mzuriCh ETH Library

Write

an extensible text editor for the Oberon system

Report

Author(s):
Szyperski, Clemens A.

Publication date:
1991

Permanent link:
https://doi.org/10.3929/ethz-a-000628394

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgendssische Technische Hochschule Zirich, Departement Informatik, Institut fir Computersysteme 151

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000628394
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

R ey
S LA ;;5 <
R
— T

Eidgendssische

| Departement Informatik
Technische Hochschule Institut fiir |
- Zrich - Computersysteme
~ Clemens A. Szyperski

January 1991

151

Write

An Extensible Text
Editor for the Oberon
System . |

- Eidg. Techn. Hochschule Zirich
lnform'atikbibnothek
- ETH-Zentrum
CH-8Q92 Ziirich

'Author's addréss&

Computersysteme
ETH-Zentrum :
CH-8Q92 Zurich, Switzerland -

e.mail: szyperski@inf.ethz.ch

©.1991 Departemeni Informaﬁk,-ETH Ziirich

“Write — An Extensible Text Editor for the Oberon System

Abstract

Clemens A. Szyperski

Extensible software systems open the opportunity of reducing complexity by trading off initial
functionality. Instead of building everything into a monolythic syster, a core system with a
certain. built-in potential for later extension is separated from-an arbitrarily rich set of
extensions (and, in principle, extensions of extensions). This report concentrates on the text
editor Write and some of its existing extensions. 1t is discussed how extensibility is opened but
also limited by the core system's design. It is observed that a potentially very rich and flexible
basic framework may actually lead to few or no implemented extensions if the chosen model
-was inadequately complex for the typical extension demands. On the other hand, a too rigid
core structure may impose limits preventing useful extensions right from the beginning.

Keywords: Extensibility, Editor, Oberon -

Table of Contents
Introductlon
The Write Core System

Elements: Write Extensions

Summary and Conclusions
References
Appendix

1.1 Approaching Extensibility - Coping with Complexity
2 load & Store - The Write File Format
3 Visual Interpretation of Write Texts - WriteFrames
4 From Elements to Parcs - Introduction of Paragraph Structure
5 Printing - Opﬁoné and Compromises
2.1 The Structure of an Element Implementation
2 Temporary Elements — Error Elements
3 Static Elements — Chart Elements
4 Adaptive Elements — Line Elements
5 Active Elements — Clock Elements, lcon Elements
6 Interactive Elements — Popup Elements, Style Elements
7 Wrapper Elements — Graphics Elements, Picture EIemenfs'
. 8 Structuring Elements — Fold Elements
9 Formatting Elements — Table Elements
10 Special Purpose Elements: Building Applications using Write

‘A. Write User Manual
B. Interfaces of the Write Core Modules

¢ Two Samp/e_Ele:ﬁent Implementations

oA w

10
12
13
14 -
15
15
16
17

18

19
21

23

25

26

27
33
42

Introd uctlon

Making a text editor extensible is arich source of conceptual variations [e.g. WeGaMa89] and already in

itself an interesting project target. However, other aspects need to be considered that are not directly

. related to the aim of engineering an extensible editor. First of all, the fact that extensions are possible'in a
given framework needs to be paralleled by sufficient ease of actually implementing extensions. Secondly,
for the editor to be useful it is important to integrate it well-into its environment. Finally, the interaction
of environmental support, potential for extensibility and ease of use need to add up to the user's
impression of working with a rather light-weight system. The impression of working with a
heavy-weight system should be avoided whenever possible, as the resultmg barrier mlghtweH doom the
newly created tool not to be used.

On the first sight, there is a contradiction between having a rlch extensible, and flexlble system, and
having a light-weight, easy to master, and easy to understand tool. The key to an adequate compromise
lies in the approach to extensibility. An unextensible system with a rich set of well designed, built-in
functionality might well be easier to mastér than an extensible but highly complicated system. For an
extensible system to be transparent and manageable, there are two criteria of dominant importance. On
one hand, the core system without any (visible) extensions must follow a clean and easy to-understand
model. This model is the basis for understanding the whole system and the framework to learn more
about available extensions. On the other hand, extensions should be restricted to a few atomic features of
the. core sy,sfem.. Otherwise, the user can hardly predict the effects of incorporating a certain extension
into the editing tool. The importance of these two points might be stressed by considering that extensions
naturally evolve at different places and that vendors of extensions might hardly know about each other or
about the potentially harmful inferaction of their extensions' when all put together

The Write editor limits extensibility to only two orthogonal domains: commands and characters. The
concept.of extending the system by adding new commands is already well~established in the Oberon
system [WiGu88]. Adding a new command adds new manipulational capabilities applicable by the user. - -
The second domain of extensions is the actual' data that commands operate on. To keep the
interdependence of commands and data extensions low, data extensions should be organized around the
atomic components of the data structures provided by the core framework. In the case of a text editor,
the core data structure is text, ie. a sequence of characters. As a result, the natural anchor of data
extensibility is considered to be the character. In fact, no other form of data extension is supported by Write;

~ especially, there are no provisions for overlaying a text with additional structures. While this might sound
too rigorous, it results in a relatively compact and -easyto understand design. Also, the remaining
potential for extensibility is easy to explore and still quite rich.

As Write is integrated into the Oberon system, the natural environment are the existing standard text
class [Gu90], and all commands operating on such texts. The latter range from simple formatting
commands (e.g. changing the font of a selected text:strefch) to complex transformations (including the
Oberon compiler). While in most aspects, Write integrates well with the Oberon system, there are
certain shortcomings. These will be discussed in more detail later. For the time being, it should suffice it
to say that the main problem is the traditional procedural interface to the Oberon system's standard data
types, including texts, which limits the system's potential for extensibility.

-The remainder of this report is organized into two main parts and a set of appendlces The first. part’

- concentrates on the core system of Write, its major design decisions and. related tradeoffs, and its
Ppotential for extensibility. The second part presents the details on how Write extensions work, as well as
a series of successively more advanced extensions together with practical and available examples. The .
appendices cover a user manual for the Write core system, a description of the programmer's interfaces
of the Write core modules, and two complete sources of actual extensions. Care has been taken to
decouple the various parts of this report. It should be possible to read each of them independently. A few
exceptions to this rule are clearly marked using cross—references.

Part 1 — The Write Core System-

This part deals with the standard modules of the Write system. The following sections form a stepwise
analysis of the provided functionality, the design criteria, and the resulting tradeoffs. The involved
modules and levels of abstraction are discussed bottom-up, while the concepts of extensibility are
introduced top—down.

1.1 Approaching Extensibility — Coping with Complexity

The importance of limiting extensibility. in a system to a few strategically well chosen points has been
stressed in the introduction. As mentioned, for a text seen as a sequence of characters, the natural atoms-
of extensibility are just the characters themselves. Other possibilities are higher-level structures layered -
over a basic text such as paragraphs, links between text areas, and the like. The Write system restricts
itself to the extension of characters. Such extended characters are called efements. In order to understand

what it actually means "to extend a character’, the properties of unextended characters as members of
texts are examined in the following. .

Standard Oberon Texts , : _ .
A character is an atomic instance: it can neither be split nor merged with other characters. Associated

" with a character are certairt attributes that are fully independent of the neighbouring characters. Texts of

such attributed characters are implemented in the Oberon standard module Texts. .

attribute ~ typical values

font family Times$ Roman, Syntax Helvetlca
font size height in points

font style . bold, italic, ...
“color foreground, background, ...

vertical offset character displacement relative to the base line

 Table 1. Oberon Character Attributes.

Furthermore, a character Is the natural atomic editing unit of a text. Characters (or sequences thereof)
may be inserted, copied, or deleted, and their attributes may be changed. This is achieved by allowing the
user to select any subsequence of characters within a text, and by supporting the placement of a caret
between any two characters. The user may delete selected text, copy it over to the position marked by the
caret, change its attributes, or enter new characters at the caret position. Finally, for the sake of simplicity,
. characters are also displayed as atomic units, i.e. either the whole character can be dlsplayed within the
available screen area, or it s suppressed (clipped) completely.

In order to maintain the very simple -and efficient text editing model of the Oberon system, it is
desirable to design extension features such that they will not get into the way of the editing model. The
only way to achieve this is the restriction to extensions that do not leave the principal conceptual
properties of texts seen as a sequence of characters. 1t will be shown later, that within this carefully chosen
restriction, the remaining potential for extensions is still quite large.

Another important aspect of Oberon texts is that programs have access to any text dlsplayed on the
screen, For example, it is possible to directly compile a displayed text without storing it beforehand. This
open accessibility of data structures attached to viewers is an important key to the Oberon system's
integration among various applications (better: command packages, as Oberon has no primary notion of
distinct applications). Therefore, it is important that a functionally enriched text editing environment
interacts and cooperates as seamlessly as possible with the existing text and text editing facilities.

6

Write Texts
The above argliments lead to the design of a ﬁrst core modile of Write: WhiteTexts. To reach the desired
- integration, WriteTexts should be an exterision of the Oberon standard module Texts. To reach the

extensibility aimed at, WriteTexts introduces the notion of extended characters, so called elements. Texts

defines two basic types of textual representation: texts and buffers. Buffers are used to accumulate cutput
of commands in order to insert them as a whole into a target text (delayed and atomic output).

Furthermore, Texts defines readers and writers as access structures to texts and buffers, respectively.

WriteTexts implements extended buffers and texts representing sequences of potentially extended
characters, while it does not extend the access structures of Texts. It does, however, add some access
primitives to operate on extended characters. Hence, existing clients of Texts can use-readers and writers
(see_ restrictions below) to access WriteTexts texts. The followmg table is an excerpt of the WriteTexts
interface.
TYPE -
" Buffer = POINTER TO BufferDesc;
BufferDesc = RECORD(Texts. BufD'es;f) END;
= Text = POINTER TO TextDesc; - !
TextDesc RECORD(Texts TextDesc) END;

(* Buffers %)
PROCEDURE OpenBuf(B Buffer))
PROCEDURE CopyBuf(SB: Buffer; VAR DB: Buffer);

(* Texts *)

PROCEDURE Open(T: Text; name: ARRAY OF CHARY);

PROCEDURE Delete(T: Text; beg, end: LONGINT);

PROCEDURE SaveBuf(T: Texts.Text; beg, end: LONGINT; VAR B: Buffer);
PROCEDURE lnsert(T: Text; pos: LONGINT; B: Texts.Buffer)-

There are no primitives available in WnteTexts to read or write plain characters. The standard procedures

defined in module Texts can be used with the exception that a writer's buffer must not be inserted into a
Write text using the Texts./nsert procedures but must be inserted using the corresponding procedures of
.+ WriteTexts. The same holds for the other shown text and buffer manipulation procedures. It is a

shortcoming of the procedural interface of Texts that extensions cannot override functionality. A future

version of Write might well be based on a different version of Texts that either has a class-centered
interface (i.e. methods instead of procedures), or has a built-in notion of "extensible characters".

It is now possible to dugment the WhriteTexts interface by certain procedures to insert and retrieve

. elements from a text. As elements should not get into the way of clients of plain texts, each element is
represented by a special character (ASCH Code 1Cy;). Whenever a Reader returns this special character, an
application knowing about elements might retrieve the associated elemerit. This way all’ standard
character attributes aré attachied to the representing character and elements thus inherit them. Therefore
procedures of Texts that merely change attributes of character ranges within a text need no changes at all
and thus have no counterparts in WriteTexts. The following definition gives the base type of elements, as
“well as a set of procedures that may be used to operate on elements. After changing an element, the
. programmer -has to call ChangedElem, which propagates a notification to potentially update the display.

Note that the interface hides the mternal structure used to hold- elements of a text. (In the current -

implementation, a linear list is used.)

- CONST '
- ElemChar=1CX;
TYPE
Elem = POINTER TO ElemDesc;
Handler = PROCEDURE(E: Elem; VAR msg: Dlsplay Message)
ElemDesc = RECORD
DX, W, H: LONGINT; (#DX >= W*)
handle: Handler '
END;
CopyMsg = RECORD
-e: Elem
CEND;

PROCEDURE OpenElem(E: Elem; handle: Handler; dx, w, h: LONGINT); .
PROCEDURE InsertElem(T: Text; pos: LONGINT; E: Elem);) :
PROCEDURE ElemAL(T: Text; pos: LONGINT): Elem; (xreturns-NIL if not foundx)
PROCEDURE ChangedElem(E: Elem); ' o ' '

Elements are active objects: An installed handler allows object-centered interpretation of messages sent
to an object. The messages understood by an element will be defined in the course of this report when
needed: To enable delegation of existing display—system messages, the used basetype is the. standard
Oberon type Display.Message. Like characters, elements are characterized by a bounding box, plus some
offset to the next character. (Cf. Fig. 1. Actually, the geometric model used for characters is slightly more
complicated. This will be discussed in the section an WriteFrames.) Both, handler and geometry are set
~ when opening an element. The element may then be inserted. Elements floating in a text can be retrieved
" by means.of their current position in the text. Typically, a client asks for an element at a certain position
after a Reader retu rned the special ch aracter WriteTexts. ElemChar. i

. LW DX
— e

Figure 1. Geometry ofan E!ement.

Generic copying of elements is implemented by sending a copy rmessage. The recipient allocates and
initialized a-copy of itself. To support delegating a partially processed copy message,-a new element
should only be allocated and assigned to the message field ¢, |fe is NIL. (Note that the message record is a
reference’ parameter ta the receiving handler.)

12 Lbad & Store — The Write File Format

Loading and storing texts that contain arbitrary extensions is-a bit more involved than dealing with fixed
file formats. Three points stood in the foreground, when deciding on the file format for Write. First of all,
element designers should be able to decide on their own, how to store an elements data. Secondly, Write
should be able to load existing plain text files, and, conversely, existing clients of plain text files should be
able to open a Write text in a meaningful way. Thirdly, Write should be able to gracefully degrade upon
detecting unloadable elements, henceforth called aliens, within a Write file.

The genenc loading and storing of elements is 1mp|emented by sending special messages to elements.

8.

Since an element caninot receive a load message unless it already exists, loading has to be separated from
allocation. When storing itself, an element first writes out the name -of an Oberon command: This
command is called at loadtime to allocate an instance of the element to load, followed by load message
sent to the new element. Loading can fail.if the implementing module is not available on the local
machine. If loading fails, the resulting alien element is reduced to an anonymous frame-shaped element
remembering its data block in the original file. (To make this possible, the file contains the length of each
element block.) Such an alien has the original element's frozen bounding box and can be copied or
deleted freely. It will return to its normal behaviour as soon as the containing text is loaded with the
implementing module available. (In the following and in the remainder of the report, the convention is
used that definitions are qualified using the defining module. As above, quallflcatlon is left out, if the
definition belongs to the module treated in the corresponding section.)

