 3].
Certain directed graphs differ only in the names of their nodes

and branches and are therefore considered equivalent or isomorphic

[46, p. 6], [47, p. 154]. We are thus interested in the isomorphism
classes of K-axy STD's. A straightforward approach for constructing
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all non-isomorphic1 K-axy STD's with N nodes and given topological
constraints would be to generate a list of such K-axy STD's sequen¬

tially. This could be done by generating and testing all combinatorially

possible iiT-ary STD's with N nodes. Every candidate that is neither

isomorphic to an entry already in the list nor in conflict with a con¬

straint would be appended to the Ust; every other candidate would be

rejected. However, such an approach is unfeasible already for N Z 8

and K = 2 since the number of candidates is too large and because the

number of isomorphisms that must be checked becomes prohibitive.
To alleviate these problems, we show that K-axy STD's can be con¬

structed in a recursive way by successively extending nodes of so-called

partial K-ary STD's. The topological constraints on the (complete)
K-axy STD's also constrain the partial iiT-ary STD's. Depending on

the constraints, this will allow us to reject a large fraction of the com¬

binatorially possible partial K-axy STD's and thus to keep the number

of processed candidates manageable.
The outUne of this chapter is as follows. In Section 4.1, after some

terminology for directed graphs, different ways of representing K-axy
STD's are considered and the notion of an isomorphism is examined in

terms of these representations. In Section 4.1, we also define the detour

memory of a K-axy STD. Large detour memory wiU turn out to be

a useful criterion for identifying K-axy STD's from which good treUis

codes can be constructed. (In Chapter 5, we will present a simple upper

bound on the free distance of a trellis code that involves only the detour

memory of a K-axy STD and the maximum distance between two ele¬

ments of the coding alphabet.) In Section 4.2, necessary and sufficient

conditions are derived for when a partial K-axy STD can be extended

to some complete, strongly connected K-axy STD with N nodes. More¬

over, it is shown that the parameters needed to test these conditions

can be computed recursively. In Section 4.3, an algorithm is presented
for the systematic construction of aU non-isomorphic K-axy STD's with

N nodes and given topological constraints. This algorithm generates a

sequence of N ordered Usts, where the n-th Ust, 1 < n < N, contains

the partial K-axy STD's with n extended nodes. In Section 4.4, K-axy
STD's with maximum detour memory are investigated and tabulated

for K = 2 and N = 1, 2, 4, 8, and 16 nodes. Appendix 4.A contains

some properties of the n-th power of a directed graph that are used in

Sections 4.1 and 5.1 for the investigation of paths in K-axy STD's.

1 When we speak of "all non-isomorphic K-axy STD's", we mean one representa¬

tive for every isomorphism class.
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4.1 Graph Preliminaries

A directed graph can be defined as foUows [46, p. 125], [47, p. 3].

Definition 4.1: A directed graph or digraph G is a four-tuple

(«S, B, a, e) where S (the set of nodes) and B (the set of branches) are

disjoint sets and where a and e are mappings from B to S.

Unless stated otherwise, we assume in this thesis that both S and

B are finite and that S is non-empty2. For a branch b e B, a(b) and

e(b) denote the start-node and end-node, respectively. A branch b with

a(b) = e(b), i.e., with the same start-node and end-node, is called a

self-loop. Two branches b and b' with a(b) = cr(b') and e(b) = e(b'),
i.e., with a common start-node and a common end-node, are said to be

parallel. For any s S, let

Bout(s) ±{b:bB, o-(b) = s} and B-m(s) ±{b:btB, e(b) = s},

i.e., Bont(s) and B-m(s) denote the subset of branches emanating from

and ending at node s, respectively. The out-degree doui(s) and in-degree

d-m(s) are the numbers of branches starting from and ending at node s,

respectively, i.e., dout(s) = |B0ut(s)| and din(s) = |#in(«)|- A digraph
is said to have uniform out-degree (uniform in-degree) d if dout(s) = d

(din(s) = d) for every s e 5. The nodes in {e(b) : b e Bout(«)} and

{cr(b) : b e B-1B(s)} axe called the successors and predecessors of s,

respectively. A node that is neither a start-node nor an end-node for

any branch is said to be isolated.

A path in a digraph is a non-empty sequence of branches such that,
for any two subsequent branches b{ and b,+i in this sequence, the end-

node of b{ is the start-node of 6<+i. Paths can be finite, semi-infinite, or

infinite. For a finite or right-sided semi-infinite path 7, the start-node

of the first branch is called the start-node of the path and is denoted

by o(j). For a finite or left-sided semi-infinite path 7, the end-node of

the last branch is called the end-node of the path and is denoted by (7).
Two finite paths are said to be parallel if they have a common staxt-node

and a common end-node. A cycle or cyclic path is a finite path whose

staxt-node and end-node coincide. A digraph without cycles is called

acyclic. A digraph with node set «S is said to be strongly connected

[46, p. 132], [47, p. 3] if there is a finite path from every node s e S to

2In Section 4.2, it will be convenient to recognize an 'empty digraph' [46, p. 2]
that has both an empty node set and an empty branch set.
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every node s' e S. A graph consisting of an isolated node is, by way

of convention, considered to be strongly connected3. The period P of a

strongly connected digraph with a non-empty branch set is defined as

the greatest common divisor of the lengths of all cycles. A digraph with

period P>1 (P=l) is said to be periodic (aperiodic).

In this chapter, we axe interested in a special kind of directed graph
that will be used for the construction of trellis encoders in Chapter 5.

Definition 4.2: A K-ary state-transition diagram (STD), where

K > 0, is a digraph with uniform out-degree K.

The name 'state-transition diagram' anticipates the use of such di¬

graphs for describing the state transitions of certain finite-state ma¬

chines [48]. In Chapter 5, a treUis encoder will be defined as a 'labeled'

K-axy STD that is obtained from an 'unlabeled' K-axy STD as in Def¬

inition 4.2 by assigning 'inputs' and 'outputs' to the branches.

A K-axy STD may also have a uniform in-degree, which then must

also be K.

Example 4.1: Figure 4.1 shows a strongly connected, aperiodic binary
STD with uniform in-degree 2. Note that the state transitions of a

Figure 4.1: A binary state-transition diagram

feedforward shift register with two serial 1-bit stages can be described by
such a binary STD. In Figure 4.1, <Bout(0) = {a, 6} and B-m(0) = {a, d}.
The paths (a, a, a) and (b, c, d) are paraUel.

Certain K-axy STD's will be considered essentially the same or

'isomorphic' [46, p. 6], [47, p. 154] in the following sense.

3 This will be relevant for the definition of the component-reduced digraph in

Section 4.2.
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Definition 4.3: Two directed graphs G — (S,B,cr,e) and G' =

(Sr, B', a', e') axe called isomorphic if there axe bijective maps p: S — S'

and /3 : B — B' such that, for every be B,

p(o-(b)) = *'(f3(b)) and M(C(6)) = e'(/5(6)). (4.1)

The condition (4.1) means that, for every b e B, the start-node

and end-node of b is mapped by p to the start-node and end-node of

6' = /3(b), respectively, as shown in Figure 4.2. We write G = G' to

b n n b'

a(b) a'(b')

Figure 4.2: IUustration of condition (4.1) with V = /3(6)

indicate that G and G' axe isomorphic. The pair of maps (p,0) in

Definition 4.3 is an isomorphism of G onto G' [46, p. 6]. An isomor¬

phism (p, f3) from G onto itself is called an automorphism. The relation

of isomorphism between digraphs is easily verified to be reflexive, sym¬

metrical, and transitive, i.e., it satisfies the conditions for an equivalence
relation [46, p. 6]. It therefore partitions the class of digraphs into dis¬

joint subclasses called isomorphism classes.

Every branch in a digraph without parallel branches is uniquely
identified by its start-node and end-node. Such a digraph is therefore

isomorphic to a digraph with the same set of nodes, say <S, and a set of

branches B that can be taken to be a subset of «S x S. The maps a (for
the staxt-node) and e (for the end-node) axe then simply the projections
of B onto its first and second component, respectively, and need not be

specified expUcitly. We wiU write simply G = (S, B) when B is a subset

of S x S.
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The adjacency matrix of a digraph G = (S, B, a, e) with node set

S = {0, 1, ...
,
N — l} is the N x N matrix4 A = [a,j], where a;j is

the number of branches from node i to node j, 0 < i, j < N. We do

not constrain the entries of A to be zero or one, as this would disallow

parallel branches. In the remainder of this section, the node set is always
taken to be S = {0, 1, ... , N-l}.

If A is the adjacency matrix of a digraph G then it is obvious that a

digraph G' isomorphic to G can be constructed from A. Thus, A repre¬

sents the isomorphism class of which G is a member. The representation
of a digraph (and its isomorphism class) by its adjacency matrix is the

bridge between graph theory and the theory of nonnegative matrices.

For instance, a digraph is strongly connected if and only if its adjacency
matrix is irreducible [38, Thm. 15.1, p. 529]. (An N x N matrix M,
where N > 2, is said to be reducible if there is an A^ x N permutation
matrix P such that

PTMP =
**" 1?"

[ o M33

where every submatrix has at least one row and column. If no such

P exists, then M is called irreducible [38, p. 374]. A 1 x 1 matrix

is, by way of convention, considered to be irreducible.) Further, the

period of a strongly connected digraph G with a non-empty branch set

equals the so-called index of imprimitivity of its adjacency matrix A

[38, p. 544], which is defined as the number of eigenvalues of A with

largest magnitude. A nonnegative, irreducible matrix with index of

imprimitivity one is called primitive [38, p. 544]. Hence, the adjacency
matrix A of a strongly connected digraph G with a non-empty branch

set is primitive if and only if G is aperiodic. This relationship will be

useful in checking the strong connectivity of the n-th power of a digraph
(cf. Appendix 4.A).

The adjacency matrix A of a K-axy STD with N nodes is sparse

when K <C N, since every row of A is nonzero in at most K posi¬
tions. We now present a different, more compact description of a K-axy
STD G = (S, B, o, e) (with or without paraUel branches), which is bet¬

ter suited for manipulation on a computer. For the i-th node, where

0 < i < N, the branches emanating from node i can be numbered in

any order from 0 to K — 1. In particular, they can be numbered as

bj(i), 0 < j < K, where the end-nodes of b0(i), bi(i), ... , 6jf-i(i) are

in non-increasing order, i.e.,

e(b0(i)) > e(h(i)) >...> e(bK.i(i)). (4.2)

4Matrix rows and columns are indexed starting from zero in this chapter.



4.1 Graph Preliminaries 63

We arrange the NK numbers f,j = e(bj(i)), 0 < i < N, 0 < j < K, as

an N x K matrix F = [fij], called the next-node matrix of G. The t'-th

row of F, which is denoted by /., is an ordered iiT-tuple whose entries

axe a combination of K not necessarily distinct nodes. From (4.2), it

follows that the coefficients fij satisfy

fio>fa>...>fi,K-i. (4.3)

If G has no parallel branches then

fio >/,i>..-> fi,K-i (4.4)

since, for any node i, the branches bo(i), bi(i), ... , bj(-i(i) have dis¬

tinct end-nodes.

Example 4.2: The binary STD from Example 4.1 has the next-node

matrix

F =
l o

3 2
1 0
3 2

Let F denote the next-node matrix of a iiT-axy STD G. Then it

is obvious that a K-axy STD G' isomorphic to G can be constructed

from F. Thus, F represents the isomorphism class of which G is a

member. We will soon give a justification for calling certain next-node

matrices 'isomorphic'.

Definition 4.4: Two N x K next-node matrices F and F' are

called isomorphic if there is a bijective map p : {0, 1, ...
,
N — 1} —>

{0, 1, ... , N-1} such that

F' = p(Pllp(F)), (4.5)

where p(F) denotes the result of applying p to each entry of F, where

Pp is the N x N permutation matrix such that [0, 1, ... ,
N — 1]T =

P/i [p(0), p(l), ... , p(N - 1)]T, and where p(M) denotes the operation
of reordering each row mt of a matrix M so that the elements of m^ axe

in non-increasing order.

The multipUcation by PM in (4.5) permutes the rows of p(F) in such

a way that row n becomes row p(n) for 0 < n < N. Note that

P„p(F) = p(PllF).
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Example 4.3: We claim that the next-node matrices

and F' =

axe isomorphic. To see this, let p be the bijective map defined by

p(0) = 3, p(l) = 1, p(2) = 2, and p(3) = 0. Then

"1 0'

3 ?,
h' =

1 0

3 2

2 0]
2 0

3 1

3 1

p(F) =

"1 3"

0 2

1 3

0 2

P^(F) =

r° 2]
0 2

i 3

i 3

and F' = p{Py. p(F)). The reader may want to check that the bijec-
tion p defined by p(0) = 0, p(l) = 2, p(2) = 1, and /z(3) = 3 yields the

same F'.

We write F = F' to indicate that F and F' axe isomorphic. It should

be obvious that the relation of isomorphism between N X K next-node

matrices is reflexive, symmetrical, and transitive, as required for an

equivalence relation. The bijective map p in Definition 4.4 induces an

isomorphism nM of F onto F', i.e., F' = n^(F). When F = n,j(F), nM is

called an automorphism of F.

Example 4.4: The bijection p defined by p(0) = 1 and p(l) = 0

induces an automorphism of the next-node matrix F = [ { § ].

The following result justifies Definition 4.4.

Proposition 4.1: Let G = (S, B, o, e) and G' = (S, B', a', e') denote

two .ftT-ary STD's with the same node set S — {0, 1, ... ,
N — 1} and let

F and F' be their next-node matrices. Then G and G' axe isomorphic
if and only if F and F' are isomorphic.

Proof: Suppose that G = G' and let (p,/3) be an isomorphism of

G onto G'. Since the K successors5 of node n in G axe the ele¬

ments of the n-th row of F, viz., / = [/nO,/ni, •• ,fn,K-i], the

5In this proof, the 'successors' of a node n are the K not necessarily distinct

end-nodes of the branches leaving node n.
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successors of node p(n) in G' axe the elements of the row vector

^(n) - [p(/»o),/*(/m)i • • • • p(fn,K-i)]- Hence, by definition of F', the

elements of the p(n)-th row of F' are the elements of «M(„), arranged
in non-increasing order. This holds for every n, 0 < n < N, so that

F = F'.

Conversely, suppose that F = F' and let pbe a bijective map that

induces an isomorphism of F onto F'. The K branches emanating from

node n in G can be numbered in such a way as bk(n), 0 < k < K, that

e(bk(n)) = fnk, 0<k<K. (4.6)

Similarly, the K branches emanating from node p(n) in G' can be num¬

bered in such a way as b'k(p(n)), 0 < k < K, that

e'(b'k(p(n))) = p(fnk), 0<k<K. (4.7)

Define the bijection

/3: B - B'

bk(n) h+ b'k(p(n)).

Applying p to (4.6) and comparing to (4.7) shows that, for every b e B,

p(e(b)) = e'({3(b))- (4-8)

Moreover, o~(bk(n)) = n and c'(b'k(p(n))) = p(n) by definition of bk(n)
and b'k(p(n)) so that, for every b e B,

p(a(b)) = a'(/3(b))- (4-9)

But (4.8) and (4.9) axe precisely the conditions for G = G'. O

We now derive crude upper bounds on the number of all non-

isomorphic K-axy STD's with A'' nodes, which equals the number of all

non-isomorphic N X K next-node matrices by virtue of Proposition 4.1.

Let /. denote the t'-th row of an N x K next-node matrix and observe

that the number of choices for /. satisfying (4.3) is exactly the number

of combinations of K elements from a set of N elements when repeti¬
tions are allowed and is given by {N+^~1)- Similarly, the number of

choices for /. satisfying (4.4) is the number of combinations without

repetitions of K elements from a set of N elements and is given by (^).
Let ji(N,K) and 72(A7,if) denote the number of all non-isomorphic
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K-axy STD's with N nodes when parallel branches axe allowed and

disallowed, respectively. It follows that

7lW«)<(JV+^""1) and l2(N,K) < Qf) .

As an example, one finds 7^8,2) < 2.8-1012 and 72(8,2) < 3.8-1011. Un¬

fortunately, these (loose) upper bounds cannot be tightened by dividing
through the number N\ of isomorphisms between N x K next-node ma¬

trices, since some next-node matrices have a nontrivial automorphism

group (see Example 4.4). The related problem of counting strongly con¬

nected finite automata with the same number of state transitions from

every state was considered by Robinson [49, Table 2]. However, Robin¬

son's results do not apply to our problem, since a finite automaton is

defined via a state-transition function in which the assignment of the

inputs to the K transitions leaving a state is relevant.

A useful topological constraint for a K-axy STD G is the detour

memory, defined as the smallest nonnegative integer M such that G has

a pair of parallel paths of length M+1. Equivalently, the detour memory

of a K-axy STD G can be defined as the smaUest nonnegative integer M
such that an element of AM+1 exceeds one, where A is the adjacency
matrix of G. A K-axy STD with M = 0 has parallel branches6.

Lemma 4.1: The detour memory M of a K-axy STD G (K > 2) with

N nodes, where N > 1, satisfies

M<[\ogKN\,

where log#(.) denotes the logarithm to the base K.

Proof: Lemma 4.1 holds trivially if G has parallel branches, i.e.,
when M = 0. The STD G has detour memory M > 1 only if its

M-th power GM (cf. Appendix 4.A) is free of parallel branches. Ob¬

serving that KM branches are emanating from every node of GM, we

conclude that GM can be free of parallel branches only if KM < N or

M<[\ogKN\.

A K-axy STD (K > 2) with detour memory M, where M > 0, and

N = KM nodes achieves equality in (4.10) and is therefore said to have

(4.10)

Such STD's exist for K > 2.
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maximum detour memory. The above proof impUes that such an STD is

automatically strongly connected since, for any given start-node, there

is exactly one path of length M to every node of the STD.

