
ETH Library

XQuery (scripting) debugging
IDE and engine support

Master Thesis

Author(s):
Petrovay, Gabriel

Publication date:
2008

Permanent link:
https://doi.org/10.3929/ethz-a-005575230

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005575230
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


 

 

 

 

 

 

 

XQuery (Scripting) Debugging 
IDE and engine support 

 
 

Gabriel Petrovay 
 
 

Master Thesis 
 
 
 

Databases and Information Systems Group 
Department of Computer Science 

ETH Zurich 
 

http://www.dbis.ethz.ch/ 
 
 

16th October 2007 – 15th April 2008 
 
 
 
 

Supervisor: Mentor: 
Dr. Peter Fischer Prof. Dr. Donald Kossmann 

Databases and Information Systems Group 



2  

 

 

 



3  

 

 

 

 

 

 

 

Abstract 

This document discusses the problem of debugging functional languages in general, and 

XQuery-based languages in particular. The task of debugging an XQuery program is 

complex, because of the functional nature of the language and because of the rewrites and 

optimizations performed by execution engines that prevent the usual "stepping-through" 

style of inspection. 

 

The goal of this work is to create the necessary infrastructure to write, run and debug 

XQuery-based programs using the Eclipse Platform and the open source XQuery 

execution engines, MXQuery and Zorba. The instrumentations needed in order to add 

debugging support to one of these engines is also described in this document. 

 

This thesis also contains a detailed description of the engine debug protocol that we 

developed in order to be able to link any two debugger client and an execution engine 

that implement our specified debug interface. 

 

Together with the engine debug interface implementation we also provide a description 

of a prototype debugger client user interface based on the Eclipse Platform that supports 

our execution engine debugger. 

 



4  

 

 

 



5  

 

 

 

 

 

 

 

Contents 

1 Introduction................................................................................................................. 7 
1.1 Motivation............................................................................................................ 7 

1.2 Objectives ............................................................................................................ 8 

1.3 Outline.................................................................................................................. 8 

2 Fundamentals .............................................................................................................. 9 
2.1 XQuery and extensions ........................................................................................ 9 

2.1.1 XQuery..................................................................................................... 9 

2.1.2 XQuery Update ...................................................................................... 10 

2.1.3 XQuery Scripting ................................................................................... 11 

2.2 Problem statement.............................................................................................. 12 

2.3 Requirements ..................................................................................................... 13 

2.3.1 Lazy evaluation...................................................................................... 14 

2.3.2 Unordered execution.............................................................................. 15 

2.3.3 Normalization ........................................................................................ 15 

2.3.4 Optimizations......................................................................................... 15 

2.3.5 Debugger client ...................................................................................... 16 

2.3.6 The scope of this work........................................................................... 16 

2.4 Related work. State of the art............................................................................. 16 

2.4.1 Debugging lazy-evaluation functional languages .................................. 16 

2.4.2 XQuery debugger clients ....................................................................... 17 

3 Conceptual Solution.................................................................................................. 19 
3.1 Stoppable expressions........................................................................................ 19 

3.2 Default stepping semantics ................................................................................ 22 

3.2.1 Breakpoints and execution breaking...................................................... 23 

3.2.2 Step in .................................................................................................... 24 

3.2.3 Step over ................................................................................................ 24 

3.2.4 Step return.............................................................................................. 25 

3.3 Stoppable expressions selection rules................................................................ 25 

3.4 Query location.................................................................................................... 30 

3.5 Debug expression tree view............................................................................... 31 

3.5.1 Code rewriting ....................................................................................... 32 

3.6 Eager-on-demand evaluation ............................................................................. 34 

4 Architecture............................................................................................................... 37 
4.1 Language grammar enhancements..................................................................... 37 



6  

 

 

4.2 Dewey ordering annotations .............................................................................. 38 

4.3 Debugger client. Graphical user interface (GUI)............................................... 39 

4.3.1 Eclipse debug model .............................................................................. 41 

4.3.2 Challenges.............................................................................................. 43 

4.4 Debug protocol................................................................................................... 45 

4.4.1 Communication layer architecture......................................................... 45 

4.4.2 Message formats .................................................................................... 46 

4.4.3 Message payload. Data serialization...................................................... 47 

4.4.4 Command sets and commands............................................................... 47 

4.4.5 Engine debug protocol communication pattern ..................................... 48 

4.5 Execution engine instrumentation...................................................................... 49 

4.5.1 Debug iterators....................................................................................... 50 

5 Conclusion ................................................................................................................. 53 
5.1 Limitations ......................................................................................................... 53 

5.1.1 Debugger client GUI limitations............................................................ 53 

5.1.2 Debug protocol and execution engine limitations ................................. 53 

5.2 Future work........................................................................................................ 54 

A EBNF Grammars ...................................................................................................... 57 
A.1 Modified XQuery EBNF.................................................................................... 57 

A.2 XQuery Update Facility EBNF.......................................................................... 59 

A.2 Modified XQuery Scripting EBNF.................................................................... 60 

B GUI Snapshots........................................................................................................... 62 
B.1 XQuery Eclipse Plugin – XQuery Perspective .................................................. 62 

B.2 XQuery Eclipse Plugin – XQuery Debugging Perspective ............................... 63 

C XQuery Debug Protocol ........................................................................................... 64 
C.1 XQuery Debug Protocol Specification .............................................................. 64 

 Bibliography .............................................................................................................. 69 
 



7  

 

 

Chapter 1 

Introduction 

1.1 Motivation 

XQuery [1] language holds a lot of promise not only as a query language for XML [2] 

data, but also as an application development language for XML-oriented applications, 

including most web service technologies. XQuery by itself is already a Turing-complete 

functional language with a strong type system. A small scripting extension called XQuery 

Scripting [4] allows imperative-style constructs, which makes working with the language 

easier. 

 

One of the reasons functional languages are not extensively used nowadays is the lack of 

tools to support programming in such languages. XQuery and its new follower XQuery 

Scripting are partly falling in this category of languages. There are good reasons why 

such support tools are not available on a large scale. The main one is that providing such 

tools is not only an engineering task. Debugging a language that performs a lazy-

evaluation execution – unlike the case of the imperative languages – is known to be a 

difficult problem. There are no agreed upon techniques in how to solve this. In this 

setting we have defined the semantics of what debugging an XQuery-based language 

means. Our implementation also tries to make a tradeoff between the lazy nature of the 

languages and the usability and predictability a user expects from a debugger. 

 

Although a young language
1
, XQuery programmers can already benefit from just a few 

available language debuggers. Our experience with some of them showed us that there 

are still things that can be improved in order to meet the expectance level of a common 

debugger user having an imperative language debug experience. On the other hand, we 

have no single example of a debugger that supports either the XQuery Update Facility [3] 

or the new XQuery Scripting extensions. All these motivate the implementation of our 

debugger engine and the debugger client. 

                                                 
1
 As W3C standard, the XQuery language went public in the beginning of 2007. As a Working Draft, 

though, the language had been pending since early 2001. 



8  

 

 

1.2 Objectives 

Our main goal was to provide an Eclipse [8] based debugger client for the XQuery family 

of languages. The targeted execution engines were the following two, since these are the 

only ones we know having or adding support for the XQuery Update and XQuery 

Scripting language extensions: 

Zorba [5] – a C++-based, embeddable and high-performance XQuery engine; 

MXQuery [6] – a Java-based, low-footprint, extensible XQuery engine. 

 

In order to enable debugging for the above execution engines additional functionality had 

to be added to them. This functionality, which will be described in the Architecture 

chapter, includes: 

• the internal engine instrumentation; 

• the TCP socket-based Engine Debug Interface (EDI); 

• the Engine Debug Protocol (EDP). 

 

The Engine Debug Protocol (EDP) and the API provided with it were developed 

independent of the execution engine or the Eclipse Platform in order to enable 

programmers to link any client to any XQuery execution engine, provided both parties 

implement our specified EDP. The protocol will be detailed in a dedicated section in 

Chapter 4. 

 

In this work we also define the semantics of what breakpoints and stepping procedure 

mean in the context of debugging an XQuery-based language. The engine execution 

restrictions, like optimizations, code rewritings etc. are discussed from a debugging 

perspective. All these will be addressed both in Chapter 3 from a conceptual solution 

point of view, but also in chapter Chapter 4 from an architectural point of view. 

 

This thesis wraps up the discussion by listing the limitations of our work and suggesting 

possible enhancements and new paradigms that could be developed in order to provide a 

better user experience in debugging functional languages like XQuery. 

1.3 Outline 

This document has the following structure. In Chapter 2 we introduce the main concepts 

and build a theoretical foundation of the problem. We also present the problem statement, 

state of the art in this field and related work. Chapter 3 will give a conceptual solution to 

our problem. Chapter 4 details some aspects of our implementation like: an architectural 

overview of the debugger client, the engine debug protocol and the execution engine 

instrumentation. Chapter 5 wraps up this work by presenting what are the limitations of 

the current implementation and what are the next steps that have to be performed in order 

to address some of these limitations or to enhance the usability of the existing 

implementation. 



9  

 

 

Chapter 2 

Fundamentals 

2.1 XQuery and extensions 

In our work we will not only discuss about the XQuery [1] language but also about other 

extensions that emerged from it: XQuery Update Facility [3] and XQuery Scripting 

Extensions [4]. Before starting to define our problem statement we find it useful to 

provide a short description of these languages. 

2.1.1 XQuery 

XQuery [1] is a language used for querying XML [2] data sources. The language is very 

close to functional languages, but also has some high-level SQL-like constructs and some 

imperative behavior. The language syntax embeds both XML and XPath [8] syntax and 

adds to them the XQuery language constructs. It also defines its own data model: XQuery 

1.0 and XPath 2.0 Data Model (XDM) [9]. This data model is shared between XSLT 2.0 

[10], XPath 2.0 [11], and XQuery. 

 

A possible way to describe XQuery as a language is by saying that it is a declarative, 

fully composable, high level, strongly typed, read only language. Every query is formed 

out of a single expression that can be nested with full generality. Also there is no way in 

XQuery 1.0 to modify the existing data handled in the query. Hence, regarding the data, 

XQuery 1.0 is a side effect free language. 

 

A prominent XQuery expression is the FLOWR language construct. This has a similar 

syntax to the SELECT-FROM-WHERE-ORDER SQL expression. The name “FLWOR” is an 

acronym built from the list of clauses this expression can contain in XQuery: for, let, 

where, order by, and return clauses. An example of such expression is provided in the 

following code listing: 

 

 
 

for $b in doc("books.xml")//book 

let $a := $b/author[1] 

where data($a) eq "Stephen King" 

order by data($b/title) ascending  

return $b 



10  

 

 

The above FLWOR expression retrieves all the book XML elements from the books.xml 
file and performs one iteration for each of these elements, binding in each iteration one of 

the elements to the $b variable. The difference to the for-loop construct the we know 

from imperative languages is that the order in which the bindings of the variable $b to 

each of the elements in the sequence is execution engine implementation specific. The 

bindings are also non-mutable. Therefore, there is no data dependency between different 

iterations and engines can also evaluate then in parallel. During each one of the iterations 

the rest of the clauses are executed in a sequential manner. The let clause binds to the 

variable $a the first author element in document order inside the book element bound to 

the variable $b. The where clause performs a filtering operation. Only the iterations in 

which the expression inside this clause evaluates to a true Boolean result will return a 

value by evaluating the expression in the return cause. There is an optional order by 

clause that allows the results to be returned in an ordered manner. The above query will 

return a list of book’s that have Stephen King as the author, ordered ascending by the 

title of the book. 

 

The previous example shows also other constructs available in XQuery: path expressions 

and function calls. The language defines also conditional branching expressions like the 

if expression. XML constructs are directly supported by the language and they can be 

arbitrarily nested with XQuery code. The fragment below displays this powerful feature 

of XQuery: 

 

 
 

All the language constructs together with large operator set and built-in function 

collection make XQuery a very strong XML processing language. 

2.1.2 XQuery Update 

But the read-only, almost side effect free nature of XQuery led to the appearance of 

extensions. The Update extensions [3], already a standard W3C recommendation, provide 

the additional language expressions to perform modifications of existing XML data. Even 

XQuery, because it is a Turing-complete language, could achieve the same kind of 

results, but with much more effort, through an approach where modification is seen as 

rewriting everything from scratch. But constructing an XML document in this manner 

only looks like the modified original XML document. In fact we have a new document. 

The internal XML node IDs show this. Therefore the Update extensions are necessary. 

XQuery Update Facility is a superset of the XQuery language. 

 

The XDM was modified to allow the following operations on XML nodes: insert nodes, 

delete nodes, replace a node with other nodes, and rename nodes. These operations are 

implemented by the new simple updating expressions: 

• insert expression; 

<elem> element content { 

    (: embedded XQuery code :) 

    for $e in (1, 2, 3) 

    return <a attr="{ $e }"/> 

}</elem> 



11  

 

 

• delete expression; 

• replace expression; 

• rename expression 

and the transform-copy expression which provides an easy way to copy nodes of an  

XDM  instance. 

2.1.3 XQuery Scripting 

The way modifications are applied is a limitation for XQuery Update extensions. All 

updates performed are gathered in a Pending Update List (PUL) and they are applied only 

after the evaluation of the expression. Since an XQuery allows only one single root 

expression per query, the updates will be applied at the end of the execution. Therefore 

the update extensions do not add any notion of state that can be used, for example, for 

multiple transformations of the same node in an XDM instance. 

 

This feature of state, together with sequential execution constrains have been added 

through the XQuery Scripting extensions [4], which recently became a working draft at 

W3C. The main differences to the XQuery Update Facility, which is a subset of the 

scripting extensions, are: 

• for certain expressions an evaluation ordering has been imposed. For example: 

o function calls: the argument expressions are evaluated before the function  body 

o comma concatenation operator: left to right evaluation of the operands; 

• the expressions can have side-effects and these side-effects are visible to subsequent 

expressions; 

• several new expressions have been introduced: 

o Assignment expressions; 

o Blocks; 

o Exit expressions; 

o While expressions; 

o Continue expressions; 

o Break expressions. 

 

The Scripting extensions are providing a good candidate language that addresses the 

impedance mismatch. This term was coined for the set of all problems raised by the 

change of the data model and the programming language when multiple tiers of an 

application are developed. For example, most of the 3-tier applications developed for the 

Web use one relational database for the data storage with the corresponding SQL 

language, perform the application logic in a high-level, probably object-oriented language 

(Java, C#, etc) and display information to the user through another language (JSP, ASP, 

etc) that produces the markup language consumed by the browsers. In many of the cases 

XML is used as the intermediate data representation. In such scenarios, XQuery Scripting 

seems to be the best match and does not only eliminate the impedance mismatch, but also 

reduces the complexity and allows for global optimizations that span multiple tiers of the 

systems. 



12  

 

 

2.2 Problem statement 

Due to the wide spread use of imperative languages, debugging any language is often 

associated by users with the debugging of an imperative language. For this reason, even 

in functional language environment, there might be a high expectance from the 

programmer used to debugging imperative languages, to use debug primitives common to 

a strict, imperative debugger. The imperative debug model includes primitives like 

breakpoints, code stepping, and code inspections and expression evaluation during a 

suspended execution. But, as many researchers pointed in their works [12, 13, 14, 15], 

these debug primitives are simply not suitable in the context of functional languages, 

especially if they are also implementing lazy evaluation, like many XQuery execution 

engine.
2
 Thus, a vast amount of effort has been spent by researches to find the right 

primitives for such languages. 

 

Due to the large debate on the topic, until today we haven’t seen the emergence of a 

dominant approach. Therefore most, if not all, of the proposed techniques are used only 

on a small scale. Maybe the divergences between all these approaches were the cause the 

weak adoption of the functional language. 