TYPE : ’

WriteTexts.LoadMsg = RECORD(Display.FrameMsg)
r: Files.Rider

END;

WriteTexts.StoreMsg = RECORD(D|splay FrameMsg)
r: Files. Rider

END;

The' compatibility to the existing Texts file format is reached by true extension, i.e a Write file block
consists of a Texts file block followed by a Write extension block. Customers of Texts file blocks will see a
projection of a Write file that reduces all contained elements to a single character. Storing such a text
with a non—Write editor will of course remove all Write specific data including all contained elements;
The following syntax defines the Write file block format. All values are written as portable compact
numbers as defined in [Te90]. The values pos, DX, W, and H are handled outside of the generic
load/store mechanism and the byte count bytes always takes four bytes. Both together is used 1o correctly
handle alien elements. The tag values are exported by Wr/teTexts

TextBlock = Texts.TextBlock textTag ElemBlock { ElemBlock }
ElemBlock = elemTag pos DX W.H bytes { byte }ovtes. '
. (xThe load command belongs to the element specific data, i.e. is contained in the { byte } sequencex)

1.3 Visual Interpretation of Write Texts — WriteFrames

The visual interpretation of a data structure covers.displaying (part of) the structure within a frame and

. accepting display dependent edit operations. As WriteFrames behaves very much like the standard Oberon
TextFrames, this section concentrates on the casting of individual displayed text lines. For any given line, a
left margin, a maximal line width, a minimal line height lsp, a base line offset (descender) dsr, and a grid
option are.defined. How these values are assaciated with text lines is explained in the next section. If the
grid option is not set, the resulting line height is at least /sp, but extended to the above and below to fully

“cover all characters (and elements) falling into that line (cf. Fig. 2). If the grid option is set (fig. 3), the line
height and base line offset are incremented in steps of the minimal line height fsp, such that lines
extended due to larger contained characters (or elements) fall onto the same grid as non—extended lines.”
From a typographical point of view, the resulting line spacing has nicer properties, while at the same time
it may cause irritation by introducing unexpected white space into a text.

hangover above 1 P
iR K
) | resulting -
base line Isp hr:e height
‘ dsr) v .2 sp
v\ $ hangover below ¥
\ resulting base line offset = dsr
Figure 2. Line casting without grid option.
3
: ’ 7
hangover abqve %/////////% _
N 3
‘ resulting
I i i :
base line sp line height)
=nxlsp n>0
: v .
m i hangover below
resulting base line offset = dsr + kxlsp k=0

Figure 3. Line casting with grid opﬁon.

An element to be displayed within a line receives a prepare message. In turn, the element might change

~ its geometry to.adopt to its.current environment (for examples, cf. 2.4). Then, the element is casted into a

line and clipped against the frame boundaries. if the element is fully visible, it receives a draw message
and in turn displays itself, Prepare and draw messages contain the font and color set for the element. The

TYPE
Wri

- vertical offset attribute for elements is directly |nterpreted by WriteFrames.

teFrames.PrepareMsg = RECORD(DlspIay FrameMsg)
fnt: Fonts.Font;
“col: SHORTINT; i

unit: LONGINT; (sunits per device pixelx)

indent: LONGINT;
printing: BOOLEAN;
pno: INTEGER; (%page number, valid /fpnntmg*)

(xwidth.already consumed in-line, in un/ts*)

END;

10

WriteTexts.DrawMsg = RECORD(Dlsplay FrameMsg)

fnt: Fonts.Font;

“col: SHORTINT; . .

unit: LONGINT; (xunits per device pixelx)

frame: Display.Frame; (xcontaining frame in device spacex)

X0, YO: INTEGER (*absoluﬁe left-bottom coordmate in dewcespace*)
END;

The messages have a special unlt field that reflects the fact that erteTexts has no knowledge of particular
output devices and their. resolution. Hence, all measures maintained within WriteTexts are in device
independent units. For a precise definition of device independent units refer to appendix B. A typical
conversion of, say, the width of an element efem to device space upon receiving message msg is a simple
division: elem.W DIV msg.unit.

Wiiteframes contains a sophisticated screen update mechanism to avoid unnecessary drawing to.the
screen. Typical edit operations, like character insertion and deletion, have local effects only. If necessary,
preservable but ill-positioned portions of the frame contents are moved using fast bitblock transfers. The

" screen updating is the most complex operation contained in the Write system and thus has been

optimized for frequent operations, only. Less frequent operations like viewer repositioning have not been’

- fully optimized. However, in nearly all cases the implementation tries to avoid unnecessary screen flicker,
for some rarely used operations this is done at the cost of increased processing time.

The screen update mechanism is based on a descriptor list attached to each frame. The list contains -

bounding box and positional information for each line displayed in the frame. When a change
notification is received from the displayed text, the frame update proceeds in two phases. First of all, it is
checked whether the change can at all affect the frame. If so, it is checked whether the frame origin (i.e.
the position of the first displayed character) is affected. if it is affected, it is forced to a line start, and the
whole frame is recasted. Hence, editing in the first displayed line can become rather inefficient. If the
origin is not affected, two synchronization points in the descriptor list are seeked: The last descriptor
which s still valid (as seen from top to bottom), arid the first descriptor which is agdin valid if the
corrsponding line is displaced by a certain offset. Between these two points and perhaps behind the last
old descriptor, new descriptors-are computed, i.e. the affected lines are casted. Once the descriptor list is
reestablished, it is determined what amount of screen update needs to be performed and what screen

blocks merely need to be shifted usmg bitblock-moves. (Currently, lt is not tried fo preserve an unchanged

suffix of an affected line.)

14 From ‘Elements to Parcs —Introduction of Paragraph Structure

The previous section introduced several new attributes (e.g. line heights) that are no longer logically
attached to a single character but to a range of characters (falling into’a certain range of lines). it is
tempting to introduce a new structure, overlayed over-the existing text model, to implement such
"paragraph” attributes. This temptation is resisted to stay with the initial principle not to introduce any

extensions to texts other than extended characters. Hence, if no added explicit structures are to be used, it .

is necessary to introduce implicit structures.
A first approach to map paragraph attributes into a character stream wou!d be the |ntroductlon of

opening and closing bracket-like characters. However, this has the main disadvantage of unclear
semantics in the case of overlappmg paragraph ranges. Another problem is. the switch of paragraph -

attributes in the middle of a line. The way chosen in Write is to indeed introduce special paragraph
control characters, called parcs for short. The range of a parc is défined implicitly as reaching up to the
-next following parc or to the end of the text if there is no successor. To avoid the dilerima of inserting a
_parc into thé middle of a line, a parc-is always as wide as a whole line and hence is forced by the line
casting algorithm onto the next line when not encountered at the beginning of a line.

1

text (left adjusted)
before inserting a new parc _ after inserting the new parc
insert parc (block adjusting) - - .))
[] /1 left adjusted
Y : I . : range -
1 | ad
e : o SR
parc
S b I l
left width . C |

Figure 4. Effect of inserting a parc into a text.

The definition of a parc and operations thereon are listed below. A special procedure WhiteTexts.ParcBefore
allows for retrieving the parc valid for a certain text position. If the position is before the first parc within-a

Jtext,a default parc attached to every Write text is returned

TYPE : oo

Parc = POINTER TO ParcDesc;

ParcDesc = RECORD(ElemDesc)
 left, width, lead, Isp, dsr: LONGINT; (*in unitsx)

" opts: SET; ‘ .

nofTabs: INTEGER;

tab: ARRAY MaxTabs OF LONGINT .(xin unitsx)

END; ’ : ‘

PROCEDURE ParcBefore(T: Text; pos: LONGINT): Parc,)
* (wreturns T.defParc if none foundsx) -
© PROCEDURE ParcExtent(P: Parc): LONGINT;
(wparc P extends over range [ElemPos(P), ParcExtent(P))x)

The many attributes associated with a parc can be queried and set Using state messages. The commands.
Write.Get and Write.Set send such messages to the selected parc. However, for some attributes, direct

" manipulation would be preferable. Examples are the settings of tabulators, the left margin, the maximal

line width, and the like. This is implemented in module WriteParcs as an extension of the parcs défined in

‘WriteTexts. The precise meaning of all parc attributes and whether they can be set interactively is defined

in Appendix A. While implementing a separated extension (the interactive changing of parc attributes),
WriteParcs. also defines a global variable:used as prototype for default parcs when opening a new text.
Therefore, WriteParcs is known by the text opening command Write.Open and thus belongs to the Write
core system. '

TYPE

StateMsg = RECORD(Dlsplay FrameMsg)
id: INTEGER;
par: Texts.Scanner; (*scanned by receiver to extract lndlwdual parametets*)
log: Texts.Text; (xused by receiver to log error messagesx)
unit: LONGINT;
frame: WriteFrames.Frame

END;

12

15 .Printihg ~ Options and Compromises

When printing a text edited with an mteracnve screen oriented editor, one often asks for "what you see is

- what you get' (wysiwyg) functionality, i.e. the image visible on the screen is more or less the same as
what will be printed. Of course, this is limited by the screen resolution which is typically far lower than
that of a modern laser printer. However, far worse is the effect of different resolution when considering

rastered fonts. Since the current Write release does not reside on some device independent font model
(e.g. PostScript or Display—PostScript [Ad851]), and the used pre~rastered fonts have been tuned by hand
for optimal results on screen and on printer, each single character introduces an error in the order of
10%. As this is a systematic effect of the font tuning, the error does not average out, and assuming that
optimal spacing is used on screen and on printer, a line of text is about 10 to 15% longer when printed
than it is on screen. Note that a similar effect occurs if the fonts used on the 'screen are substituted by
some other fonts when printing, as is done in some Oberon implementations e.g. for the Macintosh
[Fro0] dnd Sparc [Te90] machines.

There are several possible solutions to thrs problem, and the solution choseri for Write'is fully
encapsulated in module Write itself (and could be changed easily). One could use the screen coordinates
as dominating grid and force each printed character slightly besides its optimal position. This leads to
‘optimal screen but sub-optimal printer output, as a misadjustment of >10% is visible for certain
character constallations. The: other way round, the printer coordinates could be chosen to dominate,
‘leading to a sub—optimal screen output. This seems unacceptable, as the screen is the medium the
author permanently looks at. Finally, a mixed strategy can be chosen. For example, one might decide to
tolerate certain adjustment errors on the screen if text is-formatted in a left flush fashion, etc. In Write a
different approach has been chosen: When printing a text it is recasted for optimal printer results and

" thereby allowing for both, optimal screen and printer outputs. However, the price paid is a certain loss of

wysiwyg functionality, as line breaks on the screen do no longer correspond to line breaks on the printer.

“To be able to recast printed text according to printer font metrics requires some minimal information
about printer metrics to be available to the print algorithm. Hence, Write uses a special metrics file. per
font family containing the horizontal displacement information for each character in each style available
in the corresponding font family. These files are taken from the Leda document editor [Hi91] for the
Oberon system and parallel the rastered font files.

Printing of elemenis is close to the process of displaying elements on the screen. After sending a
prepare message, a print message is sent and the element in turn prints itself. (The print message

contains the current page number which an element may use to produce page number dependent .

informations such asan mdex)

TYPE
Prthsg RECORD(Dlsplay FrameMsg)
- fnt: Fonts.Font;
col; SHORTINT;
unit: LONGINT; (xunits per device pixelx)
pno: INTEGER; - (xpage numberx) :
X0, YO: INTEGER (*absolute bottom—/@‘tcoordmatem dewcespace*)
END;

13

" Part2 - Elements : Extensions to the Write System

" The sécond part of this report concentrates on the main theme of an extenslble system: It's extensions.

For the Write system, extensions are called elements. As elements are objects in the ‘sense of
object-oriented programming, the first sections study the standard structure of such objects. and the

_messages that need be understood. Building on this general view, a series of sections introduces

successively more advanced element features together with-available elements that make use of these
features. For each of the discussed elements, a new problem and its solution is shown. Thereby it is

demonstrated that the complexity introduced by an element is proportional to the leve! of functionality
provided by that element ‘

21 The Sfructure of an Element Implemention :

Elements are the key to the Write system's extensibility. Using the object-onented style of programming,
i.e. by implementing elements as objects, the functionality of possible elements is roughly circumscribed
by the set of messages sent to an element by the Write core system. This section describes the typical
structure.of a-module implementing an element. Two sample implementations of Write elements are

listed in full detail in the appendix. The messages sent by the core system ‘are summarized in the next

section.

An element's implementation is typically encapsulated in a single module, although, in principle, it
could take more than one module. Also, one might want to package multiple, perhaps correlated
elements into a single module. Without loss of generality, it is assumed that a single element is-
implemented in a single module. Such a module needs to implement three basic groups of functionality.
First of all, it provides a set of commands allowing a user to at least insert a new element of the
|mp|emented class into a Write text. Secondly, it contains the message handling for all messages
uinderstood by the implemented elements. Thirdly, it contains the hook for Write's generic dynamic
loading facility. Each of these three functions will be explained in the following.

The Oberon system uses the concept of commands to link arbitrary modules to-flexible user interfaces.
By issueing a command, the user forces the system to execute a (parameterless) procedure exported by a
particular module. If necessary, the required module is loaded. In the Write framework, elements found
in opened texts cause their implementing modules to be loaded. To insert new elements into a text, each

module is expected to provide appropriate commands. A.typical insertion command takes some

parameters to produce a customized element of the desired class. The created element is than inserted at
the current caret position.

. Once an element has been inserted into a Writé text it is a potentlal receiver of messages sent by the

" Write core system, or sent by one of the participating element implementations. The used message -

handling framework corresponds.closely to that used for the Oberon viewer system [WiGu88]. Messages
are extensible records [Wi88a] dispatched to objects via object specific handlers. A handler uses a series
of type tests applied to the message record to determine which action to take. It is possible for.an object
to ignore messages or to delegate them to some other object or module. This instance-centered style
[Wi89] incorporates little conceptual overhead and opens designs with great flexibility. However, often
the flexibility is more than one actual!y wants and. the price paid in terms of weaker specifications and
less clear system structure may be considered too high. While in prmcplple Write could adopt a
class—centered style for its extension space (i.e. the element interface), this has not been done for the
current version. The main rational for ‘staying with the object-centered style is conformance with the
Oberon system: It was a major design goal of Write to aim at a rather seamless integration with existing
Oberon applications.

