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Abstract

The main theme of this thesis is the development of real-time and soft constrained
Model Predictive Control (MPC) methods for linear systems, providing the essential
properties of closed-loop feasibility and stability. MPC is a successful modern control
technique that is characterized by its ability to control constrained systems. In prac-
tical implementations of MPC, computational requirements on storage space or online
computation time have to be considered in the controller design. As a result, the opti-
mal MPC control law can often not be implemented and a suboptimal solution has to
be provided that is tailored to the system and hardware under consideration and meets
the computational requirements. Existing methods generally sacrifice guarantees on
constraint satisfaction and/or closed-loop stability in such a real-time environment. In
addition, enforcing hard state constraints in an MPC approach can be overly conser-
vative or even infeasible in the presence of disturbances. A solution commonly applied
in practice is to relax some of the constraints by means of so-called soft constraints.
Current soft constrained approaches for finite horizon MPC, however, do not provide
a guarantee for closed-loop stability.

This thesis addresses these limitations and aims at reducing the gap between theory
and practice in MPC by making three main contributions: A real-time MPC method
based on a combination of explicit approximation and online optimization that of-
fers new tradeoff possibilities in order to satisfy limits on the storage space and the
available computation time and provides hard real-time feasibility and stability guar-
antees; a real-time MPC approach that is based on online optimization and provides
these properties for any time constraint while allowing for extremely fast computation;
a soft constrained method based on a finite horizon MPC approach that guarantees
closed-loop stability even for unstable systems.

First, two methods are presented that consider the application of MPC to high-speed
systems imposing a hard real-time constraint on the computation of the MPC control
law. There are generally two main paradigms for the solution of an MPC problem: In
online MPC the control action is obtained by executing an optimization online, while in
explicit MPC the control action is pre-computed and stored offline. Limits on the stor-
age space or the computation time have therefore restricted the applicability of MPC
in many practical problems. This thesis introduces a new approach, combining the two
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paradigms of explicit and online MPC in order to overcome their individual limitations.
The use of an offline approximation together with warm-start techniques from online
optimization allows for a tradeoff between the warm-start and online computational
effort. This offers new possibilities in satisfying system requirements on storage space
and online computation time. A preprocessing analysis is introduced that provides hard
real-time execution, stability and performance guarantees for the proposed controller
and can be utilized to identify the best solution method for a considered application
and set of requirements.

By using explicit approximations, the first real-time approach is best suited for small
or medium size problems. In contrast, the second real-time MPC approach presented
in this thesis is solely based on online optimization and can be practically implemented
and efficiently solved for large-scale dynamic systems. A hard real-time constraint gen-
erally prevents the computation of the optimal solution to the MPC problem, which
can lead to constraint violation, and more importantly, instability when using a general
optimization solver. The proposed method is based on a robust MPC scheme and re-
covers guarantees on feasibility and stability in the presence of additive disturbances for
any given time constraint. The approach can be extended from regulation to tracking
of piecewise constant references, which is required in many applications. All computa-
tional details needed for an implementation of a fast MPC method are provided and it
is shown how the structure of the resulting optimization problem can be exploited in
order to achieve computation times equal to, or faster than those reported for methods
without guarantees.

One of the main difficulties in real-time MPC methods is the initialization with a
feasible solution. This motivates the investigation of soft constrained MPC schemes
and their robust stability properties in the final part of this thesis. The relaxation
of state and/or output constraints in a standard soft constrained approach generally
leads to a loss of the stability guarantee in MPC, relying on the use of a terminal state
constraint. In this thesis a new soft constrained MPC method is presented that provides
closed-loop stability even for unstable systems. The proposed approach significantly
enlarges the region of attraction and preserves the optimal behavior with respect to
the hard constrained MPC control law whenever all constraints can be enforced. By
relaxing state constraints, robust stability in the presence of additive disturbances can
be provided with an enlarged region of attraction compared to a robust MPC approach
considering the same disturbance size. In order to allow for a more flexible disturbance
handling, the proposed soft constrained MPC scheme can be combined with a robust
MPC framework and the theoretical results directly extend to the combined case.



Zusammenfassung

Das Thema dieser Dissertation ist die Entwicklung von modellprädiktiven Regelungs-
methoden (engl.: Model Predictive Control, MPC) welche die Berechnung des Reglers in
Echtzeit und mit relaxierten Beschränkungen ermöglichen und dabei die Lösbarkeit des
MPC Problems und Stabilität des geschlossenen Regelkreises gewährleisten. MPC ist
ein modernes Regelungsverfahren, das sich dadurch auszeichnet, dass Beschränkungen
explizit in der Berechnung des Reglers berücksichtigt werden können. In praktischen
Implementierungen von MPC müssen die Anforderungen der jeweiligen Anwendung an
den Speicherplatz oder die Rechenzeit im Reglerdesign berücksichtigt werden. Es ist
daher oft nicht möglich den optimalen MPC Regler zu implementieren und ein sub-
optimaler Regler muss stattdessen berechnet werden, der auf das betrachtete System
und die Hardware zugeschnitten ist und die Rechenzeitanforderung erfüllt. Bislang ver-
fügbare Methoden nehmen in diesem Fall meist eine Verletzung der Beschränkungen
und/oder den Verlust der Stabilitätsgarantie in Kauf. Darüber hinaus kann das Er-
zwingen der Beschränkungen oft zu konservativen Lösungen, oder in Anwesenheit von
Störungen sogar zu unlösbaren MPC Problemen führen. In der Praxis werden daher
oft die Beschränkungen relaxiert. Bisherige Methoden für MPC mit endlichem Zeitho-
rizont und relaxierten Beschränkungen bieten jedoch keine Garantie für Stabilität des
geschlossenen Kreises.

Diese Dissertation behandelt diese Problemstellungen und macht drei wichtige Bei-
träge: Eine echtzeitfähige MPC Methode, die explizite Approximationen mit online
Optimierung kombiniert und dadurch neue Möglichkeiten bietet, Speicherplatz- und
Rechenzeitanfoderungen zu erfüllen, während Garantien für die Einhaltung der Be-
schränkungen und Stabilität gewährleistet werden; eine echtzeitfähige MPC Metho-
de, die auf online Optimierung basiert und diese Garantien für jede beliebige Zeitbe-
schränkung gewährleistet und zudem schnelle online Rechenzeiten erreicht; eine MPC
Methode für relaxierte Beschränkungen und endliche Zeithorizonte, die Stabilität des
geschlossenen Kreises auch für instabile Systeme garantiert.

Zu Beginn werden zwei Methoden präsentiert, welche die Anwendung von MPC auf
schnelle Systeme betrachten und damit eine Beschränkung der verfügbaren Rechenzeit
zur Berechnung des MPC Reglers. Es gibt generell zwei Lösungsansätze in MPC: in on-
line MPC wird der Regler durch Lösen eines Optimierungsproblems online berechnet,
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während in explizitem MPC der Regler offline vorberechnet und gespeichert wird. Be-
grenzungen des Speichers oder der Rechenzeit schränken daher die Anwendbarkeit von
MPC in vielen praktischen Problemen ein. Diese Arbeit stellt eine neue Methode vor,
in der die beiden Ansätze explizites und online MPC kombiniert werden, um ihre jewei-
ligen Nachteile zu vermeiden. Die Verwendung einer offline Approximation zusammen
mit warm-start Techniken der online Optimierung erlaubt es zwischen dem Rechenzeit-
aufwand für warm-start und dem für die online Optimierung abzuwägen. Dies bietet
neue Möglichkeiten, um Anforderungen an den Speicherplatz oder die Rechenzeit zu
erfüllen. Eine Methode zur Analyse des resultierenden Reglers wird vorgestellt, die es
erlaubt Garantien für die Berechnung, Stabilität und Regelgüte in Echtzeit zu geben
und welche ebenfalls verwendet werden kann, um die beste Lösungsmethode für eine
bestimmte Anwendung und ihre Anforderungen zu identifizieren.

Da die erste hier vorgestellte Methode auf einer expliziten Approximation basiert, ist
sie am Besten für kleinere oder mittelgrosse Probleme geeignet. Die zweite Methode,
die in dieser Dissertation präsentiert wird, verwendet ausschliesslich online Optimie-
rung und kann daher für grosse Probleme praktisch implementiert und effizient gelöst
werden. Eine Beschränkung der Rechenzeit erlaubt es im Allgemeinen nicht, die opti-
male Lösung des MPC Problems zu berechnen, was bei Verwendung eines allgemeinen
Optimierungsverfahrens zu einer Verletzung der Beschränkungen oder Instabiliät füh-
ren kann. Der entwickelte Ansatz verwendet ein robustes MPC Schema und garantiert
die Einhaltung der Beschränkungen sowie Stabilität bei additiven Störungen für eine
beliebige Beschränkung der Rechenzeit. Die Methode kann vom Problem der Regulie-
rung auf das der Folgeregelung von stückweise konstanten Referenzsignalen erweitert
werden, welche in vielen Anwendungen relevant ist. Alle erforderlichen Details für die
Implementierung einer schnellen MPC Methode werden beschrieben und es wird ge-
zeigt, wie die Struktur des resultierenden Optimierungsproblems ausgenutzt werden
kann, um Berechnungszeiten zu erreichen, die gleich oder schneller sind als diejenigen,
die für Methoden ohne jegliche Garantien gezeigt wurden.

Eine der Herausforderungen in echtzeitfähigem MPC ist die Initialisierung mit einer
gültigen Lösung des MPC Problems. Dies motiviert die Untersuchung von MPC Ansät-
zen mit relaxierten Beschränkungen und ihrer robusten Eigenschaften im letzten Teil
der Dissertation. Die Relaxierung von Zustands- oder Ausgangsbeschränkungen führt
im Allgemeinen dazu, dass die Stabilitätsgarantie in MPC verloren geht, welche meist
auf einer Beschränkung des Endzustandes basiert. In dieser Arbeit wird eine neue MPC
Methode für relaxierte Beschränkungen vorgestellt, die Stabilität des geschlossenen Re-
gelkreises auch für instabile Systeme garantiert. Die Region, in der Stabilität garantiert
werden kann, wird vergrössert und Optimalität in Bezug auf den MPC Regler mit har-
ten Beschränkungen bleibt erhalten, wenn alle Beschränkungen erfüllt werden können.
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Durch das Relaxieren der Zustandsbeschränkungen kann robuste Stabilität gegenüber
additiven Störungen in einem grösseren Bereich gewährleistet werden, als mit einem
robusten MPC Schema für dieselbe Grösse der Störung. Um mehr Flexibilität in der
Handhabung der Störungen zu erlauben, kann die Methode mit einem robusten Ansatz
kombiniert werden, wobei alle theoretischen Ergebnisse auf die kombinierte Methode
erweitert werden können.





Notation

Sets and spaces

{·, . . . , ·} a set or a sequence
∅ the empty set
N (S) neighborhood of the set S
R set of real numbers
Rn set of n-dimensional (column) vectors with real entries
Rn×m set of n by m matrices with real entries
N set of natural numbers (non-negative integers)
Nr set of natural numbers from 0 to r, Nr = (0 . . . , r) for r ∈ N

Set Operators

Let S1, S2 ⊆ Rn be sets and {Si}bi=1 be a collection of sets.

|S1| cardinality of S1

S1 ∩ S2 set intersection, S1 ∩ S2 = {s | s ∈ S1 and s ∈ S2}
S1 ∪ S2 set union, S1 ∪ S2 = {s | s ∈ S1 or s ∈ S2}
⋃b

i=1 Si union of b sets,
⋃b

i=1 Si = {s | s ∈ S1 or . . . or s ∈ Sb}
S1 \ S2 set difference, S1 \ S2 = {s | s ∈ S1 and s /∈ S2}
S1 × S2 Cartesian product, S1 × S2 = {(s1, s2) | s1 ∈ S1, s2 ∈ S2}
S1 ⊕ S2 Minkowski sum, S1 ⊕ S2 ! {s1 + s2 | s1 ∈ S1, s2 ∈ S2}
⊕b

i=1 Si Minkowski sum over b sets,
⊕b

i=1 Si ! S1 ⊕ S2 ⊕ · · ·⊕ Sb

S1 ( S2 Minkowski difference, S1 ( S2 ! {s | s+ s2 ∈ S1, s2 ∈ S2}

Algebraic Operators

Let A ∈ Rm×n be a matrix, x ∈ Rn be a vector and E ⊆ Nm, F ⊆ Nn be sets.
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null(A) nullspace of A, null(A) ! {x ∈ Rn | Ax = 0}
AE matrix formed by the rows of A whose indices are in the set E
A·,F matrix formed by the columns of A whose indices are in the set F
A ) 0 positive semi-definite matrix
A * 0 positive definite matrix
[x]+ positive magnitude of a vector, [x]+ = max{0, x} taken elementwise
|·| absolute value
‖·‖ any vector norm
‖·‖1 l1-norm or vector 1-norm (sum of absolute values)
‖·‖2 l2-norm or vector 2-norm (Euclidian norm)
‖·‖∞ l∞-norm or vector ∞-norm (largest absolute element)
‖·‖Q weighted 2-norm, ‖x‖Q ! ‖Q 1

2x‖2

Control

nx number of states, nx ∈ N
nu number of inputs, nu ∈ N
x state vector, x ∈ Rnx

u input vector, u ∈ Rnu

X pre-specified set of state constraints, X ⊆ Rnx

U pre-specified set of input constraints, U ⊆ Rnu

u sequence of input vectors, u = [u0, . . . , uN ]
x sequence of state vectors, x = [x0, . . . , xN ]

uj j’th element of u
u(x) sequence that depends on a parameter x

uj(x) j’th element of u(x)

Other

I identity matrix of appropriate dimension
0 zero matrix of appropriate dimension
1 vector of ones of appropriate dimension, 1 ! [1, . . . , 1]T

diag(s) diagonal matrix whose diagonal entries are given by the vector s
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Acronyms

LP linear program
QP quadratic program
QCQP quadratically constrained program
SOCP second-order cone program
SDP semidefinite program
KKT Karush-Kuhn-Tucker optimality condition
pLP parametric linear program
pQP parametric quadratic program
IPM interior-point method
ASM active set method
MPC model predictive control
PI positively invariant
RPI robust positively invariant
MPI maximal positively invariant
mRPI minimal robust positively invariant





1 Introduction

Model Predictive Control (MPC) is a modern control technique that enjoys great success
and widespread practical application due to its ability to control constrained systems.
It is based on the computation of the optimal control action by solving a constrained
finite horizon optimal control problem for the current state of the plant at each sample
time. The theory of optimal MPC is well established and the optimal MPC control
law provides closed-loop stability and constraint satisfaction at all times under certain
assumptions on the problem setup.

Although part of the success of MPC as a sophisticated control method is based
on its solid theoretical foundation, guarantees on feasibility and/or stability are often
sacrificed in practical implementations. This motivates the work presented in this thesis
with the focus of developing real-time and soft constrained methods that provide these
essential properties. In practice, computational requirements on storage space or online
computation time have to be considered for the particular application of interest. High-
speed applications, for example, impose a hard real-time constraint on the solution of
the MPC problem, i.e. a limit on the computation time that is available to compute
the control input. The goal in real-time MPC is to deliver an MPC control law that is
tailored to the system and hardware under consideration and meets the computational
requirements, in particular in terms of the real-time constraint. In addition, state
constraints are often relaxed in practice by means of so-called soft constraints that
provide feasibility of the optimization problem when hard state constraints cannot be
enforced, e.g. in the presence of disturbances. The goal in soft constrained MPC is to
provide a guarantee for closed-loop stability with a large region of attraction, such that
disturbances can be tolerated.

Classically the MPC problem is solved by executing an optimization routine online,
which has restricted the application of model predictive controllers to slow dynamic
processes. In recent years, various methods have been developed with the goal of
enabling MPC to be used for fast sampled systems, which will be denoted as fast MPC
methods in this thesis. These fast MPC approaches can generally be classified into two
main paradigms: explicit MPC and online MPC methods. Depending on the particular
problem properties and implementation restrictions, the user then has to decide for one
of the two approaches.
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Explicit MPC methods exploit the fact that the optimal solution to the MPC problem
under certain assumptions on the problem setup is a piecewise affine function (PWA)
defined over a polyhedral partition of the feasible states (see e.g. [BBM02,BMDP02,
Bor03]. This so-called explicit solution can then be used as a control look-up table
online, providing very low online computation times. The main limitation is, how-
ever, that the number of state-space regions over which the control law is defined,
the so-called complexity of the partition, grows in the worst case exponentially due to
the combinatorial nature of the problem [BBM02]. Thus, limits on the storage space
or the computation time restrict the applicability of model predictive controllers in
many real problems that are either computationally intractable for explicit MPC or
the complexity of the explicit solution exceeds the storage capacity, while an online
MPC solution cannot meet the required online computation times. This has given rise
to an increasing interest in the development of new methods to either improve online
optimization [Han00,KCR02,ART03,FBD08,WB10,CLK08,PSS10] or to approximate
explicit solutions (e.g. [RWR98, LR06,YW02,BF03, JG03,BF06, JBM07]). While ap-
proximate explicit MPC methods are still limited to small or medium problem sizes
due to their inherent explicit character, online MPC methods can be applied even to
large-scale systems.

Recent results show that the computation times for solving an MPC problem can
be pushed into a range where an online optimization becomes a reasonable alternative
for the control of high-speed systems [WB10, FBD08]. Significant reduction of the
online computation time can be achieved by exploiting the particular structure and
sparsity of the optimization problem given by the MPC problem using tailored solvers.
Available methods for fast online MPC, however, do not give guarantees on either
feasibility or stability of the applied control action in a real-time implementation. The
real-time MPC methods proposed in this thesis address this issue and provide hard
real-time feasibility and stability guarantees. A method based on a combination of
explicit approximation and online optimization for smaller or medium size problems is
developed, as well as a real-time approach that is entirely based on online optimization
and can be practically implemented and efficiently solved for all problem dimensions.

In addition to the satisfaction of computational requirements, an approach that is
highly relevant and frequently applied in practice is soft constrained MPC. Soft con-
straints allow for a temporary relaxation of constraints when enforcing hard constraints
would be infeasible and thereby provide feasibility of the optimization problem at all
times. Soft constrained MPC methods and their robust stability properties gain ad-
ditional importance in the context of real-time MPC, where feasibility cannot always
be recovered if no initial feasible solution is available due to the real-time constraint.
Several methods for the development of controllers that enforce state constraints when
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they are feasible and allow for relaxation when they are not have been studied in the lit-
erature [RM93,ZM95,dOB94,SMR99,KM00,Pri07]. Existing soft constrained schemes
for finite horizon MPC, however, do not provide guarantees on closed-loop stability.
This issue is addressed by the soft constrained method developed in this thesis, which
is based on a finite horizon MPC approach and guarantees closed-loop stability even
for unstable systems.

1.1 Outline and Contribution

Part I introduces some background material that is relevant for the main results of
this thesis. In Chapter 2 we repeat some basic mathematical definitions and Chapter 3
presents results in convex optimization that are employed as a main tool in this thesis.
The considered system formulation as well as the associated stability concepts are
introduced in Chapter 4. Chapter 5 discusses the concept of Model Predictive Control
in the nominal case and the variants for robust MPC, in particular tube based robust
MPC, and MPC for tracking of piecewise constant references.

Part II is concerned with the development of real-time MPC methods that allow for
the computation of a control input within the real-time constraint while still providing
closed-loop stability. First, a survey of fast MPC methods in the literature using explicit
or online MPC is provided in Chapter 6. The main focus is on existing methods for
fast online MPC, which in most cases are either based on active set or interior-point
methods, and the comparison of the properties of these two optimization methods for
a real-time approach.

Chapter 7 develops a real-time MPC scheme combining the two paradigms of explicit
and online MPC to overcome their individual limitations. This provides new possibil-
ities in the applicability of MPC to practical problems that often have limits on the
storage space or the available computation time. The proposed strategy combines the
idea of offline approximation with warm-start techniques from online optimization and
thereby offers a tradeoff between the warm-start and online computational effort. A
preprocessing method is introduced that provides hard real-time execution, stability
and performance guarantees for the proposed controller. The goal is to choose a good
tradeoff between the complexity of the PWA approximation and the number of active
set iterations required in order to satisfy system constraints in terms of online compu-
tation, storage and performance. It is shown how the provided analysis can be utilized
to compare different solution methods and identify the best combination of warm-start
and online computational effort for a considered application and set of requirements.

By using explicit approximations, the approach presented in Chapter 7 is limited to
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small or medium problem dimensions. A real-time MPC approach is proposed in Chap-
ter 8 that is based solely on online optimization and can be practically implemented
and efficiently solved for large-scale dynamic systems. It is shown how feasibility and
input-to-state stability can be guaranteed in the presence of additive disturbances for
any given time constraint using robust MPC design and a stability enforcing constraint,
while allowing for low computation times with the same complexity as MPC methods
without guarantees. The a-priori stability guarantee then allows one to trade the per-
formance of the suboptimal controller for lower online computation times. We show
how the proposed scheme can be extended from regulation to tracking of piecewise con-
stant references. All computational details required for a fast implementation based on
a barrier interior-point method are provided and results in the robust MPC literature
are consolidated into a step-by-step implementation for large-scale systems.

Part III treats the use of soft constraints in MPC. In Chapter 9, a soft constrained
MPC approach is developed that provides closed-loop stability even for unstable sys-
tems. The presented method is based on a finite horizon MPC setup and uses a ter-
minal weight as well as a terminal constraint. The use of two different types of soft
constraints for the relaxation of state constraints along the horizon and the terminal
constraint is proposed. We show that, in contrast to existing soft constrained MPC
schemes, asymptotic stability of the nominal system in the absence of disturbances is
guaranteed. The proposed method significantly enlarges the region of attraction and
preserves the optimal behavior with respect to the hard constrained problem whenever
all state constraints can be enforced. The robust stability properties are analyzed and
input-to-state stability under additive disturbances is proven. In order to allow for a
more flexible disturbance handling, the proposed soft constrained MPC scheme can be
combined with a robust MPC framework and it is shown that the theoretical results
directly extend to the combined case.

Concluding remarks are provided at the end of each chapter in Parts II and III. In
Chapter 10 we then provide a brief summary of the results presented in this thesis and
an outlook to possible directions for future research on these topics.

1.2 Publications

The work presented in this thesis was done in collaboration with colleagues and is
largely based on previous publications, which are listed in the following.

Chapter 7 is entirely based on the following publication:

Real-time suboptimal Model Predictive Control using a combination of Ex-
plicit MPC and Online Optimization. M.N. Zeilinger, C.N. Jones and
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M. Morari, to appear in IEEE Transactions on Automatic Control, July
2011. [ZJM11].

A conference version of this article appeared in

Real-time suboptimal Model Predictive Control using a combination of Ex-
plicit MPC and Online Optimization. M.N. Zeilinger, C.N. Jones and
M. Morari, Proceedings of the 47th IEEE Conference on Decision and Con-
trol, Cancun, Mexico, Dec. 2008, 4718-4723. [ZJM08].

Chapter 8 is based on the work in the following paper:

On Real-time Robust MPC. M.N. Zeilinger, C.N. Jones, D.M. Raimondo
and M. Morari, submitted to IEEE Transactions on Automatic Control,
2011. [ZJRM11].

The basic ideas of this work were presented in the conference paper

Real-time MPC – Stability through Robust MPC design. M.N. Zeilinger,
C.N. Jones, D.M. Raimondo and M. Morari, Proceedings of the 48th IEEE
Conference on Decision and Control, Shanghai, China, Dec. 2009 3980-
3986. [ZJRM09].

Part II and Chapter 9 is based on the paper

Robust stability properties of soft constrained MPC. M.N. Zeilinger, C.N. Jones
and M. Morari, Proceedings of the 49th IEEE Conference on Decision and
Control, Atlanta, USA, Dec. 2010. [ZJM10].





Part I

Preliminaries



2 Mathematical Preliminaries

In this chapter we introduce some basic mathematical concepts employed in this thesis.
All given definitions are standard and can be found in the literature on analysis and
set theory; for a more detailed discussion please refer to one of the standard textbooks
[Roc70,RW98,Kur61].

Set Terminology

Definition 2.1 (Convex set). A set S ⊆ Rn is convex if

αs1 + (1− α)s2 ∈ S for any s1, s2 ∈ S and α ∈ [0, 1] .

Definition 2.2 (Convex hull). The convex hull of a set S ⊆ Rn is the smallest
convex set containing S:

conv(S) !
⋂

{

S̃ ⊆ Rn
∣

∣

∣
S ⊆ S̃, S̃ is convex

}

.

Definition 2.3 ((Convex) Cone). A set S ⊆ Rn is called a cone if for every s ∈ S
and t ≥ 0: ts ∈ S. A set S ⊆ Rn is called a convex cone if it is convex and a cone,
i.e. for any s1, s2 ∈ S and t1, t2 ≥ 0: t1s1 + t2s2 ∈ S .

Definition 2.4 (Norm cone). Let ‖·‖ be any norm on Rn. The norm cone associ-
ated with the norm ‖·‖ is the set S = {(s, r) | ‖s‖ ≤ r} ⊆ Rn+1, which is a convex
cone.

The second-order cone is the norm cone associated with the Euclidian norm. It is also
known as the quadratic cone or the Lorentz cone.

Definition 2.5 (Affine set). A set S ⊆ Rn is affine if

αs1 + (1− α)s2 ∈ S for any s1, s2 ∈ S and α ∈ R .
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Definition 2.6 (ε-ball). The open ε-ball in Rn around a given point xc ∈ Rn is the
set Bε(xc) ! {x ∈ Rn | ‖x − xc‖ < ε}, where the radius ε > 0 and ‖·‖ denotes any
vector norm, usually the Euclidian norm ‖·‖2 .

Definition 2.7 (Interior). The interior of a set S ⊆ Rn is given as

intS ! {s ∈ S | ∃ ε > 0,Bε(s) ⊆ S} .

Definition 2.8 (Relative Interior). The relative interior of a set S ⊆ Rn is defined
as

relintS ! {s ∈ S | ∃ ε > 0,Bε(s) ∩ aff S ⊆ S} ,

where
aff S !

⋂

{

S̃ ⊆ Rn
∣

∣

∣
S ⊆ S̃, S̃ is affine

}

denotes the affine hull of a set S.

Definition 2.9 (Open/Closed set). A set S ⊆ Rn is called open if S = relint S. A
set is called closed if its complement Sc ! {s | s /∈ S} is open.

Definition 2.10 (Bounded set). A set S ⊆ Rn is bounded if it is contained inside
some ball Br(·) of finite radius r, i.e. ∃r < ∞, s ∈ Rn such that S ⊆ Br(s) .

Definition 2.11 (Compact set). A set S ⊆ Rn is compact if it is closed and bounded.

Definition 2.12. A set S ⊆ Rn is full-dimensional if ∃ε > 0, s ∈ intS such that Bε(s) ⊆
S .

Polyhedra

A brief summary of the basic definitions related to polyhedra used in this thesis is
provided in the following, for more information see e.g. [Zie94,Grü03].

Definition 2.13 (Halfspace). A closed halfspace in Rn is a set of the form

P = {x ∈ Rn | aTx ≤ b}, a ∈ Rn, b ∈ R .

Definition 2.14 (Polyhedron). A polyhedron is the intersection of a finite number
of halfspaces.

Definition 2.15 (Polytope). A polytope is a bounded polyhedron.

Definition 2.16 (Polyhedral partition). The collection of sets PN ! {Pj}Nj=1 with
N ∈ N is called a polyhedral partition of a set P ⊆ Rn if all Pj are full-dimensional
polyhedra, ∪N

j=1Pj = P and intPi ∩ intPj = ∅ ∀i 2= j and i, j ∈ {1, . . . , N} .



10 2 Mathematical Preliminaries

Function Terminology

Definition 2.17 (Epigraph). The epigraph of a function f : D → R with the domain
D ⊆ Rn is given by the set

epi f ! {(x, t) | (x, t) ∈ D × R, f(x) ≤ t} .

Definition 2.18 ((Uniformly) Continuous function). A function f : D → Rnf

with the domain D ⊆ Rn is called continuous at a point x̂ ∈ D if

∀ε ∃δ : ‖x− x̂‖ < δ ⇒ ‖f(x)− f(x̂)‖ < ε . (2.1)

A function is called continuous if it is continuous at all x ∈ D.
A function is called uniformly continuous at x̂ ∈ D if (2.1) holds with δ = δ(ε).

Definition 2.19 (Lipschitz continuity). A function f : D → Rnf with the domain
D ⊆ Rn is called Lipschitz continuous if

‖f(x)− f(x̂)‖ ≤ L‖x− x̂‖ ∀x̂, x ∈ D ,

for some L ∈ R called a Lipschitz constant.

Definition 2.20 ((Polyhedral) PWA function). A function f : P → Rnf with
P ⊆ Rn is piecewise affine (PWA) if PN is a polyhedral partition of P and

f(x) ! Cjx+Dj if x ∈ Pj ∀Pj ∈ PN ,

where Cj ∈ Rnf×n, Dj ∈ Rnf and j ∈ {1, . . . , N}.

Definition 2.21 (Convex/Concave function). A function f : D → R is convex, if
its domain D ⊆ Rn is a convex set and

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (2.2)

for any x1, x2 ∈ D and α ∈ [0, 1]. f(·) is concave if −f(·) is convex.
A function f is strictly convex if strict inequality holds in (2.2) whenever x1 2= x2 and
0 < α < 1.

Definition 2.22 (Support function). The support function hS : Rn → R of a con-
vex set S evaluated at x ∈ Rn is defined as hS(x) ! supy∈S x

T y .



3 Convex Optimization

Convex optimization is a subclass of mathematical optimization with favorable theo-
retical and practical properties, which will be used as an important tool for control
throughout this thesis. One of the most important theoretical properties is the fact
that if a local minimum exists, it is also a global minimum. In addition to a well-
established theoretical foundation the main practical advantage of convex optimization
is the existence of reliable and efficient solvers for finding the global optimal solution.
It has been discovered that a large number of problems arising in applications in a
wide range of fields like automatic control, estimation or communications, can be cast
as convex problems making convex optimization a widely used tool in practice.

In this chapter we present an overview of a selection of topics in convex optimization
that are relevant for this thesis. We first repeat some basic theoretical results and then
provide an overview of two popular optimization methods, active set and interior-point
methods, as well as some important properties of exact penalty functions. Finally, the
problem of parametric programming, in particular for linear and quadratic problems,
is briefly introduced. More information on these topics can be found in one of the
numerous textbooks on optimization, for example [BGK+82, GMW82, Fle87, Nes03,
BTN01,BV04,NW06].

We consider a convex optimization problem of the following general form:

minimize f0(z) (3.1a)

subject to fI(z) ≤ 0 , (3.1b)

fE(z) = 0 , (3.1c)

where z ∈ Rnz is the optimization variable, the vector fI is formed from the scalar
functions fi(z) : Rnz → R, i ∈ I and fE from i ∈ E , where the index sets E ⊂ {1, · · · , m}
and I = {1, · · · , m} \ E define the set of equality and inequality constraints. The
functions f0, fi ∀i ∈ I are convex and the functions fi ∀i ∈ E are affine.
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Optimality Conditions

The primal problem (3.1) has an associated Lagrange dual problem, which serves as a
certificate of optimality for a primal feasible solution:

maximize g(λ, ν) (3.2a)

subject to λ ≥ 0 , (3.2b)

where g(λ, ν) = minz L(z,λ, ν), λ ∈ R|I| and ν ∈ R|E| are the Lagrange multipliers asso-
ciated with the inequality and equality constraints, respectively, and L is the Lagrange
function given by

L(z,λ, ν) = f0(z) + λTfI(z) + νTfE(z) . (3.3)

The difference between a primal feasible and a dual feasible solution is called the duality

gap. Under certain constraint qualification conditions strong duality holds, i.e. the
optimal value of the primal and dual problem will be equal. One commonly used
constraint qualification is Slater’s condition.

Definition 3.1 (Slater’s condition). If the primal problem in (3.1) is strictly feasi-
ble, i.e. there exists a z with fE(z) = 0 and fI(z) < 0, then strong duality holds.

The Karush-Kuhn-Tucker (KKT) optimality conditions provide necessary and sufficient
conditions for a solution to be globally optimal.

Theorem 3.2 (KKT optimality conditions) Let z be a feasible point for a convex

optimization problem of the form (3.1) satisfying some regularity conditions, e.g. Slater’s
condition, and let fi(z), i ∈ I ∪ E be continuously differentiable. If z∗ is a global opti-

mum then there exists vectors λ∗ and ν∗ such that the following conditions are satisfied:

∇zL(z∗,λ∗, ν∗) = 0 , (3.4a)

fI(z
∗) ≤ 0 , (3.4b)

fE(z
∗) = 0 , (3.4c)

λ∗ ≥ 0 , (3.4d)

λ∗
i fi(z

∗) = 0 ∀i ∈ I . (3.4e)

The KKT conditions comprise primal and dual feasibility conditions (3.4b)-(3.4d), min-
imization of L(·, ·, ·) (3.4a) and the complementarity conditions (3.4e). See e.g. [Nes03,
BV04,NW06] for further details and proofs on convex optimization.

In the following we describe three widely used special subclasses of the general convex
optimization problem in (3.1), listed in the order of increasing computational complex-
ity: linear programs, quadratic programs and second-order cone programs.
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Linear Program

If the cost and the constraints in (3.1) are all affine, the optimization problem is called
a linear program (LP). We consider the following form of an LP:

minimize cT z (3.5a)

subject to GIz ≤ dI , (3.5b)

GEz = dE , (3.5c)

where G ∈ Rm×nz and d ∈ Rm. The feasible set defined by the constraints in (3.5) is a
polyhedron over which a linear function is minimized.

Linear programs can be efficiently solved using e.g. the simplex method [Dan49],
an optimization method specifically designed for linear programming that can be con-
sidered as a specialized active set method, or interior-point methods [NN94, NW06].
These two approaches are fundamentally different and will be explained in more detail
in Section 3.1. LPs appear in a vast number of different applications and LP solvers
have reached a high level of sophistication. Commercially available software tools are,
for example, CPLEX [CPL] or NAG [NAG], but also the freely available C++ imple-
mentations [CDD] and [CLP] provide efficient solvers.

Quadratic Program

The optimization problem in (3.1) is called a convex quadratic program (QP) if the
constraints are affine and the cost function is (convex) quadratic:

minimize zTHz + cT z (3.6a)

subject to GIz ≤ dI , (3.6b)

GEz = dE , (3.6c)

where H ∈ Rnz×nz with H ) 0 defines a convex quadratic objective function, which is
minimized over a polyhedron. If H * 0, problem (3.6) is called a strictly convex QP.
The difficulty of solving a convex QP is generally considered similar to an LP and most
quadratic programs can be solved efficiently by means of, for example, active-set, gradi-
ent or interior-point methods [NW06]. Quadratic programs form an important problem
class for many applications and also arise as subproblems in general constrained opti-
mization methods, such as sequential programming or interior-point methods. Com-
mercial solvers implementing quadratic programming algorithms are CPLEX [CPL] or
NAG [NAG], a freely available solver implementation in C is provided by the QPC
package [QPC].
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Second-order Cone Program

Second-order Cone Programs (SOCP) are nonlinear convex problems that include linear
and (convex) quadratic programs as special cases, but are less general than semi-definite
programs (SDP). A good reference for SOCPs is [NN94], see e.g. [LVBL98] for a study
on problems that can be cast as an SOCP.

We consider the following general form of an SOCP:

minimize cT z (3.7a)

subject to GEz = dE , (3.7b)

‖Giz + f i‖2 ≤ di
T
z + ei, i ∈ I , (3.7c)

where Gi ∈ Rpi×nz , f i ∈ Rpi, di ∈ Rnz and ei ∈ R. Constraints (3.7c) represent second-
order cone constraints of dimension pi. If Gi = 0 for all i ∈ I the SOCP reduces to
a general LP. If di = 0 for all i ∈ I, the SOCP reduces to a quadratically constrained

quadratic program (QCQP), i.e. a QP with quadratic inequality constraints, which is
obtained by squaring the constraints in (3.7c). SOCPs are, however, more general than
QCQPs. Several efficient primal-dual interior-point methods for SOCPs were developed
in recent years, which can solve an SOCP more efficiently than solvers treating it
as an SDP. The difference is significant if the dimensions of the second-order cone
constraints are large. A powerful commercial software for SOCPs is MOSEK, which
implements the algorithm in [ART03], but they can also be solved using SeDuMi [SED]
or SDPT3 [TTT].

3.1 Optimization Methods

There are many different optimization methods for the solution of convex problems
in the optimization literature. In this section we describe two of the most prominent
approaches, active set and interior-point methods, that are widely used in practice and
will be applied in this thesis. At the end of the section, the notion of exact penalty
functions is briefly introduced, which is relevant for the methods presented in this work.

3.1.1 Active Set Methods

Active set methods aim at identifying the set of active constraints at the optimum (the
optimal active set), which defines the optimal solution of an optimization problem, by
guessing an active set and then iteratively improving this guess.
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Definition 3.3 (Active Set). At a feasible point z, the inequality constraint i ∈ I
is said to be active if fi(z) = 0. The active set A(z) consists of the equality constraint
indices E together with the indices of active inequality constraints:

A(z) = E ∪ {i ∈ I | fi(z) = 0} . (3.8)

There are three variants of active set methods: primal, dual and primal-dual methods.
An early work on active set methods is presented in [Fle71], although the introduction
of the simplex method for linear programming [Dan49,Dan63] can also be interpreted
as a specialized active set method and the first QP algorithms were extensions of the
simplex method [Wol59]. A detailed description of active set methods can be found in
almost every standard textbook on optimization, for example [GMW82,Fle87,NW06].
The discussion in this section focuses on primal methods which generate primal feasible
iterates while decreasing the objective function. The main steps of a primal active set
method are outlined in the following for the QP (3.6).

Active set methods solve a quadratic subproblem at each iteration, where all equality
constraints and some of the inequality constraints are enforced as equalities. This set,
which is a subset of the active set, is called the working set W ⊆ A(z). Although cycling
is often not an issue in practice, we assume that the active set is non-degenerate, i.e. the
active constraints are linearly independent. At a given iterate z with working set W , the
step direction ∆z is computed by solving a constrained QP, where all constraints with
index in W are considered as equality constraints and all other inequality constraints
are discarded:

minimize ∆zTH∆z + cT∆z (3.9)

subject to GW∆z = 0 . (3.10)

The solution to (3.9) can be computed by any standard method for equality constrained
QPs, see e.g. [NW06] for an overview. A commonly applied approach is the direct or
the iterative solution of the corresponding KKT system

[

2H GT
W

GW 0

] [

∆z
λ

]

=

[

−c
0

]

. (3.11)

If the search direction ∆z is non-zero, the step length is obtained in a line search
procedure determining the maximum step size for which all constraints are satisfied:

τ = min
i∈I\W

{

di −Giz

Gi∆z

∣

∣

∣

∣

Gi∆z > 0

}

. (3.12)

If τ < 1 the step was blocked by some inequality constraint not in W and one of the
blocking constraints is added to W . The iterate is then updated to

z+ = z + τ∆z . (3.13)
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The iterations are continued in this manner until ∆z = 0, i.e. the minimum of the
objective function for the current working set is found. If all the Lagrange multipliers
λ corresponding to the inequality constraints are nonnegative, the optimal solution to
the original problem (3.6) is found. If one or more of the multipliers is negative, one
of these constraints is removed from the working set W allowing for a decrease of the
objective function. A new search direction is computed and the iterations are continued
until the optimal active set is found. There are many variants for adding or deleting
constraints in the active set, a discussion of the different options and more details on
active set methods can be found in the literature, e.g. in [GMW82,Fle87,NW06].

