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Vorwort

Die hier vorliegende Dissertation entstand im Anschluss an ein europaisches

Projekt über die Zuverlässigkeit von analytischen Beullasten fur laminierte

Schalen, an welchem das ehemalige Institut fur Leichtbau und Seilbahn¬

technik (ILS) der ETH Zurich zusammen mit der Empa Dubendorf par¬

tizipiert hatte Aufgabe dieser beiden schweizerischen Partner war es, die

Beullasten von einigen dünnwandigen Kreiszylindern aus Kohlefaserlami¬

nat experimentell zu bestimmen Zudem hatten sie es übernommen, die

lokalen Abweichungen vom Nennradius (Imperfektionen) dieser Versuchs¬

zylinder zu vermessen und in die numerischen Analysen einzubringen, mit

dem Ziel, den Einfluss dieser gemessenen Imperfektionen zu evaluieren Als

ich 1997 am ILS eine Stelle als wissenschaftlicher Assistent antrat, wurde

ich vom damaligen Institutsleiter, Prof Dr H -R Meyer-Piening, mit der

Durchfuhrung von linearen und nichtlinearen Finite-Elemente-Analysen zur

Berechnung der Beullasten dieser Zylinder betraut Diese Beulanalysen

bestätigten die Anfälligkeit axialgedruckter Kreiszylinder auf geometrische

Imperfektionen, konnten doch gute Resultate erst erreicht werden, wenn bei

der Finite-Elemente-Modellierung der Zylinder jeweils die gemessenen Im¬

perfektionsmuster ihrer Innenflachen als Netzgeometrie übernommen wur¬

den Unter Verwendung dieser speziellen Finite-Elemente-Modelle gelang es

schliesslich, mit transient-dynamischen Analysen die Stauch-Versuche der

Zylinder erfreulich exakt zu simulieren

Die verschiedenen Instabilitats-Phanomene und die nichtlinearen numer¬

ischen Beulanalyse-Methoden weckten mein Interesse und meine wis¬

senschaftliche Neugierde, besonders die transient-dynamische Finite-Ele-

mente-Analyse, welche es ermöglicht, Verformungsprozesse von Schalen

oder anderen, auch komplexen Strukturen rechnerisch abzubilden Schliess¬

lich wollte ich auch in einem Studium der nichtlinearen Kontinuumsmechanik

und der nichtlinearen Finite-Elemente-Methode ergrunden, was es mit den

verschiedenen Formulierungen und Parametern in Programm-Kodes auf sich

hat Deshalb nahm ich nach Abschluss des erwähnten europaischen Projekts

anfangs 1999 die sich mir bietende Gelegenheit, die Beulanalysen imperfek¬
ter Zylinder als Doktorand in eigener Regie fur die vorliegende Dissertation

weiterzufuhren, gerne wahr

Das schliesslich daraus ein Buch von über 560 Seiten entstehen sollte,

war allerdings nicht geplant Es schien vielmehr vernunftig, in der
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Zeit bis zur Pensionierung von Prof Dr H -R Meyer-Piening die exzel¬

lente EDV-Infrastruktur der ETH und die bereits erworbenen Kenntnisse

und gewonnene Erfahrung im Umgang mit den numerischen Beulanalyse-
Methoden möglichst intensiv weiter zu nutzen Da die Finanzierung fur

Grundlagenforschung im Leichtbau zunehmend schwierig wurde (insbeson¬
dere fur Beulanalysen von Kreiszylinderschalen), musste angenommen wer¬

den, dass künftig wohl kaum mehr weitere Arbeiten in diesem Gebiet

angefangen werden Deshalb sollte im Rahmen dieser Dissertation das

Forschungsgebiet um das Beulverhalten von Zylindern mit einer Einzel-

Vorbeule so umfassend und vollständig wie möglich bearbeitet werden Um

dieses Ziel zu erreichen wurden in diversen Parameterstudien eine sehr grosse

Zahl von Beul- und Finite-Elemente-Analysen durchgeführt, deren Resultate

alle verarbeitet und publiziert werden wollten Die vielleicht etwas unattrak¬

tive Seitenzahl dieses Buches ist somit die Konsequenz aus der grossen

Menge an Rechenergebnissen und dem Vorsatz, diese alle in dieser einen Dis¬

sertation zu beschreiben und, mit vielen Bildern, darzustellen Aber die hier

vorliegende Dissertation beinhaltet auch relativ umfangreiche Erläuterungen
zur nichtlinearen Finite-Elemente-Methode, zu den involvierten Eigenprob¬
lemen und deren numerischen Losungsmethoden sowie zu der so genannten

Klassischen Beulanalyse mit ihren Losungen von Schalengleichungen Die

zugehörigen Kapitel entstanden aus Literaturstudien zu Beginn meines Dok¬

torats Verfasst in einer einheitlichen Terminologie mögen diese vielleicht

der geneigten Leserschaft den Zugang zur Beulanalyse imperfekter Schalen

erleichtern

Die numerischen Untersuchungen des Beulverhaltens von Zylindern mit

Einzel-Vorbeulen hatten ihren Anfang also im letzten Jahrtausend1 Bis zu

meinem Doktorexamen am 19 Januar 2006 war somit genügend Zeit fur

einige organisatorische Änderungen an der ETH Zurich Fur die Entstehung
dieser Dissertation von Belang ist einmal die Umwandlung des Instituts fur

Leichtbau und Seilbahntechnik (ILS) auf Januar 2000 in den Bereich Leicht¬

bau des Instituts fur Mechanische Systeme (IMES) Dann, nach der Pen¬

sionierung von Prof Dr H -R Meyer-Piening per Ende März 2002, folgte
schliesslich die Auflosung des Bereichs Leichtbau und dessen Integration
in das Zentrum fur Strukturtechnologien des IMES unter der Leitung von

Prof Dr P Ermanni Mag sein, dass mit Umstrukturierungen, finanziellen

Engpassen und anderen Widrigkeiten wahrend eines Doktorats gerechnet
werden muss Sonderlich hilfreich sind sie jedoch kaum Aber trotz gele¬

gentlichem Gegenwind die Arbeit war interessant, sehr lehrreich und hat

mir durchaus auch Spass gemacht1
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Abstract

Accurate analysis concerning static instability and reliable appointment
of the buckling loads is important for safe design of thin-walled shell

structures. Real shells contain geometric imperfections and other devi¬

ations from nominal values which have to be considered, as for buckling

analyses on the basis of ideal conditions extreme discrepancies between

prediction and test data can result. This thesis deals with the buckling
behaviour of thin-walled, unstiffened cylinders under pure axial com¬

pression because of their extraordinary sensitivity to imperfections in

the shell geometry. The parameters required for an application of real

imperfections in a buckling analysis are difficult to be specified. And

measured values of real imperfections for the design of any new cylinder
shell are hardly available. In the absence of such data in most cases

buckling patterns are used that result for perfect geometry and whose

buckling patterns can be described with harmonic displacement func¬

tions. For safe shell design that imperfection shape is significant which

yields the minimum buckling load. But, in general neither the geom¬

etry nor the amplitudes of the buckling patterns which contribute to

the most damaging imperfection shape are known a priori. In addition,
the monotone wavelike dimples forming the buckling patterns of perfect

cylinders enclose the entire shell surface, and hence localized irregular¬
ities like single dents or bulges of different amplitude are insufficiently
included. Consequently, due to the lack of adequate imperfections pa¬

rameters, cylindrical shells still have to be designed by use of reduction

factors to be applied to the analytical buckling loads for perfect cylinders.
These reduction factors consider smallest empirical values and therefore

provide critical loads which appear to be rather conservative. Moreover,
such instructions exist for steel and other isotropic shell materials but

not for laminated composite cylinders, for instance.

For these reasons the thesis on hand focusses on cylinders having lo-
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calized imperfections in form of local inward or outward dimples. To

investigate the influences of a single initial dimple on the instability
behaviour of such cylinders, and separate from any effect of other irreg¬

ularities, discrete parametric dents or bulges were added to FE models of

unstiffened circular cylinders of otherwise perfect geometry. The chosen

shape of a parametric dimple allowed to investigate the influence of its

initial amplitude, its initial axial height, its initial circumferential width,
and its axial position systematically and independently of other param¬

eters. With regard to the absence of practical design recommendations

for laminated composite cylinders the thesis on hand covers analyses of

isotropic as well as of laminated CFRP shells.

Several parameter studies were conducted for a number of cylinders hav¬

ing dimples of different initial amplitude but fixed initial circumferential

width and axial height. In addition, for a few cylinders and for some

predefined initial amplitudes the initial axial height and circumferential

width to the dimple was searched which reduce the axial cylinder sta¬

bility the most. Finally the influence of the relative position of a second

identical dent to the load carrying capacity was investigated. These se¬

ries of analyses aimed at investigating wether there are single, localized

initial dimples which reduce the nominal axial buckling load of an un¬

stiffened circular cylinder more than imperfections derived from classical

buckling patterns of ideal shells, and wether there is a worst geometry of

such a single dimple imperfection. Further: is the instability behaviour

the same for isotropic shells as for laminated composite shells having such

a localized dimple imperfection? And, is there an important interaction

between two initial dimples?

The dimple-parameter studies required a large amount of static and tran¬

sient dynamic FE analyses. Most of the calculations performed were

nonlinear buckling analyses, i.e. nonlinear static stress analyses un¬

der consideration of large displacements and rotations using Updated

Lagrangian formulations with additional linear eigenvalue calculations,
conducted after a selected number of small loading steps to determine

the stability of pre-buckling states of stress and deformation. To man¬

age the large number of shells with different bucking loads and behaviour

considered, the nonlinear buckling analysis was adapted for an adaptive
load step control which utilizes the intermediately extracted eigenvalues.
For a selection of cylinders and dimples additional nonlinear transient

dynamic analyses were conducted in order to research into the particular
deformation processes of such shells under axial loading. Because of the

relatively slow compression velocities assumed the implicit "single-step
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Houbolt" method for time integration was preferred to the more com¬

mon explicit operators. To reduce the number of time increments needed

for stepwise convergence significant inertia damping was introduced.

In a classical analysis, for ideal, thin-walled unstiffened isotropic circu¬

lar cylinders of medium length under pure axial compression the load-

carrying capacity can be predicted analytically by means of simple equa¬

tions. These equations follow from solving the coupled partial differential

equations for equilibrium and compatibility in simply-supported cylinder
with harmonic functions. There are also close-form solutions of the Don-

NELL-type shell equations available for thin-walled orthotropic composite

cylinders. Such a classical analysis, however, is applicable exclusively for

perfect cylinder geometry.

For the imperfection shapes and sizes considered no test results were

available against which the FE analysis results could have been bench-

marked. Instead, they are supported by convincing results of such cal¬

culations for similar cylinders with perfect geometry and for laminated

CFRP cylinders with their measured imperfections included. The re¬

sults of the ideal cylinders could be compared with values achieved with

classical analyses, whereas for the analysis results of the CFRP shells

with measured imperfections test data was available for comparisons.

The asymmetrically laminated CFRP cylinders analysed stem from a

preceding European project which focussed on the correlation of mea¬

sured buckling loads of test cylinders with analytical and numerical buck¬

ling load predictions. The FE analyses of these shells have shown that

for such cylinders calculated buckling loads close to test values may

be attained if measured imperfections are included in the analysis. It

was further found that the consideration of imperfections requires the

use of FE analysis methods which take geometric nonlinearity into ac¬

count. The nonlinear buckling and transient dynamic FE analyses of

these CFRP cylinders with perfect geometry and with measured imper¬
fections applied finally provided the basis for the FE analyses of such

cylinders having a single localized dimple.

The FE analyses of cylinders with an initial local dent or bulge yielded

particular deformation processes including different local buckling phe¬
nomena which were hardly known from unstiffened circular cylinders
with neither perfect geometry nor with imperfections distributed over

the entire shell surface. Nevertheless, by means of systematic parameter

variation some interrelationships between the results and the nominal

dimensions of the cylinder and the dimple could be derived.
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The initial circumferential curvature of a shell in the dimple plays a

decisive role in the deformation process of the cylinders and in the run

of their FE analyses. The differences in the behaviour pattern and the

initial curvature led to a distinction between "shallow" and "deep" dents.

Shallow dents with an initial amplitude smaller than a certain marginal

depth provoke a distinct local buckling with a sudden snapping inwards

of the dent to form a local flattened shell strip of reduced geometric axial

stiffness. Deep dents, in turn, result in a continuous local flattening of

the shell without any dynamic local-buckling incident prior to the total

cylinder collapse.

Localized, shallow dents of particular initial circumferential width and

axial height reduce the buckling load as much as axisymmetric inward

dimples of identical initial amplitude. And a non-axisymmetric, shallow

dent of adequate initial width and height may be as damageing as an

imperfection-pattern that is given by a classical buckling mode of initial

amplitude that is half the initial amplitude of the dent. Further, local¬

ized non-axisymmetric bulges impair the load carrying capacity less than

localized dents of the same absolute initial amplitude, width, and height.

Finally, the buckling load of a cylinder with single localized dent is only
little different from that of a cylinder having two dents of identical size.

For isotropic cylinders the initial axial heights of dimples that reduces

the buckling load the most for a preselected initial depth is close to the

wavelength for classical axisymmetric buckling of a perfect cylinder. The

initial circumferential widths of the worst dent is between two to three

times the initial height, whereas the worst bulge is always axisymmetric.

The studies yielded that the cylinder length is also decisive for the local

deformation processes of the shell in and in the adjacency of the ini¬

tial dimples (local buckling) observed. The design recommendations in

standards and literature considered for thin-walled, unstiffened isotropic

cylinders under axial compression are conservative if the nominal radius

and wall-thickness as well as the nominal cylinder length are taken into

account.

For the laminated cylinders investigated accurate and general predic¬
tions of minimal buckling loads and of critical dimple dimensions could

not be derived on basis of the cylinder geometry alone as the buck¬

ling behaviour patterns of such shells depend strongly on the laminate

stacking. However, there was no indication that any laminated cylinder
with any non-axisymmetric dimple results in a lower buckling load than

an isotropic cylinder of identical radius, length and wall thickness also
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having a non-axisymmetric dimple.



xviii Abstract



Kurzfassung

Die korrekte Analyse der statischen Stabilität und das zuverlässige
Bestimmen der Beullasten spielen eine wichtige Rolle beim Konstru¬

ieren von dünnwandigen Schalenstrukturen. Echte Schalen beinhal¬

ten geometrische Imperfektionen und andere Abweichungen von Soll¬

werten. Diese sind bei einer Analyse zu berücksichtigen, da Traglast¬

berechnungen aufgrund idealer Zustände zu extremen Unterschieden

zwischen rechnerischer Vorhersage und Tests führen können. Die vor¬

liegende Dissertation befasst sich mit dem Beulverhalten von dünn¬

wandigen, unversteiften Kreiszylindern unter reiner Axiallast wegen der

ausserordentlichen Imperfektionsempfindlichkeit dieser Schalen. Die Pa¬

rameter, die es für eine Anwendung echter Imperfektionen in einer Beul¬

analyse braucht, sind schwierig zu bestimmen. Und Messwerte solcher

Imperfektionen für die Auslegung neuer Zylinderschalen sind kaum

erhältlich. In Ermangelung solcher Daten werden meist Beulformen

verwendet, welche für perfekte Schalengeometrie resultieren und deren

Muster durch harmonische Funktionen beschrieben werden können.

Für eine sichere Schalenkonstruktion ist dasjenige Imperfektionsmuster

massgebend, welches die tiefste Beullast verursacht. Im Allgemeinen
sind jedoch weder die Geometrie noch die Amplituden der Beulformen,
welche zum schädlichsten Imperfektionsmuster beitragen, von vornherein

bekannt. Zudem umhüllen die Beulformen perfekter Zylinder gleich-

massig die ganze Schalenfläche. Folglich werden lokale Abweichungen
wie einzelne Dellen oder Beulen nur ungenügend berücksichtigt. Mangels

passender Imperfektionsparameter müssen zylindrische Schalen deshalb

noch immer mittels Abminderungsfaktoren konstruiert werden, mit de¬

nen die analytischen Beullasten der perfekten Schalen entsprechend zu

reduzieren sind. Diese Abminderungsfaktoren berücksichtigen kleinste

empirische Werte und liefern so eher konservative Traglasten. Ausserdem

existieren solche Auslegungs-Richtlinien für Stähle und andere isotrope
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Schalenmaterialien, aber nicht für Zylinder aus orthotropem Faserver¬

bund, beispielsweise.

Aus diesen Gründen behandelt die vorliegende Arbeit das Instabilitäts¬

verhalten von unversteiften Kreiszylindern unter reiner Axiallast, welche

mit örtlich begrenzten Imperfektionen in Form einer einzelner Delle

oder Beule behaftet sind. Um die Wirkung einer einzelnen derarti¬

gen Vorbeule getrennt vom Einfluss anderer Geometrieabweichungen
zu untersuchen, wurden diskrete, parametrische Dellen oder Beulen

an FE-Zylindermodellen mit ansonsten perfekter Geometrie angebracht.
Die gewählte Form einer parametrischen nach innen oder nach aussen

gerichteten Vorbeule ermöglichte es, den Einfluss ihrer Anfangsam¬

plitude, ihrer Anfangsbreite in Umfangsrichtung, ihrer Anfangshöhe
in axialer Richtung sowie ihre Anfangsposition systematisch und un¬

abhängig von anderen Parameter zu untersuchen. Im Hinblick auf

das Fehlen zweckmässiger Konstruktionsempfehlungen für Komposite-

Zylinder umfasst diese Dissertation die Analyse von isotropen wie auch

von laminierten CFK-Schalen.

Es wurden zahlreiche Parameterstudien an Zylindern mit einer Vor¬

beule von unterschiedlicher Anfangsamplitude aber fester Anfangsbreite
und -höhe durchgeführt. Zudem wurde für einige Zylinder und einzelne

gewählte Anfangsamplituden diejenigen Anfangshöhen und Anfangsbrei¬
ten gesucht, welche jeweils die axiale Festigkeit der Schale am meisten

reduziert. Schliesslich wurde auch der Einfluss der relativen Lage einer

zweiten, identischen Vorbeule auf die Tragfähigkeit eines Zylinders un¬

tersucht.

Ziel dieser Analysen war es, zu untersuchen, ob es einzelne, örtlich

begrenzte Vorbeulen gibt, die die nominale axiale Beullast eines un¬

versteiften Kreiszylinders mehr reduzieren als Imperfektionen, die auf

klassische Beulmuster idealer Zylinder beruhen. Und: Existieren

ungünstigste Geometrien von solchen Vorbeulen? Zudem: Ist der Ef¬

fekt einer Vorbeule der gleiche für isotrope Zylinder wie für laminierte

Komposite-Zylinder? Und schliesslich: Gibt es eine wesentliche Interak¬

tion zwischen zwei identischen Vorbeulen in einer Zylinderschale?

Die Vorbeulen-Parameterstudien erforderten eine grosse Zahl von sta¬

tischen und transient-dynamischen FE-Analysen. Die meisten durch¬

geführten Berechnungen waren Nichtlineare Beulanalysen, d.h. nicht¬

lineare statische Spannungsanalysen unter Berücksichtigung grosser Ver¬

schiebungen und Rotationen mittels Umgeformter Lagrangesche For¬

mulierungen und zusätlichen linearen Eigenwertanalysen, welche nach
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ausgewählten kleinen Lastschritten ausgeführt wurden, um die Sta¬

bilität der Vorbeulzustände zu bestimmen. Um die grosse Zahl von

Schalen mit unterschiedlichen Beullasten und Verhaltensmuster besser

bewältigen zu können wurde die Nichtlineare Beulanalyse so modi¬

fiziert, dass die regelmässig, jeweils nach einigen Lastschritten berech¬

neten Eigenwerte die Grösse der nachfolgenden Lastschritte automatisch

passend einstellt. Für eine Auswahl von Zylindern und Vorbeulen¬

geometrien wurden zusätzlich auch nichtlineare transient-dynamische

FE-Analysen durchgeführt, um die speziellen Deformationsprozesse
solcher Schalen näher zu untersuchen. Wegen der angenommenen

relativ langsamen Kompressions/-geschwindigkeit wurde dazu der im¬

pliziten "Einzelschritt-Houbolt-Methode" zur Zeit-Integration gegen¬

über den gebräuchlicheren expliziten Methoden den Vorzug gegeben.
Durch Aufbringen erheblicher Trägheitsdämpfung konnte die Anzahl der

benötigten Zeitschritte reduziert werden.

In einer Klassischen Beulanalyse kann die Tragfähigkeit von idealen,

dünnwandigen, unversteiften isotropen Kreiszylinderschalen mittlerer

Länge unter reinem Axialdruck mit Hilfe einfacher Gleichungen ana¬

lytisch berechnet werden. Diese Gleichungen entstammen der Lösung
der gekoppelten partiellen Differentialgleichungen für Gleichgewicht und

Kompatibilität in gelenkig gelagerten Zylinder mittels harmonischer

Funktionen. Geschlossene Lösungen solcher Donnellscher Schalengleich¬

ungen stehen auch für dünnwandige orthotrope Komposite-Zylinder zur

Verfügung. Eine solche Klassische Beulanalyse ist jedoch ausschliesslich

für perfekte Zylindergeometrie anwendbar.

Für die untersuchten Imperfektionsmuster standen keine Testresultate

zur Verfügung, mit welchen die Resultate der FE-Analysen hätten

verglichen werden können. Stattdessen gründet deren Qualität auf

überzeugenden Resultaten solcher Berechnungen von ähnlichen Zylin¬
der mit idealer Geometrie und von laminierten CFK-Zylinder, deren

gemessene Imperfektionen in ihr FE-Modell eingefügt wurden. Die Re¬

sultate zu den idealen Zylinder konnten mit Werten aus Klassischen

Beulanalysen verglichen werden. Für Vergleiche mit den Analyseresul¬
taten der CFK-Schalen mit gemessenen Imperfektionen konnten Test¬

werte herangezogen werden.

Die untersuchten unsymmetrisch laminierten CFK-Zylinder entstammen

einem vorangegangenem europäischen Projekt, in welchem die Korrela¬

tion zwischen den Beullasten aus Tests und aus numerischen Berech¬

nungen im Mittelpunkt stand. Die FE-Analysen dieser Schalen hat¬

ten gezeigt, dass für solche Zylinder sehr gute Resultate erzielt werden
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können, falls in der Analyse gemessene Imperfektionen berücksichtigt
werden. Es wurde weiter erkannt, dass eine Berücksichtigung von Imper¬
fektionen der Anwendung von FE-Analyse-Methoden bedarf, welche sich

für geometrische Nichtlinearitäten eignen. Die Nichtlineare Beulanaly¬
sen und die transient-dynamischen FE-Analysen dieser CFK-Zylinder
mit perfekter Geometrie und mit gemessenen Imperfektionen dienten

schliesslich als Basis für die Analysen von solchen Zylinder, die mit

einzelnen parametrischen Vorbeulen behaftet sind.

Die FE-Analysen von mit einer einzelnen Vorbeule behafteten Zylin¬
der brachten spezielle Verformungsprozesse, inklusive verschiedene lokale

Beulphänomene, hervor, die sonst von unversteiften Kreiszylinder kaum

bekannt waren - weder für perfekte Geometrie noch für über die ganze

Schalenfläche verteilte Imperfektionen. Dennoch konnten mittels sys¬

tematischer Parametervariation einige Zusammenhänge zwischen den

Resultaten und den nominalen Dimensionen der Zylinder und der Vor¬

beulen eruiert werden.

Die Anfangskrümmung der Schale in der Vorbeule in Umfangsrichtung

spielt eine entscheidende Rolle im Verformungsprozess der Zylinder und

dem Ablauf ihrer FE-Analysen. Die Unterschiede im Verhaltensmuster

und der Anfangskrümmung führte zu einer Unterscheidung zwischen

"tiefen" und "seichten" Dellen. Eine seichte Delle mit einer Anfangstiefe
kleiner als ein gewisser Grenzwert verursacht ein ausgeprägtes lokales

Beulen mit einem plötzlichen Durchschlagen der Zylinderschale in der

Delle weiter nach innen, um so einen abgeflachten Schalenstreifen von

reduzierter geometrischer axialer Steifigkeit zu erzeugen. Eine tiefe Delle

hingegen resultiert in einem kontinuierlichen lokalen Abflachen der Zylin¬
derschale ohne dynamischen lokalen Beulvorgang bei Lasten unterhalb

der Kollapslast des gesamten Zylinders.

Örtlich begrenzte seichte Dellen von kritischer Anfangsbreite und -höhe

reduzieren die axiale Beullasten gleich stark wie axialsymmetrische,

ringförmige Dellen von gleicher Anfangstiefe. Und eine lokale, unsym¬

metrische seichte Delle von kritischer Anfangsbreite und -höhe kann gle¬
ich schädlich sein wie ein Imperfektionsmuster, das von einem Beul¬

muster eines idealen Zylinders abgeleitet ist und deren Anfangsampli¬
tude der Hälfte der Anfangstiefe der Delle entspricht. Ferner schwächen

lokale, unsymmetrische Beulen die Tragfähigkeit weniger als lokale

Dellen von gleicher absoluter Anfangshöhe, -breite und -amplitude. Des

Weiteren ist die Beullast eines Zylinders mit einer einzelnen lokalen Delle

nur unwesentlich höher als mit einer zusätzlichen zweiten Delle gleicher
Grösse.
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Die Studien ergaben, dass die nominale Zylinder-Länge ebenfalls aus¬

schlaggebend ist für die lokalen Verformungsprozesse der Schalen in den

Vorbeulen und in deren Umgebung (lokales Beulen). Die Ausführungs¬

empfehlungen in Normen und in der Fachliteratur für dünnwandige,
urversteifte isotrope Zylinder unter Axiallast sind denn insoweit kon¬

servativ, als in der Analyse der nominale Zylinderradius, die nominale

Wandstärke wie auch die nominale Zylinderlänge berücksichtigt sind.

Für isotrope Zylinder ist die Anfangshöhe in axialer Richtung der Vor¬

beulen, die die Beullast für eine gegebene Anfangsamplitude am meis¬

ten reduzieren, nahe der Wellenlänge für klassisches axialsymmetrisches
Beulen eines perfekten Zylinders. Die Anfangsbreite in Umfangsrichtung
der "schlimmsten" Delle ist auf etwa zwei bis drei mal der Anfangshöhe

begrenzt, die "schlimmste" Beule hingegen ist immer axialsymmetrisch

(Ringbeule). Für die laminierten CFK-Zylinder konnte keine genaue und

allgemeine Vorhersage über die Dimensionen der jeweils "schlimmsten"

Vorbeulen nur auf der Basis der nominalen Zylindergeometrie abgeleitet

werden, da deren Beulverhalten auch stark von der Reihenfolge und Ori¬

entierung der Laminatschichten abhängt. Indes gibt es kein Anzeichen

dafür, dass ein laminierter Zylinder mit einer lokalen unsymmetrischen
Vorbeule in einer tieferen Beullast resultiert als ein isotroper Zylinder

gleicher Länge, gleichen Radius und gleicher Wandstärke, ebenso be¬

haftet mit einer lokalen unsymmetrischen Vorbeule.



xxiv Kurzfassung



List of Symbols

Notation

x, X scalar

x, X tensor

xtJ, Xr] components of x and X, resp.; t = 1,2,3; j = 1, 2, 3

x, X vector or Matrix

{xtJ} vector representation of x or x

[XtJ] matrix representation of X or X

X transpose of X

X-1 inverse of X

| ce | absolute value of x

det X determinant of X

divX divergence of X

dx infinitesimal quantity of x

Sx virtual quantity of x

X Y scalar product; eg. Z = X Y —> ZtJ = ~}2 XrkYkj
k

X : Y double contraction; eg. z = X : Y —> z = X] X] ^j^j

x, matrix or vector x at iteration step i

ex b actual increment number;
£ reference increment number;

£ = 0 —> Total Lagrange; £ = s —> Updated Lagrange

ex increment of x with reference state £



XXV1 List of Symbols

Symbols

Symbol Description

A area

A membrane stiffness matrix

a flexibility matrix, membrane compliance matrix, a = A-1

ab initial circumferential dimple width

ab most damagemg initial dent width for a given Wb

al estimations of ab

B extension-bending coupling stiffness matrix

b eccentricity matrix, b = A_1B

B matrix containing spatial derivatives of the functions in H

iBi linear strain-displacement transformation matrix

eBni nonlinear strain-displacement transformation matrix

b body force vector

C material tensor

C material matrix

C damping matrix

c any constant (may be zero)

D bending stiffness matrix

D modified bending stiffness matrix, D = D — B A_1B

E Green-Lagrange strain tensor, E = 1/2[FT F - I]

Etj Green-Lagrange strain components

iE linear strain increment

e EULERIAN or ALMANSI strain tensor

E Young's modulus

Ei, E2 orthotropic Young's moduli

F deformation gradient tensor, F = dx/dX

T Airy stress function with

Nx = d2T/dy2, Ny = d2T/dx2, Nxy = -d2T/dxdy

To AlRY stress function of the initial state



XXV11

Symbol Description

if internal resisting force vector

G shear modulus

G12 orthotropic shear modulus

h shell wall thickness, plate thickness

H matrix containing interpolation or shape functions

J unit tensor

I identity matrix

J JACOBIAN determinant, J = det F

K system stiffness matrix

i¥Li linear stiffness matrix

iK.ni initial-stress or geometric stiffness matrix

jKt tangent stiffness matrix

iAK.ni incremental initial-stress stiffness matrix

L nominal cylinder length

AL axial compression, cylinder length reduction

lc axial half-wavelength for axisymmetric buckling

lb initial axial dimple height

lb most damaging initial dent height for a given Wb

II estimations of lb

M bending and twisting moments per unit length

Mx
, My , Mxy bending and twisting moments per unit length

m number of half-waves in axial direction

mc number of half-waves in axial direction linked with

the smallest buckling load, buckling mode

mass matrix

normal vector

membrane forces per unit length

membrane forces per unit length

membrane forces per unit length of the initial state

N

Nx ,Ny ,NXy

Nx ,Nv ,NXy



xxvm List of Symbols

Symbol Description

NaXiai axial membrane force per unit length; approx. Nx

Nhoop circumferential membrane force per unit length; approx. Ny

Nshear shear membrane force per unit length; approx. Nxy

Naxzai mean Naxiai in a finite element

Nhoop mean Nhoop in a finite element

Nshear mean Nshear in a finite element

—Ncr axial buckling load per unit length

n number of waves in circumferential direction

nc number of waves in circumferential direction linked with

the smallest buckling load; buckling mode

p pressure

pz lateral area load

p force vector; external forces

Ap load increment vector at increment s + 1

p cr
intermediate buckling load vector;

result of eigenvalue extraction at increment s + 1

pcr buckling load vector

P compressive force

Pcr axial buckling force; compressive: Pcr = —2ttRNct

Pel classical axial buckling force; buckling load by classical analysis

Pcrrd buckling load for ideal geometry

Per l lower buckling load; local buckling load

Per u upper buckling load; cylinder collapse load

r residual forces

R nominal cylinder radius; radius of reference surface

r radius coordinate

Tk local radius of nodal point

fk local radius of curvature; local curvature: 1/rfc; approximation

S 2nd PlOLA-KlRCHHOFF stress tensor



XX1X

Symbol Description

Stj 2nd PlOLA-KlRCHHOFF stress components

s increment number

t stress vector; surface traction vector

T transformation matrix

t time

Ai time step

U strain energy

u displacement vector; u = x — X

u component u\ of the displacement vector u

û displacement u in the reference surface

ü vector of discrete displacements and rotations; DOF

u total displacements at increment s

u displacement increment

us eigenvector; eigenmodes

ù velocity vector

ü acceleration vector

V body volume

v component 112 of the displacement vector u;

v displacement v in the reference surface

W work

W£X external work

w component 113 of the displacement vector u; lateral displacements

w displacement w in the reference surface; assumption: w ~ w

wo lateral displacement of the initial state

Wb initial dimple amplitude; initial dent depth; initial bulge elevation

wl marginal dent depth

X LAGRANGIAN or material coordinates; initial position

x EULARIAN or spatial coordinates; current position

Z BATDORF's parameter with Z = L2/(Rh)^l - v2



XXX List of Symbols

Symbol Description

Zb initial position of dimple apex in axial direction

a ply angle; a = 0° is parallel to cylinder axis

afc stiffness damping parameter

am inertia damping parameter

ß axial half-wave length parameter with ß = rmr/L

^xy shearing strain; ^xy = 2 £12 = du/dy + dv/dx

Ar imperfection shape function

A^ axial spacing between the apices of two dents

Av circumferential spacing between the apices of two dents; angle

e linear strain tensor; etJ = l/2(dut/dxj + du3/dxz)

e strains in the reference surface

ex ,ey , ~/xy vector components of e

r\ hoop wave length parameter with r\ = n/R

ii] nonlinear strain increment

k negative curvatures of the reference surface

kx , Ky , Kxy vector components of surface curvature k with:

kx = —d2w/dx2, Ky = —d2w/dy2, nxy = —2d2w/dxdy

A eigenvalue

Xcr smallest eigenvalue

v PoiSSON's ratio; v = 0.3 unless otherwise noted

^12 orthotropic PoiSSON's ratio

£ perturbation amplitude, normalized

Ç imperfection amplitude, normalized

tl potential energy

p density

a CAUCHY stress tensor; t = a n

oxx , ctyy , Txy components of stress vector

—acr axial buckling stress



xxxi

Symbol Description

ffaxzai axial CAUCHY stress

Ohoop circumferential CAUCHY stress

tp angle coordinate

ipb initial position of dimple apex in circumference

4>x , 4>y rotations about j/-axis and x-axis, respectively

Coordinate Systems

Axes Description

x ,y ,z Cartesian coordinate system

r ,ip ,z cylindrical coordinate system

Boundary Conditions

Simply Supported

w=Pt=0
Clamped

w= f^ =0
OX

SS3 v = c
,

Nx = 0 CC3 v = c
,

Nx = 0

SS4 V = C
,

Û = c CC4 V = C
,

Û = c

Abbreviations

CC3 clamped edges; constant edge loads

CC4 clamped edges; constant axial edge displacements

CFRP carbon fibre reinforced plastic

DEVILS European project "design and validation of imperfection

tolerant laminated shells"

DOF degrees of freedom; displacement and rotation components

FE finite element

SSH single-step HOUBOLT; implicit time-integration method

553 hinged edges; constant edge loads

554 hinged edges; constant axial edge displacements



xxxii List of Symbols



Chapter 1

Introduction

Curved plates and shells are important structure elements of aircraft,
vessels and vehicles. The accepted trend towards maximal travel speed
at minimum energy input requires geometry optimization of structures

like fuselages or panels regarding the weight, the physical limitations and

the costs. Such optimized lightweight structures are therefore designed
for heavy loadings with resulting safety margins as small as possible.

Consequently, to prevent failure the critical states of stress and defor¬

mation as well as the maximum allowable loads have to be taken into

account, what implies that all relevant measures are accurately known al¬

ready in the design. In many cases the load carrying capacity of a shell

structure is determined by their material and geometric stiffness that

governs the deflections, the natural frequencies, and the static stabil¬

ity. Thin-walled structures are sensitive to instability phenomenon and

have a tendency to respond with undesired dynamic amplitudes when

being loaded by compressive membrane stresses beyond stability limits.

When a state of static instability is reached the released amount of en¬

ergy during the transition to a new stable state can result in disastrous

structural responses. Therefore, accurate analysis concerning instability
or buckling and reliable appointment of the critical loads is crucial for

safe design of shell structures. The deformation pattern of the state after

buckling may also to be of importance as it affects the integrity and the

functionality of the over-all configuration.

Analytical solutions are available with which buckling loads can be cal¬

culated, though such analyses are restricted to basic and ideal shell ge-
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ometries, load distributions, and boundary conditions. By consideration

of geometric nonlinearity approximate solutions of sets of equations may
also provide information about the post-buckling state of a basic shell;

however, the efforts for the development of such codes appear to be un¬

pleasant. In addition, such types of special-purpose programs can exclu¬

sively be used for buckling analyses of shells which are of the geometry,

loading and boundary condition that were provided for. But due to the

numerical procedures developed in recent decades, above all the Finite

Element (FE) method, these obstacles regarding the limited adaptability
could be eased rigorously. In mechanical engineering the FE method is

commonly used and many commercial programs are available with par¬

tially sophisticated graphical user interfaces with integration into design
software. Present FE software allows to perform enveloping buckling

strength investigations also for complex geometries, material properties
and boundary conditions. On the basis of structure models buckling
loads can be calculated, and in consideration of large displacements and

mass densities the buckling as well as the post-buckling behaviour of a

shell structure can be reproduced, though with considerable computa¬

tion effort. Anyway, a buckling analysis of an axially loaded, unstiffened

cylindrical shell still can end in frustration after comparison of the anal¬

ysis result with test data, in that despite elaborate calculation technique
real shells may buckle already at loads less than a fifth of the values

predicted in analysis [62].

Because of the extreme discrepancy between prediction and test re¬

sults the buckling of axially-compressed thin-walled cylindrical shells

attracted much more attention in the past than many other problems in

structural mechanics. Real structures contain imperfections, i.e. irregu¬
larities in shape, material properties, boundary conditions, stress distri¬

bution, and so on. In classical buckling analysis however ideal conditions

are considered, and FE models in general base on design drawings and

therefore also approximate the structure without any deviations from

nominal dimensions and geometries. The path-setting treatment of this

problem has been published by (Koiter[54]) for cylindrical shells in

order to define a sensitivity parameter that might allow for a classifi¬

cation of such shells with reference to their imperfection sensitivity. In

these analyses the assumed shape of the geometric imperfection is based

on the buckling pattern for the ideal cylinder, see also (BUDIANSKY &

Hutchinson [20]), and many other references in the following years.

Later (Arbocz [8]) has devoted a significant effort to the measurement

of the real shape of test specimens, to the calculation of the buckling
load of such geometrically imperfect structures and to the correlation
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with related test results His effort aims at the definition of quality cri¬

teria allowing for the assignment of knockdown factors to be applied to

the theoretical buckling load values obtained for ideal shells

The analyses to the dissertation on hand were performed subsequent to

the activities contributing to the European project DEVILS1 which fo-

cussed on the correlation of buckling loads of laminated test cylinders
with analytical and numerical predictions, including the best available

information of geometrical irregularities Numerous FE calculations had

been conducted until it was concluded that a satisfying and useful agree¬

ment between experienced and predicted buckling loads for such cylin¬
ders can be achieved if their measured imperfections are included in the

analysis [60] It was found that the consideration of imperfections re¬

quires the use of nonlinear FE analysis methods which take geometric

nonlmeanty into account Further, to allow for description of all po¬

tentially critical deformation patterns for near isotropic cylinder shells a

mesh size of the finite elements not wider than 0 5a/Rh is recommended2,
based on the decay length of edge bending disturbances [81, 60] The

applied nonlinear buckling analysis method and the modeling of circular

cylinders with four-node linear shell elements finally provided the ba¬

sis for the FE analyses conducted for the studies described later in this

thesis on cylinders having single dimple imperfections

The effect of geometric imperfections and the crucial importance of their

consideration in buckling analysis of cylindrical shells under axial load

has been generally accepted for years However, the parameters required
for an application of real irregularities in a FE analysis are difficult to be

specified And measured values of real imperfections for the design of any

new shell are hardly available In the absence of such data alternatively
notional patterns of initial deviations from the nominal shell geometry

may be introduced to intentionally weaken the stiffness of a structure

model For instance, following KoiTER's studies several commercial FE

programs provide procedures with which buckling patterns that result for

perfect shell geometry can be added to a shell model prior to an analysis
This method, in principle, allows to incorporate geometric imperfections
also in an early design phase and without later expensive gauging of shell

surfaces

Classical buckling patterns of ideal cylinders may be described with har¬

monic displacement functions and differ basically in the number of waves

1Brite-Euram project BE-7550 DEVILS "design and validation of imperfection
tolerant laminated shells"

2R nominal cylinder radius, h shell wall thickness
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(a) (b)

Figure 1.1: (a) Typical buckling pattern of an isotropic, unstiffened circular

cylinder, and (b) cylinder having a single localized, inward, dxmple.

in tangential and half-waves in axial direction, see Figure 1.1 (a). For

safe shell design that imperfection shape is significant which yields the

minimum buckling load. But, in general the wave numbers as well as

the amplitude(s) of such buckling modes which contribute to the most

damaging imperfection pattern are not known a priori. Thus, due to

the lack of adequate imperfections parameters, shell structures still have

to be designed by use of reduction factors to be applied to the analyt¬
ical buckling loads for perfect shells. These factors recommended for

shell design consider smallest empirical values and hence provide criti¬

cal loads which appear to be rather conservative. For immobile cylin¬
der structures underestimations of the effective load carrying capacity

might be acceptable, in light-weight construction however surplus shell

material runs counter to any effort to minimize transport energy con¬

sumption. Moreover, such instructions exist for steel and other isotropic
shell materials but not for laminated composite cylinders, for instance.

That is, in practice for a real composite cylinder without empirical data

regarding irregularities and without sufficient analysis experience a seri¬

ous prediction of the lowest buckling load to be expected appears hardly

possible. Consequently, the safe usability of composite shells might be

challenged though in aerospace these materials have become more and

more important.

Similar to real shell surfaces the "mathematical" imperfections that re¬

semble buckling patterns of ideal cylinders consist in a number of dimples
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(Fig. 1.1 (a)), but these are evenly distributed over the entire shell sur¬

face and arranged side by side, alternately inwards and outwards. Thus,

they reproduce localized irregularities like single dents (inward dimples)
or bulges (outward dimples) of different amplitude inadequately. The

stress and deformation states of a shell with randomized single dimples
of various size are irregular and can not be deduced from the states

which result for ideal-shell-buckling mode imperfections. The distribu¬

tion of the stresses in and in the vicinity of any single dimple in a shell is

hardly known as it results from changes in local shell curvatures and in¬

terferes with that of adjacent dimples as well as of any further curvature

variations. On the occasion of the mentioned European project, nonlin¬

ear FE analyses of an axially loaded laminated carbon-fiber-reinforced

plastic (CFRP) cylinder were performed applying its measured imper¬
fection pattern as initial shell geometry that included a few relatively

large discrete dents. Different from other analyses and shells, in this

case the calculations result underestimates the experimental values no¬

tably. The extraordinary result provoked further analyses focusing on

the damaging effect of localized dimple imperfections. Subsequent to the

successful conclusion of the European project the relating investigations

were continued within the scope of the present dissertation.