In Chapter 5, we wiU be particularly interested in 2fc-axy STD's,
where k is a positive integer. By Lemma 4.1, the detour memory of a

2fc-ary STD (k > 1) with N nodes, where N>1, satisfies

M < [logKN\ = U°g2 w/i°g2#J = U l°g2^J- (4-H)

Thus, a 2fc-ary STD (k > 1) with detour memory M, where M > 0,
and N = 2kM nodes has maximum detour memory.

It should be noted that certain finite-state machines [48] have a

2fc-ary STD with maximum detour memory. Consider a Moore-type
finite-state machine with input alphabet {0, l}fc, whose state is given

by the contents of a (not necessarily feedforward) shift register with

m fc-bit stages, and suppose that, for any contents of the shift register,
there is a one-to-one mapping from the input of the finite-state machine

to the input of the shift register. Starting from any of the N = 2km

states, the 2k inputs generate 2k transitions to 2k not necessarily distinct

successors. Hence, the state transitions can be described by a 2fc-ary
STD G, which we now show has detour memory M = m. By definition,
the detour memory of G is the smallest nonnegative integer M such

that there is a pair of parallel paths of length M + 1. One of these

parallel paths can be considered as the 'correct path' and the other

as the 'detour'. The correct path and the detour have N-axy state se¬

quences (so, si, ... , sm+i) and (so> *i > • • > *m+i)j respectively, where

s0 = so, sm+i ~ *Af+i> and *,• ^ S,-, 0 < i < M. Since the states are

equal at time zero, their difference at time one must correspond to a

difference in the first stage of the shift register. Such a difference re¬

mains in the shift register for m time units. The proof that M = m is

completed by noting that, for any given start-state so = sq, two differ¬

ent inputs for the finite-state machine result in two different next states

si and ii, which is a consequence of the one-to-one mapping from the

input of the finite-state machine to the input of the shift register.
In Section 4.4, we will say more about K-axy STD's with maximum

detour memory.
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4.2 Recursive Construction of Strongly
Connected K-a.ry State-Transition Dia¬

grams from Partial K-ary State-Transi¬

tion Diagrams

Strongly connected K-axy state-transition diagrams can be constructed

in a recursive way by successively extending nodes of partial K-axy
state-transition diagrams, defined as follows.

Definition 4.5: A partial K-ary state-transition diagram (STD), where

K > 0, is a digraph G = (S, B, o, e) such that, for every node s in <S,
either dout(s) = K, or dout(s) = 0 and d-m(s) > 0, i.e., every node has

either K outgoing branches or none, in which case it has at least one

entering branch.

A partial K-axy STD has no isolated nodes. For clarity, a K-ary
STD will sometimes be called complete. It would be useful to know

whether a partial K-axy STD can be 'grown' to a complete, strongly
connected K-ary STD with N nodes in the following sense.

Definition 4.6: A partial K-ary STD is called strongly N-connectable

if it is a subdigraph7 of a complete, strongly connected K-axy STD with

N nodes.

Example 4.5: Figure 4.3 shows a partial binary STD G. Note that G

Figure 4.3: A partial binary state-transition diagram

is strongly 4-connectable since it is a subdigraph of the binary STD

in Figure 4.1.

7A digraph G = (S',B',a',e') is called a subdigraph of a digraph G = (5,B, er, e)
if S' C 5, 8' C B, and each branch of G1 has the same start-node and end-node in

G' as in G [46, p. 125].
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In Section 4.3, we will construct all non-isomorphic, strongly con¬

nected K-axy STD's with N nodes by extending partial K-ary STD's.

If a partial K-axy STD is not strongly AT-connectable, it wiU be dis¬

carded. We wiU thus avoid having to generate, test, and reject a large
number of complete K-axy STD's that are not strongly connected.

In this section, conditions for a partial K-ary STD to be strongly
AT-connectable will be given in terms of its component-reduced digraph.
In order to define the latter, we first introduce the notion of a maximal

strongly connected component [47, p. 64]. Let G = (S,B,a,e) be a di¬

graph. For s, s' e S, we use the notation s+*s' to indicate that there axe

finite paths from s to s' and back. By way of convention, s**s. Clearly,
'52' is an equivalence relation. It partitions S into disjoint non-empty
sets Si (the equivalence classes), i.e., S = (j£Li<S«) where 1 < m < \S\.
The maximal strongly connected components (or simply the components)
of G are the subdigraphs G; = (Si, B{, a, e) of G, 1 < i < m, where

Bi = {b : beB, o(b) e S; and e(6) e <S,},

i.e., Bi is the subset of those branches in B whose staxt-node and end-

node are both in «S,-. Note that a branch set Bi can be empty and that

B2ur=ift-

Definition 4.7: For any digraph G = (S,B,a,e) whose maxi¬

mal strongly connected components axe denoted by G,- = (Si,Bi,cr, e),
1 < i < m, the component-reduced digraph (CRD) of G is the

digraph Gc = (SC,BC), where <5C = {<Si,«S2, ... ,<Sm} and Bc =

{ (Si, Sj) : ijzj, there exists a b e B with a(b) Si and e(b) eSj}.

Hence, the CRD Gc of a digraph G is obtained by collapsing every

component Gt- of G to a node <S,- of Gc, i.e., by letting the sets Si become

the nodes of Gc and by providing a branch from node Si to node Sj for

every pair (Si,Sj), i ^ j, for which G contains a branch from a node

in Si to a node in <S,-. By definition, the CRD has no parallel branches

and no self-loops. Moreover, the CRD is acyclic since if there was a

cycle that connects two different nodes Sj and Sk in Gc, all nodes of G

contained in the sets Sj and Sk would be connected by a path in each

direction, in contradiction with the definition of these sets.
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Example 4.6: For the partial binary STD G in Figure 4.4, the node

equivalence classes Si induced by the relation '*±' are the sets {0}, {1,2},
{3}. {4}, {5}, and {6}. Notice that the CRD Gc of G (also shown

Figure 4.4: A partial binary STD G and its CRD Gc

in Figure 4.4) is acyclic.

Consider now the CRD Gc = (SC,BC) of a partial K-ary STD

G = (S,B,cr,e). The nodes of Gc can be classified according to their

out-degrees and in-degrees. Node Si Sc is called a source node if

d0ut(Si) > 0 and din(<S,) = 0, an intermediate node if dout(«S,) > 0 and

din(Si) > 0, a sink node if dout(Si) = 0 and d-in(Si) > 0, and an isolated

node if dout(5,) = d-m(Si) = 0. Every unextended node s in G consti¬

tutes a sink node Si = {s} in Gc since dout(s) = 0 implies d-1B(s) > 0

according to Definition 4.5. Such a sink node wiU be referred to as a

resource node because it represents an extendable node of G. Every
other sink node or isolated node will be caUed a dead node because

it represents a component of G that neither can be left on any path
nor contains an extendable node. We now state the main result of this

section, whose proof can be found in Appendix 4.B.

Theorem 4.1: Let G be a partial K-axy STD with V > 1 nodes and

let Gc be its CRD with S source nodes, R resource nodes, and D dead

nodes. Then G is strongly Af-connectable for some N > V if and only
if

D = 0 and RK + (N - V)(K - 1) > S (4.12)

or

D = l, 5 = 0, and V = N. (4.13)
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Example 4.6 (cont.): The partial binary STD G in Figure 4.4 has

V = 7 nodes. Its CRD Gc has S = 3 source nodes ({0}, {4}, and

{6}), 1 = 2 intermediate nodes ({1, 2} and {5}), R = 1 resource node

({3}), and D = 0 dead nodes. Note that (4.12) is satisfied for N = 8,

but not for N = 7, i.e., G is strongly 8-connectable, but not strongly
7-connectable. Indeed, G can be extended to a complete strongly con¬

nected binary STD with N = 8 nodes by appending a binary subtree

with three leaves to node 3, such that the three leaves coincide with the

nodes 0, 4, and 6.

In the remainder of this section, we show how to determine the

parameters in Theorem 4.1 recursively. Let G„ denote a partial K-axy
STD with n extended nodes, which are numbered from 0 to n — 1, and

let GCn be its CRD. Suppose that we extend node n of G„ by adding
the branches BOBt(n), which yields Gn+i- In order to apply Theorem 4.1

to Gn+i, we have to find its CRD GCn+1. One solution is to determine

GCn+1 directly from Gn+i using the Tartan algorithm8 [50], [47], [51].
However, it is much more efficient to determine GCn+1 recursively from

GCn using a simpUfied version of the Tarjan algorithm, as we now show.

Let G„ be a strongly A'-connectable partial K-axy STD and let the

unextended nodes of Gn be numbered contiguously with the extended

nodes. This ensures that, for 1 < n < N, node n has d-in (n) > 0 in G„ so

that node {n} is a resource node in Gc„. Let GCQ be the empty digraph,

i.e., let SCQ = {} and BCQ = {}. The foUowing algorithm for updating
the CRD consists of two steps. First, node {n} of GCn = (SCn,BCn) is

extended, which yields a digraph E = (S, B), and second, E is reduced

to the desired CRD Gc
...

*-n+l

Algorithm 4.1 (Updating the CRD): Let Gn, where 0 < n < N,
denote a partial K-ary STD with n extended nodes, numbered from 0

to n - 1, and let Gc„ = (<SCn,jBCn) be its CRD. Further, let Gn+i be

the partial K-axy STD that results from G„ by extending node n, i.e.,

by adding the branches Bont(n). Then the CRD GCn+1 can be obtained

from GCn as follows.

Step 1: Determine an extended digraph E = (S, B): Initialize S *— SCn
and B <— BCn. If n = 0, add the node9 {0} to S. Extend node

8The Tarjan algorithm is a depth-first search method for finding the maximal

strongly connected components of a digraph.
9Recall that the nodes of a component-reduced digraph are disjoint sets.
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{n} of E as follows. For every branch b e #out(") whose end-

node e(6) is not contained in any node of S, add the node

{e(6)} to S. Finally, for every branch b B0ut(n) that is not a

self-loop, add the branch ({n},Se^) to B, where Se^) is that

node of <S, which contains e(b).

Step 2: Reduce E to GCji+1: Starting from node {n} of E, run the

Tarjan algorithm to find the maximal strongly connected com¬

ponent containing {n}. Let Sn be the subset of those nodes

of G„+1, which axe contained in the nodes of this component.

CoUapse the component just found to one node Sn by redirect¬

ing branches appropriately and by removing self-loops.

Remarks on Algorithm 4.1:

• The branches added to Gc
„

in Step 1 may have completed one or

more cycles through node {n} in E. Since GCn is acycUc, there

can be no other cycles in E. The node {n} together with all other

nodes on these cycles constitute a maximal strongly connected

component in E, which can be found using the Tarjan algorithm10.

•

•

In Step 2, parallel branches are removed automatically since there

can be at most one branch from one node of E to another.

In Step 2, the collapsed node Sn becomes a dead node if it has no

successor; otherwise, it becomes an intermediate node if it has a

predecessor or a source node if it has none.

• The parameters S, R, and D needed in Theorem 4.1 can be up¬

dated as follows. Increase R by the number of new nodes added

in Step 1. Decrease S and R according to the types of the nodes

merged in Step 2. Increment S (or D) if the coUapsed node Sn is

a source node (or dead node).

10The Tarjan algorithm uses a stack for storing the nodes in the order they are

visited first during a depth-first search. Each time a maximal strongly connected

component is found, the corresponding nodes are popped from the stack. The fact

that {n} is the last node popped from the stack is used as the stopping criterion.
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Example 4.7: Algorithm 4.1 is iUustrated in Figure 4.5 for K = 2

and AT = 4. For n = 1 and n = 2, the extended digraph E is already in

Gi:

i

{0} o—>—o{i}

G2: 40

0}

C2: {0}OT Jr ^o{3}

{2}

G3: 40) 3 GC3 : {O,l,2}0 > O {3}

©<|rx3> Gc4 :

{0,1,2,3}
O

2

Partial binary STD G„ CRDGC„ of G„

Figure 4.5: IUustration of Algorithm 4.1

component-reduced form and is therefore not modified by Step 2. For

n = N, observe that the CRD GCn of G„ is a trivial digraph with one

(dead) node and no branches.
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4.3 Systematic Construction of All Non-

Isomorphic if-ary State-Transition Dia¬

grams with N Nodes and Given Topo¬

logical Constraints

The concept of extending partial STD's11 is developed further in this

section to an algorithm for the systematic construction of all non-

isomorphic STD's with AT nodes and given topological constraints. We

wish to generate a sequence of N ordered lists of partial STD's, where

the order relation is yet to be defined and where the n-th Ust, 1 < n < N,
contains partial STD's with n extended nodes. The idea is to construct

these Usts sequentially as follows. Each entry in the list of partial STD's

with n - 1 extended nodes is extended in all combinatorially possible

ways. An extended partial STD is appended to the Ust of partial STD's

with n extended nodes when it satisfies the given constraints; otherwise,
it is discarded. Clearly, the STD isomorphism classes that can be gener¬

ated by extending a partial STD G can be generated also by extending
a partial STD G' isomorphic to G. Hence, only non-isomorphic partial
STD's are retained in the lists.

In this section, the node set of a partial STD wiU always be a subset

of {0, 1, ...
,
N — 1} (where AT is a fixed positive integer) and, for a

partial STD with n extended nodes, 1 < n < AT, the subset of extended

nodes will always be the set

£ = {0, 1, ...,n-l}. (4.14)

Since every partial STD with n extended nodes is isomorphic to a partial
STD whose extended nodes are given by (4.14), no isomorphism class

will be excluded by imposing (4.14).
We now give a compact matrix description of a partial STD G whose

extended nodes are given by the set £ in (4.14). For the i-th extended

node, where 0 < i < n, the branches emanating from node i can be num¬

bered in any order from 0 to K—1. In particular, they can be numbered

as bj(i), 0 < j < K, where the end-nodes of bo(i), h(i), ... , 6jc_i(i)
are in non-increasing order, i.e.,

e(b0(i))>e(bi(i))>...>e(bK-i(i)).

nIn this section, 'STD' always refers to a tf-ary STD.
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We arrange the nK numbers fij = e(bj(i)), 0 <i <n, 0 < j < K, asan

nxK matrix F = [fij], called the partial next-node matrix of G. Since

the node set of G is a subset of {0, 1, ... ,
A'' — 1}, the elements of F are

also in that subset. By definition, every row /. of F satisfies (4.3) and,
when G has no parallel branches, the stronger condition (4.4). Notice

that the set of unextended nodes of G can be written as

U = {fij : 0 < i < n, 0 < j < K, ffj > n}. (4.15)

We wiU soon give a justification for the following definition12.

Definition 4.8: Two n x K partial next-node matrices F and F'

(where 1 < n < AT) are called isomorphic if there is a bijective map
p : {0, 1, ... , AT—1} — {0, 1, ... , N—l}, which satisfies p(i) < n for

all i < n, such that

F' = p(P„p(F)), (4.16)

where p(F) denotes the result of applying p to each entry of F, where

PM is the n x n permutation matrix such that [0, 1, ...
,
n — 1]T =

PM [p(0), p(l), ... , p(n - 1)]T, and where p(M) denotes the operation
of reordering each row mLi of a matrix M so that the elements of m,- are

in non-increasing order.

We write F = F' to indicate that F and F' axe isomorphic. The

bijective map p in Definition 4.8 induces an isomorphism wM of F onto

F', i.e., F' = nM(F). When F = nM(F), nM is called an automorphism
of F. The foUowing sUght generalization of Proposition 4.1 justifies
Definition 4.8.

Proposition 4.2: Let G = (S, B, o, e) and G' = (S', B', ex', e') denote

two partial K-ary STD's with n extended nodes (where 1 < n < N)
given by the set £ = {0, 1, ... ,

n -1}, a subset of both S and S'. Then

G and G' axe isomorphic if and only if their nxK partial next-node

matrices F and F' are isomorphic.

Example 4.8: Let N = 3. The partial next-node matrices F = [J g]
and F' = [\ J] are isomorphic since F' = nM(F), where the bijective
map p is defined by p(0) = 1, p(l) = 0, and p(2) = 2. Figure 4.6 shows

two partial binary STD's G and G' with partial next-node matrix F

See also Definition 4.4.
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G: <0>C^P1 G': 0 CC^>^>

2 2

Figure 4.6: Isomorphic partial binary STD's

and F', respectively. As predicted by Proposition 4.2, G and G' axe

isomorphic.

The algorithm proposed in this section generates a sequence of or¬

dered Usts of partial next-node matrices. For enumerating and ordering

partial next-node matrices, we define order relations as follows. For an

n x K partial next-node matrix F whose rows are denoted by /., let

JL, /.>••>/_i
be the order of decreasing significance. Similarly, for

the i-th row / = [/,0, fn, .
, fi,K-i] of F, let fi0, fn, ... , fi,K-i

be the order of decreasing significance. Thus, the order relations axe

defined by

F'>F <=» (/;>/„) V

(£=£,) A [(/;>/,)v...

and

(/l-2 = /„-2) A (/'„_,>/„-!)]-] (4-17)

/;>/. *=> (fio>fio) v

(fio = fio) A [(^>/,-i) V
...

(/U-2 = /.-,*--2) A (flK_i > fi<K.i) ]...], (4.18)

where 'V' and 'A' axe the boolean 'or' and 'and' operators.

Let Cn-i = {F^, P^Ix, ... ,F(n'2il}} denote a Ust of

(n — 1) x K partial next-node matrices, ordered in such a way that

i < j impUes pWj < F(B'2i. A list £n = {F^, Fn2), ... ,FnK)} is



4.3 Systematic Construction of All Non-Isomorphic ...
77

generated by 'extending' £n-i as follows. We first let £„ be the empty

list. Beginning with i = 1, we extend F^^ to

F„ =

for every row vector /^ satisfying (4.3) or (4.4). The row vectors

/
_

,
and thus also the extended matrices F„, axe generated with in¬

creasing order according to (4.18). Extended matrices that pass all

topological tests and that are not isomorphic to any entry already in

the Ust £„ axe appended to this Ust in the order they axe generated. The

process of extending F^ is repeated for i = 2, 3, ... , /„_i. Observe

that the Ust £n is ordered as weU, i.e., i < j impUes F„ < F„
,
since

the last row is the least significant row.

