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Abstract

The present work is concerned with the enhancement, evaluation and deployment of the
digital Zenith Camera DIADEM (Digital Astronomical Deflection Measuring System).
DIADEM represents an important instrument of astrogeodesy and is applied for local
geoid determinations by means of deflections of the vertical (ξ, η) (DOV). These compo-
nents describe the difference between astronomical parameters (Φ,Λ) referring to the
geoid and GPS-derived coordinates (ϕ, λ) referring to the ellipsoid.

The first part of the work deals with the enhancement of DIADEM aiming at the fully-
automatic and economic determination of highly-precise DOV. The system is equipped
with a CCD camera for the exposure of the zenithal star field, a GPS receiver providing
epoch and position information and two types of inclination sensors controlling the
vertical alignment of the Zenith Camera. Furthermore, the instrument possesses nine
motors allowing for the steering of all necessary instrumental motions. The processes are
controlled by two industrial PCs. A complex software package manages the data acquisi-
tion process comprising the leveling of the system, the adaption of the focus, the exposure
of the images in two positions and the registration of corresponding exposure epochs
and inclination data. A further software package allows for the subsequent data analysis
in the field. The whole observation process including the data acquisition and analysis
of 80-100 single solutions takes about 35-45 minutes per station.

In order to evaluate the field capability of DIADEM, several measuring campaigns were
conducted in Switzerland, Portugal and Greece. They proved the extreme reliability
of the system also under harsh conditions, such as in mountainous regions and at very
low temperatures. An elaborate instrumental calibration and error analysis as well as
comparison measurements with a second digital Zenith Camera (TZK2-D of University
Hannover) demonstrated the high potential of DIADEM providing DOV with an accuracy
of better than 0.15 arcsec.

The second part of the work describes the organization and realization of DIADEM
measurements in the North Aegean Sea, Greece, as well as the thorough analysis of
the DOV observed. Totally, 27 ξ- and η-components at several islands and along the
coastline of the North Aegean Sea have been determined. The data analysis included the
geophysical interpretation of the data as well as the final computation and evaluation of
a local astrogeodetic geoid.

The research area has been chosen for two main reasons: Firstly, due to its location
in the transition zone between the Eurasian and African plates, it forms a tectonically
and seismically interesting region. It is dominated by the North Aegean Trough (NAT),
which is considered to be a continuation of the seismically active North Anatolian
Fault Zone. Secondly, the research area provides several data sets for comparison and
validation, e.g. gravimetric and altimetric data as well as GPS-derived Sea Surface
Heights (SSH).
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For the geophysical interpretation, the DOV have been reduced for mass effects including
a Digital Terrain Model, the isostasy model of Airy-Heiskanen and the Moho model
of Tsokas and Hansen [1997]. The analysis of isostatic cogeoid revealed a mass excess
along the NAT, hence indicating an isostatically overcompensated region. Furthermore,
this supports the assumption of extensional tectonic processes being active in the
North Aegean Sea. The interpretation of the Moho-reduced DOV indicated significant
discrepancies of the Moho model concerning depth and location of local maxima and
minima. The respective cogeoid revealed - similar to the isostatic cogeoid - a rising
Moho along the NAT. This allows for the conclusion that the Moho model is too deep
there.

The final geoid computation has been realized by applying the least-squares-collocation
method to the residual DOV in a first step and by restoring the reduced mass effects
in a second step. The Astro geoid and a combined geoid from DOV and SSH reflect
well the topographic and bathymetric features of the research area. Especially, the mass
deficit associated with the deep water of the NAT is indicated by a clear depression of
the geoid. The geoid variations in NS-direction across the NAT amount up to 2.6 m.
The combined geoid solution has been compared with altimetric and gravimetric geoid
solutions available for the research area. Significant discrepancies in the existing geoid
models have been detected. The new geoid reflects much better the shape and depth
distribution of the NAT. In the marine area, the differences between the gravimetric
geoid and the new model reach ±3 m. These discrepancies can be mainly ascribed to
the deficiency of marine gravity and altimetry data used for the computation of the
gravimetric and altimetric geoid.



Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Weiterentwicklung, der Evaluierung und
dem Einsatz der digitalen Zenitkamera DIADEM (Digital Astronomical Deflection
Measuring System), welche ein bedeutendes Instrument der Astrogeodäsie darstellt. Die
Kamera dient der Bestimmung von Lotabweichungskomponenten (ξ, η) für die lokale
Geoidbestimmung. Die Komponenten (ξ, η) repräsentieren den Unterschied zwischen
den schwerefeldabhängigen astronomischen Parametern (Φ,Λ) und den mittels GPS
bestimmten ellipsoidischen Koordinaten (ϕ, λ).

Der erste Teil der Arbeit beschäftigt sich mit der Weiterentwicklung des Messsys-
tems, mit dem Ziel, eine vollautomatische und ökonomische Bestimmung hochpräziser
Lotabweichungskomponenten zu ermöglichen. Die modernisierte Zenitkamera DIADEM
verfügt über eine CCD-Kamera zur Aufnahme des zenitalen Sternfeldes, einen GPS-
Empfänger zur Bestimmung der Belichtungsepochen und der Position, sowie zwei unter-
schiedliche Typen von Neigungssensoren zur Kontrolle der vertikalen Aufstellung des In-
struments. Des weiteren besitzt DIADEM insgesamt neun Motoren, welche die Steuerung
aller notwendigen Bewegungen des Instruments ermöglichen. Eine komplexe Software
überwacht den Datenerfassungsprozess, welcher die Horizontierung, Fokussierung, Bil-
daufnahme sowie Registrierung der Belichtungsepochen und Neigungsdaten umfasst.
Eine weitere Software ermöglicht die anschliessende Auswertung der Daten im Feld. Der
gesamte Prozess, von der Datenerfassung mit 80-100 Einzellösungen bis zum Abschluss
einer ersten Auswertung, dauert ca. 35-45 Minuten.

Zur Validierung der Feldtauglichkeit des Instruments wurden verschiedene Messkam-
pagnen in der Schweiz, Portugal und Griechenland durchgeführt. Sie bewiesen die
extreme Zuverlässigkeit des Instruments, selbst unter schwierigen Bedingungen, wie
tiefe Temperaturen und unwegsames Gelände. Die ausführliche instrumentelle Kalib-
rierung und Fehleranalyse sowie Vergleichsmessungen mit einer zweiten digitalen Zen-
itkamera (TZK2-D) demonstrierten das hohe Genauigkeitspotential von DIADEM. Die
Lotabweichungen können mit einer Genauigkeit von besser als 0.15 arcsec bestimmt
werden.

Der zweite Teil der Arbeit befasst sich mit der Organisation und Durchführung von
Beobachtungen mit DIADEM im Nordägäischen Meer, Griechenland, sowie der gründlichen
Analyse der beobachteten Lotabweichungen. Insgesamt wurden 27 Lotabweichungen auf
verschiedenen Inseln und entlang der Küste der Nordägäis bestimmt. Die Datenanal-
yse umfasst die geophysikalische Interpretation der Daten sowie die Berechnung und
Validierung eines lokalen astrogeodätischen Geoids.

Das Messgebiet wurde aus zwei Gründen gewählt: Zum einen stellt es eine tektonisch
und seismisch sehr interessante Region dar, da es sich in der Übergangszone zwis-
chen der Eurasischen und Afrikanischen Platte befindet. Das Einsatzgebiet wird durch
den Nordägäischen Graben (NAT) geprägt, welcher eine Fortsetzung der seismisch
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aktiven Nordanatolischen Faltung darstellt. Zum anderen stehen im Gebiet unter-
schiedliche Datensätze zum Vergleich und zur Validierung der astronomischen Ergebnisse
zur Verfügung, wie z.B. gravimetrische und altimetrische Daten sowie GPS-bestimmte
Meeresoberflächen-Höhen.

Um eine geophysikalische Analyse der Lotabweichungen zu ermöglichen, wurden die
Daten um Masseneinflüsse reduziert, welche mittels entsprechender Massenmodelle
berechnet wurden. Dazu gehören ein digitales Geländemodell, das isostatische Modell
von Airy-Heiskanen sowie das Moho-Modell von Tsokas and Hansen [1997]. Das iso-
statische Cogeoid zeigt einen Massenüberschuss entlang des Nordägäischen Grabens,
was auf eine isostatisch überkompensierte Region hindeutet. Ausserdem kann auf exten-
sionale tektonische Prozesse in der Region geschlossen werden. Die Interpretation der
Moho-reduzierten Lotabweichungen ermöglichte die Detektion signifikanter Unterschiede
gegenüber dem Moho-Modell, hauptsächlich hinsichtlich der Tiefenvariationen und der
Lage lokaler Minima und Maxima. Das entsprechende Cogeoid zeigt - ähnlich wie das
isostatische Cogeoid - eine Aufwölbung der Krusten-Mantel-Grenze (Moho) entlang des
Nordägäischen Grabens. Das gibt den Hinweis, dass das Moho-Modell in dieser Region
zu tief verläuft.

Die Berechnung des Geoids erfolgte durch Einführung der residualen Lotabweichungen in
eine Kollokations-Software. Die eingangs reduzierten Masseneinflüsse wurden rechnerisch
wieder berücksichtigt. Das Astro-Geoid sowie ein kombiniertes Geoid aus Lotabweichun-
gen und Meeresoberflächen-Höhen spiegeln die topographischen und bathymetrischen
Eigenschaften des Forschungsgebietes sehr gut wider. Besonders das durch das tiefe
Wasser des Nordägäischen Grabens hervorgerufene Massendefizit wird durch eine deut-
liche Vertiefung des Geoids in diesem Gebiet reflektiert. Die Geoidhöhen-Variationen
in NS-Richtung über den Graben betragen bis zu 2.6 m. Die kombinierte Geoidlösung
wurde mit dem altimetrischen und gravimetrischen Geoid verglichen, welche im Ein-
satzgebiet zur Verfügung stehen. Es konnten signifikante Diskrepanzen der existierenden
Geoidmodelle nachgewiesen werden. So spiegelt das neue Geoidmodell viel besser die
typische Form und Massenverteilung des Nordägäischen Grabens wider. Im marinen
Bereich betragen die Differenzen zwischen gravimetrischem Geoid und neuem Modell
bis zu ±3 m. Sie sind hauptsächlich auf einen Mangel an marinen gavimetrischen bzw.
altimetrischen Daten für die Berechnung des gravimetrischen bzw. altimetrischen Geoids
zurückzuführen.
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1 Introduction

1.1 Rationale and Goals

The determination of a precise and high-resolution geoid is subject of many research
projects and the main concern of national surveying institutes. Especially in the last
years, the theoretical and practical methods for geoid determination were strongly ad-
vanced, hence centupling the receivable accuracy within the last three decades. By
now, an accuracy of a few "cm" and "mm" is reachable depending on time and ef-
fort.

The geoid as the equipotential surface coinciding with the mean sea level is an important
reference surface for height systems. It is formed by the distribution of masses on and
inside the earth. Density and mass variations in the earth’s crust become noticeable in
short wavelength signals, whereas deep-rooted structures inside the earth rather produce
long wavelength signals. With the advent of satellite-based measuring techniques, it
became mandatory to improve our knowledge about the earth’s gravity field. The
connection between GPS-based coordinates referring to a geometrically defined reference
ellipsoid and terrestrial data referring to the geoid can only be achieved by considering
the lateral changes of the equipotential surfaces of the earth’s gravity field. The geoid is
generally described in terms of geoid undulations with respect to the reference ellipsoid
(e.g. WGS84). It shows strong undulations, with the most negative geoid height in the
Indian Ocean (-106 m) and the most positive height over Indonesia and in the Northern
Atlantic (85 m).

There exist various methods of geoid determination. Due to their sensitivity on gravity
field variations some methods, as e.g. satellite missions, are more suitable to observe
long wavelength structures of the geoid, while terrestrial methods rather detect short
wavelength signals produced by the topography. A valuable terrestrial data set is formed
by directions of the vertical representing the normal vectors to the geoid. They can be
obtained by observations with a Zenith Camera, an important instrument of Astrogeodesy.
By comparing the directions of the vertical, expressed by the astronomical parameters
(Φ,Λ), with GPS-derived quantities (ϕ, λ), deflections of the vertical (DOV) can be
derived. They are represented by a N-S-component ξ and a W-E-component η. Their
knowledge is important for local precise geoid determinations, especially in mountainous
areas such as the European Alps.

The present Ph.d.thesis can be split into two main parts:

X The first part of the work is concerned with the enhancement and validation of the
modernized Zenith Camera, called Digital Astronomical Deflection Measuring
System (DIADEM). The astrogeodetic instrument follows a long tradition at the
Geodesy and Geodynamics Laboratory (GGL) of ETH Zurich. Since 1983, it has been
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frequently deployed in different countries, as e.g. in Switzerland, Portugal, Spain,
German and Canada, hence contributing to national gravity field determinations.
In order to upgrade the instrument to the state-of-the-art, it has been subject to
several reconstruction works during the last years. The main important advancement
comprised the implementation of digital photo technique using a CCD camera. In the
frame of the project, DIADEM has been further advanced in terms of hardware and
software developments aiming at the automation and real-time processing of Zenith
Camera observations. The goal was to provide highly-precise DOV with an accuracy of
better than 0.2 arcsec. The field capability of DIADEM concerning handling, economy
and data quality has been proved by dedicated field campaigns, as e.g in the frame
of the planned CHGeo2003 project (under the auspices of the Swiss Federal Office of
Topography). Also comparison measurements with a second digital Zenith Camera, the
TZK2-D, developed at the "Institut für Erdmessung" of the University of Hannover,
have been conducted. They aimed at the validation of the accuracy potential of
DIADEM and the investigation of error influences, as e.g. caused anomalous refraction.
Furthermore, the instrument has been analyzed thoroughly with regard to instrumental
and external errors.

X The first part of the work provided the conditions for the realization of the second
part: the deployment of DIADEM in the North Aegean Sea, Greece. The campaign
was a cooperation between the GGL and the Aristotle University of Thessaloniki
(AUTH), Greece. The final goal was the computation of an astrogeodetic geoid as
well as the geophysical interpretation of the data with focus on isostatic aspects. Due
to the distinctive topographic, bathymetric and tectonic features of the project area,
it forms an interesting domain for research. The Aegean Sea represents one of the
tectonically and seismically most active regions in the world because of its location
in the transition zone between Eurasian and African plate. The area of interest is
situated within 38◦ < ϕ < 42◦ northern latitude and 22◦ < λ < 27◦ eastern longitude
and covers the northern part of the Aegean Sea. The region is characterized by
the North Aegean Trough (NAT), which is considered to be a continuation of the
seismically active North Anatolian Fault Zone. It forms an elongate zone of deep water
with a maximum depth of 1500 m. Existing local gravimetric and altimetric geoid
models, calculated at the AUTH, show long wavelength errors due to the deficiency
of marine data. Therefore, DOV have been observed at several islands and along
the coastline of the North Aegean Sea. In the frame of another Ph.D. project at the
GGL, parallel shipborne GPS and GPS buoy measurements have been performed
aiming at the determination of Sea Surface Heights (SSH). Based on the DOV, the
computation of a local astrogeodetic geoid has been realized. A second version of a
geoid has been calculated by additionally introducing the SSH data. The combined
geoid has been evaluated by comparing it to existing geoid models. Furthermore, the
DOV have been interpreted thoroughly under isostatic aspects, especially with regard
to the topography of the Moho discontinuity. Therefore, dedicated mass models as
topography, isostasy and Moho models have been implemented into the process of
data analysis. This allowed for conclusions about the quality of the used isostatic
models and the Moho model, respectively, and, furthermore, it provided information
about unconsidered masses and density anomalies inside the earth.
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The goals can be summarized as follows:

Part 1 - Instrumentation:
a) Enhancement of DIADEM in terms of hard- and software
b) In-depth error investigation and calibration of the instrument
c) Verification of the field capability of DIADEM by dedicated field campaigns (e.g.
CHGeo2003 project of swisstopo)
d) Parallel measurements with the digital Zenith Camera TZK2-D of Hannover
e) Evaluation of the accuracy potential of DIADEM

Part 2 - Field application:
a) Deployment of DIADEM in the North Aegean Sea, Greece
b) Reduction of the DOV by applying dedicated mass models
c) Computation of different cogeoid solutions and isostatic interpretation
d) Computation of an astrogeodetic geoid based on DOV
e) Computation of a combined geoid based on DOV and SSH
f) Evaluation of the final geoid by comparing it with other gravity field models

1.2 State of research

1.2.1 Astrogeodetic instruments

The main task of astrogeodesy is the determination of astronomical latitudes, longitudes
and azimuths within an earth-fixed reference system by observing celestial objects
(fixed stars, planets, sun and moon). The celestial objects are defined in a space-fixed
reference system, which can be related to the earth-fixed system by considering effects
as earth rotation, precession, nutation and polar motion. The directions derived by
astrogeodetic observations provide the basis for the realization of diverse objectives,
as e.g. the determination of the geoid by astronomical leveling, the determination of
structures and densities inside the earth, the orientation and constraint of geodetic
networks, the determination of fluctuations of the pole and in the earth’s rotation
as well as contributions to the definition of terrestrial and celestial reference systems.
Typical instruments deployed are theodolites and tachymeters. Besides, there exist special
astronomical and astrometric instruments based on visual, photographic or electro-optical
principle. One of these special instruments is the Zenith Camera for the determination
of deflections of the vertical.

In the seventies and eighties, photographic Zenith Cameras have been developed at
several institutes in Europe. They have been successfully deployed for the determination
of directions of the vertical. Hence, at the University of Hannover, the Transportable
Zenith Cameras TZK1 and TZK2 have been designed providing directions of the vertical
with an accuracy of about 0.5 arcsec (Gessler [1975], Wissel [1982], Wildermann [1988]).
The successional instrument, the TZK3, has been developed in cooperation between
the University of Hannover and the GGL of ETH Zurich, Switzerland (Bürki [1989].
The instrument is constructed in the same way as the TZK2, hence providing similar
accuracies. Further developments have been carried out in Italy and Austria (Chesi
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[1984]). In the eighties, Zenith Cameras represented one of the most economic instruments
for an astrogeodetic determination of directions of the vertical. Nevertheless, the time
need was relatively high, mainly caused by the laborious measuring of the analog photos.
Due to an increasing availability of gravimetric and satellite data, the astrogeodetic
method underwent a recession during the following years.

The advent of CCD technology opened a new field for astrogeodetic instruments, hence
allowing for a digital data analysis in connection with a real-time provision of the results.
Furthermore, CCD sensors provide a higher sensitivity than photo plates, which enables
the observation of a significantly increased number of stars. These advantages caused
the initiation of new research projects at several European institutes concerned with the
implementation of CCD technology in astrogeodetic instruments:

X At the University of Munich, a CCD Zenith Camera has been designed providing
directions of the vertical in connection with GPS-derived positions (Fosu [1999],
Schöbel and Eissfeller [2000]). The internal accuracy has been indicated with 0.3
arcsec, however, the external accuracy is for a multiple worse.

X At the University of Vienna, a theodolite has been equipped with a high-resolution,
though, not very light-sensitive CCD sensor. The internal accuracy obtainable ranges
between 1 to 2 arcsec (Gerstbach [1999]).

X At the University of Hannover, the TZK2 has been upgraded to the TZK2-D using
CCD technology and integrated GPS technique (Hirt [2004]). The obtained internal
accuracy ranges between 0.1 and 0.3 arcsec. The external accuracy is denoted by
about 0.1 arcsec.

At the GGL, intensive research at the field of astrogeodesy using digital technique has
been conducted. Hence, a Leica tachymeter system, type TC1800, has been equipped
with a CCD sensor. The system, called DAEDALUS, enables the automatic tracking of
stars along the whole skyline measuring azimuths and zenithal angles of the stars. The
obtainable accuracy for the resulting directions of the vertical is better than 1 arcsec. A
lot of effort has been investigated in the enhancement of the analog TZK3. The new
digital Zenith Camera DIADEM disposes of CCD and GPS technology as well as several
servo motors for leveling, focussing and azimuthal turning. Therewith, it offers the
possibility for a fully-automatic and completely PC-controlled observation. Furthermore,
the close cooperation with the University of Hannover provides the possibility to use the
software package AURIGA for a real-time analysis of the data in field. These conditions
form the initial situation for the present Ph.d. project.

1.2.2 Geoid determination in Greece

From the early seventies on, systematic attempts for precise geoid determination have
been carried out in the Hellenic area. Hence, Balodimos [1972] presented the first
Hellenic geoid by using astrogeodetic-derived DOV, while Arabelos [1980] published
a gravimetric solution some years later. Based on these spadeworks, Tziavos [1984]
computed a combined geoid from astrogeodetic and gravimetric data. Almost at the
same time, another geoid determination has been presented by Doufexopoulou-Patsada
[1985] with emphasis on geophysical parameters related to the gravity field. A first
comparison between the various geoid solutions in the Hellenic area has been performed
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by Fotiou et al. [1986]. A still more detailed gravimetric geoid solution has been presented
by Arabelos and Tziavos [1989]. In Arabelos and Tziavos [1990], a comparison between
the gravimetric geoid for the southern Hellenic area and Geosat altimetry data has
been conducted. The recent gravimetric geoid model HGFFT98 has been published
by Tziavos and Andritsanos [1999]. It is based on an optimal combination of free-air
gravity anomalies for the land area as well as gravity data for the marine area derived
from altimetry and a digitization of sea gravity maps. Furthermore, information from a
Digital Terrain Model with a resolution of 1 km and the geopotential model EGM96 have
been implemented. A comparison of the HGFFT98 geoid with the current European
Gravimetric Geoid 1997 (EGG97) showed differences of about 75 cm standard deviation.
Another comparison in the marine area between HGFFT98 geoid heights and a number
of SSH derived from the Topex/Poseidon mission revealed differences with a standard
deviation of about 31 cm in the North Aegean Sea. A last evaluation in the continental
area using GPS/leveling stations in northern Greece and in the central-western part
of Greece revealed an accuracy of about 9 cm. With regard to these results, it has
been concluded that further improvements of the Hellenic Geoid are necessary, mainly
achievable by filling the major data gaps in the marine area (Tziavos and Andritsanos
[1999]). Apart from the gravimetric geoid, an altimetric geoid has been computed for
validation purposes (Tziavos et al. [2005]). It is based on the combination of altimetric
data from the ER (European Remote) missions of ERS1/2 and TOPEX/Poseidon
satellites. Also the EGM95 and bathymetric effects have been taken into account. A
problem of the altimetric solution is caused by the fact that altimeter satellites are not
able to measure over land, and that they also have problems receiving a signal over
marine areas close to coastlines. Hence, especially in the North Aegean Sea, the coverage
by altimetric data is very low due to the islands and the surrounding coastline to the west,
north and east. This likewise demonstrates the need for additional marine data within the
research area, which will be provided by the present Ph.d. project.

1.3 Structure of the thesis

Based on the goals of the project, the thesis is structured into 10 chapters. Chapter
1 starts with an introduction into the rationale and goals of the project (1.1) and
reflects the present state of research in the field of astrogeodetic instruments and geoid
determination in the Hellenic area (1.2). Chapter 2 provides basic skills (2) that are
necessary in connection with the present work. It overviews geodetic fundamentals
concerning reference systems (2.1), star catalogs (2.2), time scales (2.3) and height
systems (2.4).

The first part of the project deals with the enhancement and validation of the Digital
Astronomical Deflection System DIADEM: Chapter 3 explains the principle of the
determination of DOV (3.1) and provides a depiction of the technical features of DIADEM
(3.2). Chapter 4 outlines a measuring procedure with DIADEM comprising the process
of data acquisition (4.1), data analysis (4.2), necessary corrections (4.3) and calibrations
(4.4). Chapter 5 discusses the main internal and external error sources affecting the
determination of the rotational direction (5.2), inclination measurements (5.3), epoch
determination (5.4), azimuthal corrections (5.5) and geodetic position (5.6). Chapter 6
is finally concerned with the field applications performed during the last four project
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years comprising observations in Switzerland (chapters 6.1, 6.3, 6.4) and Portugal (6.2).
It also includes the discussion of the results of repeated observations with DIADEM at
the reference station in Zurich (6.5).

The second part of the project refers to the deployment of DIADEM in the North
Aegean Sea, Greece: Chapter 7 introduces the topographic, bathymetric and tectonic
features of the North Aegean Sea domain (7.2). Furthermore, it outlines the available
geoid models in the Hellenic area (7.3). It also represents the data gathered during
the campaign (7.4) including the DOV observed by DIADEM as well as the shipborne
GPS data and GPS buoy measurements. Chapter 8 is concerned with the reduction of
the observed DOV in the frame of the Remove-Restore method applied. Therefore, the
mathematical background for the computation of mass effects is explained (8.2). The mass
models used like the Shuttle Radar Topography Mission model (8.3), different isostasy
models (8.4) and the Moho model from the Aristotle University of Thessaloniki (8.5) are
described thoroughly. The chapter finishes with the presentation and interpretation of
the reduced DOV (8.6). Chapter 9 attends to the computation of the geoid starting
with a survey of different methods of geoid determination (9.1). The principle of least-
squares-collocation is explained (9.2), and the computed cogeoid and geoid models are
discussed and validated (9.3). Chapter 10 finally summarizes and discusses the main
results presented within this thesis and gives an outlook on potential future works to be
done.
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2 Basic knowledge

2.1 Reference systems

2.1.1 Introduction

In geodesy, there exist three classes of reference systems: space-fixed celestial systems,
earth-fixed terrestrial systems and local or topocentric systems. This work focuses on
celestial and terrestrial reference systems as the main important systems of astrogeodetic
observations with a Zenith Camera. Celestial systems are extra-terrestrially determined
and define the position of stars and their proper motions. Terrestrial systems are used for
the definition of positions on earth and can be divided into gravity-field dependent (astro-
nomical) and gravity-field independent (ellipsoidal) systems. It has to be differed between
a reference system defining the origin, axes and constants of the coordinate system and
a reference frame realizing the system by means of coordinates of objects and points
(see e.g. Torge [2001], Rummel [2005] and Homepage of International Earth Rotation
and Reference Systems Service IERS: http://www.iers.org/).

2.1.2 Celestial reference systems

International Celestial Reference System

In the past, space-fixed systems have been realized by methods of astronomy defin-
ing the coordinates of stars. Star catalogs like the FK5 or the Hipparcos catalog served
as reference frames. Nowadays, a more precise realization of the celestial reference system
is provided by the observation of so called extraterrestrial quasi-stellar radio sources
(quasars) by means of VLBI (Very Long Baseline Interferometry). Quasars have the
advantage that they do not show proper motions due to their great distances. Therefore,
they can be regarded as space-fixed, hence coming close to an inertial system (no pseudo
forces). The International Celestial Reference Frame (ICRF) contains fixed directions to
about 608 extragalactic radio sources evenly distributed on the sky and determined with
an accuracy of better than 0.3 mas. The axes of the International Celestial Reference
System (ICRS) correspond to those formerly realized by the FK5 catalog at epoch
J2000.0. The main important definitions concerning the ICRS can be found in Tab.
2.1.
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Definition: International Celestial Reference System ICRS
Realization: International Celestial Reference Frame ICRF
Observation methods: VLBI, HIPPARCOS and FK5 catalog
Reference: 600 quasars
Origin: Barycenter of the solar system
Orientation:
X-Y-plane: Mean celestial equatorial plane at epoch J2000.0
X-axis: Mean vernal equinox at epoch J2000.0
Z-axis: ICRS Reference Pole at epoch J2000.0
Y-axis: Completion of a right-hand system
Coordinates: Equatorial coordinates: Right ascension α, Declination δ

Table 2.1: Details to the celestial reference system.

Equatorial coordinate system

The positions of stars are given in equatorial coordinates by means of right ascen-
sion α and declination δ. The definition of the equatorial coordinate system refers to the
ICRS. The origin coincides with the geocenter, while the ICRS origin is normally defined
in accordance with the mass center of the solar system (barycenter). Theoretically, the
observed directions to the stars depend on the reference position (geocenter or barycen-
ter), caused by parallax effects. However, because of the great distances of the stars,
these differences can be neglected. The right ascension α is measured in the equatorial
plane (X-Y-plane) referring to the vernal equinox (X-axis) and ranging from 0◦ to 360◦
or 0h to 24h, respectively. The declination δ is measured from the equatorial plane along
the meridian of the star and ranges from -90◦ to 90◦ (Fig. 2.1).

2.1.3 Terrestrial reference systems

International Terrestrial Reference System

The International Terrestrial Reference System (ITRS) is a global, geocentric, cartesian
and earth-fixed reference system. The main important definitions concerning the ITRS
can be found in Tab. 2.2. Each point on earth is designated by a natural direction, the
direction of the local plumb line standing orthogonally to the equipotential surfaces of
the earth’s gravity field. In ITRS, this direction is defined by the astronomical latitude
Φ and longitude Λ (Fig. 2.1). The latitude Φ is counted from the equatorial plane
(X-Y-plane) to the direction of the vertical ranging from -90◦ to 90◦. The longitude
Λ represents the angle between Greenwich and local meridian that runs through the
direction of the vertical. It ranges from 0◦ to 360◦ or -180◦ to 180◦, respectively. The
ITRS is realized by the International Terrestrial Reference Frame (ITRF) by means of a
list of station coordinates, velocities and corresponding accuracies. In former times, the
station coordinates have been received from astronomical position determinations and
geodetic networks. Today, more precise spatial methods, as e.g. VLBI, SLR, LLR and
GPS are used for this purpose (Rummel [2005]).
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Definition: International Terrestrial Reference System ITRS
Realization: International Terrestrial Reference Frame ITRF
Observation methods: VLBI, SLR, LLR, GPS, DORIS
Reference: Station coordinates, velocities
Origin: Mass center of the earth (including atmosphere and oceans)
Orientation:
X-Y-plane: Earth’s equatorial plane
X-axis: Greenwich meridian
Z-axis: IERS Reference Pole IRP
Y-axis: Completion of a right-hand system
Coordinates: Cartesian coordinates (X,Y,Z)

Table 2.2: Details to the terrestrial reference system.

Ellipsoidal coordinate system

The earth can be mathematically approximated by a spheroid, described by a 3D-
cartesian coordinate system. The geodetic coordinates are represented by the latitude
ϕ and longitude λ. The latitude ϕ is measured from the equatorial plane (X-Y-plane)
to the ellipsoid normal in point P. The longitude λ is measured in the equatorial plane
between the zero-meridian and the meridian through station P. The mean global ellipsoid
(WGS84) agrees best-possible with the geoid and coincides with the ITRS axes and the
geocenter. In contrast, conventional ellipsoids are normally shifted to the geocenter and
rotated in comparison to the ITRS. They are adapted to the local gravity field, and their
definition is subject of the national surveying institutions. The transformation between
global and conventional ellipsoid can be realized via a 3D Helmert transformation (7
parameters) (Torge [2001]).

2.1.4 Orientation between terrestrial and celestial
systems

The relative orientation between earth-fixed ITRS and space-fixed ICRS is defined by
the Earth Orientation Parameters (EOP). They describe the variations of the earth’s
rotation around the Celestial Ephemeris Pole (CEP), which corresponds to the instan-
taneous rotational axis of the earth1. The EOP are determined permanently by the
International Earth Rotation and Reference Systems Service (IERS) and are public
accessible via internet (IERS homepage: http://hpiers.obspm.fr/). They comprise the
following phenomena:

X Precession and Nutation: These effects cause variations of the instantaneous earth’s
rotational axis (CEP) in reference to the ICRS Reference Pole at epoch J2000.0. Hence,
the CEP can not be considered as space-fixed.

X Earth’s rotation: The daily rotation around the CEP is defined by the Greenwich
Apparent Sidereal Time (GAST).

1The CEP corresponds to the instantaneous rotational axis of the earth except for short-periodic
variations with amplitudes of less than 10 mas. For the analysis of the Zenith Camera observations,
these deviations have been neglected (Hirt [2004]).
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X Polar motion: The CEP moves relatively to the IERS Reference Pole (IRP) and can,
therefore, not be considered as earth-fixed.

The effects are described in detail in chapter 2.1.5.

Figure 2.1: Depiction of space-fixed ICRS (black) with equatorial coordinates (α, δ),
and earth-fixed ITRS (light-gray) with astronomical parameters (Φ,Λ). They are
linked via Greenwich Apparent Sidereal Time GAST.

As for the analysis of Zenith Camera observations, the effects of nutation and preces-
sion are included in the computation of apparent star positions (chapter 2.2.4). The
orientation angle GAST between ITRS and ICRS is considered within the process of
the determination of the rotational direction (ΦD,ΛD) (chapter 4.2.5 and Fig. 4.4). The
polar motion parameters (xP , yP ) are applied as final corrections to (ΦD,ΛD) (chapter
4.3).

2.1.5 Earth Orientation Parameters

This chapter will provide a survey of the Earth Orientation Parameters (EOP) comprising
the effects of precession, nutation, polar motion and earth rotation. More details
concerning the EOP can be found in Sigl [1991], Seeber [2003], Torge [2003] as well as at
the IERS homepage (http://www.iers.org/).
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Precession and nutation

Sun, moon and other planets cause an attraction at the equator bulges. The resulting
torsional moments try to turn the equatorial plane into the ecliptic, or in other words,
to set up the axis of the earth. According to the gyroscopic laws, and as a result of
the interaction between the described torsional moments with the earth’s rotation, the
rotational axis deviates orthogonally both to the rotational axis of the earth and the
acting momentum. It describes a cone-shaped shell around the pole of ecliptic. This
process is called precession. A complete circulation of the earth’s axis lasts 25800 years
(= 1 platonic year), the cone angle corresponds to two times of the ecliptic obliquity
(ε = 23.5◦). The main part of the precession (about 50 arcsec/yr) is caused by sun and
moon (=lunisolar precession), a substantial smaller part (-0.12 arcsec/yr) is caused by
other planets.

From the physical point of view, the nutation has its origin in the same phenomena as
the precession, however, it is mainly caused by the attraction of the moon. As the moon’s
orbital plane is inclined by about 5.1◦ against the ecliptic, the varying declination of the
moon causes an elliptically-shaped motion of the apparent earth’s axis around a mean
one, and, therewith linked, a libration of the apparent vernal equinox around a mean
one. The sum of precession and nutation results in a wave-like motion of the earth’s
axis around the pole of ecliptic. Due to the described phenomena, the orientation of the
instantaneous rotational axis of the earth (CEP) can not be considered as space-fixed.
Therefore, the star positions (α, δ) have to be referenced to a certain equinox (mostly
J2000.0) describing the orientation of the earth’s axis at this epoch (=ICRS Reference
Pole at epoch J2000.0).

The precession and nutation phenomena can be predicted by the precession-nutation-
model of the International Astronomical Union (IAU 1980). The secular part (precession)
is considered by the IAU precession model 1976 and the periodic part (nutation) by the
IAU nutation model 1980. Both models are implemented in AURIGA (Hirt [2004]). By
applying the IAU 1980 model, the instantaneous CEP can be computed in relation to the
ICRS. However, due to the limited model accuracy, the CEP based on the IAU model
and the true instantaneous CEP might differ for a few 0.01 arcsec. These time-dependent
differences are published in terms of the parameters (δ∆Ψ, δ∆ε) by the IERS. The
IAU 1980 model in combination with these corrections allows for a consideration of
the precession/nutation effects with an accuracy of better than 0.001 arcsec (McCarthy
[1996]).

Polar motion

Polar motion is caused by the fact that the rotational axis of the earth does not
coincide with the main axis of inertia, but rotates around it. In case the earth would be
a rigid body, the motion could be described mathematically by means of the gyroscopic
theory indicating a period of 305 days (=Euler period). However, due to the fact that the
earth is elastic and reacts to gravitational forces induced by sun and moon, the direction
of the main inertial axis is not constant. Hence, the period extends after Chandler up
to 412 and 442 days, respectively. In consequence of seasonal relocations of air masses,
the so called Chandler wobble is additionally superposed by a 365 days period. The
amplitude of polar motion varies, with deviations of the instantaneous position of the
pole from the long-term midpoint of ≤0.3 arcsec over one year (Torge [2001]). A further
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part of the polar motion is caused by a shifting for about 0.1 m per year in direction
to the 80th degree of western longitude (Kahle [2001]). Polar motion is expressed by
the parameters (xP , yP ) representing the difference between the CEP and the IERS
Reference Pole IRP. They are determined and published by the IERS. For the correction
of the polar motion effect see chapter 4.3.

Earth’s rotation

Due to irregularities of the earth rotation, the rotational time systems GMST, GAST
and UT1 are only computable based on observations (Hirt [2004]). The atomic time
scale UTC agrees more or less with the earth rotation, the differences between UTC and
UT1 are always ≤ 0.9s (see chapter 2.3.2). They are published in terms of the parameter
∆UT1 by the IERS.

2.2 Star catalogs

2.2.1 Introduction

A star catalog is a table of stars comprising the equatorial coordinates of stars as
well as proper motions, magnitudes, parallaxes and spectral properties (Zimmermann
and Weigert [1995]). The task to be solved within the analysis of Zenith Camera
observations is to extract the coordinates (α, δ)k of stars visible at the observation station
at a determinated epoch. These stars have to be linked with the corresponding image
coordinates (x, y)i of the stars exposed.

There exist catalogs of different accuracies and star densities, as e.g. the Hipparcos,
Tycho-2, UCAC, GSC 1.1. and GSC 2.2 as well as the USNO-A and USNO-B catalogs,
which have to fulfill several conditions within the frame of Zenith Camera observations
(Hirt [2004]):

X Positions given in ICRS
X High star density up to a mag 14
X High position accuracies of ≤0.05 arcsec
X Indication of proper motions (see chapter 2.2.4) and magnitudes2

These conditions are fulfilled by the Tycho-2 and the UCAC catalog, which are described
in chapters 2.2.2 and 2.2.3, respectively. The positions of the stars listed in a catalog are
mean positions. Due to the fact that the stars are subject to different time-dependent
phenomena (chapter 2.2.4), their positions have to be referenced to a certain epoch and
equinox :

X The epoch defines the date and time, when the star position has been determined
astrometrically (e.g. on a CCD). It forms the reference time for given proper motions.
In order to ease the handling of a catalog, the stars are mostly transformed to a
consistent epoch having regard to their proper motions. Both catalogs, the Tycho-2
and the UCAC, refer to the standard epoch J2000.0.

2Magnitudes form a logarithmic measure of received radiation (energy per second and unit of area)
from a star. The lower the magnitude, the brighter the object.
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X The determined star positions not only vary due to the proper motions of stars, but
also due to variations of the celestial coordinate system (ICRS) as a result of precession
and nutation (chapter 2.1.5). Therefore, the star positions are always referenced to a
certain equinox of the coordinate system, which defines the spatial direction of the
vernal equinox at a defined point of time. Mostly, the star catalogs refer to equinox
J2000.0.

2.2.2 Tycho-2 catalog

The Tycho-2 catalog is an astrometric reference catalog containing positions and proper
motions as well as two-color photometric data for the 2.5 million brightest stars of the
whole sphere (Høg et al. [2000]). The Tycho-2 positions and magnitudes are based on
precisely the same observations as the original Tycho catalog- They have been derived
processing photon counts obtained from scans of the Tycho star mapper of the ESA
Hipparcos satellite (observation period was from 1989.85 to 1993.21). However, the
Tycho-2 catalog contains 2.5 times more stars than the first catalog and is slightly more
precise, because of the use of more powerful data reduction technique. The precision
of the positions is better than 0.1 arcsec depending on the magnitude. The proper
motions indicate a precision of about 0.0025 arcsec/yr and have been derived from a
comparison with the Astrograph catalog and 143 other ground-based astrometric catalogs,
all reduced to the Hipparcos celestial coordinate system. The most important facts about
the Tycho-2 catalog are provided in Tab. 2.3.

Mean satellite observation epoch J1991.5
Standard epoch of the Tycho-2 catalog J2000.0
Reference system ICRS
Number of entries 2539913
Magnitude [mag] (approx. complete) 11.5
Astrometric standard errors:
Stars mag < 9 ≤ 0.007 arcsec
Stars 9 < mag < 12 ≤ 0.07 arcsec
Stars 12 < mag < 14 ≤ 0.1 arcsec
all stars, proper motions 0.0025 arcsec/yr
Photometric standard errors:
Stars < 9 mag 0.013 mag
all stars 0.10 mag
Star density:
Lat=0◦ 150 stars/ deg2

Lat=±30◦ 50 stars stars/ deg2

Lat=±90◦ 25 stars stars/ deg2

Table 2.3: Tycho-2 catalog parameters (Høg et al. [2000]).
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2.2.3 UCAC catalog

The second US Naval Observatory (USNO) CCD Astrograph Catalog, UCAC2, was
released in 2003 July, obtained from terrestrial observations with the USNO 0.2 m Twin
Astrograph. The instrument is equipped with a 16 MPixel CCD camera (Zacharias
et al. [2004]). With the Astrograph, star fields of about 1 deg2 can be covered. The
catalog contains positions and proper motions for about 50 million objects (mostly stars).
It covers the sky area from -90◦ to +40◦ declination extending to +52◦ in some areas.
Depending on the magnitude, the precision of the positions is better than 0.07 arcsec with
estimated systematic errors of maximum 0.01 arcsec. The proper motion errors amount
to maximum 0.007 arcsec/yr, also for fainter stars up to mag 16. The UCAC2 provides
about 30 times more stars/ deg2 than the Tycho-2 catalog. It is a compiled catalog
including Hipparcos and Tycho observational data as well as all ground-based catalogs
used for the Tycho-2 proper motions (Zacharias et al. [2004]). The final catalog (UCAC3)
is expected to be published in late 2008 (http://ad.usno.navy.mil/ucac/). The most
important facts about the UCAC2 catalog are provided in Tab. 2.4.

Mean observation epoch 1998-2004
Standard epoch of the UCAC catalog J2000.0
Reference system ICRS
Number of entries 48330571
Magnitude [mag] (approx. complete) 16
Astrometric standard errors:
Stars mag < 9 0.03-0.07 arcsec
Stars 9 < mag < 12 ≤ 0.02 arcsec
Stars 12 < mag < 14 ≤ 0.02 arcsec
all stars, proper motions 0.001-0.015 arcsec/yr
Average density 1360 stars/ deg2

Table 2.4: UCAC catalog parameters.

The comparison of both catalogs, Tycho-2 and UCAC2, reveals that the Tycho-2 is
indeed almost complete up to mag 11.5, however, it is incomplete within the relevant
range of magnitude for Zenith Camera observations (mag 12-14). In contrast, the final
version of the UCAC, the UCAC33, will provide an almost complete field up to mag 16.
The Tycho-2 indicates very high precisions for stars up to mag 10 (0.02 arcsec), though,
for higher magnitudes the catalog provides worse precisions than the UCAC (max. 0.1
arcsec vs. 0.02 arcsec). A disadvantage of the UCAC2 (implemented in AURIGA)
is the fact that it does not cover the whole sphere. However, the implementation of
the UCAC3 will compensate this disadvantage by providing stars for the whole sphere.
Comparing the number of stars listed in Tycho-2 (2.5 million) and in UCAC (50 million),
it is concluded by (Hirt [2004]) that the UCAC2 (and UCAC3 in future) provides an
excellent reference for an analysis of Zenith Camera observations (Hirt [2004]). Due to
the still lower coverage of the UCAC2, both catalogs, the Tycho-2 and the UCAC2, are
implemented in AURIGA. Furthermore, this provides possibilities for comparisons and
validations.

3The UCAC3 catalog is not published yet, but it is currently in process at the USNO
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2.2.4 Variations of star positions

Star catalogs contain mean star positions (α, δ)0, mostly referring to epoch J2000.0.
They are subject to different time-dependent phenomena, which have to be taken into
account for the analysis of Zenith Camera observations. This includes the effects of
proper motion (effective changing of star positions), precession and nutation (shifting of
coordinate systems), refraction, daily and annual aberration as well as relativistic light
diversion (apparent changing of star positions). Due to the great distance of stars, the
influence of geocentric and annual parallax is negligible.

The corrections for proper motion, precession, nutation, annual abberation and relativistic
light diversion enable the transformation of mean into apparent positions, which refer
to the geocenter. The corrections for daily abberation and refraction finally provide
topocentric star positions as needed for the analysis of Zenith Camera observations.
Thorough descriptions concerning the reduction of star positions with accuracies of better
than 0.001 arcsec can be found in Kaplan et al. [1989] and Seidelmann [1992]. In AURIGA,
the highly-precise algorithm of NOVAS-C software libraries from USNO (Bangert and
Kaplan [1998]) are implemented (Hirt [2004]). The general formalism to transform mean
into apparent positions is depicted in Appendix A.1, Eq. (A.1).