To investigate the particular influences of a single initial dimple on the

instability behaviour of axially compressed cylinders systematically, and

separate from any impact of other irregularities, discrete parametric
dents or bulges were added to FE models of unstiffened circular cylinders
of otherwise perfect geometry, see Figure 1.1(b). The chosen imperfec¬
tion shape, specified with single-periodic cosine functions, allowed for to

vary the initial amplitude, the initial circumferential width as well as

the initial axial height of the dimples independently of each other, and

also irrespective of the buckling behaviour of the perfect shell. With re¬

gard to the absence of practical design recommendations for laminated

composite cylinders the study on hand covers the analysis of isotropic

as well as of laminated CFRP shells.

This thesis deals again with the structural stability of "simple" closed

and unstiffened circular cylinders and the analysis thereof. Shell struc¬

tures like fuselages in general consist of panels, frames, stringers, cut¬

outs, and other components of different sizes, geometries, and mate¬

rial properties. The choice of the rather "academic" cylinder shells for

the further investigations bases on the extraordinary sensitivity of their

buckling resistance to geometric imperfections under pure axial loading.
That is, it was assumed that any potential improvement of the reliability
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and accuracy of the buckling load prediction for such axially compressed

cylinders will also advance the calculation of the load carrying capacity
for more commonly used, general shell structures of arbitrary loading.

The finite element analyses of cylindrical shells having localized, para¬

metric dimple imperfections aimed at finding answers to the following

questions:

• Are there single, localized initial dimples (Fig. 1.1 (b)) which re¬

duce the nominal axial buckling load of an unstiffened circular

cylinder more than imperfections derived from classical buckling

patterns for ideal shells (Fig. 1.1 (a))?

• Is there a worst geometry of such a single dimple imperfection?
That is, are there initial aspect ratios of the dimple that damage
the most?

• Is the effect of inward dimples (dents) on the axial cylinder stability
the same as of outward dimples (bulges)?

• Is the instability behaviour the same for isotropic shells as for

laminated composite shells (anisotropic) having such a localized

dimple imperfection?

• Is there an important interaction between two initial dimples?

An objective of this thesis was to provide a tool which enables the FE

analyst to define a notional single dent or bulge that reduces the axial

stability of a cylindrical shell similarly to the most damaging imperfec¬
tion to be expected for the real shell. Several parameter studies of the

influences of the dimple size, shape, and amplitude on the load-carrying

capacity of circular cylinders were conducted. The results of these stud¬

ies served to answer the questions above. Additionally, the output data

contains detailed information about the effects of local imperfections in

FE buckling analyses which is helpful for the set-up of reliable repro¬

ductions of real geometric irregularities of cylinders as well as of general
shell structures.

The dimple-parameter studies required a large amount of static and

transient dynamic FE analyses. Most of the numerical calculations per¬

formed were nonlinear buckling analyses, i.e. nonlinear static analyses
with intermediate linear eigenvalue extractions. To manage the large
number of shells with different bucking loads and behaviour considered,
the nonlinear buckling analysis was adapted for an adaptive load step
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control which utilizes eigenvalues, calculated after a selected number of

small loading steps, to determine the stability of pre-bucklmg states of

stress and deformation For a selection of cylinders and dimples addi¬

tional nonlinear transient dynamic analyses were conducted with signif¬
icant inertia damping introduced in order to research into the particular
deformation processes of such shells under axial loading Although the

FE analyses discussed in this thesis are limited to axially compressed cir¬

cular cylinders of linear-elastic shell material, on principle, the analysis
methods used are applicable also for stability investigations of any other

structure, load case and material behaviour To support their potential

applications for other buckling problems the linear and nonlinear static

as well as the transient dynamic FE analysis methods are described in

detail As reference parameter settings for such calculations are hardly

available, the full Chapter 3 is dedicated to the description of the non¬

linear buckling analysis and the transient dynamic analysis as well as

to related formulations and procedures (eg Updated Lagrangian formu¬

lation, Newton-Raphson algorithm, implicit "single-step Houbolt"

method) The reproduction of the algebraic basis of the eigenvalue prob¬
lems involved and the origin of the so-called initial-stress or geometric

stiffness matrices was prioritised, nevertheless, the explanations cover

also the buckling analysis methods frequently addressed in the context of

buckling, but whose application for axially-compressed imperfect cylin¬
ders appears less convenient (linear buckling analysis, explicit time inte¬

gration, arc-length methods)

1.1 Shell Buckling in Brief

Buckling of shells is a vast subject whose comprehensive treatment re¬

quires entire books Various specialized books and articles devoted to

shell buckling exist [15], eg (TiMOSHENKO & Gere [76]), (Brush &
Almroth [18]), or (BUSHNELL [21]) This section contains only sum¬

mary of the relevant terminology and an explanation of basic instability

phenomena and buckling analysis methods addressed in this thesis More

detailed descriptions of analytical and numerical methods used for the

prediction of the load carrying capacity of circular cylinders follow in

separate chapters
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1.1.1 On Instability Phenomena

The static stability or instability of a structure is a central feature of its

equilibrium state. In general, stable equilibrium is referred to structures

which, slightly displaced from their equilibrium position, eventually re¬

turn to the initial position after removal of the disturbance; otherwise,

disproportionate response denotes unstable equilibrium. Loading of shell

structures over their stability limit results in sudden and accelerated in¬

crease of deflection. Instability phenomena are dynamic processes of

large displacements and rotations; however, for analysis mostly the un¬

critical states prior to instability are focussed, following Euler's purely
static equilibrium view of structures in their slightly deformed state [31].

Sequenced states of stress and deformation of a shell structure under

changing load are often depicted by means of load-deformation curves

which correspond to equilibrium paths. Characteristic runs of two types

of instability failure are illustrated in Figure 1.2. The two graphs rep¬

resent two different basic instability failure phenomena generally known

in static analysis of perfect shell structures: (a) bifurcation buckling and

(b) nonlinear collapse.

pre-bucklmg state post-buckling state

bifurcation point

dary path

nary path

pre-bucklmg state post-buckling state

limit load

displacement

(a) bifurcation buckling

displacement

(b) nonlinear collapse

Figure 1.2: Characteristic load-deflections curves for (a) bifurcation buckling
and (b) nonlinear collapse. Dashed arrow in (b) refers to sudden "snap-trough"

for load-controlled compression.
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Bifurcation buckling refers to an analytical model where at the bifur¬

cation point a further equilibrium path branches off from the primary

equilibrium path with a different load-displacement characteristic Thm,

axially-compressed isotropic cylinders with perfect shell-geometry, for

instance, first deform axisymmetrically along the primary path to a bi¬

furcation point, see Figure 1 2 (a) Then, on the secondary path the

deformation mode is non-axisymmetrical The initial failure at the bi¬

furcation point is characterized by a change from the initial axisymmetric

to rapidly growing non-axisymmetrical deformations The displacements

prior to bifurcation buckling are assumed to be small, what allows to per¬

form linear eigenvalue analyses to determine bifurcation points Due to

the nature of the mathematical formulations involved, bifurcation buck¬

ling is also commonly referred to as "linear buckling"

Contrary to the linear primary paths for bifurcation buckling, that for

nonlinear collapse is not straight-line, see Figure 1 2 (b) with increasing

loading the deformation increments increase, and at the collapse or limit

load the slope of the load-deflection curve is zero With focus on the

absence of forks along the equilibrium path this instability behaviour

with nonlinear load-displacement characteristic is also called limit-load

buckling Further, nonlinear collapse is also generally known as "snap-

through" ,
a label stemming from shallow arches and spherical caps under

increasing, uniformly distributed lateral load after having passed a cer¬

tain limit load the caps and arcs suddenly snap towards a state which

resembles the original structure in an inverted form [21] The transi¬

tion from axisymmetric to other axisymmetric patterns of some circular

cylinders may also be mentioned as an example for nonlinear collapse In

this case the instability is connected with relatively large displacement

amplitudes without a significant change of the shell pattern Basically,
limit-load buckling of shells requires analysis in consideration of geomet¬

ric nonlmeanty

The definitions and terms describing structural instability phenomena
are hardly unified The expression "buckling", for instance, is often used

synonymously for bifurcation buckling, but may also cover all types of

instability failure3 Bifurcation buckling is based on mathematical for¬

mulations of equilibrium which give theoretical buckling loads (bifurca¬
tion points) and respective buckling patterns, however, the displacement

amplitudes of these buckling patterns as well as of the deflections after

instability are not considered and any displacements prior to mstabil-

3German language further distinguishes between "Beulen", le "buckling" of

plates or shells, and "Knicken", le "buckling" of trusses
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ity are presumed to be small. Nonlinear collapse in turn refers to de¬

formation process patterns which also cover considerable amplitudes of

displacements already prior to instability. Based on observations this

type of instability failure may also be called "buckling" as during tests

after reaching the limit load visible dents or bulges emerge. On the

other hand, any nonlinear collapse with deformation pattern after the

instability, which differs from the patterns before the instability solely
in displacement amplitude, may also be regarded as a matter of "large

displacements". Such definition confines "buckling" to transitions from

the pre-buckling to a post-buckling state with a distinct change in the

deflection mode and not only in a noticeable increase in amplitude; con¬

sequently, a shell having initial dents similar to those observable after

the instability would flex but not "buckle". However, in a less restrictive

solution of the semantic dilemma the term "buckling", or expressions
like "nonlinear buckling" or "limit-load buckling", could also be used

for cases where at instability the lateral displacements are suddenly ac¬

celerated, ignoring wether the shell geometry prior and after instability
resemble each other. Similarly, for the thesis on hand the buckling of

axially compressed cylindrical shells was regarded as a dynamic process

with rapid movements of the shell in radial direction when exceeding the

stability limit, associated with a drop of the axial cylinder stiffness.

axial displacement u axial displacement u

(a) (b)

Figure 1.3: Typical axial load-displacement curves for axially compressed cylin¬
ders: (a) theoretical, (b) experimental.

Both equilibrium paths in Figure 1.2 display the process of compressive
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load in dependence of displacements. In theory, for bifurcation buck¬

ling radial displacements are commonly used as abscissa as they refer to

scaled amplitudes of harmonic deformation modes (eigenvectors, "buck¬

ling modes" ) which are assumed to be zero prior to bifurcation buckling
and non-zero positive or negative afterwards. But, for cylindrical shells

in most cases the displacement direction considered in a graph is or¬

thogonal to the shell normal and parallel to the load action direction.

In Figure 1.3(a) a typical equilibrium path for bifurcation buckling of

an axially compressed, thin isotropic cylinder shell with perfect geome¬

try is shown. The axial load (axial compressive force) is plotted versus

the axial edge displacement (end-shortening) as indicated in the graph.
The primary equilibrium path is again straight up to the bifurcation

point. The secondary path in turn intersects with the primary path in a

small angle and first follows that line re-decreasing in load as well as in

displacement. This progression of the theoretical secondary equilibrium

path is a particular feature of perfect cylinders under axial loading and

aggravates correct path-tracing in numerical analyses.

In engineering mechanics the definition for bifurcation buckling of thin-

walled cylinders is based on the assumptions that the pre-buckling be¬

haviour is linear, that the displacements prior to buckling are small, and

hence that any initial shell deformations may be neglected. From this

follows that in principle buckling loads of cylinders having geometric

imperfections cannot be referred to bifurcation buckling. As the ampli¬
tudes of initial shell deformations increase continuously up to instability,

pre-buckling deflections have to be taken into account, and depending
on the deflection amplitudes the primary equilibrium path is nonlinear.

The two dashed lines added to Figure 1.3(a) follow typical responses

of cylinders with initial deformations of small and moderate amplitudes

(upper and lower curve, resp.): the buckling loads are considerably re¬

duced compared to the bifurcation point of the perfect shell; and at the

maximum load the slope of the load-displacement curve is zero. Thus,
the instability behaviour of imperfect shells are more of the nature of

nonlinear collapse or limit-load buckling. Anyway, for initial deflections

of small amplitudes that resemble theoretical buckling patterns of per¬

fect shells, KoiTER developed a theory which allows to approach the

load-displacement curves of imperfect shells asymptotically to the pri¬

mary and secondary paths for bifurcation buckling of respecting perfect
shells.

In general, the progression of the axial load versus the axial displace¬
ment recorded during tests of cylinders differ from theoretical equilib-
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rmm paths as illustrated in Figure 1 3 (a) At instability, a cylinder

responds with rapid axial edge displacements in case of axial load as

maintained loading parameter, whereas for displacement-controlled com¬

pression after instability the axial load drops down to the load level of

the next stable equilibrium state The almost horizontal and vertical

doted lines in Figure 1 3 (b) idealize such behaviour of cylinders under

load and displacement controlled axial compression, respectively

The load-displacement curves in Figure 1 2 and 1 3 refer to the buckling
of simple structures and single parts, in particular to the elastic buck¬

ling of axially-compressed, thm-walled unstiffened circular cylinders of

medium length In these cases the buckling load of the structure is simply
the maximum load measured in compression tests or the smallest bifur¬

cation point in calculations for perfect geometry But in many practical
cases the load-carrying behaviour is not as distinctive as shown in these

graphs For component assemblies like light-weight structures consisting

of several shell members, for instance, the buckling of one component

does not necessarily lead to the collapse of the entire structure as long
as other, still stable components support an additional loading In such

situations a partial instability failure of a single structure part prior to

the instability failure of the entire structure occurs Consequently, for

such cases regulations are needed which give information about what

load level are to be classified as critical and assessed as the actual buck¬

ling load for the structure - the smallest value among the buckling loads

for each single component or only the limit load at which the entire

assembly collapses Although adjustments of the definitions and the ter¬

minology hardly simplify instability analysis, an appropriate distinction

between the instability phenomena involved is important in respect of

their criticahty and their treatment in the strength verification require¬

ments of the structure to be investigated In Figure 1 4 the further

distinguishing between partial or local buckling and total collapse of

a structure is explained by means of an load-displacement curve typi¬

cal for stringer-stiffened shell panels This kind of component assembly

consisting in a cylmdncally curved shell panel and frames is common

practice, mainly in aeronautical engineering4 In this simplified exam¬

ple ideal connection between panel and frames is provided The lower

bend of the axial load-displacement curve refers to a local instability of

the shell surface in between the two frames After such local buckling
the load-carrying portion of the shell surface is strongly reduced But,

4See e g panels studied within the EC project POSICOSS "improved postbuck-

hng simulation for design of fibre composite stiffened fuselage structures"
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Figure 1.4: Typical axial load-displacement curve for an axially compressed

stringer-stiffened panel. Axial shortening u versus axial compressive load per-

unit length —Nx.

depending on the load carrying capacity of the frames alone, additional

loading can be supported up to the limit load of the entire panel struc¬

ture. The structure finally collapses totally only at the curve peak due

to failure of the frames. For commonly-used frames of isotropic material

this limit load depends on the geometry of the frames and the material

stiffness, but also on the yield stress of the frame material, for example.
Such instability behaviour of frames and other stiffeners is analogous to

the so-called plastic buckling of short columns where the ideal, classical

(Euler) buckling load is higher than the yield point load [28]. Anyhow,

although in general yielding, fracture and other material application lim¬

itations are important elements in an enveloping strength verification of

a real structure, for this thesis only ideal-elastic material behaviour was

considered for the analysed shells.

This dissertation deals solely with circular cylinders that have no addi¬

tional component parts applied. But for FE models of axially compressed

cylinders having a single, localized dimple imperfection yet particular
forms of local instability could be observed: at loads smaller than the

over-all stability limit of the entire cylinders, for some initial dimple sizes

and geometries the shell strips of the cylinder that cover the dimples flat¬

tened and buckled similar to flat plates (see later). Therefore, in this
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thesis the loss in axial instability of the cylinder locally within such shell

strips is also referred to as "local buckling", whereas "cylinder collapse"
denotes the limit load of the entire cylinder.

The terms pre-buckling and post-buckling are often applied to address

equilibrium states before and after an instability failure, respectively. For

shell structures with occurrence of local buckling, in principle again addi¬

tional specifications are needed since in such cases the pre-buckling states

of the entire structures cover the states prior to total collapse as well as

those before and after the local buckling. Hence, the post-buckling states

of locally buckled components are likewise pre-buckling states of the en¬

tire structures. To avoid confusion hereinafter the term "pre-buckling"
is always used in conjunction with over-all collapse. In general, structure

analysis deals with the load-carrying behaviour prior to the collapse of a

structure and the critical application limits. Likewise, the focus of this

thesis is on the pre-buckling behaviour - of cylinders (having dimple im¬

perfections). Nevertheless, the buckling and post-buckling behaviour of

cylinders with or without imperfections was (and is) of importance for

the applicability of the buckling analysis methods and the verification of

the quality of the analysis results.

1.1.2 On Buckling Analyses

The pre-buckling and buckling behaviour involved and the shape of the

equilibrium curve determine the applicability of the methods available

to calculate the critical loads for a structure. For bifurcation buckling as

depicted in Figure 1.2 (a) small pre-buckling deformations are assumed.

Hence, for such cases the smallest, critical bifurcation point can be ob¬

tained by means of direct solution of linearised equilibrium equations
and linear eigenvalue analyses. For limit-load buckling as illustrated in

Figure 1.2(b), however, nonlinear analysis methods are required which

allow for large displacements and rotations.

The load-carrying capacity can be predicted analytically solely for a few

basic geometries, boundary conditions and materials. But for ideal, thin-

walled unstiffened isotropic circular cylinders of medium length under

pure axial compression the classical axial buckling stress —acr in the

shell surface is given by the common formula [62, 28, 25]:

—acr = 0.605——
R

where R and h are the nominal cylinder radius and the wall thickness,
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respectively; E is the Young's modulus of the isotropic material with

a PoiSSON's ratio of v = 0.3. Multiplied with the cross-sectional area

(2nR h) a simple equation for the corresponding critical compressive ax¬

ial load is obtained with

Pcr = 3.8E/i2
.

These equations follow from bi-harmonic functions that solve the coupled

partial differential equations for hinged cylinder edges and infinitesimal

displacements. There are also similar close-form solutions of such Don-

NELL-type shell equations for axially compressed, thin-walled laminated

orthotropic composite cylinders. But for such shells the buckling load is

given in terms of the membrane, the bending and the extension-bending

coupling stiffnesses of the material. In this dissertation derivations of

these analytical solutions are presented; their application for the calcula¬

tion of axial cylinder buckling loads will be called the " classical analysis"
to draw a distinction from the numerical methods with finite elements.

Such classical analysis is applicable exclusively for perfect cylinder ge¬

ometry.

The linear buckling analysis is considered to be the standard reference for

more elaborate FE calculations on shells and any other structures under

static loading. It consists of the evaluation of an eigenvalue problem

resulting in eigenvalues and related normalized buckling modes. The

buckling load Pcr is obtained simply by multiplying the compressive
load P by the smallest eigenvalue Xcr. But, with such a linear buckling

analysis the type of instability to be expected cannot be determined. In

addition, deflection amplitudes are not taken into account.

During the loading towards the buckling load the geometry of a shell

changes. This can be considered applying a Lagrange formulation

that allows for large displacements and rotations. The applied loading
has to be subdivided into sufficiently small load or displacement incre¬

ments (steps). After a selected number of such increments intermediate

linear eigenvalue extractions may be performed to determine the sta¬

bility of the investigated pre-buckling state of stress and deformation

[31, 80]. At buckling, the intermediate buckling load of the nonlinear

pre-buckling state coincides with the buckling load [65, 17]. For the

study on hand this nonlinear FE method with intermediary eigenvalue

investigations was used as the principal analysis tool and is hereinafter

called nonlinear buckling analysis [81]. This term as well as the method

are hardly customary though standard Newton-Raphson procedures
are used to solve the incremental nonlinear equilibrium-equation itéra-
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tively. Thus, the nonlinear FE methods, the numerical procedures and

the eigenvalue problems involved will be explained in detail.

The standard Newton-Raphson procedures, used to solve the incre¬

mental nonlinear equilibrium equations iteratively, impose stepwise con¬

stant load parameter during the evaluation of the displacement field.

Severe difficulties can be encountered with limit loads where the load-

deformation curve becomes horizontal, see Figure 1.2(b) [31]. To over¬

come these numerical problems RlKS [69], Crisfield [26], Ramm [66]
and others developed the so-called arc-length methods which allow for

level modification throughout the iterations by introducing an auxiliary

equation which guides the solution to follow a certain path [46, 81].
These methods allow for equilibrium-path tracing at buckling loads also

for highly nonlinear carrying behaviour, in particular for "snap-trough".
For buckling analyses of axially compressed cylinders of perfect geometry
however they cannot be recommended because of the acute-angled run of

the axial load-displacement curves typical for these shells (Fig. 1.3(a)).
In order to trace the abrupt turn of these curves at the bifurcation point

very small arc-lengths and load steps are required.

Static FE analysis methods in general yield a buckling load and a respec¬

tive buckling pattern, but they give neither information about the post-

buckling load nor the the post-buckling pattern that can be observed

during tests. In turn, the patterns resulting from classical analysis (see
Fig. 1.1 (a)) in the majority of cases cannot be observed without tech¬

nical aid due to the high velocity of shape changes within the transition

from the pre-buckling state to a post-buckling state of equilibrium. This

transition is characterized by severe dynamic movements of the shell in

radial direction. In the meantime, FE software became available to re¬

produce this dynamic buckling process. If mass densities are specified for

the shell elements then a transient dynamic analysis can be conducted

in which each successive load or displacement increment is considered

being a dynamic step of loading applied to the deformed structure.

As the system remains always in a dynamic equilibrium this analysis
method allows the continuation of the iterations throughout the sudden

change of reaction forces and into the post-buckling states of equilibrium

[58, 16, 81]. For the studies on hand with relatively slow compression
velocities assumed (0.1 mm/s) the implicit "single-step HOUBOLT" oper¬

ator for time-integration [23] was preferred to the more common explicit

operators, but significant damping has to be assigned to control the dy¬
namic shell motions at buckling and to keep the number of stable time

steps as small as possible [61, 45].
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In contrast to the classical analysis, with the FE analysis methods not

only shells of perfect geometries but also such with imperfections can

be investigated However, any consideration of imperfections requires

to take large displacements and rotations into account That is, linear

buckling analysis of a shell with imperfect geometry is not adequate, for

such cases a nonlinear analysis (nonlinear buckling or transient dynamic

analysis) is mandatory

The imperative to always use nonlinear FE analyses dealing with geo¬

metric irregularities is a finding of the European project DEVILS^ on

the analyses of laminated cylinders with measured imperfections and

could be confirmed by the computations for the dissertation on hand

1.2 Outline of the Thesis

Based on the positive experience with the static buckling and dynamic
transient analyses of imperfect laminated CFRP cylinders within the

scope the aforementioned Brite-Euram effort a large number of such

FE analyses were conducted to investigate the pre-bucklmg behaviour

of unstiffened isotropic as well as laminated composite cylinders having

parametric dimple imperfections Figure 1 5 displays the assumed pat¬

tern of a localized imperfection in the form of a single dimple within an

otherwise perfect circular cylinder shell The mathematical representa¬

tion of the local variation of the shell radius r(ip, Ç) was included in a

Fortran routine provided to define the initial position of the nodes of

FE models The chosen shape of a parametric dimple allowed to investi¬

gate the influence of its initial dimple amplitude Wf,, its initial meridian

height If,, its initial circumferential width a&, and its axial position sys¬

tematically and independently of other geometric influencing variables

The dimple amplitude and its aspect ratio could be varied without any

interaction or limitations and free from any pre-stresses

The buckling behaviour of the unstiffened isotropic and laminated shells

having such single dents or bulges was analysed solely by means of non¬

linear FE methods, consistently taking large displacements and rotations

into consideration For the imperfection shapes and sizes considered no

test results were available against which these numerical analysis results

could have been benchmarked Instead, they are supported by convmc-

BBrite-Euram project BE-7550 DEVILS "design and validation of imperfection
tolerant laminated shells"
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Figure 1.5: Assumed shape of a single localized dimple imperfection. Initial

amplitude Wb, initial circumferential width ab, and initial axial height lb are

independent parameters.

ing results of such calculations for similar cylinders with perfect geometry
and for laminated CFRP cylinders having measured imperfections. The

results of the ideal circular cylindrical shells could be compared with

values achieved with classical buckling analyses. And for the analysis
results of the CFRP shells with measured imperfections finally test data

was available for comparisons.

The nonlinear buckling and transient dynamic analyses of perfect unstiff¬

ened cylinders and such cylinders with measured imperfections applied,
conducted within the scope of the project DEVILS, provided the basis

for plausible analyses of such cylinders having a single localized dimple

imperfection. The results of these reference calculations are discussed in

Chapter 4 and Chapter 5. For the parameter studies containing a large
number of imperfect shells with widely scattered buckling loads the non¬

linear buckling analysis was modified to provide an automatic load step

control (Section 6.5).

The dissertation covered the buckling analyses of isotropic as well

as of anisotropic laminated composite cylinders, of such shells with
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<
ideal geometry

dimple imperfections

ideal geometry

measured imperfections

dimple imperfections

Figure 1 6 Shell materials and geometries considered

ideal geometry, measured imperfections, and dimple imperfections, see

Figure 1 6

The isotropic cylinders considered are of aluminum and have nominal

radii R between 187 5 mm and 1000 mm, lengths L between 150 mm

and 1000 mm, and wall thicknesses h between 0 75 mm and 1,5 mm

(100 < R/h < 1000, 0 4 < L/R < 5 1)

The studies on the anisotropic carbon-fiber-remforced plastic shells was

focussed on non-symmetrically6 laminated cylinders with a nominal ra¬

dius of R = 250 mm, a length of L = 510 mm, and with eight or ten layers
of 0 125 mm stacked with different alignments

As the buckling loads and the buckling behaviour of ideal laminated

shells in general not only depend on the shell geometry but also on the

laminate layout (see Section 4 2 2), also a dependency of material param¬

eters on the sensitivity of the load-carrying capacity of such cylinders to

single dimples was presumed Thus, in order to investigate the effects of

the nominal cylinder geometry (L, R, h) on the results due to variation

of the dimple shape and size (wi,, h, a>b) alone, first a series of isotropic

cylinders was analysed varying the initial dimple shape as well as the

6The stacking sequence of the laminate layers with different fiber orientation is not

symmetrical with respect to the laminate middle surface what results in stretching-

bending coupling

laminated cylinders
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nominal cylinder geometry systematically.

The investigations of the buckling behaviour of cylinders having single

dimple imperfections was limited to thin-walled cylinders of medium

length

e with perfect circular edges

© under pure axial compression,

© to cylinders with either isotropic, linear elastic homogeneous shell

material or ideal laminates of homogenous linear elastic layers,

© to cylinders of constant shell thickness and

© without stiffeners or cutouts between the two shell edges.

Although in the classical analysis of perfect cylinders simply supported

cylinder edges are considered, for the FE analyses always clamped

boundary conditions were applied. In majority of the cases infinitely stiff

endplates were simulated causing uniform end-shortening. Anyway, al¬

ternatively analyses were conducted of shells with uniformly distributed

edge loads but non-uniform edge displacements and the results illus¬

trated in this thesis to point at the important differences, see Section 6.4.

For the isotropic as well as the laminated cylinders the influence of the

initial amplitude Wb of a dimple with a given initial width at, and a given
initial height /& on the buckling behaviour and the buckling loads was

studied. Furthermore, for fixed initial amplitudes the initial circumfer¬

ential width ai, and the initial meridian height /& of the dimple were

searched which give the minimum axial stability for a selected cylinder.
The analysis results, i.e. the effect of these "worst" non-axisymmetric
dents and bulges could then be compared with that of local axisym¬
metric dimples and that of enveloping imperfections in form of classical

buckling patterns. Finally, for an isotropic reference cylinder having an

initial dent the impact of a second identical initial dent was investigated
for different relative positions.

In Figure 1.7 the analysis results for an axially compressed isotropic

cylinder having a single inward or outward dimple of various initial am¬

plitude are shown by way of example. The resulting buckling loads Pcr

are normalized in respect to the classical buckling load for ideal geome¬

try, 3.8 E/i2 = 599 kN, and plotted against the initial dimple amplitude

Wb, which in turn is normalized with reference to the wall thickness h.



1 2 Outline of the Thesis 21

p

3.8 Eh2

10 -,

09 -

OS

07 H

06

05 ^

04

03 H

02

oi H

00

-1

nonlinear buckling analyses

transient dynamic analyses

1

bulges

-0 6 -0 4 -0 2

< outwards

0 02

Wb/h

dents

04 06

inwards >

-9

-9

Figure 1.7: FE Analysis results of an unstiffened aluminium cylinder having

one inward or outward dimple at half the cylinder length. Buckling load Pcr,
normalized in respect of the classical load, plotted against the initial amplitudes

Wb, normalized with regard to the wall thickness h, for nonlinear analyses as

indicated. Cylinder with nominal radius R = 250 mm, length L = 510 mm, and

wall thickness h = 1.5 mm, dimples with initial height h = 67 mm and width

ab = 181 mm.

The exemplifying cylinder is of nominal radius R = 250 mm, length
L = 510 mm, and wall thickness h = 1.5 mm. The initial axial height

lb = 67mm and the circumferential width ab = 181 mm of the single dim¬

ple in turn correspond to the lengths and aspect ratio that resulted in the

lowest axial cylinder stability for a given initial depth oîwb/h = 0.1. The

right half for positive amplitude gives the results for dimples pointing
inward (dents), the left half those for dimples pointing outward (bulges).
The loads obtained by means of nonlinear buckling analyses are marked

with bold dots and linked with dashed lines, the loads achieved with

transient dynamic analyses are tagged with small gray rhombi.

Probably first the distribution of the bold dots, i.e. the nonlinear buck¬

ling analysis results, attracts attention as it is not symmetric in respect

to the abscissa (zero amplitude = ideal shell). For inward dimples range
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lower buckling loads resulted than for outward dimples of like absolute

amplitude \wb\, hence the reduction of the axial cylinder stability due to

a single dimple is strongly influenced by the orientation of the dimple

amplitude Wb This asymmetry might be unexpected as in classical anal¬

ysis the orientation of the radial displacement amplitude is irrelevant for

the resulting axial buckling load Furthermore, for dents initially deeper
than a certain marginal depth w^/h with nonlinear buckling analyses,
for a given initial dent depth, more than one buckling load could be

obtained (in Fig 1 7 w^/h « 0 45) Based on similar results for all

cylinders having a dent7 considered, dents of deeper initial depth Wb/h
than wl/h were denoted as "deep dents", such with smaller initial ampli¬
tude as "shallow dents", see Chapter 6 6 1, page 275, and Chapter 6 6 4,

page 347 In addition, the decrease of the axial stability with increasing

initial depth Wb is largest for shallow dents, for deep dents with further

increase in Wb the additional stability reduction is only small, or the

buckling loads even increased again Finally, a minimum buckling load

can be spotted for a dent of initial depth of Wb/h = 3/4 For outward

dimples, however, in contrast to inward dimples with nonlinear buckling

analyses always only one buckling load could be obtained

The extraordinary load-curves which resulted for static FE calculations

of cylinders with inward dimples provoked further investigations by
means of transient dynamic analyses of several selected shells Particular

attention was payed to the local changes in the hoop curvatures in and

besides the dimples during the compression and buckling process These

curvatures were analysed via the circles given by the position of three

adjacent nodes around the cylinder circumference

From the results of the transient dynamic analyses exemplifying in

Figure 1 7 (gray rhombi) for an isotropic cylinder having a dent or a

bulge of various initial amplitude further particularities in the buckling
behaviour of such shells can be taken For shallow dents exceeding a cer¬

tain initial depth two loads could be identified, in contrast to the static

nonlinear buckling analyses which for shallow dents (wb < w^ ) gave only
a single load close to the lower value obtained with transient dynamic

analysis But, for deep dents (wb > w^) the transient dynamic analyses

gave only one buckling load whereas by means of the static nonlinear

buckling analyses two loads were obtained Finally, for outward dimples
of initial elevation larger than a certain value, similar to some inward

dimples, in addition to a first load a further higher buckling load was

7Apphes for non-axisymmtric, localized dents of initial height small compared to

the cylinder length
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found. Despite the additional complexity and variety in the distribution

of the buckling loads for dimples of various initial amplitude, by means of

such transient dynamic analyses and the tracing of the local decrease in

shell curvature the observed differences between shallow dents and deep
dents could be associated with the progression of local flattening of the

shell strip over the dimple: in the case of shallow dents the flattening-
and the associated local loss in axial geometric stiffness-is sudden and

dynamic, in the case of deep dents however slow and smooth.
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Figure 1.8: Analysis results for the isotropic cylinder in Fig. 1.7 above having

a dent of initial depth Wb/h = 0.3. Nonlinear buckling analysis (a) with the

applied loads and the buckling loads intermediately calculated at selected load

increments (eigenvalues); black dot marks the point of their accord interpreted

as the resulting nonlinear buckling load Pcr. Transient dynamic analysis (b)
with the reaction forces due to the applied axial compression; thin line refers
to results for the cylinder without imperfections.

By means of the isotropic shell already presented in Figure 1.7 but hav¬

ing an initial, shallow dent of initial depth Wb/h = 0.3 and again of

initial axial height /& = 67mm and circumferential width ab = 181mm

in Figure 1.8 the analysis results and the load levels to which in Figure
1.7 is referred to are demonstrated. In the left chart (a) the results of

a nonlinear buckling analysis are reproduced, whereby the applied axial
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loads (line) and the linear intermediate buckling loads (squares), all nor¬

malized, are plotted against the load increment number. After selected

load increments, which in present case are of constant step size, linear

buckling loads (square markers) were calculated per intermediate eigen¬
value extraction to determine the stability of the investigated state of

stress and deformation. At buckling the nonlinear state of equilibrium

(line) coincides with the buckling load, thus the point of intersection

(bold dot) was interpreted as the nonlinear buckling load Pcr used in

Figure 1.7 for Wb/h = 0.3; consequently, for states of additional loading

always intermediate buckling loads below the applied load resulted. In

the right chart (b) the results of transient dynamic analyses are graphed
for the shell with the initial dent as well for the cylinder of ideal geome¬

try. The normalized reaction forces are plotted versus the applied axial

end-shortening, using the identical ordinate scaling to that in (a). The

curve of the results for the cylinder having the initial dent (bold line)
follows linearly the straight load curve of the perfect shell (thin line) up

to a load level where the curve forms a distinct zigzag course. This level

is a first and local maximum in the equilibrium path of the imperfect
shell and corresponds to the buckling load found with the static non¬

linear buckling analysis, see bold dot in Fig. 1.7(a). An observation of

the altering hoop curvature in the dent apex showed that at this load

the dent suddenly snaps inwards to form a flattened shell strip of quasi

zero curvature and hence reduced geometric axial stiffness. This pro¬

cess will be referred to as "local buckling11 at a load below the load of

total "cylinder collapse". In contrast to the static analysis, which was

aborted due to "buckling", the transient dynamic analysis could pass

this local instability incident and the iterations continued with further

axial compression up to the maximum of the load curve. At this limit

load the entire cylinder started to collapse, and with increasing compres¬

sion the reaction force droped almost vertically towards a post-buckling
state. The thin line shows the results obtained with the cylinder with

perfect geometry for comparisons: in this case the curve is linear up to

the cylinder collapse load which is about 50 % higher than the limit load

of the cylinder having the initial dent.

The FE analyses of cylinders having a initial dimple yielded particu¬
lar deformation processes including different local buckling phenomena
which were hardly known from unstiffened circular cylinders with nei¬

ther perfect geometry nor with imperfections distributed over the entire

shell surface. Nevertheless, by means of systematic parameter variation

some interrelationships between the results and the nominal dimensions

of the cylinder and the dimple could be derived. It will be shown that
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the initial hoop curvature, given by the initial dimple depth and circum¬

ferential width, is the crucial factor for the difference between "shallow"

and "deep" dents and hence for the process of the numerical buckling

analyses. Furthermore, it was found that the cylinder length L is also

decisive for the local deformation processes of the shell in and at the

initial dimple (local buckling) observed. The items listed below are a

selection of further conclusions drawn after the studies:

© The design recommendations in standards and literature consid¬

ered for thin-walled, unstiffened isotropic cylinders under axial

compression seem to be conservative if the nominal cylinder length
L as well as the radius R and the wall-thickness h are taken into

account.

© Shallow dents with an initial amplitude smaller than a certain

marginal depth w\jh provoke a distinct local buckling with a sud¬

den snapping inwards of the dent to form a local flattened shell

strip of reduced geometric axial stiffness. Deep dents with an ini¬

tial amplitude larger than w^/h, in turn, result in a continuous

flattening of the shell, if not initially flattened, without any dy¬
namic local buckling incident prior to the total cylinder collapse.

© Localized, shallow dents of particular initial circumferential width

ab and axial height /& reduce the buckling load as much as axisym¬

metric inward dimples of identical initial amplitude.

© Localized, non-axisymmetric bulges impair the load carrying ca¬

pacity less than localized dents of the same absolute initial ampli¬
tude \wb\, initial width ab and initial height lb-

© A non-axisymmetric, shallow dent of adequate initial width and

height may be as damageing as an evenly distributed imperfection-

pattern that is given by a classical buckling mode of initial ampli¬
tude wmn that is half the initial amplitude Wb of the dent with

wb = 2 • wmn.

© The difference between uniform edge loads and uniform edge dis¬

placements is important for cylinders having a single deep dent.

For uniform edge loads after local loss in stability due to a flat¬

tened dimple the cylinder collapses directly after local buckling.
The differences between clamped and hinged boundary conditions

however are not of importance as regards the axial-stability reduc¬

tion due to a single dimple at half the cylinder length.
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© For isotropic cylinders the initial axial heights of dents that reduced

the buckling load the most for a preselected initial depth is close

to the wavelength for classical axisymmetric buckling of a perfect

cylinder 2/c = 3A6^/Rh and increases with increasing initial depth

(see later, page 54). The initial widths of the "pessimum" dents

resulted between two to three times the initial height.

© The buckling load of a cylinder with single localized dent is only
little different from that of a cylinder having two dents of identical

size.

© For the laminated cylinders accurate and general predictions of the

minimum buckling loads and of critical dimple dimensions could

not be derived on basis of the cylinder geometry alone as the buck¬

ling behaviour patterns of such shells depend strongly on the lam¬

inate stacking. However, there was no indication that any lami¬

nated cylinder with any non-axisymmetric dimple will result in a

smaller buckling load than an isotropic cylinder of identical radius,

length and wall thickness also having a non-axisymmetric dimple.

Thus, the questions asked on page 6 could be answered. Additional

findings refer to "puzzles" that raised in the course of the investigations
of cylinders with a single dimple due to the manifold buckling behaviour

patterns observed. More details to these and further conclusions arrived

at are described in the Chapter 7. The related analyses results will be

discussed in Chapter 6.

Remarks on the structure of this thesis

In Figure 1.9 the content of this dissertation is depicted. The thread

partially diverges from the common format for publications in science,
introduction - method - result - conclusion, to emphasize the separation
of the analysis of perfect cylinders from that of cylinders having imper¬
fections. Hence, Chapter 5 on cylinders with distributed imperfections
commences with an "insertion" about theories and analysis methods for

such shells which completes the content of Chapter 2 on shell calculus

and the classical buckling analysis for perfect cylinders. In the last sec¬

tion of this chapter finally FE analysis results for laminated cylinders
with distributed (measured) imperfections are described. In Chapter
4 on results for perfect cylinders and also in Chapter 6 on single dim¬

ple imperfections in separate sections first the results for isotropic shells



1 2 Outline of the Thesis 27

THEORY, i FE ANALYSES,
\

METHODS i RESULTS

JL
,^J

2

3

''''»„„SSSS"
„SS""""'"*..

4

^:
-£

page 31 ff

page 63 ff

page 117 ff

Section 4.2.1

page 127 ff

Section 4.2.2

]? page 131 ff

Chapter

5

T^
V-5S8SM»"*"

a«»"8"
,/sss/""".

Chapter

6

^
^r
Chapter

7

page 153 ff

Section 5.3

page 175 ff

page 187 ff

Section 6.6

page 222 ff

Section 6.7

page 445 ff

page 479 ff

classical buckling analysis

perfect cyhnders

finite element methods

analysis results

perfect cyhnders

isotropic shells

laminated shells

imperfections

measured traperfecttons

laminated shells

—> single dimple

locahzed traperfecttons

isotropic shells

laminated shells

CONCLUSIONS

Figure 1.9: Thread of this thesis.



28 Introduction

are reproduced, followed by those for laminated composite cylinders, see

Figure 1.9 and the Contents listed on page ix.

Chapter 2 deals with DoNNELL-type shell equations and their solutions

for the buckling of axially compressed thin circular monocoque cylin¬
ders of medium length. The application of these formulas introduced

for isotropic and laminated orthotropic cylinders corresponds to the so-

called classical buckling analysis that is opposed to numerical buckling

analysis by means of finite element models.

In Chapter 3 the nonlinear finite element methods in general and their

applications for the stability analysis of shells in particular are described

in detail. The chapter covers the full description of the herein after

called "nonlinear buckling analysis" as well as of the "transient dynamic

analysis" of cylinder shells.

Chapter 4 is dedicated to the analysis results for several cylinders of per¬

fect initial geometry. Results of nonlinear buckling analyses and tran¬

sient dynamic analyses are discussed for isotropic cylinders, but above

all for laminated CFRP cylinders, and compared with results of classical

buckling analyses applying the closed-form solutions given in Chapter 2.

These results are later used as reference base to the results for the im¬

perfect cylinders.

In Chapter 5 the analysis of cylinders having imperfections distributed

over the entire shell surface is explained. The first two sections contain

Koiter's asymptotic theory, useful for small imperfections amplitudes,
and more general analytical solutions for investigations with harmonic

deformation patterns prior as well as after buckling. In the last section

nonlinear buckling analysis and transient dynamic analysis results are

discussed achieved for laminated CFRP cylinders with their measured

imperfection patterns applied.

