
Diss. ETH No. 9838

Solution of Large Unsymmetric

Systems of Linear Equations

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

Doctor of Technical Sciences

presented by
CLAUDE POMMERELL

Dipl. Informatik-Ing.ETH
born 30 June 1964

citizen of Luxembourg

accepted on the recommendation of

Prof. Dr. W. Fichtner, examiner

Dr. M. Gutknecht, co-examiner

1992

fir d'Mamm an de Papp

Acknowledgements

I would like to express my gratitude to my adviser, Prof. Wolfgang Fichtner,

for his confidence in me and my work, for leaving me enough freedom to

try my own ideas, for establishing contacts to experts in different fields, and,

most of all, for making me the right offer at the right time. I am grateful to

Dr. Martin Gutknecht for agreeing to co-referee my thesis and checking its

mathematical contents thoroughly.

I am deeply indebted to Henk van der Vorst from Utrecht University.
Each of our occasional conversations at a conference, a visit, or an e-mail

exchange increased my understanding of iterative solvers by a quantum leap.
I would like to thank Bill Coughran from AT&T Bell Laboratories for fruitful

discussions and continuing interest in my work.

All the people who formed the Integrated Systems Laboratory of ETH

Zurich over the last four years contributed to the success of this thesis by
their friendship, often over a beer or more, and by their collaboration on

technical problems, especially in the K2 team and the device simulation

group. Marco Annaratone introduced me to parallel computers. Gemot

Heiser and Stephan Mtlller used my software since its very first buggy releases

and bore a significant part of the debugging and experimentation efforts.

Other interesting examples and bug reports came from Josef Burgler, Paolo

Conti, Hartmut Dettmer, Kevin Kells, and Ulrich Krumbein, as well as from

Matt Noell from Motorola Inc. Chris Hegarty, Marco Fillo, and Roland Riihl

improved the quality of the text by their constructive proofreading. Carlo

Bach, Michael Halbherr, Markus Schmidt, and other dear friends among those

mentioned above helped me keeping my morale and motivation.

i

ii Acknowledgements

I am grateful to my family, relatives, and friends outside of the Lab who

keep standing by me despite the fact that I often neglected our relationship by

giving too much priority to my work.

My workwas supported initially by a grant fromthe Swiss National Science

Foundation, and over the last three years by the Cray Research Inc. University
Research & Development Grant Program. Randy Bramley and Ahmed

Sameh from the Center for Supercomputing Research and Development at

the University of Illinois, Urbana-Champaign, as well as Bill Coughran and

Norm Schryer from AT&T Bell Laboratories at Murray Hill invited me to

longer visits at their institutions in spring and summer 1990, and supported

me during these stays.

Contents

Acknowledgements i

Contents ill

Abstract ix

Zusammenfassung xi

1 Introduction 1

1.1 Overview and basics 2

1.2 Symbols used in this document 4

2 Requirements for solvers of large linear systems 7

2.1 Scope of this thesis 7

2.2 Sparse matrices 9

2.3 Sparse graphs 10

2.4 Solution of nonlinear systems of equations 11

2.5 Discretization of PDEs 12

2.6 Semiconductor device simulation 14

Hi

iv Contents

2.7 Direct and iterative solvers 15

2.8 Matrix conditioning 18

2.9 Exploiting the computer architecture 19

2.10 Flexibility 20

3 Iterative Methods 21

3.1 Fixpoint search: Matrix Splitting Methods 22

3.2 Minimizing a convex function: Steepest Descent
....

24

3.3 Using previous history when minimizing a convex func¬

tion: Conjugate Gradients 29

3.4 Making a general matrix look s.p.d.: Conjugate Gradi¬

ents applied to the normal equations 34

3.5 Minimizing the residual: GCR 36

3.6 Truncating GCR: Orthomin 39

3.7 GCR with an orthonormal basis: GMRES 41

3.8 Abandoning convergence security: Biconjugate Gradi¬

ents 45

3.9 Squaring the polynomials: CGS 52

3.10 Smoothing the squaring with local minimization:

Bi-CGSTAB 57

3.11 Catching complex eigenvalues: BiCGStab2 61

3.12 Lanczos'basis for minimization: QMR 65

3.13 Resource requirements 65

4 Preconditioning 69

4.1 Goal 69

V

4.2 Position 71

4.3 Preconditioned algorithms 71

4.4 A family of incomplete factorizations 73

4.4.1 Jacobi or diagonal preconditioning 75

4.4.2 SSOR preconditioning 75

4.4.3 D-ILU preconditioning 77

4.4.4 ILU preconditioning 79

4.4.5 Positional dropping 81

4.4.6 Numerical dropping 82

4.5 Nested iterative solvers 84

4.6 Other preconditioners 86

4.7 Comparison 87

4.7.1 Criteria 87

4.7.2 Spectral analysis of preconditioned matrices . .
88

4.7.3 Factorizations without fill 92

4.7.4 Factorizations with limited fill 92

4.7.5 Nested iterative solvers 95

5 Convergence Behavior and Control 99

5.1 Optimality for unsymmetric systems 99

5.2 Experienced optimality 100

5.3 Breakdown control 101

5.4 Convergence criterion 103

5.4.1 Using the residual 104

vi Contents

5.4.2 Using the solution error 104

5.5 Zigzagging and cancellation 107

5.6 Rounding error sensibility 107

5.7 Automatic adaptation 110

5.8 Termination control 112

6 Implementation 113

6.1 Figure legends 114

6.2 Operation breakdown 116

6.3 Target architectures 117

6.4 Linear operations 119

6.5 Vector dot products 119

6.6 Sparse matrix-vector multiplication 121

6.6.1 Shared-memory multiprocessors 123

6.6.2 Distributed-memory multicomputers 123

6.6.3 Vector computers 128

6.7 Transposed matrix-vector products 133

6.7.1 Shared-memory multiprocessors 134

6.7.2 Distributed-memory multicomputers 134

6.7.3 Vector computers 135

6.8 Sparse triangular solvers 137

6.8.1 Vector and shared-memory parallel computers .
139

6.8.2 Distributed-memory multicomputers 143

6.9 Setting up the preconditioner 147

Contents vii

6.9.1 D-ILU factorization 148

6.9.2 ILU factorization 149

6.9.3 Positional dropping factorization 150

6.9.4 Numerical dropping factorization 150

6.9.4.1 Choice of the base algorithm 150

6.9.4.2 The dropping strategy 152

6.9.4.3 Complexity observations 154

6.9.4.4 Data structures to handle sparsity ...
156

6.9.4.5 The dropping criterion 157

6.9.4.6 Parallelism 158

6.10 Flexibility 158

6.10.1 Solver types 158

6.10.2 View of the client application 159

6.10.3 Automatic adaptation 159

6.10.4 Experimenting 160

6.10.5 Expansions 160

6.10.6 Configuration control 161

6.10.7 Object-oriented package design 162

6.11 Portability 164

6.11.1 Parallelization and vectorization 164

6.11.2 Choice of a programming language 165

6.11.3 Self-restraint 166

6.12 The PILS package 167

6.12.1 Features 167

viii Contents

6.12.2 Implementation 168

6.12.3 Use 169

6.12.4 Drawbacks 169

6.13 Benchmarks 171

6.13.1 Varying the iterative method 171

6.13.2 Varying the preconditioner 172

6.13.3 Varying the machine 173

6.13.4 Varying the storage consumption 175

7 Conclusions 179

7.1 Current status 179

7.2 Future research 181

7.3 Future visions 182

List of Figures 185

List of Algorithms 189

List of Tables 191

Bibliography 193

Curriculum Vitae 207

Abstract

The numerical solution of large systems of linear equations lies at the heart of

many scientific computing efforts. Sparse systems with several hundreds of

thousands ofunknowns have to be solved today. Ill-conditioned systems with

unsymmetric matrices whose irregular sparsity structures reflect irregularly
refined discretization grids for partial differential equations are particularly
difficult to solve. Dozens or hundreds of such systems occur in a single
semiconductor device simulation, and the linear solver is the main time-

consuming operation in this application.

Direct sparse solvers, based on classical triangularfactorizations, cannot be

used for very large matrices. Their storage requirements increase superlinearly
with the problem size, and the growth factor increases with the dimensionality
of the discretization grid.

Iterative linear solvers are a viable alternative, even if none of the

current approaches suits all the requirements alone. All successful iterative

methods approximate the solution by stationary points in sequences of Krylov

subspaces. GMRES uses the minimum number of matrix-vector products to

minimize the residual in a given Krylov subspace, but its storage requirements
increase linearly with the iteration number. Truncated or restarted variants

are much less effective. BiCG and variants thereof do not have such a

minimization property, but are often more successful, and have constant and

low storage requirements. In our experience, Bi-CGSTAB is currently the

fastest and most robust method in this class. BiCG and its variants have a bad

reputation because of breakdown and cancellation problems, but the rare real

occurrences of these effects can be fixed through restarting.

ix

x Abstract

The convergence of iterative method is strongly improved, and often

even enabled by preconditioning. Approximate factorizations constitute a

family of effective preconditioners. Incomplete factorizations without fill are

fast preconditioners capable of solving most linear systems. Particularly ill-

conditioned systems can only be solved with more powerful preconditioners,
such as a new efficient approximate factorization based on numerical dropping.
Nested iterative solvers are another new alternative.

Because of the huge resource requirements, iterative solvers have to run on

the most powerful supercomputers available. The efficient vectorization, par¬

allelization, and balanced distribution ofoperations like regular and transposed
matrix-vector multiplication with irregular sparsity structures, the solution of

sparse triangular systems in incomplete factorization preconditioners, and the

set-up of approximate factorizations, require sophisticated data structures.

The techniques to exploit the different high-performance features of vector

and parallel computers with shared or distributed memory are based on graph

theory concepts, such as mapping, matching, and coloring. Flexibility, porta¬

bility, and automatic adaptation can be achieved without efficiency penalty in

an object-oriented software design for an iterative solver package.

The actual performance of iterative solvers on supercomputers depends

mostly on aspects of the memory system, like indirect addressing, memory
bandwidth, interconnection network latency, and storage capacity, and varies

with the characteristics of the linear system. The fastest method on one

platform may not be the most efficient on another computer.

Zusammenfassung

Die numerische Losung groBer linearer Gleichungssysteme gehort zu den

Kernproblemen vieler Projekte des wissenschaftlichen Rechnens. Heutzutage
miissen schwachbesetzte Systeme mit mehreren hunderttausend Unbekannten

gelostwerden. Besonders schwierig gestaltet sich das Losen von schlecht kon-

ditionierten Systemen mit unsymmetrischen Matrizen, deren unregelmaBige
Struktur die ungleichmaBig verfeinerten Diskretisierungsgitter fUr partielle
Differentialgleichungen widerspiegelt. Dutzende oder Hunderte solcher Glei¬

chungssysteme treten in einer einzigen Simulation von Halbleiterstrukturen

auf, und die Losung linearer Systeme ist die zeitaufwendigste TStigkeit in

dieser Anwendung.

Direkte Losungsverfahren fur schwachbesetzte Gleichungssysteme, auf-

bauend auf der klassischen Zerlegung in Dreiecksmatrizen, konnen fur sehr

gro&e Matrizen nicht eingesetzt werden. Ihr Speicherbedarf wMchst starker

als linear mit der ProblemgrOBe, und der Wachstumsfaktor nimmt mit der

Dimensionality des Diskretisierungsgitters zu.

Iterative Losungsverfahren stellen eine gangbare Alternative dar, auch

wenn keiner der gegenwSrtigen AnsStze allein alle Bedtirfnisse erfUUt. Alle

erfolgreichen iterativen Methoden nahern sich der Losung iiber stationare

Punkte in Folgen von Krylov-Unterraumen. GMRES braucht die minimale

Anzahl Matrixvektorprodukte,umdas Residuumin einembestimmten Krylov-
Raum zu minimieren, der Speicherbedarf steigt aber linear mit der Anzahl

Iterationen an. Bei Abschneiden oder Neustarts verlieren GMRES-artige
Methoden schnell an Wirkung. Varianten von BiCG haben keine solche

Minimierungseigenschaften, sind aber oft erfolgreicher und haben konstanten,

niedrigen Speicherbedarf. Innerhalb dieser Klasse ist nach unserer Erfahrung
Bi-CGSTAB das derzeit schnellste und robusteste Verfahren. BiCG und

Varianten haben einen schlechten Ruf aufgrund der MSglichkeit friihzeitigen

xi

xii Zusammenfassung

Abbrechens oder Ausloschungsfehlern, aber in der Praxis kann das seltene

Vorkommen solcher Erscheinungen durch Neustarts behoben werden.

Die Konvergenz von iterativen Verfahren wird durch Vorkonditionierung
stark verbessert, und manchmal sogar erst ermoglicht. Unvollstandige Zer-

legungen bilden eine Familie von wirksamen Vorkonditionierern. Schnelle

Vorkonditionierer erhSlt man durch unvollstandige Zerlegungen ohne Fullen

urspriinglicher Nulleintrage. AuBergewohnlich schlecht konditionierte Glei¬

chungssysteme konnen nur mit leistungsfghigeren Vorkonditionierern gelost

werden, zum Beispiel durch eine neue angenSherte Zerlegung mit numerisch

begrttndeter Vernachiassigung von Matrixeintragen. Verschachtelte iterative

Losungsverfahren bieten eine weitere neue Alternative.

Aufgrund des hohen Bedarfs an Rechen- und Speicheraufwand miissen

iterative Loser auf den leistungsfahigstenzur Verfugung stehenden Superrech-
nern laufen kOnnen. Die effiziente Vektorisierung, Parallelisierung und aus-

geglichene Verteilung von Operationen wie die regulare und die transponierte

Matrixvektormultiplikation mit unregelmaBigen Strukturen, die Losung von

schwachbesetzten Dreieckssystemen in auf unvollstandiger Zerlegung auf-

bauenden Vorkonditionierern und der Aufbau von angenSherten Zerlegungen

verlangt den Einsatz komplizierter Datenstrukturen. Die Algorithmen, welche

die Ausnutzung der Hochleistungskomponenten von Vektor- oder Parallel-

rechner mit gemeinsamen oder verteiltem Speicher ermOglichen, beruhen

auf Konzepten der Graphentheorie, wie Abbildung, Zuordnung und Farbung.

Flexibilitat, Portierbarkeit und automatische Anpassung konnen ohne Effi-

zienzeinbuBen mit Hilfe einer objektorientierten Programmentwicklung in

einem Paket von iterativen Losern erreicht werden.

Die tatsachliche Leistung iterativer Losungsverfahren auf Superrechnern
steht hauptsSchlich im Zusammenhang mit den Eigenschaften des Speichers,
wie indirekte Adressierung, Bandbreite, Netzwerklatenz und Kapazitat, und

andert sich mit der Struktur der linearen Gleichungssysteme. Das schnellste

Verfahren auf dem einen Rechner kann unter Umstanden auf einer anderen

Maschine nicht mehr das effizienteste sein.

1

Introduction

With the rapid advances of computer technology in the last forty years,

computer-based mathematical modeling has become the most important
method of experimentation in many different fields. Scientific computing
allows scientists, engineers, and analysts to predict the behavior of complex

systems that would be much more expensive to build in reality, and too dif¬

ficult or even impossible to experiment with. Continued growth in available

computational resources leads to more and more complicated models and

larger problems.

The efficient solution of large (and usually sparse) systems of linear

equations lies at the heart ofmany scientific computing efforts, and constitutes

often the main resource-intensive component of these applications. An

important class of such problems consists in the numerical solution of systems
of partial differential equations (PDEs), as they occur in computational
fluid dynamics, weather forecasting, oil exploration, structural mechanics,

chemistry, or microelectronics.

Complicated state-of-the-art applications require the solution of linear

systems with up to several hundreds of thousands unknowns, very irregular
sparsity structures, and lacking nice numerical properties. Sparse variants

of the classical elimination methods to solve linear systems cannot be used

because of their enormous storage requirements. Solvers of linear systems
have to run efficiently on high-performance computers, and exploit their

1

2 Introduction

architectural features, like vectorization and parallelism.

This thesis concentrates on iterative solvers for large, sparse, unsym¬

metric linear systems. The techniques are evaluated with a clear focus on

their application in semiconductor device simulation and on their practical

implementation on current supercomputers.

Section 1.1 below introduces the basic notions in iterative solvers, and

indicates where these notions are detailed in this thesis. Section 1.2 presents

the notation.

1.1 Overview and basics

A linear solver is a numerical method to solve a linear system

Ax = b. (1.1)

In this thesis, the matrix A is always presumed real, square, and non-singular,

so that, for each real right-hand side vector b, there is a unique real solution x

given by
x=zA~lb=:x*. (1.2)

Chapter 2 describes where and how such linear systems arise, and what

demands the environment makes on linear solvers.

A direct solver is a linear solver that constructs an explicit operator

v »- A~lv by computing the inverse A~l itself or a factorization of it, and

then applies this operator to 6 to find the solution x as in the explicit form (1.2).

Direct solvers are briefly discussed in Section 2.7.

An iterative solver is a linear solver that produces a sequence xq, x\ ,...,

Xk ...
of approximations to the solution. The step going from Xk-i to x\

is called the A;-th iteration of the solver, xo is the initial guess. Unless the

surrounding client application can provide a good initial guess, xo is usually

set to the zero vector.

Many iterative methods are designed such that, in exact arithmetic, the

solution is found after a finite number of iterations. This property, however,

is rarely used. An iterative solver usually terminates if the approximation is

"close" enough to the solution.

1.1. Overview and basics 3

Several iterative methods to solve linear systems are presented in Chapter 3,

including their derivation, their formulation, and their typical convergence

behavior.

The convergence speed of a given iterative method depends heavily on

the characteristics of the matrix A. A preconditioned iterative method is an

iterative solver that solves another linear system

Ax=Z (1.3)

which is equivalentto the original system (1.1), but in which the characteristics

of the preconditioned matrix A are more suitable for the convergence of the

iterative method. Preconditioning is discussed in Chapter 4.

The error of the Ar-th approximation is defined as

ek = x* -xk . (1.4)

An approximation a;* is said to be close to the solution if some given norm
of the error vector ||e* || is "small". The iterative solver is then said to have

converged. The sequence of error norms of the approximations characterizes

the convergence behavior of an iterative solver on a linear system. The

residual of the fc-th approximation is defined as

rk =b- Axk . (1.5)

A norm of the residual ||rjfe|| is a measure how well the approximation xk

solves the system (1.1). Since rk = Aek, any norm on the residual vector

is equivalent to another norm on the error vector. A popular measure of the

closeness to the solution is the relative Euclidean residual norm, defined as

the quotient of the ^2-norm of the residual over the ^2-norm of the right-hand

side,||r,||2/||6||2.

Ways to control convergence and termination of iterative solvers, as well

as other convergence related issues, like optimality, breakdown, and effects

resulting from finite-precision arithmetic, are discussed in Chapter 5.

The size and the number of linear systems to be solved in large scale

applications such as device simulation exceed the computing power of most

conventional computers. In order to keep acceptable turn-around, these ap¬

plications have to be executed on high-performance computers. Chapter 6

discusses which transformations of the methods lead to a high rate of ex¬

ploitation of the architectural features of both existing vector supercomputers

4 Introduction

and projected distributed-memory computers. Very large linear systems are

usually sparse, that is, the large majority of the matrix entries are zero.

Sparse matrix data structures therefore play a major role in the work discussed

in Chapter 6. The last sections of Chapter 6 cover other implementation
issues such as flexibility and portability, and culminate in an overview of

PiLS, a software package of iterative linear solvers based on the work in this

thesis. Pils benchmarks on state-of-the-art machines, from workstations to

supercomputers, conclude Chapter 6.

The final Chapter 7 draws some conclusions and raises a few of the

numerous open questions about iterative solvers that still need to be addressed.

1.2 Symbols used in this document

The mathematical notation in this thesis is based on [GvL83, HJ85, Avr76,

Roc70, Har72]. I have tried to use unique symbols throughout this document,

at least for the most importantquantities. Exceptions are onlymade to enhance

mnemonics. The typographical rules are as follows:

1. Small roman letters between i and n designate integers.

2. Other small roman letters designate vectors.

3. Small greek letters designate scalars.

4. Capital roman letters designate matrices.

5. Capital greek letters designate polynomials.

The symbols A, x, and b are reserved for the linear system to be solved.

The current iteration of an iterative method is usually the k-th iteration.

Quantities indexed by k (such as rk), or an offset relative to Jfc (such as rk- i)
refer to the sequence item corresponding to this iteration of the method. xk,

rk, and ek always denote the current approximation to the solution, the current

residual (as defined by (1.5)), and the current error of the approximation
(as defined by (1.4)), respectively, xq is the initial guess, and ro the initial

residual, x* is the exact solution A~lb.

pk is usually the search direction of the iteration, ak the line search

parameter, and /3k or /?*, are orthogonalization parameters for the search

1.2. Symbols used in this document 5

directions. In Biconjugate Gradients and related methods, vectors with a hat,

like fo, refer to the dual system ATx — S. Some methods have a storage

parameter I, which means that at most I previous search directions are kept in

memory.

Quantities of the preconditioned method, solving the preconditioned

system Ax = b, are capped with a tilde. The preconditioning matrix is Q.
Matrices named L, U, or D are lower triangular, upper triangular, or diagonal,

respectively.

Unless otherwise stated, vectors have length n, and matrices are square

and have size n x n. Single entries of a matrix are denoted by the doubly
indexed lower-case roman letter version of the matrix name. The entry at the

intersection of the i-th row and the j-th column in the matrix A is named

a,j. Numbering starts with zero, so that ao,n_ i is the upper right entry of the

matrix A.

The number of nonzero entries in the sparse matrix A is m. The maximum

number of nonzeros in a row of the matrix is dmax, the average number of

nonzeros per row is daver = m/n.

Entire rows and columns viewed as vectors are written by substituting a

star for the running index. /,* is the i-th row of the matrix L, and u*j is the

j-th column of U. The index range from j to k (both included) is given by

\j : k]. The entries of the vector v whose indices are in the range from j
to k form a shorter vector named v]k. To improve readability, indices are

sometimes not written as subscripts, like in ^Oj.ojt,. but by enclosing them

into brackets and appending them, like in A[0 : j, 0 : k \j]].

The identity matrix is I, its i-th column vector is e,. The size of these

quantities is not given explicitly; it is whatever fits into the expression.

Scalar-valued scalar functions (R — 1R) are denoted by a lower-case /,
scalar-valued vector functions (R" -+ R) by a lower-case greek phi (p, and

vector-valued vector functions (Rn — R") by an upper-case calligraphic T.

Empty sums and empty products are defined and have as value the neutral

element of the operation:

-l -l

5>=°. n*=i
i=0 »=0

6 Introduction

Algorithms are sketched in a pseudo-code resembling Pascal or Ada. A

for-loop prescribes that its iterations are executed by increasing index values,

whereas the iterations of a foreach-loop can be done in any order. The latter

does not imply yet that the loop is parallel, but the former imposes sequential
execution. The rest of this notation should be intuitively clear.

Unless otherwise stated, all plots in this thesis that depict the convergence

behavior of an iterative solver display the relative Euclidean residual norm as

a function of the iteration number.

The legend for data structure and memory access pattern drawings is

presented in Section 6.1.

Counts of individual floating-point operations (additions or multiplica¬

tions) are given in flops (lower-case). The unit of 64-bit precision floating¬

point operations per microsecond is MFlops (capitalized). One MFlops is

achieved when one million flops are executed in one second.

2

Requirements for solvers of large
linear systems

2.1 Scope of this thesis

The title of this thesis could just as well be

"Preconditioned conjugate gradients-like iterative methods for
the solution oflarge sparse unsymmetric systems of linear equa¬

tions in 3-D semiconductor device simulation, their convergence

behavior, and their implementation on vector- and parallel su¬

percomputers."

This endless title describes accurately the contents of this work. The following
list details why certain words in this title are considered redundant:

"conjugate gradients-like". Parameter independent Krylov subspace meth¬

ods, which can all be viewed as generalizations of the Conjugate
Gradient method [HS52], are the only successful iterative methods for

ill-conditioned and unsymmetric linear systems. All other known iter¬

ative methods put too stringent conditions on the matrices, like certain

numerical properties (e.g., SSOR), knowledge about the eigenspectrum
(Chebychev methods), or properties of the sparsity structure (ADI).

7

8 Requirements for solvers of large linear systems

"preconditioned". Standard preconditioning always increases the conver¬

gence rate ofKrylov subspace methods in a significant way on practical

problems, and unpreconditioned methods often do not succeed on

ill-conditioned systems.

"iterative". Superlinearly growing storage requirements and even larger in¬

creases in CPU requirements make direct methods infeasible as alterna¬

tive solvers for very large linear systems, especially for 3-D problems.
Section 2.7 brings up direct methods for large sparse systems and

compares them to iterative methods.

"methodsfor the solution". In this thesis, the term iterative solver is used

only for the combination of an iterative method, a choice of a precondi¬
tioner and its position, and a termination control mechanism

"sparse". The number of nonzero entries per row of the matrix is usually
constant for applications simulating systems ofPDEs. The largest sparse
problem size that fits into the available memory therefore increases

linearly with the increase of the storage capacities, while the fitting
dense problem size increases only with the square root of the capacities.

Therefore, a large matrix problem must be sparse today. Section 2.7

details the storage requirements for currentproblem sizes. Note however

that even for the largest dense problems iterative methods seem to be

more popular than direct dense solvers [Ede91].

"unsymmetric". State-of-the-art semiconductor device simulation is not lim¬

ited to the solution of the Poisson equation. The carrier continuity
equations engender unsymmetric matrices for the linear systems. Still,

this word stays in the title, as the solution of symmetric positive-definite

systems is much simpler, and has been studied more often.

"3-D". The accuracy of simulations cannot be increased only through larger
grid sizes for 2-D models. Large means today that higher dimensional

effects and refined numerical models (in device simulation, e.g., solving
the temperature equation along with the conventional drift-diffusion

equations) have to be considered as well [KMFW91].

"semiconductor device simulation". Although all the examples in this thesis

are taken from device simulation, the unsymmetric linear systems

appearing in other large scale sparse applications, like oil-reservoir

modeling or fluid dynamics [Kui87] are very similar, as they arise also

from finite difference, finite element, or finite volume discretizations

2.2. Sparse matrices 9

of systems of partial differential equations. A short introduction

into semiconductor device simulation is given in Section 2.6. The

relation between linear and nonlinear systems of equations is treated in

Section 2.4.

"their convergence behavior". Unfortunately, the successful iterative solvers

in device simulation are not those for which nice convergence theorems

exist. Experimental study of the convergence behavior is therefore

mandatory to assess the quality of the methods.

"their implementation". Almost all ofthe material presentedin this thesis has

been implemented in Ptls, a package of iterative linear solvers [PF91b].

PiLS is fully integrated in several device simulation codes [Btir90, Hei91,

KMFW91] and other applications, and has been used in many different

problems over a period of one and a half years. Only experience with

such an embedded implementation allows one to draw generalizable
conclusions on those aspects of iterative solvers that cannot be treated

fully analytically.

"on vector-and parallel supercomputers". Large device simulations per¬

formed today take several hours on top-of-the-line supercomputers

like the Cray Y/MP or the NEC SX/3, or up to a week on minisuper-

computers like the Convex C-220. They would take months on average

scalar architectures or workstations, so the use of high-performance

computers is mandatory. Since the linear solver takes over 90% of

the time in such simulations [HPWF91], it is obvious that this part of

the code has to exploit architectural features like vector pipelining and

parallel execution as much as possible. Although state-of-the-art device

simulators are not yet ready to run on massively parallel computers, it is

clear that such machines will have to be used in the future. Implementa¬
tion aspects for distributed-memory multicomputers are thus given the

same importance as current vector machines.

2.2 Sparse matrices

Very large matrices used in real-world applications are usually sparse, that is,

most of their entries are zero. To save storage and avoid redundant operations,

they are not stored in two-dimensional arrays ofsize nxn, like dense matrices,

but in special data structures. Sparse matrix data structures are discussed in

Chapter 6. See also [GL81, Pis84, DDSvdV91, BCF+85, Saa89, Saa90].

10 Requirements for solvers of large linear systems

Data structures for general sparse matrices require the storage of at least

one additional integer along with each nonzero entry. Special structural

properties of a matrix, like symmetry, structural symmetry, full diagonal,

co-diagonals, or small bandwidth, are usually exploited to further reduce

storage requirements. We focus on matrices with irregular sparsity structures

that have to be treated as general sparse matrices.

Many matrix-to-matrix operations like factorization, inversion, and multi¬

plication do not preserve sparsity. Many other operations with sparse matrices

have complexity 0(n2) or 0(m2/n). For many data structures, the only

truly efficient operation (having complexity 0(m) and sufficient parallelism)
is matrix-vector multiplication. Algorithms that use the matrix only as an

operator to compute w := Av for a given vector v are therefore often preferred.
Most ofthe (unpreconditioned) Krylov subspace methods have this advantage.
Some others require the transposed operation w := ATv as well, which is also

supported efficiently by a few sparse matrix formats [BCD+89, PF91b].

2.3 Sparse graphs

There are several ways to view the sparsity structure of a matrix as a graph.
Some properties and algorithms that seem obscure and hard to explain become
much easier to comprehend in such an associated graph.

1. The matrix A is viewed as a directed graph (or digraph) with n vertices

numbered as the rows and columns, and m arcs pointing from the i-th

to the j-th vertex for each nonzero entry at]:

G = (V,£)with

V = {«,},n="o and

E = {{vt,v3)\al3 =£0} .

2. A symmetric or structurally symmetric matrix can also be viewed as an

undirected graph with n vertices numbered as the rows and columns,
and m/2 edges between each pair of vertices vt and v} such that at]
(and thus aJt) is nonzero:

G = (V,£?)with

v = wr^u1 and

E = {{vltVj}\atJ ^Ooraj, ^ 0} .

2.4. Solution of nonlinear systems of equations 11

3. Alternatively, the matrix may be viewed as a bipartite graph with

2n vertices partitioned into a set of n row vertices numbered as the rows

of A and a set of n column vertices numbered as the columns of A.

Each off-diagonal nonzero at] leads to an arc from the i-th row vertex

to the j-th column vertex:

G = (VrUVc,E)with

Vr = {vt}"~o ,

Vc = {w,}^1 and

E = {(v,,Wj)\at] ^0} .

For many purposes it is convenient to ignore the loop edge caused by
nonzero entries on the diagonal of the matrix. As no more than one entry is

defined at a given position in a matrix, there are no multiple edges or arcs

between a pair of vertices.

Given a graph that describes the sparsity structure of a matrix, every arc

can be weighted by the value of the corresponding entry of the matrix. This

leads to an isomorphism between matrices and weighted graphs.

This thesis uses all three representations defined above, and refers to them

as "the digraph", "the undirected graph", and "the bipartite graph" associated

with the matrix.

2.4 Solution of nonlinear systems of equa¬
tions

The solution of the equation

F{u) = 0 (2.1)

for a smooth nonlinear vector function T : R" — R" meeting certain

conditions (among others, existence and uniqueness of such a solution) can

be found iteratively by a Newton method [Avr76, GMW81]. If the Jacobian

matrix VT is positive-definite in a sufficiently large region around the solution,

the Newton iteration

«,+i = «,-(V^(i/,))_I^K) (2.2)

12 Requirements for solvers of large linear systems

converges monotonically to the solution of Equation (2.1). If the Jacobian is

indefinite, the iteration may overshoot, so that H^Uj+i)!! > || ^(u,)!!. In this

case a damped Newton iteration

ul+1 = u,-e, (V^(u,))_1 T{u,) (2.3)

is applied, where the scalar 0, enforces monotonicity.

Each iteration of such a nonlinear solver thus requires the solution of one

linear system with the matrix A = V.F(u,) and the right-hand side 6 = /"(«,).

An iterative linear solver will not provide the exact solution x* =

(V^r(u!))
~

F{ut), but an approximation xk to this solution1. The approx¬

imate damped Newton iteration is then

u,+i =«.-*, (V^(«,))_1 ^(«.) + fak , (2.4)

where ek is the error of the approximation. Alternatively, the approximation
can be viewed as the exact solution of the linear system with the (hopefully

nonsingular) perturbed Jacobian (A + 6A), leading to an approximate damped
Newton iteration

u,+i = u,-0, (VJ^u.) + M)"1 f{Ul) . (2.5)

To save time by reducing the number of inner linear iterations, the

convergence tolerance of the linear solver should be as weak as possible
withoutendangering the convergence ofthe outer nonlinear solver. Depending
on which of the above views was adopted, different authors suggest different

ways of matching the accuracy of the outer and inner iterations. The scheme

by Bank and Rose [BR81] is the most popular in device simulation [Pin90,

BUr90, Hei91]. It is based on the update formula (2.5) and defines an inner

tolerance for the relative Euclidean residual norm Hrtlfe/H&lh- The Giant

scheme by Deuflhard [Deu90] uses the update formula (2.4) to derive an inner

tolerance for the relative Euclidean approximation error norm ||e* ||2/||a:*||2.

2.5 Discretization of PDEs

Partial differential equations (or systems thereof) are solved numerically by
discretizing the domain and solving the discretized version of these PDEs.

1 Note that the index t is here the iteration number of the (outer) nonlinear solver, and A: is the

iteration number at the termination of the (inner) linear solver

2.5. Discretization of PDEs 13

Such a discretization partitions the (1-D, 2-D, or 3-D) domain into elements

called segments, polygons, or polyhedrons, respectively. The ends, corners, or

tips of the elements are called grid points. In the multi-dimensional case, the

points are connected by edges separating two (2-D) or more (3-D) elements;

usually, points are only allowed to reside at the ends, and not inside an edge.

The actual discretization of the PDEs on this grid is done using finite

differences [Smi78], finite elements [SF73], or finite volumes [Var62] (also

called the box method). The resulting discretized PDEs, together with the

discretized boundary conditions, form a system of discrete equations with

one unknown per grid point and PDE. Depending on the form of the PDEs,

this system is linear and requires a linear solver, or it is nonlinear, but its

iterative solution requires the solution of a linear system at each iteration (see
Section 2.4).

For single PDE discretizations, every unknown in this linear system

corresponds to one grid point. The discretization operator is local, that is,
the unknown functions at each grid point depend only on function values at

surrounding grid points. Depending on the discretization method, this set of

neighbors of a grid point consists of those points that share an edge, face,

or element with this point2. The matrix of the linear system is sparse, each

row of the matrix has nonzero entries only at those column positions that

correspond to neighbors of the row vertex. The average number of nonzero

entries per row depends on the dimensionality of the grid, the grid generator,

and the discretization method, but it is roughly independent of the grid size.

If neighbors are defined as adjacent vertices (sharing a common edge), the

undirected graph of the sparse matrix coincides with the discretization grid.

The discretization methods impose various additional constraints on the

structure of the grid. Finite differences are the most restrictive: the grid has

to be regular, that is, each interior point has to have exacdy two neighbors
in each dimension. Such a grid is also called a tensor-product grid, or a

five-point stencil in 2-D and a seven-point stencil in 3-D. Using a natural

ordering of the unknowns, the nonzeros of the matrix are only located on

the main diagonal and 2 (2-D) or 3 (3-D) co-diagonals on each side of it.

tensor-product graphs have also the property that no three distinct vertices

v,, t>j, vk may be connected in a triangle, or, in other words, at least one of the

three entries a%3,ajk,akl must be zero.

The finite element method can be applied to arbitrary grids, although

2These three different definitions are equivalent for grids consisting only of simplices.

14 Requirements for solvers of large linear systems

stability problems can occur with "bad" grids. The box method requires

that the Voronoi diagram of the grid points can be formed by using only the

mid-perpendiculars of the grid edges [Con91].

The desired accuracy of the solution imposes density constraints on the

grid. As the minimal density varies over the domain (by several orders of

magnitude in the case of device simulation), the grid density may be finer in

some parts of the domain and coarser in others. As the time for the numerical

solution ofPDEs increases at least linearly with the number of grid points (the

grid size), it is imperative to exploit this possibility to vary the grid density.
The local refinement potential of finite difference grids is poor and leads

to very rapid grid size growth, so state-of-the-art device simulation requires

powerful grid generators [CHF91, MKF91] and uses highly irregular grids.

Because any 2-D discretization grid is a partitioning, it is a planar graph. It

follows therefore from Euler's Polyhedron Formula [Har72] that the average

vertex degree in such a grid is less than six. The 2-D grid generators used at

our Laboratory generate an average degree around 5.6, the 3-D grid generators

around 6.7.3

2.6 Semiconductor device simulation

Numerical semiconductor device simulation predicts the behavior of semi¬

conductor structures (diodes, transistors, memory cells, thyristors, sensors)

by solving a set of three transient PDEs, the so-called drift-diffusion equa¬

tions [vR50]. These consist ofPoisson 's equation and two continuity equations
for the two carriers in semiconductors, electrons and holes. The drift-diffusion

equations relate the values of the electrostatic potential and the two carrier

concentrations.

The discretization of these PDEs leads to a system of nonlinear equations.
This coupled system, involving three unknowns per grid point, can be solved

by a damped Newton solver. This approach is called the fully coupled
Newton solution. Alternatively, the blocks for each of the PDEs can be

3These numbers are based on empirical analysis of ail the 224 distinct nontrivial (more than

lOOOvertices) grids that where on disk at our Laboratory on October9,1991. The average vertex

degree of the 172 2-D grids lay between 3.95 and 5.98, with an average of 5.60 and a standard

deviation of 0.51. The average vertex degree of the 52 3-D grids lay between5.37 and 7.79, with

an average of 6.72 and a mean deviation of 0.65. The largest 2-D grid had 22,081 points, the

largest 3-D grid had 96,589 points.

2.7. Direct and iterative solvers 15

solved separately in turn in a block Gauss-Seidel iteration, applying a damped
Newton method to each ofthe blocks. This latter approach is known as plug-in
or Gummel iteration. The two techniques are often combined, for example by

using a few Gummel iterations to obtain a good initial guess for the coupled
Newton solution [FRB83, BRF83, Sel84, BCF+85, Bur90, Pin90, Hei91].

The linear systems arising in the Gummel scheme comprise a single
unknown for each grid point4, and the sparsity structure of the matrices

corresponds to the grid structure. The number of off-diagonal nonzeros per

row in the coupled matrices is less than simply three times the degree of

the grid points, as some dependencies between the unknowns from different

PDEs on neighboring grid points vanish. The average number of nonzeros

per row in the coupled matrices is typically around 15 in 2-D and around 17

in 3-D device simulation problems5. The main diagonal entries of all these

matrices are nonzero, but the matrices are not diagonally dominant. The

Poisson matrices are symmetric positive definite, the continuity matrices are

structurally symmetric.

Several tens of linear systems typically have to be solved in stationary
simulations, several hundreds or even thousands in quasi-stationary or transient

simulations. Only three distinct sparsity structures occur, one each for single
Poisson matrices, single continuity matrices, and coupled systems.

2.7 Direct and iterative solvers

The alternative to iterative solvers are sparse direct solvers. Direct solvers

are often preferred over their iterative counterparts because of their reliability
and predictability: they are numerically stable (at least if numerical pivoting
is used) [DDSvdV91], and they take constant time and storage for a given

sparsity structure (at least if numerical pivoting is not used). Solving for more

than one right-hand side costs very little.

