mzuriCh ETH Library

OBERON for PC on an MS-DOS
base

Report

Author(s):
Disteli, Andreas R.

Publication date:
1993

Permanent link:
https://doi.org/10.3929/ethz-a-000918241

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgendssische Technische Hochschule Zirich, Departement Informatik, Institut fiir Computersysteme 203

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000918241
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

I

t

e ———

Eidgendssische
Technische Hochschule
Zlrich

Departement Informatik
Institut fr
Computersysteme

Andreas R. Disteli

November 1993

OBERON for PC
on an MS-DOS Base

Eidg. Techn. Hochschule Zirich

Informatikbibliothek
ETH-Zentrum
CH-8092 Ziirich

203

ETH Ziirich

Departement Informatik
Institut fir Computersysteme
Prof. Dr. J. Gutknecht

Author's address:

A.R. Disteli, Institut fiir Computersysteme, ETH Zentrum, CH-8092 Zurich, Switzerand.
e-mail: disteli@inf.ethz.ch

© 1993 Departement Informatik, ETH Zirich

Table of contents

1. Introduction

2. The Intel Environment
2.1 A Memory Model for Oberon
2.2 Switch between Protected and Real Mode
2.3 Calls to the Operating System and Traps
24 The DOS File System
2.5 BIOS Calls

3. Memory Model

4. The Compiler
4.1 Processor architecture
4.2 Specific Features
4.3 Object File Format
4.4 Program Size

5. The Loader and The Kernel
5.1 The Metaloader
5.2 The Module Loader
5.3 The Kernel

6. The DOS Module

7. The Display

8. Floating Point Arithmetic
8.1 Math Modules

9. The Filesystem
References

 Acknowledgements

10
11
12
14
15
17
21
21
26
27
28

29
29

34

36

40

45

48

52

54

Chapter1: Introduction

lLanguage

Storage

1. Introduction

Oberon is a complete operating system and language developed at
the Institute for Computer Systems. The whole project was targeted
towards one specific type of machine, namely for the personal
workstation Ceres. The Oberon system and the language found great
attention outside ETH, but was not available on commercial
machines. This was a big handicap for any kind of propagation.
Some years ago several members of the institute started porting
Oberon to commercial hardware platforms like DECstation, SPARC,
RS/6000 and Macintosh-1l. This was a good chance to spread both
the system and language Oberon over a large number of new users.
But most of the people merely have access to simple MS-DOS
based personal computers. Until now, Oberon was therefore not
available on the most frequently used computers all over the world.
With a port for DOS-machines a huge range of new potential users
can be opened. Forteaching purposes it would be interesting to use
Oberon as well, because it proved to be very adequate as a language
and system for students. Another point to consider is that PC
machines became more and more inexpensive in the last years,
which makes it possible for nearly everyone to own a computer for
working athome. Forall these reasons, we decided in summer1991
to startthe DOS-Oberon project, targeted at the Oberon system and
language in combination with the most popular computer in the
world.

The port had been structured into several parts. First of all, the
compiler had to be ported, though compiler backends existed forall
ofthe above mentioned machines, none of them generated code for
the Intel 80x86 family. So, the complete code generation part of the
compiler had to be rewritten. .

Itwas a personal decision to code the whole system in the language
Oberon itself, except of some special modules which need to be
written in assembler for performance reasons. Therefore, an
assembler generating Intel code and running under Oberon had to
be implemented. Only one module was written under native DOS:
The meta loader (loading the actual module loader) was
implemented in Microsoft assembler. The whole system was cross
developed on a Ceres workstation running native Oberon. In
particular, all the modules were crosscompiled for the bootstrap.
In a second step, a runtime environment had to be designed,
including storage layout and memory management, as well as a

Chapter1: Introduction

Display

Restrictions

module foading mechanism. Many problems came from the fact
that the processor needs to operate in different and incompatible
modes (see Chapter 3, Memory Model).

Ancther severe problem was the display system with its different
standards and resolutions. The normal VGA resolution is standard
on practically all machines. However, it soon turned out to be too
small in size. In addition, programming the VGA card is unwieldy
because of the many registers which must be set for each drawing
operation. This slows down the performance of the display but it
waorks on all machines equipped with a VGA card. On the other
hand, a Super—VGA card offers a bigger resolution, but should be
programmed separately when a fast display is required, because
each card has its own extensions (See Chapter 7, The Display).
We intentionally restricted our implementation to 80386 or higher
processors, because Oberon is a full 32-bit application and older
processors like 80286 provide only support for 16-bit applications.
Therefore, we decided not to support processors below the 80386.
Also, our implementation does not allow specific drivers like
expanded memory managers to be installed. The reason forthis can
be found in the need to monopolize protected mode unless special
software (so—called extenders) are used (See Chapter 2: The Intel
Environment). Itwas our goal to use as few as possible of externally
developed software packages like drivers, special managers etc. For
compatibility reasons we used a standard mouse driver (Logitech)
and the HIMEM.SYS driver for the extended memory (above 1
Megabyte).

Chapter 2: The Intel Environment

8088 Processor

80286 processor

Real mode

2. The Intel Environment

In 1981, IBM announced the first PC with an Intel 8088 processor.
This is nothing special when seen by today's eyes but at that time it
was a big jump from a 8-bitto a16-bit CPU. The new processorwas
able to access up to 1 MB physical address space, however only 640
KB were accessible to normal programs, while the rest was reserved
for video buffers and BIOS (Fig. 1). Also, most of the new drivers,
controllers, etc. were allocated in this reserved area.

1MB
Video Memory,
ROM-BIOS and
drivers

640 KB
Program Memory

0KB

Fig 1: Memory map of a PC with 8088

In 1982, Intel brought the new 80286 processor, a successor of the
8086 and 8088 (Fig. 2). It supported a bigger physical address range
of 16 MB and, most importantly, was prepared for multitasking. As a
consequence, a method had to be invented to save one program's
codeand dataarea from access by other programs. This method was
called Protected Mode (PM) in contrast to the old so—called Real
Mode (RM).

In RM, every address consists of a segment partand an offset part. A
segmentcan be seen as a piece of memory with a base address and a
limit. In the case of a RM segment, the base addressis alignedtoa16
byte boundary and the limit is 64 KB. Due to this alignement, the
base address can be divided by 16 and is still unique. This technique
saves 4 bits and the base address, although itaddresses memory up
to 1 MB, can be stored in a 16 bit location. A physical address is
therefore computed by

address = segment % 16 + offset.

Chapter 2: The Intel Environment

Protected mode

8086 8088
16 Bit Processor | 16 Bit Processor
16 Bit Databus 8 Bit Databus
1 MB Addressspace 1 MB Addressspace
Real Mode only Real Mode Only
k' 80186 80188
8086 with modifications »1 8086 with modifications
in the instruction set in the instruction set
Real Mode only Real Mode only

8 Bit databus

w 80286

16 Bit Processor
16 Bit Databus

16 MB phys. Addressspace
512 MB virt. Addressspace

y 80386 80386 SX
32 Bit Processor | 32 Bit Processor
32 Bit Databus 32 Bit Databus
4 GB phys. Addressspace 16 MB phys, Addressspace
64 TB vitt. Addressspace 64 TB virt. Addressspace
80486

On—chip Cache
Built-in Coprocesssor

Fig. 2: Overview of the Intel processor family

With segment and offset, both 16 bit in size, addresses up to 1 MB
could be generated. In the 80286 PM, the segment part of the
address is no longera simple address, buta painter into a descriptor
table containing a series of 24-bit addresses. Adding the 16-bit
offset, the programmer can thus access up to 16 MB of memory. Of
course, oneand the same segment.offset pair can representdifferent
physical addresses, depending on the contents of the descriptor
table. It is therefore often called virtual address (Fig. 3).

At address generation time, the segment part of each address must
be contained in one of the segment registers called SS, CS, DS or ES
(seetable 1 forexplanations). The offset is either located in memory
or in one of the processor registers BX, BP, S| or DI. The other
registers, AX, CX, DX and SP can not be used foraddress calculation.
These registers are dedicated and, as such, are the cause of a lot of
problems. General use of all registers would be desirable.

Chapter 2: The Intel Environment

Descriptor tables

1MB 24 bits 16 MB

Desc,
[Segment |-ETE_1-» ‘] [Segment | »{Table| >, ‘—’
|0ffset Ir x Offset : ki

0 KB 0 KB
8088 80286

Fig. 3: Address generation

Segment registers:
CS = Codesegment ES = Extrasegment
DS = Datasegment SS = Stack segment

Processor registers:

AX = Accumulator Sl
BX = Base register Di
CX = Countregister BP
DX = Dataregister ~ SP

Source index
Destination index
Framepointer register
Stack pointer

twong

Table 1: The registers of the 80286

The 80286 PM stands for coexisting tasks running under a safe
operating system. Each task has its own local address range and it
can also access the global address range of the operating system.
This allows to prevent one task from overwriting data by other tasks,
while accessing common data is still possible. But this implies the
need for a global descriptor table (GDT) for the system and a local

* descriptortable (LDT) for each task. Furthermore each task runs on a

certain privilegelevel, which can be used for granting different access
rights. Each so—called selector, looks as follows (Fig. 4):

15 32 0
| Index [Ti[ReL]
Fig. 4: Selector

Bits 0 and 1 indicate the requested privilege level (RPL) for this
segment, bit 2 specifies the active table GDT (Tl = 0) orthe LDT (Tl =
1).Bits 3to 15 are used as an index number into the descriptortable.
Each descriptor contains information about the described segment.
ltincludes base address, privilege level, size and type of the segment

~-8-

Chapter 2: The Intel Environment

Interrupts

80386 processor

(Fig. 5). The base address is 24 bits in size. So, a segment can start
anywhere within the possible 16 MB address range. The limit field
gives the size of this segment in bytes. This restricts the size of a
segment to 64 KB. In other words, the PM of the 80286 forces the
same segmentation restrictions asthe RM, butit can address a larger
memory. For detailed information about this topic we refer to
[Dun90].

15 o]
Limit {Size in bytes)

Base address (Bits 0 .. 15)

PiDPL'SlTypel Base address (Bits 23 .. 16)
Reserved

Fig. 5: 80286 segment descriptor

15 0
Limit (0 .. 15)

Base address (Bits 0 .. 15)

ijPLIS|Type! Base address (Bits 23 .. 16)
Base addr (24 . a1jc|o|o[AVL|umit (16 ..19)

Fig. 6: 80386 segment descriptor

Another important point is interrupt handling. In RM, the interrupt
table begins at physical address 0. It contains a 4-byte-vector for
each interrupt channel. Interrupt channels are numbered from OH to
OFFH. Thus, the first 1024 bytes are reserved for interrupt vectors. In
PM, the interrupt descriptor table (IDT) can be freely located and it
also contains 8-byte~descriptors like LDT and GDT. Another nice
feature of the 80286 is the following: Intel thought that the old RM
would gradually disappear and they provided only a mechanism to
switch from RM (which is the initial state after a boot) to PM.
However, there is no possibility to switch the processor back from
PM to RM, except by a reset of the processor!