Chapter 6 contains the major part of this thesis as analysis results and

the instability behaviour patterns of cylinders having single initial dim¬

ples are discussed. First sections deal with the above mentioned def¬

inition of the chosen parametric dimple, with the FE modeling of the

shells, and with the establishment of a nonlinear buckling analysis with

adaptive load step control. The 6th section describes the buckling of

isotropic shells with an initial dimple, partitioned into a subsection on

inward dimples and one on outward dimples. In further subsections

critical widths and heights of dimples, minimal load-carrying capacities,
stress distributions, cylinders having two identical inward dimples, and
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finally the influence of boundary conditions and FE-model modifications

are discussed. The 7th and last section is dedicated to laminated compos¬

ite cylinders having a single dimple. Partitioned into three subsections

again first the influence of the dimple amplitude is detailed, followed by
the description of critical dimple sizes and minimum buckling loads to

be expected for laminated cylinders having a dimple.

The thesis is concluded by Chapter 7 which summarizes the findings.

Finally, in the Appendices A, B, and C surveys of the nonlinear contin¬

uum mechanics, of the bending and buckling of plates, and of the initial

stress stiffness matrix used in nonlinear FE analysis are given, respec¬

tively. These items were appended to simplify cross-references by use of

a consistent terminology.
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Chapter 2

Classical Buckling

Analysis of Axially

Compressed Cylinders

In this chapter the differential equations are introduced used to ana¬

lytically describe the states of deformation and stress of thin, circular

cylinders. The shell theory considered bases on the KlRCHHOFF thin-

plate theory and on Donnell's approximations for thin shallow shells.

Finally, closed-form solutions of the set of equilibrium and compatibility

equations are given for thin orthotropic and laminated circular cylinders
under pure axial compression.

The application of these formulas corresponds to the hereinafter called

"classical buckling analysis" for simply-supported, thin mid-long cylin¬
ders of perfect initial geometry. These analytical formulations provide
the basis for comparisons with numerical buckling analysis results for

ideal cylinders as well as for the later study of cylinders having imper¬
fections.
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2.1 Shell Theory for Thin Circular Cylin¬
ders

Shells, like plates, are structure elements where one of the dimensions,
the wall thickness, is considerably smaller than the other two. The

local behaviour is assumed to be two-dimensional under plane stress and

the wall thickness constant during loading. Basically, shells are curved

structures whereas plates are initially flat. Due to the initial curvature

in shells the effects of the loading in the middle surface and bending
moments are stronger coupled than in flat plates since already very small

lateral deflections provoke strains.

In the classical linear plate theory for small displacements in-plane loads

are ignored or treated separately as a membrane problem. It is assumed

therefore that stretching of the middle surface is exclusively related to

external membrane forces and may be neglected in case of pure plate

bending. But, considering large deflections of plates, as for shells the

influence of bending on the membrane forces has to be considered. In

Appendix B the governing equations for pure plate bending, for plates
under combined in-plane and lateral loading, but also for plates with

large deflections are given which account for compatibility between the

strains and the deflection fields. For the set-up of the shell equations
the formulations for plates with large lateral deflections can be adopted.
On this account, the derivation of the relevant shell equations in this

chapter follows that in Appendix B for plates.

The shell theory may be used for the analysis of the stresses and the de¬

formations in thin shells considering different basic geometries, boundary
conditions and load cases. The buckling analysis of axially compressed
circular cylinders is only one of possible applications.

2.1.1 Kinematic Relations

This thesis deals with thin-walled, unstiffened cylindrical shells. As a

first permissible simplification therefore only simply curved shells, i.e.

shells solely curved about the cylinder axis are considered in the shell

calculus reproduced herein. Further, the shell wall thickness h is assumed

being essentially smaller than the cylinder radius R and remaining con¬

stant during loading. Finally, the transverse shear stress is considered

to be negligible small.
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Different variants of derivations of the general kinematic relations for

cylinder shells may be found. In (Doyle [31]), for instance, first the

deformations and strains are specified in cylindrical coordinates, then

linearised and finally converted to Cartesian coordinates. The subse¬

quent explanations follow this approach. In a cylindrical coordinate

Figure 2.1: Cylindrical coordinates for curved shell segment.

system (r, <p, x) the components of the displacements in the (r, y)-plane
of a curved shell are denoted by ur and uv, see Figure 2.1. The strains

in this plane are related to these displacements by

er =
dur

dr

r r d(p
1 dur du

1 du,.
(2.1)

Irip
r dip

'£_

dr

For thick shells the circumferential strain ev is nonlinearly distributed.

But for thin shallow shells these strains may be replaced with an approx¬

imate set [31]. Expanding the displacements in a Taylor series about

the middle surface (r = R) gives such an approximated deformation of

the shell in cylindrical coordinates:

ux(r,ip,x) ?a ux(ip,x) -

dur
~

S ~ö 7

dx

uv(r,<p,x) f« uv(<p,x)
( 1 dur

4
\R dip

ur(r,ip,x) Rt, ur(ip, x) 1

R

using the variable £ = r — R. The items with a bar,

(2.2)

hxi ^ip-,
and

denote the displacements of the middle surface. The first equation allows
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to provide for bending about the cylinder axis. The following strains

result from derivation of expressions above:

dux
t
d2ur

dx dx/

1 duv ur £ /d2ür düv\
£ip= Rlhp~

+
~R

~

r2 \jw~~ä<p) ' (2-3)

_

1 dux duv £ / d2ür duv\
vx R dip dx R \ dxd(p dx J

At this state, it is beneficial to convert these expressions to a more usual

form in a Cartesian coordinate system [31]. In Figure 2.2 the cylindrical

Figure 2.2: Cartesian coordinates for cylindrical shells.

coordinate system and a Cartesian coordinate system with y = R <p

in circumferential direction and x in axial direction is defined. The

normal z with its origin in the reference surface1 is pointed inwards,
thus in opposite to the cylinder radius. The displacements u, v and w

are oriented in x, y and z direction, respectively. Hence, with

R-<p —> y

— z

u

— V

— w

ux

U,r

1The reference surface is not necessarily the middle surface.
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the approximate displacements become

u{x, y, z) k, u{x, y) — z

v{x,y,z) ^v{x,y) - z

dw

dx

dw

dy

w{x,y,z) fnw(x,y) ,

and the strains are obtained accordingly

du d2w

dx dx2

dv w (d2x 1 dv

dy R \ dy2 R dy

Ixy —
du dv

dy dx
z\2

d2 1 di

dxdy Rdx

(2.4)

(2.5)

Again, the letters with a bar, u, v, and w, denote displacements in the

reference surface in x, y, and z direction, respectively.

1
u -

= Z(f)x

^"""1 i

w

c -jz }
t

? } X

Figure 2.3: Displacement in x direction due to rotation <j>x

The relations above were derived under the assumption that the nor¬

mals of the reference surface remain straight and normal to this surface

and that the transverse normal stress is negligible small (KlRCHHOFF
hypothesis, see Eq. (B.14)) [15, 31]. Therefore, the derivatives of the

lateral displacement w coincide with the negative rotations <f>x and <f>y as

shown in Figure 2.3, describing the slope of the middle surface normal

to its initial direction. According to the KlRCHHOFF thin-plate theory
it applies:
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That is, a vector perpendicular to the undeformed middle surface is

also perpendicular to the deformed middle surface. The terms v/R in

Equation (2.4) for v(x,y,z) and w/R in Equation (2.5) for ey may be

interpreted as a compensation of the initial, stress and strain-free "cylin¬
drical bending" of the shell, given by 1/1? which is to be added to the

rotation <f>y and curvature d2w/dy2. Economizing the use of accents and

indices, by use of the approximation w(x,y,z) « w in the subsequent

expressions the bar over the letter w denoting lateral displacements is

omitted.

In literature different expressions for the strains and curvatures in shells

than those in (2.5) may be found. In (Markus [78]) a survey of

some frequently mentioned shell theories (e.g. Donnell, TlMOSHENKO,

Sanders, Flügge) is given with concise lists of different contributions

to the strains and curvatures. The expressions in (2.5) correspond to

those in Reissner's theory [31, 78]. But, the probably simplest shell

theory is based on DoNNELL's approximations [73, 78] which is also

adopted for the "classical buckling analysis" of cylindrical shells pre¬

sented herein. Under DoNNELL's kinematic assumptions [29] for thin,
shallow shells with large R/h ratios the second terms in brackets with

derivatives of the tangential displacement (dv/dx, dv/dy) are neglected.
In this case, the strain distribution over the shell thickness h for thin

cylindrical shells and small displacements may be written in vector form

£x
du

~d~x
d2w
dx2

<

£y
> = < dv w

Wy-H
> +Z <

d2w

dy'

Ixy
\ J

du , dv

k
Tfy 'die

_

o d2w

dxdy

or abbreviated: £ = £ - ZK

(2.7)

The vector ë includes the strain distribution in the reference surface

and the vector k the negative curvature of this surface [40]. Note that

these equations imply small displacements, sufficient thin and constant

wall thickness (h <C R), and an infinitely large transverse shear stiffness.

To specify the governing equations of shells with large lateral displace¬
ments the relations of a bent plate may be used by considering the

influence of the initial curvatures to the displacements and stretches.

Thus, following the strain expressions for plates with large deflections in
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(B.28) and (B.29) of Section B.2.1, the components of the strain in the

reference surface are given by

e= <

£x
du

_|_
1 ( dw\

~d~x 2" \dx)

£y
> = < dv w , 1 ( dw\

Ixy
V J

du , dv , dw dw

~d~y ~d~x ~d~x~d~y

(2.8)

Note the presence of additional square terms in derivatives of the lateral

deflection w.

By differentiating the expression in (2.8) and elimination of û and v

the compatibility condition is obtained, which has to hold between the

components of strains:

d2ex d2ev dH
xy ( d\

dy2 dx2 dx dy \ dx dy

d2w (d2w

dx2 \ dy2
(2.9)

This differential equation differs from the compatibility equation for

plates (B.32) on page 524 only in the term +1/R.

Mœy+dMœ Nœ+dNœ

Figure 2.4: Segment of a cylindrical shell

For the stress resultants shown in Figure 2.4, i.e. the membrane forces

and the bending and twisting forces the same definitions as for plates
are valid (see Section B.2):

fh/2
Nx = o~xx dz

,

J-hi2

fh/2

Ny =
h/2

0~yy U,Z
,

-h/2

Nx

(2.10)

dz N„

-h/2
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for the membrane forces per unit length, and

ph/2 ph/2
Mx= I axx z dz

, My = I o-yy z dz

J-h/2 J-h/2
rh/2

MyX = TXyZ dZ = -MXy ,

J-h/2

(2.11)

for the bending moments and the twisting moments, respectively, again

per unit length. They are all functions of the coordinates x and y and

correspond to the strains in the reference surface ë and the curvatures

K.

Projection of the forces in Figure 2.4 in the x and the y-direction yields
the following two equilibrium equations for constant wall thickness:

dNx
|
dNxy

dx dy

dNy
|
dNXy

dy dx

= 0

(2.12)
= 0

whereby body forces and terms of inertia were ignored. Distributions

of lateral forces Qy in the second equation are also ignored due to the

hypothesis that the analysed shells are shallow [15]. The general spacial
differential equilibrium equation for a deformable body can be written

as

div a + b = pü

with the CAUCHY stresses a, the body forces b, the density p and the

velocities ü, see Section A.4 on page 504. For the classical buckling

analysis terms of inertia after pü and body forces as due to gravity are

ignored, and the two equations (2.12) follow from div a = 0 in the (x, y)-
plane. These equations are identical with the equilibrium conditions for

flat plates under in-plane load [40], again ignoring inertia and volume

forces, see Section B.2.1.

The projection of all forces on the z-axis and the balance of the moments

taken into account gives a third equilibrium equation (see Section B.2

for details):

d2Mx
+ 2

dx2

d2MyX
!
d2My

_

dxdy dy2

-

,T

d2w
,T

d2w
P* + N*dx2+2N*«dxdy+N«

(d2w 1

[dy2 +
R

(2.13)
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The lateral load +pz as well as the displacement +w are inward look¬

ing. An advantage of the DoNNELL-type shell equations above is the

possibility of recourse to the Airy stress function. By introducing such

a stress function /Fix, y) the concurrent solution of the two equilibrium

equations in (2.12) and the compatibility equation (2.9) may be simpli¬

fied, since the number of unknown functions is reduced from three (u, v,

w) to two (w, IF) [76, 73]. However, with the stress functions T{x,y) in

the differential equations the boundary conditions to be fulfilled for the

displacements in the reference surface can only be specified indirectly in

terms of the membrane stresses.

With the definitions

d2T d2T d2T
N- =

W "»=«? N- =

SSi
<2-">

the two equations in (2.12) are identically satisfied [76, 40]. The strain

field resulting from the stress function, in turn, has to satisfy the com¬

patibility condition (2.9).

Prior to define this strain field the constitutive law for the particular
shell is to be introduced.

2.1.2 Constitutive Laws

The main equations for the linear-elastic stress-strain relationships used

in this section are introduced in Section A.5, especially for general or¬

thotropic materials as well as for transversally isotropic materials like

laminated composites. The elasticity relations, which combine the mem¬

brane forces per unit length with the strains in the reference surface, for

homogeneous orthotropic material and constant wall thickness h may

be written in matrix form as:

{::]
[ Nxy )

or abbreviated: N = A ë
.

The membrane compliance matrix, i.e. the inverse of A, is frequently

An

An

0

A12 0

A22 0

0 A33

£x

£y

Ixy

(2.15)
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denoted with a lower case letter such as "a" which contains

1

Z]x h E„ h
0

E„ h

1

E„ h
0

0 0
1

"sy "

(2.16)

Consequently, the strains may be described in terms of membrane forces

per unit length as

ë=aN
,

or in terms of the stress function /Fix, y):

> =

an ai2 0

«12 «22 0

0 0 a33

d2T

W

d2T
dx2

_d2T
dxdy ,

(2.17)

Similarly to the membrane stiffness the bending stiffness, i.e. the elas¬

ticity relation between moments and the change of curvature, may be

set up in matrix form as:

Mx

My

Dn D12 0

£»i2 D22 0

0 0 D33

Kx

Ky

K

(2.18)

xy

or in abbreviated form: M = Bk

The components of the symmetric bending stiffness matrix D are the

following:

D

Eœh6
I2{l-uœyuyœ) I2{l-uœyuyœ)

"iuEi h Eu h

l/xy ^x h
^

0
I2{l-uœyuyœ) I2{l-uœyuyœ)

0 0 ^xy ^

Î2

(2.19)

In the formulations above, the axes of orthotropy are presumed to be par¬

allel to the Cartesian coordinates of the cylindrical shell. Furthermore,
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it is assumed that the membrane forces act centrically in the middle sur¬

face of the shell, that is, coupling effects between extension and bending
are therefore neglected

In the analysis of structures with general laminated composite shells, it

may not be acted on the assumption above that the interdependence of

membrane stretching (ë, N) and plate bending (k, M) is negligible In

fact, the linear relation of the stress resultants and strains or curvatures

in (2 15) and (2 18) have to be augmented with a coupling matrix B,
such that

N = Aë + BK M = BT£ + Dk (2 20)

The membrane stiffness matrix A, the bending stiffness matrix D, as

well as the extension-bending coupling matrix B may be determined

from the classical lamination theory

In a single ply the stress-strain relation is

crk = Qk£k (2 21)

where the stresses crk and the resulting strains £k = (e + z n)k are related

to the reference coordinate system (x, y) of the shell (see Section A 5)
[40] Insertion of (2 21) into the integrals to the resultants in (2 10) and

(2 11) yields the common definition for the matrices A, B, and D of a

laminate consisting of Npiy layers

N i

A= ^2 Qk(zk ~ Zk-l) ,

fc=l

-, Nply

B=±J£Qk(zl-zl_1), (2 22)
fc=i

-, Nply

r> = -J2^k(4-4-i)
fc=i

In Figure 2 5 the definition of the coordinates in a laminate and the

corresponding orientation of the layer stacking, the ply numbering re¬

spectively, is shown Note that the orientation of the stacking sequence is

of prime importance for non-symmetric laminates where the layers with

a given fibre orientation are not arranged symmetrically with respect to

the middle surface of the laminated shell (—> B^O, see Fig 2 5)

In the special case where only one ply forms the laminate and the fi¬

bres are oriented parallel/normal to the general structure coordinates
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Figure 2.5: Definition of stacking sequences and coordinates in laminates

(x, y), the membrane stiffness A and the bending stiffness D above cor¬

relate with the matrices introduced in the context of the relations for

orthotropic materials (2.15) and (2.18), respectively.

In the compatibility condition in the form of Equation (2.9) and the

equilibrium Equation (2.13) which have to be solved concurrently al¬

ready include components in terms of the lateral displacements w and

the membrane forces per unit length N, but also such in terms of strains

ë and moments per unit length M which have to be replaced. The trans¬

formation procedure used herein to obtain formulations of the compat¬

ibility and the equilibrium equation solely in terms of w and N or T

follows that of (Geier k, Singh [41]) and (Geier, Meyer-Piening k,

Zimmermann [40]).

The first of the two matrix equations (2.20) is solved for the strains at

the reference surface, that is:

£ = A_1(N-Bk) (2.23)

This result is substituted in the second equation of (2.20) to obtain a

semi-inverted form of the constitutive law as

M = BA^N + (D -BA^B) k

With the flexibility matrix

the eccentricity matrix

a = A

b = A XB

which is not symmetric (b ^ b)

(2.24)

(2.25)

(2.26)
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and the modified bending stiffness matrix

D = D-BTA XB (2.27)

the semi-inverted constitutive law may be written more concisely as [41,
40]

e = aN -b«

M = bJN + DK
(2.28)

2.1.3 Systems of Differential Equations

The compatibility condition (2.9) and the equilibrium equation (2.13)
may be transformed using the suitable constitutive law in Section above

together with the definition of the curvatures k.

For cylindrical shells with orthotropic material and without eccentrici¬

ties, with ë = aN inserted in (2.9) and M = D k in (2.13) the strains and

moments are substituted. Subsequently, the curvatures k are replaced

by derivatives of the lateral displacement w and the membrane forces per

unit length N by derivatives of the stress function T according to the

definitions in (2.7) and (2.14) respectively. The compatibility and the

equilibrium equations for thin shallow cylindrical shells with orthotropic

material, without eccentricities and with constant wall thickness finally
become the following form:

d4T
a-22- (2a 12 «33 )

d4T

dx2dy2
an

d4T

dxdy dx2

d2w 1_\
Thf2+RJ

(2.29)

Dn
dx4

2{D 12

d2Td2

2D33 )
dx2dy2

d2T d2

D22

dy4

d2T

dy2 dx2 dx dy dx dy dx2

cfu

dy2

(2.30)
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A similar system of two partial differential equations may be obtained for

thin laminated cylindrical shells using the semi-inverted constitutive law

in Equation (2.28), ë = aN - bu, M = bTN + Dk. With the matrix

components of the abbreviations a, b, and D introduced in (2.25) to

(2.27) the system of differential equations may be written as

Ö22

d4T

'dxT (2a 12 «33,

d4T

dx2dy2
«u

+ b

d4T

W
d4w

2a23
d4T

'21
d.̂ +{bll+b22-2h3)dx^-2

dx3dy

d4w
+ bl2W

2a13

d4T

dxdy3

(26
d4w

'23 »31;

1 d2

Rdx2

Dx
d\

dx4
2D12 2D33

dx3dy

d2w y
dx dy J

d4w

dx2dy2

(26
d4

13 »32,

d2w d2w

dx2 dy2

d4w

dxdy3

= 0

(2.31

D22

dy4

AD
d4

13

dx3dy
AD

d4
23

-&21
d4T

(bu+b22 -26

dxdy3

«
d4T

'33,
dx2dy2

031 (26

dx4

- (2623

d2T' d2w
|_ 2

dy2 dx2 dx dy dx dy dx2

d4T

dx3dy

'wd2T d2

13

d2T

032,

d4T

bl2W
.

d4T

dxdy3

(2.32;

dy2

1

R
= Pz

The system of the two coupled fourth-order differential equations (2.29)
and (2.30) was derived by (DoNNELL [29]) accordingly for isotropic shell

material [15]. The nonlinear equations above form the basis for the anal¬

ysis of orthotropic and laminated cylindrical shells under axial compres¬

sion, bending, torsion as well as under external pressure. Approximate
solutions with simultaneous consideration of eight boundary conditions

may be found by the use of energy methods and approaches for the

functions w(x, y) and /Fix, y) (see Section 2.3). For close-form solutions

further approximations and simplifications of the set of equations are

conducted.
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2.2 Buckling of Perfect Cylinders — the

Classical Solutions

The method to attain formulas which specify the buckling load of cylin¬
drical shells is in principle mechanical similar to that for Euler column

buckling or for buckling of flat plates as shown in Section B.3. The

classical solution consists in solving the appropriate system of partial
differential equations as introduced in Section 2.1.3 for orthotropic and

laminated shells and arbitrary loading, but which is to be simplified to

more convenient forms according to permissible assumptions. But, in¬

stead of deducing the finally used linearized equations directly, in the

following the nonlinear DoNNELL-type equations above are first adapted
for their use in an incremental or perturbation analysis and then lin¬

earized [15].

The state of deformation and stress in a shell may be separated in a

fundamental (pre-buckling) state and in stresses due to a "perturba¬
tion" associated with only incremental deflections. That is, the effect

of small deformation increments starting from the initial state, denoted

with wo and /Fq, is examined [15]. The letters w and /F without index

now indicate the small deflection and stress increments. The deflections

and the derivatives of the stress function are modified accordingly to

d2T ~ d2T
WW0+W' ä^^^ +

ä^'

2-L
_^ nx + — d2/F - d2T

(ill (ill
^

-''Til ~\~
y y dxdy dxdy

where Nx, Ny and Nxy are the membrane forces per unit length of the

initial state and correspond to the derivatives of /Fq. That followed, in

the coupled fourth-order differential compatibility and equilibrium equa¬

tions w and the derivations of /F are replaced by one of the four expres¬

sions above. The next derivation steps are demonstrated by means of

the shorter equations for orthotropic shells (2.29) and (2.30). Neglecting

higher-order terms and considering the lateral load pz as constant, after

the transformations the compatibility equation becomes [15]:

d4T d4T d4T

a22~dx^ + (2ai2 + a33)
-dxW2 +aUW=

(2 33)
<92wo d2w d2wo d2w d2w d2wo d2w 1

dx dy dx dy dx2 dy2 dx2 dy2 dx2 R
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In a similar manner the modified equilibrium equation is obtained [15]:

d4w
„ , „ „ „ N

d4w
„

d4
Dn^rr + 2 {D12

+

2D33) ——
+

D
19^^"^12

+

^33;^W
^

22W~

^<Pw
+
&F<Pm+2üx _9^_

_

2d^d2w1 (2 34)x

dx2 dy2 dx2 xy dx dy dx dy dx dy

~ cPw d2T d2w0 1 d2T
v
dy2 dx2 dy2 R dx2

Finally, assuming that the initial state is a membrane state for which

the shell is a perfect circular cylinder the initial deflection wo will be

neglected (no initial imperfections) [15]. That is:

<92wo <92wo <92wo
-=0, -=o, -=0.

dx2
'

dy2
'

dxdy

This reduces the pair of differential equations (2.29) and (2.30) to the

linearized expressions for compatibility and equilibrium in terms of the

incremental w and /F and the stresses of the fundamental state:

d4T d4T d4T d2w 1

a22
m

+ (2ai2 + a33)
&w +anW

=

~WR
(2'35)

^

d4w
.

^ ^
.

d4w
^

d4w

D^ + 2^2 + 2D^dx^+D22W
=

NxSZ+2Nx„S^
+
NfW ld'T

(2.36)

dx2 xy dx dy
v
dy2 R dx2

These linearized DONNELL-fa/pe equations for shallow shells with small

deformations will be used later for circular cylinders in this form, but

for isotropic shells a compact equation including both the equilibrium
and the compatibility expressions was deduced.

For isotropic shell material and using the LAPLACE-Operator2 V2 and

D for the isotropic bending stiffness D = E/i3/12(l — v2) the system of

two differential equations above can be rewritten in abbreviated form as

[15]

1
„4^

d2w 1

Eh dx2 R

nv-74 at
d2w

01rT
d2w ~ d2w 1 d2T

x

dx2 xy
dx dy

v
dy2 R dx2

(2.37)

V2w = d2w/dx2 + d2w/dy2. V4 = (V2)2
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After double differentiation of the first expression with respect to x and

division with R it follows that

4
d2T 1

_

d4w Eh

Tkr^R ^~~dxJ~R2

The last term of the second row in (2.37) may be replaced according to

the right side of the expression above. By this means for the two fourth-

order differential equations a single eighth-order differential equation is

obtained:

^,_,« „4 /'~v d2w ~ d2w ~ d2w\ Eh d4w

This differential equation is the linearized DoNNELL equation for shal¬

low shells in the common form [29, 15]. After solving the incremental

displacements w with (2.38), considering the membrane forces per unit

length Nx, Nxy, Ny as constant, the stress function /F is solved from

the first row in (2.37). Afterwards the strains are solved by means of

the constitutive equations from which the displacements in the reference

surface may be calculated [15].

The linearized DoNNELL-type equations base on the assumptions that

the constant wall thickness h is essentially smaller than the radius R,
that the transversally shear stiffness is infinitely large, that the initial ge¬

ometry is perfect (no initial curvature other than 1/1?) [15], and that the

deflections are small in comparison to the wall thickness. Nevertheless,
in cases pre-buckling curvature changes are negligible small DoNNELL's

shell theory may be used to calculate bifurcation loads.

Nonlinear DoNNELL-type equations were frequently used for the inves¬

tigation of the buckling and post-buckling behaviour of isotropic, or¬

thotropic as well as of laminated cylindrical shells. Due to the approx¬

imations and simplicity of DoNNELL's shell theory doubts have been

cast on the accuracy of the involved equations [73]. Thus, (Hoff [47]),
(Meyer-Piening [59]), (Sheinman & Goldfeld [73]) and others per¬

formed tests und calculations with other, more accurate shell theories

including nonlinear terms in u and v for comparisons of the buckling
loads with their solutions of DoNNELL-type equations. They found that

for thin, shallow cylindrical shells unless the square terms in derivatives

of the deflection w (nonlinear strain components) are small against unity
and the wavelike post-buckling patterns contain a sufficient number of

circumferential waves good results may be obtained with the DoNNELL-

type equations also for relatively large deflections [59].
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2.2.1 Boundary Conditions

Figure 2.6: Axially compressed circular cylinder.

The set of DoNNELL's differential equations is of eighth order, thus eight

boundary conditions related to displacements and stresses in the refer¬

ence surface are needed to define the eigenvalue problem. At the two

cylinder edges at x = 0 or x = L one of the following four fundamental

combinations of four boundary conditions has to be hold:

Simply Supported

w=P§-=0
OX,

Clamped

w = f^ =0
OX

SSI Nxy = 0
,
Nx=0 CCI Nxy = 0

,
Nx=0

SS2 Nxy = 0
,

Ü = c CC2 Nxy = 0
,

Ü = c

SS3 v = c, Nx=0 CC3 v = c, Nx = 0

SS4 V = C
,

Ü = c CC4 V = C
,

Ü = c

Table 2.1: Notations for boundary conditions. c is a constant.

Similar notations for the conditions of hinge support (SSi) and fixed sup¬

port (CC«) to those in Table 2.1 were applied by (Hoff et al. [48]) and

many other authors, e.g. (Sheinman & SiMiTSES [74]) and (Arbocz &

Babcock, Jr. [6]). The membrane forces per unit length Nx and Nxy in
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Table 2 1 due to displacements are equal to d2/Fjdy2 and d2T'/dxdy re¬

spectively The constant c is zero or a value unvarying around the cylin¬
der edge considered In case of a immobile fixation the displacements are

zero and c = 0 For displacement controlled compressions, for instance,
the constant c equals the nonzero loading parameter (c = u = AL)

The DoNNELL-type equations are formulated in terms of the lateral dis¬

placement w and derivatives of the stress function /F The boundary
conditions which refer to the axial and tangential displacements in the

reference surface uix, y) and v(x, y) have to be reformulated in terms of

w(x, y) and /Fix, y) This is disadvantageous, since thereby u and v are

replaced by their derivatives For example, for the axial displacement

u(x,y) at the loaded edge ix = L) it applies [59]

fL \ d2T d2T 1 (dw\2\
u(L,y)=u(0,y) + Jo |au—

+ a12— - -

{—j j
dx (2 39)

using the strain expression for £x m (2 8) Constant axial displacement
would additionally require that du/dy = 0 Consequently, the boundary
conditions m u as well as v become much more complex and difficult

to fulfill than m formulations which deal with functions for uix, y) and

v(x,y) together with that for w(x,y)

For axially compressed cylinders m classic analysis the compressive axial

membrane load per unit length of the fundamental state at the loaded

end is given by the applied total compressive force P

-*- = éi (240)

Buckling under torsion or lateral load is not taken into consideration3 m

the following, hence, the surface load pz and the circumferential as well

as the shear membrane loads per unit length of the fundamental state

Ny and Nxy are set to zero

Ny = 0
, NXy=0 , Pz=0

In classical buckling analysis of cylinders under axial load the boundary
conditions SS3 are considered, since m this case close-form solutions

are available Both the radial and tangential displacements w and v are

3The solutions to these load cases are neither uninteresting nor trivial but the

imperfection sensitivity of cylinders under axial load is more pronounced see Section
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constraint and the membrane load per unit length —Nx, constant around

the edge, is the loading parameter. The axial displacement û follows

from the deformation state and potentially vary around the cylinder end.

In practice, however, for compression tests the cylinder ends are fixed

in rigid endplates and the axial displacement is the loading parameter.

Thus, in tests more the fourth type of boundary conditions CC4 and SS4

are realized with constant axial displacement but potentially varying
axial membrane stresses around the edges. Again the radial and the

tangential displacements are both fixed. The first two types of boundary
conditions SSI, CCI, SS2, and CC2 with unconstrained circumferential

displacement v are unlikely to be realized in practice. In comparison to

results for the third and fourth boundary condition sets, for these more

"academic" conditions also very low buckling loads were obtained [48].

In this thesis the classical analysis solutions of the DoNNELL-type equa¬

tions refer to the boundary conditions SS3 for simply supported cylin¬
ders. For the numerical buckling analyses however in general the bound¬

ary conditions CC4 for clamped edges were applied, simulating test con¬

ditions with rigid and plane-parallel endplates.

2.2.2 Orthotropic Cylindrical Shells

The DoNNELL-type equations may be used to calculate the axial buckling
load of centrically loaded, orthotropic monocoque cylinders of perfect

geometry. With the aforementioned assumptions that pz =0, Ny = 0

and Nxy = 0 as well as that the pre-buckling state is linear (small strains

and rotations), the compatibility and equilibrium Equation (2.35) and

(2.36) can be rewritten as

d4T
. .

d4T d4T d2w\
n ,0/M,

a22 -dx~4
+ (2ai2 + a33)

dx^dV2 +anW +
^R

= ( }

d4w
, N

d4w d4w ~ d2w d2T 1

D^ +2^ + 2D^7^ + D^W-Nxl^-l^R=0
(2.42)

Of these linearized system of partial differential equations close-form

solutions exist for hinged cylinder edges, i.e. for the simply supported

boundary conditions SS3 (see Table 2.1, Section 2.2.1). For x = 0 and

x = L these conditions are:

w = 0, v = 0, |^=0, Nx = ^=0 (2.43)
dx/ dyz
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The following bi-harmomc functions w(x, y) and /Fix, y) for the lateral

deflection and the stress function fulfill these conditions SS3

mixx ny
w(x, y) = wmn sin —-— cos —

(2 44)
rmrx ny

s{x, y) = fmn sin —-— cos —

Note that m is the number of axial half-waves whereas n is the number

of complete waves in circumference direction of a buckling mode [40]
With the abbreviations

TO7T n
,

ß = —— and n=T> (2 45)
L R

the compatibility equation gives

,

=

Wn ß ,„.„,

Jmn
R a11r?4 + (2a12+a33)/32r?2+a22/34

^ '

Substitution of the functions /Fix, y) and w(x, y) in the equilibrium equa¬

tion (2 42) yields

| ^/mn + wmn (A>x ß2 + Dnß4 + D22n4
^

(2 47)

+ 2(Di2 + 2D33)ß2n2^ \ smßx cos ny = 0

After the replacement of fmn by (2 46) the coefficient wmn may be fac¬

tored out, and since at least one coefficient wmn has to be different from

zero, the expression in the braces in (2 47) has to be zero

Finally a single equation for the theoretical buckling load of cylindrical
shells with orthotropic material and hinged edges is obtained

_
Kt _

Dnß4 + 2(D12 + 2D33)ß2 n2 + D22n4
x

~~

82

0-
(248)

R2 ann4 + (2oi2 + a33)ß2 n2 + a22ß4

The load per unit length considered as the axial buckling load is the

smallest absolute value of —Nx which may be found for any combination

of m and n

-Ncr = imni\Nx\) (2 49)
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For isotropic cylinders subjected to axial compression the formula (2.48)
may be rewritten in shorter form as

. ( Eh3 (ß2+n2)2
,

Eh ß2 \
~ N" = mm

(i2(i-,2) ß2
+

WWTw)
(2-50)

In this case, for cylinders of intermediate length a close estimate of the

smallest buckling load may be obtained directly by analytical minimiza¬

tion of \Ncr\ with respect to the quantity (/32 + n2)2/ß2 in (2.50) [18].
Differentiation leads to the result that \Nrr\ is a minimum for

ßz hR

Introduction in (2.50) and with <rc; = Ncr/h for isotropic cylinders with

hinged edges a memorable formula for the theoretical buckling stress

may be deduced:

1 E h Eh

-°* =

7W^)^
'

Î0IV = °'3: ~acl=°-605^ (2-52)

Multiplication of the buckling stress by the cutting area 2nRh finally

gives the corresponding axial buckling load:

2tt
Pct= =^Efe2 ; for;/= 0,3: Pcl = 3.8E/i2 (2.53)

V3(l-^)

Different to the Introduction the bucking stress as well as the buckling
load were labeled with a suffix "cl" instead of "cr" since Pci will denote

the "classical buckling loads" in opposition to buckling loads that result

for numerical analyses.

From equation (2.51) it may be seen that cylindrical shells subjected
to axial compression is a case for which a large number of instability

modes, i.e. critical combinations of m and n, correspond to a single

buckling load. In particular, (2.52) is the solution for axisymmetric

(n = 0) as well as for asymmetric modes [18]. The large number of

possible buckling modes with an identical or almost identical associated

buckling load causes isotropic cylinders to be very sensitive to dimple

imperfections as analysed herein.

Obviously the critical stress in (2.52) depends on the Young's modulus

E, the wall thickness h, and the cylinder radius R, but not on the cylinder
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length L However, upper and lower bounds for the length L of cylinders
exist to which (2 52) is applicable (Batdorf [12]) introduced the widely
known parameter Z with

Z=^\-v2 (2 54)

which serves as a single measure for the relative thickness and length of

isotropic cylinders instead of two iL/R, and R/h) and indicates the range

over which the Equation (2 52) yields good approximations of the axial

buckling load of an isotropic cylinder DoNNELL's theory for shallow

shells implies that the wall thickness is sufficiently small (R/h > 100) and

that the half-wavelength of buckling is short compared to the curvature

radius R (1/n2 <C 1) [15, 59] To very long cylinders which buckle rather

like a column the formula (2 52) is inapplicable, since with DoNNELL's

theory only the buckling of profile faces may be considered - Euler

loads for columns cannot be predicted [15]

The expression (2 52) for the critical stress is valid \icrxcr is significantly
lower than the compressive yield stress of the material at hand In tech¬

nical standards (e g DIN 18800 part 4) some modified expressions may

be found which takes yielding, different imperfections and the influence

of the cylinder length into account

Finally, as the cylinder radius R approaches infinity and Z zero, the

buckling load expression (2 50) becomes that of a infinitely wide rectan¬

gular plate, see also Section B 3

Axisymmetric Buckling (n = 0)

With axisymmetric buckling the circumferential wave-number n is zero,

and thus the buckling loads depend only on the number of axial half-

waves Omitting the terms relating to n in (2 48) the equation for the

buckling loads of axial compressed orthotropic cylinders becomes

-Ncr = mm(D11ß2 + 42—^2- ) (2 55)
V R2 a22ß2 J

Assuming that the axial wavelength parameter ß is a continuous variable,
an analytical minimisation as for isotropic cylinder in (2 50) may be

performed [40] Differentiation of (2 55) with respect to ß2 leads to the

following condition for a minimal | Ncr |

ß = \i r>2T] (2 56)
V Rz Du a22
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Insertion of (2.56) into (2.55) yields the searched estimate of the axisym¬
metric buckling load per unit length as

R V «22

A replacement of Du and a22 by the corresponding expressions for

isotropic materials and with acr = Ncr/h the common simpler formula

(2.52) is obtained. In case of axisymmetric buckling the load —Ncr is

not a bifurcation point as for bifurcation buckling a transition from an

axisymmetric to a non-axisymmetric deformation pattern is assumed.

With ß = mn/L and (2.56), the length of half-waves into which the

shell buckles is

L
lc = —=^\^RVDiia,u (2.58)

m
v

or again in particular for isotropic shells:

lc =

^
^/ffl or for v = 0.3 : lc = 1.73VfiI (2.59)

</12(l- 2\

Example: The axial half-wave length of an isotropic cylinder with radius

R = 250 mm and wall-thickness h = 1.5 mm is: lc = 33 mm, independent
of the cylinder length L.

2.2.3 Laminated Cylindrical Shells

To obtain the classical solution of the DoNNELL-type equations for the

axial buckling load of perfect laminated shells, the same procedure as

for orthotropic shells in Section 2.2.2 is followed.

In addition to the simplifying assumptions that the pre-buckling defor¬

mations are negligible small and the condition for pure axial loading, for

the classic analysis the laminates are supposed to be strictly orthotropic;
thus the terms Di3, D23, D3i, D32, Bi3, B23, B3i, and B32 are set to zero

[40]. Consequently, the set of differential equations, (2.31) and (2.32),
becomes:

d4T
,

d4T d4T 1 d2
a22-/rr + \2o-\2 + a33) + an-

dx4 dx2dy2 dy4 R dx2

d4w d4w d4w
+ b2i^j + (bu+b22-2b33)^^+bi2w = 0

(2.60)
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~ d4w ( ~ - \ d4w ~ d4w
Du—-+2 [Dn + 2£33 -T-r^n + D22—

ax4 V / dxldyl dy
4

d4 F d4F d4F
-h2V-—-ib

u+b22-2b33)—— 612—— (2 61)21
dx4

[-°n^°22 AD33>
Qx2dy2

°12

dy4
K '

~ cfw 1 d2T

dx2 R dx2

Close-form solutions exist again for hinged cylinder edges (boundary
conditions SS3) with

d2w
w = 0

,
v = 0

,
-r—r = 0

,
Nx = 0 at x = 0 and x = L

dx2

with the buckling modes

w(x, y) = wmn sin/?x cosny

F(x,y) = fmn sm/3x cosny

where ß and n are the already introduced axial and circumferential wave¬

length parameters with

TO7T n

ß = — and n = —

For pure axial compression, following the same calculation steps than in

Section 2 2 2 and the condition for non-trivial solutions evaluated yields
the bifurcation loads [40]

1 1 ^ „/I , , ^ „ ^ s „2 2
Nx =

Ä2" I öl1^ + 2(jDl2 + 2D33^P V + ß22?f

f fei/34 + (in + b22 - 2b33)ß2n2 + h2l]4 - 4~R~
(2 62)

an»?4 + (2a 12 + a33)/32 j?2 + a22ß

The axial buckling load again is the smallest absolute value of lÄ^I which

may be found for any combination of m axial half-waves and n circum¬

ferential waves

-Ncr = mm(\Nx\)

In contrast to isotropic cylinders for laminated cylinders only one buck¬

ling mode with a (m, n)-pair is typically associated with the lowest

buckling load But, the critical load —Ncr may not be obtained directly

by analytical minimization of \NX\ as for isotropic material but has to be
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found by use of Equation (2.62) for a sufficient number of combinations

of m and n. Again, multiplication of the smallest \NX\ by the circum¬

ference 27T-R yields the "classical" buckling load Pci for the laminated

cylinder.

In the following, the number of axial half-waves and circumferential

waves associated with the smallest \NX\ and hence the buckling load

Pci are marked with mc and nc, respectively.

Again, as the cylinder radius R approaches infinity, expression (2.62)
becomes an equation for infinitely wide rectangular laminated plates.

(Geier, Meyer-Piening & Zimmermann [40]) defined the curvatures

k and the coupling matrix B with different sign what finally results solely
in a positive +ß2/R in the enumerator in the second line of Equation

(2.62) above instead of the negative term.

Equation (2.62) for thin, axially loaded and simply supported laminated

cylinders with perfect geometry bases on the classical lamination theory,
on DoNNELL's shallow-shell theory as well as on the assumption that the

laminate is strictly orthotropic [40]. Thus, the accuracy of the results is

subject to restrictions which relate to the cylinder geometry (L, R/h)
and additionally which concern the shell material parameters given by
the ply properties, the ply angles and the layer stacking. The range of the

geometry parameter L2/Rh (e.g.) over which (2.62) yields good results

for arbitrary laminates was probably not yet investigated. But according
to the shallow shell theory at least analysis results with n between 1

and 4 should be questioned. (Meyer-Piening et al. [60]) calculated

the axial buckling load of a series of CFRP composite cylinders with

R/h = 200 and L/R « 2 by means of Equation (2.62) and also with the

aid of a code which considers deep shell theory and anisotropic material

(full matrices A, B, D). The axial buckling loads obtained with (2.62)
are slightly above those resulted for the more accurate method with

differences below eight percent. (Sheinman & Goldfeld [73]) in turn

analysed laminated cylinders with R/h = 100 and L/R = 2 and observed

significant discrepancies between DoNNELL-type equation results and

such achieved with more accurate shell theories, in dependence of the

ply-angles and the boundary conditions.