Most direct solvers are based on variants of Gaussian elimination. They

4Or a few less, since Dirichlet boundary points can be ignored in all three equations, and the

equations simplify to a single Laplace equation inside insulators.

sUsing the same grid files as for footnote 3 on page 14 and the corresponding doping
concentrations inside the device simulator Simul [KMFW91], the average number of off-

diagonal nonzeros per row of the coupled matrix ranged for 2-D simulations between 9.19 and

15.70 with an average of 14.73 and a standard deviation of 1.28, and for 3-D simulations between

14.49 and 19.80 with an average of 17.20 and a standard deviation of 1.44.

16 Requirements for solvers of large linear systems

construct a lower triangular matrix L and an upper triangular matrix U such

that LU = A. The triangular factors L and U are also sparse, but usually
much denser than the original matrix. Nonzeros in the factors appearing
at zero positions of the original matrix are called fill. Reordering of the

equations can reduce the amount of fill. The problem of computing the

ordering that minimizes the fill is NP-complete. Heuristics like reverse

Cuthill-McKee, nested dissection, or minimum degree and variants are used

instead [GL81, GL89]. Numerical stability, storage, efficiency, and parallelism
are usually traded for one another [DER86].

The amount of fill increases superlinearly with the problem size and with

the dimensionality of the problem. The fill for a matrix arising from a 3-D

discretization is higher than for a matrix from a 2-D discretization with the

same number of grid points. It is the combination of these two growth factors

that makes the storage requirements of sparse direct solvers an issue when

passing from 2-D to 3-D models.

Figure 2.1 compares the memory requirements for direct and iterative linear

solvers. The fill was determined without actually performing the factorization

on all the examples (no available computer has enough memory for the large

3-D cases), but an algorithm with minimal storage [BS87] was assumed, using

nested dissection ordering [GL81] to reduce the fill. The analysis involved

224 nontrivial examples from device simulation, using the matrices from

the coupled Newton solution, and assuming 8-byte floating-point and 4-byte

integer numbers6.

In the double logarithmic plot of Figure 2.1, the sample points for each of

the assorted categories lie close to a line. We can thus state an empirical law

of fill given by

s = \in" . (2.6)

where s is the amount of storage for a given number ofunknowns n. Table 2.1

gives the values obtained from our empirical study.

The largest 2-D discretizations for semiconductor devices exceed rarely

10k grid points, and thus 30k unknowns for coupled linear systems. Direct

solvers for such 2-D problems fit into 100 MBytes of memory, which are

usually available on departmental computers or in medium sized batch queues

of supercomputers. On the other hand, iterative solvers for such 2-D problems

'Footnote 3 on page 14 and footnote 5 on page 15 give more informations about this empirical

study.

2.7. Direct and iterative solvers 17

Storage Requirements

10 GB

1GB

100 MB

10 MB

1MB

I

-Pi
—

a 3-D, direct

N 2-D, direct

x 3-D, iterative

\
+ 2-D, iterative

5J

3„

5^

D rrF. J

r

D

ft

1 $S
\

^0

+**

i

+

+

1 Unknowns

1,000 10,000 100,000

Figure 2.1: Sampled storage requirements for direct and iterative solvers.

grid type of factor \i exponent v

dimension solver [bytes/unknown]
2-D iterative 167.5 1.021

2-D direct 62.8 1.319

3-D iterative 155.7 1.036

3-D direct 8.9 1.645

Table 2.1: Empirical valuesfor the storage requirementformula (2.6).

18 Requirements for solvers of large linear systems

fit into some 8 MBytes available on any workstation. Direct solvers for

average size 3-D simulations can run only on very large computer memories,

and no machine available today could accommodate truly large 3-D problems
with several hundreds of thousands or even millions of grid points. Iterative

solver storage requirements even for 3-D problems still increases linearly with

problem size. At least for such large 3-D problems, their is no choice: direct

methods are unfeasible because of their storage requirements, and iterative

solvers have to be used.

The number of operations to perform the factorization grows even faster

than the storage requirements. Timing comparisons between the two choices

show that for grid sizes above a certain crossover point, iterative methods are

more efficient [HPWF91]. Such a comparison will always be biased, because

it involves many parameters from the problem, the accuracy requirements, the

implementation, and the platform, but the critical grid size is certainly much

lower for 3-D than for 2-D.

2.8 Matrix conditioning

The number of iterations that a given iterative method needs to solve a system

of linear equations Ax = b to a given accuracy depends heavily on the

conditioning of the linear system.

The conditioning of a problem for an iterative solver cannot be described

sufficiently by the condition number k(A) = |||A||| |||.A-1|||only. Depending
on the method used, the convergence behavior is influenced by several

characteristics of the system matrix, like the eigenspectrum, the pseudo-
eigenspectrum, the singular values, or the distance from normality, and by
characteristics of the right-hand side vector and the initial approximation to

the solution [GvL83, NRT90, Tre, vdV89, vdV92, DvdV91]. Ill-conditioned

then means that iterative solvers have trouble, e.g., need many iterations,

suffer from cancellation, break down, stall.

Not only these relationships are still poorly understood, but the charac¬

teristics of the matrices are hard to evaluate. For instance, dense eigenvalue
algorithms become unstable and too memory intensive for even moderately
sized sparse matrices. Sparse eigenvalue algorithms, on the other hand, use

the same basic principles as iterative solvers, so that their results cannot be

trusted to analyze bad condition for the latter.

2.9. Exploiting the computer architecture 19

The unsymmetric linear systems arising in device simulation in the Gum¬

mel solutionof the continuity equations and in the coupled solution are reputed
to be very ill-conditioned [BCD+89]. Considerable efforts have been made in

the investigation of variable transformations that improve the relative scaling
of the variables and thus alleviate this problem [Pin90]. Unpreconditioned
iterative methods generally fail to show any acceptable convergence behav¬

ior. Only incomplete factorization (ILU-like) preconditioners improve the

condition enough so that a good iterative algorithm can solve the system in a

reasonable number of iterations.

In some cases, these preconditioners work quite well for most of the

linear systems occurring in one simulation but fail for a few particularly
ill-conditioned systems. Sometimes problems with an insufficiently accurate

solution can be overcome by the outer nonlinear iteration or even by the

time-step control in some way or another, but until recently, some simulations

could simply not be performed because some of the linear systems were

impossible to solve [RSAR91, HPWF91]. The new approximate factorization

preconditioner with numerical dropping presented in Section 6.9.4 improves
the condition sufficiently and allows these experiments to be performed
[PF91a, PF91b].

2.9 Exploiting the computer architecture

The storage requirements alone (see Section 2.7) call for the use of super¬

computers for large applications requiring the solution of linear systems. The

available resources and the turn-around time are the only limiting factors that

prevent even larger problem sizes.

Large transient device simulations run up to a week on minisupercomputers
and several hours on the fastest available supercomputers. The linear solves

are the dominating operation, taking more than 95 percent ofthe total execution

time [Hei91].

Hence, it is important that the solver exploits the architectural features of

such machines as much as possible, that is, vectorization and parallelization.
Most successful preconditioners show very little parallelism by nature. A lot

of effort has been spent in the last years to increase the degree of parallelism
in regular problems (e.g., finite difference discretizations) [DDSvdV91], but

the difficulties are much more substantial for irregular problems.

20 Requirements for solvers of large linear systems

2.10 Flexibility

As mentioned in Section 2.8, some combinations of an iterative method and a

preconditioner appear to be fastest on most linear systems in one simulation,

but fail on a few systems. Other combinations may solve these particularly
ill-conditioned systems, but are too slow to be used for the other systems.

A flexible solver package selects the more expensive method only for those

systems that faster methods cannot solve.

Similar flexibility issues come to light when "trying out" new methods, or

the effect ofvariations of the methods. Many researchers in iterative methods

base all their analysis on artificial model problems only, and some of their

"results" lead to disappointment when their methods are applied to real-world

problems.

3

Iterative Methods

The first part of this chapter (Sections 3.1 to 3.3) describes some iterative

methods for the solution of symmetric positive-definite linear systems and

culminates in the description of the Conjugate Gradients method. Their

presentation is included mainly to give the theoretical framework for some of

the preconditioners in Chapter 4 and for the iterative methods for unsymmetric

systems that constitute the rest of this chapter. The derivations in this chapter
are based on [GvL83, HJ85, dH86, SS86, vdV92, Gut91]. The number

of iterative methods that have been presented, especially in the last few

years, is far too large for the scope of this chapter. Only methods with

some relevance to and experimental experience with device simulation are

presented. See [Elm82, Saa82, Saa89, NRT90, Gut90b, AMS90, Hac91,

FGN92] for similar, possibly more complete overviews of iterative methods

for unsymmetric systems.

All the iterative methods presented in this chapter have been published
and implemented several times by different authors. In this chapter, they are

all displayed in a consistent notation ready for immediate implementation.
The derivations view the algorithms as methods to find a stationary point of

a given function, where this point is selected to coincide with the solution of

the linear system (1.1). This does not always correspond exactly to the ideas

of the original authors, but the resulting algorithms are the same. Some of the

algorithms can also be viewed as oblique projection methods or as variants of

Lanczos algorithms.

21

22 Iterative Methods

Each section of this chapter describes one particular method. It starts

with the theoretical derivation, presents the algorithm, and discusses its

typical convergence behavior on unsymmetric systems from device simulation.

Section 3.13 summarizes the resource requirements for the different methods.

All relevant iterative methods for the solution of unsymmetric linear

systems are Krylov subspace methods and can be seen as generalizations
of the Conjugate Gradients method [HS52]. A primary distinction between

these methods is which matrix is used to construct the Krylov subspace.
Normal equation methods use the matrix ATA and are described in Sec¬

tion 3.4. Orthogonalization methods (Sections 3.5 to 3.7) use A itself, and

\ A 0
biorthogonalization methods (Sections 3.8 to 3.12) use

„ .T .

All the convergence behavior plots in this chapter refer to the same linear

system. It arises from the coupled Newton solver in a 3-D simulation of a

trench DRAM7 cell, using 15k grid points. This system was chosen because it

exhibits many of the characteristics that occur typically in device simulation.

All nonsymmetric methods are applied with split D-ILU preconditioning (see
Sections 4.2 and 4.4.3). The plots sketch the relative residual norm 11 rk \ \ij \ \ b\ |2
as a function of the iteration number. Note that the first such plot appears only
in Section 3.5, as the methods explained before that section are incapable of

solving the system.

3.1 Fixpoint search: Matrix Splitting Methods

Assume that the system matrix A is split into the form

A=M-N,

where M is nonsingular. The solution x* of Equation (1.1) is then the fixpoint
of the function T defined by

T: 1R" - R"

* *-> F(x) = M-1(Nx + b).

Theorem 3.1 [GvL83, HY81] If the spectral radius of the matrix M-lN

satisfies p(M~1N) < 1, then the iteration xk+\ = f(xk) converges to the

fixpoint x* for every starting iterate xo.

7Dynamic random access memory.

3.1. Matrix Splitting Methods 23

Some standard matrix splitting methods and their basic iteration schemes

are listed below. D stands for the diagonal of A, and L and U are the stricdy
lower and upper triangular parts of A, respectively, so that A = L + D + U.

• Jacobi:

xk+i = D-l{b-{L + U)xk)

• Gauss-Seidel (GS):

xi+i = (D + Lyl(b-Uxk)

• Symmetric Gauss-Seidel (SGS):

xk+i = (D + L)'l(b-Uxk)

xk+i = (D + ^r1(6-Lxt+i)
• Successive Over-Relaxation (SOR):

xk+i = (D + uLy1(wb-dl-w)D-uU)xk)

• Symmetric Successive Over-Relaxation (SSOR):

xk+i = (,D + wLyl(ub-((l-u)D-uU)xk)

xk+i = (£ + w[/r1(w&-((l-w)£>-wL)zJfc+i)

SOR and SSOR are generalizations of GS and SGS, respectively, and

equivalent to them for w = 1. The form of SOR used above is also called

forward SOR. Backward SOR is obtained by exchanging the roles of L and

U in the iteration formula. The symmetrized form SSOR arises by applying
one forward SOR step immediately followed by one backward SOR step. The

optimum value of the relaxation parameter u> is known for some particular

types of problems.

These standard iterative methods do not play any significant role in the

solution oflinear systems in device simulation, as the splitting matrices usually
do not fulfill the requirements for convergence, and if they do, the Conjugate
Gradient method presented below in Section 3.3 converges faster anyway.

They are listed here only because of their similarity to some preconditioning
methods presented in Chapter 4. See Hageman and Young [HY81] for a

complete analysis of these methods.

24 Iterative Methods

3.2 Minimizing a convex function: Steepest
Descent

An iterative solver is expected to find a "closer" approximation to the solution

at each iteration. This means that \\x* - Xk || (where || • || is some appropriate

norm) gets smaller in every iteration.

Definition. A function || • || : R" —<• R is a vector norm in R" iffor all

vectors x,y£ Rn andfor all scalars a 6 R :

11*11 > 0 (3.1)

11*11 = 0 <* z = 0 (3.2)

11**11 = MNI (3-3)

ll* + tf|| < Ml+lll/ll (3-4)

It is easy to see that every norm is convex8, so that the function

ip{x) = \\x* - x\\

has one single global minimum and no local minima. The global minimum

occurs in the point x = x*. Looking for the solution of Equation (1.1) is thus

equivalent to minimizing the function <p.

The convexity ensures that, unless we have found the solution already,
there is always a direction in which the function <p decreases:

x f x* => 3p ^ 0 : ip(x + p) < tp(x) . (3.5)

Such a direction is called a descent direction. Since the (one-dimensional)

function f(a) = <p{x + ap) is also convex, there is exactly one point that

minimizes <p when moving from x into the direction p. The value of a

at this minimum is called the line search parameter. If the function / is

continuously differentiable, the minimum must occur at a point where / is

stationary:

that is, a point where the directional derivative of <p in the direction p is zero.

'Proof. 0<a<l:\\ax+(l-a)y\\ < \\ax\\ + \\(l - a) y\\
= M||«||+|l-a|||y||
= a||«|| + (l-a)||V|| D

3.2. Steepest Descent 25

Definition. The directional derivative ofa function <p : R" — R at x in

the direction p ^ 0 is

D<p(x;p) = limy(* + £P) " *')
,

i/r/w's limit exists. The right-sided directional derivative D+ip(x;p) is

defined similarly by using lim
,
and the left-sided directional derivative by

£—0+

using lim
.

e—o-

If the directional derivative at x exists for every direction p and depends

linearly on p, then <p is called differentiable at x. In this case, the gradient

ofipatx is defined by

V<p(x) = [D<p(x;eo) ; D<p(x;ei) ;... ; Dip(x; e„_i)] ,

and the directional derivative can also be written as

Dtp(x;p) — pTV(p{x) .

If the gradient can be computed analytically, an implicit equation for the

exact line search parameter a is obtained:

pTX7<p(x + ap) = 0
. (3.6)

If the function <p is differentiable, then ip decreases most in the direction

opposite to the gradient Vy>. This direction (-VV) is also called the steepest
descent direction.

The idea behind the method of steepest descent is to select the next

approximation as the minimum along the direction of steepest descent, i.e., to

select

Xfc+i = x* - <*JtV¥>(xjfc) , (3.7)

where ak is found by substitutingp = —V<p(xk) in condition (3.6):

(Vv?(xjfe))TVy?(xfc - akV<p{xk)) = 0
. (3.8)

Equation (3.6) is applicable only if y? is differentiable along the ray

{x + ap\a > 0}. Due to the homogeneity property (3.3), no norm is

26 Iterative Methods

differentiable at the zero vector9. The gradient of the function ip defined by

4>(x) — ||x* — x|| does not exist in the minimum x = x* itself.

The derivation (3.5)-(3.8) still holds for some other convex functions that

have their only minimum in x = x*, in particular for the square of a norm of

the error.

Definition, x R is a stationary point ofthefunction <p : R" -+ R if ip

is differentiable at x and

Vip(x) = 0
. (3.9)

Theorem 3.2 The only stationary point ofa squared norm || • ||2 is 0.

Proof. The directional derivative of || • ||2 at the point x in the direction

p^Ois

v" "
£—o e

At the point x = 0 this leads to

D(||0;p||2) = lim^ = lim^||p||2 = lim£||p||2 = 0
£—<0 £ £-»0 £ £—0

and thus V^(0) = 0.

At any other point x ^ 0, the directional derivative in the direction x can

be computed as

BflfcHP) = limEl±fWMH!
£-.0 £

'Proof. The right-sided directional derivative of a vector norm at the point 0 in the direction

p ^ Ois

D+M= lim U°±idMl°!l
= m 11211= to]=1|H = IWI.

£-.0+ S E-.0+ £ £-.0+ £

but (he left-sided directional derivative of || • || in the direction p is

D-||0;p||= am E±f£iM12!l= m 11211
= hm M|W| = HW|.

£-0- « e->0- £ £-.0- £

3.2. Steepest Descent 27

= lim(1 + £)2||a:||2~l|a;|12
£-0 £

= lim \\x\r

£-0 £
" "

= 2II*II2 ± 0.

Since -D(||x; x||2) = xT Vy>(x), Vy?(x) cannot be the zero vector.

By selecting our convex function <p as <p(x) = ||x* — x||2, where || • || is a

norm that is continuously differentiable everywhere except in R" — {0}, the

gradient is defined everywhere.

Example. Theli- and l^ -norms cannot be used in this derivation because

of their lack of differentiability. For the Euclidean norm (li-norm), the

gradient ofthefunction ipi2(x) = ||x* - x||2 is

Vipi2{x) = 2x- 2x*
.

Inserted in condition (3.8), we get

1

Steepest descent using the Euclidean norm thus consists only ofsetting

xi = xo- -(2xo- 2x*)

and converges in one single step, but is not useful since the gradient cannot

be computed.

To find a realistic steepest descent method, we have to choose another type

of norm for <p, a norm whose gradient can be computed.

Consider the bilinear form

(.,.)„ :R"X" - R

(v,w) -> {v,w)H :=vTHw (3.10)

and its quadratic form

(•)fl:Rn - R

v - (v)H := (v,v)H = vTHv
. (3.11)

28 Iterative Methods

Definition. A matrix ff6R"x"is symmetric positive definite fs.p.d.)

iffH = HT and

VvGR":x#0=» {v)B>0.

If the matrix H is symmetric positive-definite, then the form {•,•) is

an inner product, and the square-root of the quadratic form \/{^YH is a

norm [HJ85] (also called the energy norm). Note that || • ||2 = \/(*)r

Choosing the function (Ph(x) := (x* - x)H for minimization, the matrix

H should now be selected such that the gradient

V^(x) = (H + HT) (x - x*) (3.12)

can be computed. The easiest way to achieve this is to require that A itself is

symmetric positive-definite and to choose H = A. The gradient becomes

V<Pa(x) = 2A(x-x*)
= 2(Ax-b)

= -2r (3.13)

The steepest descent direction (-Vy^) is thus the residual vector10 r.

The condition for exact line search (3.6) becomes

rj(rk - akArk) = 0
.

The steepest descent method is now almost ready for implementation.
We can save the effort to compute the residual from (1.5) in each iteration.

Multiplying (3.7) by (-.4) from the left and adding 6 on each side leads to the

recursion

nt+i = rk - akArk . (3.14)

Algorithm3.1 lists the entire algorithm for steepest descent.

The Steepest Descent method reduces the norm (tk)Ain every iteration.

However, this reduction can be very small. Figure 3.1(a) shows the typical

sequence of iterates, for a problem of size n — 2.

10We drop the scaling factor (-2) here to simplify notation.

3.3. CG 29

1:
.. ro := b - Axo

2:
..

for k := 0,1,... until convergence do

T

3. a =
r*r*

rjArk
4:

.... Xjt+i := xjt + akrk

5:
.... rk+i := rk - akArk

6:
..

end for

Algorithm 3.1: Steepest Descent.

(a) Steepest Descent (b) Conjugate Gradients

Figure 3.1: Descent behavior on a problem ofsize 2. The vertical axis shows

the value ofthefunction <pa-

3.3 Using previous history when minimizing
a convex function: Conjugate Gradients

In the two-dimensional problem shown in Figure 3.1, the steepest descent

iterates (3.1(a)) bounce between the walls of a narrow valley without making

any real progress. They reuse only two search directions (the initial residual

and the direction orthogonal to it). This type of behavior is also called

hemstitching [Avr76].

30 Iterative Methods

Previous iterations have already found a minimum of <pA in a given

direction, although from a different starting point. This fact should be

exploited. We know that each x* minimizes <pa in the space {xk-\} +

span {pj;_i}, and we want to take advantage of this fact. Observe that

Xfc 6 {x0} + span{po,pi,...,pjfc-i} . (3.15)

It would be useful (and avoid the problem mentioned above) to find a method

for which x* minimizes ipA over the whole subspace spanned by the previous
residuals (shifted by xq, as in Relation (3.15)11).

From the update formula for the residual (3.14), we can see that the k-th

residual of the steepest descent method can be written as

rjt = $k(A)r0 , (3.16)

where <&k(A) is a polynomial of degree k in A.

Definition. For A e R"x", v e JR.", k 6 IN, the subspace ofJR" defined

by

ICk(A,v) = spanlu,^,^,...,^*-1^} (3.17)

is called a Krylov subspace.

Using Equations (3.16) and (3.17), Equation (3.15) can be rewritten as

xjt {x0} + Kk(A, r0)

The basic idea behind the Conjugate Gradient method (CG) [HS52] is to

select the Ar-th search direction pk such that it points from the minimum of <pA

in the k-th Krylov subspace to the minimum of <pa in the (k + l)-th Krylov
subspace. The new approximation xk+i can thus be derived from xk through
a line search into the direction pk:

Xfc+i =xfc + afcpfc . (3.18)

As Xk now minimizes <pA over the whole shifted Krylov subspace
{xo} + fCk (A, ro), the gradient of ipA at this minimum (and thus the residual

rk, because of (3.13)) must be orthogonal to this subspace:

rk L tCk{A,rQ) . (3.19)
1' In the remainder of this chapter, mentioning a subspace in the solution space always refers to

the subspace shifted by x0.

3.3. CG 31

The k first search directions or the k first residuals form alternative bases for

the fc-dimensional Krylov subspace:

ICk(A,r0) = span{po,pi,...,p*_i} = span{r0,n,... ,rk-i} . (3.20)

Lemma 3.3 Unless the exact solution has been found already, Conjugate

Gradients reduces *pA{xk)'« each iteration.

Proof. xk # x* =» V(pA(xk) = -2rk £ 0

=> 3e>0: (pA(xk + erk) <ipA(xk) Q

Kfc+1(j4,ro)

The orthogonality condition (3.19) thus implies that the new residual is

orthogonal to all previous search directions and all previous residuals:

Vi < * : rip, = rTkv% = 0
. (3.21)

The residual rk = b - Axk can still be updated in a similar way as in the

steepest descent method. Multiplying the update relation for xk+i, (3.18), on

the left by {—A), and adding 6, we get:

r*+i = rk - akApk . (3.22)

Using this residual update in (3.21),

Vi < k : pfrk+i = pj(rk - akApk) = pjrk -akpjApk ,

-0 -0

and knowing that (unless we have found the exact solution) ak £ 0 because

of Lemma 3.3, leads to the conjugacy relation of Conjugate Gradients: all

the search directions are A-conjugate:

Vi < k : pjApk = 0
. (3.23)

Now that we have established the basic relations (3.21) and (3.23) for

Conjugate Gradients, we can find the direction pk that meets the requirements
for the update of the solution (3.18). If the mimmum of <pa inR" has not yet

been found, pk must have a non-vanishing component in the direction of rk.

32 iterative Methods

Using the previous search directions as basis for the k-th Krylov subspace

Kk(A, ro), the new search direction pk G JCk+i(A, ro) can be expressed as

*-i

pk=rk + Y^Pk,pt (3.24)
:=0

The coefficients of this linear combination are found using (3.23):

pjAPk=0 => pjA jrjt-l-^^p;] =0

t-i

=» pjArk + J2^3 pjAp^ =0

=o for i5«tj

^ a -

$Ark
=> Pki = t~—

P, Ap,

Because of the construction of the search directions for (3.20), the Krylov

subspace can also be written as

K.k(A, r0) = span {po, Apo, Aph ..., Apk-i) ,

so that the orthogonality condition (3.19) annihilates all the 0k, except for

(5k,k-\- The new search direction is thus a linear combination of the residual

and the previous search direction only, so the other search directions do not

need to be stored:

P* = r*+/?fcp*_i (3.25)

The coefficient for p*_ i in this update relation is

pl-iAn
Pk := &,*-i =

Pt^Apk-i

The line search parameter a* follows from (3.21) and (3.22):

PjfeV*+i = 0 =*• pl{rk - akApk) = 0

T

=* ak = -^~.
PkApk

3.3. CG 33

Some further transformations using (3.21), (3.22), (3.25), and the symme¬

try of A save a few vector dot products in the computation of the scalars ak

and ft while delivering the Euclidean norm of rk for convergence control:

rk rk = (rk_i-ak-iApk_i)Trk =-a*-ipLi^jt

rIrk = (Pk - PkPk-i)Trk = plrk

jf_lr*-l = P*-ir*-l = Pfc-l(r* + <*k-\Apk-\) = a*-lpLi^P*-l

The entire Conjugate Gradient algorithm is listed in Algorithm 3.2.

1:
.

2:
.

3:
.

4:
.

5:
.

6:
.

7:
.

8:
.

9:
.

10:
.

11:
.

Algorithm 3.2: Conjugate Gradients.

By the above construction, and the fact that

(** ~ x*)a = tkA*k = e[rk

follows:

Theorem 3.4 The k-th iteration of Conjugate Gradientsfinds an approxima¬

tion xk that minimizes e^r* = (x* - x*)^ over the shifted Krylov subspace

{xo} + Kk(A,r0).

Conjugate Gradients has a monotonic (and usually smooth) convergence

behavior for solving s.p.d. systems. CG solves the two-dimensional example
of Figure 3.1(b) in only two iterations.

for k := 0,1,... until convergence do

ifjfe = 0then

.. po := ro

else

T

, rkrk
Pk'.= rk + -t"8 P*-l

rife-lr*-l
end if

T

<*k •= -%-.—
PkM

xjt+i := Xjfc + akpk

rjt+i := rk - akApk

end for

34 Iterative Methods

Corollary 3.5 Conjugate Gradients terminates with the correct solution after
at most n iterations.

In exact arithmetic, Conjugate Gradients needs 2n3 + 0(n2) flops to find

the exact solution of a dense linear system. This is only by a constant factor

higher than the jn3 + 0(n2) flops needed to perform Cholesky factorization.

In the classical reference [HS52], Hestenes and Stiefel mainly compare

Conjugate Gradients with n or n + 1 iterations to elimination methods,

but they also include theoretical and experimental evidence that "justifies
the procedure of stopping the algorithm before the final step is reached."

See [GvL83, CG076, G089, Gut90b] for more about the history of Conjugate
Gradients.

3.4 Making a general matrix look s.p.d.: Con¬

jugate Gradients applied to the normal

equations

The crucial point in the derivation of Conjugate Gradients is the restriction to

problems where the system matrix is symmetric and positive definite. One

obvious step [HS52] to permit the use of Conjugate Gradients on general

problems is to change the problem in order to make the system matrix s.p.d.

Theorem 3.6 Let A 6 Rnxn be non-singular. The matrix AT A is symmetric

positive definite.

Proof. ATA is symmetric: {ATA)T = AT (AT)T = AT A.

ATA is positive definite: Let v e R", v ^ 0:

{v)ArA = vT (ATA)v = (vTAT) (Av) = (Avf(Av) = \\Av\\2 > 0
.

D

Instead of solving the system Ax = b directly, we can apply Conjugate
Gradients to the system

ATAx = ATb
, (3.26)

which is s.p.d. Its solution is the same as for the original system:

(ATA)-1ATb = A~lA-TATb = x*
.

3.4. CGNR 35

Equation (3.26) is usually called the normal equations.

There are several variants of Conjugate Gradients applied to the normal

equations. The most common version [Elm82, DDSvdV91], known under

the abbreviation CGNR (Conjugate Gradients applied to the normal equations

minimizing the residual) can be derived immediately from Algorithm 3.2. It

is listed as Algorithm 3.3. A numerically more stable version, called LSQR,
has been suggested by Paige and Saunders [PS82a].

1

2:

3

4:

5

6

7:

8

9:

10

11

r0 := b - Ax0

for k := 0,1,... until convergence do

..
if k = 0 then

Po := ATro

..
else

„
- Arr ,

(ATrk)T(ATrk)
-Pk-Ark+(ATrk-1nATrk-1)Pk-i
..

end if

(ATrk)T (ATrk)
ak-

{Apky{APk)
Xk+i := xk + akpk

rk+i := rk - akApk

end for

Algorithm 3.3: CGNR.

CGNR minimizes the function <pata at each iteration. Since

(x* - xk)ATA = el A1 Atk

Theorem 3.4 implies that the following holds:

T

rkrk ,

Theorem 3.7 The k-th iteration of CGNR finds an approximation Xk that

minimizes the Euclidean norm of the residual (||rj;||2, or {x* — Xk)ArA) over

the shifted Krylov subspace {xq} + K,k{AT A, ATro).

The condition number of ATA is the square of the condition number of A,

and so CGNR makes ill-conditioned systems much worse [DDSvdV91]. The

plot for the coupled DRAM system selected as a test example in this section

was omitted here, as the convergence curve levels off at ||i*jfc||/||6|| ss 0.72.

36 Iterative Methods

3.5 Minimizing the residual: GCR

Instead of minimizing the convex function <pata over the Krylov subspace

{xo} + K,k(ATA, ATro), as CGNR does, we will now minimize the same

function <pATA over the Krylov subspace that Conjugate Gradients uses,

namely {xo} + Kk{A, ro). The method is known as Generalized Conjugate
Residuals or GCR [Elm82].

Similar to Conjugate Gradients, GCR performs a line search along the

search direction pk, which is chosen to be colinear to (xk+i - xk), where Xk

and Xfc+i minimize <pata m me ^_m and the (k + l)-th Krylov subspaces,

respectively. The update relations for the approximation to the solution (3.18)

and for the residual (3.22) as well as the alternative bases for the Krylov

subspace (3.20) still hold.

It is easy to see that <PATA(xt) cannot increase in GCR. A property

analogous to Lemma 3.3, however, cannot be stated. It is possible that xk

also minimizes Vata in K.k+i(A, ro). In this case the algorithm stalls with

afc = 0.

From Equation (3.12) the gradient of the function ipAr A 1S

V^rA(x) = -2,4Tr
. (3.27)

Since ipA^A^k) is minimal over Kk(A, ro), the gradient is orthogonal to this

subspace:

ATrA.ICk(A,ro). (3.28)

Using the alternative bases from Equation (3.20) in (3.28), we have shown

that the residuals in GCR are A-conjugate to the previous residuals and the

previous search directions:

Vi < k : rjAp, = rTkAr, = 0
. (3.29)

Assuming that the algorithm does not yet stall at the k-th iteration, we find

that the search directions are (ylT^4)-conjugate:

Vi < k : pjAT APk =0. (3.30)

Proof. i < k : rJ+1Ar, = rjAr, - ak plATAp, .

=o =0 *o

3.5. GCR 37

The new search direction pk is selected as the current residual plus a

linear combination of the previous search directions, as in Equation (3.24).

Using (3.24) in the conjugacy relation (3.30)

k-\

p?ATAPk = pfATArk + V ft, PT,ATAV]
=° =0 for i&

gives the coefficients of the previous search directions:

A. =
-^St1

• (3-31)
p[ATAp,

The residual update (3.22) in Equation (3.29) gives the value of the line

search parameter:

PkATApk

The algorithm stalls with a* = 0 whenever rk gets orthogonal to Apk. If

continued anyway, GCR will inevitably break down in the (Jfc + 1)-th iteration
because pt+i = 0.

By construction we have proven:

Theorem 3.8 The k-th iteration of GCR finds an approximation Xk that

minimizes the Euclidean norm of the residual (\\rk ||2, or (x* - xk)ATA) over

the shifted Krylov subspace {xo} + K.k(A, ro) (unless the algorithm breaks

down before).

Unfortunately Equation (3.31) allows no further simplification that would

lead to a similarly simple update relation as (3.25) for Conjugate Gradients.

Instead, all the previous search directions p, are needed in the computation
of the new search direction. The associated requirements both in storage

(for all the previous p, as well as all the vectors Ap,) and computation
increase unacceptably with the iteration number k. In fact, it is not possible
to construct a general method satisfying Theorem 3.8 with limited storage

requirements [FM84]. GCR is therefore usually restarted at regular intervals.

Algorithm 3.4 lists GCR(£), which is restarted every £ iterations and thus

keeps up to £ back-vectors p,.

38 Iterative Methods

1:
.. ro := b — Axq

2: ..
for k := 0,1,... until convergence do

k_1

(Ark)T(Ap,)
Pk :=rk- Y^

•lAPk

(APl)T(APl)

ak '.=

(Apk)T(Apk)
• xjt+i :=xjt +akpk

rk+i := rk - akApk

end for

Algorithm 3.4: GCR(£).

The need for the vector Apk does not mean that two matrix-vector

multiplications are needed in each iteration. Apk can be obtained by

multiplying the assignment for pk on the left by A:

^ (Ar*)T(AP>)
AP*--=An- E T^W)

,=L*J<

Ap, . (3.33)

Direct multiplication by A is still faster if the summation involves many terms.

The critical number of terms for which this occurs depends on the density of

the matrix and on the machine. For the typical values of the restarting interval

£, the variant with Equation (3.33) is the most efficient.

The minimization property derived above does not hold under restarting,

and all that is left from Theorem 3.8 is

Corollary 3.9 The k-th iteration ofGCR(i)finds (unless the algorithm breaks

down before) an approximation Xk that minimizes the Euclidean norm of

the residual (||rtj|2, or (x* - xk)ATA) over the shifted Krylov subspace

Figure 3.2 shows that the number ofiterations to achieve a given accuracy
increases drastically when GCR is restarted. Although more back-vectors

generally lead to lower iteration numbers, the reverse effect, due to numerical

instability, can also occur (compare the curves for GCR(15) and GCR(20)).

3.6. Orthomin 39

Relative residual norm

400

Iterations

Figure 3.2: Convergence behavior offull GCR (lower curve) and restarted

GCR, with restarts every 5,10,15, or 20 iterations.

3.6 Truncating GCR: Orthomin

Instead of throwing away all the previous search directions every £ iterations,

as restarting does, we save the same amount of memory by just throwing the

oldest search direction, keeping the £ most recent directions. This approach is

called truncation, and the truncated version of GCR is called Orthomin(f)

[Vin76]. It is listed in Algorithm 3.5.

Theorem 3.8 becomes

Corollary 3.10 The k-th iteration of Orthomin(£)finds (unless the algorithm
breaks down before) an approximation xk that minimizes the Euclidean norm

of the residual (||rjt||2, or (x* — xk)ATA) over the shifted Krylov subspace

{xo} + fCk(A, ro) for k < £, and over the shifted subspace spanned by the £

latest search directions, {xk-i} + span {pk-i,..., pk-\},for k > £.

Figure 3.3 plots the convergence behavior of Orthomin(0 for different

values of the truncation parameter £. In comparison to Figure 3.2, it can be

40 iterative Methods

1: .. ro := 6 — Axq

2:
..

for k := 0,1,... until convergence do

^ (Ark)T(Ap,)

3: pk:=rk~ ^ / ,„
(r)

*._ (P>

o* :=

i=max{0,k-l)

i-l Apk
{APkf{Apk)

x*+i := xA + akpk

rk+i := rk - akApk

end for

{Ap,)T(Ap,)
n

Algorithm 3.5: Orthomin(£).

Relative residual norm

400

Iterations

Figure 33: Convergence behavior of full Orthomin (lower curve) and

truncated Orthomin, with 5,10,15, or 20 back vectors.

3.7. GMRES 41

seen in Figure 3.3 how truncating can prevail over restarting by increasing the

convergence speed (for £ = 5 and £ = 20). It also shows how this method can

stall because of near-breakdown (for £ = 10 and £ = 15).

3.7 GCR with an orthonormal basis: GMRES

The determination (3.32) of the line search parameter in GCR is precarious,
as the algorithm may stall and possibly break down whenever rk gets almost

orthogonal to Apk. This problem can be avoided by selecting a different

basis for the Krylov subspace. The Generalized Minimal Residual Method

(GMRES) [SS86] constructs an orthonormal basis for Kk(A, ro).

Let Vk = {po,pi,...,Pk-i} be an alternative basis for the Krylov

subspace:

tpun{Vk] = Kk(A,ro) . (3.34)

Let us assume Vk is orthonormal. Writing the p, as the columns of an

n x ^-matrix Pk = [po ; pi ;...; p*_i], this means that

PlPk = I (3.35)

Equations (3.34) and (3.35) hold also for k = 1, so that the first basis

vector has to be colinear to the initial residual ro (and, of course, have unit

length). It can thus be chosen as

1

po = n—rr ro •

IMI2

For any other iteration k > 1, we need a basis vector pk in the difference of

the Krylov subspaces ICk+i(A, ro) - fCk(A, ro). Unless the two subspaces are

equal, in which case the algorithm has converged already, the vector Apk-\ is

contained in this difference. Hence, it can be expressed in the new basis Vk+\
as

^pt-i = Pk+iho:k,k-i , (3.36)

where fto:*,*-i = [/»o,*-i; /»i,*-i; •..; J»t,*-i] is ^ representation of

Apk-i in this basis. The coefficients for the previous basis vectors can be

computed as

Vi < k : fc,,*_i = p?Apk-i . (3.37)

42 Iterative Methods

Equation (3.36) is rearranged in the explicit form

Pk '— ftfe.fc-lPfc = Apk-\ - Pjfe/jOfc-l.k-l (3.38)

The new basis vector pk is obtained by using the values computed from (3.37)

for the right-hand side of Equation (3.38) and selecting hk^k^\ — \\pk\\-
Instead of using the classical Gram-Schmidt orthogonalization algorithm

(Equations (3.37) and (3.38)), modified Gram-Schmidt is a numerically
stabler method to compute fto.Jt,fc-i and Pk [GvL83].

In each previous iteration i < k, a similar vector /ioj,»-i has been

computed. Extending each rio.i,j-i with k — i zeros, we obtain a (k + 1) x k

upper Hessenberg matrix

sk-.=

ho,o
/»1,0

ho,i •

hi,i
ho,k-2
h\,k-2

ho,k-i
h,k-i

0 h,i

0 hjfc_2,jfc-2

0 0

• hk-i:k-2
0

hk-l,k-l

hk,k-i

Expressing each Ap, in the style of Equation (3.36) and assembling these

expressions in matrix form leads to the important matrix equation

APk = Pk+iHk (3.39)

The k-th approximation xjt should be an element of the shifted Krylov

subspace {xo} + K,k(A, ro) and can be written as

*-i

x* = x0 +]jP a,kp, = x0 + Pkak (3.40)
.=o

Note that ak = [aok ; au ;...; afc_i,jt] in (3.40) is a vector of length k

rather than a scalar.

The k-th residual is similarly given by

rk = r0-APkak , (3.41)

but using (3.39) in (3.41) leads to a cheaper way to compute the residual:

rk = r0 - Pk+\Hkak . (3.42)

3.7. GMRES 43

If both xk and rk need to be computed and k is large enough, then rk should be

computed throughits defining Equation (1.5), instead ofusingEquation (3.42).