It is desirable to check whether a partial next-node matrix represents

a strongly AT-connectable partial STD. To do such a check efficiently,

we also maintain a Ust £Cn = {G^^G^n, ... , G^}, where Gc'l is the

component-reduced digraph (CRD)13 corresponding to to F„ .
The Ust

£Cn is obtained by updating the entries of CCfi_1 according to Algo¬
rithm 4.1.

The complete algorithm starts from £0 = {Fo} and CCQ = {Gco},
where Fo is a dummy matrix with zero rows and Gc<i is the empty di¬

graph, and extends £„_i to £n and CCfi_1 to £Cn for n = 1, 2, ...
,
N.

In the remainder of this section, we show how to do the topologi¬
cal tests and how to recognize isomorphisms. We first summarize the

topological tests. Let the n x K matrix (4.19) be the candidate to be

examined and let Gc„ be its CRD. As a first test, we wiU require that,
for some u > 0,

U = {n, n + 1, ... ,
n + u-1}, (4.20)

where U is the set of unextended nodes given by (4.15). This test

wiU greatly reduce the number of candidates to be processed further,
without excluding any isomorphism class. Another test wiU reject can¬

didates violating the detour-memory constraint. The detour memory

of an STD, which is constructed from a partial STD with adjacency
matrix A, is easily seen to be upper-bounded by the smallest nonneg¬

ative integer m such that an element of Am+1 exceeds one. Note that

*n-l

L-i
(4.19)

Note that the CRD is uniquely determined by the partial next-node matrix.



78 Chapter 4: Construction of K-axy STD's
...

the adjacency matrix is uniquely determined by the partial next-node

matrix.

The candidate Fn is discarded in any of the following cases,

(i) The constraint (4.20) is violated.

(ii) A uniform in-degree is desired and, for some j, 0 < j < N,
the number of elements of F„ equal to j exceeds K.

(iii) A detour memory M > 0 is desired and the smallest nonneg¬
ative integer m such that an element of Am+1 exceeds one is

less than M.

(iv) The partial STD represented by F„ is not strongly
AT-connectable.
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The following algorithm searches the list £n for a partial next-node

matrix that is isomorphic to a given candidate Fn.

Algorithm 4.2 (Search for an Isomorphic Partial Next-node

Matrix): Let £„ = {F„ ,
Fn ,

• •.
, F„ '} be a Ust of non-isomorphic

nxK partial next-node matrices (1 < n < N) with the property (4.20),
and let the list be ordered in such a way that i < j impUes F„ < F„ .

Let Fn = [fij] be a candidate nx K partial next-node matrix with the

property (4.20) for some u > 0. FinaUy, let M = {pi,p2, •
, Pj} be a

set of bijective maps pj : {0,1, ...
,
N - 1} — {0,1, ... ,

N - 1}. The

Ust £n is searched for an entry isomorphic to Fn as described by the

f StartJ

j<-l

n
/ n}(£) = e

—^ and

F'„=Vl*J(Fn)

n /~, \ y

-(*„ < F„y—

x^^y- "Isomorphic entry
found in Cn"

j-j + lKE> 'No isomorphic entry
found in £n"

rStop J

Figure 4.7: Searching the list £n for an isomorphic partial
next-node matrix

flowchart in Figure 4.7.
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Remarks on Algorithm 4.2:

• Since the entries of £„ and the candidate Fn have the property

(4.20), any bijective map pj that induces an isomorphism of F„

onto an entry of £n satisfies

Pj(£) = £ and pj(U)=U, (4.21)

where £ = {0, 1, ... ,
n- 1} and U = {n, n + 1, ...

,
n + u — 1}.

• When M is chosen as the set of all n'.u! bijective maps satisfying
condition (4.21)14, the result "No isomorphic entry found in £n"

implies that no isomorphic entry exists in £„. For AT > 8, it

becomes unfeasible to check all n! u\ bijective maps for 1 < n < N.

Fortunately, a much smaller set of bijective maps exists, which stiU

allows the detection of all isomorphisms. Such a solution will be

presented in Section 4.4 for searching all non-isomorphic binary
STD's with N = 16 nodes and maximum detour memory.

• Due to the fact that the list Cn is ordered, the test F'n £n in

Figure 4.7 can be implemented efficiently as a binary search [51].
Nevertheless, the computational costs for searching an isomorphic

entry were found to be considerably higher than those for doing
the topological tests.

14In that case, condition (4.21) need not be checked in Figure 4.7.
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4.4 K-ary State-Transition Diagrams with

Maximum Detour Memory

In this section, our interest is in all non-isomorphic binary (K = 2)
STD's with N = 2M nodes, M > 0, and maximum detour memory,

which is M according to (4.11). The results in Tables 4.1 to 4.4 were

obtained as described in Section 4.3. For N < 8, the set M. in AI-

STD

No.

Successors of node

0

1 0,0

STD

No.

Successors of node

0 1

1 1,0 1,0

Table 4.1: The only binary
STD with 1 node and detour

memory 0.

Table 4.2: The only binary
STD with 2 nodes and detour

memory 1.

STD

No.

Successors of node

0 12 3

1 1,0 3,2 1,0 3,2

Table 4.3: The only binary
STD with 4 nodes and detour

memory 2.

STD

No.

Successors of node

0 12 3

1...3 1,0 3,2 5,4 7,6

STD

No.

Successors of node

4 5 6 7

1

2

3

1,0 3,2 5,4 7,6

1,0 6,3 5,4 7,2

1,0 6,5 7,4 3,2

Table 4.4: AU non-isomorphic

binary STD's with 8 nodes and

detour memory 3.

gorithm 4.2 was chosen as the set of all n! u! bijective maps satisfying
condition (4.21).

We know from Section 4.1 that binary STD's with maximum detour

memory are automatically strongly connected. (Nevertheless, rejecting
partial binary STD's that are not strongly AT-connectable was stiU useful

for reducing the number of candidates with 1 to N — 1 extended nodes.)
Observe that all STD's in Tables 4.1 to 4.4 have exactly two self-loops
and uniform in-degree, although they were not constrained to have these
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properties. The proof of the author's conjecture that, for N = 2
, every

binary STD with maximum detour memory has exactly two self-loops,
and the generalization to K-axy STD's, is gratefully acknowledged to

Gerhard Kramer. His proof encouraged the author to verify a number of

additional conjectures. The properties of K-ary STD's with maximum

detour memory axe summarized in

Theorem 4.2: Let G denote a K-ary STD with AT = KM nodes and

detour memory M, where K > 2 and M > 0. Then, from any given

start-node, G contains exactly one path of length M and K parallel
paths of length M + 1 to each of its nodes. Moreover, G has exactly K

self-loops and uniform in-degree K.

Notice also the singular case of a K-ary STD (K > 2) with one node

and detour memory zero. Such an STD has obviously K parallel paths
of length one, K self-loops, and uniform in-degree K.

Before we turn to the proof of Theorem 4.2, a few immediate con¬

sequences should be mentioned. The existence of a path of length M
between any two nodes implies that G is strongly connected. Moreover,
the presence of self-loops implies that G is aperiodic. Note that revers¬

ing the branch directions of a K-ary STD with uniform in-degree and

detour memory M yields also a K-axy STD with uniform in-degree and

detour memory M. We thus have the following consequence of Theo¬

rem 4.215.

Corollary 4.1: Let G denote a K-ary STD with N = KM nodes

and detour memory M, where K > 2 and M > 0. Then the digraph
obtained by reversing all branch directions of G is also a K-axy STD

with detour memory M.

Proof of Theorem 4-2 (Part 1): Choose any integer m, where

1 < m < M. Let A denote the adjacency matrix of G. Clearly, the

i-th row sum of Am equals the number of paths of length m starting
at node i, which must be Km. On the other hand, no element of ATO

exceeds one by definition of the detour memory. These facts imply that

every row of Am contains Km ones and N - Km zeros. In particular,
A is the all-ones matrix. Thus, for any given staxt-node, there is ex¬

actly one path of length M to every node of G. It is easy to check that

Corollary 4.1 holds trivially for M — 0.
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AM+1 equals K times the all-ones matrix. Thus, from any given start-

node, there axe exactly K parallel paths of length Af +1 to every node

of G. Note that AM has rank 1 since AM = uuT, where u is the all-ones

vector. It is well-known that anNxN matrix of rank 1, viz., vt uj, has

the characteristic polynomial A^-1 (A- v£v.i) [42, p. 651 and p. 658]16.
Hence

det (AI - AM) = A*"1 (A -N) = XN~1(X - KM). (4.22)

Observe that Ai = K is an eigenvalue of A (with eigenvector u). More¬

over, (4.22) and [38, Thm. 9.4.6, p. 312] imply that the remaining eigen¬
values of A are zero, i.e., A„ = 0, 2 < n < N. But

TV

trA = ^An = K

n=l

so that A must have K ones on its main diagonal and G must have K

self-loops17.

The uniform in-degree was first proved by the author using graph
isomorphisms. His graph-theoretic argument is postponed to the fol¬

lowing simple proof by Gerhard Kramer.

Proof of Theorem 4.2 (Part 2): Note that a K-ary STD G has uniform

out-degree (in-degree) if and only if aU row-sums (column-sums) of its

adjacency matrix A equal K. Consider the identities

AAM = AM+1 = AMA

Since AM is the all-ones matrix and since the row-sums of A are K,
AM+1 is the all-K's matrix. But the second identity impUes that the

column-sums of A are K and thus that G has uniform in-degree K.

The following lemma is required for the author's graph-theoretic
proof of the uniform in-degree and wiU also lead to a shortcut in the

search for isomorphic K-axy STD's.

Lemma 4.2: For K > 2 and M > 0, every K-ary STD with AT = KM
nodes and detour memory M is isomorphic to an STD Gn with node

16The converse is not true in general, i.e., an N x N matrix (N > 2) with charac¬

teristic polynomial A^_1(A — a) may have a rank greater than one.

17Similarly, one can show that Gm, m > 1, has Km self-loops.
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set Sn = {0, 1, ... , N—1} such that Gn contains a partial K-axy STD

Gn/k as a subdigraph, where Gn/k has the partial next-node matrix

Fjv/a: = [fnk] given by

fnk = K(n + l)-k-l, 0<n<N/K, 0<k<K. (4.23)

Example 4.9: For K = 2, Af = 3, and thus N = 8, equation (4.23)
yields the partial next-node matrix18 F4 = [l, 0; 3, 2; 4, 3; 7, 6].
The partial STD G4 is shown in Figure 4.8.

Figure 4.8: A partial binary STD G4 and the pseudo-tree of

depth 4 obtained by extending nodes 4 to 7 ac¬

cording to STD No. 3 in Table 4.4.

Observe that each of the Af = KM nodes of Sn appears exactly
once in Fn/k and that Gn/k has a tree-like topology with one node at

depth 0 and (K - l)Km_1 nodes at depth m, 1 < m < Af.

Proof of Lemma 4-2: The proof of Theorem 4.2 (Part 1) showed that

the K-ary STD's considered have K self-loops. Hence, we can choose a

Gn having one self-loop at node 0. The other successors of node 0 must

18 In this section, the rows of a matrix are sometimes written on one line and

separated by semicolons.
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be different nodes. We axe free to choose Fi = [K — 1, K — 2, ... , 0].
(Notice that the index of F„ is the number of its rows, which is also

the number of extended nodes of G„.) If Af = 1 and thus N = K, we

are done. If Af > 2 and thus N > K2, we extend the nodes 1 to K - 1.

We may not choose any node already extended as a successor of node

1 to K — 1, since there would be two parallel paths of length 2 from

node 0 to such a successor and that would imply Af < 1. Choosing the

(K — 1)K nodes K, K +1, ... ,
K2 — 1 as the successors, we obtain the

K-row matrix

FK = [K-1,...,0; 2K-1,...,K; ... ; K2 - 1, ... ,
K2 - K].

If Af = 2 and thus AT = K2, we are done. If Af > 3 and thus N > K3,
we extend the nodes K to K2 — 1. Again, we may not choose any node

already extended as a successor, since this would imply M < 2. By
continuing in this way, we finally obtain Fn/k- d

We axe now prepared for the graph-theoretic proof of the uniform

in-degree.

Proof of Theorem 4-2 (Part 2): Lemma 4.2 shows that every K-axy STD

G with N = KM nodes and detour memory Af is isomorphic to a K-

ary STD Gat with a tree-Uke partial K-ary STD Gn/k as a subdigraph.
Recall that Gn and Gn/k have the same node set Sn- Hence, Gn can

be obtained by extending every node of Gn/k at depth Af. Observe that

the nodes 1 to K — 1 in Gn/k are the root nodes of K—1 K-axy trees of

depth Af — 1. Thus, the nodes yet to be extended are the nodes of these

K — 1 trees at tree depth Af — 1. For one of these trees, extending the

j^M-i no(jes at depth Af — 1 requires AT = KM successors. But these

successors must be distinct, for otherwise the detour memory would be

smaller than Af. Hence, the set of successors must be the node set

Sn- Repeating the extension for all K — 1 trees yields a 'pseudo-tree' of

depth Af+1 as shown in Figure 4.8 for K = 2. Since every node appears

exactly K times in this pseudo-tree, every node of Gn has in-degree K.

Hence, G has uniform in-degree K.

The fact that there axe only 3 binary STD's with AT = 8 nodes and

maximum detour memory indicates that the latter constraint might be

restrictive enough to keep the number of binary STD's small also for

N = 16. However, even when the number of complete STD's is small,
this need not be so for the partial STD's. In fact, the size ln of the Ust

£n in Section 4.3 generally has a very large maximum for some n < N
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when a detour memory greater than zero is required. This behavior can

be explained as follows. In the third topological test in Section 4.3, a

necessary (but not sufficient) condition is checked for when it is possible
to construct a complete STD with detour memory at least Af from a

given partial STD. The maximum of the Ust size /„ for an n < N is

due to the fact that this condition is not sufficient. The algorithm, as

described in Section 4.3, failed for N = 16 because of the excessive

amount of temporary storage (> 32 Mb). We will soon return to the

improvements that were necessary to solve the memory problem.
Another obstacle was the impossibiUty of checking all n! u\ bijec¬

tive maps satisfying the condition (4.21). This problem was solved by

choosing a much smaller set of bijective maps, which still allowed the

detection of all isomorphisms. We will return to the choice of this set

shortly.
Table 4.5 shows all non-isomorphic binary STD's with 16 nodes and

detour memory 4. The reader is invited to check the properties pre¬

dicted by Theorem 4.2. He should also notice the peculiar property of

Tables 4.1 to 4.5 that reversing all branch directions of an STD in such

a table yields an STD isomorphic to some STD in the same table.
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STD Successors of node

No. 0 1 2 3 4 5 6 7

1
... 32 1,0 3, 2 5, 4 7, 6 9, 8 11,10 13,12 15,14

STD Successors of node

No. 8 9 10 11 12 13 14 15

1 1,0 3, 2 5, 4 7, 6 9, 8 11,10 13,12 15,14
2 1,0 3 2 5 4 7 6 9, 8 14 13 15 12 11 10

3 1,0 3 2 5 4 7 6 10, 9 11 8 13 12 15 14

4 1,0 3 2 5 4 7 6 11,10 12 8 13 9 15 14

5 1,0 3 2 5 4 12 6 15,14 13 7 9 8 11 10

6 1,0 3 2 6 4 7 5 13,12 15 14 9 8 11 10

7 1,0 3 2 7 6 12 4 11,10 9 8 13 5 15 14

8 1,0 3 2 7 6 12 5 9, 8 11 10 13 4 15 14

9 1,0 3 2 7 6 13 12 9, 8 11 10 5 4 15 14

10 1,0 3 2 11 10 13 12 9, 8 15 14 5 4 7 6

11 1,0 3 2 11 10 13 12 14, 8 15 9 6 5 7 4

12 1,0 6 2 5 4 7 3 13,12 15 14 9 8 11 10

13 1,0 6 2 5 4 7 3 13,12 15 14 10 9 11 8

14 1,0 6 3 5 4 7 2 9, 8 11 10 13 12 15 14

15 1,0 6 3 5 4 7 2 10, 9 11 8 13 12 15 14

16 1,0 6 3 7 2 12 4 11,10 9 8 13 5 15 14

17 1,0 6 3 7 2 12 5 9, 8 11 10 13 4 15 14

18 1,0 6 3 12 2 13 7 11,10 9 8 5 4 15 14

19 1,0 6 3 13 12 14 7 9, 8 11 10 5 4 15 2

20 1,0 6 5 12 11 14 9 15, 8 13 10 7 4 3 2

21 1,0 7 6 3 2 5 4 10, 8 14 13 15 12 11 9

22 1,0 10 2 7 6 12 5 9, 8 11 3 13 4 15 14

23 1,0 10 3 5 4 12 6 15,14 13 7 9 8 11 2

24 1,0 10 3 12 5 14 7 9, 8 11 2 13 4 15 6

25 1,0 10 6 5 4 7 3 13,12 15 14 9 8 11 2

26 1,0 10 9 12 11 15 14 13, 8 3 2 5 4 7 6

27 1,0 10 9 13 12 3 2 11, 8 15 14 5 4 7 6

28 1,0 11 10 5 4 7 6 3, 2 14 9 12 8 15 13

29 1,0 12 3 5 4 6 2 15,14 13 7 9 8 11 10

30 1,0 12 3 7 6 15 14 5, 4 13 2 9 8 11 10

31 2,1 3 0 5 4 7 6 9, 8 14,13 15 ,12 11 ,10
32 3,2 8 0 5 4 12 6 15,14 13

,
7 9 1 11 10

Table 4.5: AU non-isomorphic binary STD's with 16 nodes and

detour memory 4.
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Let us now return to the aforementioned improvements of the al¬

gorithm in Section 4.3, the first of which is due to Theorem 4.2. The

existence of self-loops in every binary STD with maximum detour mem¬

ory and Lemma 4.2 allowed us to start the algorithm of Section 4.3 from

Ln/i = As = {F8} and £CjV/2 = £cg = {Gcg}, where F8 is given by

(4.23) and GCg is given by G8 when the self-loop at node 0 is removed.