Proper motion. Due to their motions relative to each other, stars can not be considered
as fixed objects in sphere. The spatial motion of a star in relation to the earth can be
divided into two orthogonal components: the change of distance, which remains generally
undiscovered, and the change of direction, which forms the observable part of proper
motion. The observable proper motion of a star is mostly very small, the resulting
variations of right ascension α and declination δ amount to a few 0.1 arcsec per year.
To determine the proper motion of a star, the coordinates at two different epochs has
to be computed (see Appendix A.1, Eq. (A.2), for strict formulas see Schödelbauer
[2000]). As mentioned in chapter 2.2.1, both star catalogs implemented in AURIGA, the
Tycho-2 and the UCAC, contain corresponding proper motions for each star registered.
The respective accuracies are below 0.015 arcsec per year (see Tabs. 2.3 and 2.4) and,
therefore, sufficient for a highly-precise reduction of star positions.

Precession and Nutation. The effects of precession and nutation are explained in
chapter 2.1.5.

Daily and annual abberation. Due to the finite speed of light and the relative motion
of the observer on earth, the effect of abberation causes apparent variations of star
positions. Considering that the motion of the observer is composed of three components
- (a) the earth’s rotation, (b) the motion of the earth around the sun, and (c) the
motion of the sun system relative to fixed stars - one has to differentiate between daily
(a), annual (b) and secular (c) abberation (Sigl [1991]). For a star standing in zenith
(as valid for Zenith Camera observations), the effect of daily abberation has merely an
impact on the α-component. It causes a shifting for 0.32 arcsec in eastern direction
(see Appendix A.1, Eqs. (A.3) to (A.5)). The annual abberation has the effect that the
stars describe ellipses around the pole of ecliptic, with a semi-major axis of 20.495 arcsec
(abberation constant) (see Appendix A.1, Eqs. (A.6)). The secular abberation, which
can be associated with the movement of the solar system, is not available for astrometric
measurements.
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Relativistic light diversion. In the vicinity of strong gravity sources as the sun, a
light beam is deflected in direction to the source. This effect (predicted by Einstein)
causes a directional misalignment ∆E, which increases with decreasing elongation E
(=angular separation) between sun and star. For very small E, ∆E reaches a maximum
value of 1.75 arcsec. For Zenith Camera observations, the sun is generally beneath the
horizon, hence the elongation between zenithal stars and sun amounts to about 90◦. The
misalignment ∆E amounts then to maximum 0.004 arcsec, and is, therefore, negligible
for astrogeodetic observations into the zenith.

Refraction. The effect of atmospheric refraction is discussed separately in chapter
5.2.2.

Comprehensive descriptions of all phenomena can be found e.g. in Schödelbauer [2000],
Sigl [1991] and Rummel [2005]. For detailed computation formulas concerning the consid-
eration of the described phenomena within the analysis of Zenith Camera observations,
please refer to Hirt [2004].

2.3 Time systems

2.3.1 Introduction

Time systems play an important role in geodesy, especially in the field of satellite geodesy
and astronomical geodesy. In astronomical geodesy, they serve as information about
the orientation between celestial and terrestrial reference system. Time scales describe
periodic astronomical and physical phenomena, whereas the time interval between the
phenomena define the scale and a dedicated multiple or fraction of the scale forms the
unit. A generally accepted unit is the second providing the basis for higher units as days
or years. The zero-point of a scale is defined e.g. by a certain astronomical event as the
transit of a star across the meridian. The moment of an observation can be referenced
to the zero-point of the scale, hence yielding the corresponding absolute time, called
epoch. A natural unit is provided by the duration of the daily earth’s rotation, e.g. in
reference to the stars (sidereal time) or the sun (solar time). Due to irregularities in the
earth’s rotation (see chapter 2.1.5), these so called rotational time systems are not stable
in time. However, many scientific or technical tasks require the definition of an uniform
time scale. This demand is fulfilled by atomic time systems forming pure physically
defined scales. The unit of these scales is the so called atomic second (SI second4).
Over the years, the time systems show differences compared to each other, which can
be attributed to irregularities and variations in the earth’s rotation. They have to be
determined by observations, which are performed by the IERS. Detailed explanations
of time systems can be found e.g. in Sigl [1991], Seidelmann [1992], Seeber [2003] and
Torge [2003].

4SI second: duration of 9192631770 periods of the radiation corresponding to the transition between
the two hyperfine levels of the ground state of the cesium-133 atom
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2.3.2 Important time systems for Zenith Camera
observations

In order to establish the relation between astronomical coordinates (Φ,Λ) and equatorial
coordinates (α, δ) (Eq. (3.2)), the respective exposure epoch determined by GPS has
to be transformed into GAST. The necessary time systems and formulas for solving
this task are depicted in Tab. 2.5. The time systems are shortly introduced within
this chapter, for detailed information please refer to the literature mentioned in chapter
2.3.1.

Step Time systems + Definition Computation
Parameters

1 GPST GPS Time GPS-derived exposure epoch
with DIADEM

2 UTC Universal Time Coordinated UTC = GPST − 14 s
3 UT1 Universal Time 1 UT1 = UTC + ∆UT1

∆UT1 ≤ 0.9 s
3.1 t Julian centuries t

elapsed between J2000.0 and t = TUT1−2451545.0
36525

computation epoch TUT1

4 GMST Greenwich Mean Sidereal Time GMST (at 0hUT1) =
6h41m50.s5481+

8640184.s812866 · t+
0.093104 · t2−
6.s2 · 10−6 · t3

4.1 TAI International Atomic Time TAI = UTC + 33 s
4.2 TT Terrestrial Time TT = TAI + 32.184 s
4.3 t Julian centuries t

elapsed between J2000.0 and t = TTT−2451545.0
36525

computation epoch TTT
4.4 ∆ψ,∆ε, ε0,Ω Nutation parameters IAU nutation model 1980

as function of t
4.5 ∆m Equation of Equinox ∆m =

∆ψ · cos ε0+
0.“00264 · sin Ω+
0.“000063 · sin 2Ω

5 GAST Greenwich Apparent
Sidereal Time GAST = GMST + ∆m

Table 2.5: Necessary transformations between GPST and GAST for the analysis of
Zenith Camera observations. GPST: GPS Time, UTC: Universal Time Coordinated,
UT1: Universal Time 1, GMST: Greenwich Mean Sidereal Time, TAI: International
Atomic Time, TT: Terrestrial Time, GAST: Greenwich Apparent Sidereal Time,
∆ψ: Nutation of the longitude of ecliptic, ∆ε: Nutation of the obliquity of ecliptic,
ε0: Mean obliquity of ecliptic, Ω: Longitude of lunar node.

17



Chapter 2: Basic knowledge

Rotational time systems

Sidereal time. A sidereal day is defined as the time interval between two transits of
the vernal equinox across the observer’s meridian. The Local Apparent Sidereal Time
(LAST) corresponds to the observer’s meridian and represents the hour angle of the
apparent vernal equinox. A special meridian is formed by the Greenwich meridian, which
serves as reference for GAST. The corresponding Local Mean Sidereal Time (LMST)
and Greenwich Mean Sidereal Time (GMST) are obtained after accounting for effects of
precession and nutation (see chapter 2.1.5). The difference between apparent and mean
sidereal time is described by the "Equation of Equinox" (see steps 4.5 and 5 in Tab.
2.5).

Solar time. Due to practical needs, solar time is used in everyday life (Torge [2001]).
A solar day represents the time interval between two sun transits across the observer’s
meridian. However, according to the fact that the revolution of the sun around the
earth is a nonuniform process, a virtual mean sun is introduced moving evenly along
the equator. The mean solar time UT0 (Universal Time) is defined as the time elapsed
since the last transit of the mean sun across the Greenwich meridian plus 12 hours. This
time scale is influenced by position-dependent variations (polar motion) of the apparent
pole of rotation (CEP) compared to the defined mean pole (IRP). The reduction to the
IRP yields a change of longitude and, hence, of time and results in the definition of
UT1.

Both time scales, sidereal and solar time, are based on the earth’s rotation. Therefore,
the solar time can also be regarded as a special sidereal time. The sidereal and the solar
day differ for about 3m55.909s, as the earth moves forward for about 360◦/365 ≈ 1◦

per day on its orbit around the sun. Thus, 1 mean sidereal day corresponds to
1 mean solar day − 3m55.909s.

Atomic time systems

Universal Time Coordinated UTC. The various irregular fluctuations detected
in the rotation of the earth yielded in 1972 the replacement of UT1 as the reference time
scale by UTC. This time scale provides, on the one hand, the advantage of a strict and
homogeneous measure, based on the atomic second (SI second). On the other hand, it
is closely correlated with UT1. In order to ensure an agreement between physical and
astronomical time scales, the difference UT1-UTC does, per definition, never exceed more
than 0.9 second. This is realized by the introduction of so called leap seconds, which
are regularly published by the IERS. The last additional second has been introduced on
January 1st, 2006, at 0h UTC.

Global Positioning System Time GPST. For the Global Positioning System, the
time scale GPST has been introduced differing from UTC for an integer number of seconds.
Both times systems agree at January 5th, 1980. As no leap seconds are introduced in
GPST, the difference between UTC-GPST increases by time (2008: GPST - UTC = 14
s). The actual relations are announced e.g. by the USNO.

International Atomic Time TAI. UTC is based on TAI, which is controlled by means
of 250 globally distributed atomic clocks. The Bureau International des Poids et Mesures
(BIPM) determines TAI from a weighted average of all clocks. The origin of TAI coincides
with UT1 at January 1st, 0h. Due to the leap seconds regularly added to UTC, the
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difference between TAI and UTC amounts to a varying integer number of seconds (2008:
TAI - UTC = 33 s).

Model time systems

Terrestrial Time TT. TT is intimately connected with the atomic time systems
and fulfills widely the condition of an inertial time. Its realization bases on TAI, which
differs for a constant offset from TT (TT - TAI = 32.184 s). The scale TT is used for
the calculation of the Julian date, which is a necessary argument for the IAU nutation
and precession models, the calculation of the annual abberation and the relativistic light
diversion.

Julian date. The astronomical standard epoch J2000.0 is equal to JD 2451545.0
in Julian days. Other epochs can be derived by simple algorithm, as e.g. described
in Seidelmann [1992]. Some transformation formulas, e.g. between different time
systems, need the Julian date of the observation/computation epoch T referring to the
standard epoch J2000.0 and expressed in Julian centuries t (see steps 3.1 and 4.3 in Tab.
2.5).

2.4 Height systems

In Geodesy, a height is defined as a vertical distance between a point and a reference
surface (geoid, quasigeoid or geodynamically defined reference ellipsoid). The height
of the respective reference surface is fixed to a mean sea level, whereas each country
uses different height systems and reference levels. Normally, one expects from heights
that they are geometrical values, given in "Meter" (geometrical condition) and that no
water is flowing between two points with identical heights, i.e. they feature the same
gravitational potential (physical condition). However, due to gravity anomalies caused
by inhomogeneities in the distribution of earth’s masses, a height definition can not fulfill
both conditions. This fact becomes obvious when leveling along different paths between
two points yielding different height differences (theoretical closure error of leveling loops).
It can be attributed to the condition that the heights are measured along non-parallel
equipotential surfaces, but the differences are measured in "Meter". In order to obtain
reasonable results, the consideration of the gravity field is required. Hence, two different
classes of height systems have been established: geometrical heights, represented by
ellipsoidal heights and physical heights, as e.g. formed by dynamic, orthometric and
normal heights.

In order to understand the relation between them, the following theoretical background
shall be provided (compare Fig. 2.2):

The potential WP of a point P is the sum of the gravitational potential GP depending on
the mass distribution on and inside the earth and on the centrifugal potential CP , caused
by the earth’s rotation (Schlatter [2007]): WP = GP + CP . All points with a constant
potential W define an equipotential surface, whereas the geoid represents a dedicated
equipotential surface W = W0 coinciding with the mean sea level. The geoid forms the
main reference surface for physically defined height systems.
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The reference for geometrically defined heights is represented by the mean earth ellipsoid
GRS80 (Geodetic Reference System 1980), which indicates on its surface the same
potential as the geoid (U0 = W0). Furthermore, it features the same angular velocity,
total volume and center as the masses limited by the geoid. Similar as for the earth’s
gravity field, the earth ellipsoid indicates equipotential surfaces with a constant normal
potential U.

The deviation of the geoid from the ellipsoid is indicated by the geoid undulation N. The
potential WP of a point P can now be split into the normal potential UP , caused by the
mean earth ellipsoid, and the anomalous potential TP (sometimes also called disturbing
potential), induced by irregularities in mass and density distributions: WP = UP + TP .
Due to the influence of the anomalous potential TP , normal potential UP and potential
WP of point P are not identical at the earth’s surface. The equipotential surface of the
earth ellipsoid with U = WP runs through a point Q, which differs from P (UQ = WP ).
The distance between both points is called height anomaly or quasigeoid undulation ζ.
All points Q whose potential UQ is identical with the potential WP of the corresponding
point P on the earth’s surface form a further reference surface, the so called telluroid
(Schlatter [2007]). The quasigeoid as another important reference surface yields from the
adding of ζ to the ellipsoid.

Figure 2.2: Depiction of different height systems referring to the geoid, telluroid,
quasigeoid and ellipsoid. The according heights are: h = Ellipsoidal height, HN =
Normal height, H = Orthometric height, N = Geoid undulation, and ζ = Height
anomaly = Quasigeoid undulation.

The height systems depicted in Fig. 2.2 are the following:

Orthometric heights H. Orthometric heights refer to the true gravity field of the
earth. They describe the vertical distance between P0 at the geoid and P at the surface
and are measured along the curved plumb line through P.

Normal heights HN . Normal heights refer to the normal gravity field of the earth. They
describe the height of P above the quasigeoid as well as the height difference between
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Q at the telluroid and Q0 at the ellipsoid. The differences "telluroid/surface" and
"ellipsoid/quasigeoid", respectively, are called height anomaly or quasigeoid undulation
ζ.

Ellipsoidal heights h. Ellipsoidal heights refer to a mathematically defined reference
surface, e.g. the mean earth ellipsoid WGS84. They represent the vertical distance
between P at the surface and Q0 at the ellipsoid.

Ellipsoidal heights can be linked to the gravity field of the earth via orthometric heights
H and normal heights HN , respectively, by the following relations:

h = H +N = HN + ζ (2.1)

Detailed descriptions of the common height systems used in geodesy can be found in
Wirth [1990], Torge [2001] and Schlatter [2007].
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3 Digital Astronomical Deflection
Measuring System DIADEM

3.1 Determination of deflections of the
vertical

The determination of deflections of the vertical (DOV) is based on the combination of a
Zenith Camera with satellite-based methods like GPS. GPS provides the geometrically
defined ellipsoidal latitude ϕ and longitude λ, which represent the normal vector referring
to the ellipsoid. In contrast, Zenith Cameras determine the direction of the vertical
referring to the geoid, which is expressed by the astronomical latitude Φ and longitude Λ.
The difference between both vectors is called deflection of the vertical and is represented
by the N-S-component ξ and the W-E-component η:

ξ = Φ− ϕ η = (Λ− λ) cosϕ (3.1)

The determination of the astronomical parameters (Φ,Λ) with a Zenith Camera is based
on the idea to expose the zenithal star field by a CCD camera and to interpolate the
direction of the instrument’s axis into the star field. The celestial positions of the stars
exposed are defined by equatorial coordinates (δ, α), obtainable from high-precision star
catalogs as Tycho-2 (Høg et al. [2000]) and UCAC (Zacharias et al. [2004]) (chapter 2.2).
They can be linked with the astronomical parameters (Φ,Λ) by the Greenwich Apparent
Sidereal Time (GAST):

Φ = δ Λ = α−GAST (3.2)

Please note that the relation between Φ and δ is only valid for stars in zenith. Based on
Eq. (3.2), the direction of the vertical could be easily determined, if a star was located
directly in zenith and the sidereal time GAST was measured. However, this situation
will hardly occur in reality.

Fig. 3.1 illustrates the two main reference systems: the equatorial reference system
(ICRS, chapter 2.1.2), and the terrestrial reference system (ITRS, chapter 2.1.3). The
equatorial system, a celestial space-fixed coordinate system, allows for the definition of
the star positions by means of right ascension α and declination δ. The terrestrial system
is an earth-fixed system, represented by the astronomical latitude Φ and longitude Λ.
It is used to define the position of the observation point. Both systems refer to the
equatorial plane and the rotational axis of the earth. They differ only by the apparent
orientation angle of the earth θ (=GAST) at the observation epoch. The epoch of an
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Figure 3.1: Main principle of the astrogeodetic determination of the direction of the
vertical (Φ,Λ) (modified after Hirt and Bürki [2002]). The terrestrial (ITRS) and
celestial reference system (ICRS) are depicted. The terrestrial system is simplified,
since normally the direction of the vertical does not point directly to the earth’s center
(due to the flattening of the earth). However, this simplification is acceptable because
of the infinite radius of the sphere. The link between astronomical coordinates (Φ,Λ)
and equatorial coordinates (δ, α) is established by the orientation angle of the earth
(GAST = θ) at the observation epoch.

observation with DIADEM is provided by a GPS receiver implemented in the Zenith
Camera system. The GPS time has to be converted into GAST by means of several time
transformations. They are described in chapter 2.3.2.

For the final determination of DOV according to Eq. (3.1), the knowledge of ellip-
soidal coordinates (ϕ, λ) is required. They are determined by additional differential
GPS measurements at the observation point. The single-frequency GPS code-receiver
implemented in DIADEM is not accurate enough for an appropriate determination
of (ϕ, λ). A potential field of application of DOV (ξ, η) is the astrogeodetic geoid de-
termination. The principle is depicted in Fig. 3.2 and explained in detail in chapter
9.1.1.
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Figure 3.2: Determination of relative geoid undulations based on DOV (modified after
Hirt [2004]). Due to the curvature of the local plumb line, the DOV observed at
topography (ε) differ slightly from those referring directly to the geoid (ε0). This
difference is indicated by the angle E. The relative geoid undulation dN represents
the change of the geoid between two stations A and B with the distance ds.

3.2 Instrumental set-up

3.2.1 Introduction

In order to upgrade the old analog Zenith Camera TZK3 of the GGL (Bürki [1989])
to the state-of-the-art, the instrument has been subject to extensive reconstruction
works within the last four years. The main intention was the automation of the Zenith
Camera for an efficient and PC-controlled deployment. The modernized instrument
DIADEM (Digital Astronomical Deflection Measuring System) offers all requirements
to perform automatic and real-time observations by using modern CCD technology
and GPS equipment (Müller [2002], Müller et al. [2004]). Fig. 3.3 shows the main
components of DIADEM. In general, the Zenith Camera is divided into two parts: a
turnable superstructure and a fixed substructure. Both parts are separated by a special
ball bearing.

The main components of the turnable superstructure are a highly light-sensitive objective
(Zeiss Mirotar), a CCD camera for imaging stars as well as two different pairs of
orthogonally mounted inclination sensors. They control the vertical alignment of the
system. The CCD camera can be moved vertically along the optical axis by a servo motor,
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hence enabling the automatic adaption of the temperature-dependent focus position.
The superstructure can be rotated 180 degrees around the axis of the instrument. Hence,
systematic errors caused by the eccentricity of the CCD sensor and the zero-point offset
of the inclination sensors can be eliminated. The turning is realized by a servo motor
(M4 in Fig. 3.4), which drives the superstructure by means of a gear belt. Position 1 is
defined by a steal bolt, which is attached to the turnable part and an electromagnetic
induction sensor, mounted on the fixed part. As soon as the turnable part passes over
the steal bolt, the inductance changes and the motion stops.

The fixed substructure forms the basis of the system standing on three leveling screws.
Each screw is connected with a servo motor (M1-M3 in Fig. 3.4), which allows for an
automated vertical alignment of DIADEM into the local plumb line. Furthermore, a
single-frequency GPS code-receiver is integrated in the Zenith Camera system providing
highly precise epoch information and approximate ellipsoidal coordinates, respectively.
Precise ellipsoidal coordinates have to be determined by additional differential GPS
measurements.

The whole Zenith Camera is mounted on a tripod, which possesses three electric cylin-
ders for leveling (Z1-Z3 in Fig. 3.4) and a servo motor for the azimuthal turning of
the tripod platform (M5 in Fig. 3.4). All processes described are controlled by two
appropriate industrial computers. In the following, the main components are presented
in detail.

Figure 3.3: Main components of DIADEM (modified after B.Bürki, GGL).
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Figure 3.4: Topview on DIADEM. M1-M3: servo motors for leveling the superstruc-
ture, M4: motor for focussing, M5: motor for azimuthal turning, Z1-Z3: cylinder
motors for leveling the tripod platform, W1/W2: Wyler inclination sensors, L1/L2:
Lippmann inclination sensors.

3.2.2 Objective MIROTAR

The main optical component of DIADEM is the MIROTAR objective from Zeiss. It
is a catadioptric system consisting of two mirrors (main and secondary mirror) and
four lenses. The lenses allow for the correction of potential aberration effects caused
by the mirrors. The use of two mirrors offers the possibility of a twice folded optical
path, hence enabling at the same time a long focal length of 1020 mm and a short tube
length of 328 mm. The aperture is 200 mm, with an effective focal-over-diameter-ratio
of 1:5.6. The aperture angle of the objective amounts to 3.6◦, which is not used to full
capacity, because of the small CCD sensor surface (chapter 3.2.3). However, this has
the advantage that the sensor and, therefore, the image plane is located close to the
optical axis, hence avoiding distortion effects caused by the objective. A disadvantage of
the objective is its temperature dependence, which causes changes of the focal length.
The reason for this dependence is up to the materials used for the tube of the objective
indicating high expansion coefficients. A special construction undertakes the task of
an automatic adaption of the focus: A servo motor moves the CCD camera vertically
via worm gear and drive belt. Hence, the CCD camera is moved along the optical axis
aiming at the coincidence of CCD sensor and focal plane. The focal position is controlled
by a digital caliper, a capacitive measuring system, which has been additionally attached
to the CCD camera box. It measures the distance between CCD camera and a defined
reference surface. The modeling of the focus-temperature-function is described in detail
in chapter 4.4.4.
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Figure 3.5: View into the MIROTAR objective of DIADEM.

3.2.3 CCD camera CHROMA C3

One of the first steps in the modernization of the Zenith Camera was the replacement of
the analog photographic film by a CCD camera of type CHROMA C3 (manufactured by
DTA, Italy, DTA [2008b]) (Figs. 3.6a) and 3.6b)). The camera box is mounted beneath
the Mirotar objective (Fig. 3.3) and connected with the focus adaption system. The CCD
camera is thermo-electrically cooled to -40◦C from ambient temperature, hence reducing
the dark current. Furthermore, it indicates a fast image downloading rate (1.5 MPixel/s)
and an excellent dynamic range (14 bit A/D converter, 16384 gray values) (DTA [2008a]).
The electro-mechanical shutter provides opening times of minimum 10 ms up to 9999 s.
The determination of the time-dependent shutter function is described in chapter 4.4.3.
The integrated Kodak sensor KAF-6303E(LE), a full-frame image sensor, consists of
3072 x 2048 pixel, each with a square size of 9 µm (DTA [2008b]).

As already mentioned in chapter 3.2.2, the light-sensitive area of the CCD sensor does
not cover the full range provided by the objective. The sensor size of 27.6 mm by 18.4
mm and the focus length of 1020 mm define an effective image section on sphere of 1.5◦
by 1◦, which yields a field-of-view (FOV) of 1.5 grad2. This is significantly less compared
to about 13 grad2 provided by the objective. However, due to the highly light-sensitive
CCD sensor, the number of stars imaged is very high and amounts to about 200 stars in
nights with an excellent seeing.

The CCD technique offers a significant increase of the magnitude of stars imaged. This
value represents the measure of brightness of a celestial object as seen by an observer on
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a) CCD camera box with ventilation
(DTA [2008a]).

b) Interior view of the CCD camera. On the right
side, the closed electro-mechanical shutter is
visible. It covers the CCD sensor.

Figure 3.6: CCD camera CHROMA C3: box and interior view.

earth. While the analog photo technique allowed for a maximum magnitude of 10, the
digital technique now enables the detection of stars with a magnitude of 14! For compar-
ison only: the human eye is able to observe stars with a magnitude of 6, approximately
referring to the maximum brightness of Uranus (5.5 mag).

Figure 3.7: Quantum efficiency (QE) of the Kodak sensor integrated in the CHROMA
C3 camera (DTA, Italy) (DTA [2008b]). The maximum QE is reached for a
wavelength between 580 nm (yellow light) to 700 nm (red light).

The spectral sensitivity of the sensor ranges between 350 nm (ultraviolet) and 1000 nm
(near infrared) (Fig. 3.7). The sensor features a high quantum efficiency (QE) over
the whole spectral range. The QE factor represents the ratio of registered photons to
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incoming photons per pixel and second. The highest sensivity is given between 580 nm
and 700 nm, where about 65% of the incoming photons are registered. The exposure and
read-out of the images as well as the cooling of the camera are controlled by a FDL-PCI
card (=Facility Data Link - Peripheral Component Interconnect card), installed in the
industrial PC.

3.2.4 Inclination sensors HRTM

Two High Resolution Tiltmeters (HRTM), manufactured by the German Lippmann
company for Geophysical Instruments, are mounted orthogonally on the turnable part of
the Zenith Camera (L1/L2 in Fig. 3.4). They control permanently the vertical alignment
of the Zenith Camera, hence providing information for the final transformation of the
rotational axis of the instrument into the direction of the vertical.

a) Interior view in direction of in-
clination measurement.

b) Schematical view. Right image: View in direction of inclination
measurement.

Figure 3.8: High Resolution Tiltmeters: interior and schematical view.

The electronic pendular tiltmeters are constructed as three-panel-condenser (Figs. 3.8a)
and 3.8b)). The middle condenser panel assumes the function of a pendular. It is made
of aluminum and fixed on a suspension spring from beryllium-bronce. Depending on the
position of the pendular in reference to the frame, the capacities of the condensers change.
The resulting analog voltage signal can be transformed into inclination data using the
scale factor of 0.142 mrad/V specified by the Lippmann company (Lippmann [2005]).
A DAQ board, implemented in the industrial PC, operates as 16-bit A/D converter.
With a usable voltage of about ±8 V, it allows for a digitization interval of ±0.244 mV
referring to about 0.007 arcsec. The effective measuring range amounts to ±200 arcsec.
Within this range, the relation between voltage and inclination is linear. Additional to
the inclination signal, the sensors provide additional voltage information, which can be
transformed into sensor temperatures.

The space between the panels is filled with air. In contrast to a filling with depressant
liquids, air enables a high temporal resolution. However, to avoid long reverberation
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times (>2 s), an implemented permanent magnet mounted underneath the pendular
induces eddy currents damping the pendular motions. The sampling rate is specified
with 1000 Hz, hence providing inclination data with a very high temporal resolution.
In order to keep the amount of data in an adequate frame, the sampling rate has been
reduced for DIADEM observations.

For the protection of electronics and mechanics from external influences as humidity and
touching, the sensor including the control electronics is placed inside a box with a size of
4 cm x 5 cm x 6 cm. A detailed analysis of the HRTM sensors can be found in chapter
5.3.

3.2.5 Inclination sensors Zerotronics

For redundant information, a second pair of inclination sensors is mounted orthogonally
on the turnable part of DIADEM: the Zerotronic sensors manufactured by the swiss
Wyler company (W1/W2 in Fig. 3.4). Similar to the HRTM sensors, the Zerotronics
are electronic pendular systems, however, showing a different mechanical design (Fig.
3.9a)).

a) Interior view. b) Schematical view (modified after Wyler
[2007]).

Figure 3.9: Zerotronic sensors: interior and schematical view.

The pendular is suspended by three Archimedes helical springs and mounted between two
electrodes (Fig. 3.9b)). Depending on the inclination of the sensor, the pendular swings
out of its zero-position and causes a change of capacities between the pendular and
the two electrodes. These capacities are transformed into different frequencies through
the RC oscillator. The ratio of the two frequencies forms the primary signal for the
detection of the required angle. The sensor box is hermetically encapsulated and filled
with nitrogen. This avoids the influence of humidity changes on the measurements.
Besides, the nitrogen serves as damping media between the electrodes. As the viscosity
change of gas within a temperature range of -40◦ to +70◦ is considered to be minimal,
the damping is virtually temperature-independent. The optimization of the damping is
achieved by an adequate ratio between pendular surface and slot size of the Archimedes
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spring. The mathematical damping is realized by an integration over time intervals
(Wyler [2007]). The sensor features a measuring range of ±1◦ and a digitalization interval
of 0.1 arcsec, hence providing a ten times lower resolution than the HRTM. Also the
temporal resolution is lower with a sampling rate of maximum 10 Hz. A parallel read-out
of two inclination sensors further reduces the rate down to 5 Hz. Each sensor is mounted
inside a metallic box with a size of 5 cm x 4 cm x 4.5 cm. A detailed analysis of
the Zerotronic sensors can be found in chapter 5.3. Please note: Within this thesis,
the HRTM and Zerotronic sensors are named Lippmann sensors and Wyler sensors,
respectively.

3.2.6 GPS equipment

DIADEM is equipped with a civil GPS receiver, manufactured by the swiss company
u-blox (u-blox AG [2003]). The GPS technique is necessary for two purposes: the
determination of ellipsoidal coordinates and the provision of precise exposure epochs.
Antenna and receiver are mounted eccentrically on the objective of the Zenith Camera
(Fig. 3.10).

Figure 3.10: DIADEM with GPS antenna mounted on the objective. When turning
DIADEM in different azimuthal directions, the ellipsoidal coordinates refer to
different positions around the axis of the instrument. The mean of all values is
finally centered on the rotational axis.

The distance to the center of the objective amounts to 15 cm. During an observation
in different azimuthal directions, the ellipsoidal coordinates refer to different positions
around the rotational axis, however, the average finally represents the position of the
rotational axis. The single-frequency GPS code-receiver operating with C/A code
communicates via Blue-tooth and a serial port adapter with the PC. The position
accuracy of the raw navigation solution amounts to ±3 m CEP1 and improves to better

1CEP=Circular Error Probability: The radius of a horizontal circle, centered at the antenna’s true
position and containing 50% of the fixes
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than 2 m CEP if operated in differential mode. However, these position accuracies are
too low for the determination of highly-precise DOV as intended with DIADEM. Since
the accuracy of the DOV directly depends on those of the geodetic position, the latter
should be provided with an accuracy of better than 0.01 arcsec. This corresponds to
a lateral displacement at the earth’s surface of less than 30 cm. In order to enable
the provision of the required accuracy, additional dual-frequency GPS measurements
(e.g. with Trimble) in differential mode have to be performed (see chapter 5.6). The
ellipsoidal coordinates provided by the u-blox GPS receiver can be used as approximate
positions for the extraction of the reference star field from a star catalog. However,
the most important task of the u-blox GPS receiver is the allocation of precise epoch
information. It features a time-mark capability allowing to determine the corresponding
epoch of an incoming TTL signal. Hence, the receiver provides the exact GPS time of
the TTL signal (=epoch) emitted from the CCD camera in the moment of exposure.
The time mark accuracy is with 0.2 ms relatively high. The epoch accuracy is mainly
limited by the shutter characteristic. This problem is discussed in detail in chapter
4.4.3.

3.2.7 Control unit

The whole data acquisition process comprising leveling, focussing, exposure of images as
well as registration of inclination data and exposure epochs is controlled by two industrial
PCs of type Aaeon AEC-6910 Boxer (Fig. 3.11).

Figure 3.11: Industrial PC of type Aaeon AEC-6910 Boxer.

Boxer I contains an Intel Pentium M processor (1.6 GHz CPU) and Boxer II an Intel
Celeron M processor (1.3 GHz CPU). Furthermore, both include a 80 GB hard disc and
512 MB memory. They are operated with 12 V DC, either provided by a car battery
(12 V) or by a power supply via voltage transformation (input: 100-240 V AC, output:
12 V DC). Furthermore, the PCs are suitable for deployments under harsh conditions,
as they feature anti-vibration and shock resistance abilities. Enhanced temperature
specifications and humidity control provide reliability under extreme conditions and on
unsteady roads. Boxer I contains only the FDL-PCI card of the CCD camera, while
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in Boxer II the DAQ board for the two Lippmann sensors and the MOXA card are
implemented. The MOXA card provides serial ports for all servo motors and the two
Wyler sensors. The division on two PCs has the advantage that the registration of
the inclination data is not intermitted by the exposure of the images, hence yielding
a permanent inclination signal. The communication between both PCs is realized via
local network. The data evaluated on PC-II are transfered to PC-I after finishing the
acquisition process.

3.2.8 Transportation

There exist two possibilities of transportation: a trolley for local observations with
short distances between the stations, as e.g. in case of geoid profile measurements, and
a hanger for mobile measurements with greater distances between the stations. The
first case is depicted in Fig. 3.12. There, the complete DIADEM system is mounted
on a trolley. The tripod legs can be placed on the ground through three holes in the
bottom of the trolley. When changing the station, the legs have to be moved in until
the wooden ground plate, connected with the tripod legs, is seated on the bottom of the
trolley.

The second possibility of transportation is provided by a hanger, which carries the
complete DIADEM system (Fig. 3.13). The Zenith Camera is mounted in the rear of the
hanger. The front part provides a small fold-out table and a seat bench for the observer.
Like the trolley, the hanger’s bottom features three holes for the tripod legs. They are
huge enough to avoid a contact between legs and bottom, also under windy conditions.
Hence, the system stands completely independent from the hanger.
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Figure 3.12: DIADEM mounted on the trolley. The tripod legs can be placed on the
ground through three holes in the bottom of the trolley.
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Figure 3.13: Installation of DIADEM on a hanger. In the rear, the Zenith Camera
is visible. The front part is equipped with a small fold-out table and a seat for
operating the system.
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4 Measuring procedure

4.1 Data acquisition

4.1.1 Observation with DIADEM

An important goal related to the elaborate redesign of the Zenith Camera was the enabling
of a fully-automatic deployment. Besides the described enhancement of the hardware
(chapter 3.2), this included also the programming of a dedicated steering software. The
programming language used is LABVIEW, a graphical development environment from
National Instruments (http://www.ni.com/labview/). The data acquisition software
comprises the leveling and focussing of the system, the exposure of images as well
as the permanent registration of inclination data and exposure epochs per image. In
order to allow for the determination of deflections of the vertical (DOV), also ellipsoidal
coordinates have to be determined (see Eq. (3.1)).

Leveling

The determination of the direction of the vertical with a Zenith Camera is based
on the condition that the optical axis of the system is oriented in direction to the zenith.
Therefore, the system has to be leveled best-possible before starting an observation
with DIADEM. This is realized by processing information from the inclination sensors
mounted on the turnable superstructure. According to the measuring method defined
(1: azimuth calibration, 2: tripod method; see details in chapter 4.4.1), either the fixed
substructure of the Zenith Camera (1) or the tripod platform (2) have to be leveled. To
enable the correction of a vertical misalignment, the inclination data are converted into
servo motor pulses, which are sent to the respective motors steering either the leveling
screws (1) or the tripod legs (2). Due to an existing zero-point offset of the inclination
sensors, the leveling process has to be conducted in two opposite positions. Therefore,
either the superstructure with the objective (1) or the tripod platform (2) have to be
turned for 180◦. The leveling process terminates, when the inclination of the system
amounts to less than 5 arcsec in both positions (Müller [2002]). In order to allow for
the correction of a residual misalignment, the inclination data have to be permanently
registered during an observation.

Focussing

The quality of a photo largely depends on a proper focussing of the objects imaged. As
the materials of the objective of DIADEM are temperature-dependent, the focus can
not be considered as constant. Before and during an observation, the focus has to be
controlled and adjusted. The relation between temperature and focal position is nearly
linear (Röösli [2006]), hence allowing for an automatic correction of the focal position
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a) Leveling b) Focussing c) Exposuring

Figure 4.1: Data acquisition software written in LABVIEW.

depending on the temperature. Detailed results of the investigation are presented in
chapter 4.4.4.

Registration of ellipsoidal coordinates

The knowledge of the geodetic position of DIADEM is required for two main purposes:
a) to extract the equatorial coordinates of the observed stars from a star catalog (chapter
4.2.3) and b) to calculate final DOV (Eq. (3.1)). In order to obtain highly-precise DOV,
the ellipsoidal coordinates (ϕ, λ) have to be provided with an accuracy better than 0.01
arcsec corresponding to a lateral displacement at the earth’s surface of about 30 cm. This
precision can not be assured by a single-frequency GPS code-receiver as implemented in
the DIADEM system (chapter 3.2.6). Hence, an additional dual-frequency GPS receiver
has to be deployed operating in differential mode and using corrections from a GPS
reference station. During the campaign in Switzerland, the GPS measurements have
been analyzed in real-time using carrier phase corrections provided via GSM by the
Swiss Positioning Service (SWIPOS, Wild et al. [2004]). During the campaign in Greece,
the GPS measurements have been analyzed in post-processing using information from
different reference stations (see chapter 7.4.1).

Exposure of the image

After finishing the leveling and focussing of DIADEM, the process of data acquisi-
tion starts. The automatic routine comprises the exposure of images as well as the
registration of corresponding exposure epochs and inclination data. The exposure epochs
are provided by the GPS receiver mounted on the Zenith Camera system. It receives
a TTL signal, emitted by the CCD camera in the moment of exposure. A constant
time factor is added to the exposure epoch, hence considering the fact that the shutter
reacts delayed in reference to the TTL signal, and, besides, asymmetrically (chapter
4.4.3). A typical measuring process comprises of about 60-80 single solutions. One single
solution consists of two images observed in opposite positions. In Fig. 4.2, a section of
an inverted star image is depicted. The black dots represent stars, with well recognizable
differences in the brightness of the stars.
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Figure 4.2: Inverted star image observed with DIADEM. The figure represents one
fourth of the normal image size corresponding to 13.8 mm by 9.2 mm on the CCD
sensor and to 0.75◦ by 0.5◦ on the sphere. The brighter a star, the thicker the
dot. The visible stars form only a part of those stars, which are finally extracted
by dedicated methods of image analysis implemented in AURIGA. In clear and
star-opulent nights, up to 200 stars are detected within a single image.

Summary: A typical data acquisition process

Due to new findings, two different measuring configurations for an observation with
DIADEM exist: the azimuth calibration and the tripod method. Both methods are
thoroughly described in chapter 4.4.1. The azimuth calibration has been replaced by the
newly introduced tripod method (Hirt and Seeber [2007a]), since the latter enables the
elimination of the azimuth-dependence of DIADEM observations. In general, the tripod
method is favored over the azimuth calibration. However, due to fact that this method
still forms a suitable configuration in special measuring situations (as e.g. observations
on an island), both procedures shall be described in the following:

Azimuth calibration. The preparation of a measurement starts with the mounting of
DIADEM at the observation point and its orientation in an arbitrary azimuth. After
that, the fixed substructure of DIADEM is leveled until the termination condition (min.
5 arcsec) is fulfilled. This process is followed by the thorough focussing of the images.
Afterwards, the data acquisition process starts. In order to eliminate systematical errors
caused by a zero-point offset of the inclination sensors and an eccentric mounting of
the CCD camera, the observation is conducted in two opposite positions. Furthermore,
to avoid influences caused by a linear drift of the sensor offsets, the observation is
always conducted in an I-II-II-I configuration. The opposite positions I/II are realized by
turning the superstructure of DIADEM (objective and mounting base of the inclination
sensors) for 180◦ (Fig. 4.10: A). Generally, 24 single solutions per azimuthal direction are
observed. This number forms a compromise between an efficient observation providing
a convenient quantity of images in one position and a finite time span between two
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corresponding images. A series of observations comprises the images 1-12 in position I,
1-12 in position II, 13-24 in position II and 13-24 in position I. During the whole image
acquisition process, the inclination data are permanently registered with corresponding
time informations. Furthermore, the exposure epoch for each image is recorded. After
finishing a series of observations in one azimuthal direction, the whole Zenith Camera
system is moved into the next direction by turning the tripod platform with the entire
system (Fig. 4.10: B). There, the whole process is repeated. In general, four different
azimuthal directions are observed. The described configuration is necessary to determine
azimuthal correction parameters, which have to be considered for the calculation of the
direction of the vertical (chapters 4.3 and 4.4.1). The time needed for the whole process
is about 30 minutes.

Tripod method. The tripod method allows for the elimination of the azimuth-dependent
error described in chapter 4.4.1. The method differs from the azimuth calibration by
leveling the tripod platform instead of the fixed substructure of DIADEM (Fig. 4.10:
C). The leveling process is followed by the focussing of the images. After that, the data
acquisition process starts. Again in contrast to the azimuth calibration, the I-II-II-I
configuration with 24 single solutions is now realized by turning the tripod platform for
180◦. In order to provide a good redundancy, it is reasonable to gather more than 24
single solutions, hence the image acquisition process (I-II-II-I configuration), should be
repeated several times. However, it is not necessary to change the azimuthal orientation
of DIADEM in between. This forms the main advantage of the tripod method (chapter
4.4.1). Please note: The azimuthal orientation of DIADEM should not be confused
with an observation in two opposite positions. Former defines the basic orientation of
DIADEM, while the observation in two positions is an always necessary procedure to
eliminate systematical instrumental errors. The time needed for four repetitions is about
20 minutes, which is almost half of the time of an azimuth calibration (with the same
number of single solutions).

4.1.2 Processing of inclination data

General remarks

The data gathered during an observation have to be prepared for a subsequent and
efficient data analysis with AURIGA (chapter 4.2). This mainly concerns the inclination
data gathered with Wyler and Lippmann sensors, respectively, which are provided in
terms of raw and noisy signals (Fig. 4.3). The signal represents a superposition of sensor
noise, microseismic effects and effective inclination fluctuations of the Zenith Camera.
Since microseismic effects only influence the pendulars of the inclination sensors but do
not cause real inclination changes of DIADEM they have to be eliminated by dedicated
filtering techniques. The subject of microseismics is discussed in detail in chapter 5.3.2.
The characteristic sampling rate of the Wyler sensors is 2 Hz, while the Lippmann sensor
data are provided with a very high temporal resolution of 1000 Hz. The average over
50 values finally yields a sampling frequency of 20 Hz. The filtering technique applied
for both types of sensors are described in the following section, with focus on the data
gathered by the Lippmann sensors. Finally, the relationship between exposure epochs
and filtered inclination values has to be established. In this way, information about the
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relation between rotational axis of DIADEM and direction of the vertical in the moment
of observation are provided.

Figure 4.3: Inclination signal registered by Lippmann sensor 1: Raw (gray) and filtered
(black) signal. Additionally, the exposure epochs are depicted (black dots). The raw
signal is influenced by microseismic effects. They are largely eliminated by a FFT
low-pass filtering.

Fast Fourier Transformation (FFT) with low-pass filter

The main source of noise superposing the inclination signal is originated from mi-
croseismics effects. In order to separate the interesting inclination information from
anomalous accelerations, a Fast Fourier Transformation (FFT) with low-pass filter has
been implemented in the data acquisition software (Ganz [2007]). The Fourier transfor-
mation represents a fundamental method in signal processing. It enables the conversion
of the terms "time-sample value" (time domain) into "frequency-amplitudes" (frequency
domain). In this way, operations like filter processes are better feasible. The low-pass fil-
ter implemented in the data acquisition software has the function to eliminate frequencies
above a dedicated limit frequency. It defines the maximum "acceptable" frequency and
equates all higher frequencies to "zero". In order to avoid an unintentional stimulation
of the limit frequency when re-transforming the signal into the time domain (Inverse
FFT), a Hamming window instead of a simple rectangular window has been implemented.
It represents a cosine-function enabling a slow fade in and out. Detailed information
about signal processing and filtering can be found in Meyer [2000] and Stearns and Hush
[1999].