3.1.2 Interior-Point Methods

Classical interior-point methods start the optimization from an interior point, i.e. a
point that strictly satisfies the inequality constraints in (3.14e), and then follow a so-
called central path to the optimal solution by generating feasible iterates that satisfy the
inequality constraints strictly, which is the origin of the name. Interior-point algorithms
have been shown to work well in practice and efficiently solve convex optimization
problems, in particular the special cases of convex programs discussed previously, such
as LPs, QPs and SOCPs. The area was started by Karmarkar’s work in 1984 [Kar84]
with the proposition of the first interior-point method for LPs and today it represents
a theoretically rich and practical field of convex optimization.

While there is a variety of different interior-point methods, we will restrict the brief
outline in the following to path following methods, in particular primal-dual and bar-
rier interior-point methods. While the focus is on primal feasible methods, we note
that infeasible variants for both primal-dual as well as barrier interior-point methods
are available, details can be found e.g. in [Wri97b,BV04,NW06]. While barrier meth-
ods are among the earliest developed methods, primal-dual approaches belong to the
more modern continuation based implementations of interior-point methods. We will
discuss both variants briefly for the general convex optimization problem in (3.1) in
the following.

Primal-dual Interior-point Methods

Primal-dual methods compute primal-dual solutions of the convex problem in (3.1)
by applying Newton’s method to the KKT conditions in (3.4). As in most iterative
algorithms there are two main ingredients: the choice of the step direction and the step
size. The Newton procedure is modified to bias the search direction into the interior
and keep (λ, z) from moving too close to the boundary of their constraints.
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Consider the perturbed KKT conditions given by

∇zf0(z) + ∆GI(z)
Tλ+ ∆GE(z)

T ν = 0 , (3.14a)

fI(z) + s = 0 , (3.14b)

GE(z) = 0 , (3.14c)

Sλ− κ1 = 0 , (3.14d)

λ ≥ 0, s ≥ 0 , (3.14e)

where S = diag(s) and ∆G(z) is the Jacobian matrix of the functions fi(z), i ∈ I ∪ E .
The solution to (3.14) (z(κ), s(κ),λ(κ), ν(κ)) is parameterized by the scalar κ > 0 and
the trajectory formed by these points is called the primal-dual central path C. The
perturbed KKT conditions are solved for a sequence of parameters κ that converges to
zero, while maintaining λ, s ≥ 0. If C converges as κ → 0, the algorithm converges to
the optimal primal-dual solution of the convex program.

Most primal-dual solutions take Newton steps towards the central path. Let (z, s,λ, ν)
be a strictly feasible point at iteration k. The primal-dual Newton step (∆z,∆s,∆λ,∆ν)
is obtained from
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, (3.15)

where Σ = S−1Λ, Λ = diag(λ) and rd, the so-called dual residual, is given by

rd = ∇zf0(z) + ∆GI(z)
Tλ+ ∆GT

E (z)ν . (3.16)

A line-search along this Newton direction is performed, such that the new iterate

(z+, s+,λ+, ν+) = (z, s,λ, ν) + α(∆z,∆s,∆λ,∆ν) , (3.17)

where α ∈ (0, 1] is the line search parameter, does not violate the inequality constraints
and is not too close to the boundary. The particular algorithm parameters such as step
size and decrease rate of κ depends on the method of choice. There exist numerous
variants of primal-dual interior-point algorithms, such as path-following, potential re-
duction or trust region interior-point methods, which cannot all be discussed here and
we refer the interested reader to the overviews in [NN94,Wri97b,NW06]. An interest-
ing variant are so-called predictor-corrector methods, which use the factorization of the
KKT system to compute two directions, a predictor and a corrector step. In particular
Mehrotra’s algorithm [Meh92] has proven very efficient and is implemented in many
available solvers.
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Barrier Interior-point Methods

In a barrier method, the inequality constraints of the convex program in (3.1) are
replaced by a barrier penalty in the cost function resulting in the approximate problem
formulation

minimize f0(z) + κψ(s) (3.18a)

subject to fE(z) = 0 , (3.18b)

fI(z) + s = 0 , (3.18c)

where κ > 0 is the barrier parameter and ψ(·) is the log barrier function given by

ψ(z) =
|I|
∑

i=1

− log(si) . (3.19)

Note that the KKT conditions of (3.18) coincide with (3.14) after a small transforma-
tion. The barrier method starts from a strictly primal feasible (interior) point and then
solves a sequence of linearly constrained minimization problems (3.18) for decreasing
values of the barrier parameter κ starting from the previous iterate using Newton’s
method. At each iteration, the primal search direction ∆z from the current iterate z
is obtained by solving the following linear system:

[

∇2
zzL(z, ν) + κ∆GI(z)TS−2∆GI(z) ∆GT

E (z)
∆GE(z) 0

] [

∆z
∆ν

]

= −
[

rd
0

]

, (3.20)

where the dual residual rd is again defined by (3.16). The Newton step used in the
barrier method can be obtained directly from (3.15) by eliminating ∆s and ∆λ from
the system of equations and using the relationship Λ = κS−1.

A line-search along the primal direction is performed such that the new variables

z+ = z + α∆z (3.21)

satisfy the primal inequality constraints. As κ → 0 the solution converges in the limit to
the optimal solution of (3.1). See for example [BV04,NW06] for a detailed description
of the method and the choice of parameters involved in the procedure.

3.1.3 Exact Penalty Functions

Penalty or barrier function methods are often applied for the solution of nonlinear con-
strained optimization problems in order to reduce the original problem to a sequence
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of unconstrained subproblems. The barrier interior-point method described in Sec-
tion 3.1.2 is one variant of a barrier function method based on the logarithmic barrier
function, one of the most popular barrier functions for the solution of inequality con-
strained problems. If the penalty function is chosen such that it is minimized locally
by the optimal solution to the original problem, it is called an exact penalty function.
Exact penalty functions are often employed in control theory in order to allow for a
relaxation of certain constraints while still guaranteeing that optimality and constraint
satisfaction is maintained if possible.

This section states the main condition for a penalty function that is defined in terms
of norms to be exact. For simplicity the results are given for a convex optimization
problem with inequality constraints only, i.e. E = ∅, but the results can be directly
extended to the combination with equality constraints. The presentation follows closely
that in [Fle87] but the results can similarly be found in [Lue84,GMW82,NW06].

Using a penalty function based on norms, the convex optimization problem in (3.1)
with E = ∅ can be written as the following unconstrained minimization problem:

minimize f0(z) + ρ‖[fI(z)]+‖ , (3.22)

where ρ is a penalty parameter weighting the contribution of the penalty function to
the cost. The definition of an exact penalty function uses the concept of a dual norm,
defined as

‖u‖D = max
‖v‖≤1

uTv . (3.23)

It has been shown that the dual of ‖·‖1 is ‖·‖∞ and that ‖·‖2 is self-dual.

The following result provides a condition on the parameter ρ ensuring the equivalence
of the solutions to (3.1) (with E = ∅) and (3.22).

Theorem 3.4 (Exact penalty function, Theorem 14.3.1 in [Fle87]) Let z∗ de-

note the optimizer of (3.1) (for E = ∅) and λ∗ the optimal Lagrange multipliers cor-
responding to the inequality constraints satisfying the KKT conditions in (3.4). If the

penalty weight ρ > ‖λ∗‖D and fI(z∗) ≤ 0, then z∗ is also the optimizer of (3.22) and
(3.22) is called an exact penalty function.

The main disadvantage of the exact penalty function is that it is non-smooth and can
therefore not be solved using the effective techniques for smooth optimization. Note
that it is, however, exactly the non-smoothness which causes the penalty function to
be exact, a quadratic penalty or a log barrier penalty, for example, does not provide
an exact penalty function. The non-smoothness of the optimization problem can be
avoided by reformulating problem (3.22) using so-called slack variables ε capturing the
constraint violations:



20 3 Convex Optimization

minimize f0(z) + ρ‖ε‖ (3.24a)

subject to fI(z) ≤ ε , (3.24b)

0 ≤ ε . (3.24c)

Problem (3.24) is a smooth constrained optimization problem, which can be solved
using standard methods for smooth convex optimization.

Common exact penalty functions are l1- or l∞-norm penalties allowing for a refor-
mulation of (3.24) as an LP or QP if the cost is linear or quadratic, respectively, and
the inequality constraints are affine.

3.2 Parametric Programming

Many practical problems require the solution of an optimization problem repeatedly
for variations in the problem data, which can be formulated as a parameter dependence
of the cost function and/or the constraints. The parameter θ ∈ Rnθ is then given as
an input to the optimization problem. This section provides a short introduction to
parametric programming and states the main results related to parametric linear and
quadratic programming. For more information on the general concept and properties
of parametric programming see [BGK+82]. Note that in the literature the term multi-
parametric programming is sometimes used to emphasize the fact that the parameter
is not a scalar but a vector.

In the case of convex optimization we obtain the following general form of a para-

metric convex optimization problem

minimize f0(z, θ) (3.25a)

subject to fI(z, θ) ≤ 0 , (3.25b)

fE(z, θ) = 0 . (3.25c)

The goal is to solve this parametric optimization problem for all values of the parame-
ter θ by determining an explicit representation of the cost function and the optimizer
z∗(θ) as a function of the parameter θ. The computation of the parametric solution
is, however, only possible in special cases, for example the case of parametric linear
or quadratic programs, which are, however, of particular importance in the context of
Model Predictive Control (MPC) and will be discussed in the following. The parametric
solution in the context of MPC problems will be addressed again in Chapter 6. Follow-
ing the presentation in the literature, the results are stated for an optimization problem
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with inequality constraints only, i.e. E = ∅. Note that this formulation can be directly
obtained from (3.5) or (3.6), respectively, by eliminating the equality constraints.

Parametric Linear Program

We denote a linear program, where the parameter θ enters linearly in the constraints,
as a parametric linear program (pLP):

J∗(θ) = min cT z (3.26a)

s.t. Gz ≤ d+ Eθ . (3.26b)

For an overview of parametric linear programming the reader is referred to [Gal95].
The main properties of the parametric solution to the pLP are stated in the following
theorem.

Theorem 3.5 (Solution to the pLP, [Gal95]) Consider the parametric linear pro-

gram (3.26). The set of feasible parameters Θ is a closed polyhedron in Rnθ . The
optimal value function J∗ : Θ → R is continuous, convex and a piecewise affine func-
tion of θ. There exists an optimizer function z∗ : Θ → Rnz that is a continuous and

piecewise affine function of θ.

Main difficulties for parametric linear programming algorithms are primal degeneracy,
i.e. when the basis describing the optimal solution is not unique, and dual degener-
acy, i.e. when the optimizer is not unique. The issue of resolving dual degeneracy is
addressed in [BBM03] or [JKM07], which is based on lexicographic perturbation.

Parametric Quadratic Program

Similarly, a parametric quadratic program (pQP) is a quadratic program, where the
parameter enters linearly in the cost and the constraints:

J∗(θ) = θTY θ +min zTHz + θTFz (3.27a)

s.t. Gz ≤ d+ Eθ . (3.27b)

The main properties of the parametric solution to the pQP are given in the following,
a more detailed discussion of pQPs can be found in [BGK+82].

Theorem 3.6 (Solution to the pQP) Consider the parametric quadratic program
(3.27) with H * 0,

[

H F
FT Y

]

) 0. The set of feasible parameters Θ is a closed polyhedron

in Rnθ . The optimal value function J∗ : Θ → R is continuous, convex and a piecewise
quadratic function of θ. The optimizer z∗ : Θ → Rnz is unique, continuous and a

piecewise affine function of θ.



4 System and Control Theory

This chapter introduces a common system formulation as well as the associated stability
concepts, which are well-established in control theory and are used throughout this
work.

4.1 System Formulation

We consider the control of a discrete-time uncertain linear system described by

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N (4.1)

that is subject to the following constraints:

x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm ∀ k ∈ N , (4.2)

where x(k) is the state, u(k) is the control input and w(k) ∈ W ⊂ Rn is a bounded
disturbance at the k’th sample time. X and U are polytopic constraints on the states
and inputs that are assumed to each contain the origin in its interior. W is a convex
and compact disturbance set that contains the origin (not necessarily in the interior).

The solution of system (4.1) at sampling time k for the initial state x(0), sequence
of control inputs u and disturbances w is denoted as φ(k, x(0),u,w). If system (4.1)
is controlled by the control law u = κ(x) then the closed-loop system is given by

x(k + 1) = Ax(k) +Bκ(x(k)) + w(k) . (4.3)

The solution of the closed-loop uncertain system at time k, for the initial state x(0)
and a sequence of disturbances w is denoted as φκ(k, x(0),w).

The nominal model of system (4.1) describes the system considering no disturbance
and is given by

x̄(k + 1) = Ax̄(k) +Bū(k) . (4.4)

The solution to this equation for an initial state x(0) is denoted as φ̄(k, x̄(0),u). If
system (4.4) is controlled by the control law u = κ(x) then the closed-loop system is

x̄(k + 1) = Ax̄(k) +Bκ(x̄(k)) . (4.5)
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When we focus on one time instance we sometimes drop the dependence on k and
use the lighter notation x+ = Ax+Bu+ w in the disturbed case or x̄+ = Ax̄+Bū in
the nominal case, where x+ denotes the successor state at the next sampling time.

While the system under consideration may be unstable, it is assumed to satisfy the
following standing assumption:

Assumption 4.1. The pair (A,B) is stabilizable.

We further assume that the state x(k) of the system can be measured at each sampling
time k.

Parametrization of a Steady-state:

A steady-state (xs, us) of the nominal system (4.4) is characterized by the condition

(I − A)xs = Bus . (4.6)

Since matrix A may have eigenvalues on the unit circle, the steady-state cannot always
be parameterized solely by the steady-state input us. We therefore use the following
parametrization of a steady-state (xs, us) of system (4.4) by the parameter θ ∈ Rnθ :

[

xs

us

]

= Mθ =

[

Mx

Mu

]

θ , (4.7)

where the columns of M form an orthonormal basis for the nullspace of the matrix
[I − A − B], nθ is the dimension of the nullspace and Mx,Mu are appropriate parti-
tions of M .

4.2 Stability and Invariance

Providing a closed loop stability guarantee is one of the main goals in controller design.
The notion of stability employed in this thesis is based on Lyapunov stability theory.
We first state the well-known results for analyzing stability of the controlled system
(4.5) with nominal dynamics by means of classic Lyapunov stability theory and then
present the framework of input-to-state stability allowing for the analysis of the robust
stability properties of the controlled uncertain system (4.3).

In the context of constrained systems, the notion of invariance plays an important role
for the stability analysis. The following standard definitions can be found e.g. in [Bla99]:
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Definition 4.2 (Positively invariant (PI) set). A set X ⊆ Rnx is a positively in-

variant (PI) set of system (4.5), if

Ax̄(k) +Bκ(x̄(k)) ∈ X for all x̄(k) ∈ X .

Definition 4.3 (Robust positively invariant (RPI) set). A set X ⊆ Rnx is a ro-

bust positively invariant (RPI) set of (4.3) if

Ax(k) +Bκ(x(k)) + w(k) ∈ X for all x(k) ∈ X , w(k) ∈ W .

The minimal RPI (mRPI) set is the RPI set that is contained in every closed RPI set
of (4.3), and the PI set that contains every closed PI set of (4.5) is called a maximal
PI (MPI) set.

Definition 4.4. Let u = κ(x) be a control law for system (4.4) and X ⊆ Rnx a given
subset of states. The set X κ = {x | x ∈ X , κ(x) ∈ U} is called the input admissible set
for X .

The following standard function definitions are used, which are common in stability
theory and can, for example, be found in [Vid93]:

Definition 4.5 (K-class function). A function γ : R≥0 → R≥0 is of class K if it is
continuous, strictly increasing and γ(0) = 0 .

Definition 4.6 (K∞-class function). A function γ : R≥0 → R≥0 is of class K∞ if it
is a K-class function and γ(s) → ∞ as s → ∞ .

Definition 4.7 (KL-class function). A function β : R≥0×R≥0 → R≥0 is of class KL
if, for each fixed t ≥ 0, β(·, t) is of class K, for each fixed s ≥ 0, β(s, ·) is non-increasing
and β(s, t) → 0 as t → ∞ .

4.2.1 Lyapunov Stability

Lyapunov stability theory is a well established tool in control theory for the analysis
of dynamic systems. We state some of the main results for discrete-time systems that
are employed in this thesis in the following. For more details on the topic we refer the
reader to the standard textbooks, e.g. [Wil70,LaS76,Vid93,Kha02].

The concept most suitable for the control of the nominal system in (4.4) is that
of asymptotic stability. Due to the fact that the analysis of constrained systems is
considered, all results are not stated globally but are valid only in some positively
invariant set X .
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Definition 4.8 (Asymptotic stability in X ). Given a PI set X including the origin
as an interior-point, the equilibrium point xs of system (4.5) is said to be asymptotically
stable in X if it is

(Lyapunov) stable: For all ε > 0 there exists a δ(ε) > 0 such that for every x(0) ∈ X :

‖x(0)− xs‖ ≤ δ(ε) ⇒ ‖x(k)− xs‖ < ε ∀k ∈ N ,

attractive in X : limk→∞ ‖x(k)− xs‖ = 0 for all x(0) ∈ X .

A stronger condition is that of exponential stability:

Definition 4.9 (Exponential stability in X ). Given a PI set X including the ori-
gin as an interior-point, the equilibrium point xs of system (4.5) is said to be exponen-
tially stable in X if there exist constants α > 0 and γ ∈ (0, 1) such that

‖x(k)− xs‖ ≤ α‖x(0)− xs‖γk, for all x(0) ∈ X and for all k ∈ N .

Lyapunov’s stability theorem establishes stability by showing the existence of a so-
called Lyapunov function. Since any non-zero steady-state can be shifted to the origin
by an appropriate coordinate transformation, we assume without loss of generality that
the stability analysis considers the equilibrium point at the origin.

Definition 4.10 (Lyapunov function). Let X be a PI set for system (4.5) contain-
ing a neighborhood of the origin N (0) in its interior and let α(·), α(·), and β(·) be
K∞-class functions. A non-negative function V : X → R+ with V (0) = 0 is a Lyapunov

function in X if:
V (x) ≥ α(‖x‖) ∀ x ∈ X , (4.8a)

V (x) ≤ α(‖x‖) ∀ x ∈ N (0) , (4.8b)

V (Ax+Bκ(x))− V (x) ≤ −β(‖x‖) ∀ x ∈ X . (4.8c)

Theorem 4.11 (Asymptotic / Exponential stability)

a) If system (4.5) admits a Lyapunov function in X , then the equilibrium point at

xs = 0 is asymptotically stable with region of attraction X .

b) If the inequalities in (4.8) hold with α(‖x‖) = a‖x‖λ,α(s) = a‖x‖λ, β(s) = b‖x‖λ
for some positive constants a, a, b,λ > 0, then the origin is locally exponentially
stable for x ∈ N (0). Moreover, if inequality (4.8b) holds with N (0) = X , then

the equilibrium point xs = 0 is exponentially stable in X .

Theorem 4.11 is often exploited in control theory, when a Lyapunov function can be
derived directly from the setup of the control problem.

Note that in this work, (asymptotic) stability of a system is sometimes used to mean
that the system has a (asymptotically) stable equilibrium at the origin.
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4.2.2 Input-to-State Stability

In the presence of persistent disturbances, asymptotic stability of the origin or an
equilibrium point, respectively, can often not be achieved. Instead, it can be shown
that under certain conditions the trajectories converge to an RPI set and stability of
the uncertain system can be defined using the concept of input-to-state stability (ISS).

The framework of ISS was first introduced in [Son89] and has evolved into an impor-
tant tool to investigate stability properties by analyzing the dependence of the state
trajectories on the magnitude of the inputs, which can represent control variables as
well as disturbances. Several variants have been developed and applied in different
areas. The following description focuses on regional ISS which is best suited for the
application of ISS to MPC, where regional denotes the fact that the stability results
only hold in a certain region due to input and state constraints. More details on
ISS can be found e.g. in [SW99, JW01] or in the context of Model Predictive Control
in [MRS06,LAR+09].

The effect of the uncertainty makes the evolution of the system differ from what
is expected using the nominal system model. In order for the system to have some
robustness properties despite the disturbances, it is desirable that the effect on the
system is bounded and depends on the size of the disturbance.

Definition 4.12 (Input-to-state stability (ISS) in Γ). Given a set Γ ⊆ Rn in-
cluding the origin as an interior point, system (4.3) is called Input-to-State Stable (ISS)

in Γ with respect to w ∈ W if there exists a KL-class function β(·, ·) and a K-class
function γ(·) such that

‖φκ(k, x(0),w)‖ ≤ β(‖x(0)‖, k) + γ(‖w[k−1]‖) (4.9)

for all initial states x(0) ∈ Γ, disturbance sequences w ! [wj ]j≥0 with wj ∈ W and
k ∈ N, where ‖w[k−1]‖ ! max0≤j≤k−1{‖wj‖} .

ISS generalizes different notions of stability for uncertain systems and allows for the
analysis of the effect of persistent or decaying disturbances using one framework
[LAR+09]. Note, that the condition for input-to-state stability reduces to that for
asymptotic stability if wj = 0 ∀j ≥ 0. The system also converges asymptotically to the
origin, if the disturbance signal fades.

The ISS concept permits the extension of a Lyapunov-like stability theory to dis-
turbed systems, which is stated in the following.

Definition 4.13 (ISS Lyapunov function in Γ). A function V : Rn → R+ is called
an ISS Lyapunov function in Γ with respect to w ∈ W for system (4.3) if Γ is an RPI set
containing the origin in its interior and if there exists a compact set S ⊆ Γ including the
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origin as an interior point, suitable K∞-class functions α(·),α(·), β(·) and a K-class
function γ(·) such that:

V (x) ≥ α(‖x‖) ∀ x ∈ Γ , (4.10a)

V (x) ≤ α(‖x‖) ∀ x ∈ S , (4.10b)

V (Ax+Bκ(x) + w)− V (x) ≤ −β(‖x‖) + γ(‖w‖) ∀ x ∈ Γ, w ∈ W . (4.10c)

Theorem 4.14 (ISS in Γ [JW01,SW99]) Consider the closed-loop system (4.3). If
the system admits an ISS Lyapunov function in Γ with respect to w ∈ W, then it is
ISS in Γ with respect to w ∈ W.

A property that becomes of particular interest in control theory is the question if input-
to-state stability of the uncertain system can be related to stability of the corresponding
nominal system. While this is not generally true for nonlinear systems if no further
conditions on the nominal system are imposed, this statement follows directly in the
case of linear systems:

Theorem 4.15 Consider the closed-loop system (4.3). If the corresponding nominal

system (4.5) considering no disturbance admits a Lyapunov function which is uniformly
continuous in X , then system (4.3) is ISS in an RPI set Γ ⊆ X for a sufficiently small
bound on the disturbance size.

Proof. Follows directly from the fact that fκ(x, w) ! Ax + Bκ(x) + w is uniformly
continuous in w and Theorem 2 in [LAR+09]. "
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Model Predictive Control (MPC) is a modern control technique that has been success-
fully applied in practice due to its ability to handle constraints. Numerous publications
on theoretical aspects and applications have been published since the first introduc-
tion of the basic concept in the 1960s and the later success in the process industry
in the 1980s and MPC has evolved into a mature control technique based on a well
established theoretical foundation. For a detailed overview of the field see e.g. the
books [Mac00,GSdD06, Ros03, KC01, CB04,RM09] or survey papers [GPM89, BM99,
ML99,MRRS00,Raw00,May01].

MPC is an optimal control method, where the control action is obtained by solving
a constrained finite horizon optimal control problem for the current state of the plant
at each sampling time. The sequence of optimal control inputs is computed for a
predicted evolution of the system model over a finite horizon. However, only the first
element of the control sequence is applied and the state of the system is then measured
again at the next sampling time. This so-called receding horizon strategy introduces
feedback to the system, thereby allowing for compensation of potential modeling errors
or disturbances acting on the system. While the basic idea of MPC is well established,
there exist many variants for guaranteeing closed-loop feasibility, stability, robustness
or reference tracking. In the following sections we will outline some of these variants
for linear systems that are important for this thesis and outline the corresponding main
theoretical results.

There has been an increasing interest in the development of fast MPC methods in
recent years enabling MPC to be used not only for systems with slow dynamics, such
as chemical processes, but also for fast sampled systems. A short survey on this topic
will be given in Chapter 6.

5.1 Nominal MPC

Considering the nominal system in (4.4) a typical control problem is the regulation of
the system state x(k) to the origin while minimizing the control effort and respecting
constraints on inputs and states. This can be formulated as the following nominal MPC
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problem:

Problem PN(x) (Nominal MPC problem)

V ∗
N(x) = min

x,u
VN(x,u) !

N−1
∑

i=0

l(xi, ui) + Vf(xN ) (5.1a)

s.t. xi+1 = Axi +Bui, i = 0, . . . , N − 1 , (5.1b)

(xi, ui) ∈ X× U, i = 0, . . . , N − 1 , (5.1c)

xN ∈ Xf , (5.1d)

x0 = x , (5.1e)

where x = [x0, x1, · · · , xN ] and u = [u0, · · · , uN−1] denote the state and input se-
quences, l(x, u) is the stage cost, Vf (x) is a terminal cost function and Xf ⊆ X is
an invariant compact convex terminal target set. Problem PN(x) implicitly defines
the set of feasible control sequences UN (x) ! {u | ∃ x s.t. (5.1b) − (5.1e) hold} and
feasible initial states XN ! {x | UN(x) 2= ∅}. An input sequence u is called feasible
for problem PN(x) if u ∈ UN (x). The associated nominal state trajectory to a given
control sequence u(x) at state x is x(x) ! [x0, · · · , xN ], where x0 = x and for each i,
xi = φ̄(i, x,u(x)).

Assumption 5.1. It is assumed that l(·, ·) : Rn × Rm → R is a convex function,
l(0, 0) = 0 and there exists a K-class function αl(·) such that l(x, u) ≥ αl(‖x‖).

Common choices for the stage cost that are considered in this work are a quadratic and
a linear norm cost.

Quadratic cost: The stage cost and terminal cost are given by quadratic functions

l(x, u) ! xTQx+ uTRu, Vf(x) ! xTPx , (5.2)

where Q ∈ Rnx×nx and P ∈ Rnx×nx are symmetric positive semi-definite matrices
and R ∈ Rnu×nu is a symmetric positive definite matrix. For a quadratic cost,
we can write (5.1) as a parametric Quadratic Program (pQP) of the form (3.27),
where the current state x ∈ Rnx is the parameter θ. For a given state x ∈ XN ,
problem PN(x) reduces to a QP of the form (3.6).

Linear norm cost: The stage cost and terminal cost are composed of l1- or l∞-norms

l(x, u) ! ‖Qx‖p + ‖Ru‖p, Vf (x) ! ‖Px‖p with p ∈ {1,∞} , (5.3)

where it is assumed that Q ∈ Rnx×nx and R ∈ Rnu×nu are non-singular matrices
and P ∈ Rr×nx is a matrix with full column rank. For a 1- or ∞-norm cost,
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problem (5.1) can be rewritten as a parametric linear program (pLP) of the form
(3.26), where the current state x ∈ Rnx is again the parameter θ. For a given
state x ∈ X , problem PN(x) can be transformed into an LP of the form (3.5),
which is the reason why this cost function is sometimes referred to as a linear
cost.

Solving problem PN (x) for a given state x ∈ XN yields an optimal control sequence
u∗(x). Alternatively, an optimal control sequence u∗(x) for all feasible initial states
x ∈ XN can be obtained by solving the problem PN(x) parametrically, which will be
addressed in more detail in Chapter 6. The implicitly defined optimal MPC control
law is then given in a receding horizon fashion by

κ(x) ! u∗
0(x) . (5.4)

Note that the variables xi for i = 0, . . . , N in (5.1) cannot be chosen independently,
but are directly defined by the initial state, the input sequence u and the state update
equation. These variables can hence be eliminated from the optimization problem,
which reduces the number of optimization variables to the state sequence u. However,
while the cost and constraints in (5.1) have a very specific and sparse structure, in
fact by column/row reordering they can be shown to be block-diagonal or banded, the
sparsity is lost by the elimination of the equality constraints. We therefore refer to
the problem in (5.1) as the sparse formulation and that with eliminated state variables
as the dense formulation. The effect of the different formulations on the solution of
the MPC problem will be discussed in Chapter 6. The structure of the sparse MPC
formulation in Problem PN(x) with a quadratic cost will be discussed in Chapter 8, for
more details see also [RWR98,WB10].

5.2 Stability and Feasibility in Nominal MPC

It is well known that the infinite horizon optimal control problem, i.e. problem PN(x)

with N → ∞, provides a control law that is guaranteed to asymptotically stabilize
system (4.4) and is recursively feasible [RM93].

Definition 5.2 (Recursive Feasibility). A control law κ(x) is called recursively fea-
sible for x(0) if κ(x(k)) ∈ U and x(k) ∈ X along the closed-loop trajectory x(k + 1) =
Ax+Bκ(x(k)) for all k ∈ N.

These properties are, however, not automatically inherited by the finite horizon MPC
problem PN(x) without any assumptions on the problem parameters Q,R,N , Vf(·) and
Xf . Rules for choosing the problem setup in order to recover feasibility and stability in
finite horizon MPC problems are provided in the well-known survey paper [MRRS00].
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In this work we use a terminal cost and terminal set approach applied in most of
the recent MPC methods, where stability can be shown by employing the optimal cost
function as a Lyapunov function. The idea is to choose the terminal cost, such that
the MPC cost VN(·, ·) in (5.1a) is approximately equal to or an upper bound on the
infinite horizon cost in a neighborhood of the origin. The terminal set is chosen as
an invariant subset of this neighborhood, where a local stabilizing control law κf (·) is
known and all constraints are satisfied. This motivates the following conditions on the
terminal cost function Vf(·) and terminal set Xf .

Assumption 5.3. In the following it is assumed that Vf(·) is a continuous Lyapunov
function in Xf , Xf is a PI set for system (4.4) under the control law κf (x) = Kx

and all state and control constraints are satisfied in Xf . These conditions are stated
formally as the following two assumptions:

A1: Xf ⊆ X, (A +BK)Xf ⊆ Xf , KXf ⊆ U

A2: Vf((A+BK)x)− Vf(x) ≤ −l(x,Kx) ∀x ∈ Xf ,
∃ K∞-class functions αf ,αf : αf(‖x‖) ≤ Vf(x) ≤ αf (‖x‖) .

If Vf (·) and Xf satisfy Assumption 5.3, it can be shown that the optimal cost function
V ∗
N(x) in (5.1a) is a Lyapunov function and recursive feasibility and closed-loop stability

of the nominal system is guaranteed in the feasible set XN , which is stated in the
following theorem.

Theorem 5.4 (Stability under κ(x), [MRRS00]) Consider Problem PN(x) fulfill-
ing Assumption 5.3. The cost function V ∗

N(x) is a Lyapunov function in XN , XN is a

PI set and the closed-loop system x(k+1) = Ax(k)+Bκ(x(k)) is asymptotically stable
with region of attraction XN .

Outline of the proof:
While we do not repeat the entire proof of Theorem 5.4, we outline the main idea
for showing that V ∗

N(x) satisfies condition (4.8c) in Definition 4.10, which is applied
for proving stability of many different MPC variants in the literature and also in the
remainder of this thesis. The proof is based on the use of an upper bound on the
optimal cost function provided by the shifted solution from the state x ∈ XN at the
previous sampling time together with a local stable control law given by

ushift(x+) = [u∗
1(x), . . . , u∗

N−1(x), κf(x
∗
N (x))] , (5.5)

which is shown to be a feasible suboptimal solution for Problem PN(x+), where x+ =
Ax+Bκ(x) is the state at the next sampling time. The cost for using this suboptimal
solution at x+ provides a decrease with respect to the optimal cost at x and so does
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therefore the optimal solution at x:

V ∗
N(x

+) ≤ VN(x
shift(x+),ushift(x+)) ≤ V ∗

N(x)− l(x, u∗
0(x)) . (5.6)

The remainder of the proof shows that conditions (4.8a) and (4.8b) are also fulfilled
and the optimal cost function is a Lyapunov function, proving asymptotic stability of
the closed-loop system with region of attraction XN by Theorem 4.11.

Corollary 5.5 The optimal nominal MPC control law κ(x) in 5.4 is recursively feasi-
ble.

Many proposed MPC methods use the result in Theorem 5.3 and differ only in the
choice of the ingredients Vf(·) and Xf . In case of the quadratic cost in (5.1a), the control
law and cost function of the unconstrained infinite horizon problem, i.e. the solution to
the LQ control problem, is usually taken for κf (x) and Vf(x). The terminal set Xf can
then for example be chosen as the maximal state and input admissible set described
in [GT91] or a level set of Vf(x), using the result that level sets of Lyapunov functions
are invariant [Bla99]. In the case that a linear cost is chosen in (5.1a), a quadratic
Lyapunov function is not suitable. Algorithms for computing 1− or ∞−norm based
Lyapunov functions are presented for example in [Bor03,Chr07]. The terminal set can
then again be taken as a level set of the Lyapunov function.

The use of a terminal penalty function not only provides stability but also reduces
the deviation of the predicted open-loop from the closed-loop trajectory. If the horizon
is chosen long enough, the optimal behavior is recovered and the predicted and actual
behavior of the nominal system coincide [CM96,SR98]. In order to remove the terminal
state constraint from the problem formulation, several methods propose to choose the
horizon such that the terminal constraint is satisfied without explicitly including it
in the optimization problem, see [MRRS00,HL02,LAC03] and the references therein.
While this approach reduces the number of constraints, the horizon length is, however,
either likely to be large in order to satisfy this property for all feasible states x ∈ XN ,
or for a given N it is difficult to analyze the region in which this property is satisfied.

Other versions of stabilizing model predictive control setups include variable horizon
MPC, contractive MPC or stability enforced MPC, see [MRRS00] and the references
therein.

5.3 Robust MPC

In practice, model inaccuracies or disturbances usually cause violation of the nomi-
nal system dynamics in (4.4) which can lead to the loss of (recursive) feasibility and
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stability of the nominal optimal MPC control law. The success of MPC in many appli-
cation areas motivated the development of MPC approaches with enhanced robustness
characteristics in order to extend the guarantees provided for nominal MPC also to
the uncertain case. This is addressed in so-called robust MPC schemes that recover
recursive feasibility and thereby stability by changing the problem formulation.

Consider the discrete-time uncertain system in (4.1). The goal of robust MPC is to
provide a controller that satisfies the state and input constraints and achieves some form
of stability despite disturbances that are acting on the system. Asymptotic stability
of the origin cannot be achieved in the presence of disturbances. It can, however, be
shown that under certain conditions the trajectories converge to an RPI, which can be
seen as the ‘origin’ for the uncertain system. This is captured in the concept of ISS
introduced in Section 4.2, requiring the nominal system to be asymptotically stable
and the influence of the disturbance on the evolution of the states to be bounded.

There is a vast literature on the synthesis of robust MPC controllers, see e.g. [BM99,
MRRS00,MS07,LAR+09] for a good overview of the different approaches. The avail-
able methods can generally be classified into three groups. The first group is formed
by open-loop robust MPC methods that use the nominal MPC cost and tighten the
constraints in order to achieve constraint satisfaction for all possible realizations of the
disturbance w over the horizon (see e.g. [CRZ01,LAC02]). The resulting solutions are
in general, however, very conservative. The second group is the so-called min-max
MPC, where the MPC cost is maximized over all possible disturbance sequences (see
e.g. [MRRS00, LAR+09] and the references therein). Whereas in open-loop min-max
a worst-case control sequence is optimized, closed-loop min-max approaches optimize
for a sequence of control policies and thereby introduce feedback to the disturbance.
Min-max approaches have the important drawback that they are computationally very
demanding. The third group is a variant of open-loop robust MPC, the so-called tube-
based approaches (see e.g. [MSR05,RTMA06]). A feedback term is introduced in order
to bound the effect of the disturbances and reduce the conservativeness.

Since the aim of this work is the development of real-time MPC methods that allow
for fast computation, we restrict the following description to the tube based robust
MPC approach described in [MSR05] that is particularly suited for linear systems.
The main steps of the procedure are outlined in the following section.

5.3.1 Tube-based Robust MPC for Linear Systems

The method is based on the use of a feedback policy of the form u = ū+K(x− x̄) that
keeps the states x of the uncertain system in (4.1) close to the states x̄ of the nominal
system (4.4). Loosely speaking, the controlled uncertain system will stay within a so-
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called tube with constant section Z and centers x̄(k), where Z is an RPI set for system
x(k + 1) = (A+BK)x(k) +w(k). The robust MPC problem can therefore be reduced
to the optimization of the tube centers, which are steered to the origin by choosing a
sequence of control inputs ū and the initial tube center x̄(0). It can be shown that if
the initial center is chosen according to the constraint x = x(0) ∈ x̄(0)⊕Z for a given
initial state x then the trajectory of the uncertain system remains within the described
tube (in fact for all ū, x(i) ∈ x̄(i)⊕ Z if x(0) ∈ x̄(0)⊕ Z). This can be formulated as
a standard MPC problem with the following modifications:

• The first state x̄0 is also an optimization variable representing the tube center for
the current state x.

• In order to guarantee that the uncertain system does not violate the constraints
in 5.1 the constraints for the tube centers must be tightened in the following way:

X̄ = X( Z, Ū = U(KZ . (5.7)

The tightening of the constraints also affects the size of the terminal set, which
is denoted as X̄f .

This results in the following robust MPC problem Pr
N(x) which is a modification of

PN(x):

Problem Pr
N(x) [Robust MPC problem]

V r∗
N (x) = min

x̄,ū
VN(x̄, ū) + Vf(x− x̄0) (5.8a)

s.t. x̄i+1 = Ax̄i +Būi, i = 0, . . . , N − 1 , (5.8b)

(x̄i, ūi) ∈ X̄× Ū, i = 0, . . . , N − 1 , (5.8c)

x̄N ∈ X̄f , (5.8d)

x ∈ x̄0 ⊕Z . (5.8e)

Problem Pr
N implicitly defines the set of feasible control sequences U r

N (x̄0) = {ū | ∃ x̄ s.t.
(5.8b) − (5.8d) hold}, feasible initial tube centers X r

0 (x) ! {x̄0 | (5.8e)} and feasible
initial states X r

N ! {x | ∃ x̄0 ∈ X r
0 (x) s.t. U r

N(x̄0) 2= ∅}.