In 1985, the 80386 became available. This is a genuine 32-bit
processor with a 32-bit hardware bus. In comparison with the old
80286, there are new features which make the processor more
usable. E. g, there are new addressing modes (scaled indexing) and
all registers can be used for address calculation. Unfortunately, there
are still some special instructions that need dedicated registers, as

Chapter 2: The Intel Environment

Shadow registers

Virtual 86 mode

for example writing to or reading from a port, the divide instruction,
etc. The segment descriptor has also been changed (Fig. 6). Itis now
possible to create a segment that is larger than 64 KB in size. Base
addresses are extended to 32 bits, the segment limitto 20 bitsand an
additional bit in the extended part of the descriptor indicates,
whetherthe limitis in terms of bytes (G =0) orin terms of 4 KB pages
(G = 1). With this, a segment size of 4 GB is now possible, while
programs, written for older version of the processor, are still
executable (backward compatibility). [Dun90]

Also, switching back from PM to RM is now possible without a reset
operation. But it is not done merely with setting the processor back
to real mode. All the segment registers must have a legal RM value
afterwards. One could think that this would be done by simply
assigning an old RM selector value to the corresponding segment
register. However, when in PM, the information about the segmentis
hold in a shadow register that is not accessible to the programmer.
Back in RM, the shadow register seems still to be checked, although
all sizes and limits are given for RM. Consequently, before switching
back from PM to RM, the selectors must be setto a descriptor with
valid values for RM (limit, granularity, ..), otherwise a fault occurs.

Forthe so—called V86 mode (not discussed here), see [Dun90]. The
virtual 86 mode allows several RM programs running simulta-
neously. The address is computed like in RM, not using GDT and
LDT.So, each RM program has its normal 1 MB address space like on
a 8086, although running in protected mode.

2.1 Amemory model for Oberon

~ Amemory model had to be found, thatallows easy and fast memory

access and that was not too complicated for the code generation of
the compiler.
Consideringthe explanations above, there are several possibilities to
choose from:

1. Use real mode only
+: no mode switches necessary
—: 64 KB segment restriction
Only 640 KB of conventional memory
Works with older versions of the 80x86
compiler/loader must support segmentation

-10-

Chapter 2: The Intel Environment

dedicated registers for calculations

2. Use 80286 protected mode
+: 16 MB of memory accessible
~: 64 KB segment restriction
compiler/loader must support segmentation
dedicated registers for calculations
mode switches necessary

3. Use 80386 protected mode, 1 big code/data segment
+: 4 GB of memory accessible
general purpose registers
compiler/loader does not have to support segmentation
linear addresses
No segment register changes while in PM
- : mode switches necessary

4. Use 80386 protected mode, separate code and data segments
+: 4 GB of memoty accessible
general purpose registers
linear addresses
- : mode switches necessary
segment register may change while in PM
special handling of data and code addresses

The easiest and most advantageous model seems to be model 3
with code and data in the same segment. Model 1 and 2 have too
many restrictions and model 4 needs special handling in some
situations (E. g, The loader must load code into the code segment
and therefore it needs write access for this segment. Because the
code segementis normally read—only, the settings of such a segment
must be changed for the loading of a module).

2.2 Switch behween protected mode and real mode

The code for the switch between real mode and protected mode
mustbe placed in a16-bit segment below the 640 kB limit, so that it
can be executed in both real mode and protected mode. The
following procedures show the individual steps for these mode
changes. They will be detailed in chapter 5 discussing the Loaderand
Kernel.

11 -

Chapter 2: The Intel Environment

PROCEDURE SwitchToProtectedMode;
BEGIN
Save all segment registers;
Disable interrupts;
Load protected mode IDT;
Get protected mode stack pointer;
Set protection bit in CRO;
Flush prefetch queue;
Execute a FAR~jump to set the CS register;
Set PM selectors;
Enable interrupts;
END SwitchToProtectedMode;

PROCEDURE SwitchToRealMode;
BEGIN
Save all segment registers;
Disable interrupts;
Load real mode IDT;
Get real mode stack pointer;
Clear protection bit in CRO;
Flush prefetch queue;
Execute a FAR-jump to set the CS register;
Set RM selectors;
Enable interrupts;
END SwitchToRealMode;

2.3 Calls to the Operating System and Traps

MS-DOS is a single-tasking and single—user operating system. As a
consequence, when an application is running, the operating system
has no control anymore and it is only invoked via a trap or an
interrupt. These events can be separated into 3 groups:

-~ Systemn calls
- Synchronous interrupts
— Asynchronous interrupts

Each system~-routine s called via an interrupt that is activated by the
application program (software interrupt). The system provides a big
library of intrinsic functions. Also, installable drivers offer their
functions usually through a system call. Typically, the parameters for
a system call are passed in registers. For example, writing a single
character to the screen is done by the following routine:

MOV AL, 02h ; select function
MOV DL, char ; character to be displayed.
; Parameters stored in the registers
INT21h ; system call number, Releases an interrupt

-12 =

Chapter 2: The Intel Environment

Extender

Synchronous interrupts are exceptions. They are caused by
execution faults like 'division by zero' or ‘invalid opcode’ etc. In
contrast, asynchronous interrupts are triggered by hardware devices,
e. g 'timertick’. :

System calls must be executed in RM to guarantee corvect
functionning, while interrupts can be handled in PM as well, if there
exists a corresponding entry in the PM IDT. Otherwise, the interrupt
must be rerouted down to RM. This is the task of the so~called
extender.)

The extender must take care forthe correct initialisation of the GDT,
LDT and IDT, assuming that we start in RM. Furthermore, it must
handle interrupts correctly, e.g. handling them in PM if possible
and/or switch the processor down to RM, simulating the interrupt
again after setting up the parameters and switching back to PM
when the interrupt handling is finished. To summarize, for each
interrupt in PM there must be a handler installed of the form:

SwitchToRealMode;
Call interrupt again;
SwitchToProtectedMode;

This proceduré can be illustrated by the following block diagram
(Fig. 7): ,

—P1 Own interrupt handling
routine } 10T

E System trap handler
Traps and faults

Hardware interrupts IRQ 8.15 [©
Tl Hardware interrupts IRQ 0.7 32-bit segmentf
Interrupt in PM

SwichToRealMode
Call interrupt again -
SwitchToProtectedMode

Get parameters 4_____.1—_
SwichToRealMode
Call software interrupt

Stare results) .
SwitchToProtectedMode | 16-bit segment

System call

Fig. 7: Extender structure

13-

Chapter 2: The Intel Environment

2.4 The DOS File System

DOS offers two different kinds of service for file management and
directory management [Dun90, Bro91]. The first kind is the access
via file control blocks (FCB). It shouldn't be used anymore. The first
DOS versions supported FCBs because the CP/M operating system
worked the same way. FCB functions are still supported but file
handles replaced them in later versions. They are simpler and more
flexibel than the FCBs. A similar method is used under UNIX,

The following list gives an overview of the file operations used. Fora
complete reference, see [Bro91].

File functions used under Oberon:

Get Default Drive (Int 21H, Function 19H):
Gets the current default drive.

Create Subdirectory (int 21H, Function 39H):
Creates a new subdirectory under the given name.

Remove Subdirectogf (int 21H, Function 3AH):
Removes a subdirectory.

Change Directory (Int 21H, Function 3BH):
Sets the current directory to the one specified.

Open New File (Int 21H, Function 3CH):
~ Opens a new file or truncates an already existing file under this name.

Open Old File (Int 21H, Function 3DH):
Opens an already existing file.

Close File (Int 21H, Function 3EH):
Flush buffers, update directory information and invalidate file handle,

Read File (Int 21H, Function 3FH):
Read from a file and put data into a buffer.

Write File (Int 21H, Function 40H):
Write data from a buffer into a file.

Delete File (Int 21H, Function 41H):
Delete specified file. :

Set Position (Int 21H, Function 42H):
Set position to a specified location in the file.

"Dublicate Handle (int 21H, Function 45H):
When a file must be updated on the disk but should stay open, itis possible
to dublicate the handle of this file. The file can then bé closed with this
new handle. The old handle still gives access to the open file.

~14 -

Chapter 2: The Intel Environment:

Rider concept

File names

Get Current Directory (Int 21 H, Function 47H):
Determine current directory.

Get First File (Int 21H, Function 4EH):
Takes a name pattern and looks for matching filenames.
Wildcards (%) can be used.

Get Next File (Int 21H, Function 4FH):
" Gets the next file matching the name pattern which was specified
with Get First File. This function must be called first.

Rename File (Int 21H, Function 56H):
Renames a file from old to new. If old and new are on the same logical
volume, rename acts like a move.

Get Date and Time (Int 21H, Function 57H):
Reads date and time of the specified file.

Set Handle Count (Int 21H, Function 67H):
Sets the number of files available to the calling program.

The Oberon file system is much more flexible. Oberon introduces
the riderconcept. A rider is an access mechanism that is associated
with the file and denotes a position within this file. Reading and
writing is done under control of this rider. More than one rider can be
associated with one and the same file at the same time. In
conventional models, this corresponds to multiple opened files. See
[Wir92] for more details about the Oberon file system.

DOS doesn't know the concept of riders. Although it is possible to
have two different handles pointing to the same file, they are rigidly
coupled: Changing the position via one handle also changes the
position information of the other handle. The rider philosophy is
completely missing in DOS.

Another unsatisfactory factare the shortfile names. DOS only allows
8 characters plus 3 characters extension, separated by a point, as a
filename. Oberon works with full 32 character file names which can
use more than one point as a separator. So, a solution had to be
found that maps the Oberon names onto DOS names.

Chapter 9 describes the implementation of the Oberon file system
under DOS:

2.5 BIOS Callis

The BIOS (Basic In-Out System) contains a collection of routines,
providing an interface to important components of the system like
screen, keyboard; disk controller, mouse etc. It contains also test

— 15—

Chapter 2: The Intel Environment

routines (used while booting) and a bootstrap program that loads
the operating system from disk [Dun90].

The following groups of BIOS calls are used. Fora complete overview
of all available calls refer to [Bro911.

Interrupt 10H, Video
Function: Purpose:

OH Set video mode
2H Set cursor position
3H Get cursor position
9H Write character

Interrupt 11H, Environment
Function: Purpose:
no number Get equipment list

Interrupt 13H, Low-level disk 1/0
Function: Purpose:

OH Reset drive
2H Read sector
3H Put sector
5H Format track

Interrupt 14H, Serial port
Function: Purpose:

OH Initialize port

1H Write character to port
2H Read character from port
3H Get port status

Interrupt 16H, Keyboard
Function: ~Purpose:

OH Get keystroke
2H Get shift flags
11H Check for enhanced keystroke

Interrupt 17H, Parallel port
Function: ~ Purpose:

OH Write character to port
1H Initialize port
2H Get port status

Interrupt 1AH, Timer
Function: Purpose:

OH Get systemn time (Ticks since midnight)
2H Get real time ‘
3H Set real time
4H Get real date
5H Set real date
Interrupt 33H, Mouse
Function: Purpose:
OH Reset driver
3H Get position and buttons
4H Set position
7H - Set horizontal limits
8H Set vertical limits

OFH Mickey to pixel ratio

-16—

Chapter 3: Memory Model

3. Memory Model

Low and high memory At this point, we want to declare two expressions, between which

Segment model

DOS boot sequence

must be clearly distinguished. First, there is the so-called Jow or
conventional memory. It denotes the first MB of physical memory
and is arelict of the olderversions of the processorwhich could only
address 1 MB of memory. Secondly, there is the high or extended
memory, which denotes all physical memory above 1 MB.

As discussed in chapter 2, there are several reasons for using a one-
segment model as address space for the Oberon system. Most
importantly, it is simple to implement and fast. For the definition of
the exact layout model, the following facts had to be considered:
1. The video buffer must be contained in the same segment as the
code and the data. So, no segment changes are necessary what
allows fast access of the display memory.

2.The heap for dynamic memory allocation should be a contiguous
piece of memory.