The handler associated with .an element dispatches recewed messages using type tests. In order to be_
able to extend an element implementation, the handler should be exported. For each message to be
handled, a handler should call a separately exported procedure (a handler component), as this enables an

14

extension to selectively call comporients of the overriden handler. Cf. appendix C for examples on

element handler implementations. The following table summarizes the standard messages sent to

elements by the Write system.

definingmodule message semantics

 WriteTexts ‘Copy return copy of receiver
Draw draw self to frame
Load load self from file

“Print . print self ‘
Store store self to file
WriteFrames _ Notify used for broadcasts to visible elements
: ?repare .- prepare self for drawing/printing
Track handle mouse tracking and mouse clicks
WriteParcs State get/set parc attributes

 "Table 2. Summary of Standard Messages to Write elements.
B i

2.2. Temporary Elements — Error Elements - -

The minimal form of a Write élement are temporary elements. Such elements are never stored and

“hence need neither methods to load or store themselves nor a generic allocation mechanism. Typically, ©

temporary elements do not print either and thus understand little more than Draw and perhaps Prepare
messages. Upon storing a text all temporary elements vanish automatically. ~

An example for temporary elements are ErrorElems as listed in full source in appendix C. When using
Write to edit programs, error elements can be used to translate error lists produced by a compiler into
special marking elements within the source text. Since elements move when editing text, it is possible to
find all error locations even when the text has been edited. By clicking on an error element, the element
expands itself and displays the correspondmg error message. (Cf. sections 2.4 and 2.6.)

MODULE DoubleBug;
PROCEDURE One;
END Two; I

BEGIN Three

END MDoubleBug

The following list summarizes the commands 1mp|emented by ErrorElems. The same format Wl|| be used

throughout this report. For: the,conventlons used to describe the parameters taken, refer to appendix A.

command ‘ 'EXP/IEItpaIame'tel’S . implicit parameters

ErrorElems.Mark ("a"| error—hst) : - marked viewer

Takes the list of errors produced by a compiler (position, error code pairs) and inserts error marks into the

marked text. If error marks were already present in that text, they are removed beforehand.

-

ErrorElems Unmark . - ~ marked viewer
Remove all error elements from the marked text.

ErrorE[ems LocateNext S) " marked viewer, caret

Locate the next error element startmg the search at the caret position. If no caret is set in the marked
viewer, the first error element is located.

B

e iy

15
2.3 Static Elements ~ Chart Elements (ChartElems due to C. Pister)

When adding mterpretatmn of standard messages for loading, storing, and printing an element the
straightforward class of so called static elements results. Such static elements are very close to plain

* characters in that their size and content are fixed at insertion time.

Atypical static’element implementation are ChartElems. Taking a list of specially marked numbers, -
ChartElems generates a series of simple rectangular elements arranged as a horizontal or vertical bar chart.
Each. of the chart elements d\splays (and prints) |tse|f as a frame scaled to the value consumed when
creating it.

input ChartElems.Create width 400

\16

A e —— ' :

\39 [- input . ChartElems.Create height 200
AS. 7 —— | S

\95 | [o

\23 [NTEN7AZNAAISNNTNI7 - U[:l

AVA T e———]
N7

- Figure 5. Horizontal and Vertical Bar Charts.

command . explicit parameters : . implicit parameters

ChartElems.Create ("width" | "height") number selection
Starting from the most recent selection, the text is scanned until a "~" is found. All numbers prefixed with
a backslash are replaced by a chart element. Everything else remains untotiched.

2.4 Adaptive Elements — Line Elements

Fof certain elements it is meaningful to automatically adapt to the current environment when getting
displayed or printed. For example, an element may have different looks when displayed and when

- printed. This can be used to implement elements like bookmarks that are completely suppressed when

printed. Also, an element may automnatically adapt to the available line height, line width, or remaining
space on a partially casted line. This latter feature is used by LineElems to prowde stmple horizontal or
vertical lines. :

An element adapts to the display or printing environment by interpreting the prepare message. The
message contains information about the space already consumed in the currently casted line, whether
the element is about to be printed or displayed, and if it is going to be printed, on which page that will
happen. Thus an element may even adapt to the page number during the print process. Furthermore, an
element receiving a prepare message can retrieve the parc valid for its position and thereby change its
geometry depending on all parc attnbutes like line width and tabulator settings. The following table gives
some examp!es ‘

16

width height first tab .~ second tab
auto 1 : - -
auto- 5
auto . auto
tab 5
tab auto
1 auto
5 ‘auto
20 auto
‘ Table 3. Various Line Elements.
command | explicit parameters implicit parameters
LmeEIems Insert - (" (("auto” | "tab" { W) ("auto"| H))) - caret

Inserts a line of given or automat;cally adopted width and height into a Write text. Width and helght may
be set in units of 1/10 mm. Otherwise, the width may be set to extend to the end of the current line
("auto") or to the next tabulator position ("tab”). The height may be set to equal the paragraph's line
_height (determined by the parc’s line attribute).

25 Actlve Elements - Clock Elements lcon Elements (Clock-, IconElems due to R. Griesemer)

Besides passwely ‘adapting to the display or prmt environment, elements may be active in the sense that .

some text external events like the passing of time affect a displayed element. Two examples (which of

.course are not visibly active in this printed report) are clock and icon elements. The basic mechanism is~
the separation .of model and view, where the actual element floating in the text takes over the role of a

view to some connected model. In the case ‘of clock and icon elements; the external model is little more
than the real-time clock, i.e. the absolute time. As shown below, clock elements simulate an’analog
.clock, while icon elements display kind of an icon sequence fllm (As an added feature, icon elements act

as screen savers when being clicked on.)

. Figure 6. A Clock and an Icon Element.

The model needs to notify its views when-some update needs to be performed. As the madel (e.g. the
. clock—polling task) has no control over the location and number of currently visible views (i.e. displayed.
elements), a special message broadcast mechanism is used. The madel broadcasts a notify message to-all
viewers (using the Oberon viewer system's broadcast) which delegate it to their subframes. If a
WhiteFrames frame receives such a notify message it adds its own identity to the message and broadcasts
it to all elements in the visible range (using the procedure WhiteTexts. Broadcast) This is done usmg the
- range broadcast mechanism of WnteTest

17

TYPE
WriteFrames.NotifyMsg = RECORD(Display.FrameMsg)
unit: LONGINT;
frame: Frame
END;

~ Aview (an active element) receiving a notify message in turn asks the containing frame for its current .

location, and whether it is fully visible. (Remember that elements are completely clipped when not fully
visible.) This is doné by calling WriteFrames.LocateElern. If the receiving element indeed is fully visible, it
queries its model and thereby learns about the new state to be displayed. In turn, the element may
redraw (part of) itself. If an element needs to resize itself as a reaction to the changes, it does change its
geometry and state immediately and triggers a full redraw within a recasted environment by notifying the
containing text of its change. To do so, the element calls WriteTexts.ChangedElem. In the former case, l.e.
when redrawing in place, the element should tse inverse mode drawing operations, only, as the element
may be selected and therefore displayed in reverse video. In the latter case, to avoid multiple view updates
it must be checked whether the model has really changed: The notify message might be received by
multiple views showing the same element, but the flrst one will update all others by calling
WhiteTexts. ChangedElem.

Storing an active element and its model requires addmonal thought As several elements might relate
to the same model, multiple sforage of the model should be avoided and the N:1 relation should be

~ re—established at load—time. To distinguish between elements receiving a store message during a single

store action, and elements receiving a store message in consecutive stores, variable WiriteTexts.storeTime
can be used. It is set to Oberon.Time() at the beginning of each call to WriteTexts.Store, This can be used
to reset a model dictionary used durmg element storage whenever a timestamp associated w;th the

dictionary fails to match WriteTexts.storeTime.

command explicit parameters implicit parameters

ClockElems.insert [number]) caret
Insert a clock (with radius giveni in pixels, default is 32, minimum is 12) at the caret position.

lconElems.insert = - ‘ ' - caret
Inserts a new.lcon Element at the caret position.

2.6 Interactive Elements = Popup and Style Elements (popuptiems due to M. Franz)

Several of the elements discussed so far already added some degree of user interaction by interpreting
certain mouse clicks. This ‘can be generalized to fully interactive elements as a WriteFrames frame
delegates all mouse clicks that happen within a displayed and fully visible element to that element by
sending a track message. By tracking the mouse and thereby consuming the mouse event, an element
can handle, mouse click combinations. If it ignores the .track message or a certain mouse click
combination, the tracking is performed by the enclosing frame.

From a user's point of view, nested editable objects add a nonneglectable amount of complexlty If
floating elements support full editing in place, the-user has to distinguish three different kinds of mouse
clicks interpreted in potentially very.narrow or even overlapping screen-areas. First of all, certain mouse
clicks are on the level of the containing frame, and ask for placing the caret or selecting some text stretch.. .
Secondly, other mouse operations are.required to operate on a floating element, like resizing it. Thirdly,
again other mouse operations are meant to operate within an element, such ‘as editing its contents.

. Things get even worse if arbitrary nésting of interactive objects is to be allowed.

Within Write the conventlon is adopted not to support direct editing of nested ObJeCtS i.e. elements

S 18

ﬂoatlng within a text. This is not a limitation of the framework, as each element can easily implement
in—place editing if desired. However, experience has shown that such in-place operations get complex
and unhandy, especially for the casual user of the system. Hence, the much simpler method is preferred
to open a separate editing viewer when clicking on an element. Usually the middle mouse button is used
as it has no obvious semantics for floating elements, anyway.

Twa rather different examples for such interactive elements are PopupE/ems and StyleElems. PopupElems
implement popup menus containing arbitrary and editable Oberon commands. Using the middle mouse
button, a popup menu is opened; a middle— right interclick opens a viewer displaying the commands to
be edited. StyleElems extend standard parcs (which already are interactive) by giving them a name: All
style parcs within a text that have the same name change synchronously. When copying a style parc from

one text to another, the parc will be copied as is, if the target text does not already contain a style of that

name. If it does, the copied parc will be changed to conform to the existing style. Note that Styleflems give

an example on how to extend extensions (in this case parcs) while all other examples given in this report -

are extensions of the element base type.

Write.Recall @
Write.InsertParc @
Write.Locate ¢
Write SelectParc @

Write.Set line 10

' | Write.Set line 34
) WriteSet line 51

: " Write Set lead 10

’ WriteSet lead 34

Lo WriteSet lead 68

Figure 7. A Popup Element.

L] - - - Chapter Heading . ey

Figure 8. A Style Element named "Chapter Heading".

command ‘ explicit parameters . implicit parameters

PopupElems.Insert string ‘ . caret
Inserts a new popup element with an mmally empty menu. The menu may be edited by opening an
editor using a middle-right interclick, -

StyleElems.Insert ("+" | name | string) ’ caret

Insert a new style parc with the given name at the caret position.'A quoted string may be used to assign
names consisting of multiple words. If the target text already cortains a style with the given name, the
inserted parc will ‘adopt that existing style Otherwise, the style of the target text's default parc will be
used.

StyleElems.Rename - ("" Inamelstring) ‘ selected parc

Renames the selected parc to the given niame. If the text already contains a style with the target name, the
selected parc will be changed to conform to that existing style. .

2.7 Wrapper Elements — Graphics‘ and Picture Elements (pictclems due to H. Marais and K. Rege)

Having interactive elements, a straightforward consequence is to add elements that enclose some existing

‘editable object class not originally designed to be encapsulated in an element. Such elements are called .

3”4» e

19

wrappers, as they merely provide the glue required to "wrap" some ob)ect and let it appear as-an element.
Here, the convention developed above, that it is preferable to edit elements in a separate viewer instead of

in—place, gets a new strengthening argument. As the existing object classes necessarily do not know.

about elements, utility commands developed to edit them will not work as they cannot be applied toa
floating element. However, the separate editing viewer opened for such elements behaves like the
standard viewer used for the corresponding object class opened and is therefore d|rect[y accepted by such
commands.

Currently, there are two wrapper elements available: GraphicElems” and PlctE/ems wrappmg the
standard. Oberon line drawing system Draw and the picture editing system Paint, respectively.
GraphicElems have already been used extensively throughout this report to add all kind of illustrations.

Figure 9. A Picture Element.

command explicit parameters - implicit parameters

GraphucEIems Insert (*+* | "%" | name) c . caret, marked viewer

Inserts a graphics element sized to show the graph stored in graphics file "name". If an open graphlcs
viewer is marked, the command can be used to insert all or part-of a displayed graph: if a selection exists
in the marked graphics viewer's graph, only the selection is copied into the graphics element.

PictElems.Insert name ["scaled;'] .) "caret
Inserts the named picture at the caret position. If "scaled" is added, the picture will be scaled to fitintoa 3

- by 3 cm area. Otherwise, the picture will be displayed in full size. The middle mouse button may be used

to open a Paintediting viewer. When clicking mto the lower nght corner, a scaled picture can be resized.

2.8 Structuring Elements ~ Fold Elements croldelems due to H. Méssenbick)

Like parcs, elements may be conceived that operate on their environment. While formatting modes must. -
be known to the formatting instance, i.e: the frame and the print mechanism, other structuring effects

" can be introduced freely. However, such structures should be defined implicitly ds the stretch between

certain elements floating in a text, as editing operatlons cannot be constrained and hence consistengy of
explicit structures cannot be gu aranteed.-

A rather mighty example are fold elements which allow to structure’a text into hierarchically folded
segments. Folds can be expanded or collapsed at will. The idea is to support zooming into areas of
interést while at the same time. preserving an overview picture when. collapsing folds. There are two -
different kinds of fold elements: Fold opening and closing ones. To ayoid explicit structures, the opening
elements contain all the relevant information attached to a fold, while the closing elements are matched
on demand using a simple syntactic rule. Missing closing elements are catched by the text's end,

20

superfluous closing elements are ignored. Thus, the user can freely edit the folded text, and inconsistent
states are not possible.