 

But, also the users themselves, and not the language tool developers, might be the ones 

causing the low acceptance of the functional languages. The users don’t know that their 

expectances are barely suitable for this kind of languages. If this is true, one approach 

would be to reeducate the users on how functional languages must be debugged. This 

approach does not only require a lot of time, but there is factor of a much greater 

importance that makes this approach a very hard task. Programmers tend to think in a 

sequential, imperative manner while in functional languages parallelized execution is a 

common technique. Therefore, with such an approach the users are not only forced to 

learn something that they are not familiar with, but also something that doesn’t suit their 

way of thinking. 

 

While many tried this approach by developing new debugger prototypes with new debug 

primitives, we don’t know many works that try to achieve the same goal the other way 

round. Having the user expectance to debug a functional language like an imperative one, 

one should try to map the debug primitives that the user is aware of to the new ones for 

the functional language. Of course, this mapping is not a straightforward task due to the 

many intricacies that lie under a functional language in general, and XQuery in particular. 

Also, this mapping is not always possible. In such cases, a tradeoff between the debugger 

user experience and the code execution has to be made. An overview of our approach to 

debugging XQuery will be detailed in the next section of this chapter while the full 

conceptual solution will be detailed in the next chapter. We believe that due to these 

tradeoffs we make, we impose some limitations on our debugger. Therefore, in the last 

section of this chapter we present other techniques and approaches proposed or 

implemented for functional languages debuggers and compare them with ours. 

                                                 
2
 The XQuery semantics was designed to make lazy evaluation possible. Therefore, many XQuery 

execution engines implement this. 



13  

 

 

 

There are a few existing tools on the market providing support for debugging XQuery. In 

our opinion they emerged as quick response to the appearance of the language, but are 

not well supported by a theoretical foundation and therefore they are confusing 

sometimes the debugger user. For this reason, we try to first fundament our approach and 

provide an exact semantics of our view on debugging XQuery. Also, we provide a 

debugger client that meets our specifications of an XQuery debugger. 

 

We believe that XQuery is not just another programming language, but the start of a new 

direction in the Web development world. This discussion is beyond the topic of this 

thesis, but it is worth mentioning that because the usage rate of XML technologies has 

significantly increased in the last years, a similar trend can also be seen for the XML 

processing languages in general and XQuery in particular. This explains, maybe, the new 

wave of standards and proposals coming from W3C [16]: XQuery Update Facility, 

XQuery Full-Text, XQuery Scripting Extensions. Our approach takes into consideration 

also these language extensions. This, we believe, makes our work unique. 

2.3 Requirements 

In this section we will first present what particular problems can one encounter while 

debugging an XQuery-based language. Our solution to these problems will be given in 

Chapter 3 where a high level conceptual solution of our approach will be presented. 

Further details about the implementation of this solution will be given in Chapter 4. 

 

The XQuery language is categorized as a functional language, but there is one non-

obvious case of side effects which makes the language a non-pure functional one: XML 

node constructors. The following code snippet illustrates an example of such side effects: 

 

 
 

In the above example we have the function local:new-element that accepts as input a 

parameter $data of type xs:string. The function returns an XML element having the 

data passed through the function parameter as element content. We than call this function 

two times with the same input data and compare the two results. Trying to guess what the 

result of the query above is, one could be misled to say that the equality between the two 

results yields a true answer. According to the definition of pure functionality, a pure 

function must always return the same result given the same argument values. But in 

XQuery this is not true. Similar to object IDs in an object-oriented programming 

language, XML nodes are also assigned IDs. This, together with the is operator that 

checks for ID equality, make the above query return a false result. Furthermore, the 

declare function local:new-element($data as xs:string) as item() { 

    <element>{ $data }</element> 

}; 

 

let $x := local:new-element("abc") 

let $y := local:new-element("abc") 

return $x is $y 



14  

 

 

semantics of several other operators and expressions, like union and intersect, for 
example, is based on the node ID comparison. Therefore the node IDs, which are hidden 

from the programmer, influence the result of expressions. This breaks the pure-

functionality of XQuery. 

 

The Update Facility and Scripting extensions add more elements to XQuery that drift it 

even further away form the class of functional language. The Update Facility adds the 

possibility to modify existing data used in the query. These side effects are gathered in a 

pending update list until the end of execution and only then made visible. XQuery 

Scripting adds the general notion of side effects, preservation of state and execution 

order. One can even see XQuery Scripting as an imperative language with functional 

constructs, but the purpose of this extension is, of course, not to transform XQuery in an 

imperative language, but rather to give the programmer some of the strengths of an 

imperative style of programming. 

 

As we can see, the context of our work is not only a non-pure functional language, but, in 

the case of extensions, a language that also has imperative constructs. This gives a good 

reason for our work to implement the debugger by finding the mapping between the 

imperative debug primitives and, where necessary, the functional language constructs. 

 

In the remaining of this section, we present a few of the problems that could make an 

imperative style of debugging harder in the context of an XQuery-based language. Most 

of these problems are generated by aspects inherited from the functional languages. 

2.3.1 Lazy evaluation 

By the way the function arguments are passed to a function when an expression is being 

evaluated, one can split functional languages in languages with either strict or non-strict 

evaluation. Lazy evaluation is one type of non-strict evaluation. This technique is 

employed by many XQuery engines in order to improve the performance of code 

execution. With lazy evaluation, expressions are not evaluated until they are actually 

needed. This has a very interesting consequence in some cases. For example, if a certain 

expression is used in the declaration of a variable that is never used after its declaration 

point, the code inside this expression will never be executed. But what if the unexecuted 

code contains a run-time error? According to the lazy evaluation, this error will now 

appear when executing the code. The following code listing illustrates this in an example: 

 

 
 

Since the variable $x is not used in the result returned by the query, the expression bound 

to this variable is not evaluated. Therefore, the function local:div-by-zero() will not 

be called and the division by zero error will not appear when this query is run. 

declare function local:div-by-zero() as item() { 

    5 div 0 

}; 

 

let $x := local:div-by-zero() 

let $y := <a/> 

return $y 



15  

 

 

 

In an imperative style of debugging, the user might have the choice to break the 

execution after the first binding, the one for the variable $x, and to inspect the value 

bound to this variable. This will not only break the lazy evaluation strategy of the engine 

but also cause an error that in the normal execution environment, without a debugger, 

wouldn’t have been raised. 

2.3.2 Unordered execution 

Unordered execution is another issue of interest when trying to debug XQuery code. The 

language specification itself leaves the execution order for many of its expressions open 

to a specific implementation. This is, for example, the case of function parameters that 

don’t have a specified evaluation order, or the individual expression used in a sequence 

expression with the comma concatenate operator. Having no ordering restrictions for 

such expressions, and letting the control solely to the execution engine can give a very 

hard time to debug XQuery. During debugging, the programmer is concerned with the 

logic of his query and not the inner workings of a particular XQuery engine. Moreover, 

using different engines would also make a debugger behave different for each engine. 

From our experience this brings a lot of confusion to the debugger user. 

 

XQuery adds even more to this pain through the unordered expression type. For such an 

expression the order of the returned results is a free choice of the execution engine. This 

is, of course, reflected on the execution order of the expressions contained in the 

unordered expression. Therefore, debugging such expressions might be beyond the 

understanding of the normal debugger user. 

2.3.3 Normalization 

XQuery normalization is one of the steps described in the XQuery processing model. Its 

purpose is to reduce the complexity of the XQuery language by mapping each expression 

to an equivalent one in a non redundant, minimal language grammar called XQuery Core 

[23]. This normalization step raises other problems for a potential language debugger 

implementation. A language debugger relies mainly on the textual representation of the 

user code. Normalization, performed through code rewriting, can alter the textual 

representation of certain expressions and thus cause a mismatch between the code the 

user provides and the runtime information a debugger handles. This problem has to be 

taken into consideration when providing a debugger for the XQuery language.  

2.3.4 Optimizations 

Many aspects of the XQuery language were especially designed to allow optimizations. 

Therefore, after the normalization process, many engines use optimization to achieve a 

better performance of the execution. Debugging in an environment that performs 

optimizations is a very challenging task and sometimes impossible. This is partly because 

optimization deals with code rewritings, which can cause expressions in the original code 

to be transformed, merged or eliminated. 

 

Optimization also means that an engine can choose a parallel or an unordered execution 

of certain expressions if such an execution is a better candidate in terms of performance. 



16  

 

 

From the point of view of the user debugging XQuery code, the optimizations can create 

a lot of problems since he might not know anything about how these are performed and 

what to expect from an optimized code. 

2.3.5 Debugger client 

In spite of all the problems mentioned above that are raised by the XQuery language, 

together with the mismatch between the functional and the imperative debugging model, 

we want to provide users an imperative-like debugger client that uses most of the 

primitives such debuggers use. They include breakpoints, code stepping and code 

inspection. 

2.3.6 The scope of this work 

In the following chapter we will address most of the problem above. We will impose 

some conditions on lazy evaluation and unordered execution when the execution will be 

performed in the debug mode. We will also try to enable users to debug queries 

independent of the normalization process. Regarding the debugger client, we will try to 

match the imperative debug model with an XQuery-based language. 

 

Regarding XQuery code optimizations, due to time constraints and the complexity of the 

problem, we did not address this topic. As a side note, we believe that a debugging 

environment is not a profiling one and therefore performance is not a critical issue for the 

debugger user. We are, though, aware of the fact that there are cases when optimized 

code yields other results than the non-optimized one. In our solution, we have dealt with 

code optimizations by only not allowing them during the execution in debug mode. Even 

the imperative language debuggers turn off or limit the scope of optimizations during 

debugging since some code transformations are not reversible and therefore impossible to 

debug while still providing meaningful debug information to the user. 

2.4 Related work. State of the art 

2.4.1 Debugging lazy-evaluation functional languages 

Debugging lazy-evaluation functional languages has been a much debated topic in the 

last decades but without a consensus reached in this direction. The main cause of this is 

the big discrepancy between such languages and the imperative style of debugging. As a 

consequence, many alternative debugging models have been proposed or developed for 

lazy-evaluation functional languages. Tracing [17, 19, 20], cost centre stacks [18], or 

time travel [29] are just a few of them. Some surveys on these models have already been 

written in [14, 15]. We believe that all these approaches have diluted the effort to provide 

programmers the tool they would use. 

 

On the other hand, some argue [21] that lazy evaluation is not as efficient as it might 

seem at the first sight. To quote the Ennals et al. in [21], the extra memory traffic caused 

by the call-by-need argument-passing mechanism, makes lazy programs perform 

noticeably worse than their strict counterparts, which implement a pass-by-value 

argument-passing mechanism. According to the authors, both time and space 



17  

 

 

performances suffer. Therefore they introduce the notion of optimistic evaluation which 

decides at run-time what should be eagerly evaluated and provides an abortion 

mechanism that stops eager computation when this runs for too much time, preventing in 

this way possible infinite loops. Except the abortion mechanism, the idea of optimistic 

evaluation is similar to our notion of eager-on-demand evaluation which will be 

described later in this document. 

  

The published work that that we found to be the closest to our debugger implementation 

is HsDebug [14]. The authors used the approach of not being lazy to debug Haskell [22], 

a lazy-evaluation functional language. HsDebug also provides a “stop, examine, 

continue” debugger interface to Haskell, which is their way to describe what we call an 

imperative-style debugger. Our goal is to implement a similar debugger interface for 

XQuery-based languages, task which raises also some problems that are specific to our 

targeted languages. Further more, we want to provide a complete set of tools for XQuery 

development and debugging, not just a conceptual solution or a proof of concept. 

 

In the XQuery world, while there are a bunch of execution engines, just a few of them 

also provide debugging support. One of them is Saxon [28], a proprietary XQuery 

processor. This debugger is widely spread in the existing debugger clients, one of them 

being the one provided by Stylus Studio®, which will be described in the next section. 

 

Another interesting approach for debugging XQuery is the Rover [19] implementation. 

This instruments the code at runtime with the fn:trace() function implemented to 

populate a relational database with XQuery item sequences. The main assumption made 

by this implementation is that the function fn:trace() is backed by a database to store 

the runtime data and thus allowing the user to perform post-mortem forward and 

backward interactive debugging. This is an assumption that we don’t want to make. Also 

the debugger is not a breakpoint oriented one, but an expression oriented one. Their 

debugger client provides new debug primitives like XML viewers for the trace tables 

associated to different expressions. But, adding such new debug paradigms is also 
something we want to avoid as much as possible. 

2.4.2 XQuery debugger clients 

A significant roadblock in the adoption of XQuery is the lack of good development tools. 

Most existing tools are either small extensions of text editors or general-purpose XML 

editors, neither of which providing the necessary support to efficiently develop programs 

in XQuery. One reason might be because they are XML-driven and not XQuery-driven, 

XQuery not the focus of these tools. Our experience showed us that, being XQuery-

driven, has indeed its pitfalls. For example, the XQuery extensions that we are also 

targeting, like XQuery Scripting Extensions, are not standardized and therefore not 

stable. Adding support for these extensions requires indeed a very big commitment due to 

the changes both in the syntax and the semantics that can appear in the targeted language. 

We believe that since these changes are not major ones, the support tool development can 

be performed along with the evolution of the working drafts of the standards. This 

approach has a major advantage. Having ready-to-use language support tools by the time 

a standard is issued maximized the adoption rate and minimizes the adoption delay. But, 



18  

 

 

besides not being dedicated XQuery-dedicated support tools, the existing tools also don’t 

have our approach. As a consequence, 1-year old standards, like XQuery Update Facility, 

have no support in any of the up-to-date known tools. 

 

Nowadays, the most used implemented XQuery editors and debugger clients are the ones 

provided together with large XML development environments. This makes it harder be 

accepted by the programmers that want to use only the XQuery support features. This 

happens for two reasons: usability – they only want XQuery support tools – and price – 

they don’t want to pay for tools they don’t use. This is the case of Altova’s XMLSpy®, 

DataDirect’s Stylus Studio® or SyncRO Soft’s <oXygen> XML Editor®. Therefore a 

free, lightweight version of XQuery support tools is needed. We are trying to provide 

such a package. 

 

But, even if all these existing environments’ support is limited only to XQuery 1.0, we 

have also found several problems that developers are common faced with. 

 

For all these XQuery Editors we have use cases in which syntax highlighting has major 

problems. We consider major, a syntax highlighting error that persists even when the 

query has a correct syntax. There are two main reasons these problems appear. Firstly, 

XQuery is not a standard keyword based language by the fact that keywords are not 

language reserved words. Secondly, a correct syntax highlighting can only be performed 

when the query is complete, having a correct syntax. The existing editors rely only on 

static syntax highlighting rules that do not check if query tokens in the editor correspond 

exactly to the ones in the query’s Abstract Syntax Tree. This as-you-type syntax 

highlighting is indeed very useful for the programmers, but this eager approach leads 

many times to errors. Our implementation has such static rules, but also implements a 

syntax highlighting reconciliation strategy which corrects possible errors of the static-

only approach. We have also found that full language composability and deep nesting are 

also causing problems for two of the previous mentioned editors. 

 

Code completion is an important feature that language editors must provide. In this 

category fall both static code completion like keyword completion, built-in function 

completion and code templates, but also dynamic code completion like, variable and user 

defined function completion. Out of all there code completion features, only a small set 

of them are provided by each of the above mentioned editors. With our implementation 

we try to provide all these features. 

 

Due to the much debated topic on debugging lazy-evaluation functional languages like 

XQuery, and the lack of a formal stepping semantics defined for such a language, the 

notion of stepping is a fuzzy notion for the programmer because of the different 

approaches each editor takes. Moreover, a lazy debugging behavior, like the one used by 

the Stylus Studio environment and provided by the Saxon execution engine, is very 

confusing for the programmer. We try to address these problems by implementing an 

imperative-like style of debugging, for reasons explained in the previous sections of this 

chapter. 