The coefficient vector a* is selected such that the approximation xk

minimizes the function

<Pata{*) = (x* - X)ATA = IMP

in K.k(A, r0). Noticing that ro = ||ro|| Pk+ieo, and since the vectors in Vk+\
are orthonormal (Equation (3.35) for k + 1), we see that

IM| = ||Pt+i (|N| e0 - Hkak)\\ = || ||r0|| e0 - Hkak\\ .

ak is the solution of the least squares problem

min Illlrolleo-^ajfcH2 . (3.43)

This least squares problem is solved in the standard way [GvL83], constructing
an orthogonal (k +1) x (k +1) matrix Qk+i and a (k +1) x k upper triangular
matrix Rk such that

QkHk = Rk .

Let Qk be the upper left k x k submatrix of Qk, and let Rk be the submatrix

obtained by removing the last, entirely zero row of Rk. The solution of the

least squares problem (3.43) is given by

ak = RkXQk (||ro||e0) .

The Hessenberg matrix Hk+i for the next iteration is obtained by extending
Hk by a zero row and then by the nonzero column ho-.k+i,k- Similarly, the

triangular matrix Rk is a submatrix of Rk+i. The orthogonal matrix Qk+i
is obtained from Qk by premultiplicating it with a single Givens rotation. In

practice, Hk is never stored entirely; only Rk and the 2k scalars for the k

Givens rotations that define Qk, as well as the k + 1 basis vectors, are kept in

memory.

Since the relative contributions alk of all the previous basis vectors p,

change in every iteration, each new xk can only be recomputed through (3.40).
There are no short recurrence formulae for x k and rk. However, for monitoring
the convergence behavior, the current x* or rk are not needed, as the residual

norm of the linear system is equal to the minimum residual of the least squares

problem, given by

IMI = e?G*(||ro||eo) . (3.44)

44 Iterative Methods

Thus, only the final approximation to the solution is computed from (3.40).

GMRES does not need to store the previous vectors Ap, and therefore

requires only half as much storage as an efficient implementation of GCR. All

the previous basis vectors p,, however, still need to be stored. The algorithm
is therefore usually restarted every £ iterations. Algorithm 3.6 outlines the

unrestarted version of GMRES. See [SS86, Wal88, JC91] for more detail

about the implementation of GMRES.

1: . ro = 6 - Axq

2:

3:

1
• Po -

I, I,
n>

1Mb

. for k := 0,1,... until convergence do

4:

5: • • Pk+i '•= Apk - Pk+iho:kik
6:

7:

8:

•• A*+i,* := IIPM-1II2
1

• • • Pk+l •—
, Pk

... update Qk+i and Rk+\ such that Qk+iHk+i = Rk+i

9: IK+1II2 '•= el+iQk+i (IMbeo)
10: . end for

11: ak:=R-;lQk(\\ro\\2eo)
12: Xfc := xo + Pkak

Algorithm 3.6: Outline ofGMRES.

GMRES is generally considered the most stable of the family of orthogo¬
nalization methods, which includes GCR and Orthomin as presented above, as

well as GCG [CG076], Orthores, and Orthodir [YJ80]. By construction, full

GMRES requires the minimumnumber ofmatrix-vector products to minimize

the residual in a given Krylov subspace and cannot break down.

If minimizing the residual is not the primary goal, GMRES may be less

than optimal. Variants may be better in reducing the solution error [DFW90].

In practice, the storage requirements make full GMRES infeasible for large
problems. Even if the storage is available, the number of linear operations

per full GMRES iteration grows linearly with the iteration number and thus

3.8. BICG 45

Relative residual norm

Figure 3.4: Convergence behavior offull GMRES (lower curve) and restarted

GMRES, with restarts every 5,10,15, or 20 iterations.

dominates the total operation count over sparse matrix-vector multiplication.
Restarted GMRES often does not solve the linear systems in device simulation,

or requires a very large number of iterations. It is difficult to find the optimal

parameter £ for which GMRES(£) still converges [VvdV92]. For too low

values, the restarted algorithm often stalls or proceeds only very slowly.

3.8 Abandoning convergence security:
Biconjugate Gradients

The k-th iteration of full GMRES finds the optimal approximation in {xo} +

Kk(A, ro) (with respect to the residual norm), and this fact guarantees an

improvement in each iteration. The restarted or truncated variants of this

method preserve this monotonic convergence behavior, for the price of giving

up optimality in the full Krylov subspace. Biconjugate Gradients (BiCG)

[Fle76] abandons monotonic convergence, but it keeps some form ofoptimality
in a larger Krylov subspace of which {xo} + Kk(A, ro) is a projection.

46 Iterative Methods

BiCG solves not only the primal linear system (1.1) alone, but also the

dual linear system

(3.45)ATx = I
.

In other words, BiCG solves the combination of the linear systems (1.1)

and (3.45):
'A 0

0 AT

X

X

=

'

b
'

b

By using the notation

B:=
A 0 X

'

6

0 AT y-=
X

.
c :=

b

the combined system (3.46) can be rewritten as

By = c .

(3.46)

(3.47)

Consider now the function <ph(v)
0 AT

A 0
by H :=

(5 lc — y) H, where H is defined

The matrix H is symmetric by construction and is

non-singular if A is non-singular, but H is possibly indefinite. Therefore,

the function ipH may not be convex, and the solution of (3.47), the vector

B~1c, does not necessarily minimize ipn However, looking at the gradient

computed from Equation (3.12), we see that B~1 c is the only stationary point
of<ph'-

V<pH(y) = 2H(y - B~lc) . (3.48)

Biconjugate Gradients now hunts after a stationary point which is not

necessarily a mimmum. In imitation of Theorem 3.4, BiCG tries to find at the

Ar-th iteration a vector yk that is stationary with respect to the Krylov subspace
ICk(B, so) (where so = c- Byo)12. This means that the gradient of <ph at yk

should be orthogonal to this Krylov subspace:

vM»)J-W<o)' (3.49)

To complete the notation13, let's write the residual of the combined system
as sk = c - Byk. BiCG proceeds by search directions denoted by qk. The

12In other words, j/* is a stationary point of <j>H under the constraint yk 6 {3/0} + fCk(B,s0).
13The alert reader will have noticed by now the typographical rale to denote vectors and

matrices relative to the combined system (3.47).

3.8. BiCG 47

search direction qk is selected to point from the stationary point with respect
to K,k (B, so) to the stationary point with respect to fCk+i(B, so), so that a line

search suffices:

J/k+i = Vk + oikqk . (3.50)

From Equation (3.50) it follows that the residual can be updated by

Sjfe+i - sk- akBqk . (3.51)

The residuals or the search directions can be used as alternative bases to the

Krylov subspace:

ICk(B,so) =span{qo,qi,...,qk-i} = span{s0,si,... ,sjt_i} . (3.52)

gives the relation
0 /

1 0
Defining an additional duality matrix J :=

between the two important matrices B and H:

H = JB. (3.53)

The gradient of ipn from Equation (3.48) can now be rewritten as

V^(to) = 2{JByk - Jc) = -2Jsk
, (3.54)

so that the orthogonality condition (3.49) becomes

Jsk±/Ck(B,s0). (3.55)

Using the alternative bases of Equation (3.52) gives the biorthogonality
relation of BiCG:

Vi<k:qjjsk = sfjsk=0. (3.56)

Since the gradient Vipn(yk) does in general not belong to Kk+\{B, so),
the constrained stationary points yk and yk+\ are not necessarily different,

even if yk is not equal to the global stationary point B~lc (an equivalent
to Lemma 3.3 does not exist). In this case, sk is biorthogonal to itself:

In the present formulation of BiCG, the algorithm breaks down if this

occurs. Breakdown condition can be avoided through a reformulation of the

48 Iterative Methods

algorithm. See Section 5.3 for what can be done to avoid this problem (which

occurs rarely in practice). For now, we assume that no such breakdown occurs,

i.e. akqk ± 0. We then find from (3.51), (3.56), and (3.53) that

Vi < k : qjjsk+i = qjj(sk - akBqk) = qjjsk - ak qj J^qk ,

=0 =0 *0 =n

giving the biconjugacy relation of BiCG:

Vi < * : q?Hqk = 0
. (3.57)

Since we assumed that the new yk+i is different from yk, the new

search direction qk e ICk+i(B,so) can be expressed as a linear combination

of the residual sk and the previous search directions (that form a basis for

Kk{B, so)). Since yk is a stationary point of ipn in Kk(B, so), qk must have

a non-vanishing component in the direction of Bkso. As our assumption
includes that Kk{B, so) is not 5-invariant, this implies that the component in

the direction of sk cannot vanish. Normalizing this sk -component, we get

*-l

qk = sk + Y,Pktq, (3.58)
»=o

Relation (3.57) helps to find the coefficients ftkt:

qTHqk=0 => qjH »»+^A^ =0

*-l

=> qjHsk-r^faj qfHqj =0

J=0

=> Pk,=~

=0 for :^j

qfHsk

qjHq,

As Bq, e IC,+i(B, so), a by-product of the biorthogonality relation (3.56) is

Vi < k - 1 : (Bqt)TJsk = qTBTJsk = qTHsk = 0
,

using (3.53) and the symmetry of H and J. This simplifies (3.58) to the

recurrence formula

«* = «*+&?*-! (3-59)

3.8. BiCG 49

with the coefficient

Pk := Pk,k-i =
qT-iHsk

<tk-lHQk-l

The line search parameter a* is computed from (3.56) and (3.51):

qkJskJri=0 =» qlJ(sk~akBqk)=0

-j. gK =
$JSk

_

^Jsk
qlJBqk qjHqk

The similarity of this derivation to that of Conjugate Gradients in Sec¬

tion 3.3 can be carried on further by simplifyingthe computation ofthe scalars

ak and (3k through

cT t„ -skJsk= s[jsk-i-ak-\s[jBqk-\ =-aJt_isJ/7gt_1

sTkJsk = q?Jsk - Pkql-.iHsk

sl^Jsk-i = ql_iJ(sk + at_i5gjfc_i)

= ql-Jsk

= a*-i5k_i.ffgjfc_i

This allows us now to formulate the Biconjugate Gradient algorithm in

Algorithm3.7 as a solver for the combined system (3.47). Recalling that we

are interested in solvingthe primal system (1.1) only, and writing

Sk =
rk

h
and qk =

Pk

Pk

the defining relations for the scalars can be simplified through

T r

S^JSk =
rk

h I o][r*]=^+^=2^
and

qlHqk = Pk

.

p*
.

T '

0 AT
'

A 0

Pk

'

.

P*
.

sT
= p1kA1pk + piApk =

2p1kApk.

Algorithm 3.8 lists Biconjugate Gradients delivering only the approximation

xjt for the solution of the primal system.

50 Iterative Methods

l

2

3

4:

5

6

7

8

9

10

11

s0 := c - Byo

for* := 0,1,...

if k = 0 then

• • qo := «0

else

• •?*:=

end if

until convergence do

sjt +

sTJsk

skJsk

%-lJ'k-l
qk-\

qjHqk
Vk+i := Vk + otkqk

sjt+l := sk - akBqk

end for

Algorithm 3.7: Biconjugate Gradients as a solver for the combined sys¬

tem (3.47).

Theorem 3.11 The k-th iteration ofBiCG finds an approximation yk to the

combined system (3.47) that is the stationary point ofipn with respect to the

shifted Krylov subspace {yo} + Kk{B, so) (unless the algorithm breaks down

before).

Theorem 3.11 has been proven by construction. The primal solution

space {xo} + Kk{A, ro) is obtained by restricting the combined solution space

{yo} + ICk(B, so) to the first n variables, and so Theorem 3.11 meets the

optimality promise from the beginning of this section.

However, there is no statement about the minimization of residuals. In

practice, there are always some BiCG iterations that increase the residual in

norm, even if the entire iteration process converges globally. This manifests

itself in a zigzagging in the convergence behavior of BiCG, as in Figure 3.5.

Zigzagging indicates that a large quantity is added to a small one, and a

similarly large quantity is then subtracted again. This can cause cancellation.

Section 5.5 outlines a way to deal with this problem.

BiCG often converges (globally) despite the (local) zigzagging effect.

BiCG is able to solve many linear systems in device simulation where

3.8. BiCG 51

9:

10:

11

12:

13

14:

15

16

r0 := b - Axo

select fo

for jfc:=0,1,...

if k = 0 then

• po := ro

.. po := ro

else

until convergence do

Pk
rkrk

fI-lrk-l
Pk :=nt +PkPk-i

Pk '-=fk +PkPk-i

end if

„, .
nrk

PkApk
xjt+1 := Xfc + akpk

rk+i := rk - akApk

nt+i := rk - akATpk
end for

Algorithm 3.8: Biconjugate Gradients.

restarted GMRES or truncated Orthomin stagnate, and it often requires much
fewer iterations than these methods even if the latter converge. I do not know

of any real case in device simulation where exact breakdown occurred in

BiCG.

The selection of the initial residual ro for the dual system (3.45) is still

free in Algorithm 3.8. It is usually set equal to the primal initial residual,

ro = r0 ,

which amounts to selecting the initial approximation xo of (3.45) as

xo = A-TAx0 + A-T(b-b).

(3.60)

With this choice, BiCG is identical to CG if the matrix A is symmetric.
Choices other than (3.60) are discussed in [DvdV91].

52 Iterative Methods

Relative residual norm

100 120

Iterations

Figure 3J: Convergence behavior ofBiCG.

3.9 Squaring the polynomials: CGS

Since the solution ofthe dual system in BiCG is generally not needed, the dual

residual fk and the dual search direction pk are only computed to be used in

vector dot products to evaluate the scalars ak and pk. Updating these vectors

involves one transposed matrix-vector multiplication per iteration (yielding
ATpk).

In many data structures for sparse matrices, such transposed operations
cannot be implemented as efficiently as (right) matrix-vector multiplication.
It is therefore interesting to look for a reformulation of BiCG that avoids

transposed matrix operations.

It follows from the update formula for the combined residual (3.51) that

the k-th combined residual can be written as the product of a polynomial $*

3.9. CGS 53

of degree k in B with the initial combined residual:

s* = $*(£) s0- (3.61)

Observing that powers of B can be written as

Sfc =
A 0

[o AT\

lA T Ak 0

A0 (AT)k

Equation (3.61) is equivalent to the combination of (3.62) and (3.63):

rk = *k(A)ro (3.62)

h = $k{AT)r-o- (3.63)

In a similar way, the search directions can be written usingthe polynomials \P*:

i(A)r0
t(AT)ro

qk = *k(B)so«{ikk : lf±r°

Matrix transposition applied to the argument of a matrix polynomial or

applied to the value of the same polynomial are equivalent, so that the inner

products that define the scalars in Algorithm 3.8 can also be computed as

rTkrk = f^l(A)r0 (3.64)

fkApk = ^A^l(A) r0 (3.65)

Equations (3.64) and (3.65) are derived by applying only the usual properties
of matrix multiplication and the fact that multiplication of polynomials over

the same matrix is commutative.

Squaringthe updateformulas (3.51) and (3.59) now leads to a simultaneous

recurrence for the three product polynomials $*,**, and $kVk:

+l = *l ~ A (2a*** " <*iA9l) (3.66)

$*+l**+l = *2+i-rA+i(M*-or*i4*4¥4) (3.67)

+i = *fc+l+l + A+i(****-a*>l****) + /3t+i*fc

(3.68)

Of course it would be foolish now to use Equations (3.66), (3.67), and (3.68)
to compute the matrices $2k(A), ^\{A), and ^k(A)9k(A), which become

numberthein50%aboutofoverheadanisthisAlthoughoperations.vector

linearadditionalsomealsoarethereandtransposition),withoutthree(all
productsmatrix-vectorsthreeby3.9Algorithminreplacedbeenhaveregular)

onetransposed,(one3.8Algorithmofproductsmatrix-vectortwoThe

operations.matrixtransposedwithoutGradientsBiconjugate3.9:Algorithm

forend..
19:

a*Apfc-r*:=rfc+i....
18:

afcpfc+xk:=a;fc+i—
17:

^-—:=ak16

ifend

Wi...

vk13:ifend

—
15:

P\wk-\+at-iAwk-\)-pk{vk-\wk:=vk+14:

ak-iAwk-i)-0k(vk_i+uk:=
^13:

a_lAwk_{)-(2a*_ii;A_iA-u*_i:=uk12:

(3kpk-\+:=rkPk11:

«*-ir^
A:=#!L10:

else
—

9:

ro:=wo8:

ro:=vo7:

ro:=«o6:

po:=r05:

then0=kif
....

4:

doconvergenceuntil0,1,...:=kfor
..

3:

0fselect
..

2:

Axo—b:=ro..
1:

operations.matrixtransposedany

withoutcomputedbecanscalarsthewhereBiCGofversionaisAlgorithm3.9

92k(A)rQ.=wkvk=$k{A)Vk(A)r0,=^l(A)r0,uk

bydefinedvectors

foroneintorecurrencethemaprathershouldWeincreases.kasdensequite

MethodsIterative54

3.9. CGS 55

of floating-point operations, this modification may reduce the execution time

on vector- or parallel computers for data structures that allow for high

parallel speedup in the regular matrix multiplication, but where the transposed

operation is not parallelizable.

The real advantage of the squaring, however, emanates from the following
reflection. Assume BiCG does converge in the residual, that is, ||rjt|| is

smaller than ||ro|| in some norm. The polynomial $k(A) thus contracts ro.

There is guarded hope that <&k(A) contracts rk as well. In other words, the

"contraction effect" of $£(.4) applied to ro is expected to be "stronger" than

that of $* (A).

The Conjugate Gradients Squared method (CGS) [Son89] is based

on this consideration. The vector uk from Algorithm 3.9 is regarded as the

residual vector in CGS. Looking at the update formula for uk in Algorithm3.9,
we see that the update to xk that keeps xk+\ consistent with the CGS residual

r*+? = u*+iis me vector p£°s = (2akvk - a2kAwk). Algorithm3.10 lists

the entire algorithm for CGS.

The "contraction" argument is very informal. The following reflections

intend to improve our understanding of this argument (see also Driessen and

van der Vorst [DvdV91]). Let w be an eigenvector of AT, associated with the

eigenvalue14 A: ATw = Xw. w is also an eigenvalue of <&k(AT), associated

with the eigenvalue $fc(A). Consider the projections of our residual vectors

oniu:

7* := Trk

We see15 th&tyflCQ = $jt(A)70and7ps = $2k(\)yo- So ifBiCGreduces (in

its first k iterations) this projection (that is, if |$(A)| < 1), then CGS reduces

the projection even more. On the other hand, ifBiCG amplifies the projection,
CGS amplifies it even more.

The contraction argument works out on our example. Nearly each

convergingBiCG iteration in Figure 3.5 results in an even stronger converging
CGS iteration in Figure 3.6. On the other hand, diverging BiCG iterations

make CGS diverge even more. Observe how the peak at iteration number 24

14So the complex conjugate w is a left eigenvector [HJ85] of A. A is also an eigenvalue of A,
but w is not necessarily an eigenvector of A.

15 Proof.

wTr¥CG = wT*k(A)T0= (*>k{AT)w)Tr0= ($k(>.)w)T r0 = <S>k(\)(wTr0) .

a

56 Iterative Methods

1:
.. ro := b - Axo

2:
..

select ro

3:
..

for k := 0,1,... until convergence do

4:
....

if * = 0 then

5: vo := ro

6: wq := ro

7:
else

8: /*:=#*-
ront_i

9: vk := rk + /?*(i>*-i - ak_iAwk-i)

10: wk := vk + pk(vk-i - ak-iAwk-i) + Plwk-i
11:

end if

12- ak •=
rQrfc

fo Awk
13:

.... pi := 2akvk - a2kAwk
14:

.... xjfc+i :=xt +pfc

15: rk+i := r* - Ap*

16:
..
end for

Algorithm 3.10: Conjugate Gradients Squared.

is amplified. The zigzagging effect in CGS is therefore much stronger than in

BiCG, and this increases the risk for cancellation problems (see Section 5.5).

CGS converges much faster than BiCG for most problems in device

simulation. It often requires only slightly more than half of the number of

iterations BiCG needs, which is then close to the maximum performance gain
that could be expected through squaring. It makes sense to use CGS even

for ill-conditioned s.p.d. systems, rather than CG, because the higher cost per

iteration is roughly compensated by the lower iteration count, and CGS can

accommodate for apparent unsymmetry and indefiniteness caused by rounding
errors.

3.10. Bi-CGSTAB 57

Relative residual norm

120

Iterations

Figure 3.6: Convergence behavior ofCGS.

3.10 Smoothing the squaring with local mini¬
mization: Bi-CGSTAB

CGS applies the operator $* (A) to the BiCG residual rf00 = $k (A)r0 with

the expectation that it will contract the BiCG residual. The end ofthe previous
section showed that this hope is not always fulfilled. However, nobody forces

us to use $* (A) as the "contraction operator". Bi-CGSTAB [vdV92] chooses

another polynomial Qk of degree k and defines

„Bi-CGSTAB _
= Qh(A)*k(A)ro .

To keep the storage needs from growing with the iteration number, the

sequence of polynomials fio, fii,..., fit,... should again be selected such

that the residuals r£1"CGSTAB can be computed through simple recurrences.

58 Iterative Methods

The Bi-CGSTAB residual vector is chosen by starting from the point

rfc_i=fi*-i(^*M)r0 (3.69)

and performing a single steepest descent step on the residual norm function:

||rf-CGSTAB|| = min||(/-WA)rfc_||| (3.70)

The polynomial fi* is thus defined as

nk(A) = {I- LJk^A){I - uk-2A) •••(/- w*A) . (3.71)

with (using the Euclidean norm in Equation (3.70))

T
rJ

k+hArk+l

Uk = S
A*Ar

(3-?2)
rk+iA Ark

2

Note that the rare case that the denominator in (3.72) vanishes does not entail

another source of breakdown. It occurs only if rJb+i =0, which means that

the exact solution has been found in the first "half" of this iteration. A careful

implementation avoids problems by leaving the iteration at this point.

The recurrence relations for the product polynomials can now be derived

from (3.51), (3.59), and (3.71):

nfc**+1 = nk*k-akAQkVk (3.73)

nk+i$k+l = nk®k+i - u>kAQk$k+1 (3.74)

fi*+i**+i = n4+i#4+i+/8fc+i(nt*fc-wti4nfc*fc) (3.75)

The CGS choice was motivated by the easy computation of the scalars

a* and pk. Taking another look back to the properties of BiCG applied to

the combined system (3.47) reveals other ways to obtain these scalars. Using
the sequence {B*so}kIo as t>asis f°r me Krylov subspace Kk(B, so) in the

biorthogonality condition (3.55) leads to

Vi < k : (B'sofJsk = 0
. (3.76)

Similarly, since {q,}kIo Is also a basis f°r the subspace, every B'so can

be written as a linear combination of the q,'s. Using the biconjugacy
relation (3.57) then gives

Vi < k : (Blso)THqk = 0
. (3.77)

3.10. Bi-CGSTAB 59

Let us now express Sk and qk in the basis {S'so}f_0 f°r £k+i(B, so):

k k

Sk = ^Pk>B1so and qk = ^^,5'so • (3.78)
*=o »=o

Using these representations and eliminating terms according to (3.76) and

(3.77) leads to an alternative way to compute the inner products needed for

the scalars in Algorithm 3.7:

slJsk = fJ.kk{Bkso)TJsk

qkHqk = vkk(Bkso)THqk

The leading coefficients in (3.78) are

*-i jfc-i

A***=^*=n(-Q«)=(-i)A:iiQ' (3-79j
i=0 1=0

Translating the notations for the combined system into the polynomial rep¬

resentation ofthe primal system, as introduced in Section 3.9, Equations (3.76)
and (3.77) are equivalent to

Vi < k : f^A'^k(A) r0 = f^A'+^^A) r0 = 0
. (3.80)

The inner products for the scalars, as they are used in Equations (3.64)
and (3.65) and in Algorithms 3.8 and 3.10, are now

f^2(A)ro = (-l)k(f[aAtfAk9k{A)ro, (3.81)

fTA^2k(A) r0 = (-l)k(f[*Af$Ak+19k(A)ro. (3.82)

Since ilk(A) is a polynomial of degree k in A with leading coefficient

*-i

&fc = (-l)*IIw"
i=0

it can be shown, using Relations (3.80), that

t$nk{A)*k{A) ro = (-l)klf[u,\^Ak^k(A)ro, (3.83)

t$Ank(A)9k{A)ro = (-l)k(f[uj,)^Ak+^k(A) r0.(3.84)

60 Iterative Methods

The computation of the BiCG line search parameter ak can thus be

obtained as the quotient of (3.83) and (3.84) rather than the quotient of (3.81)

and (3.82). Similarly, Bi-CGSTAB finds the scalar pk according to

Pk =
Tkrk

_

r0r*
aT „BiCG

—

fT_CGS

r*-lr*-l r0 r*-l

f^l-i(A)ro

(-i)*(nLi,«0^*<M^-o
(-1)*-1 (nf="o2«.) ^Ak-^k.i(A)ro

f$Ak*k{A)ro
= (-«*-i)

= (-«*-i)

r0rAk-i$k-.i(A)r0

1 (-l)k{n":o^)^Ak^k(A)r0
-w*-l

'

(_i)*-l (n*r02".) ^^-^t-ij^ro
a*-i rtrg^5^

Here we do create another possible source of breakdown, as uk-\ may well

be zero even far from the final solution. We will return to this problem in

Section 5.3.

Bi-CGSTAB, displayed in Algorithm 3.11, does not guarantee monotonic

convergence, but it clearly smoothens the convergence behavior in comparison
to CGS. This can be seen in Figure 3.7. Observe how the steep peak on

iteration 24 could not be flattened entirely.

Very often, Bi-CGSTAB requires less iterations to converge than CGS.

There is even a significant number of cases which Bi-CGSTAB solves, while

CGS and BiCG fail [PF91a].

3.11. BiCGStab2 61

1:
.. ro := 6- Axo

2:
..

select fo

3:
..

for k := 0,1,... until convergence do

4:
....

ifk =0then

5: po := r0

6: else

7: A:=f*=iJ>S-
wfc_lf>j|r*_i

8: Pk := rk + Pk(pk-i - uk-iApk-i)
9:

....
end if

^n. .
r0r*

10: a* := ^
roApk

11:
.... rfc+^ :=rjt - akApk

_

r*Vr*+*
*

(Ark+LF(Ark+i)
13:

.... rk+1 := rk+i -ukArk+i
14:

.... xk+i := xk+i + akpk + u>krk+i

15:
..
end for

Algorithm 3.11: Bi-CGSTAB.

3.11 Catching complex eigenvalues:
BiCGStab2

A real unsymmetric matrix may have conjugate pairs of complex eigenvalues.
The only roots of the polynomial defined in (3.71) as a product of real

polynomials of degree one, however, are the real numbers l/wo, 1/wj
l/wfc_i. The polynomial can be enriched with complex conjugate roots by

choosing it as a product of real polynomials of degree two [Gut91]:

nk(A) = (I+yk-2A+'Yk-iA2)---(1+^+11 A2) (fceven). (3.85)

62 Iterative Methods

Relative residual norm

Figure 3.7: Convergence behavior ofBi-CGSTAB.

Equation (3.85) defines Slk only for even iteration numbers k. BiCGStab2

defines it for odd Ar's as well, by adding a real root in the same way as in

Bi-CGSTAB:

Qk(A) = (I-uk-iA)nk-i(A) (A; odd). (3.86)

This real root is then dropped in the succeeding even iteration. The effort

for the odd iteration can be recovered by defining the recursion for the even

iteration as

Qk{A) = (1 + Ck-2)n*-2(A) - (Ck-2J + in_ii4)n*_i(4) (Jfe even) ,

(3.87)
setting7*_2 = (k-2uk-i - t)k-i and7A_j = t)k_iuk_i.

We can choose the same names as in Bi-CGSTAB for the vectors obtained

by multiplyingthe matrix-polynomials with the initial residual:

r*_| = Slk-.i{A)$k{A)ro,

rk = Qk (A)$k (A)r0 ,

pk = Slk{A)yk{A)ro.

3.11. BiCGStab2 63

For even iterations, the computation of rk and pk according to Equation (3.87)

requires another vector:

rk_i = nk-2(A)$k(A)r0 (keven) .

The final residual vector for an even iteration is hence given by

rk = rk-l
~ C*-2(r*_i - rk_i) - Jjk-iArk_± , (3.88)

where C*-2 and Tjk-\ are chosen to minimize the (Euclidean) residual norm

||rfc II. To ease notation, define the two-column matrix

and the two-row vector v = [^_2 ; r/t-i] ,
so that (3.88) becomes

rk = rk_i
- Sv

.

The square of the residual norm,

\\rk\\2=\\rk_z\\2-2rTk_lSv-rvTSTSv,
is minimized by

1

= (!?S)-l!?rh, .
v =

Ob-2

»7Jt-l

Again, breakdown can occur if S is singular. Section 5.3 explains when this

happens.

The leading coefficient £kk is given by

_

/
("I)**-

"

{ (-l)ko
c _j v-i; wo'7i---w*-3'?*-2Wjfc-i (A:odd)
?** S r-^ku>om- uk-4rik-3Wk-2r)k-i (A;even)

so that the BiCG scalars ak and pk can be computed analogously as in Bi-

CGSTAB16. The further recursion formulae for rk_ i, rk_ j, and pk are easily
derived from (3.51), (3.59), (3.86), and (3.87), leading to Algorithm 3.12.

For our test case, the convergence plot of BiCGStab2 was almost identical

to the one of Bi-CGSTAB (shown in Figure 3.7), although the algorithm did

truly construct complex conjugate roots in some iterations. In a few other

cases, however, BiCGStab2 did require significantly fewer iterations.

16A further distinction for the signs, as mentioned in the original formulation [Gut91], was

avoided with the present selection ofvariables.

64 Iterative Methods

1:
.. ro := b — Axo

2:
..

select fo

3:
..

for A; := 0,1,... until convergence do

4:
....

if A: = 0 then

5: po := ro

6: else if k odd then

7: A:=Sa=l#L
w*-i r^ rjt_i

8: Pk'-=rk+ Pk{Pk-\ - uk-iApk_i)
9: else

in- a —

Q*-1 for*
10 Pk =

-

-^—
Vk-i rfirk-i

11: Pk := rk +/?*(! + Cb-2)(rA_i + Pk-iPk-2)
-PkCk-2Pk-l ~ PkVk-lApk-l

12:
....

end if

13:
.

n
.

r0r*
a* := Tyh—

14:
.... rk+i := r* - akApk

15: if A; even then

16: wt :=
r*Vr*+£

17:

18:

19:

20:

21:

(Arh+i)T(Ark+k)
rk+i ~rk+i-ukArk+v

22

23:

• • xjt+i :=xk + akpk + w*rt+i .

else

• • rk+L:=rk_i-akA(rk_i+pkPk_i)

Sk := [(rt+j-rfc+j);i4rfc+i

C;;1]:=(^5fc)-1^rt+i
rk+i := r4+j

- Ofe-ifo-i.* - rfc+i) - J^r^i
24: xk+i := x* +(1 + C*-i)a*/?*P*-i

+(l+C*-i)(a*-w*-i)rt-^
-C*-i"*P* + »?*»'fc+^

25:
....

end if

26:
.. end for

Algorithm 3.12: BiCGStab2.

3.12. Lanczos' basis for minimization: QMR 65

3.12 Lanczos' basis for minimization: QMR

The zigzagging convergence behavior of the residual norm in BiCG is due to

the fact that BiCG does not try to minimize this residual norm. Convergence
in the residual is merely a side effect of the search for a stationary point. A

method that minimizes the residual norm over the space spanned by all the

BiCG residual vectors (which is ICk(A, ro)) would be equivalent to GMRES,

and have the increasing storage requirement problemofGMRES-likemethods.

The residual vectors of BiCG form a basis for K,k(A, ro). By normalizing
each residual vector, we obtain a non-orthogonal basis forthis Krylov subspace.
These basis vectors are also called Lanczos vectors, as they are generated by
Lanczos' biorthogonalization algorithm [Lan50, Gut90b, Gut92].

The Quasi-Minimal Residual method (QMR) [FN91] selects the k-th

residual rk as the vector whose norm in the Lanczos basis representation is

minimal among all vectors in the Krylov subspace ICk(A, ro). Unlike for

BiCG, a convergence theorem for QMR exists. The approximations to the

solution can be updated through short (though more complicated) recurrences,

so that the algorithm has fixed storage requirements. Like BiCG, QMR

requires one regular and one transposed matrix-vector product per iteration.

Variants of QMR that avoid transposed matrix-vector products or obtain a

squaring effect similar to CGS have be presented, but do not seem to be as

stable right now [Fre91, CdPvdV91, FGN92].

QMR can be formulated in a way that avoids some of the breakdown

conditions of BiCG. We come back to this point in Section 5.3.

3.13 Resource requirements

This section summarizes the resource requirements for the different methods,

ignoring preconditioningfor now, and assuming that no major timing compro¬
mises are made to save storage. Table 3.1 counts the number ofoccurrences of

the main types of operations. Table 3.2 shows the storage overhead in terms

of floating-point numbers.

The operation counts per iteration in Table 3.1 have to be multiplied by
the number of iterations the method requires to converge. As we have seen,

this number of iterations varies significantly from method to method, and

66 Iterative Methods

Matrix- Transposed Vector Linear

Method vector matrix- dot operations

products vector

products

products on vectors

Jacobi, GS, SOR (1) - - 1

SGS, SSOR (2) - - 2

Steepest descent 1 - 2 4

CG 1 - 2 6

CGNR 1 1 2 6

GCRW 1 - \£ + 2 £ + 4

Orthomin(l) 1 - £ + 2 2£ + 4

GMRES(0 1 - \£+\ £ + 3

BiCG 1 1 2 10

CGS 2 - 2 12

Bi-CGSTAB 2 - 4 12

BiCGStab2 2 - 4.5 18.5

Table 3.1: Operations per iterationfor the methods (ignoring precondition¬

ing). Scalar operations can be neglected, except possibly (when £ is large)

for the £2 flops in the back substitution of GMRES(£). For the splitting

methods, there are no matrix-vector products, but triangular solves with the

same complexity. For GCR(£), GMRES(£), and BiCGStab2, average values

are given. The values are smallerfor the £first iterations ofOrthomin(£) and

for the very first iteration ofthe other methods.

it depends also on the problem, the preconditioner, and other parameters.

Benchmark results are presented in Section 6.13.

3.13. Resource requirements 67

Method Storage

requirements

Splitting methods 0

Steepest descent n

CG 2n

CGNR 2n

GCR(£) (2£+l)n
Orthomin(^) (2£+l)n
GMRESW £n + \£2 + 0(£)
BiCG 4ra

CGS 6n

Bi-CGSTAB 4n

BiCGStab2 In

Table 3.2: Storage requirements for the iterative methods, expressed in the

number offloating-point cells to solve a system of n linear equations. Single
scalars are not counted. £ is the parameter of some of the methods. It is

assumed that the storagefor the initial approximation xo and the right-hand
side b can be overwritten, yielding the final approximation and the final
residual on exit.

Leer - Vide - Empty

4

Preconditioning

4.1 Goal

The number of iterations that a given iterative method needs to solve a system

oflinear equationsAx = 6 to a given accuracy depends heavily on the problem
under consideration. The conditioning of an unsymmetric linear system for

an iterative solver is hard to evaluate (see Section 2.8). If the condition of

a problem should be expressed in a single number, the number of iterations

a given iterative method needs to reach a given convergence criterion is the

only fair choice.

All the methods converge in one single step if the system matrix is the

identity matrix. Preconditioning transforms the original linear system (1.1)

into a preconditioned system

Ax=Z (4.1)

which should be such that the characteristics (with respect to Section 2.8) of

the preconditioned matrix A are close to the characteristics of the identity.

Assuming there are (isomorphic) operators that transform the original A,

xo, b into the preconditioned A, xo, b, and the final approximation xk to the

preconditioned system back into an approximation xk to the original system,

preconditioning could be described as in Algorithm 4.1.

69

70 Preconditioning

1:
..

Transform A i— A

2:
..

Transform xo <— xo

3:
..

Transform b i— b

4:
..

Solve Ax = b iteratively (starting with xo, yielding xt)

5:
..

Transform xk >— xk

Algorithm 4.1: Preconditioned iterative solution ofa linear system.

One thereby expects that the chosen iterative method is able to solve the

preconditioned system (4.1) in fewer iterations than the original system (1.1),

even if A is only a rough approximation of the identity. This approach pays

back only if the total time to perform all these transformations and all the

needed preconditioned iterations is smaller than the time an iterative method

would take on the original system.

Moreover, one preconditioned iteration is usually more^expensive than

one ordinary iteration, as a matrix-vector product with A requires more

computations than a matrix-vector product with A (see Section 4.7). The

choice of one particular preconditioner is therefore a trade-off between cost

(in time for the transformations and the preconditioned operations, and also in

memory) and effect (in the reduction of the number of iterations).

Ultimately, only the total resource requirements (time and storage) deter¬

mine the quality of a preconditioner. In Chapter 3, nearly all the important
characteristics of different iterative methods could be illustrated on a single
linear system that acts as a representative sample for a large number of systems

occurring in device simulation. This approach cannot be pursued in this chap¬
ter. The quality of different preconditioners depends much stronger on the

linear system and the machine architecture in question. Most of the compar¬

isons between preconditioners in this chapter consist of qualitative statements

(based on practical experience) and non-numerical data (like idealized costs

in memory cells and in flops for single operations). The reader ought to be

aware that the quantitative results presented in Sections 4.7.2,4.7.4, and 4.7.5

should not be misused to draw generalizing conclusions other than those in

the text.

For comparison in the next sections, note that costs associated with the

original matrix are the following. Annxn sparse matrix with m nonzero

4.2. Position 71

entries requires the storage of m floating-point numbers, plus a significant
amount of integer storage for the sparsity structure (see Section 6.6). A

matrix-vector product with such a matrix costs m multiplications and (m-n)
additions, for a total of (2m - n) flops.

4.2 Position

The preconditioner is usually represented as a preconditioning matrix Q that

approximates A, or, more precisely, Q-1 approximates A~x in

AQ~l » /
. (4.2)

The approximation symbol («) in Equation (4.2) is to be interpreted in the

sense of Section 4.1.

Equation (4.2) leads to a first form of preconditioning, called right

preconditioning:

[AQ-1] [Qx] = b
. (4.3)

If Equation (4.2) holds, then the matrix Q~lA also approximates the

identity in a similar sense, so that left preconditioning is another choice:

[Q-lA] x = [Q-»6] . (4.4)

Multiplicative splittingofthepreconditioningmatrix into Q = Q\Qi leads

to split preconditioning:

[Q^AQj1] [Q2x] = [Qilb] . (4.5)

The forms (4.3) and (4.4) are in fact special cases of split preconditioning,

setting Qi = J in (4.5) for right preconditioning and Qi = I in (4.5) for

left preconditioning [Elm82]. Right preconditioning is sometimes also called

postconditioning.

4.3 Preconditioned algorithms

The iterative methods presented in Chapter 3 all use the matrix A only as an

operator in matrix-vector multiplications (and sometimes transposed matrix-

vector multiplications). Therefore, the preconditioned matrix A is only

72 Preconditioning

needed as an operator for preconditioned matrix-vector multiplication. Line 1

of Algorithm 4.1 does not mean that the matrix A should be computed and

stored, but that an operator for preconditioned matrix-vector multiplication

should be constructed.