2 3 Approximate Solutions 57

Axisymmetric Buckling of Laminated Shells

The solution for axisymmetric buckling of laminated shells may be de¬

duced from Equation (2 62) As for orthotropic shells the circumferential

wave-number n and n are zero, and thus the buckling loads depend only
on the number of axial half-waves m The terms relating to n deleted

in (2 62) the equation for the buckling loads —Ncr may be minimized

analytically if ß is assumed to be continuous The minimum is found for

the axial half-wavelength

lc = -=k\ R\/Diia22+b221 (2 63)
m V v

which differs from lc for orthotropic shells in (2 58) mainly in the ad¬

ditional eccentricity term 621 [40] The lowest buckling load per unit

length for axisymmetric modes finally is

-Ncr = 1^—(jDua22+b21-b2i) (2 64)
Ka22 V v /

As aforementioned for the orthotropic shells, in case of axisymmetric

buckling —Ncr does not correspond to a bifurcation point Note that

the additive term 621 m (2 64) may be positive or negative depending on

the stacking sequence of the laminate The absolute values of the square

root and of 621 are of the same order of magnitude The sign of the

eccentricity term 621 is determined by the expression (a2i-Bn +022-821),
and since Bi2 and Bu typically have different signs, the sign of 621

is basically opposite to the sign of Bu Consequently, if axially stiff

layers are predominantly located at the outer side of the cylindrical shell

(1 e negative zk, see Figure 2 5) Bu will be negative and 621 positive,

which gives low buckling loads if the buckling mode is axisymmetric (see
Section 4 2 2) [40]

2.3 Approximate Solutions

In the previous sections the close-form solutions of the DoNNELL-type
shell equations for axial buckling of circular cylinders with simply sup¬

ported boundary conditions were presented which could be found by di¬

rect integration For more accurate shell theories with extended expres¬

sions for curvatures or for other boundary conditions, for instance, only

approximative solutions and functions for the stress and displacement
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fields may be found. In this Section briefly the concepts of the Raleigh-

RlTZ method and the Galerkin procedure are described which are fre¬

quently used for approximative solutions of differential equations.

The RALEIGH-RITZ method is a widely used approximate solution tech¬

nique for differential equations. The method is based on variational prin¬

ciples, provided by the principles of virtual displacements (see Section

A.4) or the minimal potential energy [67]. The dependent unknowns,

e.g. the displacement ü, are approximated by finite Fourier series of

the form

u(x)^YJûlXl(x)+X0 (2.65)
i=\

with the unknown Fourier coefficients ut and the number of retained

terms Nul. The approximation functions Xt should satisfy the homoge¬
nous form of the specified essential boundary conditions and they should

be linearly independent (orthogonal) and complete [67]. The function

Xq has to satisfy the inhomogeneous specified geometric boundary condi¬

tions. In the already presented case of cylinders with simply supported

edges the deformations u(x,y), v(x,y), and w(x,y) may be approxi¬

mated, separating the variables, by the following double Fourier series

L -r-^ -r-^
^

mirx ny
uix> y) ~

„ 2-^i L^iUmn cos —?—cos ~~p '

m=l n=l

v(x, ï)~^LVmn sm

~ï~
sm

~r" ' (2M>
m=l n=l

mir x ny
Wmn Sin COS —

where again m and n are the axial half-wave and the complete circumfer¬

ential wave numbers, respectively. With the Raleigh-Ritz method an

approximate solution is obtained by requiring the total potential energy

II to be stationary with respect to all unknown coefficients umn,

vn

and wmn [82], that is

hmni umn>

an dn dn
,

ytlmn "Vmn t^W7nn

The change in the potential energy caused by a uniform axial compressive
load P may be written as

n = uB + uM + vP (2.68)
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~

2
.

p2itR pL
UB = / / (Mx kx + 2 Mxy Kxy + My Ky) dx dy

Jo Jo

~

2
,

p2itR pL
Um = / / (Nx£x + 2NXy%y + Ny£y)dxdy ,

Jo Jo

vP = rY*•(£)*•*

where the bending and membrane strain energy, Ub and Um, and the

load potential Vp for an axial compressive membrane stress —Nx are

given as [82]

(2.69)

The membrane and stress resultants are related to strains and changes in

curvature through the constitutive equations (see Section 2.1.2), and the

strain-displacements relations in turn, associated with the deformation

components, are given by the kinematic equations as introduced in Sec¬

tion 2.1.1. Consequently, the forces and moments are first expressed in

terms of displacements and subsequently substituted by the derivatives

of the harmonic functions (2.66). The set of the coefficients to be de¬

termined are finally obtained by solving the system of equation derived

from (2.67).

Another common and widely used method to generate approximate so¬

lutions of differential equations is the GALERKIN procedure. Analogous
to the Raleigh-Ritz method a function, e.g. u(x), is approximated by
truncated Fourier series of the form

u(x)^J2ûlXl(x)+X0 (2.70)
i=\

whereby again Xq have to satisfy possible inhomogeneous boundary con¬

ditions and the other functions Xt the homogenous boundary conditions.

Although u fulfills the boundary conditions for arbitrary ul, inserted

into the differential equation in the domain in the majority of the cases

a residual (balance error) will result. To minimize this residual in the

domain A the integral of the residual function r, weighted with some

weight functions fa, has to vanish over the domain A. Such methods

are therefore also known under the term "weighted-residual methods".

With a linear differential operator C a general differential equation may
be written as

C{u) = f G A (2.71)

with the given force term /. Then, with (2.70) the residual function is
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given by

iût,Xt,f) = c(J2^Mx)+Xo)-f^O (2.72)n

i=\

With the Nul linearly independent weight functions fa the approxima¬
tion for uix) is found for

r(ût,Xt,f) fadx = 0 i=l,2,...,Nul (2.73)
A

The weight functions fa correspond to the approximation functions Xt in

(2.65). Thus, the Galerkin method is a generalization of the Raleigh-

RlTZ method.

(I. Sheinman & Y. Goldfeld [73]) for instance applied the Galerkin

procedure on the buckling analysis of axially compressed cylinders. They
used the following truncated series for an approximation of the lateral

displacements w(x, y) and the stress function /Fix, y):

2NW 2NF

w(x,y) = YJwl(x)Yt(y) , T(x, y) = ]T ft(x) Yt(y) (2.74)

where 2NW and 2Np are the numbers of retained terms in the series,
and

cos(my) i = 0,l,2,3,...,Ne
Y*iy) = { (2.75)

sin(my) i = Ne + 1,..., 2 Ne

with the circumferential wave number n and Ni standing for Nw or Np

as appropriate [73]. The set of partial differential equations (of compati¬
bility and equilibrium) is reduced to a set of ordinary ones by separation
of the variables with the functions in (2.74). Then, the balance error,

caused by these truncated form of the series, is minimized if the following
two integrals vanish:

r2irR/>Z7T tt

I [compatibility eq.] Yt(y) dy = 0 i = 0,1,..., 2A^f
Jo

p2itR
I [equilibrium eq.] Yt(y) dy = 0 i = 0,1,..., 2NW
Jo

(2.76)

A central difference scheme was then used to reduce the ordinary dif¬

ferential equations to an algebraic system of equations which was solved

numerically [73].
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The calculation of buckling loads with these approximative methods re¬

quires the complex definition of equation systems. Afterwards, the in

most case vast number of unknown coefficients involved has to be han¬

dled with the aid of computers. Despite these obstacles several reli¬

able special-purpose programs for buckling analyses of cylindrical shells

were developed, also for moderately thick shells and clamped bound¬

ary conditions. However, for each shell geometry and set of boundary
conditions a different system of equations has to be worked out. In ad¬

dition, analytical or variational solutions to the differential equations

may not be developed when complex geometries, arbitrary boundary
conditions or nonlinearities are involved [67]. The also numerical finite
element method is a generalization of the classical Raleigh-Ritz and

the weighted-residual methods which may be used for the solution of

differential and integral equations without the mentioned restrictions.

Thus, when a set of differential equations may only be solved approxi-

matively and only with help of numerical procedures for integrations and

systems equations it seems nowadays obvious to apply the finite element

method right from the beginning. Apart from the costs now the exercise

of one of the commercial programs for finite element analyses on modern

computers, applicable for arbitrary geometries and boundary conditions,
is no doubt more attractive than the demanding (re-)development of an

own code which is applicable solely for one single buckling problem.
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Chapter 3

Buckling Analyses with

Finite Elements

The analysis of continuous structures is difficult since closed-form solu¬

tions of stress and strain distributions in continua are available only for a

few basic geometries and boundary conditions Non-uniform structures

might theoretically be subdivided into small simple structural elements,
but their number and the number of the junctions would be large The

basic idea behind the finite element method is to overcome this problem

by dividing the real structure into elements of simple geometries inter¬

connected only at a finite number of nodal points Only at these nodes

some forces are introduced which represent the distributed stresses act¬

ing on the element edges With such a discretization, the problem is

reduced to a manageable assemblage of structural elements which are

also analysable by numerical procedures [84] In mechanical engineering

this tool is very commonly used and a fundamental part of a CAE1 envi¬

ronment Many commercial Finite Element (FE) programs are available

with partially sophisticated graphical user interfaces with integration

into CAD2 software

The linear FE method is the most frequent employed technological aid

for stress analysis in early design phases of complex structures In text¬

books on fundamental continuum mechanics the basic expressions and

equations of the linear method may be found, and also in the engineering

1
Computed Aided Engineering

2
Computed Aided Design
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education the linear FE method and the corresponding formulations have

become an essential part. The advantages of linear analysis is fairly obvi¬

ous: simple direct solutions may be obtained with no need for costly load

incrementation and iterative schemes. Furthermore, solutions for various

load cases may be superimposed and the number of material constants

required to describe the constitutive behaviour is kept to a minimum [46].
In cases where strains and rotations of a continuum may be assumed to

remain infinitesimally small a linear structural analysis in general yields
reliable results. However, the significant shift in design requirements in

recent years for high-performance and efficient components in modern

industries (e.g. in aerospace) has made more sophisticated analyses a

necessity with geometric and physical nonlinearities taken into account.

The assessment of existing structures containing irregularities or unfore¬

seen loadings, the determination of structural instabilities and failures,
and the simulation of material processing and manufacturing may also be

mentioned as possible applications of the FE method which may require

a nonlinear analysis [46]. But the nonlinear FE method implies iterative

procedures and incrementation of the loading. This load incrementation

for a nonlinear analysis requires some a priori knowledge of the analysis
result and the progression of the calculation. Furthermore, end-users

of nonlinear FE programs defining input parameters and selecting par¬

ticular, optional codes are often confronted with terms and definitions

referring to numerical mathematics and nonlinear continuum mechan¬

ics. Thus, such programs-otherwise more regarded as "black-boxes"-

demand some basic knowledge about the formulations and procedures it

contains. That is, in contrast to linear stress analysis where for the ana¬

lyst the emphasis of his work is basically placed on the generation of the

geometry and element assembly, for nonlinear analyses the specification
of the loadings as well as of appropriate input values is most demanding.

The mostly applied FE method for structural stability investigations
consist of a linear static stress analysis with subsequent linear eigen¬
value extraction, although the scheme of this linear analysis method

may be traced back to a nonlinear FE formulation. A nonlinear, more

general form of this method with eigenvalue extractions was used for the

shell models discussed later which considers large displacements and ro¬

tations for the pre-buckling states of stress and deformation. This herein

named nonlinear buckling analysis is, in contrast to the so-called linear

buckling analysis, not a standard option in commercial FE programs;

hence, possible reproduction of the results discussed in this book need

some information about the numerics involved in programs which base

on nonlinear FE formulations.
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In this chapter the Total and Updated Lagrangian nonlinear FE formula¬

tions are reproduced, which are of importance for the nonlinear buckling

analysis well as the more common linear buckling analysis. Further, the

transient dynamic analysis method is described which was used for sim¬

ulations of cylinder compression accounting for inertia and quasi-static

loading. These formulations are detailed not specifically for buckling

analyses but generally for any possible FE application. Their derivations

and the consistently used notation follow the works of several authors,
such as (Bathe [14]), (Ramm [65]), or (Doyle [31]). Further, for the

common linear as well as the less known nonlinear buckling analysis the

derivation of the particular eigenvalue system involved and the content

of the stress stiffness matrices are explained. Finally, the application
of these three types of FE schemes to numerical buckling analysis of

cylindrical shells is detailed.

3.1 Basic Concept of the Finite Element

Method

The finite element method is a generalization of the classical variational

and weighted-residual methods introduced in Section 2.3. Basically, a

given domain or structure is seen as an assemblage of simple geometric

shapes, called finite elements, for which it is possible to systematically

generate the approximation (or interpolation) functions needed in the

analytical solution of differential equations by a variational or weighted-
residual method. The finite element method is as a piecewise or element-

wise application of these approximation techniques [67]. (Reddy, [67])
states seven major steps in the finite element analysis of a typical prob¬
lem:

1. Discretization of the domain into a set of finite elements (mesh
generation).

2. Weak or virtual work formulation of the differential equation over

a typical finite element.

3. Development of the finite element model of the problem using its

weak form. The finite element model consists of a set of algebraic

equations among the unknown parameters of the element.

4. Assembly of finite elements to obtain the global system (i.e. for

the total structure resp. problem).
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5. Imposing of boundary conditions and loading.

6. Solution of system equations.

7. Post-computation of solution and quantities of interest.

Mathematically, the discretization of structures with finite elements de¬

notes a replacing of the integrals over the particular region V with a

sum over the Nei number of elements of the integrals over the domain

of each element V^e'. For instance, the virtual work expression (A.28)
in Section A.4 becomes

Nci
p.

SW = V / r(e) • Su dV = 0 (3.1)

with r denoting the residual force vector and Su virtual displacement
vector. Since the information on displacements are only utilized at a

certain number of nodal points, for stresses and strains approximation
functions are necessary to compute the displacement field in-between

these points. For a general finite volume element at each node n three

displacements (u , u2 , u3 ) in the Cartesian coordinate directions are

possible. The displacement vector u and the vector ü including the nodal

degrees of freedom, i.e. the displacements of the N nodes of a single
element may then be given by

u = {u1 ,u2 ,u3 ,ux ,u2 ,u3 ,..., m1 , w2 iu3 s
and

t r t
^6-l>

u =

\ui,u2,u3\

The displacement vector u is to be calculated by use of the relation

u = Hu (3.3)

introducing the matrix H which contains the interpolation or shape func¬
tions. The functions in H are locally defined and depend on the element

type. The vector ü containing the nodal degrees of freedom may in addi¬

tion to the translations also include rotations (e.g. thick shell elements).
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3.2 Static Linear Formulation

With the aid of a short derivation of a general three-dimensional finite

element for the familiar linear case, the notations and expressions used

in present thesis are introduced in this section for the later descriptions
of the nonlinear FE formulations in the subsequent sections.

The constitution of the relevant matrices and vectors of the numerical

equation system in general bases on the principle of virtual displacements

(Section A.4). In the linear case the displacement gradients are assumed

to be infinitesimal small; thus, possible influences of rigid body motions,
i.e. translations and rotations without any change in geometry, on the

stress and strain tensors are neglected. With the virtual displacement
vector Su, the (Cauchy) stress vector {ov,}

{°Vf} = Wu,o-22,a33,ai2,a23,a3i}

and the virtual linear (Almansi) strain vector {5£tJ}

{Ô£tJ}T = {fen, Ô£22,Ô£33, 2fei2, 2Ô£23, 2fe3i}

the virtual work per element of a domain may then be written in vector

form:

f {Ô£lj}T{alJ}dV= f SuTbdV - f 5uTtdAa (3.4)
Jv Jv Ja^

The body of volume V is potentially loaded by body forces b and forces t

at the fraction of its boundary surface Aa. To get the virtual work of the

entire domain, according to (3.1), the integrals above have to be replaced

by the sum over the number of finite elements of the integrals over the

domain of each element. For a better readability of the formulas, in the

following the summation signs and the corresponding superscript indices

(e)
are omitted, i.e. the expressions consider only one single element.

In accordance with equation A.37 of Section A.5 the stress-strain relation

is given by

{at3} = C{et3} (3.5)

with the material matrix C. This constitutive relation enables to replace
the stresses in (3.4). The virtual work expression in terms of strains and

displacements then is

/ {Ö£tJ}TC{£tJ}dV = f SuTbdV- f 5uTtdAa (3.6)
Jv Jv Ja^
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The relation between the linear strains el3 and the displacements u% in

u is given by expression (A. 18)

dut duj
dxn dx,

In turn, as initially mentioned, the displacements u are connected with

the nodal point degrees of freedom ü by

u = Hu
.

The relation between the virtual displacements Su and the virtual nodal

point displacements may be expressed accordingly by

(5u = H(5ü. (3.7)

By spatial derivation of the local shape functions in H with respect to

the coordinates x a matrix B may be specified with which the important,
direct relation between the strains and the nodal point displacements is

given by

K} = ßü (3.8)

and accordingly for the virtual vectors

{Sel3} = BSü
. (3.9)

The matrix B has to embrace the constellation of the spatial derivatives

in the strain definition. The dependency of B on the element size, shape
and the position of the nodes always enforces to calculate this matrix

separately for each element.

With the matrices H and B the discretization of the virtual work ex¬

pression (3.6) may be completed by replacing the strains, the virtual

displacements and virtual strains by terms of the nodal point displace¬
ments using the relations (3.7) to (3.9). This gives:

5ûTBTCBûdV = [ SûTUTbdV+ f SüTHTtdAa
Jv Ja,,

The nodal point displacements vectors SÜ and ü are constant within the

integrals and may therefore be separated; viz

5uT [ f BTC B dV] ü = 5ûT f HT b dV + 5ûT f HT t dAa (3.10)
Jv Jv JA„
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Furthermore, the virtual nodal displacement vector Su may be elimi¬

nated, since all terms are multiplied by the same vector

Finally, released from the virtual displacements SÜ, the virtual work

equation (3 10) above provides the common numerical system of equa¬

tions

Ku = p (311)

introducing the system stiffness matrix K and the force vector p with

Wei

K=Y f B^TC^B^dV

Wei-.Wei

-.

p =V / H(e>T b<e> dV + Y H<e>T t<e> dA

(3 12)
Wei-.Wei V '

e=l-A«

In the mam equation system K ü = p the label ü stands for the

unknown nodal point displacements of the entire model whereas in the

preceding equations ü denotes only the nodal displacements of a single
element According to this and (3 1), the definitions in (3 12) indicate

the assembly of all elements of the model

To receive the numerical system of equation the integrals in (3 12) have

to be processed using suitable numerical integration techniques, for in¬

stance the Gauss quadrature The numerical integration methods are

not discussed herein For details attention is invited to the literature on

FE methods, eg Ref [84], [14], [52], or [53]
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3.3 Static Nonlinear Formulations

In a nonlinear FE analysis possible changes of the stiffness matrix dur¬

ing the deformation process are considered, i.e. in contrast to the linear

case the matrix K in Equation (3.11) is not independent of the unknown

displacements u. Therefore, the now nonlinear equilibrium equation at

a given load level cannot be solved directly. To overcome this prob¬
lem the given load level is divided into a number of load steps or in¬

crements. The searched total displacements are then approximated by
a chain of displacement increments which are obtained by solving the

linearized equilibrium equation step-wise. The derivation of these lin¬

earized equilibrium equations results similar to the linear FE formulation

in Section 3.2 from the use of the principle of virtual displacements de¬

scribed in Section A.4.

Many nonlinear FE programs are based on some form of LAGRANGIAN

description of equilibrium [46]. A further formulation effective for the

dealing of structures that undergo relatively large rotations but small

strains is the corotational scheme [31]. In this method a local coordi¬

nate system is defined which moves with each element, and relatively
to this coordinate system the element behaves linearly. Thus, the non-

linearities (rotations) of the problem are managed with the description
of the moving (rotating) coordinates [31]. But, since the corotational

scheme was not implemented in the codes mainly used for the FE anal¬

yses discussed herein this method is not further addressed. Instead, the

Total Lagrangian and the Updated Lagrangian formulations are used

and explained. In a Total Lagrange formulation the integrals in the

virtual work expression are calculated with respect to the initial, un-

deformed configuration of the structure at time = 0. In an Updated

Lagrange formulation the last known deformed configuration at time

= t is alternatively taken as an initial state, and during the calculation

proceeds, the reference state is continually updated. Since the Updated

Lagrangian formulation may be understood as a variant of the Total

Lagrangian formulation in the following this basis variant is primarily
described. Like the linear FE formulation above the two formulations

of nonlinear FE analysis are reproduced in detail to introduce the par¬

ticular stiffness matrices, the force and the displacement vectors, and

their different components. These matrices and vectors, all denoted in

consistent notation, will later be used to describe the derivation to the

system equations for buckling analyses with finite element models.
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Time t

TimeO

Figure 3 1 Incremental decomposition of displacement

3.3.1 Total Lagrangian Formulation

In the nonlinear scheme the virtual work expressions of equilibrium are

nonlinear as regards the displacements u In Figure 3 1 an arbitrary

body is shown which is displaced and distorted during a deformation

process from its undeformed state at time = 0 to a new, yet unknown

configuration at time t + At Following the principle of dividing the

nonlinear deformation process into small increments at time t the body
is situated in a state for which the equilibrium equation is already eval¬

uated At this state, the solution for displacements, which satisfy the

equilibrium equation at a time step At later, have to be found To lin¬

earize the nonlinear equilibrium expression with respect to the initial

configuration, the virtual work equation (A 33) in Section A 4 is trans¬

formed into a 1st order Taylor series approximation in time [46], viz

0r Su 0dV = 0r Su0dV -\ ( / 0r Su0dV) At = 0
*+A* J0v t Dt \JoV Jt

(3 13)
The terms in right side of the expression above are known at time t and

linear with regard to At In principle, only the derivative DC)/Dt of the

virtual work expression (A 35) has to be defined to receive the searched

incremental formulation A desired deviation in time would lead to an

inclusion of velocities ù in the virtual work expression To avoid this,
finite increments in displacements are considered with Am = uAt which
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in turn provoke increments of the 2nd PlOLA-KlRCHHOFF stress AS

Since the formulations presented in this section consider static and not

dynamic problems, the time is introduced only as a parameter which

controls the process of deformation In static nonlinear FE analyses "t"

is only regarded as "pseudo time" and is only useable as an orientation

help Inertia loads are not considered Consequently, similar to the

loading and the displacement the considered time span is divided into s

time increments To emphasize the difference in the numerical system,

in the subsequent formulations "time" and therefore also the label t are

replaced by terms of the increment number s

For the description of the incremental formulations a special index no¬

tation is introduced indices down left of a label mark the increment

number of the reference state3 and indices at the head of a label mark

the current increment Thus, the coordinates of the body in Figure 3 1

at step s with known state and at step s + 1 with yet unknown state are

x =X + u and

+1 JT+*
(314)

x =X + u

respectively, introducing the corresponding total displacements u and

'u [14]

In order to abbreviate the formulations the increments in displacements,
strains and stresses are labeled without a greek capital letter A often

used in this context Thus, without any index a displacement increment

is defined by (see Fig 3 1)

u = x — x (3 15)

and consequently, the total displacements in (3 14) are given by

u = u + u (3 16)

In the present formulation it is assumed that the state is known at incre¬

ment s (l e at "real" time t) and the basic unknown is the displacement
increment u The incremental decomposition of displacements (3 16)
may be used to decompose the Green-Lagrange strains similarly [31]
Following (A 15) in Section A 2, the strain tensor at increment s is given

by

1

\dXj
'

\dXj
'

\dXj \dXj
0E =

2

( du\ (du_\T (f^Y ( d\ (3 17)

exception the material coordinates 0x = X, see (A 1) in Section A 1
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And accordingly at increment s + 1 replacing m by (u + u)

0E
d u

~dX

d u

dX

d u

dX

(du

\dX

( du du \ / du du \

\dX
+
dXJ

+
\dX

+
dXJ

(3.18)

( du du \ / du du \

VdX
+
dXJ

'

VdX
+
dXJ

After multiplication and rearrangement the decomposed strain relation

may be rewritten in abbreviated from as

0E =0E + 0E + 0rj (3.19)

introducing the linear strain increments 0E and the nonlinear strain

increments 0r), respectively, by

0E

oV =

f du

[dX
du

dX

du

dX

du

dX

[dX \dX

du

dX

du\

dX

(3.20)

It must be pointed out that 0E is an increment of strain from the current

state but referenced to the initial configuration. 0E is linear in u but

contains also components of the current total displacements u. The non¬

linear term 0r) finally contains only unknown displacements increments

u [31, 14].

As described in Section A.5, the constitutive relation between the 2nd

Piola-Kirchhoff stress tensor 0S and the Green-Lagrange strain

tensor 0E at increment s with respect to the initial state is given by

0S — 0C : 0E (3.21)

with the (linear-elastic) material tensor 0C. The corresponding consti¬

tutive relation at step s + 1 is obtained after expansion by the strain
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increments of (3.20) as

0S = 0C : 0E

= 0C:0E + „C: („£ + „77) (3-22)

= 0'-' ~\~ oS

Thus, the stresses to be specified are the current stresses 0S plus a stress

increment 0S [31].

With the defined stress and strain increments the nonlinear virtual work

equilibrium expression may be decomposed into already calculated terms

and a searched, incremental term of change. Considering expression

(A.35) in Section A.4, the virtual work at increment s+1 may be written

as

s + 1 s + 1 f s+1 f s + 1

0S : 50E 0dV = / 0b -5u0dV+ / 0* Su0dAa
y JoV J0Aa (3.23)

s0su = s0wL

s+ 1 s+1

The body forces
0
b and surface loads 01 at step s + 1 in the integrals

of the virtual external work S0wex are assumed to be conservative and

to contain known values. Thus, only the virtual strain energy S0 u

includes unknown real values and is to be incrementally decomposed:
s + 1

the virtual strain S0E is, according to (3.19), given by

<50iT = S0E + S(0E + „77) = 0 + S(0E + „77) (3.24)

respecting that a variation of the real, given strains 0E vanishes. Now,
the subdivided stress and strain expressions in (3.22) and (3.24) may

be inserted in the left hand side, i.e. the virtual strain energy term of

(3.23), which yields

0S + 0S ) : S(0E + „77) 0dV = S0wL
v

and expanded:

0S:50E0dV+ f 0S:50rj0dV
(3'25)

V JnV

0S : S0E 0dV + / 0S : SoV 0dV = S0wL
v J„v
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This lengthy expression is slightly simplified by introducing an impor¬
tant approximation which subserves a linearization: the nonlinear strain

increments 077 are considered to be small compared to the linear strain

increments 0E, thus the last integral in (3.25), including the pair of 077

and the stress increment 0S, is neglected:

„r7<0JB - f 0S:S0rj0dV « 0 (3.26)
J0v

Assuming that the constitutive relation (A.36) in Section A.5 with the

linear-elastic material tensor 0C is also valid for terms of increments, the

stress increment may be replaced by this expression involving a strain

increment:

0S « 0C:0E (3.27)

The virtual work expression may then be written as

0S:S0E0dV+ f 0S:SoVodV
V JnV

s+i
(3.28)

0C:0E:S0E0dV = S0wL
v

which may further be rearranged to

0S : SoV0dV + [ „C : 0E : S0E 0dV =
v J0v

(3.29)

S0Wex- I 0S:S0E0dV
s+ 1

This is the virtual work equation in terms of displacement increments u

at the left hand side, whereas at the right hand side essentially there are

terms of load increments.

For the derivation of the nonlinear Finite Element formulation the ex¬

pression above is to be converted similarly to the linear static FE method

in Section 3.2. Again, the relevant steps of the discretization are demon¬

strated for an isoparametric, three-dimensional element as a general ex¬

ample. In so-called isoparametric elements the nodal point coordinates

specify the spatial configuration of the element by means of the same ap¬

proximation (shape functions H) as the displacement field and the nodal

point degrees of freedom are related. Therefore, the material coordinate

vector of the initial configuration X may be expressed in terms of the

nodal point coordinates by

X = H 0x (3.30)
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As aforementioned, the displacement field vectors u and Su are con¬

nected with the nodal point degrees of freedom vectors

H ü resp. Su= H Sü (3.31)

see Equation (3.3).

In accordance with Equations (3.20) the linear virtual strain increment

S0E and the nonlinear virtual strain increment S0r) are

50E =

Ô0T] =

fdSu\ fdôuy f^2L\ (dSu\
\dx)

+
\dx) +[dXJ '\dXj~

fdSuV (du_\ (EIlY (—
\dXJ \dXj

+
[dXJ '\dX

dSu\ ( du \

~dX) \dXj

(3.32)

Again due to the chain rule, the nonlinear virtual strain expression S0r)
contains derivatives of the unknown (real) displacements increments u;

and similar to the strain increment the linear virtual strain term S0E

includes components of the current total displacements u.

Corresponding to the derivatives of the displacements with respect to

the coordinates X the derivatives of shape functions H are positioned
in special matrices, which specify the relations between the (virtual)
strain increments and the (virtual) nodal point degrees of freedom (see
Eqs.(3.20) and (3.32)). That is,

0E <Bi û resp. S0E => 0Bi Su (3.33)

As already mentioned, the co-matrices depend on the element geometry
and the position of the nodes and have to be specified separately for each

element of the model. The matrix 0Bi may be split into a matrix, e.g.

0Bio, which refers to the small strain part in 0E and a matrix, e.g. 0Biu,
which considers the initial displacement part, hence

nB, o&lO „B, (3.34)

The first matrix, 0Bio, corresponds to the matrix B of the linear FE

formulation (see Section 3.2) but with derivatives which refer to the

material coordinates instead of to the spatial ones.
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The second integral in (3.29) may be transformed by arranging the com¬

ponents of the tensors into matrices:

0C : 0E : S0E0dV => / Su 0Bt 0C0Bt û 0dV (3.35)
v J0v

In order to replace the tensorial scalar product into corresponding prod¬
ucts of vectors and matrices the displacement derivatives are rearranged
into vectors and matrices. The stresses are placed into a specifically

shaped stress matrix [14, 27], all with respect to the constellations of

the components given by the definition of the nonlinear strain increment

S0r). Thus

k-s-"dv*lM}T-é{^}-dv (336)

The vectors with the derivatives of the (virtual) displacements, in turn,

are replaced by terms of the (virtual) nodal point displacement vector:

5—L \ = ifini û resp. <^ -—- \ = 0Brd SÛ (3.37)
d0xJ J [ d0xJ J

With the new matrices the integral may be expressed in matrix form as

/ (|^4 „sj^LaV =* f SÜT0BTnloS0BniüodV (3.38)
J0V I °oxo J I o0x3 J joV

The index "n/" is appended to point out the nonlinearity which rules

the matrices in (3.38).

The stress components placed into a vector 0S, together with the already

introduced strain-displacement transformation matrix 0Bi the last inte¬

gral in (3.29) may finally also be rewritten in matrix from as

0S:60E0dV => [ 5u0Bl {JtJ} 0dV (3.39)
J0v

The virtual external work terms in (3.23) are transformed in the same

manner than it was demonstrated for the linear case (Eqs. (3.4) to

(3.10)). Consequently, in matrix form the virtual work at increment

s + 1 is given by

S0wL= I <5üTHT0b+10aV + [ öüTHT 0T odA* (3.40)
JoV J0Aa
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In conclusion, the total virtual work at increment s may be expressed in

matrix form by

-T f sT s s

_
_T r ST

Su / 0Bnl0S0Bnl 0dVu + Su 0Bt 0C0Bt 0dV u =

J0v J0v

5uT J HT S' 0dV + SuT J HT 0T odA« (3.41)
JoV J0A„

T ,
T

SÛ / 0Bl {0Sl3} 0dV

According to (3.10) the virtual displacements SÜ are separated and may

subsequently be eliminated. As desired, the strain energy expression are

now written in terms of the known configuration at increment s. At this

step, the integrals are to be evaluated for step s+1 considering the given
external work expressions.

In accordance with the linear FE formulation the numerical system of

equation in the Total Lagrangian formulation is given in short form by

»K„! + 0K;
s + 1

u = p -of (3.42)

ith (for one element)

»k,= f „éf0c„é, 0dv
JoV

(3.43)

f sT s s

o^-ni = / oBni 0S 0Bni 0dV
JoV

(3.44)

f sT

0f = / o&], {oS%3) odV
J0v

(3.45)

s + 1

P =

f T s + i

/ H „b „

JoV
dV + f

J0A„

T

H
t

s + 1

t odAu (3.46)

where 0K; and 0K„| are the linear stiffness and the nonlinear stiffness

matrices, respectively, and 0f and p denote the internal resisting force

and the external force vectors, respectively.

These are the formulas for the numerical system of equation for one single
element. For the assembly of all elements of the model ("mesh") the

matrices and vectors of the elements are accordingly added up. Again, to



3.3 Static Nonlinear Formulations 79

avoid an "overdose" of indices in the formulations the element identifier

and the sum label were omitted (see Eq. (3.12)).

3.3.2 Updated Lagrangian Formulation

In the previous formulation all kinematic variables are referred to the

initial unloaded configuration. In accordance with the considerations on

nonlinear continuum mechanics in Appendix A, where in a LAGRANGIAN

description all behaviour is expressed with respect to the initial coordi¬

nates, the relations presented above correspond to the so-called Total

Lagrange formulation. The equilibrium equations at step s+1 are ap-

proximatively solved by referring all variables to an already calculated

and thus known configuration which is in equilibrium. In addition to the

initially undeformed configuration also the states between increment 0

and s are already known und could consequently be used as reference.

Hence, the so-called Updated Lagrange formulation bases on the same

methods as the Total Lagrange formulation uses, but in the Updated

Lagrange formulation all kinematic variables refer to the configuration
at increment s. The coordinate system remains unchanged, only new

coordinate or position vectors provide with the displacement vectors. In

the following, with the derivation steps already shown for the preced¬

ing Total Lagrange formulation, the relevant differences to the Updated

Lagrange formulation are described herein.

Now the coordinates of the unknown state s+1 are

sx = x + u (3.47)

According to the notation introduced with Equation (3.14) the reference

coordinates are given by: sx.

Consequently, the unknown total displacements "u are defined by

su = u (3.48)

which simplifies the incremental decomposition of the Green-LAGRANGE

strain tensor significantly. Namely, the strain tensor at increment s + 1

in present case is given by

s + 1 1
sE = -

2

or in abbreviated form

SE = SE + srj (3.50)

du

d,x

du

d,x

du

d,x

du

d,x
(3.49)
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In contrast to the Total Lagrangian formulation (see Eqs. (3.18) to

(3.20)) the linear strain increment SE does not include components of

already known total displacements u. The nonlinear term sr) in turn

contains only unknown displacement increments u.

The incremental decomposition of the Green-Lagrange stresses (see
Eq. 3.22) yields in this case:

sS1 = a + SS (3.51)

whereby the already known stresses are identical to CAUCHY stresses a

due to the fact that it applies: SS = a.

With these relations the virtual work expression (resp. the virtual strain

energy part) in (3.25) for the Updated Lagrangian formulation may be

written in expanded form as

a :SsEsdV+ / a : SsrjsdV
v Jsv

,
,

r s+i
(3-52)

S : 5SE sdV + / SS : Ssrj sdV = SsWex
v Jsv

Similar to the Total Lagrangian formulation the term with product of

the stress increment and the nonlinear strain increment is neglected.

Consequently, the approximation in this case is the following:

sr]<.sE -+ I sS:Ssrj0dV « 0 (3.53)
JsV

Again, the stress increment can be expressed in terms of strains using
the following constitutive relation:

SS « SC : SE (3.54)

The virtual work expression in terms of displacements on the one side

and in terms of loads of the other side (see Eq. (3.29)) is consequently

given by

a:5srjsdV+[ SC : SE : SSE sdV =

5„WP.x- I cr:5sEsdV
v
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The needed steps of discretization may be conducted accordingly to the

Total Lagrangian formulation. Thus, for a general thee-dimensional

isoparametric element, the reference coordinates sx are expressed in

terms of the corresponding nodal point coordinates sx by

sx=Hsx (3.56)

with the shape functions in H (see Eq. (3.3)). The relations between

the (virtual) displacement fields and the (virtual) nodal point degrees of

freedom are identical to those of the Total Lagrangian formulation:

u = H ü resp. Su = H Sü (3.57)

The derivatives of the shape functions H with respect to the coordinates

sx are positioned in matrices accordingly to the displacement derivatives

in the strain increment expressions. Thus, with (3.50) and with

the following transformations are introduced:

SE => sBt û resp. 5SE => sBt Su (3.59)

As already mentioned, in contrast to the Total Lagrangian formulation,
in the Updated Lagrangian formulation the (virtual) linear strain incre¬

ments do not include any terms of initial displacements (see Eq. (3.34)).

Similar to the Total Lagrangian formulation, in consequence of the chain

rule the nonlinear strain increments are given by

,

1
SSV = -

I
2

In accordance with Eqs. (3.36) to (3.38) in the Total Lagrangian for¬

mulation, for the discretization of the first integral of the virtual work

in (3.55) the derivatives of the (virtual) displacements are expressed in

terms of nodal point displacements as

\ 7j—L \ = s&ni û and I -—- \ = sBrd Sü (3.61)

dSu\ fdSuY (3.58)

dSu\ ( du

dsx J \dsx

du \ /dSu

dsx J \dsx
(3.60)
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Consequently the transformation is given by

,
T

,v

J
,v

f v.ô.-q.dV =* / aBTnl[atJ]aBnisdV (3.62)
J „v

J

,v

All transformation matrices are now specified (see Eqs. (3.39) to (3.41)),
thus the entire virtual work equation may be expressed in terms of nodal

point displacements. Finally, after elimination of the virtual displace¬
ments Sü, the relevant Updated Lagrangian numerical equations system

at increment s may be written in abbreviated form as

sf (3.63)

(3.64)

(3.65)

(3.66)

HT „t1 sdAa (3.67)

where again 0K; and 0K„| mark the linear stiffness and the nonlinear

stiffness matrices, respectively, and 0f and p are the internal resisting
force and the external force vectors, respectively.

For a direct comparison, the matrix and vectors definitions are listed

similarly to the definitions in the Total Lagrangian formulation; see Eqs.

(3.42) to (3.46).

Note that in both Lagrangian formulations the stiffness matrices Kn;

contain a particular matrix with stress components, whereas the internal

force vectors f include a vector with stress components.

Theoretically, the only difference between the Total and the Updated

Lagrangian formulation is the choice of the reference state for the vari¬

ables. Thus, for correct constitutive matrices both formulations should

yield identical results. But in the Total Lagrangian formulation the lin¬

ear incremental strains 0E include an "initial displacement effect" which

sK; + sknl s+1

u = sp -

ith (for one element)

r sT

SK, = / SB, SCSB, sdV
JsV

i«! = / X K] J»! -dV
J sV

J= f ,B* {at3} ,dV
Jsv

s + 1

sP =

f T s + i

/ H sh sd\
sV

/ + 5üT f
JsA
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provoke a more complex strain-displacement matrix 0Bi than in the Up¬
dated Lagrangian formulation (Eq (3 20) vs Eq (3 49)) [14]

3.3.3 Solutions of the Nonlinear FE Equations

Problems of structural mechanics at which the strains and also the rigid

body motions are assumed to be small may be solved using the linear Fi¬

nite Element method of approximation and discretization In Section 3 2

a derivation of the static linear FE formulation is described which con¬

cludes with the numerical linear system of equations

Kü = p

In this common equation K stands for the overall stiffness matrix, thus

for the stiffness matrix including the stiffness matrices of all finite el¬

ements involved in the model Further, ü represents the vector with

unknown discrete displacements or nodal point degrees of freedom at all

nodes of the model The vector p finally includes the given external

forces acting at the nodes See also (3 11) and (3 12) The "sparse"
stiffness matrix in present linear case is always positive definite4 and the

searched displacements may be found by inversion of the stiffness ma¬

trix using an adequate numerical solver of linear equation systems (e g

Gauss elimination algorithm [14])

In the analyses cases presented in this thesis the strains are assumed

to remain small, but the displacements and rotations are expected to

become large Despite the assumed linear elasticity, in such geometric

nonlinear problems the stiffness matrix depends on the unknown nodal

displacements ü Thus, the searched vector ü may not be specified di¬

rectly for a given load, l e force vector p, as it may be done in linear

case Consequently, all nonlinear problems are numerically solved in

an incremental-iterative way using a sort of linearization applied at each

load step The Total and Updated Lagrangian formulations of incremen¬

tal equilibrium described in Section 3 3 yield the appropriate numerical

system of equations

To linearize the virtual work expressions of equilibrium at increment

s + 1 where the displacement field is yet unknown about the already
known state s, the expression was transformed into a 1st order Taylor
series approximation Based on this, the virtual equilibrium equation

4if all rigid body motions of the model are restrained
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was incrementally decomposed and linearised. The resulting approxi¬

mative, incremental equilibrium relations were finally discretized to FE

equilibrium expressions like (3.42) or (3.63). In abbreviated form these

equation systems may be written as

K„; + ,Kj ü = p1 - ,f (3.68)

with £ = 0 for the Total Lagrangian formulation (see Eq. (3.42)) and

with £ = s for the Updated Lagrangian formulation (see Eq. (3.63)).

The linear or stiffness matrix fKi and the nonlinear stiffness matrix £Kn;

together form the so-called tangent stiffness matrix tKr, that is

Ât = Ai + Âni (3.69)

This yields a further abbreviation of the governing discretized equilib¬
rium equation system as

tkT ü = p1 - i
. (3.70)

The external forces p associated with the external work in general

depend also on the shape of the modeled body, but in the presented cases

the forces may be assumed to be conservative and thus independent of

the deformation.