The resulting robust MPC control law is then given in a receding horizon control fashion
by:

κr(x) = ūr∗
0 (x) +K(x− x̄r∗

0 (x)) , (5.9)

where ūr∗(x) and x̄r∗
0 (x) is the optimal solution to Pr

N(x) and K is such that A+BK
is stable, which can be chosen as the feedback gain of the local control law κf(x) in
Assumption 5.3.
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Note that the optimal initial center x̄r∗
0 (x) is not necessarily equal to the current

state x. The re-optimization of the tube center at every time step introduces feedback
to the disturbance.

Compared to the robust MPC approach in [MSR05], we propose to augment the cost
in (5.8a) by the term Vf (x− x̄0), introducing a tradeoff between the amount of control
action used for counteracting the disturbance and the effort for controlling the tube
centers to the origin. The main advantage of the augmented cost is that it directly
provides a ISS Lyapunov function for the closed-loop system under the robust MPC
control law (Theorem 5.8).

If the RPI set Z is polytopic, the robustified Problem Pr
N(x) preserves the problem

structure of PN(x) and can still be cast as an LP or QP, respectively, depending on
the choice of the cost function. Ideally Z would be taken as small as possible, i.e. as
the minimal RPI (mRPI) set, which is, however, not necessarily polytopic and an
explicit representation can generally not be computed. In [MSR05] the computation of
a polyhedral RPI set for Z using the method in [RKKM05] is proposed.

Considering the robust MPC problem Pr
N(x), the stability results for nominal MPC

can be directly extended to the case of uncertain systems by modifying Assumption 5.3
according to the new problem setup.

Assumption 5.6. It is assumed that Vf(·), X̄f fulfill Assumption 5.3 with X̄, Ū and
X̄f replacing X, U and Xf .

Remark 5.7. The set X̄f⊕Z is an RPI set for system x(k+1) = (A+BK)x(k)+w(k).

Theorem 5.8 (Stability under κr(x)) Consider Problem Pr
N(x) fulfilling Assump-

tion 5.6. The closed-loop system x(k + 1) = Ax(k) + Bκr(x(k)) + w(k) is ISS in X r
N

with respect to w(k) ∈ W.

Proof. The proof is stated in the following assuming a quadratic stage and terminal
cost in (5.8a), for a linear norm in (5.3) cost the result can be obtained following the
same steps. From convexity we get 1

2‖x+y‖2Q ≤ ‖x‖2Q+‖y‖2Q. From Assumption 5.6 we
have that Vf (x) is an upper bound on the infinite horizon cost using the local control
law κf(x) and further ‖x‖2Q ≤ ‖x‖2P . It then follows that there exist a K∞-class function
α(·), such that

V r∗
N (x) ≥ ‖x̄r∗

0 (x)‖2Q + ‖x− x̄r∗
0 (x)‖2P (5.10)

≥ ‖x̄r∗
0 (x)‖2Q + ‖x− x̄r∗

0 (x)‖2Q ≥ 1

2
‖x‖2Q ≥ α(‖x‖) ∀x ∈ X r

N . (5.11)

In order to derive an upper bound, we make use of the following considerations. Take
S ! {x | ‖x‖2 ≤ ε}, where ε > 0 is such that S ⊆ Z. Then V r∗

N (x) ≤ VN(0, 0)+Vf(x) =
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Vf(x), since x̄0 = 0, ūi = 0 ∀i = 0, . . . , N − 1 is a feasible solution. Therefore, there
exists a suitable K∞-class function α(·), such that

V r∗
N (x) ≤ Vf(x) ≤ α(‖x‖) ∀x ∈ S . (5.12)

Feasibility of the shifted solution ūshift(x+) = [ūr∗
1 (x), . . . , ūr∗

N−1(x), Kx̄r∗
N (x)], x̄shift

0 (x+) =
x̄r∗
1 (x) for Pr

N(x
+), with x+ ∈ Ax+Bκr(x)⊕W, was shown in [MSR05]. Since Vf(x) is

a continuous function, there exists a K-class function γ(·) such that |Vf(y)− Vf(x)| ≤
γ(‖y − x‖). Using Assumption 5.3 and the fact that

x+ = Ax− Ax̄r∗
0 (x) + Ax̄r∗

0 (x) +Būr∗
0 (x) +BK(x− x̄r∗

0 (x)) + w

= x̄r∗
1 (x) + (A+BK)(x− x̄r∗

0 (x)) + w ,

we obtain

Vf (x
+ − x̄r∗

1 (x))− Vf(x− x̄r∗
0 (x))

= Vf((A+BK)(x− x̄r∗
0 (x)) + w)− Vf((A+BK)(x− x̄r∗

0 (x)))

+ Vf((A +BK)(x− x̄r∗
0 (x)))− Vf (x− x̄r∗

0 (x))

≤ −‖x− x̄r∗
0 (x)‖2Q + |Vf((A+BK)(x− x̄r∗

0 (x)) + w)− Vf((A+BK)(x− x̄r∗
0 (x)))|

≤ −‖x− x̄r∗
0 (x)‖2Q + γ(‖w‖) .

By comparing the sequences using Assumption 5.3 and standard arguments in MPC
(see also the proof of Theorem 1 in [MSR05]), it can then be shown that there exists a
K∞-class function β(·), such that

V r∗
N (x+)− V r∗

N (x) ≤VN(x̄
shift(x), ūshift(x))− VN(x̄

r∗(x), ūr∗(x))

+ Vf (x
+ − x̄r∗

1 (x))− Vf (x− x̄r∗
0 (x))

≤− ‖x̄r∗
0 (x)‖2Q − ‖x− x̄r∗

0 (x)‖2Q + γ(‖w‖)

≤− 1

2
‖x‖2Q + γ(‖w‖) ≤ −β(‖x‖) + γ(‖w‖) ∀x ∈ X r

N .

The optimal cost is hence a ISS Lyapunov function and by Theorem 4.14 the closed-loop
system is ISS. "

5.4 MPC for Tracking

Many control applications in practice require tracking of a desired sequence of steady-
states rather than regulation around the origin or a particular steady state. In order
to achieve tracking of piecewise constant references, the MPC problem (5.1) can be
modified by means of a change of variables into penalizing the deviation from the state
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and input reference and requiring the terminal state to lie in a terminal set around the
state reference [Mac00]. For small reference changes this approach allows one to steer
the system to the new reference point. There are, however, two main disadvantages.
If the reference changes significantly, it might not be reachable from the current state
with the given horizon length and terminal state constraint and recursive feasibility
may be lost. In addition, the solution computed at the previous time instant may
not be feasible for the current state measurement after a reference change, since the
terminal constraint depends on the current reference value, which leads to a loss of the
stability guarantee by means of the standard stability proof in MPC. This property is
also particularly relevant when using warm-start techniques to solve the MPC problem,
which will be discussed in more detail in Chapter 6.

Several approaches have been proposed in the literature for recovering feasibility of
the MPC control system after a reference change, see e.g. [BCM97,GK99,CZ03] and
the references therein. One approach is the introduction of a reference governor that
provides an artificial reference to the system ensuring convergence to the desired refer-
ence target while satisfying the constraints. In the following we focus on the method
introduced in [LAAC08], which provides recursive feasibility despite a significant ref-
erence change, feasibility of the solution from the previous state measurement and an
enlarged feasible set. These features are exploited in the real-time and soft-constrained
MPC approaches developed in Chapter 8 and Chapter 9. The main ideas and prop-
erties of the method are outlined in the following section, for a detailed description
see [LAAC08].

5.4.1 MPC for Tracking of Piecewise Constant References

The main difference to other tracking approaches is the introduction of an artificial
reference into the optimization problem. An optimal artificial reference and control
sequence is then computed in one optimization problem, allowing the artificial reference
to deviate from the real reference if the latter is not a feasible target from the current
state. This provides not only recursive feasibility but also renders the shifted solution
computed at the previous time instant feasible for the current state measurement.

The tracking approach can be formulated in the form of an MPC problem, where
the following components are introduced:

• The artificial steady state and input are introduced as decision variables in the
MPC problem.

• The cost penalizes the deviation from the states and inputs to the artificial ref-
erence instead of the real reference.
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• An offset term for the deviation between the artificial and the real reference is
then added to the MPC cost in order to ensure convergence to the desired steady
state.

• A terminal weight on the deviation between the terminal state and artificial
reference as well as an extended terminal constraint on the terminal state that
depends on the artificial reference provide stability of the optimal MPC controller.

We consider the task of tracking a piecewise constant reference signal, by steering
the system state x to the target steady-state xr. A target input ur is associated to
every target state xr fulfilling the steady-state condition in (4.6). The state and input
constraints limit the set of feasible steady-states to (xr, ur) ∈ X× U.

The resulting MPC problem for reference tracking Ptr
N(x) is then given by:

Problem Ptr
N(x) [MPC for reference tracking]

V tr
N (x,u, xs, us, xr, ur) !

N−1
∑

i=0

l(xi − xs, ui − us) + Vf(xN − xs) + Vo(xr − xs, ur − us)

(5.13a)

V tr∗
N (x, xr, ur) = min

x,u,xs,us

V tr
N (x,u,xs, us, xr, ur) (5.13b)

s.t. xi+1 = Axi +Bui, i = 0, . . . , N − 1 , (5.13c)

(xi, ui) ∈ X× U, i = 0, . . . , N − 1 , (5.13d)

xN ∈ X tr
f (xs, us) , (5.13e)

(xs, us) ∈ Θ , (5.13f)

x = x0 , (5.13g)

where (xs, us) denotes the artificial steady-state, (xr, ur) is the desired target steady-
state and Vo(xr − xs, ur − us) is the tracking offset cost.

Θ ! {(xs, us) | xs ∈ intX, us ∈ intU, (A− I)xs +Bus = 0} (5.14)

is the set of feasible steady states and X tr
f (xs, us) is an invariant terminal target set for

tracking that is parameterized by the artificial reference (xs, us). Problem Ptr
N(x) im-

plicitly defines the set of feasible control sequences U tr
N (x, xs, us) ! {u | ∃ x s.t. (5.13c)−

(5.13e), (5.13g) hold} and feasible initial states X tr
N ! {x | ∃ (xs, us) ∈ Θ s.t. U tr

N (x, xs, us)
2= ∅}. Note that we use a slightly different formulation in the problem statement of
Ptr
N(x) than proposed in [LAAC08], which does not employ a parametrization of the

steady-state (xs, us).

The resulting MPC control law for tracking is given in a receding horizon fashion by:

κtr(x) = utr∗
0 (x) , (5.15)
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where utr∗(x) is the optimal solution to Ptr
N (x).

In order to show stability and convergence of the MPC scheme for tracking, Assump-
tion 5.3 is adapted to the new problem setup.

Assumption 5.9. It is assumed that for a given (xs, us) ∈ Θ, Vf(x−xs) is a Lyapunov
function in X tr

f (xs, us) satisfying Assumption 5.3 and that X tr
f (xs, us) is a PI set for the

nominal system (4.4) under the local control law for tracking κtr
f (x) = K(x− xs) + us

containing xs in its interior, which can be stated as the following conditions:

A3: X tr
f (xs, us) ⊆ X, xs ∈ intX tr

f (xs, us),
Ax+Bκtr

f (x) ∈ X tr
f (xs, us), κf(x) ∈ U ∀x ∈ X tr

f (xs, us) .

Assumption 5.10. It is assumed that Vo(·, ·) : Rn × Rm → R is a convex function,
V (0, 0) = 0 and there exists a K-class function αo(·) such that Vo(x, u) ≥ αo(‖x‖).

Convergence of the closed-loop system to the steady-state (xr, ur) is then provided by
the following theorem.

Theorem 5.11 (Convergence of κtr(x), [LAAC08]) Consider Problem Ptr
N(x) ful-

filling Assumptions 5.9 and 5.10. The closed-loop system x(k+1) = Ax(k)+Bκtr(x(k))

converges to xr ∀x ∈ X tr
N , i.e. xr is asymptotically stable with region of attraction X tr

N .

A further advantage of the described tracking scheme is that it provides an enlarged
domain of attraction compared to a standard MPC approach for reference tracking,
i.e. X tr

N ⊇ XN , due to the use of an artificial reference and corresponding target set
[LAAC08]. The tracking approach can be directly combined with the tube based robust
MPC method described in Section 5.3.1, which was presented in [ALA+07].

Choice of the Offset Cost Vo(·, ·):
In order for problem Ptr

N(x) to be cast as a convex optimization problem, the offset cost
and the terminal set have to be chosen appropriately.

We consider two main choices for the offset cost:

• the sum of weighted l1- or l∞-norms: Vo(x, u) = ‖Txx‖p + ‖Tuu‖p, where p ∈
{1,∞} and Tx ∈ Rnx×nx and Tu ∈ Rnu×nu are nonsingular matrices,

• the sum of quadratic costs: Vo(x, u) = xTTxx + uTTuu, where Tx ∈ Rnx×nx and
Tu ∈ Rnu×nu are positive definite matrices,

or a combination of the two options. While a quadratic offset cost can be beneficial
especially if the MPC cost is quadratic, an l1- or l∞-norm provide an exact penalty
function for an appropriately chosen weight and can thereby enforce the optimal be-
havior of the system, i.e. (xtr∗

s utr∗
s ) = (xr, ur), wherever the given reference is feasible
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and can be enforced. This is sometimes referred to as the local optimality property in
the literature. The use of l1- or l∞-norms for the offset cost and its consequences are
described in more detail in [FLA+09].

Computation of the Terminal Set for Tracking Xf (xs, us):

The authors in [LAAC08] propose a method to compute a polytopic invariant set
for tracking Xf(xs, us), by using a parametrization of the steady-state capturing the
dependence of xs and us through the steady-state equation in (4.6). We describe a
slight modification of this approach in the following that we feel is more transparent.

Using the local control law κtr
f (x) in Assumption 5.9 the closed-loop system is given

by
x+ − xs = (A +BK)(x− xs) ,

i.e. we obtain the same closed-loop dynamics considered in Assumption 5.3 for the
regulation case for the shifted system x−xs. The main difference is in the constraints,
which are now dependent on the steady-state (xs, us).

Consider that the steady-state is parameterized by the parameter θ as described
in Section 4.1: xs = Mxθ, us = Muθ. One possibility to compute the invariant set
X s

f (xs, us) is to consider the augmented system vT = [∆xT θT ], where ∆x = x − xs,
with the closed-loop dynamics

v+ = Av,Kv, where Av,K =

[

A+BK 0
0 I

]

. (5.16)

Condition A3 in Assumption 5.9 can then be reformulated as

Ωf ⊆ Vα, v+ ∈ Ωf ∀ v ∈ Ωf ,

where Vα = {(∆x, θ) | (∆x + Mxθ) ∈ X, K∆x + Muθ ∈ U,Mxθ ∈ αX,Muθ ∈ αU}
ensures satisfaction of the state and input constraints for some positive parameter
α ∈ (0, 1) providing that (xs, us) is in the interior of X × U. An invariant set Ωf can
then be computed using standard methods, see the discussion at the end of Section 5.2.

The terminal set for tracking X s
f (xs, us) is directly obtained from Ωf using the re-

lationship θ = MT
x xs + MT

u us. For a polytopic set Ωf , the terminal set for tracking
results in a polytopic set of the form

X s
f (xs, us) ! {x | Gx ≤ f − fxxs − fuus}

and problem Ptr
N(x) can be transformed into a standard LP or QP (under the previously

described choice of Vo(·, ·)).
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The authors in [LAAC08] propose the computation of the maximal state and input
admissible invariant set for a similar augmented system, which in our case is given by
Ov

∞,α = {v | At
v,Kv ∈ Vα, t ∈ N}. For any α ∈ (0, 1) this set is finitely determined,

i.e. determined by a finite recursive procedure, and results in a polyhedron [GT91].
Note that for α = 1 it would not be finitely determined due to the unitary eigenvalues
of Av,K . It further holds that αOv

∞ ⊂ Ov
∞,α ⊂ Ov

∞,1 [LAAC08].

The computation of an invariant set for tracking will be further discussed in Chapter 8
and in the context of soft constraints in Chapter 9.
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The computation of a model predictive control law, as described in Chapter 5, amounts
to the solution of a convex optimization problem at each sampling instant. Reliable
general purpose solvers are available for this class of optimization problems and clas-
sically MPC problems are solved by directly applying one of the optimization routines
online, which has, however, restricted the applicability of MPC to slow dynamic pro-
cesses. In recent years, various methods have been developed with the goal of enabling
MPC to be used for fast sampled systems, which are called fast MPC methods in the
following. These approaches can generally be classified into two main paradigms: ex-
plicit MPC and online MPC methods. We will give an overview of the main ideas
presented in the literature in the following, with an emphasis on online MPC methods,
which are relevant for the work presented in Chapters 7 and 8.

6.1 Explicit MPC

The goal of explicit MPC is to remove the main limitation of MPC, namely the solution
of an optimization problem online, and move the computational burden offline. The
optimal control action is determined as a function of the state for a given pre-defined
(compact) set, the so-called explicit solution, which can be computed by means of
parametric programming methods (see Section 3.1). It has been shown that in special
cases when the parametric optimal control problem can be formulated as a parametric
LP or QP of the form (3.26) or (3.27), which is e.g. obtained for the MPC problem
PN(x) described in Section 5.1 with a quadratic or linear norm cost, the resulting
optimal control law is a piecewise affine function of the state x defined over a polyhedral
partition P of the feasible set of states [BBM02,BMDP02]:

u∗
0(x) ! F jx+ gj, if x ∈ Pj ∀ Pj ∈ P . (6.1)

Algorithms for computation of the parametric solution to these problem classes in the
context of model predictive control are presented in [Bor03,BMDP02,Bao02,TJB03a]
for parametric QPs (pQPs) and in [Sch87,BBM02,BBM03,JBM07] for parametric LPs
(pLPs). A method to solve parametric QPs and LPs based on linear complementarity
problem reformulations is proposed in [JM06].
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The explicit control law in (6.1) can be stored as a lookup table. This reduces the
online computational effort to locating the measured initial state in the polyhedral
partition P, the so-called point location problem, and an affine function evaluation.
The main online effort is given by the point location, which depends on the complexity
of the partition, i.e. the number of state-space regions over which the control law is
defined, and has to be performed efficiently in order to obtain high-speed computation
times. This topic is discussed in [BBBM08,TJB03b, JGR06,WJM07] and the recent
work [NFJM10]. A good survey on explicit MPC can be found in [AB09].

Advantages

By pre-computing the optimal solution, explicit MPC can provide extremely high sam-
pling rates, enabling MPC to be used for high-speed systems. In addition, the explicit
solution offers the main advantage that control-relevant properties such as closed-loop
feasibility, stability, robustness and performance of the MPC control law can be certified
in a post-processing analysis, which is of particular interest in safety critical applica-
tions. In addition, the look-up table offers an easy and cheap implementation.

Disadvantages
Both the computation time and the complexity of the partition grow in the worst case
exponentially with the problem size (length of the prediction horizon, dimension of
the states and inputs, number of constraints) due to the combinatorial nature of the
problem [BBM02]. This limits the applicability of explicit MPC to relatively small
problem dimensions. If the explicit solution can be computed, it can still be highly
complex, which may prohibit its application due to restricted storage space and online
computation time.

This has given rise to an increasing interest in the development of new methods to
approximate explicit solutions. The following section gives an overview of some of the
various approaches in the literature, see also the survey in [AB09].

Approximate Explicit MPC

Approximate explicit methods inherit the advantages of optimal explicit MPC while
trying to eliminate the main disadvantage and reduce the complexity of the explicit
solutions. They can generally be classified into two groups: techniques post-processing
the optimal explicit solution and methods that directly allow for sub-optimality during
its computation. In the first category, [GTM08] derive a minimal representation of the
explicit solution that is obtained by optimally merging regions with the same affine
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control law. In [CZJM07], the number of regions is reduced by eliminating regions as
long as stability can be guaranteed using a neighboring control law. Post-processing
techniques suffer from the main disadvantage that they are based on the optimal para-
metric solution, which might be prohibitively complex and can often not be computed.

Direct methods in turn do not require the explicit solution and generally offer a higher
reduction in complexity than post-processing methods. In [BF03] a sub-optimal solu-
tion to the pQP is obtained by relaxing the KKT conditions, which is shown to result
in reduced complexity solutions. Determination of an approximate explicit solution by
means of recursive rectangular partitions of the state space is proposed in [JG03,Joh04]
and using simplicial partitions in [BF06]. The more recent approach in [SJLM09] is
conceptually similar to [Joh04] but improves the approach by providing an approximate
control law through barycentric function interpolation allowing for an evaluation of fea-
sibility and stability. The method in [GM03] solves MPC subproblems of horizon length
N = 1 sequentially and similarly [GKBM04] is based on a minimum-time control ap-
proach. Approximate pLP solutions obtained by relaxing optimality within a predefined
bound using a dynamic programming formulation are proposed in [LR06]. [JBM07]
present an approximation method for pLPs based on the beneath/beyond (B/B) algo-
rithm, which is extended to generic convex cost functions in [JM10], where the compu-
tation of inner and outer polyhedral approximations is proposed using a modification
of the double description method. In [PRW07], a complexity reduction is achieved
by means of partial enumeration of all possible combinations of active constraints after
identifying the most important combinations of active constraints in off-line simulation.
A combination of this approach with [CZJM07] is presented in [AB09]. [JM09] propose
a method for directly approximating the non-convex optimal control law rather than
the optimal cost function based on bilevel optimization.

Approximate explicit MPC methods successfully reduce the complexity of explicit
approaches and have the advantage of providing verifiable approximate solutions that
can be analyzed for stability and performance in a post-processing step. All described
approaches are, however, still limited to smaller and medium problem dimensions due
to the inherent explicit character of the algorithms. In addition, even though a desired
complexity can be imposed for some of the methods, an explicit solution providing
stability or a pre-specified performance is likely to be highly complex or may even be
intractable. In order to address these issues, there has been a reconsideration of online
approaches and the development of fast online MPC methods, which will be discussed
in the next section.
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6.2 Fast Online MPC

Online MPC methods have the significant advantage that they can be applied to all
problem dimensions. The challenge is their application to high-speed systems requiring
very fast sampling rates. Various approaches trying to reduce the computation time in
online MPC have been proposed recently. Many methods are based on the idea that
a significant reduction of the computational complexity can be achieved by exploiting
the particular structure or sparsity of the optimization problem that is inherent in the
MPC problem. Considerable computational savings can also be achieved by means of
so-called warm-start techniques trying to reduce the total number of iterations to the
optimal solution by starting the optimization from a good initial point. In the context
of MPC, this idea is motivated by the fact that a sequence of similar optimization
problems is solved, suggesting that the solution computed at one time instant shifted
one step forward can be a good initial approximation for the solution at the next time
instant.

An overview of some of the ideas proposed in the literature is given in the following,
organized by the employed optimization method. The focus is on the case of linear MPC
with a quadratic or linear norm cost and fast MPC schemes based on interior-point
and active set methods, the two currently most prominent iterative algorithms, whose
properties with respect to computational complexity and warm-starting are outlined. A
comparison between active set and interior-point methods is also provided in [BWB00,
HNW08].

6.2.1 Interior-Point Methods

Interior-point methods (IPMs) are of polynomial complexity, which means that the
effort for finding a solution to the optimization problem or for finding a certificate for
the non-existence of a solution grows polynomially with the size of the optimization
problem and the required accuracy of the solution [NN94]. In practice, IPMs generally
require a small number of online iterations, where each iteration is computationally
expensive, since the matrices for the Newton step computation have to be re-factored at
every iteration. A significant reduction in the computational complexity can therefore
be achieved by exploiting structure and sparsity and fast MPC methods are usually
applied to the sparse formulation of the MPC problem. Interior-point methods are
generally difficult to warm-start, since they can only benefit from a starting point
close to the central path [YW02], whereas the initialization obtained from shifting
the previous MPC solution is often located close to the constraints. It is therefore
unclear how a good initial warm-start can be obtained. The shifted solution is often
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still applied to warm-start the IPM when solving an MPC problem, in order to avoid
the computation of an initial feasible starting point in a so-called Phase I procedure.

The main effort in an interior-point method is the computation of the Newton step
and all fast MPC approaches using IPMs described in the following focus on the efficient
solution of this linear system, which, by column/row reordering, can be shown to be
banded or have block structure, see e.g. [RWR98].

In early works, optimal control problems and their structure were investigated in an
interior-point framework [DB89,Wri93, Ste94,LMF96,Wri97a]. By efficiently comput-
ing the Newton step using block factorization/Riccati recursions, the computational
complexity is reduced from O(N3(nu + nx)3) growing cubic with the horizon length to
O(N(nu+nx)3) growing linearly with the horizon, where nu and nx denote the number
of input and state variables. In [RWR98] this approach is tailored to the MPC applica-
tion using an IPM based on Mehrotra’s algorithm [Meh92]. The results are shown for a
quadratic MPC formulation including a terminal constraint as well as soft constraints.
This tailored method achieves computation times that are about 10 times faster than
methods not exploiting the structure. The difficulty of warm-starting is discussed and
the authors suggest to use an earlier iterate of the IPM from the previous time instant
rather than the optimal one or a well-centered point as an initial solution. An exten-
sion of the QP method in [RWR98] to the robust output tracking problem is presented
in [VBN02].

[GB98] investigate the use of interior-point methods for large-scale linear and non-
linear programming. A tailored IPM for robust optimal control problems resulting
in robust QP formulations is developed in [Han00], which is based on the use of an
iterative solver in conjunction with a Riccati-recursion invertible pre-conditioner to
compute an approximate search direction. In [ART03] a primal-dual IPM is applied
for the solution of large-scale conic quadratic optimization problems, which is based on
Mehrotra’s method and employs sparse linear algebra for computational efficiency. A
method based on Riccati recursions for the efficient solution of robust control problems
with a quadratic cost and bounded disturbances resulting in a block-bordered form is
proposed in [GKR08].

[WB10] present an infeasible start primal barrier Newton method for fast MPC
that is terminated after a fixed number of steps. A tailored solver was developed that
exploits the sparse structure of the MPC problem by using block elimination and a
block factorization of the block tri-diagonal Schur complement, requiring a complexity
of O(N(nu+nx)3) per iteration. A variant of the primal barrier interior-point method is
proposed, where the barrier parameter is fixed to a predefined value instead of gradually
decreasing it to zero. A standard warm-starting strategy employing the shifted solution
from the previous time step is applied. The method is available as the fast_mpc
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package [WB08].

6.2.2 Active Set Methods

For active set methods (ASMs), there only exists an exponential worst case bound on
the computational complexity, as was shown by the famous Klee and Minty example in
the context of linear programming [KM82]. Active set methods usually require a larger
number of online iterations, but each iteration is computationally less expensive than an
interior-point iteration. The KKT matrix depends on the working set and only changes
by adding or removing active constraints that are represented by rows and columns in
the matrix. It is therefore not necessary to re-factor the matrix at each iteration, but
instead cheap updates of the factorization can be performed. The active set method
can either be applied to the sparse formulation and the banded structure be exploited
in the updates, or to the dense formulation, which reduces the number of optimization
variables and equality constraints and thereby also the computational effort. The
benefit of either approach depends on the particular problem and is influenced e.g. by
the number of constraints that are likely to be active. In contrast to interior-point
methods, active set methods can take advantage of a feasible starting point with an
active set that is close to the optimal active set. They are therefore considered well
suited for warm-starting the MPC problem with the shifted solution computed at the
last time instant, assuming that the active set does not change much for small changes
of the parameters given by the state.

Similarly to the Newton step in an interior-point method, the main effort in an
active set procedure is given by the solution of the KKT system for computing the step
direction, which also results in a banded or block structured matrix for the sparse MPC
formulation. Most fast MPC methods based on an active set approach are therefore
concerned with the efficient computation of the step direction, where some are based
on the dense and others on the sparse MPC formulation.

Very early results already show that the factorization of a structured Lagrangian
for an optimal control problem in an active set framework yields a Riccati recursion
[GJ84, ATW94] and can therefore be solved with a computational complexity that
grows linearly with the horizon length N if the sparse problem formulation is used. In
[BBBG02,BB06] a dual active set method is developed for solving large-scale structured
QPs, where the active set updates are computed using a Schur complement strategy.
An object oriented implementation called QPSchur is described in which the Hessian
and constraint normals can be defined and implemented in a flexible manner allowing
for the exploitation of problem-specific structure.

The method presented in [FBD08] is a warm-start based homotopy approach exploit-
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ing the piecewise affine structure of the optimal explicit solution. The KKT system
obtained from the dense problem formulation is solved using a nullspace approach
which requires O((Nnu)2) operations per active set change. The implementation of the
method qpOASES can be found at [FBD09]. [CLK08] propose a quadratic programming
solver for an input constrained MPC problem with terminal state constraints, where
the matrix factorizations are replaced by recursions of state and co-state variables
using Pontryagin’s minimum principle, thereby reducing the number of optimization
variables. An ASM using Riccati recursions is applied to solve the resulting equality
constrained problems, leading to a complexity per iteration that grows linearly with
the horizon length. The method can take advantage of warm-starts provided by the
previous MPC solution. In [MD08] a non-feasible ASM for QPs is developed, reducing
the number of iterations by updating the active set in blocks instead of using single
updates. Active set changes on early stages of the control vector are considered with
higher priority with the goal of increasing the quality of the applied control input in
early steps of the method.

6.2.3 Other Methods

Apart from interior-point and active set methods, the following approaches have been
proposed in the literature for fast computation of the MPC problem.

A dual gradient projection method for QPs is proposed in [AH08]. The method
is similar to an active set method but allows for large changes of the working set at
each iteration, thereby reducing the number of iterations in comparison with active set
methods. The good warm-start properties of active-set methods are inherited and it
is shown how all computations of major complexity can be tailored to the structure
of MPC problems. In [KRS00] an augmented autonomous formulation of the system
dynamics is proposed allowing one to impose a stabilizing constraint at the current
time step rather than at the end of the horizon. Together with the use of ellipsoidal
invariant sets this results in a QCQP that can be solved efficiently. The solution
by means of a Newton-Raphson method is investigated in [KCR02], which together
with [LKC10] provide further improvements and aim at removing the conservatism
in the original approach. An algorithm that copes with time-varying computational
resources by sequentially computing the components of the control input sequence is
presented in [Gup09].

[RJM09] employ the fast gradient method with optimal first order convergence rates
introduced in [Nes83] for the solution of MPC problems with input constraints. A priori
bounds on the number of iterations to achieve a certain solution accuracy for warm- and
cold-starting techniques are derived and ensure certified computation at high sampling
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rates. The approach presented in [PSS10] reduces the solution of the MPC problem to
the solution of an unconstrained minimization of a convex quadratic spline, which is
solved by applying a local Newton method without particularly exploiting the structure
of the MPC problem. The method is compared to existent QP solvers using a series of
benchmark problems.

6.2.4 Conclusions

All previously presented fast online MPC approaches show that the computation times
for solving an MPC problem can be pushed into the range where online optimization
becomes a reasonable alternative for the control of high-speed systems. There are,
however, several limitations in the present approaches. The generally applied warm-
start in MPC given by the input sequence computed at the previous state measurement
is often an infeasible solution at the current time instant due to disturbances acting on
the system. In addition, it is generally not possible to run the optimization procedure
to optimality in a real-time setting but the optimization has to be terminated early
when the time constraint is hit. Apart from [RJM09], where an a-priori bound on
the runtime to achieve a certain solution accuracy is provided, all of the described fast
online MPC methods sacrifice feasibility and/or stability guarantees in such a real-time
environment. These limitations are addressed by the real-time methods presented in
the following Chapters 7 and 8.



7 Real-time MPC Using a

Combination of Explicit MPC

and Online Optimization

7.1 Introduction

As discussed in the survey in Chapter 6, both the explicit and online MPC methods
relying on optimality of the solution have limitations. The main disadvantage of a
standard online approach is that it is in general only applicable for controlling slow
dynamic processes. In the case of the explicit solution, the number of state-space regions
over which the control law is defined, the so-called complexity of the partition, grows in
the worst case exponentially due to the combinatorial nature of the problem [BBM02].
This has given rise to an increasing interest in the development of new methods to
either improve online optimization (e.g. [Han00,KCR02,ART03,FBD08,WB10,CLK08,
PSS10]) or to approximate explicit solutions (e.g. [RWR98,LR06,YW02,BF03, JG03,
BF06, JBM07]). Depending on the particular problem properties and implementation
restrictions, the user then has to decide for one of the two approaches.

This work aims at enlarging the possibilities to tradeoff solution properties through
the combination of these two methods. It aims at an existing gap of problem sizes and
types, which are either intractable for explicit MPC or the complexity of the explicit
solution exceeds the storage capacity, but where an online MPC solution cannot meet
the required online computation times. Specifically, ideas from approximation are
combined with warm-start techniques. In this work we use a PWA approximation
of the optimal control law that has been computed offline to warm-start the online
optimization. The optimization executes a finite number of active set iterations before
returning a feasible, suboptimal control action, which is then applied to the system.
The goal is to choose a good tradeoff between the complexity of the PWA approximation
and the number of active set iterations required in order to satisfy system constraints in
terms of online computation, storage and performance. Conditions are derived which
guarantee that the suboptimal solution is closed-loop stabilizing, feasible and has a
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bounded performance deterioration. The provided analysis has the important benefit
that it is not based on the optimal parametric solution to the MPC problem, which
may be prohibitively complex.

We also raise the question of an optimal combination of warm-start and online com-
putational effort, with respect to certain requirements on the solution. Considering
computation time and performance as two exemplifying requirements, this can be in-
formally stated in the form of the following optimization problems:

1. Minimize online computation time while respecting a bound on the performance
deterioration.

2. Maximize performance within the available online computation time.

The outline of this chapter is as follows: We first introduce some preliminary results
and then present the main idea of using an offline approximation to warm-start an
active set linear programming procedure in Section 7.3. An explicit representation of
the proposed control law is derived in Section 7.4 and in Section 7.5 a preprocessing
method is introduced that allows for an analysis of the properties of the control input
that will be applied online. The question of an optimal combination between warm-
start and online computation is discussed in Section 7.6 and finally, we illustrate the
proposed method and ideas using numerical examples in Section 7.7.

7.2 Preliminaries

Consider the nominal MPC problem PN(x) in (5.1) with a linear norm cost given by
(5.3) satisfying Assumption 5.3. If the norm p is taken to be the 1− or the ∞−norm,
we can write (5.1) as a parametric Linear Program (pLP) of the form:

z∗(x) = argmin
z

cT z (7.1a)

subject to GIz ≤ fI , (7.1b)

GEz = FEx , (7.1c)

where z ∈ Rnz is a vector containing the sequence of control inputs [u0, . . . , uN−1],
states [x1, . . . , xN ] and appropriate slack variables introduced to rewrite the state and
input penalties as a linear cost. The current state x ∈ Rnx is the parameter, G ∈
Rm×nz , E ⊂ {1, · · · , m} and I = {1, · · · , m} \ E . For a description of how the optimal
control problem in (5.1) is transformed into the pLP (7.1), i.e. how the state and input
constraints, the dynamics and the cost are converted into GI , GE , fI , FE and c, see
e.g. [Bor03]. (Note that for simplicity we use the same indexing for f and F as for G
although we distinguish the vector f from the matrix F in order to account for the
different dimension).
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Definition 7.1. Let z be the vector of decision variables in (7.1). We define π :

Rnz → Rnu to be a linear mapping that returns the first control input u0 contained as
a component in z.

By solving the pLP (7.1) the optimal solution z∗(x) can be computed for each feasible
value of the state x ∈ XN . The implicit optimal MPC control law is then given in a
receding horizon fashion by κ(x) = π(z∗(x)).

Remark 7.2. Note that in this work the 1− or ∞−norm is chosen to penalize the
states and inputs in the cost function (5.1a) instead of the commonly used 2-norm, as
the resulting pLP (7.1) allows for an exact analysis of the control law obtained by the
proposed procedure, as will be shown in Section 7.4.

Theorem 7.3 (Solution to the MPC problem, [BBM02,MRRS00]) Consider

Problem PN(x) in (5.1) fulfilling Assumption 5.3. The optimal value function V ∗
N(x)

is a continuous PWA Lyapunov function of the state x defined over the feasible set
XN . There exists an optimizer function z∗(x) that is a continuous PWA function of x

defined over XN . The closed-loop system x(k+1) = Ax(k)+Bκ(x(k)) is asymptotically
stable with region of attraction XN .

Remark 7.4. Note that even in the case of dual degeneracy, there always exists a
polyhedral partition such that the optimizer z∗(x) in (7.1) and thereby the optimal
control law κ(x) is unique and continuous in XN [BBM02]. Continuity of κ(x) is,
however, not a required assumption for the proposed method.

Approximation of the MPC Problem

We first define an approximation of the MPC problem (5.1) and some useful properties
that will be used in Section 7.5 in order to give guarantees on the control law proposed
in this work. Let z∗(x) be the optimizer of the optimal control problem (7.1) and
V ∗
N(x) = cT z∗(x) be the corresponding optimal cost and a Lyapunov function for the

closed-loop system x(k + 1) = Ax(k) +Bκ(x(k)).

Definition 7.5 (Feasibility). A function z̃ : Rnx → Rnz is called feasible for (7.1) in
XN , if it satisfies the constraints in (7.1b) and (7.1c) for all x ∈ XN .

The approximation error is defined as follows:

Definition 7.6 (Approximation error). Let z̃(x) be a suboptimal solution to (7.1).
A function κ̃(x) = π(z̃(x)) is called an approximate control law for (5.1) if z̃(x) is
feasible for (7.1) in XN . The approximate control law κ̃(x) is an ε-approximation if for
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all x ∈ XN the condition Ṽ (x) − V ∗
N(x) ≤ ε is satisfied, where Ṽ (x) ! cT z̃(x) and ε is

the smallest value satisfying this inequality.

Remark 7.7. If z̃(x) is feasible for (7.1) in XN , then κ̃(x) = π(z̃(x)) ∈ U and x(k+1) =
Ax(k) +Bκ̃(x(k)) ∈ XN for all x ∈ XN .

Remark 7.8. The approximation error ε denotes the worst accuracy over the feasible
set XN and is hence uniform while the accuracy of the approximate cost Ṽ (x) is varying
with x.

A standard condition to test if an approximate solution is stabilizing is given by the
following theorem:

Theorem 7.9 (Stability under κ̃(x)) Let κ̃(x) be an approximate control law of

(5.1). The optimal value function V ∗
N(x) is a Lyapunov function for the closed-loop

system x(k + 1) = Ax(k) +Bκ̃(x(k)) if

Ṽ (x)− V ∗
N(x) ≤ ρl(x, κ̃(x)), for all x ∈ XN and some ρ ∈ [0, 1) , (7.2)

where l(·, ·) is the stage cost in (5.1a), and the closed-loop system x(k+1) = Ax(k) +
Bκ̃(x(k)) is asymptotically stable with region of attraction XN .