A preconditioned iterative method can therefore be implemented just by

performing line 4 of Algorithm 4.1 with the selected iterative method, using
the operator for preconditioned matrix-vector multiplication instead of the

usual operator. In such a straightforward implementation, left preconditioning
has the advantage that the true approximation of the solution (that is, the

approximation to the solution of the original system (1.1)) is always available

(since xk = x*), whereas right preconditioning keeps the true residual always
available. The availability of these vectors allows more accurate convergence

control.

A trick in the implementation gives right preconditioning both these

advantages. Assume the preconditioned residual and approximation are

updated as

xjb+i = it + akpk (4.6)

n+\ = rk - akApk . (4.7)

For right preconditioning, A — AQ~l, Xk — Qxk, and rk = rk, so that (4.6)

and (4.7) become

Qxk+i = Qxk + akpk (4.8)

rjb+i = rk - akAQ~lpk . (4.9)

Multiplying (4.8) on the left by Q
~1

yields

x*+i = xfc + akQ~lpk . (4.10)

The vector Q~lpk needed in (4.10) is usually available as an intermediate

result in the computation of AQ~lpk needed for (4.9).

Except for GMRES, all the methods presented in Chapter 3 contain an

update relation similar to (4.6) and (4.7) (although it is not quite obvious in

the product methods CGS and Bi-CGSTAB). As an example, Algorithm 4.2

shows the right-preconditioned implementation for Bi-CGSTAB.

A similar trick cannot be used efficiently with left or split preconditioning,

as the vector rk, which then is different from rk, is needed in the computation
ofthe scalars. Because of the delay before the solution vector is updated, right

preconditioned GMRES cannot profit efficiently from this trick.

4.4. A family of incomplete factorizations 73

r0 := b - Axo

select fo

for k := 0,1,... until convergence do

if k = 0 then

. • po := ro

else

n .

at-i fin
Pk = 7t

•. P* := i-t + &(P*-i - wit-ij4Q_1pjfc-i)
end if

._

r^rt

%AQ-ipk
cjt+i :=x* + «fcQ lpk

rA+i := rjt - akAQ lpk

uk =

{AQ-xrk^Y{AQ^rk+h)
rjt+i :=ri+j-wti4g_1rt+i
xjfc+i :=xk+i+LokQ'lrk+i

end for

Algorithm 4.2: Right preconditionedBi-CGSTAB.

4.4 A family of incomplete factorizations

The "usual" way of obtaining an operator for A'1 is to factorize A into factors

that are easily invertible. One practical choice is LDU-factorization, a variant

of Gaussian Elimination computing the unit lower triangular matrix L, the

diagonal matrix D, and the unit upper triangular matrix U such that

A = LDU
. (4.11)

74 Preconditioning

The entries of the factor matrices are computed by

>-i

Vi>j: ltJ = — la,j-^2llkdkkukA (4.12)
d" \ k=0 J

if3'1 \
Vi < j : ut] = — I atJ - y^2ll,kdkkukj J (4.13)

d" V t=o /

»-i

Vi: d„ = an-^kkd^Uk, (4.14)

*=0

The computation of the complete LDU-factorizations of large sparse

matrices requires lots of computational and storage resources (This is a main

reason to investigate iterative methods, see Section 2.7).

The rationale behind incomplete factorization preconditioners is to

simplify the factorization rules (4.12) to (4.14) in such a way that the resulting

product of factors is still a fair approximation to the matrix A, in the sense

of Section 4.1. Increasing simplification should thereby result in reduced

resource cost, at the expense of diminishing preconditioner quality.

The application of such a preconditioner of the form

Q = LDU . (4.15)

toa vector (the computation ofv := Q~lv) is"cheap" in terms ofcomputation:
it involves only two solutions ofunit triangular systems and one multiplication
of a vector with a diagonal matrix. This amounts to the same number

of floating-point operations as would be required for the multiplication of

the matrix (L + D + U) with a vector. Since divisions are not as fast as

multiplicationson many computers, it makes sense to store the diagonal matrix
D in inverted form.

Incomplete factorization preconditioners are also well suited for split

preconditioning as defined in Equation (4.5). The preconditioner can, for

instance, be split into

Qi = L and Q2 = DU . (4.16)

or even

Qi = Lsign(D)vTD| and Q2 = vl^l ^ • (4-!7)

4.4. A family of incomplete factorizations 75

In the latter case, y/\D\ should again be stored if the computation of square

roots is slower than multiplications.

The remainder of this section describes several choices for this simplifica¬
tion. All these approaches can be characterized as incomplete factorizations.

The "classical" incomplete factorization preconditioning [MvdV77] is de¬

scribed in Section 4.4.4. The symbols DA, La, and Ua in the following
definitions refer to the diagonal part of A, the strict lower, and the strict upper

triangle ofA respectively, yieldingthe additive splitting^ = LA-\-DA + UA-

4.4.1 Jacobi or diagonal preconditioning

The most radical simplification of (4.12) to (4.14) is to approximate A

by its diagonal only, substituting the matrices in the right-hand side of

Equation (4.11) by D = Da and L = U = I. The preconditioning operation
can also be viewed as a single Jacobi iteration (see Section 3.1) with a zero

initial vector.

Setting up and storingthis preconditioner takes no resources at all (except

something insignificant if we want to store the inverse of the diagonal), and

the application costs n multiplications.

Although Jacobi preconditioned methods solve a larger percentage of

the linear systems in device simulation than unpreconditioned methods,

and generally reduce the number of iterations compared to the latter, their

performance and success rate is much too low to satisfy the needs.

4.4.2 SSOR preconditioning

The next refinement of incomplete factorization is to ignore the summations

in (4.12) to (4.14), substituting D = DA, L = LAD~A + I, and U =

I + D~aUa- The application of this preconditioner can also be viewed as a

single iteration of Symmetric Gauss-Seidel (Section 3.1) with a zero initial

76 Preconditioning

vector1'.

Applying this preconditioner in the form (4.15) costs as many float¬

ing-point operations as a matrix-vector product with the system matrix A.

Provided that Da, La, and Ua are stored such that they can be accessed

independently (see Chapter 6 for more about matrix data structures), there

is no need to compute and store L and U explicitly. Viewing the SSOR

preconditioner as

Q = (La + Da)Da1(Da+Ua) , (4.18)

the application of the preconditioner can be computed by

v = Q~\ = (DA + Ua)-1 Da (La + DA)~l v
, (4.19)

at only slightly increased cost (2n additional multiplications compared to the

form (4.15)).

Distinct savings in computation time can be obtained through a clever

combination of the operations for a preconditioned matrix-vector product,
known as the Eisenstat trick [Eis81]. Consider the matrix-vector product for

an iterative method with split SSOR preconditioning:

w — Av

= QilAQilv

= (LADAl + iyl (LA+DA + UA){l + DAlUAyl DAlv.

17Proof. x0 = 0

*i = (DA + LATHb-VAx0)

= (DA + LA)~l b

Xi = (DA+UA)-x(b-LAx^j
= (DA + UATl(b-LA(DA + LA)-H)
= (DA + UA)~l (b - (DA + LA- Da)(Da + LA)-[b)
= (Da + Ua)-1Da(Da + LaTH

= {l+D-lUA)-XD-'(l + LAD-iy'b

4.4. A family of incomplete factorizations 77

Under this form, with L - I = LAD~A and U - I = DAlUA stored

explicitly, this whole operation takes (4m — 2n) flops. A clever association of

triangular matrices and their inverses18, however, leads to an algorithm with

only (2m + 4n) flops, depicted in Algorithm 4.3. The trick can only partly be

applied to left or right preconditioning19, yielding algorithms with 3m flops.

h := (DA + UAyl v

f-2 := v - DAh

H:=(LA + DAyih
w := DA (ti +13)

Algorithm 4.3: Split SSOR preconditioned matrix-vector multiplication with

the Eisenstat trick.

SSOR preconditioned methods are again much better than Jacobi precon¬

ditioned methods. Since there is no set-up cost, and the number of additional

flops for applying this preconditioner is very low due to the Eisenstat trick,

SSOR preconditioning is to be preferred over Jacobi preconditioner. A disad¬

vantage lies in the fact that the solution of sparse triangular systems is more

difficult to vectorize and parallelize (see Section 6.8), but the lower number

of iterations generally outweights the diminution of parallelism.

4.4.3 D-ILU preconditioning

As a next step, the diagonal matrix D is computed using the full formula (4.14),

but the summations in (4.12) and (4.13) are still ignored. Of course, this

18Proof.

w = (LAD~l + l) \LA + DA + UA) (l + D~lUA)
X
D~lv

= DA {La + Da)-1 ((La + DA) + (DA + UA) - DA) (DA + UA)~l v

= DA (DA + UA)~l v + DA (LA + DA)~l v

- DA (La + Da,)-1 D~Al (DA + UA)~l v

= DA ((DA + UA)~l v-(LA + Da)-1 (v - DA (DA + Ua)-1 v)) n

,9For right preconditioning:

(LA + DA + UA) (DA + Ua)'1 Da (La + DA)"» v

= (/ + LA (DA + UA)) DA (LA + Da)-1 v

78 Preconditioning

does in no way mean that D is equal to the diagonal matrix of the full

LDCZ-factorization. As with SSOR preconditioning, the triangular matrices

L = (LA D~l +1) and C/ = (I + D~lUA) do not have to be stored, because

the D-ILU preconditioner can be viewed as

Q = (La + D)D-1(D + Ua)
, (4.20)

An alternative way to define D-ILU is that Q is the (unique) matrix which can

be written in the form (4.20) and satisfies

diag(Q) = DA

The number of flops for the application of the D-ILU preconditioner as

well as for preconditioned matrix-vector products are the same as for SSOR

preconditioning, since the Eisenstat trick can still be used (see Algorithm 4.4).

*i := (D + Ua)-1 v

t2 := v + (DA - 2D)h

t3 := (LA + Dyl t2

w:=D(ti+t3)

Algorithm 4.4: Split D-ILUpreconditioned matrix-vector multiplication with

the Eisenstat trick.

If the matrix A is structurally symmetric, setting up the D-DLU precondi¬
tioner (that is, computing D) takes |(m - n) flops.

Note that if the matrix A is tridiagonal (as are the single equation matrices

in 1-D device simulation), the D-ILU preconditioner is in fact an exact

LDU-factorization of A.

The cost for setting up the D-ILU factorization is negligible, the cost for

applying the preconditioner is the same as with SSOR preconditioning, but

the number of iterations is generally lower than with the latter. D-ILU is

therefore to be preferred over SSOR. Note however that it solves most, but

not all the linear systems in semiconductor device simulation [HPWF91]. For

really ill-conditioned systems, a stronger preconditioner is needed.

4.4. A family of incomplete factorizations 79

4.4.4 ILU preconditioning

The most common form of incomplete factorization preconditioning involves

all three formulae (4.12) to (4.14), but with the additional constraint that

entries of L and U whose position in the matrix correspond to zero entries in

A are ignored (set to zero):

a,j = 0 =>• /,_, =u,j = 0
. (4.21)

The resulting triangular matrices L and U thus have exactly the same

sparsity structure as the corresponding parts LA and UA of the original
matrix A, and this explains the popularity of such a choice: the part of

the data structure that describes the sparsity structure can be reused, thus

saving between 20 and 50% of the storage requirements for the factors (see

Chapter 6).

The incomplete factorization can be viewed as a matrix splitting

A = Q - R
, (4.22)

where all entries of the residual matrix R on positions of nonzero entries of A

are zero:

a,j ^ 0 => r,} = 0
.

The summations in (4.12) and (4.13) contain a nonzero term if and only
if there is a A; such that l,k and uk] are nonzero. With the additional

constraint (4.21), nonzero terms in these summations occur only for triplets
of distinct indices i, j, and k such that a,3, a,k, and ak} are nonzero. In the

undirected graph associated with the sparse matrix, such a triplet is a triangle.

tensor-product grids, as they are used in finite-difference discretizations (5-

point stencils in 2-D and 7-point stencils in 3-D), do not contain any triangles,

so that the summations in (4.12) and (4.13) for ILU preconditioning are zero.

This completes the proof of the following theorem:

Theorem 4.1 The ILU and D-ILU preconditioners are identical for single-
variablefinite-difference discretizations20.

^Many authors confuse these two variants of ILU even for matrices whose graphs include

triangles. Since the version of Section 4.4.4 corresponds to the original description in [MvdV77]

and in [Elm82], I decided to introduce the name D-ILU in [HPWF91] for the version of

Section 4.4.3 to emphasize the distinction.

80 Preconditioning

To save multiplications in the incomplete factorization process, one of

the triangular factors is usually chosen not to have a unit diagonal (storing
for instance L as defined by (4.12), but (DU) instead of U). The minimum

number of flops for this set-up of the ILU preconditioner cannot be determined

solely from the size and density of the matrix, as it depends on the number of

triangles in the graph of the matrix. If nonzeros are distributed more or less

equally over all the rows of the matrix (which is the case for the discretization

grids normally used in device simulation), the effort for the factorization in a

reasonable data structure is 0(m2/n) (including integer operations)21.

If the matrix A is symmetric, the triangular factors satisfy L = UT, so

that only one of them needs to be stored. For many classes of symmetric

positive definite matrices, the diagonal matrix D of the ILU-factorization

will be positive (see [GvL83, Man79] for cases where this is not true).

Writing C = (L + I)y/D, the matrix Q = CC7 is called the incomplete

Cholesky factorization of A. It makes sense to use split preconditioning
with Qi = C and Q2 = C7 in this case, since the preconditioned matrix

A = C~1AC-T is still symmetric and positive-definite, so that the Conjugate
Gradients method can be applied. This combination is known as Incomplete
Cholesky preconditioned Conjugate Gradients or ICCG(O) [MvdV77].

The number of iterations with ILU preconditioning is usually lower than

with D-ILU. The cost is much higher, though. Setting up the ILU factorization

takes as many flops as several iterations and is more difficult to parallelize
and vectorize (see Section 6.9.2). As the Eisenstat trick cannot be used, a

split ILU-preconditioned matrix-vector multiplication takes almost twice as

long as with D-ILU. The higher number of fast D-ILU iterations usually takes

less total time than the slightly smaller number of slower ILU iterations.

Furthermore, the matrices L and U have to be stored for ILU, taking as

much memory as the numerical values of A. In consequence, D-ILU is to be

preferred over ILU.

ILU does not solve a significant number of those ill-conditioned linear

systems that D-ILU cannot solve, so ILU cannot be regarded as a more robust

alternative preconditioner, either.

21 Proof. (See also Section 6.9.4.3). Assuming the nonzeros are uniformly distributed over the

matrix, so that the probabiUty that a,j
is nonzero ism/n2, let the average time to retrieve a nonzero

entry in the factorization be s. The average complexity of the inner loop of the factorization is

then 0(n (m/n2) s) = 0(ms/n), that of Ihe middle loop is 0((ma/n) n (m/n2)s) =
0(m2s2/n2), and that of the outer loop is 0((m2s2ln2) n) - 0(m2a2ln). Some data

structures (e.g., those that store L by columns and U by row, see Chapter 6) achieve s — Q(1).

4.4. A family of incomplete factorizations 81

4.4.5 Positional dropping

Since the exact LDU-factorization generates fill in the factors, we may expect

that the quality of an incomplete factorization could be improved by allowing

some limited amount of fill in the L and U factors. Several strategies to

select the fill entries have been proposed. Most of these selection criteria

can be characterized as positional dropping criteria, as the fill entries are

selected by their position in the matrix, in the graph of the matrix, or in the

elimination tree of the factorization process.

All these positional dropping criteria define levels of fill. The zeroth

level, ILU(0), is identical to no-fill ILU as described in Section 4.4.4. ILU(Ar)

includes all the fill entries of the levels 0 through A;, thus a superset of the set

of fill entries of ILU(A; - 1). ILU(n) is a full decomposition. Some of the

proposed definitions for the levels are listed below:

a. Position in the matrix [MvdV77]. ILU(Ar) includes all the fill occurring
either in the original sparsity pattern of A or in the Ar co-diagonals on

both sides of the main diagonal.

b. Position in the elimination graph of the matrix [Saa89]. The level

of a fill entry is defined as one plus the minimum sum of fill entries of

lower levels that give a nonzero contribution in (4.12) and (4.13).

c. Position in the elimination tree of the factorization process [BS87].

An implementation of the bordering factorization technique [Ort88]

as a sparse direct solver [BS87, BR90] identifies fill generated by the

entry a,3 as the set of graph entries obtained by chording the edge of

(i, j) along the elimination tree [Liu90] of the factorization. ILU(Ar) is

defined by exiting this chording loop in the algorithm after at most Ar

iterations.

In all these variants, the factorization can be split into a symbolic factoriza¬

tion step and a numerical factorization step, just as in full sparse direct solvers.

This saves time, and the data structure can be arranged for vectorization and

parallelization if many matrices with the same sparsity structure have to be

factorized. The co-diagonal version (a) was designed for matrices with a

regular or banded structure, and the other versions extend the idea to irregular

sparsity structures.

82 Preconditioning

The residual matrix R from Equation (4.22) is by construction zero in

those positions where L or U are nonzero:

l,j £ 0 or ut} £ 0 => rtJ = 0
.

The number of iterations for ILU(A;)-preconditioned methods usually
decreases monotonically with increasing level of fill A;. The cost generally
increases too strongly to make higher levels of fill attractive. In particular, the

storage requirements increase drastically with higher values of A;.

4.4.6 Numerical dropping

A dropping criterion determines which entries in the factors can be considered

as unimportant for the approximate factorization. Positional dropping criteria

ignore the value of an entry when deciding its importance. A numerical

dropping criterion looks at the magnitude of the value of a nonzero entry to

decide whether it has to be dropped or not.

The drop tolerance r controlsthe accuracy ofthe approximation, hereafter

abbreviated as ND(r). ND(0) should lead to a full factorization, ND(oo) to one

of the incomplete factorizations above. The numerical dropping criterion

decides what happens with finite and positive values for r. It decides whether

an entry ltJ or uv is important enough with respect to t.

An ideal numerical dropping criterion would be one like "an entry is

important if dropping it would make the condition number of A larger than

(1 + t)". Unfortunately, a global criterion like this is too complicated to

implement. A criterion like "an entry is important if its magnitude is larger
than t" is much easier to handle. Such a criterion can be called local absolute.

A local relative criterion like "an entry is important ifits magnitude is larger
than t times the norm of its row" can give more control without increased

cost.

Standard roundoff analysis [GvL83] is of little help for specifying the

details of the dropping criterion. For drop tolerances leading to acceptable

storage requirements, r-1 is usually smaller than quantities like n, |||j4|||,and
k(A), which are used in the error bounds.

A dropping strategy specifies when entries should be dropped. Unim¬

portant entries have to be sieved out during the factorization process, not only

4.4. A family of incomplete factorizations 83

at the end of a factorization. One strategy would be to clean each row as soon

as it is completed. However, practically each entry that is dropped earlier is

missed in later stages of the approximate factorization and thus modifies the

values obtained therein.

Efficiency considerations in the design of the approximate factorization

algorithm predominate the choice of the numerical dropping strategy, rather

than numerical considerations. The details of the algorithm used in the

experiments below, along with justifications for the choices, are discussed

in Section 6.9.4. For now, note that the algorithm does not vectorize or

parallelize, which gives it a major handicap in performance comparisons on

fast architectures.

The use of drop tolerances to save storage in sparse direct solvers is not

uncommon [DDSvdV91, AJ89]. The idea ofusing approximate factorizations

with numerical dropping to precondition iterative methods has been put

forward by several authors [AJ84, Saa88, YMJ+89, GSZ90], but none of

these approaches appears to be really efficient on large systems computed

in-core.

A smaller drop tolerance r leads to more fill and thus higher cost in storage

and time. The number of iterations are also reduced monotonically. The ratio

between cost (in terms ofstorage) and effect (in terms oftotal solutiontime) is

generally much better than with positional dropping preconditioners. On se¬

quential computers, numerical dropping often comes close to the efficiency of

D-ILU. Because ofthe low parallelism, however, numerical droppingis slower

than no-fill factorization preconditioners on high-performance architectures.

On very ill-conditioned linear systems, sequential ND(r) preconditioning
is often faster than vectorized or parallelized D-ILU or ILU preconditioning.

In particular, numerical dropping was found to solve all the systems that

D-ILU and ILU are unable to solve [PF91a], and this with moderate storage

requirements (usually around three to five times the number of memory

words an ILU preconditioner would take). Numerical dropping is a robust

preconditioner and should be used as an alternative to D-ILU when the latter

fails.

84 Preconditioning

4.5 Nested iterative solvers

According to Equation (4.2), Q~lv should be an approximation to A~lv.

In other words, Q~l is an approximate operator to the exact operator A~x.

Observe that any iterative solver can be seen as an operator Q" that approxi¬
mates A~1 within a certain tolerance, and inside some (Krylov or polynomial)

subspace. Why should we not use any iterative solver to precondition an

iterative method ?

Such an approach is called a nested iterative solver. In the remainder of

this section, the iterative solver used as preconditioning operator Q" is referred

to as the inner method, and the iterative method that is preconditioned by Q11
as the outer method. Nested iterative solvers using variants of GCR as outer

method and GMRES as inner method have been introduced and analyzed under

the name GMRESR by van der Vorst and Vuik [vdVV91]. Other variants for

the inner method were investigated in [Vui92]. Rutishauser's cgT-method is a

nested iterative solver (with CG as outer method and a Chebychev method as

inner method) for symmetric positive-definite systems, requiring some limited

knowledge about the spectrum [EGRS59]. We examine below under which

circumstances other methods can be used to play the outer and the inner roles.

There is a caveat to the nested iterative solver approach. In the theoretical

derivations of Chapter 3, A was always assumed to be a nonsingular matrix.

Preconditioning (on the right, for now) with an iterative solver, the operator

A = AQn qualifies only if QA is such a nonsingular matrix itself.

If the matrix-vector products occurring in the outer method involve only
the system matrix A itself (and not a splitting of it, like in the methods

presented in Section 3.1, nor the transpose AT, like in CGNR, BiCG, and

QMR), all an operator needs to resemble a matrix is linearity. Some iterative

methods are known to be scaling invariant, but the approximations QAv and

Qllw will in general not sum up to Qa(v + w). The following simple coding
rule in the implementation of the outer method makes the inner method look

like a linear operator:

Avoid all matrix-vector products that can be replaced by linear

combinations ofalready computed vectors

Note that performance considerations already guided us to avoid unnecessary

matrix-vector products most of the time in Chapter 3. Now we have to avoid

4.5. Nested iterative solvers 85

them by all means, so that, for instance, an implementation of GCR without

using Equation (3.33) is out ofquestion.

With the coding rule above, the result of the i-th matrix-vector product

arising in the iteration (which occurs at the (i - l)-th iteration in CG and the

GMRES-like methods, and at the [i/2j-th iteration in the CGS-like methods)

is always the first vector contained in /C,+i (A, ro) -/Ct(A, ro)22 and is used to

extend the basis for the sequence of Krylov subspaces. If this vector happens

accidentally to be linearly dependent of the previous matrix-vector products,
then the outer method appears to be in an invariant subspace of A. The outer

method then breaks down and needs to be restarted in the usual way (see

Section 5.3).

For the special nested solver combination called GMRESR, with GCR

(or Orthomin) as outer method and GMRES as inner method, it is proven

in [vdVV91] that breakdown can only occur in the case where the inner

GMRES process does not reduce its relative residual. It is also shown that the

method cannot break down at all if, in the event of such a stagnating inner

iteration, the preconditioner Q1' is replaced by AT (for one outer iteration).

Since CG "preconditioned" with AT is nothing but CGNR, this iteration is just
a single iteration ofCGNR, or LSQR. The breakdown prevention technique is

therefore called LSQR-switch. The authors suggest using the LSQR-switch

not only if the final relative residual norm of the inner method is exactly one,

but also if it is just slightly smaller than one.

For preconditioning by an iterative method, the transposed matrix op¬

erations cannot be defined, the preconditioner cannot be split, and (Q")
cannot be used in line 5 ofAlgorithm 4.1. Among the iterative methods from

Chapter 3, only the right-preconditioned versions of GCR, Orthomin, CGS,

Bi-CGSTAB, and BiCGStab2 can therefore be used as outer methods with

nested preconditioning.

For most linear systems in device simulation that can be solved with a

fast D-ILU preconditioned Bi-CGSTAB solver, nested solvers do not seem

to bring any improvement. For very ill-conditioned systems, they may be an

alternative to numerical dropping preconditioning, especially on architectures

relying on high parallelism (see Section 6.13.4).

^The initial computation of70 :— b — Ax0 is also nothing but extending the zero-dimensional

£o(A,70) 3 {0}into£i(.4,~o) = spanjr'o}.

86 Preconditioning

4.6 Other preconditioners

Besides incomplete factorizations and nested iterative solvers, there are of

course other ways to approximate A~l that can be used for preconditioning.
This section reviews briefly a few other choices.

Incomplete LQ-factorizations have been studied by Saad [Saa88]. in¬

complete explicit representations of the inverse matrix A~l itself have been

analyzed by Kolotilina, Nikishin, and Yeremin [KNY91].

Polynomial preconditioners approximate the inverse by a low-order poly¬
nomial in A. The coefficients are usually obtained through some knowledge
about the spectrum of A. These preconditioners usually lead to higher iteration
numbers than incomplete factorizations, although the preconditioning oper¬

ation requires much more computation. In spite of this, they have received

considerable attention in the last few years for use on vector-computers and

particularly on massively parallel computers, as they rely only on sparse
matrix-vector products, which are much easier to parallelize than the solution

of sparse triangular systems required in each application of an incomplete
factorization preconditioner (see also Section 6.8). Note that using a nested

iterative solver as preconditioner is essentially the same idea, but with a

polynomial that varies from iteration to iteration.

Sparse matrices in finite-element applications are in fact the sum ("as¬

sembly") of a large number of small dense matrices. Each of these small

dense matrices describes the discretization inside a single element, and has

entries for each pair of corner points of this element. Element-by-element
preconditioners construct an approximation for the inverse of the big sparse
matrix by combining the exact inverses of the element matrices.

Blockpreconditioners try to group strongly dependent variables into blocks

and construct an approximation of the inverse that uses the inverses (obtained

through dense, direct sparse, or iterative solvers) of such strongly coupled
blocks. Alternate block factorization preconditioning (ABF) is a block Jacobi

preconditioner for applications where several unknowns residing on the same

grid point of the discretization are blocked together [BCCS89].

4.7. Comparison 87

4.7 Comparison

4.7.1 Criteria

The differences between preconditioners can be stated in the followingcriteria:

1. The storage requirements.

2. The time for setting up the preconditioner (this occurs once for the

solution of one linear system).

3. The time for applying the preconditioner, computing v :— Q~lv for a

vector v (this occurs once or twice in every iteration).

4. The effect on the condition of the matrix, expressed by the number of

iterations to achieve the desired accuracy with a given method.

Criterion 1 is always a hard condition: either the preconditioner fits into

the available memory, or it does not23. Criterion 4 can be as hard on some

ill-conditioned systems: a given preconditionermay not lead to convergence at

all, no matter how many iterations are tried. In less stringent cases, Criteria 2,

3, and 4 boil down to one soft question: How long does the solution process

take?

Criterion 4 depends largely on the numerical properties of the linear

system in question. For well designed preconditioning methods, the number

of iterations usually decreases with increasing storage and CPU cost. There is

a trade-off between the number of iterations and the time per iteration.

The optimum answer to this trade-off usually varies with the machine on

which the solver is running. The relative weights of Criteria 2,3, and 4 in the

execution time may differ considerably for different machine architectures.

See Sections 6.8,6.9, and 6.13.

23The criterion is still practically as hard on virtual memory machines. At each application
of the preconditioner, every entry of it is referenced exactly once. If the preconditioner fits

into virtual memory, but not into physical memory, a page brought into physical memory at one

application of the preconditioner will be replaced before it is reused in the next preconditioner

application. The program will page fault over the entire memory allocated to the preconditioner.
This results in thrashing [SP88]: The program spends most of its time paging, and (wall clock)

execution time increases dramatically (by up to a factor of SO).

88 Preconditioning

For different iterative methods, the variation is minor, the general effect of

the preconditioner is roughly the same on all the methods considered.

4.7.2 Spectral analysis of preconditioned matrices

Definition. The scalar X is an eigenvalue ofthe matrix A ifand only if there

is a nonzero vector v, called eigenvector ofA, such that

Av = Xv
. (4.23)

The set ofeigenvalues is called the spectrum of A.

As Krylov subspace methods access the matrix only in matrix-vector

products, the spectrum of the system matrix has to play a major role in any

theoretical analysis of such iterative methods. Knowledge of the spectrum

alone, however, is insufficient to explain the convergence behavior of an

iterative method on a linear system. The distribution of eigenvectors in

the right-hand side vector (and in the dual initial residual ro. for BiCG and

variants) determines the sequence of iterates together with the spectrum.

According to Section 4.1, preconditioning should make the matrix "re¬

semble" the identity matrix as much as possible. The only eigenvalue of the

identity is 1. A good preconditioner can thus be expected to squeeze the

spectrum together around unity.

40
20

0

-20

-40

' I

fl8eB>
111111111111111111111111111111111111111 n 11111111111111111M11111111111M11

0 100 200 300 400 500 600 700 800

Figure 4.1: Spectrum of a sample matrix without preconditioning. Please

read the warnings about the validity ofthis plot in the text ofSection 4.7.2.

Figure 4.1 shows the spectrum of a matrix occurring in the plug-in solution

of a hole continuity equation in a 2-D simulation on a grid with 2674 points
inside the 2-D device simulator Gensim [Btir90]. The plot represents the

distribution ofeigenvalues in the complex plane. Figures 4.2 and 4.3 show the

spectrum of the preconditioned matrix with different preconditioners (in split

4.7. Comparison 89

position). Note that the scale in Figure 4.1 is different from that in Figures 4.2

and 4.3. Table 4.1 lists the extremal eigenvalues.

precondi¬ Re(A) Re(A) |Im(A)| over¬ itera¬

tioner = nun = max = max head tions

none 0.029 778 254±16.6i 0% 887

Jacobi 0.0036 1.97 0.93±0.14i 0% 118

SSOR 0.0095 1.01±0.0054i 0.95±0.027i 0% 59

D-ILU 0.013 1.89 0.98 ± 0.043i 15% 57

ILU 0.018 1.90 0.98 ± 0.038i 100% 55

ILU(l) 0.022 1.81 1 ± 0.022i 155% 51

ILU(2) 0.023 1.77 0.98±0.021i 195% 46

ND(O.l) 0.040 1.31 1± 0.001 li 106% 19

ND(0.01) 0.22 1.22 1 ± 0.00014i 185% 8

Table 4.1: Extremal eigenvalues of a matrix with different preconditioners.
The second and the third column list the eigenvalues with minimum and

maximum real part; thefourth column lists the pair ofconjugate eigenvalues
with extremal imaginary part; the fifth column lists the relative storage

overhead, expressed as the ratio of the amount offloating-point numbers to

represent thepreconditioner over the number ofnonzero entries in the original

matrix; and the sixth column lists the number of Bi-CGSTAB iterations to

achieve a relative accuracy of 10~10 on the entire linear system when this

preconditioner is used in split position.

The approach in this section has several serious weaknesses:

• The distribution of eigenvector components in the right-hand side is

ignored (see the beginning of this section).

• I do not know how typical the spectral distribution is. The spectrum

of matrices in device simulation is always symmetric with respect to

the real axis (because the matrices have no imaginary components),
and the real part of most eigenvalues is positive (although negative real

eigenvalues do occur), but the spectral analysis of larger matrices or

of a larger set of samples would take a huge amount of computational
resources and was therefore not undertaken.

• The displayed values are, in fact, only e-pseudo-eigenvalues [Tre], that

90 Preconditioning

i i i i i ' i i i n i ' i i i i i i ' i i i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Jacobi

0.10

0.05
0.00 t
-0.05
-0.10 J

I I I ' I ' I ' I ' I ' I ' I ' I I ' I ' I ' I ' I ' I I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

SSOR

0.15

0.10

0.05
0.00

-0.05

-0.10

-0.15

I I I I I I I I I . I I I I I I I I I I

I I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

D-ILU

1 I I ' I ' I ' I ' I ' I I ' I I ' I ' I ' I ' I I ' I ' I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ILU

Figure 4.2: Spectra ofthe matrix ofFigure 4.1 with different preconditioners
based on no-fillfactorizations.

4.7. Comparison 91

0.15

0.10

0.05
0.00
-0.05
-0.10

-0.15

I I I I I I I

1 ' I I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ILU(l)

I I I I I I I I I I I I I I I I I I I

•BO >B»OB ©• O W •SQOOaOBIiBBMMBBBBBBSSSSSHH^^^BBIBSJBBMaBBBBBBMOaiBB'tBO1000 0 0 •

I I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ILU(2)

I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ND(O.l)

0.10
0.05

0.00

-0.05
-0.10 I

I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

ND(0.01)

Figure 4.3: Spectra of the matrix of Figure 4.1 with different precondition¬

ers based on factorizations with parameter-controlled fill, using positional

dropping [ILU(k)j or numerical dropping [ND(t)J.

92 Preconditioning

is, the eigenvalue Equation (4.23) should be relaxed to

\\(\l-A)-'\\>r*.

The minimum value of the tolerance e depends on the floating-point

accuracy of the EISPACK [SBD+76] implementation used to determine

the eigenvalues. Our problem seems to be at the limits of the numerical

stability of these routines, as the Cray Y/MP library implementation
failed on some the matrices, but the experiments could be carried out

completely on a Convex C-220 (which has one and a half digits more

accuracy than Cray machines). Note that iterative eigenvalue solvers

rely on the same basic algorithms as iterative linear system solvers and

would deliver only a very biased basis for analyzing the latter.

For these reasons, the spectra displayed in Figures 4.1,4.2, and 4.3 should

be regarded only as illustrations, and not be misused for generalizing con¬

clusions. The following sections summarize experience with preconditioners
on many linear systems that occurred in the application of several device

simulators over almost two years.

4.7.3 Factorizations without fill

For the preconditioners described in Sections 4.4.1 to 4.4.4, Criteria 1,2, and 3

can be (mostly) estimated by the sparsity structure of system only. Table 4.2

expresses these costs in terms of the number of unknowns n and the number

of nonzeros m in the original matrix. An application of the preconditioner
is usually performed together with a matrix-vector multiplication, so the time

for this combined operation is listed as well.

For most cases, the number ofiterations needed with the preconditioners in

Table 4.2 decreases from left to right, as expected. Because of the applicability
of the Eisenstat trick and the moderate set-up cost, D-ILU generally wins.

D-ILU was observed to be the most efficient preconditioner for the large

majority of the linear systems occurring in device simulation.

4.7.4 Factorizations with limited fill

The approximate factorizations with parameter-controlled limited fill presented
in Sections 4.4.5 and 4.4.6 exhibit the anticipated monotonicity: the more fill

4.7. Comparison 93

resource cost Preconditioner

for... Jacobi SSOR D-ILU ILU

storage 0 0 n m

set-up time 0 0 \m 0{m2/n)
time for Q~lv n 2m 2m 2m

time for AQ~lv 2m 3m 3m 4m

time for Qf1AQ21v 2m 2m 2m 4m

Table 4.2: Resource requirements for different preconditioners, for a linear

system with n unknowns and m nonzero entries in the matrix. Storage
is expressed by the number offloating-point cells, time by the number of

floating-point operations. The storage cost for one vector is n and for the

original matrix is m. One linear operation on vectors costs n time units, one

unpreconditioned matrix-vector multiplication costs 2m. Minor terms are

ignored, and m~^> nis assumed.

allowed (i.e., the more storage is used), the longer the factorization takes, and

the fewer iterations are needed.

On not too small and not too ill-conditioned systems where D-LLU

preconditioned methods converge in a reasonable number (like 0(y/n))
of iterations, these limited-fill preconditioners are not competitive. We

therefore concentrate here on ill-conditionedcases were no-fill preconditioners

converged very slowly or not at all.

Figure 4.4 plots the solution time in function of the storage requirements
for such a resilient case. The linear system occurs in the solution of the hole

continuity equation in the simulation of an UV diode on a very large 2-D

grid with more than 20k points. All preconditioners presented in Section 4.4

could be run to convergence, but except for numerical dropping, they all

needed several thousand Bi-CGSTAB iterations to converge. Jacobi, SSOR,

and positional dropping (based on the elimination tree) took too long to fit in

the plotting area.

Numerical dropping was the only preconditioner that solved in a reasonable

time all the linear systems that occurred in the daily use of three device

simulators over the last year. For ill-conditioned systems that the other

preconditioners were able to solve, but needed several hundreds or thousands

of iterations to converge, numerical dropping was often faster.

94 Preconditioning

Time [seconds]

v-\ 1 1 1 1 , 1 1 1 , ,

0123456789 10

Relative number ofnonzeros

Figure 4.4: Storage size (number of off-diagonal nonzeros relative to those

in A) and total solution time (in seconds on a Convex C-220)for Bi-CGSTAB

with different preconditioners on a very ill-conditioned linear system.

With smaller drop tolerances, the density of the factors increases, and the

number of iterations decreases. The increase of the number of nonzeros in

the factors implies also an increase of the factorization time and the time per

iteration. This is why the total solution time as a function of the number

of nonzeros increases again (from ND(0.0002) on in Figure 4.4) after the

initial decrease. The drop tolerance r for optimum time efficiency was

generally between 10-2 and 10-3. The number of nonzeros in the ND(10-2)
preconditioner was usually between one and three times the number m of

nonzeros in the original matrix A.

4.7. Comparison 95

The results of positional dropping based on the elimination tree were

disappointing; positional dropping was never more efficient than no-fill pre¬

conditioners and did not solve a higher number of ill-conditioned cases.

Results with other variants of positional dropping are not much more encour¬

aging [Saa89].

4.7.5 Nested iterative solvers

A particular nested iterative solver is defined by its outer method (and possibly
its back-vector parameter £), its inner method (and possibly its parameter),
the maximum number of inner iterations, the tolerance on the inner solver,

the preconditioner to the inner method and its position, and the stagnation

handling strategy. Moreover, this is only the list for one level of nesting; the

idea of nested preconditioningcan be applied recursively to the inner method.

I did not search exhaustively over this huge parameter space, but I could not

find a nested solver combination that would beat the fastest non-nested solver

(usually split D-ILU preconditioned Bi-CGSTAB) on a set of moderately
ill-conditioned linear systems, although they came close within a factor of two

in speed. See also Section 6.13.4.

Since preconditioned matrix-vector products which involve several inner

iterations are much more expensive than any linear operations, and since the

number of outer iterations is rather low, it makes sense to use an outer method

that is economical in matrix operations. GCR and Orthomin proved to be

the best choice for the outer method. The convergence speed of the inner

iteration usually degraded after a few outer iterations. The erratic convergence

behavior of CGS made the latter a bad choice for the inner method.

Nested solvers were sometimes faster than D-ILU preconditioned methods

on very ill-conditioned systems. Figure 4.5 shows some experiments with

GCR(oo) preconditioned by Bi-CGSTAB with split D-ILU preconditioning
on the same linear system and the same machine that was used for Figure 4.4.