19  

 

 

Chapter 3 

Conceptual Solution 

This chapter will present the solutions that we found to the problems mentioned in the 

previous chapter and will provide a conceptual view on our debugging model. 

3.1 Stoppable expressions 

One reason why debugging an XQuery-based language is not a straight forward task, is 

the full generality allowed for nesting expressions. Consider a programmer with an 

imperative language debug experience, where primitives like “step in”, “step over” and 

“step return” actions are available. Keeping the same stepping semantics for these actions 

in the context of XQuery debugging would have, in many cases, an unexpected behavior. 

A very often case might be the termination of the query when a step over action is 

performed. This happens because in simple XQuery a query is always formed out of a 

single expression
3
. There are also other examples. One of them is presented given the 

following XQuery query: 

 

 
 

The previous code example contains a variable binding, $x – similar to the variable 

assignment in Java for example – and returns, in the last line, the bound variable as the 

result of the query. The imperative languages taught us that the “step in” action can be 

performed only on function calls. Keeping this debugger rule will give an XQuery 

programmer a hard time debugging his code. In the previous example assume that the 

debugger stopped the execution at the let clause before the variable binding. Since the 

expression that is bound to the variable x does not contain any function call, and sticking 

                                                 
3
 XQuery Scripting extensions add the concept of sequence of expressions, and, in this case, the stepping 

behavior would be more close the semantics in the imperative languages. 

let $x := <result> { 

    for $i in 1 to 10 

    where $i mod 2 eq 0 

    return 

        <elem>{ $i }</ elem> 

} </result> 

return $x 



20  

 

 

to the previous rule, one can not step in this expression. But it is quite obvious that this is 

not the behavior one would expect form an XQuery debugger. 

 

In order to allow a more intuitive debugging experience, we have mapped the imperative 

style stepping primitives to the expression tree traversal operations. Allowing users to 

navigate no only through function calls, feature already provided by the imperative 

language debuggers, but also through the nodes of the expression tree. This makes the 

task of programmers easier when debugging a functional language like XQuery. 

 

The above mentioned mapping was realized with the help of the stoppable paradigm that 

we introduced in the context of XQuery debugging. A stoppable expression is any 

language expression the user can set a breakpoint on and where the engine can suspend 

the execution – either due to a breakpoint, a user request to suspend the execution or 

through code-stepping actions. At the break locations, the user can perform debugging 

actions, like code stepping or expression inspection. The rules how stoppable expressions 

are chosen is based on the language grammar and the semantics of individual 

expressions. These rules of choosing stoppable expressions along with the exact 

breakpoint and stepping semantics for each of these expressions will be given in the next 

section. In this section we will only give the general rules of how debugging actions are 

mapped to XQuery debugging through stoppable expressions. 

 

The expression tree is a conceptual XQuery representation used by execution engines for 

processing. This is obtained from the query abstract syntax tree (AST) the language 

parser generates. Even if conceptually all engines rely on the expression tree, only some 

implement it as a physical structure. The expression tree is the basis for the engine’s 

XQuery processing model. Operations like normalization and optimization are performed 

on this tree. 

 

We will focus in our discussion on the conceptual idea of expression tree obtained 

through a 1-to-1 mapping from the AST. For our model, we consider that for each 

language expression defined in the targeted XQuery specification or extension 

specifications there is one corresponding node in the expression tree. We will not make 

any other assumption about the representation of this tree other than the annotations we 

use for the purpose of the debugger. 

 

In order to have a better understanding of the stoppable expressions and the expression 

tree annotations, we will first provide a short example. Consider the following XQuery 

fragment: 

 

 
 

let $x :=  

    <result>{ 

        (1 + local:foo()) + local:goo() 

    }</result> 

return $x 



21  

 

 

According to the standard XQuery grammar, this query generates the AST in Fig. 1. For 

simplicity we have pruned out some leaf nodes that did not present any interest in our 

discussion. This is the case for the QName nodes or the language token alias nodes. 

 

 
Figure 1 – The query expression tree with outlined stoppable expressions 

 

An engine would use the above tree to obtain a similar expression tree. For this reason, 

we will consider this one as the expression tree. Given the simplicity of the given query, 

one can easily remark the verbosity of the generated tree – this version in the diagram 

being as well a simplification of the complete tree. Defining the debug primitives based 

on such a structure would certainly generate difficulties for a programmer debugging the 

previous simple query. Imagine what the debugging activity would become if the user 

would need to know the exact structure of this tree and the exact composition of each 

expression. This, we believe, does not only create complexity in debugging, but also 

drifts the programmer away from the task at hand, which is, to follow and debug the 

query logic. In order to simplify the user view on the query during the debugging, we 

annotate only some of the expression tree nodes as stoppable expressions. This stoppable 

annotation is assigned in such a way that the code stepping, which means navigating 

between the annotated nodes, provides a meaningful debugging semantics to the user. 

Assume that we want to provide the user the following behavior when debugging the 

above query: 

• The user can break the execution at every  expression that forms a variable binding in 

the FLWOR expressions is evaluated, as well as at the expressions in the where and  

return clauses. Furthermore the user sees all those expressions on the same level from 

MainModule 

QueryBody 

Expr 

FLWORExpr 

LetClause 

DirAttributeList 

EnclosedExpr 

AdditiveExpr 
ParenthesizedExpr 

Expr 

IntegerLiteral 

Constructor 

FunctionCall 

FunctionCall 

VarRef 

ComparisonExpr 

Prolog 

AdditiveExpr 

Expression tree node 

Stoppable expression node 

ParenthesizedExpr VarRef 

VarName 

Module 

DirectConstructor 

DirElemConstructor 

DirElemContent 

CommonContent 

Expr 

VarName 

VarName 



22  

 

 

a stepping behavior point of view. This means that using only the “step over” action 

is enough to navigate through all these expressions. Therefore the root node of every 

expression mentioned are considered stoppable expressions; 

• The execution can be broken before a function call. Therefore, a FunctionCall is 

marked as a stoppable expression. 

 

These rules determine the stoppable expressions in our expression tree. These are 

outlined in the diagram in Fig. 1. The complete set of rules for selecting stoppable 

expressions will be given in the Section 3.3. 

3.2 Default stepping semantics 

A stoppable annotation can be either marked by setting a flag in the corresponding node 

or by inserting an additional node in the expression tree between the node that must be 

annotated and its parent. We favor this latter approach, which will be used in this 

conceptual solution because it avoids changing the tree node structure. Only a single new 

node type must be introduced.
4
 The new node type is called a debug node. The 

expression tree with inserted debug nodes or with annotated stoppable nodes will be 

named the debug expression tree. Fig. 2 displays the debug expression tree generated 

from the expression tree in Fig. 1 by inserting the debug nodes. 

 

The semantics of breaking and stepping will be defined based on tree traversal operations 

on the debug expression tree. In the following sections we will call source node the 

debug node where the execution was last broken, and target node the debug node chosen 

by the engine as the next point to break the execution. In case the suspend debug action is 

performed the next debug node encountered during the execution is considered the target 

node. 

 

The semantics of stepping is equivalent to the selection of the target node, given a step 

action and a source node. After the target node has been chosen, the execution continues 

until this node is encountered, provided no other breakpoint is set in-between. Each of the 

stepping actions will be performed by the debug node associated with a certain stoppable 

expression. Every debug node will compute the target node for a particular step action 

with a step function having the following prototype: 

 

 DebugNode step_action (DebugNode sourceNode) 

 

where the action stands for one of the three possible step types: in, over and return. The 

step functions have one parameter, the source node, and return the target node chosen 

according to the step action type and the stoppable node the debug node is associated 

with. The data types used in the pseudo-code definitions are the following: 

 

                                                 
4
 From an implementation point of view, the direct tree node annotation scheme benefits of a better 

performance than the new inserted node approach. Our implementation, described in the Architecture 

chapter, implements the node annotation scheme. 



23  

 

 

 
Figure 2 – The debug expression tree 

 

• Node – represents any node in the tree; 

• DebugNode – represents only the debug nodes in the tree. This type is compatible 
with the Node type. A DebugNode is a Node. 

 

The following step function descriptions provide the default implementation for all the 

debug nodes. Some debug nodes, though, have to override this default implementation 

with one to meet the semantics of the expression this node belongs to. This is the case for 

all the expressions that control, in a way or another, the execution flow. Such expressions 

are the FLWOR, if, typeswitch and quantified expressions in simple XQuery and 

while, break, continue, and exit expressions in XQuery Scripting. The control flow 

alters the tree navigation behavior implemented in the default step functions by 

performing jumps between the nodes of the debug expression tree. The overridden step 

functions are meant to implement jump behavior dictated by different expression 

semantics. 

3.2.1 Breakpoints and execution breaking 

The execution will be broken only when a debug node is encountered if the debug node 

has an associated breakpoint or if the node is the target node. This rule assures that the 

MainModule 

QueryBody 

Expr 

FLWORExpr 

LetClause 

DirAttributeList 

EnclosedExpr 

AdditiveExpr 
ParenthesizedExpr 

Expr 

IntegerLiteral 

Constructor 

FunctionCall 

FunctionCall 

VarRef 

ComparisonExpr 

Prolog 

AdditiveExpr 

ParenthesizedExpr VarRef 

VarName 

Module 

DirectConstructor 

DirElemConstructor 

DirElemContent 

CommonContent 

Expr 

VarName 

VarName 

Expression tree node 

Debug node 

Stoppable expression node 

Debug Node: FunctionCall 

Debug Node: ComparisonExpr 

Debug Node: FunctionCall 

Debug Node: 

 Constructor 



24  

 

 

execution can only be broken above stoppable expression nodes, meaning, before a 

stoppable expression is evaluated. 

3.2.2 Step in 

The “step in” debug action chooses as target node the first debug node found through a 

preorder, left-first tree search, starting from the source node. If no debug node is found, 

the “step over” action is performed. The step_in function performs the following logic: 

 

 DebugNode step_in (DebugNode sourceNode) { 

  DebugNode result = preOrderLeftSearch (child (sourceNode)) 

  if (result is null) { 

   result = step_over(sourceNode) 

} 

return result 

 } 

 

where the preOrderLeftSearch function has the following prototype: 

 

 DebugNode preOrderLeftSearch (Node node) 

 

and implements a preorder left-first tree search algorithm that starts from the node given 

as parameter and returns the first debug node found. If no such node exists, a null result is 

returned. The child function returns the child of a debug node. Debug nodes will always 

have one single child which is not a debug node. 

3.2.3 Step over 

The “step over” debug action target node assignment is implemented by the step_over 

function: 

 

 DebugNode step_over (DebugNode sourceNode) { 

Node nodeAtLeft = sourceNode 

Node inParent = parent (sourceNode) 

while (inParent not instance of DebugNode and inParent is not null) { 

Node result = findTargetAtRight (inParent, fromNode) 

if (result is not null) 

return result 

 

fromNode = inParent 

inParent = parent (sourceNode) 

} 

return null 

 } 

 

where the parent function returns the parent of a node and the findTargetAtRight function 

finds the first debug node in the list of children of a node after a certain child. This 

function is defined as: 



25  

 

 

 

 DebugNode findTargetAtRight (Node node, Node fromChild) { 

foreach (Node sibling in getRightSiblings (fromCihld)) { 

 DebugNode result = preOrderLeftSearch (sibling) 

 if (result is not null) 

  return result 

} 

return null 

 } 

 

The getRightSiblings function returns the list of children of node at the left of the given 

child fromChild. 

3.2.4 Step return 

The “step return” debug action chooses as target node the node found through a “step 

over” action starting from the innermost debug node ancestor of the source node. The 

step_return function has the following definition: 

 

 DebugNode step_return (DebugNode sourceNode) { 

  sourceNode = innermostDebugNodeAncestor (sourceNode) 

  if (sourceNode is not null) { 

   return step_over (sourceNode) 

} 

return null 

 } 

 

where the innermostDebugNodeAncestor function has the following prototype: 

 

 DebugNode innermostDebugNodeAncestor (Node node) 

 

and finds the first debug node found on the path from the source node to the root of the 

tree. If no such parent exists, a null result is returned. 

3.3 Stoppable expressions selection rules 

In the previous and current sections, the semantics of “step out” and “step return” were 

considered in the absence of breakpoints set in the debug expression tree fragments 

evaluated during that step execution
5
. In the case breakpoints are met during the 

evaluation, the execution engine will stop accordingly. 

 

In this section we provide the complete set of rules used to select the stoppable 

expressions together with a description of why this is necessary. As mentioned in the 

                                                 
5
 The “step in” semantics is not changed by the presence of breakpoints since the corresponding execution 

will always stop at the next stoppable expression met during the evaluation, therefore there is no other valid 

breakpoint location between the source and the target node. 



26  

 

 

previous section, the stepping semantics is given not only by the structure of the debug 

expression tree, but also by the semantics of different expressions. These expressions 

introduce a jump behavior in the debug tree navigation. For each of theses expressions 

we provide also the description of the jump behavior. 

 

In XQuery 1.0, we have the following stoppable expressions selection rules: 

• FunctionDecl – the user must be able to suspend the execution engine before the 

evaluation of the function body begins in order to inspect the values bound to the 

function parameters. One solution would be to make the expression that forms the 

body of the function stoppable. But because the external functions don’t have a body, 

and we want to treat all function declarations in a uniform way, we mark all function 

declarations as stoppable. 

Semantics for: 

o breakpoint: the execution stops before the engine starts to evaluate the body of the 

function. 

o step in: Default. 

o step over: Overridden. The default step_in implementation with the change that, 

when no target node is found, the step_return function is called. This assures that 

if there is a stoppable expression in the body of the function, no matter how deep 

is this nested, the corresponding debug node will be the target. 

o step return: Overridden. The default step_over implementation having as source 

node the debug node associated with the FunctionCall that caused the jump to 

this FunctionDecl. 

• FLWORExpr – the user must be able to step through all clauses of a FLWORExpr in a 

linear way – only using the “step over” action. This means that he should see all the 

bindings in the for and let clauses, and the where and the return expressions on the 

same level.
6
 Therefore each ExprSingle child of the ForClause, LetClause and 

WhereClause as well as the one of the FLWORExpr, which corresponds to the return 

expression, will be marked as stoppable. 

Semantics for: 

o breakpoint: for bindings, the execution stops before the binding of the positional 

variable is made, if this is present, and before engine starts evaluating the 

expressions in the binding; for the rest of the expressions, the execution is stopped 

before the evaluation of the expression starts. 

o step in: Default. 

o step over: Overridden. The default step_over implementation except for the debug 

node associated with the return expression. This will select as target node the 

debug node associated with the expression in the next for binding to be made. If 

no more bindings have to be made, the default step_over implementation is 

performed. 

o step return: Default. 

• QuantifiedExpr – this expression has a similar loop behavior as the FLWORExpr. 

The user must be able to stop the execution for each binding and at the satisfies 

expression. Therefore, all direct ExprSingle children will be marked as stoppable. 

                                                 
6
 This is the case because the return expression is one level above the expressions in the other clauses. 



27  

 

 

Semantics for: 

o breakpoint: the execution stops before the engine starts evaluating the expression 

in the binding or the satisfies expression. 

o step in: Default. 

o step over: Overridden. The default implementation except for the last 

ExprSingle child that corresponds to the satisfies expression. This will select 

as the target node, the debug node associated to the expression of next binding to 

be made. If no more bindings have to be made, the default step_over 

implementation is performed. 

o step return: Default. 