Proof. The result can be obtained from the proof of Theorem 1 in [JM09]. "

7.3 Proposed Control Law

In order to overcome the limitations of the offline and online methods mentioned in the
introduction, several authors recently proposed new approaches to speed up online op-
timization or to reduce the complexity of explicit solutions by means of approximation.
The authors in [RWR98,WB10] for example utilize new developments in interior-point
methods and show how these can be applied to efficiently solve the optimal control
problem. Another paradigm that is frequently applied to improve online optimization
is warm-starting (see e.g. [YW02, FBD08]). In explicit MPC, approximation meth-
ods have been proposed that either modify the original MPC problem (5.1), retrieve
a suboptimal solution or postprocess the computed optimal solution, with the goal of
reducing the complexity of the explicit controller, see e.g. [BF03,BF06, JBM07, JG03]
and Section 6.1 for an overview of methods in the literature. All of the cited explicit
approximation methods provide an approximate control law and allow verification of
closed-loop stability by means of Theorem 7.9 for some minimally required complexity.
Almost all currently available online MPC methods, however, lack the possibility of
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giving guarantees on the suboptimal solution, e.g. closed-loop stability or feasibility, in
a real-time setting.

The strategy proposed in this chapter combines the idea of offline approximation with
warm-start techniques from online optimization with the goal of providing hard real-
time, stability and performance guarantees. Warm-start techniques aim at identifying
advanced starting points for the optimization in order to reduce the number of iterations
required to reach the optimum. They often try to make use of the information gained
during the solution of one problem to solve the next one in a sequence of closely
related problems. When solving MPC problems in a receding horizon fashion an LP is
computed for every measured state. However in practice, the optimal control sequence
from a previous measurement might be an infeasible solution to (5.1) at the current
time instance, due to disturbances acting on the system. We therefore propose a warm-
start strategy that utilizes a PWA approximation of (7.1) to provide a good and feasible
starting point. The pre-knowledge of the initial solution for all feasible values of the
state x allows us to analyze the solution obtained by the online optimization.

The following two parameters are used to classify the warm-start solution: the com-
plexity NP (number of regions) and its approximation error ε, given by Definition 7.6.

Definition 7.10 (Warm-start Solution). A function ν(x,NP ) is called a warm-
start solution of (7.1) if π(ν(x,NP )) is a feasible, PWA approximate control law of
(5.1) defined over NP polytopic regions.

Lemma 7.11 There exists a function ν(x,NPopt) of finite complexity NPopt ∈ N, such
that z∗(x) = ν(x,NPopt) for all x ∈ XN , where z∗(x) is the optimal solution to (7.1).

Proof. Result follows directly from the fact that the approximation is PWA and
Theorem 7.3.

By means of the parameter NP requirements can be set on the complexity of the warm-
start solution ν(·, NP ) that is computed and stored in an offline preprocessing step.

Remark 7.12. As was shown in [JBM07] there exists an analytical relation between
the approximation error ε and the complexity NP of a PWA offline approximation.
Requirements on the approximation error can therefore also be imposed using the
parameter NP .

In the online control procedure, the warm-start solution is evaluated for the measured
state and used to initialize the online optimization. A standard active set method
(ASM) is applied to compute the control action since it allows us to take advantage
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of a feasible starting point that is not necessarily located at a vertex. As described in
Section 3.1, active set methods generate a sequence of feasible iterates that converge
to the optimal solution. At each iterate z, the active set is given by A(z) defined
in Definition 3.3. In an active set iteration, a subset of the active set is chosen as
the working set W ⊆ A(z) using standard heuristics. From the current iterate z, the
maximal step in the search direction is then computed, which is the direction that
minimizes the objective in (7.1) while keeping the constraints in W active.

Assumption 7.13 (Non-degeneracy). It is assumed that the active set is
non-degenerate, i.e. the active constraints are linearly independent.

Note that it is possible to extend the approach to degenerate cases by using one of the
standard approaches for anti-cycling (e.g. [Wol63, Bla77, GMSW89]) or lexicographic
perturbation (e.g. [Mur83]) in active set methods.

Whereas in standard active set methods iterations are performed until the optimality
conditions are met, the online optimization procedure is stopped early after exactly K
active set iterations and the current suboptimal control input is applied to the system.

Definition 7.14 (Warm-start optimization). Let z̃(x) be a feasible solution of (7.1)
for the parameter x. We define σ(z̃(x), K) to be the decision variable of (7.1) after K
iterations of the linear programming active set method starting from the point z̃(x).

Definition 7.15 (Proposed control law). Let ν(·, NP ) be a warm-start solution to
(7.1) and σ(·, K) be as defined in 7.14. The proposed control law is

κon(x) = π(σ(ν(x,NP ), K)), for x ∈ XN . (7.3)

Lemma 7.16 (Properties of σ(·, ·)) The proposed control law (7.3) is feasible for
all x ∈ XN , and for each NP there exists a finite Kopt ∈ N, such that
κ(x) = π(σ(ν(x,NP ), Kopt)) .

Proof. Feasibility is ensured by the procedure of the ASM and the fact that ν(x,NP ) is
feasible for all x ∈ XN . The existence of a finite Kopt is guaranteed by the convergence
of the ASM in finite time [Fle87,NW06]. "

The warm-start linear programming procedure for a fixed complexity NP and num-
ber of iterations K is summarized in Algorithm 1. In Section 7.5 an offline analysis
is introduced providing guarantees for the proposed control law κon(x) in (7.3) to be
closed-loop stabilizing, feasible and to have a bounded performance deterioration com-
pared to the optimal solution.
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Algorithm 1 Warm-start linear programming procedure
Input: Warm-start solution ν(·, NP ) and current measured state xmeas

Output: Approximate control input κon(xmeas)

1: run point location algorithm: z̃ = ν(xmeas, NP )
0 [BBBM08,TJB03b,JGR06,WJM07]

2: for k = 1, · · · , K do
3: perform an active set iteration 0 [GMW82,Fle87]
4: update iterate z̃

5: end for
6: κon(xmeas) = π(z̃)

The above described procedure of using an approximation to warm-start an online
optimization offers the possibility to decide on the complexity and approximation er-
ror of the warm-start solution ν(·, ·). A tradeoff can be made between the degree of
approximation realized by the warm-start and the effort expended in online optimiza-
tion. The goal is to identify a good if not optimal combination that achieves the best
properties of the online control input applied to the system for given requirements on
the approximation error and/or limitations on the online computation time or storage.

The proposed procedure and algorithms are detailed in the following sections.

7.4 Parametric Calculation of the Online Control

Law

Our goal is to give guarantees on the proposed suboptimal control law in (7.3). Apart
from feasibility, which is guaranteed by Lemma 7.16, we want to ensure stability and
a certain bound on the approximation error. In order to analyze the solution prop-
erties, we need an explicit representation of the approximate solution σ(·, ·) for the
entire feasible set XN . We will show that starting from the warm-start solution, the
iterative path taken by the active set method is a function of the state x, defined over
a polyhedral subdivision of XN .

Remark 7.17 (Offline Complexity). Note that the complexity (number of regions)
of this subdivision does not affect the actual optimization carried out online, since the
parametric solution is only used for offline analysis.

The operations performed during an active set iteration can be formulated as functions
of the parameter x. Let zk(x) be the iterate and W the working set at the k’th
iteration step. A search direction ∆z from zk(x) is computed that maintains activity
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of the constraints in W . In this work, we use the projection of the gradient c onto the
subspace defined by the constraints in the working set, which corresponds to:

∆z = argmin
∆z

{

cT∆z

∣

∣

∣

∣

GW∆z = 0,
1

2
∆zT∆z = δ

}

, (7.4)

where δ ∈ R≥0 is a scaling parameter.

The steps performed during one active set iteration are outlined in the following (see
e.g. Section 3.1 or [GMW82,Fle87]):

1. Compute step direction by solving the KKT conditions of (7.4)

[

I GT
W

GW 0

] [

∆z
λ

]

=

[

−c
0

]

, (7.5)

where I denotes the identity matrix of size nz × nz and λ are the Lagrange
multipliers.
If ∆z = 0 and λ ≥ 0: Stop with optimal solution z∗(x) = zk(x) .
If ∆z = 0 and at least one λi < 0: Remove constraint a from W , i.e. W = W\{a},
where a = argminj{λj | j ∈ W ∩ I}. Recompute (7.5).

2. Compute maximum step length for which all constraints are satisfied:

τ(x) = min
i∈I\W

{

fi −Gizk(x)

Gi∆z

∣

∣

∣

∣

Gi∆z > 0

}

. (7.6)

3. Update W : W = W ∪ e, where the new active constraint e is the optimizer of
(7.6).

4. Update iterate:

zk+1(x) = zk(x) + τ(x)∆z . (7.7)

Remark 7.18 (ASM). A similar parametric formulation can also be obtained using
a different search direction or any of the other standard implementations found in
the literature; the simplex-type algorithm in [BR85] for instance. For simplicity, the
strategy of adding or removing at most one inequality constraint in each iteration to
or from the working set is considered. Note that E ⊆ W , since the equality constraints
E always have to remain in the working set.

Theorem 7.19 At every iteration k ∈ {1, · · · , K}, the step length τ(x) in (7.6) and

the current iterate zk(x) are PWA functions of x defined over a polyhedral partition
PNk of the feasible set XN .



60 7 A Tradeoff Between Explicit MPC and Online Optimization

Proof. Assume that the statement is true for k and that zk(x) ! Cjx + Dj if x ∈
Pj ∀ Pj ∈ PNk . For one region Pj ∈ PNk the line search (7.6) determining the next
constraint to become active is given by the pLP

τ(x) = min
i
{αi(x)}, with αi(x) =

−GiCj

Gi∆z
x+

fi −GiDj

Gi∆z
, i ∈ Icand

and Icand = {i ∈ I\W | Gi∆z > 0}. This shows that τ(x) is a PWA function of x,
since the optimal cost of a pLP is PWA [GN72,BBM02]. With τ(x) and zk(x) being
PWA, the k+1’th iterate (7.7) is as well a PWA function of x. Since the initial solution
is z0(x) = ν(x,NP ), the statement is true for k = 0 and hence for all k ∈ {1, · · · , K}."

Corollary 7.20 The proposed control law κon(x) is a PWA function of x defined over

a polyhedral partition PNK of the feasible set XN .

With zk(x) being a PWA function, equation (7.6) results in a parametric LP. The
approximate control law at iteration K is obtained by solving (7.5) and (7.6) iteratively
for all k ∈ {1, · · · , K}. With each iteration, the parametric solution of (7.6) causes a
further refinement of the polyhedral partition PNk .

Remark 7.21. Note that the computation of the PWA function τ(x) in (7.6) can be
reduced to redundancy elimination of the halfspaces h(x) ≥ fi−Gizk(x)

Gi∆z . All halfspaces
j ∈ I\W with

Gj∆z > 0,
fj −Gjzk(x)

Gj∆z
≥ fi −Gizk(x)

Gi∆z
∀i 2= j, i ∈ I\W, Gi∆z > 0

are redundant and can be disregarded, the irredundant halfspaces form the PWA para-
metric solution of (7.6). Redundancy elimination problems can be easily solved by
computing one linear program per constraint.

Theorem 7.19 enables us to compute an explicit PWA representation of the approximate
control law σ(ν(x,NP ), K) for a fixed complexity NP and number of iterations K using
Algorithm 2.

Remark 7.22. The parametric calculation of the proposed control law in (7.3) using
Algorithm 2 requires the iterative solution of a parametric program. Although the
computational complexity depends on the properties of the considered control problem
it grows significantly with the problem size. This currently limits the execution of the
offline analysis in practice, where in our experience the biggest problem to be computed
was for a system with 8 states. Note that the warm-start linear programming procedure
is however not affected by this complexity and could still be applied without the rigorous
guarantees provided by the analysis.
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Algorithm 2 Offline Analysis
Input: Warm-start solution ν(x,NP ) = νj(x) if x ∈ Pj ∀ Pj ∈ PNP

Output: Explicit representation of the proposed control law κon(x)

1: initialize stack S = ∅
2: for all Pj ∈ PNP do push (νj(x), Pj) onto S
3: end for

4: for all k ∈ {1, · · · , K} do 0 [K active set iterations]
5: initialize stack Ŝ = ∅
6: while S 2= ∅ do 0 [subdivide each region]
7: pop (zP (x), P ) from S
8: compute ∆z 0 (7.5)
9: compute aj , bj for zP (x), x ∈ P , 0 (7.6)

such that τ(x) = ajx+ bj if x ∈ Rj ∀ Rj ∈ R
0 [R is a polyhedral partition of P ]

10: for all Rj ∈ R do

11: push (zP (x) + (ajx+ bj)∆z, Rj) onto Ŝ
12: end for
13: end while

14: zk(x) ! zk,j(x) if x ∈ Pj ∀ (zk,j(x), Pj) ∈ Ŝ
15: PNk ! {Pj}Nk

j=1 0 [Pj form polyhedral partition PNk ]
16: S = Ŝ

17: end for
18: κon(x) = π(zK(x))

7.5 Analysis of the Proposed Control Law According

to Stability, Suboptimality, Storage Space and

Computation Time

We introduce a preprocessing analysis that investigates the following properties of the
approximate control law κon(x) in (7.3): stability, approximation error, storage space
and online computation time.

Lemma 7.23 (Approximation error of κon(x)) If σ(·, K) ! Cjx+Dj

ifx ∈ Pj ∀ Pj ∈ PNK and κon(x) = π(σ(·, K)) is the proposed control law in (7.3) at
iteration K, then the approximation error defined in Definition 7.6 is given by

εK = max
j∈{1,...,NK}

dj , with (7.8)
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dj = max
z,x

cT (Cjx+Dj)− cT z (7.9)

s.t. GIz ≤ fI , GEz = FEx, x ∈ Pj .

Proof. We first prove that equation (7.9) computes the largest distance between the
approximate and the optimal cost. We take x = x̄ fixed and show by contradiction
that equation (7.9) computes the distance to the optimal cost at x̄. Assume z∗(x̄) is
the optimal solution to (7.1) and zo(x̄) the optimal solution to (7.9) for x = x̄. If
zo(x̄) is not the optimal solution to (7.1), i.e. cT zo(x̄) ≥ cT z∗(x̄), then it follows that
cT (Cj x̄ + Dj) − cT zo(x̄) ≤ cT (Cjx̄ + Dj) − cT z∗(x̄). Therefore zo(x̄) cannot be the
optimal solution to (7.9) at x̄, which proves that zo(x̄) also has to be the optimal
solution to (7.1). Now letting x vary and simultaneously taking the maximum over all
x ∈ Pj gives the worst case distance in Pj. Finally, the biggest error over all x ∈ XN

and hence over all the regions in PNK is the smallest ε that fulfills the condition in
Definition 7.6 for all x ∈ XN . "

Stability can be easily tested using the conditions of Theorem 7.9:

Theorem 7.24 (Stability of κon(x)) Let σ(·, K) ! Cjx+Dj if x ∈ Pj ∀ Pj ∈ PNK

and κon(x) = π(σ(·, K)) be the proposed control law in (7.3) at iteration K. The
closed-loop system x(k + 1) = Ax(k) + Bκon(x(k)) is asymptotically stable with region

of attraction XN , if for some ρ ∈ [0, 1)

max
j∈{1,...,NK}

sj ≤ 0 , with (7.10)

sj = max
z,x

cT (Cjx+Dj)− cT z − ρl(x, κon(x))

s.t. GIz ≤ fI , GEz = FEx, x ∈ Pj .

Proof. Condition (7.10) follows directly from Theorem 7.9. If the difference between
the approximate cost Ṽ (x) ! cT (Cjx + Dj) and the optimal cost V ∗

N(x) is less than
l(x, κon(x)) for all x ∈ Pj and for all the regions Pj in PNK , then the condition in
Theorem 7.9 is fulfilled for all x ∈ XN . "

Whereas condition (7.10) is sufficient to prove stability of the proposed control law at
iteration K, it does not guarantee stability of the control laws at iterations k ≥ K.
However, by using a more conservative condition instead of (7.10) we can modify The-
orem 7.24 in order to ensure stability not only at iteration K but also at all subsequent
active set iterations.

Corollary 7.25 Let σ(·, K) ! Cjx + Dj if x ∈ Pj ∀ Pj ∈ PNK and κon(x) =
π(σ(·, K)) be the proposed control law in (7.3) at iteration K. The closed-loop sys-
tem x(k + 1) = Ax(k) + Bκon(x(k)) is asymptotically stable with region of attraction
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XN for all control laws κon(x) = π(σ(·, k)) for k ≥ K, if for some ρ ∈ [0, 1)

max
j∈{1,...,NK}

sj ≤ 0 , with (7.11)

sj = max
z,x

cT (Cjx+Dj)− cT z − ρlmin(x)

s.t. GIz ≤ fI , GEz = FEx, x ∈ Pj ,

where lmin(x) = minu{l(x, u) | u ∈ U} .

Proof. Follows from Theorem 7.24 and the fact that lmin(x) ≤ l(x, κon(x)). "

Remark 7.26. Note that if the origin is contained in U, then lmin(x) = ‖Qx‖p.

Remark 7.27 (Stability/Performance test). Note that equations (7.10) and (7.11)
compute the maximum distance to the optimal cost plus the stage cost without compu-
tation of the parametric optimal solution to problem (7.1), which can be easily shown
following the first part of the proof of Lemma 7.23. Using Theorem 7.24 or Corol-
lary 7.25 stability of the proposed control law (7.3) can hence be tested without the
need to compute the optimal and potentially complex parametric solution to problem
(7.1).

Storage space is determined by the complexity (number of regions) NP of the warm-
start solution since only the warm-start has to be stored.

Online computation time will be estimated in terms of floating point operations
(flops) for the calculations that have to be performed online. First, the region of the
current state is identified using a point location algorithm (e.g. [BBBM08, TJB03b,
JGR06,WJM07]), then the corresponding affine control law is evaluated and finally K
online iterations are executed.

Remark 7.28 (Sparsity of the MPC problem). In the case of the MPC problem
(5.1), the matrices GI and GE in (7.1) have a special structure, resulting from the
particular problem setup. The matrices are extremely sparse and by reordering can be
shown to be in fact block diagonal or banded. We can exploit the banded structure
of the matrices to solve equations (7.5) and (7.6), achieving significant computational
savings [Wri97a].

Theorem 7.29 (Flop count) If the input and state dimensions are nu and nx, re-
spectively, the number of constraints on each state-input pair is mc, N is the horizon

in (5.1a) and the number of slack variables introduced for each state-input pair to write
problem (5.1) as pLP (7.1) is ns, then the number of flops to calculate the control action
κon(xmeas) for a measured state xmeas can be bounded by:

fon = NPfws + feval +KfASM , (7.12)
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where feval = 2nx(Nnx + nu + ns) ,

fASM = N(nx(82nx + 26mc + 68ns + 11)
+ nu(40nu + 116nx + 56ns + 20mc + 9)

+ ns(12mc + 3)− 3mc)

fws denotes the flop number for point location per region, feval the flops for evaluation
of an affine warm-start solution and fASM the flops per active set iteration.

Proof. The flop counts for active set iterations use the fact that the matrices in (7.1)
have banded structure. An LU factorization and LU updates as described in [Wri97a]
and [FT72] is considered, where L and U have half-bandwidth 5nx + 4nu + mc − 1.
The worst case is taken in form of the maximal number of active constraints. The flop
counts for calculation of the search direction, step length and the next iterate follow
directly from the equations (7.5), (7.6) and (7.7). "

Remark 7.30. The number of flops for point location fws in Theorem 7.29 depends
on the particular point location algorithm used in Algorithm 1, e.g. the one described
in [BBBM08] requires 2nx flops.

The worst-case estimates for the properties of the proposed control law σ(·, K) in
terms of stability, approximation error, storage space and online computation time can
be calculated. For fixed parameters NP and K this allows us to give guarantees on the
properties of the control law that is applied to the system.

Remark 7.31. In the case that one only wants to prove stability for a fixed K, the
analysis can be stopped early after stability is guaranteed for a certain iteration Ks ≤ K
using Corollary 7.25. In the actual warm-start procedure, the online optimization can
then be carried out to K iterations while still guaranteeing stability of the proposed
control law.

Remark 7.32 (Computational effort). Note that the computational effort for Al-
gorithm 2 can be reduced by applying ideas from tree search. A node in the tree
represents a single region and each depth level corresponds to an active set iteration.
Using depth-first-search, for instance, an error bound for the K’th active set iteration
can be derived without calculating the full parametric solution. Since in this case there
are regions for which we infer the solution at the K’th level from an earlier iteration,
we have to employ the more conservative stability test using Corollary 7.25.

7.6 Optimization over the Parameters

In this section we will now try to optimize over the parameters that determine the
applied control input: the complexity NP of the warm-start solution and the number
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of iterations K. The choice of the warm-start solution ν(·, NP ) determines the com-
putational effort for point location fws in (7.12) on the one hand and the quality of
the warm-start on the other and therefore the number of active set iterations required
in order to provide stability and a certain performance. This offers the possibility to
trade off the amount of online computation time spent on the warm-start with that
spent on online optimization. The challenge is to identify an optimal combination of
explicit approximation and online optimization that achieves the best properties of the
applied control input.

We consider the problem of optimizing the online time to compute a control law that
guarantees stability, a certain performance bound εmax and a limit on the storage space
NP,max. Computation time is again measured in the form of flops (7.12), resulting in
the following optimization problem

Fmin = min
NP ,K

NPfws +KfASM (7.13a)

subject to εK ≤ εmax , (7.13b)

NP ≤ NP,max , (7.13c)

(7.10)/(7.11) . (7.13d)

While the exact solution of this optimization problem is not possible with currently
available methods, it can be used as a quality measure to evaluate different combina-
tion possibilities. We demonstrate in the following how the identification of a good
combination can be pursued for a particular offline approximation method.

There are several approximation methods that can be used to create a PWA warm-
start solution (e.g. [JG03,BF06,LR06]). In this work the method introduced in [JBM07]
was chosen that is based on the beneath/beyond (B/B) algorithm, a common approach
for convex hull calculation [BDH96,Grü61]. An approximation Ṽ (x) of V ∗

N(x) in (5.1a)
is constructed by computing the convex hull of a subset of vertices of the epigraph
of V ∗

N(x). The approximation can be iteratively improved by adding one vertex at a
time and updating the convex hull. When all vertices of the polytope are included,
the optimal solution of (5.1) is reached. The approximate control law is obtained by
interpolating between the optimal control inputs at the vertices. The main advantage
of the beneath/beyond method is that it is an incremental approach, allowing one
to set requirements on either the complexity or the error of the approximation Ṽ (x).
In addition, it is based on an implicit rather than on an explicit representation of
the optimal solution and is hence not dependent on the computability of the optimal
parametric solution to pLP (7.1).

Theorem 7.33 (B/B warm-start solution [JBM07]) Given a parameter NP ∈ N
the B/B method returns a feasible PWA approximation ν(·, NP ) of (7.1).
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Remark 7.34. The approximate control law generated by the B/B method is not
necessarily defined over the entire feasible set. For small dimensional problems the B/B
algorithm can be initialized with all the vertices of the boundary of XN , which can be
computed by projection of the feasible set defined by the constraints in (7.1) onto the
x-space, in order to provide a feasible control law for all x ∈ XN . For higher dimensional
problems the method can be extended so that one can reduce the complexity of the
approximation by considering only a subset of XN [JBM07].

The error of a B/B approximation is related to its complexity by the following lemma.

Lemma 7.35 (Complexity/Approx. Error, [SW81,BI75]) Let ν(·, NP ) be an ap-
proximation to (7.1) generated by the B/B method, εBB the approximation error as de-

fined in Definition 7.6 and NP its complexity. For every εBB there exists an NBB ∈ N
such that the approximation error of ν(·, NBB) is less than εBB.

Remark 7.36. Note that whereas the approximation error of a B/B approximation is
monotonically decreasing with every B/B improvement, the complexity might not be
monotonic (see [JBM07]).

Using a B/B approach, problem (7.13) is a function of only the complexity NP of the
warm-start solution. This follows from the fact that for each complexity NP of the
B/B warm-start there exists exactly one minimal number of iterations K to achieve
a certain approximation error εmax. For each NP ≤ NP,max the smallest number of
optimization steps K that satisfies the constraint on the approximation error can be
computed using Algorithm 2. This is the case not only for the B/B method, but for all
offline approximation methods for which there exists a one-to-one relationship between
the approximation error ε and the complexity NP of the PWA warm-start solution.
Since the calculation of B/B approximations and the solution of Algorithm 2 can be
computationally expensive, we propose to solve a subproblem of (7.13), in order to
identify a good combination instead of the optimal one. We use a subset of values for
NP ≤ NP,max and compute the minimal K for each of them. The best combination of
explicit approximation and online optimization is represented by the solution with the
minimum cost value in (7.13a). The samples can then be iteratively refined to improve
the obtained result and approach the optimal solution to problem (7.13).

Remark 7.37. The problem of identifying the optimal combination of explicit ap-
proximation and online optimization to minimize the approximation error subject to
constraints on the online computation time and the storage space can be approached
following the same procedure described for problem (7.13).
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7.7 Numerical Examples

In this section we will illustrate the proposed warm-start linear programming procedure
and demonstrate its advantages using four numerical examples. The point location
algorithm in [BBBM08] was used for Step 1 of Algorithm 1.

7.7.1 Illustrative Example

We first exemplify the main procedure for a small 1D randomly generated toy system:

x(k + 1) = −0.969x(k) + 0.4940u(k) , (7.14)

with a prediction horizon N = 10 and the constraints ‖u‖∞ ≤ 1, ‖x‖∞ ≤ 5 on the
input and state respectively. The norm p for the stage cost is taken as the 1-norm and
the weights are taken as Q = 1 and R = 1.

A warm-start solution with NP = 3 regions is computed by means of the B/B
approximation algorithm [JBM07]. We investigate the proposed control law after each
active set iteration until the optimal solution is reached. The cost of the warm-start
B/B solution and the proposed control laws at K = 1, 3 and 5 are shown in Fig. 7.1,
as well as the stability bound given by Theorem 7.9. Once the approximate cost lies
sxtrictly within this bound, stability of the proposed control law is guaranteed. It can
be seen in Fig. 7.1(d) that for this example stability is achieved after K = 5 iterations.
The procedure converges to the optimal solution after K = 8 iterations. Whereas the
warm-start solution has an approximation error of εBB = 3.4373, the stable control law
at K = 5 with an approximation error of ε5 = 0.5290 is already very close to optimality.
In Fig. 7.1(c) we can observe another characteristic of the warm-start procedure, namely
the fact that the approximate cost function for a proposed control law is in general not
convex. Note that this small example problem can be solved explicitly with an optimal
partition of NP = 18 regions suggesting a pure offline solution using explicit MPC
rather than a combined procedure.

7.7.2 Three- and Four-dimensional Examples

After illustrating the procedure on a small problem we now exemplify the approach for
assessing the optimal combination problem (7.13) as discussed in Section 7.6.
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Figure 7.1: Warm-start linear programming procedure for Example 1. The solid line

represents the cost after K online iterations starting from the B/B ap-

proximation in (a) at K = 0 and εK denotes the corresponding approx-

imation error. The lower dashed line is the optimal cost that together

with the upper dashed line represents the stability bound.
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3D Example Problem

Consider the randomly generated 3D-system:

x(k + 1) =





−0.5 0.3 −1.0
0.2 −0.5 0.6

1.0 0.6 −0.6



 x(k) +





−0.601 −0.890
0.955 −0.715

0.246 −0.184



 u(k) ,

with a prediction horizon N = 5 and the constraints ‖u‖∞ ≤ 1, ‖x‖∞ ≤ 5 on the input
and state respectively. The norm p for the stage cost is taken as the ∞-norm and the
weight matrices Q and R are taken as identity matrices.

We first try to solve the problem with the two classic approaches using online and
explicit MPC. The explicit solution could not be fully computed due to the high com-
plexity of the example problem and the solution was terminated after 24 hours at a
complexity of 14 × 105 regions, which therefore represents a lower bound on the com-
plexity or computation time for the optimal explicit solution. For the online solution,
the worst case in the number of iterations and the error was taken over a large num-
ber of sample points. A cold start simplex method as well as a warm-start active set
method is considered that uses the solution computed at the previous measurement
as an initial guess. In order to compare the online warm-start approach, a worst-case
additive disturbance x(k+1) = Ax(k)+Bu(k)+w(k) with ‖w‖ ≤ 0.5 keeping the state
inside the feasible set is considered. The restricted optimal combination problem (7.13)
was then solved for a set of warm-start solutions with NP ∈ {2002, 4005, 10003, 12003}
and a maximum approximation error εmax = 1 that corresponds to a performance dete-
rioration of about 0.03%, taken over a large number of sample points. The performance
deterioration is measured as the relative difference between the cost of the closed loop
trajectory using the optimal control input and the one using the suboptimal control
input, given by

[

∞
∑

i=0

(l(xi, κon(xi))− l(xi, u
∗(xi)))

]

/
∞
∑

i=0

l(xi, u
∗(xi)) . (7.15)

The results are shown in Fig. 7.2(a). The proposed control laws at an approximation
error of ε ≤ 1 are additionally guaranteed to be stabilizing (by Corollary 7.25).

If there are no storage limitations, the best combination of approximation and online
iterations is given by the lower envelope of the curves, as it represents the best online
computation time for a certain approximation error (or the other way round). Addi-
tional limitations on the storage space would restrict the possible warm-start solutions
by a maximum number of regions NP . The online solution using a simplex method
starts at a comparably low error after the first feasible point is encountered, but as
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(a) Warm-start procedure for Example 2 starting from four different PWA B/B
approximations with NP ∈ {2002, 4005, 10003, 12003}.
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(b) Warm-start procedure for Example 3 starting from four different PWA B/B
approximations with NP ∈ {7002, 20016, 25011, 35021}.

Figure 7.2: The solid line represents the offline B/B approximations. The dashed

lines show the improvement by the active set method warm-started from

the B/B approximations. The dash-dotted line is a sampled worst-case

estimate of a pure online solution using the simplex method and the

dotted line using the online warm-start active set method, shown after

the first feasible solution is found. The flop number for zero approxima-

tion error of the B/B approximation was extrapolated, since the optimal

solution could not be computed due to its excessive complexity.
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often mentioned in the literature, phase I already takes up a large amount of computa-
tion time. In the worst case, the initial solution when using an online warm-start active
set method is infeasible requiring several iterations to reach feasibility. It provides a
significant improvement when compared to the cold start method but always requires
more computation time than the combined approach. The first two warm-start ap-
proximations with NP = 2002 and NP = 4005 take significantly more time to achieve
a certain approximation error in comparison with the pure B/B approximation. In
contrast, the two solutions starting from NP = 10003 and NP = 12003 achieve a clear
improvement over the offline approximation.

For any error above 1.2, a pure approximation by the B/B method results in the
fastest computation times. The best combination for any error below 1.2 is given
by a warm-start solution of complexity NP = 10003 with active set iterations. Note
that a further refinement of the warm-start solution does not improve the results and
hence this particular combination of warm-start and online solution represents the best
combination to achieve an approximation error below 1.2.

4D Example Problem

We will now investigate the optimal combination problem for the 4D randomly gener-
ated system:

x(k + 1) =











−0.251 0.114 0.123 −0.433

0.319 −0.658 0.905 0.118
0.459 −0.484 −0.175 −0.709

0.016 0.116 −0.002 −0.505











x(k) +











−0.873 0.879

0.669 0.936
−0.353 0.777

0.268 −0.336











u(k)

with a prediction horizon N = 5 and the constraints ‖u‖∞ ≤ 5, ‖x‖∞ ≤ 5 on the input
and state respectively. The norm p for the stage cost is taken as the ∞-norm and the
weight matrices Q and R are taken as the identity matrix and two times the identity
matrix.

As in the previous example, the explicit solution for this problem is highly complex
and could not be fully computed within 24 hours, when it was terminated with a
complexity of 16 × 105 regions. The online solution was computed as described in the
previous example with ‖w‖ ≤ 2. The restricted optimal combination problem (7.13)
was solved for a set of warm-start solutions with NP ∈ {7002, 20016, 25011, 35021}
and a maximum approximation error εmax = 1 that corresponds to a performance
deterioration (7.15) of about 0.03%, taken over a large number of sample points. The
results are shown in Fig. 7.2(b). The proposed control laws at an approximation error
of ε ≤ 1 are again guaranteed to be stabilizing (by Corollary 7.25).
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u1

u2

u1 u2

Figure 7.3: Two systems of three and four oscillating masses. The bold lines rep-

resent the spring-damper system, the dark blocks on the side represent

the walls.

For an approximation error up to 3.2, a pure approximation by the B/B method
results in the fastest computation times, but the solution is not guaranteed to be sta-
bilizing. For any error below 3.2, a combination of a warm-start solution of complexity
NP = 25011 with active set iterations represents the best combination. Note that a
further improvement of the warm-start solution does not provide any benefit. In com-
parison with a pure online solution, the warm-start procedure is again always superior.

7.7.3 Oscillating Masses Example

After illustrating the proposed procedures on smaller examples we will now demonstrate
their application to bigger problem dimensions. We consider the problem of regulating
a system of oscillating masses as described in [WB10], one consisting of three and the
other of four masses, which are interconnected by spring-damper systems and connected
to walls on the side, as shown in Fig. 7.3. The two actuators exert tension between
different masses. The masses have value 1, the springs constant 1 and the damping
constant is 0.5. The state and input constraints are ‖u‖∞ ≤ 1, ‖x‖∞ ≤ 4, the horizon
is chosen to N = 5, the norm p for the stage cost is taken as the ∞-norm and the
weight matrices Q and R are taken as identity matrices. The MPC problem for the
3 masses example has 6 states and 2 inputs, resulting in an LP with 50 optimization
variables. The MPC problem for the 4 masses example consists of 8 states and 2 inputs
and the LP has 60 optimization variables.

We identify the best combination of explicit approximation and online optimization
for providing a hard real-time stability guarantee for these two example problems out of
a selection of warm-start solutions by computing the minimal number of optimization
steps Kmin as well as the number of floating point operations required to provide a
suboptimal control law that is guaranteed to be stabilizing. While the optimal explicit
solution is not computable for the considered problem dimensions, we compare the flop
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numbers for the warm-start combinations to the computational effort for a pure online
MPC solution. A lower bound on the flop number for computing the optimal solution
using a simplex method is estimated by taking the worst case number of iterations
over a large number of sampling points. For the 6-dimensional example a worst case
number of 51 iterations including phase I and for the 8-dimensional example of 61
iterations was observed. The average closed loop performance deterioration taken over
a large number of sampling points is calculated for all warm-start combinations using
(7.15). The results are shown in Table 7.1. For the 6-dimensional problem we choose

Table 7.1: Simulation Results for Example 7.7.3

(a) 6D Oscillating Masses Example

# Regions for B/B approximation NP 3064 5080 7152

# Pivots to stability guarantee Kmin 15 8 5

Online computation time in kilo flops 789 462 337

Closed loop performance deterioration 6.94% 3.30% 0.63%

Flops for simplex method in kilo flops 2558

(b) 8D Oscillating Masses Example

# Regions for B/B approximation NP 3202 5312 7164

# Pivots to stability guarantee Kmin 17 17 15

Online computation time in kilo flops 1384 1418 1291

Closed loop performance deterioration 5.56% 1.85% 0.82%

Flops for simplex method in kilo flops 4779

NP ∈ {3061, 5080, 7152}. The number of required optimization steps to reach stability
decreases with the refinement of the warm-start solution, resulting in a decreasing
number of flops. The best combination is therefore represented by the warm-start
solution consisting of 7152 regions, where stability can be guaranteed after only 5 online
steps. The average closed loop performance deterioration for this combination is 0.63%.
For the 8-dimensional problem a set of warm-start solutions NP ∈ {3202, 5312, 7164} is
computed. While the first two warm-start combinations require at least 17 optimization
steps to guarantee stability, the number of iterations is reduced to 15 online iterations
for the more complex warm-start solution. Identifying the best combination among
these 3 options, we see that it is given by the warm-start solution of 7164 regions
combined with 15 online iterations having the lowest flop number, which is additionally
supported by the low average performance deterioration of 0.82% observed for this
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combination.

The offline analysis hence provides a real-time stability guarantee in both test cases
for a comparably small number of regions that need to be stored and a small number
of optimization steps. The warm-start procedure is always superior to a pure online
optimization approach, which takes more than 7 or 4 times the computation time of
the best combination for the 6-dimensional or the 8-dimensional example, respectively.
An explicit approximation with a stability guarantee could not be computed within 24
hours in both cases due to its high complexity.

While the examples in Section 7.7.2 are small randomly generated example systems
that are generally observed to result in problems of high complexity, Example 7.7.3
represents a physical system model of higher dimension and average complexity that is
related to many applications involving spring-damper systems (e.g. active suspension).
We hereby cover test cases reflecting the scope of the presented approach. The examples
in 7.7.2 show that the optimal strategy to achieve a certain set of solution properties
is often not to compute the best warm-start solution, but a particular combination
of warm-start and online optimization. Example 7.7.3 demonstrates that even for
a higher dimensional example the combined procedure clearly outperforms an online
solution when minimizing the online computation time and a hard real-time stability
guarantee can be provided. The optimal combination of explicit approximation and
online optimization does, however, highly depend on the particular problem structure
and the given requirements on storage space and performance. For certain problems the
best solution procedure will be a particular combination of the two methods whereas
for others it will as well be a pure offline or online approximation, e.g. in the case of
extremely small and simple or large problems, which can be identified by means of the
presented analysis.

7.8 Conclusions

We presented a new approach that combines the two paradigms of online and explicit
MPC and hereby offers new possibilities in the applicability of MPC to real problems
that often have limits on the storage space or the available computation time. The
proposed method computes a piecewise affine approximation of the optimal solution
offline that is stored and used to warm-start an active set method. By means of a
preprocessing analysis hard real-time, stability and performance guarantees for the
proposed controller are provided. The analysis does not require the calculation of the
optimal parametric solution to the MPC problem, since it may be prohibitively complex
and could restrict the applicability of the method.
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The warm-start procedure enlarges the possibilities to tradeoff solution properties
in order to satisfy constraints in terms of online computation time, storage and per-
formance. The best solution method is dependent on the particular system as well
as the given hardware and performance restrictions. We show how the offline analy-
sis can be utilized to compare different MPC methods and identify the best approach
for a considered application and set of requirements. In addition to the discussed as-
pects, desired implementation properties may affect the choice of the MPC method. By
using a combination of explicit approximation and online MPC, the method inherits
the properties of both paradigms and therefore also the numerical and computational
challenges of online optimization, such as the need for floating point computations or
software verification and maintenance.