For the experiments in Figure 4.5, the tolerance on the inner solver and the

maximum number of inner iterations were varied. The different line styles and

mark shapes in Figure 4.5 indicate the inner tolerance e^mer, that is, the factor

by which the inner solver should reduce the inner residual norm. The tiny
numbers inside the marks in Figure 4.5 indicate the maximum number of inner

iterations imax- The preconditioning operator Q11 applied to a vector v delivers

96 Preconditioning

Time [seconds]

1000-

900-

800-

700-

600-

500

400-

300-

.0

Inner tolerance:

—D D— as outer

O O- 0.1

—O O— 0.99

50 100

—1 1 1

150 200 250

Number ofouter iterations

Figure 4.5: Time (vertical axis, in seconds of a Convex C-220) and number

ofouter iterations (horizontal axis) for different choices ofthe inner tolerance

(line style) and the maximum number of inner iterations (tiny numbers in

the marks) in a nested iterative solver. The outer method was GCR without

restarting, the inner method was split D-ILUpreconditionedBi-CGSTAB, and

the linear system was the same as in Figure 4.4.

a preconditioned vector tJ, = Qllv, where the number of inner iterations i is

selected such that

\v- Avj\

IMI
^ dinner Or I — In

As expected, the number of outer iterations decreases when the number of

inner iterations (the tiny numbers inside the marks in Figure 4.5) is increased.

The back-vector storage size is proportional to the number of outer iterations

4.7. Comparison 97

in GCR(oo) (note therefore the analogy between Figures 4.5 and 4.4.). The

best performance is obtained when the number of inner and outer iterations

are roughly the same.

The nested solver converges well even though on many of the outer

iterations the inner solver does not reduce, but increase its relative norm.

It happens often that no residual in any iteration of the inner Bi-CGSTAB

is smaller in norm than the right-hand size. It is thus not surprising that

convergence is also obtained if the tolerance eima of the inner solver is not

the same as the outer tolerance (as suggested in [vdVV91]), but only slightly
smaller than one (like 0.1 or even more), so that the inner solver reduces its

residual norm only by a factor of ten or less. Such a weak inner tolerance

usually increases the number of outer iterations, but also improves the overall

performance. On our example, this can be seen in Figure 4.5 by comparing
the different lines corresponding to different inner tolerances.

Leer - Vide - Empty

5

Convergence Behavior and Control

5.1 Optimality for unsymmetric systems

Unrestarted GMRES constructs in its k-th iteration the optimal solution (the

solution minimizing the Euclidean norm of the residual) in the fc-dimensional

Krylov subspace ICk(A, ro). It uses k matrix-vector products, which is the

rmmmumnumoertoconstructabasisin/Cjfc(v4,r()). Theorem5.1 follows.

Theorem 5.1 GMRES(oo) uses the minimum number of matrix-vector prod¬
ucts to construct a solution that minimizes the residual in fCk(A, ro).

Moreover, the memory consumption and the number of other operations

(besides matrix-vector products) is lower for GMRES(oo) than for most other

methods having the same minimization property (like GCR(oo)). GMRES

is therefore often treated as the optimal iterative method for unsymmetric

systems.

One should be very aware of the fact that GMRES(oo) is optimal only
in the sense of Theorem 5.1. There are two reasons why GMRES cannot be

called the "fastest" or even "best" method in general:

1. The memory requirements increase by one vector in each iteration. After

a certain number ofiterations, the temporary storage (for the orthonormal

99

100 Convergence Behavior and Control

basis vectors) used in the solver'algorithm exceeds considerably the

storage needed to describe the problem (the matrix, its structure, and

the right-hand side).

2. In each iteration the search direction is orthogonalized to all the previous

directions, so that each iteration takes more time than the previous
one. After a certain number of iterations, linear operations on vectors

dominate over matrix-vector products.

It should be clear now that methods with limited resource requirements
have to be preferred over GMRES(oo) in some cases, even if they require
more matrix-vector products. GMRES(oo) may not be the method of choice

if one of the following is true:

• A matrix-vector product takes no more time than a moderate number (a

few dozen) of linear operations.

• The number ofGMRES(oo) iterations is high (higher than a few dozen).

•• Memory requirements are critical (it is inconvenient or impossible to

store more than a few dozen vectors).

5.2 Experienced optimality

The imprecision at the end of the previous section was deliberate. There is

no hard criterion to predict which method and which preconditioner will be

appropriate for a given case. For those methods where theoretical bounds

on the convergence speed exist, these bounds involve quantities that are

unknown or even more expensive to obtain. Furthermore, designing good
preconditioners for systems without any nice properties is more an art than a

science, and is somewhat reminiscent of black magic. Until iterative solver

design passes beyond the age of alchemy, experience takes the place of

knowledge.

Experience with iterative solvers in device simulation [BCD+89, Pin90,

HPWF91, PF91a, HSST92] shows that the time for linear operations cannot

be neglected completely, iteration numbers are high, and memory is tight,
so GMRES(oo) is often not optimal. The loss when restarting or truncating
GMRES-like methods is substantial, and a good value for the back vector

5.3. Breakdown control 101

parameter £ is hard to find [VvdV92]. Biconjugate Gradients and variants

are generally recognized to be better in device simulation. Bi-CGSTAB has

recently emerged as the leading method in this class.

Incomplete factorizations, ILU in particular, are almost the only type of

preconditioner used for iterative linear solvers in device simulation. D-ILU

appears to give the best compromise between execution time per iteration

and number of iterations, for most of the cases. There were some very

ill-conditioned cases that could not be solved at all until recently, but they
have now been solved using numerical dropping.

5.3 Breakdown control

Two scalar divisions appear in Conjugate Gradients (lines 6 and 8 in Algo¬
rithm 3.2 on page 33). Because A is assumed to be positive definite, the

denominators r^^rk-x and p\ Apk cannot be zero unless the algorithm has

already converged to the exact solution.

As was mentioned in Chapter 3, some of the methods for unsymmetric

systems are not safe from zero denominators. Such a situation, where a

zero denominator occurs even if the exact solution is not yet found, is called

a breakdown. The following types of breakdown can be identified in the

methods presented:

1. Coincidence of minima. The approximation vector that minimizes the

residual in Kk{A, ro) also minimizes the residual in K,k+i(A, ro), so

that ak = 0 in GCR and Orthomin. The next search direction pk+i
is then selected to be the zero vector, so that the computation of ak+\

fails.

2. Invariant subspace. ICk(AT,fo) is AT-invariant, so that the new

dual residual fk in BiCG is a linear combination of all the previous
dual residuals, and thus orthogonal to r^lCG. The denominator in the

computation of the line search parameter ak is zero, in BiCG as well as

in all biorthogonalization methods derived from it.

3. Orthogonal dual residual. The residuals of the primal system (1.1)
and the dual system (3.45) are orthogonal to each other. The biorthogo¬
nalization methods break down at a division by zero in the computation
of the biorthogonalization scalar pk+\

102 Convergence Behavior and Control

4. No one-dimensional minimization needed. The one-dimensional

minimum starting from rk+1 in Bi-CGSTAB and BiCGStab2 coincides

with rk+i, so that the line search parameter uik is zero. The degree of

the polynomial fit (A) is only k - 1 and not k, so that it cannot be used

to compute the leading coefficient of the k-th order polynomial $*.

The methods break down at the computation of the biorthogonalization

scalar/3jt+i.

5. No two-dimensional minimization needed. The two-dimensional

minimum starting from rJfe+i in BiCGStab2 coincides with the one-

dimensional minimum along (rfc+i — rfc+i). The coefficient r)k is zero,

the polynomial Slk{A) has too low degree, and breakdown occurs at the

computation of pk+\.

Breakdown through coincidence of minima (type 1) occurs quite often

when GCR or Orthomin are applied to ill-conditioned systems, especially
when truncated or restarted algorithms are used (see, for instance, the example
in Section 3.6 and Figure 3.3). GMRES, which avoids breakdowns, thus has

a true advantage in this respect.

Breakdowns in biorthogonalization methods (types 2 to 5) are far less

frequent. In the last one and a half years, the daily use of Bi-CGSTAB (and

the occasional use of CGS, BiCG, and BiCGStab2) brought up no breakdown

case of type 4 or 5 and only one breakdown of type 2. Breakdown by
accidental orthogonality (type 3) does occur from time to time, but certainly
not as frequently as type 1 does in variants of GCR.

In exact arithmetic, breakdowns of the types 2 and 3 would occur at the

same iteration in all biorthogonalization methods, even ifdifferent polynomials
are used. If the dual initial residual fo is selected equal to the primal initial

residual ro (as suggested in Equation (3.60) on page 51), a breakdown of type
2 or 3 may manifest itself already in the one-dimensional minimization step
ofBi-CGSTAB and BiCGStab2, leading to uk = 0, or in the two-dimensional

minimization step ofBiCGStab2, leading to singularity for the matrix (Si Sk).

All breakdowns that occurred in practice were fixed by restarting the algo¬
rithm, taking as starting iterate the approximation from before the breakdown.

Most of the breakdown conditions can also be circumvented by refor¬

mulating the algorithm. GMRES(^) is algebraically equivalent to GCR(^),

except that it cannot break down as type 1. Breakdown of type 2 in

5.4. Convergence criterion 103

biorthogonalization methods is incurable, the linear system just cannot be

solved with this choice of fo. Several reformulations of BiCG, CGS, and

QMR that avoid breakdown of type 3 have been suggested, based on for¬

mal orthogonal polynomials (unnormalized Lanczos algorithms [Gut90b],

look-ahead Lanczos [Gut92, FGN90, Jou90] and BiCG [Gut90a] algorithms,

QMR with look-ahead [FN91], methods of recursive zoom: MRZ [BZS91]

and MRZS [BS91]). The look-ahead approach extends to near-breakdown,

where denominators are small but nonzero, but the set of tolerance param¬

eters to decide when a quantity is "small" needs more tuning to cope with

ill-conditioned systems as those in device simulation. Substituting a small

nonzero value for uk or r)k would not hurt the Bi-CGSTAB and BiCGStab2

methods, but be sufficient to avoid the breakdown types 4 and 5.

5.4 Convergence criterion

A convergence criterion decides whether the accuracy of the current ap¬

proximation is sufficient, so that the iteration can be terminated. The client

application for the iterative solver usually prescribes a convergence tolerance

on the approximation error. The way this tolerance is interpreted defines the

convergence criterion. Variants include what type of norm is to be used,

whether a norm should be absolute or relative to another norm, and whether

the residual rk = b - Axk or the solution error ck = x* - Xk should be used.

A tolerance on the solution error ek specifies how close to the exact

solution the approximation xk should be. A relative criterion is given as the

quotient of the error norm over the norm of the solution.

A tolerance on the residual rk specifies how well the approximation xk

should solve the system. A relative criterion may be defined as the quotient
of the final residual over the initial residual norm, or over the norm of the

right-hand side. If the initial approximation to the solution is xq = 0, these

definitions are equivalent.

Convergence criteria based on the residual are much more popular than

solution error criteria. The reason is that the value of the residual can be

computed at any time (through Equation (1.5)), while some norm of the

solution error must be estimated.

104 Convergence Behavior and Control

5.4.1 Using the residual

For most iterative methods, the residual vector is available in every iteration,

as it gets updated along with the solution vector. The evaluation of a residual-

based convergence then requires calculation of the norm of this vector, which

is a vector dot product for Euclidean norms.

GMRES does not keep an up-to-date residual vector, but the Euclidean

norm of the residual is directly available through Equation (3.44). For other

residual norms, the residual vector has to be constructed at considerable cost

through Equation (3.41). Therefore, the convergence criterion should not

be evaluated at each iteration, even if this wastes a few iterations before

convergence is confirmed at the end. It is advantageous to evaluate the

convergence criterion at each restart, where the residual has to be computed

anyway.

5.4.2 Using the solution error

Since the exact solution error vector ek is unknown, we have to find an

estimate for it.

Provided that the current approximate xk is available in each iteration

(which is again not the case in GMRES), the latest solutionupdate (xk-xk-\)
leads to a cheap estimator (at 5n flops) for the relative solution error which is

l|s*-*t||
„

||g*-s*-i||
(5 n

IMI
~

11**11
'

As Figure 5.1 shows, this estimate is much too optimistic, especially in

phases where the iteration converges slowly (this is independent of the choice

ofthe method). The exact correlation between the convergence on the solution

error and the residual is too expensive to evaluate (it depends on how much

which eigenvector components of the residual are damped in which iteration).

Still, we can use the behavior ofthe residual norm as a cheap hint (at 2n flops)
for the convergence speed in the solution error norm. Our improved estimator

now samples the approximation to the solution only if the residual norm has

changed by more than a given factor a.

5.4. Convergence criterion 105

Relative norm

80

Iterations

Figure 5.1: The relative solution update norm
Hj£k-£k-l" (thick line) used as

an estimatefor the true solution error' • (thin line). The relative residual

norm Kjw (dashed line) is given as an indication. Split D-ILUpreconditioned

Bi-CGSTAB was used to solve the same problem as in Chapter 3 (see also

Figure 3.7).

More precisely, assume the last estimate for the error norm dates from

iteration k. The next estimate is then

\x — Xk+]\\
.,

\\Xk+]-Xk\

\xk+A
(5.2)

at iteration (k + j), where j is selected such that a||rfc+J|| < ||rfc||. To deal

with diverging iterations, an estimate is also produced if 11r^ +Jj| > a||rjt||.
Fast zigzagging is flattened through a minimum distance between estimation

iterations, j > jmm, and a maximum j < jmax avoids loss of control. An

estimation strategy based on Equation (5.2) is thus characterized by the

parameter triplet (a, jmm, jmax). This class includes our first estimator (5.1)

with parameter set (1,1,1).

106 Convergence Behavior and Control

Relative norm

4

estimated

solution

10"

10
,-14

20 40 60 80

Iterations

Figure 5.2: A better estimate (thick line) for the true solution error (thin

line). The strategy is guided by the relative residual norm (dashed line), and

is characterized by theparameter set (a, jmm, jum) = (2,3,20) (see text).

On a small set of test examples (where the exact solution x* was com¬

puted with a direct method or with a different preconditioner), as well as in

experiments with the Giant nonlinear solver [Deu90] (see also Section 2.4)

inside the device simulator SrMUL [KMFW91], the parameter set (2,3,20)
appeared to be a good compromise between estimation accuracy and compu¬

tation overhead. Figure 5.2 shows the quality ofthis estimator on our standard

test example.

5.5. Zigzagging and cancellation 107

5.5 Zigzagging and cancellation

The zigzaggingconvergence behavior ofBiCGand CGS can cause cancellation

effects. A needle-shaped peak in the convergence history is nothing else but

one or more iterations where large updates are added to the residual vector and

the approximation to the solution vector, followed by one or more iterations

where the almost opposites of these updates are added. This is the classical

case of cancellation: the accuracy of lower-order digits gets lost.

On our standard test example from Chapter 3, we have to select an

(unrealistically) tighter convergence tolerance to discern these cancellation

effects in Figure 5.3. Knowing that the experiments have been run on a

machine with 64-bit IEEE arithmetic and a unit roundoff error of 2 • 10"16,
the BiCG solver has lost the two last digits of accuracy, and the CGS solver

has lost four digits. The accuracy of the smoother Bi-CGSTAB solver is of

the order of the unit roundoff.

Observe now that the highest peak of the BiCG residual is two orders

of magnitude higher than the initial residual (at iteration 24, see Figure 3.5

on page 52), and the highest peak for CGS is four orders higher (also at

iteration 24, see Figure 3.6 on page 57).

Cancellation can be avoided by restarting the algorithm whenever the

residual norm exceeds the right-hand side norm by a small factor (like 10)

[vdV89, HPWF91]. The restarted method still yields a well converging
process, typically at the same convergence speed as the original algorithm.
Figure 5.4 shows how the restarted algorithms (BiCG was restarted at itera¬

tion 24, CGS at iteration 7) are not affected by cancellation anymore.

A high peak in the convergence history may also be regarded as a near-

breakdown (see Section 5.3). Restarts on large relative residual norms is then

just another breakdown avoidance strategy, and the restart condition factor

delimits the range of near-breakdowns.

5.6 Rounding error sensibility

Roundoff errors in the computation of vector dot products affect the con¬

vergence behavior in Krylov subspace methods, as the scalars ensuring
orthogonality are quotients of such dot products. Machine-dependent vari-

108 Convergence Behavior and Control

Figure 5.3: Cancellation effects through zigzagging in BiCG and CGS. For

each algorithm, the thin lower line plots the norm of the updated residual

vector, and the thick upper line plots the norm of the true residual, computed

byplugging the current approximation to the solution into Equation (1.5). The

gray area between the two curves shows the cancellation error. The curves

for Bi-CGSTAB are given as an illustration.

5.6. Rounding error sensibility 109

Relative residual norm

1

200

Iterations

Figure 5.4: Avoided cancellation by restarting BiCG and CGS.

ations in the floating-point formats, the arithmetic method, the individual

rounding, the format for temporary results, and the evaluation order lead to

differences in the roundoff for vector dot products.

As a result, iterative solvers behave differently on different machines (and

even in different runs on the same machine, if the evaluation order is not

deterministic, see Section 6.5). Usually, the iteration process just walks a

slightly different path to the solution. Often, the solver requires one iteration

more or less to meet the convergence tolerance. In some critical cases, the

differences in the number of iterations is bigger, or the solver converges on

one machine and does not on another. Exact breakdown can often only be

reconstructed on the same machine, or on a machine with exactly the same

arithmetic.

110 Convergence Behavior and Control

The fact that methods converge anyway, even if they show some sensibility
to roundingerrors by generating different iterates, is a sign ofrobustness of the

approach. Among the methods in Chapter 3, Bi-CGSTAB and BiCGStab2 are

particularly sensitive to roundoff in dot products. Even cases where reduced

precision in dot products had a positive effect of Bi-CGSTAB's convergence

have been observed [DvdV91].

The residual norm estimate of GMRES, Equation (3.44), is also affected

by rounding errors accumulated over the iterations. This is usually not critical

as an exact residual norm is computed at each restart. The effect can be seen

in the 20-th iteration of GMRES(20) in Figure 3.4. Observed cases where the

theoretical upper bound on the residual norm in QMR was smaller than the

true residual norm may also be due to accumulated roundoff errors.

5.7 Automatic adaptation

We have seen that their is no single fastest iterative solver for all possible
linear systems. For a given linear system, determining the fastest iterative

solver can usually only be done a posteriori, or costs more time than this

solver would take itself. Generally, the solver will be used that appeared to be

the fastest on the majority of systems within the same class. If this solver is

not optimal for a few of the many systems to be solved in one application run,

but within a small factor (up to an order of magnitude in time) in comparison
to the best solver for these particular systems, it does not really matter.

The situation is more complicated if one system cannot be solved at all

by the fastest solver, or if the fastest solver happens to be very slow on this

system. Using a stabler solver that can cope with this particular system may
cost huge amounts of time on the other linear systems. The usual way to

deal with this situation is to use the faster solver anyway, but stop it after

a maximum number of iterations, even if the desired accuracy has not been

achieved. Sometimes, additional outer Newton iterations in the nonlinear

solver or even smaller time steps to solve the transient problem can overcome

insufficient accuracy in the linear solver. This approach does not always
succeed [HPWF91], however, and if it does, it is quite inefficient as well.

A better approach is to switch to the stable solver after the fast solver

has exceeded a maximum number of iterations without achieving the required

accuracy. Figure 5.5 shows this automatic adaptation on an example. The

5.7. Automatic adaptation 111

Relative residual norm

it

D-ILU

followed by
ND(O.Ol)
i—i

150

Time [seconds]

Figure 5.5: Automatic switching from one iterative solver (fast D-ILU

preconditioned Bi-CGSTAB) to another (stable ND(0.01) preconditioned

Bi-CGSTAB), as thefirst solver is incapable ofsolving the system.

fast solver, using D-ILU preconditioning only (thin line in Figure 5.5) cannot

solve this particular linear system. ND(0.01) preconditioning does solve

this system. The solver package switches to stable numerical dropping
preconditioning after 150 fast D-ILU preconditioned iterations (arrow in

Figure 5.5), using the 150-th approximation of the fast solver as initial guess

for the stable solver (thick line in Figure 5.5).

The iteration number at which the switching should take place depends
on the problem size and the relative performance of the fast and the stable

preconditioners. In practical experiments, it appeared that this number is

best chosen to be such that the total time for the D-ILU iterations before the

switching is about twice the factorization time for the numerical dropping

preconditioner.

Of course, this is only a simple approach to automatic adaptation. An a

priori decision on which solver to use would be desirable. See Section 7.3 for

possible future realizations.

112 Convergence Behavior and Control

5.8 Termination control

A termination control mechanism evaluates the convergence criterion (see
Section 5.4) and terminates the iterative solver when it has converged. Also,

the solver is usually terminated if the convergence criterion is not fulfilled

after a given maximum number of iterations. The control mechanism should

also take care of restarting, to save storage (see Sections 3.5 and 3.7), to avoid

breakdown (see Section 5.3), or to avoid cancellation (see Section 5.5).

The mechanism controls the iterative solver in the sense that it makes it

compute residual vectors, approximations to the solution, and corresponding
norms only when they are needed, thus managing the computational resources

efficiently. In an experimental environment, the mechanism should also

provide monitoring features.

6

Implementation

It is straightforward to take one ofthe iterative methods presented in Chapter 3,

one of the preconditioners presented in Chapter 4, and one of the termination

control mechanisms presented in Chapter 5 and implementthem on a computer.
In any decent programming language, such an implementation including the

preconditioner set-up, the preconditioned method, and the supportingroutines
for sparse matrix-vector multiplication and solution of sparse triangular

systems could be done in three or four pages of code.

However, an efficient implementationwhich exploits architectural features

such as vector operations and parallelism in a portable way and offers the

flexibility requirements formulated in Chapter 2 is much more difficult,

especially for use with very irregular sparsity structures. The present chapter
details some of the non-trivial aspects of such an implementation.

The previous chapters contain already several implementation hints and

tricks. In this chapter, we consider the mathematical description ofthe iterative

solver as fixed, and concentrate on executing it in a most efficient way.

The chapter is organized as follows. Section 6.1 explains the symbols used
in data structure and memory access pattern illustrations. Section 6.2 analyzes
the operations performed in iterative solvers, and Section 6.3 highlights the

main architectural features of target computers. Each of the Sections 6.4

to 6.9 details implementation aspects for one of the operations mentioned in

113

114 Implementation

Section 6.2, distinguishing between the machine types listed in Section 6.3

where necessary. Sections 6.10 and 6.11 raise some more general flexibility
and portability issues in iterative solver implementations, and Section 6.12

presents Pils, a package of iterative linear solvers based on and used for

the findings in this thesis. The final Section 6.13 gives benchmark results,

varying separately iterative method, preconditioner, machine, problem size

and complexity, and storage requirements, and explains the performance
variations by memory-related aspects.

6.1 Figure legends

Sparse matrix data structures are one of the most important topics of this

chapter. Although all the schemes are described textually, the major data

structures are also illustrated in graphical form in Figures 6.2, 6.8, 6.9, 6.10,

6.11, and 6.18. Table 6.1 explains the symbols used in these illustrations. All

the illustrations display the storage of the sparse matrix shown in Figure 6.1

(or the lower triangle of it).

aoo aoi 0 ao3 0 0 006 0 008

aio an 0 0 0 015 0 an 0

0 0 a22 0 024 0 026 027 028

«30 0 0 033 0 0 036 0 038

0 0 042 0 044 045 0 0 0

0 fl51 0 0 054 O55 «56 057 0

O60 0 062 063 0 065 066 0 068

0 071 072 0 0 075 0 077 078

O80 0 082 083 0 0 O86 087 088

Figure 6.1: The sparse matrix whose storage is illustrated in Figures 6.2, 6.8,

6.9,6.10, 6.11, and 6.18. As the diagonal here is entirely nonzero, it is stored

separately and is not considered in the illustrations.

Memory access patterns on matrices and vectors during certain operations
play another importantrole in this chapter. Seeing which parts are read, written,
or updated, or are not touched during a given (outer) iteration of the algorithm,
and which parts are new or old, gives an insight why certain parts of an

operation can be executed in parallel. Figures 6.12, 6.15, 6.16, and 6.17

6.1. Figure legends 115

A gray square stands for one floating-point value.

A black oval with a thick arrow stands for a pointer

(which may also be just an index into one or more

arrays).

A white square with a big number stands for a (column

or row) index, the big number showing the value of

this index.

A white square without a big number stands for a

dummy index (referring to an explicit zero fill entry).

A thin arrow shows the storage sequence in an array.

The small numbers in the right bottom corner of data

field symbols mark the position of a field inside an

array.

Two data field symbols on top of each other stand

for entries of two related, synchronous arrays. The

|7^| example here represents the 19-th entry of an index

array and the 19-th entry of a floating-point array. The

value of the 19-th entry of the index array is 7.

These are three symbols on top of each other, repre-

. senting the 13-th entry of three synchronous arrays:

f An index array (with value 8 at this entry), a floating-
firt point array, and a pointer array (the arrow displaying

where the 13-th entry points to).

Table 6.1: Graphical symbols used in the data structure illustrations in

Figures 6.2,6.8, 6.9, 6.10,6.11, and 6.18.

illustrate the memory access patterns by drawing certain parts of the matrices

and vectors with different shadings. Table 6.2 explains the meaning of these

shadings.

116 Implementation

zero old, not read

m

being written or updated

new, read

unchanged, read

vzA new, not read

L J unchanged, not read

Table 6.2: Shadingsfor the memory access pattern drawings in Figures 6.12,

6.15,6.16, and 6.17.

6.2 Operation breakdown

One of the major reasons for the attractiveness of Krylov subspace methods

is that they involve the system matrix A only in the form of an operator for

matrix-vector multiplication. In practical preconditioned Krylov subspace
methods, however, this is only partly true, as

• Some methods also need AT for the transposed matrix-vector multipli¬
cation.

• The matrix A is used in a non-trivial way to set up the preconditioner.

• The cost for each application of the preconditioner may be higher than

the actual matrix-vector product.

A single linear operation (scaling or addition) on vectors of size n takes

n flops, and a dot product oftwo vectors takes (2n — 1) flops. A matrix-vector

multiplication with anoxn sparse matrix having m nonzero entries takes

(2m - n) flops. Recall from Table 4.2 on page 93 that the effort to apply
certain fast preconditioners is of this order of magnitude.

These flops counts are uneven with respect to memory access. Vector-

vector operations access one or more contiguous sections of memory se¬

quentially. Sparse matrix operations (on matrices with irregular sparsity
structure) involve at least one indirect access (through a pointer or index)

per multiply-add pair. Most features of high-performance architectures favor

regular access over indirect addressing.

6.3. Target architectures 117

As we saw in Section 2.6, the average number of nonzeros per row

(thus the number daver = m/n) lies between 7 and 20 for the matrices

in device simulation. Let R be the ratio of the number of flops spent

in preconditioned matrix-vector products over the number of flops spent

in vector-vector operations. This ratio is R = daver/5 for split D-ILU

preconditioned Bi-CGSTAB. The ratios for the other parameter-free methods

in Chapter 3 have similar values (see Table 3.1). The ratio is R= dmex/(2£-\-5)
for GMRBS(£), and lower for GCR(£) and Orthomin^).

The ratio R is correlated with the ratio of indirect memory accesses

over sequential accesses. With the numbers above, we see that indirect

accesses tend to dominate in one category ofmethods (in particular BiCG and

its derivatives), while sequential accesses are (relatively) more frequent in

another class (with increasing frequency with the parameter £ in the GMRES-

like methods). However, none of the two types of memory accesses can be

neglected in either class of methods.

As the preconditioner has to be constructed only once at the beginning
of a solver, the CPU cost for this operation is less important than that

of the repeated operations. If the latter are highly parallelized, however,

some attention to preconditioner set-up cost is needed, especially for more

complicated preconditioners (e.g. factorizations with some fill).

6.3 Target architectures

This chapter concentrates on efficient implementation for high-performance

computers, and distinguishes between three types of architectures: Vector

computers, shared-memory multiprocessors, and distributed-memory mul¬

ticomputers. Even if computer architecture offers a much larger set of

variations [HP90], these three classes are sufficient to clarify how parallelism
can be exploited in iterative solvers. The features and problems that are

important in our context are the following:

• Vector computers obtain their computing power from pipelin¬

ing computations over vectors. A vector operation like

w[0 : n — 1] := av[0 : n - 1] takes

'vector^) — ^start + ntmil (6.1)

118 Implementation

time [HP90], where the initialization rate tjnit is much smaller (typically

more than one order of magnitude) than the time tsa^ for a single

("scalar") multiplication, and the start-up time ^sum is low enough such

that the vector operation is faster than n scalar multiplications:

*vector(n) < ^scalar • (6.2)

Equation 6.1 holds only up to a maximum vector length nmvi, the size

of the vector registers. For larger vectors, n > nmvi, the right-hand side

of Equation 6.1 has to be replaced by a more complicated expression.
With techniques like strip-mining and bottom loading, the performance

usually still increases with multiples of nmvi. Chaining of multiple
vector pipes makes some combined operations like u[0 : n - 1] :=

av[0 : n - 1] + iu[0 : n - 1] run at the same initiation rate as a simple
vector operation.

• Shared-memory multiprocessors consist of a set ofparallel processors

sharing a common memory. Processors communicate by writing to and

reading from the same addresses in this memory and synchronize using

semaphores or similar primitives.

• Distributed-memory multicomputers (or distributed-memoryparallel

processors, DMPPs) consist of a set of parallel processors with local

memories, and an interconnection network. Processors communicate by

sending or receiving explicitly messages or raw data. The network does

not provide direct connections between all pairs ofprocessors, but aligns

processors in a regular structure (like a ring, a torus, a hypercube, a (fat)

tree), in which only nearest neighbors are connected. The time to send

a message to a non-neighboring processor then depends on the number

of hops in the network. Message transmission time generally increases

with message size, but message latency is often significant as well. The

ratio of the transmission time for a single short message over the time to

perform a single floating-point operation is an important parameter that

determines the effectivity ofa DMPP on fine grain parallel applications.

Memory bandwidth and latency are crucial factors in all three approaches.

Vector computers have to rely on multiple memory banks to feed the vector

registers at a sufficient rate. The memory bus is the main bottleneck in

shared-memory machines; sophisticated cache designs have to alleviate this

problem. Accessing data from another processor's memory is considerably
more expensive than local memory access in a DMPP.

6.4. Linear operations 119

Data dependencies and irregularly indexed memory access inhibit most

of the performance gains in all the three types of machines. Most of the

transformations presented in this chapter attempt to control and reduce data

dependencies and to increase the regularity of memory access.

Real machines cannot be assigned unequivocally to one of the classes

above. Fortunately, the techniques presented in this chapter can mostly be

combined to exploit the features of such hybrid machines. Unfortunately, not

all the techniques could be evaluated quantitatively, because of lack of access

to certain types of machines, lack of time to implement variants that intuitively

appear to be less efficient, or lack of time to squeeze out the last few percents
of performance improvement.

6.4 Linear operations

Addition (u := v + w) and scaling (u :— av) of vectors are the easiest

operations to vectorize and parallelize, as they do not involve any data

dependencies and have a completely regular structure. Rather than splitting

expressions into these basic components, it is important to group more

complicated expressions and sequences of expressions together in order to

reduce the number of memory accesses and to enable vector chaining. Some

apparent vector operations can be replaced by scalar operations after expanding
expressions. Common subexpressions should be identified. Table 6.3

illustrates such modifications on an example.

On a DMPP, as long as all vectors are distributed similarly (that is,

a processor "owns" the same components of the operand vectors and the

result vector), these operations can be executed without any communication.

When vectors of length n are distributed over p processors, optimum load

balance is achieved if no processor is responsible for more than \n/p] vector

components.

6.5 Vector dot products

Vector dotproducts (a := vTw) can only be parallelized using a different order

of evaluation than the usual (sequential) implementation. As floating-point
addition is not associative, rounding errors may lead to differing results in the

120 Implementation

computation R W F modification

vk:=Tk + 0k(vk-i -ak-\Awk-i)
7 2 10

literallyasin

wk:=vk + Pkjvk-i - ak-\Awk-i) + P\wk-\ Algorithm 3.10

t:=Pk(vk-i - ctk-iAwk-i)
, , -tin common subexpression

vk:-rk +t 7 3 7
,.

. .

K

, . , a2 elimination

wk:-vk + t+ pkwk-i

t\:—ak-\Awk-i

h-=vk-i -t\

3'—

,,-,-, splitting into addition
Vk.=rk +ti 117 7

U:=vk + t2

ts\=fi\wk-\
wk.=U + ts

and scaling

wk.= (t := fik(vk-i — ctk-iAwk-i)) grouping and chaining

+(vk := rk + t) 4 2 7 (note: t is not copied to

+Plwk-i memory)

Table 6.3: Saving memory accesses in code lines 9 and 10 ofAlgorithm 3.10

(CGS) by grouping linear operations. The columns labeled "R", "W", and

"F" list the number ofmemory reads, writes, andflops per vector entry.

parallel and in the sequential implementation. Krylov subspace methods use

vector dot products to construct orthogonalities and are usually very sensitive

to such minor differences. These minor variations accumulate from one

iteration to another, so that an iterative solver based on parallel dot products
walks through a different set of iterates than one based on sequential dot

products. This frequently results in a difference in the number of iterations

required for convergence between a sequential and a parallel implementation,
even if the underlying hardware supports exactly the same floating-point
representation and (individual) rounding. See also Section 5.6.

On multitasking multiprocessors (e.g. Convex and Cray machines), the

parallelizing compiler often implements reduction operators asynchronously
in order to improve load balance. The vectors are partitioned into p or

more chunks. Whenever a processor is available, it grabs a chunk and

computes a partial dot product on this chunk. When it has finished, it locks a

semaphore, adds its partial result to a global summation variable, and unlocks

the semaphore. This approach leads to differences in the summation order that

depend undeterministically on the current load of the machine. Ultimately,

6.6. Sparse matrix-vector multiplication 121

this means that two runs for exactly the same input data on exactly the same

parallel machine can give different results. I experimented with one case

where the parallel implementation of split D-ELU preconditioned Bi-CGSTAB

on a Convex C-220 converged in 75 percent ofthe runs, and diverged or broke

down in the rest of the runs.

On a DMPP, every processor first computes a partial dot product of its

local vector components. If n vector components are equally distributed over

p processors (as in Section 6.4), every processor has to perform 2n/p flops.
For any network, at least log2 p stages of parallel data exchanges are then

needed to form the global sum. Communication dominates performance, and

we have a high-latency network in this context, if sending a single (short)

message takes more than 2n/(p log2 p) flops. Note that the larger the number

ofprocessors, the lower the message latency should be to keep communication

and computation balanced in this operation.

This global synchronization induced by vector dot products become a

serious bottleneck [A087, MvdV87] on massively parallel machines (p as n)

or other DMPPs with high message latency. Variations of iterative methods

that delay dot products over several iterations have been suggested, but they

seem to suffer from serious stability degradation [AOES88, CG89]. As long as

the partial iterations between such synchronization points are well balanced,

vector dot products do not induce any problems on DMPPs with systolic
raw-data communication [APR89, PAF92].

6.6 Sparse matrix-vector multiplication

The classical way to store matrices with an irregular sparsity structure uses

compressed rows: All the d; nonzero entries of row i are stored in a dense

vector. The corresponding column indices are listed in a similar dense integer

vector. All the compressed rows of the matrix are assembled in one long vector

(oflength m), and their column indices come along in a similar (synchronous)

integer vector. A row start index vector points to the start of each row in the

two other arrays. The row start vector has length n + 1, the last entry being a

sentinel. Figure 6.2 illustrates the data structure24.

24In Fortran implementations the row start pointer vector is usually named IA, the column

indexvector JA, and the vectorwith the nonzero entries A. Because of this naming, the compressed

row data structure is also often referred to by (IAJA,A)-form.

122 Implementation

Figure 6.2: Compressed rows to store the sparse matrix ofFigure 6.1.

Several variations of compressed row storage are in use, like compressed
column storage. If the diagonal is entirely nonzero (which is generally the

case for PDEs), it should be stored as a dense vector, separate from the

nonzero structure of the off-diagonals. Structural symmetry can be exploited
to halve the integer overhead by storing the upper triangular part by rows

and the lower triangular part by columns [BCD+89]. The latter variant also

reduces memory references in sparse matrix-vector multiplication, using one

compressed column index vector to multiply one row of the upper triangular

part and one column of the lower triangular part at the same time.

For the purpose of extracting parallelism for sparse matrix-vector mul¬

tiplication, row-oriented storage schemes are generally to be preferred over

6.6. Sparse matrix-vector multiplication 123

their column-oriented counterparts, as the latter require the result vector to

be accessed indirectly. Each vector access through column indices (in a

row-oriented scheme) requires one gather operation to read from the argu¬

ment vector. Each vector access through row indices (in a column-oriented

scheme) requires one gather operation to read the previous values from the

result vector and one scatter operation to write the updated values to the result

vector.

Other common data structures for sparse matrices are reviewed in [Saa90].

Any kind of structural properties of a sparse matrix can and should

be exploited to improve the performance of matrix-vector multiplication in

iterative solvers.

6.6.1 Shared-memory multiprocessors

On compressed rows, shared-memory parallelization is trivially done by

partitioning the components ofthe result vector amongthe processors, ensuring
that each processor gets the same amount of work to do. For a sufficiently
uniform distribution of nonzeros among rows (which is the case for PDE

discretizations), this load balance is obtained by assigning every processor at

most [n/p] components.

Although this partitioning minimizes the synchronization overhead on

shared-memory machines, the data structures presented below for vector

processors are considerably efficient as well.

6.6.2 Distributed-memory multicomputers

On a DMPP, some communication between processors is needed. A row-wise

partitioning of the matrix, storing in each local memory those rows that

correspond to the local vector components (as selected in Section 6.4), is

appropriate to separate communication from computation and to achieve max¬

imal grain size in the communication. Before starting the actual computation,

every processor has to fetch from other processors the non-local components
its rows refer to. In terms of graphs, the computation for one vertex requires
data from all its adjacent vertices. In addition to balancing the computational
load (as above), the following points have to be addressed:

124 Implementation

1. Adjacent vertices should, if possible, be assigned to the same processor,

to minimize the communication volume.

2. Adjacent vertices not assigned to the same processor should be assigned
to processors that are close to each other in the interconnection network,

as communication time increases with the number of hops25.

3. If two or more adjacent vertices of a vertex v cannot be assigned to v's

processor, they should be assigned to the same other processor, so that

v's value has to be transmitted only once.

4. Communication should be balanced, so that every processor has ap¬

proximately the same number of messages or data items to send.

5. On DMPPs with efficient manual message forwarding (like iWarp

[BCC+88] and some transputer-based machines), if vertex v\ on pro¬

cessor Pi is adjacent to v2 on P2 and to i>3 on P3, and if P2 lies on a

shortest path from Pi to P3, then Pi should send the value of v\ only to

P2, which should forward it to P3.

6. On DMPPs with large message latencies (like iPSC, nCUBE, most

transputer machines, PARAGON, and CM-5), all the values to be sent

from one processor to another should be packed together, and every

processor should only talk to a few other processors.

7. On SIMD architectures (like CM-2 or MasPar), every processor should

have approximately the same number of rows with a given number of

nonzeros, to reduce idle looping.