3. A stack for procedure activation must be allocated.

4. A piece of conventional memory forallocating low-level modules
is needed. Theirpurpose is loading the Kernel and passing controlto
itand to its own memory management. Before the Kernel is loaded
and initialized, memory is allocated under the control of the DOS
operating system. It's memory allocation routines only manage
conventional memory which implies the need of this low memory
part. Otherwise, a save deallocation of the used memory is not
guaranteed.

5. The entire physical memory should be addressable by Oberon.
BIOS and DOS-calls often use buffer addresses to get or retum
results. These buffers are allocated in the conventional memory, so
they should also be addressable under Oberon to access the data.

The low memory consists of several parts. After the boot sequence,
the first KB contains all 256 interruptvectors. The next 512 bytes are
used for ROM BIOS tables. Then the resident device drivers are
allocated, as there are the MS—DOS BIOS (10.5YS) and the M5-DOS
Kernel (MSDOS.SYS), followed by the MS—-DOS tables, disk buffers,
file control blocks and possible installable device drivers. Finally,
there is the resident part of the MS-DOS shell called
COMMAND.COM. The resident part is used for terminating
programs which where started by COMMAND.COM. Below the 640
KB boundary, there is the transient part of the shell. It gets the
commands from the keyboard or from a batch file and executes

-17 =

Chapter 3: MemoryMoa’el

them. After each call, the transient part is checked for consistency
and possibly reloaded by the resident part. The free RAM between
the resident and transient part of the shell is available for programs,
Above 640 KB there are the ROM-BIOS and other ROM and RAM,, i.
e. the display memory. The following pictures (Fig. 1 + 2) show the
structure of the low memory. Fora complete description of the boot
sequence, we refer to [Dun90a].

1MB
ROM BIOS

Display memory

Command.COM 640 KB Start of the display memory
(transient)

Free RAM

~ 100KB
COMMAND.COM
(resident)

Device drivers

File control blocks
Disk buffers
MS5-DOS tables
MS-~DOS Kernel
MS-DOS BIOS
BIOS tables
interruptvectors

1.5 KB
1KB
0 MB

Fig 1: Memory structure after boot [Dun90a]

Oberon boot sequence Before the Oberon memory management gets control, modules
Loader.0bj, Modules.Obj and Kernel.Obj and their descriptors are
allocated below 1 MB. Loader.Obj provides loading modules into
memory and relocating variable addresses and procedure calls.
Modules Obj is the interface between Loader.Obj and the Oberon
system. Loading amodule is handled by Modules, Objwhich calls the
routines of Loader. Obj. Kernel Obj manages memory allocation and
system~calls. For more information, see chapter 5: The Loader and
the Kemnel.

As soon as Kemel.Obj is initialized by LoaderObj, it has all the
information aboutthe extended memory (start address, size). Then,
all requests for memory lead to an allocation in extended memory.
The minimal need for extended memory is 2 MB. Although for the
basic system 2MB showed to be enough, we recommend 4 MB or
more when working with memory intensive applications.

The Oberon garbage collectorworks only in the heap part of the high
memory. There are two reasons for this: First, a contiguous piece of

A0

Chapter 3: Memory Model

memoty is assumed for garbage collection. This means in particular
that the heap cannot be allocated below the video buffer area. The
second reason is the fact, that the low memoty area is an ideal place
to allocate the stack.

Heap, extended memory
1MB

ROM BIOS
Display memory

Command.COM

Stack

Type descriptors

Loader, Kernel 32 bit segment

N Metaloader §§\ N 16 bit segment

Device drivers

M5-DOS 32 bit segment
| BIOS tables I

0 MB Interruptvectors

Fig. 2: Memory layout for Oberon

Memory layout As can be seen infig. 2, all physical memory is covered by the 32-bit
segment. This means that all addresses can be accessed by Oberon.
The 16-bit segment (hatched) of the Metaloader is somewhere in
memory, depending on the memory structure at Oberon boot time.
Note that this small segment can be accessed by Oberon because it
is completely embedded in the 32-bit segment. This meta-loaderis
executable under DOS. It loads the actual module loader and
handles system—calls, e. g.takes the function ofa so~called extender.
See also chapter 5: The Loader and the Kemel.

The disadvantage of this model is the amount of low memory that s
not used neither by the memory management of Oberon nor by
DOS. However, handling this memory especially under Oberon
would be too complicated. This memory can be used for additional
driver modules that need to be in low memory because they use
buffer addresses. In fact, the Oberon compiler provides some
support for loading modules in low memory. See chapters 4 and 5
for more details.

Fig. 3 shows the run-time model with the different selectors and
registers. Code and data segment of the Oberon system both startat

—19 -

Chapter 3: Memory Model

the same address. This makes it easier to load and initialize the
modules because the code segment where the module is loaded
into is normally write—protected. The two segments ES and FS point
tothe same position butthey are not used except ES forsome special
system calls. GSis setto the start of the video buffer. Thus, the display
buffer can be accessed without adding an offset from segment start
1o video buffer start. The two registers ESP (Extended stack pointer)
and EBP (Extended base pointer or frame pointer, resp.) point into
the stack segment. They are not used for other purposes. EIP
(Extended instruction pointer) shows the current position of

execution.
4— EIP
Instructi int
Heap (Instruction pointer)
M8 ROM BIOS

Display memory

" GS
Stack \g—— ESP, EBP

(Stack pointer,
Framepointer)

Loader, Kernel
0MB CS, DS, ES, FS, SS

(Code, Data and Stack segment,
two extra segments)

Fig. 3: Run-time Model

-20-

Chapter 4: The Compiler

Intel registers

NS 32000 registers

4. The Compiler

The compilerwas the first program that had to be ported to the DOS
platform. Without a compiler, there was no possibility to translate
Oberon programs into Intel object code. We decided to take the
standard one~pass Oberon compiler [Wir92] as a basis and to adapt
the Intel backend parts. The original backend produced code forthe
National semiconductor NS32000. This microprocessor has several
advantages overthe Intel chip. The following overview compares the
two processors.

4.1 Processor architecture

The 80386 offers 8 32-bit registers, 2 of them are already used for
stack management. Each register gives access to either bits 0-15 (16
bitaccess, compatibility to older processors) or 0~31 (extended 32
bit access). Bits 0-7 and bits 8-15 of EAX, EBX, ECX and EDX can
also be used separately.

16 AX O 16 0
EAX [[AHT AL ESI | I Sl |
BX
EBX [I BHT BL | EDI | | I
X
ECX [[CHT CL] EBP | | BP | reserved
DX
EDX| [DHT DL] ESP | | SP | reserved

Fig. 1: Intel registers

The NS 32000 has eight general purpose register, each of them can
be accessed doublewordwise, wordwise and bytewise.

RO [[[] R4 | [[]
R1 | [[] RS | [[|
R2 |] |] Ré [[[]
R3 | I | J R7 | I I]

Fig. 2: NS registers

-2 -

Chapter 4: The Compiler

Addressing modes

The calculation of the effective address is staightforward:
Eff Address := Base + Index x Scale + Displacement

Base, Index: General purpose register

Scale: Scalefactor 1, 2,4 or 8

Displacement: 8-bit or 32-bit displacement wich can be added to
the address

Any combination of these three items are possible. This allows the
following addressing modes:

mode Example

Immediate value 87654321h

Register Reg EAX

Register indirect ~ [Reg + disp] [EAX], [EAX +1234h]

Register scaled [Reg + Indxscale] [EAX + EBX%2]
[Reg + Indxscale + disp] [EAX + EBX%4 + 8]
[Indxscale + disp] [EBX%1 +12345678h]
[Indxscale] [EBX%8]

Absolute [disp] [12345678h]

If no segment register is specified, DS is taken by default. All other
segment registers must be specified at the beginning.
For example: ~ DS:[EAX + 4] is the same as [EAX + 4]

' FS:[EBX + ECX%2]

The NS32000 offers a superset of these addressing modes [NS83]:

mode Example

Immediate value 87654321h

Register Reg RO

Register indirect ~ disp(Reg) 0(R0), 1234h(R0O)
Memory relative disp1(disp2(Reg)) 8(-4(SP)), 8(-4(FP))
Absolute @disp@12345678h

External EXT(disp1) + disp2

Top of Stack TOS

Memory space %+ disp, disp(FP) % +1234h, 1234h(FP)
Scaled basemode[Rn:i] O(RO)[R1:B],

@12345678h[R1:D], RO[R1:Q]

Disp can be a 7-, 14~ or 30-bit signed value.

-22 -

e e e

Chapter4: The Compiler

Dedicated registers

Register management

In the 80386 the double indirection and the possibility of memory-
to-memory moves are missing. In addition, the 80386 needs
dedicated registers for some operations. Although the register setis
called general purpose, in reality there are still instructions using
special registers only (See below).

Function Mnemonic Dedicated registers

Port 1O IN AL, DX EAX, EDX
OUT DX, AL EAX, EDX

Convertbyte toword ~ CBW ' EAX

Convert word to double CWDE EAX

Compare string CMPSB, CMPSW, CMPSD ESI, EDI

Unsigned divide IDIV EAX, reg/mem EAX, EDX

(EDX:EAX is the dividend, quotient is stored in EAX, remainder in EDX)

Move string MOVSB, MOVSW, MOVSD ESIL EDI

Repeat REP ECX

Rotate, Shift ROL, ROR, SHL, SHR, SAL, SAR ECX

Shift double SHLD, SHRD ECX

Store String STOSB, STOSW, STOSD ESI, EDI

Only the instructions used by the compiler are listed here. For a
complete overview, see [Smi87].

Intel's register philosophy gave a lot of problems in register
management. The compiler can very easily get into the situation of
needing a dedicated register that is already used. A simple way to
prevent such register shortage is to make available the frequently
used dedicated registers later than the others.

The chosen order of preference in the compiler is: EAX, EBX, EDX,
EDI, ESI, ECX.

Although this works in most cases, it does notexclude conflicts inall
cases. Conflicts still can occur. In case of conflict, i. e. if an already
occupied register is needed, the compiler temporarily frees the
desired register by copying its contents to a arbitary free register or, if
all registers are occupied, to the stack. This technique is used e. g. for
the DIV and MOD instructions. Note that push—and—pop must take
placein acontextwherewe can make sure thatthe value we get back
as a result of pop is the same as the one we pushed before.

In the original compiler, the registers are freed at the end of a
statement or a conditional expression only. This is possible because
the NS32000 has more registers, memory—to-memory moves and
double indirection. There is no need to free registers before.

~23-

Chapter 4: The Compiler

However, the Intel compiler must free registers as soon as possible,

otherwise it will soon run out of registers. Because all the above
mentioned features are missing at Intel, additional techniques must
be found. They are:

~ A memory-to—memory move is done via a memory-to-register
move and a register~to—memory move. Obviously, the temporary
register can be freed again.

— If a expression consists of several factors and terms, the result of
each part is placed in a register. Parts that are not used anymore,
return their registers.

— Index registers can be freed immediately after use.