• TypeswitchExpr – the user must be able to break the execution at the typeswitch 

expression and at the chosen case clause. This allows him to see which execution 

path is chosen by the engine. Therefore, the ExprSingle child of each CaseClause 

and the Expr and the ExprSingle children of the TypeswitchExpr must be 

marked as stoppable. 

Semantics for: 

o breakpoint: for all the expressions, the engine stops the execution before the 

evaluation of the expression starts; for the ones in the case or default clauses, 

the optional binding, if this is present, is performed before stopping the execution. 

o step in: Default. 

o step over: Overridden. The debug node associated with the typeswitch 

expression will choose as target node the debug node above the expression in the 

case clause chosen by the runtime. The debug nodes associated with the other 

expressions will have the default step_over implementation, but using as source 

node, the debug node associated to the default clause return expression. 

o step return: Default. 

• IfExpr – the user must be able to stop the execution at the conditional expression 

and also to see which branch the execution follows. For this reason, all the three 

children of the IfExpr must be marked as stoppable. 

Semantics for: 

o breakpoint: the same semantics for all child expressions of the IfExpr. The 

Engine stops the execution before the evaluation of the expression starts. 

o step in: Default. 

o step over: Overridden. The debug node of the conditional expression chooses as 

target node the debug node associated with the expression in the branch to be 

followed. 

o step return: Default. 

• FunctionCall – a user must be able to break the execution at a function call. This 

allows him to inspect the values of and step in the expressions used as arguments to 

the function. Also this break point allows the user to step in the declaration if the 

function if the function is a user defined one. For this reason, function calls are also 

marked as stoppable. 

Semantics for: 

o breakpoint: the engine stops the execution before starting to evaluate any of the 

expressions passed as arguments to the function, or, if no such expression is 

available, before the context is switched to the function declaration.  



28  

 

 

o step in: Overriden. The default step-in implementation with the following 

modification. The debug expression of the FunctionDecl corresponding to this 

call is seen as the last child of the the FunctionCall node. 

o step over: Default. 

o step return: Default. 

 

There might be a need for debugger users to debug the expressions used in the 

OrderByClause. We are currently not supporting this stoppable expression but we keep 

it as candidate for the next revision of the stoppable selection rules. Allowing a user to 

debug a FLWOR expression containing an OrderByClause might generate an 

unexpected behavior of the debugger due to either different engine implementations of 

the ordering predicate in a FLWOR expression or the need for materializing all the results 

before the first one can be generated. In this context, we introduced the following 

convention: when debugging a FLWOR expression that contains an OrderByClause, 

the engine will not stop and will not honor the breakpoints set for any of the bindings or 

the WhereClause in the same FLWOR expression. This rule does not apply to the sub-

expressions used for bindings, in the where-expression or in the ordering predicate. We 

make no assumption about the order in which the engine evaluates these sub-expressions.  

 

The rules for selecting the stoppable expressions in XQuery Update extensions are: 

• for all the basic updating expressions (InsertExpre, DeleteExpr, ReplaceExpr 

and RenameExpr) – since all these expressions use SourceExpr and/or 

TargetExpr and we want to allow users to stop the execution at these expressions, 

all the basic updating expressions can be covered by the same rule. 

Semantics for: 

o breakpoint: the engine stops the execution before starting to evaluate any of the 

SourceExpr and TargetExpr child. 

o step in: Default. 

o step over: Default. 

o step return: Default. 

• TransformExpr – the user must be able to break the execution for every binding in 

the TransformExpr and for both of the modify and return expressions. Therefore 

all the ExprSingle children are marked as stoppable. 

Semantics for: 

o breakpoint: for any of the bindings or the modify and return expressions, the 

engine stops the execution before starting to evaluate the ExprSingle. 

o step in: Default. 

o step over: Default. 

o step return: Default. 

 

In XQuery Scripting, the following rules are applied for selecting the stoppable 

expressions: 

• AssignmentExpr – the user must be able to step through variable assignment 

expressions. This allows him to perform code inspections and to step in the 



29  

 

 

expressions that return the values to be assigned. Therefore the ExprSingle child will 
be marked as stoppable. 

Semantics for: 

o breakpoint: the engine will stop the execution before it starts the evaluation of the 

expression to assign. 

o step in: Default. 

o step over: Default. 

o step return: Default. 

• BlockVarDecl – the user must be step through the sequence of declare variables 

that also have an assigned a value. The user can perform code inspections of step in 

the expression returning the value to be assigned. Therefore all the direct 

ExprSingle children will be marked as stoppable. 

Semantics for: 

o breakpoint: the engine will stop the execution before it starts to evaluate the 

expression to be assigned to the variable. The engine will only stop for a variable 

declaration if this is also assigned a value. 

o step in: Default. 

o step over: Default. 

o step return: Default. 

• BlockBody – the user must be able step through the sequence of expressions that 

form the block body. This allows him to inspect partial result of the program logic 

and to step in the nested expressions. Therefore all the direct Expr children of the 

BlockBody will be marked as stoppable. 

Semantics for: 

o breakpoint: for each expression, the engine will stop the execution before starting 

to evaluate the expression. 

o step in: Default. 

o step over: Default. 

o step return: Default. 

• ExitExpr – the user must be able stop the execution when encountering an 

ExitExpr expression. This allows him to perform code inspections and to step in the 

return value expression. Therefore the ExprSingle child of the ExitExpr will be 

marked as stoppable. 

Semantics for: 

o breakpoint: for each expression, the engine will stop the execution before starting 

to evaluate the expression. 

o step in: Default. 

o step over: Overridden. The same as step_return. 

o step return: Overridden.  The default step_return using as source node, the inner 

most function call in the call stack. If no such function call exists, the execution 

will terminate. 



30  

 

 

• ContinueExpr and BreakExpr7 – the user must be able stop the execution when 

one of those expressions is encountered in order to perform code inspections before 

the control flow is changed according to the semantics of the expression. Therefore 

these expressions will be marked as stoppable. 

Semantics for: 

o breakpoint: the engine stops the execution when the expression is encountered. 

o step in: Default. 

o step over: Overridden. According to the semantics of the specific expression. 

o step return: Overridden. According to the semantics of the specific expression. 

3.4 Query location 

An important link between any language’s execution engine and the corresponding 

debugger client is the textual representation of the user written code. The debugger client 

must provide information about the breakpoint locations to the engine and the engine 

must provide the location where the execution is suspended. Also, breakpoint 

management, for operations like setting or clearing breakpoints, needs some sort of 

identifiers in order to control the individual breakpoints. By using then notion query 

location, which is defined below, we solve both problems. 

 

A query location is a range in the query file with the following properties: 

• startLine – the number of the line in which the range starts; 

• startColumn – the number of column in which the range starts; 

• endLine – the number of the line in which the range ends; 

• endColumn – the number of the column in which the range starts; 

• fileName – the name of the file that contains the query 

 

All the numbers are 1-based and the following relation holds: 

 

 startLine <= endLine OR ((startLine = endLine) → (startColumn < endColumn)) 

 

This relation enforces that ranges are not empty and the start of the range appears in the 

left-right, top-bottom document order before the end of the range. 

 

By adding one more rule, we can use the query locations to uniquely identify the query 

expressions. The rule is the following: the query location of a certain expression starts 

with the first non-white character and ends with the last non-white character belonging to 

the expression. 

 

The above specification of query location has also the property of being platform 

independent. To be more precise, it avoids the well known line terminator representation 

problem. 

                                                 
7
 The semantics for ContinueExpr and BreakExpr are very unstable compared to the other 

XQuery Scripting expressions. Because of the debate on this topic we will not make any assumptions about 

what is the jumping behavior of code stepping for these expressions. 



31  

 

 

3.5 Debug expression tree view 

In this section we present a special property of the debug expression tree and based on it 

we give the solution to one of the problems identified in the previous chapter: the code 

rewriting problem caused by query normalization. 

 

To illustrate the idea of this section we will use the following XQuery examples: 

 

 
 

The query above returns as result, the number of authors of the book named “Ulysses”. 

The book is searched for in the list of books found in the books.xml XML file. This 

XQuery fragment generates the expression tree shown in the diagram in Fig. 3. The 

stoppable expressions were selected according to the rules presented in the previous 

section. For the topic of this section we will consider the annotated version of debug 

expression tree, therefore the debug nodes will not appear. This way we manage to 

simplify the explanations while keeping the same properties of the debug expression tree. 

 

 
Figure 3 – The expression tree with outlined stoppable expressions 

 

MainModule 

QueryBody 

Expr 

Prolog 

Expression tree node 

Stoppable expression node 

Module 

FLWORExpr 

ComparisonExpr 

LetClause 

VarName 

VarName 

VarRef 

FunctionCall 

VarName 

VarRef 

WhereClause 

PathExpr 

StringLiteral 

StepExpr 

AbbrevForwardStep 

NodeTest 

NameTest 

VarName 
PathExpr 

VarRef 

VarName 

StepExpr 

AbbrevForwardStep 

NodeTest 

NameTest 

ForClause 

PathExpr 

StringLiteral 

StepExpr 

AbbrevForwardStep 

NodeTest 

NameTest 

FunctionCall 

for $book in doc("books.xml")/books/book 

let $authors := $book/author 

where $book/title = "Ulysses" 

return count($authors) 



32  

 

 

The stepping semantics defined in the previous sections, can also be defined in terms of 

the debug expression tree view, a tree structure that contains only the stoppable 

expressions in the tree. A recursive function can easily generate this view starting from 

the root of the tree, using only the following rule: if the root node is a stoppable node, this 

will be kept, otherwise, it will be replaced with the children nodes after this function has 

been applied on each of its direct sub-trees. It is easy to remark that all stoppable 

expressions that have no other stoppable ancestor will become roots of distinct trees. In 

this case we consider all these root nodes to have the same parent node which is not 

stoppable. This happens in our example. The expressions of the FLWOR expression 

clauses, after the filtering operation, remain with no parent. The debug tree view will 

look as in the diagram shown in Fig. 4. 

 

 
Figure 4 – The debug expression tree view 

 

This debug tree view helps up show the properties of our conceptual solution that would 

have necessitated much more effort to understand or prove at the conceptual level using 

the complete debug expression tree. This filtering operation reduces the expression tree to 

the minimum necessary that is needed during the debugging session. As a side effect, all 

stoppable expressions having the same lowest common ancestor become siblings in the 

view. By adding the root node, also the stoppable nodes having no stoppable ancestor 

become siblings. Also, nodes initially placed at different levels in the tree, are brought on 

the same level in the tree view. The new sibling and parent-child relations between the 

tree view nodes give us the exact semantics of the three default code-stepping functions: 

• step in – parent-child relation – the target node is the first child of the source node; 

• step over – sibling relation – the target node is the next sibling of the source node; 

• step return – child-parent and sibling relations - the target node is the next sibling of 

the parent of the source node. 

3.5.1 Code rewriting 

In debugging there must be a strong correlation between execution and the textual 

position of expressions, which we model with the query location. All debug actions and 

events have to be reflected in the debugger client user interface and some of them directly 

in the query editor. This contains the query the way the user wrote it. With an XQuery 

engine that performs multiple code transformations during normalization and 

optimization, tracking the query location of the expressions in the original AST is not an 

Non-existent root node   

Stoppable expression node 

FunctionCall PathExpr 

FunctionCall 

PathExpr 

ComparisonExpr 

1 2 3 4 



33  

 

 

easy task, if possible at all. This is because during code rewriting operations, the engine 

can decide to add, remove or transform expressions in the original code. Stoppable 

expressions initially in the code might be either removed or transformed into ones which 

are not stoppable. Also other stoppable expression can be added by the engine. Therefore 

we must find a way to preserve the relations between the stoppable expressions as they 

are in the original code in case transformations are performed. 

 

For the XQuery code example above, according to the XQuery 1.0 formal semantics [23], 

after normalization of the FLWOR expression, the code looks like this: 

 

 
 

Semantically, the code is equivalent. But, from the debugging point of view, between the 

two queries there is a major difference. This difference can be clearly seen if we compare 

the two debug expression tree views. The one of the normalized code is presented in the 

diagram below: 

 

 
Figure 5 – The debug expression tree view of the normalized code 

 

The underlined tree view nodes are stoppable expressions that the engine introduced 

during normalization. Also, the relation between the other nodes suffered major changes 

and this translates into a different behavior of the debugger because the stepping 

semantics remained the same. For example, the user can no longer step over from the first 

PathExpr to the second. In order to do this in the normalized tree, he would have to step 

in through the FLWORExpr node. 

Non-existent root node   

Stoppable expression node 

FLWORExpr 

PathExpr 

FunctionCall 

PathExpr 

IfExpr 

ComparisonExpr 

FunctionCall 

ParenthesizedExpr 

4 3 

2 

1 

for $book in doc("books.xml")/books/book 

return 

    let $authors := $book/author 

    return 

        if ($book/title = "Ulysses") 

        then count($authors) 

        else () 



34  

 

 

 

We find this kind of change in the debug behavior unacceptable. Therefore the new 

stoppable nodes must be either ignored or marked as non-stoppable. Furthermore, the 

stoppable annotation of the normalized tree view must contain the mapping to the node in 

the tree view before normalization.  

 

In our example, the programmer sees and wants to debug the four clauses of the FLWOR 

expression in a linear way. The numbers in the diagram in Fig. 4, show the order in 

which the stoppable expression are followed if only the step over debug action is used, 

taking as initial source node, the leftmost PathExpr. In the tree view corresponding to 

the normalized code – see Fig. 5 –, these numbers have to be mapped to reflect the same 

order. As we see, this ordering models the original sibling relation between the nodes. By 

defining the stepping semantics relative to this new ordering relation, we manage to 

adjust the debugger behavior when code normalization is performed. The same kind of 

ordering must also be defined for the parent-child relation between the nodes in the initial 

tree view. A possible implementation of this node ordering and mapping to the 

normalized tree view is presented in the Architecture chapter. The solution, based on the 

Dewey numbering scheme [24] manages to model the ordering for both relations: sibling 

and parent-child. 

 

Another problem that might appear during code rewriting is the disappearance of some 

expressions from the debug expression tree. In our work we addressed this problem by 

only limiting this kind of transformations. More on this topic will be discussed in the 

Limitations section in Chapter 5. 

3.6 Eager-on-demand evaluation 

One important aspect of debugging is code inspection. But, as pointed out in the previous 

chapter, this breaks two properties of the functional languages. The first one is that 

breaking the execution and obtaining runtime information – like context or variables in 

XQuery – is considered a side effecting behavior, which is not allowed in a pure-

functional language. But since, exactly for this reason, XQuery is not a pure functional 

language, adding this kind of side effecting is not a major change in the language. 

 

The more complex issue raised by allowing code inspection is that it breaks the 

language’s lazy-evaluation. In order not to completely change the language to a strict 

evaluation one, which in our opinion would be a much too drastic approach, we have 

introduced the eager-on-demand evaluation type. This is an enhanced version of lazy-

evaluation that allows the engine to demand the evaluation of certain expressions that 

would have normally been lazily evaluated. These strict evaluation demands are driven 

by the user debugging needs. Whenever the user breaks the execution, everything that is 

in scope must be evaluated. This forces the engine to demand the evaluation of the in 

scope variables and the expression focus, which contains the context item, context 

position and context size. 

 



35  

 

 

We are aware that for an eager-on-demand evaluation implementation one has to make a 

tradeoff between the strictness of the evaluation and the jumping debugger behavior 

caused by lazy evaluation. We believe that both extremes are undesirable, the former 

from the language point of view and the latter from the user’s point of view. The 

implementation has to be somewhere in between. we will shortly discuss this topic in the 

Architecture chapter. 