Points 1,2,3,5, and 6 are achieved by mapping the locality of the problem

graph into the locality of the interconnection topology. While minimizing
the communication overhead, such a mapping still needs to ensure equal load

balance as specified above.

This is easy to accomplish for regular (e.g., finite difference) graphs, but

finding an optimal mapping of a complex structure—like our finite element

graphs—is NP-complete. For problem sizes of several tens or hundreds of

thousands, even low order complexities (like 0(n2)) are too high. In [PAF92],

25 Some machines appear to offer a homogeneous network, where the communication between

any pair of processors is almost equally fast Still, many simultaneous communicationsover long
distances can cause network contention.

6.6. Sparse matrix-vector multiplication 125

we have suggested various mapping heuristics with a "quasi" linear complexity

(less than 0(n1+e) for any e > 0).

There are two basic ways of identifying locality in the problem graph:

topology and geometry. Minimum path lengths define a topological distance

concept in the associated (undirected) graph. The distance to a selected set of

vertices S defines a single coordinate for every vertex. A vertex partioning
based on topological distance to a single vertex or a vertex set is usually called

level structure (see Figure 6.7)26. The pair of distances to two distinct sets S

and T form a two-dimensional coordinate system on the graph, or a double

level structure [PAF92].

For sparse matrices resulting from the discretization of PDEs, the physical
coordinates of the grid points give a geometric source of information to detect

locality. Geometric distance between grid points does not directly tell whether

the corresponding vertices are connected by an edge, but close points are more

likely to be connected than far distant points. A two-dimensional coordinate

system based on geometric distances can consist of a pair of two geometric
coordinates of a point, or any projection onto two distinct directions.

A good mapping for a one-, two-, or three-dimensional DMPP intercon¬

nection network can now be obtained by sorting vertices according to their

topological or geometric coordinates. On networks with higher dimension¬

ality or large message latencies (these two properties are usually correlated

[Vit88, APR89, Dal90]), it is preferable to use a one- or two-dimensional target

topology in order to keep the number of individual messages low (optimizing

points 3 and 6).

Both types of mappings can be improved by selecting carefully the starting
sets (in the case of topological heuristics) or the projection axes (in the case of

geometric heuristics).

To illustrate the effects of these mapping strategies on irregularly refined

discretization grids, we will now consider a small example. The two-

dimensional grid in Figure 6.3 should be mapped to sixteen processors,

connected in a four-by-four mesh as shown in Figure 6.4.

Figure 6.5 shows the result ofgeometric mapping heuristicwith a 2-D target

topology, and Figure 6.6 that of a topological mapping heuristic with a 2-D

^Many sparse matrix reordering algorithms for reducing the fill in a full factorization (like

nested dissection or reverse Cuthill-McKee [GL81]) and detecting [Saa89] or constructing
[MR88, PAP92] parallelism in preconditioners (see also Section 6.8) use level structures.

126 implementation

Figure 6J: The2-D triangulargridusedto analyze topologicalandgeometric

mapping heuristics in Figures 6.5, 6.6, and 6.7 and coloring heuristics in

Figures 6.13 and 6.14. The grid consist of2674 points.

target topology. Observe in particular the strongly refined region in the upper

fifth ofthe grid. In this region, there are much more points along the horizontal

direction than there are along the vertical direction. Geometric mapping adapts
to this by assigning long narrow areas to processors. Topological mapping
creates a larger number of almost "round" areas in this region. The topological
heuristic appears to reduce communication volume by assigning to processors

areas with a better aspect ratio than those generated by the geometric heuristic.

On the other hand, topological mapping often assigns unconnected areas (f.i.,

the assignment to processor #11 in Figure 6.6 is split in three pieces). Only a

quantitative evaluation can decide which mapping is better.

These mappings were done with two ofthe heuristics suggested in [PAF92].

All heuristics were evaluated for K2, a planned 64-processor DMPP with

low-latency and high-bandwidth communication in an 8 x 8 torus raw-data

interconnection network [AFNV90, AzBF+90], which was simulated using
the K9 simulator [BPA89]. An extract of the results of this study is given in

Section 6.13.3. The general conclusion was that geometric mapping heuristic

give better results than topological heuristics.

A typical characteristic of level structures on irregularly refined grids can

be seen in Figure 6.7. No matter where the levelization is started, levels tend

6.6. Sparse matrix-vector multiplication 127

Processor

#00

Processor

#01
Channel

Processor

#02
Channel

Processor

#03

Processor

#10

Processor

#11

Processor

#12
Channel

Processor

#13

Processor

#20

Channel
/

Channel
#21

Processor

#22
Channel

Processor

#23

Processor

#30

()
Processor

#32
Channel

#31
Channel Channel

#33

Figure 6.4: A 16-processorDMPP with a 4x4 mesh interconnection topology.

Figures 6.5 and 6.6 show how the grid ofFigure 6.3 is mapped on this mesh

ofprocessors.

to become long in the direction of refinement.

The best of the mappings from [PAF92], 2-D geometric mapping, works

as follows on a pv x pn torus or mesh of processors (possibly embedded in a

hypercube through Gray coding): First, vertices are sorted according to their

z-coordinate in the physical discretization grid. This sorted list of vertices is

partitioned by (pv - 1) vertical cut lines into pv sets of n/pv vertices each,

and each of these sets is assigned to one column of the mesh of processors.

Then each set is sorted again according to the y-coordinate and partitioned by

(ph, - 1) horizontal cut lines into ph sets, and each of these sets is assigned
to one processor of this column. The time complexity of this algorithm is

0(n logn) [PAF92].

The size of the messages exchanged in sparse matrix-vector multiplication
is low, especially in 3-D applications. Consider for instance a tensor-

product grid of size n1/3 x n1/3 x n1/3 mapped to a three-dimensional

pi/3 Xpi/3 Xp'/3 mesh ofprocessors. This interconnection structure minimizes

128 Implementation

Of„.»y«wvfw,^ir* *>»* >

Figure 6J: Two-dimensional geometric mapping of the grid in Figure 6.3

to the 4 x 4 processor interconnection network shown in Figure 6.4. All

elements (triangles) whose corners are assigned to different processor are

drawn in black. White lines crossing black strips correspond to graph edges
that require communication. As an example, the gray area shows the part of
the grid assigned to processor #11.

the communication volume for this grid, and with a perfect mapping, every

inner processor will have to exchange six messages of size {n/p)1^ with its

direct neighbors. Even with a huge grid size n — 1,000,000 and a moderate

number ofprocessors p = 1,000, messages will consist ofonly 100 numbers.

Larger message sizes are obtained with more than oneunknown per grid point
and lower dimensionality interconnections, but at the expense of increased

communication volume. As long as 2m/p, the number of flops per processor

if the workload of this operation is perfectly balanced, is much higher than the

time to send all these small messages, the DMPP will still be quite effective.

On massively parallel machines (wherep«n), communication will dominate

the operation.

6.6.3 Vector computers

Sparse matrices resulting from regular discretizations (e.g., finite differences,

see Section 2.5) are the easiest case to handle on vector (and parallel)

6.6. Sparse matrix-vector multiplication 129

Figure 6.6: Two-dimensional topological mapping of the grid in Figure 6.3

to the 4 x 4 processor interconnection network shown in Figure 6.4. All

elements (triangles) whose corners are assigned to different processor are

drawn in black. White lines crossing black strips correspond to graph edges
that require communication. As an example, the gray area shows the part of
the grid assigned to processor #11.

Figure 6.7: A level structure on the grid ofFigure 6.3. Gray areas correspond

to odd numbered levels, white areas to even numbered levels. The starting set

(level zero) consists ofthe points on the left boundary ofthe grid.

130 Implementation

computers. Natural ordering of the unknowns (obtained by sorting their

physical coordinates lexicographically) places all nonzeros in only a few

diagonals in the matrix. These diagonals are practically dense (except for

rows corresponding to external boundary points) and are usually stored in

dense vectors. There is virtually no storage overhead, as only nonzeros are

stored. Matrix-vector multiplication does not require any indirect addressing
and uses vectors of size n.

Reordering heuristics (such as the Cuthill-McKee ordering [GL81]) lead

to banded matrices. Banded storage structures also avoid indirect addressing
and use vectors of average length n - 6/2, where 6 is the semibandwidth:

b = max{k \ 3i : 0^+* ^ 0 or a,;-*; ^ 0}. Zeros inside the band have

to be stored, leading to a relative overhead of 26/daver in both storage and

computation. The minimal bandwidth is 0(\/n) for 2-D discretizations, and

0(n2/3) for 3-D, which is clearly much larger than daver (see Section 2.5).

Envelope reorderings (obtained e.g. by Reverse Cuthill-McKee) are exploited
in skyline formats. Their storage requirements are less than those of banded

forms, but asymptotically differ only by a constant, and the obtained vectors

are much shorter.

For sparsity structures that are too irregular for the tricks above, compressed

rows alone are still a bad choice. Because the number of nonzero entries per

row is so low (see Sections 2.5 and 2.6), vectorizing only over one row at a

time uses vectors too short to exploit the capabilities of most vector machines.

Hardware modifications that would avoid the vector unit startup latency have

been suggested, but not realized [TRM91].

Using a two-dimensional array (of size n x dmax) for the compressed rows

gives vector operations oflength n. This storage scheme is used in the iterative

solver package ITPACK [KRYG82, KOY89] and illustrated in Figure 6.8.

The disadvantage is that explicit zeros have to be stored to fill up the smaller

rows, leading to a storage overhead factor dmax/^aver- A similar overhead in

floating-point computations has to be paid for operations with the zeros.

The overhead is avoided if the rows are first reordered by decreasing
number of nonzeros. The first nonzero of each (permuted) row is placed
in a dense array, and there is a similar, but usually shorter dense array for

the second nonzero of each row, and so on. The average vector length for

these so-called jagged diagonals [Saa89, Saa90] is (daver/dmax) n. Of course,

the reordering of the rows should not involve accessing the argument vector

indirectly, indexed through the corresponding permutation. The vector should

6.6. Sparse matrix-vector multiplication 131

Figure 6.8: ITPACK scheme to store the sparse matrix ofFigure 6.1.

first be copied into a permuted vector, which is then accessed directly inside

the multiplication operation. Even better, all the vectors should be held in

permuted form during the entire solver algorithm. Figure 6.9 illustrates the

data structure.

Algorithm 6.1 shows the code for matrix-vector multiplication with this

data structure. The loops on code lines 1 and 5 are parallel. The loop on

line 5 can be vectorized efficiently only on a machine with support for gather

operations. For each two flops (one multiplication and one addition), line 6

needs five memory accesses: one integer index and three floating-point values

are read, and one floating-point number is written.

Caches are of little help for improving the memory performance in this

case. For large problem size n, all cached values will be overwritten before

they are reused, except for a few occasional hits on v (whose frequency

132 Implementation

Figure 6.9: Jagged diagonals to store the sparse matrix ofFigure 6.1.

depends again on the matrix bandwidth).

By exchanging the nesting of the loops on lines 4 and 5 in Algorithm 6.1

and vectorizing over the outer loop, most of the read and write accesses on

w are avoided. While this is simple for the ITPACK data structure, the

varying vector lengths in jagged diagonals do not allow this trick. Another

modification allows the savings without storage overhead: Each set of na

rows with an identical number of nonzeros d are packed in a compact two-

dimensional array of size n^ x d. This reduces the average vector length to

"/dmax. which limits the performance improvement.

6.7. Transposed matrix-vector products 133

..
foreach i in [0 : n - 1] do

w[i] := jD.d[i]t;[i]

..
end foreach

..
foreach k in [0 : JD.b - 1] do

foreach i in [0 : JD.c[fc] - 1] do

w[i] := w[i] + JD.a[Jfc,i] v[JD. j[k,i]]

....
end foreach

..
end foreach

Algorithm 6.1: Matrix-vector multiplication using the jagged diagonal data

structure, performing w := Av. In this variant, the diagonal is assumed to

be nonzero and stored in the dense vector JD.d[*]. The k-th jagged diagonal
is named JD.a [k, *], the corresponding column indices JD. j [k, *]. There are

JD.b = dmax such jagged diagonals, their lengths are JD.cffc]. All vectors

are assumed to be reordered (see text). By replacing all JD.c[k]'s by n, this

algorithm can also be used with the ITPACK data structure.

6.7 Transposed matrix-vector products

Besides applying "regular" matrix-vector multiplication ofthe form w := Av,

some of the iterative methods presented in Chapter 3 also use products with

the transposed matrix in expressions of the form w:= ATv (this operation can

also be viewed as multiplicationon the left, writing wT :—vTA). Many sparse

matrix data structures that support high efficiency in the regular operation are

considerably less favorable for transposed matrix-vector multiplication.

We saw in Section 3.9 how the Biconjugate Gradients method can be

reformulated to avoid the transposed operation. The resulting Algorithm 3.9,

which is algebraically equivalent to the original formulation in Algorithm 3.8,

trades one transposed product for two regular products, plus some linear

operations. Still, this formulation will be faster on some machines, and for

some of the data structures.

This section discusses why certain data structures behave so differently,
and introduces fixes to some of them. These modifications generally improve
the performance of the transposed operation at the expense of the regular

operation or of storage overhead.

134 Implementation

The easiest fix, which does not affect the performance of the regular

multiplication, is to duplicate the matrix, storing A and AT as if they were

unrelated. This does not necessarily mean that the whole storage for A is

doubled. If the full diagonal is stored apart, it can be reused. If the matrix

is structurally symmetric, the whole description of the sparsity structure of A

also describes AT, and should not be duplicated. The modifications suggested
below are less efficient than duplication and should not be used in the case of

memory abundance. Unfortunately, the latter occurs very rarely.

6.7.1 Shared-memory multiprocessors

A row-oriented schemes behaves in the transposed operation as its column-

oriented twin does on the regular operation. An indirect read access of a

vector on the right-hand side of an assignment turns into an indirect write

access to a vector on the left-hand side. Parallel indirect writes pose the

problem of memory conflict: If two iterations of the same loop update
the same component of a vector and if these two iterations overlap in a

parallel execution, the resulting value may be wrong. Hardware solutions

to assure atomicity in the updates require a lot of synchronization overhead.

More efficient software solutions are similar to those for vector computers,
discussed in Section 6.7.3.

6.7.2 Distributed-memory multicomputers

With a row-wise partitioning of A on a DMPP, the operation with AT is not

much more complicated than multiplication with A itself. Every processor

first computes its local updates to its own local and to non-local components
of the result vector. It then sends the non-local updates to the respective

processors, and receives updates to its own components, which it adds to the

intermediate local value.

Several updates for the same component may come from several proces¬

sors, but this does not cause any problem here. A disadvantage lies only in

the fact that communication and computation cannot be separated as cleanly
as in regular matrix-vector multiplication.

6.7. Transposed matrix-vector products 135

6.7.3 Vector computers

The data structures for regular or banded systems usually support the trans¬

posed multiplication efficiently. The situation is less favorable for the

structures for irregular sparsity presented above.

In the transposed multiplication operation, as depicted in Algorithm 6.2,

the column index vectors in the ITPACK and jagged diagonal data structures

are used in indirect write accesses, on the left-hand side of line 6.

foreach i in [0 : n - 1] do

.. w[i] := JD.d[i]i>[»]
end foreach

foreach k in [0 : JD.b - 1] do

..
foreach i in [0 : JD.c[fc] - 1] do

io[jD.j[fc,i]] :- w[JD.j[k,i}] + JD.a[k,i] v[i]

..
end foreach

end foreach

Algorithm 6.2: Transposed matrix-vector multiplication with the jagged

diagonal data structure, performing w := ATv. The same comments as for

Algorithm6.1 apply.

The loop on line 5 is only vectorizable if no index in each integer vector

JD. j[fc,0 : JD.c[fc] — 1] occurs more than once. In the associated bipartite

graph of the matrix, the set of edges corresponding to one jagged diagonal
has to be a matching27. In general, the initial distribution of nonzeros

among jagged diagonals does not consist of matchings only. Some additional

reorganization is needed to construct the set of all jagged diagonals as a

partitioning of the edges consisting only of matchings.

Note that the goal here is different from the usual matchingproblem, which

consists of finding a single matching of maximum size or weight. We are

concerned here with a partitioning by matchings: The union of the disjoint

matchings Mo, M\ -MjD.b-i gives the complete set of edges. To yield

jagged diagonals, the matchings have to fulfill the following condition:

27A matching in a graph is an edge subset such that no vertex is incident to more than one edge
of this subset [PS82b].

136 Implementation

The matchings being orderedby non-increasing size, \Mk\ > \Mk+i\,
a row vertex matched in Mk+\ may not be exposed in Mk.

Defining

Eq = E,

Ek+i = Ek - Mk ,
and

Vk = {v £ V\v is not isolated in (V, Ek)} ,

the two conditions above are equivalent to requiring that each Mk is a perfect

bipartite matching in (Vk,Ek). Figure 6.10 shows such a partitioning by

perfect matchings.

The usual algorithm to find a maximum matching in a bipartite graph
works by augmenting alternating paths [PS82b] and has complexity 0(nm).
If it exists, a partitioning by perfect matchings can thus be found in 0(m2)
time.

Unfortunately, not every graph allows such a perfect partitioning. An

exposed vertex in Mk which is matched by Mk+t requires the storage of an

explicit zero in the A;-th jagged diagonal. To include non-perfect partitionings
with minimum explicit zero fill, the condition should be weakened to:

The matchings being ordered by non-increasing last matched row

vertex,

max,{vt matched in Mk} > vasx.,{v, matched in Mk+i},
the total number of exposed row vertices with index smaller

than the last matched row vertex of the respective matching
should be minimum.

In practice, the 0(m2) complexity is too high. Less complicated heuristics

approaching the minimum of the weak condition should be used instead.

Figure 6.11 shows a partition by matchings obtained through a heuristic of

time complexity 0(mn). Sincemany matrices with the same sparsity structure

occur in a simulation run, this data structure initialization has to be done only

once, so that the timing is acceptable.

In the ITPACK data structure, the matchings do not need to be perfect.
The ideal condition is then:

The number of matchings should be d,

6.8. Sparse triangular solvers 137

Figure 6.10: Jagged diagonals using a partitioning by perfect matchings to

store the sparse matrix ofFigure 6.1.

Again, not every graph can be partitioned into as many matchings as its

maximum degree. The weaker condition is then:

The number of matchings should be minimum.

6.8 Sparse triangular solvers

At each application of a preconditioner which is based on an approximate

factorization (see Section 4.4), two sparse triangular systems have to be solved.

138 Implementation

Figure 6.11: Jagged diagonals using a heuristically obtainedpartitioning by

matchings to store the sparse matrix ofFigure 6.1.

If the triangle including the diagonal has (m + ra)/2 nonzero entries (as it

is the case for the SSOR, D-ILU, and ILU preconditioners on a structurally

symmetric matrix with m nonzeros), the solution of a triangular system by
substitution (Algorithm 6.3) requires m flops.

The outer loop on line 1 in Algorithm 6.3 incurs data dependencies on the

solution vector x. The inner loop on line 3 is perfectly parallel. The average

number of iterations in this inner loop, however, is only dava/2, which is

much too small to be exploited efficiently.

6.8. Sparse triangular solvers 139

fori := Oto n — 1 do

.. x, := b,

..
foreach j in 0 : i — 1 do

.... x, .
— x% z,jXj

..
end foreach

.. x, .= x,it„

end for

Algorithm 6.3: Forward substitution by rows to solve the lower triangular

system Lx = 6.

6.8.1 Vector and shared-memory parallel computers

Parallelism in the outer loop can be constructed by exploiting the sparsity.
The chunk xs:t can be computed in parallel if the entries from x, to xt are

mutually independent in Lx = b. This means that the block £s:t,s:t in L must

be diagonal. Viewing the matrix as a block matrix in which each block on the

diagonal is a diagonal matrix, the outer loop of Algorithm 6.3 can be executed

in parallel inside each block row. Substitution by columns is parallelized

similarly. Figure 6.12 shows the memory access pattern during one block of

outer iterations.

Every block substitution involves the product of a block row of L with

the updated part of x. This is again a sparse matrix-vector multiplication
that has to be vectorized or parallelized as described in Section 6.6. For

jagged diagonals, this means that every block row has to form a separate data

structure.

There are two basic approaches to obtain a blocking as above:

1. Identifying parallelism by detecting independent variables (entries of

x) in the computation of a; := L~1b, and grouping them together
into blocks. This is nothing but standard data dependency analysis

(DDA), as parallelizing compilers do it statically, but using the dynamic
information given by the sparsity structure. The data dependency graph
is the digraph associated with the triangular factor L, which is acyclic

by construction. A different grouping may be found for U.

140 Implementation

Figure 6.12: Memory access patternfor one block in the parallel solution of

a blocked sparse triangular system

2. Constructing parallelism by partitioning the associated undirected

graph of the entire matrix A into sets of independent vertices. These

sets are called "colors", and the partitioning is a coloring. The rows

and columns of A are reordered by colors before the incomplete
factorization. By construction, the blocking induced by the coloring has

the desired diagonal property as required above, for both L and U.

The main difference between the two approaches is that DDA preserves

the evaluation order ofthe incompletefactorization, whilecoloring modifies it.

The obtainedDDApreconditionerQ is just a permutation ofthe preconditioner
without the reordering. Coloring leads to a truly different preconditioner.

As a result, the convergence behavior of the preconditioned algorithm is

modified by the coloring. As they do not contain any vertex triangles (see

Section 2.5), tensor-product grids (5-point stencils in 2-D and 7-point stencils

in 3-D) can be colored with only two colors. This red-black coloring is

notorious for deteriorating the convergence of iterative algorithms, leading
to slower convergence than the natural ordering. The problem seems to be

alleviated by using more than two colors, so-called multicoloring.

For irregular sparsity structures, there is no "natural" ordering generally

6.8. Sparse triangular solvers 141

recognized as delivering better convergence than others. In particular, there is

no ordering which would be best for several numerical instances of matrices

with the same sparsity structure, as we have it in device simulation. Since

almost every ordering gives a different convergence behavior, there is almost

certainly a particular ordering which is faster than the colored one, but in the

absence of a cheap way to find this perfect ordering, the colored ordering is

just as good (or as bad) as any random ordering.

Coloring then has the advantage that the number of colors is fairly small

and depends only on the grid density and dimension, but not on the size of the

grid. This leads to a considerably higher degree of parallelism than the DDA

approach.

The algorithm used for the DDA approach is level scheduling [Saa89]:
The first level comprises all ofthe vertices with no incoming arc in the digraph
of L. A given vertex belongs to the k-th level if all its incoming arcs come

from vertices in lower levels, and at least one comes from a vertex in the

immediately preceding (k - l)-th level. Each level corresponds to one block

in the reordered matrix.

A coloring can be obtained by the greedy coloring heuristic, as described

in [AHU83] and depicted in Algorithm6.4 [BCD+89, HPWF91, PAF92]. For

each color, it sweeps once through the whole set of vertices (in the order they
are numbered). If a vertex is not yet colored and is not adjacent to any vertex

having this color, it is assigned this color. The maximum number of colors is

equal to one plus the maximum degree of any vertex, but usually fewer colors

are needed to color all the vertices of the graph. The typical number of colors

after greedy coloring is around 7 for our 2-D grids and around 12 for our 3-D

grids. The outer loop (on line 2) in Algorithm 6.4 is executed c times (where
c is the number of colors), the second loop (on line 5) is executed n times on

the whole, and the inner loop (on line 10) is executed m times on the whole.

The set assignment on line 4 takes at most O(n) time, so the complexity of

the basic greedy heuristic is 0(m + en). Figure 6.13 shows one color (the
first color Co generated by Algorithm 6.4) on a 2-D grid.

Melhem and Ramarao [MR88] have described an heuristic that is guaran¬

teed to find a 6-coloringfor any planar graph. Comparing the Sun-3 execution

times given in [MR88], it appears that this heuristic is much slower than

greedy coloring. An extension of the method allows to find a 4-coloring for

planar triangular graphs. The famous Four Color Conjecture [Har72, AH76]

asserts that such a 4-coloring exists for any planar graph.

142 Implementation

1:
..
R:=V

2:
..

fore := 0,1,... until 72 = 0

3:
.... Cc := 0

4:
....

I:=R

5:
....

while I £ 0 do

6: select a vertex »£/

7: Cc := Cc U {v}
8: /:=/-{»}

9: R:=R-{v}
10: foreach w E Adj(t>) do

11: ifw£ /then

12: I:=I-{w}
13: end if

14: end foreach

15:
—

end while

16:
..
end for

Algorithm 6.4: Greedy coloring, constructing in {Co, C\,...} a partitioning

ofthe set ofvertices V.

Figure 6.13: A single color on the 2-D grid from Figure 6.3. Vertices

belonging to this color are underlaid with gray.

6.8. Sparse triangular solvers 143

6.8.2 Distributed-memory multicomputers

Distributed parallelism can be identified through DDA or constructed through
coloring in the same way as above. Each color block is disttibuted to all

the processors. Processors handle the same block concurrently. Between

the processing of two blocks, the needed values from the previous block are

exchanged. If cis the number ofblocks.atotal of (c-1) such synchronizations
are required to solve the triangular system.

These "synchronizations" should not be seen as single points in time where
all processors wait for each other. In a practical implementation on a MEMD

computer solving an irregularly structured problem, each processor completes
its part of a color at a different time. The processor sends then its local values

to those other processors that need them As soon as it has received all the

data it needs itself, it can proceed with the next color. At a given moment,

some processors still work on color C„ others are actively communicating,
waiting for incoming data, or working already on color C,+i.

Coloring for DMPPs differs from coloring for shared-memory paralleliza-
tion or vectorization in the following aspects:

1. Dependent vertices allocated on the same processor can be processed in

the same color since no communication is required. The edges between

local vertices need not be considered for the coloring of the graph.

2. The number of colors must be as small as possible to reduce the

synchronization overhead.

3. Coloring and mapping (Section 6.6.2) should be combined to ease

the coloring task and to potentially reduce the number of colors that

are required. We can define three categories of coloring strategies,

depending on their relationship with the mapping strategy:

(a) Mapping and coloring are done independently of each other. In

this case, the above property is not exploited, and all vertices in

one color must be independent of each other regardless of their

assignment to processors. We can thus use the same coloring
heuristics as above for vector computers.

(b) Coloring is done after mapping. After the mapping heuristic

has assigned vertices to processors, the edges between vertices

mapped to the same processor can be identified and ignored in the

144 Implementation

coloring heuristic. The first requirement for mapping strategies

mentioned in section 6.6.2 ensures that as many edges as possible

can be deleted this way.

(c) Coloring is done before mapping. Pairs of adjacent vertices

that have received the same color must be assigned to the same

processor in the later mapping stage. The mapping scheme has to

be adapted to satisfy this additional requirement.

Every block substitution (in Figure 6.12) consists ofa sparse matrix-vector

multiplication. The blocks of L and U are distributed, and their assignment to

processors has to respect similar communication-related criteria as the seven

points defined at the beginning of Section 6.6.2. This discards variant 3a

above: mapping and coloring are closely interrelated. It is imperative that

each color is distributed equally to the processors rPAF92].

Algorithm 6.5 shows balanced greedy coloring, which constructs a

suitable coloring for DMPPs after mapping (for variant 3b above). This

heuristic tries to balance over all processors the number of vertices of each

color. At each iteration of the loop starting on line 11, every processor

donates at most one vertex to the color. As long as the flag is not set, every

processor donates exactly one vertex to the color. The maximum coloring
imbalance parameter imm controls by how many vertices the size of each

color assignment may vary among processors. The clause (q ^ p) in line 22

allows the same color for adjacent vertices mapped to the same processor

(aspect 1). On machines with additional vectorization capabilities on each

processor, this clause should be omitted.

The number of colors generally increases with more restrictive values for

'max, so that the better balance gets outmatched by more synchronization for

the colors. The value imax = 2 appears to be optimal in many cases. With

such a small ?max, the complexity of balanced greedy coloring is the same as

for absolute greedy coloring. The number of colors is in the same range or

lower for the balanced coloring, profiting from aspect 1 mentioned above.

Figure 6.14 shows the first color (Co in Algorithm6.5) of balanced greedy

coloring (with iaa = 2) on the grid of Figure 6.3, using the mapping of

Figure 6.5. This color set is large, as it contains most, but not all of the inner

vertices (that is, vertices requiring no communication). The heuristic assigned
some ofthe inner vertices to the second color to respect the maximumcoloring
imbalance.

6.8. Sparse triangular solvers 145

1:
..

foreach processor p do

2:
.... Rp-.= VP

3:
..

end foreach

4:
..

while [j Rp £ 0 do

5:
.... Cc := 0

6:
....

i := 0

1: ,...flag:=0

8: foreach processor p do

9: Ip := Jtp
10: end foreach

11: while i < imax do

12: foreach processor p do

13: if Jp = 0 then

14: flag := 1

15: else

16: select a vertex v E IP
17: Cc := Cc U {«}
18: /p:=/p-{t;}
19: Jip := J?p - {t;}
20: foreach u; Adj(i>) do

21: find q such that w E Vq
22: if (9 ^ p) and (tu e /,) then

23: It := Iq - {w}
24: end if

25: end foreach

26: end if

27: end foreach

28: i:=i +flag

29: end while

30:
..
end while

Algorithm 6.5: Balanced greedy coloringfor a maximum coloring imbalance

imax- Each Vp standsfor the set ofvertices mapped to processor p.

146 Implementation

/ \ix \ /

CTV/nL / \ /\]/

K/\/\,/W^Ayi

^aM<|\\
/ ^>kl ^/\/A~t\ i ^^

/ ^m/ \/ \/^'i^^

\y \/v

Figure 6.14: The first color generated by the balanced greedy coloring

Algorithm 6.5 on the 2-D geometric mapping (Figure 6.5) of the 2-D grid in

Figure 6.3 on the 4 x 4 processor mesh ofFigure 6.4. Vertices belonging to

this color are underlaid with gray.

The solution of the sparse triangular systems with L and U in the block

structure obtained through coloring with c colors is now performed by (2c - 2)
matrix-vector products with an average of m/(2c - 2) nonzeros in each block.

On the n1/3 x n1/3 x nll3 tensor-product grid mapped to p1^3 x p1'3 x p1!3
processors considered as an example at the end of Section 6.6.2, average

2/3

message sizes would now be i/?,2c_2\ •
Forn = 1,000,000 and p — 1,000,

the average message size would definitely be smaller than 10 numbers,

and a significant number of messages would consist of a single number.

Message latency is the most important machine characteristic determining the

performance of incomplete factorization preconditioners on DMPPs. Solving

sparse triangular systems can be practically as efficient as sparse matrix-

vector multiplication on machines where the time to send a single message

is of the order of one or a few floating-point operations. Networks with

higher latency are practically useless for iterative solvers with incomplete
factorization preconditioners, no matter what the peak bandwidth may be.

6.9. Setting up the preconditioner 147

6.9 Setting up the preconditioner

The storage requirements and the operation counts for the different precondi¬
tioners are discussed in Chapter 4. In this Section, we concentrate on how to

set up the preconditioner efficiently.

There is not much to say about the Jacobi and SSOR preconditioners. All

the information is already available. The inverse of the diagonal should be

computed in advance, to trade divisions for multiplications when applying the

preconditioners. If split preconditioning of the form (4.17) is used, square

roots and their inverses should be computed in advance as well.

The use of nested iterative solvers for preconditioningis mainly a problem
of organization, and is treated in Section 6.10.

True incomplete factorizations are more critical, both because of their

higher algorithmic complexity and because their flops count is in the order of

magnitude of one or several iterations. Moreover, non-numerical operations

start dominating the execution time.

Not all the ideas for parallelizing sparse direct solvers can be transferred

to incomplete factorization. The major source ofparallelism in direct methods

comes from the fact that some submatrices in the computation are or can

be treated as dense matrices. This density results here from (partly even

deliberately included) fill, and is thus not available in factorizations without

or with little fill.

The elimination tree is another source of parallelism exploited in direct

solvers [DDSvdV91, Liu90]. The elimination tree is a graph that defines a

partial order for the elimination of the rows of a matrix: If v, is an ancestor of

vj in the tree, then row i must be eliminated after row j. Independent subtrees,

however, may be processed in parallel. For increased parallelism, the matrix

is reordered such that its elimination tree becomes flatter. This idea is crucial

for the parallel approximate factorizations suggested below.

148 Implementation

6.9.1 D-ILU factorization

The diagonal matrix D for D-ILU factorization is computed through

1-1

da := an — 22aikdkkakt . (6.3)
Jfc=0

Equation (6.3) is looped over the index i, so that there is a data dependency
between <f„ and all the previous dJ} 's. Coloring delays this data dependency
from one color to the next color: if v, and vj are within the same color, then

a,j = aji = 0, so that dj} does not need to be used. An entire color can

therefore be handled in parallel. See Figure 6.15 as an illustration.

Figure 6.15: Memory access pattern for colored D-ILU factorization, with

the upper triangle stored by row blocks, and the lower triangle stored by
column blocks.

This is really efficient on a (shared- or distributed-memory) parallel

computer only if the lower triangle of A can be accessed by rows and the

upper triangle of A can be accessed by columns. On a vector computer, long
vectors can be obtained again with the ITPACK storage scheme or withjagged
diagonals. Row oriented jagged diagonals (as described in Section 6.6.3) are

used for the block columns of the upper triangle, and column oriented jagged
diagonals for the block rows of the lower triangle.

6.9. Setting up the preconditioner 149

6.9.2 ILU factorization

Blocking by colors is also the strategy to be followed in parallelizing ILU

factorization. Every single block, the intersection ofa block row and a column

block, is stored as an independent sparse matrix. The parallelizable operation
is then the multiplication of two single blocks of the already computed parts

of L and U and their addition to the block currently being updated (see

Figure 6.16).

Figure 6.16: Memory access patternfor coloredILUfactorization.

Since we are writing now into a sparse matrix (whose structure is known)

and not into a dense vector as in the previous section, jagged diagonals
and partitionings by matchings are not sufficient to avoid data dependencies
without leading to quadratic complexity.

ILU factorization can be parallelized efficiently using a distance-two

coloring, i.e., the colors are selected such that no vertex within the distance of

two edges has the same color. This entails that every single block, that is, the

set of edges connecting the vertices of two given colors, is a single matching.

Every single block update from two finished blocks, as shown in Figure 6.16,

can now be performed completely in parallel.

By replacing "w E Adj(u)" in line 10 of Algorithm 6.4 by
"w e Adj(v) U Adj(Adj(u))'\ we have a greedy distance-two coloring
heuristic with a complexity of 0(m2/n + en). Note that the number

150 Implementation

ofdistance-two colors will be higher than for a simple (distance-one) coloring.

6.9.3 Positional dropping factorization

Factorizations with some limited fill are far more difficult to parallelize.
For positional dropping strategies, the procedure can be subdivided into a

symbolic factorization that determines the structure of the resulting matrix,

and a numerical factorization that computes the values and puts them into the

positions predetermined in the previous step. Just as in the case of direct

solvers without numerical pivoting, the symbolic factorization is valid for all

matrices with the same sparsity structure, so more effort can be applied to

obtain a parallelizable structure.

For the sequential implementation, refer to [MvdV77, Saa89, BS87].

Depending on the dropping strategy, extensions to the graph coloring and

matching concepts as presented in the previous Sections 6.9.1 and 6.9.2 can

lead to higher parallelism.

6.9.4 Numerical dropping factorization

Numerical droppingdoes notpermita separation ofthe work as with positional

dropping. Symbolic factorization, that is, the selection of which entries are

nonzero and in what order they have to be processed, must be done along with

the numerical factorization, where the values are actually computed.

We would like to be able to choose the dropping sttategy and the dropping
criterion freely, relying only on numerical considerations. Unfortunately, most

such freely chosen combinations do not allow efficient implementations of the

approximate factorization algorithm. Therefore, we start with the factorization

algorithmand then justify the choice ofthe dropping sttategy and the dropping
criterion, based on efficiency, memory consumption, numerical, empirical, or

inspirational arguments.

6.9.4.1 Choice of the base algorithm

Depending on the relative nesting of the three loops over the indices in i,

j, and k in Equations (4.12) to (4.14) on page 74, and the order by which

6.9. Setting up the preconditioner 151

parts of L and U are constructed, several variants of LDU-factorization can

be distinguished. These variants differ by their access pattern on the matrix.

(a) Gaussian elimination

(kij-form)

(c) Crout (jki-form)

mB
W//>wW*wA444fyry % AM/yyyV/y'/'///
:xr:

-

-.X* x c.:_
—I :. :

__
: x% x _::;

x;i
_ . .!S-,,x -

x
X- - x>. X

i : :x->.-x :

3 _:; ::r ;±^ :
-

1
._. .. J\.

: :_.:. x--*
-- - __

: .:.- xs--»
:__ ; : ±£_5»_

.::
_ - ..::: ::_c:: t j:::

_ __
;

_
...x j -\

r

_ _
:±_

_ ::±—± -\

(b) Doolittle (jki-form)

WwmM'/00%MWW/ >> lEDTJTn—rrr

VfmxWzmm'/ vT'Pr- xj XP

?WW%t%(%lit -7 ID n i j j i
.

vwmwmmMy/*y C _!_ ml

^^^7.J:".T x
wwfKfflxvmtm's fy j J i

mmm®±&±tbH:d
mxMa^Xm "7 -

r
_

:;
_

WMffMMjfa •%- - -
x

vvWwwteWW^^. :.. j[

r x
"

i--
~

r r

X ' !X ± _

i ::_>,% i j.
X UXX _ _

±. JTV_V 1 I
X tr: t: X -

3
-
i
- % 4

X- xl I i ..x_ ; %
*

-

X
- L \

.

X-J -
X

. . -
i X

,
i

3 xt" i—!_ : X- - _i_r_;.

F:xffl
Jill... x 2 -v-

jr ±
. _ _

^T \ r j
~xi-E LI rt .^3 X LS-3

X - XIX! T.-t- X4-I fix!

(dj bordering (ikj-form)

Figure 6.17: Memory access patterns for different formulations of

LDU-factorization.

Figure6.17 shows the memory access patterns of several variants ofLDU-

factorization (see also [Ort88, DDSvdV91J). The classical form of Gaussian

elimination (fcij-form [GvL83]) is badly suited for numerical dropping. At

the k-th iteration of the outer loop, all the values in the block below the k-th

152 Implementation

row and right of the k-th column of the matrix get updated. The temporary

storage to keep the values of these entries, which are not the final values,

can easily become almost as large as the temporary storage for a complete

factorization. Storage requirements can be reduced by dropping small partial

values of an entry whose final value is not known yet, but this induces another

source of inaccuracy that could be avoided.

A formulation that updates a smaller part of the matrix, like a single line

of L and U, is to be preferred. This line can be cleaned of unimportant entries

at the end of each outer iteration, so that temporary storage never exceeds

0(n). The variants known as Doolittle, Crout, and bordering have this

property. I selected the bordering algorithm ([Ort88, BR90], Figure 6.17(d),

Algorithm 6.6), as the basic factorization algorithm for numerical dropping.

6.9.4.2 The dropping strategy

The dropping strategy specifies when in the factorization process which entries

of the factors should be presented to the dropping criterion. In this section, the

application ofthe droppingcriterion is symbolized by the operator Censor(/,_,).
This operator checks the dropping criterion on the value of l,:, and annihilates

it (i.e., sets ltl := 0) if it is not important enough. The censoring operator can

take a list of arguments, each one of them being examined separately.