— In case of indirections, the same register can be multiply used.
For example:

TYPE Ptr = POINTER TO P;

TYPE P = RECORD next: Ptr; val: INTEGER END;
VAR a: Ptr;

BEGIN a.next.next.next.nextval ;=10 END

is translated into the following N$32000 code

MOVD 0(a(SB)), R7 a.next

MOVD 0(R7), R6 . a.next.next

MOVD 0(R6), R6 a.next.next.next

MOVD 0(R5), R4 a.next.next.next.next
MOVXBW 10, 4(R4) a.next.next.next.next.x :=10

or into the following Intel code

MOV EAX, DWord [a] a

MOV EAX, DWord [EAX] a.next

MOV EBX, DWord [EAX] a.next.next

MOV EAX, DWord [EBX] a.next.next.next

MOV EBX, DWord [EAX] a.next.next.next.next

MOV Word 4[EBX], 10 a.next.next.next.next.x :=10

in the first example, a new register is taken with every indirection.
The second example reuses the freed registers and thus can compile
more complex expressions. The loading of the first part (a.next) can
be delayed because the compiler generates an Ind /tem [Wir92].
With NS32000 code the loading of such an item results in one
instruction, With Intel, two instructions are necessary (Memory—to-
Register and Register—indirect).

—24-—

Chapter 4: The Compiler

Floating-point

Relocation

NiL—checks

The floating—point unit of Intel (80387 or included in 80486 DX)
features a stack architecture in comparison with the register
architecture (FO - F8) of the N532000. Practically all instructions
operate on the top-of-stack element.

In the original compiler, constants and global variables are all
referenced by the static base (SB). The Intel hasn't got such aregister.
All places where global variables and constants are used must be
relocated with the absolute address at load time. In order to locate
relocations, a fixup chain is generated while compiling. Also for
external procedure calls, a fixup chain is built up at compile time
which is to be relocated at load time. This leads to a separate link
section in each object file.

Because thereareno 'save' areas in memory which are read and write
protected, separate NIL—checks need to be optionally handled by
software. Each time a pointeris dereferenced the compiler generates
code for testing whether the address is NIL (= 0) or not. When a
program doesn't have dereferences or when the program is verified,
so that NiL—dereferences can't occur (still assuming that all other
programs are verified and are working correctly, too), this option can
be switched off.

Notethat Intel offers fourspecial so—called debug registers thateach
can control a single address. When one of these specified addresses,
which are contained in those registers, is referenced, the processor
generates a trap. These four debug registers could be used for this
purpose, but are not sufficient, because only 16 bytes can be
checked this way. A NiL-access is typically something of the form
MOV Reg, offset(NIL), where offset can be bigger than 16. It is
recommended to compile a save program without NiL—checks with
regard to performance and code size. A program working intensively
with pointers can get 20 % smallerin size, when compiling without
NIL-checks.

Other available options of the compiler are:

/n Nlk—checks off

/% Index—checks off

/t Type—checks off

/o Overflow—checks off

/s Allow new symbol file

/i Information about unused and uninitialized variables

~25-

Chapter 4: The Compiler

FOR-Statement

4.2 Specific Features

Some processor-specific additions have been made to the Intel
compiler. They are all implemented in the SYSTEM module.

SYSTEM.GETREG(reg, value)

SYSTEM.PUTREG(reg, value)
reg: 0= EAX, 1 = ECX, 2 = EDX, 3 = EBX, 4 = ESP, 5 = EBP, 6 = ES}, 7 = EDI
value: integer or character
These procedures get a value from or put a value into the specified register.
The used register size (1 byte, 2 bytes or 4 bytes) is determined by the size
of the parameter value.

SYSTEM.PORTIN(port, value)
SYSTEM.PORTOUT(port, value)
port: Port address
value: integer or character
These pracedures read a value from or write a value to the specified port.
The used register size (1 byte, 2 bytes or 4 bytes) is determined by the size of the
parameter value.

SYSTEM.CLI()
Clears the interrupt flag and disables incoming interrupts.

SYSTEM.STI()
Sets the interrupt flag and enables incoming interrupts.

Also included in the language is the FOR-Statement.

FORStatement =
FOR i := beg TO end [BY step] DO statement sequence END.

Beg, end and step are evaluated at the beginning. They are treated as
constants. The step variable is added to i after each execution of
statement sequence. If no step is declared, it is assumed to be 1.

The FOR-statement s equivalentto one of the following sequences:

(% Step >0 %) (% Step < 0 %)

i :=beg; i = beg;

WHILE j <= end DO WHILE i <= end DO
statement sequence; resp. statement sequence;
INC(i, step) DEC(i, step)

END END

~26 -

— R

Chapter 4: The Compiler

4.3 The Object File Format

The compiler translates source files into so—called object files. They
contain besides the coded program information about different
sizes used for loading, imported modules, exported procedures,
types and variables, as well as fixup chains and type structures.
The following notation is used: When the size can be specified, itis
noted after a colon.

E. g.: refpos:4 means that refpos is 4 bytes in size.

Object File =
Header Entries Commands Pointers Procvariables Imports
Links Fixups Code Types Reference.

Header =
objmark refpos:4 nofentries:2 nofcmds:2 nofpointers:2
nofimports:2 noflinks:2 noftypdscs:2 datasize:4
constantsize:2 codesize:4 key:4 name.

Entries = entrytag {entries:4}.
Commands = commandtag {name entry:4}.
Pointers = pointertag {pointer:4} {typedesc:4}.
Procvariables = procvartag.
Imports = importtag {key:4 name}.
Links = linktag {links:4}.
Fixups = fixuptag.
Code = codetag {constants} {code}.
Types =
typetag {tdsize:2 tdadr:4 recsize:4 nofptrs:2 noftbp:2 {ptrs:4}
{typeboundprocs:4}}.

Reference =
reftag {objmark.adr:2 name {mode:1 form:1 adr:4 name3}}.

name = {byte} OX.
constants = {byte}.
code = {byte}.

objmark = OF8X.

entrytag = 81X.
commandtag = 82X.

pointertag = 83X.
procvartag = 84X.

_27—

Chapter 4: The Compiler

DOS Oberon sizes

NS Oberon Sizes

importtag = 85X.
linktag = 86X.
fixuptag = 87X.
codetag = 88X.
typetag = 89X.
reftag = 8AX.

4.4 Program Size

The following tables show the differences in size of the original NS—
compiler and the new Intel compiler. The Intel compiler was
expected to be bigger in size, because of the non-orthogonal
instruction set of the processor and the register management.

DOC stands for DOS Oberon Compiler, OC for the NS Oberon
Compiler.

Module Function Size
DOCS.Mod Scanner 331 lines
DOCT.Mod Table handler 608 lines
DOCC.Mod Code generator 624 lines
DOCEMod Expressions 1345 lines
DOCH.Mod High level code generator 672 lines
Compiler.Mod Parser 1024 lines
Total 4594 lines
Module Function Size
0CS.Mod Scanner 309 lines
OCT.Mod Table handler 536 lines
0OCC.Mod Code generator 561 lines
OCE.Mod Expressions 916 lines
OCH.Mod High level code generator 506 lines
Compiler.Mod Parser 920 lines
Total ‘ 3748 lines

.28

Chapter 5: The Loader and the Kernel

5. The Loader and the Kernel

5.1 The Metaloader

The metaloader is a bootstrap and interface module. It prepares the
necessary memory structure, loads the actual Oberon module
loaderand passes control to itfor loading Modules. Obj. In addition, it
takes the functions of a DOS-extender. DOS and BIOS calls are
passed to the extender part of the mataloader for further handling.

The order of the different actions taken by the metaloader is shown
below:

1.

Get environment variables:

— The maximum size of the Oberon heap can be specified with
SET OBERONMEM = xxxx (KB).

If no size is given, all available memoty is taken.

~ A path to the Oberon directory can be specified with

SET OBERON = drive:\path. 4

The specified directory is taken as the main directory for the
Oberon system (See chapter9: The Filesystem). The defaultis the
current directory.

Both environment variables can be set via the AUTOEXEC.BAT
file or via the shell.

Set correct floppy disk parameters.

Build the protected mode interrupt descriptor table (IDT).
With each interrupt in PM an interrupt vector selector.offset is
associated.

Check for HIMEM.SYS driver and allocate a contiguous memory
block of the desired size. This memoty is later managed by the
kernel.

HIMEM.SYS is a driver that implements the eXtended Memory
Specification (XMS). It provides functions for allocating,
changing and freeing extended memory blocks. See also
[Dun30]

Read the header of the loader object file.

The headerinformation is needed for allocating a memory block
for the code and the data and relocating global variables and
procedure addresses.

Get low memory for the Oberon module loader, hardware
interrupt handling and for the stack. This memory is fully
contained in the 32-bit segment and accessible from PM (see
chapter 3: Memory Model).

—29-

Chapter 5: The Loader and the Kerel

Copy the code for the hardware interrupt handling into the 32—

bit segment. Some hardware interrupts (Division by zero,

overflow, invalid opcode, segment violation) invoke the Oberon

traphandler and are not routed down to RM. In such cases, the

interrupt handler pushes a trap number, depending on the

occurred trap, onto the stack and calls the Oberon trap handler.
7. Build the global descriptor table (GDT).

entry 0 —> Null. Accessing memory with this handle causes a trap
entry 1 ———> Code16 descriptor
Set 64 KB limit.
Set base address. Thisaddressis found in the currentcode segment (CS).
Set appropriate attributes for this segment.
entry 2 ——> Data16 descriptor
same as above, but this segment must be readable and writeable.
entry 3 ———> Code32 descriptor
Set limit to specified size (OBERONMEM) or to default.
Set base address. This address is 0.
Set appropriate attributes for this segment.
entry 4 ——> Data32 descriptor
same as above, but this segment must be readable and writeable.

8. Read LoaderObj (the Oberon module loader) and pass
important addresses from the metaloader to this loader.
Scan through all links and do the fixups.

9. Load the global descriptor table (GDT) and the interrupt
descriptortable (IDT), switch to PM and load the stack pointer.
Jump to the beginning of the Oberon module foader.

At this point, the Oberon modules take control. The metaloader is
only used for system calls and interrupt handling. See chapter2: The
Intel Environment, for the switch mechanism from protected mode
to real mode and vice versa.

5.2 The Module Loader

The module loader is responsible for loading and freeing Oberon
modules. It has to allocate memory for the module descriptor, the
code/data part of the module with additional information and for
the type descriptors. It also handles imports and relocates global
variables and external procedure calls. When the loader itself is
loaded and started, it bootstraps with loading module Modules.Obj
(Interface to the loader) which then loads module Oberon.Obj
(Contains the main loop of the Oberon system). Before the kernel is
loaded, the memory is managed by DOS. This means that all

~30-

Chapter 5: The Loader and the Kernel

Memory allocation

Filenames

memory which is needed for loading Modules.Obj and Kernel.Obj
(Kernel.Obj is imported by Modules.Obj) is allocated in the first

megabyte of memory. For this purpose of the memory a special
procedure was implemented:

PFEOCEDURE DOSNew (VAR adr: LONGINT; size: LONGINT);
BEGIN

Get Memory from DOS. Size must be aligned to 32 bytes boundary.
Calculate address. ‘
Build descriptor as in the Oberon NEW-procedure.
Initialize memory with 0.
END DOSNew;

Memory blocks allocated with this procedure have the same
structure as blocks that are allocated by the Oberon memory
management. The interrupt number 'Myint' is a special dummy
number not used by other calls. In addition to normal DOS memory
allocation the block is registered in a table and freed when the user
quits the Oberon system. At the end of an Oberon session, all low
memory as well as the extended memory is returned to the system.
As soon as the Oberon kemel is loaded and initialized, the memory
management is done by the kemel and the above mentioned
procedure is not used anymore, except for modules that must be
loaded in low memory. This could be driver modules that work with
buffer addresses, e. g. CD-ROM drivers. A special tag in the object
file indicates whethera module can be loaded normally in extended
memory orwether it must be loaded in low memory. Usually, driver
modules require low memory.