As already discussed in Hirt [2004], the definition of the limit frequency forms an
important issue. The frequency range of the expected inclination signal overlaps those of
microseismic effects. According to chapter 5.3.2, microseismic effects might occur in a
wide range of≤ 0.03 Hz up to several Hz. However, long-periodical inclination fluctuations
of the Zenith Camera are to be expected within a range up to 0.1 Hz. The critical
overlapping range is, therefore, within the 0.1 Hz limit. After Hirt [2004], a limit frequency
of 0.1 Hz forms a reasonable compromise for Zenith Camera observations. Frequencies ≥
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0.1 Hz are eliminated from the signal. However, within the critical overlapping range, a
strict separation between inclination signal and anomalous accelerations is not possible.
The remaining errors are estimated in chapter 5.3.2. Fig. 4.3 shows Lippmann data
(gray), gathered during an observation at the reference station in front of the ETH-
HPV building. The signal shows high-frequency noise, possibly induced by anomalous
influences (traffic, road works, human activities, etc.) close to the DIADEM station.
The filtered signal (black) indicates a significantly smoother behavior, as it is free of
anomalous accelerations above the limit frequency (≥ 0.1 Hz).

Resulting inclination data

The final step is the allocation between filtered inclination data and corresponding expo-
sure epochs. Therefore, the filtered inclination values within a defined time span around
the respective exposure epoch are averaged and assigned to the epoch. The resulting
inclinations in position I (nI1, n

I
2) and II (nII1 , n

II
2 ) are computed by:

n1 =
nI1 − nII1

2
n2 =

nI2 − nII2
2

(4.1)

Eq. (4.1) yields the inclinations (n1, n2), which are free from zero-point offsets. They
represent directly the absolute inclination of the rotational axis referring to the direction
of the vertical. They are defined in the coordinate system of the inclination sensors
and have to be transformed into the astronomical coordinate system (see Fig. 4.11) by
considering the calibration parameters determined in the frame of a celestial calibration
(see chapter 4.4.2). The necessary transformation formulas are given in chapter 4.3. The
final inclination corrections (Eq. (4.17)) are applied to the rotational direction (Φ,Λ)D
(Eq. (4.20)), hence yielding the direction of the vertical (Φ,Λ).

4.2 Data analysis

4.2.1 Introduction

Subsequent to the process of data acquisition follows the process of data analysis. The
software package AURIGA (Automatic Real-Time Image Processing System for Geodetic
Astronomy) realizes a real-time analysis of the data (Hirt [2004]). The process is very
complex aiming at the final provision of highly-precise DOV. The procedure comprises
the determination of the stars in the image, the extraction of stars from a catalog, the
identification of stars imaged as well as the calculation of the rotational direction and the
final application of corrections. In order to provide an adequate background knowledge,
the individual intermediate steps are outlined within the following subsections. All
information refer to (Hirt [2004]), where the whole process of data analysis is described
thoroughly.
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4.2 Data analysis

4.2.2 Image star field

Detection of stars in the image

In order to detect a star imaged, three criteria are decisive: brightness, size and form
of the star. A potential star can be regarded as a cohesive pixel region (cluster) with
similar gray values. Concerning the size, it is assumed that a star features a diameter
of minimum two pixels and, consequently, covers at minimum four pixels. Depending
on the exposure time, the form of a star image is either point- (<0.5 s) or line-shaped
(≥0.5 s). Based on these conditions, the image segmentation by the method of region
growing provides good possibilities to detect stars in the image. The main idea is to
define each pixel as possible node in a chart and to associate them to neighboring pixel
with a defined minimum brightness, hence forming cohesive pixel regions. Based on the
above mentioned assumption that a star diameter amounts to a minimum of two pixels,
the scanning grid features an increment of two pixels. For each node it is checked, if its
gray value g exceeds a defined threshold gS:

g ≥ gS = µ+ n · σ (4.2)

A pixel whose gray value g differs from the mean value µ for n-times of the image noise
σ belongs potentially to a star. Generally, the threshold gS can be calculated with n = 3,
hence providing a probability of 99.7 % that a pixel is detected as signal (assuming a
normal distribution of the noise). If a pixel indicates a significant gray value, its four
neighbouring pixels are also checked. Each pixel that fulfills the threshold condition
serves as new starting pixel. Thus, a list of segments (=stars), is generated. The final
list contains stars covering minimum four pixels and differing at least for one pixel from
the image boundaries.

Determination of image coordinates

The next step is the determination of the image coordinates of the star clusters detected.
The two different methods implemented in AURIGA are:

Method of segment center determination. The image coordinates (x,y)i of each
pixel i=1...n of a segment are linearly weighted with the corresponding gray value g (x,y)i.
The coordinates of the segment center can be calculated with:

x =
1∑
gi

n∑
i=1

xigi y =
1∑
gi

n∑
i=1

yigi (4.3)

Point Spread Function (PSF). This refined method of image coordinate determination
is based on the idea to adapt a model function (e.g. Gauss error distribution model) to
a star imaged, until the difference between the respective gray values is minimized. The
so called "centering" method is performed by a least-squares-adjustment estimating the
form parameters and the center of the function.

In chapter 5.2.1, both methods are compared concerning their accuracy in the determi-
nation of image coordinates. According to the results described there, the method of
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segment center determination is used for a preliminary astrometric data reduction. It
also serves for the provision of approximate values needed for the PSF method. However,
due to its higher accuracy, the final data reduction is performed applying the PSF
method.

4.2.3 Reference star field

In order to enable the identification of the stars imaged, they have to be compared to stars
defined in the celestial reference system. The equatorial coordinates (right ascension α and
declination δ) of the so called reference stars can be extracted from a star catalog (chapter
2.2). Therefore, information about the exact exposure epoch and the approximate position
of the observation point on earth, respectively, are inevitable:

X The exposure epoch is needed to establish the relationship between astronomical
coordinates (Φ,Λ) and equatorial coordinates (α, δ) (Eq. (3.2)). Furthermore, it
allows for the transformation of mean positions (α0, δ0) at a certain catalog epoch
T0 into apparent positions (α1, δ1) at the observation epoch T1 (= exposure epoch)
(chapter 2.2.4). In chapter 2.3.2, the necessary time transformations for the analysis
of Zenith Camera observations are illustrated (Tab. 2.5) and the most important time
scales are shortly described.

X The approximate position defines the central point of the selection zone for the reference
stars. Furthermore, it serves as touching point for the tangent plane, which is needed
to transform spatial into plane star coordinates. The approximate coordinates of the
zenithal point (α, δ) are derived by Eq.(4.4), under consideration of the sidereal time
GAST = Θ:

(δ0, α0) = (Φ0,Λ0 + Θ) (4.4)

The size of the selection zone is calculated in dependence on the focal length of the
objective (1000 mm) and on the dimension of the CCD sensor (27.6 mm by 18.4 mm).
The resulting field-of-view (FOV) amounts to 1.5◦ x 1◦. In order to reduce the impacts
of an unknown azimuthal orientation of the CCD sensor and of inaccuracies of the
approximate coordinates, the selection zone is extended for a tolerance zone by about
25 arcmin.

Reduction of equatorial coordinates

As discussed in chapter 2.2.4, the equatorial coordinates listed in the star catalog
are mean star positions, generally referring to epoch J2000.0. For the analysis of Zenith
Camera observations, they have to be corrected for several time-dependent variations:

X Effective variations of equatorial coordinates due to the proper motions of stars
X Shifting of reference systems due to effects of precession and nutation
X Apparent variations due to refraction, daily and annual aberration and relativistic
diversion of light
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4.2 Data analysis

The correction formulas implemented in AURIGA allow for the reduction accurate to 0.001
arcsec, hence being negligible in the error budget of the Zenith Camera.

Tangent projection

The equatorial coordinates (α, δ)i of the catalog stars are defined on a sphere, while the
image coordinates (x, y)i represent the positions of stars in a plane coordinate system.
The link between both systems can be established by the introduction of plane, orthogonal
tangent coordinates (ξ, η)1. They are derived from the projection of the spherical coordi-
nates into a tangent plane, which is attached to an approximate zenithal point (α, δ)0.
The transformation of (α, δ)i into (ξ, η)i is realized by the equations of tangent projection
representing an oblique, gnomonic projection after Seeber [1972]):

cot q = cot δ cos(α− α0)

ξ =
tan(α− α0) cos q

cos(q − δ0)

η = tan(q − δ0)

(4.5)

The backward transformation of (ξ, η)i into (α, δ)i is (after Gessler [1975]):

α = α0 + arctan
ξ

cos δ0 − η sin δ0

δ = arctan
(η + tan δ0) cos(α− α0)

1− η tan δ0

(4.6)

4.2.4 Star identification

Principle of similar triangles

The main task of the identification process is to determine, which stars from the catalog
and projected into the tangent plane (field I) are imaged in the photo (field II). It has
to be considered that both fields are shifted and rotated to each other and that they
indicate different scales. This fact demands the determination of four transformation
parameters: 2 translations, 1 rotation and 1 scale factor. The identification algorithm
implemented in AURIGA is based on the idea that both fields feature similar patterns,
as e.g. triangle configurations. This method has been suggested by Groth [1986] and
Valdes et al. [1995]. It has the advantage that no a priori information are needed. Three
stars existing in both fields form similar triangles and can be characterized by their
aspect ratios. This fact is invariant to the transformation parameters. In order to reduce
the calculation time, only few stars are selected for an identification. Therefore, the
stars in both fields are sorted by their magnitudes (image stars: signal-to-noise-ratio,
reference stars: apparent brightness) and only the 15 to 30 brightest stars are used. Stars
whose spherical distance is ≤0.1 arcmin as well as stars in the border area are excluded.
The generation of triangles is performed separately for both fields. All possible triangle

1Attention: the denotation of the tangent coordinates (ξ, η) is the same as for the DOV (ξ, η).
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configurations are constituted, characterized by their sides: c ≥ b ≥ a. Based on the
length of each side, the aspect-ratios xt and yt are calculated:

xt =
b

c
yt =

a

c
(4.7)

The parameters (xt, yt) can be understood as cartesian coordinates in an aspect-ratio-
system, where each triangle is represented by one point. For the identification of similar
triangles, the parameters (xt, yt)1 for the image stars and (xt, yt)2 for the reference stars
have to fulfill the following condition:

|xt1 − xt2| < ε ∧ |yt1 − yt2| < ε (4.8)

The limit factor ε can be set to 0.0005 and 0.001, respectively . If Eq. (4.8) is fulfilled,
the stars of the according triangle are potentially identical. These stars are indicated in a
so called "correspondence matrix" with the dimensions (N1, N2), where N1 denominates
the number of image stars and N2 the number of reference stars. Each time a star is
identified, the respective entry in the matrix is increased by 1. Since stars belong to
different triangle configurations, the number of assignments for identical stars is finally
significantly higher than the mean of all matrix entries.

Identification of the whole star field

In order to obtain the parameters for a linear transformation (2D-Helmert transformation)
between both fields, two highly-tagged stars are selected forming a linear basis: the
image stars (x, y)1, (x, y)2 and the reference stars (ξ, η)1, (ξ, η)2.

The coordinate differences:

∆x = x2 − x1 ∆ξ = ξ2 − ξ1

∆y = y2 − y1 ∆η = η2 − η1

(4.9)

yield the transformation parameters b1 and c1 describing rotation and scale:

b1 =
∆ξ∆x+ ∆η∆y

∆x2 + ∆y2
c1 =

∆η∆x−∆ξ∆y

∆x2 + ∆y2
(4.10)

and the translations a1 and a2:

a1 = ξ1 − b1x1 + c1y1 a2 = η1 − c1x1 − b1y1 (4.11)

With the transformation parameters (a1, a2, b1, c1), all stars imaged (x, y)i can be trans-
formed into tangent coordinates (ξ̃, η̃)i:

ξ̃ = a1 + b1x− c1y η̃ = a2 + c1x+ b1y (4.12)
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The transformed coordinates (ξ̃, η̃)i should highly correspond with the tangent coordinates
(ξ, η)i of the reference stars and fulfill the following criteria:

√
(ξ̃ − ξ)2 + (η̃ − η)2 < ε (4.13)

A typical value for ε is 10 arcsec. Generally, the bigger part of the stars imaged can be
thus identified. This assumes that according reference star positions are listed in the
star catalog. For all identified stars, a Helmert transformation is calculated yielding an
improved set of transformation parameters. They are used to transform a second time
all image stars, possibly resulting in an identification of additional stars. In case, the
identification of the image stars fails, that means less than four stars have been identified,
the whole process is repeated by using a different pair of stars from the correspondence
matrix. The identification with a limit of 10 arcsec may provoke a misinterpretation in
the case of close stars. Hence, for the final data reduction only stars are selected whose
residuals are below 1 arcsec corresponding to 3-times of a typical astrometric uncertainty
(0.3 arcsec).

4.2.5 Data reduction

Association of image- and tangent coordinates

The process of data reduction realizes a stable functional relation between the image
coordinates and the reference coordinates. Hirt [2004] analyzed different transformation
models, like the Helmert transformation (4 parameters), the affine transformation (6
parameters) and the projective transformation (8 parameters) in reference to the respec-
tive residuals between transformed and given coordinates. It has been concluded that
transformation models of higher order do not contribute to a significant reduction of the
residuals, hence, a Helmert transformation (Eq. (4.12)) is completely adequate. After
the equalization of the transformation parameters (data reduction), the image scale m
and the astronomical azimuth α describing the orientation between CCD sensor system
and astronomical coordinate system can be derived:

α = arctan
c1

b1

m =
√
b2

1 + c2
1 (4.14)

The next step is the establishment of the relation between the intersection point of
"rotational axis and image" (=pivot) and those of "rotational axis and sphere" (=ro-
tational direction). This is realized by interpolating the pivot into the zenithal star
field.
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Calculation of the rotational direction

The overall process of the determination of the rotational direction is depicted in
Fig. 4.4.

Figure 4.4: Principle of the interpolation of the pivot into the zenith. The scheme is
explained in section Calculation of the rotational direction.

The interpolation process starts with the assumption that the image-sided intersection
point of the rotational axis (=pivot) coincides with the center of the image: (x, y)D=(0,0).
This is necessary, since the eccentricity of the CCD sensor is still unknown (in a first-time
analysis of Zenith Camera observations). By applying the Helmert transformation (Eq.
(4.12)) and the inverse tangent transformation formulas (Eq. (4.6)), the epoch-dependent
equatorial coordinates are derived for both images with (α, δ)I for position I and (α, δ)II
for position II. In order to obtain epoch-independent astronomical parameters, the
respective exposure epochs for both images (ΘI ,ΘII) have to be taken into account (Eq.
(4.4)). The results are sphere-sided intersection points of the rotational axis (Φ,Λ)I and
(Φ,Λ)II (=rotational directions). Their spherical average yields the rotational direction
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(Φ,Λ)D, which serves as input for a backward transformation. The consideration of
the respective exposure epochs as well as the application of the tangent transformation
formulas (Eq. (4.5)) and the inverse Helmert transformation (based on Eq. (4.12))
result in image-sided intersection points of the rotational axis (x, y)I and (x, y)II . Their
average represents an improved pivot (x, y)D, which can be used for a next iteration.
The iterative process terminates when (Φ,Λ)D fulfills the condition in Eq. (4.15), where
i is the number of iterations and ε is the termination condition:

√
(ΛD(i) − ΛD(i−1))2 + (ΦD(i) − ΦD(i−1))2 < ε (4.15)

The termination condition ε can be set to 0.001 arcsec. Generally, the process terminates
after three iterations. The pivot (x, y)D found in a first-time analysis of Zenith Camera
observations represents the CCD eccentricity and can be used as starting value for further
analyses. In order to obtain the final direction of the vertical (Φ,Λ), the rotational
direction (Φ,Λ)D representing the intersection point of the instrumental axis with the
sphere has to be corrected for different effects (chapter 4.3).

4.3 Corrections

Inclination correction

Due to a residual vertical misalignment, the rotational axis (Φ,Λ)D of the Zenith
Camera still differs from the direction of the vertical (Φ,Λ). The leveling process prior
to an observation aims at the best-possible alignment of the rotational axis into the local
direction of the vertical. However, there remains always a residual inclination, since it is
impossible to level the system perfectly with a deviation of less than 0.1 arcsec (designated
accuracy for the direction of the vertical). Furthermore, the system is subject to several
dynamic impacts, e.g. a slow sinking of the tripod into the ground, fluctuations of the
inclination due to movements of the observer around the system, temperature influences
and wind pressure. Another impact is related to the so called stagger effect of the turning
circle that provokes different inclinations of the rotational axis in positions I and II. For
these reasons, the inclination of the Zenith Camera has to be registered permanently,
hence providing information about the misalignment of the system in the moment of
observation. In order to allow for the elimination of systematical effects, as e.g. the
zero-point offset of the inclination sensors and the stagger effect, the registration has to
be conducted into two opposite positions I and II. Additionally, the observation sequence
I-II-II-I largely enables the mitigation of a linear drift of the zero-point offset. Based on
the results of the processed inclination data (chapter 4.1.2), the absolute inclinations
(n1, n2) are available for a transformation into inclination (nΦ, nΛ):

nΦ = cos(α + β)n1m1 − sin(α + β)
(n2m2

sin ε
− n1m1

tan ε

)
nΛ = sin(α + β)n1m1 + cos(α + β)

(n2m2

sin ε
− n1m1

tan ε

) (4.16)
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α... Astronomical azimuth (orientation CCD sensor to astronomical coordinate system)
β... Angle between CCD sensor and coordinate system of inclination sensors
m1,m2... Scales of the inclination sensors
ε... Shearing angle between the inclination sensors

The respective coordinate systems and parameters β and ε are depicted in chapter 4.4.2,
Fig. 4.11. The final inclination corrections are:

∆Φn = nΦ

∆Λn = nΛ sec ΦD

(4.17)

Azimuth correction

In chapter 4.4.1, it is shown that the result of (Φ,Λ) depends on the azimuthal orientation
α of the Zenith Camera. Observations in different azimuths yield results, which describe
a circle around the true direction of the vertical. For a determination of the true direction,
it is necessary to consider azimuth-dependent corrections. They are represented by the
parameters r (radius of the circle around the true direction) and γ (start orientation
= angle offset for the astronomical azimuth). The parameters can be converted into
azimuthal corrections by:

∆Φa = r cos(α + γ)

∆Λa = r sin(α + γ) sec Φ
(4.18)

It has to be noticed that these corrections are redundant if the new tripod method
described in chapter 4.4.1 is used.

Polar motion correction

The direction of the vertical (Φ,Λ) corrected for (∆Φ,∆Λ)n and (∆Φ,∆Λ)a refers
to the apparent terrestrial reference system ITRS and, therefore, to the position of the
apparent pole of rotation (CEP) (see chapter 2.1.3). In order to link (Φ,Λ) with the
conventional ITRS pole of rotation (IRP), the polar motion parameters (xP , yP ) have to
be considered (chapter 2.1.5):

∆Φp = −(xP cos Λ− yP sin Λ)

∆Λp = −(xP sin Λ + yP cos Λ) tan Φ
(4.19)

Final direction and computation of deflections of the vertical

The final direction of the vertical (Φ,Λ) results from an application of all described
corrections to the rotational direction (Φ,Λ)D:

Φ = ΦD + ∆Φn + ∆Φa + ∆Φp

Λ = ΛD + ∆Λn + ∆Λa + ∆Λp

(4.20)
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Provided that the ellipsoidal coordinates (ϕ, λ) are known, the DOV (ξ, η) can be derived
by Eq. (3.1).

4.4 Calibrations

4.4.1 Azimuth calibration

The dependence of the astronomical parameters (Φ,Λ) on the azimuthal alignment of the
Zenith Camera is known since the deployment of the old analog system TZK2 of Hannover
in the early eighties (Hirt [2004]). It has been first time described by Wildermann [1988].
In Wirth and Marti [1986], the azimuth-dependent error is discussed in relation with the
old analog Zenith Camera TZK3 of ETH Zurich. Also for the new generation of digital
Zenith Cameras, this subject requires a special consideration. If the camera is orientated
under different astronomical azimuths α, the corresponding solutions (Φ,Λ) describe a
circle around the true direction of the vertical (Φ,Λ)M showing a radial-symmetrical
character. In Wildermann [1988], the reason for the error is specified as the difference
between optical and rotational axis. However, Hirt [2004] showed that this difference
should be negligible due to its point-symmetrical character and an observation in two
opposite positions. It is then eliminated in the course of the determination of the
rotational axis and the associated calculation of the spherical average (compare Fig. 4.4).
In fact, the true reason for the observed azimuthal dependence is not yet fully known.
However, there exists a new observation method to avoid the occurrence of this error: the
so called tripod method. This more precise and efficient method as well as the according
analysis procedure have been recently developed at the University of Hannover (Hirt
and Seeber [2007a] and Hirt and Seeber [2007b]).

In the following, the classical azimuth calibration is described, as it has been realized
with TZK3 and later with DIADEM until the year 2007. Besides, it still forms a
dedicated method for special measuring situations (as e.g. by a transportation by boat).
Afterwards, the new tripod method is presented.

Basic principle of azimuth calibration

The calibration method aims at the determination of the azimuthal correction parameters
r and γ, hence allowing for the mathematical elimination of the error. A geometrical
explanation of both parameters r and γ is illustrated in Fig. 4.5.

The parameter r represents the radius of the circle, which is described by the solutions
resulting from observations in different azimuthal directions. The parameter γ describes
the starting orientation depending on the orientation of the CCD sensor in reference
to the objective. In order to determine the correction parameters, the Zenith Camera
observations have to be conducted in different azimuthal directions. Therefore, the
whole system has to be turned with the tripod platform in the designated direction
(Fig. 4.10: B), where the complete data acquisition process has to be performed as
described in chapter 4.1.1. Fig. 4.5 shows the orientation of the Zenith Camera in
two azimuthal directions differing for about 120◦. The calculation of the correction
parameters and its application are implemented in the AURIGA software (chapter
4.3).
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Figure 4.5: Azimuthal correction parameters r and γ at the example of an observation
in two different azimuthal directions differing for about 30◦. r: Radius of the circle
around the true direction of the vertical, γ: Starting orientation of the CCD sensor,
α: Azimuthal orientation of the Zenith Camera (Hirt [2004]).

The equalization model of the azimuth calibration is (Hirt [2004]):

Φ(X,L) = Φ− ΦM + r cos(α + γ) = 0

Λ(X,L) = Λ− ΛM + r sin(α + γ) sec Φ = 0
(4.21)

with

ΦM ,ΛM ... True direction of the vertical = center of the circle
Φ(α),Λ(α)... Direction of the vertical depending on α
α... Astronomical azimuth
XT = [ΦM ,ΛM , r, γ]... Vector of unknowns
LT = [(Φ,Λ, α)1...(Φ,Λ, α)n]... Vector of observations

Eq. (4.21) can be theoretically solved with two different azimuthal directions. However,
the more azimuthal directions are observed, the more reliable is the solution of the
unknowns. Generally, observations in four directions with ∆α = 90◦ provide a satisfying
configuration.

Analysis of azimuth calibrations with DIADEM

Fig. 4.6 shows the results from an observation in four different azimuthal directions,
performed with DIADEM at a station in western Switzerland. Each direction yields a
mean direction of the vertical (Φ,Λ) (marked as fat points), which are distributed on a
circle around the true direction of the vertical (Φ,Λ)M .
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Figure 4.6: Rotational directions (Φ,Λ)i with i = 1...4 for four different azimuthal
directions αi. The distribution of the single results (black points) on a circle is
well recognizable. The mean rotational direction of each azimuthal orientation is
designated by the fat black points. The true direction of the vertical (Φ,Λ)M is
represented by the center of the circle.

Figs. 4.7 and 4.8 demonstrate the time-dependent behavior of the parameters r and γ at
the example of the DIADEM campaign in Greece in 2005 (chapter 7). As recognizable,
the parameters show relatively large variations between the stations, hence, they can
not be considered as constant. The parameter r (Fig. 4.7) varies between 2.7 and
3.3 arcsec with a standard deviation of about 0.17 arcsec. The mean amounts to 3
arcsec. Possible reasons for these variations are percussions of the system as a result of
transportation. Thus, the travel from Zurich (day 0) to the first station in Greece (day
5) might be responsible for the strong variations of r for about 0.6 arcsec. Regarding
the parameter γ (Fig. 4.8), large variations of about 27◦ are observable between days
14 and 19. This might be interpreted as stress impact on the system caused by the
transshipping from boat to car. Other possible reasons might be temperature changes,
tensions of the system as well as changes of the CCD sensor orientation after an adaption
of the focus.
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Figure 4.7: Time-dependent behavior of parameter r during the campaign in Greece in
2005. The variations are relatively large with values between 2.7 and 3.3 arcsec and
a standard deviation of about 0.17 arcsec. The mean amounts to 3 arcsec.

Figure 4.8: Time-dependent behavior of parameter γ during the campaign in Greece in
2005. Also for this parameter, the variations are relatively large with values between
278.6◦ and 305.8◦ and a standard deviation of about 5.5◦. The mean amounts to
288.7◦.

The role of inclination sensors

Interestingly, the inclination sensors seem to play a role within the described prob-
lem of azimuth-dependence (Ganz [2007]). Tab. 4.1 shows the results of an azimuth
calibration with DIADEM at the reference station in front of the ETH-HPV building,
performed in nine different azimuthal orientations. The analysis has been processed twice
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using one time the inclination data of the Wyler sensors and another time the data of
the Lippmann sensors. As recognizable, the investigation revealed significant differences
between the respective azimuthal correction parameters r and γ. This suggests a relation
between azimuthal error and the type of inclination sensors or, more reasonable, the
position of the sensors on the turning circle.

Wyler sensors Lippmann sensors
r [arcsec] 2.16 1.12
σr [arcsec] 0.03 0.03
γ [deg] 281.84 153.87
σγ [deg] 0.78 1.37

Table 4.1: Azimuthal corrections r and γ depending on the inclination sensors.

Figure 4.9: Comparison of the azimuth-dependent solutions for the rotational direction
as result of an analysis with Wyler (blue) and Lippmann sensors (red), respectively.
The symbols represent nine different azimuthal directions. Corresponding sym-
bols label corresponding azimuthal directions. As well recognizable, the azimuth
correction parameters r and γ differ significantly (see Tab. 4.1).

The radius r determined with the Wyler sensors is for about 1 arcsec greater than those
derived with the Lippmann sensors (Tab. 4.1: 2.16 arcsec vs. 1.12 arcsec). Also the
respective orientation angles γ differ significantly for about 130◦ (281.84◦ vs. 153.87◦).
These differences are well recognizable in Fig. 4.9, where an azimuth calibration with
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nine different positions is plotted. The blue symbols reflect the Wyler solutions, while
the red symbols represent the Lippmann solutions. The azimuthal directions are marked
by different symbols, whereas corresponding azimuthal directions between both series
are indicated by identical symbols. The circle derived from an analysis with Lippmann
sensors is obviously smaller than those from the Wyler series. Furthermore, the respective
solutions for same azimuthal directions differ for about 130◦ according to the difference
in γ. The reason for these discrepancies is not yet known. One possible approach might
be the fact that Wyler and Lippmann sensors are mounted on different positions on
the turnable superstructure of DIADEM. Therefore, they are potentially exposed to
different deformations caused by instabilities of the turning platform. An experimental
set-up to validate this assumption could be a change of the mounting positions of
the sensors. However, as the tripod method described in the next section provides
much more precise solutions, a deeper analysis of this problem is not of high priority
anymore.

Tripod method

In comparison to the azimuth calibration method, the newly developed tripod method
provides a more precise and efficient strategy to determine the direction of the vertical by
eliminating the occurrence of an azimuth-dependent error. The old method differs from
the new method by the performance of an observation in two opposite positions: While
the azimuth calibration requires the turning of the superstructure of the instrument
for 180◦ (Fig. 4.10: A), the new method demands the turning of the entire tripod
platform into opposite directions (Fig. 4.10: C). For a more detailed description of the
measuring procedure, please refer to chapter 4.1.1. The resulting direction of the vertical
is independent from an azimuthal orientation of the system. It directly represents the
true direction of the vertical. Dedicated investigations by Ganz [2007] demonstrated that
the tripod method provides a significantly higher external accuracy than the azimuth
calibration (chapter 6.5). The new method yields an accuracy of better than 0.1 arcsec,
hence representing an improvement of about 50% compared to the method of azimuth
calibration. Therewith, the time-consuming and inefficient method of azimuth calibration
becomes, theoretically, redundant. However, in case of special measuring situations, the
azimuth calibration still represents a dedicated method. Such a dedicated situation was
given during the campaign in Greece, where the instrument had to be transported by
boat. The modernized tripod was too heavy and bulky for a shipborne transportation,
and is, furthermore, not dismountable. Therefore, the old tripod of the analog TZK3
system has been used offering the possibility to buckle the tripod legs. However, it does
not provide the conditions for an automatical turning of the platform, which demanded
the performance of an azimuth calibration.
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Figure 4.10: Difference between azimuth calibration and tripod method. If applying
the method of azimuth calibration, the observation in two opposite positions is
realized by turning the objective (A). In order to eliminate the azimuth-dependent
error, it is necessary to turn the whole instrument with the tripod platform in
different azimuthal directions (B) and to repeat the complete measuring procedure.
In contrast, the tripod method only requires the turning of the whole instrument
with the tripod platform for the observation in two opposite positions (C). Then,
the azimuth-dependent error does not occur anymore and the alignment in different
azimuthal directions is not necessary.
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4.4.2 Celestial calibration

With the method of celestial calibration developed by Hirt [2004], it is possible to deter-
mine the orientation angle β between CCD coordinate system (X, Y )CCD and coordinate
system of the inclination sensors (X, Y )Lev. Furthermore, the scales of the inclination
sensors (m1,m2) and the shearing angle ε between the axes XLev and YLev of the sen-
sor coordinate system can be derived. Fig. 4.11 illustrates the associated coordinate
systems. The calibration parameters β, ε,m1,m2 are needed for the transformation of
the inclination data (n1, n2) into inclination corrections (∆Φ,∆Λ) (see Eqs. (4.16) and
(4.17)).

Figure 4.11: Definition of coordinate systems and associated parameters α, β, ε. In
addition to the inclination scale factors m1,m2, the parameters β and ε are a result
of the celestial calibration. The astronomical azimuth α is derived from the data
analysis and depends on the orientation of DIADEM during an observation.

Basic principle of celestial calibration

The celestial calibration is based on the idea that variations in the inclination of the
Zenith Camera are directly reflected both in the observed rotational direction (Φ,Λ)D
and the inclination data (n1, n2). At a station, the sum of rotational direction (Φ,Λ)D
and inclination corrections (∆Φ,∆Λ)n is always constant yielding the direction of the
vertical (Φ,Λ)Z :

(
ΦZ

ΛZ

)
=

(
ΦD

ΛD

)
+

(
∆Φn

∆Λn

)
(4.22)

(
∆Φn

∆Λn

)
=

(
nΦ

nΛ sec ΦZ

)
(4.23)
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According to Eq. (4.16), the inclinations (nΦ, nΛ) can be calculated by means of the
absolute inclinations (n1, n2) (Eq. (4.1)), the unknown transformation parameters
β, ε,m1,m2 and the astronomical azimuth α. The equalization model of the celestial
calibration is then (Hirt [2004]):

Ψ(X,L) = ΦD − ΦZ + (cos(α + β)n1m1 − sin(α + β)
(n2m2

sin ε
− n1m1

tan ε

)
)

Ψ(X,L) = ΛD − ΛZ + (sin(α + β)n1m1 − cos(α + β)
(n2m2

sin ε
− n1m1

tan ε

)
) sec ΦZ

(4.24)

with

ΦZ ,ΛZ ... Direction of the vertical
ΦD,ΛD... Rotational direction
XT = [ΦZ ,ΛZ ,m1,m2, β, ε]... Vector of unknowns
LT = [(ΦD,ΛD, n1, n2, α)1...(ΦD,ΛD, n1, n2, α)n]... Vector of observations

The unknown calibration parameters can be derived by comparing the zenithal distance
zD (=difference between (Φ,Λ)D and (Φ,Λ)Z) and zenithal distance zn (=inclination of
the system):

zn =
√
n2

1 + n2
2 zD =

√
(ΦD − ΦZ)2 + (ΛD − ΛZ)2 cos2 ΦZ (4.25)

a) Intentional inclination of the Zenith
Camera.

b) Inclination of the Zenith Camera in four different di-
rections.

Figure 4.12: Principle of celestial calibration with zD = Zenithal distance between
direction of the vertical (Φ,Λ)Z and rotational direction (Φ,Λ)D and zn = Zenithal
distance derived from the inclination data (modified after Hirt [2004]).
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Therefore, the Zenith Camera has to be inclined intentionally for about 10 arcsec to
100 arcsec (Fig. 4.12a)). The systematical deflection of the rotational axis of the
Zenith Camera is performed in different directions (Fig. 4.12b)). This allows for a
geometrically stable configuration. Provided that the inclination of the Zenith Camera is
corrected appropriately, it can be assumed that zn is approximately equal to zD (apart
from stochastical measurement errors). A systematical difference between both can
be attributed to deviant calibration parameters. Hence, e.g. the scales m1,m2 of the
inclination sensors might differ from 1 or the shearing angle ε between the axes of the
inclination sensors might deviate from 90◦. In order to allow for the determination of all
six unknown parametersXT (Eq. (4.24)), the observation of the rotational direction under
at least three different orientations of the instrument is needed.

Analysis of celestial calibrations with DIADEM

It is recommended to repeat the calibration procedure in regular time intervals, es-
pecially after reconstruction works at the system as well as before, during and after
a campaign. The long-time observations during the years 2003-2005 (without any re-
construction works in between) show that the parameters remain relatively constant
(Tab. 4.2). The orientation angle β amounts to 1.37◦, while the shearing angle ε in-
dicates a deviation of 0.14◦ from an orthogonally mounting of the inclination sensors.
Both parameters show a standard deviation of 0.09◦. The scale factors of the Wyler
inclination sensors differ with a standard deviation of 0.25% for maximum 0.52% from
1.

Nr. Date Day index m1 m2 β ε
[-] [-] [◦] [◦]

1 20030917 1 1.0049 1.0021 0.9059 89.7415
2 20040908 358 1.0004 1.0003 1.3187 89.8964
3 20040912 362 1.0038 1.0015 1.4755 89.9871
4 20041003 383 1.0072 1.0014 1.3239 89.9823
5 20041115 426 1.0072 1.0019 1.3858 89.8314
6 20050117 489 1.0070 1.0025 1.4452 89.8208
7 20050516 608 1.0074 1.0045 1.4455 89.7522
8 20050715 668 1.0035 1.0035 1.3858 89.8923

Mean: 1.0052 1.0022 1.3733 89.8630
Std.dev.: 0.0025 0.0013 0.09 0.09

Table 4.2: Results of celestial calibration between the years 2003-2005. The calibration
parameters (m1,m2, β, ε) remain relatively constant.

Concluding, it can be stated that the celestial calibration offers a very fast method
(about 30 minutes) for the determination of the calibration parameters. Especially, the
in-situ determination of the inclination scale factors is very interesting. Indeed, Hirt
[2004] recognized that the scale factors determined with this procedure might deviate
from those determined by a conventional calibration table in a laboratory (as e.g. used at
the Institute of Geodesy and Photogrammetry, ETH Zurich). However, the scale factors
resulting from the method of celestial calibration are more relevant for the calculation of
realistic inclination corrections, as they are adapted to the ICRS scale provided by the
star catalogs (Hirt [2004]).
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4.4.3 Shutter delay

An error in the determination of the epoch influences directly the astronomical longitude Λ.
This component depends linearly on time because of the earth’s rotation. Regarding the
accuracy of epoch determinations, the characteristic of the electronic blade shutter used
in the CCD camera plays an important role. It is well known from other investigations
(Käker [2003], Hirt [2004]) that the shutter might react asymmetrically. This means that
the times needed to open and to close are different. Besides, the shutter might respond
delayed in reference to the TTL signal emitted by the CCD camera in the moment of
exposure. These characteristics cause an unknown time delay. In order to assure that
the impact of an epoch error on the η-component does not exceed 0.01 arcsec (for the
latitude ϕZurich ≈ 47.4◦), the epoch has to be determined with an accuracy (∆t) of better
than 0.9 ms. This relation is expressed by the following equation:

∆η = (15[arcsec/s] · cosϕ) ·∆t (4.26)

Experimental set-up

The analysis of the shutter function is based on the comparison of two different signals:

X TTL signal: The rectangular trigger signal is emitted by the FDL-PCI card of the
CCD camera in the moment of exposure and transfered to the shutter. It signalizes
the shutter to start the opening process. Additionally, the TTL signal is relayed to
a GPS receiver implemented in the PC for the determination of the exact exposure
epoch. The user defines if the exposure epoch tGPS either refers to the ascending (start
of exposure) or descending edge (end of exposure) of the TTL signal.

X Shutter signal: In order to generate this signal, a laser has been aligned to the edges
and the center of the CCD sensor, respectively (Figs. 4.13 and 4.14). As soon as the
shutter starts to open, the laser signal is reflected by the sensor surface and detected
by a light-sensitive diode. The reflexion terminates, when the shutter is completely
closed.

The shutter signal as well as the TTL signal are both monitored by an oscilloscope. The
comparison of the signals allows for the analysis of the specific reaction times of the
shutter, which can be characterized by the following points in time (compare Fig. 4.15):

X t0: Release of the TTL trigger signal by the CCD camera
X t1: Shutter starts to open
X t2: Shutter is completely open (100% of the CCD sensor are exposed)
X t3: Shutter starts to close
X t4: Shutter is completely closed

For the determination of these points in time, different positions on the sensor have been
located (Fig. 4.14). The center of the sensor (p1) corresponds to the points in time t1
and t4: The laser signal is reflected as soon as the shutter starts to open (t1), and the
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Figure 4.13: Configuration scheme of the experiment for the investigation of the shutter
characteristic.

reflexion terminates when the shutter is completely closed (t4). In contrast, the four
edges of the sensor (p2-p5) provide redundant information for the time points t2 and t3:
these positions do not reflect the signal until the shutter is completely open (t2) and
terminate the reflexion as soon as the shutter starts to close (t3).

Figure 4.14: CCD sensor with the edge and center points at the moment when 100 %
of the shutter are open.

Investigation of exposure time dependence

In order to detect a potential dependence on the exposure time, the investigation
has been performed with times varying between 100 ms and 500 ms (Bentz [2006]) (Tab.
4.3).

For each exposure time, points t1-t4 have been determined repeatedly (about 30 times).
Points t2 and t3 represent the weighted average of all four sensor edges. With focus on a
typical exposure time of 300 ms, the following conclusions can be resumed: The shutter
shows a clearly delayed reaction time as it starts to open 5.68 ms (t1) after the TTL
signal has been emitted (t0). Other 5.8 ms (t2-t1) elapse until the shutter is open so
far that the complete CCD sensor is uncovered. Hence, it needs in total 11.48 ms (t2)
until the edges of the sensor are exposed. Another finding is that the shutter acts in fact
asymmetrically, as the time needed to open (t2-t1) is 0.35 ms shorter than to close (t4-t3).
Finally, the comparison of the target exposure time T with the effective exposure times
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revealed that the exposure time for stars in the center of the sensor (t4-t1-T) is 8.47 ms
longer than T. However, the exposure time for stars in the edge of the sensor (t3-t2-T) is
3.50 ms shorter than T. These differences have to be considered in the calculation of the
effective exposure time delay. The shape of the according shutter function is depicted
in Fig. 4.15. Tab. 4.4 shows the means of all analyzed exposure times for each point
in time. The question of an exposure time dependence can be abandoned as the mean
times show a very good agreement, with a standard deviation of mostly better than 0.15
ms (compare also Fig. 4.16).

T 100 ms 200 ms 300 ms 400 ms 500 ms
[ms] t σt t σt t σt t σt t σt
t1 5.53 0.10 5.65 0.12 5.68 0.21 5.49 0.10 5.54 0.05
t2 11.42 0.08 11.50 0.07 11.48 0.05 11.45 0.06 11.47 0.06
t3 108.03 0.05 207.96 0.04 307.98 0.05 407.93 0.06 508.01 0.06
t4 114.31 0.11 214.23 0.13 314.14 0.19 414.29 0.04 514.20 0.06

t2-t1 5.90 5.85 5.81 5.97 5.93
t3-t2 96.61 196.46 296.50 396.48 496.54

t3-t2-T -3.39 -3.54 -3.50 -3.52 -3.46
t4-t1 108.79 208.58 308.47 408.80 508.66

t4-t1-T 8.79 8.58 8.47 8.80 8.66
t4-t3 6.28 6.27 6.16 6.35 6.19
dtm 9.82 0.07 9.84 0.07 9.82 0.10 9.79 0.06 9.81 0.05

Table 4.3: Shutter reaction times for points in time t1 to t4 depending on the exposure
times for a temperature of 22◦C. t1: Shutter starts to open, t2: Shutter is 100%
open, t3: Shutter starts to close, t4: Shutter is 100% closed, t2-t1: Time needed to
open, t3-t2-T: Difference between target (T) and actual exposure time (t3-t2) for
stars in the edge of the sensor, t4-t1-T: Difference between target (T) and actual
exposure time (t4-t1) for stars in the middle of the sensor, t4-t3: Time needed to
close, dtm: Final correction time after Eq. (4.29) (independent from the exposure
time), σt: Standard deviations of measured time differences.

[ms] tm σtm
t1 5.58 0.08
t2 11.47 0.03
t3
t4

t2-t1 5.89 0.06
t3-t2

t3-t2-T -3.48 0.06
t4-t1

t4-t1-T 8.66 0.14
t4-t3 6.25 0.08
dtm 9.82 0.02

Table 4.4: Mean shutter response times tm for the exposure times investigated at points
in time t1 to t4. σtm : Standard deviations of mean time differences.
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Figure 4.15: Shutter function representing the delays determined for the points in time
t1 to t4 (referring to Tab. 4.4).

Figure 4.16: Times needed to open (dark gray) and close (light gray) the shutter
depending on the exposure time. A correlation with the exposure time is not
recognizable. However, it is obvious that the shutter reacts asymmetrically, hence,
the time needed to open is shorter than the one to close.

According to the fact that the exposure times vary for stars in the center and in the edge
of the sensor, respectively, different equations for the calculation of the effective time
delay have to be considered. Eq. (4.27) allows for the computation of the time delay
dtedge for stars at the edge of the CCD sensor. They are not exposed unless the complete
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CCD sensor is uncovered (t2 to t3).

dtedge = t2 +
t3 − t2 − T

2
(4.27)

Eq. (4.28) represents the time delay dtcenter for stars at the center of the CCD sensor.
They are exposed as soon as the shutter starts to open and until it is completely closed
(t1 to t4).

dtcenter = t1 +
t4 − t1 − T

2
(4.28)

Eq. (4.29) provides the mean time delay dtm, based on Eqs. (4.27) and (4.28). It
represents a common correction formula for all stars independent from their position on
the CCD sensor.

dtm =
dtedge + dtcenter

2
=
t1 + t2 + t3 + t4

4
− T

2
(4.29)

Referring to this equation, the time delay dtm amounts to +9.82 ms (Tab. 4.4). It means
that the effective exposure is later than the one represented by the TTL signal and
released at t0.

Eq. (4.30) allows for the calculation of the corrected exposure epoch tcorr, where
tGPS is the epoch provided by GPS referring to the ascending flank, and T is the
target exposure time. The corrected epoch than refers to the middle of the shutter
function.

tcorr = tGPS +
T

2
+ dtm = tGPS +

T

2
+ 9.82 (4.30)

Investigation of temperature dependence

In order to analyze also a potential temperature dependence, the reaction times of
the shutter have been determined under different temperatures (-10◦C, 0◦C, 10◦C and
22◦C) (Bentz [2006]). This has been realized in the climate chamber of the institute,
with a repetition of 30 times per point p1 to p5. The exposure time T has been set
to 100 ms, as an investigation concerning the correlation between exposure time and
temperature did not reveal any significance.

Tab. 4.5 shows the results of the analysis of the points in time t1 to t4 for different
temperatures. It is obvious that there exists a strong correlation between temperature
and reaction times. Generally, it can be said that the lower the temperature, the longer
the reaction times (compare Fig. 4.17).