Algorithm 6.6 shows four locations where the censoring operator could be

placed in the factorization algorithm. Each of these locations corresponds to

a different dropping grain size:

1. Line 11 examines single contributions (summation terms) to an entry.

2. Line 7 examines each entry as soon as its final value is known (after all

the contributions have been added).

3. Line 18 examines a line of each factor as soon as this line has been

computed entirely.

4. Line 20 examines the entire factor matrices at the end ofthe factorization.

Since the censor is a data-dependent operation, a fine grain size corresponds
to finely dispersed data-dependencies. The coarser the grain size, the more

opportunities for an efficient and parallelizable implementation arise. On the

6.9. Setting up the preconditioner 153

1:
..

fori := Oton- 1 do

2:
— /.,0:»-i :=ai,o:i-i

3:
— «0:i-i,. := ao.i-i,i

4: for k := 0 to i - 1 do

5: Uk := hk/dkk
6: uk, := uk,jdkk
7: Censor(itJt,ufc,)
8: foreach j in [fc -(-1 : i - 1] do

9: l,j :=l,j - l,kdkkukj
10: ujt := «,-,

- ljkdkkuk,
11: Censor(/,j,Wj,)
12: end foreach

13: end for

14:
.... d„ := a„

15: foreach k in [0 : n - 1] do

16: d„ := d„ - llkdkkukl

17: end foreach

18:
.... Censor(/,*,«*,)

19:
..
end for

20:
.. Censor(L, U)

Algorithm 6.6: The borderingfactorizationalgorithm,withpossible locations

for the censoring operatorfor numerical dropping.

other hand, a coarser grain size also leads to a higher number of unimportant
contributions and entries that have to be stored intermediately and processed
to contribute to other entries.

Dropping only at grain size 4 would require a full factorization, which is

out of the question. For smaller grain sizes, storage size is not a problem with

single-line factorization variants, as was mentioned in Section 6.9.4.1.

Experiments with an earlier variant of the current implementation showed
that dropping after entire lines (grain size 3) is too late. The uncensored

lines were by a considerable factor denser than the final lines after dropping

154 Implementation

unimportant entries.

Switching to single entry dropping (grain size 2), the time spent evaluating
the dropping criterion starts dominating the entire factorization algorithm.
For this reason, dropping individual contributions (grain size 1) is counter¬

productive in timing.

6.9.4.3 Complexity observations

All of the inner loops in Algorithm 6.6 are sparse loops. They all have to be

supported by fast access data structures in order to keep the complexity of the

factorization low. The following observations do not constitute a complete

complexity analysis of the approximate factorization algorithm, but they point
out the important aspects to help in the choice of the data structures and the

dropping criterion.

The complexity of the full sparse bordering factorization has been studied

in detail by Bank and Rose [BR90]. Unfortunately, their elimination tree-

based sparse bordering algorithm could not be adapted efficiently to numerical

dropping28. The two major complexity issues identified in [BR90], the

intersection problem and the sorting problem, have a similar importance in

sparse bordering with or without numerical dropping.

Let mi be number of nonzeros kept in the lower triangular factor, and let

tHl be the number of entries inspected (submitted to the grain size 2 censor

on code line 7). Let mu and% be similarly defined quantities for the upper

triangular factor. Obviously, n < m^ < m^ < n2 and n < mu < % < n1

hold.

A dense matrix implementation of Algorithm 6.6 would step through all

the indices for each loop, so that the total number of iterations of the middle

loop (starting at code line 4) is n2/2, and there are a total of n3/6 inner

^This algorithm [BS87, BR90] identifies each nonzero uk3 (on code line 9) by chording each

cycle formed by the path from vertex v, (which is currently being eliminated, in the t-th outer

loop iteration) to a leaf vk in the elimination tree and the corresponding backedge (vk, v,). In an

implementation with numerical dropping, a chord correspondingto a dropped entry ukj does not

require any floating-point computation, but the chord still has to be traversed to ensure the proper

functioning of the elimination tree algorithm. Thus, the non-numerical complexity of such an

approximate factorization stays the same as for an exact factorization.

6.9. Setting up the preconditioner 155

iterations (in the loop starting at code line 8) .

The censor is applied to rfiL entries in the lower triangle and to % in

the upper triangle. It makes sense at this point to split the middle loop in

two, one computing /,* and one computing uM. Code lines 5 and 7 (that is,

Censor(/, k) in the split loop) are executed mL times (over all outer iterations).

The inner loop, however, is started only m^ times. Assuming a uniform

distribution of nonzeros over the entire matrices L and U, the average number

of inner iterations updating entries of L is 2mumLi2/nA. In summary, the

factorization performs ^mLmu/n times either of the lines 9 and 10.

It is clear that this inner loop (which constructs the intersection of the

nonzero sets of llir and u*k) is a candidate for dominating the timing of the

algorithm, and so it should be made as efficient as possible. To keep the

overall complexity of all the inner loops at 0(mLmuln), all operations must

be 0(1).

The inner loop is not the only thing that can dominate the timing of the

algorithm. The number of (split) middle iterations, as we saw above, is

(rhL + rhu). If the dropping rate m^jmL is high (higher than the average

number of nonzeros per row mu/n), lines 5-7 are carried out more frequently
than lines 9-11.

The execution order of the iterations of the middle loop poses another

problem. The data dependency between l,j and l,k in line 9 imposes a partial
order on the index k in line 4. New fill entries are generated in a more or

less random order in line 9. This partial sorting problem cannot be solved

consttuctively via the elimination tree, as in full factorizations or factorizations

with positional dropping [BS87, BR90]. The average number of candidates

in /,* for the next index in line 4 is \m,L /n.

The index search for the middle loop thus appears to be a major bottleneck

and requires special attention. A naive implementation with a linear search

would lead to a complexity of 0(m\ /n), which is the highest complexity we

found up to now. The access characteristics of the set of unprocessed indices

are those of a priority queue. The fastest implementations of this abstract

data type have logarithmic complexity for each access, so that the overall

complexity of the index search can be lowered to 0{m,L log(mi/n)).

29To be precise, there are (n2/2 — n/2) middle iterations and (n3/6 - n2/2 + n/3) inner

iterations.

156 Implementation

In summary, the overall complexity ofthe numerical droppingfactorization
is

0(u*Z» + mL + mu + ^log^ + Atflog^) . (6.4)

Only the first term and the second term involve floating-point operations. The

second term appears to be shadowed by the third term. It is included here to

emphasize that if line 7 has a non-constant complexity, then the complexity of

this censoring operator comes in as a multiplicative factor to the second term

in (6.4).

Each of the terms in Expression (6.4) can dominate—the complexity of

the dropping criterion and the dropping rate decide. The dropping rate can

be expected to behave similarly to the fill factor of a full factorization (which

increases with the dimensionality of the problem, see Section 2.7).

6.9.4.4 Data structures to handle sparsity

In the following, the data structures to store the lower triangular factor L

is described in detail. The upper triangle U is stored in similar structures,

whose construction is symmetrical (that is, the roles of rows and columns are

inversed).

To keep the first term in (6.4) low, line 10 has to find ljk in constant

time. In other words, the inner loop accesses entries from the previous rows

of L by columns. Still, it is not possible to store single columns of L in a

contiguous compressed array, as entries are generated by columns. Linear

lists for each column are used instead. Figure 6.18 shows a data structure that

allows row-wise writing and column-wise reading with constant complexity

per access (an elementary operation on a simply linked list) and minimum

possible storage overhead (one row index and one pointer per nonzero entry).

The values of the current row of L are stored in an expanded vector of

full length n. Their set of indices is accessed as a priority queue, for which

a heap [AHU83, Sed88] is the appropriate data structure. A heap does not

provide a fast way to tell whether a given index is present or not, so that an

additional boolean array is used to indicate whether the corresponding entry

of the current row is zero or not.

6.9. Setting up the preconditioner 157

Figure 6.18: Data structure for the L factor during numerical dropping

factorization.

Because of the sequential (row by row) construction of the data structure

for kept entries of L, it is easy to convert this data structure (Figure 6.18) into

a compressed row structure (Figure 6.2). All that remains is to replace row

indices by column indices, which is done in 0(mL) time using the column

pointers. Column-wise access is not needed to apply the preconditioner, so

the column-pointer array can be deallocated and reused for other purposes.

6.9.4.5 The dropping criterion

The implementation considerations above exclude several variants for the

dropping criterion. I selected a local row-relative criterion on L: The row

censor (on code line 18) keeps an entry /,; if \lt} | > t\\1,3 Umax. In order to

158 Implementation

drop unimportant entries even earlier, the single entry censor (on code line 7)

maintains a running maximum, keeping /,_, if \l,j\ > rjll^ojllmax- A similar

local column-relative criterion is used on U.

A contribution censor (on code line 11) is not used because it would

dominate the time. A full mattix censor (on code line 20) is also not

implemented, as it would not save any storage and make it impossible to

convert the data structure into a compressed row format.

Except for a local absolute criterion, other possible choices for criteria

would either cost more than 0(1) per censor application, or take more

intermediate storage.

6.9.4.6 Parallelism

The implementation of the numerical dropping factorization presented above

is entirely sequential. The main operations walk through pointer lists and

offer practically no parallelism. The number of operations between successive

censor applications is only 0{miln + log(rhi/n)), so that even if more

parallelizable data structures (with a higher total operation and storage count)

are chosen for the intersection problem and the sorting problem, the amount

of parallelism between the (data dependent) censor calls is very low. On the

other hand, delaying the censor rapidly increases the overhead.

A higher amount ofparallelism might appear if the matrix is reordered by a

nested dissection [GL81] or the mapping heuristics presented in Section 6.6.2.

Knowing that the current implementation (using still other implementation
tricks to increase performance, like automatic inlining) exceeds already a

dozen pages of code, such a parallel version will be quite complex.

6.10 Flexibility

6.10.1 Solver types

An iterative solver is a combination of an iterative solution algorithm,
a preconditioner, a position of the preconditioner, a termination control

mechanism, and some other parameters. Such a combination can be called a

solver type. A solver package implements several such solver types. Ideally,

6.10. Flexibility 159

it should provide all orthogonal combinations of the parameters, or at least

those that make sense.

The solver type that appeared to be fastest on most device simulation

problems is, as pointed out before, split D-ILU preconditioned Bi-CGSTAB.

The most robust type was GMRES(oc) preconditioned on the right with

numerical dropping.

6.10.2 View of the client application

A client application wants to see a linear solver only as a single function that

is called with a mattix and a right-hand side as input parameters and returns

the solution on output. This is called a black box solver.

Reality is more complicated. The solution may not be representable in

a floating-point format. Even the closest representable solution may not be

computable by any algorithm (even by direct solvers). Our black box needs

more input knobs to quantify what should be done.

The requested accuracy and the type of convergence criterion are two

of these additional parameters for an iterative solver. Requesting maximum

achievable accuracy wastes time if only a few digits are needed. The client

may know more about a particular problem, like a good initial guess xo,

definiteness of the mattix, or other information that may suggest that one

particular combination of an iterative method and a preconditioner is faster

than another.

Thus, the solver package should select a default solver type that serves

most of the cases efficiently, but the client application should have a way to

manipulate the parameters to obtain a solver type that suits its needs.

6.10.3 Automatic adaptation

Closer to the idea of a black box solver would be a package that selects

automatically the fastest solver type for each linear system. Unfortunately,
there is no easy way of determining beforehand which type is the most

appropriate.

An approximation to this is to try first the solver type that is fastest in most

160 Implementation

cases. If this type does not attain convergence in a given maximum number

of iterations, the package switches to a slower, but more robust solver type.

The initial guess of this second solver type can be the final approximation of

the first solver type.

6.10.4 Experimenting

It should be clear at this point that many properties of iterative solvers are

still poorly understood. More theoretical framework is needed and many

experiments have to be conducted (and had to be conducted, for instance,

before this thesis could be written).

Many researchers in iterative methods write a small experimental code

fragment, concentrating only on one aspect (e.g. the method, the precondi¬

tioner, the parallelism) and ignoring the others. They examine the behavior of

their code only on a set ofmodel problems, or at most on a few problems from

a collection. This approach is acceptable for making first statements about a

new idea, but insufficient to predict its effectiveness inside a real application.

On the other hand, experimenting only inside complete applications is often

too expensive, and leads to large measurement errors through interactions with

other effects. There have to be ways ofextracting a snapshot ofa real situation

(like one single matrix together with the right-hand side, the initial guess,

the convergence tolerance) and doing more exhaustive experiments with a

stand-alone solver tool. Conversely, set-ups investigated on a single test

problem should be easily and immediately transferable to the solver library
that is integrated in an application.

As a consequence, experimentation tool and fully-fledged application

library in such an evolving field as iterative solvers should be only one

package.

6.10.5 Expansions

Research in iterative solvers is currently a very active field. Major new ideas,

such as new methods, new preconditioners, new implementations (motivated

by new architectures), new uses (through new algorithms or models in the

client application), have been invented or put into practice only very recently,

6.10. Flexibility 161

and will continue to emerge. Flexibility in an implementation includes the

ability to insert even unconventional ideas (like, for instance, recursively
nested iterative solvers, see Section 4.5).

6.10.6 Configuration control

Application programs usually conttol numerical software libraries through an

additional "parameter array" supplied along with a function call. Each entry
of this array contains a value that selects one particular option. The most

important switches may be supplied as individual function parameters, some

ofthem even as individual function calls. Options in the application itself are

usually (at least in device simulators) selected in a control file, using some

simple command language. For an experimentation tool, conttol information

should be given interactively (through keyboard input or menus) or through
command line options. Common settings for a longer series of experiments
are best specified by a conttol file.

In light ofSection 6.10.4, all control informationto a solver package should

have the same format. In light of Section 6.10.S, this format should be easy

to extend to new features. In light of Section 6.10.2, default settings should

be in the same format, and client applications should be able to generate this

format. More complicated set-ups such as automatic adaptation (Section 5.7)

or nested solvers (Section 4.5) ask for a less static specification than parameter

arrays.

One solution to this is to use a simple declarative language to specify
the options. Defaults are specified in a constant string interpreted at the first

invocation of the solver package. Applications modify settings by passing a

character string (like "method=cgs") to the package. The conttol file of

the application may contain sections with plain solver conttol declarations. In

other applications, the solver package can also be controlled by an extra solver

conttol file. Reading this file at each solver call allows dynamic control over

the behavior of the solver, even without intervention of the client application.
Command line options, keyboard input, and file input to the experimentation
tool use the same declarative language. If the language interpreter is written

using a standard parser generator (like the UNIX tools Yacc and Lex), the

language can be extended very easily.

162 Implementation

6.10.7 Object-oriented package design

At a given point of each Krylov subspace method, a preconditioned matrix-

vector product has to be computed. Depending on which preconditioner is

currently being used, one particular function30 is called. How should this be

implemented ? Many numerical packages would just use a list of conditionals

or case-statements to select the path to go. Some would even use reverse

communication [AS90, Her91], and exit the iterative algorithm with a return

code that tells the caller function to apply the preconditioner to a return vector

and reenter the algorithm later.

A cleaner software engineering approach identifies the application of the

preconditioner as an operator of an abstract data type, or as a method of

the object instantiating the preconditioner. An object-oriented view sees the

(concept ofa) preconditioneras a virtual class [BDMN79], and each particular

type of preconditioner (such as ELU, ND, nested solver) is a subclass of the

general preconditioner class. The iterative method calls a virtual method

of the general preconditioner, and dynamic binding [Mey88] substitutes the

correct instance method of the selected preconditioner.

In addition to the preconditioner, other virtual, dynamically exchangeable

objects turn up, like the matrix, the iterative method, the termination conttol

mechanism, and the breakdown and restart handlers. Figure 6.19 presents

a simplified extract of the code organization in an object-oriented approach
for an iterative solver package. The termination conttol does not see which

iterative methods it controls, the iterative method activates a matrix-vector

multiplication function without knowing whether the matrix is preconditioned
or not, and which preconditioner is used.

Note that the object-oriented concept for an iterative solver package
does not necessarily require an object-oriented programming language for

its implementation. Furthermore, at the object grain size suggested in this

section, efficiency is not critical.

30In order not to get involved in concepts specific to one particular programming language at

this point, programming language concepts are named as in [Set89].

6.10. Flexibility 163

ClientApplication I

-4-r
(^ Solve y

TerminationControl

vs v,

<u a

aj as

c

o £ a

£ tq as

TL

(^Iterate/ (petResidual/(petSolution/
IterativeMethod

Preconditioner

Incomplete Factorization
>

cobi

J

H ILU

|

^11ffl xternal ested
so

SP ^1 Q| ^l n *l «> e

r- r r-1 -T-r
V

Figure 6.19: An extract of the class structure for an object-oriented imple¬

mentation ofan iterative solver Boxes standfor classes, boxes on boxesfor

subclasses, rounded buttonsfor methods, and arrowsfor accesses

164 Implementation

6.11 Portability

The resource requirements for the client applications of an iterative solver are

such that it should be able to run on the fastest supercomputers available. On

the other hand, software development, as well as smaller application runs, are

more convenient on smaller platforms, like workstations. In certain situations,

minisupercomputers are more economical.

The application must therefore be highly portable, as users will not accept

working with different interfaces each time they switch to another machine.

Although it may be acceptable for a client application implementor to use

different, machine-specific and manufacturer-provided tuned packages on

each machine, it is also preferable to have the numerical software packages

portable.

As we know that the linear solver dominates the computation time in

device simulation, the solver package should even be the most portable part
of all. It can then be used for benchmarking new machines, and predict their

performance on the whole application withouthaving to port and run the entire

application.

6.11.1 Parallelization and vectorization

Except for the termination conttol mechanism (which has constant complexity
and can be ignored in efficiency considerations), the operations discussed

in Sections 6.4 to 6.8 are the only computations that have to be done in

each iteration. With the techniques presented above, all these operations are

perfectly vectorizable and parallelizable. The focus is now on how an efficient

vectorization and parallelization can be portable.

Linear operations on vectors and vector dot products are part of the

BLAS131 library [LHKK79]. All supercomputer manufacturers provide

highly tuned assembler implementations for BLAS. Still, better performance
is obtained by coding these operations as loops, and leaving the tuning to

an optimizing compiler. The compiler can minimize memory access and

optimize vector pipeline utilization by grouping and chaining several vector

operations. An implementation based on BLAS has to split larger vector

expressions into simpler operations that matchBLAS routines. For expressions

Basic Linear Algebra Subroutines, level 1: vector-vector operations.

6.11. Portability 165

matching BLAS exactly, the compiler substitutes the corresponding BLAS

implementation, anyway.

As BLAS is intended for dense matrix linear algebra, it does not include

indirect addressing, as used in the inner loops of Algorithms 6.1 and 6.2.

These loops, which dominate the performance in sparse matrix-vector mul¬

tiplication and incomplete factorization preconditioning in a jagged diagonal
implementation, are included in one proposal to extend BLAS to sparse
matrices [OK90], but omitted in another proposal [DGL91]. Neither one of

these extensions is currently popular enough for an implementor to rely on its

availability.

No compiler would vectorize or parallelize spontaneously the inner loop
(on code line 5) of Algorithm 6.2. The compiler does not know that using the

index vector jD.j[fc,0 : JD.c[/t] - 1] on the left-hand side of the assignment
does not incur a data dependency. We have to insert a compiler directive

(or compiler pragma) telling the compiler that each entry in the index vector

occurs only once.

6.11.2 Choice of a programming language

Despite its age, Fortran is still by far the most widely used programming

language for numerical applications, and it is usually available on all platforms
intended for scientific computing32. In the last years, C has reached the same

level of availability. Ada compilers generally exist, too, but only as an

(usually expensive or export-restricted) option. C++ can be made available

everywhere C exists, because of a good C++-to-C preprocessor. All other

languages have to be excluded because of their current lack of availability.

An important point is inter-language compatibility. A package should be

callable from any language. Although there are syntactical differences from

one manufacturer to another (e.g. Fortran compilers add here and there an

underscore character to identifiers), it is not too difficult to have mutual calls

between Fortran, C, and C++.

It often turns out that functionally equivalent code fragments perform
better if the code is written in Fortran rather than in C. One reason for this

is that, knowing how much numerical software is written in Fortran, many

1
As Fortran 90 is not sufficiently available yet, we consider here only Fortran 77.

166 implementation

manufacturers put more development effort into the optimization capabilities
ofthe Fortran compiler. Another reason is conceptual differences. Fortran

assumes (that is, leaves the responsibility to the programmer) that arrays passed
as parameters do not overlap each other. C treats such arrays by definition as

general pointers, which are allowed to point to the same or overlappingregions.
This fact inhibitsoptimizations (as automatic vectorization and parallelization)
in many cases in C. The programmer has to insert another pragma, telling the

compiler that the vectors on the left-hand side of an assignment do not overlap
with anything on the right-hand side. Advanced C compilers may solve this

problem through interprocedural pointer tracking [LMSS91].

One weak point of C used to be its lack of redundancy, but this problem
has largely been reduced through the strong typing in ANSI C and C++.

The essential disadvantage of Fortran is its poor expressibility. The

absence of true data structuring and abstraction capabilities makes handling
of more complicated data sttuctures (such as those in the previous sections of

this chapter) clumsy and unreadable. Some of the flexibility issues mentioned
in Section 6.10 are hard to deal with. Because of the lack of dynamic memory
allocation, many Fortran library functions expect the caller to provide an

additional "work array" parameter that should be sufficiently large to fit the

internal data structures of the callee. This is not really necessary, however, as

FORTRAN can use Cs memory allocation routines through simple (yet clumsy
looking) tricks [Hei91].

So there may be a slight loss in runtime efficiency when using C or C++

instead of Fortran. To minimize this runtime penalty, the most critical parts
of the code should be implemented in the fastest available language. For an

iterative solver, these are the inner loops identified in Section 6.11.1, plus

possibly some loops in the functions setting up incomplete factorizations and

data structures. For all other purposes, the existence of modern software

engineering oriented concepts in C and especially in C++ improves readability
of the code, simplifies debugging of complex data sttuctures, improves
robustness, and thus reduces development time. Among all the available

languages, C++ optimizes one particular resource: programmer efficiency.

6.11.3 Self-restraint

With the current spread of UNIX-like operating systems, using OS-specific
primitives for file access and resource monitoring does not hinder portability.

6.12. The PILS package 167

Still, minor differences in these accesses may cause trouble when porting. A

very conservative and resttictive attitude is advisable, limiting OS contact to

the strict minimum.

Similar comments apply to the use of certain language constructs.

Compiler-specific features, as attractive as they may seem, should abso¬

lutely be avoided. One should also refrain from using peculiarities whose

specification in the standard might be ambiguous.

6.12 The PILS package

A package of iterative linear solvers, called Pils, was developed along with

this thesis33. Pils features practically all the variants of iterative solvers

presented in this document.

6.12.1 Features

In particular, Pils implements the CG, CGNR, GCR(^), Orthomin(^),

GMRES(), BiCG, CGS, Bi-CGSTAB, and BiCGStab2 methods. The avail¬

able preconditioners are Jacobi, SSOR, D-ILU, ILU, ILU(fc) (positional

dropping based on the elimination tree), ND(r) (numerical dropping), nested

iterative solvers, external preconditioning, or no preconditioner at all. Pre¬

conditioners can be in right or split position. The iterative methods are all

formulated in a way that allows the use of the Eisenstat trick to speed up

preconditioned matrix-vector products on SSOR and D-ILU preconditioners.

Convergence criteria based on the residual and based on a solution error esti¬

mate are available. Breakdowns are fixed by restarting the iterative method.

Several monitoring options can be switched on and off. Inside an application,
selected linear systems (including matrix, right-hand side, initial guess, and

final approximation) can be saved to disk, for later experiments with the p i 1 s

stand-alone driver.

The unknowns are reordered by greedy coloring to parallelize and vectorize

the no-fill incomplete factorization preconditioners. To reduce the full fill

before the numerical dropping factorization, the unknowns can also be

33Pils happens to also be the name of a low fermenting, strongly hopped beer originating from
Plzefi in westem Bohemia, Czechoslovakia. Rumors that it took many a Pils to write PILS remain

unconfirmed.

168 implementation

reordered by the fill-reducing ordering techniques known as reverse Cuthill-

McKee [GL81], nested dissection [GL81], and natural ordering by physical
coordinates [HPWF91].

Any combination of the options above (including all parameters for

methods, preconditioners, estimators, termination conttol mechanisms) forms

a Pils solver type. Nested preconditioning can use any solver type as

inner preconditioner, including recursively nested solvers. Whenever a solver

type fails to fulfill its convergence criterion after its maximum number of

iterations, Pils activates its ersatz solver type (which can specify abandon).

Several different solver types can be tried (and chained, by using the final

approximation of a failing type as initial guess for the next ersatz type).

All specifications to Pils, including its internal defaults, instructions by
the client application, and instructions to the pils driver, are given in an

interpreted specification language. Users of the client application can bypass
the applications choices, even at runtime (that is, while the application is

running and has called Pils already).

6.12.2 Implementation

The main data structure in Pils stores the lower and the upper triangle of a

sparse matrix by color blocks, each block using jagged diagonals that form a

partitioning by matchings. For matrices in other data structures (compressed

rows, structurally symmetrized compressed rows [BCD+89], blocked and

masked connection lists), Pils constructs once a mapping based on the

sparsity structure, and uses it to convert quickly all matrices with the same

sparsity structure appearing in later solver calls.

PiLS runs currently on Sun-3, Sun-4, DECsystem 5500, IBM RS/6000,

Trace Multiflow, HP 9000/700, Sequent Symmetry S81, Silicon Graphics,
Alliant FX/80, Alliant FX/2800, Convex C-200, Cray-2, Cray X/MP, Cray
Y/MP, NEC SX-3. It uses vectorization and parallelization features where

available.

The implementation of Ptls currently34 consists of 21,500 lines of code.

Table 6.4 shows which languages were used. Although most of the Pils

code is written in C++, Pils spends most of its execution time in optimized
Fortran code.

34Pils Revision 1.27

6.12. The PILS package 169

programming language percentage o/Ptls code

C++ 88.3

FORTRAN 6.4

YACC 2.0

Lex 1.5

Make 1.3

Sed 0.2

Pils specification language 0.2

Table 6.4: Programming languages used in Pils, and their contribution to

the total code size.

6.12.3 Use

Ptls is integrated into the 2-D device simulator Gensim [Btir90], the 3-D

device simulator Second [Hei91], and the multi-dimensional device simulator

Simul [KMFW91], and has been released as a stand-alone package to several

institutions. Inside those simulators, it has been in daily production runs at

our Laboratory and at over a dozen other sites, over a period of one and a half

years.

All the experiments for this thesis were done with Ptls, on linear systems

Pils extracted from these device simulators. Algorithmic variants were

selected by setting the appropriate options in the pi 1 s driver.

A few more specific details on Ptls, along with extracts of this thesis, can

befoundin[PF91b,PF92].

6.12.4 Drawbacks

Since the rest of Section 6.12 highlights the strong points of Ptls, its

weaknesses should be mentioned as well. This section lists a few such

imperfections, and discusses their reasons, which are mostly due to the

evolutionary development of the package.

Although Pils has been tested, used, and experimented with extensively
on real-world device simulation problems, only a few experiments have been

done with problems from some other domains, like constructed ill-conditioned

170 Implementation

model problems, circuit simulation, and surface parametrization, and other

applications have been ignored completely. While this is better than working

only with toy or model problems, or reusing over and over again the same test

suite, some conclusions may potentially be restricted to device simulation.

At the time the development of Ptls started, in early 1990, Bi-CGSTAB

had not yet been invented, CGS was suspicious due to its erratic convergence

behavior [Pin90, HPWF91], and GMRES-like methods were already known to

be weak on ill-conditioned problems when restarted or truncated [BCD+89].
BiCG was considered the best iterative method for device simulation. Conse¬

quently, transposed matrix-vector products had to be as efficient as possible,
and this led to the sparse matrix data structure based on partitioning by
matchings. To exploit potential structural symmetry (which exists for one-

variable discretizations, and on some blocks of the matrices in the coupled
Newton solution), and since regular and transposed matrix-vector products are

equally frequent in BiCG, the upper triangular part of the matrix was stored

in row-orientedjagged diagonals, and the lower triangular in column-oriented

jagged diagonals. This means now that all the jagged diagonals have to be

partitionings by matchings, even if a method without transposed operations is

used. This results in a storage and timing overhead of between one and ten

percent (due to explicit zero fill in the matchings, see Section 6.7.3), and to an

annoyingly slow data structure initialization (which takes as long as solving
a few linear systems with this same sparsity structure, but is still negligible
in general device simulation runs, where many more such linear systems
have to be solved). In spite of the (more or less, see the next paragraph)
object-oriented design, changing this fundamental data structure in Ptls would

require a coding effort of at least two months.

When investigating the availability of compilers in early 1990, we found

that C++ was not yet wide spread enough to be used; in particular, it was not

available on Cray machines. Even though the ANSI C standard [Ame90] was

published in Spring 1990, a reasonable subset of this standard was supported
by enough compilers in early 1990, so that ANSI C was chosen as the main

implementation language. The switch to C++ took only a few days, in Spring
1991. Later additions and partial reorganizations used the features of C++,
but, although I tried an object-oriented style in ANSI C as well, parts of the

package are still inhomogeneous with respect to programming style.

The price of flexibility is code size. An application hardly uses more than

two or three solver types, but has to link the full-blown Ptls library.

6.13. Benchmarks 171

Ptls currently has no support for distributed memory. My experience with

iterative solvers on a DMPP, described in other sections of this chapter, comes

from a separate project [PAF92, AzBF+90]. With some effort ofreplacing the

lower operations, it would be possible to port Ptls to a DMPP. To be useful

and efficient within an application, however, the client application would have

to be designed with disttibuted-memory parallelism in mind, and a different

interface between client and library would be needed.

6.13 Benchmarks

The performance of scientific code, especially on supercomputers, is usually
measured in MFlops (millions of floating-point operations per second). Such

numbers may be reasonable for problems where a given algorithm is known

to be the "best" and "fastest", but even in that case, there is lots of room

for cheating35,36. We have seen above that for irregular sparse mattix

applications, the memory traffic is of the same order as the number of

computation operations and should therefore not be ignored. More important,
there is no single iterative solver that is the fastest for all problems (even not

for all problems among our restricted class) and on all machines.

I use MFlops, anyway, in this section, and only in this section, and I will

justify this choice soon.

6.13.1 Varying the iterative method

Consider again the linear system we used in Chapter 3 to compare

the convergence behavior of the iterative methods. Table 6.5 shows the

performance Ptls obtains for this problem on a particular machine.

The higher MFlops rates obtained for the methods of the GMRES-

family compared to the biorthogonalization methods is typical: The relative

percentage of linear operations among all computations is lower for the

35 It is not a secret that many compilers recognize constructs from the UNPACK benchmark

and substitute tuned libraries.

36The standard algorithm for multiplying two nxn dense matrices requires 2n3 floating-point
operations. Strassen's fast matrix multiplication algorithm is numerically less stable, but requires
only 0(n2S) operations [Str69, GvL83]. Dividing 2n3 by the time Strassen's algorithm took,

MFlops rates exceeding the peak performance of the machine used have been presented [Mei91].

172 Implementation

Performance Convergence Time

Method [MFlops] [iterations] [seconds]

CGNR 98 >400 -

Orthomin(lO) 148 >400 -

GCR(IO) 123 361 12.16

GMRES(IO) 116 388 12.24

GMRES(oo) 188 89 5.15

BiCG 100 140 7.18

CGS 100 78 4.09

Bi-CGSTAB 103 65 3.43

BiCGStab2 110 65 3.53

Table 6.5: Performance of different split D-ILU preconditioned methods on

one processor ofa Cray Y/MP.

latter. Since sparse matrix-vector multiplications involve indirect memory

addressing, these operations are slower. The important column in Table 6.5,

however, is the last one, showing the time in seconds to solve the system.

Note that on a similar machine without hardware gather/scatter support,

GMRES(oo) would certainly converge in less time thanBi-CGSTAB (provided
that enough memory is available to store the 89 direction vectors). See also

Section 6.2.

6.13.2 Varying the preconditioner

Table 6.6 shows variations of the performance with different preconditioners,
for the one combination of an iterative method, a problem, and a machine.

This comparison is probably the most unfair in this section. The data structures

in Ptls are optimized for the ILU and D-ILU types ofpreconditioners, so these

achieve the highest rates (note that, because of the Eisenstat trick [Eis81] used

in D-ILU and SSOR, the relative contribution of sparse matrix operations
is lower, so the MFlops rates are higher than for ILU preconditioning).

Unpreconditioned and diagonally preconditioned solvers would be faster

with a data structure targeted solely to matrix-vector multiplication. The

preconditioners with fill-in run mostly in scalar mode, and this explains their

poor performance on this rather well conditioned system. Because of the

differences in the relative timings, the decision as to whether a fast vectorized

6.13. Benchmarks 173

(e.g., D-ILU) or a more robust (e.g., ND) preconditioner should be used to

solve an ill-conditioned system may depend on the machine architecture.

Preconditioner

Performance

[MFlops]
C-220 Y/MP

Number

of
iterations

Total time

[seconds]

C-220 Y/MP

none

Jacobi

6.66 100

6.70 102

>400

153 114 7.45

SSOR

D-ILU

ILU

6.74 103

6.76 103

6.24 94

69

65

61

55 3.62

53 3.43

110 11.47

ILU(l)

ND(O.Ol)

2.84 15

2.78 15

63

29

277 53.96

164 45.35

Table 6.6: Performance ofBi-CGSTAB with differentpreconditioners (in split

position), on a Convex C-220 and on a Cray Y/MP (one processor used). Note

thatfor technical reasons, the MFlops rates are measured only in the iteration

phase, and not in the preconditioner set-up.

6.13.3 Varying the machine

Table 6.7 reports the MFlops rates for one algorithm (split D-ILU precondi¬
tioned Bi-CGSTAB) when applied to the same set of problems on different

machines (note that the algorithm was not able to solve all these systems to

the desired accuracy in a reasonable number of iterations). The differences

in the performance clearly reflect the classes these machines belong to: pre¬

vious generation microprocessors, today's microprocessors, minisupers, and

supercomputers.

The problem size (i.e., the number of unknowns) increases from left to

right in Table 6.7. The performance does not always improve with increasing

problem size; rather, the opposite more often the case. There are two reasons

for this effect, and both are related to memory access speed.

First of all, the average number of nonzeros per row differs in the five

examples. The two problems on the left of Table 6.7 come from 2-D

simulations, the other three from 3-D simulations. Also, the first three

problems involve one unknown per grid point, the two others three unknowns

174 Implementation

Problem

Unknowns

Nonzeroslrow

Grid dimension

lddh uvdih bp25e drl5c mct70c

2.7k 22k 26k 47k 210k

6.9 6.5 9.1 21 20

2-D 2-D 3-D 3-D 3-D

Sun-3/280

Sequent S81 (i386+fpa)

0.10 0.10

0.20 0.18 0.18 0.16

Sun SparcStation 1+

DEC system 5500

Sun SparcStation 2

Sun-4/490

1.05 0.93 0.92

1.98 1.46 1.33

1.87 1.48 1.47 1.28

1.85 1.59 1.54 1.37 1.22

Alliant FX/80 (6 procs.)
Convex C-220

5.09 3.65 3.55 3.46 2.53

7.79 8.00 7.36 6.76 6.85

Cray-2

Cray Y/MP
NEC SX-3/22

37.28 38.29 31.73 26.61 28.73

105.42 126.83 114.50 103.55 106.18

156.53 197.43 142.03 136.49

Table 6.7: MFlops rates for split D-ILU preconditioned Bi-CGSTAB on

different machines. Except for the Alliant, only one processor was used on

each machine.

per point. More nonzeros per row lead to a higher percentage of indirect

memory accesses (inside the sparse matrix operations), which are generally
slower than the direct (and even sequential) accesses in the rest of the

operations.

For problems with approximately the same number of nonzeros per row

("lddh" and "uvdih", "drl5c" and "mct70c"), a positive effect of problem size

on performance can be observed for the four machines at the bottom of the

table. On other machines, the performance still decreases, and this is because

the cache hit ratio decreases.

Table 6.7 lists sequential computers, shared-memory multiprocessors, and

vector supercomputers. The reported MFlops rates are those obtained in real

device simulations. Numbers from distributed-memory multicomputers are

not included, because neither Ptls nor any device simulator with the potentials
of Ptls' clients is running on any such machine. The DMPP parallelization
techniques presented in this chapter could be added to Pils, but none of the

state-of-the-art device simulators can be ported easily to such a machine.

6.13. Benchmarks 175

Problem n "aver Grid Speedup

BBIG 2069 6.8 2-D 45.0

LDD 2674 6.9 2-D 47.3

BTP0L4K 4913 12.0 3-D 42.6

DR15 15564 8.6 3-D 49.4

BIPOL20K 20412 12.3 3-D 51.9

DRAMO 22680 24.4 3-D 54.3

DRAMl 22680 6.6 3-D 54.5

BP25C 76926 20.1 3-D 43.8

Table 6.8: Speedup obtained on a 64-processor DMPP.

The DMPP parallelization techniques presented in this chapter are not

fictitious, though. They were evaluated in a separate package and on a

simulated DMPP. The matrices used are real irregularly structured matrices

from 2-D and 3-D device simulation. The target machine was K2, a planned
and partly realized 64-processor DMPP with low-latency and high-bandwidth
communication in an 8 x 8 torus raw-data interconnection network [AFNV90,

AzBF+90]. K2 was simulated using the K9 simulator [BPA89]. Table 6.8

gives some of the results obtained with two-dimensional geometric mapping
and balanced greedy coloring, which came out as the best heuristics for

mapping and coloring. Since K2 was never built and only simulated results

are available, I restricted Table 6.8 to speedups (over a single processor, using

an AMD 29050 RISC processor model) rather than presenting timings and

MFlops rates. A detailed discussion of the results can be found in [PAF92].

6.13.4 Varying the storage consumption

We saw in Section 4.7.4 how iterative methods preconditioned by the

ND(r) preconditioner are capable of solving ill-conditioned linear systems.

Decreasing the drop tolerance parameter r reduces the number of iterations,

but increases the number of nonzero entries in the factors of the approximate
factorization. The curve in the left bottom quadrant of Figure 6.20 shows

again the trade-off between total solution time and storage requirements for

different drop tolerances. This curve replicates Figure 4.4 on page 94, except

that the horizontal axis of the plot does not represent relative fill, but total real

memory use for the algorithm and the preconditioner, on a Convex-220.

176 Implementation

Time [seconds]

Storage [MBytes]

Figure 6.20: Storage size and solution time for an ill-conditioned linear

system on a Convex C-220.

The nested solver analyzed in Section 4.7.5 showed a similar time-storage
trade-off. Controlled by the maximum number of inner iterations, the number

ofouter iterations determines how many back vectors need to be stored for the

outer GCR(oo) method. The curve in the upper right quadrant of Figure 6.20

replicates the lower (best) variant from Figure 4.5 on page 96, plotting total

solution time as a function of total memory use on a Convex-220.

The relative locations of these two curves in Figure 6.20 indicate a defeat

of the nested solvers agains the ND(r) preconditioned solvers: nested solvers

6.13. Benchmarks 177

require both more storage and more time to solve this linear system. This

assertion is valid for the Convex-220, but what about other machines ?