36  

 

 

 



37  

 

 

Chapter 4 

Architecture 

This chapter will present an XQuery debugger implementation based on the conceptual 

solution presented in the previous chapter. This chapter is organized as follows. We start 

by presenting a minor modification of the XQuery and extension grammars that helps us 

better map the debugger client user interface to the debugging semantics. We describe 

how the Dewey numbering scheme works in order to correct the problems caused by 

code normalization. In the rest of the chapter we present our implementation and its 

architecture divided into three main parts: the debugger client and its Graphical User 

Interface (GUI); the engine debug protocol (EDP) used as the interface between the GUI 

and the execution engine; and the debug support implementation in the execution engine. 

4.1 Language grammar enhancements 

For the implementation of the stoppable expressions, we found very useful to slightly 

modify the original language EBNF grammars of the XQuery-based languages. The 

modification consists only of the introduction of alias expressions. These aliased are 

expressions defined on sequence of tokens in the already existing expressions. These 

aliases are only changing the granularity of the grammar and add more nesting in the 

query’s abstract syntax tree (AST), but the semantics of the original expressions remains 

unchanged. 

 

We will show how the grammar extensions were defined using the LetClause EBNF 

production as an example. In the standard grammar this production is the following: 

 
LetClause ::= "let" "$" VarName TypeDeclaration? ":=" ExprSingle 

("," "$" VarName TypeDeclaration? ":=" ExprSingle)* 

 

This was changed in our implementation by factoring out the sequence of tokens: "$" 

VarName TypeDeclaration? ":=" ExprSingle. The equivalent productions in the new 

form of the grammar are: 

 
LetClause ::= "let" LetBinding (","LetBinding)* 

LetBinding ::= "$" VarName TypeDeclaration? ":=" ExprSingle 



38  

 

 

The complete listing of the new grammars of XQuery and extensions are presented in 

Appendix A. 

 

The advantage brought by these grammar extensions is a two-fold. First, it simplifies the 

implementation of the stoppable expression concept. All the new productions were 

introduced in the grammar at places where stoppable expressions appear according to the 

rules defined in the previous chapter. In this way, the stoppable annotation becomes for 

most of the expressions a static annotation. For example, FunctionCall or, for the new 

grammar, LetBinding, will always be stoppable expressions. For these expressions, this 

decision is not made at runtime anymore, because they are statically marked as stoppable. 

 

The second enhancement made possible by the grammar extensions is regarding the 

XQuery editor during debugging. This can be better explained illustrated in a graphical 

way using the example below. For example, as defined in the stoppable expression 

selection rules for the FLWOR expression, the breakpoint semantics allows users to 

break the execution for each of the bindings. We will use again the previous XQuery 

example and assume the user stopped the execution at the binding in the let clause. The 

following code listing displays the highlighted query location corresponding to the 

stoppable expression where the execution was suspended:  

 

 
 

But, the highlighted expression is only the one used in the binding and not the binding 

expression itself. Therefore, from the user’s perspective, we find the highlighting in the 

next code listing more appropriate for this stoppable expression. Hence, our grammar 

extensions help us better represent the breakpoint semantics. 

 

 

4.2 Dewey ordering annotations 

For the implementation of the stoppable expressions we found an efficient annotation 

scheme that is based on the Dewey Order Encoding described by Tatarinov et al. in [24]. 

 

In order to show how the Dewey numbering is assigned to the stoppable nodes in the 

expression tree view, we will provide a short but more complex example. Consider the 

following XQuery fragment: 

 

for $book in doc("books.xml")/books/book 

let $authors := $book/author 

where $book/title = "Ulysses" 

return count($authors) 

for $book in doc("books.xml")/books/book 

let $authors := $book/author 

where $book/title = "Ulysses" 

return count($authors) 



39  

 

 

 
 

The diagram in Fig. 6 displays the tree view corresponding to the expression tree of the 

query above. The number sequence near each node is the Dewey number associated to 

the corresponding node. 

 

 
Figure 6 – Debug expression tree view with the Dewey numbering scheme 

 

Associating the Dewey annotation to the stoppable nodes before code transformations 

helps during the execution to identify the stoppable expressions that were in the original 

user written code and their relative position to each other. The Dewey numbering scheme 

also aids an efficient index based implementation of the stepping functions. An easy and 

efficient node retrieval mechanism can be implemented by indexing the stoppable nodes 

based on their Dewey number. 

4.3 Debugger client. Graphical user interface (GUI) 

Due to the large popularity the Eclipse Platform has and the fact that this product already 

defines the basic user interface (UI) primitives to edit and debug a programming 

language, we have centered our debugger client development efforts on this platform. 

Our main concern was to provide a user experience that is as close as possible to the one 

in the Eclipse environment that the user is already accustomed with. 

 

LetBinding 
ForBinding 

ReturnClause 

FunctionCall 
ForBinding 

ReturnClause 

FunctionCall 

FunctionCall 

FunctionCall FunctionCall 

Non-existent root node   

Stoppable expression node 

1 2 3 

1.1 3.1 3.2 3.3 

3.2.1 3.3.1 3.3.2 

let $xml := doc("C:/books.xml") 

for $book in $xml//book 

return 

    <book>{ 

        for $author in $book/author 

        return <author>{ data($author/name) }</author>, 

        <yeartitle>{ 

            concat(data($book/year), ": ", data($book/title)) 

        }</yeartitle> 

    }</book> 



40  

 

 

The XQuery support tools that we developed are packaged in several Eclipse plugins and 

deployed through the standard Eclipse installation and upgrade mechanisms. Among 

other utility components the plugins contain, the main ones are the XQuery Editor, 

XQuery Problem and Outline views, the XQuery edit and debug perspectives, XQuery 

Launcher, and the XQuery Debug Model. 

 

The XQuery implements many of the features for which Eclipse provides extension 

points. The ones supported by our editor are the following: syntax color highlighting; 

error highlighting, and code completion and code templates. We have also developed 

some more user support features like: as-you-type syntax validation; variable, parameter 

and function scope checker. 

 

The Outline and Problem Views help the user see the structure of the query written in the 

editor and the potential code problems, respectively. The Outline View displays the 

Abstract Syntax Tree (AST) of the most recent syntactically correct query in the editor. 

The expressions displayed in the AST are the ones in the extended grammar that we 

provide in Appendix A. The Problems View displays an as-you-type updated list of errors 

and warnings generated by the query in the editor. If the syntax of the query is incorrect, 

the Problems View displays only the first syntactical error. Otherwise, the AST is 

generated and several verifiers check the code for semantic inconsistencies. All the 

gathered semantic errors and warnings are displayed in the Problems View. For the 

semantic code analysis our current implementation provides the following checkers: 

• variable scope validation – an error is displayed if a variable is used without being 

declared; 

• function validation – an error is displayed if a function is used without being declared 

or the corresponding name does not belong to the list of built-in or constructor 

functions; 

• function namespace prefix validation – for user defined function declarations the 

usage of the reserved fn namespace or the missing default local namespace for 

function calls will be signaled as errors; 

• fn:doc() parameter validation – the user receives a feedback through a warning if 

the XML file indicated by the function parameter points to a non-existent XML file. 

 

The XQuery perspectives are providing logical grouping and component layout for the 

two working environments: editing and debugging. The XQuery perspective is the default 

one when editing XQuery files having the XQuery Editor and the Outline and the 

Problems views as the main components. The Appendix B.1. shows a snapshot of the 

editor in the XQuery perspective. Several of the features available in our client can be 

seen in this image. 

 

The XQuery Debugging perspective provides the necessary tools and for debugging 

XQuery code. A snapshot of this perspective is presented in the Appendix B.2. Among 

these are the Debug, Breakpoints, Variables, and Console views, editor breakpoint 

support, code highlighting for execution breaking. Also the necessary actions for 

controlling the execution during the debugging session are implemented: suspend, step 

in, step over, step return, resume, and terminate.  



41  

 

 

Another important and distinct package, crucial for the debugging support, is the Eclipse 

debug model. The next subsection will be dedicated to this topic. 

4.3.1 Eclipse debug model 

The diagram in Fig. 7 displays the UML class diagram of the Eclipse debug model 

implemented in our plugin. For the aggregation relations both ends have an implicit 

cardinality of 1 unless else specified. Each of the classes in this diagram implements the 

corresponding interfaces or helper abstract class provided in the Eclipse debug model, 

but, for simplicity reasons, these were omitted in the diagram. For example, the 

XqueryDebugElement class inherits from the provided DebugElement abstract class while the 

XqueryDebugTarget class implements the given IDebugTarget interface. 

 

 
Figure 7 – The UML class diagram of the Eclipse debug model implementation 

 

XqueryDebugElement 

XquerypVariable 

 

XquerypStackFrame 
 

XquerypThread 
 

XqueryDebugTarget 

 

 

 

XquerypValue 

 

IProcess 

ILaunch 

*

XquerypBreakpoint 

 

*

* 

*

Interface Class Abstract Class 

Engine 

 



42  

 

 

According to the Eclipse debug model documentation [27], the debug element represents 

different artifacts used while debugging a program. This class provides the common 

functionality for all these artifacts. Besides the default functionality implemented in the 

DebugElement class our XquerypDebugElement implementation provides also an access point to 

the Engine class that works as a proxy to the real execution engine in out plugin. 

 

The debug target represents the execution context that is debugged and is associated with 

the operating system process of the execution engine running the query that is being 

debugged. The debug target implements the following actions to control the execution: 

suspend, resume and terminate. The breakpoint management is also performed at this 

level. 

 

In the Eclipse debug model, the debug target can contain multiple thread objects. Since 

both execution engines that we use are performing a single threaded execution, in our 

Eclipse plugin implementation, a debug target contains only one thread. A thread 

provides the following execution actions: suspend and resume, stepping, and terminate. 

Because of the single threaded environment, the debug target’s execution actions are 

always redirected to the thread. Once the thread has been terminated, both the debug 

target and the thread objects are destroyed and the execution engine process terminated. 

 

In suspend mode, a thread contains one or more stack frames. A stack frame represents 

an execution context in the suspended thread. In the debug environment of XQuery we 

have slightly modified the standard concept of stack frames known from the imperative 

programming languages. In Java, for example, a stack frame is generated for each 

function call in the call stack up to the main method. It is very common in XQuery to 

have quite complex queries that don’t even use user defined function. In this case the 

programmer debugging such query will only see one single stack frame regardless of the 

point where the execution is suspended. Since we implemented the “step in” action also 

for some other XQuery expressions besides the user defined function calls, these 

expressions will also generate stack frame objects in the debugger client. Seen from the 

AST point of view, when the execution is suspended at a certain expression in the tree, 

one stack frame will be generated for each stoppable expression on the tree path from the 

suspended expression to the root. In this list, the additional stack frames corresponding to 

the function calls, will be interleaved. 

 

Each stack frame contains variables. These represent the visible data structures and the 

function parameters. Each such variable is associated with a value object that stores the 

data type and the variable value. In our implementation of the Eclipse debug model, the 

XquerypValue class does not provide a hierarchical variable structure. This could be the case 

of an object-oriented programming language where variables can be object instances with 

arbitrary structures. In our case all variables and parameters can easily be represented as 

string values, once the corresponding data type is known. Therefore we don’t use the 

hierarchical variable model provided. The most complex types that we can encounter are 

XML instances of arbitrary XML schemas. This might necessitate only a better 

visualization tool, like an XML viewer, that converts the string value into a more user 

friendly representation. 



43  

 

 

 

Appendix B.2 provides a snapshot image of the debugger client showing how these 

concepts are mapped to the GUI of the Eclipse debugger client. 

4.3.2 Challenges 

Even though the Eclipse Platform helps with the rapid prototyping and development of 

language support tools, this was not always the case for the XQuery language family. 

There had been several components that required extra development to provide a suitable 

functionality for XQuery. 

 

The main problem encountered was the fact that XQuery is not a typical keyword-based 

language like other programming languages, for example, C or Java. In XQuery the 

keywords are not reserved words. Therefore any keyword can appear in any expression as 

name identifiers – for variables, for functions, namespaces, XML elements and attributes, 

etc. – or as text in XML element content and attribute values. This invalidates some 

implicit assumption of the Eclipse platform when developing language support tools. 

Therefore the XQuery language needed a special treatment. 

 

The following code listing displays a syntactically correct XQuery code fragment that 

uses the “return” word with multiple uses. The first and the last appearance are variable 

name identifiers; the second is a name test of a step expression as part of a path 

expression; the third occurrence is the “return” keyword; and the fourth instance is a 

function name. 

 

 
 

In this case the tools provided in the Eclipse Platform for code syntax coloring help only 

to a limited extent. In order to better understand our approach for syntax coloring we will 

first describe how this functionality works in a keyword-based language with reserved 

keywords. 

 

The whole process is a performed is several steps and triggered by any textual change in 

the editor. Initially, the source code is split into several partitions by a partition scanner. 

Each partition type is processed by a different set of rules. For example, in XQuery, we 

implemented the following code partitions types: one for XQuery comments, one for 

XML comments, and the rest of the code falling in the XQuery source code partition 

type. 

 

Partitions are disjoint fragments of text and are identified by the partition scanner 

according to certain rules, for example, the sequence of characters that marks the 

beginning and the ending of a partition. Thus, we can always identify when, for example, 

an XQuery comment partition is starting by searching for the “(:” sequence. The 

following listing shows how the source code is split into partitions. The underlined 

character sequences are the partition delimiters. The text starts with an XQuery comment 

partition. In the 5
th

 line we have an XML comment partition. The remaining text forms 

for $return in doc("xmlfile")/return 

return return($return) 



44  

 

 

two XQuery source code partitions, one between the two comment partitions and one 

after the XML comment partition. 

 

 
 

Other languages implement such partitions also for atomic types like strings and 

characters. This is not possible in XQuery because the string delimiters ‘"’ and ‘’’ are 

also used in other grammar constructs like XML attributes and hence, they don’t uniquely 

identify such a partition. Since partitions must be disjoint and XML attributes can contain 

an arbitrary XQuery enclosed expression, a partition types for such grammar constructs 

cannot be provided through the Eclipse Platform partitioning scheme. 

 

Once the code partitions have been identified, each of them applies the associated rules 

and logic to process the enclosed tokens. This process generates the color highlighting of 

individual tokens inside the partition. If the language keywords were reserved, this would 

be the place where their coloring will be generated. Because in a code partition a reserved 

keyword cannot appear in another token, this can be safely given the associated keyword 

color. 

 

In the previous process we identified at least two limitation of the Eclipse Platform for an 

XQuery-based language. On one hand there are a limited number of partition types that 

can be implemented through the classical Eclipse mechanisms. This is against the need to 

provide a better look-and-feel, and therefore we provide an enhancement to the 

partitioning mechanism. On the other hand, many language constructs cannot be 

identified until the source code is complete, in the sense of having a correct syntax. 

 

For both limitations, we looked closer to the way users write source code in general. We 

observed that, while programming, users tend to always keep a correct syntactical source 

code. Thus, the process of writing a source code file is usually done in an incremental 

manner. In this situation, once the source code has a correct syntax, we can parse it and 

obtain the AST. This gives us the necessary information to correctly process the entire 

source code file. 

 

For a better code partitioning, we have developed semantic partitions. These partitions 

have the same rules and logic as the ones described above, with the single difference that 

they are installed only after the AST is obtained. This approach enabled us to use 

partitions at a more granular level for: string literals, XML content and XML attribute 

values. 

 

In order to support color highlighting for the source code partition we have implemented 

a semantic highlighting similar to the one used in Eclipse Java Development Toolkit 

(: this is an XQuery comment partition :) 

let $x := 123 

return 

 <result> 

        <!-- This is an XML comment partition --> 

   { $x } 

 </result> 



45  

 

 

(JDT)
8
. Semantic highlighting works on the same principle as normal color highlighting 

with the difference that it are delayed by the so called code reconciliation. During this 

reconciliation we perform the parsing of the source file and obtain the AST. Based on the 

information in the AST we are able to complete the color highlighting with all the tokens 

that could not be colored during the classical partitioning and highlighting. 