Apartfrom this exception, only the high memory is used. We notice
again thatthe garbage collector doesn't take care of the low memory.
Any module in low memory can be freed as all other modules, but
the garbage collector doesn't collect low memory. However, as low
modules are permanent anyway (kernel, loader and drivers) no
memory needs to be collected. '

Maodule Files provides a translation table for Oberon 32~character
filenames. Before this table is initialized, all module names should fit
to the 8+3 character DOS names. This concerns modules
Kernel.Obj, DOS.Obj, Files.Obj, FileDir.Obj and Modules.Obj.

All modules that are loaded afterwards are not bound any more to
the 8+3 character name restriction.

Note again that only Kemel.Obj and Module.Obj are allocated in the
low memory and that all the other modules are in the extended
memoty.

The following figure shows how the descriptors and the code/data

-31 -

Chapter 5: The Loader and the Kemnel

Relocation

part are organized in detail (Fig. 1).

When all module descriptors and type descriptors are allocated and
all importing is completed, the loader begins relocating the global
variables and external procedure calls. Remember that such items
are chained together in fixup chains. A fixup entry consists of an
address part (16 bit) and the offset in the code part of the module. In
case of a variable, the effective address of the static base (SB) is
added to this offset and gives the absolute address of the variable,
The address part links to the next fixup in this module. This
mechanism gives a restriction toa maximal code size of 64 KB (16 Bit
unsigned) per module. In case of an external procedure, the address
can be found via import list (module) and entry table (procedure).
The fixup technique is the same as for the variables.

Module descriptor

—pt next | next module
name
init
key, refcnt, nofentries, nofcoms,
nofptrs, nofimps, size, nofrecs Module
entries p Entry list
cmds Name, entry address
ptrTab Pointer Tist
tdesc Type descriptor list -
imports Imported module Tist
SB (static base) Constants and global data
data _J
code
refs —_L’ Code
—|—~5 reference information
Type descriptor
tdsize
sentinel
self <+
Tioftbp < others
name D
mdesc
tbp
tags
tag
recsize 4
ptroffset

Fig 1: Module Descriptors

The loader s the first module loaded into the Oberon segment (See
Chapter 3: Memory Model). Some data of the metaloader are

-32 -

Chapter 5: The Loader and the Kernel

needed in the Oberon environment. As a side effect, these data are
installed by the metaloader when loading the module loader
(mentioned above). A similar relation holds between loader and
kemel. All loaded modules are inserted in a module chain. This
allows access to each module's code and data, as all information
aboutamoduleis hold in the module descriptor (Fig. 1). The kemel
is the first module in this chain. The loader, not included in this
chain, can't be accessed by the Oberon runtime system as it is
completely isolated. There is no link between an Oberon module
and the loader. So, when the kemel is loaded, some important data
are copied to the kernel by the loader.

These data comprise forexample the address of the DOShandler, an
area of data transfer between Oberon and DOS, heap address, video
RAM address and different buffer addresses. (See below for the
initialisation procedure)

PROCEDURE InitKernel (m: Module);

VAR data: LONGINT;
handler: Proc; load: Proc1; getproc: Proc3; free: Proc4;

BEGIN
data := m.SB;
m.refent:=1; (% Kernel can't be unloaded %) .
handler := DOSHandler; load := Load; getproc := GetProc; free := Free;
SYSTEM.PUT(data~4, SYSTEM.VAL(LONGINT, handler)); (* DOSHandler)
SYSTEM.PUT(data—8, SYSTEM.ADR(Reg)); (x Parameterblock)
SYSTEM.PUT(data—16, SYSTEM.ADR(Transfer[0])); (% Data transfer area %)
SYSTEM.PUT(data~20, heapAdr);
SYSTEM.PUT(data-24, heapSize); .
SYSTEM.PUT(data—-28, StackOrg); (* Stackorigin %)
SYSTEM.PUT(data~32, IntTransfer); (x Address of int transfer buffer x)
SYSTEM.PUT(data-36, SYSTEM.ADR(modules)); (x Module list anchor %)
SYSTEM.PUT(data~40, SYSTEM.VAL(LONGINT, getProc));
SYSTEM.PUT(data-44, SYSTEM.VAL(LONGINT, load));
SYSTEM.PUT(data~48, SYSTEM.VAL(LONGINT, free)); (% loader procs %)
SYSTEM.PUT(data~52, SYSTEM.ADR(main));
SYSTEM.PUT(data—56, SYSTEM.ADR(File1));
SYSTEM.PUT(data—60, SYSTEM.ADR(File2));
SYSTEM.PUT(data—64, Display);
SYSTEM.PUT(data—68, BufBeg);
TableRoot = data-72;
body := SYSTEM.VAL(Proc, m.entries[0]); body; m.init := TRUE;
SYSTEM.GET(data-76, Routine[0]); (¥ NEW %)
SYSTEM.GET(data—80, Routine[1]); (% SYSTEM.NEW x)
SysNew := SYSTEM.VAL(sysnew, Routine[11);
New := SYSTEM.VAL(new, Routine[0]);

-33-

Chapter 5: The Loader and the Kernel

SYSTEM.PUT (data—102, DS);
SYSTEM.PUT (data~104, ES);
Kernelloaded := TRUE;

END InitKernel;

5.3 The Kernel

The kemel was originally implemented for the DEC station. It
provides procedures forallocating and collecting memory and some
trap handling utilities. Onlythe memory section above 1 megabyte is
handled by the kemel. The section below is used by the loader only
and is managed purely by DOS. The reason for this is the easier
management of one big memory block instead of two. Otherwise,
the range from OAOOOOH up to OFFFFFH (Video and part of BIOS)
would be right between the two memory blocks. As mentioned
above, important data are copied from the metaloader or the loader
up to the kernel. These data are listed below.

PE
REGISTER = RECORD
AX, CX, DX, BX: INTEGER;
SP, BP, Si, DI: INTEGER; (% SP, BP: read only %)
Flags: INTEGER; (% read only %)
CS, 55: LONGINT; (read only %)
DS, ES: LONGINT

) END;
Buffer = ARRAY 4096 OF CHAR;

Buf = POINTER TO Buffer;
Register = POINTER TO REGISTER;

(%the declaration order of the following variables is known by the loader! x)
(% The loader initializes all variables except Reg and Transfer %)

VAR

INT: PROCEDURE;

Reg: Register;

Transfer: Buf;

heapAdr: LONGINT;

heapSize: LONGINT;

StackOrg: LONGINT;

intTransfer: LONGINT;

modules: LONGINT;

Load: PROCEDURE {mod: ARRAY OF CHAR; VAR m: Module;
VAR res: INTEGER);

GetProc: PROCEDURE (cmid: ARRAY OF CHAR; m: Module;

) VARcommand: Proc; VAR res: INTEGER);

Free: PROCEDURE (mod: ARRAY OF CHAR; all: BOOLEAN;

VAR res: INTEGER);

Main: LONGINT; (% Address of Mainpath %)
File1: LONGINT; }
File2: LONGINT; (% Address of filenames %)

~34 -

Chapter 5: The Loader and the Kernel

Display: LONGINT; % Address of Display %
dx: Fl).O)l,\lGlNT; (Play %)
TableRoot: LONGINT;
new: PROCEDURE(tag: Tag): LONGINT;
(% accessed by the loader to get the address for NEW x)
systemNew: PROCEDURE(size: LONGINT): ADDRESS;
(% accessed by the loader to get the address for SYSTEM.NEW x)

Interrupt procedure The Kernel also provides a mechanism for DOS and BIOS calls (see
chapter 2: The Intel Environment) and for installing interrupt
procedures. The following example shows how such a procedure is

installed:
PROCEDURE +Int; (% Interrupt procedure %)
VAR ...
BEGIN
SYSTEM.CLI(); (% disable interrupts %)
(% code ¥)
SYSTEM.STI(); (% enable interrupts %)

SYSTEM.PORfOUTQOH, 20H) (% EOI, end of interrupt %)
END Int;

PROCEDURE Install*(port: INTEGER);
BEGIN
IF port = COM1 THEN Kernel.InstalllP(Int, 4)

(% Install procedure Int. The second parameter in InstalllP denotes
into which hardware interrupt the procedure should be hooked.
inthis case into COM1 interrupt %)

ELSIF port = COM2 THEN Kernel.InstalllP(int, 3)

(% Hook into COM2 interrupt %)

(% ELSIF ... %)
ELSE HALT(88) END;’
END Start;

~35-

Chapter 6: The DOS Module

Parameter passing

6. The DOS Module

Module DOS is the interface between the MS-Disk Operating
System and Oberon. In particular, it provides an interface to all DOS
and BIOS calls thatare needed by the Oberon system. Although such
calls could be made by any module in situ, they are concentrated in
one place. This gives a clear interface to DOS low-level routines.

The parameters of a system call are normally passed to the operating
system in registers. In some cases, e. g. where a string is needed, a
memory buffer is used. In such cases, the parameter register
contains the address of the data buffer. The actual call is
implemented as a software interrupt. The following assembler
statements give an example:

(% Ge‘cs[)_/| tem clock %)
MOV AH, 2H (% Set function number %)
INT1AH (% Generate interrupt 1AH %)

Results are also passed in registers. Moreover, some calls raise the
carry bit, if the operation was not successful, others pass the
'successfully done' information in a register, typically EAX.

In module Kernel, there exists a global variable Reg providing the
address of the parameter block and a buffer called Transfer
supporting data transfer between Oberon and DOS. System calls
must be executed in real mode and can't therefore access the
memory above one MB. All data transfer is therefore done via the
transfer buffer. Instead of calling an interrupt directly, a procedure is
called that switches back to real mode, copies the parameters from
Regto the registers, invokes the corresponding interrupt, writes back
the results into Reg and switches back to protected mode. The
following procedure shows this:

PROCEDURE SystemCall;
BEGIN
Store the parameters for the system call into the register variable;
Fill transfer buffer, if heeded;
Switch to real mode;
CopK the contents of the register variable into the real registers;
(% The transfer buffer is atready in real mode, nothing needs to be done here)
Invoke specified interrupt;
Copy results back into the register variable;
Switch to protected mode;
END SystemCall;

~36-

Chapter 6: The DOS Module

This shows the definition of the parameter block and transfer buffer:

TYPE
REGISTER = RECORD
AX, CX, DX, BX: INTEGER;

SP, BP, S|, DI: INTEGER; (% SP, BP: read only %)
Flags: INTEGER; (% read only %)
CS, SS: LONGINT; (s read on|§ %)
DS, ES: LONGINT
END;
(% Results in field Flags
Bit O: Carry CF Bit 4: Auxiliary AF
Bit 1: unused ' Bit 5: Overflow OF
Bit 2: Parity PF Bit 6: Zero ZF
Bit 3: unused Bit 7: SignSF %)

Buffer = ARRAY 4096 OF CHAR;
Buf = POINTER TO Buffer;
Register = POINTER TO REGISTER;

VAR
INT: PROCEDURE;
Reg: Register;
Transfer: Buf;

System calls A call to the operating system is done as shown below:

PROCEDURE WaitForKeyboardx; (x Call without buffer x)
BEGIN

Kernel.Reg.AX := 700H;

Kernel.INT(Kernel.Reg, 21H);
END WaitForKeyboard;

PROCEDURE DeleteFilex{name: ARRAY OF CHAR); (x Call with buffer %)
VAR i: INTEGER;
BEGIN i :=0;
Kernel.Reg.AX := 4100H; ’
Kernel.Reg.DS := Kernel.DS; (% DS:DX is the start of the transfer buffer %)
Kernel.Reg.DX := Kernel.DX;
REPEAT Kernel.Transfer[i] := name[il; INC(i) UNTIL name[i] = 0X;
Kernel. Transfer[i] := 0X; '
Kernel.INT(Kernel.Reg, 21H)
Done := ~SYSTEM.BIT(SYSTEM.ADR(Kernel.Reg.Flags), 0);
END DeleteFile;

System parameters Module DOS also contains some system parameters.