The time needed to open the shutter at a temperature of -10◦C is about 0.5 ms longer
than at a temperature of 22◦C. The analysis of the closure times reveals a similar result:
There, for the same two temperatures, a delay of about 0.4 ms has been observed.
The effective mean time delay tm (Eq. (4.29)) shows a clear increase with decreasing
temperature (Fig. 4.18).
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Temp 22◦C 10◦C 0◦C -10◦C
[ms] t σt t σt t σt t σt
t1 5.58 0.14 5.66 0.06 5.88 0.06 5.77 0.05
t2 11.47 0.10 11.67 0.08 11.81 0.09 12.15 0.08
t3 107.98 0.15 108.95 0.09 109.23 0.09 109.74 0.06
t4 114.23 0.14 115.64 0.09 115.92 0.08 116.36 0.11

t2-t1 5.89 6.01 5.93 6.39
t3-t2 96.52 97.28 97.43 97.58

t3-t2-T -3.48 -2.72 -2.57 -2.42
t4-t1 108.66 109.98 110.03 110.59

t4-t1-T 8.66 9.98 10.03 10.59
t4-t3 6.25 6.69 6.68 6.62
dtm 9.82 0.13 10.48 0.08 10.71 0.08 11.00 0.07

Table 4.5: Shutter reaction times t1 to t4 depending on the temperature. The expo-
sure time T has been set to 100 ms. For explanations of the points in time and
corresponding differences, please refer to Tab. 4.3.

Figure 4.17: Times needed to open (dark gray) and close (light gray) the shutter
depending on the temperature. A significant correlation with the temperature is
recognizable. The lower the temperature, the longer the respective reaction times.
Again it becomes obvious that the time needed to open the shutter is shorter than
to close it.

The approximation by a linear regression yields the following function:

dt = −0.04 · TT + 10.7 (4.31)

with a mean delay of about 0.04 ms per K. The parameter TT indicates the actual
ambient temperature [K]. This relation is considered in the computation of the corrected
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Figure 4.18: Temperature-dependent effective time delays. The difference in delay
between a temperature of 22◦C and -10◦C, respectively, amounts to about 1.2 ms.

exposure epoch tcorr referring to a temperature TT of 0K and a corresponding time delay
of 10.7 ms:

tcorr = tGPS +
T

2
− 0.04 · TT + 10.7 (4.32)

It has to be noticed that the investigation has been only performed at four different tem-
peratures and is, therefore, not very significant. However, the results serve as an indicator
for a clear correlation between temperature and shutter delay.

Concluding, it can be said that the investigation of the shutter delay revealed very
interesting results. The delay between the rectangular TTL signal and the actual shutter
function amounts to +9.82 ms. A disregard of the delay would result in a too small
astronomical longitude Λ (0.1 arcsec for the latitude of Zurich (compare Eq. (4.26))).
In order to keep the time error below a threshold of 0.01 arcsec in longitude, a careful
implementation of the shutter properties is mandatory. As regards the problem of
temperature dependence, the maximum impact can be derived by the following consider-
ation: For temperatures between -15◦C (winter nights) and +30◦C (summer nights), the
difference in the time delay amounts to 1.8 ms (Eq. (4.31)). This refers to an error of
the η-component of 0.02 arcsec and is, therefore, also considerable.

4.4.4 Focus-temperature-function

The quality of a star image photographed with DIADEM decisively depends on the
quality of the focus: If the focal adaption is insufficient, the stars will show distortion
effects resulting in a decreased accuracy as regards the image coordinate determination.
In chapter 5.2.1, a clear correlation between defocussing and astrometric accuracy is
demonstrated (Fig. 5.3), as well as between defocussing and maximum magnitude of
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Figure 4.19: Error in the detection of a star (contrast amplified image), caused by a
bad focussing. The center of the star is not clearly identifiable, hence the extraction
software tags four different stars instead of one (red targets).

stars imaged (Fig. 5.4). A defocussing might also produce errors in the detection of stars
imaged, as visible in Fig. 4.19. Due to the ring-shaped form of the star, its center is not
clearly identifiable, and the software tags four different stars instead of one. This can be
attributed to the fact that AURIGA does not provide a procedure for the recognition of
ring centers, but rather for points.

Mechanically, an insufficient focussing exists if the position of the CCD sensor deviates
significantly from the position of the focal plane. The focus position of the Zenith Camera
is not constant, since the materials of the MIROTAR lens are temperature-dependent.
From investigations with the old analog Zenith Camera TZK3, it is known that the
correlation between focus position and temperature is nearly linear (Bürki [1989]). Also
Käker [2003] and Hirt [2004], respectively, determined an approximately linear function
for the TZK-D, which possesses a MIROTAR lens, too. The adaption of the instrument
to the ambient temperature might provoke a significant change of the focus during
an observation night. This characteristic requires a permanent control of the focus
before and during an observation aiming at the provision of high-quality images for the
subsequent data analysis.

Experimental set-up

The fact of a functional temperature-focus-correlation can be used for an automatic adap-
tion of the focal position depending on the ambient temperature. In order to investigate
this function, extensive observations have been deployed under different temperatures
(Röösli [2006]). Starting from a clearly defocussed position (ring-shaped stars), the focal
plane has been moved incrementally by steering a focus motor. At each position, an
image has been exposed, and the corresponding focus position has been read in from a
digital caliper equipped with a serial interface. Furthermore, the temperature has been
registered. For this purpose, two independent measuring systems have been used: the
temperature sensors implemented in the Lippmann tiltmeters as well as data from the
AGNES GPS station on the roof of the HPV building (GGL offices). The focus position
has been changed until the point of best-focussing has been clearly overrun and the
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stars showed again a ring-shaped character. In order to determine the optimum focal
position for a defined temperature, all images as well as corresponding focus positions
and temperatures have been analyzed in a subsequent process. In case of uncertainties
in the definitive determination of the best image, the two neighboring pictures have been
chosen, and the corresponding position has been averaged.

Determination of temperature-focus-relation

a) Defocussed image. b) Defocussed image. c) Defocussed image.

d) Transition from defo-
cussing to focussing.

e) Transition zone from de-
focussing to focussing.

f) Focussed image.

Figure 4.20: Examples for clearly defocussed images (Imgs. 4.20a) to 4.20c)) and a
perfectly focussed image (Img. 4.20f)). The exposure time is 0.3 s. The ring-shaped
form of a star is a typical sign for a defocussing of the images. The better the focal
position is adapted, the more point-shaped becomes the star.

The images in Fig. 4.20 represent stars exposed with 0.3 s according to the typical
exposure time used for a DIADEM observation. In case of a good focussing, the stars
should be sharply point-shaped. Exposure times longer than 0.5 s produce incrementally
line-shaped star traces. The examples demonstrate the impact of a bad focussing on
a star: Images 4.20a) to 4.20c) are completely defocussed, recognizable from the ring-
shaped form of the star. This might provoke misinterpretations during the process of
star detection and image coordinate determination concerning the center of the star.
The two following images 4.20d) and 4.20e) show a clearly better approach to the focus
position: the star trace becomes more and more point-shaped. However, they still show
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a slight longish character. Image 4.20f) finally represents a well-focussed image as it can
be used for the data analysis. It is interesting to see that the better the focal adaption,
the less pixels are covered by the star.

The focus position F and temperature T corresponding to the best-focussed image of a
series are plotted in Fig. 4.21. As visible from the diagram, the functional relation between
temperature and focus position is nearly linear, with a coefficient of determination of
0.89 (squares = ambient temperature) and 0.70 (points = instrument temperature),
respectively. It means that in case of the ambient temperature about 89 % of the function
pairs (F,T) are linearly correlated. Referring to the ambient temperature-focus-function,
the ascent of the straight line has been determined with 0.04 mm per K. The absolute
value of 3.61 mm refers to the zero-point of the focus, which is arbitrarily defined. In
case of reconstruction works and the removal of the CCD camera, this position has to be
redetermined.

Figure 4.21: Focus-temperature-diagram. The best-focussed image has been deter-
mined by a visual evaluation. The corresponding temperature T and focus position
F, respectively, have been plotted in the diagram. The squares represent the
function corresponding to the ambient temperature, whereas the points refer to
the instrument’s temperature. As visible, both functions show a relatively good
correspondence, especially with regard to the respective ascents of the regression
lines.

The factor of 0.04 mm per K has been used in following DIADEM observations and
produced convincing results. At the beginning of an observation, the temperature
change between last and actual observation night is registered and transformed into a
relative value representing the demanded position change. The quality of the focus is
visually controlled by exposing an image. Generally, the focus was well-adapted after 1-2
iterations. During an observation, the focus is adapted automatically if the temperature
change exceeds a defined limit. As the resolution of the dial counter amounts to 0.01
mm, an adaption of the focus is possible after a temperature change of 0.25K. However,
according to the error analysis described in chapter 5.2.1, the astrometric accuracy
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remains relatively constant until a defocussing of about 0.1 mm (Fig. 5.3) referring to a
temperature change of about 2K. This agrees well with practical experiences, where an
adaption of the focus becomes necessary after a temperature change of about 2K to 3K.
Therefore, an automatic adaption of the focus is suggested if the temperature change
exceeds this value.
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5 Error analysis

5.1 Introduction

The thorough error investigation of DIADEM forms an important part of the instru-
mental evaluation. As regards the digital Zenith Camera, five error groups can be
defined (Käker [2003], Hirt [2004]) representing potential "weak points" of the sys-
tem:

X Determination of the rotational direction: Errors in the determination of the
rotational direction (Φ,Λ)D are mainly induced by a) errors in astrometry (stochastical
character) and b) external errors (systematical character). Chapter 5.2.1 is concerned
with the astrometric quality, which is mainly influenced by scintillation effects, the
accuracy of image coordinate determination and the accuracy of the star positions
extracted from the star catalog. The information presented there refer to investigations
and conclusions in Hirt [2004]. They are largely assumable for the DIADEM system,
as the same software package (AURIGA, see chapter 4.2) is used for the analysis of
DIADEM and TZK2-D observations, respectively. Chapter 5.2.2 treats the problem of
refraction representing an important systematical external error.

X Inclination measurements: The quality of inclination measurements plays a funda-
mental role in the determination of the direction of the vertical with a Zenith Camera.
Deviations from a vertical alignment of the instrument have to be permanently regis-
tered during an observation. In order to provide redundant inclination information,
two pairs of highly-precise inclination sensors are orthogonally mounted on DIADEM
(chapter 3.2.4 and 3.2.5). They establish the relationship between the direction of
the rotational axis of the instrument (Φ,Λ)D and the direction of the vertical (Φ,Λ).
Errors in the inclination data directly influence the astronomical parameters (Φ,Λ).
The issue is that, on the one hand, the inclination sensors are erroneous and limited
by their technical features (sensor noise, characteristics of the zero-point offset and
hysteresis). These qualities are discussed in chapter 5.3.1. On the other hand, the
inclination sensors are subject to external influences. Hence, the pendulars of the
sensors are sensitive to anomalous horizontal accelerations, hence producing a signal
although the inclination of the Zenith Camera did not change. Such effects are caused
by microseismics and described in chapter 5.3.2. At last, uncertainties caused by the
measuring process might influence the accuracy of inclination measurements, too. In
this context, the azimuthal turning for an observation in two positions is analyzed in
chapter 5.3.3.

X The remaining error sources comprise the determination of observation epoch,
azimuthal correction parameters and geodetic position. They are discussed in
the chapters 5.4, 5.5 and 5.6, respectively.

73



Chapter 5: Error analysis

5.2 Determination of the rotational
direction

5.2.1 Astrometry

Astrometric accuracy

In order to estimate the astrometric accuracy, the standard deviation sxy can be deter-
mined by means of the residuals (vx, vy) resulting from the transformation between image
coordinates (x, y)i and plane reference coordinates (ξ, η)i. Furthermore, the number
of stars identified (n) as well as the number of transformation parameters (u=4) are
necessary:

sxy =

√∑
v2
x +

∑
v2
y

2n− u
(5.1)

The standard deviations (sx, sy) for separate directions (x, y) result from (Berry and
Burnell [2000]):

sx =

√ ∑
v2
x

1
2
(2n− u)

sy =

√ ∑
v2
y

1
2
(2n− u)

(5.2)

Scintillation

Scintillation can be divided into intensity and directional scintillation depending on
origin and source. Intensity scintillation is caused by density variations in air films in
several kilometers elevation yielding fluctuations of the star light intensity. However,
for astrometric observations, the directional scintillation has more significance. It can
be understood as the deflection of a star from its mean position caused by refractivity
changes in atmosphere. It is mainly induced close to ground level. The observed "mo-
tion" of the star is correlated with neighboring stars in the field-of-view (FOV) of the
objective (Winter [1999]). The mean amplitude of directional scintillation σ0 depends on
many conditions, as e.g. the epoch of observation (time of day, season), weather (air
convections, temperature), observation point, local features (ground, vegetation) as well
as the aperture angle of the telescope. Most papers concerned with this subject (e.g.
Zacharias [1996], Winter [1999]) assume that the directional scintillation shows a mainly
stochastical character, hence producing a stochastical error σds within the astrometric
error budget:

σds = σ0 · t−0.5 (if t ≥ 1 s) (5.3)

It is visible from Eq. (5.3) that the longer the exposure time t, the more the stochastical
error σds decreases. In literature, the specification of σ0 varies between 0.05 arcsec and
several arcsec. This spread shows the complexity of the phenomenon, mainly attributed
to the diversity of involved factors. Hirt [2004] estimated potential amplitudes of the
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directional scintillation for the TZK2-D by transforming two photos with nearly identical
star fields into each other. As no star catalog is used as reference, the residuals directly
indicate errors in the image coordinate determination (see next section) as well as the
impact of directional scintillation. Due to similar instrumental features and mostly
similar conditions (exposure times between 0.3 and 1 s, observations into zenith, night
observations etc.), the results can be approximately assigned to DIADEM observations.
After Hirt [2004], the mean amplitude does not exceed a few tenths of 1 arcsec with
slight variations due to changing conditions in observation. Generally, between 40 to 80
images are exposed at one station. The average of the direction of the vertical can be
largely regarded as scintillation-free.

Determination of image coordinates

Method. As mentioned in the section Scintillation, the residuals resulting from a
transformation of two pictures into each other contain also a hint on the accuracy of
the image coordinate determination. The comparison of the two methods for coordinate
determination implemented in AURIGA (segment center determination and PSF method
see chapter 4.2) resulted the following: The method of segment center determination
provides an accuracy of 0.3 arcsec to 0.5 arcsec referring to 0.15 Pixel and 0.25 Pixel,
respectively. The PSF method is about 1.5-times more precise offering an accuracy of
about 0.2 arcsec to 0.3 arcsec.

Apparent brightness. The accuracy of both methods also depends on the signal-to-
noise ratio, which is correlated with the apparent brightness of a star. Stars with a very low
signal-to-noise ratio, as given for faint stars with a mag of 12 to 14, indicate a significantly
reduced accuracy compared to brighter stars (mag 8-12).

Exposure time. Due to the fact that the Zenith Camera is a fixed system without
any tracking mechanism, the earth’s rotation is affecting the form of the star images:
Already an exposure time of ≥ 0.5 s produces a longish instead of a point-shaped form.
The analysis of the accuracies in lateral (sx) and longitudinal (sy) direction of a star
revealed a clear effect on sy: for exposure times lasting longer than 1 s, the accuracy
decreases significantly (Fig. 5.1) indicating a two times worse accuracy for an exposure
time of 1.6 s than for exposure times between 0.2 s and 1 s. In contrast, the lateral
direction is not significantly affected by the exposure time.

These results are also reproducible in relation with the internal accuracy of the as-
tronomical coordinates (Φ,Λ): the longer the exposure time, the worse the standard
deviation of Λ (Fig. 5.2). However, there is no significant debasement in Φ (Müller
[2002]).

It can be concluded that the optimum exposure times for an observation with DIADEM
ranges between 0.3 s and 0.5 s, hence providing the conditions for a high-quality image
coordinate determination.
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Figure 5.1: Astrometric accuracies (sx, sy) depending on exposure time (Hirt [2004]).
It is well recognizable that the exposure time only influences the standard deviation
sy, measured in direction of longitude Λ. This is caused by the fact that the star
trace becomes increasingly longish due to the earth’s rotation.

Figure 5.2: Standard deviations (sΦ, sΛ) of the astronomical parameters depending on
exposure time. The internal accuracy of Λ decreases with increasing exposure time.

Focussing. In chapter 4.4.4, it has been shown that a bad focussing induces problems in
the detection of the stars imaged (see Fig. 4.19). Thus, it might happen that AURIGA
detects more than one center within a star trace. It is easily to understand that these
errors influence significantly the accuracy of the coordinate determination resulting
in large residuals after the transformation. Due to the criteria defined in Eq. (4.13),
residuals greater than 10 arcsec are interpreted as detection errors and excluded from the
process of data reduction. However, remaining detection errors cause a reduced quality
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in the coordinate determination.

Figure 5.3: Astrometric residuals (vx, vy) depending on defocussing. The more the
images are defocussed, the larger the residuals.

Figure 5.4: Maximum magnitude of stars imaged depending on defocussing. The more
the images are defocussed, the smaller the magnitude. Very faint stars with a
magnitude of 13 can only be observed, if the focus is nearly perfect adjusted.

A dedicated investigation aimed at estimating the impact of defocussing on the astrometric
residuals (vx, vy), the maximum magnitude of stars observable and the standard deviations
(sξ, sη) of the deflections of the vertical. Therefore, the focussing has been intentionally
debased in 0.05 mm steps. At each focus point a series of 30 single solutions has been
observed. The analysis revealed the following: Until a defocussing of about 0.1 mm
(measured in direction of the optical axis), the astrometric standard deviation remains
constantly (Fig. 5.3). After that limit, the defocussing produces increasing astrometric
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Figure 5.5: Standard deviations (sξ, sη) of the deflections of the vertical depending on
defocussing. They remain constantly until a defocussing for about 0.3 mm. After
that they increase significantly.

residuals (vx, vy) indicating 1.5-times larger residuals for a defocussing of 0.3 mm. Also
the maximum magnitude of observable stars decreases significantly with increasing
defocussing (Fig. 5.4). Very faint stars with a magnitude of 13 are only observable if
the focus is perfectly adjusted. In spite of the demonstrated significance of a proper
focussing within a narrow range, a defocussing up to 0.3 mm does not influence the
standard deviations (sξ, sη) of the DOV. Up to this range, sξ and sη remain relatively
constant at a level of 0.2 arcsec (Fig. 5.5). First a defocussing for more than 0.3 mm is
reflected in a clear debasement of the internal accuracy. This can be attributed to the
fact that stars with residuals above a defined threshold are excluded from the calculation
of the rotational direction (Φ,Λ)D.

Reference stars

Star catalogs. Systematical errors in the coordinates of the reference stars directly
affect the result of the direction of the vertical (Φ,Λ). The star catalogs implemented
in AURIGA are the Tycho-2 (chapter 2.2.2) and the UCAC (chapter 2.2.3). Zacharias
et al. [2000] compared the Tycho-2 with the first generation of the UCAC, the UCAC1.
Both catalogs refer to the Hipparcos system and, hence, to the International Celestial
Reference System (ICRS). The analysis has been performed on the basis of about 597809
common stars finding only small systematical differences in position (up to 0.015 arcsec),
mainly correlated with the magnitude of the stars. These systematics are not significant
for the determination of (Φ,Λ). Furthermore, Hirt [2004] verified the accuracies given for
Tycho-2, UCAC2 and UCAC3 (provided by USNO prior to publication). The resulting
standard deviation of about 0.06 arcsec for the coordinate differences is within the
expected range (Zacharias et al. [2000]). The influence of an analysis with Tycho-2 and
UCAC2, respectively, on the determination of (Φ,Λ) revealed only small differences
within 0.02 arcsec, and is, therefore, negligible.
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Calculation of apparent star positions. Errors in the transformation of mean into
apparent star positions (chapter 2.2.4) caused by problems in the reduction process can
be excluded, since they amount to maximum 0.005 arcsec. This statement is based on
the comparison of the AURIGA reduction formulas with different implementations, as
e.g. NOVAS-C, Astro-Toolbox (Hirt [2004]).

5.2.2 Refraction

Radial-symmetric refraction

The radial-symmetric refraction describes the directional changing of a light beam
crossing different atmospheric layers with individual refraction indices. This causes an
apparent lifting of the star in direction to the zenith, hence observing the star under a
reduced zenithal distance. The directional changing depends on the zenithal distance
and can be described by (Gessler [1975]):

RZ = 58.206“ · tan z − 0.068“ · tan3 z (5.4)

The maximum zenithal distance observable with DIADEM is 0.95◦ according to the FOV
of DIADEM of 1◦ x 1.5◦ (chapter 3.2.3). The small value allows to neglect the second
term in Eq. (5.4) and, furthermore, to equate term tan z by z. Hence, the impact of
refraction on the zenithal distances and, therewith, on the image coordinates of the stars
can be regarded as nearly linear. Since a linear effect is supported by the scale factor m
(Eq. (4.14)), determined within the process of data reduction (chapter 4.2), there is no
need for a further numerical consideration.

Anomalous refraction

In contrast to the radial-symmetric refraction, the anomalous refraction is considered to
be a critical factor in the error budget of Zenith Cameras. It describes effects caused by
the inclination of atmospheric layers (Ramsayer [1970]), hence generating a directional
shifting of the whole star field. The effect of anomalous refraction has been the subject
of many recent publications in astronomy (e.g. Stone et al. [1996], Pier et al. [2003] and
Hirt [2006]), hence demonstrating the significance of this error source. It is an approved
fact that the amplitude of anomalous refraction is very difficult to estimate. Especially,
time-dependent variations of the amplitude are still less investigated (Hirt [2006]). The
error falsifies the measured direction of the vertical (Φ,Λ) as well as the deflections of
the vertical (ξ, η). The origin and impact of anomalous refraction can be divided into
two phenomena:

X Regional phenomenon: This phenomenon is caused by the inclination of atmo-
spheric layers resulting from horizontal temperature and pressure gradients. Changing
weather conditions indicated by the passage of cold or warm weather fronts might
have a significant influence on the actual refractivity (Bürki [1989]).

X Local phenomenon: This phenomenon occurs close to steep hillsides and mountains,
causing the inclination of atmospheric layers close to the ground (Chesi [1984]).

79



Chapter 5: Error analysis

The problem is that the impact of anomalous refraction can not be determined by a
single observation at one station. First the comparison of night means determined in
different nights might help to estimate the amplitude of refraction. Also simultaneous
long-time observations with two Zenith Cameras might be helpful, hence allowing to
detect the impact of changing weather conditions and related potential refractivity
changes.

Based on results from the campaign in Switzerland in 2005 with two Zenith Cameras,
it has been attempted to estimate the influence of anomalous refraction on Zenith
Camera observations. The results are described and discussed in chapter 6.3. It can be
already anticipated that the data did not allow for convincing statements concerning
the amplitude of anomalous refraction. It has been concluded that an influence exists,
though, it is very small and superposed by the normal measuring noise. The estimated
dimension of maximum 0.1 arcsec is in accordance with the maximum impact of 0.2
arcsec indicated by Hirt [2006].

5.3 Inclination measurements

5.3.1 Sensor qualities

General remarks

Both types of inclination sensors, the Lippmann 1/2 as well as the Wyler sensors
1/2, respectively, have been investigated in the climate chamber of the institute. They
were mounted in parallel on a table within the chamber registering permanently the
inclination during about four days. While the Wyler sensors sampled with a low rate
of 2 Hz, the Lippmann sensors operated within a high-frequency range of 1000 Hz.
The goal of the investigation was to validate the manufactory’s information concerning
the precision of the inclination sensors and, furthermore, to analyze their long-time
stability under different temperature conditions. Therefore, the temperature in the
climate chamber has been varied between 24◦C and -10◦C (Fig. 5.6). In the following,
the results of the investigation are discussed separately for both types of inclination
sensors.

Wyler inclination sensors

Fig. 5.8 represents the long-time behavior of Wyler sensor 1 during 80 hours. The
signal varies within a large range of -150 arcsec to 10 arcsec. Since inclination fluctua-
tions of the table can be excluded, the variations are potentially caused by instabilities
of the zero-point of the sensor. The comparison with the temperature (Fig. 5.6) reveals
a strong correlation, since the sensor signal shows exactly the same course of a stepwise
decrease and increase like the temperature. Hence, a temperature change of -10◦C
induces an according offset drift of about -40 arcsec.

Fig. 5.9 represents the Wyler signal during the first 24 hours of the investigation. A
strong decrease of the inclination signal from 8 arcsec to 0 arcsec is clearly recognizable
and corresponds well to the temperature adaption during these 24 hours (Fig. 5.7). The
amplitude spectrum of the 24h-signal is shown in Fig. 5.10a) with a zoom into the
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Figure 5.6: Temperature variations between 24◦C and -10◦C in the climate chamber of
the institute. The investigation lasted for about 90 hours.

Figure 5.7: Adaption of the temperature within the first 24 hours of the investigation.
The temperature adaption in the beginning took about 6 hours.

frequency range 0 Hzz to 0.2 Hz (Fig. 5.10b)). The low frequencies up to 0.1 Hz reveal
relatively large amplitudes with a maximum of 0.2 arcsec at a frequency of 0.02 Hz,
while from 0.1 Hz on the amplitudes are constantly low (≤0.01 arcsec). Most probably,
the emphasis in the low-frequency range corresponds to the temperature-dependent
offset drift. In order to eliminate these frequencies, a high-pass filtering with a limit
frequency of 1 Hz has been performed (Fig. 5.11). Due to the low sampling rate of 2 Hz,
anthropogenic microseismics (chapter 5.3.2) can not be detected within the filtered signal.
Hence, it has been concluded that the high-pass filtered signal contains a reference to the
effective sensor noise expressing the internal accuracy of the Wyler sensors. The standard
deviation of these data amounts to 0.15 arcsec, which corresponds to the manufactory’s
information (Wyler [2007]).
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Figure 5.8: Inclination signal of the Wyler sensor 1 during 80 hours. The signal shows
strong variations between 10 arcsec and -150 arcsec, mainly caused by instabilities
of the zero-point. A correlation with the temperature is obvious (compare Fig. 5.6).

Figure 5.9: Inclination signal of Wyler sensor 1 during 24 hours, with a well recognizable
drift from 8 arcsec to 0.5 arcsec.
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a) Amplitude spectrum within a frequency range
of 0 Hz to 5 Hz.

b) Zoomed amplitude spectrum within the range
of 0 Hz to 0.2 Hz, with a maximum of 0.2 arcsec
at 0.02 Hz.

Figure 5.10: Amplitude spectrum of Wyler sensor 1.

Figure 5.11: High-pass filtered signal of Wyler sensor 1 with a limit frequency of ≥1 Hz.
Due to the maximum sampling frequency of 2 Hz, the influence of anthropogenic
microseismics can not be reconstructed. It is assumed that the filtered signal largely
represents the sensor noise.
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Lippmann inclination sensors

The long-time inclination signal of Lippmann sensor 1 is represented in Fig. 5.12.
The observable variations are significant smaller than those of the Wyler sensor, but even
so in a range between 20 arcsec and 35 arcsec. Although the changes between different
temperature levels are identifiable by an amplified signal noise, a clear functional relation
between signal and temperature can not be derived (Fig. 5.6). However, a focus on the
first 24 hours of the investigation might suggests another conclusion. If comparing Fig.
5.13 representing the inclination signal with Fig. 5.7 showing the temperature adaption
during 24 hours, a correlation seems to be apparent.

Figure 5.12: Inclination signal of Lippmann sensor 1 during 90 hours. The different
temperature levels (compare Fig. 5.6) are identifiable by an amplified signal noise.

Figure 5.13: Inclination signal of Lippmann sensor 1 during 24 hours, with a drift from
about 33 arcsec to 31 arcsec.
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a) Amplitude spectrum within a frequency range
of 0 Hz to 5 Hz.

b) Zoomed amplitude spectrum within the range of
0 Hz to 0.2 Hz, with a maximum of 0.16 arcsec
at 0.02 Hz.

Figure 5.14: Amplitude spectrum of Lippmann sensor 1.

Figure 5.15: High-pass filtered signal of Lippmann sensor 1 with a limit frequency of
≥1 Hz. The visible noise is probably a superposition of anthropogenic microseismics
(≥1 Hz) and sensor noise.

The analysis of the amplitude spectrum of the 24h-Lippmann signal confirms this
assumption (Figs. 5.14a) and 5.14b)). Similar to those of the Wyler signal, it reveals
a maximum amplitude of 0.16 arcsec at a frequency of 0.02 Hz. The high-pass filtered
signal (limit frequency = 1 Hz) still shows strong undulations within a range of -1.5
arcsec and 1.5 arcsec and a standard deviation of 0.5 arcsec (Fig. 5.15). It reflects
a superposition of anthropogenic microseismics (≥1 Hz) and sensor noise. This is in
contrast to the Wyler signal and can be attributed to the higher sampling rate (1000 Hz)
of the Lippmann sensors.
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The problem is that the interesting sensor noise can not be easily separated from the
superposed microseismics within this frequency range. However, in order to enable a
statement about the internal accuracy of the Lippmann sensor, the field investigations
described in chapter 6.5 can be consulted. There, it has been demonstrated that an
analysis with Lippmann instead of Wyler sensors improves the internal accuracy of the
deflections of the vertical (ξ, η) for about 40%. As the accuracy of (ξ, η) is directly
influenced by the quality of the inclination measurements, the factor 0.6 is here used to
make a statement about the internal accuracy of the Lippmann sensors. According to
this, the accuracy amounts to better than 0.1 arcsec.

However, it is assumed that the accuracy of the Lippmann sensors might be far better than
derived from the above described experiment. This assumption is based on respective
investigations in Hirt [2004], where the Lippmann tiltmeters used for the TZK2-D were
analyzed by a dedicated mounting on the turning circle of the Zenith Camera. The
sensors have been installed in parallel and not orthogonally, hence reflecting redundant
information about the alignment of the instrument in one direction. This experiment
allowed for more precise statements concerning the quality of the sensors. Based on
the results of this investigation, Hirt [2004] indicated an accuracy of better than 0.05
arcsec.

5.3.2 Microseismics

Due to the fact that the inclination sensors are deployed in a dynamic environment, the in-
clination signal is potentially superposed by anomalous horizontal accelerations caused by
microseismics. The frequencies induced depend on location and environmental conditions
as it is well recognizable in Figs. 5.16a) and 5.16b) (Ganz [2007]).

Microseismics can be divided into two parts: natural and anthropogenic microseismics.
Natural microseismics is e.g. induced by oceanic waves indicating typical frequencies
between 0.1 Hz and 0.5 Hz with a maximum of 0.2 Hz to 0.3 Hz. Other natural factors are
earthquakes, tides (earth and ocean), wind, variations of air pressure as well as variations
of the temperature on ground caused by solar radiation. They are distinguished by
very low frequencies ≤ 0.03 Hz. In contrast, anthropogenic microseismics is caused by
human and artificial factors. Especially in urban regions, the anthropogenic part exceeds
the natural one. Reasons are large industrial engines and road traffic generating hor-
izontal accelerations with high frequencies ≥ 1 Hz (Klinge et al. [2002], Kahlmann [2003]).

Two examples of typical anthropogenic induced accelerations are represented by Figs.
5.16a) and 5.16b). They show the inclination signals registered by Lippmann sensor 1
during DIADEM observations at two different stations in the Swiss alps. The signals at
both stations reveal high-frequency microseismic effects as it is also well recognizable in
the respective amplitude spectra (Figs. 5.17a) and 5.17b)). However, the amplitudes
vary significantly. While station Hopflauen (Fig. 5.16b)) shows a strongly undulating
signal within a range of -6 arcsec to 4 arcsec and a standard deviation of 1.8 arcsec,
station Sustenpass (Fig. 5.16a)) reveals a relatively smooth signal. It varies between -3
arcsec and 3 arcsec with a standard deviation of 0.6 arcsec. The difference between both
stations is attributed to the fact that the DIADEM station at Hopflauen was located
near a power station, where an electric generator induced high-frequency noise with
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a) Inclination signal at station Sustenpass. b) Inclination signal at station Hopflauen.

Figure 5.16: Raw (light gray) and filtered (black) inclination signals registered by
Lippmann sensor 1 during DIADEM deployments at two different stations in the
Swiss Alps: Sustenpass (left) and Hopflauen (right). It is striking that the signal at
Hopflauen shows significantly larger amplitudes than the signal at Sustenpass. This
is due to the different local feature of both stations. Hence, station Hopflauen was
located near a power station generating large amplitudes within the high-frequency
range.

a) Amplitude spectrum at station Sustenpass. b) Amplitude spectrum at station Hopflauen.

Figure 5.17: Amplitude spectra of Lippmann signals at stations Sustenpass and
Hopflauen (see Figs. 5.16a) and 5.16b)). The comparison of the maximum ampli-
tudes shows a significant difference amounting to about 0.1 arcsec at Sustenpass
and to 0.3 arcsec at Hopflauen.

large amplitudes up to 0.3 arcsec at frequencies around 4 Hz and 8 Hz, respectively (Fig.
5.17b)). In contrast, station Sustenpass represents a calm location, which was clearly less
influenced by anomalous factors. Hence, the amplitudes in the spectrum only amount to
maximum 0.1 arcsec at frequencies between 5 Hz and 8 Hz (Fig. 5.17a)). Interestingly,
both amplitude spectra show a peak at 8 Hz. This suggests the assumption that the
resonance frequency of the inclination sensors might be within this range.
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A technical way to reduce anomalous accelerations is the damping of the inclination
sensor. The respective implementations of the technical features of the Wyler and
Lippmann sensors are described in chapters 3.2.4 and 3.2.5, respectively. Mechanical
damping units operate as low pass filter eliminating frequencies above a certain critical
frequency (Ingensand [1985]). A mathematical damping can be realized by an integration
over time intervals. Another possibility to reduce microseismic effects is the digital
filtering of the inclination signals. Therefore, it is decisive, which frequency range is
interesting for the signal analysis. For Zenith Camera observations, long-periodical
fluctuations, e.g. caused by a slow subsidence of the ground, have to be detected within
the signal. Accelerations above a dedicated limit frequency have to be eliminated, since
they superpose the interesting information. A suitable filtering technique is provided
by a FFT low pass filter. The implementation in the data acquisition software of the
Zenith Camera is described in chapter 4.1.2.

A problem is, however, that microseismics also occurs in a low frequency range (≤
0.03 Hz). As already mentioned in chapter 4.1.2, frequencies smaller than the limit
frequency can not be separated from the inclination signal. Consequently, subsequent
inclination values can be highly-correlated and systematically affected or even falsified.
The dimension of the remaining errors can not be estimated offhand, though, according to
Hirt [2004], they should not exceed 0.01 arcsec. It is to be expected that the systematical
error behaves stochastically (white noise) in long-time observations of at least 10 min
as performed with DIADEM. The determined average of the direction of the vertical is
then potentially error-free.

5.3.3 Azimuthal turning

A systematical deviation δα from a precise 180◦ turning takes, on the one hand, influ-
ence on the determination of the rotational direction (Φ,Λ)D. The problem has been
thoroughly discussed, e.g. in Gessler [1975]. However, due to the algorithm implemented
in AURIGA realizing the iterative determination of the rotational direction (chapter
4.2.5), the impact of this error on the accuracy of (Φ,Λ)D can be disregarded. Hence,
even significant deviations from a precise 180◦ turning do not have to be particularly
considered. On the other hand, a systematical deviation δα influences significantly the
determination of absolute inclination values. After Hirt [2004], the dimension of the
impact can be estimated from formulas considering the shearing angle ε between the
inclination sensors. The respective coordinate system is depicted in Fig. 4.11. Due to
an imprecise turning, sensor 1 in position I measures the inclination value ñ1, while
the same sensor registers a too small inclination value −ñ1 plus parts of the orthogonal
inclination ñ2 in position II:

nI1 = ñ1 nII1 =
−ñ1

sin ε
− ñ2

tan ε
(5.5)

88



5.4 Epoch determination

Based on Eq. (4.1), it follows than:

n1 =
(nI1 − nII1 )

2
=

1

2

(
ñ1 +

ñ1

sin ε
+

ñ2

tan ε

)
(5.6)

For an assumed inclination of ñ1 = ñ2 = 10 arcsec, and an exemplary deviation δα of 10
arcsec, it is ε = 90◦ + (10 arcsec/3600). With Eq. (5.6), n1 amounts to 10.000315 arcsec
instead of 10 arcsec, which is negligible. However, for a deviation of more than 400 arcsec
(= 0.01◦), the inclination value n1 is significantly falsified for more than 0.01 arcsec. To
avoid influences on the accuracy of the inclination corrections, new implementations
in AURIGA consider the deviation δα within the calculation formulas for the absolute
inclinations.

5.4 Epoch determination

The significance of an exact epoch determination has been mentioned several times
within this thesis. According to Eq. (4.26), an epoch error of 0.1 s already produces an
error in longitude Λ of about 1 arcsec (for the latitude of Zurich, ϕ = 47.4◦). Aiming at a
maximum influence of 0.01 arcsec on the direction of the vertical (Φ,Λ), the epoch should
be determined with an accuracy of better than 0.7 ms (equator) and 1 ms (Zurich),
respectively. The quality of an epoch determination with DIADEM is influenced by two
main system components: a) the GPS receiver providing the absolute epoch in GPS
time as response to the TTL signal of the CCD camera and b) the characteristic of
the electronic blade shutter used in the CCD camera. According to the manufactory’s
information (u-blox, Switzerland, u-blox AG [2003]), the time mark accuracy of the GPS
receiver is 0.2 ms and forms, therefore, a small part within the error budget. The shutter
characteristic plays a more important role within the error budget. In chapter 4.4.3, the
corresponding function has been determined. However, errors in modeling the shutter
function can not be excluded offhand. The internal accuracy of repeated measurements
concerning the determination of dedicated time intervals (e.g. to open and close the
shutter) shows an internal accuracy of mostly better than 0.15 ms (see Tab. 4.4). The
external accuracy of the shutter depends on several residual systematics, which might
occur during the performance of the shutter investigation. Thus, an error caused by a
slight misalignment of the laser at the points specified on the CCD sensor (Fig. 4.14) has
to be taken into account. Furthermore, an error referring to the approximation of the
shutter blades by a radial diaphragm can be estimated from the redundant information
of points p2-p5 (edges of the sensor). Also the supposed correction formula has to be
considered in the error budget, since it forms an average equation for all stars imaged
(Eq. (4.30)). Finally, the temporal resolution of the oscilloscope of 0.1 ms plays a small
role, too (Käker [2003] and Hirt [2004]). An estimation of the respective contributions
to the error budget yielded a total error of about 1 ms, which corresponds to the defined
error limit.
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5.5 Azimuthal corrections

The method of azimuth calibration has been described thoroughly in chapter 4.4.1. A
non-consideration of the calibration parameters r and γ produces an azimuth-depending
radial deviation of the rotational direction from the true direction of the vertical. In case,
the once determined calibration parameters are regarded as constant corrections and
applied accordingly to all stations, the error of the rotational direction might amount to
about 0.2 arcsec. This is attributed to the high variability of both parameters. Therefore,
an azimuth calibration has to be conducted at each station. However, also the determined
correction parameters r and γ itself can not be considered as free of variances. According
to the logging file compiled during the analysis of an azimuth calibration (with AURIGA),
the radius r indicates a mean standard deviation σr of about 0.05 arcsec, while the
orientation angle γ shows a mean standard deviations of σgamma of 0.8◦. According to the
error propagation law applied to Eq. (4.18), the standard deviation of ∆Φa,∆Λa amount
to 0.05 arcsec. These estimations show the significance of the newly introduced tripod
method, also described in chapter 4.4.1. Hence, a quality reduction of the direction of
the vertical (Φ,Λ) caused by errors of the calibration parameters can be excluded. This
results in an improvement of accuracy for about 50% (chapter 6.5).

5.6 Geodetic position

According to Eq. (3.1), errors in the geodetic position (ϕ, λ) directly influence the
accuracy of the deflections of the vertical (ξ, η). Hence, they have to be provided with
high accuracy. It is aimed to keep the error influence of the geodetic position below
0.01 arcsec, which corresponds to a lateral displacement at the earth’s surface of about
30 cm. The single-frequency GPS code-receiver implemented in the Zenith Camera
(chapter 3.2.6) is with ±3 m CEP in absolute mode and ±2 m CEP in differential mode,
respectively, not suitable for the required level of accuracy. Therefore, additional dual-
frequency GPS measurements in differential mode (DGPS) have to be performed. Hence,
common error sources of GPS measurements, as e.g. satellite orbit and clock errors as
well as impacts due to tropospheric and ionospheric refraction, can be reduced. Different
methods exist to consider correction data from reference stations. One possibility is
to receive real-time code phase corrections from a close reference station via a GSM
module implemented in the receiver. The obtainable accuracy for the geodetic position is
indicated with 1 m to 2 m corresponding to about 0.03 arcsec to 0.06 arcsec. Though, for
a highly-precise determination of DOV, this range is not sufficient. This can be achieved
by using real-time carrier phase corrections. They allow for an accuracy between 1 cm
to 5 cm, which corresponds to less than two milli-arcseconds. In Switzerland, the Swiss
Positioning Service (SWIPOS) offers the GIS/GEO application via GSM for navigation
purposes in cm-range (Wild et al. [2004]). Another possibility is given by the post-
processing of GPS measurements. This method has been applied during the campaign in
Greece (chapter 7). There, the GPS data have been equalized within a network of four
permanent reference stations with given ITRF2000 coordinates. The accuracy of this
method amounts to better than 1 cm, hence perfectly satisfying the aspired accuracy of
less than 30 cm.
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5.7 Total error budget

Based on the considerations in the chapters before, the total error budget can be estimated.
As the single errors are largely independent from each other, the standard deviations of
the astronomical parameters (σΦ, σΛ) and of the deflections of the vertical (σξ, ση) can
be calculated via error propagation law:

σ2
Φ = σ2

ΦD
+ σ2

∆Φn
+ σ2

∆Φa

σ2
Λ = σ2

ΛD
+ σ2

∆Λn
+ σ2

∆Λa
+ σ2

t

(5.7)

σ2
ξ = σ2

Φ + σ2
ϕ

σ2
η = (σ2

Λ + σ2
λ) · cos2 Φ

(5.8)

Error source Abbrev. Error Azimuth calibration Tripod method
σ... [arcsec] Wyler Lippmann Wyler Lippmann

Rot.dir. (∆Φ,∆Λ)D 0.10-0.30 x x x x
Incl.(Lipp.) (∆Φ,∆Λ)n 0.05-0.10 [-] x [-] x
Incl.(Wyler) (∆Φ,∆Λ)n 0.15-0.20 x [-] x [-]

Epoch t 0.01-0.02 x x x x
Azi.corr. (∆Φ,∆Λ)a 0.05-0.10 x x [-] [-]
Astr.Lat. Φ 0.19-0.37 0.12-0.33 0.18-0.36 0.11-0.32
Astr.Long. Λ 0.18-0.37 0.12-0.33 0.18-0.36 0.11-0.32
Geod.pos. (ϕ, λ) ≤0.01 x x x x
DOV (NS) ξ 0.19-0.37 0.12-0.33 0.18-0.36 0.11-0.32
DOV (WE) η 0.14-0.29 0.09-0.25 0.14-0.28 0.08-0.24

Table 5.1: Total estimated error budget of DIADEM in dependence on the method
applied. Rot.dir.: Rotational direction, Incl.: Inclination, Azi.corr.: Azimuthal
correction parameters, Geod.pos.: Geodetic position, N-S comp. DOV/W-E comp.
DOV: components of the deflection of the vertical.

The consideration of correlations is not necessary. The error of η depends also on
the astronomical latitude Φ of the observation station, which is for Zurich about
47◦.

In Tab. 5.1, the total error budget of a DIADEM observation is listed in dependence on
the method applied (AW-Azimuth/Wyler, AL-Azimuth/Lippmann, TW-Tripod/Wyler
and TL-Tripod/Lippmann). The largest part is formed by errors in the determination
of the rotational direction (0.1 arcsec - 0.3 arcsec) and by errors of the inclination
sensors. Especially, the Wyler sensors significantly influence the resulting accuracy. This
becomes obvious by comparing their accuracy range (0.15 arcsec-0.2 arcsec) to those of
the Lippmann sensors (0.05 arcsec-0.1 arcsec). Also the azimuth calibration parameters
represent a considerable error source (0.1 arcsec). In contrast, an error induced by
the epoch determination can be almost neglected, provided that the shutter delay is
considered in the epoch determination.

Furthermore, an influence of the observation method is recognizable: The total standard
deviations of the DOV-components (σξ, ση) might improve for about 40% if applying
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the TL instead of the AW configuration. The standard deviations of ξ and η are then
better than 0.32 arcsec and 0.24 arcsec, respectively. Due to the fact that the resulting
DOV at a station always form an average over a certain number of single solutions
(min. 40), the mean of the DOV can be determined with an accuracy of about 0.05
arcsec.