Equation (3.70) may be used to evaluate an increment in the displace¬
ments which then can be used to ascertain approximations for the dis¬

placements, strains and stresses at step s + 1. With

u = u + u (3-71)

the approximative displacements at step s+1 are specified. Subse¬

quently, the strains and stresses are calculated following the hereunto

adequate relations (see Section 3.3). With the approximations for the

displacements, strains and stresses it is possible to verify how much the

internal work differ from the external work. Exact equilibrium would

require that

s+1 s+1
s + 1

r = p - ,f =0 (3.72)

s + 1

But in numerical solutions the internal resisting forces eï
,
which stem

from the element stresses, in general are not equal to the applied load p .
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The equilibrium error as a result of the linearizations may be quantified

by the out-of-bolance or residual force vector er .
Since the resisting

s + 1

forces ei depend nonlinearly on the nodal point displacements u the

equilibrium error er has to minimized iteratwely. In a purely incre¬

mental method the external loads are applied as a sequence of load steps

or increments, which are small enough that the reaction of the structure

within a load step is approximatively linear. In such methods with¬

out corrective iteration steps the equilibrium errors of each increment

would be added with the consequence that the solution would drift away

from the true equilibrium path [46]. Thus, the incremental solution is

to be combined with a iteration scheme within each increment. The

most commonly used iteration schemes to minimize the residual forces

at any increment are some kinds of the NEWTON-RAPHSON algorithm

[14, 65, 46].

Newton-Raphson Algorithm

The Newton-Raphson formulas are basically identical for both LA¬

GRANGIAN formulations. Thus, in the following the index £ which marks

the reference configuration is omitted.

s + 1

If in an iterative solution the approximative displacements u
t
to the

s + 1

exact total displacements u of increment s + 1 is specified, an improve¬
ment may be received by use of the 1st order Taylor series expansion
for the residual forces [14]:

s+1 s+1

r( Uj+i) = r( Uj) +
dr

dû
(3.73)

By insertion of (3.72) into (3.73) it may be written [14]

"öf"

du

s + 1

p

s + 1

f, (3.74)

whereby the external loads are assumed to be independent of the dis¬

placements. The derivative in (3.74) is the tangent stiffness matrix at

iteration step i, thus

öf

di s±1
u

„

s+1

KTl (3.75)
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s + 1

The tangent stiffness matrix Ky, is presumed not to be singular. Con¬

sequently, (3.74) may be written as

s + 1
_ s + 1

s + 1

KTl ut = p - f
j . (3.76)

Since the 1st order Taylor series expansion is truncated after the linear

term Equation (3.73) is only an approximation. Hence, the corrective

or iterative displacement increment üj, evaluated with (3.76), is used to

compute the next improvement of the total displacements with

s+1 s+1

u l+i
= u. + u, . (3.77)

The relations (3.76) and (3.77) represent the Newton-Raphson solu¬

tion of Equation (3.72) [14, 46].

The start conditions of the iterations (i = 0) of a load increment s+1

are the values of the solution of the prior load increment s. These are

KTo = KT
,

T0 = f
,

üo = ü
. (3.78)

Consequently, (3.70) corresponds to (3.76) at the beginning of the iter¬

ation to find a solution for increment s + 1.

The iterations are continued until a useful convergence criterion is ful¬

filled. A possible criterion is for instance

^3r^ < * (3.79)
Il F» Il

where ß is a convergence tolerance for the norm of the residual force

vector [14, 46, 65].

The disadvantage of this full Newton-Raphson method is the fact that

for the evaluation of the corrective displacements in (3.76) the tangent

stiffness matrix has to be established and inverted during each iteration.

Thus, in a modified Newton-Raphson method the tangent stiffness is

not updated after each iteration step i but only after each load incre¬

ment s. This variant is less expensive than the full Newton-Raphson

method but it requires more iterations and may cause more convergence

problems in case of fast changes in the structure-stiffness.
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Load

s + 1

p

s + 1

KT1,

Ul

K T2.

>i<
U2

>i

s + 1

r( u2)

s + 1

u i u2

s + 1

u
Displacement

Figure 3.2: Full NEWTON-RAPHSON method

1 Iteration counter % = 0

s+1

Estimation of the displacements ü o with the aid of the values of the last

s + 1

converged load step s ü o = ü

s+1 s+1

2 Evaluation of the resisting forces f
z using the displacements ü

z

s+1
s + l s + 1

3 Calculation of the residual forces r( ü z) = p— fz

s+1 s+1
4 Convergence check (eg) continuation if||r( ü

z ) 11 > $ | p || where $ is an input

convergence tolerance, otherwise termination of iteration and change to next

increment s + 2

5 Update of the tangent stiffness matrix K tt,

6 Evaluation of the corrective displacements
s + 1

ü» = [ K 3

s + 1

r( Ü,)

7 Update of the estimated displacements with

i = i + 1 Go to 2

s + 1

Û »+1

s + 1

Table 3.1: Scheme of the Full NEWTON-RAPHSON method for the current in¬

crement s + 1. see Figure 3.2 [46].



88 Buckling Analyses with Finite Elements

Arc-length methods

The standard implemented Newton-Raphson procedures impose step¬

wise constant load parameters during the evaluation of the displacement
field. In Section 3.5.2 constraint methods are presented which allow for

load level modification throughout the iterations by introducing an aux¬

iliary equation which guides the solution to follow a certain path.

3.4 Transient Dynamic Formulations

Engineering applications in which structures are subjected to time-

varying loads such as impact, impulse or contact loading require transient

dynamic analyses. In such dynamic problems it is usual to integrate the

governing semi-discrete equations of motion using a time stepping algo¬
rithm. These so-called direct integration schemes may be classified as

either explicit or implicit [46]. In this section the formulations and their

derivations are again reproduced for their general application with any

FE model, i.e. not specifically for shell structures under axial compres¬

sion. Transient dynamic analyses of axially compressed cylinders are

discussed only later in Section 3.5.3.

By D'Alambert's principle, the external loads can be considered by

combining the inertia and the applied loads as [31]

PP => pp — pü — nù (3.80)

with the acceleration vector il, the velocity vector u, the density p and

the damping ratio n introduced. Consequently, for the discretization a

similar treatment as used for the body forces in Section 3.2 may be done.

With u = H ü as relation between nodal displacements and displace¬
ment field (see Equation 3.12), the virtual work of the inertia terms leads

to

(pü + nu)Su 0dV =>A4ü=/ pH H 0dV ü

V

pV (3-81)
+ Cù= / n HTH 0dV ù

JoV

where A4 is called the element mass matrix and C is called the ele¬

ment damping matrix [31]. Both matrices may be specified from the
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undeformed configuration and have the same matrix form Mass con¬

servation during deformation demands that the mass matrix remains

constant (see Equation A 10) All element matrices assembled, the mass

and the damping matrices exhibit about the same symmetric and banded

structure as the stiffness matrix As a result, the equations of motion of

the entire modeled structure may be expressed as

Mü + Cu + f(u) = p (3 82)

whereby A"t and C are the structural mass and damping matrix, respec¬

tively, and ü and ù are the nodal acceleration vector and nodal velocity
vector The vector p includes the externally applied forces without the

inertia contributions, and the vector f(ü) contains the internal forces

[80] If linearity is assumed with respect to displacements, the internal

force has the form

f(ü) = KÜ (3 83)

and the equation of motion may then also be written m the common

form as

Atü + Cu + Kü=p (3 84)

Viscous damping assumed, the damping matrix is conveniently given by
a combination of the mass and the stiffness matrix, that is

C = amM + akK (385)

with the constants am and ak This proportional so-called Rayleigh

damping is an approximation For structures composed of different ma¬

terials the relation is not suitable Since real damping my have sources of

many kinds, generally the two coefficients am and ak have to be chosen

by the program user to best represent the real structure on the basis of

empirical studies and of experience [80, 31] If ak is different from zero

the damping matrix depends on the deformations state like the stiffness

matrix Thus, for the general nonlinear case the term (C ù) m Equation

(3 82) should be considered as a contribution to the internal force vector

f (Ü, û) [46] However, to simplify matters m the following the damping
matrix is assumed to remain constant

The direct time integration methods to solve the differential equation

system (3 82) base on the principle to satisfy the static equilibrium,
which now considers also inertia and damping, not for all time t but

at certain discrete time steps The displacements, the velocities and the

accelerations may then vary withm these time steps, l e withm each time
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interval [14]. Consequently, the solution methods for static calculation

may also be used for the direct time integration effectively.

If the solution for the time span T is to be found, then T is divided

into S constant time intervals At as At = T/S. Then, the solution is

typically considered at time stations [46, 14]

t and T = t + At
. (3.86)

With this and in accordance with Section 3.3 the equation of motion

(3.82) is rewritten for increment s + 1 to

s + 1 s + 1
+1

Atü+Cu+f(ü)= p . (3.87)

For a complete definition of an initial value problem the initial conditions

for the displacements and velocities have to be specified. The time inte¬

gration schemes for nonlinear problems do not differ for either the Total

or the Updated Lagrange formulations, thus the index which marks the

reference increment is omitted again.

The choice of the direct time integration method for the calculation of

the chronology of the motion ü(t) depend on the particular problem.

Basically, with the explicit and the implicit integration schemes two

different approaches are available.

3.4.1 Explicit Methods

In analysis cases where high frequencies dominate the solution (e.g. due

to impact) or where the wave propagation is of interest, in general very

small time intervals are necessary to simulate the process. The time in¬

tegration then may be conducted most efficiently with the aid of explicit
methods.

In principle, the equations of motion as a system of ordinary differential

equations considered, any form of finite differences my be used to express

the accelerations and velocities by displacements approximatively [14].
But, in most structural problems the central difference operator is used

where the accelerations ü and the velocities ù at time t are approximated

by

Ü =

'" ~ \% + V
and ù =

l^A
.

(3-88)
At2 2 At



3.4 Transient Dynamic Formulations 91

s + 1

The solution for the displacements at time t is found by considering

the differential equation of motion (3.87) at time t, that is:

Atû + Cù+f = p . (3.89)

Insertion of (3.88) in (3.89) yields [14, 80]:

+ lk2Mk-(-k2M-YÄtc)^ •

(3.90)

s-l s s+1

If u and u are known the searched value of u may be readily be

calculated with a triangular decomposition (see Equation 3.114) of the

left bracket term. If A"t and C are available in diagonal form ("lumped
mass"), then the inversion is trivial and in the right side of (3.90) only
vectorial multiplications are necessary.

Note that in this explicit scheme the displacements (degrees of freedom)
are evaluated as a function from known values of two preceding time

steps and that no inversion of the (effective) tangent stiffness matrix is

necessary. The term containing all nonlinearities is the internal resisting

force vector f in the right side of (3.90), which is calculated and assem¬

bled in accordance with Section 3.3 [80, 46].

-i

since the vector ü is

(3.91)

(3.92)

With this explicit scheme also very large systems may be computed with

small time efforts per increment, but the central difference operator is

only conditionally stable. The time interval length is limited by the

expression

At < (3.93)
^max

The initial values have to be defined adequately
0 0

specified by use of the initial conditions ü and ù:

-10 o At2 °

ü = ü — At ù H——ü

where the initial accelerations are given by

0 / 0 0

ü= At [-CÙ-Ï + p
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where ujmax is the highest frequence of the finite element model [46]. This

very severe time interval limit, required for numerical stability, ensures

accuracy in practically all modes of vibration. It can be shown that the

highest system eigenfrequency is less than the highest eigenfrequency
of the individual finite elements. This allows an easier estimation of

the critical time intervals which will be conservative. Particularly for

nonlinear problems such approximate expressions are often employed

[46]. The most common form is [46, 80]

At < £
ham.

(3.94)
Cd

where Lmm is the smallest distance between any two nodes and Cd is the

current, effective dilatational wave speed of the material with

«^
' E(1

p(l + v)(l-2v)

whereby in turn E is the bulk modulus, v the Poisson ratio and p the

density. £ is a coefficient dependent on the type of element used. Note

that an increase of the density leads to larger critical time intervals,
whereas an increase of the stiffness has the opposite effect.

3.4.2 Implicit Methods

The probably best known direct time integration algorithm in structural

mechanics is the implicit Newmark method. "Implicit", since the ap-
s + l

proximations of the velocities and displacements at the time t depend

not only on the known accelerations of the time t but also on the yet

unknown accelerations to be calculated [80]. That is:

s + 1

ù = ù +At [(1-7) ü + 7 ü]
s + 1 s s /\^2 s s + 1

ü = ü+ Atù+—-[(1 -2ß)ü+2ßü]
(3.95)

The initially free parameter 7 and ß control the accuracy and stability
of the method. For constant average acceleration with unconditional

stability the Newmark method includes 7 = 1/2 and ß = 1/4.

The unknown accelerations may now be specified with the equation
of motion in (3.87) and the approximations for the velocities and the
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displacements. The resulting nonlinear system of equation can then

be solved for the unknown accelerations using a Newton-Raphson

scheme. But alternatively the approximations in (3.95) may be rear¬

ranged in a way that the accelerations and the velocities depend only on

the unknown nodal displacements [80, 31]:

s + 1

Ü

s+1

ù

s+1

u

4 .±i

A^U
2 ,.±i
I-( u -

Atv

u + u

At

u (3.96)

Insertion of these expressions in the equation of motion (3.87) again

gives the following nonlinear system of equation for the yet unknown

displacements:

s + 1

r( u) At
r 4 •+

'"û) -

4 f

"i-u -

At

ü

+ c
r 2 .±i
I-( u -

LAtv
ü) — ù -f

s + l

f 'F = o

(3.97)

With the aid of the Newton-Raphson algorithm the displacements at

s + 1

time t may be evaluated. According to Section 3.3.3 the residual force
s + 1

vector r( u ) is approximated as

r( u r+i/ r( u

du
(3.98)

where i is the iteration number and u4 an iterative displacement incre¬

ment. With the tangent stiffness matrix

öf

du
s + 1

u
%

s+1

KTl (3.99)

the insertion of (3.97) for the residual forces into (3.98) yields the fol¬

lowing expression

4 2

ÄeM+Äte
s+ 1

K Ti

s+1

Uj = p

s + 1

f,

At
4 ..±i

A^U* At
u — u

2 ,.±i

Atv uj — u

(3.100)
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With two definitions this lengthy formula may be brought into a form

similar to the iterative algorithm for static problems (see Section 3.3.3):
s + 1

the effective stiffness matrix K, is given by

!£ = ^At+J^C+KTî (3.101)

s + 1

and the effective residual load vector r( u t) is

s + 1
s + 1

s + 1 r 4 s + 1 s 4 s s-i r 2 .s + 1 s.

r( ut) = p - f ^-At^^^u^-u)- —ù-tij-C^—( Uî-u)-ù

(3.102)
With these expressions again the corrective displacements at iteration i

and the updated displacements may be evaluated:

i-i
s + 1 s + 1 s + 1

u,= [Kj r(u,) , resp. u î+1
= u

t + ut (3.103)

This procedure is repeated until the appropriate norm of the residual

force satisfies a given convergence criterion (see Section 3.3.3) [80, 31, 46].

Neglecting mass and damping, the formulations above become identical

to the scheme for the iterative solution of static problems. Thus, the

statics might be considered to be a special case of the dynamics. But

this also means indirectly that in each iteration a triangular decomposi¬
tion of the stiffness matrix is required. Consequently, per time step the

implicit method is more expensive than the explicit method. The im¬

plicit Newmark method is unconditionally stable. The explicit method

is also second-order accurate but not unconditionally stable. Hence, the

disadvantage of a larger effort than the explicit scheme may be compen¬

sated by possible larger time intervals At = T/S and thereby by a lower

number of time steps S for a given time span T compared with explicit
time integrations. Consequently, in general a use of the explicit method

may only be recommended for structures of high specific material stiff¬

ness E//3 if the analysed deformation process is short-time, thus for crash

analyses for instance; for slow processes and long periods to be investi¬

gated however the number of time steps might be too discouraging.

Since lower eigenmodes are significantly better approximated by the spa¬

tial finite element discretisation than the higher ones, it would be bene¬

ficial to filter out higher frequencies during the direct time integration.
With implicit methods the nullification of high-frequency modes is per¬

missible, since these methods are preferably used for problems where
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the lower frequencies are important for the response of the system. In

the Newmark method this would demand that 7 > 0.5, but unfor¬

tunately this would lead to a loss of accuracy [80]. Therefore, modifi¬

cations of the implicit scheme above have been proposed which retain

the second-order accuracy but with annihilation of higher frequencies.
The so-called numerical dissipation is useful to control disturbing oscilla¬

tions in the solution which stem from high-frequency modes [23]. One of

the earliest algorithms to include numerical dissipation is the HOUBOLT

method. This algorithm has the additional advantage of asymptotic an¬

nihilation in which the high-frequency response is nearly nullified in one

time step [23]. The HOUBOLT method has been introduced in numerous

commercial finite element programs (e.g. MARC®), but there are two

noticeable disadvantages to this scheme: First, it is composed in linear

multi-step form and thereby inherits difficulties in the starting condition

and time interval changing. Second, the algorithm requires smaller time

intervals than the standard Newmark method to minimize unavoidable

low-frequency dissipation [23].

The HOUBOLT operator is based on cubic curve fitting through three

previous steps and the current time step. This results in the expressions
for the velocities and the accelerations as follows:

s+1 s s-1 s-;

s + 1 ifü-3Ü+|ü " I Û
Û = ^r-2 "

At

s + 1 s s-1 s-2

S+1 2Ü-5Ü + 4Ü-Ü

As already mentioned, the calculation of the displacement field at time

s+1 s s-1

t requires knowledge of the displacements at time t, t and, addition-
s-2

ally, t
,
which leads to complicated specifications of the start conditions.

Furthermore, variations of the time interval throughout a transient dy¬
namic analysis is not possible.

In 1994 (Chung and Hulbert [23]) presented a single-step variant of

the Houbolt algorithm. The so-called implicit single-step Houbolt

method (SSH-method) is asymptotically annihilating high-frequency re¬

sponses, but without the mentioned disadvantages of the multi-step
form. Moreover, the method is stable and, with adequately sized time

intervals, sufficiently accurate. In general form the equilibrium equation

and

(3.104)

, respectively.
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of the single step scheme may be written as [23]

s + 1 s + 1 s+1

amiAt ü + o.ciC ù + «fciK u

+i
(3.105)

amAlü + acCù + ak~Ku = cYfi p + äfft

s + 1

The velocities and accelerations at time t are approximated by

s+1 s s s s+1

u = u + Atù + ßiArü + ß2Ar ü
(3.106)

s+1 s s s+1
V I

ù = ù + 7iAtü + 72At ü
.

Note that the equilibrium equation includes terms corresponding to the

beginning of the increment. Such an accumulation of unknown param¬

eters in the three equations above is unwelcome and therefore to be

reduced. Without loss of generality, the parameter ami may be set to

1. Asymptotic annihilation requires that

ak=0, A =71, /32=7i+72- (3.107)

Further, second-order accuracy demands that

1 1

"Ö ' aki = rTTT > afi = aki, af = ak ,

l lß2

2ßi+ß2
_

2/31+3/32

Aß2
' acl

Aß2

(3.108)

In this way, the number of unknown parameters has been reduced to

two, 7i and 72. According to the investigations of (Chung and Hulbert

[23]) these two parameters shout either be set to 71 = —1/2 and 72 = 3/2
to minimize the velocity error, or to 71 =0 and 72 = 1/2 to avoid velocity
overshoot 5.

In 1999 MSC.Software introduced the SSH-method into the program

marc®
.
In accordance with the Newmark algorithm (Equations 3.101

to 3.103) and with specifications by MSC.Software [61] an iterative pro¬

cedure for nonlinear dynamic transient analyses could be deduced as

follows:

an effective stiffness matrix is given by:

Û -

2
KA -+-

72(571+372)
r

"+1
, s

Kî -
ÄeM

+

2(7i+72)AtC
+ Kt*

' (3-109)

BIn MARC® the default values are 71 = —1/2 and 72 = 3/2 .
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and a corresponding effective residual load vector may be defined as:

r( ut)
s + 1

p

s + 1

f, At

C

s+ 1

2(71 +72) ü,

571 + ^/^V

(71 +72)Ü

371 + 72
(3.110)

1.2(71+72) 2(71+72)

with the corresponding unknown accelerations and velocities

1s + 1

Ü,
At2(7i + 72)

Uj - Atû -

71At ü

ù
j
= ù + 7iAtü-

72

At (71 -72 J
Uj — Atù —

71 At ü

(3.111)

Again, the nodal displacements u t+i are iteratively adjusted by addi¬

tion of corrective displacement increments ü4 until the appropriate norm

of the residual force satisfies a given convergence criterion (see Section

3.3.3).

3.5 Buckling Analyses

One way to evaluate the maximum load a structure may carry before

structural instability with the static finite element method is the exe¬

cution of an incremental calculation by use of nonlinear LAGRANGIAN

formulations. In accordance with the notation in Section 3.3.3 the lin¬

earized equilibrium condition for any loading increment s may be written

as

ekTlut = p,-f, = r(ü.) « 0. (3.112)

With an iterative process (e.g. Newton-Raphson, see Section 3.3.3)
it is attempted to minimize the difference between the applied external

forces Pj and the internal forces ft. Convergence achieved after 1 it¬

erations a set of additional displacement increments ü4 is found which

yields the total displacement vector ü4 that corresponds to the given load

level Pj, and the residual force vector r(üj (almost) vanishes. That is,
the equilibrium condition of the deformed state at a load step s is ap-

proximatively fulfilled. A structure tends to fail if the displacements for

small additional load increments already become relatively large, what is

an indication that the effective stiffness of the structure becomes small.

Numerically this means that the determinant of the tangent stiffness
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matrix ,/K-t becomes smaller and smaller until, at collapse, the tangent
stiffness matrix is singular, i.e. its determinant is zero. In the vicinity of

the collapse load also convergence problems in the incremental solution

of the equilibrium iterations may occur (see Section 3.3.3) [14]. Thus,
in order to verify the condition of the system regarding critical points
in load-displacement curves the determinant of the stiffness matrix is

investigated as an accompanying measure.

For every load step s the iterative-incremental solution methods a tri¬

angular decomposition of the tangent stiffness matrix is necessary to

solve the linear system of equation. For the decomposition of regular

symmetrical matrices mainly two methods are available [17, 14]:

• the L DL decomposition. It applies that

,KT = LTDL (3.113)

where L is an upper triangular matrix with Ltl = 1, and D is a

diagonal matrix.

• decomposition after Cholesky. In this method the matrix is de¬

composed as follows:

eKT = LTL (3.114)

where L is an upper triangular matrix.

In both methods the determinant of the stiffness matrix may easily be

calculated as a "byproduct" of the decomposition process. For a matrix

with ndof diagonal elements it follows that

in the L DL decomposition and

in the Cholesky decomposition [17].

(3.115)

A state of equilibrium is stable if the stiffness matrix is positive definite.
This is the case if its determinant is positive, i.e. if all Du are positive

or all Lu are real, respectively. A singular stiffness matrix means that

the state of equilibrium is indifferent. In this case the determinant is

zero which signifies that at least one Du or one Lu is zero. At least one

ndof

det eKT = det D = J| Dtl

i=i

ndof

det,KT=(detL)2= ]J L2t
i=i
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Dn being negative or at least one Lu being imaginary finally denotes

that the stiffness matrix is indefinite and that the equilibrium state is

unstable [17, 80].

The determinant of fKp may be a very large number and care must be

taken that the computer number limits are not exceeded. Thus, often

only the appearance of negative Du or imaginary Lu is used as indicator

for the existence of an instability point.

However, det^K^ > 0 is a necessary but not a sufficient condition for

the stability of the investigated state of equilibrium [17], since an even

number of negative Du or imaginary Lu, respectively, yields also a pos¬

itive determinant, although the stiffness matrix is non-positive definite

and the respective state unstable [17, 14, 46, 80, 56].

In MARC® a very small or negative "singularity ratio" indicates an un¬

stable state of equilibrium. This ratio is defined as the smallest ratio

between eKtl^ and gK^1^1^, where eKtl is the diagonal term of the «th

degree of freedom. The diagonal terms are computed during a so called

Crout algorithm which may be used to decompose the stiffness matrix

in an upper and a lower diagonal matrix [61, 64, 72].

In general, commercial FE programs stop the calculations when the stiff¬

ness matrix is (or seems to be) indefinite, which in linear analyses is

mostly caused by undesired rigid body motions of the model. For non¬

linear analyses, numerical methods exist with which systems of equations

may be solved despite an indefinite system matrix, but the usefulness of

such results for engineers has to be questioned.

3.5.1 Linear Buckling Analysis

Due to the large numerical efforts of nonlinear incremental finite element

calculations methods are preferred with which instability loads may be

specified directly with the effort of only one load step. This applies

particularly for perfect, elastic structures whose deformations are very

small prior to buckling.

The direct methods for static instability investigations with finite ele¬

ments base on the (Euler) assumption that the load-carrying capacity
is reached if beside the fundamental equilibrium state at least one ad¬

joining state of equilibrium with identical loading exists. Thus, with

infinitesimal displacements as a disturbance it may be specified if an
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equilibrium state is indifferent. With s = -F for the fundamental state

and s = N for its neighbouring state the states of deformations in the

instability calculations coincide with the incremental states of displace¬
ments in a nonlinear finite element analysis [65, 17]. In accordance with

the notation in Section 3.3.3 the linearized equilibrium equation for the

adjacent state may therefore be written as (see Eq. 3.70)

F
N

F

eKTû = p - A . (3.116)

For infinitesimally proximate displacement states this is an exact equi¬
librium condition. Since the applied forces are identical for both states

it applies that

p" = p . (3.117)

Furthermore, due to the condition that the fundamental state is in equi¬
librium the residual forces of the fundamental state vanish:

er = p - J = 0
. (3.118)

Consequently, with (3.116) a criterion for an indifferent state of equilib¬
rium is given by

tkrüs = 0 (3.119)

where us stands for the infinitesimal displacements from the fundamental

state to the adjacent state. This vector indicates the initial buckling

mode, i.e. the shape of deformations at beginning of the post-buckling
state (see later) [17]. There are only nontrivial solutions for us if the

determinant of the tangent stiffness matrix vanishes

det,KT = 0
. (3.120)

In literature for stability analyses it is usual to introduce proportional

loading where the external load distribution is given by the loads p and a

scalar load multiplier A (—> A p) [65, 17, 14, 31, 56, 80]. If the parameters

of the fundamental state are expanded in a power series with reference

to this multiplier A together with the homogeneous equation (3.119), the

following eigenvalue problem is obtained:

[K0+AK6 + A2KC + ...] Ü, = 0 (3.121)

with the eigenvalues A, the independent matrices Ka to Kc and the

eigenvector us. The smallest eigenvalue leads to the critical load Acr p
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[65]. But this nonlinear eigenvalue problem may only be solved iter-

atively. Thus, the eigenvalue problem is reduced to the special linear

case:

K„,+AKf 0
. (3.122)

Any initial displacements of the fundamental state ignored the linearized

eigenvalue problem in (3.122) may be redefined with the load parame¬

ter A and the components of the tangent stiffness matrix introduced in

Section 3.3 as

,K, + A0Knl üs = 0
. (3.123)

Thereby 0K; is the linear elastic stiffness matrix in a total Lagrangian
formulation or in an Updated Lagrangian formulation at the first load

i

increment (see Eqs. (3.43) and (3.64)), and 0K„; is the nonlinear stiff¬

ness matrix after a first increment linearly calculated for the load level

p (see Eqs. (3.44) and (3.65)). A linear relationship between the fun¬

damental state and the external loads presumed, the buckling load is

estimated with

pcr = Acrp (3.124)

where Acr is the smallest eigenvalue. With A = Acr in (3.123) the corre¬

sponding eigenvector us is obtained which describes the linear buckling

mode. The smallest eigenvalue is positive if the components of p cause

compressive stresses.

This method of calculation is called linear eigenanalysis or linear buck¬

ling analysis. Nevertheless, the procedure corresponds to the 2nd order

theory where linearized kinematical equations are used but the equilib¬
rium is considered at a deformed configuration.

0

The linear material stiffness matrix 0K; is identical to the system stiff¬

ness matrix K of a linear finite element analysis for small displacements

(see Section 3.2) and is therefore built accordingly. The nonlinear stress

i

stiffness matrix 0K„| in contrast has to be generated especially for the

eigenvalue analysis, since in linear finite element analyses this contribu¬

tion to the tangent stiffness matrix is not "automatically" generated as

it is in a nonlinear analysis.
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Nonlinear Stiffness Matrix

The nonlinear stiffness matrix6 Kn; is commonly called either geometric
stiffness matrix or initial stress stiffness matrix. The components of the

matrix depend on the applied loads, in case of plates or shells basically on

membrane forces. In Appendix C the content and the derivation of the

nonlinear stiffness matrix is explained in more detail on basis of a plate
element. According to Section 3.3.2 in an Updated Lagrangian formu¬

lation the transformation from the tensorial form of the corresponding
virtual expression for a general, three-dimensional element may be writ¬

ten as

<T : Ssr) sdV sBnl r»jJ sBnl adV ,Kr

or, in vector/matrix notation for a plate element with the membrane

forces {NlQ} = {atJ}:

{ösVtAT{.Nt3}sdA
,T

Su„„ Jß„,
s^ xx s^ xy

s^ xy s^ yy

„B,„u,„ ,dA

where the matrices SBW rule the description of the derivatives of the

(virtual) lateral displacements w (dw), i.e. as in present case of the

slopes in terms of the corresponding nodal degrees of freedom ü„, with:

dw

d,x,.
resp.

\dSw\ •

ç_

A central feature of the nonlinear stiffness matrix is the fact that for the

generation of Kn; a precedent static analysis is necessary where the reac¬

tion of the structure due to a given loading is calculated. Consequently:
the nonlinear stiffness matrix of an unloaded structure is zero. Further¬

more, in a finite element analysis the deflections and thus also the slopes,
i.e. the geometric variables from which actually stem the nonlinearity
on hand, are members of the a priori unknown nodal degrees of freedom

vector ü (see Appendix C). Therefore, the author considers the label

"initial stress stiffness matrix" as more plausible.

6 In literature the symbol for the nonlinear stiffness matrix is often tagged with a

'G' or 'g' instead of the 'nl'.
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Extraction of Eigenvalues and Eigenvectors

The extraction of eigenvalues and eigenvectors of a system is also re¬

quired for the calculation of natural frequencies of vibration. The struc¬

tural eigenvalue problem has therefore received considerable attention

since the wider spread of the finite element method, and much work has

been devoted to develop eigenvalue extraction methods, especially for

the often very large but usually narrow-band system matrices involved

in finite element models [45]. Mathematically, the solution of the gener¬

alized eigenproblem is of interest:

Aug = \Sus (3.125)

where in the case presented above the matrices A and H would represent
the in general indefinite nonlinear stiffness matrix Kn; and the linear

stiffness matrix K; [14]. There exist Ndof eigenvalues

0 < Ai < A2 <
...

< XNdof (3.126)

and corresponding Ndof eigenvectors u^j which fulfill Equation (3.125).
But in most cases only very few (the smallest) eigenvalues are requested.
If H is an identity matrix I, then the generalized eigenproblem (3.125)
reduces to a standard eigenproblem. The solution for the eigenpairs

(Aj, ug J of interest may also be written as

AVs = 3UäA (3.127)

with the matrix U<5, whose columns are equal to the requested eigen¬
vectors u,5 j,

and the diagonal matrix A containing the eigenvalues A4.

Important and useful predicates of the eigenvectors are that it applies:

Vj AVS = A
I (3.128)

UjS\Js=I

A first and common technique used to calculate eigenvectors is the in¬

verse vector iteration method7, which also enables to evaluate the cor¬

responding eigenvalues simultaneously. Inverse iteration is applied to

several important iteration procedures, including the subspace iteration

[14, 45, 72]. In this solution a starting iteration vector xi is assumed

7also referred to as "inverse power sweep".
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with y1 = 3 xi and then in each iteration step k = 1,2,... the equations

*4.xfc+i = yk

Yfc+i = 2 5cfc+i
-T

À À/ \
Xfc+1 Vk

Xk+i
=

A(xfc+i)
=

_T

^

_ (3.129)
xfc+l Vk+1

Yfc+i
Yfc+i

xfc+i vfc+i

are evaluated [14]. If y^u^ i ^0 then:

yfc+i —> 3u,5i and A(xfc+i) — Ai for k—> oo (3.130)

Denoting the current approximation to Ai by Afc+i convergence is

reached when

Afc+i — Afc

Afc+i

A useful value for tp is 10-5.

<ij) (3.131)

There is a so-called forward iteration which is complementary to the

inverse iteration in that this method yields the eigenvector corresponding
to the largest eigenvalue [14].

A further, very important and more effective method to extract eigen-

pairs is the Householder-QR scheme, where first with so-called HOUSE¬

HOLDER transformations the matrix A is reduced to tri-diagonal form;

then, with QR iterations the eigenvalues are obtained using the fac¬

torization of the now tri-diagonal matrix A into QR, where Q is an

orthonormal matrix and R an upper triangular matrix, that is:

A=QR and RQ = QTAQ ; (3.132)

with Ai = A for iteration steps k = 1, 2,... it is

Ak = QfcRfc and subsequent:

Ak+i = RfcQfc

where

Ak+i—>A and Qx... Qfc iQfc—> Us for k—> oo (3.134)

(3.133)

Finally, by use of inverse iteration the required eigenvectors of the tri-

diagonal matrix are calculated and transformed in order to obtain the
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eigenvectors of A. Since this method is restricted to standard eigen-

problems, if the generalized eigenproblem Aus = A 311,5 is considered,
it has priorly to be transformed into the standard form .4.11,5 = A 11,5

[14, 45].

For large FE models these procedures are computationally very expen¬

sive. Therefore, in the last decades efficient procedures have been devel¬

oped, in which the eigenproblem is first transformed into smaller matrix

systems whose eigenpairs are then computed with standard methods as

mentioned above. In the so-called subspace iteration method first a small

set of base vectors is created, defining a "subspace", which is then trans¬

formed by simultaneous inverse power iteration into the space containing
the lowest few eigenvectors of the overall system [45, 14]. But the method

reputed occasionally to be the most efficient one for large FE models is

the Lanczos eigensolver: equation (3.125) may be rewritten as

-311,5 = SA^Sus (3.135)
A

With the transformation

us = Vus (3.136)

and a multiplication by V on both sides, Equation (3.135) becomes

ivT3Vû,5 = VTSA^1SVûs (3.137)
A

with us denoting the eigenvector of the reduced matrix system. The

Lanczos algorithm results in a transformation such that

VT3V = I

T 1 (3-138)
VT3A"13V = Tq

with the symmetric tri-diagonal matrix Tq of order q and the iden¬

tity matrix I. The matrix V contains a sequence of vectors \t with

V= [vi, V2,..., vq]. The original eigenproblem (3.135) is reduced to

the following new eigenvalue problem:

-us = Tqûs (3.139)

that is, the eigenvalues of Tq are the reciprocals of Aus = A3 u^ and

the eigenvectors of the two problems are related as given in (3.136). The

reduced eigenproblem may be computed with (e.g.) the HOUSEHOLDER-

QR method [61, 45, 14]. Unfortunately, the Lanczos algorithm is ac¬

companied by some numerical problems: in the solution of large systems
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the required orthogonality of the base vectors Vj may not be fulfilled

[72, 14]. The practical use of of the Lanczos method lies in that if q is

smaller than the number of degrees of freedom of the total model, the

eigenvalues of Tq may give good approximations to the smallest eigen¬
values of the problem (3.125). However, the actual accuracy with which

the smallest eigenvalues of (3.125) are approximated as well as wether a

required eigenvalue has been missed completely is unknown. Thus, the

method has to be combined with an corrective, iterative scheme, and

eigenvalue error bounds checks have to be computed [14]. Consequently,
the use of the Lanczos method needs some experience, in contrast to

the slower inverse vector iteration method for instance.

3.5.2 Nonlinear Buckling Analysis

A linear buckling analysis according to Equation (3.123) which bases on

a simple linear stress analysis with subsequent linear eigenvalue extrac¬

tion yields only useful results if the pre-buckling behaviour of a struc¬

ture is linear as well. Thus, basically only bifurcation points may be

estimated accurately. Despite this restriction the linear buckling anal¬

ysis has become the standard reference for more elaborated instability

investigations. In practice structures are typically FE-modeled and in¬

vestigated with perfect geometries and boundary conditions where the

state of stress at the fundamental state is mainly governed by membrane

stresses and the pre-buckling deformations are assumed to be negligible.
In these cases the effort for (additional) nonlinear finite element calcu¬

lations is normally not indicated. But, the pre-buckling behaviour of

many thin-walled structures includes large pre-buckling displacements
in the range of the shell wall thickness and above, or their state of stress

is dominated by bending stresses. The consideration of geometric im¬

perfections in a FE model is an example where nonlinear collapse has

to be expected as failure type. For the calculation of the limit loads of

such structures alternative methods to the linear buckling analysis have

to be applied.

In order to consider the initial displacements it seems to be obvious to

introduce the corresponding component of the tangent stiffness matrix

K.t into the calculations, although there is no mathematical founda¬

tion how the tangent stiffness matrix is to be split for a given problem

[56]. In the Total Lagrangian formulation the linear stiffness matrix 0K;

(Eq. (3.43)) may be divided in a common linear material stiffness ma-
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trix 0K;o and an initial-displacement stiffness matrix 0K;„ which stems

from the initial displacement part in the incremental Green-Lagrange

strains (see Eq (3 34) in Section 3 3) That is,

„K l —

0 K, „Klu (3 140)

With this matrix the instability analysis above is expanded to a deformed

configuration at increment s as basis for eigenvalue analyses This de¬

formed fundamental state may be specified with a linear or a nonlinear

static analysis A direct extrapolation of the linear buckling analysis ac¬

cording to (3 123) in a Total Lagrange formulation yields the following

eigenvalue problem [65, 17]

0K;o + 0K;„ + A 0KTl 0 (3 141)

Since both the initial-displacement stiffness matrix 0K;„ and the initial

stress stiffness matrix 0K„; depend on the relating state of deformation,
in (Ramm [65]) it is argued that the different handling of these two

matrices in (3 141) is not justifiable but should rather be added to one

matrix, that is

,Kw A(0K;- »K, 0 (3 142)

The formulations in the expressions (3 141) and (3 142) base on the as¬

sumption that the reached load level in the fundamental state is changed

by the multiplier A where at buckling it applies that A = 1 Alternatively
to these linear amplifications of parameters of the fundamental state also

incremental values of an already reached equilibrium state can be altered

to estimate critical loads [65, 17] That is, the eigenvalue problem may

be modified in a way that only an increment of load is computed with

A = 0 at buckling A Taylor series expansion of the tangent stiffness

matrix ,Kt about the load parameter up to the linear term yields the

following new eigenvalue problem

,KT + A,AKT u, 0 (3 143)

with the increment of the tangent stiffness matrix

»AKT = ,KT — e*^T
—

e*^T
K7

(3 144)
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In this notation the eigenvalue problem in a Total Lagrange formulation

(£ = 0) and in an Updated Lagrange formulation (£ = s) is identical. For

a better survey the matrices of the two neighboured equilibrium states

in (3.144) are decomposed [17] in accordance with (3.69) and (3.63) to:

,AKT = [/Kj + (K„i] - [,Kj + Âni]

= [/K, - A<l] + [eKnl - A<nl] (3-145)

eAKi + eAKnt

Expanded the eigenvalue problem becomes the new form

A<i+Âni+^ (<AK,+,AKn,)] u, = 0
. (3.146)

An analysis with (3.146) after the first load step p yields the same results

as with (3.142), since in this case the incremental stiffness matrices eAKi

and tAK„i coincide with the total stiffness matrices £K; and £Kn; [17].
Such buckling analyses at advanced load states cause variations which

depend on the size of the load increments, but these disappear at the

critical point since singularity is only indicated by the tangent stiffness

matrix and not by the incremental stiffness matrices. Therefore, the

incremental linear stiffness matrix may be omitted without causing con¬

siderable changes in the resulting critical load estimations. Finally, the

eigenvalue problem to be solved for increment s + 1 may be expressed as

,K( + «Knl + A (AKnl ûs = 0 (3.147)

with the incremental geometric or stress stiffness matrix (AK„| with ref¬

erence at the undeformed state (Total Lagrange: £ = 0) or at the current

state (Updated Lagrange: £ = s). Accordingly, the estimated buckling
load at increment s + 1 is calculated with

s+1
s+1 s+1

Per = P + V Ap (3.148)

s+1 s+1

where Xcr is the smallest eigenvalue and Ap the load increment at in-
s + l

crement s + 1. Again, with A = Xcr in Equation (3.147) the eigenvector
s + 1

us is found which describes the corresponding buckling mode. For posi¬
tive eigenvalues the members of the load and load-increment vectors are

oriented to cause compressive stresses.

In the following, this type of incremental instability investigation is called

nonlinear buckling analysis. This name might provoke some "semantic"
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discussions, since in fact the method consists of linear eigenvalue calcu¬

lations at prior nonhnearly computed equilibrium states. The nonlinear

buckling analysis bases on a nonlinear static finite element calculation

(with Newton-Raphson iterations) where after a selected number of

load increments, as an additional accompanying measure, a linear eigen¬
value investigation is performed to determine how many times the corre¬

sponding load increment (disturbance) could be added to the actual state

of stress and deformation to obtain a singular tangent stiffness matrix.

At buckling, the corresponding eigenvalue is zero which means that the

nonlinear pre-buckling state of stress coincides with the buckling stress.

The choice of the final step size and the density of the increments with

eigenvalue extractions should be judged on the basis of the permissible
final extrapolation towards the instability.

In contrast to the continuous monitoring of the determinant of the tan¬

gent stiffness matrix during loading, the eigenvalue extractions do not

only indicate wether the structure is still stable, but yield also actual es¬

timations of the buckling load for the corresponding state of deformation

and stress. That is, with the difference between the current load level

and the corresponding estimated buckling load an additional quantity is

available which indicates the respective reserve of the loading capacity

up to buckling.

For the cases presented within this thesis the nonlinear buckling analysis
described above was mainly performed using the finite element program

MARC® by MSC.Software Corporation. The necessary numeric functions

are adequately integrated already since a fairly long time. In this com¬

mercial program the user has the choice between a Total Lagrange and

an Updated Lagrange variant to consider possible large displacements
and rotations. In this regard, comparative calculations with ABAQUS®

and corresponding settings yield identical results as those with the Up¬
dated Lagrange variant in MARC® (see Figure 3.3). Results with the

Total Lagrange variant in MARC® however could not be reproduced.