VAR
Done, (% Last call was successful %)
CoAvail: BOOLEAN; (% Coprocessor available %)
DispHeight, DispWidth: INTEGER; -(x Screen resolution %)
tag: ARRAY 3 OF CHAR; (x Tag of the Oberon files x)

~37-

Chapter6: The DOS Module

Available procedures Additionally, the following service procedures are available:

Output to the screen and wait:
PROCEDURE WriteChar(ch: CHAR);
PROCEDURE WriteString(s: ARRAY OF CHAR);
PROCEDURE Writelnt(i: LONGINT);
PROCEDURE WriteLn;
PROCEDURE WriteHex(i: SYSTEM.BYTE);
PROCEDURE Wait;

Serial port:
PROFEZEDURE InitSerialPort(port, wlength, stopbits, parity, baud: INTEGER);
PROCEDURE RecCharSer(port: INTEGER; VAR ch: CHAR);
PROCEDURE SendCharSer(port: INTEGER; ch: CHAR);
PROCEDURE GetStatusSer(port: INTEGER; VAR status: INTEGER);

Parallel port:
PROCEDURE InitParallelPort(port: INTEGER);
PROCEDURE PrintChar(port: INTEGER; VAR ch: CHAR);
PROCEDURE GetStatusPar(port: INTEGER; VAR status: INTEGER);

Floppy drive:
PROCEDURE Format;
PROCEDURE ResetDrive;
PROCEDURE GetSector(sec, cyl, head: INTEGER);
PROCEDURE PutSector(sec, cyl, head: INTEGER);

Timer:
PROCEDURE GetClock(VAR time, date: LONGINT);
PROCEDURE SetClock(time, date: LONGINT);
PROCEDURE GetTicks(): LONGINT;

Keyboard:
PROCEDURE KBAvail(): BOOLEAN;
PROCEDURE GetChar(VAR ch: CHAR; VAR ext: BOOLEAN);
PROCEDURE ControlKeys(VAR Keys: INTEGERY);

Display:
PROCEDURE InitDisplay(mode: INTEGER);
PROCEDURE GetColor(col: INTEGER; VAR red, green, blue: INTEGER);
: (% implemented in the driver %)
PROCEDURE SetColor(col, red, green, blue: INTEGER);
(x implemented in the driver)

Mouse:
PROCEDURE InitMouse;
PROCEDURE SetMouse(x, y: INTEGER);
PROCEDURE GetMouselnfo(VAR x, y, buttons: INTEGER);

Files:
PROCEDURE Open(VAR name: ARRAY OF CHAR; new: BOOLEAN;
VAR handle: LONGINT; accessmode: INTEGER);
PROCEDURE Close(handle: LONGINT);
PROCEDURE Delete(name: ARRAY OF CHAR);
PROCEDURE Rename(old, new: ARRAY OF CHAR);
PROCEDURE Length(VAR len: LONGINT; handle: LONGINT);
PROCEDURE DirOpt(dos: ARRAY OF CHAR; VAR time, date, size: LONGINT);
PROCEDURE GetDateTime(VAR date, time: LONGINT; handle: LONGINT);
PROCEDURE SetPos(pos, handle: LONGINT);

~38-

Chapter 6: The DOS Module

PROCEDURE DoubleHandle(handle: LONGINT): LONGINT:

PROCEDURE Write(size, adr, handle: LONGINT);

PROCEDURE Read(size, adr, handle: LONGINT; VAR read: LONGINT);

PROCEDURE GetID(VAR ID: ARRAY OF CHAR; handle: LONGINT);

PROCEDURE SetID(ID: ARRAY OF CHAR; handle: LONGINT);

PROCEDURE GetTag(VAR tag: ARRAY OF CHAR; handle: LONGINT);

PROCEDURE SetFileCount{no: INTEGER);

(% for future use %)

PROCEDURE LockFileAccess(handle, Offset, Length: LONGINT;
shareable: BOOLEAN): BOOLEAN;

PROCEDURE UnlockFileAccess(handle, Offset, Length: LONGINT;

: shareable: BOOLEAN): BOOLEAN;
PROCEDURE isHandleRemote(handle: LONGINT): BOOLEAN;
PROCEDURE BufferingRecommended (AccessMode: INTEGER;

FileRemote: BOOLEAN;
VAR BufferedRead, BufferedWrite: BOOLEAN);

File directory:
PROCEDURE GetfFirstFile(VAR name: ARRAY OF CHAR);
PROCEDURE GetNextFile(VAR name: ARRAY OF CHAR; VAR end: BOOLEAN);
PROCEDURE MakeDir{name: ARRAY OF CHAR);
PROCEDURE RemoveDir(name: ARRAY OF CHAR);
PROCEDURE ChangeDir(name: ARRAY OF CHAR);
PROCEDURE GetDir(drv: ARRAY OF CHAR;: VAR name: ARRAY OF CHAR);
PROCEDURE GetDrive(VAR drv: ARRAY OF CHAR);

Miscellaneous:
PROCEDURE AllocTermProc(proc: Proc);
(% Procedures which are called before the system quits,

e. g. close all temporary files)
PROCEDURE Quit; (¥ Quits the system %)

-39 -

Chapter7: The Display

Monochrome display
Color display

ET4000 card

S3 card

7. The Display

The display driverwas one of the most time critical parts of the whole
implementaton. It must be fast to give a good responsiveness of the
system and it should also be able to work with a reasonable
resolution. While there is a big choice of differentinterface cardsand

standards, we had to restrict our implementation to just a few of
them. Some of the standards are SVGA, VGA, ECA, MCGA, MDA,

Hercules, .. .For more information about interface cards and

standards, see also [Fer911.

The original Oberon system operates in a monochrome graphic
mode with 1024 % 800 pixels. The aim was a resolution that
optimally matches with our Ceres machines. Also, we wanted to

have a standard that is as wide-spread as possible.

In a first step, a display driver was written for a VGA card with just
640%480 pixels and a monochrom display. For efficiency reasons,

this module is coded in assembler and BIOS is bypassed, i. e. the

video RAM is accessed directly.

The next step was a color display. The selected card offers 16 colors

with VGA resolution, the same number of colors as our Ceres

machines have. This implementation is still maintained together
with all the other parts of the port [Ott92].

Later we developed a driver for the ET4000 SVGA card with a
resolution of 1024x768 and 256 colors because ET4000 is well

known and fast. We also evaluated the Trident 8900. However, while

implementing, ittumed out that the ET4000 with two bank registers

is faster than the Trident with only one bank register (especially for
Copy Block). For precise information about both interface cards, see

[Fer91l. ‘

But still the display was slow in comparison with our original Ceres

machine.

We had now nearly the same display resolution with even more

colors though, but we wanted a faster card. One possibility was to

use an accelerator card. In fact, we found the ideal solution in the 53

chip set. Itis notvery expensive and is high performance thanks to its

own graphic processor.

Our development machine features a S3C805 local bus version of
this chip, runningata resolution of 1024 % 768 pixels and 256 colors. -
Itis approximately 4-5 times faster than the Ceres color display ata
resolution of 1024 % 800 and 16 colors.

~ 40—~

Chapter7: The Display

Clipping

Pattern expansion

The $3 chip knows these 4 operations:
— Draw line
— Fill rectangle
- Bit block transfer
~ NOP, resp. set parameters

Perhaps surprisingly, this is just enough for our needs. Namely, all
Oberon display procedures can be mapped to one of the above
mentioned commands:

— CopyPattern —> Draw line (textured)
— CopyBlock —> Bit block transfer

- ReplConst —> Fill rectangle

— ReplPattern —> Draw line (textured)
- FillPattern —> Draw line (textured)
- Dot —> Draw line

In addition to Oberon's basic display operations, the $3—card even
implements an operation Line to draw a general line.

Also, the S3-processor implements clipping in hardware. The chip
allows setting up a rectangular area that specifies the current
boundaries. Subsequent operations optionally draw inside or
outside the clipping area.

Working now with 256 colors, we use 8 bits per pixel. However, all
Oberon fonts are stored as a black/white pattern with 1 bit per pixel.
Fortunately, the S3 chip offers a possibility to specify a background
and a foreground color and an associated automatic expansion
mode. O's in a pattern are mapped to background color, 1's to
foreground color. The combination of the two colors are specified in
a special fg/bg mix register. For details, see below.

Bg/Fg Mix Register (bits O - 3)

Value Meaning Used for

0 inverted screen

1 all bits=0 replace mode (Background)

2 all bits =1

3 no change invert and paint mode (Background)
4 inverted color

5 screen XOR color invert mode (Foreground)

6 inverted screen XOR color

7 color paint and replace mode (Foreground)
8 inverted screen OR inverted color

9 screen OR inverted color

10 inverted screen OR color

—41 -

Chapter7: The Display

Parameter passing

11 screen OR color

12 screen AND color

13 inverted screen AND color

14 screen AND inverted color

15 inverted screen AND inverted color

The parameters are passed to the interface card registers via 1/0
ports. In principle, this makes programming very simple. There is
only one fact to care for. The card manages a FIFO queue for
instructions. It depends on the type of card whether 8 or 16 stack
entries are available. Before any value can be written to a card
register, itmust be guaranteed that there is a free queue entry to hold
them. The easiestand also recommended way is a preliminary check
forempty queue. If there are no entries available, the program should
wait until the queue is empty, otherwise an overflow interrupt is
generated. For detailed information, see [S3 92].