Folding a text stretch causes its replacement by another, usually ‘shorter or empty text stretch,
Unfolding a folded stretch reveils the original text stretch while hiding its replacement. It is possible to
unfold or to fold all folds existing.in a text. Also, a (partially) folded text may be compiled as if it where
fully unfolded-using a utility module FoldComp. FoldComp also includes the functionality of ErrorElems, as
defined elsewhere in this report, but uses a different file Oberon.Errors to translate error codes into error
messages. Oberori.Errors also contains the name of the compiler to be used by FoldComp

PROCEDURE GetName(VAR h: Name); > < .
. T closed fold
- PROCEDURE GetName(VAR n: Name); D openedfold
VAR s: Texts.Scanner;
BEGIN

Texts.OpenScanner(s, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(s);
IF s.¢lass = Texts,Name THEN COPY(s.s, n) ELSEn :="" END .
END GetName;

q . .
Figuré 10. A Text containing Fold Elements.
command - explicit parameters , imp/icit parameters
FoIdEIems et . - . : selection

Make selection.foldable by inserting an appropriate pair of opening and closing fold elements before and
after the selected text stretch, respectlvely

FoldElems.Expand ' ' : marked viewer
~ Unfolds (expands) all folds contained in the marked text, '

’ Fold Elems.Collapse A ~ marked viewer
Folds (collapses) all folds contained in the marked text.)

FoldElems.Marks ("+" | "on"| ';off")) marked viewer
Make all fold elements in the marked text visible or invisible.

FoldElems.Search selection, marked viewer

Search for the selected text stretch in the (partially) folded marked text starting at the caret position. Does

search within folded parts'and opens folds if necessary to display found text stretches. If no selection is
" present, the last search pattem is used agam If no caret is present, the search starts at the text's

begmmng ‘

~ FoldComp.Compile ("%" [compiler-options]) marked viewer
- Compile the marked text contammg folds The compiler i is started on the fully expanded view of the text.

FoldComp. ShowError caret, marked viewer
Show next error after the caret posntlon If no caret is present the first error in the marked text is
displayed. -

5

e

[-

' ‘ 21
2.9 Formatting Elements — Table Elements

"The elements discussed so far added new object types embedded in Write elements.. By introducing
Write texts as element contents, recursion and the potential of recursive constructors: can be
implemented. By doing so, a Write element can incorporate its own world of text representation and
formatting to serve special purposes. A quite powerful example that makes use of recursively embedded
Write texts are table elements. A table element automatically translates a primitive data format into
tables, examples for which can be found all over this report. The last generic element class introduced in
this report is intentionally exemplified using a rather heavy—weight extension: The quite mighty table

- elements demonstrate the potential available within Write's extension scheme.

Starting from a defining Write text containing arbitrary strings separated by tabulator and
carriage—return characters, a table is constructed Tabulators separate columns, carriage~returns separate
rows. The separated strings form the contents of table cells. Each such. string may in turn contain arbitrary
Write elements and especially it may contain nested tables. The defining text is bound to a table element
and can be edited by clicking on a table with the middle mouse button. In return, a standard Write
viewer is opened containing an update command in its menu bar. The syntax of the deﬁmng text is as
follows, table options will be defined later.

table = {option} "/table” {line}.
line = cell {TAB cell} CR.
cell = ["#" | "&"] <string of characters not containing TAB of CR>.

A string starting with a digit, a period (.), or a sign '(+ or =) is considered numeric, otherwise it is
considered nonnumeric. A number sign (#) prefixing a string is suppressed and enforces numerical
interpretation; likewise, an ampersand (8) prefixing a string is suppressed and enforces nonnumerical
-~ interpretation. The default table formatting causes all cells in the first column to be formatted left flush.
In all other columns, the default format for numeric cells is period-aligned and that for nonnurmeric cells
is centered. All cells in a row'are by default aligned to a common base line. Also, the default format
causes the table to be framed and separating lines between rows and columns to be drawn. Finally, fora
table with more than two rows or two columns the first row or column separatation line is draiwn using
two parallel lines, respectively. Most of the default formats can be changed using the provided option set.

For table elements the printing dilemma discussed in section 1.5 needs to be reconsidered. Following
- the strategy developed for Write texts, a table would be recasted when printing. However, one of the
primary attributes of a table are its measures, i.e. the space taken for individual cells of the table and the
-arrangement of the cells with respect to each other. It is not acceptable that a table gets completely
redimensioned when printed. Hence, for table elements a different printing strategy has been. choosen:
the displayed table on the screen follows — down to-the character level - the metrics of the printer fonts. .
The resulting screen image'looks a bit distorted, however, the displayed measures correspond as closely as
possible to the printed ones.

© celltype\ col. format left center right numeric
) alpha abc . - abc abc, abc
integer o 42 42 42 42
real 13 123 13 13
negative -1234 1234 -1234 -1234

Table 4. Column Formatting.

22

row format \ cell type alpha subtable 1 subtable 2 | subtable3 | subtable 4
top : Yepp | [single fine | | [double] even | | [double
[Tine one
‘ more
; . ST oo
enter Yepp ne]| fom
even
double one i .
line ' Yepp | [singleline | | [line | more
Eeven
. double one | -
bottom ' Yepp | [Singleline | | [line | | *[wore w/ offset
Table 5. Row Formatting.
top frahqe - . / cell contents
hor.header C .
left vertical { vertical right |)
frame header separation | frame e right
horizontal
separation
bottom frame o . cell boundaries
Figure 11. Table Lines and Cell Margins.
N . albi la|bjc| a b ¢ a|b ¢
afb|c cld dieff d e f dle f
dije|f e|f glh|i g h i h i

Figure12. Frame Formatting,

L I voyyyyyyyyywyy T2} [x [yyvyyyyyyyyyyyy {21

et

a || bbbbbb aaaaa b | |a | bbbbbb aaaaa b

el d ¢ d{|c d 4 d

‘lafb ajbla|b a|b|la|b a|bla|b a|b

cfd c|dlc|d cjd{|c|d c|d]|c|d c|d

alb a’lbla|lb alb||la|b a|bla|b alb

cld cldjcld d||c|d c|djc|d c|d

Figure 13. A Complicated Composed Table.

" command ~ explicit parameters : © implicit parameters
TableElems.Insert ("t" | name) c L cﬁret

Inserts a table using the named text as defining text. If no such text exists, an empty table is inserted.

23

option effect (measures in 1/10 mm) argument values
' L left flush
. control column formatting G centered
/columns string string = {LICIRIN}} R right flush
: ; N numeric (penod adjusted)

~ default
B bottom flush

/rows string control row formatting é zz:t]:":dn baseline

: string = {B[L{C[T|-}.
. g = {BILICITI-) T topflush |
- default
N] H horizontal
/noheads string tur.n‘headerhnes off v vertical
string = {H[V |x}.
* all
L leftframe
. R right frame .
Jnolines strin turn separatian lines off . : _? Eott;:m frame
B string.= {URIBITIHIVI%}. - op frame)
i H horizontal separation

V vertical separation
* all

/period string
/left integer
/right integer
- - /bottom Integer
/top integer
" /grid integer

first char redefines period (eg."")

left cell margin
right cell margin
bottom: cell margin
top cell margin

* cell width grid *)

*) A parc at the beginning of the table defining text introduces a minimal
cell height as well as a cell height grid (if the grid option of the parc is set)

Table 6. Overview of Formatting Options.

210 Special Purpose Elements: Building an Application using Write (example due to 8.Heeb)

. Beyond extending Write's usability as a text editor by providing new elemenits, Write can be used as a
framework for rather specific applications. By decomposing the visual elements of an application into
fragments and implementing these fragments as Write elements, a large part of the code typically
required to implement interactive applications can be avoided. By interpreting a Write text as an
application specific "panel” the available editing operations can.be used to freely arrange the application's
visible components. To close the second part of this report; an example of such an application is given,

To interactively simulate electronic circuits different signals found in the circuit are to be displayed as
trace diagrams showing the change of a signal over simulation time. The Debora simulator is part of an

" ohgoing research project. It uses a special Write element per trace. When displaying itself a trace element
scans the name written in front of it to dynamically assoaate a simulated signal to be displayed.
Furthermore, a trace element uses the tab setting of the valid parc to derive the time unit, i.e. the scale at
which to display the trace. In turn, the user can freely arrange traces annotated with their natural signal

_ names and select the wished time base. Tracé elements are also interactive.and can serve as mput to'a
simulation, too, as it is possible to edit a trace in several ways.

As this section is not meant to be the documentation of the Debora toolset still under development
no further details of trace elements will be looked at. However, it should be noted that the mere

-implementation of trace elements is sufficient to construct an application that allows free composition of
signal traces together with arbltrary Write texts as annotations. The resulting active texts can be frozen

24

and printed at any time.

™0 L AR L AL UL LA L L
TEEmpty 1 _ B o BN —
. TrCrc - 1 I T - T]

DrivEn 1 . r

Figure 14. Debora Simulation Elements.

ﬁ‘a-r’.’.'

25

Summary and Conclusions

The delicate balance between a rich basis for arbitrary extensions and carefully chosen restrictions to
certain simple concepts determines the usefulness of an extensible system. It should be clearly noted that
the unrestricted extension potential tends to be overshadowed by the massive burden that every actual
extensions needs to carry, even if it is meant to perform.a rather straightforward task. A compromise is
- necessary to enable the common case of-simple extensions at a low implementational and conceptual
price.

This report concentrated on the extensible text editor Write which attempts to limit extensmns toa
single atomic concept: The character. As texts are naturally thought of as a (formatted) sequence of
(attributed) characters, this model is quite intuitive in capturing the idea of extending the attribute space
of a character. However, some further techniques are required to capture the formatting space of a text. In
Write: both concepts have been coerced by introducing special characters, called parcs (paragraph
controls), that implicitly define formatting attributes over character ranges. In this sense, parcs may be
compared to rufers found in many other text editors. Indeed, at least the LisaWrite editor [Wi83] and its
successors (like MacWrite) treated rulers nearly as characters in that all standard character editing
operations can be applied to.rulers.

It is very important that parcs are realized WIthout adding a new structure-to the system instead, the
existing structure -enabling all element extensions of the editor, can be queried to find the parc
" responsible for a certain position in a Write text. Likewise, all other extensions illustrated in this report
work without any additional structures superimposed on the text carrying the extensions. In all cases,
required information is derived from the implicit relation of elements positioned in a text. The most’
advanced -example for this technique are folding elements which by their nature always act in pairs.
Instead of linking a pair of elements, a fold element seeks its partner element on demand. if the elements
‘would contain finks, maintaining consistency would lead to necessary modifications or restrictions of the
user’s editing model. Consider the case where the user deletes.a fold element but not its partner element.
Or even worse: One of the two'elements is moved to a different text but not the ather. To cope with such
* cases in the case of an explicit structure (e.g. pointers between elements not known to Write), the system
would have 4o either restrict the edit operations, or the edited elements need to be notlfled in order to
repair the text, e.g. to make it consistent again.

The large number and variety of the existing element extensions dlscussed in this report serve to
strengthen the point. The simple model does indeed enable a quite rich world of extensions, The
simplicity of two sample implementations of element extensions - given in the appendix clearly
demonstrates that it is also easy to add new extensions. The latter argument is further supported by the.
large number of different authors that already implemented Write extensions. Finally, the set-of
nontrivial extensions presented (like popup, fold, graphics, picture; or table elements) shows that the
Write extension world is not limited to toy examples. Last but not least, the approach to restricted
extensibility led to a relatively simple core system. The major gain is its robustness: After the first release
no_destructive bugs have been found. Also, most bugs found corresponded to the frame update
mechanism which is indeed one of the most complex parts.

Write has been implemented in. the Oberon system using the Oberon Ianguage Both proved to be
* valuable tools to rapidly design and implement a functioning and useful application. However, certain
aspects of the Oberon system -hinder a free extension even at levels as those of the Write system.
Especially, the large number of statically bound procedural interfaces to central components make certain
extensions inherently unsafe. A class—centered style based on a dynamic binding of procedures would
help; the ongoing Ethos project investigates this further as a general pnnc1p[e of structurmg an operating .
system [Szy90a, b).

The reader might notice that thlS report is kind of an existence proof of erte as it has been written
and printed using solely Write and all of the mentioned Write elements. The whole report has:been
handled as a single Write file with good performance on a Ceres-2 machine (25MHz- National
Semlconductor 32532 Processor) It. contains 16635 words; 109393 chars 180 elements, and takes

26

156707 bytes to store. Appendix B adds some measures on the system's code size.

Acknowledgements

t would like 1o express my deep appreciation to the large number of early users of the Write system.
Providing a useful system as the result of a short-termed project is a challange and requires a certain
amount of "guinea—pigs” to test results on. (However, the fact that everybody stayed alive-and that many
of the Write users actually became implementors by adding new elements is quite encouraging.) Also, |
would like to thank H. Mossenbock and-J, Templ for careful reading and many valuable comments on

this report.

References

[Ad85]

(Fr90]
. [Gu9o]
[Hi91]

[Szy90a]

[52y90b]
[Te90]
[WeGaMagg]
[wis3]
[wigga]
[Wissb]

“[wigg]

[WiGu8s]

Adabe Systems, Inc. PostScrlpt Language Reference Manual

Addison-Wesley, Reading, MA, 1985. -

M. Franz. The Implementation of MacOberon.

Tech. Report 141, Institut fir Computersystéme, ETH Zurich, October 1990.
J. Gutknecht. The Oberon Guide. System Release 1.2.

Tech. Report 138, Institut fir Computersysteme, ETH Zurich, October 1990.
U. Hiestand. Leda - Das Dokumentenverarbeitungssystem fiir Oberon.

Tech. Report to appear, Institut fir Computersysteme, ETH Zurich.

C.A. Szyperski. Towards Object—Oriented Structures for Open Operating Systems.
Presented at the Workshop on Object Orientation in Operating Systems

at OOPSLA~-ECOOP '90, Ottawa, Oct 1990.

C.A. Szyperski. The Carrier / Rider Separation. A New Structuring Conicept ﬁ)r
Open OperatmgSystems Submitted to ECOOP '91, Geneva, July 1991.

-J. Templ. SPARC Oberon — User's Guide and Implementation.

Tech. Report 133, Institut fir Computersysteme, ETH Zurich, June 1990.

A. Weinand, E. Gamma, R. Marty. Design and Implementation of ET++,

a Seamless Object-Oriented Application Framework.

Structured Programming, 10:2, 6387, February 1989.

G. Williams. The Lisa Computer System. BYTE 2, February 1983.

N. Wirth. Type Extensions.

ACM Trans. on Progr. Lang. and Systems. 10:2, 204-214. April 1988,

N. Wirth. The Programming Language Oberon.

Software — Practice and Experience. 187, 671-690. July 1988.