Time [seconds]

160-

140

120

100

80-|

60

40

20-1

0-

,cvX> -

' /* / ///A
0 10 20 30

Storage I MBytes}

Figure 6.21: Storage size and solution time for an ill-conditioned linear

system on a Cray Y/MP.

Figure 6.21 displays the results of exactly the same series of experiments,
but on a Cray Y/MP. The distinction is much less pronounced, and this for

two reasons:

1. The ND(r) preconditionerruns mainly in scalar mode. The performance
ratio between vector and scalar code is much higher on the Cray than on

the Convex, so the ND(r) preconditioned solvers are not as much faster

than the others on the Cray.

2. ND(r) uses a considerable amount of integer storage. One integer

178 Implementation

takes 8 bytes on a Cray, but only 4 bytes on a Convex. Therefore,

the preconditioner requires almost twice as much memory on the Cray,

even if the number of fill entries is the same.

Also, the shape of the curves is not exactly the same. This is due to the

differences in the floating-point formats on the two machines, which lead

to different rounding effects and sometimes ultimately to different iteration

numbers (see Section 5.6).

7

Conclusions

7.1 Current status

As with many other applications in scientific computing, semiconductor

device simulation requires repeated solution of large, sparse systems of linear

equations. Local grid refinement leads to very irregular sparsity structures

for the matrices. The nature of the partial differential equations leads to

notoriously ill-conditioned linear systems.

Superlinearly growing storage requirements limit the range of application
of sparse direct solvers for large, sparse systems of linear equations. Iterative

linear solvers are a viable and efficient alternative. Their behavior on

unsymmetric and ill-conditioned linear systems requires special attention.

An iterative solver consists of an iterative method, a preconditioner, and

a termination control mechanism. All successful iterative methods proceed by

finding in a sequence of Krylov subspaces the stationary point of a function

whose single global stationary point coincides with the solution of the linear

system.

GMRES needs the minimum number of matrix-vector products to mini¬

mize the residual in the Krylov subspace K.k (A, ro), but can often not be used

as is because of its storage requirements, which increase with the iteration

number k. Truncated and restarted variants of GMRES have shown to be

179

180 Conclusions

much less effective in device simulation applications.

BiCG and variants thereof are generally the most efficient and successful

iterative methods for device simulation. Their theoretical possibility for

breakdown occurs very rarely in practice, and can easily be fixed through

restarting. The Bi-CGSTAB method has emerged as the leading method in

this class.

The most effective preconditioners consist of incomplete LU-

factorizations. D-ILU is a very fast incomplete factorization preconditioner
that suits the needs of the great majority of linear systems in device simula¬

tion. Some very ill-conditioned linear systems can currently only be solved

efficiently by an approximate factorization preconditioner based on numerical

dropping. A flexible solver package adapts automatically to be most efficient

on the majority of solver calls and still effective on the difficult cases.

The fact that the matrix is only used as an operator for matrix-vector multi¬

plication appears to offer a high degree ofparallelism in iterative solvers. This

is only partly true. Linear operations, vector dot products, and matrix-vector

products with regularly structured matrices are indeed easy to vectorize and

parallelize. On sparse matrices with highly irregular structure, the available

parallelism is more difficult to exploit; on vector computers through com¬

plicated data structures, and on distributed-memory multicomputers through
heuristics that map problem locality onto interconnection network locality.

Memory access speed and network latency largely dominate the performance
on today's architectures.

The inherent parallelism in incomplete factorization preconditioners is

insufficient. Reorderings based on graph coloring construct no-fill incomplete
factorization preconditioners that vectorize and parallelize well. Factorizations

with limited fill, however, are mostly sequential.

The relative performance of different iterative solvers varies with the

architecture of the platform Solvers for certain very ill-conditioned prob¬
lems cannot exploit most of the high-performance architectural features.

Distributed-memory multicomputers are efficient only if the message latency
is very low, so that the time to transmit one or a few numbers is in the time

range of only one or a few floating-point operations.

7.2. Future research 181

7.2 Future research

Bi-CGSTAB, QMR, and BiCGStab2 have all been published in the last two

years; CGS has been known since 1984, but the first major journal publication

appeared in 1989. With the quick success of these variants of the BiCG

algorithm, some further developments in this direction may be expected.

QMR is promising, but its parameter set needs to be tuned to cope with

ill-conditioned systems, and a stable squared variant will have to come. The

extra cost for the two-dimensional minimization hinders BiCGStab2 from

having a true edge over Bi-CGSTAB. Rather than doing the two-dimensional

step at every even iteration, a quantitativeheuristic should be found to use two-

dimensional minimization only at those iterations where it brings a (timing)

advantage over two one-dimensional steps. Very little is known as yet about

the influence of the dual initial residual vector fo in BiCG and its variants.

Nested iterative solvers may be a more efficient way of reducing the

memory requirements of GMRES-like methods, without loosing so many of

the nice theoretical properties like with restarting or truncation. The huge

parameter space for combining inner and outer solvers has to be explored in

more detail.

Dropping criteria and dropping strategies for the numerical dropping
factorization preconditioner need more theoretical analysis, in the hope of

finding better criteria. While the current implementation delivers the fill

after dropping as a function of the tolerance r, the factorization process

should adapt the tolerance to meet prescribed storage limits. A parallelizable
or vectorizable variant of numerically controlled approximate factorization

preconditioners is needed to keep them competitive even on architectures with

a high parallelism gain.

Automatic switching between fast and robust iterative solvers should not

only be possible a posteriori, after the faster solver has run for a given number

of iterations, but be controlled by a fast a priori criterion.

The construction of data structures for highly parallel operations is rela¬

tively expensive. It is presented in this thesis under the assumptions that many

linear systems with the same sparsity structure are solved, so that the overhead

for constructing parallelism is recovered after several numerical solver calls.

It will need some tuning to cope with applications where the discretization

grid changes frequently, e.g., with adaptive refinement.

182 Conclusions

7.3 Future visions

The black box solver, a function that solves any linear system exactly and in

minimum time, is what users really want. Such a situation exists today for

relatively small dense direct solvers. For those classes oflinear systems where

iterative solvers are the most efficient algorithms, such an ideal and universal

black box will probably stay an illusion.

Automatically adapting methods and preconditioners may provide an

acceptable approximation to such a black box solver. Switching to a more

expensive but stabler preconditioner if another iterative solver does not

converge in a limited number of iterations is only a very rough first step of

adaptation. The two ideas—preconditioners for which set-up time and quality
increase monotonically with a parameter (like a drop tolerance), and iterative

methods which can deal with preconditioners that vary from one iteration to

another (like nested iterative solvers)—could be combined in a more smoothly

adaptively improving preconditioned iterative solver.

Massive parallelism is trivial to obtain in diagonally preconditioned
iterative methods on regular tensor-product grids. Short-circuiting to the

conclusion that iterative solvers in general map perfectly to machines with

many processors is a dangerous fallacy. Higher quality preconditioners and

irregular structures require a significant amount ofimplementation work in the

entire application code. Communication is finely dispersed, and not network

bandwidth on large data exchanges, but message latency when sending a

single or a few data items is the crucial parameter that decides whether

a distributed-memory multicomputer can be successfully used for iterative

solvers.

Since the relative performance of different iterative solvers varies strongly
with the machine architecture, the idea of automatic adaptation should be

carried to machine dependence. On-the-fly timings can determine the relative

efficiency of different variants.

As an example for a combination of all the ideas in this section, we

could think of an asynchronously improving preconditioner. At the black

box solver call, two logical tasks start: the first applies an iterative method

with a cheap, fast preconditioner, the second computes a more complicated
preconditioner. When the better preconditioner is ready, the iterative method,

which may already have performed a number of iterations with the cheaper

7.3. Future visions 183

preconditioner, starts using the better preconditioner. The second task then

starts constructing an even better, but even more expensive preconditioner.
A one-processor implementation of this idea could fork into two processes

under quasi-concurrent control of the multitasking operating system. A

multiprocessor would allocate a certain number of processors to either of the

two tasks. The relative priority or the percentage of allocated processors

could favor the first task at the beginning and progressively increase the

resources allocated to the second task. While a uniprocessor would switch

to the better preconditioner after fifty iterations with the fast preconditioner,
a highly parallel machine might do this switch only after several hundred

iterations. Assuming that future parallel machines support this efficiently, a

better multiprocessor implementation could be to fork into two tasks running
on all processors, and the first task would run in the spare time that the second

(less parallel and requiring more data transfer) task waits for incoming data.

Leer - Vide - Empty

List of Figures

2.1 Sampled storage requirements for direct and iterative

solvers 17

3.1 Descent behavior of Steepest Descent and Conjugate
Gradients 29

3.2 Convergence behavior of GCR 39

3.3 Convergence behavior of Orthomin 40

3.4 Convergence behavior of GMRES 45

3.5 Convergence behavior of BiCG 52

3.6 Convergence behavior of CGS 57

3.7 Convergence behavior of Bi-CGSTAB 62

4.1 Spectrum of a sample matrix without preconditioning. .
88

4.2 Spectra of a matrix with different preconditioners based

on no-fill factorizations 90

4.3 Spectra of a matrix with different preconditioners based

on factorizations with parameter-controlled fill 91

4.4 Storage size and solution time for different precondition¬
ers on a very ill-conditioned linear system 94

186 List of Figures

4.5 Time and number of outer iterations for different choices

of the inner tolerance and the maximum number of inner

iterations in a nested iterative solver 96

5.1 The solution update as an estimate for the solution error 105

5.2 A better estimate for the solution error 106

5.3 Cancellation effects through zigzagging in BiCG and CGS 108

5.4 Avoided cancellation by restarting BiCG and CGS.
...

109

5.5 Automatic switching from one iterative solver to another 111

6.1 The sparse matrix used to illustrate data structures
.. .

114

6.2 Compressed rows 122

6.3 The 2-D triangular grid used to analyze topological and

geometric mapping heuristics 126

6.4 A 16-processor DMPP with a 4 x 4 mesh interconnection

topology 127

6.5 Two-dimensional geometric mapping to a 4 x 4 processor
interconnection network 128

6.6 Two-dimensional topological mapping to a 4 x 4 proces¬
sor interconnection network 129

6.7 A level structure 129

6.8 ITPACK storage scheme 131

6.9 Jagged diagonals 132

6.10 Jagged diagonals using a partitioning by perfect match¬

ings 137

6.11 Jagged diagonals using a heuristically obtained parti¬
tioning by matchings 138

List of Figures 187

6.12 Memory access pattern for one block in the parallel
solution of a blocked sparse triangular system 140

6.13 A single color on a 2-D grid 142

6.14 The first color generated by balanced greedy coloring
on a 2-D geometric mapping of a 2-D grid on a 4 x 4

processor mesh 146

6.15 Memory access pattern for colored D-ILU factorization
.

148

6.16 Memory access pattern for colored ILU factorization.
. .

149

6.17 Memory access patterns for different formulations of

LDU-factorization 151

6.18 Data structure for the L factor during numerical dropping
factorization 157

6.19 An extract of the class structure for an object-oriented
implementation of an iterative solver 163

6.20 Storage size and solution time for an ill-conditioned linear

system on a Convex C-220 176

6.21 Storage size and solution time for an ill-conditioned linear

system on a Cray Y/MP. 177

Leer - Vide - Empty

List of Algorithms

3.1 Steepest Descent 29

3.2 Conjugate Gradients 33

3.3 CGNR 35

3.4 GCRW 38

3.5 Orthomin(^) 40

3.6 Outline of GMRES 44

3.7 Biconjugate Gradients as a solver for the combined

system 50

3.8 Biconjugate Gradients 51

3.9 Biconjugate Gradients without transposed matrix opera¬

tions 54

3.10 Conjugate Gradients Squared 56

3.11 Bi-CGSTAB 61

3.12 BiCGStab2 64

4.1 Preconditioned iterative solution of a linear system... .
70

4.2 Right preconditioned Bi-CGSTAB 73

4.3 Split SSOR preconditioned matrix-vector multiplication
with the Eisenstat trick 77

190 LIST OF ALGORITHMS

4.4 Split D-ILU preconditioned matrix-vector multiplication
with the Eisenstat trick 78

6.1 Matrix-vector multiplication using the jagged diagonal
data structure 133

6.2 Transposed matrix-vector multiplication with the jagged
diagonal data structure 135

6.3 Forward substitution by rows to solve a lower triangular
system 139

6.4 Greedy coloring 142

6.5 Balanced greedy coloring 145

6.6 The bordering factorization algorithm, with possible lo¬

cations for the censoring operator for numerical dropping. 153

List of Tables

2.1 Empirical values for the storage requirement formula
. .

17

3.1 Operations per iteration for the methods 66

3.2 Storage overhead for the iterative methods 67

4.1 Extremal eigenvalues of a matrix with different precon¬
ditioners 89

4.2 Resource requirements for incomplete factorization pre¬
conditioners without fill 93

6.1 Graphical symbols used in the data structure illustrations 115

6.2 Shadings for the memory access pattern drawings ...
116

6.3 Saving memory accesses by grouping linear operations 120

6.4 Programming languages used in Ptls, and their contri¬

bution to the total code size 169

6.5 Performance of different methods 172

6.6 Performance of different preconditioners 173

6.7 MFlops rates on different machines 174

6.8 Speedup obtained on a 64-processor DMPP 175

191

Leer - Vide - Empty

Bibliography

[AFNV90] M. Annaratone, M. FiUo, K. Nakabayashi, and M. Viredaz. The

K2 parallel processor: Architecture and hardware implemen¬
tation. In Proc. 17th Symposium on Computer Architecture,

Seattle, June 1990. IEEE-ACM.

[AH76] K. Appel and W. Haken. Every planar map is four colourable.

Bulletin of the American Mathematical Society, 82:711-712,

1976.

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures

and Algorithms. Addison-Wesley, Reading, Massachusetts,

1983.

[AJ84] M. A. Ajiz and A. Jennings. A robust incomplete Cholesky-

conjugate gradient algorithm. Journal for Numerical Methods

in Engineering, 20:949-966,1984.

[AJ89] G. Alaghband and H. F. Jordan. Sparse Gaussian elimina¬

tion with controlled fill-in on a shared memory multiprocessor.
IEEE Transactions on Computers, 38(11): 1539-1557, Novem¬

ber 1989.

[Ame90] American National Standards Institute, 1430 Broadway, New

York, NY 10018. American National Standardfor Information

Systems - Programming Language - C, 1990. ANSI Standard

X3.159-1989.

[AMS90] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. A taxon¬

omy for conjugate gradient methods. SIAM J. Numer. Anal.,

27(6): 1542-1568, December 1990.

193

194 Bibliography

[A087] C. Aykanat and F. OzgUner. Large grain parallel conjugate

gradient algorithms on a hypercube multiprocessor. In S. K.

Sahni, editor, Proceedings ofthe 1987International Conference

on Parallel Processing, pages 641-644. Pennsylvania State

University Press, August 1987.

[AOES88] C. Aykanat, F. OzgUner, F. Ercal, and P. Sadayappan. Itera¬

tive algorithms for solution of large sparse systems of linear

equations on hypercubes. IEEE Transactions on Computers,

C-37(12): 1554-1568, December 1988.

[APR89] M. Annaratone, C. Pommerell, and R. RUhl. Interprocessor
communication speed and performance in disttibuted-memory

parallel processors. In Proc. 16th Symposium on Computer

Architecture, pages 315-324, Jerusalem, June 1989. IEEE-

ACM.

[AS90] S. F. Ashby and M. K. Seager. A proposed standard for iterative

linear solvers. Technical report, Lawrence Livermore National

Laboratory, January 1990.

[Avr76] M. Avriel. Nonlinear Programming: Analysis and Methods.

Prentice-Hall, 1976.

[AzBF+90] M. Annaratone, G. zur Bonsen, M. FiUo, K. Nakabayashi,
C. Pommerell, R. RUhl, P. Steiner, and M. Viredaz. Bin

Parallel-Computer mit verteiltem Speicher: Das K2-Projekt.
Bulletin SEVIVSE, 81(17):11-18, August 1990.

[BCC+88] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T.

Kung, M. Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin,

P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp:
An integrated solution to high-speed parallel computing. In

Supercomputing '88, Kissimmee, PL, November 1988.

PCCS89] R. E. Bank, T. F. Chan, W. M. Coughran, Jr., and R. K.

Smith. The alternate-block-factorizationprocedure for systems
of partial differential equations. BIT, 29:938-954,1989.

[BCD+89] R. E. Bank, W. M. Coughran, Jr., M. A. Driscoll, R. K. Smith,

and W. Fichtner. Iterative methods in semiconductor device

simulation. Computer Physics Communications, 53:201-212,

1989.

Bibliography 195

[BCF+85] R. E. Bank, W. M. Coughran, Jr., W. Fichtner, E. H. Grosse,

D. J. Rose, and R. K. Smith. Transient simulation of silicon

devices and circuits. IEEE Transactions on Computer-Aided

Design ofIntegrated Circuits, CAD-4.436-451, June 1985.

[BDMN79] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard.
Simula Begin. Chartwell-Bratt, Kent, 1979.

[BPA89] P. Beadle, C. Pommerell, and M. Annaratone. K9: A simulator

of distributed-memory parallel processors. In Supercomputing

'89, pages 765-774, Reno, NV, November 1989. ACM-IEEE.

[BR81] R. E. Bank and D. J. Rose. Global approximate Newton

methods. Numer. Math., 37:279-295,1981.

[BR90] R. E. Bank and D. J. Rose. On the complexity of sparse

Gaussian elimination via bordering. SIAMJ. Sci.Stat. Comput.,

11(1): 145-160, January 1990.

[BRF83] R. E. Bank, D. J. Rose, and W. Fichtner. Numerical methods

for semiconductor device simulation. SIAM J. Sci. and Stat.

Comput, 4:416-35,1983.

[BS87] R. E. Bank and R. K. Smith. General sparse elimination

requires no permanent integer storage. SIAM J. Sci. Stat.

Comput., 8(4):574-584, July 1987.

[BS91] C. Brezinski and H. Sadok. Avoiding breakdown in the

CGS algorithm. Publication ANO-242, University des Sci¬

ences et Techniques de Lille Flandres-Artois, Laboratoire

d'Analyse Num6rique et d'Optimisation, 59655 Villeneuve

D'Ascq, Cedex, France, Mars 1991.

[Btir90] J. F. Burgler. Discretization and Grid Adaptation in Semicon¬

ductor Device Modeling. PhD thesis, ETH-Zurich, 1990. publ.

by Hartung-Gorre Verlag, Konstanz, Germany.

[BZS91] C. Brezinski, M. R. Zaglia, and H. Sadok. A breakdown-free

Lanczos' type algorithm for solving linear systems. Publi¬

cation ANO-239, University des Sciences et Techniques de

Lille Flandres-Artois, Laboratoire d'Analyse Numerique et

d'Optimisation, 59655 Villeneuve D'Ascq, Cedex, France,

Janvier 1991.

196 Bibliography

[CdPvdV91] T. F. Chan, L. de Pillis, and H. A. van der Vorst. A transpose-

free squared Lanczos algorithm and application to solving

nonsymmettic linear systems. Technical report, University of

California at Los Angeles, 1991.

[CG89] A. T. Chronopoulos and C. W Gear, s-step iterative methods

for symmetric linear systems. Journal of Computational and

Applied Mathematics, 25:153-168,1989.

[CG076] P. Concus, G. H. Golub, and D. P. O'Leary. A generalized

conjugate gradient method for the numerical solution of elliptic

partial differential equations. In J. R. Bunch and D. J. Rose, ed¬

itors, Sparse Matrix Computations, pages 309-332. Academic

Press, New York, 1976.

[CHF91] P. Conti, N. Hitschfeld, and W. Fichtner. fi - an octree-based

mixed element grid allocator for adaptive 3d device simulation.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits, 10(10):1231-1241, October 1991.

[Con91] P. Conti. Grid Generationfor Three-dimensional Semiconduc¬

tor Device Simulation. PhD thesis, ETH-Zurich, 1991. publ.

by Hartung-Gorre Verlag, Konstanz, Germany.

[Dal90] W. J. Dally. Performance analysis of fc-ary n-cube interconnec¬

tion networks. IEEE Transactions on Computers, C-39(6):775-

785, June 1990.

[DDSvdV91] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der

Vorst. Solving Linear Systems on Vector and Shared Memory

Computers. SIAM, 1991.

[DER86] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methodsfor

Sparse Matrices. Oxford University Press, London, England,
1986.

[Deu90] P. Deuflhard. Global inexact Newton methods for very large
scale nonlinear problems. Preprint SC 90-2, Konrad-Zuse-

Zentrum fur Informationstechnik, Berlin, 1990.

[DFW90] P. Deuflhard, R. Freund, and A. Walter. Fast secant methods

for the iterative solution of large nonsymmettic linear systems.

Impact of Computing in Science and Engineering, 2:244-276,

1990.

Bibliography 197

[DGL91] D. S. Dodson, R. G. Grimes, and J. G. Lewis. Sparse extensions

to the FORTRAN basic linear algebra subprograms. ACM

Transactions on Mathematical Software, 17(2):253-263, June

1991.

[dH86] C. den Heijer. Preconditioned iterative methods for nonsym¬

mettic linear systems. In K. Board and D. R. J. Owen, editors,

Simulation of Semiconductor Devices and Processes, Volume

2, SISDEP II Proceedings, pages 267-285, Swansea, United

Kingdom, July 1986. Pineridge Press.

[DvdV91] M. Driessen and H. A. van der Vorst. BI-CGSTAB in semi¬

conductor modelling. In W. Fichtner and D. Aemmer, editors,

Simulation of Semiconductor Devices and Processes Vol. 4,

pages 45-54. Hartung-Gorre Verlag, September 1991.

[Ede91] A. Edelman. The first annual large dense linear system survey.

ACM SIGNUM Newsletter, 26(4):6-12, October 1991.

[EGRS59] M. E. Engeli, T. Ginsburg, H. Rutishauser, and E. Stiefel.

Refined iterative methodsfor computations of the solution and

the eigenvalues ofself-adjoint boundary value problems. Mitt.

Nr. 8, Inst, angew. Math. ETH Zurich. Birkhaeuser, 1959.

[Eis81] S. C. Eisenstat. Efficient implementation ofa class ofprecondi¬
tioned conjugate gradient methods. SIAM J. Sci. Stat. Comput.,

2(l):l-4, March 1981.

[Elm82] H. C. Elman. Iterative Methodsfor Large, Sparse Nonsymmet-
ric Systems of Linear Equations. PhD thesis, Yale University

Department of Computer Science, April 1982.

[FGN90] R. W. Freund, M. H. Gutknecht, and N. Nachtigal. An im¬

plementation of the look-ahead Lanczos algorithm for non-

Hermitian matrices Part I. Technical Report 90.45, RIACS,

NASA Ames Research Center, November 1990.

[FGN92] R. W. Freund, G. H. Golub, and N. Nachtigal. Iterative solution

of linear systems. Acta Numerica, 1,1992.

[Fle76] R. Fletcher. Conjugate gradient methods for indefinite systems.

In G. A. Watson, editor, Proc. of the 6-th Biennal Dundee

Conference on Numerical Analysis. Springer-Verlag, 1976.

198 Bibliography

[FM84] V. Faber and T. Manteuffel. Necessary and sufficient conditions

for the existence of a conjugate gradient method. SIAM J.

Numer. Anal., 21:352-362,1984.

[FN91] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal
residual method for non-Hermitian linear systems. Numer.

Math., 60:315-339,1991.

[FRB83] W. Fichtner, D. J. Rose, and R. E. Bank. Semiconductor device

simulation. SIAM J. Sci. and Stat. Comput, 4:391-415,1983.

[Fre91] R. W. Freund. A transpose-free quasi-minimal residual algo¬
rithm for non-hermitian linear systems. Technical Report 91.18,

RIACS, NASA Ames Research Center, September 1991.

[GL81] A. George and J. W. H. Liu. Computer Solution of Large

Sparse Positive Definite Systems. Prentice-Hall, Englewood

Cliffs, New Jersey 07632,1981.

[GL89] A. George and J. W. H. Liu. The evolution of the minimum

degree ordering algorithm. SIAM Review, 31(1): 1-19, March

1989.

[GMW81] P. E. Gill, W Murray, and M. H. Wright. Practical Optimiza¬

tion. Academic Press, 1981.

[G089] G. H. Golub and D. P. O'Leary. Some history of the conjugate

gradient and Lanczos algorithms: 1948-1976. SIAM Review,

31(1):50-102, March 1989.

[GSZ90] K. Gallivan, A. Sameh, and Z. Zlatev. Solving general sparse

linear systems using conjugate gradient-type methods. In 1990

International Conference on Supercomputing, pages 132-139,

Amsterdam, June 1990. ACM.

[Gut90a] M. H. Gutknecht. A completed theory of the unsymmetric
Lanczos process and related algorithms Part II. IPS Research

Report 90-16, Interdisciplinary Project Center for Supercom¬

puting, ETH Zurich, September 1990. submitted to SIAM J.

Mattix Anal. Appl.

[Gut90b] M. H. Gutknecht. The unsymmetric Lanczos algorithms and

their relations to Pad6 approximation, continued fractions, and

the qd algorithm. In Copper Mountain Conference on Iterative

Methods. SIAM, April 1990.

Bibliography 199

[Gut91] M. H. Gutknecht. Variants ofBiCGStabfor matrices withcom-

plex spectrum. IPS Research Report 91-14, Interdisciplinary

Project Center for Supercomputing, ETH Zurich, August 1991.

[Gut92] M. H. Gutknecht. A completed theory of the unsymmetric

Lanczos process and related algorithms Part I. SIAM J. Matrix

Anal.Appl, 13(2):594-639,June 1992.

[GvL83] G. H. Golub and C. F. van Loan. Matrix Computations. The

John Hopkins University Press, Baltimore and London, 1983.

[Hac91] W. Hackbusch. Iterative Losung grofier schwachbesetzter

Gleichungssysteme. Teubner, Stuttgart, 1991.

[Har72] F. Harary. Graph Theory. Addison-Wesley, Reading, Mas¬

sachusetts, 1972.

[Hei91] G. Heiser. Design andImplementation ofa Three-Dimensional,

General Purpose SemiconductorDevice Simulator. PhD thesis,

ETH-ZUrich, 1991. publ. by Hartung-Gorre Verlag, Konstanz,

Germany.

[Her91] M. A. Heroux. A reverse communication interface for "matrix-

free" preconditioned iterative solvers. Technical report, Mathe¬

matical Software Research Group, Cray Research, Inc., Eagan,

MN 55121,1991.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge

University Press, 1985.

[HP90] J. L. Hennessy and D. A. Patterson. Computer Architecture: A

QuantitativeApproach. Morgan Kaufmann Publishers, 1990.

[HPWF91] G. Heiser, C. Pommerell, J. Weis, and W. Fichtner. Three di¬

mensional numerical semiconductor device simulation: Algo¬

rithms, architectures, results. IEEE Transactions on Computer-

Aided Design ofIntegrated Circuits, 10(10): 1218-1230, Octo¬

ber 1991.

[HS52] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients
for solvinglinear systems. /. Res. Nat.Bur. Stand., 49:409-436,

1952.

200 Bibliography

[HSST92] O. Heinreichsberger, S. Selberherr, M. Stiftinger, and K. P.

Traar. Fast iterative solution of carrier continuity equations
for three-dimensional device simulation. SIAM J. Sci. Stat.

Comput., 13(1), 1992.

[HY81] L. A. Hageman and D. M. Young. Applied Iterative Methods.

Computer Science and Applied Mathematics. Academic Press,

New York, 1981.

[JC91] W. D. Joubert and G. F. Carey. Parallelizable restarted iterative

methods for nonsymmettic linear systems. Technical Report

CNA-251, Center for Numerical Analysis, University of Texas

at Austin, May 1991. to appear in International Journal of

Computer Mathematics.

[Jou90] W. Joubert. Lanczos methods for the solution of nonsymmettic

systems of linear equations. In Copper Mountain Conference

on Iterative Methods. SIAM, April 1990.

[KMFW91] K. Kells, S. MUUer, W. Fichtner, and G. Wachutka. Simu¬

lating temperature effects in multi-dimensional silicon devices

with generalized boundary conditions. In W. Fichtner and

A. Aemmer, editors, Simulation ofSemiconductor Devices and

Processes TV, pages 141-148. Hartung-Gorre Konstanz, 1991.

[KNY91] L. Y. Kolotilina, A. A. Nikishin, and A. Y. Yeremin. Factorized

sparse approximate inverse (FSAI) preconditioningsfor solving
3d FE systems on massively parallel computers. II. Iterative

construction ofFSAI preconditioners. In IMACS International

Symposium on Iterative Methods in Linear Algebra, pages

161-162, Brussels, April 1991. Preliminary Proceedings.

[KOY89] D. R. Kincaid, T. C. Oppe, and D. M. Young. ITPACKV 2D

user's guide. Technical Report CNA-232, Center for Numerical

Analysis, University of Texas at Austin, May 1989.

[KRYG82] D. R. Kincaid, J. R. Respess, D. M. Young, and R. G.

Grimes. ITPACK 2C: A FORTRAN package for solving large

sparse linear systems by adaptive accelerated iterative methods.

ACM Transactions on Mathematical Software, 8(3):302-322,

September 1982.

Bibliography 201

[Kui87] L. K. Kuiper. A comparision of iterative methods as applied
to the solution of the nonlinear three-dimensional groundwater
flow equation. SIAM J. Sci. Stat. Comput., 8(4):521-528, July
1987.

[Lan50] C. Lanczos. An iteration method for the solution of the

eigenvalue problem oflinear differential and integral operators.

J. Res. Nat. Bur. Stand., 45:255-282,1950.

[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Ba¬

sic linear algebra subprograms for Fortran usage. ACM Trans¬

actions on Mathematical Software, 5(3):308-323, September
1979.

[Liu90] J. W. H. Liu. The role of elimination trees in sparse factor¬

ization. SIAM J. Matrix Anal. Appl., 11(1): 134-172, January
1990.

[LMSS91] J. Loeliger, R. Metzger, M. Seligman, and S. Stroud. Pointer

target tracking - an empirical study. In Supercomputing '91,

pages 14-23, Albuquerque, NM, November 1991. ACM-IEEE.

[Man79] T. A. Manteuffel. Shifted incomplete Cholesky factorization. In

I. S. Duffand G. W. Stewart, editors, Sparse MatrixProceedings
797<S,pages41-61,Philadelphia,PA, 1979. SIAM Publications.

[Mer91] M. Merchant. BLAS routines (single CPU). Paris Seminar on

SCILIB, Cray Research Inc., April 12 1991.

[Mey88] B. Meyer. Object-oriented Software Construction. Prentice-

Hall, Englewood Cliffs, NJ, 1988.

[MKF91] S. MUUer, K. Kells, and W. Fichtner. Automatic rectangle-
based adaptive mesh generation without obtuse angles. IEEE

Transactions on Computer-AidedDesign ofIntegrated Circuits,
1991.

[MR88] R. G. Melhem and K. V. S. Ramarao. Multicolor reorder¬

ing of sparse matrices resulting from irregular grids. ACM

Transactions on Mathematical Software, 14(2): 117-138, June

1988.

[MvdV77] J. A. Meijerink and H. A. van der Vorst. An iterative solution

method for linear systems of which the coefficient matrix is

202 Bibliography

a symmetric M-mattix. Math, of Comput., 31(137): 148-162,

January 1977.

[MvdV87] 0. A. McBryan and E. F. van de Velde. Hypercube algorithms
and implementations. SIAM J. Sci. Stat. Comput., 8(2):s227-

s287, March 1987.

[NRT90] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How

fast are nonsymmettic matrix iterations? In Copper Mountain

Conference on Iterative Methods. SIAM, April 1990.

[OK90] T. C. Oppe and D. R. Kincaid. Are there iterative BLAS?

In Copper Mountain Conference on Iterative Methods. SIAM,

April 1990.

[Ort88] J. M. Ortega. Introduction to Parallel and Vector Solution of

Linear Systems. Plenum Press, New York, 1988.

[PAF92] C. Pommerell, M. Annaratone, and W Fichtner. A set of

new mapping and coloring heuristics for disttibuted-memory

parallel processors. SIAM J. Sci. Stat. Comput., 13(1): 194-226,

January 1992.

[PF91a] C. Pommerell and W. Fichtner. New developments in iterative

methods for device simulation. In W. Fichtner and A. Aemmer,

editors, Simulation of Semiconductor Devices and Processes

TV, pages 243-248. Hartung-Gorre Konstanz, 1991.

[PF91b] C. Pommerell and W Fichtner. PILS: An iterative linear solver

package for ill-conditioned systems. In Supercomputing '91,

pages 588-599, Albuquerque, NM, November 1991. ACM-

IEEE.

[PF92] C. Pommerell and W. Fichtner. Memory aspects and perfor¬
mance ofiterative solvers. In Copper Mountain Conference on

Iterative Methods. SIAM, April 1992.

[Pin90] M. R. Pinto. Comprehensive Semiconductor Device Simulation

for Silicon ULSI. PhD thesis, Stanford, 1990.

[Pis84] S. Pissanetzky. Sparse Matrix Technology. Academic Press,

Orlando, Florida 32887,1984.

Bibliography 203

[PS82a] C. C. Paige and M. A. Saunders. LSQR: An algorithmfor sparse

linear equations and sparse least squares. ACM Transactions

on Mathematical Software, 8(1):43-71, March 1982.

[PS82b] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimiza¬

tion: Algorithms and Complexity. Prentice-Hall, Englewood

Cliffs, NJ, 1982.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University

Press, NJ, 1970.

[RSAR91] R. Rios, R. K. Smeltzer, R. Amantea, and A. Rothwarf. A three-

dimensional device simulator for radiation-hard MOS-SOS

transistors. Solid-State Electronics, 34(8): 853-859, August
1991.

[Saa82] Y. Saad. The Lanczos biorthogonalization algorithm and other

oblique projection methods for solving large unsymmetric sys¬

tems. SIAMJ. Numer. Anal, 19(3):485-506,June 1982.

[Saa88] Y. Saad. Preconditioning techniques for nonsymmettic and in¬

definite linear systems. Journal of Computational and Applied
Mathematics, 24:89-105,1988.

[Saa89] Y. Saad. Krylov subspace methods on supercomputers. SIAM

J. Sci. Stat. Comput., 10(6):1200-1232, November 1989.

[Saa90] Y. Saad. Sparskit: a basic tool kit for sparse matrix computa¬

tions. Technical Report 90.20, RIACS, NASA Ames Research

Center, May 1990.

[SBD+76] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe,

V. C. Klema, and C. B. Moler. Matrix Eigensystem Routines -

EISPACK Guide. Springer-Verlag, 2nd edition, 1976.

[Sed88] R. Sedgewick. Algorithms. Addison-Wesley, 2nd edition edi¬

tion, 1988.

[Sel84] S. Selberherr. Analysis and Simulation of Semiconductor De¬

vices. Springer-Verlag, 1984.

[Set89] R. Sethi. Programming Languages Concepts and Constructs.

Addison-Wesley, Reading, MA, 1989.

204 Bibliography

[SF73] G. Strang and G. J. Fix. An Analysis of the Finite Element

Method. Prentice-Hall, 1973.

[Smi78] G. D. Smith. Numerical Solution ofPartial Differential Equa¬
tions: Finite Difference Methods. Oxford University Press,

1978.

[Son89] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmet-

ric linear systems. SIAM J. Sci. Stat. Comput., 10(l):36-52,

January 1989.

[SP88] A. Silberschatz and J. L. Peterson. Operating System Concepts.

Addison-Wesley, Reading, Mass., alternate edition, 1988.

[SS86] Y. Saad and M. H. Schultz. GMRES: A generalized minimal

residual algorithm for solving nonsymmettic linear systems.

SIAM J. Sci. Stat. Comput., 7(3): 856-869, July 1986.

[Stt69] V. Strassen. Gaussian elimination is not optimal. Numer. Math.,

13:354-356,1969.

[Tre] L. N. Trefethen. Non-normal operators and pseudospectra. In

preparation. A summary is available by anonymous ftp from

ftp.cs.cornell.edu as file /pub/trefethen/pseudo.tex.

[TRM91] V. E. Taylor, A. Ranade, and D. G. Messerschmitt. Three-

dimensional finite-element analyses: Implications for com¬

puter architectures. In Supercomputing '91, pages 786-795,

Albuquerque, NM, November 1991. ACM-IEEE.

[Var62] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Engle¬
wood Cliffs, 1962.

[vdV89] H. A. van der Vorst. The convergence behavior of some

iterative solution methods. Report 89-19, Faculty of Technical

Mathematics and Informatics, Delft University of Technology,
1989. ISSN 0922-5641.

[vdV92] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly

converging variant of Bi-CG for the solution of nonsymmettic
linear systems. SIAM J. Sci. Stat. Comput., 13(2):631-644,

March 1992.

Bibliography 205

[vdVV91] H. A. van der Vorst and C. Vuik. GMRESR: a family of nested

GMRES methods. Technical Report 91-80, Dept. of Techn.

Math, and Inf., TU-Delft, 1991.

[Vin76] P. K. W. Vinsome. ORTHOMIN - an iterative method for solv¬

ing sparse sets ofsimultaneouslinear equations. In Proc. Fourth

SPE Symposium on Reservoir Simulation, pages 149-160, Los

Angeles, February 1976. Society of Petroleum Engineers. Pa¬

per SPE 5739.

[Vit88] P. M. B. Vitanyi. Locality, communication, and intercon¬

nect length in multicomputers. SIAM Journal on Computing,
17(4):659-672, August 1988.

[vR50] W van Roosbroeck. Theory of flow of electrons and holes in

germanium and other semiconductors. Bell System Tech. J.,

29:560-607,1950.

[Vui92] C. Vuik. Further experiences with GMRESR. In Copper
Mountain Conference on Iterative Methods. SIAM, April 1992.

[VvdV92] C. Vuik and H. A. van der Vorst. A comparison of some

GMRES-like methods. Linear Algebra and Applications, 160,

January 1992.

[Wal88] H. F. Walker. Implementation of the GMRES method using
Householder transformations. SIAM J. Sci. Stat. Comput.,

9(1):152-163, January 1988.

[YJ80] D. M. Young and K. C. Jea. Generalized conjugate-gradient ac¬

celeration of nonsymmettic iterative methods. Linear Algebra
and its Applications, 34:159-194,1980.

[YMJ+89] D. P. Young, R. G. Melvin, F. T. Johnson, J. E. Bussoletti,

L. B. Wigton, and S. S. Samanth. Application of sparse matrix

solvers as effective preconditioners. SIAMJ. Sci. Stat. Comput.,

10(6):1186-1199,November 1989.

Leer - Vide - Empty

Curriculum Vitae

I was born in Luxembourg on June 30, 1964, and I am a citizen of the

Grand-Duchy of Luxembourg. After finishing high school at the Athinie

de Luxembourg in 1983, I enrolled in the Computer Science faculty of the

Swiss Federal Institute of Technology (ETH) in Zurich. I received an M.Sc.

in Computer Science Engineering (Dipl. Informatik-Ing. ETH) in 1988. I

joined the Integrated Systems Laboratory of ETH in April 1988 as a research

assistant, where I worked first in the K2 disttibuted-memory parallel processor

project, and since November 1989 in the semiconductor device simulation

group.

207