These conclusions fit well with the results presented in chapter 6.5. There, the different
methods have been analyzed in practice and compared to each other. Based on the
DOV determined during different nights, it has been shown that the TL configuration
enables an increased internal accuracy (about 33%). The empirically derived standard
deviations after an application of the TL method amount to better than 0.29 arcsec,
which corresponds well with the above estimated range.
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6 Field experiences

6.1 Measurements in Switzerland 2003

In the year 2003, the CHGeo2003 project has been initiated by the Swiss Federal Office
of Topography (swisstopo). It aimed at the improvement of the presently used Swiss
geoid model CHGeo98 (Marti, 1997). The geoid suffers from long-wavelength errors,
hence generating discrepancies between orthometric heights from the new national height
system (LHN95) and those derived by the difference between GPS and geoid. The
discrepancies are in the order of several centimeters up to decimeters in some regions
(Marti [2002]). The project CHGeo2003 included new and improved measurements
(GPS/leveling, deflections of the vertical (DOV), gravity values) as well as the use of
advanced mass models and calculation methods. The project also contributed to the
European Combined Geodetic Network (ECGN) and the European Unified Vertical
Network - Densification Action (EUVN-DA) of European Reference Frames (EUREF)
(Brockmann et al. [2004]). In the frame of the project, two digital Zenith Cameras -
DIADEM (ETH Zurich) and TZK2-D (University Hannover) - have been deployed for
the observations of DOV (Fig. 6.1).

Figure 6.1: Parallel measurements with two digital Zenith Cameras at the reference
station Zimmerwald, Switzerland (left: DIADEM (GGL, ETH), right: TZK2-D (IfE,
University Hannover).
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The goal was to provide additional highly precise DOV. Further goals were the proof of
the field capability of the digital Zenith Cameras and the comparison of both systems
concerning their accuracy potential. The Astro observations took place during four weeks
in October 2003 in Switzerland. In 16 observation nights, a total number of 68 stations
has been measured with both Zenith Cameras (Fig. 6.2). This averages to 2-5 stations
per night and team depending on weather, location (mountains, valley) and distance
between the stations. Four stations have been observed simultaneously, e.g.the geodetic
reference station in Zimmerwald (see Fig. 6.4: station 1). This station has been also
measured repeatedly during different nights. The data have been used to determine the
accuracy of both Zenith Cameras.

Figure 6.2: Location of 68 Astro stations measured by DIADEM (light gray) and
TZK2-D (dark gray) during 16 observation nights.

The CHGeo2003 campaign offered the possibility to deploy two modernized digital Zenith
Cameras for the first time (Müller et al. [2004]). It has been concluded that both systems
worked reliably and efficiently even under very harsh conditions like in high mountains
and with temperatures at -15◦C.

The results of the two digital Zenith Cameras show a very good agreement, deducible from
the comparison of repeated measurements during different nights at the reference station
Zimmerwald. Tab. 6.1 shows the numerical comparison of the results for both instruments.
With DIADEM, observations during five different nights have been performed at the
reference station (about 80 single solutions per night). With TZK2-D, totally seven
different night means have been determined (about 100 single solutions per night). The
maximum deviation between DIADEM and TZK2-D derived components amounts to
about 0.3 arcsec (compare ξtzk(Min.) to ξdia(Max.)). The maximum difference between
results observed in the same night is 0.2 arcsec (compare (dξ, dη)). The difference
between the respective overall-means is on the order of 0.05 arcsec for η and 0.1 arcsec for
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ξ ((Fig. 6.3). The standard deviation of repeated measurements is better than 0.1 arcsec
for each system. These results demonstrate the excellent repeatability and accuracy of
both Zenith Cameras.

DIADEM TZK2-D Difference
Date Sol. ξdia ηdia Sol. ξtzk ηtzk dξ dη

[arcsec] [arcsec] [arcsec]
20031009 - - - 167 7.66 3.94
20031011 - - - 129 7.83 3.83
20031013 37 7.96 3.88 108 7.89 4.05 0.07 -0.17
20031022 - - - 80 7.87 3.82
20031025 86 7.89 3.80 89 7.74 3.74 0.15 0.06
20031026 87 7.87 3.96 113 7.76 3.91 0.11 0.05
20031027 58 7.96 4.01 106 7.89 3.81 0.07 0.20
20031028 60 7.86 3.97 - - -
Mean 80 7.91 3.92 102 7.81 3.87 0.10 0.05
Std.dev. 0.09 0.10 0.08 0.08
Min. 7.86 3.80 7.66 3.74 0.20 0.06
Max. 7.96 4.01 7.89 4.05 0.07 -0.04

Range (Min.-Max.) 0.10 0.21 0.23 0.31

Table 6.1: Parallel measurements with two Zenith Cameras - DIADEM (ETH Zurich)
and TZK2-D (University Hannover) - at the reference station Zimmerwald. Sol.:
Number of single solutions used for the calculation of the respective night mean,
(dξ, dη): Difference between the corresponding night means of both instruments.

Fig. 6.4 shows the DOV observed at 68 stations in Switzerland. The data clearly indicate
the influence of the Alpine chain, since the vectors to the north of the Alps indicate an
increasing geoid in southward direction. A maximum value of 27 arcsec has been observed
at station "Grosse Scheidegg" (station 2), which is located north-east of Grindelwald in
the Bernese Oberland. The smallest one has been measured in Pfäffikon (station 3) near
Zurich with 2 arcsec. The standard deviation of about 100 single solutions per station is
between 0.1 arcsec and 0.3 arcsec. The mean per station has a precision of better than
0.1 arcsec. The results of the Astro campaign have been introduced together with other
690 available DOV for the computation of an improved geoid. Besides these data, also
GPS-leveling as well as gravity date have been used for the enhanced computation of
the Swiss geoid CHGeo2003 (Marti [2004]).
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Figure 6.3: Results of repeated measurements with DIADEM (circles) and TZK2-D
(triangles) during different nights at the reference station Zimmerwald. The DOV
show a very good agreement of better than 0.1 arcsec.

Figure 6.4: DOV observed by DIADEM and TZK2-D during the CHGeo2003 project.
Totally, 68 stations in Switzerland have been measured. Station 1 shows the reference
station Zimmerwald. The DOV vary between 2 arcsec (station 3: Pfäffikon) and 27
arcsec (station 2: "Grosse Scheidegg").
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6.2 Measurements in Portugal 2004

During two campaigns in 1993 and 1997/1998 with the old analog system TZK3, several
stations have been measured throughout Portugal. Due to technical problems, four
stations in the southern part of Portugal could not be processed. In order to complete the
measurements and to provide additional DOV for the Portuguese geoid determination,
a third campaign took place in September 2004. The measurements also provided the
possibility to demonstrate the field capability of DIADEM. The stations to be observed
were suggested by the Instituto Português de Cartografia e Cadastro (IPCC), Lisbon,
Portugal. The plan comprised 17 new and repeated observations throughout Portugal
on principal and secondary points of the national geodetic network. Fig. 6.5 shows the
old (blue) and newly planned (red) stations.

Figure 6.5: Astro stations in Portugal observed in 1993 and 1997/1998, respectively
(blue) and in 2004 (red). The stations are primary and secondary points of the
national geodetic network.

Within two weeks, all stations have been successfully observed starting at station Lagoaça
(Laça) in the north and finishing at station Cabeça (Cabe) in the south. The distances
between the stations averaged to about 150 km. Therefore, it was not possible to observe
more than two stations per night. In general, the time needed per station was about 45
minutes including assembly and disassembly of the system.
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Figure 6.6: DOV observed by DIADEM at 17 stations in Portugal. The DOV vary
between 1 arcsec (station 2: Lagoaça) and 27 arcsec (station 1: Cabeça).

Fig. 6.6 shows the DOV observed at 17 stations in Portugal. The maximum value has
been observed at Cabeça (station 1), south of Portugal, with 14 arcsec, while the smallest
vertical deflection (1 arcsec) has been measured at Lagoaça (station 2), a station in the
north near the border to Spain. The standard deviation of about 80 single solutions per
station is between 0.1 arcsec to 0.3 arcsec. The mean value per station has a precision
of better than 0.1 arcsec. The campaign revealed again the good field capability and
high accuracy of DIADEM. The data gathered were used by the IPCC for an improved
Portuguese geoid determination.
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6.3 Measurements with two digital Zenith cameras in
Switzerland 2005

In July 2005, a campaign with two digital Zenith Cameras (DIADEM and TZK2-D)
took place in Pradella (lower Engadine), Switzerland, aiming at the error analysis
and comparison of both instruments. The main intention was the investigation of the
effect of anomalous refraction. It forms a potential error source, which influences the
determination of the direction of the vertical with a digital Zenith Camera. Anomalous
refraction is caused by atmospheric layers, which are inclined with respect to the local
plumb line, mainly due to pressure and temperature gradients occurring in horizontal
direction (Ramsayer [1970]). The induced systematic misalignment of the zenithal star
field results in a falsification of the vertical direction observed. The effect of anomalous
refraction can be split into two phenomena: a regional and a local phenomenon (see
chapter 5.2.2). The anomalous refraction has been investigated since many years (e.g.
Ramsayer [1970]) and is still a subject of ongoing publications, as e.g. demonstrated
by Stone et al. [1996] and Pier et al. [2003]. Hirt [2006] analyzed about 70 hours of
observations with the digital Zenith Camera TZK2-D comprising 7300 single solutions
from six nights. Based on these data as well as in relation with highly-precise reference
values, Hirt [2006] estimated the dimension of the effect between 0.05 arcsec and 0.2
arcsec.

The goal of the present campaign was the detection of anomalous refraction by comparing
simultaneous long-time observations of two Zenith Cameras. The relative changes of
the DOV-components during a night potentially contain a reference to the effect of
refraction. A second goal of the campaign was the evaluation of the accuracy potential
of the instruments by appraising their internal and external accuracies. The campaign
took ten days, however, due to bad weather conditions, comparable long-time observa-
tions are only available during two nights: July 3, 2005 and July 12, 2005. In total,
about 1500 single solutions per camera were gathered and used for a detailed data analysis.

Comparison of night means

Date Statistics ξdia ηdia ξtzk ηtzk dξ dη
[arcsec] [arcsec] [arcsec] [arcsec] [arcsec] [arcsec]

20050703 Mean 5.73 -3.19 5.72 -3.06 0.01 -0.13
σξ, ση 0.37 0.36 0.23 0.23

20050712 Mean 5.79 -2.97 5.66 -2.95 0.13 -0.02
σξ, ση 0.29 0.30 0.19 0.20

Diff (2 days) -0.06 -0.22 0.06 -0.11
Mean (2 days) 5.76 -3.08 5.69 -3.00 0.08 -0.07

Table 6.2: Comparison of night means observed with DIADEM (ξDia, ηDia) and TZK2-
D (ξTzk, ηTzk) at July 3, 2005 (20050703) and July 12, 2005 (20050712), respectively.
(σξ, ση): Standard deviation of the DOV per system, (dξ,dη): Difference between
the respective DOV-components of DIADEM and TZK2-D.
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Table 6.2 shows the mean DOV of two different nights (20050703 and 20050712) measured
by DIADEM (ξDia, ηDia) and TZK2-D (ξTzk, ηTzk). The respective night means of both
systems agree very well with a maximum difference of 0.13 arcsec (see (dξ, dη)). The
comparison of the night means per system averaged over two nights, show a very good
consistency of 0.08 arcsec for ξ and -0.07 arcsec for η. The analysis of single night
means measured by DIADEM reveals a very good repeatability for the ξ-component of
-0.06 arcsec, while the η-component shows a slight worse repeatability of -0.22 arcsec
(see Diff (2 days) for DIADEM). The single night means measured by TZK2-D show
a very good reproducibility of -0.1 arcsec and better (see Diff (2 days) for TZK2-
D).

Besides, the analysis of the standard deviations per measuring series allows interesting
conclusions regarding the inclination sensors: It is striking that the standard deviation of
DIADEM observations (0.33 arcsec1 for both components) is about 50% worse than those
from a TZK2-D observation (0.21 arcsec). This result is attributed to the different types
of inclination sensors used on both Zenith Cameras. At this time, DIADEM solely worked
with the Wyler sensors (chapter 3.2.5), while the TZK2-D already used the more precise
Lippmann sensors (chapter 3.2.4). After the campaign, two Lippmann inclination sensors
have been implemented into the process of data acquisiton and analysis with DIADEM
(Münch [2006] and Ganz [2007]). The results of afterwards performed investigations
concerning the impact of Wyler and Lippmann sensors, respectively, on the internal
accuracy are presented in chapter 6.5.

Comparison of the long-time characteristics

Figs. 6.7 and 6.8 represent the course of the ξ- and η-component, respectively, for
both Zenith Cameras (triangles: DIADEM, points: TZK2-D). The data were gathered
during five hours in the night of July 12, 2005. Concerning the ξ-component (Fig. 6.7),
the mean difference of 0.13 arcsec between DIADEM and TZK2-D is well recognizable
(see Table 6.2), as the DIADEM data show constantly greater values. In contrast,
the η-components (Fig. 6.8) show a very good agreement. If the data are fitted by a
four-degree polynomial function, it becomes obvious that the DIADEM observations
(straight light gray line) undulate stronger than those of TZK2-D (straight black line),
with amplitudes of about 0.2 arcsec. In contrast, the TZK2-D data show maximum
amplitudes of 0.1 arcsec. Comparing the trends of the ξ- and η-components, respec-
tively, they do not show an obvious consistency. At least it might be claimed that the
η-components indicate a slight increase of about 0.1 arcsec over the whole observation
time. However, these variations are within the range of the above discussed standard
deviations of each Zenith Camera system (see section Comparison of night means) and
are, therefore, not significant. Hence, they can not be interpreted offhand as a reference
to anomalous refraction.

1The value is an average over the four standard deviations given in Tab. 6.2
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Figure 6.7: Comparison of the ξ-components measured by DIADEM (triangles) and
TZK2-D (points) at July 12, 2005 in Pradella. The straight lines represent a four-
degree polynomial function (DIADEM: light gray, TZK2-D: black). The mean
difference of 0.13 arcsec between DIADEM and TZK2-D is clearly recognizable.

Figure 6.8: Comparison of the η-component measured by DIADEM (triangles) and
TZK2-D (points) at July 12, 2005 in Pradella. The data show a very good agreement.
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Figs. 6.9a) and 6.9b) allow for a visual appraisal of correlations between corresponding
components measured by DIADEM and TZK2-D is provided by (for July 12th, 2005). It
becomes clear that the respective components are not highly correlated, as they show a
relatively broad distribution.

a) Correlation between ξdia and ξtzk. b) Correlation between ηdia and ηtzk.

Figure 6.9: Correlation between ξ-components and η-components, respectively, mea-
sured by TZK2-D (abscissa) and DIADEM (ordinate) at July 12, 2005 in Pradella.
The correlation between the respective components is very low amounting to 0.12
for ξ and 0.01 for η.

The correlation coefficient between ξdia (Diadem) and ξtzk (TZK2-D) for n measurements
can be calculated by:

rξdiaξtzk
=

n∑
i=1

((ξi − ξ̄)dia · (ξi − ξ̄)tzk)√
n∑
i=1

(ξi − ξ̄)2
dia ·

√
n∑
i=1

(ξi − ξ̄)2
tzk

(6.1)

The correlation coefficient for the η-components can be calculated, if ξ in Eq. (6.1) is
replaced by η. The coefficients rξdiaξtzk

and rηdiaηtzk
amount to 0.07 and -0.01, respectively,

for the observations at July 3rd, 2005, and to 0.12 and 0.01 at July 12th, 2005 (Tab.
6.3). These coefficients indicate a very low correlation.

Date rξdiaξtzk
rηdiaηtzk

20050703 0.07 -0.01
20050712 0.12 0.01

Table 6.3: Correlation coefficients rξdiaξtzk
between ξD (Diadem) and ξT (TZK2-D) as

well as rηdiaηtzk
between ηD and ηT for both observation nights.
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Concluding, it can be stated that the analysis of the night means as well as the comparison
of the long-time characteristics measured with both Zenith Cameras did not allow for
convincing conclusions concerning the impact of anomalous refraction. Due to the absence
of highly-precise reference values, the experiment was not qualified to predicate absolute
refraction magnitudes, but only refraction changes. It is concluded that an influence
exists, however, potentially occurring changes in refraction are superposed by the normal
measuring noise of the instrument. They were, therefore, not significantly reproducible.
The maximum impact has been estimated at about 0.1 arcsec. This assumption agrees
well with Hirt [2006], who indicated a range of 0.05 arcsec to 0.2 arcsec. In order to
deepen the knowledge in this subject, further observations would be necessary using
additionally local weather information. Hence, it would be interesting to conduct long-
time observations during some days/weeks with changing weather conditions, again with
two Zenith Cameras.

6.4 Alptransit measurements in Switzerland
2005

On the behalf of the Swiss Alptransit project and related construction works at the
Gotthard Base Tunnel in Switzerland, highly-precise DOV have been measured in July
2005. The observations were carried out at five Alptransit portal stations, which are
used as gyro-calibration reference points: Amsteg, Erstfeld, Sedrun, Faido and Bodio
(Fig. 6.10). In addition to the DOV, also astronomical azimuths have been measured at
these stations (Bürki et al. [2005]).

Figure 6.10: Location of the Alptransit portal stations Erstfeld, Sedrun, Amsteg, Faido
and Bodio, Switzerland.

Due to the fact that the campaign with two digital Zenith Cameras had just taken
place (see chapter 6.3), it was possible to perform the Alptransit measurements with
two instruments. Hence, the observations are also interesting for a further comparison
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of both systems at four different stations (Sedrun has been measured by DIADEM
only).

Figure 6.11: Differences (DIADEM - TZK2-D) between the DOV (dξ: light gray, dη:
dark gray) measured by DIADEM and TZK2-D.

Figure 6.12: Differences between interpolated (CHGeo2004) and observed (Mean:
DIADEM/TZK2-D) DOV (dξ: light gray, dη: dark gray).
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The measurements have been performed during one night at four stations (DIADEM
and TZK2-D) finishing in a second night at station Sedrun (DIADEM only). The points
are located along a profile with a maximum distance between Erstfeld and Bodio of
about 60 km (Fig. 6.10). The differences between the DOV measured by DIADEM
and TZK2-D are shown in Fig. 6.11. They range between 0.01 arcsec and 0.26 arcsec.
The mean difference amounts to 0.15 arcsec for both components with a standard
deviation of 0.05 arcsec. These results demonstrate the high-precision potential of both
instruments.

A further analysis has been concerned with the comparison of computed and observed
DOV. Therefore, Urs Marti (swisstopo) interpolated DOV for the five Alptransit stations
from the new Swiss geoid model CHGeo2003 (chapter 6.1). The differences between
interpolated and observed DOV range between -0.9 arcsec and 2.1 arcsec (Fig. 6.12).
Allowing for the accuracy of the geoid model and the limits of the interpolation method,
maximum differences of about 0.5 arcsec have been expected. Due to the above demon-
strated good agreement between the two Zenith Camera systems, significant errors caused
by instrumental insufficiencies can be excluded. More likely, these results contain a
reference to still existing problems in the present geoid solution.

6.5 Control measurements at Zurich

In order to allow for statements concerning the long-term stability and accuracy of
DIADEM, repeated observations took place from 2004 to 2007 at two different reference
points. The control measurements have to be divided into two groups Session A
and B showing differences in reference station, measuring method and inclination
sensors:

X Session A: From August 2004 to June 2005, repeated observations took place at the
roof of the HPV-ETHZ building. The station already served as reference station
for the old analog system TZK3 since the early eighties. Hence, long-time reference
values (ξAr = −2.08 arcsec, ηAr = 3.62 arcsec) are available showing an accuracy of
better than 0.1 arcsec. The measuring configuration applied during session A is the so
called azimuth calibration (chapter 4.4.1). The inclination measurements have been
performed by using the Wyler inclination sensors (chapter 3.2.5).

X Session B: After elaborate enhancements of DIADEM, a new series of observations
took place from April to December 2007 at the reference station on the southern front
of the HPV-ETHZ building. The reference values (ξBr = −2.04 arcsec, ηBr = 3.61
arcsec) of this station have been determined by the TZK2-D in July 2005. The have an
accuracy of better than 0.1 arcsec. Due to new findings, the time-consuming azimuth
calibration has been replaced by the newly introduced tripod method (chapter 4.4.1).
Furthermore, additional to the Wyler inclination sensors, the more precise Lippmann
inclination sensors (chapter 3.2.4) have been used. In order to investigate and compare
the field capability, efficiency and accuracy potential of the two measuring methods
(azimuth calibration and tripod method) as well as of the inclination sensors (Wyler
and Lippmann sensors), the observations of session B have been performed in different
constellations (Ganz [2007]).
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In the following sections, the results of the two sessions are treated and discussed
separately.

Session A

Tab. 6.4 represents the comparison of the DOV observed during eight nights in 2004/2005
with about 40 to 60 single solutions per night. They show a very good agreement, with a
standard deviation of about 0.08 arcsec for ξ and 0.16 arcsec for η (see Std.dev.(ξ, η) in
Tab. 6.4). The differences with respect to the reference DOV (ξAr , η

A
r ) amount in average

to 0 arcsec and -0.04 arcsec, respectively (see (dξ, dη)). The mean standard deviation
of a single component per night reaches to about 0.32 arcsec for both components
(see (σξ, ση)). The accuracy of the night mean can be indicated with better than 0.05
arcsec.

Date Meth/Sensors ξ η σξ ση dξ dη
[arcsec] [arcsec] [arcsec] [arcsec] [arcsec] [arcsec]

20040822 AW -2.03 3.72 0.31 0.27 -0.05 -0.10
20041023 AW -2.04 3.70 0.28 0.28 -0.04 -0.08
20041115 AW -1.99 3.56 0.32 0.26 -0.09 0.06
20050117 AW -2.08 3.78 0.37 0.38 0.00 -0.16
20050404 AW -2.02 3.75 0.35 0.36 -0.06 -0.13
20050415 AW -2.06 3.79 0.31 0.29 -0.02 -0.17
20050511 AW -2.21 3.31 0.28 0.38 0.13 0.31
20050616 AW -2.20 3.65 0.32 0.27 0.12 -0.03

Mean: -2.08 3.66 0.32 0.31 0.00 -0.04
Std.dev.: 0.08 0.16 0.03 0.05

Table 6.4: Results of session A. The measurements took place on the roof of the
HPV-ETHZ building. AW: Azimuth calibration/Wyler sensors. (σξ, ση): Standard
deviations of a single component per night. (dξ, dη): Differences between respective
night mean and reference DOV (ξAr , ηAr ).

Session B

The DOV observed during five nights in 2007 are shown in Tab. 6.5. As mentioned above,
the measurements have been deployed using different measuring configurations concerning
method (azimuth calibration/tripod method) and inclination sensors (Wyler/Lippmann).
Hence, in some nights both measuring methods have been conducted and the analysis
of the data has been performed using the inclination data of Wyler and Lippmann
sensors, respectively. All data sets comprise of about 40 to 60 single solutions. In
order to evaluate the quality of the respective measuring configuration, the data have
been analyzed considering the standard deviations of a series per night (internal accu-
racy) as well as the differences with respect to the reference DOV (ξBr , η

B
r ) (external

accuracy).

Fig. 6.13 shows the comparison of the internal accuracies of the four different measuring
configurations: Azimuth/Wyler (AW), Azimuth/Lippmann (AL), Tripod/Wyler (TW)
and Tripod/Lippmann (TL). The values represent the respective mean standard devia-
tions of series with same configurations (see (σξ, ση) in Tab. 6.5). It is clearly visible that
the use of inclination sensors plays an important role concerning the internal accuracy
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Date Meth/Sensors ξ η σξ ση dξ dη
[arcsec] [arcsec] [arcsec] [arcsec] [arcsec] [arcsec]

20070512 AW -2.08 3.80 0.36 0.41 0.04 -0.19
20071128 AW -2.34 3.86 0.38 0.32 0.30 -0.25

Mean: -2.21 3.83 0.37 0.36 0.17 -0.22
Std.dev.: 0.18 0.04 0.01 0.06

20070506 AL -2.23 3.93 0.22 0.30 0.19 -0.32
20070512 AL -2.04 3.78 0.29 0.30 0.00 -0.17
20070525 AL -2.09 3.66 0.29 0.28 0.05 -0.05
20071128 AL -2.29 3.92 0.32 0.24 0.25 -0.31

Mean: -2.16 3.82 0.28 0.28 0.12 -0.21
Std.dev.: 0.12 0.13 0.04 0.03

20070512 TW -2.07 3.60 0.41 0.50 0.03 0.01
20071128 TW -2.17 3.62 0.29 0.35 0.13 -0.01
20071205 TW -2.15 3.83 0.31 0.58 0.11 -0.22

Mean: -2.13 3.68 0.34 0.48 0.09 -0.07
Std.dev.: 0.06 0.13 0.06 0.12

20070512 TL -2.14 3.68 0.21 0.18 0.10 -0.07
20071128 TL -2.10 3.64 0.21 0.18 0.06 -0.03
20071205 TL -2.14 3.71 0.22 0.29 0.10 -0.10

Mean: -2.13 3.67 0.21 0.25 0.09 -0.06
Std.dev.: 0.02 0.04 0.01 0.08
Mean all: -2.15 3.75 0.29 0.33 0.11 -0.14
Std.dev. all: 0.08 0.16 0.07 0.11

Table 6.5: Results of session B. The measurements took place on the southern front of
the HPV-ETHZ building. AW: Azimuth calibration/Wyler sensors, AL: Azimuth
calibration/Lippmann sensors, TW: Tripod method/Wyler sensors, TL: Tripod
method/Lippmann sensors. (σξ, ση): Standard deviations of a single component
per night, (dξ, dη): Differences between respective night mean and reference DOV
(ξr, ηr).

of a series. Hence, the use of the Wyler sensors results a mean standard deviation of
worse than 0.34 arcsec for both measuring methods (azimuth calibration/tripod). In
contrast, the use of the Lippmann sensors yields a standard deviation of better than
0.28 arcsec, which further declines to 0.25 arcsec and better if the tripod method is
applied. The accuracy gain amounts to 24% (between AW and AL)) and to 43% (between
TW and TL), respectively. Besides the inclination sensors, also the measuring method
seems to have an influence. This is derivable from the fact that the application of the
TL instead of the AW configuration induces an improvement in precision of about 33
%.

Fig. 6.14 shows the comparison of the external accuracies of the four different measuring
configurations. The values represent the respective mean differences between reference
DOV and observed DOV of series with same configurations (see (dξ, dη) in Tab. 6.5).
If the tripod method instead of the azimuth calibration is applied, the accuracy gain
is significant. It amounts to 48% (between AL and TL) and 57% (between AW and
TW), respectively. If instead of the AW configuration the TL configuration is used, the
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Figure 6.13: Comparison of the internal accuracies (see (σξ, ση) in Tab. 6.5) of the
four different measuring configurations: Azimuth/Wyler, Azimuth/Lippmann, Tri-
pod/Wyler, Tripod/Lippmann. The values given represent mean standard deviations
of series with same configurations.

Figure 6.14: Comparison of the differences between reference DOV and observed DOV
(see (dξ, dη) in Tab. 6.5) of the four different measuring configurations. The
values given represent the respective mean of different nights with same measuring
configurations.

accuracy gain almost reaches the level of 60%! It is interesting that the type of inclination
sensors does not play a significant role for the external accuracy.

Concluding, two findings can be emphasized:
a) Referring to the longer statistical series using the AW configuration, the accuracy
potential of DIADEM can be indicated as follows2:

2Calculation based on all observations in session A and two observations in session B
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Internal accuracy:

X Standard deviation of a single observation: about 0.3 arcsec
X Standard deviation of the mean (with 40 single observations): ≤0.05 arcsec

External accuracy:

X Comparison between reference and observed value: ≤0.15 arcsec
X Standard deviation of different night means (repeatability): ≤0.15 arcsec

b) The application of the tripod method as well as the use of the Lippmann inclination
sensors denotes a great leap forward concerning internal and external accuracy. It has
been demonstrated that the change from Wyler to Lippmann inclination sensors produces
a significant increase concerning the internal accuracy of the observations. The measuring
method (azimuth calibration or tripod method) does also have an impact on the internal
accuracy, however, it contributes more to the external accuracy. The accuracy gain
between the usually applied AW configuration and the TL configuration is considerable
and amounts to about 30% for the internal accuracy and to about 60 % for the external
accuracy!

It has to be noted that the analysis of series B only refers to four observation nights,
hence, the statements can not be considered as statistically significant. However, the
results give a clear advice on the potential of the TL method. This conclusion is in a
good agreement with according results obtained with the TZK2-D of Hannover (Hirt
and Seeber [2007a], (Hirt and Seeber [2007b]). There, the replacement of the azimuth
calibration by the tripod method allowed likewise for an increased accuracy in the
determination of DOV .
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7 Research area North Aegean Sea

7.1 Introduction

From the early seventies on, systematic attempts for precise geoid determinations have
been carried out in the Hellenic area (Tziavos and Andritsanos [1999]). The first Hellenic
geoid has been presented by Balodimos [1972] using astrogeodetic deflections of the
vertical (DOV). Arabelos [1980] calculated a gravimetric solution. A first combined geoid
from astrogeodetic and gravimetric data has been computed by Tziavos [1984]. Another
geoid determination has been presented by Doufexopoulou-Patsada [1985] with emphasis
on geophysical parameters related to the gravity field. Fotiou et al. [1986] published
the first comparison between the various geoid solutions in the Hellenic area. A more
detailed gravimetric geoid solution has been presented by Arabelos and Tziavos [1989]. In
Arabelos and Tziavos [1990], a comparison between the gravimetric geoid for the southern
Hellenic area and Geosat altimetry data has been performed.

The recent gravimetric geoid solution HGFFT98 for the Hellenic area has been presented
by Tziavos and Andritsanos [1999] and is outlined in chapter 7.3.3. Due to a lack of
gravity data in the marine area, the solution suffers for long-wavelength errors (Müller
et al. [2006]). Aiming at the provision of additional and independent data sets for an
improved local geoid solution, a dedicated campaign was carried out in May 2005. It
was realized in the frame of a joint project between the Geodesy and Geodynamics
Laboratory (GGL) of ETH Zurich, and the Department of Geodesy and Surveying (DGS)
of the Aristotle University of Thessaloniki (AUTH). The research area is situated within
38◦ < ϕ < 42◦ northern latitude and 22◦ < λ < 27◦ eastern longitude and covers the
North Aegean Sea. The region is dominated by the North Aegean Trough (NAT), which
is considered to be a continuation of the seismically active North Anatolian Fault Zone
(Karakaisis and Papazachos [2002]). Different methods for geoid determination have been
applied including astrogeodetic observations with the digital Zenith Camera DIADEM
aiming at the determination of highly-precise DOV. Furthermore, GPS boat and buoy
measurements have been performed determining Sea Surface Heights (SSH). These data
have been used to compute an Astro geoid (based on DOV) and a combined geoid solution
(based on DOV and SSH corrected for marine effects), respectively. Chapter 7.2 gives a
survey of the topographic/bathymetric, geological and geophysical features of the research
area. In chapter 7.3, available geoid models in the research area are introduced, whereas
in chapter 7.4, the gathered data are presented and discussed.
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7.2 Domain characteristics

7.2.1 Topography, bathymetry and geology

Fig. 7.1 shows the topography and bathymetry of the research area in the North Aegean
Sea in Greece based on the SRTM30 data presented in chapter 8.3.

Figure 7.1: Research area in Greece. The North Aegean Trough is characterized by
two main depressions: the Sporades basin and the Imbros depression.

The marine area is dominated by the NAT forming an elongate zone of deep water.
It is a result of the tectonic activities in the research area, which are explained in
detail in chapter 7.2.2. The NAT extends in SW-NE-direction between the Sporades
islands, the islands of Limnos, Samothraki and Thassos as well as the peninsula of
Chalkidiki. It is characterized by two main depressions: The eastern depression between
the islands of Samothraki to the north and Limnos and Imbros to the south is called
Imbros depression and features a system of narrow V-shaped valleys with a maximum
depth of -1000 m. Furthermore, a wide flat-bottom basin called Sporades basin is located
north of the Sporades islands, with a maximum depth of -1500 m (Mascle and Martin
[1990]).

The topography in the research area varies strongly showing mountainous regions
alternating with very flat regions. The Olympus-Ossa-Pilion mountain range extends
along the western coastline with the highest elevation of Greece: mount Olympus (2900
m). The region west of Thessaloniki is characterized by a flat plane, whereas the peninsula
of Chalkidiki is again mountainous with a prominent elevation of about 2000 m at the
southern point of Athos (mount Athos). Northern Greece is dominated by the foothills
of the Rhodope mountains, which extend until Kavala with elevations of about 1700 m.
The northern coastline between Kavala and Alexandroupoli is again flat. The island of
Samothraki features an interesting topography with the Fengari mountain featuring an
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elevation of 1600 m. Also the bathymetry south of the island shows strong variations
with depths amounting to -1000 m. The characteristics described play an important role
in the course of the interpretation of the observed DOV, which mainly reflect topographic
and bathymetric features (chapter 7.4.1). The topographic and bathymetric data are
used for the reduction of the DOV (chapter 8.6).

Figure 7.2: Generalized map of density variations in Greece (Naval Intelligence Division
[1944]).

Fig. 7.2 shows the density variations in Greece. The map indicates the appearance
of alluvium, limestones, crystalline rocks, sandstones, flysch, tertiary sands and clays
as well as tertiary conglomerates. The densities of these rocks are generally specified
with 1.6 g/cm3 (clay) to 3 g/cm3 (volcanic rocks), hence showing a relatively wide
range. In addition, Fig. 7.3 indicates the occurrence of large plio-quaternary sedimentary
basins in the North Aegean Sea. The sediment layers are relatively thick and mainly
terrigenous1. According to Mascle and Martin [1990], they give evidence of important
vertical displacements in the form of uplift and subsidence, often accompanied by
gravity-induced processes (slumps and mass sliding).

Unfortunately, a digital density model for Greece is not available, therefore, it was not
possible to consider suitable density distributions. Instead, a mean density of 2.67 g/cm3

has been used for the topography. For the marine area, a density contrast of 1.67 g/cm3

has been assumed resulting from the difference between the densities of oceanic crust
(2.67 g/cm3) and water (1 g/cm3). In order to estimate the effect of different densities

1terrigenous = material derived from the erosion of rock on land
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Figure 7.3: Appearance of plio-quaternary sedimentary basins in the Aegean Sea.

on the DOV, a dedicated analysis has been performed at the example of the island of
Samothraki (chapter 8.7.3).

7.2.2 Deformation field and active tectonics in the Aegean
region

A high level of seismicity and numerous evidences of active tectonic deformations provoked
elaborate studies of the Aegean region, e.g. by McKenzie [1972], Le Pichon and Angelier
[1979] and McClusky et al. [2000]). In order to understand the implications of tectonics for
deformation, seismological data, active fault distributions as well as sea floor bathymetry
data have been used to define the major tectonic boundaries of the Aegean (Nyst and
Thatcher [2004]).
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Figure 7.4: Simplified tectonic settings of the Eastern Mediterranean (Kahle and Müller
[1998]).

The main tectonic element of the Aegean domain is the Hellenic Arc induced by the
subduction of the African plate beneath Eurasia (Fig. 7.4). It forms a "semicircle" from
the Ionian islands to south-west Anatolia (Kahle et al. [1999]). The Hellenic Arc is an
example for a retreating subduction boundary, where the rate of convergence (10 mm/yr)
is less than the rate of subduction. The second tectonic attribute of the Aegean domain is
formed by the west-southwestward motion of the Anatolian-Aegean microplate. It can be
described as a superposition of a westward motion of Anatolia and a fast southwestward
movement of the Aegean. The westward motion of Anatolia can be interpreted as an
extrusion caused by the northward push of the Arabian plate. Though the extrusion
of Anatolia contributes to the southwestward motion of the northern Aegean, the main
reason for the movement of the southern Aegean is back-arc extension in response to the
retreat of the Hellenic subduction system (Hollenstein [2006]).

In Hollenstein [2006], velocities of the described motions in the Aegean region, inferred
from GPS networks and campaigns, are published. The velocities in Fig. 7.5 are given
relative to Eurasia. The rates increase from about 20-26 mm/yr in the northeastern part
of the Aegean up to 30-36 mm/yr in the southwest. A prominent feature in the Aegean is
formed by the North Aegean Trough (NAT), which is thought to be the continuation of
the North Anatolian Fault Zone. Regarding the velocity field in the northern Aegean, the
NAT separates the slow south-southwestward motion of northeastern Greece from the
fast west-southwest directed motion of the Anatolian-Aegean microplate. Furthermore,
the analysis of seismic data (e.g. Hatzfeld et al. [1999]) showed that the borders of the
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Figure 7.5: GPS velocities for the region of Greece, relative to Eurasia, for the period
1993-2003. The McClusky solutions are published in McClusky et al. [2000]. The
error ellipses define the 1-sigma confidence region (Hollenstein [2006]).

Anatolian-Aegean microplate feature the highest concentration of large earthquakes in
the Mediterranean region.

7.3 Available data

7.3.1 Earth Geopotential Model EGM96

EGM96 stands for Earth Geopotential Model 1996 and consists of spherical harmonic
coefficients complete to degree and order 360. It represents the long-wavelength charac-
teristic of the earth’s gravity field. The model is the result of a collaboration between the
National Imagery and Mapping Agency (NIMA), the NASA Goddard Space Flight Center
and the Ohio State University. It includes improved surface gravity data, altimeter-
derived anomalies from ERS-1 and GEOSAT Geodetic Mission, satellite tracking data
as well as direct altimeter ranges from TOPEX/POSEIDON, ERS-1 and GEOSAT
(Lemoine et al. [1998]).

Fig. 7.6 shows a detail of the EGM96 for the research area in the North Aegean Sea.
The geoid heights are given with respect to the WGS84. Due to the long-wavelength
character of the geoid, the influence of the NAT is not included. The mean geoid
height in the plotted area amounts to 40.4 m, with variations between 32.2 m and 45
m.
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Figure 7.6: Detail of the European Gravity Model EGM96 representing the research
area in the North Aegean Sea. The geoid heights in the plotted area vary between
32.2 m and 45 m showing the long-wavelength characteristic of the earth’s gravity
field.

7.3.2 GRACE Gravity Model GGM02

The Gravity Recovery And Climate Experiment (GRACE) is a joint mission between
the National Aeronautics and Space Administration and the German Aerospace Center
(NASA/DLR) aiming on the mapping of the time-variable and mean gravity field of
the earth. In March 2002, the GRACE twin satellites have been launched measuring
continuously the varying distance between the satellites. This allows for the detection of
changes in the earth’s gravity field. Based on approximately 14 months of data gathered
in 2002 and 2003, a new generation of gravity field models called GGM02 was derived
(Tapley et al. [2005]).

There exist two versions of the GGM02:

X GGM02S: The model was estimated to degree and order 160, with no constraints or
regularizations included. It is a combination of 14 monthly gravity field solutions used
for the computation of a mean gravity field model.

X GGM02C: In order to create a complete mean earth geopotential model up to higher
degrees, the GGM02S model information were combined together with terrestrial
gravity information (surface gravity and mean sea surface). The terrestrial data were
introduced in terms of spherical harmonic coefficients of the EGM96. To constrain the
higher degrees to the harmonic coefficients of the EGM96, the TEG4 (Texas Earth
Gravity model 4) error covariances were used, which are complete to degree and order
200. The GGM02C model is computed to degree and order 200 and can be smoothly
extended to degree and order 360 by using the EGM96 coefficients.
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Fig. 7.7 shows a detail of the GGM02C for the research area in the North Aegean Sea.
The mean geoid height in the plotted area amounts to 40.7 m and vary between 32.7 m
and 45.7 m.

Figure 7.7: Detail of the GRACE Gravity Model GGM02C for the research area in the
North Aegean Sea. The geoid heights in the plotted area vary between 32.7 m and
45.7 m.

7.3.3 Gravimetric geoid HGFFT98

In Tziavos and Andritsanos [1999], the gravimetric geoid solution for the Hellenic area,
called HGFFT98, has been presented. The computation area is within 34◦ < ϕ < 42◦

northern latitude and 18◦ < λ < 29◦ eastern longitude. The development of the model
was based on an optimal combination of different data sets. Hence, free-air gravity
anomalies from old and new data bases have been selected for the land area (19700
values). Also GPS/leveling heights were introduced. The marine gravity data were
derived from an inversion of satellite altimetry data from GEOSAT and ERS-1 geodetic
missions (5900 values) and a digitization of Morelli’s sea gravity maps (51000 values).
Totally, 77000 point free-air gravity anomalies have been selected for the computation of
the gravimetric geoid. Furthermore, a 1 km x 1 km digital terrain model, the GTOPO30
from the U.S. Geological Survey, has been introduced. The EGM96 geopotential model
(chapter 7.3.1) served as reference field, hence providing the long-wavelength signal of the
global gravity field. The combined solution was determined using the FFT-based MIMOS
Theory (=Fast Fourier Transformation-based Multiple Input-Multiple Output System
Theory) presented by Andritsanos [2000] and Andritsanos et al. [2001], respectively
(Müller et al. [2006]).

The final HGFFT98 model has been validated by other available geoid models for the test
area. A first comparison with the current European Gravimetric Geoid 1997 (EGG97)
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Figure 7.8: Detail of the gravimetric geoid (Tziavos and Andritsanos [1999]) represent-
ing the research area in the North Aegean Sea. The geoid heights in the plotted
area vary between 33.5 m and 45.1 m.

showed an agreement of about 75 cm standard deviation. A second comparison in the
continental area with 29 GPS/leveling stations in northern Greece and 10 stations in the
central-western part of Greece revealed an accuracy of 8.7 cm and 2.9 cm, respectively.
A third comparison was made in the marine area between the HGFFT98 heights and a
number of TOPEX/Poseidon derived SSH. The differences showed significantly larger
values than the continental area, with standard deviations of 31.2 cm in the North Aegean
Sea and of 16.4 cm in the South Aegean Sea and the central Mediterranean. These
results demonstrate the strong need for an improvement of the geoid model, especially
in the marine area. This can be mainly achieved by filling the data gaps there. Fig.
7.8 represents a detail of the HGFFT98 for the research area in the North Aegean Sea.
The mean geoid height amounts to 41.1 m ranging between 33.5 m and 45.1 m. The
gravimetric geoid clearly indicates the influence of the NAT by varying geoid heights
of about 2.6 m when crossing the marine area between the Chalkidiki peninsula to the
north and the Sporades islands to the south.

7.3.4 Altimetric geoid

The altimetric geoid model used as validation data set was computed by the DGS (AUTH)
using altimetric data from the Exact Repeat mission of ERS-1/2 and TOPEX/Poseidon.
The ERS-1 data (95576 point values) are taken from the 35-day ERM mission 1992/1993
and 1995, respectively. From ERS-2, six years of data have been used (368617 point values)
covering the period between 1995 and 2001. Finally, nine years of the Topex/Poseidon
derived SSH were employed (488634 point values) covering the period between 1992 and
2001.
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Figure 7.9: Area for the development of the altimetric geoid and course of ERS-1,
ERS-2 (red) and T/P (blue) tracks. The research area of the North Aegean Sea is
signalized by the black frame.

Figure 7.10: Detail of the altimetric geoid representing the research area in the North
Aegean Sea. The geoid heights in the plotted area vary between 32.4 m and 45.5 m.
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The final altimetric model forms a combination of all data sets employing least-squares-
collocation and using the Remove-Restore method (Tziavos et al. [2005]). Hereby, the
global geopotential solution EGM96 and the effects of the bathymetry have been taken
into account. In addition, the altimetric SSH have been crossover adjusted and stacked.
Hence, data over a much wider region than the area under study were used (Fig. 7.9).
Moreover, the altimetric data have been reduced from the sea surface to the geoid using
a local sea surface topography model developed by Rio [2004]. A detailed review of
methods for the computation of altimetric geoid models either by stochastic or spectral
techniques is given by Vergos et al. [2005].

Regarding the traces of the ERS-1/2 and T/P satellites within the project area in the
North Aegean Sea (black frame in Fig. 7.9), it becomes obvious that only very few data
are available there. This can be mainly attributed to the fact that altimeter satellites
do not receive radar signals over land and in marine areas with low depths of water, as
e.g. close to coastlines. The resulting lack of data in the North Aegean Sea might cause
a weak geoid solution in the marine area. A detail of the final altimetric geoid model
for the research area in the North Aegean Sea is depicted in Fig. 7.10. The mean geoid
height amounts to 40.5 m ranging between 32.4 m and 45.5 m. Similar to the gravimetric
geoid, the altimetric geoid clearly indicates the influence of the NAT by varying geoid
heights of about 2.4 m, when crossing the sea between the peninsula of Chalkidiki to the
north and the Sporades islands to the south.