The buckling analyses of cylinders discussed in this thesis were conducted

with MARC® and its implemented Updated Lagrange scheme, mainly
because of its high flexibility as regards the intervention options via

(Fortran) user-subroutines and the dealing with negative eigenvalues.
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s + 1

increments s

Figure 3.3: Nonlinear buckling analysis: nonlinear equilibrium states (bold
line) and corresponding linear buckling loads (markers), which each correspond
to a linear extrapolation from a nonlinear equilibrium state. Circles refer to

a calculation with MARC®, quadrats to one with ABAQUS®. APcr denotes the

reduction of the buckling load by consideration of nonlinear pre-buckling states.

Arc-Length Methods

The nonlinear buckling analysis allows in both the Total and the Up¬
dated Lagrange procedure to consider non-proportional loads and mate¬

rial nonlinearities in the loading history. Though these numerical tools

also enable to determine limit loads on highly nonlinear load-deflection

curves, the tracing of this equilibrium curve beyond a limit load into the

post-buckling range cause problems.

The common method for the solution of nonlinear problems, explained
in Section 3.3.3 (Newton-Raphson method), is a combination of a

load stepping and an iterative procedure. Reaching a limit load where

an equilibrium path becomes horizontal (point Acr in Figure 3.4) dif¬

ficulties with convergence are experienced since the iterative procedure

imposes stepwise constant load parameter during the evaluation of the

displacement field; hence, the solution tends to "jump" ("snap-through")
to point Aoo [46]. For the ascending branch of a equilibrium curve, load

control is generally the most efficient method, but alternatively displace-
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displacement

Figure 3.4: Dynamic response under load control and displacement control

ment control may be adopted. In such an analysis case similar conver¬

gence difficulties occur when point Bcr in Figure 3.4 is reached and the

solution tends to jump down to point Boo.

RlKS [69], CRISFIELD [26], Ramm [66] and others introduced the arc-

length methods to overcome these difficulties. The essence of these meth¬

ods is that in the iterative procedure the load parameter becomes a vari¬

able just like the displacement variables; these ndof + 1 unknowns are

solved using ndof equilibrium equations and one additional constraint

equation [31]. This auxiliary equation constrains the iterative displace¬
ments to follow a specified path towards a converged solution [46]. Gen¬

erally, for the ith iteration within increment s, this constraint may be

written as [46]

üTü+(AA)2pTp = ^2 (3.149)

where ü is the incremental displacement vector and p is the fixed applied
load vector. AA is an increment of the "load-level parameter" A which

multiplies p while £ fixes the "arc-length" of the increment in ndof +

1 dimensional space [27, 26, 46]. Direct application of the constraint

Equation (3.149) destroys the symmetry and the banded structure of

the ndof governing equilibrium equations, which may be redefined with

the ndof + 1 unknowns (Ü and A) according to Equation 3.112 as

r(uj,Aj) = Ajp- fj 0 (3.150)
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whereby again r is the residual load vector and f% the internal force

vector. The mentioned difficulty may be overcome with the following

approach for the iterative displacements ü4 (see Section 3.3.3):

ü1 = [KT,]-1r(ü„A) + AA.tKr,]-1? . (3.151)

Thus, the iterative variation of the load level AA4 within an increment

is expressed as a function of the corresponding displacement change ü4.

Equation (3.151) is fundamental to all constrained methods which are

similarly formulated and differ only in the evaluation of AA4. This de¬

pends on the nature of the constraining surface adopted [46]. A discus¬

sion of some of the arc-length methods may be found in (CRISFIELD [27])
and a survey is given in (HlNTON, Ed. et al. [46]) and in (Wriggers
[80]).

Dealing with snap-through problems, for the descending branch of the

equilibrium curve the sign of the load increment is specified by means of

the sign of the determinant of the tangent stiffness matrix [46].

The success of the methods depend on the suitable choice of the ini¬

tial load level and the arc-lengths. In order to estimate an adequate

parameter setting the program user needs some precognition of the car¬

rying behaviour of the modeled structure on hand, or the values have

to be found by trial and error. For subsequent arc-lengths the one used

in the first increment may be adopted ( "constant arc-length method" ).
Alternatively, they are reduced or increased at the start of a new load in¬

crement depending on the number of desired and the number of required
iterations in the previous increment. Additionally, such a solution en¬

ables automations of the load increment arrangement [46].

3.5.3 Transient Dynamic Analysis

The convergence difficulties with the Newton-Raphson iterations for

static analysis when dealing with nonlinear collapse may also be avoided

by considering inertia effects. Shortly after reaching the limit point of

a load-deflection curve the true, dynamic response follows about the

dashed lines in Figure 3.4 which denote ideal cases of either constant

force or displacement. The solid static line would maintain equilibrium
in accordance with the static equilibrium formulations but would be

unstable. The attempt to investigate the structural behaviour involv¬

ing dynamic "snap-throughs" with static computer program must fail
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due to the absence of additional forces in the static equilibrium equa¬

tions necessary for balance during "snapping" along the dashed lines in

Figure 3.4. As the system remains always in a dynamic equilibrium, the

analyses with dynamic computer programs, which consider these miss¬

ing inertia forces, allow the iteration throughout the sudden change of

reaction loads into the post-buckling states of equilibrium.

The usability of the dynamic transient FE analysis for buckling phe¬
nomena had already been demonstrated in (BlSAGNl [16]) exercising

abaqus®/Explicit, (Almroth et al. [2]) and in (Kröplin and Din-

KLER [58]). Impressive results of an application of an explicit code in

LS-DYNA® are presented in (Reid et al. [68]), simulating the indenting
and buckling of aluminium beverage cans, but with high impact veloci¬

ties up to 3810 m/s, compared with velocities in the order of only 1 mm/s
used for the buckling analyses of the cylinders discussed in this book.

Since controlling shell edge load leads to disastrous deformations at buck¬

ling, the post-buckling investigations in general will be limited to shell

shortening as the loading parameter.

At buckling condition, the buckling pattern develops and the shell is ac¬

celerated to exhibit dynamic deflections into the post-buckling state. In

case of perfect cylinders with controlled end-shortening the drop of the

axial reaction force is almost vertical. Thus, the load increments, i.e. the

time steps respectively, have to be sufficiently small. Applying damping

may help to increase the step size in this critical range. For transient dy¬
namic FE analysis structural damping is in general introduced as a linear

combination of the mass matrix and/or the stiffness matrix (Rayleigh
damping, see Section 3.4). The higher the damping parameter the longer
the time steps may be chosen at a pre-selected constant compression ve¬

locity. If the number of steps is too restricted real loading durations

of buckling tests may not be adequately modelled. Further, realistic

damping parameters are difficult to define and are probably too low to

guarantee dynamic equilibrium during the mentioned critical stage with

a given (higher) compression velocity and (smaller) number of time steps.

Therefore a compromise between these parameters has to be found by
trial for each analysis case, see example below.

The implicit single-step Houbolt method (SSH-method, see Section

3.4) is unconditionally stable. Therefore, the number of time steps

needed to guarantee equilibrium is significantly smaller than needed us¬

ing an explicit operator (only conditionally stable). It should be noted

that in dynamic analyses the material parameters depend on each other.
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The dilatational wave speed of the material, ~ \JE/'p, demands that the

ratio of the Young's modulus to the density has to be taken into ac¬

count regarding the definition of their units8. In the condition equation

(3.94) for stability in explicit operators, the wave speed is the denomi¬

nator. Therefore, ignoring real densities and stiffness, an increase of the

density reduces the minimal stable time step.

-MARC® SSH-method

ABAQUS®/Explicit

axial compression

Figure 3.5: Dynamic FE analysis results of an axially compressed ideal CFRP

cylinder without damping but with scaled up density (factor 1000). Constant

compression velocity: 0.3 mm/s. Comparison of calculations with MARC® (im¬
plicit SSH-method) and with ABAQUS®/Explicit.

The number of time steps required for the transient dynamic analysis
of the cylinders presented herein with real densities are in the range of

5000, whereas comparative tests using ABAQUS®/Explicit needed about

10 million time steps. In Figure 3.5 the result of a dynamic transient

analysis of an axially compressed ideal CFRP cylinder is shown which

was conducted with ABAQUS®/Explicit with its central difference opera¬

tor implemented (see Section 3.4). The density used was increased with

a factor of 1000 and the compression velocity was set to 0.3mm/s. With

the greater mass, the application of damping was not necessary. The

result shows good agreement with the result yielded by the use of the

SSH-method with equal density and velocity and likewise zero damping
matrix. Since the -per step- faster matrix system handling of the explicit

8That is, if the material parameters are not given in Pa, kg, s and m (strongly
recommended!) but in MPa, s, kg and mm, the density has to be specified in tons

per mm3 instead of kg/m2.
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operator of ABAQUS®/Explicit was not able to reduce the analysis dura¬

tion to the range of the implicit operator of MARC®, the use of explicit

operators is not recommended as long as the shell structure is not an

object of a crash analysis. Anyway, the criteria for the choice of one of

the implicit or explicit time integration methods are also dependent on

the available FE program due to different complexities implemented.

axial compression

Figure 3.6: Dynamic FE analysis results of an axially compressed ideal CFRP

cylinder for two different damping parameters.

Since the SSH-method suppresses high-frequency oscillations (numerical
damping), no additional structural damping is necessary and thus the

damping parameter ak in

C = am Ai + ak K

for the damping matrix C may be set to zero. With only one damping

parameter (am) the search of an adequate parameter-set is much simpli¬
fied. Figure 3.6 shows the effects of increasing the damping parameter

o-m (pure inertia damping) from 25000 to 50000. The axial compres¬

sion of a cylinder leads to an linearly distributed velocity field within

the cylinder shell. The velocities of the nodes is zero at the bottom

edge and increase up to the loaded edge with the given value. Conse¬

quently, with damping small additional axial forces are generated which

should be minimized. The stiff composite cylinder in Figure 3.6 is al¬

most not affected by increasing the damping, but for other specimens
this may influence the value of axial shortening where the change from

one post-buckling mode to a next one occurs. Therefore, it is recom¬

mended to use the smallest damping parameters possible for successful
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iterations throughout the collapse with the selected compression velocity
and number of time steps.



Chapter 4

Buckling Analysis
Results for Ideal

Cylinders

The instability behaviour of axially compressed thin isotropic cylinders
with perfect shell geometries is a prime example of bifurcation buckling

(see Introduction, Section 1.1). Such cylinders first deform axisymmetri-

cally along a pre-buckling equilibrium path to a bifurcation point. Then,
on the post-buckling path the shell deformation is non-axisymmetrical.
With increasing compression further bifurcation points in succession on

the equilibrium path may be specified, which correspond to the par¬

ticular change from a buckling pattern to another. The eigenvectors,
calculated during linear buckling analyses, represent the initial buckling

modes, i.e. the shell patterns immediately after buckling (see Section 3.5,

Equation (3.123)).

Severe dynamic movements of the shell in radial direction character¬

ize the transition from the pre-buckling state to a post-buckling state

of equilibrium. During such displacements the initial buckling pattern

transforms rapidly into a stable post-buckling pattern. Static FE analy¬
sis methods in general result in a buckling load and a respective buckling

pattern, but they give neither information about the post-buckling load

nor the post-buckling patterns that can be observed during tests. In

turn, the patterns resulting from classic analyses, in the majority of
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cases, cannot be observed without technical aid due to the high veloc¬

ity of shape changes within the transition. With high-speed movies it is

possible to visualize the initial buckling patterns, but such investigations

require complex optical equipment.

For perfect, simply supported and hinged cylinders close-form solutions

of partial differential equation systems are available which yield the num¬

ber of deflection waves in axial and circumferential direction for a respec¬

tive buckling load (see Section 2.2). However, for isotropic cylindrical
shells under axial load many combinations of wave numbers exist with

almost identical corresponding membrane stresses. Thus, though the

numerically calculated buckling load may directly be compared with the

solution of an analytical approach, the comparison of the buckling pat¬

terns is often not reliable, since the shape represented by the eigenvec¬
tor relating to the lowest eigenvalue is not necessarily identical to the

pattern described by the combination of wave numbers with the lowest

compressive membrane stresses. In practice, this fact and the frequent
absence of possibilities to compare with buckling shapes observed during
tests may provoke uncertainty about the quality of numerical solutions;

mainly considering that a FE buckling analysis of a structure for which

a simple formula exists is only useful as a benchmark test prior to in¬

stability investigations of structures of which analytical approaches are

either very complicated or unavailable.

This chapter deals with the numerical buckling analysis of axially com¬

pressed ideal-elastic isotropic and laminated circular monocoque cylin¬
ders with perfect shell geometry. The results of the static linear and

nonlinear buckling analyses as well as the results of transient dynamic

analyses of such cylinders are described and compared with analytical
solutions and with test results. The aim is to introduce the buckling
behaviour of the cylinders with perfect geometry for later comparison
with the shells with initial geometric imperfections. It is necessary to

dwell on the analysis of perfect cylinders since the buckling behaviour

of these cylinders also influence that of cylinders with imperfect shell

geometry and the imperfection sensitivity. Moreover, the author used

the analysis of the ideal shells as basis of comparison and thus adjusted
the input parameters to the perfect cylinders for all his FE calculations

to this thesis, thus also for the imperfect shells.
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4.1 The Cylinders and their Modeling

4.1.1 Isotropic Shells

Based on the dimensions of CFRP cylinders analysed during an Euro¬

pean project the author "invented" a set of unstiffened isotropic cylin¬
ders with a Young's modulus E of 70000MPa (aluminium alloy) and

radii R from 100 to 1000 mm, lengths L from 150 to 1000 mm and shell

thicknesses h from 0 75 to 1 5 mm As customary, the PoiSSON's ratio

was set to 0 3 The specifications of these cylindrical shells are given in

Table 4 1

The last specimen in the table stems from investigations from DLR

Braunschweig in the late sixties with cylindrical shells made of Hostaphan

(Mylar) This cylinder was selected for calibrations of the dynamic cal¬

culations, since of this specimen high-speed movies are available which

were recorded during axial buckling tests Results of transient dynamic

analyses are given in Section 4 3

4.1.2 Laminated Shells

In the late nineties, DLR and ETH Zurich, together with EMPA in

Dubendorf, had co-operated withm a Brite-Euram project1 to study the

buckling behaviour of laminated composite cylinders, to be investigated
for their use as shell for a new helicopter tail structure (Eurocopter)
The contribution of the author to the project consisted in linear and

nonlinear finite element analyses of these laminated cylinders under axial

compression and combined axial and torsion loading The summary

of the related analyses and tests are published in (Meyer-Piening et

al [60]) Since the FE calculations of axially compressed cylinders

presented herein base on the experiences with the investigations of the

CFRP composite cylinders the analyses of these specimens are explained
more detailed

The inner radius of the CFRP cylinders investigated withm the project

DEVILS is 250 mm, their length L is 510 mm, and their shell wall thick¬

ness h is 1 25 mm For the calculations the inner radius was accepted
as their mean cylinder radius R The laminates consist of 10 layers of

1Brite-Euram project BE-7550 DEVILS "design and validation of imperfection
tolerant laminated shells"
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z=i^v^^

R h L

[mm] [mm] [mm]

E

[MPa]

VRh -7- "77 Z
h R

[mm]

FE model mesh

number of elements

axial circ total nodes

187 5 0 75 510

250 0 75 510

375 0 75 510

500 0 75 510

750 0 75 510

1000 0 75 510

70000

70000

70000

70000

70000

70000

119 250 2 72 1764

13 7 333 2 04 1323

16 8 500 1 36 882

19 4 667 1 02 662

23 7 1000 0 68 441

27 4 1333 0 51 331

86 198 17028 17226

74 229 16946 17175

60 280 16800 17080

52 324 16848 17172

43 397 17071 17468

37 458 16946 17404

100 1 510

187 5 1 510

250 1 510

375 1 510

500 1 510

750 1 510

1000 1 510

70000

70000

70000

70000

70000

70000

70000

10 0 100 5 10 2481

13 7 188 2 72 1323

15 8 250 2 04 992

19 4 375 1 36 662

22 4 500 1 02 496

27 4 750 0 68 331

316 1000 0 51 248

102 125 12750 12875

74 172 12728 12900

64 198 12672 12870

52 243 12636 12879

45 280 12600 12880

37 344 12728 13072

32 397 12704 13101

187 5 15 510

250 15 510

70000

70000

16 8 125 2 72 882

19 4 167 2 04 662

60 140 8400 8540

52 162 8424 8586

187 5 1 382 5

250 1 382 5

375 1 382 5

500 1 382 5

750 1 382 5

1000 1 382 5

70000

70000

70000

70000

70000

70000

13 7 188 2 04 744

15 8 250 1 53 558

19 4 375 1 02 372

22 4 500 0 77 279

27 4 750 0 51 186

31 6 1000 0 38 140

55 172 9460 9632

48 198 9504 9702

39 243 9477 9720

34 280 9520 9800

27 344 9288 9632

24 397 9528 9925

250 1 5 255

250 15 382 5

250 15 510

250 1 5 765

250 1 5 1000

70000

70000

70000

70000

70000

19 4 167 1 02 165

19 4 167 1 53 372

19 4 167 2 04 662

19 4 167 3 06 1489

19 4 167 4 00 2544

26 162 4212 4374

39 162 6318 6480

52 162 8424 8586

79 162 12798 12960

103 162 16686 16848

375 1 150

375 1 200

375 1 255

375 1 300

375 1 382 5

375 1 450

375 1 510

375 1 600

375 1 765

375 1 1000

70000

70000

70000

70000

70000

70000

70000

70000

70000

70000

19 4 375 0 40 57

19 4 375 0 53 102

19 4 375 0 68 165

19 4 375 0 80 229

19 4 375 1 02 372

19 4 375 120 515

19 4 375 1 36 662

19 4 375 160 916

19 4 375 2 04 1489

19 4 375 2 67 2544

15 243 3645 3888

20 243 4860 5103

26 243 6318 6561

30 243 7290 7533

39 243 9477 9720

46 243 11178 11421

52 243 12636 12879

61 243 14823 15066

79 243 19197 19440

103 243 25029 25272

500 0 75 255

500 0 75 382 5

500 0 75 510

500 0 75 765

70000

70000

70000

70000

19 4 667 0 51 165

19 4 667 0 77 372

19 4 667 1 02 662

19 4 667 1 53 1489

26 324 8424 8748

39 324 12636 12960

52 324 16848 17172

79 324 25596 25920

100 0 254 200 5500 5 0 400 2 00 1526 60 180 10800 10980

Table 4.1: Dimensions, material stiffness and the number of elements in ax¬

ial and circumferential direction of divers analysed unstiffened, linear-elastic

isotropic cylinders.
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unidirectional carbon/epoxy prepregs with the following ply properties
which where measured with small specimens:

Ei = 123550 MPa z/12 = 0.32

E2 = 8708 MPa Gi2 = 5695 MPa

Each ply has the thickness 0.125 mm [40]. The laminate stacking se¬

quences of some of the DEVILS specimens labeled with Z28, Z30, Z32

and Z33 are contained in Figure 4.1.

fi = 250mm L = 510 mm h = 1.25 mm

Z28 Z:i0 Z32 ZZZ

Figure 4.1: Identification of the DEVILS cylinders with their stacking se¬

quences.

For a physical explanation of the effect observed on the non-symmetrically
laminated DEVILS cylinders above, (Geier, Meyer-Piening & Zim¬

mermann [40]) introduced cylinders with the same dimensions and ply

properties than the specimens above but with four axially stiff layers
near one shell surface and four ±a layers next to the other. The stack¬

ing of two the types of the so created additional cylinder shells are given
in Figure 4.2. For the investigation of laminated cylinders having single

dimple imperfections the author added some shells to the set from Ref.

[40] to get more cylinders with stackings as shown in Figure 4.2 with

ply-angles a between zero and 90 degrees.

To analyse the influence of the stretching-bending coupling for a = 60°

two 8-ply laminates were introduced with stacking sequences which are

symmetric referring to the middle surface of the shell:

ZO.GOs: [0°2, +60°, -60°2, +60°, 0°2]
ZGO.Os: [+60°, -60°, 0°4, -60°, +60°]

They may be compared with the non-symmetric laminates Z0.60 and

Z60.0, see Fig. 4.2.
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fi = 250mm L = 510 mm h = 1.0 mm

ZO.Q! Za.O

Figure 4.2: Identification of the eight-layered cylinder shells ZO.a and Za.O

with a with their stacking sequences referring to the fibre orientation angle a .

Note that the stacking sequences are given from outer to inner ply, 0°

being axially oriented (see Fig. 2.5). Stacking sequences meant for

manufacturing instruction should be given inverse since during the fab¬

rication of cylindrical laminates in general the first ply is placed at the

inner side. Moreover, the layer stacking sequences above are designed for

academic use only; the practical application of these eccentric laminates

is not advisable.

Finally, (I. Sheinman and Y. Goldfeld [73]) investigated analyti¬

cally the buckling behaviour of angle-ply (±a) graphite/epoxy cylindri¬
cal shells with a radius R = 1.27 m, a length L = 2.54 m, a thickness

h = 12.7mm (R/h = 100), and with properties of the 2-ply laminates as

follows:

Ex = 140400 MPa z/12 = 0.26

E2 = 9730 MPa Gi2 = 4110 MPa

The two researchers conducted buckling analyses of these shells on the

basis of three different shell theories: alternatively to DoNNELL's theory
as herein presented (see Section 2.1.1) also one of Sander and one of

TlMOSHENKO [78]. They used formulations in terms of the Airy stress

function /F and the lateral displacement w, but also in terms of the three

displacement components u,v and w, see Section 2.1. The author used

their presented findings on some discrepancies between these formula¬

tions for different boundary conditions for comparisons with linear and

nonlinear FE analyses of these cylinders with clamped and hinged edges.
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4.1.3 Type and Number of Elements

The FE analyses were mainly conducted with help of MARC®. Para¬

metric investigations led to the choice of the four-node bilinear, thick

(MlNDLlN type) shell element No. 75 for the formation of the model.

The four-node Discrete KlRCHHOFF elements offered in MARC® yielded
similar results, but they were implemented into the program code in

a late phase of the studies. Moreover, element No. 75 is still the de¬

fault shell element in MARC®. Therefore, the models were continuously

generated with this older thick shell element.

The number of nodes and elements has to be selected to allow for ade¬

quate description of all potentially critical modes. On the basis of the

decay length of edge bending disturbances, an element mesh size not

wider than 0.5 \[Wh is recommended. Consequently, for the DEVILS

specimens 60 shell elements in axial direction and 180 in circumferential

direction were used. In Figure 4.3 the influence of number of almost

10 20 30 40 50 60 70

number of elements - axial

100

Figure 4.3: Linear buckling loads of cylinder Z32 and Z33 for different num¬

bers of elements in axial direction.

square elements on the linear buckling load is plotted. It can be seen

that a further refinement of the element mesh would hardly justify the

superproportional increase of the computation costs involved. The used

60 x 180 -model contained 10980 nodes and thus about 66000 degrees of

freedom, a matrix system size which still may be managed by modern

computers with acceptable computation times.

The element edge lengths of the isotropic shells introduced in Section 4.1.1
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were also specified2 by the formula 0.5 yRh. The so generated number

of elements and nodes are listed in Table 4.1 on page 120.

4.1.4 Boundary Conditions

Both edges of the cylinders were considered to be either clamped or

hinged. The boundary conditions on both cylinder ends were modeled

with aid of additional nodes on the cylinder axis whose degrees of free¬

dom were joint with the nodes on one edge. In this way infinitely rigid,

plane parallel endplates were simulated and the axial force attached to

the auxiliary center node was uniformly distributed on the edge nodes.

Figure 4.4: Modeling of clamped edges with tied nodes.

Figure 4.4 demonstrates the simulation of clamped cylinder edges: the

k nodes Bk of the loaded edge are linked with an additional node A on

the center line on which the loading is applied. For the fixation of the

bottom edge the / nodes C; are linked with a further node on the centre

line which gives the total reaction force. The axial compressive load P

was applied at the centre node A.

For clamped edges the translational degrees of freedom (DOF) u, v, w

and the rotational DOF <f>x, <f>y of the central node on one end, and of

all DOF except the translation in axial direction u of the central node

2
Exception: Mylar cylinder with a 60 X 180 -mesh.
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on the loaded end are set to zero (see Figure 4 4) For hinged edges only
the translational DOF were fixed, the rotations <f>x, <f>y are left free

The configuration for clamped edges served to simulate the boundary
conditions CC4 m the classical analysis and was applied for comparisons

with test results, see Section 2 2 1 on page 48 The set-up for hinged

edges m turn corresponds to the boundary conditions SS4 Unless other¬

wise noted for the finite element analyses always the clamped boundary
conditions CC4 were applied

The close-form solution m the classical analysis was derived for the

simply-supported boundary conditions SS3, see Section 2 2 1 These

conditions as well as the clamped conditions CC3, with applied constant

membrane stresses Nx around a cylinder edge, are simulated by means

of the simpler direct application of equal point forces distributed over

the edge nodes These point loads act centrically on the shell, l e on

the middle surface of the elements which was considered as reference for

shell stretching and bending With this configuration no virtual rigid

endplates are present and thus the axial edge displacements are not nec¬

essarily constant For the analysis of perfect cylinders the two conditions

SS3 and CC3 were not applied During the DEVILS project good com¬

parisons between test results and FE analysis results, all with conditions

CC4, was considered more important than the match with the classical

analysis Additionally, it was observed that for perfect cylinders under

axial load the differences between the buckling loads calculated with

conditions CC3 and those obtained with CC4 are negligible small

4.2 Static FE Analysis Results

As a basic principle it is highly recommended to conduct a linear static

stress analysis prior to any buckling calculation In this way, possible

modelling mistakes, e g wrong material properties or boundary condi¬

tions, may be detected more likely This guideline does apply all the

more if eccentric laminates are used as shell material, since m this case

the effective direction of the element normal and the element x-axis has

to be checked very carefully3 for correct numerical representation The

experience confirms the benefit of the verification of stress fields prior to

linear or nonlinear buckling analyses m any case

3Specifications in the program manuals are correct in most cases, but exceptions

are not impossible
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The linear buckling analysis, as described in Section 3.5, is considered to

be the standard buckling analysis method for more expensive numerical

simulations of shells under compressive loading. This procedure consists

of the evaluation of an eigenvalue problem resulting in eigenvalues and

related normalised mode shapes. In the present cases the linear buckling
load Pcr is computed as

iCr ^cr x

where P is the compressive load applied to the above-mentioned center

node and Xcr is the smallest eigenvalue4, see Section 3.5.1, Eq. (3.124).

Singularity investigation of system matrices at buckling is also applied
in the herein called nonlinear buckling analysis. This static analy¬
sis method, detailed in Section 3.5.2, considers a load-dependent pre-

buckling deformation during loading up to the structural instability. Af¬

ter a selected number of small load or edge displacement increments a

linear eigenvalue investigation is performed to determine the stability of

the investigated pre-buckling state of stress and deformation. The at

preselected increments conducted eigenvalue calculation yields a buck¬

ling load at increment s + 1 with

s+1 s s+1 s+1

P
cr

= P + Xcr AP

s+ 1

where P is the applied load at the preceding increment s, Xcr is the
s + 1

smallest eigenvalue and AP the load increment at increment s + 1, see

Section 3.5.2, Eq. (3.148).

In MARC® large displacements and rotations were considered by means

of the Updated Lagrange formulation implemented. The eigenvalues
and eigenvectors were all calculated with the inverse vector iteration

code in MARC® as shortly described in Section 3.5. For the convergence

parameter $\ (see Eq. 3.131) a value of 10~4 was selected for nonlinear

buckling analysis and 10~5 for the purely linear variant. The maximal

number of iteration steps had to be raised to 10000.

The probably faster Lanczos eigensolver implemented in marc® could

not be used alternatively for the nonlinear buckling analysis without tem¬

porary problems while extracting the eigenvalues in the possibly range

from zero to some hundreds. Further, in MARC® a combination of the To¬

tal Lagrange formulation with incremental eigenvalue extractions seemed

not to be foreseen.

4The extraction of more than only one eigenvalue may be beneficial since the first

value found by the solver is not necessarily the smallest.
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4.2.1 Results for the Isotropic Cylinders

In Table 4.2 the analysis results of the isotropic cylinders presented in

Section 4.1.1 are listed. For comparison in the last column the buck¬

ling loads Pci are plotted which were calculated with the formula from

classical analysis for axial buckling of perfect isotropic circular cylinders

Pcl=
,

2n
=Eh2

v/3(T^)

Pcl = 3.8Eh2 for z/ = 0.3
.

• FE linear

hFE nonlinear

4% **Vs;. %é .

2% -

*

•

CL, 0% 1—

-6%

-8%

-10%

z=¥kVT

Figure 4.5: Deviations of FE linear and nonlinear buckling analysis results

from classical analysis results Pci versus BATDORF 's parameter Z for the

isotropic cylinders. Numerical results for clamped, classical analysis results

for hinged cylinder edges.

Figure 4.5 presents the deviations of the numerical buckling analysis
results from the values estimated with the equation above in dependence
of Batdorf's parameter Z; the error values are given in percentages of

the FE analysis results. For cylinders with Z > 100 or L/R > 0.75 the

linear buckling analyses (FE) yielded 4% to 5% higher buckling loads

than the classical analysis, whereas the nonlinear analyses (FE) led to

about 5% lower buckling loads. The deviations of the shorter cylinders
with less than 10% may also be considered as small since dealing with

FE analysis results. The analytical approach for axially compressed
circular cylinders bases on close-form solutions of the equilibrium and
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z=i^v^^

R h L

[mm] [mm] [mm]

E

[MPa]

R L r,

T R
Z

FE

hnear

P
1 cr

[kN]

analyses

nonhnear

P
1 cr

[kN]

analytic

= 38 Eh2

Pel
[kN]

187 5 0 75 510

250 0 75 510

375 0 75 510

500 0 75 510

750 0 75 510

1000 0 75 510

70000

70000

70000

70000

70000

70000

250 2 72 1764

333 2 04 1323

500 1 36 882

667 1 02 662

1000 0 68 441

1333 0 51 331

154 3

155 1

155 8

156 0

156 3

156 5

142 9

143 8

143 1

143 1

143 3

142 5

149 7

149 7

149 7

149 7

149 7

149 7

100 1 510

187 5 1 510

250 1 510

375 1 510

500 1 510

750 1 510

1000 1 510

70000

70000

70000

70000

70000

70000

70000

100 5 10 2481

188 2 72 1323

250 2 04 992

375 1 36 662

500 1 02 496

750 0 68 331

1000 0 51 248

268 2

274 0

275 4

276 6

277 3

277 9

278 7

252 6

254 3

253 3

253 9

253 7

253 0

253 4

266 1

266 1

266 1

266 1

266 1

266 1

266 1

187 5 15 510

250 15 510

70000

70000

125 2 72 882

167 2 04 662

613 9

617 4

569 7

569 5

598 7

598 7

187 5 1 382 5

250 1 382 5

375 1 382 5

500 1 382 5

750 1 382 5

1000 1 382 5

70000

70000

70000

70000

70000

70000

188 2 04 744

250 1 53 558

375 1 02 372

500 0 77 279

750 0 51 186

1000 0 38 140

274 6

275 8

277 0

278 1

279 3

281 1

253 8

253 9

253 2

254 4

255 3

249 4

266 1

266 1

266 1

266 1

266 1

266 1

250 1 5 255

250 15 382 5

250 15 510

250 1 5 765

250 1 5 1000

70000

70000

70000

70000

70000

167 1 02 165

167 1 53 372

167 2 04 662

167 3 06 1489

167 4 00 2544

623 8

619 9

617 4

614 3

611 6

573 6

567 7

569 5

571 2

569 6

598 7

598 7

598 7

598 7

598 7

375 1 150

375 1 200

375 1 255

375 1 300

375 1 382 5

375 1 450

375 1 510

375 1 600

375 1 765

375 1 1000

70000

70000

70000

70000

70000

70000

70000

70000

70000

70000

375 0 40 57

375 0 53 102

375 0 68 165

375 0 80 229

375 1 02 372

375 1 20 515

375 1 36 662

375 1 60 916

375 2 04 1489

375 2 67 2544

290 8

283 4

279 1

278 1

277 0

276 7

276 6

276 4

275 6

274 9

247 8

252 9

256 0

251 4

253 2

254 2

253 9

254 3

254 3

254 4

266 1

266 1

266 1

266 1

266 1

266 1

266 1

266 1

266 1

266 1

500 0 75 255

500 0 75 382 5

500 0 75 510

500 0 75 765

70000

70000

70000

70000

667 0 51 165

667 0 77 372

667 1 02 662

667 153 1489

157 3

156 3

156 0

155 6

144 4

142 7

143 1

143 2

149 7

149 7

149 7

149 7

100 0 25 200 5500 400 2 00 1526 1 4 1 3 1 3

Table 4.2: Static buckling analyses results of axially compressed unstiffened,
linear-elastic isotropic cylinders with their dimensions and material stiffness.
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compatibility equations for simply supported edges and considers neither

the length nor the radius of the shell. Anyway, the results for shells with

ideal geometry are close to the more complex numerical analysis results

with clamped cylinder edges assumed. Consequently, for linear-elastic

cylinders without imperfections and hence with linear pre-buckling state

the effort of a nonlinear buckling analysis may hardly be justified if

no further computations of the structure with changed conditions are

conducted.

10000

^

o 1000

100

1000

axial half-wavelength L/m [mm]

Figure 4.6: Buckling loads of a classical analysis for the aluminium cylinder
with R = 250 mm, L = 510 mm and h = 1.5 mm. Results for different axial

half-wave numbers m and circumferential wave numbers n.

Many combinations of wave numbers result with only very little dif¬

ference between the corresponding buckling loads. In Figure 4.6 the

analysis result for some axial half-wave numbers m and circumferential

wave numbers n are plotted. Only values for integer wave numbers n

and m are relevant, but for a better visualisation continuous lines are

drawn. Anyway, none of the combinations of m and n can be identified

as the minimal buckling load, all minima are almost identical with loads

of about 600 kN.

In Figure 4.7 a selection of linear buckling modes (eigenmodes) of the

isotropic cylinders is shown. Characteristic that they all have modes

with a relatively high number of circumferential and axial waves or half-

waves. The patterns shown in Figure 4.7 at each case relate to the
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R = 250 mm L = 255 mm h = 1 5 mm

R = 250 mm L = 1000 mm h = 1 5 mm

R = 375 mm L = 510 mm h = 1 mm

Figure 4.7: Linear buckling modes oJ

modulus of E = 70 GPa and a Poiss>

R = 250 mm L = 510 mm h = 1 5 mm

I

R = 100 mm L = 510 mm h = 1 mm

R = 1000 mm L = 510 mm h = 1 mm

some isotropic cylinders with a Young

a ratio of v = 0.3.
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smallest value of six buckling loads requested. Any symmetry in these

high-frequency buckling pattern is occasional since in contrast to the

analytical approach no harmonic or bi-harmonic functions are involved

in FE solutions. As initially mentioned, the buckling modes of elastic

circular cylinders linearly calculated with eigenvalue analyses represent

the initial buckling modes which in general may not be observed during
tests without technical aid. Moreover, in contrast to these eigenmodes,
the visible stable post-buckling patterns will consist of waves with low

frequencies.

4.2.2 Results for the Laminated Cylinders

Throughout the DEVILS project it was discovered that cylinders with

identical dimensions, identical membrane and bending stiffness (identi¬
cal ply directions) but reversed stacking sequence (resulting in merely

opposing sign in the coupling stiffness matrix for the shell) experienced
a strikingly different buckling behaviour. When the predominantly ax¬

ially stiff layers were arranged at the outside of the cylinder (Z32) the

shell buckled at nearly half the load value compared to the shell which

had the stacking sequence reversed and the more axially oriented fibers

positioned at the inside (Z33). With the analytical solution presented
in Section 2.2.3 and with the finite element method this effect could be

reproduced [60, 81].

FE linear

FE nonlinear

analytical solution

oTEST [60]

Z28 Z30 Z32 Z33

Figure 4.8: FE buckling analysis results of the DEVILS cylinders with ideal

geometry.
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The results of the static FE analyses and of the analytical method

achieved for the four DEVILS cylinders with ideal geometry are graphed
in Figure 4.8. Except for cylinder Z30, the analytical solution gives lower

buckling loads than a linear as well as a nonlinear static FE analysis.
But this close-form solution of differential equations refers to simply sup¬

ported edges whereas the FE analyses refer to clamped edges. Attention

should also be paid to the discrepancy between the test buckling loads

and the calculated values in Figure 4.8 for the cylinders Z28 and Z30.

The efforts to obtain a better agreement between numerical analysis and

testing by inclusion of imperfections are subject of a later chapter.

The stacking sequence of cylinder Z30 is a result of an optimisation
of the fibre orientation of the five double plies regarding the buckling

resistance; therefore, cylinder Z30 is the "optimum", the specimen with

the highest buckling load among the cylinders considered within the

test campaign. Shell Z32 in turn was designed as "pessimum", i.e. the

one with the lowest buckling load. The stacking of Z33 finally was

obtained by reversing the order of plies of cylinder Z32. Figure 4.8

manifests that cylinder Z32 has significantly lower buckling loads than

Z33. In the diagrams in Figure 4.9 and 4.10 the buckling loads for

1000

O

100 1000

axial half-wavelength L/m [mm]

Figure 4.9: Results of the classical analysis: Z32.

various circumferential wave numbers n as function of the axial half-

wavelength L/m are shown for the two cylinders Z32 and Z33. Again,

although only loads for integer wave numbers n are relevant continuous
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"A n = 4

\A
n = 5

Ä n = 6

X —n=®

><, n = 8

n = 9

i n= 10

J n= 11

| n= 12

Jh n=13

a
^n=14

1 n=15

10 100 1000

axial half-wavelength L/m [mm]

Figure 4.10: Results of the classical analysis: cylinder Z33.

lines were drawn for a better visualisation. With cylinder Z32 a group

of low buckling loads at the left side, i.e. at small axial half-wavelengths
strike. The corresponding mode shapes are long in the circumferential

direction and short in the axial direction, the lower curve refers to n = 0,
that is for axisymmetric buckling as depicted in Figure 4.11 For shell

Z33 no such group of mode shape close to n = 0 with low buckling
load may be detected. On contrary, the critical loads of axially short

modes are shifted up to values higher than those of axially longer and

circumferential shorter mode shapes [40]. The buckling loads and modes

of the two cylinders, calculated with the analytical method, are

Z32: Pcr = 97.3kN; mc = 13 ; nc = 0 ;

Z33: Pcr = 178.0 kN; mc = 1 ; nc = 7
.

In Figure 4.11 the results of linear buckling analyses are plotted. In fact,
in case of cylinder Z32 the buckling pattern is of axisymmetric shape,

matching Moiré pictures obtained during testing, and also confirming
the result of the classical analytical method discussed above. But the

irritating spiral buckling pattern of cylinder Z33 (Fig. 4.11, right) could

neither be measured nor described by classical analytical solutions. The

post-buckling pattern observed during the tests of specimen Z32 con¬

sisted of one row of eight large dimples (m = 1, n = 8), the post-buckling
mode of Z33 of two staggered rows of nine large buckles (m = 2, n = 9).
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Figure 4.11: Buckling modes of cylinder Z32 (left) and Z33 (right). Results

of linear buckling analyses.

(Geier, Meyer-Piening & Zimmermann [40]) give a mechanical ex¬

planation of the behaviour observed of cylinders with opposite stacking

sequences. If axially stiff layers are predominantly located at the outer

side of the cylindrical shell the component 621 of the eccentricity matrix

is positive, and hence the buckling load is low if the buckling mode is

axisymmetric (see Section 2.2.3, Eq. 2.64):

Per = 2-nRNcr = —(jDua22+b221-b2]\
.

a22 V v /

Consequently, for cylinder Z32 with the axially stiff layers at the outer

side of the shell the eccentricity term results 621 = +0.3046 mm, and for

Z33 with reversed stacking 621 = —0.3046 mm, and for both laminates

the value of the root expression in the formula above is 0.5799. The

corresponding axisymmetric buckling load finally is Pcr = 96.8 kN for

Z32 and Pcr = 311.9kN for Z33. These loads are somewhat smaller

than the axisymmetric buckling loads calculated for discrete axial half-

wave numbers. Note that non-axisymmetric modes of Z33 are connected

with lower loads (Pcr = 178 kN) [40].

A physical interpretation presented by (Geier, Meyer-Piening &

Zimmermann [40]) bases on the consideration of the Poisson's ratio

effect: consider an axially compressed cylinder ZO.a or Za.O which is

caused to expand due to the PoiSSON's ratio effect, and assume a super-
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imposed infinitesimal axisymmetric buckling load deformation. Then,
in the regions which buckle outward the compressive strain gets smaller

near the outer surface and increases near the inner surface. In right side

compression

amplification // //

compression

relief

compression .

relief /j

compression t

amplification

axially stiff layer at the outer side axially stiff layer at the inner side

Figure 4.12: Compression relief and amplification due to bending [40].

of Figure 4.12 the inner layer is axially stiff with nearly zero PoiSSON's

ratio, while the outer layer has ±a orientation with high PoiSSON's ratio.

At the buckle bulging outward the outer layer tends to shrink radially
and thus to oppose the buckling deformation. At the inward buckle, due

to the increase of compressive strain, the outer ply tends to expand ra¬

dially. This again opposes the buckling deformation [40]. In the left side

of Figure 4.12 again the stacking sequence is reversed, the eccentricity is

opposite. The axially stiff layer is now placed at the outer side and the

±a layer is placed next to inner surface. In the parts moving outward

at bucking, again caused by the PoiSSON's ratio effect, the inner ply
tends to grow radially. In the parts moving inwards it tends to shrink;

hence, buckling deformation is increased which leads to a low buckling
load [40].

The linear FE buckling analysis results of the two cylinders Z0.A5 and

ZA5.0 in Figure 4.13 illustrate the different behaviour of cylinders with

0°-plies near one surface and ±a layers near the other. The first cylinder

(left) has the stacking sequence [0°4, (+45°, —45°)2], the stacking of the

second cylinder (right), [(—45°, +45°)2, 0°4], is reversed compared to the

first laminate. The first cylinder Z0.A5 (left) with axial stiff layers at

the outer side of the shell again buckles axisymmetrically (nc = 0) with

a buckling load of 70 kN, which is significantly lower than the buck¬

ling load of cylinder ZA5.0 (right) with 107 kN and with its axial stiff
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Figure 4.13: Linear buckling modes of cylinder Z0A5 (left) and ZA5.0 (right)
with laminates [0°4, (+45°,-45°)2] and [(-45°,+45°)2, 0°4] respectively.