N. Wirth, Modula-2 and Object-Oriented Programming.

First International Conf. on Modula-2, Bled, Yugoslavia, Oct1989. :
(also: Tech. Report 117, Institut fiir Computersysteme, ETH Zurich, October 1989.)
N. Wirth, J. Gutknecht. The Oberon System. _

Tech. Report 88, Institut fiir Computersysteme, ETH Zurich, July 1988,

27
Appendix A — Write User Manual

Write is an extensible text editor for. the Oberon system. It is based on a few simple concepts and aims at
typical writing tasks, such as memos and reports, It does not try to support a document model, and it is
not fully "wysiwyg". To arrive at a rather.simple implementation, the few concepts provided have been
carried out with all consequences. This should be kept in mind before considering a certain behaviour of
the editor to be a "bug". The following tutorial assumes that the reader already knows how to use the
Oberon system, especially, how to handle viewers, files, and commands. Many important Write
extensions, called elements, are documented in the second part of this report. : .

Principles

A Write text models a sequence of characters. Besides standard characters, Write supports special user
extensible characters. Such characters, called elements, float in the text just as ordinary characters do.
Typical elements support the-integration of graphics and the like into texts. A standard extension of
elements allows for separating the text into paragraphs. Such elements are called paragraph controls or
parc for short. A parc defines the paragraph attributes for all characters following it up to the next parc or
the end of the text. ,)) o :)
Mouse commands are interpreted by Write just as defined by Edit. Exceptions to that occur when
clicking on an-element. Here, the element is free to consume (and act on) the mouse click, overriding the
standard behaviour. This is used by parcs to support interactive setting of paragraph attributes.)
Insertion of new characters into the text requires setting the caret left to the character befare which to
insert, or to the end of the text. Selecting a stretch of the text corresponds to selecting a range of
characters. The visible selection extends from the beginning of the first selected character to the
beginning of the first character behind the selection or the end of the text. Hence, selections always
reflect the exact area which is affected when changing or deleting. : :

Editing

Basic editing functionality is just as in Edit. This includes scrolling, setting the caret, selecting text,
inserting, copying, and deleting text stretches, and changing attributes of characters. The cursor left/right
keys move the caret. To support editing indented text (like programs), the Linefeed key can be used
instead of Carriage~Return. This will indent the next line to the same level as the previous one. The cursor
left/right keys will shift indented text.if it-is selected in the focus. viewer with the caret invisible.
Fui’thermore, when extending a selection .over two consecutive viewers, Write adds Visual feedback. This
-avoids the danger of extending a selection by mistake and then deleting or copying a far larger stretch of
text than was intended. See below for a description of commands that further suppart basic editing..

In order to insert a parc into a text, place the caret at the appropriate position and press BREAK. This
will copy the parc above the caret position (or the default parc if there is none above). A parc is displayed
as a separation line corresponding to the width set for that paragraph. Above that separation line, one or.

_ two marks signal the formatting mode of the paragraph: a single mark at the very left, in the middle, orat
. the very right indicates left flush, centered, or right flush formatting, respectively. Two marks at both ends

“indicate block (fully justified) formatting. Below the separation line, set tabs are indicated by marks.
Pressing Shift-BREAK inserts a parc which forces a page break (attribute break=before). Such parcs are
displayed using a solid separation line. T ‘

A parc defines a special behaviour for middle-button mouse clicks. It hds two separate sensitive areas,
One above and one below the separation line. The following table shows how various middle mouse
button: clicks and interclicks affect the paragraph attributes bound to a parc. Again, see the commands
below for further manipulations of parcs. : . ‘

28

L] — o - - W 4— separation line
T

tabulator settings

Figure 15. Display of a Parc.

where . buttons effect
above separation line, left end middle set left margin ‘
above separation line, left end, middle + right symmetrically set left & right margin
above separation line, right end middle set right margin
above separation line, right end middle + right ~ symmetrically set left & right margin
above separation line, towards left end ~ middle left flush formatting
above separation line, in the middle middle centered formatting
above separation line, towards right end middle- ~ . right flush formatting
above separation line . middle + left block formatting
below separation line, no tab mark hit middle create new tab
 below separation ling, tab mark hit =+ middle move tab
below separation line, tab mark hit middle + right ~ move tab and all subsequent tabs in synch
below separation line, tab mark hit middle + left delete tab :

Table7. Interactive Parc Manipulation.
Printing

When ‘printing a text, Write reformats individual paragraphs for the printer. Write preserves all user
setable measures, while individual words may be placed differently. This allows for optimal display of
texts on the screen, while at the same time fully exploiting the printer resolution. Hence, it should not be
tried to affect the placing of individual words by inserting additional blanks or the like! Furthermore,
Write ignores all empty space at the beginning of a page except when preceded by a parc with enforced
page break attribute. White space in this sense are empty lines (a single blank makes a line non-empty!)
and lead—space defined by a parc. Refer to the print command description below for details on how to
initiate a printout.
In order to achieve good results, the Lm3 metrics files for the used font families should be available. For
example, when using the fonts Syntaxi2, Math12, Syntax14, and LetterHead, the metrics files
* Syntax.Lm3.Fnt, Math.Lm3.Fnt, and tetterHead.Lm3.Fnt are required. If a metrics file for a used font is
missing, the printer metrics are estimated using a simple heuristics based on the screen font metrics.
~ Beware: this leads to at most draft quality of the printed text.

Commands in the Viewer Menu

Write.Search :
Takes the ‘most recent selection as search argument If the selectnon is older than the latest one used for
Write.Search, the previously set search argument will be used. Write.Search starts searching at the
current caret position, or at the beginning of the text, if no caret is set. When starting the search. behind.
the last occurence of the search pattern, the search will automatlcal ly wrap around and start over again at
the beginning of the text:

‘ erte Replace
Takes the most recent selection as replacement argument. If the selectlon is older than the latest one

N

29

used for Write. Replace the previously set replacement argument will be used. Write.Replace verifies that

the pattern.right to the current caret position matches the current search argument. If so, it is replaced

and Write.Replace automatically searches for the next-occurence. Write.Replace does not wrap. around
" when searching.

Write .ReplaceAll -

To make Write.ReplaceAll usable, the separatmg space in the menu has to be deleted. Write.ReplaceAll
operates much the same way as Write.Replace does. Additionally, the replacing process is carried on to
the end of the text. Write.ReplaceAll does not wrap around when searching.

Write.Store ’

Stores the text. After completing, Write.Store wntes out. the number of characters in the text. Whenever
the text displayed in a Write viewer has been changed but not yet stored, the menu bar contains an
exclamation mark following the Write.Store command. If a text is stored under a name that already
exists, the extsting file X is renamed to X.Bak. .

Commands in the Wnte Tool

The followmg commands are supported by Write. Generally, the standard Write tool contains several
examples on how to use the Write commands, most of which should be self~explaining. For each
command, the parameters directly following ‘the command are given. Furthermore, most of the
commands take further implicit parameters, like the current selection, the current focus (the caret), and
the selection in the currently marked viewer. Such parameters are also listed below. Whenever the
marked viewer (or-the selection in its body frame) is taken as a parameter, the viewer is expected to
display a Write text. The selection symbol "+" adds a level of indirection by taking the explicit parameters
of the command from the current selection. Explicit parameters may be names (sequences of characters
starting with a letter, followed by letters, digits, or periods), strings (sequénce of characters enclosed by
quotes), or numbers (sequences of characters starting with a minus or a digit, followed by digits).

~command explicit parameters _implicit parameters

Write.Open ("+" | name).
- Opens a Write viewer displaying the named text.

Write.SysOpen ("+" | name)

Opens a Write viewer in the system track displaying the named text. The default formatting uses a -
reduced width and a regular tabulator setting every 5mm.

Write.Store name . marked viewer

Takes the text displayed in the marked viewer and stores it under the given name. The total number of

bytes taken by the created file is written to the log.

Write.Print server—name ("fr” | %" {option} | {name {option}} "~"

Prints a list of Write texts. The print options -are explained in a'separate table below. Unless specified

otherwise (using the /p option), Write.Print will assign consecutive page numbers to-all texts printed

with a single print command. As feedback, Write.Print writes the name and the number of copies of each
" printed text to the system log, Also, a period () is written to the log for each page sent to the printer and

an apostrophe (') is written for each page formatted but skipped (due to an /s option).

Write.Recall o : caret
Inserts the most recently deleted text stretch at the current caret position. Write.Recall can be used
repeatedly to insert a deleted portion at several places. (Edit.Recall does nothing when applied to a Write

30
text.)

- Write.InsertParc - ‘ ' . : caret
Inserts a new default parc at the current caret position.

Write.Locate ("a" | number) -~ o ; : marked viewer
“Locates a character position and makes it visi ble in the marked viewer. (Do not use Edit.Locate to locate a
posntion ina erte text!) ' :

Write.SelectParc o ‘ . caret
Make visible the parc corresponding to the paragraph conta]nmg the caret and select it.

Write, ChangeFont ("4 I name)) ' selectlon in marked viewer
Change the font attribute of the selected characters in the marked viewer.

Write.ChangeColor ("] number) . " selectionin marked viewer
Change the color attribute of the selected characters in the marked viewer. (Has no visible effect on
monochrome moritors, on color monitors; 0 is the background ahd 15 the foreground color.)

Write.ChangeOffset ("+" | number) ‘ ' selection in marked viewer
Change the vertical offset attribute of the selected characters in “the marked viewer (-128..127). The
offset is specrfred in 1/64th of the font height of the a.ffected character.

Wiite. Set’ ("a" | {attribute-name [values]}) ‘selected parc in marked viewer.
Sets paragraph attributes bound to the selected parc. The paragraph attributes are explained in a separate .
table below.

Wrire Get (") atfribute—name) selected parc in marked viewer
Gets paragraph attributes bound to the selected parc. The paragraph attributes are the same as for
Write.Set. If no special paragraph attribute is selected, all attributes will be shown

Write.MakeDefault : ‘) selected parc in marked viewer
Sets the default formatting of the marked text to the attributes of the selected parc.

Write.ShowAliens marked viewer

Searches the marked text for undefmed elements. Such elements occur, if a text is opened while some
" defining modules of extended eleménts are not available. Write displays undefined elements uniformly as

an empty frame. Write.ShowAliens lists the position of such elements, as well as the names of the

missing modules. Note that undefined elements can be selected, copied and deleted freely. As soon as
" the missing modules become available, it is sufficient to reopen affected texts and the elements W|I| again
behave as originally intended.

Print Options -

By ‘supplying print options to the Write.Print comimand, certain print conventions may be controlled.
Options may be given in any order, but note that certain options may depend on values set by others. For.-
example, "/p 5/ 5 7" starts page numbering with 5 and causes printing pages 5 to.7, i.e. the first three
pages of the text. Hence, the range 5..7 of the select option corresponds to the origin set by the page
number option ("s 5 7/p 5" has the same effect)

31

option) function

"/a" alternating pages - page number on right side for even pages

"/c" number request a certain number of copies to be printed (1.9)

"/f name) select font (other than the system default) for headers and page numbers
"/h" ' print a header line (file name plus print date) on each page

*/I" number shift print image on page (correction, in 1/10 mm)

"/p” number start page numbering at a certain number (otherwise it starts at 0)

/pt . suppress page number and header on first page (as set by /p)

"/p""n" suppress page numbers

"/s” number [number] select page(s) to print (numbers corresponds to the ones set by /p)

. Table 8. Print Options.

Paragraph Attributes

Al numerical values are to be specified in 1/10 mm units (e, g. the value 150 corresponds to 1.5 cm). For
lead and line space attributes, font names may be used. In this case, the font helght is used to computé
an optlmal value.

attribute value(s)] default . function

"adjust” . block | center | left | right left formatting mode
"break” before | normal normal if before: force page break before parc
"grid” on | off off line grid
"lead” .. name | number|"default’ . .0 leading paragraph space
“eft" number | "default” } 0 left margin
"line” name.| number | "default" 34 minimal line height,
~+ "tabs" ("¥" number | {number} "~") -~ tab spacing (every n, or enumerated)
"width" number.| "default” - 1650 maximal line width

Table 9. Paragraph Attributes, »

The line spacing model assumes a minimal line"height for each paragraph. If a line exceeds its minimal
line height, it is automatically adjusted to avoid clutter between it and the line above it. If the line grid is
turned on for that paragraph (default), the line is adjusted to an integer multiple of the minimal line
height.

Advise: In order to reacha typographically sound layout, in most cases a single line height should be
selected for all paragraphs of the text. To get good results when combining a font for body text with
larger ones for titles and section headings and smaller ones for captions, it is useful to set the line height
to the body font and turn the line grid on. In most cases, it is preferable to set line height and paragraph

“leadings using the name of the predominant font ("model font").

Utility Module WriteTools

A collection of utility commands most of which operate equally well on standard texts and Write texts.
.(The application to Leda texts is not recommended - the standard Leda Attributes Viewer should be used
in conjunction with Leda.Search-and Leda.Replace.) ‘

command - explicit parameters © . implicit parameters

WriteTools.GetAttr . o selected character
Get textual attributes of the selected character: ASCHI 'cpde, font name, color, and vertical offset.

32

WnteTools IncSize ("+" | number) ‘ selection
Increment font sizes in selected range (negative increments may be used to decrement sizes). |
computed font is not available, the old font is retained.

WriteTools.ChangeSize ("+" | {number "=>" number} "~") selection
-Change font sizes absolutely within the selected range If a computed font is not avallable the old font is
retained.

WriteTools. ChangeFamlIy ("+" | {name "=>" name}) . selection
Change font families within the selected range. lf a computed font is not available, the old font is
retained.

WriteTools.Change ("+" | {name "=>" name} "~") selection
Change fonts within the selected range. if a font is not available, the old font is retained.

WnteTooIs.Words - ("+" | {name} "~")
Counts characters and words in the listed files.

WriteTools.Elements ("s" | {name} "~") T
Counts characters, words, and elements in the listed files.

WriteTools.Elements ("+" | {name} "~")
Counts characters, words and elements in the llsted (Write) files.

WriteTools.Cleanup - ("" | {name}"~")
Scans a Write text and removes alien and ill-sized elements. (Restricted in use to Write texts.)