The presented numerical examples illustrate the proposed procedures and confirm
the fact that a warm-start solution can often outperform either a pure offline or online
method. The warm-start procedure provides hard real-time guarantees on the applied
suboptimal controller where an approximate explicit or online approach is either in-
tractable or can not meet the given requirements.



8 On Robust Real-time MPC Using

Online Optimization

8.1 Introduction

Computation of the optimal Model Predictive Control (MPC) law is generally not prac-
tical when controlling high speed systems, which impose a strict real-time constraint
on the solution of an MPC problem. The goal is then to provide a suboptimal control
action within the time constraint that still guarantees stability of the closed-loop sys-
tem and achieves acceptable performance. In this chapter we develop a real-time MPC
scheme that guarantees stability and constraint satisfaction for all time constraints and
allows for fast online computation. The a-priori stability guarantee then allows one to
trade the performance of the suboptimal controller for lower online computation times.

This work is motivated by recent results showing that the computation times for
solving an MPC problem can be pushed into a range where an online optimization
becomes a reasonable alternative for the control of high-speed systems, see also the
overview in Chapter 6. Significant reduction of the computational complexity can
be achieved by exploiting the particular structure and sparsity of the optimization
problem given by the MPC problem using tailored solvers. Available methods for fast
online MPC do not give guarantees on either feasibility or stability of the applied
control action in a real-time implementation. A method providing these guarantees by
combining online and explicit MPC was introduced in Chapter 7, which is, however,
still limited to smaller problem dimensions.

This work makes the following contributions: it is shown how feasibility and input-
to-state stability can be guaranteed in a real-time MPC approach for linear systems
under additive disturbances using robust MPC design and a Lyapunov constraint, while
allowing for low computation times with the same complexity as MPC methods without
guarantees. All computational details required for a fast implementation based on a
barrier interior-point method are provided and results in the robust MPC literature
are consolidated into a step-by-step implementation for large-scale systems. Existing
results for the utilization of sparsity do not apply in the considered real-time robust
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setting, resulting in a quadratically constrained quadratic program (QCQP) for large-
scale systems and it is shown how the new structure can be exploited.

The developed real-time method employs a standard warm-start procedure, in which
the optimization problem for the current state is initialized with the shifted subop-
timal control sequence computed at the previous time instance. The optimization is
terminated early when a specified time constraint τ is hit. While stability of the robust
real-time control law may seem to follow directly from the warm-start procedure, we
will show that it is not automatically provided if one uses interior-point methods, as
is required for solving the resulting QCQPs. In order to guarantee input-to-state sta-
bility in real-time, a constraint is introduced that explicitly enforces that the real-time
MPC cost is a Lyapunov function. Feasibility of the resulting real-time control law
is provided by the use of a robust MPC framework, recovering recursive feasibility in
an uncertain setting. The proposed real-time method is then extended to the problem
of tracking piecewise constant references that is faced in many control applications in
practice, using a recently proposed MPC formulation for tracking [ALA+07,LAAC08]
described in Section 5.4.

An implementation of the presented real-time MPC procedure for uncertain lin-
ear systems is developed based on the robust MPC approach in [MSR05] in order to
allow for fast computation, see Section 5.3 for details on the method. A primal bar-
rier interior-point method (see Section 3.1 or [BV04, NW06]) is developed to realize
the robust real-time control law. The tracking formulation with stability guarantees
significantly modifies the structure of the considered optimization problem and the
results on structure exploitation in MPC problems presented in the literature, see
e.g. [Wri97a,Han00,WB10], can no longer be applied. We show how the new structure
and sparsity can be exploited and solved efficiently using a solver tailored for the result-
ing optimization problem. A custom solver was developed for this work that achieves
computation times that are equal or even faster when compared to existing methods
with no guarantees. For a 12-dimensional example system an MPC problem with a
limit of 5 interior-point iterations was solved in 2msec with an average performance de-
terioration of less than 1%. The corresponding computation times for a 30-dimensional
system were 10msec.

The outline of the chapter is as follows: In Section 8.2 the challenges of real-time
MPC are introduced. Section 8.3 presents the proposed real-time robust MPC method
and proves input-to-state stability of the closed-loop system under the real-time control
law. The results are extended to the more general case of tracking piecewise constant
references in Section 8.4. Section 8.5 provides the implementation details necessary for
the robust MPC problem setup. In Section 8.6 a real-time method is developed based on
a warm-start approximate primal barrier interior-point method and it is shown how the
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structure of the resulting optimization problem can be exploited for fast computation.
Finally, in Section 8.7 we illustrate the proposed approach and its advantages using
numerical examples and provide a comparison with the literature.

8.2 Real-time MPC Based on Online Optimization –

Problem Statement

High-speed applications impose a real-time constraint on the solution of the MPC
problem, i.e. a limit on the computation time that is available to compute the control
input, which often prevents the computation of the optimal MPC control law. This
can lead to constraint violation, and more importantly, instability when using a general
optimization solver. A suboptimal control input therefore has to be provided within the
real-time constraint that ensures constraint satisfaction and stability. In the following
a control law is called τ -real time (τ -RT) if it is computed in τ seconds.

Various approaches aimed at reducing the computation time in online MPC have been
proposed recently. Many methods are based on the development of custom solvers that
take advantage of the particular sparse structure in an MPC problem see e.g. [Wri97a,
WB10, MD08, AH08] and the overview in Section 6.2. In [WB10], for example, an
infeasible start Newton method is applied that is terminated after a fixed number of
steps. A tailored solver was developed that exploits the sparse structure of the MPC
problem resulting in computation times in the range of milliseconds. The authors
in [FBD08] develop a warm-start based homotopy approach that is terminated early in
case of a time constraint. Available approaches sacrifice constraint satisfaction and/or
stability in order to achieve a real-time guarantee. In a recent work [LH09] a relation
between the level of suboptimality and a guarantee of stability is derived. These results
can, however, not be applied to the considered case of real-time MPC, since it is
currently not possible to determine the level of suboptimality that a given solver will
achieve in a fixed amount of time.

A real-time MPC scheme based on a warm-start method that is commonly applied
in practice is described in Algorithm 3. An initial feasible solution at state x(k) is
constructed from the solution computed for the measurement x(k − 1) at the previous
sampling time [SMR99,MRRS00]:

uws(x(k)) =
[

u1(x(k − 1)), . . . , uN−1(x(k − 1)), κf(φ̄(N, x(k − 1),u(x(k − 1))))
]

,
(8.1)

where κf (x) is the local control law in Assumption 5.3. The warm-start solution is then
improved using online optimization until the real-time constraint is hit. We show in the
following why directly applying Algorithm 3 to the standard MPC problem PN(x) does



8.2 Real-time MPC Based on Online Optimization – Problem Statement 79

Algorithm 3 Warm-start real-time procedure
Input: feasible control sequence u(x(k−1)) for x(k−1), current state measurement x(k)

and auxiliary control law κf (x)

Output: τ -RT control sequence u
τ (x(k))

1: Warm-start:
u

ws(x(k)) =
[

u1(x(k − 1)), . . . , uN−1(x(k − 1)),κf (φ̄(N,x(k − 1),u(x(k − 1))))
]

2: ũ = u
ws(x(k))

3: while clock< τ do

4: improve ũ in one optimization step
5: end while

6: u
τ (x(k)) = ũ

not a priori provide constraint satisfaction and stability in order to then outline how a
τ -RT control law can be derived that guarantees stability of the closed-loop system.

It is well-known that in the nominal case the warm-start solution uws(x(k)) in (8.1)
provides a feasible and stabilizing control law for the nominal system in (4.4) if no online
optimization steps are executed (i.e. running the computed MPC control sequence
in open loop will drive the system to the origin if there is no noise). In order to
guarantee feasibility and stability of the closed-loop system under the τ -RT control
law for all subsequent times τ ≥ 0, the optimization method then has to maintain
feasibility and ensure that the cost function decreases with respect to the cost at the
last sampling time [SMR99,MRRS00,LAR+09]. While one would expect this property
to be automatically satisfied, it is in fact not provided by interior-point methods. As
will be shown in Section 8.6, interior-point methods are, however, required in order to
solve an MPC problem with the desired guarantees efficiently, while pivoting methods
like e.g. active set methods do not provide a suitable alternative for the solution of the
resulting quadratically constrained QPs.

The solution that is obtained from directly applying Algorithm 3 together with a
barrier interior-point method, which is proposed in existing methods (e.g. [WB10]), is
therefore not guaranteed to provide asymptotic stability of the origin. This is due to
the fact that in a barrier interior-point method the inequality constraints are replaced
by a barrier penalty in the cost function. At each interior-point iteration the augmented
cost including the barrier penalty is decreased, which does not simultaneously enforce a
decrease of the MPC cost. The MPC cost can therefore not be employed as a Lyapunov
function and the standard stability proof in MPC fails [MRRS00]. Furthermore, the
solution of the augmented problem with the barrier term only approaches the solution
of the original problem in the limit, if the barrier parameter is taken to zero. Early
termination of the optimization then causes the system to converge to a steady-state
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that minimizes the augmented cost and results in a steady-state offset.

In addition, feasibility of the warm-start in (8.1) is lost in practice due to model
inaccuracies or disturbances causing the system to deviate from the nominal system
dynamics in (4.4). Since it cannot be guaranteed that feasibility is recovered by the
optimization procedure in a fixed amount of time when starting from an initial infeasible
solution, feasibility cannot be guaranteed in such a real-time framework. This can be
prevented by the use of robust MPC approaches, providing recursive feasibility in an
uncertain environment.

Many control applications in practice require tracking of a desired sequence of steady-
states rather than regulation around the origin or to a particular steady state. In order
to achieve tracking, it is standard practice to modify the MPC problem PN(x) by means
of a change of variables such that the deviation from the state and input reference is
penalized and the terminal state constraint is modified, requiring the terminal state
to lie in an invariant set around the state reference (see e.g. [Mac00, RM09]). This
problem formulation does, however, not provide feasibility of the warm-start in (8.1)
since the terminal constraint depends directly on the reference, rendering the sequence
computed at the last sampling time infeasible for the new terminal constraint after a
reference change.

In this work, feasibility is achieved by means of the previously described warm-
start procedure using a primal feasible optimization routine together with a tube-based
robust MPC scheme that recovers recursive feasibility by tightening the constraints and
a slight change of the problem formulation [MSR05]. In order to guarantee input-to-
state stability in real-time, a Lyapunov constraint is introduced, ensuring a decrease
in the MPC cost with respect to the last sampling time if the system satisfied the
nominal dynamics and providing a Lyapunov function. First, the proposed real-time
robust MPC method for regulation is described in the following section and input-to-
state stability is proven. We then show how the presented ideas can be extended to
the case of reference tracking using a recently proposed tracking approach [LAAC08].
The remainder of the chapter focuses on the practical and fast implementation of the
proposed robust real-time MPC scheme.

8.3 Real-time Robust MPC with Guarantees

Consider the discrete-time uncertain system in (4.1). We propose the following real-
time robust MPC problem formulation to realize a τ -RT control law that guarantees
input-to-state stability of the closed loop system:
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Problem PτN(x) (Real-time robust MPC problem)

min
x̄,ū

VN(x̄, ū) + Vf (x− x̄0) =
N−1
∑

i=0

l(x̄i, ūi) + Vf (x̄N) + Vf(x− x̄0) (8.2a)

s.t. x̄i+1 = Ax̄i +Būi, i = 0, . . . , N − 1 , (8.2b)

(x̄i, ūi) ∈ X̄× Ū, i = 0, . . . , N − 1 , (8.2c)

x̄N ∈ X̄f , (8.2d)

VN(x̄, ū) + Vf (x
τ
nom − x̄0) ≤ πτprev , (8.2e)

x ∈ x̄0 ⊕ZW , (8.2f)

where ZW is an RPI set for the controlled system x(k+1) = Ax(k)+Bκf (x(k))+w(k)
with w(k) ∈ W ∀k ∈ N, X̄ = X(ZW , Ū = U(KZW are tightened constraints on the
states and inputs and X̄f is an invariant terminal target set. A quadratic stage cost and
terminal penalty function is chosen, i.e. l(x, u) ! ‖x‖2Q + ‖u‖2R, Vf (x) ! ‖x‖2P , where
Q, R and P are positive definite matrices. The constants xτnom and πτprev are defined
in Definition 8.2 below. Problem PτN(x) implicitly defines the set of feasible control
sequences U τN (x̄0) = {ū | ∃ x̄ s.t. (8.2b) − (8.2e) hold}, feasible initial tube centers
X τ

0 (x) ! {x̄0 | (8.2f)} and feasible initial states X τ
N = {x | ∃ x̄0 ∈ X τ

0 (x) s.t. U τN (x̄0) 2=
∅}.

Assumption 8.1. It is assumed that Vf(·) and X̄f fulfill Assumption 5.3 with X̄, Ū
and X̄f replacing X, U and Xf .

Instead of solving problem PτN(x) to optimality, the optimization is executed at x(k)
for no more than τ seconds before returning the variables ūτ (x(k)) and x̄τ (x(k)) by
applying Algorithm 4 together with a primal feasible optimization routine to Prob-
lem PτN (x). The robust τ -RT control law is then given in a receding horizon control
fashion by

κτ (x) = ūτ0(x) +K(x− x̄τ0(x)) . (8.3)

Definition 8.2 (Lyapunov constraint). For each x(k), we take

xτnom = Ax(k − 1) +Bκτ (x(k − 1))

to be the state that would have been obtained in the absence of disturbances and

πτprev = VN(x̄
τ (x(k−1)), ūτ (x(k−1)))+Vf (x− x̄τ0(x(k−1)))−ε

1

2
l(x(k−1), 0) , (8.4)

where ε ∈ (0, 1] is a user-specified constant, x(k−1) denotes the state and VN(x̄τ (x(k−
1)), ūτ (x(k − 1))) + Vf(x − x̄τ0(x(k − 1))) the cost at the previous, i.e. the (k − 1)’th,
sample time.
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Algorithm 4 Warm-start real-time robust procedure
Input: feasible control sequence ū

in(x(k−1)), tube center x̄in
0 (x(k−1)) and corresponding

state sequence x̄
in(x(k−1)) for x(k−1), current state measurement x(k), auxiliary control

law κf (x) = Kx and parameter εf > 0

Output: τ -RT control sequence ū
τ (x(k)) and tube center x̄τ0(x(k))

1: Warm-start: x̄ws
0 (x(k)) = x̄in

1 (x(k − 1)))

ū
ws(x(k)) =

[

ūin
1 (x(k − 1)), . . . , ūin

N−1(x(k − 1)),κf (x̄in
N (x(k − 1)))

]

2: ũ = ū
ws(x(k)), x̃0 = x̄ws

0 (x(k))

3: while clock< τ do

4: improve ũ, x̃0 in one primal feasible optimization step
5: end while

6: if ‖x(k)‖P ≤ εf and VN (x̃, ũ) + Vf (x(k)− x̃0) > Vf (x(k)) then

7: x̃0 = 0, ũ = 0

8: end if

9: ū
τ (x(k)) = ũ, x̄τ0(x(k)) = x̃0

Remark 8.3. Note that the real-time robust MPC problem PτN(x), the real-time state
and input sequences ūτ (x(k)) and x̄τ (x(k)) as well as the resulting robust τ -RT control
law κτ (x) in (8.3) are not only a function of the current state, but also of the previous
state, the real-time solution ūτ (x(k−1)) and x̄τ (x(k−1)) computed at the previous time
step as well as the available computation time τ , which are, however, given constants
at the time of computation. We omit this dependence for ease of notation, but denote
all variables and functions that are dependent on the solution from the previous time
step and the computation time by the index τ .

The real-time robust Problem PτN(x) differs from the nominal MPC problem PN(x) in
two main aspects: the use of a robust MPC problem setup and a Lyapunov constraint.

• Robust MPC design: Constraints (8.2c) and (8.2f) result from the tube based
robust MPC approach in [MSR05], providing robustness with respect to the ad-
ditive disturbance w in (4.1). The method is based on the use of a feedback
policy of the form u = u +K(x − x̄) that bounds the effect of the disturbances
and keeps the states x of the uncertain system in (4.1) close to the states x̄ of
the nominal system in (4.4). The robust MPC problem can therefore be reduced
to the control of the tube centers x̄, which are steered to the origin by choosing a
sequence of control inputs ū and the first tube center x̄0. The tightened state and
input constraints in (8.2c) are used in order to ensure feasibility of the uncertain
system in (4.1) despite the disturbance w. Note that the first tube center x̄0 is
not necessarily equal to the current state measurement x, but is an optimiza-
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tion variable satisfying (8.2f). Compared to [MRRS00] the cost is augmented by
the term Vf(x− x̄0), which introduces a tradeoff between the amount of control
action used for counteracting the disturbance and the effort for controlling the
nominal state to the origin. See Section 5.3 for more details and properties of
this approach.

• Lyapunov decrease constraint: Constraint (8.2e) ensures that the suboptimal cost
achieved after τ seconds satisfies the Lyapunov decrease condition (4.10c), which
is essential in order for the MPC cost to provide a ISS Lyapunov function. It
explicitly enforces that the MPC cost (8.2a) at x(k) decreases with respect to the
cost at the last sample time VN(x̄(x(k − 1)), ū(x(k − 1))) + Vf(x− x̄τ0(x(k − 1)))

if the system satisfies the nominal dynamics and thereby recovers the stability
properties of the optimal robust MPC approach in a real-time setting. The Lya-
punov decrease constraint (8.2e) represents a convex quadratic constraint on the
optimization variables.

The proposed Algorithm 4 differs from the standard real-time Algorithm 3 in one
main aspect:

• Upper bound on Lyapunov function: Steps 6-8 ensure that the real-time cost can
be upper bounded by a K∞-class function of the state in a set that includes the
origin in its interior. Here Vf(x) is chosen, since it represents an upper bound on
the optimal MPC solution and in particular on the cost for using x̃0 = 0, ũ = 0.
Although it is a more technical requirement than the decrease in the Lyapunov
function, the upper bound together with the Lyapunov decrease constraint (8.2e)
provide that the MPC cost is a ISS Lyapunov function (Lemma 8.6). While
Steps 6,7 are therefore mainly motivated from theoretical considerations, they are
beneficial in a real-time environment, since the auxiliary control law is only used
if it provides a lower cost than the solution obtained in the real-time optimization.

In order to guarantee feasibility and stability of the closed-loop system under the
τ -RT control law in (8.3), the warm-start computed in Step 1 of Algorithm 4 has to
be feasible for PτN(x) with respect to all state and input constraints as well as the
Lyapunov decrease constraint.

Lemma 8.4 (Feasibility of the warm-start) Let εf > 0 be a positive constant such
that S ! {x | ‖x‖P ≤ εf} ⊆ ZW . The warm-start solution provided by Algorithm 4 is
feasible for PτN(x

+), where x+ ∈ Ax+Bκτ (x)⊕W, i.e. x̄ws
0 (x+) ∈ X τ

0 (x
+), ūws(x+) ∈

U τN (x̄ws
0 (x+)).

Proof. Feasibility of the warm-start for Problem PτN (x) without the Lyapunov con-
straint (8.2e) was shown in [MSR05]. Note that

xτnom = Ax+Bκτ (x) = Ax− Ax̄in
0 (x) + Ax̄in

0 (x) +Būin
0 (x) +BK(x− x̄in

0 (x))
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= x̄in
1 (x) + (A+BK)(x− x̄in

0 (x)) .

From Assumption 8.1 and standard arguments in MPC, we obtain VN(x̄ws(x+), ūws(x+))−
VN(x̄in(x), ūin(x)) ≤ −‖x̄in

0 (x)‖2Q . Using similar arguments as in the proof of Theo-
rem 5.8, Assumption 8.1 and convexity of ‖·‖2Q, providing 1

2‖x+ y‖2Q ≤ ‖x‖2Q + ‖y‖2Q,
it can then be shown that

VN(x̄
ws(x+), ūws(x+))− VN(x̄

in(x), ūin(x)) + Vf(x
τ
nom − x̄ws

0 (x+))− Vf (x− x̄in
0 (x))

≤ −‖x̄in
0 (x)‖2Q + Vf ((A+BK)(x− x̄in

0 (x)))− Vf (x− x̄in
0 (x))

≤ −‖x̄in
0 (x)‖2Q − ‖x− x̄in

0 (x)‖2Q ≤ −1

2
‖x‖2Q

and the warm-start therefore also satisfies the Lyapunov constraint (8.2e). "

Remark 8.5 (Initialization). It is assumed that at time k = 0, before starting the
real-time control of the system, enough computation time is available to compute a
feasible solution to Problem PτN (x) without the Lyapunov constraint (8.2e) and initialize
Algorithm 4.

While asymptotic stability of the origin cannot be achieved in the presence of dis-
turbances, it can be shown that under certain conditions the closed-loop system is
input-to-state stable. Note that in the considered real-time case, stability cannot be
achieved by the approach described in [LRH+08], where a constraint on the Lyapunov
decrease is only introduced in the first step, since the solutions are not recursively
feasible.

Due to the Lyapunov constraint (8.2e), feasibility of PτN(x) implies input-to-state
stability, which is stated in the following theorem.

Lemma 8.6 Let x̃τ0(x(k)) ∈ X τ
0 (x(k)) be a feasible tube center, ũτ (x(k)) ∈ U τN (x̃0(x(k)))

a feasible control sequence for PτN(x(k)) for all k ∈ N and κ̃τ (x(k)) = ũτ0(x(k))+K(x−
x̃τ0(x(k))) the resulting control law. Let εf > 0 be a positive constant such that S !

{x | ‖x‖P ≤ εf} ⊆ ZW and assume that VN(x̃τ (x(k)), ũτ (x(k))) + Vf(x − x̃τ0(x(k))) ≤
Vf(x(k)) if x(k) ∈ S. The closed-loop system x(k + 1) = Ax(k) +Bκ̃τ (x(k)) + w(k) is
ISS with respect to w(k) ∈ W with region of attraction X τ

N .

Proof. We define V τL (x) ! VN(x̃τ (x), ũτ (x)) + Vf(x− x̃τ0(x)). Assumption 8.1 provides
that ‖·‖2Q ≤ ‖·‖2P . Using convexity of ‖·‖2Q, it can be shown that there exists a
K∞-class function α(·) such that

V τL (x) ≥ ‖x̃τ0(x)‖2Q + ‖x− x̃τ0(x)‖2Q ≥ 1

2
‖x‖2Q ≥ α(‖x‖) ∀x ∈ X τ

N . (8.5)
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By the assumptions in the lemma, there exists a K∞-class function α(·) such that

V τL (x) ≤ Vf(x) ≤ α(‖x‖) ∀x ∈ S . (8.6)

Furthermore, VN(x̃τ (x+), ũτ (x+)) + Vf(xτnom − x̃τ0(x
+))− VL(x) ≤ −ε12‖x‖

2
Q for all x ∈

X τ
N , where x+ = Ax + Bκτ (x) + w, by the Lyapunov constraint (8.2e), which implies

that

VL(x
+) = VN(x̃

τ (x+), ũτ (x+)) + Vf(x
+ − x̃τ0(x

+))

= VN(x̃
τ (x+), ũτ (x+)) + Vf(x

τ
nom − x̃τ0(x

+)) + Vf(x
+ − x̃τ0(x

+))− Vf(x
τ
nom − x̃τ0(x

+))

≤ VL(x)− ε
1

2
‖x‖2Q + |Vf(x

+ − x̃0(x
+))− Vf(x

τ
nom − x̃0(x

+))| .

Since Vf (x) is a continuous function, there exists a K-class function γ(·) such that
|Vf(y)−Vf (x)| ≤ γ(‖y−x‖). Therefore, there exists a suitable K∞-class function β(·)
such that

V τL (x
+)− V τL (x) ≤ −1

2
ε‖x‖2Q + γ(‖x+ − xτnom‖) (8.7a)

≤ −β(‖x‖) + γ(‖w‖) ∀x ∈ X τ
N . (8.7b)

The cost function in (8.2a) is hence a ISS Lyapunov function proving ISS of the closed-
loop system by Theorem 4.14. "

We can now state the main result of this section and prove ISS of the closed-loop system
under the τ -real-time robust control law κτ (x) in (8.3).

Theorem 8.7 (Stability under κτ(x)) Consider Problem PτN(x) fulfilling Assump-

tion 8.1. The closed-loop system x(k + 1) = Ax(k) + Bκτ (x) + w(k) under the τ -RT
control law in (8.3) that is obtained from Algorithm 4 is ISS w.r.t. w(k) ∈ W with
region of attraction X τ

N for all τ ≥ 0.

Proof. Let x̃τ (x), ũτ (x) denote the variables obtained at Step 9 of Algorithm 4. We
define again V τL (x) ! VN(x̃τ (x), ũτ (x))+Vf(x− x̃τ0(x)) and S ! {x | ‖x‖P ≤ εf} ⊆ ZW .
Feasibility of the warm-start provided by Algorithm 4 was shown in Lemma 8.4, which
is maintained by the use of a primal feasible optimization method. If Steps 6-8 are
never applied, ISS follows directly from Lemma 8.6. If Steps 6-8 are applied for some
x(k) ∈ S, it is known that ũ = 0, x̃0 = 0 is feasible for PτN(x(k)) without the Lyapunov
constraint and V τL (x(k)) = VN(0, 0) + Vf(x(k)) = Vf(x(k)). This provides the upper
bound in (8.6). The lower bound is given by (8.5). Let ũτopt, x̃

τ
opt denote the solution

that is returned by the optimization. Since it is feasible for PτN(x(k)) including the
Lyapunov constraint, it follows from (8.7) in the proof of Lemma 8.6 that

VN(x̃
τ
opt, ũ

τ
opt)+Vf(x(k)−x̃τ0,opt) ≤ VL(x(k−1))−β(‖x(k−1)‖)+γ(‖w(k−1)‖) ∀x(k) ∈ X τ

N
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for some K-class function γ(·) and K∞-class function β(·). Finally, since the conditions
in Step 6 are fulfilled, it follows that

V τL (x(k)) = Vf(x(k)) ≤ VN(x̃
τ
opt, ũ

τ
opt) + Vf (x(k)− x̃τ0,opt)

≤ V τL (x(k − 1))− β(‖x(k − 1)‖) + γ(‖w(k − 1)‖) ∀x(k) ∈ X τ
N .

V τL (x) is therefore a ISS Lyapunov function, proving the result. "

Theorem 8.7 guarantees stability of the uncertain system (4.1) in a real-time MPC im-
plementation by using the robustified problem formulation in PτN(x) with an additional
Lyapunov constraint (8.2e). The optimization solving PτN(x) can be stopped after an
arbitrary available time τ .

Remark 8.8. Note that τ can be arbitrarily time-varying, which makes the presented
approach suitable for operation in a wide range of standard multi-tasking real-time
computational platforms.

Remark 8.9. The use of x̃0 = 0, ũ = 0 results in the control law κτ (x) = Kx. By
using the auxiliary control law in a neighborhood S of the origin (if the cost cannot
be upper bounded by Vf(x)), Algorithm 4 is similar to a dual mode strategy. The
difference is that the control strategy does not switch to this control law once the state
is inside this set, since S is not robustly invariant.

Remark 8.10. While the existence of a K∞-class function of the state that upper
bounds the suboptimal cost in a neighborhood of the origin is often just assumed in
suboptimal or real-time methods (e.g. [SMR99, LH09]), Algorithm 4 provides a con-
structive procedure to satisfy this condition.

Remark 8.11. The closed-loop system under the control law that would be obtained
from directly applying Algorithm 4 to Problem PτN (x) without the Lyapunov constraint
(8.2e) will remain within the feasible set X τ

N due to the feasibility guarantee provided
by the robust MPC framework.

Remark 8.12. The re-optimization of the first tube center at every time step intro-
duces additional feedback to the disturbance. A feasible and stable controller could,
however, also be obtained by keeping the initial tube center fixed and only optimizing
over the sequence of tube centers from x̄1 to x̄N .

Remark 8.13. The crucial property of recursive feasibility is guaranteed by all avail-
able robust MPC methods (see e.g. [BM99, MRRS00, LAR+09, RM09]) any of which
could be used to derive a real-time MPC controller for the uncertain system (4.1). In
order to allow for fast computation we use the tube based robust MPC approach for
linear systems described in [MSR05] in this work.
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After establishing feasibility and stability for the τ -RT control law in the regulation
case, the following section extends the presented results to the more general case of
robust tracking of piecewise constant reference signals.

8.4 Real-time Robust MPC for Tracking of

Piecewise Constant References

Consider the task of tracking a piecewise constant sequence of steady-states, by steering
the system state x to the target steady-state xr. A target input ur is associated with
every target steady-state xr fulfilling the steady-state condition xr = Axr +Bur. The
state and input constraints limit the set of feasible steady-states to (xr, ur) ∈ Θ̄, where
Θ̄ ! {(xr, ur) | xr ∈ X̄, ur ∈ Ū, (A− I)xr +Bur = 0}.

Remark 8.14. If tracking of an output signal is required, one can translate the out-
put reference yr into a state and input reference (xr, ur) using the following relation:
[

A−I B
C D

]

[ xr
ur ] =

[

0
yr

]

, where y = Cx+Du is the output model.

In order to apply the proposed real-time method to reference tracking, we make use
of the tracking approach presented in [LAAC08], which was included in a tube based
robust MPC framework in [ALA+07], see also Section 5.4 for details on the tracking
approach. The real-time robust MPC problem for reference tracking Pτ,trN (x, xr, ur) is
then given by:

Problem Pτ,trN (x, xr, ur) (Real-time robust MPC for reference tracking)

V tr
N (x̄, ū, x̄s, ūs, xr, ur) =

N−1
∑

i=0

l(x̄i − x̄s, ūi − ūs)+Vf(x̄N − x̄s) + Vo(x̄s − xr, ūs − ur)

(8.8a)

min
x̄,ū,x̄s,ūs

V tr
N (x̄, ū, x̄s, ūs, xr, ur) + Vf (x− x̄0) (8.8b)

s.t. (8.2b), (8.2c), (8.2f), (8.8c)

(x̄s, ūs) ∈ Θ̄ , (8.8d)

x̄N ∈ X̄ tr
f (x̄s, ūs) , (8.8e)

V tr
N (x̄, ū, x̄s, ūs, xr, ur) + Vf (x

τ,tr
nom − x̄0) ≤ πτ,trprev , (8.8f)

where (x̄s, ūs) denotes the artificial steady-state, (xr, ur) is the desired steady-state and
Vo(x̄s − xr, ūs − ur) = ‖x̄s − xr‖2Tx

+ ‖ūs − ur‖2Tu
is the tracking offset cost, where Tx

and Tu are positive definite matrices. X̄ tr
f (x̄s, ūs) is an invariant terminal target set for

tracking as described in Section 5.4.1, see also [LAAC08,ALA+07].
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Problem Pτ,trN (x, xr, ur) implicitly defines the set of feasible control sequences
U τ,trN (x̄0, x̄s, ūs) = {ū | ∃ x̄ s.t. (8.2b), (8.2c), (8.8e), (8.8f) hold}, and feasible initial
states X τ,tr

N = {x | ∃ x̄0 ∈ X τ
0 (x), (x̄s, ūs) ∈ Θ̄ s.t. U τ,trN (x̄0, x̄s, ūs) 2= ∅}.

Assumption 8.15. It is assumed that Vf(·) and X̄ tr
f (x̄s, ūs) satisfy Assumption 5.9

with X̄ and Ū replacing X and U.

The real-time robust MPC problem for reference tracking Pτ,trN (x, xr, ur) introduces the
following components:

• An artificial steady state and input (x̄s, ūs), where the cost penalizes the deviation
from the states and inputs to the artificial reference instead of the real reference.
An offset term accounting for the deviation between the artificial and the real
reference is added to the cost ensuring convergence to the desired steady-state
(xr, ur).

• A terminal weight on the deviation between the terminal state and artificial
reference as well as an extended terminal constraint on the terminal state and
the artificial reference provide stability of the optimal MPC controller.

See Section 5.4 for more details on the tracking approach. The artificial steady-state
and the control sequence are computed by solving a single optimization problem, which
provides not only recursive feasibility of the warm-start solution but also permits a hard
real-time guarantee and is the reason for the somewhat unusual tracking formulation.

A solution to Problem Pτ,trN (x, xr, ur) is again computed in real-time by applying
Algorithm 5 that is proposed in the following together with a primal feasible optimiza-
tion routine, returning the variables ūτ,tr(x), x̄τ,tr0 (x), x̄τ,trs (x), ūτ,trs (x). The robust
τ -RT control law for tracking is then given in a receding horizon control fashion by:

κτ,tr(x) = ūτ,tr0 (x) +K(x− x̄τ,tr0 (x)) . (8.9)

Definition 8.16 (Lyapunov constraint for tracking). For each x(k), we again take
xτ,trnom = Ax(k − 1) + Bκτ,tr(x(k − 1)) and

πτ,trprev =V tr
N (x̄τ,tr(x(k − 1)), ūτ,tr(x(k − 1)), x̄τ,trs (x(k − 1)), ūτ,trs (x(k − 1)), xr, ur)

+ Vf(x(k − 1)− x̄τ,tr0 (k − 1))− εk
1

2
l(x(k − 1)− xr, 0) , (8.10)

where εk ∈ (0, 1] is a small positive constant that has to be chosen at each sampling time
such that the warm-start solution is strictly feasible, see Algorithm 5. The existence of
such a constant at all times will be shown in Lemma 8.20.
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Algorithm 5 Warm-start real-time robust procedure for tracking
Input: feasible control sequence ū

in(x(k − 1)), tube center x̄in
0 (x(k − 1)), corresponding

state sequence x̄
in(x(k − 1)) and artificial steady-state (x̄in

s (x(k − 1)), ūin
s (x(k − 1))) for

x(k− 1), current state measurement x(k), desired steady-state (xr, ur) auxiliary control
law κtr

f (x) = ūin
s (x(k− 1))+K(x− x̄in

s (x(k− 1))), AK = A+BK and parameters εf , εs > 0

Output: τ -RT control sequence ū
τ,tr(x(k)), tube center x̄τ,tr0 (x(k)) and artificial steady-

state (x̄τ,trs (x(k)), ūτ,trs (x(k)))

1: Warm-start: x̄ws
0 = x̄in

1 (x(k − 1))

2: if ‖x̄ws
0 − x̄in

s (x(k − 1))‖P ≥ εs then

ū
ws =

[

ūin
1 (x(k − 1)), . . . , ūin

N−1(x(k − 1)),κtr
f (x̄

in
N (x(k − 1)))

]

,
3: else Generate ū

ws from control law κtr
f (x),

i.e. ūws
i = ūin

s (x(k − 1)) +KAi
K(x̄ws

0 − x̄in
s (x(k − 1))) for i = 0, . . . , N − 1

4: end if

5: αmin = min
α∈[0,1]

α

s.t. x̄ws
N ∈ X̄ tr

f (x̄s, ūs)

V tr
N (x̄ws, ūws, x̄s, ūs, xr, ur) + Vf (x

τ,tr
nom − x̄0) ≤ πτprev for εk =

1

2
(1− α)2

x̄s = αx̄in
s (x(k − 1)) + (1− α)xr, ūs = αūin

s (x(k − 1)) + (1− α)ur

6: x̄ws
s = αminx̄

in
s (x(k − 1)) + (1− αmin)xr, ūws

s = αminū
in
s (x(k − 1)) + (1 − αmin)ur

7: Choose εk such that warm-start strictly satisfies (8.8f)

8: ũ = u
ws, x̃0 = x̄ws

0 , x̃s = x̄ws
s , ũs = ūws

s

9: while clock< τ do

10: improve ũ, x̃0, x̃s, ũs in one primal feasible optimization step
11: end while

12: if ‖x− xr‖P ≤ εf and V tr
N (x̃, ũ, x̃s, ũs, xr, ur) + Vf (x(k) − x̃0) > Vf (x(k)− xr) then

13: ũ = [ur, . . . , ur], x̃0 = xr, x̃s = xr, ũs = ur

14: end if

15: ū
τ,tr(x(k)) = ũ, x̄τ,tr0 (x(k)) = x̃0, x̄τ,trs (x(k)) = x̃s, ūτ,trs (x(k))) = ũs
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Remark 8.17. Note that the index τ again denotes the dependence of variables and
functions on the solution computed at the previous time step and the computation
time, see also Remark 8.3.

The tracking formulation in Pτ,trN (x, xr, ur) is designed to regulate the system state to
the artificial steady-state (x̄s, ūs), which is simultaneously steered to the target steady-
state. Convergence of this scheme to (xr, ur) using the optimal control law was shown
in [LAAC08,ALA+07] using the fact that x̄s 2= xr cannot be the optimal solution. In
order to achieve convergence in a real-time setting, the Lyapunov constraint (8.8f) is
introduced. In contrast to the regulation case, feasibility of this constraint for some
strictly positive εk using the shifted sequence as a warm-start does not follow directly.
Algorithm 5 therefore differs from the real-time procedure in Algorithm 4 proposed for
the regulation case in the following aspects:

• Initial warm-start (Step 2-4): A warm-start sequence is generated either from the
shifted initial solution together with an auxiliary control law, which was shown
to be feasible in [LAAC08, ALA+07], or, if the initial tube center is very close
to x̄in

s , by applying the auxiliary control law, which provides the optimal input
sequence for a given artificial steady-state (x̄in

s , ū
in
s ).

• Computation of α (Step 5): This step is crucial for providing feasibility of the
warm-start. Initially, a warm-start is generated that regulates the system to the
artificial steady-state (x̄in

s , ū
in
s ). If this warm-start strategy is, however, applied

recursively without changing (x̄in
s , ū

in
s ), the Lyapunov constraint will no longer be

feasible at some point, since the tube centers converge to x̄in
s instead of xr. This

motivates the minimization of α in Step 5. If the optimal solution is αmin < 1, the
artificial steady-state (x̄ws

s , ūws
s ) is improved by moving it from (x̄in

s , ū
in
s ) towards

(xr, ur) while guaranteeing satisfaction of the state and input constraints as well
as the Lyapunov decrease constraint. Note that α = 1 is always a feasible solution
to this optimization problem. While the initial tube center is not too close to the
artificial steady-state, the choice of α = 1, i.e. keeping the artificial steady-state
at (x̄in

s , ū
in
s ) and using the standard warm-start, provides a sufficient decrease in

the cost function to satisfy the Lyapunov constraint for some εk > 0. If, in
contrast, the first tube center is close to x̄in

s , the minimization in Step 5 will
provide αmin < 1, ensuring feasibility of the warm-start solution. These facts are
shown in Lemma 8.20.

Note that Steps 12-14 of Algorithm 5 implement the same strategy as proposed in
Steps 6-8 of Algorithm 4, but for regulation to a non-zero steady-state (xr, ur) instead
of the origin, ensuring that the real-time cost can be upper bounded by a K∞-class
function of ‖x− xr‖.
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Remark 8.18. The minimization of α in Step 5 of Algorithm 5 amounts to the solution
of a 1-dimensional convex optimization problem that can be rewritten in the following
form by using δ = 1− α:

max{δ ∈ [0, 1] | δ2 + a1δ + b1 ≤ c1, δ
2 + a2δ + b2 ≤ c2} . (8.11)

The solution can be obtained by computing the maximum separately for each con-
straint, where for each of them an analytical solution can be derived, and then taking
the smaller of the two values.