Figure 4.14: Linear buckling modes of cylinder Z0.90 (left) and Z90.0 (right)
with laminates [0°4,90°4] and [90°4,0°4] respectively.
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layers at the inner layer. Similar to cylinder Z33, latter buckles non-

axisymmetrically. The results of the FE linear buckling analysis of the

cylinder Z0.90 and Z90.0 in Figure 4.14 manifest a remarkable differ¬

ence to the two cylinders ZA5.0 and Z0.A5 above. With their opposite

stacking sequences [0°4,90°4] (left) and [90°4,0°4] (right) they are also

eccentrically laminated and have the same dimensions and ply proper¬

ties, but ±a layers with high PoiSSON's ratio are missing. Hence, both

cylinders buckle non-axisymmetrically at almost equal buckling loads

(76 and 75 kN).

The presence of ply packages with high PoiSSON's ratio and their po¬

sition influence strongly the buckling loads and modes. In Table 4.3

label stacking

axisymmetric buckling Eq (2

621 a22 Du /°
xlO-4

[mm] [mm/N] [Nmm] [mm]

64)

Pel

[kN]

Eq

Pel

[kN]

(2 62)

mc nc

ZO 00

ZO 10 o°4

ZO 15 o°4

ZO 20 o°4

ZO 30 o°4

Z0 35 o°4

Z0 45 o°4

Z0 55 o°4

Z0 60 o°4

Z0 70 o°4

Z0 75 o°4

Z0 90

0°8

(±io°)2

(±15°)2

(±20°)2

(±30°)2

(±35°)2

(±45°)2

(±55°)2

(±60°)2

(±70°)2

(±75°)2

°4,90°4

0 0000 1 15 10371 1 09

0 0467 1 13 10027 1 07

0 1007 1 10 9583 1 03

0 1656 1 05 8925 0 98

0 2729 0 85 7016 0 82

0 2898 0 85 5948 0 77

0 2465 0 47 4179 0 50

0 1607 0 30 3153 0 35

0 1201 0 25 2863 0 29

0 0573 0 25 2551 0 26

0 0359 0 17 2477 0 21

0 0092 0 15 2406 0 19

119 4

113 2

106 2

97 7

80 8

74 6

69 9

78 0

87 1

113 2

127 5

151 5

73 6

89 5

105 4

98 0

81 1

74 6

70 2

78 1

87 1

113 3

107 8

73 2

5 14

5 14

7 13

10 0

11 0

12 0

14 0

17 0

19 0

22 0

12 15

10 15

Z0 00 o°8

Z10 0 (Tl°°)2.°°4

Z20 0 (T20°)2,0O4

Z30 0 (T30°)2,0O4

Z35 0 (T35°)2,0O4

Z45 0 (T45°)2,0O4

Z55 0 (^55°)2,0O4

Z60 0 (T60°)2,0O4

Z75 0 (T75°)2,0O4

Z90 0 90°4,0°4

0 0000 1 15 10371 1 09

-0 0467 1 13 10027 1 07

-0 1656 1 05 8925 0 98

-0 2729 0 85 7016 0 82

-0 2898 1 13 5948 0 87

-0 2465 0 47 4179 0 50

-0 1607 0 30 3153 0 35

-0 1201 0 25 2863 0 29

-0 0359 0 17 2477 0 21

-0 0092 0 15 2406 0 19

119 4

123 5

137 3

161 8

176 7

203 2

212 1

208 1

180 7

166 8

73 6

78 3

91 2

104 7

108 3

107 4

99 4

94 5

80 1

73 2

5 14

5 14

5 15

5 15

5 15

6 16

7 16

8 16

9 15

9 14

y*' = \Jbna22 +blx

Table 4.3: Terms of eccentricity 621, compliance a-xi and modified bend¬

ing stiffness Dn and the resulting buckling loads of axisymmetric and non-

axisymmetric buckling for the cylinders ZO.a and Za.O. In the upper block

the cylinders with axially stiff layers at the outer side, in the lower block those

with axially stiff layers at the inner side of the laminate.

the results are listed of the application of the formulas, referring to the

close-form solutions for non-axisymmetric and axisymmetric buckling
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as presented in Section 2.2.3, on the the cylinders ZO.a and Za.O with

stackings [0°4, (±0)2] and vice versa for different ply angles a. The buck¬

ling loads correspond also to the lines in Figure 4.15. From the cylinders
in the upper block with their axially stiff layers at the outer side of the

shell only the six specimens with magnitudes of the eccentricity term 621

that are sized enough in comparison with the magnitude of the root ex¬

pression in Equation (2.64) buckle axisymmetrically. For the others the

classical analytical solution for non-axisymmetric buckling with 13 to 15

circumferential waves nc yields the lower buckling loads. In Figure 4.16

the cylinders and the corresponding loads in Table 4.3 are plotted in

function of 621 to demonstrate the theoretical limits for axisymmetric

buckling. Values for nc = 0 are available for laminates ZO.a with a be¬

tween 16° and 70° (high PoiSSON's ratio). For negative 621 in any case

non-axisymmetric buckling (line with diamonds) gives lowest buckling
loads. From Table 4.3 may further be taken that the number of axial

half-waves mc arises with decreasing circumferential flexibility 022 and

axial bending stiffness Dn. In Figure 4.15 the FE analysis results of the

cylinders ZO.a and Za.O are plotted. It can be seen that for cylindrical
shells with a = ±45° the difference between the buckling loads of the

cylinders with stiff layer at the outer side (i.e. axisymmetric buckling,
low buckling load) and the cylinder with stiff layer at the inner side is

maximal and almost vanish for a = 0° and a = 90°.

The buckling modes of cylinder Z0.20 and of Z0.70 resulting from linear

FE analyses are not axisymmetric (nc ^ 0) as predicted with the clas¬

sical analysis but have some spiral shapes similar to cylinder Z33 with

different helix angles. This discrepancy might stem from the impossibil¬

ity to describe spiral patterns with the bi-harmonic functions in the shell

calculus without a phase shift along the cylinder axis considered. This

shortcoming might also explain the exceptionally lower buckling loads

for a = 15° and a = 75° in Figure 4.15 of numerical analyses compared
with the values of classical analyses.

The buckling behaviour of the two cylinders ZO.QOs and Z60.0s with

symmetric stackings as

ZO.GOs: [0°2, +60°, -60°2, +60°, 0°2]
ZGO.Os: [+60°, -60°, 0°4, -60°, +60°]

is different: the first cylinder with axially stiff layers positioned next

to the shell surfaces buckles non-axisymmetrically, whereas the second

specimen with its axially stiff layers at the middle surface of the shell

buckles axisymmetrically. In Table 4.5 the results of the analytical and

numerical methods according to Section 2.2.3 and 3.5 for these cylinders
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HFE linear buckling analysis

FE nonlinear buckling analysis

-(^classic analysis for nc > 0

-•-classic analysis for nc = 0

0 10 15 20 30 35 45 55 60 65 70 75 90 0 10 20 30 35 45 55 60 75 90

ply angle a [°] ply angle a [°]

Figure 4.15: FE analysis results of the cylinders ZO.a (left) and Za.O (right)
with laminates [0°4, (+a, —a)f\ and reverse in function of the ply angle a. The

lines with diamonds mark analytical solutions according to Section 2.2.3, the

circles such solutions especially for axisymmetric buckling.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

term of eccentricity &21 [mm]

Figure 4.16: Buckling loads of the cylinders ZO.a and Za.O in function of
the eccentricity term 621- The lines with diamonds denote classical analytical

solutions, those with circlets solutions for axisymmetric buckling.
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are listed. Due to the symmetry of their stackings the coupling stiffness

for both laminates are zero (B = 0). Thus, the eccentricity term 621 is

also zero and the formula (2.62) for the buckling load in Section 2.2 for

laminated cylindrical shells may be shortened to obtain the shape of the

formula for orthotropic cylinder shell material (2.48). This is also valid

for the buckling loads of axisymmetric buckling which are then given by

Pel A-n

a-22

Hence, the buckling pattern is governed by the relation of the axial

bending stiffness to the circumferential flexibility. The replacement of

the term of axial bending stiffness Dn by the term -D22 (circumferen¬
tial bending stiffness) and of the circumferential compliance term 022 by

an (axial flexibility) in expression above yield an approximation for the

buckling loads of checkerboard buckling with higher values for mc and

nc. In Table 4.4 both root expressions including Dn/a22 and D22/an

axisymmetric buckling Eq. (2 .57) Equation (2.48)

a22 Du / D11
V 022

/ D22 Pel Pel mc nc

[mm/N] [Nmm] [N] [N] [kN] [kN]

ZO.GOs 2.5 • IO-5 9262 19268 9822 242.1 120.3 2 10

ZGO.Os 2.5-10-5 2611 10231 19479 128.6 128.6 20 0

Table 4.4: Values of some relevant terms for axisymmetric buckling of cylinder
ZO.&Os and Z&O.Os.

are given for the two cylinders. The compliance 022 is identical for both

cylinder (and also for the "eccentric" Z0.Q0 and ZQ0.0). In the case of

the second cylinder ZQO.Os with the stiff layers at the mid-surface of the

laminate the axial bending stiffness Dn is only 2611 Nmm and thus the

root expression for axisymmetric buckling with 10 kN is smaller than

the expression for non-axisymmetric buckling with 19 kN and thus the

cylinder will buckle with nc = 0. The axial bending stiffness of the first

shell, ZO.QOs, with the axially stiff layers at the periphery of the shell is

significantly higher (Dn = 9262 Nmm) than that of its counterpart and

the value of the root expression \/D22/an is smaller than the value of

the root expression \jDn/a22 in the equation for axisymmetric buckling
loads above. This indicates that the number of wave in circumference nc

for ZO.QOs will be different from zero. In Table 4.5 finally the FE static

analysis results for these cylinders are given for comparison with the
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analytic FE linear FE nonlinear

Pel Pel Pel

[kN] [kN] [kN]

ZO.GOs 120.3 117.0 116.9

ZGO.Os 128.6 132.8 132.7

Table 4.5: Resulting buckling loads of the shells with symmetric stacking ZO.QOs

and ZQO.Os.

analytical method. For both specimens with ideal geometry the differ¬

ence between linear and nonlinear buckling analysis is negligible small.

Compared with the analytic values both FE results are somewhat higher
in case of the second cylinder with axisymmetric buckling, whereas the

numerical solutions are noticeable smaller than the analytical solution

in case of the first laminate. The analytical approach yield a buckling

pattern with mc = 10 and nc = 2 whereas with linear FE calculation a

spiral pattern similar to that of Z33 (see Fig. 4.11) or ZA5.0 (see Fig.

4.13) may be obtained. The discrepancy might stem form a bad con¬

sideration of internal shear forces in the analytical method, especially in

the case at hand with angle-plies of ±a = 60° close together with a = 0°

-plies.

Control calculations confirmed the assumption that the difference be¬

tween hinged and clamped supports of axially compressed cylinder of

sufficient length L regarding the buckling load is not important for lin¬

ear buckling analyses. In Figure 4.17 the analysis results of the 2-ply
CFRP cylindrical shells, taken from (Sheinman and Goldfeld [73]),
for different angle-plies and boundary conditions are plotted. The upper

figure refers to simply supported boundary conditions, i.e. to the bound¬

ary conditions SS4 in case of the FE analyses and to the conditions SS3

for the w-/F DoNNELL-type formulation according to Section 2.1.3 as

well as for the u-v-w formulation (other, more accurate shell theories).
The lower chart shows the solutions for clamped cylinder edges, i.e. for

CC4 and for CC3 respectively. In both charts the maximum buckling
occurs at angle-plies with a = 60°. There is only little difference be¬

tween the linear FE buckling analysis results (lines with squares) as

well as for the solution of the DoNNELL-type equations (thick lines) for

both sets of boundary conditions. The gap between the results of the

nonlinear and linear FE analyses again are greatest at angle-plies with

a = 60° and for hinged respectively simply supported edges. In the



142 Buckling Analysis Results for Ideal Cylinders

•z.

16000 -

14000 -

n?
12000 ;

10000 -

_0

M
e

u

3

8000-

6000-

4000-

"3
p.

2000-

() 10 20 30 40 50

ply angle ±a

60

[°]

70 80 90

£
m

TÎ
CS
O

3

FE linear buckling analysis

FE nonlinear buckling analysis

analysis with vj-J- formulation (Do

lysis with u-v-vj formulation

ell)

0 10 20 30 40 50 60

ply angle ±a [°]

70 80 90

Figure 4.17: Static buckling analysis results of the 2-ply CFRP cylinder with

radius R = 1.27 m, L = 2.54 m, and h = 12, 7 mm. Buckling load vs angle-ply

(±a) with clamped edges (top) and simply supported edges (bottom).
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upper chart the discrepancy between the solutions for the u-v-w formu¬

lation and the other methods for 30° < a < 60° strikes (SHEINMAN
and Goldfeld [73]) report that, possibly due to internal shear forces

caused by the laminate stacking, the w-/F formulation just missed the

lowest eigenvalue, the second eigenvalues of the u-v-w formulation were

close to the first values of the w-/F calculation In the w-/F formulation

the boundary conditions are to be defined m terms of w and /F, with

the consequence that the conditions m u and v are not fully satisfied

However, the FE analysis results m the most cases are closer to the w-/F

solutions than to the u-v-w solutions with direct definition of the edge

displacements This might provide an indication that the lower u-v-w

solutions for simply-supported boundary conditions stem more from in¬

ternal shear forces than from the different formulation of the boundary
conditions The linear buckling analysis yielded always higher buckling
loads than the nonlinear analysis as well as the w-/F formulation

Finally, except the 2-ply CFRP cylindrical shells with simply supported

boundary conditions, the differences between the buckling loads achieved

with the numerical linear and nonlinear buckling analyses, as well as

between these numerical calculations and the rather simple analytical

approaches, are marginal for the presented laminated cylinders How¬

ever, as long as no test results are available it is advisable to compare

FE analysis results with results of a suitable analytical approach with

the compatible set of boundary conditions (and vice versa)

4.3 Transient Dynamic Analysis Results

In the a previous section it was reported that the DEVILS cylinder Z33

according to the static FE buckling analysis has a spiral buckling pattern

(see Figure 4 11), a mode which, m contrast to the axisymmetric shape
of specimen Z32, could not be observed during tests and not confirmed

by an analytical approach either The transition from the pre-bucklmg
state to a post-buckling state of equilibrium with the corresponding dy¬
namic shell movements can hardly be reproduced with static numerical

analysis methods Thus, if there was not the time exposure it would

be obvious to use FE codes with direct time integration for a dynamic

analysis of the dynamic buckling phenomenon right from the start But

to date the performance of the computers available and the complex in¬

put settings m most cases discourage the analyst from such a transient

dynamic analysis, all the more for the buckling load of ideal cylinders
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the unequally faster prediction with an analytical approach yield equal
or even better results. Nevertheless, the important differences between

static buckling patterns and observed post-buckling patterns was a moti¬

vation to investigate the dynamic transition including the post-buckling
behaviour.

When DLR Braunschweig (former DFVLR) was performing experiments
in the late sixties with circular cylinders made of Hostaphan (Mylar) the

experimenters became interested in the dynamic behaviour of the shell

wall during buckling. With high-speed movies [35, 36] it became visible

that, in the case of elastic shell material and axial loading, the initial

buckling pattern was not similar to the post-buckling pattern that can

be detected after the shell came to a rest. Based on the high-speed
movies of the Mylar cylinder, dynamic transient FE analyses with quasi
static loading, as introduced in Section 3.4, were performed, basically to

calibrate the dynamic calculations, as for other cylinders, e.g. the above-

mentioned DEVILS cylinders, no high-speed pictures are available.

The investigated isotropic cylinder, matching the above mentioned high¬

speed movies, has a diameter of 200 mm, a length of 200 mm, a wall

thickness of 0.254 mm and a Young's modulus of about 5500 MPa (in
axial direction). The assigned mass density was 1400kg/m3.

Again, the used FE program was MARC® and 10800 thick rectangular
shell elements (element No. 75) formed the model. For numerical time

integration the implicit single-step Houbolt method (SSH-method, see

Section 3.4) was selected. The damping matrix was introduced as 50000

times the mass matrix (pure inertia damping). The constant compression

velocity was set to 0.1 mm/s, and the selected smallest time step for an

axial displacement increment was 0.001 seconds.

The results of such calculations are given in Figure 4.18 for ideal geome¬

try and with stiffness properties as indicated in the figure. These curves

are compared with the curve reproduced from the movie taken during
the test. It was possible to arrange the output of successive deformation

states as to create a simulated movie and the results proved to be rather

similar to what had been discovered in the high-speed movies. The insta¬

bility started from a zone near the edge(s) which are laterally constraint

by rigid endplates. The first buckle then multiplies, travels throughout
the shell, increases in size and settles towards the center of the shell in

two staggered rows of buckles. This pattern was then recorded as first

stable post-buckling pattern, see Figure 4.19.
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Figure 4.18: Results of transient dynamic calculations (SSH-method) for a

Hostaphan cylinder with isotropic material and for somewhat orthotropic prop¬

erties, compared with a corresponding curve found in a high-speed movie. The

damping matrix was estimated to be 50000 times the mass matrix.

Noteworthy that the cylinder in the test, in contrast to that in the cal¬

culations, was not of ideal geometry5.

The obtained results were considered satisfying (see Figure 4.20) and,

thus, stimulated further investigations with this software in order to

study the buckling behaviour of the laminate DEVILS cylinders. Above

all, the noticeable differences between the static buckling and stable

post-buckling patterns of two specimens Z32 and Z33 were investigated.

As in the case for the Hostaphan cylinder the dynamic analyses of

the CFRP cylinders was also conducted with help of the SSH-method

implemented in MARC®. In this case the assigned mass density was

1600kg/m3. Again, the compression velocity was 0.1 mm/s, but the

damping matrix was now introduced as 25000 times the mass matrix.

Other parameters remained equal to the static analyses. The large factor

to the damping matrix was found by trying and was a practical com¬

promise considering the material values, the chosen compression velocity

5 At this stage of the studies imperfections were not considered in the calculations
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Figure 4.19: Results of a transient dynamic FE analysis of the isotropic "Mylar" cylinder, but width higher damping intro¬

duced: damping matrix 60000 x mass matrix. The deformations plotted in the included pictures are automatically scaled up

co referring the particular largest value.
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Figure 4.20: Selected picture of a high-speed movie with post-buckling pattern of
the Hostaphan cylinder (left) and the corresponding pattern of a FE simulation

with the SSH-method (right).

and the number of increments.

The results of such an analysis for cylinder Z32 with perfect cylinder ge¬

ometry is plotted in Figure 4.21. The constant reaction force at buckling
for about 0.1 mm of compression is special in this case. The axisymmet¬
ric deformation pattern, known from static analysis and tests, is already

developed prior to reaching the buckling load. This load is identical to

the value achieved by nonlinear buckling analyses (105kN). The change
to the first post-buckling state starts with non-axisymmetric waves on

the top and in the valleys of the middle axisymmetric waves. The post-

buckling pattern is clearly different to the pattern achieved by other

analyses.

In Figure 4.22 the results of a dynamic analysis for cylinder Z33 with

ideal geometry are shown and the improved buckling resistance compared
with cylinder Z32 can be seen. In this case the collapse is significant,
manifested by the sharp angle at buckling and the vertical downfall of the

load vs. axial deflection curve. The buckling load is slightly higher com¬

pared with the results in Figure 4.8 (207kN). The deformation pattern

very close and prior to buckling is similar to the mode resulting from a

linear buckling analysis (Fig. 4.11). When compression is increased this

shape is quickly replaced by small buckles starting at one edge. After
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having filled up the entire surface, the buckles increase and get reduced

in number until the state of a first stable post-buckling pattern with two

staggered rows of larger buckles is attained. Actually, this deformation

pattern (m = 2, n = 8) was observed during tests.

axial compression

Figure 4.23: Dynamic FE analysis results of cylinder Z33 and Z32 with ideal

geometry for a compression velocity of 0.1 mm/s and for a velocity of 1.0 mm/s.

The chosen compression velocity of 0.1 mm/s leads to almost identical

buckling loads than those achieved by nonlinear static analysis. Possible

over-shoots and additional axial forces through damping are small and

may be neglected. The real velocity was about 0.1mm per minute, i.e.

circa 60 times lower than in the FE simulations - a value which would

require exorbitant damping or computation time. Figure 4.23 manifests

the change of the velocity to 1.0 mm/s: over-shoots are then noticeable

for both specimens. The slower the compression velocity the closer the

resulting collapse load becomes to the corresponding static nonlinear

buckling load. With too high velocities arbitrary loads above the static

result may be found. Therefore, a dynamic transient analysis must not

substitute a static, nonlinear buckling analysis for the specification of a

collapse load.

In the charts presented above including dynamic analysis results the re¬

sulting axial reaction force are plotted in dependency of the given axial

compression AL, i.e. the axial displacement u of the loaded edge nodes.

The resulting forces are also frequently presented versus the lateral dis¬

placements w according to the searched amplitudes of the harmonic func-
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tions w(x, y) used to describe the displacement field analytically. But

in FE buckling analysis of ideal circular cylinders the significance of the

so-called modal displacement values is low. In the post-processing of the

FE method the result extraction of displacements is conducted at dis¬

crete points; thus, the identification of the set of amplitudes for harmonic

functions (e.g. Fourier series) would require the data extraction for all

nodes of the model. Since during buckling tests, in contrast to the lateral

shell movements, the axial displacement may easily be recorded without

touching the shell, axial load - axial displacement curves as shown above

may be found more significant for direct comparisons between FE simu¬

lations and tests. In Figure 4.24 the axial reaction forces, achieved from

250 n ~—local radial displacement w

—maximal +|tu| anywhere

2oo - /ytr
"~

\i
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radial displacement [mm]

Figure 4.24: Resulting load-deflection curve of cylinder Z33 with ideal geome¬

try. Axial reaction force vs. radial displacement w. The marked gray line refer
to one node at half the cylinder length, the black lines to the maximal lateral

displacement (absolute) at any node of the model.

a dynamic transient analysis of cylinder Z33, are plotted alternatively

against the lateral displacement. The gray line refer to displacements
at one node placed at half the cylinder length, whereas the black lines

represent the maximum absolute values among all nodes of the cylin¬
der model. It may be seen that prior to buckling the values for the

selected single node are smaller than the values at some point else. The

nodes with the maximal positive w are placed close to the edges where

the expansion, caused by the PoiSSON effect, is disabled which in turn

leads to the characteristic abating axisymmetric bulges at the edges, see

Figure 4.22. Close after buckling the single node moves somewhat pe-
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culiarly in- and outwards, whereas the movement for maximal w-values

is pointed inwards and the relating nodes are now placed somewhere in

the midfield of the element mesh (the black line for negative w is not

shown).



Chapter 5

Buckling of Cylinders
with Distributed

Imperfections

In the previous chapters the classical solutions and the linear and nonlin¬

ear finite elements methods used to specify the load carrying capacity of

axially compressed, thin-walled isotropic or laminated, unstiffened cir¬

cular cylindrical shells were described. Further, analysis results for such

shells were discussed. In these calculations it was assumed that the shell

geometry prior to loading at each case is that of an ideal circular cylin¬

der, and that they are under uniformly distributed axial load. That is,

possible imperfections like cut-outs, radial deviations of the shell middle

surface from the nominal radius, wall-thickness variations, local material

defects, eccentric edge loading, and so on, have been ignored.

But during tests or even in operation such cylindrical shells may buckle or

collapse at much lower loads than predicted in analysis. In addition, test

results of equally dimensioned cylinders under pure axial compression

may be widely scattered (see Figure 5.4). The main reason why many

shells fail at a much smaller load than the classical critical load may be

assigned to the combined effect of nonlinearity and imperfections. (Von
Carman, Dunn, and Tsien [77]) could demonstrate by approximate
nonlinear analysis that, after reaching the critical state, the load can

rapidly decrease at increasing deflection, what means that the stiffness



154 Buckling of Cylinders with Distributed Imperfections

of the structure is reduced. They also demonstrated that even small

disturbances may cause the shell to "jump" from a pre-buckling to a

post-buckling state at which the load carrying capacity is much reduced

[15].

post-buckling of

perfect shell

total displacement relating to load

(a) (b)

limit load of imperfect shell

(asymptotic analysis)

modal displacement |£|

Figure 5.1: Load-deflection curves with limit and bifurcation points, (a) general
nonlinear analysis, (b) asymptotic analysis. From (BlJSHNELL [21]).

In the classical analysis of perfect cylindrical shells, see Section 2.2, it

is assumed that the pre-buckling state is a membrane state and that

deflections prior to buckling have negligible effect. Consequently, the

amplitudes of the harmonic functions which describe the deflection and

the membrane stress field in analysis remain zero. Figure 5.1 depicts typ¬

ical load-deflection curves of (a) a general nonlinear analysis and of (b)
an asymptotic analysis for a thin isotropic cylinder under axial compres¬

sion, see Introduction Section 1.1. For perfect cylinder geometry prior to

buckling the axial cylinder or "spring" stiffness is constant and thus the

axial-load/compression curve in Figure 5.1(a) is a straight line. Having

passed the bifurcation point the cylinder buckles and with continuous

cylinder end-shortening the axial load decreases, indicating that the ax¬

ial cylinder stiffness degrades. In Figure 5.1(b) the pre-buckling state is

represented by the thick vertical line following the axis of ordinates. At

the bifurcation point solutions of the equilibrium equations exist with

non-zero modal amplitudes (radial displacements), denoted with £, and

the shell ceases to be stable. The bold line in the figure, referring to a
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post-buckling path, runs downwards with increasing £, what indicates

that the load carrying capacity in the post-buckling state of the initially

perfect shell at hand is reduced. (KoiTER [54]) developed a general the¬

ory of stability that describes the immediate post-buckling behaviour

asymptotically. He introduced the concept of a multidimensional space

whose coordinates are the load and the amplitude of various possible

post-buckling modes [15]. The curves in Figure 5.1(b) relate to only one

mode with amplitude £. In KoiTER's asymptotic theory the vertical line

for the pre-buckling state together with the post-buckling path may be

approached asymptotically by a polynomial expansion. This enables to

describe the effect of small deflections in the post-buckling state as well

as the effect of initial imperfections. The measures of the polynomial co¬

efficients also indicate the sensitivity of a structure to initial deflections,
to evenly distributed imperfections respectively. The thin line in Figure

5.1(b) corresponds to such a polynomial approach for an imperfect shell.

The reduced buckling load of the imperfect shell compared with the bi¬

furcation load of the perfect shell is marked with a star. Important for

the buckling analysis of imperfect structures is to know, how imperfec¬
tion sensitive the shell is and, above all, how much the critical load is

reduced depending on the expected initial imperfection amplitude (s) in

comparison to the classical load of the counterpart with perfect geome¬

try.

Cylindrical shells subjected to external pressure or torsion are not as

imperfection-sensitive as axially compressed cylinders are. That is, the

difference between theoretical buckling pressure or torsion and test re¬

sults is considerably smaller than the deviations of theoretical from ex¬

perimental axial buckling loads; and in addition, the test results of cylin¬
ders under external pressure and torsion have a much smaller scatter

bandwidth than those for axially compressed cylinders, see Figure 5.2.

In Section 4.2.1 it was shown for the case of isotropic shell material that

in the classical theory of cylindrical shells under pure axial compression
the axisymmetric and many double periodic buckling modes (m and n)
are associated with the same or almost the same buckling load. Cylin¬
ders under external pressure or under torsion, however, typically buckle

in one half-wave in axial direction und thus the buckling mode referring
to the appropriate lowest bifurcation load in these cases is determined

solely by the number of waves along the circumference [18]. The interac¬

tion of the many modes with the same axial buckling loads contributes to

the high imperfection sensitivity of cylindrical shells. Very small ampli¬
tudes of initial deflections composed of any of the critical buckling modes

reduce the load carrying capacity due to interaction between the initial
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Figure 5.2: Comparison of theoretical and experimental buckling values for

isotropic cylinders subjected to torsion, hydrostatic pressure, or axial compres¬

sion. From (Brush & Almroth [18]).



157

deflection mode and the post-buckling deflection mode of the perfect
shell.

Even very carefully manufactured cylinder with therefore minor dimen¬

sion deviations may locally buckle at an average axial stress considerably
below the theoretical, classical bifurcation stress of (see Section 2.2) [21]:

_

=,
Eh

_

1 Eh
~aCl~ C^~ ^(l-v2)^]

(51)

C = 0.605 for v = 0.3
.

From this formula follows by multiplication with the cut area 2nRh that

the theoretical buckling load is given by

Pcl = 3.8Eh2 ;

thus, the critical axial load is assumed to be independent of the nominal

cylinder radius R and length L. But already (Donnell & Wan [30])
and also (WEINGARTEN et al. [79]) demonstrated the increasing discrep¬
ance between tests and theory with increasing radius/wall-thickness ratio

R/h [21, 5]. This trend may be explained by the decreasing stiffening
effect of the shell curvature \/R with increasing radius R in comparison
to flat plates. Therefore, the influence of initial imperfections, which

are unavoidable and dependent on the fabrication method, arises with

increasing R/h ratio [30, 21]. Figure 5.3 reproduces curves for differ¬

ent R/h ratios proposed for safe shell design by (Batdorf et al. [13]).
These curves were derived from test values as plotted in Figure 5.2(c)
and demonstrate the larger buckling load reduction to be expected for

larger R/h ratios.

On the basis of experimental data (WEINGARTEN et al. [79]) proposed
a lower bound curve for the buckling coefficient C in Equation 5.1 as

C= 0.606-0.546 (l -e_AVÎ] V 0.5 < — < 5 (5.2)

According to the test results for short cylinders with L/R < 0.5 the dif¬

ference between theory and experiments is smaller. Thus, (Weingarten
et al. [79]) corrected their formula above to obtain a lower bound for all

R/h and L/R tested:

C= 0.606-0.546 (l - e-T5 VF) +o.9 ( — ) — (5.3)



158 Buckling of Cylinders with Distributed Imperfections

z=-^VT^

ï Simply supported edges

Clamped edges

a

L*h

^ ~

12(1-^)

t

[ / 1 R/h

„500\m
1100° L •«

/'/ 2a» f *•!

*w • -#> +fp3000j
J

/ ^
'

/ f /^

" f «*
" ^

Figure 5.3: Buckling stress coefficients k for thin-walled cylinders under ax¬

ial load. Theoretical values and recommended values for radius/wall-thickness
ratios R/h as indicated. From (BATDORF et al. [13]).

for cylinders in the range 100 < R/h < 4000 and 0.031 < L/R < 5

[79, 25]. The important discrepancy between the theoretical buckling
loads and the loads obtained from tests for axially compressed shallow

cylinders of medium length induced many further researchers to ascertain

reduced buckling loads for safe shell design, e.g. (Gerard & Becker

[42]) and (Harris et al. [71]). Their recommendations were used for

design guidelines established by most industrial organizations like e.g.

the National Aeronautics and Space Administration NASA or the Ger¬

man Institute for Standardization DIN [18]. In the NASA Space Vehicle

Design Criteria, SP-8007 [62], for instance the following safe buckling
loads for thin-walled isotropic monocoque cylinders are recommended:

— = 1-0.902 (l -e-Tê^) V - < 1500 (5.4)
Pel \ J h

whereby the ratio Pcr/Pci has the meaning of a reduction or knock-down

factor which should be multiplied with the classical buckling load Pci to

obtain the safe value. The formula (5.4) follows from the lower bound

curve of WEINGARTEN et al. in Equation (5.2). In Figure 5.4 this curve

is reproduced together with distributed test values. Thus, in accordance

with test experiences and with the formula (5.4), the buckling of cylin-
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Figure 5.4: Test data for isotropic cylinders under axial compression. From

(Arbocz & Hol [8]).

ders with larger R/h ratios has to be expected already at axial loads

which are less than 20% of the theoretical value. The load curves above

exemplify for the axial elastic buckling of thin-walled isotropic circu¬

lar cylinders, but design guidelines are also available for the buckling of

plates and panels, stiffened cylinders and consider also possible plasticity.
The German standard DIN 18 800 part 4 for isotropic shell structures, for

instance, deals with dimension tolerances (single dimples, eccentricities)
as well as with the yield stresses, see Section 6.1 on page 19Iff.

As shown in the previous sections, the estimated axial buckling loads of

perfect cylinders obtained by the linear and nonlinear buckling analyses
do not differ substantially; hence, the consideration of geometric non-

linearities in the pre-buckling state in the analysis of perfect shells in

general may not reduce the difference between the calculated buckling
loads and the loads obtained with experiments. To get FE analysis re¬

sults closer to test values it might be obvious to apply initial deflections

to the cylinder and to perform a linear or a nonlinear FE buckling anal¬

ysis of the now imperfect cylindrical shell. In Figure 5.1(a) an example
with nonlinear collapse of an imperfect shell is shown. In such a case pre-

buckling deformations of the shell may not be assumed to remain small

and hence a nonlinear buckling analysis would be advised. The main

drawback of any buckling analysis under consideration of imperfections
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is the fact that in most cases neither the sensitivity of the appropriate

imperfection shape nor suitable initial deflection amplitudes are known a

priori without measurement of the distortions of the real cylinder geom¬

etry to be analysed. Thus, in structural design mostly only the perfect
shell is analysed and the resulting buckling load is reduced with a factor

based on empiric data and standards as mentioned above.

This chapter describes the analytical treatment of the influence of geo¬

metric imperfections on the buckling load of axially compressed cylin¬
ders. The focus is on the imperfection patterns which are considered with

the corresponding approaches. First KoiTER's asymptotic post-buckling

theory is introduced that yield an estimate of the buckling loads due to

inclusion of buckling modes of the perfect shell as imperfection with very

small initial deflection amplitudes. Applying initial radial deflections in

form of series expansions to the deflection component of the perfect shell,

substituting them into the nonlinear Donnell equations, also larger im¬

perfection amplitudes may be assumed. Such a nonlinear approach to a

certain extent also allows for inclusion of measured and random imperfec¬
tions. In this context the number and wave-lengths of interacting modes

to be considered in the series representation of such imperfection shapes
is of interest. All the imperfection patterns discussed in this chapter are

distributed over the entire cylinder surface, hence also the pre-buckling
state of stress and deformation of the entire cylinder is disturbed. This

in contrast to localized imperfections, which are the main subject of this

work but are very difficult to treat analytically, that is, without use of FE

models. Nevertheless, most analytical results available for comparison
with FE buckling analyses of imperfect shells refer to methods described

in this chapter, achieved by several researchers in the last decades. Fi¬

nally, linear and nonlinear buckling analysis as well as transient dynamic

analysis results for laminated CFRP cylinders are presented, of which

the measured real imperfect shell surfaces were directly considered for

the set-up of their FE models. The author's experiences with these FE

analyses during the project DEVILS may be regarded as basis for the

subsequent investigations on cylinders with localized imperfections.
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5.1 Asymptotic Post-Buckling Theory

In his famous and pioneering doctoral thesis (KoiTER [54]) 1945 devel¬

oped a theory which supplies evidence that the unavoidable existence of

small structural imperfections are responsible for the mentioned gaps be¬

tween classical and experimental buckling loads. Despite its importance
this so-called asymptotic post-buckling theory received little attention un¬

til the early 1960's since KoiTER's thesis was written in Dutch language

[21]. But after a translation into English his theory was often applied to

the buckling of stiffened and monocoque elastic and elastic-plastic shells

[21, 19]. A large number of papers on KoiTER's theory and the effect of

imperfections on buckling was published, e.g. a compact representation
of the asymptotic theory by (BUDIANSKY [19]), a survey or introduction

by (Budiansky & Hutchinson [20]), by (Cohen [24]), by (Almroth
[1]), or by (Arbocz & Hol [8]), just to mention a few.

The earlier mentioned high imperfection sensitivity of axially compressed

cylindrical shells may also be explained with the fact that the polynomial

expansion of the potential energy n contains a cubic term, that is [15]:

n = c0 + ci£ + c2i2 + c3f + ... (5.5)

where £ is the amplitude of the dominant buckling mode associated with

the lowest bifurcation load, and cq, c\, etc. are coefficients which depend
on the axial load as well as the type and magnitude of the imperfections.
The cubic term for shells is nonzero (in contrast to imperfection insen¬

sitive structures such as flat plates) and may be particularly large. In

a classical, linear buckling analysis the potential energy expression is

always quadratic; the cubic and higher order terms can only be con¬

sidered by nonlinear analyses. A classical bifurcation buckling analysis

represents a search for the load at which the equilibrium of a structure

ceases to be stable and becomes neutral, but there is no information

given about the stability of the structure. In order to specify wether

or not the structure is stable at the bifurcation load, the determination

of the characteristics of the post-buckling path in the neighbourhood of

the bifurcation point is necessary [21]. For this purpose, in his general
elastic post-buckling theory (KoiTER [54]) assumed that the eigenvalue

problem for the buckling load Pci will yield a unique buckling mode and

introduced an asymptotically exact expansion for the load P in terms

of the normalized buckling modal amplitude £. That is, the equilibrium

path of a perfect structure referring to P, resulting from the condition
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dH/dÇ = 0 (see Eq. (5.5)), can be described by the series expansion

-^ = l + a£+5£2
*cl

(5.6)

whereby at the critical state £ = 0. Depending on the vanishing or

P
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Figure 5.5: Different types of elastic initial post-buckling behaviour. Nonsym-
metric (left) and symmetric post-buckling (right). Solid lines represent perfect,
dashed lines imperfect structures.

nonvanishing of the coefficients a and b, and on the sign of b, some

basic types of initial post-buckling behaviour can be distinguished [15].
In Figure 5.5 different types of elastic initial post-buckling behaviour

of are shown. For the case at the left side, which is asymmetric with

respect to the sign of £, a negative normalized imperfection amplitude

£ will convert bifurcation buckling into nonlinear collapse at a reduced

load Pcr. For the symmetric case (e.g. axially compressed cylinder)
at the right side of Figure 5.5 the factor a is zero and thus the initial

relationship between the load and the buckling displacement amplitude
is governed by the sign and the magnitude of b. If "KoiTER's 6-factor"

is negative the load-carrying capacity is reduced after buckling and the

shell is imperfection sensitive, whereas a positive b would indicate that

the structure retains some resistance for higher loads after bifurcation

[21, 63].

A measure of the imperfection sensitivity of a structure may then be

obtained by consideration of the effect of an initial, stress-free deviation

of the shell middle surface from the perfect geometry in the shape of the

buckling mode [21], as shown in Figure 5.6. Thus, if a = 0 the limit



5.1 Asymptotic Post-Buckling Theory 163

load Pcr is related to the classical buckling load Pci by the asymptotic
formula of the form

whereby £ is the normalized amplitude of the initial imperfection, the

buckling mode respectively [20]. With the imperfection amplitude Ar
the perturbation amplitude would be given by £ = A#//i. As shown in

Figure 5.7, more negative values of b are associated with greater sensi¬

tivity of the critical load Pcr to initial geometric imperfections.

Figure 5.6: Possible buckling mode of an axially compressed, isotropic cylinder.

In order to use curves like (5.7) to determine knock-down factors the im¬

perfection sensitivity parameter b has to be calculated. To demonstrate

the great complexities involved the fundamental equations to be solved

for the determination of b are introduced in the following. The deriva¬

tion follows the publication of (Hutchinson & Frauenthal [50]) on

eccentrically stiffened and barrelled shells and (Arbocz & Hol [8]) on

anisotropic shells [21]. Some simplifications were done for the present

case of purely axially compressed, isotropic circular monocoque cylin¬
ders.

Since the external loading and the boundary conditions are axisymmetric
the pre-buckling solution will also be axisymmetric. Thus, neglecting
terms including derivatives which refer to the circumference coordinate y,
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Figure 5.7: Imperfection sensitivity as a function of parameter b. The knock¬

down factors Per/Pel o-re calculated according to the asymptotic formula (5.7).

the compatibility equation (see Section 2.2) for elastic isotropic materials

becomes

c34/F0
, Vhc32w0=Q (5g)

dx4 R dx2

and the equilibrium equation is

d4w0 1 d2/F(
°=0 (5.9)

dx4 RD dx2

where /F is the AlRY stress function, w the displacement component

in shell normal direction (positive inward) and D is the shell bending
stiffness. The index '0' indicates the pre-buckling state (Oth-order state).
Although the pre-buckling behaviour is nonlinear, the two differential

equations (5.8 and 5.9) are linear in wq and /Fq. With the applied axial

compressive force P the assumed

1 P
w0 = hw0(x,P) and /F0 = - - y2 —j- + /o (x, P) (5.10)

2 27T.fl

substituted into (5.8) and (5.9) and rearranged yields a fourth-order lin¬

ear ordinary differential equation with constant coefficients which admits

an exponential solution [8].