4.4 Debug protocol 

The interfacing between debugger client and the execution engine is done through the 

debug protocol that we have defined. 

4.4.1 Communication layer architecture 

The diagram in Fig. 8 shows the architecture of the communication layer that we 

implemented. On one side, we have the debugger client which, in our implementation, is 

the XQuery Eclipse Plugin, and, on the other, the execution engine. As a communication 

protocol between the two parties we chose the Transport Control Protocol (TCP). This 

protocol is fast enough when the two parties are on the same machine, and also allows for 

future extensions for remote debugging if this will be required. 

 

 
Figure 8 – The TCP communication layer 

 

The communication structure follows the specification of the Java Debug Wire Protocol 

(JDWP) [25] taking benefit of the JDWP extensibility. This extension implementation 

would allow us to integrate our debugger implementation with other tools that have 

support for the JDWP. 

 

Like in the JDWP, we use two communication channels: one for sending commands and 

requests to the execution engine and a second one to receive events and notifications 

from the engine. The Eclipse plugin is responsible for the command connection, having 

the server role, while the execution engine manages the event connection, in which case 

the engine plays the server role. The communication is considered established once each 

                                                 
8
 Because it has a limited usefulness in a language like Java, by the time we developed this feature, the JDT 

v.3.2.2 did not provide an API for it. We expect that later version of the Eclpse Platform will provide this 

API. 

XQuery 

Eclipse 

Plugin 

XQuery 

Execution 

Engine 

TCP Socket 

Connections 

Command Connection 

Event Connection 



46  

 

 

server has a connection established with the other party as client. The communication 

ports are chosen at runtime by the plugin and send to the engine through the execution 

engine command path arguments. 

 

After the connection is established, a handshake message is sent by the plugin to the 

engine on the command connection. The role of this message is to test the functionality of 

the connection and the engine. The handshake message is a fixed length message that 

contains the debug protocol version that the plugin expects. The engine must reply with 

the version numbers of the protocol it implements. If the reply matches the initial 

message the communication can continue. Otherwise, the connections between the two 

parties are broken. In this situation the plugin can use the reply message to display the 

appropriate error message to the user. 

4.4.2 Message formats 

The handshake message is an 11 byte message having the following format: 

 

XQDP vMM.mm 

where: 

 MM – is the two digit major version number of the protocol; 

 mm – is the two digit minor version number of the protocol; 

The remaining bytes are the corresponding 1-byte characters. 

 

Messages sent on the command connection are request-reply messages. A command will 

always receive a reply; otherwise a protocol exception will be raised. The request will 

always be sent by the plugin and the reply by the execution engine. On the other hand, 

the messages sent over the event connection are only one way messages coming from the 

execution engine to the plugin. In the current implementation there are no commands 

requested by the engine, as well as no events raised by the plugin. 

 

The commands and the evens have the following request message structure: 

 

LLLLIIIIFKCDATA... 

 

The first 11 byte of the message form the request message header where: 

LLLL – is the 4-byte length of the entire packet. This gives an upper bound on the 

length of the packet sent; 

 IIII – is the 4-byte ID of the meaage; 

 F – 1-byte used for flags; 

 K – 1-byte identifying the command set; 

 C – 1-byte identifying the command. 

The rest of the message is for the variable payload data which has a length of LLLL – 11. 

 

The replies for commands have the following reply message structure: 

 

LLLLIIIIFEEDATA... 



47  

 

 

 

The first 11 byte of the message form the reply message header where: 

 LLLL, IIII and F have the same meaning as for request messages; 

 EE – is a 2-byte error code. 

The rest of the message is for the variable payload data which has a length of LLLL – 11. 

 

We haven’t assigned any additional flags other than what JWDP specifies. Therefore, the 

only reserved flag remains 0x80, the flag for a reply messages. 

4.4.3 Message payload. Data serialization 

For the message data payload we found JSON (JavaScript Object Notation) [26] to be a 

very convenient data representation. There are a few reasons for choosing JSON as the 

data serialization format. 

 

Firstly, we avoided specifying or implementing other more costly versions of our debug 

protocol. On one hand, a binary data serialization would have meant more low level work 

to be done. On the other hand, an XML implementation wouldn’t have been as 

lightweight as the JSON version, due to the higher complexity of XML compared to the 

JSON format. An XML format needs also special care when XML data has to be 

transmitted; and XML data is part of the XDM that has to be transported by the protocol. 

 

Even if JSON itself is not a standard format
9
, one can consider it as a de-facto standard 

due to its widespread use. The representation is a text, user oriented, language 

independent one. This suits our implementation environment where the debugger client 

and the execution engines are implemented in different programming languages. 

 

Also, there are many ready-to-use free JSON implementations for more than 30 

programming languages. This makes it easy to hook in most of the used programming 

languages. 

4.4.4 Command sets and commands 

We have followed the same kind of organization of commands into command sets as in 

JDWP. The constants assigned to our command sets and commands were from the ranges 

provided for extensibility in JDWP. Out protocol implements groups the commands in 

five command sets as follows: 

• Execution Command Set – includes the following commands that are used to control 

the execution: 

o Run: starts the execution of the query. This command is sent by the debugger 

client after the “Started” event is received. 

o Suspend: suspends the execution of a running query. 

o Resume: resumes the execution of a suspended query. 

o Terminate: terminates the execution. 

o Step: performs one of the stepping actions: step in, step over or step return   

• Breakpoints Command Set – groups the breakpoint related commands. 

                                                 
9
 JSON is a subset of the JavaScript programming language which is an ECMA standard since Dec. 1999. 



48  

 

 

o Set: sets one ore more breakpoints at given query locations. 

o Clear: clears the breakpoints at the given query locations. 

• Static Command Set – contains all the commands that are used to gather information 

about the static context during the XQuery execution. 

o Options: retrieves from the execution engine all the non-string – fixed length – 

static context options, like: ordering mode, empty sequence order, copy-

namespace mode, etc. 

o Defaults: retrieves from the execution engine all the string value static context 

options, like: base URI, default collation, default function namespace, etc. 

o Sets: retrieves from the execution engine all the set-valued static options, like: in 

scope variable, function signatures, statically known collections, etc. 

• Dynamic Command Set – contains all the commands that are used to gather 

information mainly from the dynamic context but also run-time information during 

the XQuery execution. 

o Data: used to perform arbitrary data evaluations. 

o Variables: retrieves the list of in scope variables together with their values. 

o Frames: retrieves the list of debug nodes in the debug expression tree up to the 

root. This list interleaves expression tree nodes with function calls stack frames. 

o Focus: retrieves the expression focus component of the dynamic context. 

o Time: retrieves the execution’s implementation specific date and time 

o Documents: retrieves the available documents component of the dynamic context. 

o Collections: retrieves the available collations component of the dynamic context. 

o Collection: retrieves the default collection component of the dynamic context. 

• Engine Events Command Set – includes all the events or notifications that the 
execution engine can send to the debugger client. These are asynchronously sent by 

the engine as responses to corresponding command when the engine state changes. 

The asynchronous communication is needed in case the processing takes more time. 

o Started: sent by the engine after it has initialized its state for the debug session – 

opening the communication ports, setting the query to debug and setting the 

breakpoints. 

o Terminated: sent asynchronously as a response to the terminate command. 

o Suspended: sent asynchronously as a response to the suspend command. 

o Resumed: sent asynchronously as a response to the resume command. 

 

The larger description and the structure of each command are given in Appendix C. 

4.4.5 Engine debug protocol communication pattern 

There are a couple of communication patterns used for sending messages between the 

debugger client and the server implemented in XQuery engine. 

 

The first pattern is a simple synchronous request-reply message. This pattern is used 

whenever the computation the engine needs to perform according to the received message 

is small. Such a message is the setting of breakpoints, which is displayed in Fig. 9 (a). 

 

The second pattern is the asynchronous request-reply message. This is used whenever the 

engine might need more time to perform the action specified in the message. This is the 



49  

 

 

case for all the execution commands that change the execution state, since this operation 

might not only take a longer time to execute, but might also have to perform related 

computations. For example, the Suspend command, before switching the engine to the 

“suspended” state, might allow the engine to perform the necessary computation in order 

to be ready for providing internal state information to a debugger client. After the 

Suspend command is successfully performed, there is a high chance that a Variables 

command will be sent. In order to increase the debugger client responsiveness, the engine 

might make sure the needed debug information is ready by the time the engine state is 

changed to “suspended”. This communication pattern is shown in Fig. 9 (b). 

 

 
Figure 9 – (a) Synchronous request-reply communication pattern 

(b) Asynchronous request-reply communication pattern 

4.5 Execution engine instrumentation 

Before starting to describe how the debugger functionality was introduced through 

execution engine instrumentations, a short introduction on how our engine processes the 

XQuery code might be helpful. Fig. 10 displays the five different steps involved in the 

execution process. Initially, the XQuery source code is parsed and an Abstract Syntax 

Tree (AST) is generated. This tree is further transformed into an expression tree, which 

contains more information about each expression than the AST. During this step, code 

normalization is also performed. Another transformation of the expression tree is 

performed due to code optimizations. Once the normalized and optimized version of the 

expression tree is obtained, the code generation step is performed. This has as result an 

iterator tree which is interpreted by the runtime system of execution engine in order to 

compute the result of the query. The above process can be split into two phases: 

compilation – the first four steps and interpretation – the last step. 

 

Client Engine 

Set 

OK 

(a) 

Client Engine 

Suspend 

OK 

(b) 

Suspended



50  

 

 

 
Figure 10 – XQuery execution stages 

 

The iterator tree generation is the result of the last phase of the compilation. Similar to 

the SQL query processing technique, each iterator in the tree, has an open-next-close 

interface [30]. Such processing model enables modularity, has low memory requirements, 

and avoids the materialization of intermediate result. This is because iterators process the 

input one item at a time and only as much as it is necessary. This implementation allows 

the runtime to naturally exploit pipelining, or implement lazy evaluation. 

4.5.1 Debug iterators 

Like in all other programming languages, in order to gain control over execution 

compilation in debug mode has to be different than the one without debug support. On 

one hand, this allows disabling or simplifying the compilation steps that are not 

compatible with the debug option. This is the case of some code rewritings especially 

during the optimization step. On the other hand, the runtime must have more information 

available in debug mode, like the query location information for every expression in the 

code, the breakpoint information, and also the stoppable annotations described in the 

previous chapters. The best place to store all this information is the iterator tree which 

already stores the query locations for error reporting reasons. 

 

Our approach to enabling this debug information was similar with the insertion of debug 

nodes in the expression tree for the implementation of stoppable expressions. In this case 

we introduce one more iterator type called debug iterator. Each debug iterator is 

corresponding to one debug node in the expression tree. Its purpose is to control the 

behavior of the child iterator which, of course, corresponds to a stoppable expression. 

The next listing displays a small XQuery frafment and the corresponding XML 

representation of the iterator tree in the debug mode. The debug iterators have been 

bolded in the tree listing. As we can see, there is one debug iterator for each of the 

binding in the let clause and one for the return clause. 

 

XQuery AST ET IT 
parse translate 

normalize 

code gen. 

optimize 

1 2 3 4 

Result 

5 interpretation. 

AST  – Abstract Syntax Tree 

ET  – Expression Tree 

IT  – Iterator Tree 

COMPILATION 



51  

 

 

 
 

The debug iterators implement the stepping functions described in the conceptual 

solution chapter. They also enable the breakpoint behavior by locking and signaling the 

runtime thread. Also, in the “suspended” state of the engine, the debug iterator is 

responsible for providing the context information to the debugger client. This includes 

also in scope variables. 

 

Having control over the iterators beneath in the tree, the debug iterators also implement 

the eager-on-demand evaluation. When information is requested by the debugger client, 

the debug iterator might need to consume items from the child iterators that, in the 

normal execution mode – without debugging or without the client requesting this 

information – wouldn’t have been consumed due to the lazy-evaluation behavior. 

Query: 

------ 

 

let $x := 1, $y := 2 

return $x 

 

 

Iterator Tree: 

-------------- 

 

<FLWORIterator loc="f.xq:2.2" addr="0x80..."> 

  <FnDebugIterator loc="f.xq:2.2" addr="0x80..."> 

    <LetVariable name="x" materialize="true"> 

      <SingletonIterator value="xs:integer(1)" loc="f.xq:2.2" 

                 addr="0x80..."/> 

    </LetVariable> 

  </FnDebugIterator> 

  <FnDebugIterator loc="f.xq:2.2" addr="0x80..."> 

    <LetVariable name="y" materialize="true"> 

      <SingletonIterator value="xs:integer(2)" loc="f.xq:2.2" 

                 addr="0x80..."/> 

    </LetVariable> 

  </FnDebugIterator> 

  <FnDebugIterator loc="f.xq:2.2" addr="0x80823f0"> 

    <ReturnClause> 

      <LetVarIterator varname="x" loc="f.xq:2.2" addr="0x80..."/> 

    </ReturnClause> 

  </FnDebugIterator> 

</FLWORIterator> 



52  

 

 

 



53  

 

 

Chapter 5 

Conclusion 

5.1 Limitations 

The tradeoffs that we have made during the project did not only help us achieve most of 

our goals, but also introduced limitation in our approach. These will be described in this 

section. 

5.1.1 Debugger client GUI limitations 

Our XQuery editor relies on an external parser for syntax error checking. Such an 

approach limits our implementation to give the user only the first syntax error found in 

the code. Other editors use parsers with a recoverable state, allowing the parsing to 

continue after a syntax error. Due to time constraints we did not approach this problem, 

even though we have some possible solutions to the problem. 

5.1.2 Execution engine limitations 

Mapping the debugging of XQuery-based languages to imperative debugging primitives 

pays its price in the many tradeoffs that the engine has to make. Allowing code inspection 

at every stoppable expression location in the code, and thus a side effecting behavior, 

makes harder to verify, optimize, and parallelize programs. Also a debugger allowing 

some strict evaluation behavior will not provide the same query execution guarantees 

with a pure lazy-evaluation execution. This is, for example, the common case of code 

paths that generate dynamic errors but that would not be evaluated during a pure lazy-

evaluation execution. Performing code inspections that force the evaluation of such code 

paths, the error will cause the execution to fail. Thus the debug mode execution will have 

a different result than the one not in debug mode. This is of course not acceptable, but we 

believe that, even if not always true, errors are one reason why programmers use 

debuggers, and their goal is to find the errors. 

 

As mentioned in the Chapter 2, ordering is one of the main issues of debugging XQuery. 

On one side, there is the unordered language expression that frees the execution engine 

from any ordering constraints in processing data. On the other hand, the order by clause 
imposes the materialization of all the results in a FLWOR expression before the first 

result is retuned. Both these language features are not supported by out debug model. In 



54  

 

 

these cases we cannot prevent the code stepping to have a jumping behavior which is 

dependent on a particular engine implementation. 

5.2 Future work 

There is not only a long, but also great road ahead of us. The few XQuery debugger 

implementations, the amount of effort put into standardization of the XQuery family of 

languages and the rising need for such a language give us good signs that the direction of 

our work is the right one. 

 

Unfortunately, like in many real projects, time is limited, and so were we in providing 

more useful features to both our Eclipse debugger client and the execution engines. One 

of our main goals that fell out of scope during the project was providing debug support in 

the MXquery engine. Part of this support, which is the debug protocol implementation, 

was build for both debug clients and servers. Hence the future debugger support 

implementation in this engine can just use the current protocol API available in the 

Eclipse debugger client, both being Java implementations. 