Feasibility of the warm-start provided by Algorithm 5 for Problem Pτ,trN (x+, xr, ur)

will be proven in detail in Lemma 8.20. This is key to showing convergence of the
closed-loop system under the proposed τ -RT control law for tracking to an RPI set
around xr in Theorem 8.22. We first state a lemma that is required for this result.

Lemma 8.19 Consider Problem Pτ,trN (x, xr, ur). Let (xr, ur) be a reference steady-

state, (x̃s, ũs) a steady-state and x̃0 ∈ X̄ tr
f (x̃s, ũs) a first tube center. Let ũ, x̃ be

the input and state sequence generated by applying the auxiliary control law κtr
f (x) =

ũs+K(x−x̃s) starting from x̃0, i.e. ũi = K(A+BK)i(x̃0−x̃s)+ũs, for i = 0, . . . , N−1.
Denote x̃s,α = αx̃s + (1 − α)xr, ũs,α = αũs + (1 − α)ur. There exists an α < 1 such
that if ‖x̃0 − x̃s‖P ≤ (1− α)‖x̃s − xr‖P , then

V tr
N (x̃, ũ, x̃s,α, ũs,α, xr, ur) ≤ V tr

N (x̃, ũ, x̃s, ũs, xr, ur)− (1− α)2‖x̃s − xr‖2P . (8.12)

Proof. We denote AK = A+BK. From the use of the auxiliary control law we obtain

l(x̃i − x̃s, ũi − ũs) =‖Ai
K(x̃0 − x̃s)‖2Q + ‖KAi

K(x̃0 − x̃s)‖2R ,

l(x̃i − x̃s,α, ũi − ũs,α) =‖Ai
K(x̃0 − x̃s) + (1− α)(x̃s − xr)‖2Q

+ ‖KAi
K(x̃0 − x̃s) + (1− α)(ũs − ur)‖2R .

By Assumption 8.15, Vf(x− x̄s) is a Lyapunov function and P ) Q+KTRK, therefore
‖Ai

Kx‖Q ≤ ‖Ai
Kx‖P ≤ ‖x‖P and ‖Ai

Kx‖KTRK ≤ ‖Ai
Kx‖P ≤ ‖x‖P , which together with

‖x̃0 − x̃s‖P ≤ (1− α)‖x̃s − xr‖P provides that

l(x̃i − x̃s,α, ũi − ũs,α)− l(x̃i − x̃s, ũi − ũs)

= 2(1− α)(Ai
K(x̃0 − x̃s))

TQ(x̃s − xr) + (1− α)2‖x̃s − xr‖2Q
+ 2(1− α)(KAi

K(x̃0 − x̃s))
TR(ũs − ur) + (1− α)2‖ũs − ur‖2R

≤ 2(1− α)‖Ai
K(x̃0 − x̃s)‖Q‖x̃s − xr‖Q + (1− α)2‖x̃s − xr‖2Q

+ 2(1− α)‖Ai
K(x̃0 − x̃s)‖KTRK‖ũs − ur‖R + (1− α)2‖ũs − ur‖2R

≤ 2(1− α)2‖x̃s − xr‖2P + (1− α)2‖x̃s − xr‖2P
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+ 2(1− α)2‖x̃s − xr‖P‖ũs − ur‖R + (1− α)2‖ũs − ur‖2R

and similarly

Vf (x̃N − x̃s,α)− Vf(x̃N − x̃s) ≤ 3(1− α)2‖x̃s − xr‖2P .

In the following we denote ∆x̃s ! ‖x̃s − xr‖P and ∆ũs ! ‖ũs − ur‖R. From convexity
of Vo(·, ·) we obtain

Vo(x̃s,α − xr, ũs,α − ur) = Vo(α(x̃s − xr),α(ũs − ur)) ≤ αVo(x̃s − xr, ũs − ur)

and therefore

V tr
N (x̃α, ũα, x̃s,α, ũs,α, xr, ur)− V tr

N (x̃, ũ, x̃s, ũs, xr, ur) + (1− α)2‖x̃s − xr‖2P

=
N−1
∑

i=0

l(x̃i − x̃s,α, ũi − ũs,α)− l(x̃i − x̃s, ũi − ũs) + Vf(x̃N − x̃s,α)− Vf(x̃N − x̃s)

+ Vo(x̃s,α − xr, ũs,α − ur)− Vo(x̃s − xr, ũs − ur) + (1− α)2‖x̃s − xr‖2P
≤3(N + 1)(1− α)2∆x̃2

s + 2N(1− α)2∆x̃s∆ũs +N(1− α)2∆ũ2
s

+ (1− α)2∆x̃2
s − (1− α)Vo(x̃s − xr, ũs − ur)

≤(1− α)[(3N + 4)∆x̃2
s(1− α)− Vo(x̃s − xr, ũs − ur)

+ 2N∆x̃s∆ũs(1− α) +N∆ũ2
s(1− α)] ≤ 0 ,

which is satisfied for

(3N + 4)∆x̃2
s + 2N∆x̃s∆ũs +N∆ũ2

s − Vo(x̃s − xr, ũs − ur)

(3N + 4)∆x̃2
s + 2N∆x̃s∆ũs +N∆ũ2

s

≤ α < 1 ,

proving the result. "

Lemma 8.19 shows that if the initial tube center x̄0 is very close to the artificial steady-
state x̄s, then we can move the artificial steady-state towards xr, while still providing a
decrease in the cost using the auxiliary control law, which allows us to prove feasibility
of the warm-start solution provided by Algorithm 5 in the following theorem.

Theorem 8.20 (Feasibility of the warm-start for tracking) Let εs, εf > 0 be pos-

itive constants such that Ef ! {x | ‖x− x̄s‖P ≤ εs} ⊆ X̄ tr
f (x̄s, ūs) for all (x̄s, ūs) ∈ Θs

and S ! {x | ‖x − xr‖P ≤ εf} ⊆ xr ⊕ ZW . The warm-start solution provided by

Algorithm 5 is feasible for Pτ,trN (x+, xr, ur), where x+ ∈ Ax+Bκτ,tr(x)⊕W, i.e. x̄ws
0 ∈

X τ
0 (x

+), (x̄ws
s , ūws

s ) ∈ Θ̄, ūws ∈ U τ,trN (x̄ws
0 , x̄ws

s , ūws
s ).

Proof. Feasibility of x̄ws
0 follows directly from the results in [MSR05]. Since Θ̄ is a

convex set, feasibility of (xr, ur) and (x̄in
s (x), ū

in
s (x)) imply (x̄ws

s , ūws
s ) ∈ Θ̄ for α ∈ [0, 1].
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For α = 1, ‖x̄ws
0 − x̄in

s (x(k−1))‖P ≥ εs, feasibility of the warm-start for Pτ,trN (x+, xr, ur)

without the Lyapunov constraint (8.8f) is directly provided by feasibility of the input
to Algorithm 5 and invariance of the terminal set, see also [LAAC08, ALA+07], for
‖x̄ws

0 − x̄in
s (x(k − 1))‖P < εs by feasibility of the auxiliary control law. Since the

minimization of α in Step 5 enforces the terminal constraint, satisfaction of the state
and input constraints is maintained. The important condition to prove is hence the
Lyapunov constraint (8.8f). If αmin < 1 in Step 5, the Lyapunov constraint is satisfied
by construction with εk = 1

2(1− αmin)2 > 0 and the critical issue is therefore αmin = 1.
We first point out why αmin=1 may be critical in order to then prove that by the use
of Step 5 feasibility of the Lyapunov decrease constraint is provided.

The dependence of the initialization on x and the warm-start on x+ is neglected for
ease of notation, since it is clear from the context. The following facts are used:

xτ,trnom = Ax− Ax̄in
0 + Ax̄in

0 +Būin
0 +BK(x− x̄in

0 )

= x̄in
1 + (A+BK)(x− x̄in

0 ) = x̄ws
0 + (A+BK)(x− x̄in

0 ) . (8.13)

By Assumption 8.15 Vf(·) is a Lyapunov function satisfying condition A2 in Assump-
tion 5.3, therefore

Vf(x
τ,tr
nom − x̄ws

0 )− Vf(x− x̄in
0 )

= ‖(A+BK)(x− x̄in
0 )‖2P − ‖x− x̄in

0 ‖2P ≤ −‖x− x̄in
0 ‖2Q . (8.14)

A relationship that will be used in several places is 1
2‖x + y‖2Q ≤ ‖x‖2Q + ‖y‖2Q, which

is provided by convexity of ‖·‖2Q .

Let ūshift denote the shifted sequence given by the initial warm-start in Step 2 of
Algorithm 5 and x̄shift the corresponding state sequence starting from x̄shift

0 = x̄in
1 . If

αmin=1, the use of the shifted sequence provides the following decrease in the cost,
which can be obtained from a direct comparison of the sequences and using standard
arguments in MPC (see also [ALA+07]):

V tr
N (x̄shift, ūshift, x̄in

s , ū
in
s , xr, ur) ≤ V tr

N (x̄in, ūin, x̄in
s , ū

in
s , xr, ur)− l(x̄in

0 − x̄in
s , ū

in
0 − ūin

s ) .

By using (8.14) we then obtain

V tr
N (x̄shift, ūshift, x̄in

s , ū
in
s , xr, ur) + Vf(x

τ,tr
nom − x̄ws

0 ) (8.15a)

− V tr
N (x̄in, ūin, x̄in

s , ū
in
s , xr, ur)− Vf (x− x̄in

0 ) (8.15b)

≤ −l(x̄in
0 − x̄in

s , ū
in
0 − ūin

s )− ‖x− x̄in
0 ‖2Q (8.15c)

= −‖x̄in
0 − x̄in

s ‖2Q − ‖ūin
0 − ūin

s ‖2R − ‖x− x̄in
0 ‖2Q . (8.15d)

The cost therefore decreases as a function of ‖x̄in
0 − x̄in

s ‖2Q + ‖ūin
0 − ūin

s ‖2R instead of
‖x̄in

0 −xr‖2Q. In order to bound the decrease by εk‖x−xr‖2Q, as required by the Lyapunov
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constraint, we would have to choose

εk = min

(

‖x̄in
0 − x̄in

s ‖2Q + ‖ūin
0 − ūin

s ‖2R
‖x̄in

0 − xr‖2Q
, 1

)

, (8.16)

in order to obtain

−‖x̄in
0 − x̄in

s ‖2Q − ‖ūin
0 − ūin

s ‖2R − ‖x− x̄in
0 ‖2Q ≤ −εk‖x̄in

0 − xr‖2Q − ‖x− x̄in
0 ‖2Q

≤ −εk‖x̄in
0 − xr‖2Q − εk‖x− x̄in

0 ‖2Q

≤ −1

2
εk‖x− xr‖2Q .

It can, however, be seen from the definition of εk in (8.16) that if ‖x̄in
0 − x̄in

s ‖2Q and/or
‖ūin

0 − ūin
s ‖2R go to zero while ‖x̄in

0 − xr‖2Q does not, εk will go to zero. This means that
the tube center would converge to x̄in

s instead of xr, which is not the desired behavior.
In order to ensure convergence to xr, the Lyapunov constraint therefore requires a strict
decrease with εk > 0 ∀k ∈ N.

The goal of this proof is to show that there always exists an εk > 0, such that the
warm-start satisfies the Lyapunov constraint in (8.8f). Recall that if αmin < 1 is chosen
in Step 5, then εk = 1

2(1 − αmin)2 > 0. We therefore prove this result for the following
two cases: If ‖x̄ws

0 − x̄in
s ‖P ≥ εs and αmin = 1 is the optimal solution in Step 5 it will

be shown that εk > 0 is satisfied by the warm-start. If ‖x̄ws
0 − x̄in

s ‖P < εs, it will be
shown that either ‖x̄ws

0 − x̄in
s ‖P ≥ (1− α)‖x̄in

s − xr‖P for some α < 1 and εk > 0 or the
optimization of α in Step 5 always provides αmin < 1.

Case 1: ‖x̄ws
0 − x̄in

s ‖P ≥ εs

εs ≤ ‖x̄ws
0 − x̄in

s ‖P ≤ ‖A(x̄in
0 − x̄in

s ) +B(ūin
0 − ūin

s )‖P
≤ ‖A(x̄in

0 − x̄in
s )‖P + ‖B(ūin

0 − ūin
s )‖P ≤ ‖A‖P‖x̄in

0 − x̄in
s ‖2 + ‖B‖P‖ūin

0 − ūin
s ‖2

and therefore

‖B‖P‖ūin
0 − ūin

s ‖2 ≤ kεs ⇒ ‖A‖P‖x̄in
0 − x̄in

s ‖2 ≥ (1− k)εs ⇒ ‖x̄in
0 − x̄in

s ‖Q ≥ (1− k)εs
cQ‖A‖P

‖A‖P‖x̄in
0 − x̄in

s ‖2 ≤ kεs ⇒ ‖B‖P‖ūin
0 − ūin

s ‖2 ≥ (1− k)εs ⇒ ‖ūin
0 − ūin

s ‖R ≥ (1− k)εs
cR‖B‖P

,

where k ∈ (0, 1) and cQ, cR ≥ 1 are such that c2QQ ) I, c2RR ) I.

By defining εs,min = min
(

(1−k)εs
cQ‖A‖P

, (1−k)εs
cR‖B‖P

)

, this implies that ‖x̄in
0 − x̄in

s ‖2Q + ‖ūin
0 −

ūin
s ‖2R ≥ ε2s,min and thus

εk =
‖x̄in

0 − x̄in
s ‖2Q + ‖ūin

0 − ūin
s ‖2R

‖x̄in
0 − xr‖2Q

≥
ε2s,min

maxx̄in
0
∈X ‖x̄in

0 − xr‖2Q
> 0 .
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Case 2: ‖x̄ws
0 − x̄in

s ‖P < εs
In this case, the warm-start sequence is intitialized using the auxiliary control law
κtr
f (x) = ūin

s +K(x− x̄in
s ) starting from x̄ws

0 . We will show that either ‖x̄ws
0 − x̄in

s ‖P ≥
(1 − α)‖x̄in

s − xr‖P for some α < 1, in which case εk > 0, or if ‖x̄ws
0 − x̄in

s ‖P ≤
(1− α)‖x̄in

s − xr‖P , then αmin < 1 in Step 5.
Case 2a: ‖x̄ws

0 − x̄in
s ‖P ≥ (1− α)‖x̄in

s − xr‖P

(1− α)2‖x̄in
s − xr‖2P ≤ ‖x̄ws

0 − x̄in
s ‖2P ≤ cP‖x̄ws

0 − x̄in
s ‖2Q

where cP ≥ 1 is such that cPQ ) P and therefore

‖x̄ws
0 − x̄in

s ‖2Q ≥ 1

2
‖x̄ws

0 − x̄in
s ‖2Q +

1

2cP
(1− α)2‖x̄in

s − xr‖2P

≥ 1

2cP
(1− α)2‖x̄ws

0 − x̄in
s ‖2Q +

1

2cP
(1− α)2‖x̄in

s − xr‖2Q

≥ 1

4cP
(1− α)2‖x̄ws

0 − xr‖2Q .

From (8.15), (8.16) it then follows that εk ≥ 1
4cP

(1− α)2 > 0.
Case 2b: ‖x̄ws

0 − x̄in
s ‖P < (1− α)‖x̄in

s − xr‖P
If the artificial steady-state is (x̄in

s , ū
in
s ), the optimal sequence to regulate the system

to this steady-state starting from x̄ws
0 ∈ X̄ tr

f (x̄in
s , ū

in
s ) is by applying the control law

κtr
f (x) = ūin

s + K(x − x̄in
s ). The corresponding input and state sequences are denoted

by ū◦, x̄◦. By sub-optimality of ūshift, we obtain

V tr
N (x̄◦, x̄◦, x̄in

s , ū
in
s , xr, ur) ≤ V tr

N (x̄shift, ūshift, x̄in
s , ū

in
s , xr, ur) . (8.17)

Since ‖x̄ws
0 − x̄in

s ‖P < (1− α)‖x̄in
s − xr‖P , we can use result (8.12) of Lemma 8.19 in

order to show that there exists an α < 1 such that the warm-start satisfies

V tr
N (x̄ws, ūws, x̄ws

s , x̄ws
s , xr, ur) (8.18a)

≤ V tr
N (x̄◦, x̄◦, x̄in

s , ū
in
s , xr, ur)− (1− α)2‖x̄in

s − xr‖2P (8.18b)

≤ V tr
N (x̄shift, ūshift, x̄in

s , ū
in
s , xr, ur)− (1− α)‖x̄in

s − xr‖2P , (8.18c)

where the last step uses (8.17). Finally, from convexity of ‖·‖2Q, (8.15) and (8.18)

V tr
N (x̄ws, ūws, x̄ws

s , ūws
s , xr, ur) + Vf(x

τ,tr
nom − x̄ws

0 )− V tr
N (x̄in, ūin, x̄in

s , ū
in
s , xr, ur)− Vf(x− x̄in

0 )

≤ −‖x̄in
0 − x̄in

s ‖2Q − ‖x− x̄in
0 ‖2Q − (1− α)2‖x̄in

s − xr‖2P

≤ −1

2
‖x− x̄in

s ‖2Q − (1− α)2‖x̄in
s − xr‖2P

≤ −(1− α)2
1

2
(‖x− x̄in

s ‖2Q + ‖x̄in
s − xr‖2Q) ≤ −(1− α)2

1

4
‖x− xr‖2Q .
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In order to show feasibility with respect to the terminal constraint, we prove that
‖x̄ws

N − x̄ws
s ‖P ≤ εs, which implies that x̄ws

N ∈ X̄ tr
f (x̄in

s,α, ū
in
s,α) by the definition of εs:

‖x̄ws
N − x̄ws

s ‖P = ‖x̄ws
N − x̄in

s + (1− α)(x̄in
s − xr)‖P

≤ ‖(A+BK)N(x̄ws
0 − x̄in

s )‖P + (1− α)‖x̄in
s − xr‖P ≤ εs .

which is satisfied for some α < 1, since ‖(A+BK)N(x̄ws
0 − x̄in

s )‖P < εs.

Hence, there exists an α < 1 such that the terminal constraint is feasible and the
Lyapunov constraint is satisfied with εk = 1

2(1 − α)2, which will therefore be obtained
for αmin in Step 5 of Algorithm 5.

As a result, we have shown that the warm-start solution provided by Algorithm 5
is feasible for Pτ,trN (x+, xr, ur) and satisfies the Lyapunov constraint (8.8f) for some
εk > 0 ∀k ∈ N. "

We can now show that the results for regulation presented in Section 8.3 directly
extend to the tracking case and feasibility again implies stability.

Lemma 8.21 Consider Problem Pτ,trN (x, xr, ur) fulfilling Assumption 8.15, where
(xr, ur) ∈ Θ̄ is a feasible steady-state.

Let x̃τ0(x(k)) ∈ X τ
0 (x(k)) be a feasible tube center, (x̃τs(x(k)), ũ

τ
s(x(k))) ∈ Θ̄ a fea-

sible steady-state and ũτ (x(k)) ∈ U τ,trN (x̃τ0(x(k)), x̃
τ
s(x(k)), ũ

τ
s(x(k))) a feasible control

sequence for Pτ,trN (x(k)) for all k ∈ N and κ̃τ (x(k)) = ũτ0(x(k))+K(x−x̃τ0(x(k))) the re-
sulting control law. Let S ! {x | ‖x−xr‖P ≤ εf}, where εf > 0 is such that S ⊆ xr⊕ZW

and assume that V tr
N (x̃τ (x(k)), ũτ (x(k)), x̃τs(x(k)), ũ

τ
s(x(k)), xr, ur)+Vf(x− x̃τ0(x(k))) ≤

Vf(x(k)− xr) if x(k) ∈ S.

The closed-loop system x(k+1) = Ax(k)+Bκ̃(x(k))+w(k) converges to an RPI set

around xr ∀ x ∈ X̄ tr
N , i.e. the system x(k + 1)− xr = A(x(k)− xr) + B(κ̃(x(k))− ur)

is ISS in X τ,tr
N with respect to w(k) ∈ W.

Proof. We define V τ,trL (x, xr, ur) ! V tr
N (x̃τ (x), ũτ (x), x̃τs (x), ũ

τ
s(x), xr, ur)+Vf(x−x̃τ (x)).

Following similar arguments as in the proof of Lemma 8.6 and using convexity of ‖·‖2Q,
we can show that there exists a K∞-class function α(·) such that

V τ,trL (x, xr, ur) ≥ ‖x̃τ0(x)− x̃τs(x)‖2Q + ‖x− x̃τ0(x)‖2Q + ‖x̃τs(x)− xr‖2T

≥ 1

2
‖x− x̃τs (x)‖2Q +

1

2
cT‖x̃τs (x)− xr‖2Q

≥ 1

4
cT‖x− xr‖2Q ≥ α(‖x− xr‖) ∀x ∈ X τ,tr

N , (8.19)

where cT ≤ 1 is such that T ) cTQ. By the assumptions in the lemma, there exists a
K∞-class function α(·) such that

V τ,trL (x, xr, ur) ≤ Vf(x− xr) ≤ α(‖x− xr‖) ∀x ∈ S . (8.20)
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Furthermore, it follows from the Lyapunov constraint (8.8f) that

V tr
N (x̃τ (x+), ũτ (x+), x̃τs(x

+), ũτs(x
+), xr, ur)+Vf(x

τ,tr
nom−x̃τ0(x

+))−V τ,trL (x) ≤ −1

2
εkl(x−xr , 0)

for all x ∈ X τ,tr
N with x+ = Ax + Bκ̃(x) + w and εk > 0. Let εmin = mink∈N εk > 0 be

the smallest possible value over all εk. Following the same argument as in the proof of
Lemma 8.6 and replacing ε with εmin, there hence exists a K∞-class function β(·) and
a K-class function γ(·) such that

V τ,trL (x+, xr)− V τ,trL (x, xr) ≤ −β(‖x− xr‖) + γ(‖w‖) (8.21)

concluding the proof. "

Theorem 8.22 (Convergence under κτ,tr(x, k)) Consider Problem Pτ,trN (x, xr, ur)

fulfilling Assumption 8.15, where (xr, ur) ∈ Θ̄ is a feasible steady-state. The closed-loop
system x(k + 1) = Ax(k) + Bκτ,tr(x(k)) + w(k) under the τ -RT control law in (8.3)
that is obtained from Algorithm 5 converges to an RPI set around xr ∀ x ∈ X̄ tr

N , i.e.
the system x(k+ 1)− xr = A(x(k)− xr) +B(κ̃(x(k))− ur) is ISS in X τ,tr

N with respect

to w(k) ∈ W.

Proof. The proof is similar to that of Theorem 8.7.
Let x̃τ,tr(x), ũτ,tr(x) denote the variables obtained at Step 15 of Algorithm 5. We again
define V τ,trL (x, xr, ur) ! V tr

N (x̃τ,tr(x), ũτ,tr(x), x̃τ,trs (x), ũτ,trs (x), xr, ur) + Vf(x − x̃τ,trs (x))

and S ! {x | ‖x− xr‖P ≤ εf} ⊆ xr ⊕ ZW . Feasibility of the warm-start was shown in
Lemma 8.20, which is maintained by the use of a primal feasible optimization method. If
Steps 12-14 are never applied, ISS follows directly from Lemma 8.21. If Steps 12-14 are
applied for some x(k) ∈ S, it is known that ũ = [us, . . . , ur], x̃0 = xr, x̃s = xr, ũs = ur is
feasible for Pτ,trN (x(k), xr, ur) without the Lyapunov constraint and V τ,trL (x(k), xr, ur) =
VN(ũ, x̃, xr, ur, xr, ur) + Vf(x(k)−xr) = Vf (x(k)−xr). This provides the upper bound
in (8.20). Let ũopt, x̃opt, x̃opt

s , ũopt
s denote the solution that is returned by the real-

time optimization. Since it is feasible for Pτ,trN (x(k), xr, ur) including the Lyapunov
constraint, it follows from (8.21) in the proof of Lemma 8.21 that

VN(x̃
opt, ũopt, x̃opt

s , ũopt
s , xr, ur) + Vf(x(k)− x̃opt

0 )

≤ V τ,trL (x(k − 1))− β(‖x(k − 1)− xr‖) + γ(‖w(k − 1)‖)

for some K-class function γ(·) and K∞-class function β(·). Finally, since the conditions
in Step 12 are fulfilled, it follows that

V τ,trL (x(k)) = Vf(x(k)− xr) ≤ VN(x̃
opt, ũopt, x̃opt

s , ũopt
s , xr, ur) + Vf(x(k)− x̃opt

0 )

≤ V τ,trL (x(k − 1))− β(‖x(k − 1)− xr‖) + γ(‖w(k − 1)‖) .

This shows that V τ,trL (x) is a ISS Lyapunov function, proving the result. "
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Remark 8.23. Note that at the first optimization step after a reference change Prob-
lem Pτ,trN (x, xr, ur) without the Lyapunov constraint (8.8f) has to be considered in the
real-time procedure since the reference change may increase the cost value compared
to the previous solution before the reference change and a cost decrease cannot be
enforced.

Remark 8.24. The use of an artificial reference and corresponding target set enlarges
the domain of attraction compared to a standard MPC approach for reference tracking
and X τ,tr

N ⊇ X τ
N [LAAC08].

Remark 8.25. Vo(·, ·) is chosen as a quadratic function and does not represent an
exact penalty function (see Section 3.1) since this work focuses on a suboptimal method.
Local optimality is hence not guaranteed, i.e. the optimal artificial reference resulting
from Pτ,trN (x, xr, ur) might differ from the desired reference, although x∗

s = xr, u∗
s =

ur is a feasible solution and could be enforced. This optimality loss can be reduced
by choosing large weight matrices Tx and Tu. All the results on real-time MPC for
reference tracking presented in the following, however, directly extend to the use of 1−
or ∞−norms in the offset cost, representing an exact penalty function for sufficiently
large weights Tx and Tu [Lue84,FLA+09]. Note that the choice of Vo(·, ·) only affects
the transient behavior and not the optimal steady-state.

Remark 8.26. The method can be extended to achieve zero-offset for constant dis-
turbances using e.g. the approach described in [MBM09].

Having set the theoretical background, the remaining sections focus on the practical
aspects and implementation of the proposed real-time robust MPC approach. First, we
provide step-by-step implementation details for the robust MPC problem setup that
can be applied to large-scale systems. An optimization method for efficiently solving
Problem Pτ,trN (x, xr, ur) is then introduced and we prove that all guarantees can be
provided at high computational speed.

8.5 Problem Setup

In the robust MPC formulation, the set ZW in PτN(x) or Pτ,trN (x, xr, ur) would ideally be
taken as the minimal RPI (mRPI) set and X̄f/X̄ tr

f (x̄s, ūs) as the maximal PI (MPI) set.
An explicit representation of these sets can generally not be computed except in special
cases [GT91,KG98,Las93]. It is, however, always possible to compute an invariant outer
approximation of the mRPI set and an invariant inner approximation of the MPI set of
predefined shape. Note that the crucial property of recursive feasibility is not affected
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by the use of these approximations. The two commonly used approximation types are
polyhedral or ellipsoidal invariant sets. In the case that ZW and X̄f/X̄ tr

f (x̄s, ūs) are
polyhedral sets, the robust MPC problem PτN(x), or Pτ,trN (x, xr, ur) respectively, results
in a quadratic program (QP). If ZW and X̄f/X̄ tr

f (x̄s, ūs) are represented by ellipsoidal
sets, it can be transformed into a quadratically constrained QP (QCQP), that is a QP
with two extra quadratic constraints on the initial and the terminal state.

A key question is then, which type of approximation to use for the invariant set com-
putations. Since the set computations are performed offline the computation times are
not crucial. In general, polyhedral approximations can only be computed for smaller
systems of approximately 6− 7 dimensions. Whereas ellipsoidal approximations might
be more conservative in this range, they represent the better, if not the only choice
for higher dimensions. If the considered system is in the range where a polyhedral
approximation can be computed, an explicit solution of the MPC problem should be
considered as well, since it allows for extremely fast computation times in lower di-
mensions (see Section 6.1). Another advantage of ellipsoidal invariant sets is the fact
that the number of constraints that are introduced is fixed, whereas in the polytopic
case, the calculated polytopes may add a large number of constraints, leading to slower
computation times and excessive memory requirements.

Remark 8.27. Whereas the use of potentially more conservative ellipsoidal approxi-
mations may reduce the region of attraction, the tracking formulation Pτ,trN (x, xr, ur)
has a larger region of attraction than standard MPC approaches (see Remark 8.24),
thereby reducing the conservatism introduced by the robust MPC formulation.

Remark 8.28. Computation of the invariant sets and tightened constraints using el-
lipsoidal approximations is computationally tractable and can be efficiently solved even
for large-scale systems because it involves the solution of convex Linear Matrix Inequal-
ities (LMIs). We therefore restrict the description of the implementation details to the
use of ellipsoidal approximations. For methods on polytopic invariant set computations
see e.g. [GT91,ALBH07,RKKM05,RMKK05].

The details for computing ellipsoidal invariant sets for ZW and X̄f/X̄ tr
f (x̄s, ūs) as well

as the tightened constraints X̄ and Ū are outlined in the following. For simplicity,
the terminal cost is taken as the unconstrained infinite horizon optimal cost Vf(x) =
xTPx and the corresponding optimal infinite horizon linear control law is used for K

in (8.3), although there are different ways of choosing a stabilizing affine controller
[KBM96, RMKK05]. We denote AK ! A + BK. The polyhedral state and control
constraints are defined as X = {x |Gxx ≤ fx} and U = {u |Guu ≤ fu}, the tightened
constraints as X̄ = {x |Gxx ≤ f̄x} and Ū = {u |Guu ≤ f̄u}, with Gx ∈ Rmx×nx,
fx, f̄x ∈ Rmx , Gu ∈ Rmu×nu and fu, f̄u ∈ Rmu . For simplicity we assume that W =
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{w | ‖w‖22 ≤ δ}. The results can, however, be extended to the case where W is a general
ellipse or the intersection of an ellipse and a subspace.

The computations necessary for the problem setup PτN(x) in the regulation case or
Ptr
N(x, xr, ur) in the tracking case, respectively, are summarized in Algorithm 6. The

remainder of this section explains steps 1-3 of the preprocessing algorithm in more
detail.

1) Ellipsoidal approximation of ZW : An RPI ellipsoidal outer approximation EZ
of the mRPI set can be determined using a level set of Vf(x) = xTPx. Extra
constraints are added enforcing that the ellipsoid is in fact an RPI set and all
state and input constraints are satisfied. This problem can be transformed into an
LMI using the S-procedure and choosing the parameter τ2 ∈ [0, 1] [BEFB94,L0̈1].

2) Constraint tightening : The Minkowski differences X̄ = X ( ZW , Ū = U(KZW

can be computed by determining the support function of the set EZ evaluated at
the constraints using the closed-form solution or by solving a series of LPs. The
tightened constraints X̄ and Ū are polytopic and of the same complexity as the
original constraints X and U.

3a) Ellipsoidal approximation of X̄f satisfying Assumption 8.1: Most approaches use
the level set of a quadratic Lyapunov function to derive an invariant ellipsoidal
inner approximation of the MPI set [GSdD06,BEFB94,KBM96]. 1.: In the con-
sidered case a Lyapunov function is readily available with Vf(x) = xTPx and
an ellipsoidal PI set EX̄f

can be computed as the biggest level set fulfilling the
state and control constraints, resulting in a simple 1-dimensional LP. 2.: Alter-
natively, a maximal volume ellipsoidal PI set EX̄f

can be employed by computing
a quadratic Lyapunov function with the largest level set inside the constraints,
which can be formulated as an LMI [BEFB94].

3b) Ellipsoidal approximation of X̄ tr
f (xs, us) satisfying Assumption 8.15: The terminal

set for tracking introduced in [LAAC08] is the maximal PI set given by the
set of feasible states, feasible steady-states and inputs, such that the control
law u = K(x − xs) + us is feasible and stabilizes the nominal system in (4.4).
Considering the parametrization xs = Mxθ, us = Muθ with θ ∈ Rnθ described in
Section 4.1 and the augmented system v =

[

xT − xT
s θT

]T in (5.16), a quadratic
Lyapunov function V (x) = vT

[

P1

P2

]

v can be computed, such that a level set
provides the largest invariant ellipsoid fulfilling the state and control constraints.
This can again be formulated as an LMI [BEFB94]. EX̄ tr

f
(xs, us) is then obtained

using the relationship θ = MT [xT
s uT

s ]
T .

The following section is devoted to the main challenge of developing a fast optimiza-
tion procedure for the presented real-time robust MPC method guaranteeing feasibility
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Algorithm 6 Preprocessing Algorithm
Input: Gx, fx, Gu, fu, K and δ.
Output: EZ , f̄x, f̄u and EX̄f

or EX̄ tr
f
(xs, us).

1: Compute ellipsoidal RPI set EZ : EZ = {x ∈ Rnx |xTPx ≤ γmin}, where

γmin = argmin
γ,τ1

{

γ
∣

∣

∣

[

τ2P−(A+BK)TP (A+BK) −(A+BK)TP
−P (A+BK) τ1I−P

]

) 0, τ1δ + τ2γ ≤ γ, τ1 ≥ 0,

‖P− 1

2GT
x,i‖22γ ≤ f2

x,i ∀ i = 1, . . . ,mx, ‖P− 1

2KTGT
u,j‖22γ ≤ f2

u,j ∀ j = 1, . . . ,mu} .

2: Compute tightened constraints X̄, Ū:

f̄x,i = fx,i − hEZ
(GT

x,i),∀ i = 1, . . . ,mx, f̄u,i = fu,i − hEZ
(GT

u,i),∀ i = 1, . . . ,mu ,

where hEZ
(a) ! supx∈EZ

aTx =
√
γmin

aTP−1a

‖P−
1
2 a‖2

is the support function of EZ evaluated
at a .
3a: Regulation: Compute ellipsoidal PI set EX̄f

:
1: EX̄f

= {x ∈ Rnx |xTPx ≤ γmax}, where

γmax = argmin
γ

{−γ | ‖P− 1

2GT
x,i‖22γ ≤ f2

x,i ∀ i = 1, . . . ,mx, ‖P− 1

2KTGT
u,j‖22γ ≤ f2

u,j

∀ j = 1, . . . ,mu} .

2: EX̄f
= {x ∈ Rnx |xTQ−1x ≤ 1}, where

Q = argmin
Q

{

− log det(Q)
∣

∣

∣

[

Q QAT
K

AKQ Q

]

) 0, ‖Q
1

2GT
x,j‖22 ≤ f2

x,j∀ j = 1, . . . ,mx,

‖Q
1

2KTGT
u,j‖22 ≤ f2

u,j∀ j = 1, . . . ,mu } .

3b: Tracking: Compute ellipsoidal PI set EX̄ tr
f
(xs, us):

EΩf
= {v ∈ Rnx+nθ | vT

[

Q−1

1

Q−1

2

]

v ≤ 1}, where

[

Q1

Q2

]

= argmin
Q1,Q2

{

− log det
([

Q1

Q2

])
∣

∣

∣

[

Q1 Q1AT
K

AKQ1 Q1

]

) 0,

‖Q
1

2

1G
T
x,i‖22 + ‖Q

1

2

2M
T
x GT

x,i‖22 ≤ f2
x,i∀ i = 1, . . . ,mx,

‖Q
1

2

1K
TGT

u,j‖22 + ‖Q
1

2

2M
T
u G

T
u,j‖22 ≤ f2

u,j∀ j = 1, . . . ,mu } .

Then EX̄ tr
f
(xs, us) = {x ∈ Rnx | (x− xs)TQ

−1
1 (x− xs) ≤ 1− [xTs uTs ]MQ−1

2 MT [xTs uTs ]
T }.
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and stability at high speeds.

8.6 Real-time Optimization Procedure

For the description of the optimization procedure we focus on the real-time robust MPC
problem for tracking Pτ,trN (x, xr, ur), the results can, however, be equivalently applied
to solve the real-time robust problem for regulation PτN (x). For a given value x ∈ X τ,tr

N ,
problem Pτ,trN (x, xr, ur) can be written as a QCQP of the following form:

min
z

zTHz + gTz (8.22a)

s.t. Cz = b , (8.22b)

G(z) ≤ 0, (8.22c)

where the vector of decision variables zT =
[

x̄T
0 , ūT

0 , ūT
1 , . . . x̄T

N , x̄T
s , ūT

s

]

,
C ∈ R(N+1)nx×(N+1)(nx+nu) and b ∈ R(N+1)nx contain the equality constraints in (8.2b)
and G(z) is formed from the scalar functions gi(z), i = 1, . . . , m that contain the affine
and quadratic inequality constraints in (8.2c),(8.2f),(8.8d)-(8.8f).

There are several optimization methods that can be used to solve (8.22). Recent work
on fast MPC has shown how e.g. active set methods [FBD08], interior-point methods
[WB10,Wri97a] or, for a special subclass of problems, gradient methods [RJM09] can be
applied to control high speed systems, see also the survey in Section 6.2. An active set
approach could, however, only be applied within a sequential quadratic programming
framework to solve the QCQP in (8.22), which does not provide feasibility (and thereby
stability) at all times due to the linearization of the constraints. In order to solve the
QCQP in (8.22), a feasible start primal barrier interior-point method (IPM) is therefore
applied in this work, which provides feasibility at all times and can efficiently solve
QCQPs [NW06]. The results on structure exploitation in MPC methods presented
in the literature, e.g. in [WB10,Wri97a], can, however, not be directly applied in the
considered case due to the fact that the Lyapunov constraint and the modified cost of
the tracking formulation introduce coupling across the horizon and thereby significantly
modify the structure of the resulting optimization problem. A modified method for fast
computation of the real-time robust MPC control law for tracking is developed in the
following, based on an approximate primal barrier interior-point method.

8.6.1 Approximate Primal Barrier Interior-Point Method

In a barrier method, the inequality constraints of the QCQP in (8.22c) are replaced by
a barrier penalty in the cost function resulting in the approximate problem formulation:
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min
z

zTHz + gTz + κψ(z) (8.23a)

s.t. Cz = b , (8.23b)

where κ is the barrier parameter and ψ is the log barrier function given by

ψ(z) =
m
∑

i=1

− log(−gi(z)) . (8.24)

The method starts from a strictly primal feasible (interior) point and then solves a
sequence of linearly constrained minimization problems (8.23) for decreasing values
of the barrier parameter κ starting from the previous iterate (see Algorithm 7) using
Newton’s method (e.g. [BV04,NW06]). As κ → 0 the solution converges to the optimal
solution of (8.22). See Section 3.1 and [BV04,NW06] for a detailed description of the
method and the choice of parameters involved in the procedure.