7.4 Data acquisition

7.4.1 Determination of deflections of the
vertical

The distribution of Astro stations was mainly motivated by the intention to cover the
area around the NAT. The trough forms an important geological feature of the test area
(see chapter 7.2.2). The observations with DIADEM were carried out along the shoreline
of the North Aegean Sea including the Sporades islands (Skiathos, Skopelos, Alonissos,
Kira Panagia, Psathoura) and the islands of Thassos, Samothraki, Limnos and Agios
Efstratios (Fig. 7.12). Fig. 7.11 shows the preparation of an observation on the island of
Kira Panagia. Details concerning the instrument and the measuring principle can be
found in chapter 3.

In total, 27 stations have been observed in 20 nights yielding an average of one to
two stations per night. At each station, about 80 to 120 single solutions have been
observed and used for the determination of the direction of the vertical (Φ,Λ). During
the whole campaign, the method of azimuth calibration has been applied (chapter 4.4.1).
The time needed per station was about one to two hours including GPS measurements.
At each observation point, differential GPS measurements during about 30 minutes
have been performed applying a two-frequency Trimble receiver (see Fig. 7.11). The
final geodetic coordinates (ϕ, λ) have been determined in post-processing by a network
equalization using recent ITRF2000 coordinates from four different reference stations
(Alonissos, Limnos, Agios Efstratios, Nisi). The accuracy of the geodetic position is
better than 0.01 arcsec corresponding to a lateral displacement at the earth’s surface of
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Figure 7.11: Preparation of an observation with DIADEM on the island of Kira Panagia.
The ton served as shipping container for DIADEM. For the transportation by boat,
the ton has been mounted at the stern (Fig. 7.13b)). In order to perform differential
GPS measurements, a GPS antenna is temporarily fixed on top of DIADEM. The
antenna is removed when starting the DIADEM observations.

0.3 m. The standard deviation of the final deflections of the vertical is better than 0.2
arcsec.

The DOV (ξ, η) are shown in Fig. 7.12. The absolute values vary between 0.8 arcsec
(Sporades islands) and 23.7 arcsec (island of Samothraki, eastern station). The vectors
indicate the impact of surrounding masses. Hence, the DOV on the three peninsulas
of Chalkidiki, on the Sporades islands and on the islands of Thassos, Samothraki and
Limnos denote a decreasing geoid in direction to the NAT. The trough forms a distinct
mass deficit with respect to the surrounding area. An interesting station is Kipos, the
eastern station on the island of Samothraki. It is striking that the DOV there is about five
times larger than on the western station (Kamariotissa) and nearly points to an opposite
direction. This is mainly due to topographic and bathymetric features encountered there.
The bathymetry at Kipos side shows a very steep gradient caused by the trough between
Limnos and Samothraki (Imbros depression), while at Kamariotissa the relief is much
less inclined. The topography of the island is characterized by the Fengari mountain
with an elevation of about to 1600 m. This topographic mass excess causes larger gravity
effects in the SE than in the NW of the island.

122



7.4 Data acquisition

Figure 7.12: DOV observed at 27 stations in the North Aegean Sea. The vectors
reflect the DOV projected into a horizontal plane (components are equal to ξ and
η). The DOV vary between 0.8 arcsec (Sporades islands) and 23.7 arcsec (Island of
Samothraki, eastern station).
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7.4.2 Determination of Sea Surface Heights

In addition to the determination of DOV, shipborne multi-antenna GPS as well as GPS
buoy measurements took place (Limpach et al. [2006] and Müller et al. [2006]) aiming at
the precise determination of SSH (Fig. 7.13).

a) Waterproofed buoy equipped with
GPS receiver, antenna and battery.

b) Boat equipped with four GPS antennas, indicated by
the arrows. The Zenith Camera was mounted within
the ton at the stern of the boat.

Figure 7.13: Mobile marine research platforms: buoy and sailing boat.

The SSH data provide local-scale information on the short-wavelength structure of
the gravity field and can be applied to improve local marine geoid solutions. They
also contain information on the local dynamic ocean topography (DOT) and can be
used for the validation and calibration of radar altimeter satellites. Last but not least,
the SSH data provide a link between offshore radar altimeter data and tide-gauge
records.

In order to achieve a highly-precise GPS positioning of the buoys and the boat, the
buoy receivers, the receivers aboard the boat and several permanent terrestrial GPS
reference stations have been operated simultaneously at a sampling rate of 1 Hz. The
coordinates of the reference stations were first determined with respect to the ITRF
reference frame. The kinematic positions of the buoys and the boat were then determined
through differential GPS carrier phase processing with respect to the reference stations.
In order to derive the Sea Surface Topography (SST) from the instantaneous SSH, several
corrections have to be applied, especially for tides and atmospheric effects (inverse
barometric effect). The tide corrections have been provided by E.C.Pavlis from the Joint
Center for Earth Systems Technology (JCET) using the GOT00.2 tidal model (Arabelos
et al. [2007]). The local tidal effects have been determined using own tide gauges installed
in the survey area. The inverse barometer corrections have been computed over the
entire Mediterranean Sea using atmospheric pressure data from the European Center for
Medium-Range Weather Forecasts (ECMWF).
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Fig. 7.14 shows the Astro stations (chapter 7.4.1) as well as the SSH tracks from two
different GPS surveys in 2004 and 2005. The SSH data cover more than 1000 nautical
miles of ship tracks. For the calibration and validation of radar altimeter missions, the
survey area has been defined in the vicinity of Jason-1 ground-tracks. Dedicated buoy
measurements have been performed along these tracks including deployments with direct
Jason-1 cross-overs, which provide precise ground-truth SSH information during the
overflight.

Figure 7.14: DOV (stars) and SSH (points) used for combined geoid determination.
The altimetric data provided by the JASON altimeter satellite (dashed lines) have
been used for calibration purposes.
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Fig. 7.15 presents the color-coded SSH. A minimum of 37.5 m (above WGS84 ellipsoid) is
associated with a distinct bathymetric low caused by the NAT. The SSH increase to about
40.5 m towards the northern and eastern part of the survey area.

Figure 7.15: Color-coded SSH from combined shipborne/buoy GPS observations. The
minimum of 37.5 m coincides with the distinct bathymetric low of the NAT. Towards
north and east, the SSH increase to about 40.5 m. Black lines: Jason-1 ground-tracks,
background: Bathymetry (Limpach et al. [2006]).
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The SSH contain impacts of the above mentioned local DOT, mainly caused by ocean
currents, wind, salinity and different temperatures. The Mean Dynamic Ocean Topogra-
phy (MDOT) for the research area provided by the Aristotle University of Thessaloniki
allows for the correction of these effects. Fig. 7.16 reflects the variations of the MDOT
within the research area of the North Aegean Sea. The variations range between 2 cm
and 5 cm along the boat tracks. They show a mainly constant level of about 5 cm in the
area between the peninsula of Chalkidiki and the Sporades islands.

Figure 7.16: Mean Dynamic Ocean Topography (MDOT), provided by the DGS/AUTH.
The yellow points indicate the shipborne GPS measurements.

The DOV and the corrected SSH have been used for a combined geoid determination.
The resulting geoid is presented in chapter 9.3.4.
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8 Mass reductions

8.1 Introduction

Deflections of the vertical (DOV) reflect the mass distributions of the station vicinity
(Torge [2001]). Especially in areas with changing topography and complex geological
structures, they might show a very unsettled behavior and are, therefore, not suitable for
a precise interpolation of the gravity field. The smoothing of the data can be achieved
by considering mass effects, which produce high- and low-frequency perturbations of
the gravity field. By using information from topography, density and isostatic models,
the influence on the DOV-components ξ and η can be computed and subtracted from
the raw observations. The residual data show then a significantly smoother behavior.
This enables the interpolation of the gravity field with an adequate accuracy, also for
mountainous regions (Marti [2004]).

In case all known masses have been removed, the residual DOV mainly reflect unmodeled
masses, density anomalies and, on a small scale, errors of the astrogeodetic measuring
method. The reduced data form a valuable data set for the interpretation of geological,
geodynamic and geophysical features of the region. Hence, deep-rooted anomalous bodies
might be detected, as it has been demonstrated by Bürki [1989] at the example of the
Ivrea body in Switzerland.

The mathematical background for the computation of gravitational potential and attrac-
tion from masses refers to Mader [1951] and is described in chapter 8.2. The different
mass models used, like the Digital Terrain Model (DTM) from the Shuttle Radar Topog-
raphy Mission, isostatic models as well as a Moho model, are presented in chapters 8.3,
8.4 and 8.5. The reduced DOV are discussed in chapter 8.6.

For the interpolation of the residual data, the least-squares-collocation (LSC) has been
found to be an adequate method. Besides, this procedure allows for the common
introduction of different data sets for a combined interpolation of the gravity field
(Wirth [1990]). The method is described in chapter 9.2. The resulting cogeoid solutions
representing a "geoid subtracted for dedicated masses" are presented and interpreted in
chapters 9.3.1 and 9.3.2.

In the course of the final geoid computation, the subtracted masses have to be restored.
The final geoid solutions are anaylsed in chapters 9.3.3 and 9.3.4. The whole process of
removing and restoring masses is called Remove-Restore method and is commonly
used for geoid determinations (Gurtner [1978], Forsberg and Tscherning [1981], Marti
[1997]).
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8.2 Computation of mass effects

Due to the complex structure of topography, it is difficult to describe the surface by closed
analytical forms. Therefore, the DTM is mostly represented by discrete points with
horizontal coordinates and corresponding heights. The type of horizontal coordinates
(e.g. orthogonal-cartesian (x,y) or geographical coordinates (ϕ, λ)) specifies a possible
segmentation of the model producing simple geometrical figures. They form the basis
for the application of the law of gravitation after Newton aiming at the computation of
gravitational attractions. Orthogonal-cartesian coordinates suggest a segmentation into
cuboids, while geographical coordinates define so called tesseroids. If in spite of given
geographical coordinates the "cuboid method" is preferred, the tesseroids have to be
replaced by cuboids which approach best possible the volume and height of the tesseroid
(see Fig. 8.1).

Figure 8.1: Principle of replacing a tesseroid by a cuboid (after Grüninger [1990])

In Grüninger [1990], complete derivations for an approximation of a tesseroid by a cuboid
can be found. The final relations between the edge lengths of a tesseroid (∆ϕ,∆λ) and
those of a cuboid (∆x,∆y) are:

∆x ≈ rM ·∆ϕ ∆y ≈ rM · cosϕM ·∆λ
rM = (r1 + r2)/2 ϕM = (ϕ1 + ϕ2)/2

(8.1)

r1,r2... Radial distances from the earth’s center to the edges of the tesseroid

Detailed formulas to compute the gravitational attraction of a tesseroid based on the
Newton integral can be found in Grüninger [1990]. In the present work, the calculation
of the gravitational potential and attraction has been performed using mass cuboids.
As the DTM data used for the mass computation are given in geographical coordinates
(chapter 8.3), the thus predefined tesseroids have been approximated by cuboids of the
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same volume (Eq. (8.1)). In each computation point P, a local coordinate system has
been defined, which refers to the coordinate system of the DTM (Fig. 8.2). The defined
cuboids stand orthogonally on the x-y-plane of the coordinate system coinciding with
the tangent plane in P.

Figure 8.2: Definition of a coordinate system of a cuboid (after Bürki [1989]).

The edges of the cuboids run in parallel to the axes of the local coordinate system. The
horizontal size of the mass cuboids has been defined with regard to the resolution of the
DTM (chapter 8.3). In order to reduce the computation time, the vicinity up to a distance
of 50 km around P has been considered by cuboids with a size of 90 m x 90 m (SRTM3
resolution), while greater distances have been approximated by cuboids with a size of 180
m x 180 m. The maximum distance for the consideration of masses around P (="area
of influence") has been set to 150 km resulting from dedicated investigations (chapter
8.7.1). The principle of so called "block construction" has been already used by Elmiger
[1969] and can be also found in more recent works as Marti [1997] and Flury [2002]. The
mean density of the topographic mass cuboids has been defined with 2.67 g/cm3, which
is a commonly used value in this context (Marti [1997]). The bathymetric area has been
considered with a density contrast of 1.67 g/cm3 resulting from the difference between
rock (2.67 g/cm3) and water (1.0 g/cm3).

Gravitational potential

In Mader [1951], the complete formulas for the potential of a finite and an infinite cuboid
and the derivations of the potential to the third degree can be found.

The potential V is given in [m2/s2] by:

V = G · ρ ·
x2∫
x1

y2∫
y1

z2∫
z1

1

r
· dx · dy · dz (8.2)

with r =
√
x2 + y2 + z2
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ρ... Mass density in
[
kg
m3

]
G... Gravitational constant: (6.6742± 0.0010) · 10−11 m3

kg·s2

dx,dy,dz... Dimensions of a mass element in [m]

The solving of the integral yields (after intermediate computations outlined in Appendix
A.2, Eqs. (A.7) to (A.11)):

1

G · ρ
V = y2 · z2 · log(x2 + r2) + x2 · y2 · log(z2 + r)− y2

2

2
· arctan

(
x2 · z2

y2 · r

)
+x2 · z2 · log(y2 + r)− x2

2

2
· arctan

(
y2 · z2

x2 · r

)
− z2

2

2
· arctan

(
x2 · y2

z2 · r

)
−{x2y2z1} − {x2y1z2}+ {x2y1z1} − {x1y2z2}+ {x1y2z1}+ {x1y1z2} − {x1y1z1}

(8.3)

Please note: The expressions in curly brackets indicate that the preceding explicit expres-
sion has to be applied accordingly to the denoted coordinates of the cuboid.

Gravitational attraction

By knowing the gravitational potential, the attractions Vx, Vy and Vz can be calculated by
the first derivatives in direction of the three coordinate axes x, y, z.

At the example of the gravitational attraction Vx (in x-direction), it is:

Vx = −G · ρ ·
x2∫
x1

dx

y2∫
y1

dy

z2∫
z1

dz · x
r3

(8.4)

The solving of the integral yields (after intermediate computations outlined in Appendix
A.2, Eqs. (A.12) to (A.15):

1

G · ρ
· Vx = z2 · log(y2 + r) + y2 · log(z2 + r)− x2 · arctan

(
y2 · z2

x2 · r

)
−{x2y2z1} − {x2y1z2}+ {x2y1z1} − {x1y2z2}+ {x1y2z1}+ {x1y1z2} − {x1y1z1}
= 1bottom − 1top − 2bottom + 2top − 4bottom + 4top + 3bottom − 3top

(8.5)

Please note: The expressions in curly brackets indicate that the preceding explicit
expression has to be applied accordingly to the denoted coordinates of the cuboid. The
gravitational effect Vy and Vz can be derived by a cyclical permutation of the coordinates
in Eq. (8.5). The numeration refers to Fig. 8.2.
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Residual deflections of the vertical

Based on the relation between the horizontal components Vx and Vy, respectively, and
the normal gravity vector −→γ , the topographic DOV (ξt, ηt) in [arcsec] can be derived for
a single cuboid by (Bürki [1989]):

ξt = −c · Vx
γ

ηt = −c · Vy
γ

(8.6)

c... Conversion factor from Radian to Arcsecond with ρ = 180·3600
π

= 648000
π

γ... Normal gravity in the station [m/s2]

The sum of all cuboids around the computation point yields the final topographic DOV
at P. As the DOV have been observed at a certain height H above the geoid, the effect
of the curvature of the plumb line (=orthometric correction E) between H (surface)
and H = 0 (geoid) has to be taken into account. In the following, it is demonstrated
that this effect is already considered within the process of mass reduction (Gurtner
[1978]):

The absolute DOV observed at geoid level (εgeoidobs ) (with ε after Eq. (9.1)) result from
the DOV observed at surface level (εsurfobs ) and reduced for the orthometric correction E
and the so called free-air correction ∆FA:

εgeoidobs = εsurfobs + E + ∆FA (8.7)

After Eq. (9.3), the computation of the orthometric correction E requires the knowledge
of gravity values at the observation point. However, in the present work, these information
are not available. Following Elmiger [1969], the orthometric correction E can be also
considered as difference between DOV calculated from masses at geoid level (εgeoidcalc ) and
those at surface level (εsurfcalc ):

E = εgeoidcalc − ε
surf
calc (8.8)

Furthermore, the residual DOV (εcogeoidred ) represent the difference between the DOV ob-
served at the geoid (εgeoidobs ) and those calculated from masses at geoid level (εgeoidcalc ):

εcogeoidred = εgeoidobs − ε
geoid
calc (8.9)

With Eqs. (8.7) to (8.9), it follows:

εcogeoidred = εsurfobs + (εgeoidcalc − ε
surf
calc ) + ∆FA− εgeoidcalc

εcogeoidred = εsurfobs − ε
surf
calc + ∆FA

(8.10)
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with:

εcogeoidred = F (ξtr, ηtr)... Residual DOV at cogeoid level

εsurfobs = F (ξ, η)... Observed DOV at surface level

εsurfcalc = F (ξt, ηt)... Calculated DOV at surface level

The free-air correction ∆FA considers the fact that the plumb line runs also curved in free
air. The according correction between surface and geoid yields only for the ξ-component
and depends on latitude ϕ and height H of the station (Elmiger [1969]):

∆FA = ∆ϕ = −0.00017[arcsec]/[m] · H · sin(2ϕ) (8.11)

Concerning the DIADEM observations in Greece, the correction ∆ϕ is very small: Due
to the fact that the observations in Greece (ϕ ≈ 40◦) took mostly place close to sea level,
the maximum elevation of an observation point amounts to 100 m. This yields a ∆ϕ of
about 0.02 arcsec.

The formulas above show that the residual DOV can be computed by reducing the
DOV observed for the DOV calculated from masses at surface level and for the
free-air correction. However, according to Gurtner [1978], this method only apparently
eludes the problem of the orthometric correction, since the potentials of the same mass
model have to be calculated at geoid level. Elmiger [1969] estimated the mean error of
the computation of E from masses to 0.5 arcsec.

The final correction formulas amount to (Elmiger [1969]):

ξtr = ξ − ξt + ∆ϕ ηtr = η − ηt (8.12)

Please note: Effects caused by the difference between cogeoid and geoid can be neglected
(Elmiger [1969]).

Earth’s curvature

The definition of a cuboid standing orthogonally on the tangent plane holds true for
topography close to point P. However, due to the earth’s curvature, the deviation of the
tangent plane from the underlying ellipsoidal reference model becomes more and more
significant with increasing distance to P (Grüninger [1990], Flury [2002]). According to
Grüninger [1990], the height offset E of a point P’ (x‘, y‘, z‘ = H) in reference to the
computation point P (x = 0, y = 0, z = H) (zero-point of coordinate system) can be
estimated by:

E ≈ s‘2

2R
s‘ =

√
x‘2 + y‘2 ≈ PP ‘

R =
√
MN =

a
√

1− e2

1− e2 sin2 φ

(8.13)
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with:

s‘... Distance between P’ and P
R... Earth’s radius
M ... Radius of earth’s curvature in the meridian
N ... Normal radius of earth’s curvature
a... Semi-major axis of reference ellipsoid
e2... Numerical eccentricity
ϕ... Geographical latitude of P

The effect of earth’s curvature on the height offset is demonstrated in Fig. 8.3. In a
distance of 10 km, the offset amounts to about 8 m, while in 50 m, it is already about
200 m.

Figure 8.3: Height offset due to earth’s curvature depending on the distance to the
computation point. In a distance of 100 m, it amounts to 800 m.

The impact of disregarding the effect of earth’s curvature within the process of mass
reduction has been estimated at the example of a cuboid with the dimensions 1000
m x 1000 m x 1000 m. The maximum impact amounts to 0.0003 arcsec (for a single
cuboid!) and remains constantly from a distance of about 10 km on. Although this is
very low, it has to be regarded that the effect in P forms a sum of all cuboids around
the station. Hence, it is recommended to consider the height offset within the process of
data reduction.
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8.3 Topography from the NASA Shuttle Radar
Topography Mission

The topography and bathymetry information used in this work have been extracted
from the SRTM3 and SRTM30 plus models published by the United States Geological
Survey (USGS) (see http://www2.jpl.nasa.gov/srtm/cbanddataproducts.html). The
data result from a collaborative Shuttle Radar Topography Mission (SRTM) by the
National Aeronautics and Space Administration (NASA), the National Imagery and
Mapping Agency (NIMA/NGA)1, the German Space Agency (DLR) and the Italian
Space Agency (ASI). The goal of the SRT mission was to generate a near-global elevation
model of the earth using dual radar antennas, which aquire interferometric radar data
(Rodriguez et al. [2005], Farr et al. [2007]).

SRTM30 and SRTM30 plus

The SRTM30 is a digital elevation model that spans the globe from 60◦ northern
latitude to 56◦ southern latitude with a resolution of 30 arcsec (about 900 m at equator).
Despite the fact that the SRTM30 has the same resolution as the older GTOPO30
model, it can be considered as a more accurate global digital data set. Due to the fact
that it was created over a short period of time from a single source, it shows a more
seamless and uniform representation. However, GTOPO30 data were used to complete
the SRTM model, where SRTM data were not available. The SRTM30 plus model
additionally contains information about the bathymetry. The ocean data are based
on the Smith and Sandwell global 2-minute grid between latitudes ±72 degrees. The
arctic bathymetry is taken from the International Bathymetric Chart of the Oceans
(IBCAO).

SRTM3

Furthermore, for a more detailed approximation of the topographic masses, the SRTM3
model has been used. This model is also published by the USGS but has a higher
resolution of 3 arcsec (about 90 m at equator). A disadvantage of this model is that
bathymetric information are not included, so they have to be extracted from the SRTM30
data set.

A detailed analysis concerning the quality of the SRTM3 data can be found in Rodriguez
et al. [2005]. As part of the SRT mission, an extensive global ground campaign has been
conducted by NIMA/NGA and NASA. The goal was to collect ground-truth which would
allow for the global validation of the SRTM data set. Based on the results from this
campaign, the absolute height error for Eurasia is given with 6.2 m, the relative height
error with 8.7 m and the absolute geolocation error with 8.8 m.

1NIMA changed the name in November 2003 to National Geospatial-Intelligence Agency (NGA)
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8.4 Isostasy

8.4.1 Theory

Isostasy is the condition of a gravitational equilibrium between the earth’s lithosphere
and asthenosphere (Torge [2001], Rummel [2005]). In the simplest example, isostasy
is the principle of Buoyancy observed by Archimedes in his bath, where he realized
that the immersion of an object into water causes the displacement of an amount of
water with the same volume as the object. Referring to the earth’s crust, an isostatic
equilibrium is reached if below a certain depth (=compensation depth) the weight and,
hence, the pressure of masses above is the same everywhere. The immersion depth of the
lithosphere depends on its thickness and density. In Fig. 8.4, the principle is explained
at the example of oceanic and continental crust, respectively: Due to its higher thickness,
the continental crust sinks deeper into the mantle than the oceanic crust. The transition
zone between crust and mantle is called Mohorovičić discontinuity, abbreviated "Moho"
discontinuity (chapter 8.5).

Figure 8.4: Mass compensation at the example of ocean and continent, published by
the Department of Earth and Planetary Science, Northwestern University, Evanston
(http://www.earth.northwestern.edu/people/seth/107/Gravity/Image66.gif).

Since the earth is a dynamic system, the establishment of a hydrostatic equilibrium can
be observed wherever mass loads have changed. Hence e.g., the deposit of large amounts
of sediments on a particular region might cause the crust below to sink. In contrast, the
erosion of large amounts of material might provoke a rising of the land for compensation.
Other examples are the glaciation/deglaciation at the poles or the effect of continental
drift. An interesting example are the Swiss Alps, where the isostatic equilibrium has not
yet been reached. As a consequence, some parts of the Swiss Alps are uplifted at a rate
of up to 1.5 mm/year (Schlatter [2007]).

The condition of hydrostatic equilibrium is based on the principle of Buoyancy as
described by Archimedes (Gerthsen [1966]):
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FW = FL (8.14)

ρB · VB︸ ︷︷ ︸
mB

·g = ρFl · VFl︸ ︷︷ ︸
mFl

·g (8.15)

mB = mFl (8.16)

with:

FL... Lifting force [(kg ·m)/s2 = N ]
FW ... Weighting force [N ]
ρB, VB,mB... Density [kg/m3], volum [m3] and mass of body [kg]
ρFl, VFl,mFl... Density, volum and mass of fluid
g... Gravity [m/s2]

The so called condition of mass equilibrium (Eq. 8.16) forms the background for two
well-known theories of isostasy: the Airy-Heiskanen and the Pratt-Hayford model. Since
the Pratt-Hayford theory is outdated, only the Airy-Heiskanen model is treated in detail.
Within this work, it has been used for the reduction of the DOV for isostatic compensation
masses (chapter 8.6). Another famous theory is established by the Vening-Meinesz model,
where the crust acts as an elastic plate and its inherent rigidity spreads deflections
of topographic loads over a broader region. This theory is not discussed in this work.
For more information concerning this theory, please refer to Moritz [1990] or Ebbing
[2002].

8.4.2 Airy-Heiskanen model

The Airy-Heiskanen model is based on the theory that the lighter earth crust (ρc =
2.67 g/cm3) floats on the denser mantle (ρM = 3.3 g/cm3) like icebergs on water. A
normal column without topography (H=0) is assumed with an average density of the
crust ρC and a compensation depth D = 30 km. A continental column with H>0 has
to be compensated by a so called "root" with the depth t dipping into the mantle (Fig.
8.5). Hence, a mass deficit due to the density contrast ∆ρ = ρM − ρC unlike a normal
column is produced. In contrast, an oceanic column with a bathymetric depth HW is
compensated by a so called "anti-root" tW . The boundary layer between crust and
mantle is called Moho discontinuity. An equilibrium is produced by the uplift of the
lighter crust compared to the denser mantle. The condition of balance can be expressed
by (Rummel [2005]):

Continental columns:

H · ρC = t ·∆ρ (8.17)

t =
ρC
∆ρ
·H (8.18)
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Oceanic columns:

HW (ρC − ρW ) = tW ·∆ρ (8.19)

tW =
(ρC − ρW )

∆ρ
·HW (8.20)

Figure 8.5: Airy-Heiskanen isostatic model. The theory is based on the idea of a local
mass compensation in columns, with varying compensation depths depending on
the height of the column above the geoid.

The formulas above do not consider the column convergence in direction to the cen-
ter of the earth. The consideration of the convergence yields the following equa-
tions:

Continental column:

t =
ρC
∆ρ

(
R

R−D

)2

H (8.21)

Oceanic column:

tW =
ρC − ρW

∆ρ

(
R

R−D

)2

HW (8.22)

8.5 Mohorovičić discontinuity

8.5.1 Moho in Greece: a state of research

The topography of the crust-mantle boundary (Moho discontinuity) in the Aegean do-
main is the result of a complex tectonic history (see chapter 7.2.2). The determination
of the significant density contrast at this boundary has been the focus of numerous studies:
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X Papazachos et al. [1995] studied the compressional velocity structure of the crust
and upper mantle by inverting residuals of the first P arrivals from earthquakes in
south-eastern Europe (16◦-31◦E, 34◦-43◦N). The resulting map of Moho discontinuities
yields depths from 25 km in the cyclades to 40 km beneath continental Greece. For
the North Aegean Sea, a mean depth of 30 km is indicated.

X Tsokas and Hansen [1997] and Tirel et al. [2004], respectively, estimated the crust-
mantle-boundary in the Aegean Sea by the inversion of gravity data. Tirel et al.
[2004] (here: Tirel model) used Fourier transforms to invert filtered Bouguer anomalies
reduced for the effect of the subducting African slab. The Moho depths are only
available for the marine area. They average to 25 km with a minimum depth of
22 km in the Cretan Sea and a maximum depth of 30 km around Crete and the
Peloponnessos (along the African-Eurasian subduction zone, see chapter 7.2.2). The
depths in the North Aegean Sea range between 23 km and 27 km (Fig. 8.6a)). The
Moho topography estimated by Tsokas and Hansen [1997] (here: Tsokas model) are
used in the present work for the data reduction and will be described in detail in
chapter 8.5.2.

X Sodoudi et al. [2006] (here: Sodoudi model) determined common P and S receiver
functions from tele-seismic events at 65 temporary and permanent seismic stations of
different networks (GEOFON, National Observatory Athens, Cyclades Network and
Seisfaultgreece Experiment). Their analysis allowed for the determination of seismic
discontinuities to a depth of several hundreds of kilometers. The Moho topography
varies between 20 km in the Cretan Sea and 40 km below continental Greece. The North
Aegean Sea features Moho depths between 26 km and 30 km (Fig. 8.6b)). Furthermore,
the analysis of the S receiver function enabled the tracing of the subducting African
lithosphere towards northern Greece. The African Moho (Fig. 8.7) shows a depth of
40 km along the Hellenic arc (Fig. 7.4 for the location of the Hellenic arc). Below the
volcanic arc (dashed line near the stations MILO and SANT in Fig. 8.7), the depths
increase to 100 km and to about 220 km below northern Greece.

X Casten and Snopek [2006] estimated the 3D-density structure of the Hellenic subduction
zone around Crete by means of gravity modeling (computed Bouguer anomalies). Active
and passive seismic studies on and around Crete served as input for first structural
and density suppositions for the gravity modeling. The final interpretation was based
on a newly compiled Bouguer map from land, marine and satellite data (observed
Bouguer anomalies). The observed and computed Bouguer anomalies were consistent
within the low-frequency range, which is mainly controlled by Moho depth variations
and very thick sedimentary coverage. The Eurasian continental Moho in the Hellenic
zone shows an arc-shaped structure south off Crete with depths between 25 km and
30 km along the Hellenic arc. The Moho depths below Crete reach a value of about
35 km and indicate an uplift to less than 20 km in the Cretan Sea. Furthermore, the
structure of the subducted oceanic Moho has been estimated. The clearly arc-shaped
character of the African Moho indicates a depth of 40 km along the Hellenic arc and
decreases to 50 km north of Crete. In Snopek et al. [2007], a detailed comparison
between seismic constraints and the 3D-density model can be found.
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8.5 Mohorovičić discontinuity

a) Moho topography based on the inversion of
filtered Bouguer anomalies reduced for the
effect of the subducting African slab (Tirel
et al. [2004]). The Moho depths in the North
Aegean Sea range between 23 km and 27 km.

b) Moho topography based on the analysis of common
P and S receiver functions (Sodoudi et al. [2006]).
The Moho depths in the North Aegean Sea range
between 26 km and 30 km.

Figure 8.6: Two different models of Moho topography in the Aegean Sea, Greece.

Figure 8.7: Moho topography of the subducting African lithosphere (Sodoudi et al.
[2006]). The African Moho has been traced towards northern Greece by analyzing
the S receiver function. The depths amount to 40 km along the Hellenic arc, increase
to 100 km below the Hellenic arc and reach about 200 km below northern Greece.
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8.5.2 Moho model applied for data reduction

Tsokas and Hansen [1997] determined crustal thicknesses in Greece by applying the
Multiple-Source Werner Deconvolution method (MSWD) along profiles extracted from
the Bouguer anomaly map of Greece. The MSWD method is an inverse technique for the
interpretation of magnetic and gravity anomalies, respectively. The resulting estimates
have been used to generate the Moho topography (Fig. 8.8). The depth averages to 32
km, with a minimum in the Aegean Sea and a maximum beneath the western part of
the Greek Peninsula. Within the North Aegean Sea, the Moho depths vary between 23
km (peninsula of Athos (=A)) and 39 km (western Greece).

A detailed comparison of the Tsokas model with other Moho models revealed significant
differences. It has to be noted that the following comparison only refers to models that
also indicate Moho depths for the North Aegean domain as the main research area of
this project:

X Concerning the relative variations of the Moho depths in the Aegean Sea, the differences
are significant: While the Tsokas model indicates variations in the Aegean domain of
about 15 km, the Tirel model identifies 9 km in agreement with the Sodoudi model.
In the North Aegean Sea, the differences are also considerably high with variations of
about 10 km in the Tsokas model and about 4 km in the Tirel model.

X Regarding the location of minima and maxima of Moho depths, the following dis-
crepancies are detected: In the North Aegean domain, the Tsokas model shows a
significant shallower depth beneath the peninsula of Athos, while the Tirel model
reveals an elongated zone of shallower Moho along the North Aegean Trough (NAT).
The Tirel model here proves a clear negative correlation between bathymetry and Moho
depths, hence indicating a low Moho depth for a distinctive bathymetry. This negative
correlation is not recognizable in the Tsokas model. Furthermore, the Tsokas model
reveals a significant shallower Moho south of Evia (=E), northeast of the cyclades.
This result is in contrast to the other models, since both the Tirel and the Sodoudi
model rather predicate the opposite. Another region of discrepancy is the Cretan Sea,
where the Tirel model proposes an elongate zone of shallower Moho. However, in the
Tsokas model, the Moho depth variations show a rather different characteristic as no
elongate minimum of crustal thickness is indicated (Tirel et al. [2004]).

One reason for the discrepancies mentioned - at least between Tsokas and Tirel model
- might be due to the fact that Tirel et al. [2004] used Bouguer anomalies reduced
for the gravitational effect of the African slab, while Tsokas and Hansen [1997] did
not consider this effect in the inversion. Furthermore, both models did not take the
influence of sedimentary basins into account (chapter 7.2.1). The disregard of low
density sediments as they can be found in the North Aegean Sea might result in an
overestimation of Moho depths. After Tirel et al. [2004], the sedimentary thickness in
the North Aegean Sea, and especially in the Sporades basin, might reach values up to 6
km, hence producing a shallower Moho than proposed by the Tirel and Tsokas model,
respectively.

Despite the revealed discrepancies between the Tsokas model and other studies, this
model has been used in the present study for data reduction. If the problems discussed
above apply to the Tsokas model, the residual DOV should indicate corresponding
characteristics. This subject is analyzed in chapter 9.3.2.
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8.5 Mohorovičić discontinuity

Figure 8.8: Estimated variations in Moho depths in the area of Greece (Tsokas and
Hansen [1997]). In the North Aegean Sea, the Moho depths show a minimum of 23
km beneath Athos (Chalkidiki) (=A) and a maximum of 42 km beneath western
Greece.

143



Chapter 8: Mass reductions

8.6 Reduced observations

The DOV observed have been presented and discussed in detail in chapter 7.4.1. In
order to produce smoothed data for a geoid determination as well as residual data for
a geophysical interpretation, the DOV observed have been reduced for dedicated mass
effects (chapter 8.2). The residuals form the basis for the computation of appropriate
cogeoids (chapters 9.3.1 and 9.3.2) as an intermediate result on the way to the final geoid
solution (chapters 9.3.3 and 9.3.4). Based on thorough investigations concerning the area
of influence2 (chapter 8.7.1), masses in a distance of 150 km around the station have been
considered. Until a distance of 50 km around the computation point (=Astro station),
the basic resolution of the SRTM3 model of 90 m x 90 m has been used to define the size
of the mass cuboids. For distances between 50 km and 150 km, the size of the cuboids
has been increased to 180 m x 180 m. This helped to reduce the computation time.
The density of the continental masses has been assumed with 2.67 g/cm3, while the
bathymetric region has been considered with a density contrast of 1.67 g/cm3 resulting
from the difference between rock and water.

Fig. 8.9 represents the residuals after a reduction for topographic and bathymetric masses
(TB). The DOV reduced show a clearly smoother behavior than the DOV observed (Fig.
7.12). However, the residuals are still quite large with values between 1.4 arcsec (island
of Agios Efstratios = AE) and 23.3 arcsec (Raches = R) and a standard deviation of
4.9 arcsec. The directions of the vectors indicate a mass concentration along the NAT.
This is most likely due to the fact that isostatic compensation masses have not yet been
considered within the reduction process.

Consequently, the residuals are remarkable smaller after an additional consideration of
isostatic masses, based on the theory of Airy-Heiskanen (TBAH) (chapter 8.4.2). The
parameters assumed are a compensation depth of 30 km and a density contrast between
crust and mantle of 0.63 g/cm3 (mantle: 3.3 g/cm3, crust: 2.67 g/cm3). The vectors
indicate values between 0.9 arcsec (island of Agios Efstratios = AE) and 16.9 arcsec
(Raches = R) and a standard deviation of 3.7 arcsec (Fig. 8.10). It is striking that the
residuals at the western mainland and at Kassandra (=K) are still quite large within a
range of 10 arcsec to 16 arcsec. They reflect a mass overload within the marine area,
especially north of the Sporades islands (=SI). Also station Kipos (=KI) at the island of
Samothraki still shows a significant residual vector of about 9 arcsec. All these effects
can be attributed to different reasons, as e.g. an incomplete isostatic compensation
of the region, insufficiencies of the isostatic theory or, on a small scale, errors of the
astrogeodetic method and in the data reduction process. Hence, also unconsidered
density variations in the crust might produce residual components of a few tenth of
1 arcsec. In chapter 8.7.3, this problem is discussed at the example of the island of
Samothraki.

2Area of influence = Area around the computation point, in which the masses have to be considered
within the process of data reduction
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8.6 Reduced observations

Figure 8.9: DOV reduced for topography and bathymetry. Background: topography
and bathymetry from the SRTM30 plus model (chapter 8.3). The DOV reduced
show values between 1.4 arcsec (island of Agios Efstratios = AE) and 23.3 arcsec
(Raches = R). The residuals largely indicate a mass excess along the NAT, mainly
attributed to unconsidered isostatic compensation masses.

Finally, based on the information from the Moho model of Tsokas and Hansen [1997]
(chapter 8.5.2), the DOV have been reduced for topography, bathymetry and Moho
(TBMoho) (Fig. 8.11). The density contrast between crust and mantle has been set to
0.35 g/cm3 in accordance with the contrast used by Tsokas and Hansen [1997]. Compared
to the DOV reduced for topography and bathymetry, the residuals are clearly smaller,
with values between 0.9 arcsec (island of Limnos = L) to 13.6 arcsec (Raches = R) and a
standard deviation of 2.6 arcsec. It is striking that the reduced data generally denote a
mass concentration along the NAT. Especially, the vectors at the western mainland, the
Sporades islands (=SI) and at the peninsula of Chalkidiki (=C) indicate an upwarp of
the Moho discontinuity in the region north of the Sporades islands. Similar to the TBAH
reduced DOV, the reasons for the remaining residuals are various, as e.g. insufficiencies
of the Moho model applied and characteristics of the isostatic settings of the region,
respectively. A detailed discussion of the appropriate cogeoids can be found in chapter
9.3.2.
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Figure 8.10: DOV reduced for topography, bathymetry and isostasy (Airy-Heiskanen).
The residuals vary between 0.9 arcsec (island of Agios Efstratios = AE) and 16.9
arcsec (Raches = R). The residuals reflect a mass excess within the marine area,
especially north of the Sporades islands (=SI), hence most probably reflecting an
isostatic overcompensation of the region. KI = Kipos (island of Samothraki); K =
Kassandra (Chalkidiki peninsula).
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8.6 Reduced observations

Figure 8.11: DOV reduced for topography, bathymetry and Moho. The residuals
vary between 0.9 arcsec (island of Limnos = L) and 13.6 arcsec (Raches = R).
The residuals reflect a mass concentration along the North Aegean Trough, hence
suggesting the application of too large Moho depths for the data reduction. C =
Chalkidiki.
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8.7 Additional investigations

8.7.1 Dimension of the area of influence

As explained in chapter 8.1, the DOV observed show a relatively coarse behavior due
to their sensitivity on surrounding masses. In order to enable a high filtering and
prediction quality in the least-squares-collocation (LSC) (chapter 9.2), the Remove-
Restore-technique is applied. In a first step, this method comprises the removal of mass
effects within a defined area (=area of influence, short AoI). The AoI forms a rectangular
region around a station. The goal of the following investigation is to determine the
optimal AoI for a) the geoid determination and b) the interpretation of residual data.
Both intentions demand different "terminating conditions", which will be qualified in
the following.

Geoid determination

For a precise geoid determination, the optimal dimension of the AoI corresponds to an
adequate smoothing of the observations, by eliminating high-frequency mass impacts.
In order to determine the optimum AoI for a best-possible smoothing of the DOV,
they have been reduced for topography, bathymetry and isostasy after Airy-Heiskanen
(TBAH) within differently sized AoIs. Therefore, the dimension of the AoI has been
stepwise increased for 10 km starting at 10 km. In Figs. 8.12 (ξ-component) and 8.13
(η-component), the results of the investigation for different AoIs between 10 km and
70 km (CA10 to CA70 ) are depicted. It is well recognizable that the raw observa-
tions (xi obs. and eta obs. in the respective diagram) show relatively strong variations.
However, already a reduction comprising masses in a 10 km distance (CA10 ) yields
a significant smoother behavior of both components. Up to a AoI of 30 km (AoI30 ),
the data become clearly smoother. After that, the courses of the DOV-components
remain rather unmodified (AoI50 to AoI70 ). It means that a AoI of 30 km allows for
a sufficient elimination of high-frequency mass impacts. This also corresponds to the
results presented in chapter 9.4.4, where the prediction quality has been investigated
using the cross-validation method. As a result of this analysis, the optimal AoI has been
determined to 30 km. The conclusion also holds true for data which are reduced for
topography and bathymetry only (no isostatic masses considered), since the topographic
masses are mainly responsible for high-frequency perturbations.

Interpretation of residual data

The residual data mainly reflect unconsidered masses and density anomalies, respectively.
Hence, for an extensive interpretation of the data, the reduction should comprise all
known masses taking influence on the DOV. To determine the maximum AoI necessary,
the following investigation has been performed: The AoI has been increased step-wise for
5 km starting at 10 km. For each AoI, an average over the residual ξ- and η-components,
respectively, at all 27 Astro stations has been computed. The mean difference between
two consecutive residuals is interpreted as impact of "additional" masses on the DOV-
components. The analysis has been performed for data reduced for topography and
bathymetry (TB) (Fig. 8.14) as well as for additionally isostatic reduced data (TBAH)
(Fig. 8.15).
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Figure 8.12: Course of TBAH-reduced ξ-components at 27 Astro stations depending
on the dimension of the area of influence (AoI) [km]. The AoI has been extended by
steps of 10 km. The plot shows selected examples for an AoI of 10 km, 30 km, 50
km and 70 km. xi obs.: observed ξ-components.

Figure 8.13: Course of TBAH-reduced η-components at 27 Astro stations depending
on the dimension of the area of influence (AoI) [km] according to Fig. 8.12. eta obs.:
observed η-components.
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Figure 8.14: Difference of consecutive ξ- (points) and η-components (triangles) reduced
for topography and bathymetry (TB). The size of the AoI [km] has been increased
by steps of 5 km starting at 10 km. The label "AoI15/10" considers additional mass
impacts computed between a AoI of 10 km and 15 km, respectively.

Figure 8.15: Difference of consecutive ξ- (points) and η-components (triangles) reduced
for topography, bathymetry and isostasy (TBAH) according to Fig. 8.14.
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As visible in Fig. 8.14, the mean difference between two consecutive TB reduced
observations is relatively large regarding masses in the station vicinity. Thus, if the data
are reduced for masses in 20 km and 25 km distance, respectively, the additional mass
impact amounts to 0.43 arcsec for ξ and 0.38 arcsec for η. These high values might be
attributed to the fact that close masses have a very high impact on the observations. For
a AoI of 70 km, the impact is below 0.2 arcsec for both components, and for a AoI of 115
km it is below 0.15 arcsec. It is obvious that the mean differences remain relatively high
(≥0.1 arcsec), also for distant masses. Though, it has to be noticed that the impact of
masses between two consecutive AoIs represents only a part of all unconsidered masses
off the analyzed AoI! Interestingly, the mean differences of the components additionally
reduced for isostatic masses (Fig. 8.15) show a rapid decrease for the station vicinity. For
a AoI of 30 km, the impact is below 0.2 arcsec, and for a AoI of 45 km below 0.1 arcsec.
For a AoI of 90 km, the impact is below 0.02 arcsec and, therefore, within a negligible
range. The difference between the TB and TBAH reduced data show the relevance of
an isostatic compensation. Hence, if the isostatic masses are considered, topographic
masses are compensated by according masses inside the earth (chapter 8.4). The missing
isostatic compensation seems to be the reason for the relatively high remaining impacts
in Fig. 8.14. The final data reduction has been performed with a AoI of 150 km forming
an adequate compromise for both geoid determination and interpretation of the residual
data.