The following code sequences show how compact the raster
operations can be implemented when using the S3 card:

PROCEDURE InitDisplay; (% Sets the display into $3 mode %)
BEGIN
Kernel.Reg.AX := 4F02H;
Kernel.Reg.BX := 205H; (% 53 1024 x 768 x 256 (VESA) *)
Kernel.INT(Kernel.Reg, 10H);
END InitDisplay;

SFEOCEDURE WaitFIFOempty; (% Waits, till the FIFO stack is emtpy %)
GIN
(%% Dinline.Assemble
MOV DX, $9AE8
lab1 IN AX, DX
AND AX, $200
INZ lab1
END %)
END WaitFIFOempty;

PROCEDURE Dot(col, %, y, mode: INTEGER);
BEGIN
y := Height-y;
WaitFIFOerpty;
IF mode = invert THEN
SYSTEM.PORTOUT(FGmix, LONG{25H)) (» Set Fg mix register)

LSE .
SYSTEM.PORTOUT(FGmix, LONG(27H))

END;

SYSTEM.PORTOUT(FGcol, col); (% Set Fg color %)
SYSTEM.PORTOUT(MFcont; SHORT(pixctrl1)); (% Function control)
SYSTEM.PORTOUT(curX, x); (s X coordinate %)
SYSTEM.PORTOUT(curY, y); (% Y coordinate %)
SYSTEM.PORTOUT(cmdReg, 121BH); (% Command %)

SYSTEM.PORTOUT(shortStroke, LONG(10H)); (% Draw dot %)
END Dot;

42—

Chapter7: The Display

PROCEDURE CopyBlockx(SX, SY, W, H, DX, DY, mode: INTEGER);
VAR xpos, ypos: INTEGER;
BEGIN
IF (W <= 0) OR (H <= 0) THEN RETURN END;
xpos := 0; ypos := 0;
{F SY < DY THEN INC(SY, H~1); INC(DY, H-1); ypos := 128 END;
IF SX < DX THEN INC(SX, W-1); INC(DX, W~1) ELSE xpos := 32 END;
SY := Height — SY; DY := Height - DY;)
DEC(W); DEC(H);
WaitFIFOempty;
IF mode = invert THEN SYSTEM.PORTOUT(FGmix, LONG(65H))
ELSE SYSTEM.PORTOUT(FGmix, LONG(67H)) END; (% Fg mix register %)
SYSTEM.PORTOUT(MFcont, SHORT(pixctrl1)); (% Function control %)

SYSTEM.PORTOUT(curX, SX); (% Source X %)
SYSTEM.PORTOUT(curY, SY); (% Source Y %)
SYSTEM.PORTOUT(diaStep, DX); (% Desination X %)
SYSTEM.PORTOUT(axStep, DY); (% Desination Y %)
SYSTEM.PORTOUT(majAxis, W); (% Width- %)
SYSTEM.PORTOUT(MFcont, H); (% Height %)
SYSTEM.PORTOUT(cmdReg, SHORT(copyemd) + xpos + ypos);

(% Command x)
END CopyBlock;

43—~

Chapter 8: Floating point arithmetic

Emulated instructions

Address decoding

8. Floating Point Arithmetic

Not all of the Intel processors have a floating point unit (FPU) on
chip. Some (803865X, 804865X) need a special chip (80x87)
containing such an FPU. Although the basic Oberon system doesn't
do REAL computations, it is desirable to have floating point
operations at disposal. For this reason, an emulator for the 80x87
was written. Itis based on the MIPS 22010 floating point emulator.
The non-portable yarts (code ‘procedures with register
conventions) have bee.. adapted for the DOS implementation.
When a floating point instruction should be executed and there is
no FPU installed, the system traps. The idea is now to hook into this
interrupt and call the FPU emulator as interrupt handling procedure.
After handling the interrupt, the program continues execution
normally. Note that the emulation also includes the FPU stack to be
updated.

The emulator merely knows the instructions ADD, SUB, DIV and
MULT plus ABS and NEG. All other instructions (e. g. trigonometric
functions) must be reduced to this base. (See also below: Math
modules).

So, the emulatoris invoked upon trap 7 (no coprocessor). The task of
the floating point emulator now consists of: (1) decode the address
and (2) interprete the function. Interpreting the function was already
implemented, but decoding the address had to be redone. For that
purpose, we used a trick. Assume that the needed REAL number is at
a location off[Reg1+Reg2x4]. Then the absolute address can be
computed with LEA Reg, off[Reg1+Reg2x4]. So, the whole decoding
is done by the processor's own decoding facility. All we need do is
placingan LEA (Load effective address) in front of the address part of
the floating point instruction and exe “uting this instruction. This
way of implementing selfmodifying code tumed out to be very
useful, elegant and even safe!

The following code shows how it is done in detail:

PROCEDURE ®xAdr; (% Empty procedure; lets space for 10 bytes)
BEGIN-HALT(32) END Adr;

PROCEDURE GetAdr(start, len: LONGINT);
VAR Padr: LONGINT; nop: INTEGER; code: SHORTINT; P: Proc;
BEGIN

Pi=Adr; .

Padr := S.VAL(LONGINT, P); (% Procedure Address %)
nop = 9090H; ' (% 90H, 90H %)
S.PUT(Padr+1, nop); S.PUT(Padr+3, nop); (% Init with NOP %)

S.PUT(Padr+5, nop); S.PUT(Padr+7, nop);

Chapter 8: Floating point arithmetic

S.PUT(Padr+9, nop);
IF len # 0 THEN S.MOVE(start+1, Padr+3, len) END; (% Put Code %)
S.GET(start, code);

S.PUT(Padr, 90X); S.PUT(Padr+1, 8DX); (% Put NOP, LEA %)
S.PUT(Padr+2, code MOD 8 + code DIV 64%64); (x Put dest to EAX x)
S.PUTREG(O, EAX); S.PUTREG(1, ECX); (% Set registers %)

S.PUTREG(2, EDX); S.PUTREG(3, EBX);
S.PUTREG(6, ESI); S.PUTREG(7, EDY);

S.GETREG(5, oldebp); S.PUTREG(5, EBP); (% Setold EBP %)

Adr; S.GETREG(0, adr); (% Get Address %)

S.PUTREG(5, oldebp); (% Reset EBP x)
END GetAdr;

1) PROCEDURE %Adr;
GIN ENTER 0,0 C8H 00H 0OH 00H
HALT(32) ~———————P PUSH 32, INT 3 ~—— 68H 20H 00H 0OH 00H CCH
END Adr; istranslated to | gave RETO €998 CoH C2H 00H COH

2) ——» (8H 00H O0H O0H

:ﬁ: s to the 6EH 20H OOH OOH 00H CCH

points to the Cok C2H 00H 00H
procedure

3) ———P (C8H 90H 90H 90H
10bytes . 90H 90H 90H 90H 90H 90H
initialized 90H C2H 0OH OOH
with NOPs

4) C—d—-—’ C8H 90H 90H xx
oae XX XX XX XX XX XX
inserted (xx) yy 214 0OH OOH

5) —————>» 90H LEA EAX xx
!'EA SA;" XX XX XX XX XX XX
inserte xx C2H 00H OCH

P 90H LEA EAX xx
Call of Adr XX XX XX XX XX XX

jumps here 5 R 00H 00H
‘——’_and returns

6)

Fig. 1: Process of cade patch

All registers have to be saved at the beginning of the interrupt

handling procedure and must be restored again before the address

can be computed. The frame pointer (EBP) is saved before callingAdr
- and restored afterwards.

8.1 Math modules

As mentioned before, the emulator doesn't know other floating
point operations than ADD, SUB, MULT and DIV. The two math
libraries, Math.Obj and MathL.Obj had to be adapted and optimized
for emulation, because the 80387 features instructions for SQRT,

— 45—

Chapter 8: Floating point arithmetic

logarithmic and trigonometric functions and many more: The
existence of a math coprocessor is checked at startup time and the
flag DOS.CoAvail is set appropriately. In the math modules, two
variants are implemented, one for the coprocessor and the other for
the emulator. (See below)

Example for the Sin(x) function:

PROCEDURE —Sin(x: REAL):REAL

0C8H, 0,0, 0, (% ENTERO,0%) -
OD9H, 45H, 08H, (% FLD ST(0), 8[EBP] %)
ODYH, OFEH, (% FSIN ST(0) %)
O0DDH, OD9H, (% FSTP ST(1) %)

0C9H, 0C2H, 4, 0; (% LEAVE, RET 4 x)

PROCEDURE sinx(x: REAL): REAL;
VAR n: LONGINT; y, yy, f: REAL;
BEGIN :
IF DOS.CoAvail THEN (% Coprocessor exists, use float instructions %)
IF x < 0.0 THEN RETURN -Sin(~x) ELSE RETURN Sin(x) END
ELSE (x No coprocessor available, emulate function %)
y = c31%x; n = ENTIER(y + 0.5); (%c31 = 2/pix)
y 1= 2%(y-n); yy =yxy; .
IF ~ODD(n) THENf = ((p33xyy + p32)xyy + p31) / (p30 +yy) *y
ELSE f:= ((q33%yy + q32§)*yy +q31) / (@31 +yy) END;
IF ODD(n DIV 2) THEN f := —f END;
RETURN f
END
END sin;

c31, p33, p32, p31, p30, §33, g32, g31 are REAL contants used for emutation.

This emulation still leaves room for improvementin precision, but it
works fine for normal requirements.

The other procedures in the math module are implemented in a
similar way.

Definition of Math.Obj:

DEFINITION Math;
CONST € = 2.7182817E+00;
VAR pi: REAL;

PROCEDURE arctan (x: REAL): REAL;

PROCEDURE cos (x: REAL): REAL;

PROCEDURE exp (x: REAL): REAL;

PROCEDURE In (x: REAL): REAL;

PROCEDURE sin (x: REAL): REAL;

PROCEDURE sgrt (x: REAL): REAL;
END Math.

— 46—

Chapter 8: Floating point arithmetic

Definition of MathL.Obj:

DEFINITION Mathl;
CONST e = 2.71828182845905D+000;
VAR pi: LONGREAL;

PROCEDURE arctan (x: LONGREAL): LONGREAL;

PROCEDURE cos (x: LONGREAL): LONGREAL;

PROCEDURE exp {x: LONGREAL): LONGREAL;

PROCEDURE In (x: LONGREAL): LONGREAL;

PROCEDURE sin (x: LONGREAL): LONGREAL;

PROCEDURE sqrt (x: LONGREAL): LONGREAL;
END MathlL.

There are many more functions provided by the coprocessor, but

they are not used to implement the standard Oberon floating point
interface.

_47 -

Chapter9: The File System

Oberon directory

Translation table

9. The File System

As can be seen in [Wir92], the Oberon file system is very flexibel and
offers new perspectives in comparison to conventional file systems
and in particular to the DOS file system. Although there are no
subdirectories under Oberon, the 32 character filenames offer
enough flexibility to create groups of files in the same directory, i. .
files with the same prefix or suffix belong to the same group. DOS
does notallow filenames longerthan 8+3 characters. Also files can't
be multiply opened with independent read and write pointers. DOS
files with different handles necessarily refer to the same read/write
position.

The base for the DOS file system was the implementation for the
UNIX implementation.

The lack of long file names makes necessary two separate
directories. The firstone is the normal directory provided by the DOS -
operating system, the second one is an Oberon directory mapping
Oberon file names to DOS file names. The Oberon directory is

" implemented as a special file called FILENAMETEX. It is read into

memory at startup time. Its memory representation isa simple linear
list in alphabetical order with a sentinel (Fig. 1).

Cerﬁs, Dos Ceres, Dos Ceres, Dos

patl path path

nex} P next — — —p| next o Sentinel
main main main

Fig. 1: Oberon Directory

Each entry in the Oberon directory looks as follows:

NodePtr = POINTER TO Node;
Node = RECORD
Ceres, Dos: FileName;
(% 32 character name, corresponding 8+3 DOS name x)

path: Path; (% Subdirectory in which the file is located %)
next: NodePtr; (* Pointer to next node %)
ENrBain: BOOLEAN; (x Main or current directory %)

When the user quits Oberon, the translation table is written back to
disk. If unforeseen circumstances hinder a correct shutdown of the
Oberon system, the Oberon directory can not possibly be written to

- 48—~

~ Chapter 9: The File System

File handle

Files New

disk. Ifat system startup time no FILENAME TEX is found, then all files
in the Oberon DOS directory are opened and individually checked.
The first two bytes contain the Oberon tag. The following 32 bytes
give the Oberon name and the corresponding Oberon/DOS pair can
be inserted into the directory. If there is no tag, the Oberon name by
definition isthe same as the DOS name. A similaralgorithm is used if
a file was added or deleted under control of DOS in the Oberon
directory. If there are two different files with the same Oberon name,
then the older one is deleted. Thus, the translation table is
guaranteed to be consistent at any time.

Each fileis internally represented as a pointertoafile handle,i.e.toa
complete set of information about the file.