This allowed a considerable reduction of temporary storage. We were

able to reduce the amount of temporary storage by another factor of

about 1000 by changing the strategy after having computed the lists

£io and £c
10.

Instead of extending all 774 entries of £10 (£c 10) simul¬

taneously to obtain Cn (Ccn), we extended one entry at the time up

to N = 16.

The second improvement of the algorithm in Section 4.3 resulted

from choosing a small set of bijective maps M for Algorithm 4.2 that

still allows the detection of all isomorphisms and is explained in the

following. Consider two binary STD's Gn and G'N with maximum

detour memory and let Sn = {0, 1, ... ,
Af — 1} be the common node

set of these STD's. Without loss of essential generality, we may assume

that both Gn and G'N have a self-loop at node 0 and a subdigraph Gn/2
as defined in Lemma 4.2. Let s0 ^ 0 be the node of Gn with the second

self-loop. Clearly, an isomorphism of Gn onto G'N must map node 0

onto node 0 or node so onto node 0.

We consider first those bijections, which map node 0 onto node 0.

Since both Gn and G'N have Gn/2 as a subdigraph, any such bi-

jection must induce an automorphism (p, ft) of Gn/2- For N = 8

and Af = 3, Figure 4.9 shows how to obtain such an automorphism

by 'twisting' the graphical representation of Gn/2 a* any node from

depth 1 to depth Af - 1, i.e., by interchanging the two binary subtrees

stemming out from that node. A twist can occur at any node n with

1 < n < 2M_1 - 1 = N/2 — 1. Let us introduce binary numbers in,
where in = l(in = 0) indicates a twist (no twist) at node n. The 2JV/2-1

automorphisms of Gn/2 can De indexed by i = J2n=i~X *n 2N^2~1~n.

We axe interested only in the node-mapping components pi : Sn — Sn
of these automorphisms, which can be represented by the permutation
vectors p. = [pto, Pn, , pi,N-i], where pin = pt(n). When the

twisted representation of Gn/2 1S drawn from left to right as shown by
G4 in Figure 4.9, the permutation vector p_. is obtained by reading off

the nodes columnwise from depth 0 to depth Af. Figure 4.9, for in¬

stance, shows the automorphism number i = (h, 12, ^3)2 = 5, which



4.4 K-ary STD's with Maximum Detour Memory 89

(H.P)
I—>

<% = G4

Figure 4.9: The partial binary STD G4 and an automorphism

(p,f3)ofGA

yields p^ = [0, 1, 3, 2, 7, 6, 4, 5]. For N = 8, the 2NI2~1 = 8 permu¬

tation vectors p^, p , ... ,p axe the rows of

0 1 2 3 4 5 6 7

0 1 2 3 4 5 7 6

0 1 2 3 5 4 6 7

0 1 2 3 5 4 7 6

0 1 3 2 6 7 4 5

0 1 3 2 7 6 4 5

0 1 3 2 6 7 5 4

0 1 3 2 7 6 5 4

M =

Note that the trivial bijection corresponding to u can be excluded from

the set M..

Now consider those bijections, which map node so onto node 0.

By the same argument as in the proof of Lemma 4.2, Gn has a

tree-Uke subdigraph R~n/i °f depth Af starting at node so such that

S(sn) = {«2n, *2n+i} is the set of successors of node n, 0 < n < N/2,
and {so, «i, ... , sjv-i} = Sn- By the above 'twisting argument', there

are 2N^2-1 isomorphisms of Hn/2 onto Gn/2- The first of these isomor¬

phisms has the node-mapping component

v. Sn Sn

The node-mapping components of the remaining isomorphisms are ob¬

tained by combining v with the above bijections pi. Therefore, the
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node-mapping components of the isomorphisms of Hn/2 onto Gn/2 are

given by the composite bijections /x, o v, 0 < i < 2JV/2-1, defined by

Pi o v : Sn — Sn

n t-y pi (v(n)).

Letting (J2N/2-i+i = Pi o v for 0 < i < 2N'2~l completes the definition

of the bijective maps M = {pi,p2, ... ,pj} for Algorithm 4.2 with

J = 2N'2 - 1.

For N = 16, only this choice of M rendered the search for isomor¬

phisms feasible: For n = N = 16 and u = 0, the number of bijective

maps in Algorithm 4.2 was reduced from N\ ss 2 • 1013 to 2NI2-1 = 255.

Appendix 4.A Properties of the n-th

Power of a Digraph

The n-th power of a digraph is a useful concept for the investigation
of paths in state-transition diagrams. Its meaning will be evident, once

we have defined the product of two digraphs with the same node set.

Definition 4.A.1: The product of two digraphs Gi = (Si,Bi,oi,ei)
and G2 = (52,^2,^2,^2) with Si = S2 = S is defined as the graph
G = G1G2 = (S, B,a, e), where

B = {(biM) : h e Bu h G B2, 61(61) = (72(62)},

0: B -» S

(61,62) t-+ (Ti(bi)

and

e: B -» S

(61,62) H+ 2(62)-

The set G of all digraphs with node set S is obviously closed under

multipUcation. Note also that the operation '*' of multiplying graphs
is associative. It follows that the system (G, *) is a semigroup. As a

consequence of Definition 4.A.1, the n-th power of a digraph G, denoted



4.A Properties of the n-th Power of a Digraph 91

by Gn, is a digraph with the same set of nodes as G and branches that

represent the paths of length n in G. It is easy to check that

A(G") = [A(G)]n . (4.A.1)

The following results deal with the strong connectivity of the n-th

power of a digraph, which will be of interest in Section 5.1.

Proposition 4.A.1: Let G = (S,B,cr,e), where B is non-empty,

denote a strongly connected, aperiodic digraph. Then Gn is strongly
connected and aperiodic for any positive integer n.

Proof: The topology of G can be analyzed using its N x N adjacency
matrix A = A(G) where AT = |<S|. The proposition holds trivially when

N = 1 so that the case when N > 2 remains to be considered. Since G

is strongly connected, A is irreducible. The Perron-Frobenius theorem

[38, Thm. 15.4.2, p. 540] and the fact that G is aperiodic imply that

A is primitive, i.e., A has one eigenvalue with largest magnitude. It

foUows from [38, Thm. 15.6.1, p. 546] that there is a positive integer i

such that Afc > 0 for k > i. Hence, there is a positive integer m such

that Anm > 0, which impUes that A" is irreducible and thus that G" is

strongly connected. Moreover, A" is primitive because A is primitive
so that Gn is aperiodic.

Proposition 4.A.2: Let G = (S,B,a,e), where B is non-empty,

denote a strongly connected digraph with period P > 1. Then

Gp divides into P disjoint, strongly connected, and aperiodic subdi-

graphs.

Proof: P > 1 impUes that G has at least two nodes. Applying the

Perron-Frobenius Theorem [38, Thm. 15.4.2, p. 540] to A = A(G)
shows that P is the largest integer such that S can be partitioned into

P disjoint subsets Si, 0 < i < P, with the following property: For every

branch b in G,

(j(6) Si =» e(b) ,S(,+1) mod P . (4.A.2)

Recall that the branches of Gp represent all length-P paths 7 in G, i.e.,
for every such 7 with (7(7) = s and 6(7) = t, there is a corresponding
branch 6 in Gp with o(b) = s and e(b) = t. It follows from (4.A.2) and

the definition of Gp that the staxt-node and end-node of any branch b

in Gp is in the same subset Si, for some i. Therefore, Gp divides into
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P disconnected subdigraphs Hi with node set <S,-. Every subdigraph if,-
is strongly connected, for otherwise there wouldn't be a path from s to

t in G for any nodes s,t <S,\ Moreover, each Hi is aperiodic because

otherwise the period of G would exceed P. O

Proposition 4.A.1 is a special case of the following more general result1.

Proposition 4.A.3: Let G = (S, B,cr,e), where B is non-empty,
denote a strongly connected digraph with period P > 1 and let n

be a positive integer. Then G" is strongly connected if and only if

gcd(n,P) = 1. Moreover, gcd(n,P) = 1 impUes that G" has period P

as well.

Proof: The proposition holds trivially when N = |5| = 1 in which

case P = 1. Consider now the case when N > 2. Suppose first that

gcd(n,P) = 1. This implies that n = kP + r, where 1 < r < P

and gcd(r, P) = 1. As in Proposition 4.A.2, <S is partitioned into the

disjoint subsets Si, 0 < i < P. Since gcd(r,P) = 1, r is a primitive
element of the additive group of the ring of integers modulo P, i.e.,
Zp = {mr : 0 < m < P}. Hence, for any subsets Si and Sj and any

s e Si, Gn contains a path from s to some t e Sj, since there is an

integer m such that

mn = mr = j — i (mod P).

Because mn = mr = 0 (mod P) only if m is an integer multiple of P,
Gn has period P. It remains to be shown that, for any subset Sj and

any t, u e Sj, Gn contains a path from t to u. By Proposition 4.A.2, Gp

consists of P disjoint, strongly connected, and aperiodic subdigraphs Hi.
This fact and Proposition 4.A.1 imply that (Gn)p = (Gp)n consists of

P disjoint, strongly connected, and aperiodic subdigraphs H". Hence,
G" contains the desired path from t to u and is strongly connected.

Suppose now that gcd(n,P) > 1. We have to show that Gn is not

strongly connected. There is some positive integer m such that n = km

and P = Im. Hence, G" = (Gm)k. Recall the partitioning of S into

P subsets Si from Proposition 4.A.2. Since m divides P, <S can be

partitioned also into the m subsets <S, = lL=o <^«+jm, 0 <i < m, which

have the foUowing property: For every branch b in G,

o(b) e Si =* e(b) e 5(j+i) mod m • (4.A.3)

We use the notation gcd(o, 6) for the greatest common divisor of a and 6.
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It follows from (4.A.3) and the definition of Gm that the start-node and

end-node of any branch 6 in Gm is in the same subset Si, for some i.

This impUes that Gm divides into m disconnected subdigraphs (each of

which has period I) and is not strongly connected. Hence G" = (Gm)k
is not strongly connected.

Appendix 4.B Proof of Theorem 4.1

The proof of Theorem 4.1 relies on the foUowing result.

Lemma 4.B.1: Let Gc = (N"C,BC) be the CRD of a partial K-axy

STD and let Gc have D = 0 dead nodes, S source nodes, and R resource

nodes. Then it is always possible to construct a cycUc path w in Gc by

a partial extension of its resource nodes such that

(i) A resource node is extended by at most one branch (and such

a branch is always connected to a source node)

(ii) The path w traverses m distinct source nodes and m distinct

resource nodes, where m < min (S, R)

(iii) There is a path from any source node s e N~c to every node

on u

(iv) There is a path from every node on w to any resource node

r Afc

A path w as described in Lemma 4.B.1 wiU be called a cyclic con¬

nector path.

Proof: The existence of a cychc connector path w in Gc wiU be

proved by first constructing a cycUc path 7 in an auxiUary digraph

G0 = (N~a,Ba), defined as foUows. Let the node set be A/"„ = S u %,
where S and 72. denote the source nodes and resource nodes of jv"c, re¬

spectively, and form a branch set Ba such that, for every source node

s and every resource node r for which there is a path s — r in Gc, Ba

contains a branch from s to r, i.e.,

Ba — { (o~(n), e(n)) : for aU paths 7r in Gc

with din(o-(n)) = 0 and dont(e(ir)) = 0 }.
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The nodes of Ga in S (or %) wiU also be called source nodes (or resource

nodes). For every resource node r in Ga, define Sr as the set of all

source nodes, from which there is a path to r. Since D = 0, these R

sets completely exhaust the source nodes; however, they are not disjoint
in general. Similarly, for every source node s in Ga, define 1ZS as the

set of all resource nodes, to which there is a path from s. Again, these

S sets fully exhaust the resource nodes but axe not disjoint in general.
The path 7 in Ga is constructed according to Figure 4.B.I. It can

( Start J

1l~

so

w

{-}
11,

~\

Choose r e 1Za

7 <— 7 © r

Sy *— Sy U Or

\Sy\ = S

Choose s £ Sy

7 <— 7 ® s

Sy<-SyU {S}

TlyWRsn.

7- ^JWtI I R^ 7 *- 7 ® s0

Choose r £ TZy
Choose s e <Sr

7 <— 7 ® s ® r

71, «- R, U 7e,

( Stop )

Figure 4.B.1: Algorithm for constructing the cyclic path 7

in Lemma 4.B.1

be described by a sequence of nodes, since G0 has no parallel branches.

Let Sy be the set of all source nodes, from which there is a path (pos¬
sibly of length zero) to a node in 7. Similarly, let 7J7 be the set of
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all resource nodes, to which there is a path (possibly of length zero)
from a node in 7. The path 7 is initialized with an arbitrary start node

so S. The algorithm alternates between appending source nodes and

resource nodes to 7, indicated by the concatenation operator '©' in Fig¬
ure 4.B.I. Appending a source node s to 7 requires the insertion of one

of K available branches from the current resource node r = 6(7) to s.

Consider the first loop in Figure 4.B.1 and assume |<S7| < S, i.e.,
not all source nodes have a path to 7. Note that a source node can¬

not be appended to 7 more than once because the algorithm chooses

s t Sy and updates <S7 *— <S7 u {s}. Moreover, by definition of <S7,
the choice s i <S7 impUes that no resource node r e Tta can already be

on 7. The first loop is left when |<S7 \ = S. In the second loop, assume

\Tly\ < R, i.e., not all resource nodes can be reached from 7. Clearly,
the choice r t 7£7 prevents us from choosing a resource node already
on 7. Moreover, the choice s Sr impUes that s is not already on 7

for otherwise r e 11-,. In particular, this assures s ^ s<>. In the very

last step, the path 7 is made cycUc by appending so. Note that 7 tra¬

verses m distinct source nodes and m distinct resource nodes, where

m < min (S,R), and that at most one of K available branches is used

per resource node during the construction of 7. Properties (i) to (iv)
axe therefore satisfied for the path 7 in Ga. We now define a cycUc path
w in Gc by replacing every branch (s, r) in G0 by some path s — r in

Gc. The proof is completed by noting that the properties of 7 in Ga

carry over to cj in Gc.

Proof of Theorem 4-1: Recall that every resource node of Gc represents
an unextended node of G. When we extend a node in G, we always
extend the corresponding resource node in Gc. More precisely, if a

branch b is added to G, a corresponding branch bc is added to Gc such

that the start-node (end-node) of 6C 'contains' the staxt-node (end-node)
of 6. Note that the modified Gc is not component-reduced in general.
When we add a new node to G, we also add a corresponding node to

Gc- The extension of all resource nodes yields RK new branches in G.

Let us 'grow' the partial STD G to a complete STD with N nodes by
adding N—V new nodes. For every node added to G, exactly K—1 new

branches axe obtained. For instance, we can take any unextended node

in G (or resource node in Gc) and build a K-axy tree rooted at that node

using the N—V new nodes. Thus, the extension of all unextended nodes

and all new nodes results in a total number of RK + (N — V)(K — 1)
new branches.
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Necessity: We have to show that G is not strongly AT-connectable

when neither (4.12) nor (4.13) is satisfied. Suppose first that

D = 0 and RK + (N - V)(K -1)<S. We have already seen that

RK + (N — V)(K - 1) is the total number of new branches. Therefore,
not all source nodes can be reached and G is not strongly N-connectable.

If D = 1 and V < N, then there is no way to reach any of the N — V

new nodes from a node in the 'dead component' of G, so G is not

strongly AT-connectable. Similarly, if D = 1, V = N, and S > 0, then

the source node(s) of Gc cannot be reached from the dead node of Gc.

Finally, when D > 1 it is not possible to get from one dead component

to another dead component.

Sufficiency: Suppose that (4.12) is satisfied. Lemma 4.B.1 asserts the

existence of a cyclic connector path w. Assume that such a path is now

constructed, so each of m < min (S, R) resource nodes is connected to

one of m different source nodes. Since this requires m new branches,
another RK+ (N — V)(K — 1) — m new branches axe still available. But

there remain only S — m < RK + (N — V)(K — 1) — m unconnected

source nodes, so there is at least one new branch to end at each source

node. AU other new branches are also connected to source nodes. In

the following, we will use the notation n — n' if there is a path from

node n to node n'1, n —* w if there is a path from node n to a node

in path ui, and u> —> n if there is a path from a node in w to node n.

The choice of the new branches and (iii) and (iv) of Lemma 4.B.1 imply

that, for any pair of nodes n, n' J\[c, there are resource nodes r, r' and

source nodes s, s' such that

n—> r —* s —>cj— r' —>s'- n'

and thus n —* n'. Therefore, since each new branch added to Gc corre¬

sponds to a new branch added to G, we have constructed a complete,

strongly connected STD with N nodes. This proves that G is strongly
AT-connectable. Suppose now that (4.13) is satisfied. It follows from

5 = 0 that the dead node is the only node of Gc, so G is strongly
connected. Moreover, G is a complete STD since V = N. But a

complete, strongly connected STD with AT nodes is trivially strongly
Af-connectable.

1By way of convention, we let n — n.
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Chapter 5

On Trellis-Coded Data

Transmission over Channels

with Intersymbol Interference

and White Gaussian Noise

In this chapter, we study treUis-coded data transmission over Unear

intersymbol-interference (ISI) channels with finite memory and additive

white Gaussian noise (AWGN). Observing that the channel filter can

be viewed as a rate-1 finite-state trelhs encoder, it seems natural to

employ an outer treUis encoder for improving the system's reUabiUty.
For certain partial-response channels [6], Wolf and Ungerboeck [15] have
designed bipolar treUis codes that yield a large free EucUdean distance at

the channel output and, at the same time, eUminate sequences with long
runs of identical symbols. Also for partial-response channels, Karabed

and Siegel [13] and independently Eleftheriou and Cideciyan [16] have

investigated so-called matched spectral-null (MSN) treUis codes, which

are characterized by the property that the frequencies at which the code

power spectral density vanishes correspond precisely to the frequencies
at which the channel transfer function is zero. TreUis codes designed for

the AWGN channel axe often used on ISI channels, especially when the

channel unit-sample response is too long for code optimization, unknown
to the transmitter, or time-varying.