33

Appendix B — Interfaces of the Write Core Modules

Thisfappendii documents the interfaces of the Write core modules. For two complete and: commented v-

source listings of actual element implementations, cf. appendix C. For hints on how to implement Write
elements in a way conforming to established conventions, see the second part of this report. The
following table gives some impression on the code size of the Write system and some of its extensions.
When comparing against the standard module triple Texts, TextFrames, and Edit, one has to take into
account that WiiteTexts heavily builds on module Texts, while WriteFrames and Write are fully
independent. Also, the module WriteParcs could, in principle, be left out, leading to a version of Write
with non-=interactive parcs. ‘ C ‘

module lines of source object code [bytes] functionality
WriteTexts 450 . 5500 elements, load/store
erteFrames 950 14800 - selfcontained frame
WriteParcs . 400 6700 interactive parcs
Write . 750 . 10'900 commands & printing
Texts ' n/a "6'900 attributed texts
TextFrames n/a 10000 selfcontained frame

 Edit n/a 4800 commands & printing
LineElems - 100 . 1 600 various lines

" GraphicElems -~ 200 2300 ° encapsulated graphics
PopupElems 200 3500 - popup menu buttons
TableElems - 500 8500 table formatting

Table 10. Size of Write Core System, Standard Text Systern, and Extensions.

Module WriteTexts ‘

WriteTexts extends. module Texts by adding the capability of arbitrary elements floating in the textju‘st as

ordinary characters do. In particular, WriteTexts extends the types -Texts.Jext and Texts.Buffer. The .
“extension suffers from the impossibility of overriding procedures defined in Texts. When using WriteTexts,

 the following Texts procedures must be considered with special care. Procedures Texts. Delete, Texts.insert,
Texts.Append,‘Texts.Load, and Texts.Open must not be used on a WriteTexts text. Procedures Texts.Save,
Texts.Recall, and Texts.Store have reduced semantics whenapplied to a WriteTexts text, as they ignore
floating elements. All other procedures, especially those defined on Readers; Writers, and Scanners can be
" used freely. This includes procedure Texts. Changelooks to mriodify character attributés of a text range.

WriteTexts is not coupled to any particular device and especially to no particular resolution. Hence, all
measures contained in elements and parcs are in device independent units. The used unit is defined as

follows: ‘ o :

34

1 mm = 36000 units 1 point = 12700 units - 1 inch = 914'400 units
dots per inch units per dot examples
72 12700 ‘ ‘
91 : 10'000 Ceres~1/2 monochrome monitors; Ceres x.Scn.Fnt files
144 6350 :
200 4572
240 3'810 .
300 3048 Ceres laser printer; Ceres %.Pr3.Fnt and ».Lm3.Fnt files
400 2'286 :
600 - 1524
200 - - 1016
1200 : 762

Table 11. Pixel Resolution vs. Device Independent Units,

Since the Ceres-Oberon scréen fonts (x.Scn.Fnt files) are tuned for 91 dpi resolution; the scale factor
used for other monitors attached to the Ceres (color monitors, Cerés—3 monitor) should be set to
10'000, anyway. Likewise, the existing printer fonts (* Pr3.Fnt and %:Lm3.Fnt files) are tuned for 300 dpi
resolution.

When changing an -element or a parc inserted into a Write text, calling procedures
WriteTexts.ChangedElem or WhriteTexts.ChangedParc, respectlvely, initiates an appropriate change
notification updating all existing views.

Variable WriteTexts.storeTime can be used to distinguish among different store actions when receiving a
store message. This is useful when storing elements shanng a common model, as is explained for active
elements in section 2.5.

DEFINITION WiriteTexts;
IMPORT)
Display, Files, Fonts, Texts, Oberon;

CONST .
replace = 0; insert = 1; delete = 2;
mm = 36000; (xunits per mmsx)
ElemChar=1CX;
‘MaxTabs = 32;
TextTag = OF5X; ElemTag = OF6X;

‘TYPE
Elem = POINTER TO ElemDesc;
-Handler = PROCEDURE(E: Elem; VAR msg: Display.FrameMsg);
ElemDesc = RECORD
DX, W, H: LONGINT; (%in units; DX >= W*)
handle: Handler;
temp: BOOLEAN (xsuppress storage ofelement*)
END :

Parc = POINTER TO ParcDesc;
ParcDesc = RECORD(ElemDesc) .
first, left, width, lead, lsp, dsr: LONGINT; (*in unitsx)
opts: SET;
nofTabs: INTEGER; ,
tab: ARRAY MaxTabs OF LONGINT (xin unitsx)
END;

Buffer = POINTER TO BufferDesc;
BufferDesc = RECORD(Texts.BufDesc) END;

Text = POINTER TO TextDesc; .

TextDesc.= RECORD(Texts.TextDesc)
defParc: Parc .

END;

LoadMsg = RECORD(Display.FrameMsg) :

r: Files.Rider . (xDX, W, H loaded automatlcallyae)
END;
StoreMsg = RECORD(DlspIay FrameMsg)

r: Files.Rider (%DX, W, H stored automat/calb/*)
END; .
CopyMsg = RECORD(Display.FrameMsg)

e: Elem (xreceipient should allocate e iff e = NiLx)
END"

Drastg RECORD(DlspIay FrameMsg)
fnt: Fonts.Font;
col: SHORTINT;”
unit: LONGINT; (xunits per device pixelx)
frame: Display.Frame; - (%containing frame in dewcespace*)
) X0, YO: INTEGER (*anchorm device spacex)
~ END;
PrintMsg = RECORD(Display. FrameN\sg)
fnt: Fonts.Font;
col: SHORTINT;
unit: LONGINT; (xunits per device pixelx)
pno: INTEGER; (xpage numberx)
. X0, YO: INTEGER (*anchor in device spacex)
END

AllocPar = POINTER TO AltocParDesc;
AllocParDesc = RECORD(Oberon.ParRec)
e: Elem (*recelp/entshau/d allocate efement e and install hand/erae)
END;
VAR
storeTime: LONGINT; (*timestamp of most recent Store*)‘

(% Elements *)
PROCEDURE OpenElem(E: Elem; handle: Handler; dx, w, h: LONGINT);
(wforces dx >=w, e.temp = FALSEx)

35

36.

PROCEDURE CopyEIem(SE Elem; VAR DE: Elem)
(sreturns copy of SE in DE using CopyMsg; forced copying of DX, W, H, handle, and tempx)
PROCEDURE ElemClass(E: Elem; VAR unknown BOOLEAN; VAR mod: ARRAY OF CHAR),
(xunknown => mod validx) =~ .
PROCEDURE ElemBase(E: Elem): Text;
(sreturns NIL i E is not within a textx)

. PROCEDURE ElempPos(E: Elem): LONGINT;

(=returns -1 if E is not within a textx) -
PROCEDURE ElemSucc(E: Elem): Elem;
(*retums NIL if no successor or not within a textx)

(% Parcs — Paragraph Controls *¥)
PROCEDURE ParcBefore(T: Text; pos: LONGINT): Parc;
(s¢returns T.defParc if none found*) ’
PROCEDURE ParcExtent(P: Parc): LONGINT;
(%parc P extends over range [ElemPos(P), ParcExtent(P))*)
PROCEDURE LoadParc(VAR r: Files.Rider; P: Parc);
(%load parc attributesx)
PROCEDURE StoreParc(VAR r: Files.Rider; P: Parc),
(wstore parc aitributess)
PROCEDURE CopyParc(SP, DP: Parc);
(xcopy parc specific fields from SP to DPx) -
PROCEDURE HandleParc(E: Elem; VAR msg: Display. FrameMsg),
(sprimitive parc handler, calls LoadParc, StoreParc, and CopyParcx)

" PROCEDURE AllocParc; -

(xallocate plain parc for loading=)

(% Buffers x)
PROCEDURE OpenBuf(B: Buffer)
(%prepare & clear Bx)
PROCEDURE-CopyBuf(SB: Buffer; VAR DB: Buffer),
(xallocates DB ifset to NIL; DB := copy(SB); SB unmiodifiedx)
PROCEDURE SaveBuf(T: Texts.Text; beg, end: LONGINT; VAR B: Buffer);
(xallocates B ifsetto NIL; B := copy(Tlbeg, end])x)
PROCEDURE AppendBuf(SB, DB: Buffer);
(%DB = DB + copy(SB); 5B := empty*)
PROCEDURE RecallBuf(B: Buffer);
(%B is copy of last deleted stretch*) :

(% Texts %)

PROCEDURE Delete(T: Text; beg,end LONGINT)
PROCEDURE InsertElem(T: Text; pos: LONGINT; E: Elem); .
PROCEDURE Insert(T: Text; pos: LONGINT; B: Texts. Buffevr)
PROCEDURE AppendElem(T: Text; E: Elém); '

. PROCEDURE Append(T: Text; B: Texts.Buffer);

PROCEDURE.ElemAt(T: Text; pos: LONGINT): Elem; -
(wreturns NIL if not foundx)

PROCEDURE FirstElem(T: Text): Elem;
‘(%returns NIL lfno elems in Tx) :

PROCEDURE Broadcast(T: Text; beg, end: LONGINT; VAR msg: D[splay FrameMsg),
(*broadcast to all elems in range [beg, end) of Tx)

37

PROCEDURE ChangedElem(E: Elem);
~ (xnotify about replacement of range [ElemPos(E), ElemPos(E)+1)%)
PROCEDURE ChangedParc(P: Parc);
(%notify about replacement of range [Elem Pos(P) ParcExtent(P))%)

(% Text Flles %)

PROCEDURE Load(T: Text; f: Files.File; pos: LONGINT; defParc: Parc; VAR len LONGINT),
(wload Texts or WriteTexts block at (f, pos) into T; use defParc for Texts blocks;
returns block length in lenx) ,

PROCEDURE Store(T: Text; f: Files.File; pos: LONGINT; VAR len: LONGINT);
(xstore T as WriteTexts block at (f, pos); returns block length in lens)

"PROCEDURE Open(T: Text; name: ARRAY OF CHAR; defParc: Parc);
(%open T by trying to load (Files.Old(name), 0); can load p/aln—ascu files;
creates empty text otherwisex)

"END WriteTexts. .

Module WriteFrames

WriteFrames extends module TextFrames by adding numerous formatting and editing capabilities. Care’
must be taken when using WriteFrames, as the procedures of module TextFrames must not be applied to
a WhriteTexts text. The most visible side effect is the non-functioning of command Edit.Locate Wth]’l
results in a trap (without doing any harm to the Write frame or its text). .

WhiteFrames contains the screen formatter. It defines: a special ~prepare message.
(WriteFrames.PrepareMsg) sent to elements about to be displayed. This allows for adapting o remaining

“space on a line and the like. Hence, an element is allowed to change its boundlng box upon recelpt ofa
prepare message. :

‘WriteFrames tries to delegate mouse clicks to elements hlt by the cursor. This is done by sending a .
WriteFrames.TrackMsg. By tracking the mouse until all mouse buttons have been released again, the
element can selectively consume mouse clicks. It is strongly recommended to restrict the set of consumed
mouse clicks to middle button clicks and interclicks, i.e. the-command click combinations. These are
undefined for elements, anyway. Consuming left or right button. clicks or interclicks causes interference
with the caret and selection controlling clicks interpreted by Write frames.

It is possible to attach elements to some external model, i.e. fo use elements as views showmg some
shared model. To update these views, a'model change should cause a notification. For this purpose, a
special WriteFrames.NotifyMsg is provided, which is broadcasted by a Write frame to all elements in the

" frame's visible range. An element receiving a notification- message should call WriteFrames.LocateElem to
* find out whether it is truely visible (or chpped) and if so, what screen coordinates correspond to' the
element.

Opening a WhiteFrame takes besides the handler to be used and the text to be displayed a bunch of
additional parameters. For each of these a default variable is exported. The parameters define the border
width defined around a displayed text in a Write frame (left, right, top, bot), the scroll bar width (barw, if
barW > left : scroll bar is not displayed and not available), and a set of options. Currently, frime options
WriteFrames.scrollOpt and WriteFrames.fontOpt are defined. If the scroll option is set, the frame.scrolls
automatically when user interactions (editing, moving the cursor, but not backward deleting) reach the
frame bounds. Setting the font option causes the frame to take fonts from naghhourmg characters when
accepting keyboard input. (Both options are set by default.)

Although ‘a WriteFrames.Frame is an ‘extension of a TextFrames.Frame. for backward compat:blhty
reasons (e.g. the compiler accepts a WriteFrame as soiirce), not all fields of a TextFrames. Frame record are
supported by a WriteFrames frame. The fields col, mark, cax, sel, carloc, selbeg, and selend are not used. The
background color is always Display.black, caret and selection are reflected by the fields hasCar, hasSel,
carloc, selBeg, and selEnd. The field text is expected to refer to a WriteTexts text. To install a new text in an

38

open Write frame proceed as follows. Set the text field of the frame descriptor to the new @e'xt. Set the
trailer field to NiL. Call WriteFrames.Show(org), where org is the wished origin from wkhere the new text is
to be displayed. WriteFrames.Show automatically. decrements org to begin ata valid line start position.

DEFINITION WriteFrames;
IMPORT .
Display, Fonts, Oberon, Texts, TextFrames, WriteTexts;

CONST
scroliOpt = 1; fontOpt=2; (¥frame optionsx) ‘
gridAdj = 0; leftAdj = 1; rightAd) = 2; pageBreak = 3; (xparc optionsx)

_TYPE
- Textline = POINTER TO TextLineDesc;
TextlineDesc = RECORD
next: Textline; o ’
-"eot: BOOLEAN; - (xcontains end of textx)
w, h, dsr: INTEGER; (xbounding box clipped to framex)
org, len, span: LONGINT (xlen w/o; span w/ trailing CR or white space, if anyx)
END; o :
 Location = RECORD
org, pos: LONGINT;
%, ¥, dx, dy: INTEGER
. END;

Frame = POINTER TO FrameDesc;
FrameDesc = RECORD(TextFrames.FrameDesc)
" (xtext, org, Isp, left, right, top, bot, markH, time inherited from TextFrames.FrameDescx)
barW: INTEGER; (xscrofl bar widthx)
- hasCar, hasSel: BOOLEAN; (xcaret/selection presentx)

opts: SET; ' .
carloc, selBeg, selEnd: Location; (xlocations of caret, selection begin, and endx)
trailer: Textline (xring of line descriptors, points to trailer after last visible linex)

END;) .