The warm-start approximate interior-point method is outlined in Algorithm 7. The
procedure is initialized with the warm-start solution defined in Algorithm 5 (Step 1).
We can start with any ν, e.g. ν = 0, where ν are the Lagrange multipliers associated
with the equality constraints Cz = d. This initial solution is then improved by taking
feasible Newton iterations (Steps 2− 8). At each iteration, the primal and dual search
directions ∆z and ∆ν from the current iterate z and ν are obtained by solving the
following linear system (Step 3):

[

∇2
zzL(z, ν) + κ∆G(z)TS−2∆G(z) CT

C 0

] [

∆z
∆ν

]

= −
[

rd
0

]

(8.25)

where L(z, ν) = zTHz+gTz+(Cz−b)T ν+(G(z)+s)Tλ with G(z)+s = 0 and ∆G(z) is
the Jacobian matrix of G(z). The dual residual is rd = 2Hz+ g+κ∆G(z)TS−1+CTν,
where S = diag(s). See e.g. [BV04] for details on Steps 3-5. The τ -RT control sequence
and tube center are then obtained from the solution z after time τ (Step 9).

Remark 8.29. Note that the warm-start defined in Algorithm 5 provides a strictly
interior point for the Lyapunov constraint (8.8f) to warm-start the barrier interior-
point method.

Remark 8.30. One can employ a variant of the barrier interior-point method de-
scribed in [WB10], where the barrier parameter is fixed to a predefined value instead
of gradually decreasing it to zero. This reduces the procedure to a Newton method,
which solves the approximate problem (8.23) for one particular value of κ and therefore
requires lower computation times. While a fixed barrier parameter introduces a steady-
state offset using the method in [WB10], the proposed approach provides convergence
to the desired steady-state by means of the Lyapunov decrease constraint.
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Algorithm 7 Approximate primal barrier method, [BV04,NW06]
Input: feasible control sequence ū

ws(x), initial tube center x̄ws
0 (x) and steady-state

x̄ws
s (x), ūws

s (x) for Pτ,trN (x, xr, ur), initial barrier parameter κ, β ∈ (0, 1), tolerance εtol

Output: τ -RT optimizer ū
τ,tr(x), x̄τ,tr0 (x), x̄τ,trs (x), ūτ,trs (x)

1: Build z from ū
ws(x), x̄ws

0 (x) x̄ws
s (x) and ūws

s (x), choose ν

2: while clock < τ do

3: Newton step direction: Compute ∆z, ∆ν in (8.25)

4: Line search: Choose step size α

5: Update: z = z + α∆z, ν = ν + α∆ν, rd in (8.25)

6: if rd < εtol then z is optimal solution to (8.23) for κ, κ = βκ

7: end if

8: end while

9: Extract ū
τ,tr(x), x̄τ,tr0 (x), x̄τ,trs (x), ūτ,trs (x) from z

8.6.2 Fast Newton Step Computation

The main computational effort when solving an optimization problem using the ap-
proximate primal barrier interior-point method in Algorithm 7 is the Newton step
computation in (8.25). While it has been shown in the literature how this linear sys-
tem can be solved efficiently for a standard MPC formulation using factorizations or
Riccati recursions (e.g. [Wri97a,Han00,WB10]), these results can not directly be ap-
plied to the considered case due to the fact that the Lyapunov constraint as well as the
tracking formulation significantly modify the structure of the Newton step computation
in (8.25). ∇2

zzL(z, ν) has an arrow shape, ∆G(z) is block-diagonal with a dense row at
the bottom and C is banded, which causes the term ∇2

zzL(z, ν)+κ∆GT (z)TS−2∆G(z)
in (8.25) to be dense. We will show in the following how the particular structure can
be exploited and fast computation of the Newton step direction can still be achieved
with a complexity that is of the same order as that of standard MPC approaches.

During each iteration, the primal and dual search directions ∆z and ∆ν from the
current iterate z and ν are obtained efficiently by solving a modified Newton step
computation instead of (8.25) that distinguishes between parts involving the sequence
of states and inputs x̄, ū and the ones involving the artificial steady state and input
x̄s, ūs. Thereby, the dense and the sparse parts are separated using the following
parametrization: ∆zT = [∆z̄T ∆zTs ], ∆νT = [∆ν̄T ∆νT

s ],

∇2
zzL(z, ν) =

[

L̄ l1
lT1 l2

]

,∆G(z) =

[

Ḡ f1
f2 f3

]

, C =

[

C̄ 0
0 a

]

, S =

[

S̄ 0
0 sJ

]

, (8.26a)

H =

[

H̄ h1

hT
1 h2

]

, g =

[

ḡ
g1

]

. (8.26b)
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Note that the dependence of L̄, l1, l2, Ḡ, f1, f1, f2, f3 on z is omitted for ease of notation.

Structure of the Matrices in the Modified Newton Step Computation

The matrices and vectors H̄, h1, h2, ḡ, g1, L̄, l1, l2, Ḡ, f1, f2, f3, C̄, a, S̄ and sJ are de-
scribed in the following. It is assumed that the quadratic initial state constraint is
given by G0(x̄0) ≤ 0 and the quadratic terminal state constraint is GN(x̄N , x̄s, ūs) ≤ 0.
The tightened polyhedral state and input constraints are again X̄ = {x |Gxx ≤ f̄x}
and Ū = {u |Guu ≤ f̄u}.

The matrices L̄, l1, l2, Ḡ, f1, f2, f3, C̄ and a in (8.26) are then given by:

L̄ =



















(2Q+2P )(1+λJ )+
∂2

∂x̄2
0

G0(x̄0)λ0 0

0 2R(1+λJ )

...
2Q(1+λJ ) 0

0 2R(1+λJ )
2P (1+λJ )

+ ∂2

∂x̄2
N

GN (x̄N ,x̄s,ūs)λN



















,

(8.27)

l1 =













−2Q(1+λJ ) 0
0 −2R(1+λJ )

...
...

−2Q(1+λJ ) 0
0 −2R(1+λJ )

−2P (1+λJ )+
∂2

∂x̄N∂x̄s
GN (x̄N ,x̄s,ūs)λN

∂2

∂x̄N∂ūs
GN (x̄N ,x̄s,ūs)λN













, (8.28)

l2 =

[

(N2Q+2P+2Tx)(1+λJ )+
∂2

∂x̄2s
GN (x̄N ,x̄s,ūs)λN

∂2

∂x̄s∂ūs
GN (x̄N ,x̄s,ūs)λN

∂2

∂ūs∂x̄s
GN (x̄N ,x̄s,ūs)λN (N2R+2Tu)(1+λJ )+

∂2

∂ū2s
GN (x̄N ,x̄s,ūs)λN

]

, (8.29)

Ḡ =













∂
∂x̄0

G0(x̄0) 0

0 Ḡu

...
Ḡx 0
0 Ḡu

∂
∂x̄N

GN (x̄N ,x̄s,ūs)













, f1 =









0 0
0 0
...

...
0 0
0 0

∂
∂x̄s

GN (x̄N ,x̄s,ūs) ∂
∂ūs

GN (x̄N ,x̄s,ūs)









,

(8.30)

f2 = [ 2(x̄0−x̄s)TQ−2(xτ,tr
nom−x̄0)TQ 2(ū0−ūs)TR ··· 2(x̄N−1−x̄s)TQ 2(ūN−1−ūs)TR 2(x̄N−x̄s)T P ] ,

(8.31)

f3 = [ −
∑N−1

k=0
2(x̄k−x̄s)TQ−2(x̄N−x̄s)TP+2(x̄s−xr)T Tx

∑N−1

k=0
2(ūk−ūr)TR+2(ūs−us)T Tu ] , (8.32)

C̄ =

[ A B −I
A

...
A B −I

]

, a = [ A−I B ] , (8.33)
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where sJ is the slack variable, λJ the Lagrange multiplier associated with the Lyapunov
constraint in (8.8f) and S̄ is a diagonal matrix whose entries are given by the remaining
slack variables. H̄, h1, h2 is the partition of H and similarly ḡ, g1 is the partition of g
corresponding to the parametrization of z.

Modified Newton Step Computation

The modified Newton step is obtained from the following linear system:














L̄+ κḠT S̄−2Ḡ C̄T 0 fT
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0

0
0

rd,s















(8.34)

where

rd = 2H̄z̄ + 2h1zs + C̄T ν̄ + κḠT S̄−11+ κfT
2 s

−1
J , (8.35)

rd,s = 2hT
1 z̄ + 2h2zs + aTνs + κfT

1 S̄
−11+ κfT

3 s
−1
J (8.36)

and 1 = [1, . . . , 1]T denotes a vector of ones of appropriate dimension.

We show in the following that the modified Newton step computation in (8.34) is
equivalent to the standard Newton step in (8.25). Equation (8.34) can be directly
derived from the full primal-dual Newton step [NW06]:
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, (8.37)

with Σ = S−1Λ, where λ are the Lagrange multipliers associated with the inequality
constraints in (8.22c) and Λ = diag(λ). Note that the primal residual is zero, i.e. rp = 0,
since a primal feasible IPM is considered. Using the parametrization in (8.26) yields
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(8.38)
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with Σ̄ = S̄−1Λ̄, σJ = s−1
J λJ . In the barrier method we use Λ = κS−1 [NW06],

hence Σ̄ = κS̄−2 and σJ = κs−2
J . Eliminating ∆s̄ = −Σ̄−1∆λ̄, ∆sJ = −σ−1

J ∆λJ ,
∆λ̄ = κS̄−2(Ḡ∆z̄ + f1∆zs) and reordering yields (8.34).

The complexity for solving the modified Newton step equation in (8.34) is analyzed
in the following. For simplicity we rewrite (8.34) according to the separating lines into

[

Φ ϑ

ϑT ϕ

] [

y

ys

]

=

[

r

rs

]

. (8.39)

After reordering, Φ is a block diagonal or banded matrix [Wri97a] and the matrix in
(8.39) results in an arrow structure with a dense band ϑ that is only of size 2nx+nu+1,
where nx is the state and nu is the input dimension. Equation (8.39) can then be solved
for y and ys using the following three steps:

1. Solve Φ yA = r for yA, ΦYB = ϑ for YB.

2. Solve (ϕ− ϑTYB)ys = rs − ϑTyA for ys.

3. Solve Φ y = r − ϑys for y.

Remark 8.31. Note that Φ corresponds to the left hand side of (8.25) for a standard
MPC setup for regulation without the Lyapunov decrease constraint and Step 1 and 3
can therefore be solved with complexity O(N(nx + nu)3) using existing results in the
literature [Wri97a,Han00,WB10].

Solution of Steps 1 and 3

We outline the procedure described in [WB10] that is based on block elimination
[BV04]. A system of the form Φ [ y1y2 ] =

[

Ψ C̄T

C̄ 0

]

[ y1y2 ] = [ r1r2 ] with the block diagonal
matrix Ψ = L̄+ κḠT S̄−1Ḡ is solved by means of the following operations:

a) Build Y = C̄TΨ−1C̄ and β = −r2 + C̄TΨ−1r1 using a Cholesky factorization of
the block diagonal matrix Ψ.

b) Solve Y y2 = β for y2 using a Cholesky factorization of the block tridiagonal
matrix Y .

c) Solve Ψy1 = r1 − C̄Ty2 for y1 using the Cholesky factorization of Ψ computed in
a).

As was shown in [WB10] Steps a)-c) require a complexity in the order of O(N(nx+nu)3).

Solution of Step 2

Matrix ϕ−ϑTYB is dense but only of the order R2nx+nu+1×2nx+nu+1. Step 2 can therefore
be computed with the lower complexity O((nx+nu)3) using a factorization of ϕ−ϑTYB.
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The overall effort for Steps 1-3 and the entire Newton step computation in (8.39) is
hence of the order O(N(nx+nu)3) and the real-time robust MPC problem with stability
guarantees can be solved with the same complexity that was shown for standard MPC
approaches.

8.6.3 Implementation

A custom solver written in C++ was developed, extending the results given in [WB10],
for the real-time method proposed in this chapter that yields computation times in the
range of milliseconds (see results in Section 8.7). This offers the possibility to apply real-
time robust MPC to high-speed systems with the significant advantage that stability
and constraint satisfaction are always guaranteed and the available computation time
is used to improve the solution and increase the performance.

8.7 Results & Examples

The presented results are demonstrated in the following sections using three numerical
examples. The offline set computations were carried out using the YALMIP toolbox
[Löf04] and the solver ‘SeDuMi’ [SED]. The simulations were executed on a 2.8GHz
AMD Opteron running Linux using a single core.

8.7.1 Illustrative Example

We first illustrate the method and its components using the following 2D system:

x(k + 1) =

[

1 1

0 1

]

x(k) +

[

1

0.5

]

u(k) + w(k) , (8.40)

with a prediction horizon N = 5 and the constraints ‖x‖∞ ≤ 10 and ‖u‖∞ ≤ 1 on
the states and control inputs, Q = I and R = 1. The disturbance is assumed to
be bounded in W = {w | ‖w‖22 ≤ 0.04}. The terminal cost function Vf(x) is taken
as the unconstrained infinite horizon optimal value function for the nominal system
with P = [ 1.8085 0.2310

0.2310 2.6489 ] and κf (x) = Kx is the corresponding optimal LQ controller.
Ellipsoidal approximations of ZW and X̄ tr

f (xs, us) were calculated as described in Sec-
tion 8.5. Figure 8.1 illustrates a state trajectory x(k) that is steered to the reference
xr = [1, 0]T starting from x(0) = [−2,−2]T under a sequence of extreme disturbances
together with the corresponding trajectory of tube centers x̄0(x(k)), sets x̄0(x(k))⊕ZW

and terminal sets X̄ tr
f (x̄s(x(k), ūs(x(k)). At x(0) the reference xr is infeasible and in-
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Figure 8.1: State trajectories for Example (8.7.1). The solid line is the actual trajec-

tory x(i) and the dashed line represents the trajectory of tube centers

x̄0(x(i)). Crosses indicate the artificial reference (x̄s(x(i)), ūs(x(i))).

The terminal sets X̄ tr
f (x̄s(x(i)), ūs(x(i)) are shown as well as the sets

x̄0(x(i)) ⊕ ZW .

termediate artificial references x̄s(x(k)) are computed, which are also the centers of the
terminal sets and converge to xr, indicated by the crosses in Figure 8.1.

8.7.2 Oscillating Masses Example

The oscillating masses example described in [WB10] is chosen to examine the proposed
real-time method and evaluate it against that proposed in [WB10]. The considered
model has nx = 12 states and nu = 3 inputs. Ellipsoidal invariant sets were computed
for X̄f and ZW , polytopic approximations cannot be computed for this problem size.
For a horizon of N = 30 this results in a QCQP with 462 optimization variables and
1238 constraints. A random disturbance sequence with ‖w‖2 ≤ 0.25 is acting on the
system, which corresponds to 20% of the actuator’s control range. We consider the
regulation case described in Section 8.3, where the method was run with the same
optimization parameters given in [WB10] and a fixed number of optimization steps
kmax = 5 in order to have a direct comparison with the reported results. The solver
proposed in this work was able to compute 5 Newton steps in 6msec (averaged over
100 runs) and hereby achieves timings that are essentially equal to those reported
in [WB10]. We can hence achieve the same fast sampling rates using the robust MPC
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Table 8.1: Closed-loop performance deterioration in %

kmax 1 2 3 4 5 6 7 8

∆Jcl 1.39 1.32 1.10 0.88 0.70 0.55 0.44 0.33

design and achieve guaranteed feasibility and stability. Both methods provide a closed-
loop performance deterioration ∆Jcl < 1% taken over a large number of sample points,
where ∆Jcl =

∑
∞

i=0
(l(xi,κ̂(xi))−l(xi,κ(xi)))∑

∞

i=0
l(xi,κ(xi))

, κ̂(x) denotes the suboptimal controller obtained
after kmax iterations and κ(x) the optimal controller of the considered method. ∆Jcl is
estimated by simulating the trajectory for a long time period.

After establishing that the proposed approach performs equally well for the particular
example it is important to note that one would choose the optimization parameters
differently for the proposed method. A long horizon was taken in [WB10] since no
stability guarantee is provided by the problem setup. This is however not necessary
using the presented approach due to its a-priori stability guarantee. We therefore repeat
the simulation with a horizon of N = 10 and investigate the effect of the number of
allowed iterations on the closed-loop performance deterioration, reported in Table 8.1.
It is important to note that the performance as well as the region of attraction are
not affected by the reduction of the horizon to N = 10. One Newton step can now
be computed in 0.3msec. Consequently, the real-time MPC method with kmax = 5

iterations can be implemented with a sampling time of 2msec resulting in a controller
rate of 500Hz. It is remarkable that the one step solution still shows considerably low
performance loss. Since stability is guaranteed at all times one could therefore choose
kmax = 1 in order to achieve extremely low computation times of 0.3msec in trade for
lower performance.

8.7.3 Large-Scale Example

A random example with nx = 30, nu = 8 and N = 10 was generated resulting in an
optimization problem with 410 optimization variables and 1002 constraints. Ellipsoidal
invariant sets were computed for X̄f and ZW . We recorded the computation time for
the invariant sets and tightened constraints, which were computed offline in only 19

seconds. The invariant set for tracking X̄ tr
f (xs, us) is computed by solving a large

dimensional LMI in 35 seconds. The robust MPC problem with kmax = 5 Newton
iterations was solved in 10msec.
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8.8 Conclusions

A new approach for real-time MPC was presented that provides guarantees on feasibil-
ity, stability and convergence for all time constraints using a robust MPC problem setup
with a Lyapunov constraint that ensures the Lyapunov decrease property of the MPC
cost. The computational details for an approximate warm-start interior-point method
were described. The described real-time procedure represents a practical method that
can be applied to systems of higher dimension and can be extended to provide reference
tracking. The presented numerical examples illustrate the approach and show that a
tailored custom solver achieves computation times in the range of milliseconds that are
equal, or faster than those reported for methods without guarantees.





Part III

Soft Constrained MPC for Linear

Systems



9 Soft Constrained MPC with

Robust Stability Guarantees

9.1 Introduction

In control systems, there are generally two types of constraints: those originating from
physical limitations of the actuators or the system itself and those that represent desired
or critical bounds related to, for example, safety or particular system specifications.
While input constraints can therefore never be exceeded and are considered as hard
constraints, state or output constraints can either be hard if they fall under the first
category or they are soft and may in practice be briefly violated if necessary, e.g. because
of disturbances that are acting on the system.

In this chapter we propose a soft constrained MPC approach for linear systems that
provides stability even for unstable systems. Soft constrained MPC approaches are
based on the idea that, due to the nature of the state constraints, violation can often
be tolerated for short time periods. Several methods for the development of controllers
that enforce state constraints when they are feasible and allow for possible relaxation
when they are not have been studied in the literature, see e.g. [Mac00] for an overview.
In [RM93] a simple stabilizing strategy for infinite horizon MPC is proposed that can
be applied to both stable and unstable systems. The authors in [ZM95] prove stability
of MPC with hard input and soft state constraints for systems with eigenvalues in the
closed unit disk. In [dOB94] the use of l1-, l∞-norm and quadratic penalties for con-
straint violation is compared and it is shown that l1-norm penalties with a finite penalty
parameter preserve the stability characteristics of the corresponding hard-constrained
problem wherever the state constraints can be enforced. A comparison between soft
constrained and minimum-time approaches is provided in [SMR99]. [KM00] propose
the use of exact penalty functions in a soft constrained MPC approach in order to
guarantee constraint satisfaction whenever possible. A soft constrained method for
stochastic MPC is developed in [Pri07].

In contrast to soft constrained MPC, robust MPC methods design the control prob-
lem for an expected worst-case bound on the disturbance in order to ensure con-
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straint satisfaction and robust stability, see e.g. [BM99,MRRS00,MS07, LAR+09] for
an overview. The results can, however, be conservative due to the fact that the guar-
antees are only valid if the disturbance never exceeds the expected bound, which often
requires a conservative choice of the considered disturbance set since worst-case bounds
are difficult to obtain in practice.

The proposed method is based on a finite horizon MPC setup and uses a terminal
weight as well as a terminal constraint. All input constraints are hard constraints
and state constraints are softened in two ways. The terminal constraint is relaxed by
allowing the origin to move to any steady-state satisfying only the input constraints. All
other state constraints are softened by the introduction of two types of slack variables,
which is a crucial item for proving stability. Quadratic and l1- or l∞-norm penalties for
the constraint violations are introduced in the cost in order to allow for more flexibility
in the problem formulation. The use of l1 or l∞ penalties allows for exact penalty
functions which preserve the optimal MPC behavior whenever the state constraints
can be enforced. The proposed problem setup results in a convex second-order cone
program (SOCP) and can therefore be solved efficiently using standard methods for
convex optimization, e.g. interior-point methods.

We show that, in contrast to existing soft constrained MPC schemes, asymptotic
stability of the nominal system in the absence of disturbances is guaranteed even for
unstable systems. The presented approach offers an enlarged region of attraction due
to the constraint relaxation that, by choosing the prediction horizon accordingly, can
cover any region of interest up to the maximum stabilizable set for the input-constrained
system, i.e. all initial states for which there exists a feasible input at all times such that
the state converges to the origin without considering the state constraints. The robust
stability properties of the proposed soft constrained scheme are analyzed and input-to-
state stability under additive disturbances is proven. A key advantage of the presented
method over robust MPC approaches is that, while stability is formally guaranteed
in a robust invariant set that depends on the considered disturbance size, the control
law is defined everywhere in a large feasible set. In contrast, when using a robust
MPC method the control law is only defined for a set of tightened constraints that is
determined by the considered disturbance size.

It is shown how the presented soft constrained method can be directly combined with
a robust MPC framework. The combined approach can be beneficial if the nature of
the disturbance is such that a certain disturbance magnitude is constantly influencing
the system, which is, however, exceeded from time to time. This can be exploited by
accounting for one part of the disturbance by means of a robust MPC design. Input-
to-state stability of the uncertain system under the combined robust soft constrained
approach is proven.
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A numerical example demonstrates the presented procedures and shows that the
constraint relaxation enlarges the robust invariant set where stability can be guaranteed
for various disturbance sizes and significant disturbances can be tolerated. The soft-
constrained MPC method is applied to a large-scale example problem showing that the
corresponding optimization problem can be solved with reasonably small computation
times even for significant problem dimensions.

The outline of the chapter is as follows: After stating the problem addressed in this
work in Section 9.2, Section 9.3 introduces the soft constrained MPC problem and its
properties. Section 9.4 shows that the proposed control law is optimal wherever the
state constraints can be enforced. Asymptotic stability of the nominal system under
the proposed control law is then proven in Section 9.5 and Section 9.6 analyzes the
robustness properties of the proposed scheme and proves input-to-state stability of the
uncertain system under the nominal control law. Section 9.7 shows that all theoreti-
cal results extend to the combination of a soft constrained and robust MPC method.
The properties and advantages of the presented soft constrained MPC approach are
illustrated in Section 9.8 using numerical examples.

9.2 Problem Statement

In order to resolve the feasibility issues described in the introduction, state constraints
are generally relaxed in practice. While a relaxation of only the state constraints
in (5.1c) would preserve the stability properties of the nominal MPC setup, a hard
terminal constraint represents a significant limitation and could render the optimization
problem infeasible in the presence of disturbances. A long prediction horizon would
have to be chosen in order to guarantee feasibility in a sufficiently large region of
interest. A standard soft constrained approach that is frequently applied in practice is
therefore to relax all state constraints in (5.1c) and (5.1d) by the introduction of slack
variables εi, i = 0, . . . , N . The amount of constraint violation is then minimized by
including penalty functions lε(εi) for all εi, 0 = 1, . . . , N in the MPC cost.

Consider the discrete-time system in (4.4) that is subject to the state and input
constraints X ! {x | Gxx ≤ fx} and U ! {u | Guu ≤ fu}, where Gx ∈ Rmx×nx , fx ∈
Rmx , Gu ∈ Rmu×nu, fu ∈ Rmu , and an ellipsoidal terminal constraint. Relaxing all
state constraints including the terminal constraint, we obtain the following standard
soft-constrained MPC problem:

min
x,u,ε1,...,εN

N−1
∑

i=0

l(xi,ui) + lε(εi) + Vf(xN ) + lε(εN ) (9.1a)

s.t. Guui ≤ fu , (9.1b)
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Gxxi ≤ fx + εi , (9.1c)

xT
NTxN ≤ 1 + εN , (9.1d)

(5.1b), (5.1e) , (9.1e)

for i = 0, . . . , N − 1, where T is a symmetric positive definite matrix. This soft
constrained method does, however, not guarantee stability or constraint satisfaction
even in the nominal case. The standard stability proof for the considered finite horizon
MPC scheme shows that the optimal MPC cost is a Lyapunov function by using the
solution from the previous sampling time together with a locally stable and feasible
control law, see the outline of the proof of Theorem 5.4 and [MRRS00]. This stability
proof fails for the soft constrained problem in (9.1) for two possible reasons. If the
terminal state is outside of the region where the local control law is feasible, no feasible
input sequence is available for proving a decrease in the cost. If the local control law
is feasible but the state constraints are violated, a decrease in the cost can no longer
be guaranteed due to the introduction of the penalties on εi into the cost function. In
both cases it can no longer be shown that the optimal cost is a Lyapunov function.

This is illustrated in the following for the two-dimensional unstable example system:

Example 9.1.

x(k + 1) =

[

1.2 1
0 1

]

x(k) +

[

1
0.5

]

u(k) + w(k) . (9.2)

The prediction horizon was chosen to be N = 5, the constraints on the states and control
inputs are |x1| ≤ 5,|x2| ≤ 2 and |u| ≤ 1. A quadratic stage cost l(x, u) = ‖x‖2Q + ‖u‖2R
with Q = I, R = 1 is chosen, lε(ε) = ‖ε‖2S and S = 100I. The terminal cost function
Vf(x) is taken as the unconstrained infinite horizon optimal value function for the
nominal system. The previously described nominal soft-constrained MPC problem
in (9.1) was solved in a receding horizon fashion starting from the initial state x(0) =

[−13 5]T outside of the feasible set of the corresponding hard constrained MPC problem
under a sequence of small disturbances with ‖w(k)‖∞ ≤ 0.08 ∀k ∈ N. The closed-loop
simulation results in Figure 9.1 show that the state x1 grows unbounded while the input
saturates, demonstrating that the standard soft-constrained MPC scheme in (9.1) does
not provide stability of the closed-loop system.

We introduce a new soft constrained MPC formulation in the next section, which
provides optimality and constraint satisfaction wherever the state constraints can be
enforced (Section 9.4), asymptotic stability in the nominal case (Section 9.5) and input-
to-state stability in the presence of additive disturbances (Section 9.6).



118 9 Soft Constrained MPC with Robust Stability Guarantees

0 10 20 30 40
−40

0

40

0 10 20 30 40
−10

0

10

0 10 20 30 40

−1

0

1

Time Step

x
1

x
2

u

Figure 9.1: Closed-loop state and input trajectories using the standard soft con-

strained MPC approach in (9.1), where all state constraints are relaxed.

9.3 Soft Constrained MPC - Problem Setup

As discussed in Section 9.2, a stability guarantee by means of the standard stability
proof in MPC has to be sacrificed in exchange for a complete relaxation of the terminal
constraint. We therefore use a restricted relaxation by means of an enlarged terminal
set in this work that is obtained by relaxing the origin as a regulation point to any
other steady-state considering input constraints only. In addition, two different types
of slack variables are employed, which will be key in proving (input-to-state) stability
in a large feasible set.

We propose the following soft constrained MPC problem Ps
N(x):

Problem Ps
N(x) (Soft constrained MPC problem)

V s
N(x,u, xs, us, ε) !

N−1
∑

i=0

l(xi−xs, ui − us) + lε(εi) + Vf(xN − xs) + lε(εs) + Vo(xs, us)

V s∗
N (x) = min

x,u,xs,us,ε
V s
N(x,u, xs, us, ε) (9.3a)

subject to x0 = x , (9.3b)

xi+1 = Axi +Bui , (9.3c)

Guui ≤ fu , (9.3d)

Gxxi ≤ fx + εs + εi , (9.3e)

‖T 1

2 (xN − xs)‖22 ≤ 1− r(xs, us) , (9.3f)

(I −A)xs = Bus , (9.3g)
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Guus ≤ fu , (9.3h)

εi ≥ 0 , (9.3i)

εs ≥ 0 , (9.3j)

(1 + ξ)Gxxs ≤ fx + εs , (9.3k)

c‖T
1

2 (xN − xs)‖2 ≤ fx + εs −Gxxs (9.3l)

for i = [0, . . . , N − 1], where ε = [ε0, . . . , εN−1, εs] are the slack variables corresponding
to the state sequence x, l(x, u) = ‖x‖2Q + ‖u‖2R is the stage cost and Vf(x) = ‖x‖2P is a
terminal cost function. The penalty function on the slack variables is taken as lε(ε) =

‖ε‖2S + ρ1‖ε‖p and Vo(xs, us) = ρ2‖xs‖p + ρ2‖us‖p is the offset cost function penalizing
the deviation of (xs, us) from the origin, where S is a symmetric positive definite matrix,
p ∈ {1,∞} and ρ1, ρ2 ∈ R+ are positive constant weights. r : Rnx × Rnu → R+ is
assumed to be a quadratic function with r(0, 0) = 0, ci = ‖T− 1

2GT
x,i‖2 ∀ i = 1, . . . , mx

and T is defined in the description below. The set of feasible steady-states in the soft
constrained case is given by Θs ! {(xs, us) | us ∈ U, (A− I)xs +Bus = 0}.

The proposed soft constrained MPC setup is a modification of PN(x) introducing the
following three components:

• In (9.3f) the terminal constraint is relaxed by allowing the origin to move to any
other feasible steady-state (xs, us) ∈ Θs , which can be considered as an artificial
regulation point, using the approach presented in [LAAC08]. The terminal state
then has to lie in an invariant set that is parameterized by the steady-state given
by X s

f (xs, us), see also Section 5.4 for details on the method. In this work an
invariant ellipsoidal target set is employed, given by

EX s
f
(xs, us) !

{

x
∣

∣ ‖x− xs‖2T ≤ 1− r(xs, us)
}

. (9.4)

• In (9.3e) all state constraints from 0 to N − 1 are softened by means of the slack
variables εs and εi:
εs captures the amount of constraint expansion that is necessary in order to
include the ellipsoid Es

T (xN , xs) in the softened state constraints, where

Es
T (xN , xs) !

{

x
∣

∣ ‖x− xs‖2T ≤ ‖xN − xs‖2T
}

(9.5)

is a scaling of the ellipsoidal terminal set EX s
f
(xs, us) containing xN on its bound-

ary. εi represents the additional constraint violation of each state xi, for i =
1, . . . , N − 1, with respect to the state constraints relaxed by εs. Constraint
(9.3k) additionally enforces that the steady-state xs always has to lie in the inte-
rior of the constraints expanded by εs by an amount ξ, which is a user-specified
small, positive parameter.
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• Quadratic and l1 or l∞ penalties on the slack variables are included in the cost
in (9.3), in order to minimize the constraint violation and ensure satisfaction of
the state constraints whenever possible. An l1 or l∞ penalty on the steady-state
is used, minimizing the deviation from the origin. In addition the cost is now
designed for regulation around the artificial steady-state (xs, us) and penalizes
the deviation from the steady-state instead of the origin [LAAC08].

Assumption 9.1. It is assumed that for a given (xs, us) ∈ Θs, Vf(x − xs) is a Lya-
punov function in EX s

f
(xs, us) satisfying condition A2 in Assumption 5.3. Furthermore,

EX s
f
(xs, us) is a PI set under the local control law κs

f(x) = K(x−xs)+us satisfying the
following assumptions:

A3: κs
f (x) ∈ U ∀x ∈ EX s

f
(xs, us)

A4: ‖Ax+ Bκs
f(x)− xs‖2T = ‖(A+BK)(x− xs)‖2T ≤ ‖x− xs‖2T .

Remark 9.2 (Terminal target set). Note that Assumption 9.1 only requires satis-
faction of the input constraints and not the state constraints in the terminal target set
EX s

f
(xs, us), i.e. EX s

f
(xs, us) ! X.

Remark 9.3 (Hard state constraints). For ease of notation we assume the relax-
ation of all state constraints except the terminal constraint in the problem formulation
Ps
N(x). The results presented in this chapter however directly extend to the case where

some of the state constraints are considered as hard constraints with only minor nota-
tional changes.

Problem Ps
N(x) implicitly defines the set of feasible control sequences Us

N (x, xs, us) =
{u | ∃ x s.t. (9.3b)− (9.3d), (9.3f) hold} and feasible initial states X s

N ! {x | ∃(xs, us) ∈
Θs s.t. Us

N(x, xs, us) 2= ∅}. For a given state x ∈ X s
N , Problem Ps

N(x) results in a
convex Second Order Cone Program (SOCP) and its solution yields the optimal control
sequence us∗(x). Note that SOCPs can be efficiently solved using e.g. interior-point
methods [BV04]. The implicit optimal soft constrained MPC control law is then given
in a receding horizon fashion by

κs(x) ! us∗
0 (x). (9.6)

The components employed in the soft constrained problem setup Ps
N(x) are illustrated

in Figure 9.2. The set of states, for which there exists an (xs, us) such that x ∈
EX s

f
(xs, us) is denoted as Cs

f and can be considered as an enlarged terminal set for the
MPC problem, this is further explained in Section 9.3.1. By relaxing the terminal
constraint, the soft constrained MPC regulates the state to an artificial steady-state
that is simultaneously steered to the origin while minimizing the violation of the state
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ε∗s

ε∗1

ε∗2
ε∗3 = 0 Cs

f

X

EX s
f
(x∗

s(x), u
∗
s(x))

x = x∗
0

x∗
1

x∗
2

x∗
3

ε∗0

Es
T (x

∗
N (x), x∗

s(x))

Figure 9.2: Illustration of the optimal slack variables ε∗s(x), ε
∗
i (x), i = 0, 1, 2, 3, the

terminal set EX s
f
(x∗s(x), u

∗
s(x)), Es

T (x
∗
N (x), x∗s(x)) and Cs

f for an initial

state x outside X.

constraints. The use of the slack variable εs ensures that the terminal state, which
is contained in Es

T (xN , xs), will lie inside the state constraints relaxed by the amount
εs and will not require a further relaxation of the state constraints. This provides
feasibility of the shifted sequence using the shifted slack variables with the last slack
variable being zero. If the terminal state is close to xs, a minimum amount of relaxation
ξ with respect to the steady-state is ensured such that xs does not lie too close to the
boundary of the constraints expanded by εs. For a state that is close to the artificial
steady-state, this ensures that the steady-state can always be shifted towards the origin
without increasing the slack variables. As will be shown in Section 9.5, these items allow
us to show that the optimal cost function is still a Lyapunov function and are hence
crucial for proving stability of the proposed soft constrained MPC scheme.

Remark 9.4. While a strictly positive value of ξ in constraint (9.3k) is required to
prove stability of the closed-loop system (Theorem 9.10), the particular choice of the
parameter ξ is not crucial. Note that the size of ξ increases the value of εs, this effect
will, however, be negligible for small values of ξ.

The remainder of this section is devoted to a detailed analysis of the two types of soft
constraints. In the following sections we will then demonstrate how the introduction
of the previously described components allows us to show that:

1. κs(x) = κ(x) wherever the state constraints can be satisfied, i.e. for all x ∈ XN

(Section 9.4).

2. The optimal cost function V s∗
N (x) is a Lyapunov function and the controlled nomi-

nal system is asymptotically stable with an enlarged region of attraction compared
to a standard nominal MPC method (Section 9.5).
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3. The system under additive disturbances is ISS (Section 9.6) with an enlarged
region of attraction compared to a robust MPC approach considering the same
disturbance size, which is demonstrated using numerical examples (Section 9.8).

4. The system under a combined robust and soft constrained approach is ISS (Sec-
tion 9.7).

9.3.1 Relaxation of the Terminal Constraint

For the relaxation of the terminal set we make use of the formulation proposed in
[LAAC08], which was introduced in the framework of a tracking approach but is em-
ployed for regulation in the proposed method. An artificial steady-state (xs, us) is
introduced as a decision variable into the optimization problem and the cost then pe-
nalizes the distance to the non-zero steady-state instead of the origin as well as the
offset from the non-zero steady-state to the origin. The invariant set EX s

f
(xs, us) in

(9.5) is obtained from the terminal set for tracking introduced in Section 5.4.1 simi-
lar to the description in Section 8.5 and Algorithm 6. It is defined as the maximal
PI set given by the set of states and steady-states (xs, us), such that the control law
u = K(x− xs) + us satisfies the input constraints and stabilizes the nominal system in
(4.4).

Lemma 9.5 The invariant ellipsoidal target set EX s
f
(xs, us) in (9.4) can be computed

by solving a convex linear matrix inequality (LMI).

Proof. Consider a parametrization of the steady-state by the parameter θ, i.e. xs =

Mxθ, us = Muθ, as described in Section 4.1. Using the augmented system vT =
[xT − xT

s θT ] and corresponding dynamics in (5.16), an ellipsoidal invariant set of
the form Ωf = {v ∈ Rn | vT

[

Q−1

1

Q−1

2

]

v ≤ 1} can be computed by solving a convex
LMI [BV04], where only the input constraints are considered and the state constraints
are neglected:

[

Q1

Q2

]

= argmin
Q1,Q2

{

− log det
([

Q1

Q2

])

∣

∣

∣

[

Q1 Q1AT
K

AKQ1 Q1

]

) 0,

‖Q
1

2

1K
TGT

u,j‖22 + ‖Q
1

2

2M
T
u G

T
u,j‖22 ≤ f 2

u,j∀ j = 1, . . . , mu } ,

with AK = A + BK. Using the relationship θ = MT
x xs + MT

u us this can be directly
transformed into the ellipsoidal terminal set EX s

f
(xs, us) in (9.4) with T = Q−1

1 and
r(xs, us) = (MT

x xs +MT
u us)TQ

−1
2 (MT

x xs +MT
u us). "

This also characterizes the set of all values x for which there exists a steady-state
satisfying the terminal constraint, given by Cs

f = {x | ∃ (xs, us) ∈ Θs : x ∈ EX s
f
(xs, us)},
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which can be seen as an enlarged terminal set providing an enlarged feasible set X s
N ⊇

XN of the soft constrained MPC problem.

9.3.2 Slack Variables

We now explain the crucial item in the proposed soft constrained scheme, the use of
the slack variables εs and εi.

Remark 9.6. By Assumption 9.1, the set Es
T (xN , xs) is a positively invariant set under

the local control law κs
f (x).