 

The current running version of the Eclipse plugin and the Zorba engine implement only 

part of the specified debug protocol. Suspending and resuming execution, breakpoints 

and variable retrieval command and related messages have been implemented. The 

messaging for the other features, like code stepping and data evaluation, are pending on a 

“to-do” list and were scheduled for the next development period, but they were not 

implemented during the timeframe of this work. 

 

From the Eclipse debugger client point of view, there are many “nice-to-have” features 

pending. Many of these tools and features are meant to support XQuery development and 

some, even have usefulness form a debugger point of view. Since we had much more 

work to do to enable the core debugger functionality, these side features were postponed 

for later releases of our implementation. Just to enumerate some of these “nice-to-have” 

features, we can mention: 

• providing XML editing support for the XQuery editor; 

• enhancing the code completion feature with in scope variable, user defined function 

and imported function suggestions; also context sensitivity should be added to code 

completion; 

• static error checking; 

• enhanced syntax error checking, i.e. allowing the user to see more than the first 

syntax error by providing a syntax checker with a recoverable state; 

• an extension of the breakpoint functionality to allow users to place breakpoint directly 

in the Outline View which displays the Abstract Syntax Tree (AST); 

• adding conditional breakpoints; 

• allowing variable updates from the debugger client interface during a suspended 

execution; 

• providing the appropriate UI for data visualization, for example, an XDM viewer. 

 



55  

 

 

But the Eclipse Platform offers a great potential through the large codebase that has 

already been developed for it. Thus interaction with other tools is another possible future 

extension. There are multiple tools already implemented for features like schema editing 

or XML visualization. Therefore more benefits can be gained through an integration with 

such tools rather than implementing them from scratch. 



56  

 

 

 



57  

 

 

Appendix A 

EBNF Grammars 

A.1 Modified XQuery EBNF 

This section lists our modified version of the XQuery language EBNF grammar. The 

differences from the original grammar are outlined in the following listing. The newly 

introduced clauses are bolded. The underlined expressions or clauses are the ones that we 

treated as stoppable expressions. 

 
[1] Module ::= VersionDecl? (LibraryModule | MainModule) 

[2] VersionDecl ::= xquery "version" StringLiteral ("encoding" StringLiteral)? 

Separator 

[3] MainModule ::= Prolog QueryBody 

[4] LibraryModule ::= ModuleDecl Prolog 

[5] ModuleDecl ::= module "namespace" NCName "=" URILiteral Separator 

[6] Prolog  ::= ((DefaultNamespaceDecl | Setter | NamespaceDecl | Import) 

Separator)* ((VarDecl | FunctionDecl | OptionDecl) Separator)* 

[7] Setter ::= BoundarySpaceDecl | DefaultCollationDecl | BaseURIDecl | 

ConstructionDecl | OrderingModeDecl | EmptyOrderDecl | 

CopyNamespacesDecl 

[8] Import ::= SchemaImport | ModuleImport 

[9] Separator ::= ; 

[10] NamespaceDecl ::= declare "namespace" NCName "=" URILiteral 

[11] BoundarySpaceDecl ::= declare "boundary-space" ("preserve" | "strip") 

[12] DefaultNamespaceDecl ::= declare "default" ("element" | "function") "namespace" URILiteral 

[13] OptionDecl ::= declare "option" QName StringLiteral 

[14] OrderingModeDecl ::= declare "ordering" ("ordered" | "unordered") 

[15] EmptyOrderDecl ::= declare "default" "order" "empty" ("greatest" | "least") 

[16] CopyNamespacesDecl ::= declare "copy-namespaces" PreserveMode "," InheritMode 

[17] PreserveMode ::= preserve | "no-preserve" 

[18] InheritMode ::= inherit | "no-inherit" 

[19] DefaultCollationDecl ::= declare "default" "collation" URILiteral 

[20] BaseURIDecl ::= declare "base-uri" URILiteral 

[21] SchemaImport ::= import "schema" SchemaPrefix? URILiteral ("at" URILiteral ("," 

URILiteral)*)? 

[22] SchemaPrefix ::= ("namespace" NCName "=") | ("default" "element" "namespace") 

[23] ModuleImport ::= import "module" ("namespace" NCName "=")? URILiteral ("at" 

URILiteral ("," URILiteral)*)? 

[24] VarDecl ::= declare "variable" "$" QName TypeDeclaration? ((":=" ExprSingle) | 

"external") 

[25] ConstructionDecl ::= declare "construction" ("strip" | "preserve") 

[26] FunctionDecl ::= declare "function" QName "(" ParamList? ")" ("as" SequenceType)? 

(EnclosedExpr | "external") 

[27] ParamList ::= Param ("," Param)* 

[28] Param ::= $ QName TypeDeclaration? 

[29] EnclosedExpr ::= { Expr "}" 

[30] QueryBody ::= Expr 

[31] Expr ::= ExprSingle ("," ExprSingle)* 

[32] ExprSingle ::= FLWORExpr | QuantifiedExpr | TypeswitchExpr | IfExpr | OrExpr 



58  

 

 
[33] FLWORExpr ::= (ForClause | LetClause)+ WhereClause? OrderByClause? ReturnClause 

[34] ForClause ::= for ForBinding ("," ForBinding)* 

[35] ForBinding ::= "$" VarName TypeDeclaration? PositionalVar? "in" ExprSingle 

[36] PositionalVar ::= at "$" VarName 

[37] LetClause ::= let LetBinding ("," LetBinding)* 

[38] LetBinding  "$" VarName TypeDeclaration? ":=" ExprSingle 

[39] WhereClause ::= where ExprSingle 

[40] OrderByClause ::= (("order" "by") | ("stable" "order" "by")) OrderSpecList 

[41] OrderSpecList ::= OrderSpec ("," OrderSpec)* 

[42] OrderSpec ::= ExprSingle OrderModifier 

[43] OrderModifier ::= ("ascending" | "descending")? ("empty" ("greatest" | "least"))? 

("collation" URILiteral)? 

[44] ReturnClause ::= return ExprSingle 

[45] QuantifiedExpr ::= ("some" | "every") QuantifiedBinding ("," QuantifiedBinding)* 

"satisfies" ExprSingle 

[46] QuantifiedBinding ::= "$" VarName TypeDeclaration? "in" ExprSingle 

[47] TypeswitchExpr ::= typeswitch "(" Expr ")" CaseClause+ DefaultClause 

[48] CaseClause ::= case ("$" VarName "as")? SequenceType "return" ExprSingle 

[49] DefaultClause ::= default ("$" VarName)? "return" ExprSingle 

[50] IfExpr ::= if "(" Expr ")" ThenClause ElseClause 

[51] ThenClause ::= "then" ExprSingle 

[52] ElseClause ::= else ExprSingle 

[53] OrExpr ::= AndExpr ( "or" AndExpr )* 

[54] AndExpr ::= ComparisonExpr ( "and" ComparisonExpr )* 

[55] ComparisonExpr ::= RangeExpr ( (ValueComp | GeneralComp | NodeComp) RangeExpr )? 

[56] RangeExpr ::= AdditiveExpr ( "to" AdditiveExpr )? 

[57] AdditiveExpr ::= MultiplicativeExpr ( ("+" | "-") MultiplicativeExpr )* 

[58] MultiplicativeExpr ::= UnionExpr ( ("*" | "div" | "idiv" | "mod") UnionExpr )* 

[59] UnionExpr ::= IntersectExceptExpr ( ("union" | "|") IntersectExceptExpr )* 

[60] IntersectExceptExpr ::= InstanceofExpr ( ("intersect" | "except") InstanceofExpr )* 

[61] InstanceofExpr ::= TreatExpr ( "instance" "of" SequenceType )? 

[62] TreatExpr ::= CastableExpr ( "treat" "as" SequenceType )? 

[63] CastableExpr ::= CastExpr ( "castable" "as" SingleType )? 

[64] CastExpr ::= UnaryExpr ( "cast" "as" SingleType )? 

[65] UnaryExpr ::= ("-" | "+")* ValueExpr 

[66] ValueExpr ::= ValidateExpr | PathExpr | ExtensionExpr 

[67] GeneralComp ::= = | "!=" | "<" | "<=" | ">" | ">=" 

[68] ValueComp ::= eq | "ne" | "lt" | "le" | "gt" | "ge" 

[69] NodeComp ::= is | "<<" | ">>" 

[70] ValidateExpr ::= validate ValidationMode? "{" Expr "}" 

[71] ValidationMode ::= lax | "strict" 

[72] ExtensionExpr ::= Pragma+ "{" Expr? "}" 

[73] Pragma ::= (# S? QName (S PragmaContents)? "#)"  

[74] PragmaContents ::= (Char* - (Char* '#)' Char*)) 

[75] PathExpr ::= ("/" RelativePathExpr?) | ("//" RelativePathExpr) | 

RelativePathExpr 

[76] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)* 

[77] StepExpr ::= FilterExpr | AxisStep 

[78] AxisStep ::= (ReverseStep | ForwardStep) PredicateList 

[79] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep 

[80] ForwardAxis ::= ("child" "::") | ("descendant" "::") | ("attribute" "::") | ("self" 

"::") | ("descendant-or-self" "::") | ("following-sibling" "::") | 

("following" "::") 

[81] AbbrevForwardStep ::= @? NodeTest 

[82] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep 

[83] ReverseAxis ::= ("parent" "::") | ("ancestor" "::") | ("preceding-sibling" "::") | 

("preceding" "::") | ("ancestor-or-self" "::") 

[84] AbbrevReverseStep ::= .. 

[85] NodeTest ::= KindTest | NameTest 

[86] NameTest ::= QName | Wildcard 

[87] Wildcard ::= * | (NCName ":" "*") | ("*" ":" NCName)  

[88] FilterExpr ::= PrimaryExpr PredicateList 

[89] PredicateList ::= Predicate* 

[90] Predicate ::= [ Expr "]" 

[91] PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr | ContextItemExpr | 

FunctionCall | OrderedExpr | UnorderedExpr | Constructor 

[92] Literal ::= NumericLiteral | StringLiteral 

[93] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral 

[94] VarRef ::= $ VarName 

[95] VarName ::= QName 

[96] ParenthesizedExpr ::= ( Expr? ")" 



59  

 

 
[97] ContextItemExpr ::= . 

[98] OrderedExpr ::= ordered "{" Expr "}" 

[99] UnorderedExpr ::= unordered "{" Expr "}" 

[100] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"  

[101] Constructor ::= DirectConstructor | ComputedConstructor 

[102] DirectConstructor ::= DirElemConstructor | DirCommentConstructor | DirPIConstructor 

[103] DirElemConstructor ::= < QName DirAttributeList ("/>" | (">" DirElemContent* "</" QName S? 

">"))  

[104] DirAttributeList ::= (S (QName S? "=" S? DirAttributeValue)?)*  

[105] DirAttributeValue ::= ('"' (EscapeQuot | QuotAttrValueContent)* '"') | ("'" (EscapeApos | 

AposAttrValueContent)* "'")  

[106] QuotAttrValueContent ::= QuotAttrContentChar | CommonContent 

[107] AposAttrValueContent ::= AposAttrContentChar  | CommonContent 

[108] DirElemContent ::= DirectConstructor | CDataSection | CommonContent | 

ElementContentChar 

[109] CommonContent ::= PredefinedEntityRef | CharRef | "{{" | "}}" | EnclosedExpr 

[110] DirCommentConstructor ::= <!-- DirCommentContents "-->"  

[111] DirCommentContents ::= ((Char - '-') | ('-' (Char - '-')))*  

[112] DirPIConstructor ::= <? PITarget (S DirPIContents)? "?>"  

[113] DirPIContents ::= (Char* - (Char* '?>' Char*))  

[114] CDataSection ::= <![CDATA[ CDataSectionContents "]]>"  

[115] CDataSectionContents ::= (Char* - (Char* ']]>' Char*))  

[116] ComputedConstructor ::= CompDocConstructor | CompElemConstructor | CompAttrConstructor | 

CompTextConstructor | CompCommentConstructor | CompPIConstructor 

[117] CompDocConstructor ::= document "{" Expr "}" 

[118] CompElemConstructor ::= element (QName | ("{" Expr "}")) "{" ContentExpr? "}" 

[119] ContentExpr ::= Expr 

[120] CompAttrConstructor ::= attribute (QName | ("{" Expr "}")) "{" Expr? "}" 

[121] CompTextConstructor ::= text "{" Expr "}" 

[122] CompCommentConstructor ::= comment "{" Expr "}" 

[123] CompPIConstructor ::= processing-instruction (NCName | ("{" Expr "}")) "{" Expr? "}" 

[124] SingleType ::= AtomicType "?"? 

[125] TypeDeclaration ::= as SequenceType 

[126] SequenceType ::= ("empty-sequence" "(" ")") | (ItemType OccurrenceIndicator?) 

[127] OccurrenceIndicator ::= ? | "*" | "+"  

[128] ItemType ::= KindTest | ("item" "(" ")") | AtomicType 

[129] AtomicType ::= QName 

[130] KindTest ::= DocumentTest | ElementTest | AttributeTest | SchemaElementTest | 

SchemaAttributeTest | PITest | CommentTest | TextTest | AnyKindTest 

[131] AnyKindTest ::= node "(" ")" 

[132] DocumentTest ::= document-node "(" (ElementTest | SchemaElementTest)? ")" 

[133] TextTest ::= text "(" ")" 

[134] CommentTest ::= comment "(" ")" 

[135] PITest ::= processing-instruction "(" (NCName | StringLiteral)? ")" 

[136] AttributeTest ::= attribute "(" (AttribNameOrWildcard ("," TypeName)?)? ")" 

[137] AttribNameOrWildcard ::= AttributeName | "*" 

[138] SchemaAttributeTest ::= schema-attribute "(" AttributeDeclaration ")" 

[139] AttributeDeclaration ::= AttributeName 

[140] ElementTest ::= element "(" (ElementNameOrWildcard ("," TypeName "?"?)?)? ")" 

[141] ElementNameOrWildcard ::= ElementName | "*" 

[142] SchemaElementTest ::= schema-element "(" ElementDeclaration ")" 

[143] ElementDeclaration ::= ElementName 

[144] AttributeName ::= QName 

[145] ElementName ::= QName 

[146] TypeName ::= Qname 

[147] URILiteral ::= StringLiteral 

 

A.2 XQuery Update Facility EBNF 

The following EBNF grammar lists expression changed from the XQuery grammar 

presented in the above section. Even though no changes in the XQuery Update Facility 

grammar were necessary, we list the grammar here for completeness and because it is a 

prerequisite for the XQuery Scripting grammar presented afterwards. The EBNF is 



60  

 

 

incremental from the one presented in the previous section. We only list the new or the 

changed expressions only. Like above, the stoppable expressions are underlined. 

 
[7] Setter ::= BoundarySpaceDecl | DefaultCollationDecl | BaseURIDecl | 

ConstructionDecl | OrderingModeDecl | EmptyOrderDecl | 

RevalidationDecl | CopyNamespacesDecl 

  

... 

 

  

[26] FunctionDecl ::= "declare" "simple"? "function" QName "(" ParamList? ")" ("as" 

SequenceType)? (EnclosedExpr | "external") 

| "declare" "updating" "function" QName "(" ParamList? ")" 

(EnclosedExpr | "external") 

| "declare" "sequential" "function" QName "(" ParamList? ")" ("as" 

SequenceType)? (Block | "external") 

  

... 

 

  

[32] ExprSingle ::= FLWORExpr | QuantifiedExpr | TypeswitchExpr | IfExpr | InsertExpr | 

DeleteExpr | RenameExpr | ReplaceExpr | TransformExpr | OrExpr 

  

... 