8.7.2 Comparison of different data reductions

An interesting investigation is the comparison of different masses and their impact on
the DOV-components. Hence, the data have been reduced within an AoI of 200 km for:
1) Topography and bathymetry (TB)
2) Topography, bathymetry and isostasy after Airy-Heiskanen (TBAH)
3) Topography, bathymetry and Moho (TBMoho)

Fig. 8.16 shows the ξ-component reduced for TB, TBAH and TBMoho, respectively,
while Fig. 8.17 represents the corresponding information for the η-component. It becomes
obvious that the TB residuals are relatively large within a range of 22.5 arcsec for ξ
and 26.3 arcsec for η. They reflect unconsidered isostatic mass impacts. Consequently,
the corresponding TBAH and TBMoho residuals, respectively, show a clearly smoother
behavior. The reduction for TBAH mass impacts produces the smallest residuals within a
range of 13.3 arcsec for ξ and 18.3 arcsec for η. The meaning of an isostatic compensation
becomes again clear if comparing the topographic/bathymetric with the isostatic mass
impact (Airy-Heiskanen) (ξ: Fig. 8.18 and η: Fig. 8.19). They largely show a negative
correlation. The average over all Astro stations for the TB residuals yields values
of -3.6 arcsec for ξ and 3.6 arcsec for η. The corresponding average for the TBAH
residuals results in 2.1 arcsec for ξ and -3.3 arcsec for η. This comparison shows that an
additionally isostatic mass reduction will produce a relatively good mass compensation
in the η-component (3.6 arcsec vs. -3.3 arcsec). In contrast, the ξ-component will
still show larger residuals (-3.6 arcsec vs. 2.1 arcsec). In chapter 8.6, maps with the
respective residual DOV can be found (Figs. 8.9 to 8.11). A thorough interpretation of
the corresponding cogeoids is presented in chapter 9.3.2.
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Figure 8.16: ξ-component reduced for 1) topography and bathymetry (TB), 2) topog-
raphy, bathymetry and isostasy (TBAH) and 3) topography, bathymetry and Moho
(TBMoho). The TBAH reduction produces the smallest ξ-residuals.

Figure 8.17: η-component reduced for 1) topography and bathymetry (TB), 2) topog-
raphy, bathymetry and isostasy (TBAH) and 3) topography, bathymetry and Moho
(TBMoho). Similarly as for the ξ-component, the TBAH reduction produces the
smallest η-residuals.
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Figure 8.18: Comparison of the impacts of topographic/bathymetric (TB) and isostatic
(AH) masses on the ξ-components in 27 Astro stations. They clearly show a negative
correlation.

Figure 8.19: Comparison of the impacts of topographic/bathymetric (TB) and isostatic
(AH) masses on the η-components in 27 Astro stations. Similar to the ξ-component,
they clearly show a negative correlation.
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8.7.3 Impact of density variations

Due to a lack of digital and processable data concerning the density variations in the
research area, a mean density of 2.67 g/cm3 has been assumed for all topographic masses
considered within the process of data reduction. However, based on information from
geological maps (e.g. Fig. 7.2), it is known that this simplification ignores the diversity of
geological formations occurring in the research area. The densities for the rocks indicated
in Fig. 7.2 range between 1.3 g/cm3 (clay) and 3.2 g/cm3 (volcanic rocks). More detailed
information can be found in chapter 7.2.1.

In order to estimate the impact of assuming a mean density instead of using "true"
densities, a dedicated investigation has been performed at the example of the island of
Samothraki. The western station Kipos shows a large residual after the reduction for
topography, bathymetry and isostasy (see KI in Fig. 8.10). The island largely consists
of basaltic rocks, whose densities are indicated with a mean value of 3 g/cm3. It extends
for about 26.7 km in W-E direction and 13.6 km in N-S direction. The topography is
dominated by mountain Fengari, with an elevation of about 1600 m. The mean height
amounts to 460 m. For the analysis, the island has been approximated by a cuboid with
the dimensions 19300 m x 11800 m x 460 m (light gray box in Fig. 8.20). The computation
has been performed with a density of 0.33 g/cm3 according to the difference between test
(3.0 g/cm3) and usual density (2.67 g/cm3). The station under consideration is located
vertically at height "0" and horizontally in the center of the cuboid (red point in Fig.
8.20). In the experiment, this station has been shifted continuously in western direction
(green point). This allows for the computation of the gravitational and potential effect in
W-E direction according to the definition of the η-component. Furthermore, it enables
the investigation of the distance dependence.

Figure 8.20: Island of Samothraki. For the investigation of the impact of different
densities, the topography of the island has been approximated by a cuboid (brown
beige box). Furthermore, in order to consider also the effect caused by the bathymetry
around the island, a peripheral zone of 5 km has been defined (blue box).

In Fig. 8.21, the result for the η-component (light gray line) is plotted. It is clearly

154



8.7 Additional investigations

recognizable that the effect on the component is "0" in the center (red point in Fig.
8.20) and reaches a maximum of about 1.5 arcsec, if the station is located at the border
of the cuboid (green point). Afterwards, the effect decreases rapidly against zero. For
a station 20 km away from the center of the cuboid, the effect is already below 0.2
arcsec.

A further test considered the fact that basaltic rock also occurs at the oceanic bottom
around the island. In order to estimate this effect, a 5 km - zone of water around the island
has been defined, with a mean depth of -500 m (blue box in Fig. 8.20). The assumption
of a higher density for the bottom (3 g/cm3 than 2.67 g/cm3) involves also a higher
density contrast between water and rock (2 g/cm3 than 1.67 g/cm3). Hence, a density of
0.33 g/cm3 is used for the peripheral zone. The result of this investigation is plotted in
Fig. 8.21 for the η-component (dark line). As recognizable, the maximum impact (about
1.8 arcsec) was shifted by 5 km corresponding to the zone of water, which has been
additionally considered. An interesting distance is at 9650 m, where the station is located
at the edge of the cuboid (green point in Fig. 8.20). This point shows a reduction of the
before discussed maximum effect from 1.5 arcsec to 0.36 arcsec.

Figure 8.21: Impact of an incorrect density assumption at the example of the island
of Samothraki. The light gray line shows the impact of a density contrast of 0.33
g/cm3 on the η-component if topography only is considered. The dark line shows
the impact of the same density contrast on η if also bathymetry is considered.

Although the described investigation only represents an estimation, the results contain a
reference to the impact of disregarded density variations. This might be considered in
the interpretation of the residual DOV presented in chapter 8.6. Referring to Fig. 8.10
showing the data reduced for topography, bathymetry and isostasy, it might be concluded
that the residuals still contain a component of about some tenth of 1 arcsec caused by a
higher rock density than assumed. These results are particularly interesting with regard to
the interpretation of corresponding cogeoids (chapter 9.3.2). An adequate consideration
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of the density variations in the research area could help to avoid misinterpretations of
cogeoid anomalies.
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9 Geoid determination

9.1 Measuring methods

9.1.1 Astrogeodetic method

The astrogeodetic geoid determination is based on the theory of astronomical leveling,
described e.g. by Heiskanen and Moritz [1967] and Torge [2001]. The input data
are surface deflections of the vertical (DOV), also called Helmert deflections, which
are represented by a North-South component ξ and an East-West component η. The
absolute value ε observed at the surface can be calculated by:

ε =
√
ξ2 + η2 (9.1)

The value ε in a defined azimuth α is given by (Torge [2001]):

ε(α) = ξ cosα + η sinα (9.2)

For the calculation of the geoid, the surface deflection ε has to be reduced to the geoid
(ε0) (compare Fig. 3.2). The difference E = ε− ε0 is called orthometric correction and
caused by the curvature of the plumb line. The orthometric correction EAB between two
stations A and B can be calculated by introducing the surface gravity g along the profile,
the mean gravities ḡA and ḡB between A and B, respectively, and the geoid, the height
difference dn between height HA in station A and height HB in station B as well as the
normal gravity γ45◦

0 at latitude ϕ = 45◦ (Torge [2001]):

EAB =

B∫
A

g − γ45◦
0

γ45◦
0

· dn+
ḡA − γ45◦

0

γ45◦
0

·HA −
ḡB − γ45◦

0

γ45◦
0

·HB (9.3)

While the surface gravity g can be derived from gravity data bases (Hirt and Flury
[2007]), the mean gravities ḡA and ḡB require hypotheses about the mass and density
distributions between surface (H>0) and geoid (H=0). This is in contrast to the
quasigeoid determination, where the orthometric correction EAB is substituted by the
normal correction En

AB. For the computation of En
AB, the mean gravities ḡA and ḡB

are replaced by the normal gravities γ̄A and γ̄B, respectively, hence, no hypotheses are
necessary (Torge [2001]).
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Finally, the geoid height difference ∆NAB between two points A and B at a distance ds
results from the integration of:

∆NAB = −
B∫
A

ε · ds− EAB (9.4)

An important advantage of the astrogeodetic method is the fact that a local geoid can
be determined from relatively few data within the computation area. This is in contrast
to the gravimetric method (chapter 9.1.2), where the application of the Stokes formula
(Eq. (9.7)) theoretically requires a coverage over the whole earth. A disadvantage of
the astrogeodetic method might be the fact that the DOV should be provided with an
adequate spatial resolution along a profile or within a network. This is necessary for
a precise representation of the gravity field and a reliable interpolation between the
data (Hirt and Flury [2007]). However, due to the enhancement of the astrogeodetic
technique within the last years, this fact does not form a big challenge anymore, since
the method is now significantly less time-consuming and expensive than before. Indeed,
it has to be considered that the method only provides relative geoid undulations. In
order to get absolute information, the geoid height has to be known at one station in
minimum. That implicates an error cumulation with increasing distance to the reference
station.

The accuracy of the geoid heights in dependence on the distance ds can be derived from a
simple error propagation. Based on Eq. (9.4) (by neglecting the orthometric correction),
a fictive uncertainty for ε of 1 arcsec over a distance ds of 1000 m yields about 4.9 mm
for the geoid height difference dN. For an arbitrary error σε and a distance ds, it is then
(Hirt [2004]):

σdN = 4.9 mm · ds [m]

1000 [m]
· σε [arcsec]

1 [arcsec]
(9.5)

The sum over n geoid height differences dN along a profile yields then an error σ∆N of
the resulting geoid undulation by:

σ∆N =
√
n·σdN (9.6)

9.1.2 Gravimetric method

The classical method is based on Stokes (1849) and provides absolute geoid undulations
in a geocentric system (Heiskanen and Moritz [1967]):

N =
R

4πγ

∫∫
∆g · S(Ψ) · dσ (9.7)
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R... Mean earth radius
γ... Normal gravity in computation point P (ϕ,λ)
∆g... Gravity anomaly in surface element dσ
S(ψ)... Stokes function at a spherical distance ψ between P and dσ

The weighting of the observations∆g is provided by the Stokes function:

S(ψ) =
1

sin ψ
2

− 6 · sin ψ
2

+ 1− 5 · cosψ − 3 · cosψ · ln(sin
ψ

2
+ sin2 ψ

2
) (9.8)

with a spherical distance ψ:

cosψ = sinϕP · sinϕQ + cosϕP · cosϕQ · cos(λQ − λP ) (9.9)

P ... Model point
Q... Integration point

The integration area covers the whole earth. The fact that gravity data are not obtainable
everywhere forms an essential limitation of the method (Wirth [1990]). A lack of data
produces long-wavelength errors in the geoid solution. However, the influence of data in
a spherical distance Ψ greater than 30◦ is relatively low, hence, the integration can be
terminated at a defined radius Ψ0. Outside this radius, the observations are normally
combined with data from a global spherical harmonic model, e.g. the EGM96 (Earth
Gravitational Model 1996). Another problem is given by the fact that the integral
has to be replaced by a summation of finite surface elements. Therefore, the measured
gravity anomalies have to be expressed by representative mean values per surface element.

Generally, the gravity anomalies ∆g are introduced in terms of free-air anomalies. They
are easy to calculate and do not require assumptions about the density distribution
inside the earth. However, they show a coarse behavior depending on the topography,
and the calculation of a mean value per surface element might be difficult. Furthermore,
the Stokes formula is based on the assumption that no masses exist outside the geoid
which is not true for free-air anomalies. Despite of these limitations, they are more
suitable for a geoid determination than Bouguer anomalies, because of the smaller indirect
effect.

159



Chapter 9: Geoid determination

9.1.3 Satellite missions

The satellite-based indirect determination of the gravity potential uses satellites as
sensors in the earth’s gravity field. The analysis of the variations of satellite orbits,
e.g. of CHAMP and GOCE satellites, allows for the estimation of the earth’s grav-
ity field structure. Other missions process information about the distance variations
between two satellites, as e.g. provided by the GRACE twin satellite system. Hence,
the coefficients Cnm and Snm of the spherical harmonic series expansion can be de-
rived and used for the calculation of the geoid undulation N (Heiskanen and Moritz
[1967]):

N =
G ·ME

r · γ

n∗∑
n=2

(ae
r

)n n∑
m=0

Pnm(sinϕ)(Cnm cosmλ+ Snm sinmλ) (9.10)

G ·ME... Product of gravitational constant G and earth’s mass ME

r... Geocentric radius of the geodetic position (ϕ, λ)
ae... Mean earth radius
n*... Limiting degree (e.g.: n∗ = 180 yields about 32760 coefficients)
γ... Normal gravity
Pnm... Corresponding Legendre polynomials of degree n and order m
Cnm, Snm... Dimension-less coefficients

The method provides only long-wavelength structures of the earth’s gravity field. An
example for a resulting gravity field model is provided by the GGM02 (GRACE Gravity
Model), which is presented in chapter 7.3.2. Within the last years, the spatial resolution
could be improved from several thousands to several hundred kilometers by means of
dedicated gravity field missions. The implementation of terrestrial gravity data, satellite
altimetry data, topographic information as well as models of the sea surface topography
in the modeling process enabled the enhancement of the resolution in the determination
of the gravity field.

9.1.4 Direct observation of geoid undulations

The geoid determination by GPS based methods refers to the simple relation between
two height systems (chapter 2.4):

N = h−H (9.11)

N... Geoid undulation
h... Ellipsoidal height (GPS)
H... Orthometric height
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The geoid undulation N can be determined if the ellipsoidal height h from GPS as well
as the orthometric height H are known at a station. For the definition of the respective
height systems, see chapter 2.4. Orthometric heights can be determined by combining
precise leveling and gravity measurements. A particular case is formed by marine areas.
The sea surface describes approximately an equipotential surface representing the geoid.
The scanning of the sea surface, e.g. by marine GPS or via satellite altimetry, provides
direct information about the geoid (H=0). Detailed information related to marine GPS
measurements can be found in chapter 7.4.2. Satellite altimetry uses a satellite (e.g.
Topex/Poseidon, JASON) sending radar pulses to the sea surface. The distance between
satellite and sea surface is calculated from the runtime of the radar impulse, reflected from
the water surface. The scanned sea surface deviates from a true equipotential surface for
the so called Dynamic Ocean Topography (DOT), which is caused by ocean currents,
waves, wind, temperature and salinity of the water (see also chapter 7.4.2). These effects
can be modeled and serve as corrections for marine observations.

The advantage of this method is that the gravity field can be determined with high resolu-
tion along a profile. However, because of the profile-like distribution of the observations,
the spatial interpolation of geoid undulations is difficult.

9.2 Collocation

9.2.1 Theoretical background

Least-squares-collocation (LSC) forms a common interpolation and prediction method
in geodesy and is thoroughly described e.g. in Moritz [1980], Wirth [1990] and Torge
[2001]. The theoretical and mathematical background of LSC presented in the following
subsections refer to Wirth [1990].

Collocation represents an extension of the least-squares-adjustment and is usually applied
in problems, where not only the parameters of a functional model but also a stochastically-
correlated part has to be estimated. The improvements of the observations are not
considered to be uncorrelated, but split into two parts: the signal s and the noise
n. The signal s is a stochastically-correlated part, while the noise n is regarded as a
stochastically-uncorrelated information.

Generally, three problems are treated within the LSC approach (Moritz [1980]):

1) Parameter estimation: Determination of unknown function parameters
2) Filtering: Simultaneous determination of unknown function parameters and signal s
in reference points
3) Prediction: Determination of signal s’ in defined interpolation points

For the collocation method, correlations between the observations have to be assumed.
They are represented by the variances and covariances between signal s and noise n,
respectively, in observation points. Signal s and noise n are supposed to be normally
distributed with an expectation value of "0". The covariances of the signal are specified
by matrix Css (see Appendix A.3, Eq. (A.16)), while those of the noise are described
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Figure 9.1: Trend, signal and noise.

by matrix Cnn (Eq. (A.17)), respectively. It is assumed that signal and noise are
uncorrelated (Csn = 0).

The basic equation of LSC is provided by the linearized observation equation:

l = Ax+ s+ n (9.12)

with
l = f − F (x0) (9.13)

f... Observations
F (x0)... Function F depending on approximate values x0 for the unknown parameters
l... Vector of reduced observations
A... Design matrix = Derivatives of F with respect to the unknown parameters x
s... Signal: Stochastically-correlated part
n... Noise: Stochastically-uncorrelated part
x... Vector of unknowns

Provided that the matrices Css and Cnn are known (chapter 9.2.2), the further equations
are:

D = Css + Cnn (9.14)

x = (ATD−1A)−1ATD−1l (9.15)
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n = CnnD
−1(l − Ax) (9.16)

s = CssD
−1(l − Ax) (9.17)

s‘ = Css‘D
−1(l − Ax) (9.18)

t = A1x+ s‘ (9.19)

with:
s‘... Predicted signal in interpolation points
t... Interpolated data
Css‘... Covariances between signal s (in reference points) and s‘ (in interpolation points)
A1... Design matrix in dependence on the position of interpolation points

Special cases are:
Cnn = 0→ Cll = Css : No filtering, observations are free of noise (n=0)
Css = 0→ Cll = Cnn : Simple parameter estimation without signal

= classical adjustment theory: −n = v = −(l − Ax) = Ax− l
A = 0 : Prediction without parameter estimation

The error matrices can be calculated a priori without any observations l. They are
defined by the covariance matrices of signal and noise and the geometrical information
about the location of the reference stations.

Variance-covariance matrix Exx of the unknown parameters x:

Exx = (ATD−1A)−1 (9.20)

Variance-covariance matrix Ess of signal s (with σ0 = 1):

Ess = Cs‘s‘ − Cs‘sD−1CT
s‘s + Cs‘sD

−1AExxA
TD−1CT

s‘s (9.21)

Variance-covariance matrix Ett of the complete signal t (signal s and trend Ax):

Ett = Cs‘s‘ − Cs‘sD−1CT
s‘s + (HA− A1)Exx(A

THT − AT1 ) (9.22)

with:
H = Cs‘sD

−1 (9.23)
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9.2.2 Correlations between gravity field
parameters

The gravity field parameters N, ξ, η and ∆g are strongly correlated, since they are all
induced by the same anomalous potential T. Based on the Stokes formula in planar
approximation (compare Eq. (9.7)) (Shaw et al. [1969],Wirth [1990], Schwarz et al.
[1990]):

N(x, y) =
1

2πγ

∞∫
−∞

∞∫
−∞

∆g(u, v)√
(x− u)2 + (y − v)2

du dv (9.24)

with:

N(x,y)... Geoid undulation in point P(x,y)
∆g(u, v)... Gravity anomaly in surface element (du,dv)
γ... Normal gravity

the DOV-components (ξ, η) and the gravity anomaly ∆g can be derived in the following
way:

ξ(x, y) = −1

γ

∂T

∂x
= −∂N

∂x
η(x, y) = −1

γ

∂T

∂y
= −∂N

∂y
(9.25)

∆g = −∂T
∂r
− 2

r
T ≈ −1

γ

(
∂N

∂r
+ 2

N

r

)
lim
r→∞

∆g = −∂T
∂z

(9.26)

The relations above can be applied to the auto-covariance function ΦNN of the geoid
undulation N (chapter 9.2.3). Based on this function, all variances and covariances can
be derived (Wirth [1990]):

Φξξ = − ∂2

∂x2
ΦNN (9.27)

Φηη = − ∂2

∂y2
ΦNN (9.28)

Φgg = g2
0(Φξξ + Φηη) = −g2

0

(
∂2

∂x2
+

∂2

∂y2

)
ΦNN (9.29)

Φξη = −Φηξ = − ∂2

∂x · ∂y
ΦNN (9.30)

ΦNξ = −ΦξN = − ∂

∂x
ΦNN (9.31)
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ΦNη = −ΦηN = − ∂

∂y
ΦNN (9.32)

ΦNg = −g0
∂

∂z
ΦNN (9.33)

9.2.3 Covariance function

The covariance function ΦNN (chapter 9.2.2) is generally defined by two parameters: the
amplitude σ2

0, which represents the variance of the signal and the characteristic length d,
also called correlation length.

There exist different covariance functions that often produce similar results (Wirth
[1990]):

Φ(r) = σ2
0 · e−

r
d First order Markov model (9.34)

Φ(r) = σ2
0 ·

d√
r2 + d2

1/r−model used by Wirth (9.35)

Φ(r) = σ2
0(1 +

r

d
+

r2

3d2
) · e−

r
d Third order Markov model (9.36)

All the functions depend on the distance r between the points (homogeneity), but are
independent from the azimuth (isotropy). In Wirth [1990] and Marti [1997], the third-
order Markov model (Eq. 9.36) is used forming a self-consistent model for gravity field
determination. The model fulfills the requirements that:

a) the covariance function for DOV should have a finite value for r = 0:

−∞ < lim
r→0

∂ΦNN(r)

∂r

1

r
< 0

b) the covariance function for gravity anomalies should have a horizontal tangent for r = 0:

∂Φgg(r)

∂r

∣∣∣∣
r=0

= 0

Referring to Eqs. 9.27 to 9.33, all variance and covariance functions between the
parameters ξ, η, g, N can be found by applying the covariance function ΦNN (compare
Eq. 9.36) (Wirth [1990]):

ΦNN = σ2
N(1 +

r

d
+

r2

3d2
) · e−

r
d (9.37)
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ΦNξ = −σ2
ε(1 +

r

d
) ·∆x · e−

r
d (9.38)

ΦNη = −σ2
ε(1 +

r

d
) ·∆y · e−

r
d (9.39)

Φξξ = σ2
ε(1 +

r

d
− ∆x2

d2
) · e−

r
d (9.40)

Φηη = σ2
ε(1 +

r

d
− ∆y2

d2
) · e−

r
d (9.41)

Φgg = σ2
g(1 +

r

d
− r2

2d2
) · e−

r
d (9.42)

9.2.4 Covariance parameters

As mentioned in the beginning of chapter 9.2.3, the two main parameters of a covariance
function are:

Characteristic distance (correlation length) d

The parameter d has a significant impact on the interpolation of the gravity field. It
determines the smoothing quantity of the resulting function: If d is too small, the signal
compared to the mean distance between the stations is overestimated. In contrast, a
too large correlation length causes a too strong filtering at the stations, hence loosing
signal information. The impact of d on the course of the interpolated gravity field is
demonstrated in chapter 9.4.1.

Sigma of signal σ0

The parameter σ0 does not directly affect the interpolation of the gravity field. However,
in combination with the sigma of noise (σn), it defines the weighting between signal and
noise.

Both parameters can be empirically determined from observations. For centered observa-
tions it is:

E[li · lk] = Φlilk (9.43)

The expectation value E of the product of two observations li and lk with a dis-
tance r is an estimation for the covariance function Φ(r) = Φlilk . Hence, for homo-
geneous approaches, the empirical covariances can be estimated by calculating the
product of observations, which are allocated to dedicated distance classes. The param-
eter d and σ0 of the covariance function can then be determined by a least-squares-
adjustment.

Applied to the DOV (ξ,η), the averaged products [ξi · ξk], [ηi · ηk] and [ξi · ηk] have
been calculated for defined distance classes. Fig. 9.2 represents the classified mean
empirical covariances of [ξi ·ξk] (blue dots) and [ηi ·ηk] (red dots), respectively. Before, the
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Figure 9.2: Empirical covariances [ξi · ξk] (blue) and [ηi · ηk] (red) assigned to different
distance groups. The correlation length d amounts to 23 km, and the sigma of signal
σε to 2.5 arcsec.

DOV have been reduced for topography, bathymetry and isostasy (after Airy-Heiskanen)
and a second-order trend. It is well recognizable that the empirical covariances show
a maximum for distance "0" and decrease with increasing distance. The undulating
amplitudes for groups of large distances are caused by a smaller number of stations
belonging to these groups.

The empirical covariances served as input for a least-squares-adjustment. The functional
models used are the respective covariance functions derived from the third-order Markov
model (Eqs. 9.27 and 9.28) with the unknown parameters d and σε. In Fig. 9.2 the
adjusted functions are depicted as blue line ([ξi · ξk]) and red line ([ηi · ηk] ). The
unknown parameters have been determined to 23 km (d) and 2.5 arcsec (σε), respectively.
However, as the mean distance between all Astro stations is about 130 km, "d" should
not be smaller than 65 km, otherwise the interpolation of the gravity field might be
inadequate (see chapter 9.4.1). Hence, for the final collocation, the parameters d=65 km
and σε=2.5 arcsec have been used.
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9.3 Cogeoid and Geoid

9.3.1 Theoretical background

As explained in chapter 8.1, the so called Remove-Restore technique has been applied in
the frame of geoid determination. The computation of mass effects within a defined area
(chapter 8.2) and the reduction of the observations for these effects provide smoothed
residual DOV (chapter 8.6). The interpolation between the Astro stations has been
realized by means of the LSC method (chapter 9.2) using the third-order Markov
covariance model (chapter 9.2.3). The covariance parameters correlation length d and
sigma of signal σ0 have been defined to 65 km and 2.5 arcsec, respectively (chapters 9.2.4
and 9.4.1). The prediction has been performed in a 5 km x 5 km grid. The resulting
surface, called cogeoid, represents a regularized geoid, which is free of dedicated masses
(Elmiger [1969]). The term "cogeoid" has been introduced in 1948 by the International
Union for Geodesy and Geophysics (IUGG). The following considerations might help to
understand the concept of a cogeoid (Gurtner [1978]):

The difference between the true potential W and the normal potential U is called
anomalous potential T (see also chapter 2.4):

T = W − U (9.44)

The anomalous potential T can be split into two parts: the anomalous potential TM ,
which is induced by masses considered within a model (e.g. DTM, isostasy models, Moho
model) and the anomalous potential TS, which is generated by unknown masses that
have not been considered within a mass model:

T = TM + TS (9.45)

According to Eqs. (9.44) and (9.45), the potential of the cogeoid (W − TM) forms a
sum of normal potential U and anomalous potential TS. The potential TS is responsible
for the remaining residuals after the mass reduction (Eq. (8.12)). In case all masses
would have been suitably modeled (TS = 0), the residual DOV should amount to "0"
representing then the normal vectors to the ellipsoid (normal potential U). Depending
on the masses considered in the reduction, different cogeoid models can be calculated.
The respective surfaces reveal the impact of unaccounted masses and form, therefore, an
interesting surface for dedicated interpretations (chapter 9.3.2).

The missing difference dN between geoid undulation NGeoid and cogeoid undulation
NCogeoid (Fig. 9.3) can be derived from the application of Bruns law to the anomalous
potential TM (Gurtner [1978]):

NGeoid = NCogeoid + dN

dN =
TM
γ

NGeoid = NCogeoid +
TM
γ

(9.46)
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Figure 9.3: Depiction of geoid, cogeoid and ellipsoid (modified after Gurtner [1978]).

The anomalous potential TM is determined within the computation of mass effects
(chapter 8.2), while γ represents the normal gravity at the ellipsoid.

9.3.2 Interpretation of cogeoids

Topographic-bathymetric cogeoid (TB cogeoid)

The TB cogeoid represents the geoid as it would be without topography and bathymetry.
The variations of the TB cogeoid (Fig. 9.4) amount to about 13 m in the research
area showing continuously increasing cogeoid undulations in SW-NE direction. The
maximum is located between Athos1, the island of Limnos (=L) and the Sporades
islands (=SI). This trend might result from a non-consideration of a global spherical
harmonic model (e.g. EGM96, chapter 7.3.1) within the process of mass reduction.
Hence, long-wavelength information of the gravity field are still included in the TB
cogeoid.

After subtracting a first-order trend, the variations are smaller and range between -1.8
m and 1.5 m (Fig. 9.5). The TB cogeoid now clearly indicates a negative correlation
with the mass distribution in the region, most likely reflecting unconsidered isostatic
masses (Moho discontinuity). This is reinforced by the recognizable upwarp of the
cogeoid along the North Aegean Trough (NAT), which indicates a thinner oceanic
crust. By contrast, the minima beneath the western and northern mainland denotes a
thicker continental crust. Both corresponds to the isostatic theory described in chapter
8.4.

Please note: Due to the fact that the DOV and SSH data do not cover the whole
prediction area, the border zones of the cogeoid and geoid solutions presented in Figs.
9.4, 9.5 and following figures indicate a decreasing significance. Regions with an accuracy
of the geoid undulations worse than 0.6 m have been designated by white points. The
accuracy appraisal refers to the investigation of the error matrix Ett (chapters 9.4.2 and
9.4.3). For the Astro Geoid, Fig. 9.17 and for the DOVSSH07 geoid, Fig. 9.25 were
decisive.

1For geographic references see Figs. 7.1 and 7.12, respectively
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Figure 9.4: Topographic-bathymetric cogeoid (TB cogeoid). A mean offset has been
removed. The white points signalize an accuracy of the geoid undulation worse than
0.6 m according to Fig. 9.17. A trend in SW-NE direction is clearly recognizable
showing variations of about 13 m. NAT = North Aegean Trough; SI = Sporades
islands; A = Athos; L = Limnos.

Figure 9.5: Topographic-bathymetric cogeoid (TB cogeoid) after subtracting a first-
order trend. It is assumed that the remaining variations between -1.8 m and 1.5 m
are largely induced by unconsidered isostatic masses. NAT = North Aegean Trough;
SI = Sporades islands; A = Athos; L = Limnos.
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Topographic-bathymetric-isostatic cogeoid (TBAH cogeoid)

If the assumption applies that the TB cogeoid reflects mainly unconsidered isostatic
compensation masses, an additional removal of these masses should yield a relatively
flat cogeoid. This would suggest that the region is in a state of isostatic equilibrium.
The isostatic model used for the data reduction is the Airy-Heiskanen model (chapter
8.4.2). As regards the resulting TBAH cogeoid, a SW-NE trend becomes obviously, with
variations of about 9 m (Fig. 9.6). Similar to the TB cogeoid (Fig. 9.4), this trend might
be ascribed to the fact that no long-wavelength gravity field model has been used within
the process of mass reduction. Deep-rooted structures like the effect of the African slab
(chapter 8.5.1) have not been considered.

After subtracting a first-order trend, short-wavelength variations of the TBAH cogeoid
become apparent (Fig. 9.7). As derivable from the remaining variations between -3.2
m and 1.6 m, the isostatic compensation in the region seems to be incomplete. Hence,
an upcoming Moho is indicated within the marine area, with a maximum beneath
the Sporades islands (=SI). By contrast, a decreasing Moho is denoted in direction to
the western and northern mainland, respectively. Most likely, these variations can be
attributed to the particularly tectonic settings of the region. As described in chapter 7.2.2,
the region is characterized by a west-southwestward motion of the Anatolian-Aegean
microplate, with extension rates of up to 36 mm/yr (Fig. 7.5). This produces a stretching
of the oceanic crust and, hence, an upcoming Moho.

Figure 9.6: Topographic-bathymetric-isostatic cogeoid (TBAH cogeoid). The isostasy
model applied is based on the theory of Airy-Heiskanen. A mean offset has been
removed. The variations show a clear SW-NE trend with a range of about 9 m.
NAT = North Aegean Trough; SI = Sporades islands.

A part of the cogeoid variations might be also caused by other reasons, as e.g. insufficien-
cies of the isostatic theory applied, measuring errors of the astrogeodetic method as well
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Figure 9.7: Topographic-bathymetric-isostatic cogeoid (TBAH cogeoid) after the sub-
traction of a first-order trend. The remaining variations between -3.2 m and 1.9 m
suggest an incomplete isostatic equilibrium of the region. This might be caused by
the particularly tectonic setting of the region. NAT = North Aegean Trough; SI =
Sporades islands.

as errors in the process of data reduction and collocation. However, due to the rather large
amplitudes of variations, these reasons can be widely excluded.

Topographic-bathymetric-Moho cogeoid (TBMoho cogeoid)

Since the Airy-Heiskanen isostasy model only reflects a theoretical correlation between
masses above the earth and compensations masses inside the earth, it is more appropriate
to use a Moho model predicted by real measurements. Hence, for the computation of the
TBMoho cogeoid, Moho depths based on the model of Tsokas and Hansen [1997] (Tsokas
model) have been used (chapter 8.5.2). The TBMoho cogeoid (Fig. 9.8) represents
the geoid after the removal of all masses down to the crust-mantle-boundary. The
recognizable signal in the TBMoho cogeoid has a short-wavelength character of about
100 km with variations between -2.5 m and 1 m. They reflect most likely insufficiencies
of the Moho model.

Hence, the two significant bulges along the NAT, one north of the Sporades islands
(=SI) and one between the islands of Thassos (=T), Samothraki (=S) and Limnos (=L),
represent an upwarp of the Moho discontinuity. This implies that the Tsokas model is
rather to deep in this region. Furthermore, the depression beneath the peninsulas of
Athos and the northern mainland reveals the assumption of a rather too shallow Moho.
These results agree well with the conclusions in chapter 8.5.2, where the Tsokas model
has been compared to other models available in the Aegean Sea domain:
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Figure 9.8: Topographic-bathymetric-Moho cogeoid. The Moho depths used for the
data reduction are based on the Moho model of Tsokas and Hansen [1997]. The mean
offset has been removed. The variations between -2.5 m and 1 m are potentially
caused by insufficiencies of the Moho model. NAT = North Aegean Trough; SI =
Sporades islands; T = Thassos; S = Samothraki; L = Limnos.

X A significant deficit of the Tsokas model (Fig. 8.8) is the absence of a negative
correlation between topographic/bathymetric features and Moho depths, as it is
assumed by the isostatic theory and indicated by other Moho models (e.g. by Tirel
et al. [2004], Fig. 8.6a)). Hence, the Tirel model suggests an elongate zone of shallower
depths along the NAT (chapter 8.5.1). This characteristic is not recognizable in
the Tsokas model (compare Figs. 8.6a) and 8.8). It rather suggests a minimum
depth beneath Athos (Chalkidiki). The TBMoho cogeoid variations confirm these
discrepancies by a corresponding increase along the NAT and decrease beneath Athos.

X Another point of discrepancy is induced by the large Moho depth variations in the
northern Aegean of about 10 km in the Tsokas model compared to about 4 km
in the Tirel model. Hence, the detection of overestimated Moho depths north of
the Sporades islands (cogeoid bulge) and underestimated depths beneath Chalkidiki
(cogeoid decline), respectively, well correspond to the smaller variations suggested by
the Tirel model.

The following points might provide explanations for the revealed discrepancies of the
Tsokas model: First of all, the model has been computed by an inversion of Bouguer
anomalies extracted from the Bouguer anomaly map of Greece along four profiles (Tsokas
and Hansen [1997]). A potential error source might result from the fact that they have
not been reduced for the effect of the African slab. Hence, the Bouguer anomalies used
for the estimation of Moho depths are still superposed by a long-wavelength signal of
the subducting African lithosphere. A further error source might be ascribed to the
disregard of lighter sediments, as they occur in the whole North Aegean Sea (Fig. 7.3).
Tirel et al. [2004] indicated a layer thickness of 5 to 6 km there. The resulting density
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variations have been considered neither in the computation of Moho depths by Tsokas
and Hansen [1997] nor in the reduction of the DOV presented in chapter 8.6. This fact
might produce overestimated Moho depths causing a part of the two indicated bulges in
the TBMoho cogeoid (Fig. 9.8). Besides, their neglect in the process of data reduction
rather yields a too steep bulge. In both cases, a consideration of the sediment layer
would potentially result in flatter bulges.

It is interesting that the discovered variations of the TBMoho cogeoid fit well with the
particularly tectonic settings of the region. As already explained in association with the
TBAH cogeoid, the extension of the Aegean Sea (chapter 7.2.2) results in a streching
of the oceanic crust. This characteristic is supported by the two Moho bulges occuring
along the NAT. Of course, also other reasons for the revealed TBMoho cogeoid variations
have to be considered. Hence, similar to the reasons discussed in relation with the TBAH
cogeoid, errors of the astrogeodetic method as well as errors within the process of data
reduction and collocation have to be kept in mind. However, the rather large scale
variations more likely argue against these reasons.

It has to be noticed that the Moho model is given within 34.5◦ < ϕ < 41.5◦ northern
latitude and 19◦ < λ < 27◦ western longitude. Hence, in the northern and eastern
part, the significance of the presented TBMoho cogeoid is limited due to the inadequate
coverage of the research area by Moho data.

9.3.3 Astro geoid

The TB cogeoid presented in chapter 9.3.2 forms the basis for the final computation of
the Astro geoid. Therefore, the removed topographic and bathymetric masses have to be
restored at height "zero" (Marti [1997]). Since the astrogeodetic geoid determination
only allows for the calculation of relative undulations, the geoid has been added to a
mean geoid height of 40.7 m. This value refers to the mean height computed from the
SSH data (chapter 7.4.2).

Fig. 9.9 represents the final Astro geoid based on the collocation of 27 ξ- and 27 η-
components. The geoid undulations vary between 34.6 m and 46.3 m. By comparing the
geoid with local topographic and bathymetric features in this region (chapter 7.2.1, Fig.
7.1), the correlation between both is well recognizable. Hence, the effect of the NAT and,
especially, the distinctive low north of the Sporades islands (Sporades basin = SB) are
well identifiable in the geoid. Between the peninsula of Kassandra (=K) to the north and
the Sporades islands (=SI) to the south, the bathymetry varies strongly with a maximum
depth of about -1100 m. This characteristic is reflected by geoid variations reaching
about 2.6 m. Another remarkable fact is that the geoid reproduces the influences of the
islands of Thassos (=T), Samothraki (=S) and Limnos (=L), located in the northeastern
part of the North Aegean Sea, by indicating respective local maxima there. Furthermore,
the impact of distant masses is well recognizable in terms of long-wavelength signals.
Hence, the northern land masses are indicated by a significant increase of the geoid
heights in this direction. Moreover, it is assumed that the decrease of the geoid in the
southwestern part of the region is caused by the characteristics of the Moho model
denoting large depths beneath the western mainland (compare Figs. 8.6b) and 8.8 and
see chapter 9.3.2).
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Figure 9.9: Astro geoid based on the calculation of 27 ξ- and 27 η-components. The
white points denote an accuracy of the geoid undulation worse than 0.6 m according
to Fig. 9.17. The most prominent feature of the Astro geoid is the well recognizable
impact of the NAT between the Sporades islands (=SI) to the south and Chalkidiki
(=C) to the north. NAT = North Aegean Trough; SB = Sporades basin; K=
Kassandra; T = Thassos; S = Samothraki; L = Limnos.

9.3.4 DOVSSH07 geoid

In order to close the lack of Astro stations in the marine area, 240 SSH corrected for tidal
effects and the Mean Dynamic Sea Surface Topography, have been additionally introduced
into the collocation process. Before the interpolation, they have been reduced for
topography and bathymetry, hence representing the same reference surface as the residual
DOV used for the computation of the Astro geoid (chapter 9.3.3). The distribution of DOV
and SSH, respectively, within the prediction area is shown in Fig. 7.14. In the following,
the combined geoid is called DOVSSH07 geoid (Fig. 9.10).

At a first glance, the use of additional data does not involve a big change. The geoid
undulations vary between 34.6 m and 45.3 m, hence showing a similar range like the Astro
geoid. However, making a more elaborate analysis, the benefit of additional information
is significant. Based on a visual comparison of both geoids, the main differences appear in
the region of the NAT. Compared to the bathymetric isolines in Fig. 7.1, the DOVSSH07
geoid reproduces better the location and SW-NE extension of the NAT. Concerning the
relative changes of geoid heights crossing the NAT in N-S direction between Kassandra
(=K) and the Sporades islands (=SI), there are also significant differences. While the
Astro geoid indicates variations of 2.6 m, the DOVSSH07 geoid heights only change
for about 1.6 m. Another interesting region of discrepancy can be found between the
Sporades islands (=SI), the islands of Agios Efstratios (=AE) and Skiros (=SK). As
visible in Fig. 7.1, the bathymetry shows a distinctive low with a depth of -900 m
there. This local minimum is clearly indicated in the DOVSSH07 geoid, while it is not
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Figure 9.10: DOVSSH07 geoid based on the calculation of 27 ξ- and 27 η-components
and 240 "corrected" SSH. The white points denote an accuracy of the geoid undu-
lation worse than 0.6 m according to Fig. 9.25. In comparison to the Astro geoid
(Fig. 9.9), the combined solution clearly reflects the SW-NE extension of the NAT.
NAT = North Aegean Trough; SI = Sporades islands; AE= Agios Efstratios; SK =
Skiros; K = Kassandra; C = Chalkidiki.

recognizable in the Astro solution.

A more descriptive representation of the differences between Astro and DOVSSH07 geoid
is represented by the plot "DOVSSH07 geoid minus Astro geoid" (Fig. 9.11). The mean
difference amounts to -0.35 m. After subtracting the offset, the differences range between
-1.44 m and 2.61 m. The visual analysis of the difference plot reveals the following
features: A maximum difference of +0.7 m is detected at the western mainland. The
differences decrease continuously in northern and northwestern direction, respectively.
They reach a minimum of -0.8 m beneath the peninsula of Kassandra (=K) and and
another one of -1.7 m beneath the island of Limnos (L). The described discrepancies might
be attributed to the lack of Astro stations in the marine area, which has been bridged
by the SSH. The northern minimum might result from the fact that the SSH have been
only measured to a maximum northern latitude of about 40◦, while the information in
the Astro geoid are supported by three observations located more northerly (Kassandra,
Thessaloniki (=T) and Litochorou (=LI), compare also Fig. 7.12).

9.3.5 Validation of the DOVSSH07 geoid

In order to validate the final DOVSSH07 geoid presented in chapter 9.3.4, it is compared
to existing geoid models within the research area of the North Aegean Sea. These models
have been presented in chapter 7.3. A statistical comparison of the validation results
can be found in Tab. 9.1.
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Figure 9.11: "DOVSSH07 geoid minus Astro geoid". After subtracting the mean offset
of -0.35 m, the differences vary between -1.44 m and 2.61 m. They are mainly caused
by the different data sets used for the computation of the respective geoid. NAT =
North Aegean Trough; SI = Sporades islands; K = Kassandra; LI = Litorochou; T
= Thessaloniki; L = Limnos.

DOVSSH07 - [...] min [m] max [m] mean [m] sigma [m] min0[m] max0[m]
Astro geoid -1.79 2.25 -0.35 0.76 -1.44 2.61

GGM02 geoid -1.96 2.42 -0.23 0.96 -1.74 2.64
Altimetric geoid -1.56 2.80 -0.01 0.92 -1.55 2.81
Gravimetric geoid -2.67 2.31 -0.73 1.01 -1.95 3.03

Table 9.1: Validation results of the comparison between DOVSSH07 geoid and different
geoid models. min/max/mean: minimum/maximum/mean difference, sigma: stan-
dard deviation, min0/max0: minimum/maximum difference after offset subtraction.

Comparison between DOVSSH07 geoid and GGM02

Fig. 9.12 shows the difference "DOVSSH07 geoid minus GGM02". The mean dif-
ference between both models is -0.23 m. After subtracting the offset, the differences
range between -1.74 m and 2.64 m. The differences are mainly induced by the fact
that in contrast to the DOVSSH07 geoid, the GGM02 does not reflect short-wavelength
information. Regions with significant local topographic and bathymetric features are not
reproduced by the GGM02. Hence, the SW-NE extension of the NAT is clearly recog-
nizable in Fig. 9.12. In the region north of the Sporades islands (=SI), the differences
amount to -1.6 m. Similar values are reached in the bay of Thessaloniki (=BT). In the
northeastern part of the North Aegean Sea, the differences take positive values of up to
2.2 m.
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Figure 9.12: "DOVSSH07 geoid minus GGM02". After subtracting the mean offset
of -0.23 m, the differences vary between -1.74 m and 2.64 m. These differences are
mainly due to the long-wavelength character of the GGM02, while the DOVSSH07
geoid reflects local topographic and bathymetric features (e.g. the NAT). NAT =
North Aegean Trough; SI = Sporades islands; BT = Bay of Thessaloniki.