The main objectives of this chapter axe to characterize the compos¬

ite treUis encoder formed by cascading the outer treUis encoder with

the channel filter and to determine the performance of the composite
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encoder with AWGN and maximum-likelihood (ML) decoding.

Two entirely different approaches for data transmission over ISI

channels should be mentioned. For both methods, the ISI coefficients

must be known to the transmitter. The method of channel partition¬

ing1^], [5] is motivated by the derivation of capacity for the DTGC

with ISI (cf. Sections 2.3 and 3.1) where the ISI channel is decomposed
into a bank of parallel, decoupled channels without ISI. Because the

component channels are memoryless, codes designed for the AWGN

channel can be used. The method suffers from the non-lineaxities of

practical channels for which the assumption of decoupled channels is

only an approximation. Moreover, it is limited to ISI channels that ac¬

cept multilevel inputs. The method called Tomlinson-Harashima pre-

coding [53], [54], [55] uses a (stable) inverse channel filter employing
modulo arithmetic in the transmitter. Together with a modulo oper¬

ation at the receiver input, this results in an ISI-free channel with a

gain equal to the magnitude of the leading ISI coefficient. However,
the noise process seen after the modulo operation in the receiver is nei¬

ther independent of the data nor white Gaussian. Nevertheless, such

an approximation is often made to justify the use of codes designed for

the AWGN channel. Tomlinson-Harashima precoding has the advan¬

tage that the inverse channel filter can be easily adapted to different ISI

channels. Channel partitioning and Tomlinson-Harashima precoding
will not be considered further in this thesis.

Assuming that the modulator, physical channel and demodulator re¬

sult in a discrete-time channel with ISI and AWGN, the communication

system of interest can be drawn as in Figure 5.1. An (n, k) trellis en¬

coder T encodes the binary information sequence {Xj} into the .A-ary

sequence {Yj}, where the alphabet A is a finite subset of the real or

complex numbers. The encoded sequence {F/} is transmitted over an

ISI channel with transfer function H(z) = J2^mZ~m (referred to as

the channel filter) and AWGN {Wi}, and the received process {Ri} is

fed to the decoder, whose outputs axe the decisions {Xj-g}, where 6

is some positive delay. If the discrete-time channel in Figure 5.1 rep¬

resents a physical baseband channel, the letters in the alphabet A and

the coefficients hm are real, and {W}} is a real AWGN process with

Wi ~ Af(0,No/2); if it represents a physical passband channel, the ele¬

ments of A and the hm can be complex, and {Wi} is a proper complex
AWGN process with W{ ~ Afp(0,N0).

Also known as multitone or multicarrier modulation.
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Figure 5.1: Trellis-coded communication system

In Section 5.1, an (n, k) trellis encoder T is defined as a parallel

input - parallel output device, i.e., a device that encodes a sequence

of binary fc-tuples a^ into a sequence of .4-ary n-tuples y.. The binary
information sequence {xj} is converted to the sequence {x,} according
to

£i=[xik, Xik+i, ••• , x(t+1)fc_1] , i=\J/k\-l, (5.1)

and {y_.} is converted to the code sequence {j/j} using

&-[»*»» W«"»+i> •••
' V(*+i)n-i] , i=[l/n\. (5.2)

It wiU be convenient to call the cascade of the series-to-paraUel con¬

verter, the treUis encoder T and the paxallel-to-series converter the

serial form of the trelUs encoder T. An (n, k) treUis encoder T or,

more precisely, its serial form, has a nominal rate

R = k/n bits/symbol. (5.3)

The channel filter is assumed to have finite memory p, i.e.,

H(Z) = J2 hrnZ~m,
m=0

(5.4)
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where ho ^ 0 and h^ ^ 0, and unit energy, i.e., X)m=o l^ml2 = 1-

As we will examine more closely in Section 5.1, the serial form of T

followed by H(z) can be viewed as the serial form of a composite (n, k)
treUis encoder Tc with N [A^ states, where N denotes the number of

states of T. Since Tc may have transient or uncontroUable states, the

steady-state composite encoder or simply the steady-state encoder T'c
will be defined as the encoder obtained from Tc by deleting the transient

states. Thus, the communication system in Figure 5.1 is equivalent to

the one in Figure 5.2.

X,
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Ziriv^
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Xj-s
VD
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Figure 5.2: Equivalent communication system with steady-
state composite encoder T'c

The distance spectrum, which will be defined in Section 5.3, is gen¬

erally non-uniform for a steady-state composite encoder, i.e., it depends
on the reference path, the path in the trelUs [56], [57] corresponding to

the transmitted data sequence.

For uncoded data transmission over ISI channels, the ML decoder is

known as the maximum-likeUhood sequence estimator (MLSE) [7]. Its

bit error probability can be upper-bounded using the method of error

sequences [7], [26, Sec. 4.9], [2, Sec. 6.7.1], since the assumption of i.i.d.

data symbols leads to a simple expression for the probability that an er¬

ror sequence is allowable. Unfortunately, the method of error sequences

does not apply to coded transmission over ISI channels since (i) not all

error sequences are possible [26, Sec. 4.10] and (ii) the probabiUty that

an error sequence is admissible is not equal to the product of the prob¬
abilities that each component of the error sequence is admissible. We

wiU therefore generalize the well-known upper bound on the bit error

probability for Viterbi decoding [26, Sec. 4.4, pp. 242], [27, Sec. 6.E] to

trelUs encoders with a non-uniform distance spectrum such as the above
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steady-state composite encoder. The generaUzed upper bound, which

we will present in Section 5.3, involves the average squared Euclidean

distance spectrum of the steady-state composite encoder T'c, where the

average is taken over all possible reference paths and, for each of these

reference paths, over all possible detours in the treUis of T'c. In particu¬
lar, it involves the minimum or free squared EucUdean distance A/ and

the average number of bit errors over aU detours at A/, denoted n&}.
An algorithm for the efficient evaluation of average distance spectra is

described in Section 5.4 and applied to the analysis of bipolar treUis

encoders for the dicode channel in Section 5.5.

The bit error probabiUty wiU always be treated as a function of the

signal-to-noise ratio

P = Eb/N0, (5.5)

where

Eb = E[\Y\2]/R (5.6)

is the energy per bit and AT0 is the one-sided noise power spectral density.
In general, an approximation of the generaUzed upper bound on bit error

probabiUty using only A/ and n^f is not precise enough for low to

medium E\,/No- Nevertheless, A/ and n&f are the two most important

parameters for encoder optimization.
It should be mentioned that p is a 'universal' parameter for the

comparison of communication systems as in Figure 5.1, in a sense we

describe in the foUowing. Note that a complex channel with real ISI

coefficients hm and proper complex AWGN of sample variance No can

be decomposed into two real channels with the same coefficients and

independent real AWGN processes with sample variance AT0/2. Clearly,
two identical communication systems operating independently on the

two real channels can be viewed as a combined communication system

operating on the complex channel. Hence, both component systems
and the combined system have the same bit error probabiUty. We call p
'universal' since (in the case of real ISI coefficients) p is the same for the

component systems and for the combined system. To see this, assume

that each component encoder has a rate R and an average symbol energy
Es. Then the combined encoder has rate 2.R and an average symbol

energy 2E„, so

p = Ea/(RN0)

for both component systems and the combined system, as was to be

shown.
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5.1 Characterization of Trellis Encoders

An (n, k) trellis encoder T encodes a sequence of binary fc-tuples x,- into

a sequence of .A-ary n-tuples y., where A is a finite alphabet. It can be

viewed as a Mealy machine [48] with parallel inputs and parallel outputs
or, equivalently, as a labeled digraph2. Only finite-state, time-invariant

treUis encoders wiU be considered in this thesis.

Definition 5.1: A finite-state, time-invariant (n,k) trellis encoder T

is a labeled digraph (A, S, B), where A (the output alphabet) and S (the
state set) are finite non-empty sets and B (the labeled branch set) is a

subset of S x {0, l}fc x An x S such that, for any s e S, the projection
of Bout(s) (the set of labeled branches emanating from state s) upon its

second component is onto {0, l}fc.

Definition 5.1 was inspired by the notion of a transition graph
in [58]. Unless stated otherwise, the output alphabet A is assumed

to be a (finite) subset of the real or complex numbers. A branch

6 = (s,x,y,s') e B means that, for a given start-state s and binary
input k-tuple x, the trellis encoder proceeds to state s', generating an

.4-ary output n-tuple y. The projections of B onto its four components
will be denoted by a, <f>, n, and e. For a branch 6 B, cr(b) and e(b)
denote the start-node and end-node, respectively. Moreover, x = <j>(b)
and y = n(b) denote the input label (a binary fc-tuple) and the output
label (an .A-axy n-tuple), respectively, of the branch 6. The condition

on B in Definition 5.1 can be written as

{<f>(b) : 6 Bout(s)} = {0, l}fc for all s e S (5.7)

and ensures that, for every s e S and for every x {0, l}fc, ex¬

actly one branch 6 labeled with (f>(b) = x starts at node s. Thus,
an (n, k) trellis encoder can be obtained by assigning a pair of labels

(z, y) 6 {0, l}fc X An to every branch of a 2fc-ary STD such that the

labeled STD satisfies (5.7).
Defining a trelUs encoder as a labeled digraph has the advantage

that the pictorial language of graph theory becomes available. Thus,
we may speak of an aperiodic treUis encoder. A trellis encoder is called

controllable if it is a strongly connected digraph. A controllable trellis

encoder can be driven to any state and, in particular, back to the initial

2The graph terminology was introduced in Section 4.1.



5.1 Characterization of Trellis Encoders 103

state. Controllability is usuaUy desired to avoid unnecessary computa¬
tions in the Viterbi algorithm [56], [57]. Another advantage of defining
a trellis encoder as a labeled digraph is the fact that many concepts
of graph theory have a counterpart in the rich theory of nonnegative
matrices [38, Chap. 15].

When an (n, k) trellis encoder T is viewed as a finite-state Mealy
machine, it is appropriately described by the output alphabet A, the

state set S, the next-state function

f: 5x{0,l}fc -f S

s,x v-> f(s,x),

and the output function

Sx{0,l}k -+ An

s,x h-> g(s,x).

(5.8)

(5.9)

We will call (A, S, f, g) the Mealy representation of T.

As its name suggests, a 'treUis encoder' naturally specifies an asso¬

ciated 'trellis', which is the key to understanding the Viterbi algorithm

[56], [57].

Definition 5.2: An (L, t) treUis of an (n, k) trellis encoder T =

(A,S,B) is a labeled digraph f = (A,S,B) with nodes S = UfJif^
and branches B = UiJcT" ^«> wnere «% — {s = (s,i) : s e «S,} and

Bi 4 |S = ((o(b),i), <f>(b), tt(6), (e(6),i + l)) : 6eBj} axe the nodes

and branches at treUis depth i, respectively, defined recursively by

c
=

/ {*«>} ift = 0, . .

'

\ {e(6): beBi-i} ifl<i<L + T,
K' '

B=l lUftS»t(«) ifO<i<L,
*

\ Ms): s e SL} if L<i<L + r,
K ;

for a specified initial state so e S and specified tail paths j(s) =

(6i(s), bL+i(s), ... , 6i+r_1(s)), such that 7(s) is a path in T from

s e Sl to s0.

The trelUs of an (n, k) treUis encoder will be referred to as a 2*:-ary
treUis. Every path in an (L, t) treUis of an (n, k) treUis encoder corre¬

sponds to the encoding of L binary fc-tuples into a sequence of L + r
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.A-ary n-tuples, whose serial form of length (L+r)n is called a codeword.

The encoder starts from some initial state so and, after encoding Lk bits,
returns to so by foUowing a specified tail path j(sl), where sl is the

state at time L. Note that the binary fc-tuples <j>(bi(s)), L <i < L + t,

s 6 Sl, are dummy bits. The nodes (so,0) and (so,L + r) axe called

the root node and the toor3 node of the trelUs, respectively [57]. The

tail paths ensure that aU codewords end at the toor node. An (L, t)
trellis code is the list of all 2Lk codewords generated by an (L, r) trelUs.

In practice, one often assumes L = oo, in which case we speak of an

infinite trelUs.

A detour of length /, 1 < / < oo, is defined as a path that diverges
from a 'correct' or reference path at some trelUs depth i and that

remerges with the reference path at depth i + I for the first time.

For a general trellis code, free distance is defined as the minimum

distance4 between the code sequences generated by a reference path
and a detour with the same end-nodes as the reference path, where the

minimum is over all reference paths of finite, nonzero length and over

all corresponding detours in the infinite trelUs.

The detour memory of an (n, k) trellis encoder T is simply denned as

the detour memory of its underlying 2fc-ary STD and can be interpreted
35 -kmin ~ 1, where im;n denotes the length of the shortest detour in

the trellis of T, over all possible reference paths. The detour memory

of an (n, k) convolutional encoder with a polynomial encoding matrix

is given by

M= min max deg[gu(£>)], (5.12)
l<i<fc l<J<n

where the polynomial gij(D) is the transfer function from the i-th input
to the j-th. output. It is an open question, under which conditions a

polynomial encoding matrix and a rational encoding matrix that gen¬

erate the same code give rise to the same detour memory. The detour

memory should be distinguished from the memory of an (n, k) trellis

or convolutional encoder whose state is given by the contents of k shift

registers (each one bit wide) without feedback. For such an encoder,
one defines the memory as the maximum length of all A; shift registers.

Hence, a convolutional encoder with a polynomial encoding matrix has

3'toor' is 'root' spelled backwards.

4By 'distance', we mean the appropriate distance measure for the given channel

(cf. Section 5.3).
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memory5
m - ,ma2. ,ma? deS \9ij(D)}-

l<t<fc l<J<n

We warn the reader that a nonminimal trelUs encoder with N states

and detour memory M can be reduced to a treUis encoder with fewer

states and possibly a smaller detour memory. Such a reduction of the

detour memory occurs, for instance, when the encoder is based on a shift

register, the last stage of which does not affect the encoder outputs.
We now present a simple upper bound on the free distance of a

trellis code. This upper bound involves only the detour memory of an

encoder for that code and the maximum distance between two elements

of the output alphabet. The bound is often tight, particularly when the

output alphabet has a small cardinality. For an (n, k) treUis encoder T

with detour memory M, recall that the shortest detour in the treUis ofT

has length M + 1. Hence, the free Hamming distance of a binary (n, k)
treUis code generated by an encoder with detour memory M satisfies

dHf<(M + l)n. (5.13)

Similarly, the free squared Euclidean distance of a bipolar (±1) treUis

code generated by an encoder with detour memory M satisfies

d% <4(M + l)n. (5.14)

Notice that a periodic encoder is nonminimal because the (oo, r)
trelUs code generated by an encoder T with period P > 1 is generated
also by the maximal strongly connected components of Tp, which have

fewer states and axe aperiodic (cf. Proposition 4.A.2).
One might ask whether there is a finite integer lo such that Si = S

for all I > lo in Definition 5.2. We now show that such an lo exists

for every controUable, aperiodic treUis encoder T. Since T has an irre¬

ducible, primitive adjacency matrix, there is a positive integer lo such

that [38, Thm. 15.6.1, p. 546]

A' > 0 for / > J0) (5.15)

which impUes that, for any / > lo and for any a 5, there is a path
of length / in T from node So to node s and a corresponding path in

5In [59, p. 294], m is called the memory order. The memory (order) is commonly
used to express the constraint length as (m + l)n.
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the treUis from node (so,0) to node (s,l). Inequality (5.15) implies also

the existence of tail paths j(s) of finite length. Summarizing, we have

proved

Lemma 5.1: Let T = (A, S, B) denote a controllable, aperiodic trellis

encoder and let sq be an arbitrary initial state in S. Then there is

a finite integer lo such that the nodes at trellis depth I > lo satisfy
Si = S. Moreover, there is a finite integer r such that, for any s S,T
contains a tail path 7(5) of length r from s to sq and the trellis has a

corresponding tail path from node (s, L) to node (so, L+t).

For the traceback operation in the Viterbi algorithm [26], it is often

desirable to have a trelUs encoder with uniform in-degree. It foUows

from Theorem 4.2 that trellis encoders based on a 2fc-ary STD with

maximum detour memory have uniform in-degree. Loliger [58, p. 46] has

shown recently that convolutional encoders (over groups, rings, or fields)
obtained from Unear transition graphs have uniform in-degree. However,
not every trellis encoder has this property, even if it is controllable. Such

asymmetric behavior is exhibited, for instance, by the cascade of some

matched spectral-null encoders with a partial-response channel. Hence,
the digraph obtained by reversing all branch directions of a 2fc-ary treUis

is not necessarily another 2fc-ary trellis.

Trellis or convolutional encoders are usually called non-catastrophic
if a finite number of channel errors can result only in a finite number of

decoding errors [59, p. 308]. Notice that, for a finite output alphabet, a

finite number of channel errors is equivalent to a finite distance between

two codewords, where 'distance' can be Hamming distance or EucUdean

distance, whichever is suitable for the given channel. However, the ter¬

minology 'channel errors' inappropriately anticipates making hard de¬

cisions on the received channel symbols. Therefore, we prefer to call a

trelUs encoder non-catastrophic if any decoded path that diverges from

a reference path and that accumulates finite distance to that reference

path causes a finite number of bit errors. It is well-known that a convo¬

lutional encoder with a polynomial encoding matrix is non-catastrophic
if and only if there exists a feedforward inverse [60], [59, pp. 306-308].
For a general trellis encoder, no comparably simple criteria to test for

catastrophicity have yet been found.
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5.2 On the Cascade of a Trellis Encoder

with a Finite-Impulse-Response Chan¬

nel Filter

In this section, the cascade of a trellis encoder with a finite-impulse-

response (FIR) filter is investigated.