εs represents the amount of constraint relaxation that is necessary in order to include
the set Es

T (xN , xs) for a particular value of (xs, us) into the relaxed state constraints,
i.e.

max
{

Gx,ix
∣

∣ ‖x− xs‖2T ≤ ‖xN − xs‖2T
}

≤ fx,i + εs,i ,

for all i = 1, . . . , mx. Using the variable transformation y = T
1

2 (x − xs) this can be
written as

max{Gx,iT
− 1

2y +Gx,ixs | yTy ≤ ‖xN − xs‖2T} ≤ fx,i + εs,i ,

for all i = 1, . . . , mx, which can be expressed by the following condition [BEFB94]:

‖T− 1

2GT
x,j‖2‖T

1

2 (xN − xs)‖2 ≤ fx,j + εs,j −Gx,jxs, ∀ j = 1, . . . , mx

and therefore corresponds to (9.3l), which is a collection of mx convex second order
cone constraints.

εi in (9.3f) represents the additional constraint violation of each state xi with respect
to the state constraints relaxed by εs. Let εN be the slack variable of the terminal state
defined by GxxN ≤ fx + εs + εN . Since xN ∈ Es

T (xN , xs) it follows from this and (9.3l),
that εN = 0, which will be necessary for proving that the cost function is a Lyapunov
function in Section 9.5.

9.4 Optimality in XN

In this section we show that the behavior of the soft constrained control law corresponds
to the hard constrained one, wherever the state constraints can be satisfied. The
constraint violations εs and εi are penalized in the cost. Two types of penalty functions
are included, quadratic and l1 or l∞-norm penalties, in order to allow for flexibility in
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modeling the soft constraints. While the quadratic penalty may be preferred for tuning
purposes, the l1 or l∞-norm is included in order to allow for exact penalty functions.
As described in Section 3.1.3, it is well-known that, when the weights on the l1 or l∞-
norms are sufficiently large and there exists a feasible solution to the hard constrained
problem PN(x), then the solution to the soft constrained problem Ps

N (x) corresponds
to that of the hard constrained problem [Fle87,Lue84]. An l1 or l∞-norm is also used
for penalizing the deviation of the artificial steady-state from the origin in order to
enforce the origin as the regulation point if it is feasible [FLA+09].

Consider the following optimization problem Ph
N(x), enforcing all state constraints

as hard constraints:

min
x,u,xs,us,ε

V s
N(x,u, xs, us, ε) (9.7a)

s.t. (9.3b) − (9.3l) , (9.7b)

εs = 0 (9.7c)

εi = 0, i = 0, . . . , N − 1 , (9.7d)

xs = 0, us = 0 . (9.7e)

Note that the optimizer of Ph
N(x) corresponds to the optimizer of PN(x).

Theorem 9.7 (Optimality in XN [Fle87]) Consider problem Ph
N (x). Let λ∗

ss(x) de-
note the optimal Lagrange multipliers corresponding to the constraints in (9.7e) and
λ∗
ε(x) the optimal Lagrange multipliers corresponding to the equality constraints (9.7d)

and (9.7c) satisfying the KKT conditions in (3.4) at a given state x ∈ XN . Let κs(x)
be the optimal soft constrained control law in (9.6) and κh(x) the optimal hard con-

strained control law in (5.4). Let ‖·‖D denote the corresponding dual norm to ‖·‖p for
p ∈ {1,∞}. If λ∗

ss(x),λ
∗
ε(x) are bounded (i.e. the primal optimal solution is feasible),

ρ1 ≥ ‖λ∗
ss(x)‖D and ρ2 ≥ ‖λ∗

ε(x)‖D for all x ∈ XN , then κs(x) = κh(x) for all x ∈ XN .

Theoretically, the existence of a conservative state-dependent bound can be shown
based on Lipschitz continuity of the convex optimization problem in (9.7) [Hag79]. A
lower bound for ρ1 and ρ2 can e.g. be obtained by computing the optimal Lagrange
multipliers parametrically for all x ∈ XN [KM00], which can, however, be computation-
ally intractable for large systems. A lower bound providing optimality in the terminal
set for tracking EX s

f
(xs, us) that can be obtained by means of a linear program was

presented in [FLA+08]. The efficient computation of a bound on the exact multiplier
is, however, still an active topic of research. In practice, approximate values for the
parameters ρ1 and ρ2 are often chosen by simulation.
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9.5 Nominal Stability

After having shown that the proposed soft constrained scheme preserves optimality
whenever possible, we now prove that the resulting optimal soft constrained control
law κs(x) in (9.6) asymptotically stabilizes the nominal system in (4.4) in an enlarged
positively invariant set X s

N . For this, we show that the optimal cost function of the
soft-constrained MPC problem V s∗

N is a Lyapunov function in two stages.

Lemma 9.8 Consider Problem Ps
N (x) under Assumption 9.1. Let us∗(x), xs∗(x),

xs∗
s (x), us∗

s (x), εs∗(x) be the optimizer of Ps
N(x) for some x ∈ X s

N . The shifted control
sequence

ushift(x) = [us∗
1 (x), . . . , us∗

N−1(x), ũ(x)] , (9.8)

with ũ(x) = K(xs∗
N (x)− xs∗

s (x)) + us∗
s (x) is feasible for Ps

N (x
+) with x+ = Ax+Bκs(x)

and

V s∗
N (x+)− V s∗

N (x) ≤ −l(x− xs∗
s (x), us∗

0 (x)− us∗
s (x)) . (9.9)

Proof. For ease of notation we drop the dependence of the sequences on x in the
following proof. The states and slack variables associated with ushift in (9.8) are: xshift,
εshift = [εs∗1 , . . . , εs∗N−1, 0, ε

s∗
s ], where εs∗N = 0 follows from the fact that xs∗

N ∈ Es
T (x

s∗
N , xs∗

s )
and the definition of the slack variables in (9.7d) and (9.7c). Feasibility of ushift for
Ps
N(x

+) then follows from feasibility of us∗, xs∗
s , us∗

s , εs∗ at x and positive invariance of
Es
T (x

s∗
N , xs∗

s ). Together with the definition of the sequences and Assumption 9.1 this
provides that V s

N(x
shift,ushift, xs∗

s , us∗
s , εshift) − V s∗

N (x) ≤ −l(x − xs∗
s , us∗

0 − us∗
s ) using

standard arguments and (9.9) follows from V s∗
N (x+) ≤ V s

N (x
shift,ushift, xs∗

s , us∗
s , εshift). "

Lemma 9.8 shows that the closed-loop system converges to xs∗
s . In order to achieve

asymptotic convergence to the origin and not to a non-zero steady-state, we now need to
show that xs∗

s simultaneously converges to zero, i.e. that l(x−xs∗
s (x), us∗

0 (x)−us∗
s (x)) = 0

only if x = 0.

Lemma 9.9 If at a given state x the optimal solution to Ps
N(x) is such that ‖x −

xs∗
s (x)‖ = 0, then x = 0.

Proof. We first sketch a modification of the proof of Lemma 3 in [LAAC08], which is
proven by contradiction and then extend it to the case considered here.
In the first part of the proof it is shown that for every feasible steady-state (xs, us) 2=
(0, 0) there exists a steady-state (αxs,αus) with α ∈ [0, 1) such that xs ∈ EX s

f
(αxs,αus).

Therefore the control sequence uα(xs) generated by ui = K(xi−αxs)+αus with x0 = xs

is feasible at xs. Let xα(xs) be the state sequence corresponding to uα(xs).
In the second part of the proof it is shown that, if the current state is xs, then the
cost to move to αxs applying uα(xs) is in fact smaller than the cost of staying at xs
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by applying us over the entire horizon and therefore staying at xs cannot be the opti-
mal solution. In [LAAC08,FLA+09] it is shown that VN(xs,uα(xs)) + Vo(αxs,αus) <
VN(xs,us) + Vo(xs, us), where VN is the MPC cost without slack variables in 5.1a and
us = [us, . . . , us].
In order to prove that this extends to the soft constrained approach we need to show
that also V s

N(xs,uα(xs),αxs,αus, εα) < V s
N(xs,us, xs, us) or

N−1
∑

i=0

lε(εα,i) + lε(εα,s) ≤
N−1
∑

i=0

lε(εi) + lε(εs) , (9.10)

where εs and εi are the minimum slacks corresponding to the state sequence xs =
[xs, . . . , xs] and εα,s and εα,i are the minimum slacks corresponding to the state sequence
xα(xs) defined by the constraints (9.3e) and (9.3l). This is achieved by the fact that εs
and εα,s characterize the state relaxation necessary in order to include the sets Es

T (xs, xs)
and Es

T (xα,N(xs),αxs), respectively, into the softened state constraints, where xα,N (xs)

denotes the terminal state of the sequence xα(xs). (9.3k) provides a minimum amount
of distance between xs and the state constraints expanded by the amount εs allowing
to move the center to a point αxs without increasing the slacks.
Condition (9.10) will be proven in the following by showing that εα,s ≤ εs and εα,i ≤ εi.

We recall that we now have two constraints on εs:

εs ≥ −fx + (1 + ξ)Gxxs, εs ≥ c‖T
1

2 (xN − xs)‖2 − fx +Gxxs .

For x = xs, we have εs = [−fx+(1+ξ)Gxxs]+. We then choose α ∈ [0, 1) big enough
such that

αξGxxs ≥ (1− α)c‖T 1

2xs‖2 . (9.11)

Using β ≥ 1 such that c‖T 1

2xs‖2 ≤ βGxxs this condition is fulfilled if α ≥ β
β+ξ . Note

that fx > 0 since the origin is included in the interior of the state constraints. Therefore,
only the case when Gxxs ≥ 0 is relevant, since otherwise εs = 0, i.e. the constraint is
not violated, and (1 − α)c‖T 1

2xs‖2 ≤ fx can be satisfied for a small value of α. Since
by Assumption 9.1

‖T 1

2 (xα,N − αxs)‖2 = ‖T 1

2 ((A +BK)N(xs − αxs)‖ ≤ (1− α)‖T 1

2xs‖2 ,

we have from this and (9.11) that εα,s = [α(1 + ξ)Gxxs − fx]+ and εα,s ≤ εs follows
directly. εα,i = 0 for i = 1, . . . , mx then follows from the fact that (1 − α)‖T 1

2xs‖2 ≥
‖T 1

2 (xα,i−αxs)‖2, showing that the ellipse with center αxs and radius ‖T 1

2xi,α−αxs‖2
is contained in the constraints relaxed by εα,s and therefore also xi,α.

We therefore have εα,s ≤ εs, εα,i = 0, which concludes the proof. "
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We can now state one of the main results of this work and prove asymptotic stability
of the closed loop system under the soft constrained MPC control law:

Theorem 9.10 (Asymptotic Stability under κs(x)) The closed loop system x(k+

1) = Ax(k) +Bκs(x(k)) is asymptotically stable with region of attraction X s
N .

Proof. We have that V s∗
N (x) ≥ l(x, us∗

0 (x)) ≥ α(‖x‖) ∀x ∈ X s
N and by optimality of

V s∗
N (x) in XN (Theorem 9.7) and the fact that V ∗

N(x) is a Lyapunov function (The-
orem 5.4) we obtain V s∗

N (x) ≤ Vf(x) ≤ α(‖x‖) ∀x ∈ EX s
f
(0, 0), where α(·),α(·) are

suitable K∞-class functions. From Lemma 9.8 we obtain

V s∗
N (x+) ≤ V s∗

N (x)− ‖x− xs∗
s (x)‖2Q ∀x ∈ X s

N with x+ = Ax+Bκs(x) .

By optimality and Lemma 9.9 the optimal regulation point is xs∗
s (x) = 0 if x ∈ XN . If

x /∈ XN we can assume ‖x − xs∗
s (x)‖Q ≥ δ̂ for some small positive constant δ̂ ∈ (0, 1].

In this case we can choose

δ(x) =
‖x− xs∗

s (x)‖2Q
‖x‖2Q

≥ δ̂2

‖x‖2Q
and δmin =

δ̂2

maxx∈X s
N
‖x‖2Q

,

which provides that V s∗
N (x+)− V s∗

N (x) ≤ −δmin‖x‖2Q ∀x ∈ X s
N , with δmin > 0. There-

fore, there exists a K∞-class function β(·) such that V s∗
N (x+) − V s∗

N (x) ≤ −β(‖x‖) in
X s

N and V s∗
N (x) is a Lyapunov function in X s

N proving asymptotic stability with region
of attraction X s

N by Theorem 4.11. "

The soft constrained formulation Ps
N(x) enlarges the feasible set compared to PN(x)

since XN ⊆ X s
N and by choosing the prediction horizon accordingly it can be chosen to

cover any polytopic region of interest, e.g. a known upper bound on the state values,
up to the maximum stabilizable set for the input-constrained system.

Corollary 9.11 Let βX, with β ≥ 1, be a scaling of the state constraints and X∞ :=

{x | ∃u(k) ∈ U : limj→∞, x(j) = 0, x(0) = x, x(k + 1) = Ax(k) + Bu(k), ∀k ≥ 0}
the set of all stabilizable states for the input-constrained system. There exists a finite

prediction horizon N̄ such that X s
N̄ ⊇ βX ∩ X∞.

9.6 Robust Stability

In practice, model uncertainties or external disturbances cause a deviation from the
nominal system dynamics in (4.4). The question is then if the control law that was
designed for the nominal system model is still stabilizing the uncertain system in
(4.1), or so-called robustly stable. This issue has been studied in the literature, see
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e.g. [LAR+09,GMTT04] and the references therein. While in general, nominal MPC
control laws can have zero robust stability margin, it was shown that particularly for
linear systems the nominal MPC control law offers robust stability in an RPI set under
certain assumptions on the MPC problem setup and for a sufficiently small bound on
the disturbance size [LAR+09,GMTT04].

Another possibility to handle uncertainties is to take them explicitly into account
using robust MPC schemes that provide robust stability by changing the problem for-
mulation and tightening the constraints, e.g. min-max MPC or tube-based approaches
(see the discussion in Section 5.3 or [MRRS00,LAR+09,MSR05,RM09] and the refer-
ences therein). The disadvantage of robust MPC methods is, however, that a bound
on the disturbance size is assumed and the problem is designed for the worst-case dis-
turbance. If the disturbance is then significantly smaller than the worst-case bound
for most of the time, the solutions can be highly conservative. If, on the other hand,
the disturbance exceeds the expected bound, then the robust MPC problem may be
infeasible and cannot provide a control input.

When using a nominal MPC scheme, no knowledge on the size of the uncertainty
is required for the computation of the controller and it may even be able to take ad-
vantage of a disturbance in the right direction. Conservatism is however introduced
when analyzing the RPI set, where robust stability of a nominal MPC scheme can be
guaranteed, since it is based on a particular bound on the disturbance size. In the
presence of hard constraints, the RPI set may be prohibitively small for the considered
disturbance size. The idea is therefore that by using the proposed soft constrained ap-
proach robust stability can be guaranteed in a much larger RPI set due to the fact that
state constraints can be relaxed. It is however important to note that, while stability is
formally only guaranteed within the RPI set, the control law is defined everywhere in
a large feasible set (see Corollary 9.11) and may still stabilize the uncertain system for
a variety of disturbance signals. Note that no RPI sets need to be computed in order
to apply the proposed method.

The robust stability properties of the proposed soft constrained MPC scheme are
analyzed in the following using the framework of input-to-state stability introduced in
Section 4.2. Assume that the system is subject to an additive uncertainty as given
in (4.1). Because of the disturbance, the shifted sequence ushift(x) in (9.8) may no
longer be feasible for Ps

N(x(k + 1)). For all x(k + 1) ∈ X s
N there does however exist

a feasible solution to Ps
N(x(k + 1)) and input-to-state stability can be shown in an

RPI set X s
W ⊂ X s

N . It is given by the robust positively invariant set for the controlled
uncertain system x(k+1) = Ax(k)+Bκs(x(k))+w(k), where κs(x) is the optimal soft
constrained MPC control law in (9.6):

Ax+Bκs(x) + w ∈ X s
W ∀ x ∈ X s

W , w ∈ W. (9.12)
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In order to show that the uncertain system in (4.1) is input-to-state stable with respect
to the (unspecified) disturbance set W under the nominal control law, we make use of
the following result:

Lemma 9.12 (Continuity of V s∗
N (x)) Consider the optimization problem Ps

N (x).
The optimal value function V s∗

N (x) is continuous on X s
N .

Proof. Follows directly from continuity and convexity of the cost function and the
constraints in (9.3) as well as compactness of the constraint set for all x ∈ XN (Theorem
4.3.3 in [BGK+82]). "

This allows us to extend the results on asymptotic stability for the nominal system
in Section 9.5 and prove input-to-state stability of the uncertain system controlled by
κs(x) in (9.6).

Theorem 9.13 (ISS under κs(x)) The closed loop system

x(k+1) = Ax(k)+Bκs(x(k))+w(k) is ISS w.r.t to w(k) ∈ W with region of attraction
X s

W .

Proof. From the proof of Theorem 9.10 and Lemma 9.12 it follows that V s∗
N (x) is a

continuous Lyapunov function and hence there exists a K-class function γ(·), such
that |V s∗

N (y) − V s∗
N (x)| ≤ γ(‖y − x‖) as well as a K∞-class function β(·) such that

V s∗
N (Ax(k) +Bκs(x(k)))− V s∗

N (x(k)) ≤ −β(‖x(k)‖). It follows from these facts that

V s∗
N (x(k + 1))− V s∗

N (x(k))

= V s∗
N (Ax(k) +Bκs(x(k)) + w)− V s∗

N (Ax(k) +Bκs(x(k)))

+ V s∗
N (Ax(k) +Bκs(x(k)))− V s∗

N (x(k))

≤ −β(‖x(k)‖) + |V s∗
N (Ax(k) +Bκs(x(k)) + w)− V s∗

N (Ax(k) +Bκs(x(k)))|
≤ −β(‖x(k)‖) + γ(‖w(k)‖) .

Then V s∗
N (x(k)) is an ISS-Lyapunov function with respect to w(k) ∈ W and by Theo-

rem 4.14 the closed-loop system is ISS. "

The uncertain system controlled by the control law resulting from the soft constrained
MPC problem Ps

N(x) is hence input-to-state stable against sufficiently small distur-
bances. Since the RPI set X s

W depends on W, the size of the disturbances and the
corresponding region for which stability can be formally guaranteed depend on the
particular system of interest.

We now revisit our introductory Example 9.1 and show that the proposed soft-
constrained MPC scheme provides input-to-state stability of the closed-loop system.
The results are shown in Figure 9.3 for the same disturbance bound ‖w‖∞ ≤ 0.08.
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Figure 9.3: Closed-loop state and input trajectories using the standard soft con-

strained MPC approach in (9.1), where all state constraints are relaxed,

(dashed line) and the proposed soft constrained MPC method in (9.3)

(solid line).

In the following section we will show that the previously presented results can be
directly extended to the combination of a robust and soft constrained MPC framework
allowing for a more flexible disturbance handling.

9.7 Combination with Robust MPC

The soft constrained MPC approach introduced in Section 9.3 is well suited for dis-
turbances that are irregular or of varying magnitude. If it is, however, known that
the disturbance has the particular characteristic that a certain disturbance size is con-
stantly affecting the system while a larger disturbance size only occurs irregularly, it
can be beneficial to combine a robust and soft constrained MPC procedure. Whereas
designing a robust MPC approach for the worst case disturbance size would result in
a highly conservative solution in this case, it can be used to take into account a dis-
turbance up to a certain size. If the disturbance exceeds this bound, the idea is again
that the use of relaxed state constraints will allow us to guarantee eventual recovery
of feasibility and input-to-state stability of the uncertain system in a large RPI set
covering a region of interest by using a combination of a robust and soft-constrained
approach.

We assume in the following that the system is subject to two types of uncertainty:

x(k + 1) = Ax(k) +Bu(k) + w1(k) + w2(k) , (9.13)
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where w1(k) ∈ W1 ⊂ Rn is a bounded disturbance that is expected to occur frequently
with maximum size and w2(k) ∈ W2 ⊂ Rn captures the additional part of the distur-
bance with varying magnitude and occurrence. W1,W2 are convex and compact sets
that each contain the origin.

Since the disturbance w1 will constantly affect the system, it is explicitly taken into
account using a robust MPC framework providing constraint satisfaction and stability
in the presence of w1. In this work, we consider the tube-based robust MPC approach
for linear systems [MSR05] described in Section 5.3. The method is based on the use
of a feedback policy of the form u = ū + K(x − x̄) that bounds the effect of the
disturbance w1 and keeps the states x of the uncertain system under w1 with w2 = 0

close to the states of the nominal system in (4.4). The use of tightened state and
input constraints X̄ = X ( Z !

{

x | Gxx ≤ f̄x
}

, Ū = U ( KZ !
{

u | Guu ≤ f̄u
}

,
EX̄ s

f
(xs, us) = EX s

f
(xs, us) ( Z ! {x | ‖x− xs‖2T ≤ 1− r̄(xs, us)} ensures feasibility of

the uncertain system in (9.13) despite the disturbance w1, where Z is an RPI set for
the controlled system x(k + 1) = (A + BK)x(k) + w1(k). See [MSR05] for a detailed
description of the method.

The robust soft constrained problem is directly obtained from Ps
N by replacing (9.3b)

with x ∈ x0 ⊕ Z, fx, fu in (9.3e),(9.3d) with f̄x, f̄u and r(·, ·) with r̄(·, ·):
Problem Prs

N (x) (Robust soft constrained MPC problem)

V rs∗
N (x) = min

x̄,ū,x̄s,ūs,ε̄
V s
N(x̄, ū, x̄s, ūs, ε̄)+ Vf(x− x̄0) (9.14a)

subject to x ∈ x̄0 ⊕ Z , (9.14b)

‖T
1

2 (x̄N − x̄s)‖22 ≤ 1− r̄(x̄s, ūs) , (9.14c)

Gxx̄i ≤ f̄x + ε̄s + ε̄i , (9.14d)

Guūi ≤ f̄u , (9.14e)

(1 + ξ)Gxx̄s ≤ f̄x + ε̄s , (9.14f)

c‖T 1/2(x̄N − x̄s)‖2 ≤ f̄x + ε̄s −Gxx̄s , (9.14g)

(9.3c), (9.3g), (9.3i),(9.3j) (9.14h)

The robust soft constrained problem implicitly defines the set of feasible initial states
X rs

N . For a given state x ∈ X rs
N , Problem Prs

N yields the optimal control sequence
urs∗(x) and the optimal first tube center x̄rs∗

0 (x). Note that the first tube center x̄0

is not necessarily equal to the current state measurement x but is an optimization
variable. Ideally, Z would be taken as the minimal RPI set, an explicit representation
can however not be computed except in special cases, see Section 8.5 for more details.
In this work we employ a robust positively invariant ellipsoid for Z, which is readily
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obtained by taking the smallest invariant level set of Vf (x): Z ! {x | xTPx ≤ r}.
For details on the computation please refer to Algorithm 6 in Section 8.5. The robust
formulation does not change the problem structure and Problem Prs

N (x) again results
in a convex SOCP. The robust soft constrained control law is then given in a receding
horizon fashion by

κrs(x) ! ūrs∗
0 (x) +K(x− x̄rs∗

0 (x)). (9.15)

Input-to-state stability will in the following be shown for the robust invariant set
X rs

W ⊆ X rs
N given by the robust positively invariant set for the controlled uncertain

system x(k + 1) = Ax(k) +Bκrs(x(k)) + w1(k) + w2(k):

Ax+Bκrs + w1 + w2 ∈ X rs
W ∀ x ∈ X rs

W , w1 ∈ W1 w2 ∈ W2. (9.16)

Theorem 9.14 (ISS under κrs(x)) The closed loop system

x(k + 1) = Ax(k) + Bκrs(x(k)) + w1(k) + w2(k) is ISS w.r.t to w1(k) ∈ W1 and
w2(k) ∈ W2 with region of attraction X rs

W .

Proof. Following similar arguments as in the proof of Lemma 9.10 and using opti-
mality of V rs∗

N (x) it can be shown that there exist K∞-class functions α(·),α(·) such
that V rs∗

N (x) ≥ α(‖x‖) ∀x ∈ X rs
N and V rs∗

N (x) ≤ α(‖x‖) ∀x ∈ EX̄ s
f
(0, 0) ⊕ Z. Let

ushift be the shifted sequence of ūrs∗(x) defined in (9.8) and xshift the correspond-
ing state sequence starting from x̄rs∗

1 (x). By extending the arguments in the proof
of Lemma 9.8 to the robust case, feasibility of the shifted solution can be shown with
ε̄shift = [ε̄rs∗1 , . . . , ε̄rs∗N−1, 0, ε̄

rs∗
s ]. Let w2 = 0, i.e. x+ = Ax+Bκrs(x)+w1. Using the same

arguments as in the proof of Theorem 5.8, we obtain Vf(x+−x̄rs∗
1 (x))−Vf (x−x̄rs∗

0 (x)) ≤
−‖x− x̄rs∗

0 (x)‖2Q + γ1(‖w1‖). Using standard arguments and convexity of ‖·‖2Q, it can
then be shown that there exists a K-class function γ1(·) such that

V rs∗
N (Ax+Bκrs(x) + w1)− V rs∗

N (x)

≤ V s
N(x̄

shift, ūshift, x̄rs∗
s (x), ūrs∗

s (x), ε̄shift) + Vf(x
+ − x̄rs∗

1 (x))

− V s
N(x̄

rs∗(x), ūrs∗(x), x̄rs∗
s (x), ūrs∗

s (x), ε̄rs∗(x))− Vf(x− x̄rs∗
0 (x))

≤ −‖x̄rs∗
0 (x)− x̄rs∗

s (x)‖2Q − ‖x− x̄rs∗
0 (x)‖2Q + γ1(‖w1‖)

≤ −1

2
‖x− x̄rs∗

s (x)‖2Q + γ1(‖w1‖) .

Note that Lemma 9.9 can be directly extended to the robustified problem formulation,
since the term Vf(x− x̄0) in the cost (9.14a) is irrelevant for the argument. x̄rs∗

s (x) =
x̄rs∗
0 (x) can hence only be the optimal solution if x̄rs∗

0 (x) = 0. If x̄rs∗
s (x) = x for

x 2= 0 was the optimal choice then also x̄rs∗
0 (x) = x, which is a contradiction and
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‖x − x̄rs∗
s (x)‖ can only be zero at the origin. Following a similar argument as in the

proof of Theorem 9.10, it then follows that there exists a K∞-class function β(·) such
that

V rs∗
N (Ax+Bκrs(x) + w1)− V rs∗

N (x) ≤ −β(‖x‖) + γ1(‖w1‖).
Continuity of the optimal value function V rs∗

N follows from the proof of Lemma 9.12,
therefore there exists a K-class function γ2(·), such that |V rs∗

N (y)− V rs∗
N (x)| ≤ γ2(‖y−

x‖) and we obtain

V rs∗
N (Ax+Bκrs(x) + w1 + w2)− V rs∗

N (x)

≤ |V rs∗
N (Ax+Bκrs(x) + w1 + w2)− V rs∗

N (Ax+Bκrs(x) + w1)|
+ |V rs∗

N (Ax+Bκrs(x) + w1)− V rs∗
N (x)|

≤ −β(‖x‖) + γ1(‖w1‖) + γ2(‖w2‖) "

proving the result.

Theorem 9.14 proves ISS of the uncertain system in (9.13) controlled by κrs(x) in
(9.15). The results presented for the soft constrained MPC method can hence directly
be extended to the combination of a robust and soft constrained approach.

9.8 Numerical Examples

In this section the proposed methods for soft constrained and robust soft constrained
MPC are illustrated using numerical examples. All set computations were carried out
using the YALMIP toolbox [Löf04] and the MPT toolbox [KGBM04].

9.8.1 Illustrative Example

Consider the following system:

x(k + 1) =

[

1.05 1

0 1

]

x(k) +

[

1

0.5

]

u(k) + w(k) . (9.17)

The system has eigenvalues at s1 = 1.05, s2 = 1 and is hence unstable. The prediction
horizon was chosen to be N = 5, the constraints on the states and control inputs to
‖x‖∞ ≤ 5 and ‖u‖∞ ≤ 1, Q = I, R = 1 and S = 100I. The terminal cost func-
tion Vf(x) is taken as the unconstrained infinite horizon optimal value function for the
nominal system with P = [ 1.9119 0.2499

0.2499 2.6510 ] and κf (x) = Kx is the corresponding optimal
LQR controller. The exact penalty multipliers were chosen as ρ1 = ρ2 = 100 which was
observed to provide optimality in XN as defined in Theorem 9.7.
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Soft Constrained MPC

First, the feasible set X s
5 and the enlarged terminal set Cs

f for the soft constrained
approach Ps

N(x) are illustrated and compared with the feasible set X5 for the hard
constraint problem PN(x) in Figure 9.4, which demonstrates that the soft constrained
approach significantly enlarges the feasible set and thereby the region of attraction
for the nominal closed-loop system. In addition we plot a state set of interest, where
asymptotic stability should be guaranteed, taken as 2X∩X∞. It can be seen that for a
horizon of N = 5 the set is not included in the feasible set X s

5 . If we however lengthen
the horizon to N = 8, then the set of interest is included in X s

8 .
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Figure 9.4: Feasible and terminal set for the soft constrained approach for N = 5

in comparison with the feasible set of the hard constraint problem. The

state set of interest 2X ∩ X∞ can be covered by X s
8 .

We now analyze the robust stability properties of the example system (9.17) under
the soft constrained control law κs(x) in (9.6). Figure 9.5 shows the size of the RPI sets
XWw̄ for two bounds Ww̄ ! {w | ‖w‖∞ ≤ w̄}, with w̄ ∈ {0.15, 0.25}. Note that for a
robust tube-based approach the feasible set is always a subset of XN . This demonstrates
the advantage of the soft constrained approach, where input-to-state stability in the
presence of a comparably large disturbance w ∈ W0.25 can be guaranteed in the RPI
set XW0.25 ⊇ XN . In addition, a closed-loop trajectory starting at x(0) = [20 1]T under
a sequence of extreme disturbances with w(k) = ±0.25, k ≥ 0 is shown as well as the
corresponding optimal steady-states at each sampling time, demonstrating that the
closed-loop system is stable and does not leave the RPI set XW0.25 .
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(a) Feasible set and RPI sets of Ps
N for w̄ ∈ {0.15, 0.25} together

with a closed-loop trajectory starting at x(0) = [20, 1]T un-
der a sequence of extreme disturbances. Dots represent the
optimal steady-state xs∗

s (x(k)) at each sampling time.
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(b) Feasible set and RPI sets of Ps
N and Prs

N for w̄1 =
0.1, w̄2 = 0.1 together with closed-loop trajectories start-
ing at x(0) = [−9.6, 1]T , where the dashed line solves Ps

N

and the solid line Prs
N . X rh

5 denotes the feasible set for the
robust hard constrained problem.

Figure 9.5: Illustration of the soft constrained and the robust soft constrained MPC

method
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Robust Soft Constrained MPC

In the following the properties of the robust soft constrained MPC approach described in
Section 9.7 are illustrated. Consider again system (9.17) with w(k) = w1(k)+w2(k) that
is now subject to two types of disturbances. Figure 9.5(b) shows the comparison of the
feasible set X rs

5 and the RPI set X rs
W0.2

for w1 ∈ Ww̄1
, w2 ∈ Ww̄2

with w̄1 = 0.1, w̄2 = 0.1
in comparison with the feasible set X s

N and the RPI set X s
W0.2

of the pure soft constrained
approach. The feasible set of the hard constrained robust MPC problem, i.e. Problem
Prs
N (x) with xs = us = 0, εs = 0, εi = 0, w = w1 + w2 ∈ W0.2 is denoted by X rh

5 . Due
to the tightening of the input constraints, the robust soft constrained approach has a
significantly smaller feasible set when compared to the pure soft constrained method.
However, in comparison with the hard constrained robust MPC method, the feasible
set for the combined approach is significantly larger while still guaranteeing ISS with
respect to w1 in X rs

N , which is almost as large as the nominal feasible set X5. The
RPI set X rs

W0.2
is only slightly smaller than X rs

5 and input-to-state stability with respect
to the combined disturbance w = w1 + w2 ∈ W0.2 is still provided in a comparably
large set. Closed-loop trajectories starting from x(0) = [−9.6 1]T are shown for both
approaches under a sequence of extreme disturbances w1(k) = ±0.1 and a disturbance
w2(k) ∈ W0.1, k ≥ 0, of varying size that additionally affects the system at every third
sampling time. Figure 9.5(b) demonstrates that both approaches provide input-to-
state stability of the closed-loop system, however the robust soft constrained approach
provides a better performance, since it is designed for the disturbance w1 that constantly
affects the system.

9.8.2 Large-Scale Example

We now apply the soft constrained MPC approach to a large scale example and es-
timate the computational effort required to solve the corresponding SOCP. Consider
the problem of regulating a system of 12 oscillating masses which are interconnected
by spring-damper systems and connected to walls on the side, as shown in Fig. 9.6.
The six actuators exert tension between different masses. The masses are 1, the spring

u1 u2

u3

u4 u5

u6F

Figure 9.6: System of oscillating masses.

constants are 1, the damping constants are 0.1 and F = 1.05x1. The state and input
constraints are ‖u‖∞ ≤ 1, ‖x‖∞ ≤ 4, the horizon is chosen as N = 5 and the weight
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matrices Q and R are taken as identity matrices. The MPC problem has 24 states
and 6 inputs, resulting in an SOCP with 300 optimization variables. The invariant
ellipsoidal target set EX s

f
(xs, us) was computed by solving an LMI in 11s. The soft-

constrained MPC problem is solved in only 1.8s using SeDuMi [SED], averaged over
100 initial states, where the simulations were executed on a 2.8GHz AMD Opteron
running Linux. This demonstrates that the soft constrained MPC problem Ps

N(x) can
be solved with reasonably low computation times even for large system dimensions.

9.9 Conclusions

In this chapter a new soft constrained MPC method based on a finite horizon MPC
scheme was introduced that provides closed-loop stability even for unstable systems.
The proposed control law preserves optimality and constraint satisfaction whenever the
state constraints can be enforced. Asymptotic stability of the nominal system under
the soft constrained control law was shown as well as input-to-state stability in the
presence of additive disturbances and the robust stability properties were analyzed.
The results on input-to-state stability were extended to the combination of a robust
and soft constrained approach.
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The main focus of this thesis was the development of real-time and soft-constrained
MPC methods that guarantee the essential properties of closed-loop feasibility and sta-
bility. Providing a control law that meets the computational requirements in particular
in terms of available online computation time is crucial for the application of MPC to
high-speed systems. In addition, practical implementations of MPC often consider the
relaxation of state and output constraints. The development of methods providing
theoretical properties for these approaches are therefore highly relevant. A detailed
summary of the presented results can be found at the end of each chapter. In the
following, we provide a brief overview of the work that was presented in this thesis, as
well as an outlook to possible directions for future research on these topics.

In Chapter 7, a real-time MPC method based on a combination of online and explicit
MPC was developed, which offers the possibility to trade off solution properties in order
to satisfy constraints in terms of online computation time, storage and performance. By
means of a preprocessing analysis hard real-time, stability and performance guarantees
for the proposed controller are provided. As the best solution method is dependent
on the particular system as well as the given hardware and performance restrictions,
it was shown how the offline analysis can be utilized to identify the best approach for
a given set of requirements. The presented results show that for many systems there
exists a point where the combination of an online and explicit approximation method
outperforms a pure explicit or online approximation.

The use of an explicit approximation, however, still limits the applicability to small
or medium size problems. A real-time approach based solely on online optimization
was therefore developed in Chapter 8, which can be applied to all problem dimensions.
The limitations of fast online MPC methods in the literature were addressed and feasi-
bility, stability and convergence for all time constraints was provided by using a robust
MPC problem setup with a Lyapunov constraint. It was shown that by exploiting the
new structure of the resulting optimization problem, a tailored custom solver achieves
computation times in the range of milliseconds that are equal, or faster than those
reported for methods without guarantees.

The last part of the thesis was concerned with soft constrained MPC. A new soft-
constrained MPC method was presented in Chapter 9, that provides closed-loop sta-
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bility even for unstable systems. Asymptotic stability of the nominal system with an
enlarged region of attraction under the soft constrained control law was shown as well
as input-to-state stability in the presence of additive disturbances. The robust stability
properties were analyzed and the results demonstrate that input-to-state stability can
be provided in an enlarged region of attraction compared to a robust MPC approach
considering the same disturbance size. A combination of this approach with a robust
MPC scheme allows for flexibility in the disturbance handling and the stability results
extend to the combined approach.

The results presented in this thesis successfully show that theoretical properties can
be maintained in a practical MPC implementation and a real-time or soft constrained
MPC method with stability guarantees can be provided. The following topics would
be interesting for future developments in this area.

One of the main limitations in real-time MPC methods is the initialization of the
MPC problem with a feasible solution. Feasibility is required in order to provide closed-
loop stability using standard results. Since it cannot be guaranteed that feasibility is
recovered in a real-time setting with a given online computation time that generally
only allows for suboptimal solutions, the optimization has to be started from an initial
feasible point. In a nominal approach a feasible initialization is readily available us-
ing the solution computed at the previous sampling time together with a local stable
control law. This initialization may, however, no longer be feasible in the presence of
disturbances.

In the real-time methods presented in Chapter 7 and 8 this issue was resolved by
using a feasible explicit approximation to warm-start the optimization or by applying a
robust MPC scheme that recovers recursive feasibility and thereby provides feasibility
of the shifted previous sequence. Explicit approximations are, however, limited to small
problem dimensions and robust MPC methods are designed for a pre-specified bound
on the disturbance size, in which case the guarantees are only valid if the disturbance
never exceeds the expected bound. One way to circumvent the necessity of a feasi-
ble initialization is the relaxation of state constraints by means of a soft constrained
approach with stability guarantees. This motivates the extension of the presented
soft-constrained method in Chapter 9 relying on optimal solutions to a suboptimal and
real-time approach. The challenge would be to extend the stability proof for a real-time
control law and different stability results would need to be investigated.

The main disadvantage of the presented soft constrained MPC approach is the need
for second-order cone constraints. It was shown that SOCPs can, however, still be
solved efficiently by means of interior-point methods (see e.g. [ART03]), in particular
since the resulting SOC constraints are of small dimension. A fast solver exploiting
the structure of an MPC problem with SOC constraints would prove the practicality
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of the approach and would also be relevant for SOCPs resulting from different problem
setups such as robust programming [LVBL98].

Interesting aspects on the topic of soft constrained MPC include the incorporation
of the possibility to prioritize the relaxation of constraints, building on the results
in [Ker00], which would improve the performance of the soft constrained scheme. The
efficient computation of an upper bound on the exact penalty multiplier represents a
relevant topic beyond the application to soft constrained MPC. Exact penalty functions
are often applied in control but a corresponding multiplier can only be obtained by
simulation if the parametric solution is intractable. Any improvement on this topic
would therefore have an important impact.

Since the results in this thesis focus on a linear system model, a more general direction
of future work would be the development of real-time methods for nonlinear systems.
In the nonlinear case, the MPC problem results in a nonlinear optimization problem
that has to be solved in real-time. While several methods for fast solution of these
problems have been proposed, see for example the overview in [DFH09], the challenge
would be to extend the main theme of this thesis and provide theoretical guarantees
on the resulting real-time control laws.
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