UpdateMsg = TextFrames.UpdateMsg;
PrepareMsg = RECORD(Display.FrameMsg)
fnt: Fonts.Font; ‘ .
col: SHORTINT;
unit: LONGINT; (xunits per device pixelx) -~
indent: LONGINT; (%width already consumed in line, in unitsx)
printing: BOOLEAN;
pno: INTEGER (xpage number, valid if printingx) -
END; . .
TrackMsg = RECORD(Oberon.InputMsg)
unit: LONGINT; (xunits per device pixelx)
frame: Frame; -
X0, YO: INTEGER' (xreceiver origin in device spacex)
END;

39

NotifyMsg = RECORD(Display.FrameMsg)
unit: LONGINT; " (xunits per device pixelx)
frame: Frame (xframe conta/nmg receiver)
EN D

VAR
- defleft, defRight, defTop, defBot, defBarW INTEGER;
defOpts: SET;

" (% locators x)
PROCEDURE BegOfLine(T: erteTexts Text; VAR pos LONGINT; adjust: BOOLEAN);
(wset pos to the first character of the line containing pos;
adjust takes line wrap-around into accoundx)

PROCEDURE LocatePos(F: Frame; pos: LONGINT; VAR loc: Loca’uon),

(s¢return location descr:ptorforp051tlon (F, pos)x).
PROCEDURE LocateLipe(F: Frame; y: INTEGER; VARloc Locahon)

(xreturn location descriptor forline at (F, y); y in absolute screen coordinatesx) -
PROCEDURE LocateChar(F: Frame; x, y; INTEGER; VAR loc: Location);

~ (wreturn location descriptor for character at (F, x, y); %,y in absolute screen coordlnates*)
PROCEDURE LocateWord (F: Frame; x Y+ INTEGER; VAR loc: Location);

(wreturn location descriptor for word at (F, X, y); x,y in absolute screen coordinatesx)

PROCEDURE LocateElem(F: Frame; E: WriteTexts.Elem; VAR visible: BOOLEAN;
VAR fnt: Fonts.Font; VAR col: SHORTINT; VAR X0, YO: INTEGER);
(xreturn whether element E is visible in F; if so, return its font.and color (fnt; co[)
and base coordinates (X0, YO)%)
PROCEDURE Pos(F: Frame; x, y: INTEGER): LONGINT;
(xreturn position in text at (F, x, y); %, y in absolute screen coordinatesx)
(% caret & selection %)
PROCEDURE RemoveSelection(F: Frame),
PROCEDURE SetSelection(F: Frame; beg, end: LONGINT); -
(x%forces range to visible boundsx)
PROCEDURE RemoveCaret(F: Frame);
PROCEDURE SetCaret(F: Frame; pos: LONGINT);
(xonly done if within visible boundsx)
PROCEDURE Neutralize(F: Frame);
(%remove selection and caretx)

(% display range)
PROCEDURE GetVlSlbleRange(F Frame, VAR beg, end: LONGINT);
(%return visible range [beg, end) of Fx) -
PROCEDURE NotifyElems(F: Frame; VAR msg: NotifyMsg);
(wsend notifyy message msg to all elements in visible range of Fx)
PROCEDURE Show(F: Frame; pos: LONGINT);
(»removes global marks as needed and neutralizes F;
- redisplays whole text if Ftrailer = NiLx)
PROCEDURE Resize(F: Frame; x,y, w, h: INTEGER)
(%change frame sizex)

40

(% contents update %)
PROCEDURE Update(F: Frame; VAR msg: UpdateMsg);
(%removes global marks as neededx)

(% user interface %) v
PROCEDURE TrackLine(F: Frame; VAR, y: INTEGER; VAR org: LONGINT; VAR keysum SET);
(setrack mouse to find linex)
PROCEDURE TrackWord(F: Frame; VAR x, y: INTEGER VAR pos: LONGINT; VAR keysum: SET);
(xtrack mouse to find wordx)
PROCEDURE TrackCaret(F: Frame; VAR x,y: INTEGER; VAR keysum: SET)
(strack mouse to place caretx)
*- PROCEDURE TrackSelection(F: Frame; VARx y: INTEGER; VAR keysum: SET);
(track mouse to place selection; supports extension to beginning oflme and extension
over subsequent viewersx)
PROCEDURE Call(F: Frame; pos: LONGINT new: BOOLEAN);
(xcall the command at (F.text, pos) with appropriate argumenb'
force module reloading if new is setx)
PROCEDURE Write(F: Frame; ch: CHAR; fnt: Fonts.Forit; col, voff: SHORT! N'D,
(#write character ch to F.text at current caret position;
“if no other choice, use (fnt, col, voff) as attributesx).
PROCEDURE Edit(F: Frame; x, y: INTEGER; keysum: SET);)
(wtrack mouse and support editing'in frame F; calls Trackx, Call, and Writex)

(% general x)

"PROCEDURE Copy(F: Frame; VAR F1: Frame),
(%return a copy of Fin F1x) *

PROCEDURE Open(F: Frame; H: Display.Handler; T: WriteTexts.Text; pos: LONGINT;

left, right, top, bot, barW: INTEGER; opts: SET);
(»open frame F using handler H to display (T, pos) with border (left, nght top, bot),
scroll bar of width barW, and options optsx)
. PROCEDURE Handle(f: Display.Frame; VAR msg: Display. FrameMsg)

(xdispatch message msg; calls NotifyElems, Show, Resize, Update, Write, Edit,
SetCaret, RemoveCaret, SetSelection, Neutralize, and Copy*)

PROCEDURE NotifyDisplay(T: Texts. Text; op: INTEGER; beg, end: LONGINT),
(%broadcasts an UpdateMsg for ((T, op. beg, end) to allviewersx) '

PROCEDURE Text(name: ARRAY OF CHAR; defParc: WriteTexts.Parc): WriteTexts. Text;
(sopens a standard Write text to be displayed in a Write framex)

PROCEDURE NewText(T: WriteTexts.Text; pos: LONGINT): Frame;
(xopens a standard Write frame to be installed as content, fmme ofa
MenuViewers viewerx)

END erteFrames

- N\odule WriteParcs

WriteParcs lmplements a proper extension of the parcs (paragraph controls) defined in modulev

WriteTexts, adding - interactive manipulation features for-most parc attributes. Furthermore, the parc: - -

“handler installed by WriteParcs supports querying and changing parc attributes using the message
WhiteParcs.StateMsg. This is used by the Write commands Write.Set and Write. Get. Hence, extended parcs
defining new attributes can be defined that in turn extend the parameters taken by Write.Set and
Write.Get. (The standard StyleElems take advantage of this by propa.gatmg changes to all parcs in a text
that have the same name.)

41
DEFINITION WriteParcs;
IMPORT
Display, Texts, WriteTexts, WriteFrames;

CONST
set=0; get=1;

TYPE .
StateMsg = RECORD(Display.FrameMsg)
‘id: INTEGER; '
‘par: Texts.Scanner;
log: Texts.Text; .
unit: LONGINT; - (%units per device p/xel*)
- frame: WriteFrames.Frame o
END;

VAR
defParc: WriteTexts. Parc

PROCEDURE Prepare(P: WriteTexts.Parc; unit; indent: LONGINT: prmtmg BOOLEAN);
(wset width in order to occupy whole linex)
PROCEDURE Draw(P: WriteTexts.Parc; F: Dlsplay Frame; unit: LONGINT;
col: SHORTINT; x0, yO: INTEGERY);
(%draw parcx)
PROCEDURE Edit(P; WriteTexts.Parc; F: WriteFrames. Frame unit: LONGINT
x0,y0, x, y : INTEGER; keysum: SET);
(xedit parcs)
PROCEDURE SetAttr(P: WriteTexts.Parc; F: WriteFrames. Frame; unit: LONGINT
VAR S: Texts.Scanner; log: Texts. Text);
(wscan attributes and values to be set using S and append error messages to logs)
PROCEDURE GetAttr(P: erte]‘exts Parc; F: WriteFrames.Frame; unit: LONGINT
‘ VAR S: Texts.Scanner; log: Texts. Text);
(xscan attributes to be queried using S and append result and error messages to Iog*)
PROCEDURE Handle(E: WriteTexts.Elem; VAR msg: Display.FrameMsg);
(%standard parc handler, calls WriteTexts.LoadParc, WriteTexts.StoreParc,
Prepare, Draw, Edit, SetAttr, and GetAttrx)
- PROCEDURE Alloc;
(xallocate parc for loading)
END WriteParcs.

42

Appendix C ~ Two Sample Element Implementations

_This appendix lists two sample element implementations that can be taken as a tutorial. The first,
TestElens, implements nothing useful but shows a functional and commented element handler at a
glance. Also, it can be used to test out the effect of having unloadable elements (called aliens) in a text.
Finally, TestElems demonstrate the use of messages broadcasted to all visible elements. The second,
ErrorElems, implements error marking elements that can be used to mark all errors found by a compiler
within the source text. This second example shows how a handler should be decomposed and its
companents be exported in order to allow for further extension of the implemented element. Note that
ErrorElems are temporary elements and thus never stored. Therefore, the handling of file 1/0.is missing in
the ErrorElems implementation, o

TestElems

MODULE TestElems;.
IMPORT - A o)
Oberon, Input, Display, Viewers, Files, Fonts, Printer, Texts, WriteTexts, WriteFrames, WriteParcs;

CONST
mm = WriteTextsmm; rightKey = 0; middleKey = 1; leftkey = 2;

TYPE . ‘
TestElem = POINTER TO TestElemDesc; . .. '
TestElemDesc = RECORD(WriteTexts.ElemDesc)
data: ARRAY 8 OF CHAR - (xdemanstrate use of element specific datax)
END;) .) . .
NotifyMsg = RECORD(WriteFrames.NotifyMsg) END;

PROCEDURE WriteString(VAR r: Files.Rider; s: ARRAY OF CHARY);
VAR I: INTEGER; ’
BEGINi:=0; -
WHILE s[i] # 0X DO INC(i) END;
Files.WriteBytes(r,s,i +1) - . "
END WriteString; :

PROCEDURE Readstring(VAR r: Files.Rider;. VAR s: ARRAY OF CHAR);
VAR i: INTEGER; ch: CHAR; -

BEGIN i :=0; B
REPEAT Files.Read(r, ch); s[i] = ch; INC(i) UNTIL (ch = 0X) OR (i = LEN(s));
IF ch # 0X THEN s[0] := OX END ’

END ReadString; :

" PROCEDUREx TestHandle(E: WriteTexts.Elem; VAR msg: Display.FrameMsg);
© VAR e: TestElem; P: WriteTexts.Parc; x, y, w, h: INTEGER; keys, keysum: SET; visible: BOOLEAN;
fnt: Fonts.Font; col: SHORTINT; X0, YO: INTEGER; ‘
BEGIN i ’)
WITH E: TestElem DO
IF msg IS WriteFrames.PrepareMsg THEN (xelement is to be.drawn or printedx)
WITH msg: WriteFrames.PrepareMsg DO (*adopt measures from environmeritx)
P = WriteTexts.ParcBefore(WriteTexts.ElemBase(E), WriteTexts.ElemPos(E));
EH :=Plsp (% EW :=Pwidth —msgindent adapts to remaining space in linex)
END ' . .
- ELSIF msg 1S WriteTexts.DrawMsg THEN (xelement is fully visible: draw it to the screenx)
. WITH msg: WriteTexts.DrawMsg DO L)
Display.ReplConst(Display white, msg.X0, msg.Y0,
SHORT(E.W DIV msg.unit), SHORT(E.H DIV msg.unit), Display.replace)
END . . .

-

43

ELSIF-msg IS WriteTexts.PrintMsg THEN | (xelement is fu/ly visible: print itx)
WITH msg: WriteTexts PrintMsg DO
Printer.Line(msg.X0, msg.Y0, SHORT(E.W DIV msg. unlt) SHORT(E H DIV msg. umt))
END
ELSIF msg IS NotifyMsg THEN («special viewer broadcast-messagex)
WITH msg: NotifyMsg DO
WriteFrames.LocateElem(msg. frame E visible, fnt, col, X0, YO);
IF visible THEN (if not clipped: update the single view in this ﬁame*)
Display.ReplConst(Display.white, X0 + 1, YO + 1,
‘ SHORT(E.W DIV msg. umt) 2, SHORT(E.H DIV msg.unit) - 2, Dlsplay mvert)
END
END ’
" ELSIF msg IS WriteTexts. LoadN\sg THEN (wload elementspecu% data)e)
WITH msg: WriteTexts.L.oadMsg DO
Readstrlng(msg r, E.data)
END
ELSIF msg IS WriteTexts.StoreMsg THEN (xstore element specific datax)
WITH msg: WriteTexts.StoreMsg DO :
WriteString(msg.r, TestElems.Alloc”); (xwrite name of allocation procedure firstx)
- WriteString(msg.r, E data) :
 END
ELSIF msg IS WriteTexts.CopyMsg THEN (xcopy element*)
WITH msg: WriteTexts.CopyMsg DO
IF msg.e = NILTHEN NEW(e); msg.e := e ELSE e := msg. e(TestElem) END;
edata = Edata (xcopy state into new elementx) -
END
ELSIF msg IS WriteFrames, TrackMsg THEN (xa mouse click hit the elementx)
WITH msg: WriteFrames.TrackMsg DO
" IF msgkeys = {middleKey} THEN keysum = msgkeys;
w = SHORT(EW DIV msg.unit); h := SHORT(E.H DIV msg.unit);
Oberon.RemoveMarks(msg.X0, msg.Y0, w, h);
Display.ReplConst(15, msg.X0 + 1, msg.YO + 1, w - 2, h - 2, Display.invert); "
REPEAT Input.Mouse(keys, msg.X, msg.Y); keysum := keysum + keys;
Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, msg.X, msg.Y)
UNTIL keys = {};
Display.ReplConst(15, msg.X0 + 1, msg.Y0 + 1, w - 2, h - 2, Displayinvert);
IF (keysum = {mlddIeKey, leftKey}) & (EW > 4 ¥ mm) THEN :
‘DEC(EW, 2 ¥ mm); EDX = EW + 2 x mm; Wr|teTexts ChangedElem(E)
ELSIF msg.keys = {middleKey, rightKey} THEN
INC(EW, 2 % n1m), EDX :=EW +2 % mm; ‘WriteTexts. ChangedElem(E)
END
END
END) . .
END ’ . ,)
END '

END TestHandle;

PROCEDUREx MiscHandle(E: WriteTexts.Elem; VAR msg: Display FrameMsg);
* (#subclass handlerof TestHandlex)
BEGIN
- WITH.E: TestElem DO ~
IF msg IS WriteTexts.StoreMsg TH EN
WITH msg: WriteTexts.StoreMsg DO C
(xwrite name of a nonexistent allocation procedure ~> cannot be loaded againx)
erteStrmg(msg r "TestElems Unknown"); WriteString(msgy, E.data)
END . .
ELSE TestHandle(E msg) (%"super” call to inherited classx)
END : -
END
END MiscHandle;’

PROCEDURE Allocx; (xallocation proc. for class TestElem; also insta/ls handler*)

VAR e: TestElem; ’
BEGIN NEW(e); ehandle = TestH andle; Oberon Par(erteTexts AllocPar) e:=e
END Allog; .