Theorem 5.1: Let T = (A,S, B) denote a controUable (n,k) treUis

encoder with N = \S\ states and let H(z) be an FIR filter of order p

as defined in (5.4). Define Tc = (AC,SC,BC) as that (n,k) trelUs en¬

coder whose serial form corresponds to the serial form of T, foUowed

by H(z). Then Tc contains exactly one maximal strongly connected

sink component6 T'c = (A'c,Sc,B'c), which is a controUable (n,k) treUis

encoder with

N'c = \S'C\ < min (AT \A\", AT 2kL) (5.16)

states, where L = \p/n\. Moreover, every state sc SC\S'C is transient

in the sense that any path of length at least L starting at sc ends (and
remains) in S'c.

The encoders Tc and T'c in Theorem 5.1 wiU be referred to as the com¬

posite encoder and the steady-state (composite) encoder, respectively.

Proof: The state of the composite encoder Tc is defined as

Sci = (st, Vin-l, Vin-2, -, Vin-u.) , (5.17)

where s; is the state of T and j/j„_m, 1 < m < p, axe the .A-axy symbols
stored in the shift register of the filter. Thus, the cardinality of the state

set Sc is AT LAI**. The next-state function of Tc depends on the next-

state function of T, the output function of T, and on the memory p.

The output alphabet of Tc is

Ac = { Em=0 h y^-m fcfi, 0<m</i}.

We proceed by defining the subset

&c- { iSL, VLn-l, Vln-2, ••-, VLn-n) (5.18)
sl = 6(7), (j/o, »i, ... , ym-i) = *(7),
for aU paths 7 = (60, 61, ... , &£_i) in T }

6The nodes or states in a maximal strongly connected sink component are some¬

times called essential [61].
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of «SC, where L = [p/n\ and where 6(7) and ^(7), respectively, denote

the end-node of 7 and the output sequence generated by 7. We further

define the subset

B'c 4 {6 : 6 e Bc, o(b) e S'c}

of Bc. Since Ln — p= \p/n\ n — p>0, any path of length L in T wiU

drive Tc to a unique state in S'c independent of the initial state of the

filter. Since there are exactly N 2kL paths of length L in T, it foUows

that \S'C\ < min (N \A\", N 2kL).
Suppose that Tc is in some state

scL = (s£, J/ln-1, J/in-2, ••, VLn-p) S'c

at time L. By definition of S'c, there is a path 7 = (60,61, ...
, 6l-i) in

T such that Tc ends in scl- Since the end-node sl = e(6jr_i) is uniquely
determined by scl, the 2k successors of scL are obtained by appending
a branch 6^ e Bont(si) to 7. Since sc£ e <S£, the corresponding branch

bCL is in B'c. But every successor sc,z+i must be in *S£, since there is

a path 7' = (bi,b2, . . ,bi) in T such that Tc ends in sc,i+i- This

establishes the fact that S'c is a sink in Sc- Since T is controUable, it is

possible to walk along any length-L path 7 in T by first getting to its

staxt-node. This implies that the labeled graph (AC,SC,B'C) is strongly
connected. It follows from the definition of B'c that, for any s e S'c,

{4>(b)-beBcoxlt(s)} = {0,l}k.

The output symbols on the branches in B'c form a subset A'c of Ac-

Summarizing, we have shown that T'c is a controUable (n, k) treUis en¬

coder.

If S'c is a proper subset of Sc, suppose that Tc is in a state sc i S'c.
Starting from sc, any path of length at least L must lead to a state

s'c e S'c by definition of S'c. This proves that the states in SC\S'C axe

transient.

The foUowing examples show that either one of the terms in the

minimization of (5.16) can be smaUest.

Example 5.1: For k = 2, n = 3, p = 1, and |.A| = 2, one obtains

L = 1 and A^ < min (2AT, 4AT) = 2N.

Example 5.2: For k = 1, n = 2, p = 3, and |.4| = 2, we get L = 2

andNc<min(8N,4N) = 4N.
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Figure 5.3 iUustrates Theorem 5.1 for a bipolar (2,1) treUis en¬

coder T with N = 4 states and for the channel filter H(z) = 1 - z~l

of the dicode channel7. The composite encoder Tc has Nc = 8 states

Trellis encoder T

(2,1) 1/i0 (3-!)

Composite encoder Tc with steady-state encoder T'c (bold) as subgraph

Figure 5.3: Cascade of a bipolar (2,1) encoder T with an FIR

filter H(z) = 1 — z~l. The branch labels have the

form Uj/i>2iU2t+i, where u,- is an information bit

and vi is an encoder output.

labeled by sCJ- = (s,-, y,n-i) (cf. (5.17)). The essential and transient

states of Tc are marked with fiUed and hoUow circles, respectively. The

steady-state encoder T'c = (A'c, S'c, B'c) (shown bold in Figure 5.3) has

only N'c = 4 states. This is due to the fact that, for every state s

in T, the two branches ending at s end with the same code symbol,
which impUes that a unique channel state 1 or 1 can be assigned to

every state of T. In our example, the channel states 1, 1, I, and I are

assigned to the states 0, 1, 2, and 3 of T, respectively. The steady-

In the remainder of this section, we use a to denote —a.
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state encoder in Figure 5.3 is an example used by Wolf and Ungerboeck
[15, Fig. 3 and Fig. 11(b)] to illustrate code design for the dicode chan¬

nel by means of set partitioning8. In the Ught of Theorem 5.1, their

technique rests on the identification of the set of allowed output n-tuples
for every branch in a 2fc-ary STD when channel states 1 or 1 have been

assigned to the nodes of this STD.

The steady-state composite encoder T'c can be determined efficiently
by applying the Tarjan algorithm [50], [47], [51] to the composite en¬

coder Tc. This algorithm determines the maximal strongly connected

components of a digraph with a computational complexity that is linear

in the number of nodes. Alternatively, S'c and then T'c can be determined

by following all possible paths of length L in T, as suggested by (5.18).
It is worth mentioning that the total memory9 mtot of an (n, k)

trelUs encoder with memory m cascaded with an FIR filter of order p
is given by [26, p. 286]

mtot = m+ \p/n).

More will be said about this encoder in Section 5.5.

'See Section 5.1 for the definition of memory (as opposed to the detour memory).
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5.3 An Upper Bound on the Bit Error

Probability for Non-Uniform Trellis

Encoders and Viterbi Decoding

In this section, the weU-known upper bound on the bit error probabiUty
for Viterbi decoding [26, Sec. 4.4, pp. 242], [27, Sec. 6.E], is gener¬

alized to time-invariant trelUs encoders (cf. Section 5.1) with a non¬

uniform distance spectrum and used on memoryless, output-symmetric

[26, p. 242] channels. We assume that a controUable, aperiodic (n, k)
treUis encoder and an associated (L, r) 2fc-ary treUis axe given. As

opposed to the uniform case, an assumption on the probability distri¬

bution for the information sequence wiU be required in the case of a

non-uniform distance spectrum. In general, the bound wiU be valid

only for the chosen distribution. In order to separate the problems of

source and channel coding, we assume that the information sequence

is comprised of independent, equiprobable binary digits, i.e., it has the

distribution that is approximated by the output of any good source

encoder.

The upper bound we wish to generalize is based on the enumer¬

ation of detours (cf. Section 5.1) from a reference path in the trelUs.

For a given reference path, it is possible to count the number of de¬

tours with distance d, number of bit errors i, and length /. Here and

hereafter, 'distance' refers to a distance measure, which (i) is used by
the maximum-likelihood decoder to find the codeword closest to the re¬

ceived sequence and (ii) is an additive branch function in the sense that

the distance of a subpath in the trellis from the corresponding subpath
of the reference path must be the sum of the distances of each branch

in that subpath from the corresponding branch in the reference path.
For instance, Hamming distance is the appropriate measure when bi¬

nary trelUs codes are used on the binary symmetric channel [10, p. 17],
and the squared Euchdean distance is appropriate when treUis codes

axe employed on the AWGN or proper complex AWGN channel. A col¬

lection of pairs (d, i) or triples (d, i, I) is commonly referred to as a

distance spectrum. To obtain the generalization, one has to overcome

the following difficulties:

• The distance spectrum generaUy depends on the reference path,

i.e., it is conditioned on the initial state (where the detours begin)
and on the reference information sequence.



112 Chapter 5: On Trellis-Coded Data Transmission
...

• The stationary state-probability distribution need not be uniform.

• In a practical communication system, the treUis encoder starts

from a specified initial state at time zero. Therefore, the en¬

coder approaches the stationary state-probabiUty distribution

only asymptotically with time.

• It is desirable to obtain a tight upper bound on bit error probabi¬

lity, which is independent of the specified initial state. For a finite

trellis, it appears to be difficult to derive such a bound since one

might choose an initial state so with particularly 'bad' distance

spectra10 for the reference paths starting at sroot = (so,0). This

indicates further that an upper bound for the infinite trellis is

generally not also an upper bound for a finite trelUs.

A distance spectrum depending on [independent of] the reference

path, as well as the corresponding encoder, wiU be called non-uniform

[uniform]. It will be shown that the conditional distance spectra must be

averaged according to the stationary state-probability distribution and

the probability distribution of the reference information sequence. Since

an infinitely long reference information sequence has zero probability,

we are forced to begin with a finite trellis and to use a limiting argument
for the infinite treUis.

Each encoder input is a binary A;-tuple x. We will represent x by
the 2fc-ary number u = Y!>jZo x$ •

^ u an(^ " rePresent x and x,

respectively, it will be convenient to define dn(u, u) as the Hamming
distance d#(x, x). Using the sequence notation uq = (uq, uq+i, ... ,ur),
we define also dH(urq,uq) = £j=qd#(uj,«j).

Definition 5.3: We define a£,- ^s,^'1) as the number of detours

in the (L, r) trellis with respect to the reference path determined by
the initial state s and the length-L sequence u0_1, where each detour

diverges at time zero, has distance d, causes t information bit errors, and

has length11 /. We further define a^ i(s,u0-1) as the number of detours

in the infinite trellis with respect to the reference path determined by
the initial state s and the length-/ sequence u0-1, where each detour

diverges at time zero, has distance d, causes i information bit errors,

and has length I.

10In practice, of course, one would choose an initial state with particularly good
distance spectra for the reference paths starting at sroot = (so, 0).

11Recall from Section 5.1 that a detour ends where it remerges for the first time

with the reference path.
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Note that aLt j(s,ujj ) vanishes for / > L + r. Let the random

variable Wj be the number of information bit errors if the Viterbi de¬

coder initiates a detour at time (or treUis depth) j, and let Wj = 0 if

the decoder is already on a detour that began earUer or if it foUows the

reference path from time j to j +1. The total number of information bit

errors is then given by Sj-To Wj* We wish to derive an upper bound

on the bit error probability

Pb = E EL'oWj /(kL). (5.19)

Suppose that the Viterbi decoder leaves the reference path at time j
for a detour of length /. The relevant part of the reference path is

determined by the state at time j, Sj, and some sequence um ,
where

m(j, I) 4 min(j + / - 1, L - 1), (5.20)

and the relevant part of the detour path is determined by Sj = Sj and

some sequence v,jh .
The number of information bit errors on this

detour is dn(uj u',Ujh '). The average number of bit errors over all

possible detours diverging from the reference path at time j, 0 <j < L,
is given by

i=i fi»(,.D.
' (5.21)

3

S,+i?sJ+t, if l<t<l

But the probability that the Viterbi decoder chooses a specific detour

for a given reference path can be upper-bounded by

pKu^s}s3v^7W)\svs^Lrx) <Piv?1'1 -j/j'+i_1). (5-22)

where P(y — y) denotes the probabiUty of error when the codeword

y corresponding to the detour is the only alternative to the transmit¬

ted codeword y. The upper bound (5.22) foUows from the fact that

the decoding regions become larger in this two-codeword decision prob¬
lem. Assuming that the codewords are transmitted over a memoryless,
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output-symmetric channel [26, p. 242], P(y — y) depends only on the

distance between the two codewords, viz.,

P(y-> y) = P2(d(y,y)) = P(y ^ y), (5.23)

where P^(.) is called the pairwise error probability. We now substitute

(5.22) and (5.23) into (5.21) and then use the fact that the length-/
detours starting at time j can be enumerated by means of ad7'/( •

>
* )

the number of detours in the (L — j, r) trellis. Hence

E Wj\Sj = Sj = sj,U3L-l = ulj
.i-i

L-j+T

<EE dH(uJ^\uf^) P2(d(y?l-\y?1-'))
1=1 £*»(:*,0 .

3

Sj+tjLsj+t, if l<*<i

•»J+I= *»J + '

OO OO L—j+T

= EE E iaLdZ(si^)P2(d), 0<j<L, (5.24)
d=dfi=l 1=1

where df denotes the free distance defined in Section 5.1. By definition

Of Wj,

E Wj\Sj = 8j, Sj±8„ Uj
L-l ^ = 0. (5.25)

By the assumption of independent, uniformly distributed binary in¬

puts, {Uj} is a sequence of independent, uniformly distributed 2fc-ary
random variables. This implies further that both the encoder state Sj
and the decoder state Sj axe independent of 17f-1. Therefore,

PsAuf-ii't'iUj'1) = ^5,(•»*) ^-'("i"1) =

ft,W Ps,\sMs) 2"fc(i_j) < Ps,(>) 2"fc(L"i)> (5*26)

where the inequality is tight in the interesting range of operation because

Ps ,s (s, s) is well-approximated by 1 for medium to high signal-to-noise
ratios. Applying the theorem on total expectation to (5.24)-(5.26) yields

s e S d=df i=l

L-j+r

£-•k(L-j) E ,-t-i/
'Z(s,uL0-'-1), 0<j<L, (5.27)

i=i ^"J-1 {0,1,...,2**-1}**-J
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where we have replaced the summation over the dummy variables u^ x

by a summation over all u0
~3~

.

Unfortunately, it seems difficult to further upper-bound the right-
hand side of (5.27) in such a way that (i) the upper bound remains

tight and (ii) the dependence on L is eliminated. (This can be done

for a uniform distance spectrum; in that case, the upper bound for the

infinite trellis is also an upper bound for any finite treUis [27, Sec. 6.E].)
Fortunately, however, we can (and wiU) derive a tight upper bound

valid only for the infinite trelUs since (5.27) holds also in the Umit as L

approaches infinity. In order to simplify the right-hand side of (5.27),
we will break up the term on the second line into two sums over the

range 1 < / < L — j and L — j + 1<I< L — j + t, respectively. The

first sum satisfies

g2-«*-i) £ aJ>,t«0^-1) = S2-«j:«-i..('.«i-1).
i=i „*-;-! /=i „--!

(5.28)
since the number of length-/ detours does not depend on ut

~3~ and is

the same for the (L—j, r) trellis and the infinite treUis. For the second

sum, recall that in the (L—j,r) trellis the reference path is uniquely
determined by the initial state s and the data sequence u^-3'1. The

dummy information sequence corresponding to the tail of this refer¬

ence path wiU be denoted by uLZj~ (s>uo~J-1)* Letting '©' denote

sequence concatenation, we can upper-bound the second sum by

LE+T 2-fc(i-j) E «S>.«oI-i-1)
l=L-j+l u£-i-i

< £T2-fc(£-'> £ aT^ut'-1®^,^-3'-1))
l=L-j+l „J-i-i

< 'jf 2«'-*+i> 2-« £ E^.iC-.-i-1)
i=L-J+i «rj-i4%-

L-j+T

<2kr Yl maxa^-M'-1), (5.29)
l=L-j+l "o

where the first inequality is due to the fact that in the infinite treUis
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the detours need not follow the unique tail paths, the second inequality
holds because uL~^j(s,u0~3~ ) is included in the sum over all uL~2j,
and the last inequality is true because the average of 2kl numbers cannot

exceed their maximum. Combining (5.27), (5.28), and (5.29) yields

oo oo

e^^e^wE^E^
s 6 S d=df i=l

J2^klJ2aZAsA-1) + ^T E maxa^.tC-1)
1=1 „£-! m=L-j+luo J (5.30)

where 0 < j < L. The transition to the infinite treUis12 wiU cause the

unwanted second term in the square brackets to vanish. Thus, we take

the Umit of both sides of (5.30) as L — oo. Using the fact that the limit

of the sum of a finite number of terms is the sum of their Umits, we

obtain

oo oo

E[Wj]<y£PSi(s)'£P2(d)J2i-
s S d=df t=l

pi ^ m^oo^-i

for all j > 0. If the trelUs encoder T satisfies

(5.31)

Urn a^X"1) = 0 (5.32)

for all s, u0-1, and for d in the range df < d < oo, the second term in

the square brackets of (5.31) vanishes. Since the numbers a^ t(s, Uq-1)
are integers, (5.32) is equivalent to the foUowing condition: For any

finite d>df, there is a finite integer L<* such that

ad?,y(s,«o_1) = 0 forall/>Ld. (5.33)

The condition (5.32) or (5.33) states that two paths that diverge and

never remerge must accumulate an unbounded distance. As a conse¬

quence, any two cycUc paths in the labeled graph T, which can be en¬

tered from a common node by two paths of the same length and produce

12Theoretically, this impUes an infinite decoding delay. However, experience with

convolutional codes suggests that the path memory can be limited to a finite window

for general trellis codes without introducing a significant performance loss.
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the same code sequence axe prohibited, even if they correspond to the

same information sequence! This shows that a non-catastrophic encoder

does not necessarily satisfy (5.32). For instance, a non-catastrophic en¬

coder having two self-loops labeled with the same input x and the same

output y does not satisfy (5.32). Condition (5.33) is necessary for evalu¬

ating the upper bound on the computer since, for a given d, it guarantees

a finite search depth for aU detours at distance d. Using (5.32), (5.31)
is simpUfied to E [ Wj ] < /3j, j > 0, where

ft - J. E psM E iM<of/E2-fc' 53 a^.^j,-1).
~*°°

s 6 S d=df i=l 1=1 u'-i

Hence, the bit error probability for the infinite trelUs satisfies

1
Pi, = Um — E

m->oo km

m—1

j=0

- 771—1 - 771— 1

= Um — YE[Wj]< Um t-
Y" (3j. (5.34)

m-»oo km f-'
l 31 ~

m-oo km -f-*' 3 v '

J=0 j=0

Observe that 3j is a function of the state-probabiUty distribution Psj,(.).
As j approaches infinity, Pst( ) converges to a limit Ps( ), the sta¬

tionary state-probabiUty distribution. The existence of this Umit is a

consequence of [38, Thm. 15.8.1, p. 552] since, by the assumption of

independent, uniformly distributed inputs Uj and of an aperiodic treUis

encoder, one obtains a time-invariant, primitive transition-probabiUty
matrix

n = 2"fcA, (5.35)

where A is the adjacency matrix of T. (In fact, the stationary state-

probabiUty distribution is given by the left eigenvector of II correspond¬

ing to the unit eigenvalue, normalized such that its components sum to

one.) Therefore, the sequence A*,/3i,... has also a Umit, denoted /3.
It is weU-known that the sequence of arithmetic averages ao,ai,...,

where am = £ E^V /--j, has the same Umit 3 [62, Kap. 3.1.3]. Hence,
the right-hand side of (5.34) equals 3/k. Summarizing, we have proved
the following result.
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Theorem 5.2: Let T denote a controllable, aperiodic (n, k) treUis

encoder satisfying (5.33), i.e., with the property that two paths with

a finite distance between them have a finite unmerged span. Let the

encoder input be a right-sided, infinite sequence of independent, uni¬

formly distributed 2fc-ary random variables and let Ps( ) denote the

stationary state-probability distribution. Assume further that the en¬

coded sequence is transmitted over a memoryless, output-symmetric

channel, on which the pairwise error probability for two codewords at

distance d is given by P2(d). Then the bit error probability for Viterbi

decoding is upper-bounded by

1
d"

Pb<- lim Y P2(d) nd, (5.36)
d=df

where df denotes free distance and

oo Li

nd=yPs(s)yiy2-kl 53 a^,^"1), (5.37)
seS i=l 1=1 uJ,-i e {0,l,...,2fc-l>*

where Ld is the maximum length of a detour at distance d.