File = POINTER TO Handle;
Handle = RECORD

origName, (% Original 32 character name %)

workName, (% Current name under DOS %)

registerName (* Registered DOS name, empty when new file x)
: FileName;

Fath: FileDir.Path; (% Subdirectory in which the file is located %)
d, (% File handle number %)

len, (% File length %)

0s: LONGINT; (% Current file position %)

ufs (% Files up to 16 KB are held in memory %)
: ARRAY nofbufs OF Buffer; ,
swapper, (% Indicates which buffer will be swapped out next x)

state: INTEGER; (% State: create (file is in buffers), open and close %)
dospath: BOOLEAN; (File is in the current/main directory or in any
subdirectory)
offset: SHORTINT; (% Oberon files start at offset 34 %)
END;

Each time a new file is created by Files. New(name), a new file handle
isallocated, the tagand the name are inserted into the first bufferand
the file name is copied into the origName field. No disk access is
done at this point. Every file has 4 memory buffers of 4 KB size each.
Small files can thus be kept completely in memory, which
guarantees fast access. If all buffer space is used, a temporary file is
created under DOS named 7.5 where xox denotes a consecutive
number. The record field origName still keeps the original Oberon
filename. Although a file is created on disk now, it is not inserted in
the Oberon directory yet. This and the renaming to origName (as far
as the 8+3 character limit allows) is first done when the file is
registered by Files Register(f).

Other files with the same Oberon name can be opened at the same
time. Then, temporaty files with different names (1.yyy, see above)
are created, but all files have the same origName.

All temporary files that have been created but notrenamed, i. . have

—49 -

Chapter 9: The File System

Files.Old

Files.Register

DOS files

Subdirectories

not been registered under Oberon, are deleted at the next system
startup time. ‘

Ifa file is opened with Files Old(name), the correponding DOS name
is looked up in the mapping table and the file is accessed by DOS
under its DOS name. Otherwise, if the name is not in the Oberon
directory, NILwill be returned. Every openedfileisinserted ina cache,
so that 2 second call of Files Old(name) will find the already opened
file in the cache and retum the same file handle.

CONST cacheSize = 64;)
VAR cache: ARRAY cacheSize OF LONGINT (% = File %);

Files Register(file) flushes all file buffers and inserts the Oberon/DOS
name pair into the Oberon directory. If the file was already created
earlier under a temporary name (e. g 7.¢), it must be closed,
renamed to the corresponding DOS name and reopened with now
the DOS name. This is imposed by DOS that doesn't allow renaming
of open files. A small filewhich can be held in buffers may be created
directly under the correct DOS name. Since no temporary file was
created, renaming is not necessary. All registered files are also
inserted in the cache, which makes them available for future access.
It is now possible to access DOS files in all other DOS directories,
even on a floppy disk. However, to this purpose, the scanner must
allowthe colon ":" and the backslash "\" as valid characters in names.
If a file within a directory path is to be opened e. g
a:\mydir\test mod, the file module checks the file name for"\" in the
name, which indicate a DOS path. The file test. mod is then searched
inthe directory a:\mydirinstead of the current directory. Similarly, if a
file is stored and its name contains any "\", the given path is taken
instead of the default currentpath. The so stored file doesn't contain
the tag and the Oberon name and it is notinserted in any mapping
table. This makes it possible to store files directly onto a DOS disk
from within Oberon. This is atechnique to access files exteral to the
Oberon system and it could replace the System.CopyToDOS and
System.CopyFromDOS export and import commands.

Another way to put files into different directories is to use the
subdirectory facility. To that purpose, module System offers fournew
commands:

System.MakeDir ~
Creates a new subdirectory,
e. g. System.MakeDirectory C:AWORK\NEWDIR

-50-

Chapter 9: The File System

System.RemoveDir ~
Removes specified subdirectory,
e. g. System.RemoveDirectory C:AWORK\NEWDIR
The subdirectory must be emptied before removing it.

System.CurrentDir
Shows the current directory

System.ChangeDir ~
Sets the current directory to the one specified,
e. g. System.ChangeDirectory CAWORK\SOURCES~

In fact, Oberon maintains two directories called main and current.
After booting the system both directories are setto the actual current
directory under DOS. If an environment variable for Oberon was
declared in the AUTOEXEC.BAT file, it will be taken as the current
directory. Al files will then be located in the current directory which
can be changed with the System.ChangeDir command. A desired file
is first looked up in the current directory and then in the main
directory. Files in main cannot be deleted. Thus, main is predestined
to hold a stable version while new implementations are allocated in
a special subdirectory. Transfers between current and main can be
done with System.CopyfFiles.

System.CopyFiles CAWORK\TESTS\NEW.OBJ => New.Obj~
(3 The current directory is set to C:\WORK x) or
System.CopyFiles New.Obj => CAWORK\NEW.OBJ~

(% The current directory is set to CAWORK\TESTS %)

If in these commands the destination directoty is either current or
main, the Oberon DOS directory is updated, otherwise itis assumed
thatthe destination is an ordinary DOS directory without a mapping
table.

Each change of current forces the mapping table to be backed up
onto disk, so each subdirectory everaccessed by Oberon contains a
file called FILENAMETEX. This enables fast access when the
directory is used again later.

51—

References .

References

{Bro91]

[Dun89]

[Dun90]

Ralf Brown, Jim Kyle: PC Interrupts

A programmer's reference to BIOS, DOS and third—party
calls

(c) 1991 Addison Wesley Publishing Company, Inc.
ISBN 0-201-57797-6

Ray Duncan: Programmierleitfaden fiir - MS-DOS
Funktionen

{ibersetzt von Peter Riswick

Redmond, Washington: Microsoft Press;

(c) 1989 Vieweg, Braunschweig

ISBN 3-528-04650-3

Ray Duncan: DOS ohne Schranken

Orig.: Extending DOS, Programming MS-DOS for the
1990s

() 1990 Addison-Wesley (Deutschland) GmbH

ISBN 3-8931 9-300-6

[Dun90a] Ray Duncan: Programmierhandbuch MS-DOS

[Els88]

[Fer91]

Orig.: Programming in the MS-DOS Environment

2nd Section of the MS-DOS Encyclopedia

(c) 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH
Braunschweig ‘

ISBN 3-528-04631-7

Jiirgen Elsing

MS-DOS Assembler Programmierung: praktische
Anwendungen

von DOS-Aufrufen in Maschinensprache

(c) 1988 IWT Verlag GmbH, Vaterstetten bei Miinchen
ISBN 3-88322-198-8

Richard F. Ferraro

Programmer's Guide to the EGA and VGA Cards
Second Edition, March 1991

(€) 1990 by Richard F. Ferraro

Addison-Wesley

ISBN 0-201-57025-4

—52 -

References

[Mued0] John Mueller and Wallace Wang

[NS83]

[Not92]

[Ott92]

[Pet21]

[Pho89]

[Smi87]

[S3 92]

[Wir92]

Microsoft Macro Assembler 5.1

Programming in the 80386 Environment

(c) 1990 Windcrest books, Division of TAB BOOKS Inc.
ISBN 0-8306-3179-8

NS16000 instruction Set Reference Manual

(c) 1983 National Semiconductor Corporation
California

Order No. 420010099-001
Semesterarbeit

Hintergrundbitmaps fiir DOS-Oberon
Thomas Notter, Sommersemester 1992

Semesterarbeit
VGA Rasteroperationen fiir DOS—Oberon,
Hans—Werner Ott, Sommersemester 1992

Semesterarbeit
i386—Assembler fiir Oberon,
Harald E. Peter, Wintersemester 1991/92

Phoenix Technical Reference Series

System BIOS for 1BM PC/XT/AT Computers and
Compatibels

(c) 1989 Phoenix Technologies, Ltd.

|SBN 0-201-51806-6

Bud E. Smith, Mark T. Johnson: Programming the Intel
80386

(c) 1987 Scott, Foresman and Company, Glenview,
lllinois

iSBN 0-673-18568-0

86C801/86C805 GUI Accelerator
August 1992

S3 Incorporated

2880 San Tomas Expressway
Santa Clara, CA 95051-0981

Niklaus Wirth, Jiirg Gutknecht: Project Oberon
The Design of an Operating System and Compiler
(c) 1992 ACM Press

ISBN 0-201-54428-8

~5Hh3 ~

Acknowledgements

A lot of people were involved in this project, either by testing the
system and reporting problems or by giving useful hints.

First of all, | would like to thank J. Gutknecht for his guidance and
suggestion during the whole project and for proof-reading this
" report.

Further, my thanks go to:

— N. Wirth for providing the source code of the compiler.

— J.Templforprovidingthe source code of thefile system of SPARC-
Oberon. ‘

-~ R Crelier for providing the source code of the Kernel and the
floating point emulator of DEC-Oberon.

— M. Brandis for all the useful hints during the implementation of
the extender. ,

— H. Peter for the assembler (semester work)

— H.W. Ott for the color display (semester work)

—~ T. Notter for the bitmaps (semester work)

- K. Rege for his help during the implementation of the DOS-
Oberon file system.

- R Sommerer for his valuable suggestions during the whole
project.

— U. Hiestand for the LEDA editor with which this report was
written.

Zurich, October 1993

Eidg. Techn. Hochschule Zirich _
!nformat‘\kb'\bliothek

ETH-Zentrum
CH-8092 Zirich

— 54—

Gelbe Berichte des Departements

183

184
185

186
187
188

189
190

191

192

193

194
195

196
197

198

199

200
201

202

W.B. Teeuw, Ch. Rich,
M.H. Scholl, H.M. Blanken

L. Knecht, G.H. Gonnet
T. Roos, P. Widmayer

E. Margulis
D. Grantz

S. Mentzer

S.J. Leon

H.-J. Schek, G. Weikum,
H. Ye

M. Bohlen, R. Marti
R.H. Giiting

M.H. Scholl, Ch. Laasch,
Ch. Rich, H.-J. Schek,
M. Tresch ‘

H.P. Frei, D. Stieger

C. Laasch, Ch. Rich,
H.-J. Schek, M.H. Scholl,
S. Dessloch, T. Hirder,
E.-J. Leick, N.M. Mattos
R. Gross, R. Marti

K.M. Chandy, B.A. Sanders

N. Wirth, S. Ludwig

R. Vingralek, Y. Breitbart,
H.-J. Schek, G. Weikum

M. Bronstein, M. Petkoviek

U. Maurer

B. Hosli

Informatik

An Evaluation of Physical Disk J/Os for Complex Object
Processing

Alignment of Nucleotide with Peptide Sequences

Computing the Minimum of the k-Level of an Arrangement
with Applications

Using nP-based Analysis-in Information Retrieval
Limit Computation in Computer Algebra

Analyse von Methoden und Werkzeugen zur Entwicklung
grosser Datenbank-Anwendun gs-Systeme

Maximizing Bilinear Forms Subject to Linear Constraints

Towards a Unified Theory of Concurrency and
Recovery

A Temporal Extension of the Deductive Database System
ProQuel

Second-order Signature: A Tool for Specifying Data
Models, Query Processing, and Optimization

The COCOON Object Model

A Semantic Link Model for Hypertext Retrieval
COCOON and KRISYS - A Survey and Comparison

Intensional Answers in Generalized Deductive Databases

Conjunctive Predicate Transformers for Reasoning about
Concurrent Computation

An Extension-Board with an FPGA for Experimental
Circuit Design

CL - An Editor for the CLi6000 Field Programmable Gate
Array and its Implementation

CL-Editor User Manual

Concurrency Control Protocols Guaranteeing Atomicity
and Serializability

On Ore Rings, Linear Operators and Factorisation

Fast Generation of Prime Numbers and Secure Public-Key
Cryptographic Parameters

Robust Logic and Structural Properties of the Sequent
Calculus