44

(%% commands xx)

PROCEDURE InsertNews; (xx W H demonstrates behaviour of trivial floating elementsx)

VAR S: Texts.Scanner; w: LONGINT; : -
e: TestElem; T: WriteTexts Text; copyover: Oberon.CopyOverMsg;

BEGIN Texts.OpenScanner(S, Oberon.Partext, Oberon.Par.pos); Texts.Scan(S); w := S.I; Texts.Scan(S);
NEW(e); WriteTexts.OpenElem(e, TestHandle, (w + 2)*mm, wxmm, Sixmm); e.data := "testing”;
T = WriteFrames.Text("™", WriteParcs.defParc); WriteTexts AppendElem(T, €);
copyovertext = T; copyoverbeg = 0; copyoverend := Tlen;
Oberon.FocusViewerhandle(Oberon FocusViewer, copyover)

END InsertNew; ' :

PROCEDURE InsertMiscx; :
(%% W H demonstrates handling of elements which cannot be loaded on openingxx)
VAR §: Texts.Scanner; w: LONGINT;
e: TestElem; T: WriteTexts.Text; copyover: Oberon.CopyOverMsg;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S); w := S.i; Texts.Scan(S);
NEW(e); WriteTexts.OpenElem(e, MiscHandle, (w + 2)xmm, wxmn, Sixmm); edata := "testing”;
T = WriteFrames.Text(", WriteParcs.defParc); WriteTexts.AppendElem(T, e);
copyovertext =T; copyoverbeg == 0; copyover.end := Tlen;
Oberon.FacusViewerhandle(Oberon FocusViewer, copyover)
END InsertMisc;
PROCEDURE Broadcastx; = (xxdemonstrate effect of special viewer broadcast messagexx)
VAR msg: NotifyMsg; : o
BEGIN Viewers.Broadcast(msg)
END Broadcast;

END TestElems.

ErrorElems

DEFINITION ErrorElems;
" 'IMPORT
Display, Fonts,
WriteTexts;

TYPE s
Elem = POINTER TO ElemDesc;
ElemDesc = RECORD(WriteTexts.ElemDesc)
err: INTEGER;
- msg: ARRAY 128 OF CHAR
END; ~ o

DeleteMsg = RECORD(Display.FrameMsg) END;
LocateMsg = RECORD(Display.FrameMsg)

pos: LONGINT
END;

" VAR
" font: Fonts.Font; .o

PROCEDURE ShowErrMsg(E: Elem; F: Display.Frame; col: SHORTINT; x0, y0, dw: INTEGER);
PROCEDURE Expand(E: Elem; unit: LONGINT); : ’
PROCEDURE Reduce(E: Elem);

PROCEDURE Delete(E: Elem); . :
_PROCEDURE Handle(E: WriteTexts.Elem; VAR msg: Display.FrameMsg);

PROCEDURE InsertAt(T: WriteTexts. Text; pos: LONGINT; err: INTEGER);

(% a;m'mands *)
.PROCEDURE Unmark;
PROCEDURE Mark;

PROCEDURE LocateNext
END ErrorElems.

45

MODULE ErrorElems;
IMPORT

Display, Input, Files, Fonts, Printer, Oberon, Texts Viewers, MenuViewers,
WriteTexts, WriteFrames, WriteParcs;

CONST
ErrFile = "Oberon2Errors.Text"; ErrFont = "Syntax8.Scn.Fnt";
mm = WriteTexts.mm; middieKey = 1; leftkey =2; (R = 0DX;
TYPE
Elemx = POINTER TO ElemDesc;
ElemDescx = RECORD(WriteTexts.l E|emDesc)
err¥: INTEGER;

msgx: ARRAY 128 OF CHAR
END;

DeleteMsgx = RECORD(Display.FrameMsg) END;
LocateMsgx = RECORD(Display. FrameMsg)
" posx: LONGINT

END;

VAR
fontx: Fonts.Font;
W: Texts.Writer;
lastTime: LONGINT;

PROCEDURE MarkedFrame(): WritéFrames.Frame;
VAR V: Viewers.Viewer;
BEGIN V := Oberon.MarkedViewer();
" IF (V IS MenuViewers.Viewer) & (V.dsc. next 1S erteFrames Frame) THEN
RETURN V.dsc.next(WriteFrames.Frame)
ELSE RETURN NIL
END
END MarkedFrame;

* PROCEDURE Show(F: WriteFrames.Frame; pos: LONGINT);
VAR beg, end, delta: LONGINT;
BEGIN delta = 200;
LOOP WriteFrames.GetVisibleRange(F, beg, end);
IF (beg <= pos) & (pos < end) OR (beg = end) THEN EXIT END;
WriteFrames.Show(F, pos - delta); DEC(delta, 20)
END -
END Show;

PROCEDURE Width(E: Elem) INTEGER;

VAR fnt: Fonts.Font; pat: Display.Pattern; i px, dx, X, y, w, h: INTEGER;
" BEGIN fnt := Fonts.This(ErrFont); i := 0; px :=0;
- WHILE Emsgli] # 0X DO
Display.GetChar(fnt.raster, Emsg[n] dx %y, wh, pat) INC(px, dx); lNC(l)

END;
“RETURN px + 6

END Width;

PROCEDURE ShowErrMsgx(E: Elem; F: Display.Frame; col: SHORTINT; x0, y0, dw: INTEGER);
VAR fnt: Fonts.Font; pat: Display.Pattern; i, px, rm, dx, x, y, w, h: INTEGER; ch: CHAR;
- BEGIN fnt := Fonts.This(ErrFont); i := 0; px = x0 + 3; rm =x0 + dw - 3; INC(yo 2);
LOOP ch = Emsgli]; INC(i);
IF ch = 0X THEN EXIT END;

46

Display.GetChar(fntraster, ch, dx, x, y, w, h, pat);

IF px + dx > rm THEN EXIT END;

Display.CopyPattern(col, pat pX +X, Y0 +y, Dlsplay invert); INC(px, dx)
END _ :
END ShowErrMsg;

PROCEDURE Expandx(E: Elem; unit: LONGINT);
VAR S: Texts.Scanner; T: Texts.Text; n: INTEGER; ch: CHAR; .
BEGIN NEW(T); Texts Open(T, ErrFile); Texts.OpenScanner (s, T,.0);
REPEAT Sline :=
REPEAT Texts. Scan(S) UNTIL S.eot OR (Sline #0)
UNTIL S.eot OR (Sclass = Texts.Int) & (Si = Eerr);
IF ~S.e0t THEN Texts.Read(S, ch); n = 0;
WHILE ~S.eot & (ch % CR) & (n + 1 < LEN(E. msg)) DO Emsg[n] = ch; INC(n); Texts.Read(s, ch) END;
Emsgln] := 0X; EW = Width(E) % unit; EDX := EW WriteTexts. ChangedEIem(E)
END
END Expand;

PROCEDURE Reducex(E: Elem);
BEGIN EW =3 % mm; EDX ="E.W; Emsg[0] = 0X; WriteTexts. ChangedEIem(E)
END Reduce;

PROCEDURE Deletex(E: Elem);

. VAR T: WriteTexts.Text; pos: LONGINT;
BEGIN T := WriteTexts.ElemBase(E);

IF T # NIL THEN pos = WnteTexts ElemPos(E); WritéTexts. Delete(T pos, pos + ‘1) END
END Delete;

P ROCEDURE Handlex(E: WriteTexts.Elem; VAR msg: Display.FrameMsg);
VAR e: Elem; pos: LONGINT; w, h: INTEGER,; keys, keysum: SET;
- BEGIN :
WITH E: Elem DO w = SHORT(EW DIV msg unit); h o= SHORT(E H DIV msg unit);
IF msg 1S WriteTexts.DrawMsg THEN. - -
" WITH msg: WriteTexts.DrawMsg DO - '
Display.ReplConst(15, msg.X0 +1, mngO +2,w-2,h, Display. replace), .
IF Emsg[0] # 0X THEN ShowErrMsg(E msgframe msg.col, msg.X0, msg.YO + 2 w) END
END
ELSIF msg 1S WriteTexts PrintMsg THEN o
WITH msg: WriteTexts.PrintMsg DO . .
Printer.Line(msg.X0 + 1, msg.Y0 + 2, w - 2, h)
END
ELSIF msg IS WriteTexts.CopyMsg TH EN
WITH msg: WriteTexts.CopyMsg DO : '
IF msge = NIL THEN NEW(e); msge = e ELSE e == msg.e(Elem) END;
eefr = Eerm; e msg = Emsg)
‘END
- ELSIF msg IS WnteFrames TrackMsg THEN
WITH msg: WriteFrames.TrackMsg DO
- IF msgkeys = {middleKey} THEN '
Oberon.RemoveMarks(msg.X0, msgY0, w, h); '
. .Display.ReplConst(15, msgX0 +2, msgY0'+ 3, W ~ 4, h 2, Display invert);
keysum = msgkeys; .
REPEAT Input.Mouse(keys, msgX, msg.Y); keysum = keysum + keys;
- Oberon.DrawCursor(Oberon.Mouse, Oberon., Arrow msgX, mng),
UNTIL keys = {}; :
Display.ReplConst(15, msg.X0 + 2, msg.Y0 + 3 w-4,h -2, Display. |nvert),
IF keysum = {middleKey} THEN "
IF E.msg[0] = OX THEN Expand(E, msg.unit) ELSE Reduce(E) END
ELSIF keysum {mlddleKey, leftkey} THEN Delete(E)
END
END ~
END
ELSIFmsg IS DeleteMsg THEN Delete(E)
ELSIF'msg IS LocateMsg THEN

WITH msg: LocateMsg DO pos = WriteTexts.ElemPos(E);
IF pos < msg,| pos THEN msgpos := pos END)
END
END
END
END Handle;

PROCEDURE InsertAt*(T WnteTextsText pos: LONGINT etr: INTEGER)
VAR e: Elem;
BEGIN NEW(e); WriteTexts.OpenElem(e, Handle 3% mm, 3% mm, 3 ¥ mm);

etemp = TRUE; e.ert := err; emsg[0] := OX WriteTexts.InsertElem(T, pos, €)
END InsertAt; R .

(** commands *¥)

- PROCEDURE Unmarksx;
VAR F: WriteFrames.Frame; msg DeleteMsg,
BEGIN F.:== MarkedFrame(); .
 IF F# NILTHEN WriteTexts. Broadcast(Ftext(WnteTexts Text) 0, Fiextlen, msg) END
END Unmark;

PROCEDURE Marki; o
" VAR F: WriteFrames.Frame; S: Texts.Scanner; T: WriteTexts Text; -
text: Texts.Text; beg, end, time, pos, delta: LONGINT; err; INTEGER;
BEGIN Unmark; F := MarkedFrame(); Oberon.GetSelection(text, beg, end, time); delta := 0;
IF (F # NIL) & (time >= lastTime) THEN lastTime- = time; T := F.text(WriteTexts Text);
Texts.OpenScanner(S, text, beg); T
LOOP Slirie := 0 _ : ' ‘
REPEAT Texts.Scan(S) UNTIL S.eot OR (Sline # 0) OR (S.class = Texts.Int);
IF S.eot OR (Sline # 0) THEN EXIT END '
pos = S.i; :
REPEAT Texts.Scan(S) UNTIL S.eot OR (Sline # 0) ‘OR (S.class = Texts.| Int);
IF S.eot OR (Sline # 0) THEN EXIT END;
err ;= SHORT(S.i); InsertAY(T, pos + delta, err); INC(delta);
REPEAT Texts.Scan(S) UNTIL S.eot OR (Sline # 0)
END
END *
END Mark;

’ PROCEDURE Locai:eNext*,
VAR F: WriteFrames.Frame; msg: LocateMsg, beg LONGINT
BEGIN F := MarkedFrame();
IF F # NILTHEN msg.pos = MAX(LONGINT)
IF FhasCar THEN beg := F.carLoc.pos ELSE beg := 0 END;
WriteTexts.Broadcast(F text(WriteTexts.Text), beg, Ftextlen, msg); -
IF msgpos < MAX(LONGINT) THEN Show(F, msg.pos); WriteFrames.! SetCaret(F msg.pos + 1) END
END
END LocateNext;

BEGIN font = FontksThls(ErrFont) Texts. Opeanter(W) lastTime = -1
END ErrorElems.

47

‘Gelbe Berichte des Departements Informatik

133
134

135
136
137

138

139

140
141
142
143

144

145

146

147
148
- 149

150

J. Templ
G. Wong

C. Wieland

'H.-J. Schek, M.H Scholl

G. Weikum
G. Weikum, C. Hasse,

A. Ménkeberg, P. Zabback

J. Gutknecht

P.E. Saylor, D.E. Smolarski

N. Wirth

oM. Franz

M. Franz

N. Wirth

J.L. Marais

J. Méssenbdck

H.E. Meier

G. Weikum, P. Zabback,
P. Scheuermann

D. Degiorgi

A. Moenkeberg, -
G. Weikum

‘M.H. Scholl C. Laasch,

M. Tresch

SPARC-Oberon User’s Guide

An Approach on How to Combine Object
Recognition Methods

“Two Explanatlon Facilities for the Deductive

Database Management System DeDEx

From the KERNEL to the COSMOS: The
Database Research Group at ETH Zlrich

The COMFORT Project: A Comfortable Way
to Better Performance

The Oberon Guxde. System Release 1.2

Implementatlon of an Adaptlve Algonthm for

'Rlchardson s Method-

Die Programmiersprache Oberon
The Implementation of 'MacOberon
Mac(ﬁ_beron Reference Manual

From Modula to Oberon

The Programming Language Oberon
(revised edition)

The GADGETS User Interface Management
System

She: A Simple Hypertext Editor for

" Programs

Schriftgestaltung mit Hilfe des Computers

Typographische Grundregeln

Dynamic File Allocation in Disk Arrays
A New Linear Algorithm to Detect a Line
Graph and Output its Root Graph

Conflict-Driven Load Control for the
Avoidance of Data-Contention Trashing -

Updatable Vlews in ObJect-Orlented

Databases