The set

V = {(d, fid) : there exists a detour at d > df},

will be called the average distance spectrum. It should be pointed out

that, for a uniform distance spectrum, (5.37) reduces to

oo Ld

nd = ^2iy£aT,i,l(0,0l0-1)
t=i 1=1

since a^ ^s,^-1) = aj5,- j(0,0q_1). In general, the numbers n,- axe

rational; for a uniform encoder, they axe integers. As we wiU see in

Section 5.5, the possibility of making the parameter ndf smaller than

one makes it even more important for nonlinear trellis encoders than for

Unear ones. The upper bound (5.36) can be approximated by extending
the sum only to a parameter dmax < oo.

The following property is often useful for evaluating the average

distance spectrum.
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Property 5.1: The stationary state-probability distribution of a con¬

trollable, aperiodic (n, k) trellis encoder T with uniform in-degree and

independent, uniformly distributed 2fe-ary inputs is the uniform distri¬

bution.

Proof: We have already seen that the stationary state-probabiUty dis¬

tribution is given by the left eigenvector of the transition-probabiUty
matrix (5.35) corresponding to the unit eigenvalue, normalized such that

its components sum up to one. Since T has uniform in-degree 2k, every
column-sum of its adjacency matrix A equals 2k, and every column-

sum of EL equals one. Hence, the desired left eigenvector of II is

2~N [1,1,..., 1], where N is the number of states of T. O

Of particular interest is the real or proper complex AWGN channel,
for which the squared Euclidean distance d%( .

, . ) is the appropriate
distance measure. In order to avoid confusion of squared EucUdean

distance with Euclidean distance, we shall replace the symbol d in Theo¬

rem 5.2 by A to denote squared EucUdean distance. The pairwise error

probability for two codewords at squared Euclidean distance A is given
by

P2(A) = Q (v,A/(2AT0)) , (5.38)

where
1 f°°

QW = 7si '"''2du-

Further, (5.36) becomes

1
A*

Pb < - Um V P2(A) nA, (5.39)
K A*—>oo •—-'

A=A/

where A/ denotes the free squared EucUdean distance and

oo La

nA=EP^s)EiE2_fc' E a*?,-,.^-1)* (5*40)
seS i=i 1=1 „»-» <-{o,i,...,2*-i}*

Correspondingly, the average squared Euclidean distance spectrum is

defined as

T>e — { (A,nA) : there exists a detour at (5-41)
squared Euclidean distance A > A/ }.
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5.4 Efficient Evaluation of Average Dis¬

tance Spectra

It is well-known that both treUis-based and tree-based decoding algo¬
rithms can be used for calculating distance spectra of convolutional

encoders [59, p. 376]. On the other hand, the computation of average

distance spectra (cf. Section 5.3) for non-uniform treUis encoders is gen¬

erally considered infeasible because the average is to be taken over all

possible reference paths. This has led to the investigation of regular
treUis codes [63], [64], for which the distance spectrum can be evalu¬

ated assuming an arbitrary reference path13. A less stringent condition

called quasi-regularity was introduced in [64], which is satisfied for a

broader class of trellis codes. It has been claimed recently that the

distance spectrum of quasi-regular codes used on ISI channels can be

found assuming an arbitrary reference path [65, p. 629], regardless of

the ISI coefficients. However, this contradicts our experience with bi¬

nary convolutional codes14, which yield a uniform distance spectrum on

the 'straight-wire' channel (as they should), but a highly non-uniform

distance spectrum on some partial-response channels. For further com¬

ments on [65], the reader is referred to [66].
In this section, a modified Viterbi algorithm (MVA) for computing

average distance spectra of non-uniform trelUs encoders is described,
with emphasis on an efficient implementation. We start by rewrit¬

ing (5.37) as

"<*" = E psi3o) nd(so),
so e S

where

^o) = E'E2"fei 53 a?AI(.0,«i-1) (5*42)
»=l l=i „r-i e{o,i,...,2*-i}'

is the average number of bit errors over all detours at distance d that di¬

verged from a reference path at trellis node (s0,0) and over all reference

paths starting from that trelUs node. Hereafter, reference paths are as¬

sumed to start at trellis node (so, 0). Moreover, we consider only those

13To be precise, the 'regularity' defined in [63] and [64] is actually a property of

trellis encoders.
14
Assuming binary antipodal signaling.
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detours, which depart from the reference path at node (so,0). Equa¬
tion (5.42) suggests that fid(so) can be obtained iteratively by setting
it to zero initially and by an update

nd(s0)«- nd(s0) + i 2~kl (5.43)

for every detour of length / with a codeword distance d and an infor¬

mation distance i from the reference path. In (5.43), the factor 2~kl is

the probabiUty of a reference path of length /.

The key idea of the MVA is the assignment of a Ust Ci(s) to every

node (s, I) of the trelUs, where s is in the state set <5 and / > 0, in order

to keep track of accumulated distances. A Ust Ci(s) is either empty
or contains entries of the form (d, i), where d and i is the accumulated

codeword distance and information distance, respectively, between a

path from (so,0) to (s,l) and the reference path from (so,0) to treUis

depth /. A list may contain repeated entries and need not be ordered

with respect to codeword distance. Let x/y and xief/yjei be the labels of

some branch in the trelUs and of the branch on the reference path at the

same depth, respectively. Then the codeword and information distance

between these branches is denoted by d(y_,yje{) and d#(x,xref), respec¬

tively, where d(., .) is a distance measure as described in Section 5.3

and djj(-, •) is the Hamming distance.

To simplify the description of the MVA, the nodes of the treUis

(except for the root node) axe assumed to have uniform in-degree 2.

Suppose that two branches merge at trelUs node (s, I) and that none of

these branches belongs to the reference path, as depicted in Figure 5.4.

As the MVA proceeds from depth / - 1 to depth /, the Ust Ci(s) is

£i-i(»i)

(.1.1-1) 0^*-/Vi
^^-*^£i(«)

_^>o (.,/)

(.3,'-l)0-^^/„3
£|-l(«3)

o » o

£t«f/»r,f

Figure 5.4: Two branches merging at treUis node (a, /)

determined by updating and then concatenating the Usts Ci-i(si) and
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A-i(*2), viz.,

Ci(s) = (£/_i(si) + (d(yi,yjel),dH(xi,x„{))) ©

(A_i(*2) + (%2>]/ref)'dtfte2-£ref))) , (5-44)

where lCj(s) + (d,i)' denotes the list obtained by adding (d,i)
component-wise to every element of Cj(s) and '©' denotes list con¬

catenation. Note that all detours, which traverse trellis node (s,l) and

which have accumulated a codeword distance d from the reference path
at that node, can be represented by a single list entry (d, i) for comput¬

ing nd(s0). Thus, the list &(s) may optionally be sorted and condensed

into the form

{(di,ii), (d2,i2), }, where di < d2 < -
and im = 5^ *'•

(dm,i) e Ct(s)

As an example, we consider the computation of the average squared
Euclidean distance spectrum for a bipolar treUis encoder cascaded with

the dicode channel. Figure 5.5 shows the trellis of the steady-state

composite encoder15 for three different reference paths of length 3 and

illustrates the computation of the numbers nA(«o) for s0 = 0 and

A < Amax = 56. Note that all detours must follow the branch from

node (0,0) to node (1,1) and that no detour starts at node (1,0). This

is achieved by letting £o(0) «— {(0,0)} and £n(l) <— {}• The entry

{(0,0)} acts as a 'seed' for the generation of the lists £i(s). For an

efficient implementation of the MVA, it is desirable to perform opera¬

tion (5.44) (optionally followed by a sorting operation) for every pair
of merging branches, whether or not one of them belongs to the ref¬

erence path. If we blindly use (5.44) for A(0) in Figure 5.5 (a), we

get £i(0) = {(0,0)}. We must remove the entry (0,0) from £j(0) to

prevent new detours from starting at depth 1 = 1. The operation of

removing the 'null-entry' (0,0) is denoted by "i^" in Figure 5.5 (a). At

depth 2 in Figure 5.5 (a), the semi-bold detour remerges with the ref¬

erence path. According to (5.43), the entry (A,t) = (24,2) of £2(0)
results in

n24(0)<-n24(0)-r0.5.

In general, an operation (5.43) must be performed for every Ust entry

representing a merged detour and, after these updates, the list must

This encoder will be considered also in Section 5.5, Figure 5.8.



5.4 Efficient Evaluation of Average Distance Spectra 123

State Labels

s

0
0/22

*

State Labels

s

{(52,1)} {(84, !)}£{}

(a)

{(0,0)} {(0,0)} "{} {(24,2)}H{} {(56,2)}M{}

"24(C)—n24(0)+0.S n5(i(0)—n56(0)+0.25

S5«(0)—n56(0)+0.2S

{(52,1)} {(56,2)}M{}

(b)

{(68, !)}.*{}

State Labels

{(0,0)}

fi24(0)«-S34(0)+0.5 n40(0)«-«4o(0)+0.25

{(20,1)} {(24,2)}^{} {(40,2)}M{}

(c)

{(36,1)} {(68,1)}^{}

trellis depth I

Figure 5.5: Computation of the average squared Euclidean

distance spectrum (Amax = 56) for the steady-state
encoder obtained from the cascade of a bipolar
treUis encoder with the dicode channel. (Reference
paths axe shown bold; detours axe drawn semi-bold

or dashed. A Ust £j(s) with entries of the form

(A,i) is attached to every trelUs node (s,/).)
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be emptied. The operation of removing entries that represent merged
detours is indicated by "^" in Figure 5.5. At depth 3 in Figure 5.5 (a),
the dashed detour remerges with the reference path, which results in an

update of ^(O). Moreover, the entry (84,1) is removed from list £3(1)
since 84 exceeds Amax. This operation is denoted by "J+" in Figure 5.5.

Notice that the processed Usts at depth 3 axe all empty in Figure 5.5 (a).
Therefore, the MVA returns to depth 2 and increments xref2 by one.

This results in the reference path shown in Figure 5.5 (b). It is essential

that the Usts £j(s), 0 < j < 2, need not be recomputed! Proceeding
from depth 2 to depth 3, the MVA generates the lists £3(0) and £3(1).
After processing these lists, it returns to depth 1, from where it foUows

the reference path shown in Figure 5.5 (c).
It is easy to see that the reference paths axe generated by walking

along a binary tree16 in a depth-first manner. The beginning of this

tree-walk is iUustrated in Figure 5.6. Every terminal node in this tree

.-cs::.
-o

o

.-o

*=
o

*~f = 1

o

(c)

0»)

(a)

iref = 0

0 12 3 depth/

Figure 5.6: Tree-walk for generating reference paths. The

labels (a), (b), and (c) correspond to the refer¬

ence paths (0,0,0), (0,0,1), and (0,1,0) and refer

to Figure 5.5 (a), (b), and (c), respectively.

represents a reference information sequence (xrefo, xref 1; ...
, xren-i)

such that the lists £j(s) in the MVA trellis are empty for all s e S and

at least one list £j_i(s) for s e S is non-empty. It should be pointed

In the general case, the walk is along a 2fc-ary tree.
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out that the terminal nodes are not necessarily all at the same depth,
as it is the case for our simple example.

We conclude this section with some remarks on the performance and

the computational costs of the MVA. For a given parameter dmax, one

usuaUy specifies an upper Umit for the depth of the MVA treUis. If

the depth exceeds that Umit, this is an indication for a catastrophic
treUis encoder. However, even if the encoder is catastrophic, the MVA

may terminate without exceeding the Umit! The time required for the

evaluation of an average distance spectrum grows exponentially with

dmax since the maximum over all numbers Ld in (5.42) for d < dmax

grows linearly (or faster) with dmax and since the number of reference

paths grows exponentially with Ld- As a final comment, the MVA can

be accelerated if the distance spectrum is known to be uniform. In that

case, replacing the factor 2~fc' in (5.43) by one allows us to stop the

algorithm the first time it reaches a depth / with £/(«) = {} for all

s S.

i
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5.5 Analysis of Bipolar Trellis Encoders for

the Dicode Channel

In this section, some bipolar trellis encoders for the dicode channel

[6] H(z) = 1 — z~l will be analyzed and compared using the modi¬

fied Viterbi algorithm (MVA) of Section 5.4. For calculating distance

spectra, it is convenient to assume ±1 channel inputs and to use unnor-

maUzed, i.e., integer-valued, partial-response channel coefficients [15].
Hence, the Euclidean distances at the channel output will be based on

a unit average symbol energy at the channel input and on a channel

energy ||n||2= ]Cm=o l^"»|2 > 1- Therefore, replacing the unit average

symbol energy by E [ |Yj |2 ] = REb (cf. (5.6)) and normalizing the chan¬

nel coefficients to unit energy will scale the squared Euclidean distances

by a factor REb/ \\h\\2. This is taken into account by modifying (5.38)
as

We begin with a fairly simple (but remarkably good) (2,1) code for

the dicode channel, the so-called biphase code [13, p. 821], which is a

block code with the two codewords17 [II] and [11]. Observe that the

code words are balanced, i.e., their components sum up to zero. Hence,
the biphase code has a first-order spectral null at zero frequency, i.e., it is

a simple MSN code. Assuming the input assignment 0/11 and 1/11, the

steady-state encoder obtained from the cascade of the biphase encoder

with the dicode channel has the trellis18 shown in Figure 5.7. Notice

that a channel state 1 or 1 is assigned to every state of the steady-state

composite encoder, according to the bipolar symbol stored in the delay
cell of the dicode channel. The branch labels have the form x,/^2« ^2»+i,

where Xj is a binary information digit and z\ is an output of the channel

filter. For the trellis in Figure 5.7, the MVA yields the average squared
Euclidean distance spectrum

VE = {(24,1), (40,1), (56,1.75), (72,2), ... }. (5.46)

The steady-state encoder is clearly non-catastrophic since the code

2-tuples on its four branches axe distinct. However, it suffers from the

foUowing node-synchronization problem. Since a Viterbi decoder cannot

17For branch labels, we use a to denote —a.

18More precisely, Figure 5.7 shows a section of the infinite trellis.

i
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State Channel Branch

of T' State Labels

1/25 S^~\
0/02

Figure 5.7: TreUis of the steady-state encoder obtained from

the cascade of the biphase encoder with the dicode

channel

generally be assumed to observe the entire transmitted codeword, an

arbitrarily long sequence

...
22222222222

...

wiU be decoded either as

or as

..1111

0000

depending on the timing offset. This defect can be eUminated by modi¬

fying the trelUs as shown in Figure 5.8. Notice that the modified treUis

is now based on a bipolar (2,1) encoder with two states. The average

State Channel Branch

of TL State Labels

0/22 /V\
1/02

^^

Figure 5.8: TreUis obtained by modifying the input assign¬
ment in Figure 5.7
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squared Euclidean distance spectrum of the modified treUis is given by

VE = {(24,2), (40,1), (56,1.5), (72,1.25), ... },

which yields twice the bit error probability of (5.46) at high Eb/No. One

might therefore prefer the biphase encoder since a weU-designed source

encoder is very unUkely to produce long runs of identical information

digits.
Among those bipolar (2,1) encoders, which yield a steady-state

composite encoder with N < 8 states in cascade with the dicode chan¬

nel, we have not been able to find a better encoder than the biphase
encoder and, for the best encoders found, free squared EucUdean dis¬

tance at the channel output is 24 for AT = 2 and N = 8, but only 16

for N = 4. It appears that the dicode channel is responsible for this

surprising behavior.

The following two examples will demonstrate the importance of the

average number of bit errors over all detours at free distance for treUis

codes with a non-uniform distance spectrum. Consider the trellis in

Figure 5.9 of Wolf and Ungerboeck's four-state encoder [15, Fig. 11 (b)],
for which A/ = d\* = 16. Notice that all detours at free distance have

length M +1 = 3, where M = 2 is the detour memory. Moreover, for

each of the 2M+1 = 8 reference paths of length 3 with the same staxt-

node, there is exactly one detour of length 3, and every such detour is

at free distance and causes two bit errors, regardless of the start-node.