Comparison between DOVSSH07 geoid and altimetric geoid

Fig. 9.13 shows the difference "DOVSSH07 geoid minus altimetric geoid". In terms
of the mean geoid heights, both models agree very well revealing a difference of -0.01
m. However, the variations are relatively large ranging between -1.55 m and 2.81 m.
It is obvious that the appearance of positive and negative deviations is very similar
to the difference plot "DOVSSH07 geoid minus GGM02" (Fig. 9.12). This is due to
the fact that both geoid solutions, the GGM02 as well as the altimetric geoid, use the
same EGM96 coefficients to model the long-wavelength signal of the gravity field. The
distinctive bathymetric low of the NAT is clearly identifiable in Fig. 9.13. A maximum
difference of -0.8 m indicates an underestimation of the bathymetric impact by the
altimetric geoid. Also the bay of Thessaloniki (=BT) features large deviations of about
-1.5 m. Positive values can be observed in the northeastern part of the marine area.
The discrepancies can be attributed to the fact that altimetry observational data in the
North Aegean Sea are very rare. Radar altimeter measurements can be only performed
over sea and until a distance of 20-30 km to the coastline. As the North Aegean Sea
is bordered by land masses to the west, north and south, the region does not provide
optimum conditions for altimetric observations. Therefore, the resolution of altimetric
data forming a combination of ERS-1/2 and TOPEX/Poseidon mission data is relatively
low (compare Fig. 7.9) and short-wavelength signals of the gravity field can not be
reliably reproduced.
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Figure 9.13: "DOVSSH07 geoid minus altimetric geoid". The variations range between
-1.55 m and 2.81 m. They can be mainly attributed to a lack of altimetric data used
for the computation of the altimetric geoid (compare also Fig. 7.9). NAT = North
Aegean Trough; BT = Bay of Thessaloniki.

Comparison between DOVSSH07 geoid and gravimetric geoid HGFFT98

Fig. 9.14 represents the difference "DOVSSH07 geoid minus gravimetric geoid". It
shows very similar characteristics like the difference "DOVSSH07 geoid minus altimetric
geoid" (Fig. 9.13). This can be attributed to the fact that both models, the altimetric
and gravimetric geoid, respectively, refer to the long-wavelength information of the
EGM96. Besides, the gravimetric data in the marine area have been obtained from
an inversion of satellite altimetry data from GEOSAT and ERS-1 geodetic missions.
Hence, the marine geoid information of both models are partly based on the same data
source. The gravimetric geoid uses additionally marine gravity data obtained by a
digitization of sea gravity maps (chapter 7.3.3). As regards the differences between
DOVSSH07 geoid and HGFFT98, the values vary strongly within a range of -1.95 m
and 3.03 m, after reducing for a mean offset of -0.73 m. The large offset is not yet
completely explainable, since possible reasons (permanent tides, reference systems, mean
dynamic sea surface topography) can be ruled out. Similar as the differences between
DOVSSH07 and altimetric geoid, the bathymetric low north of the Sporades islands
(=SI) is underestimated by the gravimetric geoid. This is reflected by differences of up
to -0.9 m. The bay of Thessaloniki (=BT) denotes even stronger differences with values
up to -1.9 m. In the northeastern part, positive differences are indicated amounting to
about 2.4 m. The discrepancies between DOVSSH07 geoid and HGFFT98 can be mainly
attributed to deficiencies of marine gravity and altimetric data used for the computation
of the HGFFT98 (compare section Comparison between DOVSSH07 geoid and altimetric
geoid).
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Figure 9.14: "DOVSSH07 geoid minus gravimetric geoid". The variations range be-
tween -1.95 m and 3.03 m. They can be mainly attributed to the deficiency of
marine data used for the computation of the gravimetric geoid. NAT = North
Aegean Trough; SI = Sporades islands; BT = Bay of Thessaloniki.

9.4 Additional investigations

9.4.1 Impact of covariance parameters

As explained in chapter 9.2.4, the correlation length d has a significant impact on the
interpolation of the gravity field, since it represents a smoothing factor of the signal. If
d is to small, the interpolation in areas with a low station density is not adequate. In
contrast, a too large d results in a too strong filtering of the data. This characteristic
becomes obvious in Figs. 9.15a) to 9.15f). In order to demonstrate the impact of d,
the collocation has been processed using different correlation lengths varying from 10
km to 110 km. It is clearly recognizable that a length d=10 km (Fig. 9.15a)) produces
a strongly undulating gravity field with peaks referring to the location of the Astro
stations. It means that the signal in the stations is overestimated. The course of the
gravity field becomes smoother with increasing d (Figs. 9.15b) to 9.15e)). It seems
that a length d=110 km results in an inadequate interpolation, because the smoothing
effect is too strong causing a loss of information (Fig. 9.15f)). The optimum length d
ranges somewhere between 30 km and 90 km. For these length, the signal is neither
overestimated nor neglected. Based on these visual considerations, a correlation length of
d=65 km was found to be appropriate for the final interpolation.
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a) Correlation length d = 10 km. b) Correlation length d = 30 km.

c) Correlation length d = 50 km. d) Correlation length d = 70 km.

e) Correlation length d = 90 km. f) Correlation length d = 110 km.

Figure 9.15: Impact of different correlation lengths d on the signal of N.
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9.4.2 Error-variances-covariances

The error matrices Exx of the unknown parameters, Ess of the signal and Ett of the
entire signal can be calculated a priori and independent from real observations (chapter
9.2.1, Eqs. 9.20 to 9.22). They depend on the distribution of the reference stations as
well as the covariance model and parameters applied. The analysis of the error matrices
allows for an evaluation of the accuracy of the resulting geoid. In the following, the error
matrices of N (Ett(N)), ξ (Ett(ξ)) and η (Ett(η)) have been analyzed, more precisely the
square roots of its diagonal error variances (=standard deviations).

Figs. 9.16a) and 9.16b) show the errors of the DOV-components (ξ, η), based on the
analysis of 27 Astro stations. Furthermore, Fig. 9.17 represents the error of geoid
undulation N.

a) Error of ξ. b) Error of η.

Figure 9.16: Errors of ξ and η based on 27 DOV. The maximum accuracy is reached
directly at the station. The accuracy decreases rapidly with increasing distance to
the reference station.

The errors of ξ and η vary between 0.2 arcsec and 3.3 arcsec within the prediction area
(plot area). The mean errors of ξ and η amount to 2.0 arcsec (±0.7 arcsec). It is clearly
visible that the errors have a minimum at each Astro point and increase with increasing
distance to the reference station.

The error of N varies between 0.31 m and 1.64 m within the prediction area. The mean
error in the whole area amounts to 0.56 m, with a standard deviation of ±0.22 m. In
order to define a region of significance, a threshold of 0.6 m accuracy has been specified.
This area is signalized by the red line (Fig. 9.17).

In statistical terms, the mean error within the region of significance amounts to 0.46 m
with a standard deviation of ±0.07 m. In contrast to ξ and η, the error of N decreases
between the stations having a minimum in the region with the highest station density
around. This is between Chalkidiki2 and the Sporades islands.

2For geographic references see Figs. 7.1 and 7.12, respectively
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Figure 9.17: Error of geoid undulation N based on 27 DOV. The red line borders the
region with an accuracy of better than 0.6 m. The best accuracy of 0.3 m is achieved
at the eastern part of the Sporades islands. The error increases rapidly in outward
direction. An interesting effect of the astrogeodetic method is the fact that the
accuracy of N increases between the reference stations. This can be explained, on
the one hand, by the distance dependence of relative geoid undulations and, on
the other hand, by the characteristics of collocation. The method uses an averaged
signal of all reference stations for the computation of the signal in an arbitrary
interpolation point.

a) Error of geoid undulation N. b) Error of DOV-components ξ and η.

Figure 9.18: Errors of N, ξ, η along the profile between Loudra (North) and Skopelos
(South), see Fig. 9.17.

Fig. 9.17 shows an interesting effect of the astrogeodetic method: the accuracy of geoid
undulation N increases between the reference stations. To illustrate this characteristic,
a profile has been defined between Loudra (Chalkidiki) and Skopelos (see straight line
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in Fig. 9.17). Figs. 9.18a) and 9.18b) show the course of the errors of N and ξ, η,
respectively, along this profile. While the errors of ξ and η have their maximum (≈2
arcsec) approximately in the middle between the two stations, those of N show a minimum
(0.33 m) there. This can be explained, on the one hand, by the distance dependence of
relative geoid undulations and, on the other hand, by the characteristics of collocation.
There, the signal of all reference stations is averaged for the computation of the signal in
an arbitrary interpolation point.

9.4.3 Impact of Astro station distribution

Relevance of each Astro station

In order to analyze the impact of the location of the Astro stations on the errors
of N, the following investigation has been performed for each station: One Astro station
has been excluded from the calculation of the error matrix Ett(N) (Eq. 9.22. The differ-
ence between the mean error including and excluding the respective station (∆Ett(N))
can be regarded as a measure of its significance. The results of this investigation are
plotted in Fig. 9.19, where the stations are classified by four groups: ∆Ett(N) is...
red: ≥ 0.01 m, green: ≥0.005 m, yellow: ≥0.001 m, gray: <0.001 m

Figure 9.19: Impact of each Astro station on the mean error of N within the prediction
area. The red stars signalize station, which are very important. Their removal
produces a significant increase of the error for about 0.01 m. In contrast, the gray
stars indicate stations, whose removal is less critical producing an increase of the
error of <1 mm.
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Stations marked by a red star induce the highest impact on the error of N within the
prediction area. Hence, e.g. the three stations at Chalkidiki indicate values up to 3.5
cm. In contrast, stations marked by a yellow star (Sporades islands) have no significant
impact. Based on these results, it is concluded that along the western and northern
coastline, the station density is relatively low. Hence, if one of these stations is removed
from the computation, the mean error of N increases significantly for more than 1 cm. In
contrast, the station density on the Sporades islands is very high, hence, one single station
can be excluded without a significant impact on the accuracy of N. This rating can be
used to determine, where additional stations should be located in case of a densification
of the Astro station network. As a consequence, it would be reasonable to measure
additional stations along the western and northern coastline. Also an additional station
at the island of Limnos might help to improve the accuracy of N.

Amount and distribution of Astro stations

Impact of a densification of the Astro station network. As analyzed in chapter
9.4.2, the accuracy of N averages to 0.56 m within the prediction area. This number
shows that 27 Astro stations are not adequate for the relatively large area (W-E 370 km,
N-S 220 km). The distances between the Astro stations vary between 2.5 km and 340
km, hence yielding a mean distance of about 130 km. The mean station density amounts
to 1 station per 3015 km2. One problem is the lack of stations in the marine area. An
interesting question is now to what extent an increasing number of reference stations
helps to improve the accuracy of N.

In order test the impact of additional stations, the existing Astro network has been
arbitrarily densified along the coastline and at the islands. Therefore, totally 290 virtual
stations have been defined (Fig. 9.20).

Figure 9.20: Location of 290 virtual Astro stations (gray points) and 27 original Astro
stations (black stars).

The test started using all original (27) and additional stations (290) for the computation
of Ett(N). As already mentioned in chapters 9.2.1 and 9.4.2, respectively, this matrix can
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be computed a priori without any "real" observations. In the following, the additional
stations have been thinned out stepwise for 10 stations. The corresponding mean errors
of N (within the prediction area) depending on the number of additional stations are
plotted in Fig. 9.21.

Figure 9.21: Mean errors of N depending on the number of additional Astro stations.
A number of 50 additional station yields a reduction of the mean error for about 12
cm. After that, the contribution of additional stations is less significant.

It is clearly visible that an adding of about 50 stations yields a reduction of the mean
error for about 12 cm (from 48 cm to 36 cm). A further densification of the network
does not improve the accuracy anymore. By splitting the graph into two parts, the two
charts shown in Figs. 9.22a) and 9.22b) can be generated.

a) Part I: 0 - 50 additional stations. One additional
station yields an error reduction for about 0.2
cm.

b) Part II: 60 - 290 additional stations. One ad-
ditional station yields an error reduction for
about 0.01 cm.

Figure 9.22: Part I and II of Fig. 9.21.
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Up to a number of 50 additional stations, the impact of one station on the mean error of
N amounts to about 0.2 cm (Fig. 9.22a)). Beyond, the impact approaches zero (Fig.
9.22b)).

A further test analyzed the location of additional stations. Therefore, two different
networks have been defined:
- Network 1: 10 stations along the coastline and
- Network 2: 10 stations at the islands
Based on the results presented above, significant differences concerning the impact of
each network on the mean error of N can be expected. A densification of the stations
along the coastline (network 1) should have a higher impact than a densification at the
islands (network 2). The results of the test are plotted in Fig. 9.23.

Figure 9.23: Comparison between network 1 (squares) and network 2 (points). Network
1: 10 additional stations at the coastline, network 2: 10 additional stations at the
islands. Network 1 produces a significant reduction of the mean error for about 8
cm, while network 2 only achieves an improvement of about 2 cm.

As recognizable, network 1 (coastline) yields a significantly decreased mean error (0.08
m), while network 2 (island) causes a clearly smaller reduction of the mean error (0.02
m). This proves again the importance of a careful selection of the location of additional
stations.

In order to determine the optimal distance between additional and existing stations,
a similar test as described in the first section has been performed: One station has
been excluded from the computation of the error of N. However, instead of performing
the computation at regular interpolation points, the 27 Astro stations have been used.
Afterwards, the differences between the errors at each Astro station including and
excluding the respective test station have been calculated. These differences have been
sorted depending on the distance between test station and all other Astro stations.
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Finally, the error differences per distance have been assigned to dedicated distance
groups. These results are presented in Fig. 9.24.

Figure 9.24: Dependence of the errors of N on the distance of a station.

Based on the analysis of Fig. 9.24, the following can be concluded: In order to achieve
the best possible reduction of the error of N, the mean distance between additional and
existing stations should not exceed 150 km. The best results are obtained for mean
distances ranging between 20 km to 60 km.

In summary, it can be said that additional stations improve the accuracy of N considerably,
if their location is well chosen. Hence, e.g. five additional stations at the Sporades islands
will not have an obvious impact. However, in case they are located at the northern
coastline, the improvement might reach a level of about 1 cm. About 50 stations at
coast and islands allow to increase the accuracy of N for about 0.15 m, hence reaching
a mean accuracy of about 0.35 m. An improvement by further additional stations
is not expectable, unless the stations would be located in the marine area bridging
the lack of reference stations there. This forms, of course, an unrealistic approach for
Astro observations. Therefore, the next section analyzes the impact of an additional
introduction of marine data by means of Sea Surface Heights (SSH).

Combination with Sea Surface Heights. As assumed in the section before, an
implementation of marine data should increase the accuracy of the geoid undulations
considerably. Therefore, 240 SSH corrected for tidal effects and the Mean Dynamic Ocean
Topography (chapter 7.4.2) have been used together with 27 DOV for a common calcula-
tion of Ett(N). The resulting error plot is represented in Fig. 9.25.

As expected, a combination of both data sets causes a significant increase in the accuracy
of N, especially within the marine area. Hence, the error of N ranges now between 0.05 m
and 1.59 m within the whole prediction area, with a mean error of 0.41 m and a standard
deviation of ±0.31 m. This represents an improvement for about 0.15 m compared to
the pure Astro geoid (see Tab. 9.2).
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Figure 9.25: Errors of N based on 240 corrected SSH and 27 DOV. The maximum
accuracy is achieved between Chalkidiki and the Sporades islands amounting to 0.05
m. It decreases rapidly in outward direction. An interesting effect of the application
of SSH is recognizable within 39◦ ≤ ϕ ≤ 39.5◦ and 24.5◦ ≤ λ ≤ 25◦. In contrast to
the purely astrogeodetic solution (Fig. 9.17), the isolines show a converse behavior
there. This can be attributed to the fact that SSH provide direct information about
the geoid undulations, while DOV represent their gradients.

Prediction area Area with acc. ≤ 0.6 m
Input data min [m] max [m] mean [m] sigma [m] mean [m] sigma [m]

DOV 0.31 1.64 0.56 0.22 0.46 0.07
DOV + SSH 0.05 1.59 0.41 0.31 0.27 0.19

Table 9.2: Statistical comparison between geoid solution based on DOV and on
DOV+SSH, respectively, concerning the obtainable accuracy of geoid undulation
N. It is differentiated between the whole prediction area and the defined area of
significance (error ≤0.6 m).

The position of the isoline representing an accuracy of 0.6 m is not obviously shifted in
comparison to the Astro solution (compare Fig. 9.17 and 9.25). It coincides approximately
with the most outlying Astro stations. This shows that the positive effect of SSH
data is very local and largely restricted to the location of observational data. An
interesting effect of the application of SSH is recognizable within 39◦ ≤ ϕ ≤ 39.5◦ and
24.5◦ ≤ λ ≤ 25◦. In contrast to the purely astrogeodetic solution (Fig. 9.17), the
isolines show a converse behavior there. This can be attributed to the fact that SSH
provide direct information about the geoid undulations, while the DOV represent their
gradients.

Within the 0.6 m-area, the mean error of N amounts to 0.27 m, with a standard deviation
of ±0.19 m. A comparison of the mean accuracies within this area shows that the
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Figure 9.26: Differences between the errors of N using DOV (Fig. 9.17) and DOV+SSH
(Fig. 9.25), respectively. In some regions, the improvement amounts to about 0.4 m.

accuracy of the combined solution increased for about 0.19 m. If analyzing the error
difference plot between Astro and combined solution (Fig. 9.26), it is remarkable that the
improvement amounts to about 0.4 m in some regions. These regions are characterized
by the availability of information from both data sources (e.g. Sporades islands, western
side of the island of Limnos, and Chalkidiki). The results presented emphasize the
importance of a combined introduction of DOV and corrected SSH for the computation
of the geoid. This ensures the achievement of a mean accuracy of better than 0.3 m. The
DOVSSH07 geoid computed from a combination of 27 DOV and 240 SSH is presented in
chapter 9.3.4.

9.4.4 Cross-validation method

In order to evaluate the prediction quality, the so called cross-validation method has
been applied: Each time, one Astro station has been excluded from the least-squares-
collocation (chapter 9.2), while the prediction has been performed at all 27 Astro stations.
In that way, a comparison between original and predicted DOV is possible. Furthermore,
in order to analyze the relevance of data reduction (see chapter 8), DOV reduced for
different mass impacts have been introduced into the test.

Figs. 9.27 and 9.28 show the comparisons between following data reductions: DOV
reduced to the geoid (black), DOV reduced for topography = T (dark gray), DOV
reduced for topography and bathymetry = TB (light gray) and DOV reduced for
topography, bathymetry and isostasy after Airy-Heiskanen = TBAH (white). The plots
show the prediction errors at each station representing the difference between original
and predicted ξ- and η-components, respectively. The catchment area has been set to 30
km.
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Figure 9.27: Prediction errors of ξ depending on the masses reduced. Red. to geoid :
DOV have been reduced from surface to geoid, T red.: DOV reduced for topography,
TB red.: DOV reduced for topography and bathymetry, T red.: DOV reduced for
topography, bathymetry and isostasy after Airy-Heiskanen. The best prediction
accuracy is achieved for TBAH reduced DOV.

Figure 9.28: Prediction errors of η depending on the masses reduced. Also for the
η-component, the TBAH reduced DOV enable the best prediction accuracy.
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Data reduction Pred.err.in ξ Pred.err.in η
[arcsec] [arcsec]

DOV red. to geoid 7.3 6.5
DOV red. for T 4.3 2.9
DOV red. for TB 3.3 2.5
DOV red. for TBAH 2.9 2.1

Table 9.3: Mean prediction errors (averaged for all Astro stations) for different types
of data reduction.

It is recognizable that the data reduction has a significant impact on the prediction
accuracy. If the DOV are reduced for the curvature of the plumb line only, the mean
prediction error is about 7.3 arcsec for ξ and 6.5 arcsec for η. However, if the data are
reduced for topography (T), hence eliminating high-frequency mass impacts, the mean
prediction errors decrease by about 3 arcsec for both components (see Tab. 9.3)! The
additional consideration of bathymetry (TB) yields a reduction of the mean prediction
errors of 1 arcsec and 0.4 arcsec, respectively. Finally, the removal of long-wavelengths
influences caused by isostatic masses (TBAH) causes a further improvement for about
0.4 arcsec in both components. Hence, the TBAH reduced DOV produce a significant
smaller prediction error of 2.9 arcsec and 2.1 arcsec, respectively, than the raw data.
This suggests a complete data reduction in order to obtain the best possible prediction
quality.

Figure 9.29: Prediction errors of ξ and η for different catchment areas (AoI). The
difference between a AoI of 0 km (no reduction) and of 30 km amounts to about 4-5
arcsec. After that, the differences are negligible.

A further investigation analyzed the required dimension of the catchment area (AoI).
Therefore, the DOV have been reduced for TBAH with varying AoI dimensions from
10 km to 200 km in 5 km steps. Fig. 9.29 shows the resulting mean prediction errors
(averaged over 27 Astro stations).
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9.4 Additional investigations

It is obvious that the prediction error between 0 km (no reduction) and 10 km decreases
for about 3-4 arcsec. There is also a considerable difference of about 0.7 arcsec between
a AoI of 10 km and 25 km. However, from 30 km on, the prediction errors remain
constantly at a level of about 2.4 arcsec. It means that the differences between two
consecutive AoI are approximately zero, hence advising that a further extension of the
AoI will not have a significant impact on the prediction quality. This corresponds also to
the results presented in chapter 8.7.1, where the optimum AoI for a sufficient smoothing
of the reduced data has been determined to be 30 km. It can be concluded that a
complete data reduction for topography, bathymetry and isostasy (TBAH) within a
AoI of about 30 km is advisable. This ensures the attainability of the best possible
prediction quality.

193





10 Discussion and conclusions

Enhancement of DIADEM in terms of hard- and software developments

The present state of DIADEM offers the possibility for a fully-automatic and PC
controlled observation of the astronomical parameters (Φ,Λ). The system is equipped
with CCD technology enabling a computer-operated processing of the digital images.
The highly light-sensitive CCD sensor allows for the exposure of stars with a maximum
magnitude of 14, which comprises 40 times brighter stars than with the old analog system
TZK3. Two different pairs of high-resolution tiltmeters provide permanently information
about the vertical alignment of DIADEM referring to the direction of the vertical. A
GPS receiver allocates precise epoch information and approximate geodetic positions.
Furthermore, several servo motors offer the conditions for an automatic leveling, focussing
and turning of DIADEM. The whole process is controlled by a complex data acquisition
software running on two industrial PCs. The Zenith Camera system including both
computers can be operated via 12V car batteries. A subsequent data analysis is assured
via a dedicated interface to the software package AURIGA developed at the University
of Hannover (Hirt [2004]). All these conditions enable the provision of approximate
deflections of the vertical (DOV) (ξ, η) in the field, hence allowing the instant verification
of the data regarding their quality, accuracy and plausibility. Provided that parallel
real-time DGPS measurements are performed, highly-precise DOV can be derived at
once. Related to the fact that the system is completely operated via PC, the touching of
the system and motions around the system are largely avoidable.

Besides, the time efficiency concerning data acquisition and analysis improved significantly
in comparison to the old analog TZK3. The whole process takes now about 35 minutes
(20 minutes observation, 15 minutes analysis) if applying the new tripod method. In
contrast, the data acquisition and analysis with the TZK3 was very time-consuming
needing about half a day labor input. This was mainly due to the extensive measuring
of the analog photos.

Error investigation and calibration of DIADEM

The thorough investigation of the error budget of DIADEM constituted an important
integral part of the instrumental evaluation. This includes errors in the determination of
rotational direction, inclination data, observation epoch, azimuth calibration parameters
and geodetic position. The total error budget has been specified for different measuring
configurations (azimuth vs. tripod method, Wyler vs. Lippmann sensors). The analysis
revealed that the Tripod/Lippmann configuration enables the best precision, which
agrees well with conclusions based on an empirical analysis of long-term observations. It
has been estimated that the standard deviations of (ξ, η) range between 0.08 arcsec and
0.32 arcsec. The largest part of this error is caused by the determination of the rotational
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direction, while errors in the determination of the observation epoch are almost negligible
(provided that the shutter delay is considered).

Furthermore, the instrument has been subject to thorough calibrations. This includes the
determination of the focus-temperature-relation, which enables an automatic adaption of
the focus depending on the temperature. Besides, the delay of the electronic blade shutter
used in the CCD camera has been investigated. The knowledge of this value is essential
for an instant correction of the exposure epoch during an observation. Furthermore,
the celestial calibration developed at the University of Hannover (Hirt [2004]) has been
conducted several times during the period of the project. It aims at the determination
of the scales of the inclination sensors, the shearing angle between both sensors as well
as the angle between CCD and inclination sensor coordinate system. The method allows
for a fast and easy determination of the calibration parameters. An interesting result is
the fact that the formerly applied azimuth calibration has become dispensable because
of the introduction of the tripod method. The time-consuming method of azimuth
calibration was necessary to consider the dependence of the astronomical parameters on
the azimuthal alignment of DIADEM. However, this effect does not occur anymore if
applying the tripod method. This yielded a great step forward concerning the achievable
internal and external accuracy as well as regarding the expenditure of time and effort for
an observation.

Verification of the field capability of DIADEM by dedicated field campaigns

In order to verify the field capability and accuracy potential of DIADEM, dedicated
field campaigns have been performed. The first campaign with the newly developed
digital system has been conducted in Switzerland in 2003 in the frame of the CHGeo2003
project. Besides, the campaign offered the possibility to perform first time simultaneous
observations with a second digital Zenith Camera, the TZK2-D of Hannover. In total, 68
stations have been measured with both cameras within three weeks. DIADEM worked
reliably, even under very harsh conditions like in mountainous regions and at tempera-
tures of -15◦. Repeated measurements during different nights at the reference station
Zimmerwald allowed for the comparison of the respective night means, hence revealing
the repeatability of the system. Furthermore, parallel measurements with TZK2-D
enabled conclusions about the external accuracy of the instrument. Both comparisons
yielded very satisfying results demonstrating the high potential of Zenith Cameras in
general and of DIADEM in particular. The repeatability and the external accuracy
of DIADEM was assessed at about 0.1 arcsec. The measurements formed a valuable
contribution to the improvement of the Swiss geoid, which was the actual goal of the
CHGeo2003 project.

In 2005, another interesting campaign has been conducted in Switzerland. There, long-
time observations with two Zenith Cameras have been performed. The goal was to
investigate the effect of anomalous refraction. Due to missing highly-precise reference
values, the data were not suitable for the estimation of the absolute impact of refrac-
tion, but for the detection of potential refraction changes. Unfortunately, the weather
conditions prevented the performance of long-time observations during more than two
nights. Based on the limited quantity of data, it has been assumed that the maxi-
mum impact of refraction changes is within the obtainable accuracy range of DIADEM
(0.1 arcsec). Further long-term observations will be necessary, most preferably at a
station with highly-precise reference values. As regards the consistency between both
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Zenith Cameras, the comparison of the respective night means revealed a very good
agreement of better than 0.1 arcsec. Furthermore, the measurements demonstrated
the importance of the inclination sensors. The respective standard deviations of the
systems differed with 0.33 arcsec (DIADEM) and 0.21 arcsec (TZK2-D) for about 50%.
These results initiated further hardware improvements of DIADEM by implementing
two additional tiltmeters (Lippmann sensors) with a very high resolution in time and
inclination.

Evaluation of the accuracy of DIADEM

The analysis of repeated observations during four years formed an important con-
tribution to the evaluation of DIADEM. The measurements have been performed at the
reference station of the institute. It has been demonstrated that the system features a
very good repeatability within a range of 0.15 arcsec. The external accuracy (derived
from the comparison between reference and actual coordinates of the reference station)
amounted to better than 0.15 arcsec. These results are based on the analysis of data
measured with the Azimuth/Wyler (AW) configuration and agree well with results from
comparative observations with the TZK2-D. Since May 2007, the new tripod method
using Lippmann sensors (TL) has been applied. The data derived from the comparison
between new (TL) and old method (AW) denoted a considerable increase in accuracy.
Hence, the TL method allowed for an improvement of about 33% for the internal and
59% for the external accuracy. It has to be noticed that the conclusions are based
on a relatively small data set. Therefore, the method has to be verified by further
measurements.

Deployment of DIADEM in the North Aegean Sea

After a thorough verification and evaluation of DIADEM, the system has been suc-
cessfully deployed in the research area of the North Aegean Sea, Greece, in 2005. During
about three weeks, totally 27 stations have been observed at several islands and along
the coastline of the North Aegean Sea. The distribution of the Astro stations was mainly
motivated by the intention to cover the area around the North Aegean Trough (NAT).
The system worked reliably, although the conditions were very ambitious. A long journey
from Switzerland to Greece and the travel between the stations, partly on pathless roads,
implied great stress for the system. Furthermore, the transportation of the camera by
sailing boat, associated with the loading and unloading into a dinghy for entering the
islands, imposed high demands on the instrument.

In order to provide highly-precise astronomical parameters (Φ,Λ), about 80 to 120
single solutions have been observed at each station. Furthermore, parallel differential
GPS measurements, analyzed in post-processing, enabled the determination of precise
geodetic positions (ϕ, λ). The accuracies of the final DOV (ξ, η) ranged at the expected
high level, hence providing the conditions for a high-quality geoid determination. The
(ξ, η)-components clearly reflect the topography and bathymetry of the research area
and, especially, the influence of the NAT representing a distinctive mass deficit with
respect to the surrounding masses.
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Computation of different cogeoid solutions and isostatic interpretation

The observed DOV have been reduced for dedicated mass models. The residual data
served as input for the computation of different cogeoid solutions. These models formed
the basis for two important goals of the Ph.D. thesis: astrogeodetic geoid determination
and isostatic considerations. They have been realized by applying the Remove-Restore
method and least-squares-collocation. Depending on the masses removed, a topographic-
bathymetric (TB), a topographic-bathymetric-isostatic (TBAH) and a topographic-
bathymetric-Moho (TBMoho) cogeoid have been computed.

The TBAH cogeoid shows a rising Moho along the NAT, hence allowing for the con-
clusion that this region is isostatically overcompensated. This characteristic can also
be associated with extensional forces being active there. The main focus has been put
on the interpretation of the Moho cogeoid. Therefore, the Moho model of Tsokas and
Hansen [1997] applied for the reduction of the data has been analyzed thoroughly. Hence,
it has been compared with other Moho models in the research area. This theoretical
investigation already revealed substantial discrepancies of the model. The final Moho
cogeoid largely confirmed these inconsistencies. It has been concluded that the Moho
model is too deep along the NAT since the cogeoid shows a mass excess there. Further-
more, the model suggests a too shallow Moho beneath the peninsulas of Chalkidiki since
the cogeoid indicates a depression there. These results agreed well with the conclusions
based on the theoretical analysis.

Computation of an Astro geoid based on DOV

The cogeoid model represents a "geoid reduced for dedicated masses". In order to
determine the geoid, the removed masses have been restored to the cogeoid solution
(Remove-Restore method). The final astrogeodetic geoid reflects topographic and bathy-
metric features of the project area. The effect of the NAT is indicated by geoid variations,
which reaches about 3 m. In order to validate the geoid solution, several investigations
have been performed. The analysis of amount and distribution of reference stations as
well as of the respective error-covariances revealed a disadvantage of the astrogeodetic
method: the restriction of observations to the continental area and the related inhomoge-
neous distribution of Astro stations within the research area. These features influenced
significantly the error of the predicted geoid undulations N. The mean error of N reached
about 0.5 m showing a minimum of about 0.3 m. This is not sufficient. A theoretical
investigation concerned with the impact of an increased number of Astro stations denoted
a potential reduction of the mean error of N for about 15 cm if observing 50 additional
stations. A higher number of stations does not have a significant impact on the accuracy
unless they are located in the marine area. In order to obtain the best possible accuracy
for the geoid solution, additional Sea Surface Heights (SSH) have been implemented,
hence closing the lack of data in the marine area.

Combined geoid computation based on DOV and SSH

The combined geoid solution called DOVSSH07 geoid comprises of 27 DOV and 240
SSH, respectively. Beforehand, the SSH were corrected for tidal influences and the Mean
Dynamic Ocean Topography (Limpach et al. [2006]). Concerning the accuracy of the
geoid undulations, the combined solution represents a significant improvement. The
mean error within the research area decreased for about 0.15 m. The most obvious
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improvement has been obtained within the marine area along the NAT. There, the error
of the combined solution amounts to better than 0.1 m in comparison to about 0.3 m
to 0.4 m before (Astro geoid). Besides, the DOVSSH07 geoid better reproduces the
location and SW-NE extension of the NAT. Due to these results, the DOVSSH07 geoid
has been presented as final solution. It has been evaluated by comparing it with other
geoid models available for the region of the North Aegean Sea.

Evaluation of the final geoid by comparing it with other gravity field models

The DOVSSH07 geoid has been evaluated by comparing it with the EGM96 as well
as with local gravimetric and altimetric models. The comparison revealed significant
discrepancies between the newly calculated geoid and other models. In the region of the
NAT and, especially, north of the Sporades islands, the differences between DOVSSH07
and gravimetric geoid HGFFT98 reached values of about -1 m indicating a clear under-
estimation of the distinctive bathymetric features by the gravimetric solution. Another
region of strong discrepancies is the bay of Thessaloniki, where differences of about
-1.9 m have been detected. The evaluation by the altimetric geoid revealed similar
results. The discrepancies can be mainly attributed to a deficiency of marine altimetric
and gravimetric data used for the computation of the altimetric and gravimetric geoid,
respectively.

Summary and Outlook

X From the instrumental point of view, the present work demonstrated the qualification
of DIADEM for a completely automatic, observer-independent observation at a station.
Theoretically, the system can be operated without any permanent personal control,
also during long periods. However, further improvements of the instrumental design
should consider the enhancement of the user-friendliness of the system. Partly long
cables and a complicate current carrying hamper the preparation of a measurement,
particularly for an untrained observer. Hence, a solution should be found that enables
an easy and unambiguous handling of the system. This could be e.g. achieved by
replacing the cables by a dedicated collector ring.

X Concerning the obtainable accuracy of the system, it has been demonstrated that the
instrument provides internal and external accuracies at a very high range of better
than 0.15 arcsec. However, two critical points remain in the error budget of a Zenith
Camera observation, which have been already highlighted by Hirt [2004] in connection
with the TZK2-D: First, a limited astrometric accuracy, and secondly, the unmodelled
impact of zenithal refraction. The first problem depends on the fact that the Zenith
Camera is a fixed instrument without any compensation of earth’s rotation. Already
an exposure time of about 0.5 s produces longish star images. This fact confines the
obtainable astrometric accuracy to maximum 0.1 arcsec. Hirt [2004] suggested the
use of a CCD sensor with drift-scanning-option, which allows for an electronically
realized tracking of observations (Zaritsky and Shectman [1996]). The second limiting
factor, the anomalous refraction, is relatively difficult to model. Its maximum influence
has been estimated to 0.1 arcsec, which is within the obtainable accuracy range of
DIADEM. The effect should be subject of further investigations. Hence, it would be
interesting to analyze whether it is possible to determine the effect already from one
night mean, e.g. by using additional weather information (Hirt [2006]).
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X An interesting field of application of DIADEM is formed by local and regional geoid
determinations, especially in mountainous regions. The high precision and efficiency
of the determination of DOV as nowadays provided by the digital Zenith Camera
DIADEM enables the high-resolution geoid determination along profiles or within
networks (Hirt [2006]). With obtainable accuracies of better than 0.15 arcsec for the
DOV, the course of the geoid can be determined within the sub-millimeter range over
a distance of 2 km.

X Another field of application of DIADEM is its suitability for a precise and high-
resolution determination of the gravity field. This advantage can be applied in
geophysics and related tasks of interpretation. The sensitivity of DOV to local mass
distributions on and inside the earth can be used for the appraisal of mass anomalies
and the verification of mass models. The potential of a Zenith Camera for the detection
of anomalous bodies has already been demonstrated in former times, e.g. by Bürki
[1989]. In this work, the residual DOV resulting from a reduction of topographic,
bathymetric and isostatic masses have been interpreted in terms of isostatic balance of
the region. They allowed to determine the depth of the crust-mantle boundary (Moho)
and to assess the state of isostasy.

X The astrogeodetic method is restricted to continental regions. This plays a role in
research areas such as the North Aegean Sea in Greece, which is dominated by marine
area. Within this work, the resulting lack of data was bridged by applying shipborne
observations. Shipborne Zenith Camera observations carried out on marine platforms
should move into the focus of future research work. A first approach might be a
gimbal-mounted installation of DIADEM on a dedicated tripod.
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A Mathematical background

A.1 Variations of star positions

Transformation of mean into apparent star positions:

(
αTopo
δTopo

)
= N(t) · P (t) ·

(
α0 + ∆αpm + ∆αr + ∆αaa
δ0 + ∆δpm + ∆δr + ∆δaa

)
+

(
∆αda
∆δda

)
(A.1)

(α, δ)0... Mean star position at catalog epoch T0

(∆α,∆δ)pm... Correction of proper motion during time interval t = T − T0

(∆α,∆δ)r... Correction of relativistic light diversion at exposure epoch T
(∆α,∆δ)aa... Correction of annual abberation at T
N(t) · P (t)... Correction of precession and nutation during t
(∆α,∆δ)da... Correction of daily abberation at T

Proper motion after Høg et al. [2000]:

µα =
∆α

∆t
µδ =

∆δ

∆t
(A.2)

(µα, µδ)... Proper motion components
(∆α,∆δ)... Difference between star positions at two different epochs
∆t... Time interval elapsed since the astrometric observation of the star

Daily abberation after Sigl [1991]:

∆αda = k · cos tt · sec δ

∆δda = k · sin tt · sin δ
(A.3)

(∆α,∆δ)da... Daily abberation
(α, δ)... Equatorial coordinates of star position
tt... Hour angle of the star
k... Daily abberation constant
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Appendix A: Mathematical background

with:
k = ρ · v

c
= 0.32[arcsec] · cos Φ

v = ω · r · cos Φ = 0.46

[
km

s

]
· cos Φ

(A.4)

v... Velocity of the observation point
c... Speed of light
ω = 2π/86164 s... Angular velocity of the earth
ρ = 180·3600

π
... Conversion factor [rad] to [arcsec]

r = 3670 km... Earth’s radius

For the observation of a zenithal star field, it is tt = 0 and Φ = δ and, there-
fore:

∆αda = 0.32 arcsec

∆δda = 0.00 arcsec
(A.5)

Annual abberation after Meeus [1992]:

∆αaa = −k · (cosα · cosL · cos ε+ sinα · sinL) sec δ

+e · κ · (cosα · cosπ · cos ε+ sinα · sin π)secδ

∆δaa = −k · ([tan ε · cos δ − sinα · sin δ] · cosL · cos ε+ cosα · sin δ · sinL)

+e · κ · ([tan ε · cos δ − sinα · sin δ] · cos π · cos ε+ cosα · sin δ · sin π)

(A.6)

(∆α,∆δ)aa... Annual abberation
v = 29.8 km/s... Velocity of the earth around the sun
k = 20.495 arcsec... Annual abberation constant
ε... Mean obliquity of ecliptic
e... Eccentricity of the earth’s orbit around the sun
π... Longitude of perihel
M ... Mean anomaly
L0... Mean longitude of sun
L... Apparent longitude of sun

A.2 Mass reduction

Gravitational potential after Mader [1951]:
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A.2 Mass reduction

Instead of V (Eq. (8.2)), the antiderivative W is treated:

W =

∫
dx

∫
dy

∫
dz

r
(A.7)

The integration of W with respect to x results in:

W =

∫
dy

∫
dz · log(x+ r) (A.8)

and further to y:

W = y

∫
dz · log(x+ r)︸ ︷︷ ︸

A

−
∫
dy · y2

∫
dz

(x+ r)r︸ ︷︷ ︸
B

= A+B (A.9)

For an integration of W with respect to z, the terms A and B have to be treated
separately. The partial integration of A to z yields:

A = y · z · log(x+ r) + x · y · log(z + r)− y2 · arctan

(
x · z
y · r

)
(A.10)

and the partial integration of B to z:

B =
y2

2
·arctan

(
x · z
y · r

)
+x·z ·log(y+r)−x

2

2
·arctan

(y · z
x · r

)
− z

2

2
·arctan

(x · y
z · r

)
(A.11)

The sum of A and B as well as the introduction of the integration limits results the
gravitational potential V (Eq. (8.3)).

Gravitational attraction after Mader [1951]:

Instead of Vx (Eq. (8.4)), the antiderivative Wx is treated:

Wx = −
∫
dy

∫
dz

∫
dx

x

r3
(A.12)

The integration of Wx to x yields:

Wx =

∫
dy

∫
dz

r
(A.13)

further to y:

Wx =

∫
dz · log(y + r) (A.14)

and to z:
Wx = z · log(y + r) + y · log(z + r)− x · arctan

(y · z
x · r

)
(A.15)

By introducing integration limits, the gravitational effect V in x-direction is obtained
(Eq. (8.5)).
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Appendix A: Mathematical background

A.3 Geoid determination

The shape of Css and Cnn matrices, respectively, is as follows (Wirth [1990]):

Css =

ξ1 ... ξn η1 ... ηn g1 ... gn N1 ... Nn

ξ1 Φξ1ξ1 ... Φξ1ξn Φξ1η1 ... Φξ1ηn Φξ1g1 ... Φξ1gn Φξ1N1 ... Φξ1Nn

... ... ... ... ... ... ... ... ... ... ... ... ...
ξn Φξnξ1 ... Φξnξn Φξnη1 ... Φξnηn Φξng1 ... Φξngn ΦξnN1 ... ΦξnNn

η1 Φη1ξ1 ... Φη1ξn Φη1η1 ... Φη1ηn Φη1g1 ... Φη1gn Φη1N1 ... Φη1Nn

... ... ... ... ... ... ... ... ... ... ... ... ...
ηn Φηnξ1 ... Φηnξn Φηnη1 ... Φηnηn Φηngn ... Φηngn ΦηnN1 ... ΦηnNn

g1 Φg1ξ1 ... Φg1ξn Φg1η1 ... Φg1ηn Φg1g1 ... Φg1gn Φg1N1 ... Φg1Nn

... ... ... ... ... ... ... ... ... ... ... ... ...
gn Φgnξ1 ... Φgnξn Φgnη1 ... Φgnηn Φgng1 ... Φgngn ΦgnN1 ... ΦgnNn

N1 ΦN1ξ1 ... ΦN1ξn ΦN1η1 ... ΦN1ηn ΦN1g1 ... ΦN1gn ΦN1N1 ... ΦN1Nn

... ... ... ... ... ... ... ... ... ... ... ... ...
Nn ΦNnξ1 ... ΦNnξn ΦNnη1 ... ΦNnηn ΦNng1 ... ΦNngn ΦNnN1 ... ΦNnNn

(A.16)

The covariance functions Φij have to be calculated for the distances (∆xij , ∆yij ,) between
station i and station j.

Cnn =

ξ1 ... ξn η1 ... ηn g1 ... gn N1 ... Nn

ξ1 σ2
ξ1 0 0 0 0 0 0 0 0 0 0 0

... 0 ... ... ... ... ... ... ... ... ... ... ...
ξn 0 ... σ2

ξn ... ... ... ... ... ... ... ... ...
η1 0 ... ... σ2

η1 ... ... ... ... ... ... ... ...
... 0 ... ... ... ... ... ... ... ... ... ... ...
ηn 0 ... ... ... ... σ2

ηn ... ... ... ... ... ...
g1 0 ... ... ... ... ... σ2

g1 ... ... ... ... ...
... 0 ... ... ... ... ... ... ... ... ... ... ...
gn 0 ... ... ... ... ... ... ... σ2

gn ... ... ...
N1 0 ... ... ... ... ... ... ... ... σ2

N1 ... ...
... 0 ... ... ... ... ... ... ... ... ... ... ...
Nn 0 ... ... ... ... ... ... ... ... ... ... σ2

Nn

(A.17)

Please note: the positions in Eq. (A.17) represented by dots have to be filled with
"0".
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