 

  

[148] RevalidationDecl ::= "declare" "revalidation" ("strict" | "lax" | "skip") 

[149] InsertExprTargetChoice ::= (("as" ("first" | "last"))? "into") | "after" | "before" 

[150] InsertExpr ::= "insert" ("node" | "nodes") SourceExpr InsertExprTargetChoice 

TargetExpr 

[151] DeleteExpr ::= "delete" ("node" | "nodes") TargetExpr 

[152] ReplaceExpr ::= "replace" ("value" "of")? "node" TargetExpr "with" ExprSingle 

[153] RenameExpr ::= "rename" "node" TargetExpr "as" NewNameExpr 

[154] SourceExpr ::= ExprSingle 

[155] TargetExpr ::= ExprSingle 

[156] NewNameExpr ::= ExprSingle 

[157] TransformExpr ::= "copy" TransformBinding ("," TransformBinding)* "modify" ExprSingle 

"return" ExprSingle 

[158] TransformBinding ::= "$" VarName ":=" ExprSingle 

 

A.2 Modified XQuery Scripting EBNF 

The following EBNF grammar is the modified grammar of the XQuery Scripting 

Extensions. Since the XQuery Update Facility is a requirement for this language most of 

the grammar listed in the previous section remains the same. We only list the modified 

expressions and the new ones that were added to this language. One more grammar 

modification was added, the expression being marked with bold font. The underlined 

expressions are the stoppable ones. 

 
[24] VarDecl ::= "declare" ("variable" | "constant") "$" QName TypeDeclaration? 

((":=" ExprSingle) | "external") 

  

... 

 

  

[26] FunctionDecl ::= "declare" "simple"? "function" QName "(" ParamList? ")" ("as" 

SequenceType)? (EnclosedExpr | "external") 

| "declare" "updating" "function" QName "(" ParamList? ")" 

(EnclosedExpr | "external") 

| "declare" "sequential" "function" QName "(" ParamList? ")" ("as" 

SequenceType)? (Block | "external") 

  

... 

 

  

[32] ExprSingle ::= FLWORExpr | QuantifiedExpr | TypeswitchExpr | IfExpr | InsertExpr | 



61  

 

 
DeleteExpr | RenameExpr | ReplaceExpr | TransformExpr | OrExpr | 

AssignmentExpr | Block | ExitExpr | WhileExpr | ContinueExpr | 

BreakExpr 

  

... 

 

  

[159] AssignmentExpr ::= "set" "$" VarName ":=" ExprSingle 

[160] Block ::= "{" BlockDecls BlockBody "}" 

[161] BlockDecls ::= (BlockVarDecl ";")* 

[162] BlockVarDecl ::= "declare" "$" VarName TypeDeclaration? (BlockVarBinding)? ("," "$" 

VarName TypeDeclaration? (BlockVarBinding)? )* 

[163] BlockVarBinding ::= ":=" ExprSingle 

[164] BlockBody ::= Expr (";" Expr)* (";")* 

[165] ExitExpr ::= "exit" "with" ExprSingle 

[166] WhileExpr ::= "while" "(" ExprSingle ")" Block 

[167] ContinueExpr ::= "continue" "loop" 

[168] BreakExpr ::= "break" "loop" 

 

 



62  

 

 

Appendix B 

GUI Snapshots 

B.1 XQuery Eclipse Plugin – XQuery Perspective 

 



63  

 

 

B.2 XQuery Eclipse Plugin – XQuery Debugging Perspective 



64  

 

 

Appendix C 

XQuery Debug Protocol 

C.1 XQuery Debug Protocol Specification 

The following list contains the description and the payload format of each of the 

commands implemented by the XQuery Debug Protocol. K denotes the command set 

constant and C the command constant. Unless else specified, all the messages, except the 

engine events, have an acknowledgement reply message with error code 0 and no 

message data. Regarding the messages’ data payload we only give a description of what 

the messages contain. Our data representation in the message payload is based on JSON 

and hence we avoided a binary data specification. 

 

 

 

Execution CS (K = 0xF1) 

• Run (C = 0x01) 

Description: starts the execution of the query. This command is sent by the 

debugger client after the “Started” event is received. 

Data: no payload data. 

• Suspend (C = 0x02) 

Description: suspends the execution of a running query. This is an asynchronous 

command and expects a “Suspended” engine event to come when the state of the 

engine changed. 

Data: no payload data. 

• Resume (C = 0x03) 

Description: resumes the execution of a suspended query. This is an asynchronous 

command and expects a “Resumed” engine event to come when the state of the 

engine changed. 

Data: no payload data. 

• Terminate (C = 0x04) 

Description: terminates the execution. This is an asynchronous command and 

expects a “Terminated” engine event to come when the state of the engine 

changed. 

Data: no payload data. 

• Step (C = 0x05) 



65  

 

 

Description: performs one of the stepping actions: step in, step over, or step 

return.  This is an asynchronous command and expects a “Resumed” engine event 

when the engine resumed the execution. For the step to be complete, another 

“Suspended” or “Terminated” events expected. 

Data: the step type according to the Step Types constants. 

 

Breakpoints CS (K = 0xF2) 

• Set (C = 0x01) 

Description: sets one ore more breakpoints at given query locations. 

Data: a list of query locations containing one location for each breakpoint to be 

set. 

• Clear (C = 0x02) 

Description: clears the breakpoints at the given query locations. 

Data: a list of query locations containing one location for each breakpoint to be 

cleared 

. 

Static CS (K = 0xF3) 

• Options (C = 0x01) 

Description: retrieves from the execution engine all the non non-string – fixed 

length – static context options. 

Data: no payload data. 

Reply data: the information is coded into a one 2-bte word with the following 

structure: 

VCODBCCRRXXXXXXX 

  where the X bits represent “don’t care” values and: 

 V is XPath 1.0 compatibility mode (0 = false, 1 = invalid value) 

 C is Construction mode (0 = preserve; 1 = strip) 

 O is Ordering mode (0 = ordered; 1 = unordered) 

 D is Default order for empty sequences (0 = greatest; 1 = least) 

 B is Boundary-space policy (0 = preserve; 1 = strip) 

CC is Copy-namespaces mode (0X = preserve; 1X = no-preserve; X0 = 

inherit; X1 = no-inherit) 

RR
10

 is Revalidation mode (00 = strict; 01 = lax; 10 = skip; 11 – invalid 

value) 

• Defaults (C = 0x02) 

Description: retrieves from the execution engine all the string valued static 

context options. 

Data: no payload data 

Reply data: one string value for each of the following static context settings: 

 Default element/type namespace 

 Default function namespace 

 Context item static type (id, string ?) 

 Default collation 

 Base URI 

                                                 
10

 Only if the XQuery Update Facility is supported. 



66  

 

 

 Statically known default collection type 

• Sets (C = 0x03) 

Description: retrieves from the execution engine all the set valued static options 

Data: no payload data. 

Reply data: one set of string values for each of the following static context 

settings: Namespaces, Schemas, Variables, Functions, Collations, Documents, 

Collections. 

 

Dynamic CS (K = 0xF4) 

• Data (C = 0x01) 

Description: used to perform arbitrary data evaluations. 

Data: a list of expression to be evaluated. 

Reply data: the list of responses as XDM instances. If not all of the expressions 

can be evaluated, their result will be replaced with an appropriate error code and 

message. 

• Variables (C = 0x02) 

Description: retrieves the list of in scope variables together with their values. 

Data: no payload data. 

Reply data: the list of name-value pairs for all the in scope variables. 

• Focus (C = 0x03) 

Description: retrieves the expression focus component of the dynamic context. 

Data: no payload data. 

Reply data: the expression focus containing the three components: context item, 

context position and context size. 

• Time (C = 0x04) 

Description: retrieves the execution engine’s implementation specific point in 

time during the processing of a query. 

Data: no payload data. 

Reply data: returns the current date-time value. 

• Documents (C = 0x05) 
Description: retrieves the available documents component of the dynamic context. 

Data: no payload data. 

Reply data: the list of available documents in the dynamic context. 

• Collections (C = 0x06) 

Description: retrieves the available collations component of the dynamic context. 

Data: no payload data. 

Reply data: the list of available collection in the dynamic context. 

• Collection (C = 0x07) 

Description: retrieves the default collection component of the dynamic context. 

Data: no payload data. 

Reply data: the default collection in the dynamic context. 

• Frames (C = 0x08) 

Description: retrieves the list of debug nodes in the debug expression tree up to 

the root. This created frames for both function calls and nested expressions. 

Data: no payload data. 

Reply data: the list of query locations identifying the frames. 



67  

 

 

 

Dynamic CS (K = 0xF8) 

• Started (C = 0x01) 

Description: sent by the engine after it has initialized its state for the debug 

session – opening the communication ports, setting the query to debug and setting 

the breakpoints. 

Data: no payload data. 

• Terminated (C = 0x02) 

Description: sent by the execution engine asynchronously as a response to the 

“Terminate” command, or when the execution finishes, or when an error is 

encountered during execution and the engine had to terminate. 

Data: the cause of the termination: client request, finished execution or error. In 

case of error, the error message is also sent. 

• Suspended (C = 0x03) 

Description: sent by the engine asynchronously as a response to the suspend 

command or when the engine encountered a breakpoint or when a stepping 

reached its target debug node. 

Data: the current frame where the execution was suspended. 

• Resumed (C = 0x04) 

Description: sent by the engine asynchronously as a response to either a resume or 

step command. 

Data: the cause of resuming: client request or one of the step types. 

 

Error codes: 

• NO_ERROR: the default error code for successful messages. 

• UNKNOWN: sent in a reply message when the execution engine encountered an 

error not falling in any of the other categories. 

• INVALID_MESSAGE_FORMAT: when the format of the message sent to the 

execution engine has an invalid format. 

• INVALID_COMMAND: when the message contains an invalid command set- 

command identifier 

• COMMAND_NOT_IMPLEMNTED: when a command in the specification is 

requested but it is  not implemented 

• ENGINE_TERMINATED: when a command is received after the execution has been 
terminated. 

 

Step Types: 

• Step INTO 

• Step OVER 

• Step RETURN 



68  

 

 

 



69  

 

 

 

 

 

Bibliography 

[1] Scott Boag, Don Chamberlin, Mary Fernandez, Daniela Florescu, Jonathan Robie, and Jerome 

Simeon. XQuery 1.0: An XML Query language. Technical report, W3C, 2008. 

http://www.w3.org/TR/xquery/ 

[2] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau. Extensible 

Markup Language (XML) 1.0 (Fourth Edition). W3C Recommendation 16 August 2006. 

http://www.w3.org/TR/xml/ 

[3] Don Chamberlin, Daniela Florescu, Jim Melton, Jonathan Robie, Jérôme Siméon, XQuery Update 

Facility 1.0, W3C Candidate Recommendation, 14 March 2008. http://www.w3.org/TR/xquery-

update-10/ 

[4] Don Chamberlin, Daniel Engovatov, Daniela Florescu, Giorgio Ghelli, Jim Melton, Jerome 

Simeon. XQuery Scripting Extension 1.0, W3C Working Draft 28 March 2008. 

http://www.w3.org/TR/xquery-sx-10/ 

[5]  The FLWOR Foundation, Daniela Florescu, Donald Kossmann. Zorba XQuery Execution 

Engine. http://flowrfound.ethz.ch/FLWOR1/zorba.shtml 

[6] Donald Kossmann, Peter Fischer, Irina Botan, Rokas Tamosevicius, Matthias Braun, Tim Kraska, 

and David Graf. MXQuery project web page, 2008. http://www.mxquery.org/ 

[7] Eclipse Foundation. Eclipse - an open development platform. http://www.eclipse.org/ 

[8] James Clark, Steve DeRose. XML Path Language (XPath) Version 1.0, W3C Recommendation 

16 November 1999. http://www.w3.org/TR/xpath 

[9] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, Norman Walsh. XQuery 1.0 

and XPath 2.0 Data Model (XDM), W3C Recommendation 23 January 2007. 

http://www.w3.org/TR/xpath-datamodel/ 

[10] Michael Kay. XSL Transformations (XSLT) Version 2.0, W3C Recommendation 23 January 

2007. http://www.w3.org/TR/xslt20/ 

[11] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay, Jonathan 

Robie, Jérôme Siméon. XML Path Language (XPath) 2.0, W3C Recommendation 23 January 

2007. http://www.w3.org/TR/xpath20/ 

[12] Guy LaPalme and Mario Latendresse. A debugging environment for lazy functional languages. 

Lisp and Symbolic Computation, vol. 5, pag. 271-287, 1992. 

[13] Bernard Pope, Lee Naish. Practical aspects of Declarative Debugging in Haskell 98, 5th ACM 

SIGPLAN international conference on Principles and practice of declarative programming, 

Uppsala, Sweden, 2003. 

[14] Robert Ennals, Simon Peyton Jones. HsDebug : Debugging Lazy Programs by Not Being Lazy, 

The Haskell Workshop’03, ACM, Uppsala, Sweden, April 2003. 

[15] Olaf Chitil, Colin Runciman, Malcolm Wallace. Tracing and Debugging of Lazy Functional 

Programs. A Comparative Evaluation of Three Systems. Proceedings of the 12th International 

Workshop on Implementation of Functional Languages, Aachen, 2000. 

[16] W3C. Specifications and Working Group Notes. http://www.w3.org/XML/Query/#specs 

[17] Henrik Nilsson. How to look busy while being as lazy as ever: the Implementation of a lazy 

functional debugger. Journal of Functional Programming, vol. 11, issue 6, November 2001. 

[18] R. Morgan and S. Jarvis. Profiling large-scale lazy functional programs. Journal of Functional 

Programming, vol. 8, issue 3, May 1998. 



70  

 

 

[19] Torsten Grust, Jan Rittinger, Jens Teubner. Data-Intensive XQuery Debugging with Instant 

Reply. 4th International Workshop on XQuery Implementation, Experiences and Perspectives, 

Beijing, China, June 2007. 

[20] Richard Watson and Eric Salzman. Tracing the Evaluation of Lazy Functional Languages: a 

Model and its Implementation. Asian Computing Science Conference, pag. 336-350, 1997. 

[21] Robert Ennals and Simon Peyton Jones. Optimistic Evaluation: An Adaptive Evaluation Strategy 

for Non-Strict Programs. 8th ACM SIGPLAN International Conference on Functional 

Programming, Uppsala, Sweden, August, 2003. 

[22] S. Peyton Jones, R. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel, K. 

Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Peterson, A. 

Reid, C. Runciman, and P.Wadler. Report on the programming language Haskell 98, February 

1999. http:/haskell.org 

[23] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra, Kristoffer Rose, Michael 

Rys, Jérôme Siméon, Philip Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics, W3C 

Recommendation 23 January 2007.  http://www.w3.org/TR/xquery-semantics 

[24] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eugene Shekita, 

Chun Zhang. Storing and querying ordered XML using a relational database system. 

Proceedings of the 2002 ACM SIGMOD international conference on Management of data, 2002. 

[25] Java Debug Wire Protocol. http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdwp-spec.html 

[26] JavaScript Object Notation. Subset of JavaScript Programming Language, Standard ECMA-262 

3rd Edition - December 1999. http://www.json.org 

[27] Eclipse Platform Plugin Development Guide. http://help.eclipse.org 

[28] Michael Kay. The Saxon XSLT and XQuery Processor. http://www.saxonica.org 

[29] Simon P. Booth, Simon B. Jones. Walk Backwards to Happiness | Debugging by Time Travel. In 

Proceedings of the Third International Workshop on Automatic Debugging (AADEBUG'97), 

Linkoping, Sweden, May 1997. 

[30] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys, 

25(2):73–170, 1993. 

 

 