Hence, the average number of bit errors at free distance is also two.

Indeed, the MVA yields

P£ = {(16,2), (24,3), (32,3.5), (40,8.5), ...}.

The treUis in Figure 5.9 should be compared19 to the one in Fig¬
ure 5.10, where again A/ = 16 and all detours at free distance have

length M + 1 = 3. For each start-node, however, there is only one pair
of paraUel paths at free distance (shown bold in Figure 5.10 for the

start-node (0,0)), and the corresponding information sequences differ

in two bits. Since the probability of choosing one of these paths as the

reference path is 2/2M+1 = 2~M = 0.25, the average number of bit

errors over all detours at free distance is 0.25 • 2 = 0.5. The average

squared EucUdean distance spectrum now becomes

VE = {(16,0.5), (24,1.75), (32,3.875), (40,9.875), ...}.

19The comparison is fair since both encoders use that input assignment, which

avoids the above node-synchronization problem.
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State Channel Branch

of Tc State Labels

0/22 /^T^
1/00

Figure 5.9: TreUis of a four-state encoder by Wolf and Ungerboeck
that can be interpreted as a steady-state composite en¬

coder according to Theorem 5.1. For every reference path
of length 3, there is one detour of length 3 and every such

detour is at free distance.

State Channel Branch

of T' State Labels

Figure 5.10: TreUis of a steady-state composite encoder with only
one pair of parallel paths at free distance per start-node

(shown bold for the start-node (0,0)).
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Thus, the bit error probability at high Eb/No has been reduced by a

factor of 2M = 4.

For coded transmission over the dicode channel, we have already
noted the superiority of the simple biphase encoder over other bipolar

rate-1/2 encoders when the steady-state composite encoder has no more

than eight states. In Table 5.1, we have listed the most important

parameters of four bipolar rate-1/2 treUis encoders. Three of these

Encoder (n,k) NT NT> Af at A/ at flAf at

T encoder

output

channel

output

channel

output

MSN1 (2,1) 1 2 8 24 1.00000

MSN 2 (2,1) 8 12 16 24 1.03125

MSN 3 (6,3) 8 16 16 24 0.28125

OFD-FC (2,1) 8 16 24 16 0.06250

Table 5.1: Comparison of four bipolar rate-1/2 trellis encoders

for the dicode channel. Nt and Nt^ denote the number of states

of the trellis encoder T and the steady-state composite en¬

coder T^, respectively. The squared Euclidean distances at the

channel output are based on unnormalized channel coefficients.

trellis encoders are MSN encoders and one is a convolutional encoder

that was not designed for the dicode channel:

• MSN 1 is the biphase encoder described above.

• MSN 2 is the best encoder (w.r.t. free Euclidean distance at the

encoder output) obtained from a search based on the assignment of

code 2-tuples to the branches of 2fc-ary state-transition diagrams.
In the Mealy representation ({1,1}, {0,1,... , 7}, /, g), the next-

state function is given by f(s,x) = fStX, 0 < s < 8, x 6 {0,1},
where

F = [/,,*] = [0,1; 2,3; 4,5; 6,7; 0,1; 3,6; 4,5; 2,7],

and the output function is given by g(s,x) = v.(g°x), 0 < s < 8,
x e {0,1}, where

G° = [g°a,x] = [2,3; 1,2; 1,3; 3,0; 0,2; 0,2; 0,1; 3,1]
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and v(.) is given by the table

<* £(£.)
0 11

1 11

2 11

3 11

According to [21], MSN 2 generates a first-order spectral nuU at

zero frequency, because there is a mapping yj from the state set

S = {0, 1,2, ... ,7} to the set of real numbers {0, 2, 4} such that,
for any path 7 in the labeled-digraph representation of MSN 2

(cf. Definition 5.1), the so-called running digital sum of 7 is given
by yj(e(^)) — VJ(a(l))i where 5(7) and (7(7) denote the end-node

and the start-node of 7, respectively.

• The (n, k) = (6,3) encoder MSN 3 was obtained from a standard

binary convolutional encoder with (n, k) = (4,3) and m = 2 [59,
Fig. 10.3, p. 292 and Table 11.1(e), p. 331] using the 'Hamming
distance preserving mapping' introduced by Ferreira [67]. At the

price of a small rate reduction, this mapping yields balanced code

6-tuples, which property impUes a spectral nuU at zero frequency.

• Finally, OFD-FC is a standard binary convolutional encoder with

(n, k) = (2,1) and m = 3 [59, Table 11.1(c), p. 330] (designed for

optimum free distance on a flat channel) with a binaxy-to-bipolar
output mapping.

Among these encoders, MSN 1 has by fax the smallest (Viterbi)
decoding complexity. Observe that the dicode channel increases free

EucUdean distance when one of the MSN encoders is used. An inter¬

esting property of encoder MSN 2 and encoder MSN 3 should also be

mentioned, namely, that the free squared EucUdean distance both at

the encoder output and at the channel output exceeds the lower bound

reported in [13, Prop. 6], [16, Thm. 6], which has been observed to hold

with equaUty in most cases [68]. (For encoders with a first-order spec¬

tral nuU at zero frequency and the dicode channel, the lower bound at

the encoder output and at the channel output is A/ > 8 and A/ > 16,

respectively.) Because of the large free squared EucUdean distance at

the encoder output and at the channel output, MSN 2 and MSN 3 axe

useful for both the flat channel and the dicode channel with AWGN!
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Chapter 6

Conclusions

The results obtained in this dissertation can be summarized as foUows.

In Chapter 2, we have introduced the notions of proper complex
random variables and processes for statistical communication theory.

• For proper complex random variables and processes, which are de¬

fined by a vanishing pseudo-covariance, the second-order statistics

are specified completely by the mean and the covariance.

• The differential entropy of a complex random vector with a spec¬

ified correlation matrix has been shown to take its maximum if

and only if the random vector is zero-mean Gaussian and proper.

• For a bandpass communication channel with additive, wide-sense

stationary noise, the noise process in the equivalent baseband

channel has been shown to be proper complex.

• A DFT correspondence has been derived relating circular station¬

arity in the time domain to uncorrelatedness in the frequency
domain for sequences of proper complex random variables.

In Chapter 3, the capacity of ISI channels with AWGN and the

information rate for i.i.d. inputs on such channels have been dealt with.

• The derivation of the capacity of the ISI channel with AWGN has

been simpUfied and the results have been generalized to channels

with a complex unit-sample response and proper complex AWGN.
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• AUpass-equivalent ISI channels, which have the same transfer

function up to a suitable allpass factor, have been shown to be

equivalent also with respect to mutual information.

• The derivation of a lower bound on the information rate for

i.i.d. inputs has been simplified by using the information-theoretic

equivalence of certain allpass-transformed ISI channels.

In Chapter 4, we have investigated K-axy state-transition diagrams
(STD's) for treUis encoders.

• An algorithm for the construction of all non-isomorphic K-axy
STD's with given topological constraints has been derived.

• It has been shown that K-ary STD's with maximum detour mem¬

ory, i.e., K-axy STD's with N = KM nodes and detour mem¬

ory M, axe strongly connected and have uniform in-degree.

• All non-isomorphic binary STD's with maximum detour memory
and N = 1, 2, 4, 8, and 16 nodes have been found.

In Chapter 5, we have studied trelUs-coded data transmission over

ISI channels.

• A simple upper bound on the free distance of an (n, k) treUis code

has been derived, which is proportional to the detour memory of

a 2fc-ary STD.

• The serial form of a controllable trellis encoder foUowed by an

FIR filter has been viewed as the serial form of a composite treUis

encoder that contains exactly one maximal strongly connected

component, referred to as the steady-state encoder.

• The weU-known upper bound on bit error probability for con¬

volutional encoders and maximum-likeUhood decoding has been

generaUzed to time-invariant trellis encoders with a non-uniform

distance spectrum.

• The generalized upper bound on bit error probabiUty involves an

average distance spectrum, which we have shown can be evaluated

efficiently using a modified Viterbi algorithm.
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• It has been shown that the average number of bit errors over

all detours at free distance can be smaller than one for trellis

encoders with a non-uniform distance spectrum and is therefore

a more important parameter for non-uniform encoders than for

uniform ones.
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Abbreviations

AWGN Additive White Gaussian Noise

CRD Component-Reduced Digraph

c.w.s.s. circularly wide-sense stationary

DFT Discrete Fourier Transform

DTGC Discrete-Time Gaussian Channel

ETH Eidgenossische Technische Hochschule (Swiss Federal Insti¬

tute of Technology)

FIR Finite Impulse Response

HDSL High-rate Digital Subscriber Line

IDFT Inverse Discrete Fourier Transform

i.i.d. independent and identically distributed

IIR Infinite Impulse Response

ISI Intersymbol interference / Institut fiir Signal- und Informa-

tionsverarbeitung (Signal and Information Processing Lab¬

oratory)

MGC Memoryless Gaussian Channel

ML Maximum LikeUhood

MLSE Maximum-LikeUhood Sequence Estimation

MSN Matched Spectral NuU

MVA Modified Viterbi Algorithm

NCGC AT-Circulax Gaussian Channel

OFD Optimum Free Distance

PAM Pulse AmpUtude Modulation



138 Abbreviations

p.d.f. probability density function

QAM Quadrature Amplitude Modulation

STD State-Transition Diagram

VA Viterbi Algorithm

WGN White Gaussian Noise

w.s.s. wide-sense stationary
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Adjacency matrix, 62, 66

irreducible, 62

primitive, 91, 105

sparse, 62

Allpass filter, 41, 52-55

Autocorrelation function, 12

Autocovariance matrix

real random vectors

identical, 13

Average distance spectrum, 4,

118, 120-125

Bandpass channel, 9

Bandpass communication system,

19

Biphase code, 126

Bit error probability, 100

upper bound, 3, 111-119

finite trellis, 112, 115

Block-energy constraint, 32, 34

Capacity

complex NCGC, 31

continuous-time channel with

a filter, 1

intersymbol-interference chan¬

nel, 29-36

real NCGC, 35

Channel

bandpass, 9

binary symmetric, 111

dicode, 109, 110, 122, 126

discrete-time Gaussian, 3

complex, 31

real, 29

intersymbol interference, 3, 29,

37,97
channel filter, 37, 98, 99

JV-circular Gaussian

block-energy constraint,

32,34

complex, 31

real, 29

symbol-energy constraint,

31, 34, 35

output-symmetric, 111, 118

parallel, 1, 29, 33

partial-response, 4, 97

proper complex AWGN, 21,
119

Circular correlation sequence, 22

Circular pseudo-correlation se¬

quence, 22

Circular stationarity, 21-25

Complete K-axy state-transition

diagram, 68

Complex demodulator, 19

Complex random process, 12

autocorrelation function, 12

covariance function, 18
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proper, 19, 18-21

pseudo-autocorrelation func¬

tion, 12

pseudo-covariance function, 18

wide-sense stationary, 12

Complex random variables, 10-12

circularly stationary, 21

covariance matrix, 11

Gaussian, 14

jointly proper, IS

uncorrelated, 14, 23

proper, 13, 13-18

pseudo-covariance matrix, 11

uncorrelated, 12

Complex random vector, see Com¬

plex random variables

Component-reduced digraph, 60,
69

updating, 71

Constraint length, 105

Convolutional encoder, 106

memory, 104

non-catastrophic, 106

polynomial encoding matrix,
106

detour memory, 104

Covariance function, 18

Covariance matrix, 11

real random vectors

autocovariance, 13

crosscovariance, 13

Cramer's theorem, 34

CRD, see Component-reduced di¬

graph
Crosscovariance matrix

real random vectors

skew-symmetric, 13

Data-processing inequality, 51

Decision-feedback equalizer, 39

Degradation factor, 38

Detour in trellis, 104
Detour memory

convolutional encoder, 104

finite-state machine, 67

maximum, 67, 81-90

state-transition diagram (K-
ary), 66

trellis encoder, 104

upper bound on, 66

Dicode channel, 109,110,122, 126

Differential entropy, 16, 45

scaled random variable, 18

Digraph, see Directed graph
Directed graph, 59, 59-96

acyclic, 59, 69

adjacency matrix, 62

automorphism, 61

in-degree, 59

uniform, 59

isomorphic, 61

isomorphism, 61

isomorphism class, 61

out-degree, 59

uniform, 59

parallel branches, 59

parallel paths, 59

path, 59

cyclic, 59

n-th power, 62, 90-93

product, 90

self-loop, 59

strongly connected, 59, 62,102

(a)periodic, 60, 91, 92

period, 60, 62

subdigraph, 68

Discrete Fourier transform, 3, 22

Discrete-time Gaussian channel, 3

capacity, 3, 29-36

complex, 31

real, 30

symbol-energy constraint, 30

Distance measure, 111, 119, 121

Distance spectrum, 111, 120-125

average, 118

average squared Euclidean,

101, 119, 122, 126
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(non-)uniform, 112, 118, 125

DTGC, see Discrete-time Gaus¬

sian channel

Entropy, 16, 45

Entropy power, 18

Error sequence, 100

Euclidean distance, 4, 101, 105,

106, 111, 119, 126

lower bound on, 4

FIR filter, 41, 53

equivalence class, 41
Free distance, 104, H4

upper bound on, 105

Hamming distance, 105, 106, 111,
121

Hilbert transform, 21

Index of imprimitivity, 62

Information rate

lower bound on, 44

with i.i.d. inputs, 38

Intersymbol interference, 29, 37,
97

Intersymbol-interference channel,

3,37

capacity, 29-36

channel filter, 37

degradation factor, 38

equivalent, 41-44

information rate for i.i.d. in¬

puts, 37-49

minimum-phase, 39

symbol-energy constraint, SO

trellis coding, 97-131

ISI, see Intersymbol interference

Isomorphic directed graphs, 61

Isomorphic K-axy state-transition

diagrams, 64, 88

Isomorphic next-node matrices, 63

Isomorphic partial next-node ma¬

trices, 75

Jensen's integral formula, 47, 55

Markov chain, 51

Matched spectral-null code, 4, 97,
106

Maximum-entropy theorem, 16,
34

Maximum-likelihood decoding,

98, 111

Maximum-likelihood sequence es¬

timation, 100

Mealy machine, 102, 103

Memory of trellis or convolutional

encoder, 104

Memoryless Gaussian channel, 33

MGC, see Memoryless Gaussian

channel

Minimum-phase filter, 39, 46

Modified Viterbi algorithm, 4,

120, 126

MSN, see Matched spectral-null
code

Mutual information

equivalent channels, 42

MVA, see Modified Viterbi algo¬
rithm

NCGC, see iV-circular Gaussian

channel

iV-circular Gaussian channel

complex, 31

block-energy constraint,

52,34

symbol-energy constraint,
Sl, 34

real, 29

symbol-energy constraint,
35

Next-node matrix, 63

automorphism, 64

isomorphic, 63

isomorphism, 64

Nonnegative matrix, 62

irreducible, 62
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• index of imprimitivity, 62

primitive, 62, 91

Nyquist criterion, 1

Pairwise error probability, 114,

118, 119

Parseval's relation, 33

Partial K-axy state-transition dia¬

gram, 68

isomorphic, 75

partial next-node matrix, 75

strongly N-connectable, 68

Partial next-node matrix, 75

automorphism, 75

isomorphic, 75

isomorphism, 75

order relations, 76

Partial-response signaling, 2, 97,

126

Probability function, 37

Proper complex

AWGN, 21, 30, 37, 98

allpass-filtered, 54

Gaussian r.v., 15, 21

independent, 24

probability density func¬

tion, 15

random process, 19

random variable, 13

linear transformation, 14

Pseudo-autocorrelation function,
12

Pseudo-covariance function, 18

Pseudo-covariance matrix, 11

Pulse amplitude modulation, 1

Quadrature ampUtude modula¬

tion, 3

Real random variables, 13

Reference path in trellis, 104

Running digital sum, 131

Schur complement, 16

Shift register, 67

binary state-transition dia¬

gram, 60

State-splitting algorithm, 4

State-transition diagram (K-axy),
4, 60, 57-96

adjacency matrix, 66

aperiodic, 82

detour memory, 66

maximum, 82

isomorphic, 64, 83, 88

next-node matrix, 63

non-isomorphic, 74-81

parallel branches, 62, 66

parallel paths, 66

reversed branch directions, 82

strongly connected, 67-73, 82

uniform in-degree, 60, 82

STD, see State-transition diagram

Steady-state composite encoder,

100, 107, 110, 122, 123,

126, 128-130

distance spectrum, 100, 101

Strongly connected, 59, 66, 68-73,
102

Strongly connected component

maximal, 69, 71, 72, 105, 107,
110

Strongly JV-connectable, 68

Subdigraph, 68

Symbol-energy constraint, 30, 31,

34,35

Tarjan algorithm, 71, 72, 110

Toeplitz matrix, 50

Transfer function

causal, 37

delayless, 37

differing by an allpass factor,
41

equivalence class, 41

minimum-phase, 39, 46

Trellis, 103

detour, 104, HI
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reference path, 104, HI

TreUis code, 104, 97-131

binary, 105

bipolar, 105

free distance, 104

quasi-regular, 120

regular, 120

spectral null at zero frequency,
4

Trellis encoder, 102

aperiodic, 102, 117

average distance spectrum,

120-125

cascaded with FIR channel fil¬

ter, 3, 100, 107-110

catastrophic, 125

composite, 97, 100, 107, 109

controUable, 102

detour memory, 104
distance spectrum, 120-125

for dicode channel, 126-131

Mealy representation, 103, 130

memory, 104, HO

next-state function, 103

node-sync problem, 126

nominal rate, 99

non-catastrophic, 106, 117,
126

nonminimal, 105

output function, 103

periodic, 105

serial form, 99, 107

stationary state-probability

distribution, 112, 119

steady-state composite, 100,

107, 110, 122, 123, 126,

128-130

distance spectrum, 100,

101

transient state, 107

(non-)uniform, 112

Viterbi algorithm

computes distance spectra,

120

Viterbi decoding, 111, 118, 131

Water-filling theorem, 29
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