Assuming that Pci is the axial load at which a non-axisymmetric bi¬

furcation from the pre-buckling state occurs. Then, in accordance with
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KoiTER's theory an asymptotic perturbation expansion of the solution

can be obtained which is valid in the vicinity of this bifurcation point.
That is,

— = l + a£+5£2 +
P

Pel

w = w0 + £wi +£2 w2 +

T = Jo + £^i + £2J2 +

(5.11)

where wi is a unique buckling node, normalised with respect to the shell

thickness h, and w2 is orthogonal to wi in an appropriate sense [50, 8].
The terms T% of the AlRY stress function are associated with the cor¬

responding terms of the normal displacement component wt. With the

amplitude of the buckling mode 5 the normalized perturbation amplitude

£ may also be identified with £ = S/h. For perfect shells the variation of

P/Pci with £ in the neighbourhood of the bifurcation point (i.e. P = Pci

and £ = 0) is of interest. Near the bifurcation point Pci the asymptotic

expansion given in (5.11) is valid [8]. Hence, the pre-buckling solution is

also expanded about the bifurcation load Pci so that

w0 = w0(x,Pci) + (P -Pci)

F0=Mx,Pcl) + (P-Pcl)

dwo

dP

dT0

dP

Pal

Pal

(P ~ PCI

(P ~ PCI

d2wo

dP2

d2T,

dP2

Pal

Pal

(5.12)

The problem for [dwo/dP]pct and \dJro/dP]pc,l follows from the equa¬

tions for wo and fo in (5.10). The load difference is expanded in similar

way:

P-Pel aPcl£ + bPcie (5.13)

A formal substitution of the expansions in (5.11) together with (5.12)
and (5.13) into the governing differential equations gives a sequence of

equations corresponding to like powers of £ and (P — Pci) [50, 8, 24].
The classical buckling problem (lst-order state) is a linear eigenvalue

problem stemming from the insertion of the expansions (5.11) into the

governing differential equations. Pci is assumed to be the load at which a

non-axisymmetric bifurcation from the axisymmetric pre-buckling state

occurs. Thus, after collection of all terms linear in £ [21]:

d4Ti d4Ti d4Ti Ehd2wi

dx2dy2 dy4 R da
Eh

2 <92wo <92wi

dx2 dy2
(5.14a)
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d4wi d4wi d4wi

dx4 dx2dy2 dy4
f^i4hï

I fd2Tid2w0 \d2Ti d2f0d2wi Pel d2w^
[ '

h-
D \ dy2 dx2 R dx2 dx2 dy2 2-kR dx2

This system of differential equations permits separable solutions of the

form

wi(x, y) = hwi(x)cos (—) ,

ny
(5-15)

F\{x,y) = /i(x)cos(—) ,

where n again is the number of circumferential waves associated with the

buckling mode (see Section 2.2) [8]. Substitution finally results in a set

of homogenous differential equations with variable coefficients. Together
with appropriate boundary conditions this equation system then forms

a eigenvalue problem which is solved numerically [8, 21].
By insertion of the expansions (5.11) into the governing differential equa¬

tions and collection of all terms quadratic in £ the following second-order

linear boundary value problem is obtained:

dAT2
, 2

d4T2 ^d4T2
=

Ehd2w2 Eh2d2w0d2w2
dx2dy2 dy4 R dx2 dx2 dy2

d2wi dwi dwi / <92wi dwi dwi\ (nnV\ I
dx dx V dx2 dx dx J R j

(5.16a)

d4w2 d4w2 d4w2

dx4 dx2dy2 dy4

1 (d2T2d2wo
,

\d2T2
,

d2f0d2w2 Pcl d2w2

D \ dy2 dx2 R dx2 dx2 dy2 2-kR dx

h 2L d2/i
,
dwidfi

| d2wi^ (516b)

2D I dx2 dx dx dx2

d2fi dwi dfi d2wi

\
rnny\ I/ crji öwi ofi crwi \

,

iWl~n ä—S- + ~~ä-2~h cos I2"
V dx/ dx dx dx/ J R

These two equations again may be reduced to two systems of ordinary
differential equations with separation of variables according to [50, 8]

w2(x,y) = hw2i(x) + hw22(x) cos (2—-) ,

ny
(5-17)

?2(x,y) = f2i(x) + f22(x) cos (2—) .
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These two ansatz functions substituted into (5 16) finally yields, after

some manipulations, a system of mhomogeneous differential equations

with variable coefficients Together with the boundary conditions this

problem has to be solved numerically

Finally, by considering that the virtual work has to vanish for equilib¬

rium, for perfect shells and a = 0 the following formula for b may be

deduced [21, 8, 37, 39]

7
t t^f2Wll -\- Z ljr1Wl2

±cl ^-dT^wn \ Z l-Tidwoi

with the four integrals over the entire middle shell surface

d2T2 fdwi dwi
iFr

ITu

d2T2 /<9wi\2 d2T2 /<9wi\2

A
dx2 V dy J dy2 V dx J

d2Ti dwi dw2 d2Ti dwi dw2

dxdy V dx dy

(5 18)

dA

A
dx2 dy dy

tdTiwn
dTr,

dP

dy2 dx dx

d2Ti /dwi dw2

dxdy V dx dy

dwi \2 d2

dy J dy2

dwi dw2

dy dx
dA

dTr,

dP

dwi

dx

d2

iFi dw0i

d2Ti d

dxdy

dwo

dTr,

dP

dwi dwi

dx2 dy

d2Ti f d

dxdy \dx

Pal V dX

d2Ti

dy

d

(5 19a)

(5 19b)

(5 19c)

dA

dP

dwo

dP

dy2

_d
dy

^o

9wq

dx

dwo

dP

dP

dwi

Pal dX

dwi
(5 19d)

Pal dX
dA

Ti and T2 needed for the

dwi

Pai dy

dwi

- Pai dy

The complete solution for wo, wi, w2,

calculation of the formula (5 18) for parameter b above implies the prior

(numerical) calculation of the coefficients wo, wi, W21, w22, fo, fi, f2i
and f22 which form a large set of equation systems Since here only the

concept of the derivation of the solutions is of interest, a listing of such

equations was abandoned, see e g (Arbocz & Hol [8])

The formulation m (5 7) for the relation between the limit load of the

imperfect structure to the bifurcation load of the perfect structure bases

on the assumptions that (1) the pre-bucklmg state is linearized, that

(2) pre-bucklmg deformations and (3) dead loads may be neglected, and
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that (4) the imperfection shape considered is affine to the classical buck¬

ling mode [24]. Thus, (Cohen [24]) generalized above analysis to cases

for which the preceding assumptions are not valid, and introduced an

asymptotic formulation including nonlinear pre-buckling effects where

the variation of P(£, £) in the vicinity of the bifurcation point Pci is

given by the following expansion [8, 24]:

(P-Pei)î = aPcie + bPcie +• • •

- aPdÇ - ß(P -Pci)Ç + 0(£,£)
(5.20)

For a = 0 the corresponding asymptotic formula is given by [8]

e| (5.2i)

The two additional imperfection form factors a and ß have to be cal¬

culated with similar complexity to a and b [8]. In the case of a linear

pre-buckling state a = ß, and for ß = 1, i.e. for neglected pre-buckling

deformations, the modified formula (5.21) coincides with KoiTER's for¬

mula (5.7) [24].

In the last decades (Hutchinson & Frauenthal [50]), (Arbocz &

Hol [8]), (Geier [39]) and other researchers developed numerical meth¬

ods which may be used to calculate the "unattractive" various boundary-
value problems and to evaluate b and the other parameters. Since such

computer codes are programmed for particular shell geometries, load

cases, materials and boundary conditions, an application of the proce¬

dures to an other stability problem mostly requires fundamental adapta¬
tions in the program code. Consequently, despite the great usefulness of

such programs their spread in the structural design community is rather

small. But in some commercial FE programs (e.g. MARC®, ABAQUS®)
options were introduced to consider normalized linear buckling modes to

be added to the perfect structure for subsequent static FE calculations.

This way, after a linear buckling analysis further (linear, or better: non¬

linear) static analyses with different amplitudes of the considered mode,
the imperfection sensitivity of the modelled structure may be approxi¬
mated by means of the resulting series of reduced buckling loads.

p
1 cr

P~c~i

O/ Z

= |v/-3a26
ß p

1 cr

P~cl
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5.2 Nonlinear Analysis Approaches

The results of KoiTER's general asymptotic theory described above are

only valid for very small initial imperfections (i e for amplitudes up to

about 30% of the shell thickness [55]) in the vicinity of the bifurcation

point of the perfect shell Thus, for larger imperfection amplitudes in the

nonlinear approach an initial stress-free imperfections shape Ar(i,j/) is

introduced and a series expansion for the normal displacement increment

w is assumed to be added to that of the perfect shell in the pre-bucklmg
state [21] This approach base on the nonlinear DoNNELL-type equi¬

librium and compatibility equations for thm shells In accordance with

(Hutchinson [49]) the equations for an initially imperfect, axially com¬

pressed cylindrical shell become

d4w d4w d4w 1
| O | —

dx4 dx2dy2 dy4 D

d2T (d2AR d2w\

dy2 \ dx2 dx2 J

d2T d2AR d2T d2w d2T(d2AR d2w\ 1 d2T
2 ° | 1 II
dx dy dx dy dx dy dx dy dx2 \ dy2 dy2 ) R dx2

(5 22a)

d4T
0

d4T d4T

dx4 dx2dy2 dy4

~(d2w\2 d2wfd2AR d2w\

\dxdyj dy2 \ dx2 dx2 J

d2wd2AR

dx2 dy2
f 2

d2w d2AR 1 d2w
+

dx dy dx dy R dx2

(5 22b)

For a simply-supported perfect cylinder (Ar = 0) under axial compres¬

sive load P the radial displacement and stress function may be written

as

w(x,y) =

T(x, y)

v P

Ë~2~^h w0

1
2
P

^ f

-2y2^R+I°

(5 23)

where the first terms constitute the pre-bucklmg solution for the perfect
shell The classical buckling equations (see Section 2 2) may be obtained

by substituting (5 23) in the DoNNELL-type Equations (5 22) and then

linearizing the resulting equations with respect to IF and w [49] Such
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equations for perfect cylinders were described in Section 2.2. The clas¬

sical buckling load is associated with a set of critical buckling modes,

including the axisymmetric mode w = cos(</o x/R) and the asymmetric
mode w = cos(^qo x/R) cos(^qo y/R) with square buckles1. KoiTER's

general theory for cylindrical shells indicates that an imperfection in the

form of the axisymmetric buckling mode (see Figure 5.8)

Afi(x)=£cos(^) with: q0 = [12(1 - ^2)]1/4y| (5.24)

is the most degrading and is able to reduce the buckling load of an axially

Figure 5.8: Cylinder with axisymmetric imperfection.

compressed shell to 1/2 or even 1/3 of the classical load for values of £

only a small fraction of the shell thickness [55, 49]. In general, any radial

imperfection pattern Ar may be represented by a double Fourier series

in the axial and circumferential coordinates x and y. In (HUTCHINSON
[49]) only two of such a series are considered for an isotropic shell, one

axisymmetric and one asymmetric, each taken in the form of a linear

buckling mode as given above; thus,

AR(x,y) = -£i h cos (Hfcx) +&h cos (±^x) cos (±^y) (5.25)

where £i and £2 are the ratios of the imperfection amplitudes to the

shell thickness. But, any equilibrium state can be written in the form of

1In this formulation it is assumed that the cylinder is infinitely long; i.e. neither

the cylinder length L nor any edge conditions are considered.
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(5.23); thus, w(x,y) is approximated by

w(x,y) = ^— + Çihcos(%x) +£2/icos(i^x) cos(i^y)

+ ^hsm(^x)cos(^y)

(5.26)

with £i, £2 and £3 standing for the undetermined ratios of the ampli¬
tudes of the radial deflection increment to the shell thickness. To specify
these coefficients, (5.26) is inserted into the compatibility equation in

(5.22), which is then solved exactly for T in terms of w. The equilib¬
rium equation in (5.22) is then solved approximatively by substitution

therein of T and w and then applying the Galerkin procedure [49].
In (Hutchinson [49]) a solution for £1, £2 and £3 in (5.26) for an ax¬

ially compressed isotropic cylinder with uniform internal pressure may

be found. Since in this thesis only the axial and circumferential wave¬

lengths of the considered initial imperfections shapes are of interest, the

solution for the amplitudes are not considered.

5.2.1 Application of Measured Imperfections

(Arbocz & Babcock [6]) used a more general approach for applica¬
tion to cylinders with measured imperfections which do not necessarily
resemble buckling modes of the perfect shell. For example, for axially

compressed isotropic cylindrical shells they assume that the initial im¬

perfection has the form

Ar(x, y) = £1 h cos (i^Z-x) + £2 h cos (k^-x) cos (ij^y)
(5.27)

+ £3 h sin (k^-x) cos (ij^y)

and approximate the incremental normal deflection w as

v P

w(x, y) = —;
—-— + £1 h cos (i-^-x) + £2 h cos (k^-x) cos (ijiy)

+ £3 h sin (k^-x) cos (ij^y)

(5.28)

The result of the nonlinear equations obtained for the undetermined nor¬

malized amplitudes £1, £2 and £3 in terms of a normalized load parameter
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was then used to investigate the behaviour and the bifurcation or limit

loads of different imperfection shapes, i.e. with the particular £j either

considered or not, depending on the geometrical parameters i, k and /

(with k = i/2). Then, the combination of one axisymmetric and one

asymmetric imperfection component which would yield the lowest buck¬

ling load was searched [6]. The imperfection surface shape Aß(i,y) in

(5.27) is understood as a truncated representation of measured imperfec¬
tion surfaces. (Arbocz & Babcock [6]) used a non-contact probe for

complete imperfection surveys on different shells before as well as during
the loading process up to the buckling load [10, 75]. In order to deter¬

mine the dominant modal components of the imperfection surfaces the

measured radial displacement fields were expanded in double Fourier

series. The resulting coefficients finally gave the information necessary

to define the truncated imperfection representation Aß(x,y) in (5.27).
The initial imperfections of the measured shells were predominantly com¬

posed of lower-order modes (a few axial and circumferential waves) [6].
It was found that the mode components which apparently contributed

to the reduction of the buckling load were not necessarily predominant
in the initial imperfections. The pairs (£i =/ 0, £2 7^ 0, £3 = 0 OR £1 7^ 0,

£2 = 0, £3 7^ 0) of most degrading modal components, as determined

by the analysis, were composed of an axisymmetric imperfection with

one wave in axial direction and an asymmetric imperfection with one

half-wave in axial direction, see Figure 5.9. The most degrading shape
of the asymmetric imperfection in turn was found to be determined by
a coupling to a significant axisymmetric mode and by an equivalence
between the asymmetric mode and a buckling mode with corresponding

buckling load close to the classical value [6]. After all, the dominant part

of the measured imperfections seemed to be adequately approximated by
the truncated expansion (5.27) since the analytical results showed good

agreement with the experimental values.

For later correlation studies between experimental buckling loads and an¬

alytical predictions based on measured imperfection shapes, (Arbocz &
Babcock [7]) extended the representation (5.27) of the initial imperfec-
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Figure 5.9: Cylinder with imperfection composed of an axisymmetric imper¬

fection with one wave in axial direction and an asymmetric imperfection with

one half-wave in axial direction.

tions to double Fourier series as

Ni N2

Afl(x, y) = h^2 èo cos (ifx) + h^^tlkih cos (kfx) cos (l±y)
r=l k,l= l

N3

+ hzZzZ^ih sin(klx)cos (liy)
k,l=l

(5.29)

to investigate the influence of multiple imperfection modes. The num¬

ber of modes considered in the analysis was (and is) limited by practical
considerations (computation effort, disk space). Thus, only the modes

which dominated the pre-buckling and buckling behaviour of a cylinder
were identified. As mentioned above, it was shown that harmonic imper¬
fection components dominate if they have significant initial amplitudes
and correspond to modes of an eigenvalue close to the classical value

[7, 10]. The increased complexity of these studies with consideration of

up to twenty modes was honoured by an additional enhancement of the

agreement between analyses and tests. Furthermore, it was concluded

that suitable combinations of axisymmetric and asymmetric modes will

always be more damaging than either a single axisymmetric (see Koi-
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TER's theory) or a single asymmetric mode, presumed that realistic vari¬

ation of the imperfection amplitudes is taken into account [7].

The application of artificial initial imperfections in form of buckling

modes, or their combinations, as described above bases on the assump¬

tion that these are the possible imperfection shapes which reduce the

buckling load most of all. Ignoring the real circumstances, for safe shell

design the analyst is forced to presume the worst case and to consider

knock-down factors of about 20%. In civil engineering such conservative

design recommendations might be followed with perfect satisfaction, but

in aerospace industry lightweight structures have to be dimensioned as

close to the physical limits as possible. In most cases the real imperfec¬
tion shape will differ from the harmonic eigenmodes relating to lowest

buckling loads. Thus, in lightweight construction it would be beneficial

to investigate the real imperfections and to derive appropriate enhanced,
i.e. higher knock-down factors. Such investigations, i.e.the measurement

of imperfections, and the subsequent analyses with the imperfect geom¬

etry considered may actually lead to buckling loads very close to test

values, as it was shown, for instance, during the DEVILS project. But,
measurements [75, 22, 6] of the particular imperfections is at least very

complex, or impossible if in an early design state the structure is not yet

available.

5.2.2 Application of Stochastic Imperfections

Real imperfections are random in nature; hence, some kind of stochas¬

tic analysis would be advisable as an alternative to measurements. The

buckling of imperfection sensitive structures with small random initial

imperfections was already studied by (Amazigo & BUDIANSKY [3]),
(Roorda [70]), (Hansen [44]) and others. In absence of experimen¬
tal evidence about the type of imperfections that occur in practice and

in order to reduce the mathematical complexity of the problem, the re¬

searchers worked with some form of simplified imperfection distribution

[9]. (Elishakoff [33]) generalized the stochastic methods to consider

experimentally measured initial imperfections and introduced a reliabil¬

ity function R(-ß-) with

ß(l&) = ProK^r > £) . (5.30)

The knowledge of this function permits the evaluation of the allowable

load level Pa/Pci (knock-down factor) for which the desired reliability is
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achieved, for a whole group of similar shells produced by a given man¬

ufacturing process [9]. For the estimation of R(j/-) statistical measures

of the basic random variables representing the Fourier coefficients of the

initial imperfections have to be evaluated. For this, a sufficiently de¬

tailed initial imperfection data bank, including the values of truncated

double Fourier representations similar to (5.29), of a sample of nom¬

inally identical shells is necessary [8, 22]. Thus, Arbocz, Singer and

others founded the Initial Imperfection Data Bank and began to col¬

lect data of characteristic, measured initial imperfections distributions

of many cylinders manufactured by different processes [75, 5, 9]. The

aim of this collection is to be able to offer probable imperfection distri¬

butions with corresponding higher knockdown factors depending on the

manufacturing process and the shell geometry.

5.3 FE Analysis Results for Cylinders with

Measured Imperfections

In Section 4.1 four laminated CFRP cylinders were introduced to demon¬

strate the buckling analysis of ideal cylindrical shells under axial com¬

pression. These cylinders were analyses during the Brite-Euram project

"design and validation of imperfection-tolerant laminated shells" (DEV¬
ILS). A goal of this project was the analytical as well as the experimental

investigation of the buckling behaviour of thin-walled CFRP cylinders
under axial compression and combined axial and torsion loading. It

was attempted to compose guidelines for the dimensioning as well as

the analytical and numerical predictions of the buckling loads of such

shells. Further, questing for design recommendations with improved
knock-down factors for cylindrical composite shells manufactured with

different methods, the imperfection sensitivity mainly to geometric im¬

perfections was investigated with considerable effort.

Altogether nine cylindrical shells with an inner radius R of 250 mm,

a shell thickness h of 1.25 mm, and a free length L of 510 mm were

tested at DLR in Braunschweig and at EMPA in Dübendorf. The cylin¬
ders shells were manufactured from carbon-epoxy prepregs which in turn

were produced by filament winding over a heated cylindrical mandrel.

The prepregs were cut into suitable sizes and then assembled by placing
them around a steel cylinder. After placing each layer, gaps between

the fibres and gas bubbles were removed manually via a rubber roller.

Finally, a tear-off fabric was added and was over-wound by a tensioned
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layer of glass fibres. The laminate hardened at 140° for twelve hours.

After removal of the glass fibre layer and the core the cylinder edges
were trimmed. To determine the geometrical quality of the specimens,
the internal and external surfaces of the cylinders were mapped [60].
In the ETH, prior to the test campaign, only the inner surface of the

shells were measured in radial direction with aid of laser beam scanning.
Due to minor misalignments of the cylinders on the measurement de¬

vice, the results had to be adjusted analytically [60]. In contrast to the

work of Arbocz and Babcock (Ref. [7]) described in Section 5.2.1, the

mapped imperfection surfaces were not expanded in Fourier series in

order to represent and model the real imperfect shell by means of trun¬

cated series expansions with the dominant modal components for the

subsequent nonlinear analysis. For the application of the imperfection

shapes to finite element models the measured points could particularly
been fitted and then the coordinates of the points were then considered

as the position of the element nodes of the unloaded FE models.

The measurement provided 30 points in axial direction and 90 points
in the circumference. Since the used element mesh has twice as much

nodes as measured points available, additional points had to be gener¬

ated by linear interpolation. Figure 5.10 shows the uncoiled imperfect

geometries of cylinder Z30 and Z33 as included in the FE models. The

deviations of specimen Z30 from nominal radius are small and indicate

an elliptic form of the relatively smooth cylinder surface, whereas the

surface of specimen Z33 has a slightly nose-shaped distortion near one

edge - potentially a result of edge bonding and probably connected with

an internal, unknown stress field. In addition, the measured surface of

cylinder Z33 includes some deeper notches in a crinkly face of the "nose".

More detailed information on the test facilities, the results, and also on

the five laminated shells not considered in this work, may be found in

(Meyer-Piening et al. [60]).

The considered initial imperfections in the FE models represent the devi¬

ations of the inner shell surfaces from the nominal radius, whereas possi¬
ble local wall thickness variations are ignored, that is, the wall thickness

h was assumed constant with a value of 1.25 mm over the entire surface.

The numerical analysis methods that the author utilized for the buck¬

ling load predictions of the cylinders with their measured imperfection

shapes applied were the same as for the computations of these shells

with perfect geometry, see Section 4.2.2. For the cylinders under axial

compression and combined axial and torsion loading linear and nonlinear

buckling analyses (see Section 3.5) were performed. In addition, for some
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Figure 5.10: Imperfections of cylinder Z30 (top) and Z33 (bottom), measured

prior to testing at the inner shell surfaces. Meshs with 61 x 180 points as

used for FE models. Max./mm. deviations from nominal radius (250 mm)
rightmost.
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selected cylinders the buckling behaviour under pure axial compression

was investigated by means of transient dynamic analyses. These FE

analyses, of which the results are shown in the following, were obtained

with MARC®, again with models consisting of 60 x 180 bilinear thick shell

elements of type No. 75.

5.3.1 Buckling Analysis Results

The results of the FE buckling analyses may be found in Figure 5.11. The

Identification of the laminates

Z28 : [±53°, ±8°, ±90°, ±68°, ±38°], Z32 : [±0°, ±19°, ±37°, ±45°, ±51°],

Z30 : [±53°, ±38°, ±22°, ±90°, ±30°], Z33 : [±51°, ±45°, ±37°, ±19°, ±0°],

(first angle-plies refer to the outside layers, see Fig 4 1)

linear ideal

nonlinear ideal

d linear imperfect
£ 278269277 mm —i
=*. —I I ^B265! L„ »nonlinear imperfect

öTEST [60]

Z28 Z2.0 Z32 Z33

Figure 5.11: Linear and nonlinear static FE buckling analysis results of the

DEVILS cylinders with ideal geometry and with applied measured imperfec¬
tions. Test results enclosed for comparison.

nonlinear buckling analyses yielded little difference to the linear analysis
results in the case of ideal geometry but had noticeable influence on the

results of cylinders with imperfect geometry. This effect was minor in the

case of Z32 with the low buckling loads. For Z33, the reduction of the
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load-carrying capacity was overestimated after the real geometry was

accounted for, potentially due to the fact that built-m stresses withm

the shell were ignored The better conformance of cylinder Z30 with

imperfect geometry with the test result might be explained with the

smother imperfection surface and the absence of deeper notches

Since in general FE analysis results yield higher buckling loads than

reached in tests, the analysis result of cylinder Z33 provoked further

investigations including the influence of dents and notches on the load

carrying capacity of cylindrical shells Nevertheless, by introducing mea¬

sured imperfections as initial geometry, important findings could be

demonstrated (i) laminated cylinders with maximised buckling resis¬

tance tend to be imperfection sensitive in buckling analyses, and (u) con¬

sidering imperfections in FE analyses nonlinear procedures are manda¬

tory

In Figure 5 12 the nonlinear buckling analysis results for cylinder Z28

and Z33 with perfect shell geometry and with measured imperfections,
in both cases subject to combined torsion and axial loading, are plot¬
ted For the combined loads the load ratio was maintained throughout
the incremental calculation The results, the almost-comcidence of the

FE results for torsion loads larger than 4 kNm respectively, confirm the

assumption that shells which are imperfection-sensitive under axial com¬

pression are not so sensitive to combined loads [60]

5.3.2 Transient Dynamic Analysis Results

The dynamic analyses were performed with MARC® and the implemented

implicit single-step Houbolt operator (SSH-method) for numerical

time integration (see Section 3 4) A suitable parameter set especially
for dynamic analysis of the laminated cylinders was found by trial, deal¬

ing with the collapse of cylinder Z33 with ideal geometry Hence, the

compression velocity was again 0 1 mm/s and the damping matrix was

introduced as 25000 times the mass matrix considered a mass density
of 1600 kg/m3 For the specimens with imperfections and hence reduced

structural stiffness, less damping could be applied Nevertheless, for ac¬

curate comparisons all other input parameter values than those relating
to a geometric or stacking sequence variation were retained unchanged

Figure 5 13 shows the results of a transient dynamic analysis for the

cylinder Z32 with measured imperfections added to the cylinder geome¬

try The constant reaction force at buckling in the case of ideal geometry
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Figure 5.12: Nonlinear FE buckling analysis and test results for two DEVILS

composite cylinders under combined torsion and axial loading.

(thin line, see Fig. 4.21) is replaced by a reduction of the global stiffness

close to the buckling load, which is only slightly smaller than the value

for the ideal cylinder geometry, but again almost identical to the value

produced by a nonlinear static analysis (103kN). The imperfections are

to a certain extent similar to those of specimen Z33 (Fig. 5.10). The

first included picture in Figure 5.13 with scaled-up deformations may

give a hint of their small modulating effects. The final post-buckling

pattern and the corresponding reaction force are identical to the case of

ideal geometry. The first post-buckling pattern (third picture) in turn

with only one row of buckles correlates with the pattern observed during
tests at DLR (m/n = 1/8) [60].

The result of a transient dynamic analysis for the cylinder Z33 with

applied measured imperfections is shown in Figure 5.14. In this case,

the analytical buckling resistance is significantly reduced in comparison
to the ideal cylinder Z33 (thin line, see Fig. 4.22). The buckling load

is only Pcr = 145 kN, again identical to results achieved by static non¬

linear analysis. The small dents in the imperfection surface (Fig. 5.10)
can be well recognised in the first two pictures with scaled-up defor¬

mation plots. The fact that both the nonlinear buckling analysis and

the nonlinear dynamic transient analysis yielded a lower collapse load

than tests resulted (Fig. 5.11) may possibly be explained by the non-
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consideration of potential pre-stresses. Again, the post-buckling pattern

and the corresponding reaction force are identical to the case of ideal

geometry.

That the dynamic transient FE method also enables satisfactory results

is demonstrated in Figure 5.15 by means of cylinder Z30 with its mea¬

sured imperfections (Fig. 5.10). The (thick) line, referring to the FE

result, is almost congruent to the (thin) compression line stored during
a test at DLR in Braunschweig. The lower thin line refers to decompres¬
sion after collapse. This reversion of the endplate to its initial position,
i.e. to the initial cylinder length, was not simulated. The almost perfect

agreement of the FE simulation with the test in the pre-buckling state

and at collapse can be viewed as fortunate coincidence since the FE anal¬

ysis input parameters (velocity, damping), adopted from investigations

on cylinder Z33, were not especially modified for this shell.
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Figure 5.15: Dynamic FE analysis result of cylinder Z30 with measured im¬

perfections. Comparison with test (DLR): the compression line of the test fits
with the FE simulation; decompression (bottom line) was not analysed.

After the conclusion of the DEVILS project the question remained unan¬

swered why the FE analyses of the CFRP cylinder Z33 with its measured

imperfections considered yields considerably lower buckling loads than

observed during tests (see Fig. 4.8 rightmost). In the comparison with

FE analysis with tdeal geometry

-FE analysis with tmperfecttons
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Figure 5.16: Imperfections of cylinder Z33. Closer view to the deeper notches

in a nose-shaped distortion in the inner surface of the specimen. See also

Fig. 5.10.

the imperfections of cylinder Z30, of which FE analyses as expected give

higher buckling loads than the tests, the relatively large notches in the

measured inner surface of specimen Z33 attract attention (see Fig. 5.10).
A closer view to these single dents in the crinkled nose-shape deforma¬

tion is given in Figure 5.16 with a different view angle. These distortions

are potentially a result of edge bonding. Possible internal stress fields,

coming from fabrication or test preparation, were unknown and could

not be considered as pre-stresses in analyses. Furthermore, since the dis¬

tortion measurement was only conducted for the inner cylinder surface

possible local shell thickness variations are also ignored. Thus, having
missed to collect more information about the condition of the shell be¬

fore and during the tests it became hardly possible to identify the real

origin of the underestimated buckling load after the conclusion of the

test campaign. But, a nonlinear buckling analysis of Z33 with its imper¬
fections and with fictitious pre-stresses yielded a slightly higher buckling
load. For this investigation the pre-stress field was stored after a static

FE stress analysis of the perfect cylinder of which only the edges are dis¬

placed from the stress-free position on a perfect circle to a corresponding
measured position. This surely somewhat peculiar analysis case at least
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may give a hint that internal stresses due to edge bonding might increase

the buckling resistance of a cylinder with such local imperfections For

a further study the deepest notches in the imperfection surface, shown

in Figure 5 16, were replaced by manual linear interpolation according
to the position of the nodes around the particular notch A nonlinear

buckling analysis of Z33 with the resulting imperfection surface effected

a buckling load close to the test value Thus, the difficulties with the

underestimation of the buckling resistance with great probability are

caused by these notches, or by the local connected curvatures and stress

disturbances respectively, and not by the vaster nose-shaped deforma¬

tion But for all that (or just due to the open questions), the influence of

the notches to the collapse load of the CFRP cylinders was a motivation

to begin a new analysis endavour for numerous circular cylinders which

initially are of perfect geometry despite different single (one ore two)
dents or bulges The related investigations and their results are subject
of the succeeding chapters
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Chapter 6

Buckling of Cylinders
with Localized

Imperfections

The imperfection shapes described in the previous sections are dis¬

tributed over the entire cylinder shell surface. That is, the lateral de¬

viation from the nominal cylinder radius may be different from zero at

any point of the shell between the cylinder edges. Assumed that a shell

will not be designed intentionally, for what reason ever, with a geometry

similar to the classical buckling mode with short wavelengths, on aver¬

age a cylindrical shell will have small initial imperfections with longer

wavelengths. In addition to such overall geometrical disturbances local

defects like dents, notches or bulges of different sizes and amplitudes
have to be expected. The small notches measured in the inner surface of

the laminated cylinder Z33 (see Figure 5.16), for example, are located in

a long-wave overall imperfection. Cylinder shells may have large dimples
for some design reason or, more likely, due to unsuitable manufacturing
or some ungentle contact with other structures. For buckling analyses
in the past imperfections as presented in the previous sections were de¬

scribed by use of a single bi-harmonic function with amplitude and two

wavelengths, but also by means of a superposition of multiple buckling
modes. In Figure 6.1(a) the uncoiled cylinder surface with an overall

imperfection pattern composed of three superposed classical modes of

equal amplitude is depicted. In the resulting interference pattern some
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dents and bulges of small amplitude but also others of large amplitude
can be found. Thus, by addition of multiple buckling modes localized

dimples may be reproduced. The shell geometry around these dimples
however differs also from that of a perfect circular cylinder, i.e. such

distinct local imperfections are embedded in an overall imperfection sur¬

face. During cylinder compression the local deformation and stress field

of each dimple interferes with that of the overall imperfection as well as

with that of the adjacent dimples. Consequently, the influence of such

small localized dents or bulges on the buckling resistance and behaviour

of a cylinder shell may hardly be ascertained separately.

circumferential distance [mm)

(a) Distributed inward and outward dimples

circumferential distance [mm)

(b) Single inward dimple (dent)

Figure 6.1: Local dimple imperfection in uncoiled cylinder surfaces with (a)
other distributed inward and outward dimples of different amplitude, and (b)
with otherwise perfect shell geometry.

In order to investigate how much a single dent or bulge may reduce the
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buckling load of the perfect cylinder alone, it is beneficial to work with

a cylinder which has a single dimple imperfection but otherwise is of

perfect shell geometry. Figure 6.1(b)shows such an exemplary cylinder
surface (uncoiled) with a single dent. The dent was arranged to be at

the location of one of the dents in the interference pattern in the plot

(a) above. Such configurations with a dent or bulge embedded in an

otherwise perfect cylinder shell enabled to investigate the exclusive in¬

fluence of the initial size and geometry of dimple imperfections on the

buckling resistance of cylinders. The author used finite element mod¬

els of such shells, for the mentioned reason, to investigate the buckling
behavior of axially compressed isotropic and laminated cylinders with

single parametric initial dents or bulges, see Figure 6.2 below.

Figure 6.2: Single, localized inward dimple ("dent", left) or outward dimple

("bulge", right) with its initial amplitude, its initial width, and its initial height
as three free parameters.

Real cylinders with intentionally introduced defects are not totally free

from other imperfections; thus, reliable and reproducible buckling tests

results of cylinders having a single dimple of small initial amplitude
are difficult to achieve. A potential reduction of the cylinder buckling
load could hardly be attributed to the intensional initial dimple if its

amplitude is of the same order of magnitude than that of other, un¬

avoidable stochastic imperfections. In addition, expect for some special

dimple shapes the buckling loads of such shells may be calculated with

analytical or semi-analytical approaches only with daunting efforts, since
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shell surfaces with a localized dimple require double Fourier series with

many terms for the descriptions of the initial cylinder geometry as well

as for the description of the deformation and stress fields whilst loading,
see Section 2.3 and 5.2. Consequently, the investigation on the buck¬

ling behaviour of cylinders with localized dents or bulges was restraint

to buckling analyses and simulations with FE models. The confidence

in having obtained reasonable analysis results base on the fact that the

analysis methods as well as the modeling of the cylinders was adopted
from the analyses of the cylinders with ideal geometry and of the lami¬

nated CFRP cylinders with measured imperfections considered of which

test data was available. The applied analysis methods, i.e. the nonlinear

buckling analysis and the transient dynamic analysis, and the mentioned

analysis results were detailed in the previous sections.

Since the buckling behaviour of the shells was analysed exclusively by
means of FE models, there was no need to consider neither of the config¬
uration of the initial dimples nor of the geometry of the origin cylinder.
It was therefore possible to apply dimples of which the initial amplitude,
the initial height, as well as the initial width could be varied indepen¬

dently from each other. With these three free parameters their influ¬

ence on the buckling load could be investigated separately for different

cylinders. Further, dimple widths and heights causing minimal cylinder

stability could be searched systematically and independently from the

wavelengths of classical buckling modes.

This main section deals with the buckling analysis results for thin-walled

cylinders of medium length having a single initial dimple and illustrates

the particular deformation process of selected shells. After the descrip¬
tion of the FE modeling and the analysis methods adopted for the pa¬

rameter studies first the analysis results for isotropic cylinders with a

dent or a bulge (—> Section 6.6) are detailed. Subsequently the results

for laminated CFRP cylinders having a local dimple (—> Section 6.7) are

described. For the isotropic cylinders this section contains also detailed

representations of particular stress distributions and of shells having two

dents at different locations.
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6.1 Local Imperfections

The reduction of the load carrying capacity due to localized dimple im¬

perfections of cylindrical isotropic structures is considered in the Ger¬

man standard DIN 18800 part 4. The standard was worked out for steel

structures, but is also applicable for other similar isotropic materials.

It provides safe buckling loads of isotropic cylinders in consideration of

dimples, but also of eccentricities and other tolerances. The depth of a

dimple imperfection w0 should not exceed 1 % of the length of a partic¬
ular gauge, see Figure 6.3. The gauge length in meridian direction lmx

Figure 6.3: DIN 18800/4: gauge lengths lmx and lmlp and initial depths Wb for

possible dimples in steel cylinders.

is given by

and the length in circumferential direction lmcp by

2.3 R

y/R/Ly/Eß
with the cylinder length L, the cylinder radius R, and the shell wall

thickness h. Both gauge lengths may be limited to two meters and are

derived from the approximate wave-lengths of the buckling patterns of

axial compressed cylinders (lmx) and cylinders under external pressure

(Imip)- The standard deals with the influences of the cylinder lengths
and the thickness ratios but also of yielding stresses! Presuming suf¬

ficiently high yield stresses, for dimples with depths which exceed the
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limit w0MAX given above not more than twice a linear relation for a

reduction factor is stated:

Jred ^r
3 V acl \WbMAX

for: J^<1.5

/red = «red ( 1-5-0.5 — I for: W-^>1.5
V WbMAX J V °"c'

That is, the factor /re<2 has to be applied to a classical buckling load

which prior is to be reduced with a factor Kred- This reduction factor in

turn is only dependent on the relation between ideal buckling stress <rc;

and the yield stress <7o 2 :

Kred = 1.233 -0.933J— for: 0.25 < J— < 1.0

Kred = 0.3/J— for: 1.0 < J— < 1.5

V acl V °"ci

The factor nred considers the influence of general, geometric and struc¬

tural imperfections as well as that of non-elastic material behaviour.

EXAMPLE: For a steel cylinder with R = 250 mm, h = 1 mm, and L = 510 mm

for example the gauge lengths lmx and lmlp are about 63 and

207 mm, respectively, thus, the depth of an initial dimple should

not exceed 0 63 mm, and the reduction factor for a initial depth of

1 2 mm is about 0 55 But this factor fr£d reduces a buckling load

which is already scaled down to circa 40 percent of the classical

buckling stress (509 MPa) for a yield stress of 400 MPa Finally,

according to the standard the limit load for shells with high imper¬
fection sensitivity like axially compressed cylinders is obtained by
division of the reduced load with an additional security value For

the present example the final reduction factor to be applied to the

classical buckling load would be 0.4 x 0.55/1.22 = 0.18

But, since the influence of general imperfections, the impact of a single

dimple, as well as the effects of non-elastic material behaviour are not

considered separately, analysis results of cylinders with localized dimples
embedded in otherwise unrealistic perfect shells may not be compared
with the values recommended as permissible loads in this standard. Fur¬

thermore, the disadvantageous combination of geometry and material

parameters in the formulations for recommended reductions of buckling
loads impedes serious applications of this standard also for materials with

different behaviour like fibre-reinforced composites or other synthetics.
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For dents which are axisymmetric analytical solutions for the prediction
of the reduced buckling loads were found, benefiting from the permissi¬
ble reductions of the problem in this case (omission of derivatives with

respect to the circumferential direction). Following KoiTER's general

asymptotic theory (see Section 5.1) at the end of the sixties (Amazigo
& BUDIANSKY [3]) obtained an asymptotic formula for the buckling load

of an infinitely long cylindrical shell under axial compression containing

an axisymmetric imperfection in the form

AR(x) = -Çhe-ax . (6.1)

The asymptotic formula valid only for small imperfections is given by

1 —^— =
tttt. Ua -^— where:

Per \ 3/2

Pc I
J

3^/3(1-!/2)
23/2

|/a|

p
1 cr

Pc~i

V'dx with: x -

1Ï X

i *>e

The length lc is the half wavelength of the classical axisymmetric buck¬

ling mode for isotropic shell material with v = 0.3 (see Section 2.2.2)
[3, 51, 21]. With the same asymptotic formula (6.2) thereupon

(Hutchinson, Tennyson & Muggeridge [51]) performed analyses
of cylinders having a single axisymmetrical dent or bulge in cosine form

(see Fig. 6.4); that is:

... îh (
/
^

\ 1 ii ,

AR(x) = —— |l-cos(—x)j \x\<l

= 0 Ixl > /

(6.3)

Results can be obtained for various values of the wavelength ratio lx/lc.
In case of lx = lc for example the integral Ia in (6.2) becomes:

Solutions for (6.3) are reproduced in Section 6.6.3, page 340 ff. Alter¬

natively to the asymptotic theory they also conducted numerical cal¬

culations with such ring-shaped cosine dimples, considering nonlinear

pre-buckling and deformation states as well as boundary effects. The an¬

alytical results could be compared with tests on epoxy-plastic cylindrical
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Figure 6.4: Local, axisymmetrical dimple imperfections. Ring-shaped dent

(left) and bulge (right).

shells with such imperfections [51, 21]. It was found that the sensitiv¬

ity to a ring dimple of critical height lc is severe, but less so than that

corresponding to imperfections extending the complete cylinder length
in the shape of the axisymmetric bifurcation mode as described in the

previous sections [51, 21].

In (Edlund [32]) a study on longitudinal "flattened strip" imperfections
which has been given an initial inward displacement is described (see
Figure 6.5). A modification of KoiTER's asymptotic formula (5.7) is

Figure 6.5: Cylinder with a longitudinal "flattened strip" imperfection.

proposed where the imperfection parameter £ is replaced by a product
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R2K~i of the local radius of curvature R^ in the plane at x = L/2 and the

local curvature K2 along the cylinder meridian, both in the middle of

the imperfection. This approach for the analysis of local initial buckling
is restricted again for small imperfection amplitudes, longer imperfection

wave-lengths, and small R2Ki. A few tests gave a qualitative illustration

of the plate-like behaviour of a strip with rather large values of K® and

R°2 [32].

Both the axisymmetric dimple and the "flattened strip" imperfection
are localized only either in axial or circumferential direction. But, a

few reports of axial buckling tests of cylinders having dimple with lim¬

ited dimensions in both directions could be found. (Foster [38]) for

instance conducted tests of conical and cylindrical epoxy shells having
a V-shaped dent approximated by two triangular facets of the so-called

YOSHIMURA buckling pattern [83] for axial compression buckling. An¬

alytically the defect was modelled by modifying an analogy approach
where the cylindrical shell is considered as a space frame with the mem¬

bers of the frame aligned with the edges of the YOSHIMURA buckling

pattern; the buckling analysis of the cylinder is then considered as the

buckling analysis of the frame members [38] (see Figure 6.6). The size of

Figure 6.6: Cylinder with a localized imperfection in the form of a \l-sha,ped,
dent. Thin lines to indicate the space frame model for an analytical approach.

the dimples was controlled by the size of the V-shaped notch cut into a

mandril during the defect generation. Thus, the width of the dimple was

always close to the length of the intersection line of the two flat faces.

Subsequently (Krishnakumar & Foster [57]) extended the investi¬

gations on cylinders having such diamond-shaped dimples with tests of

cylinders afflicted with multiple defects of that type. Finally, on the
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basis of their test data they derived an empirical relation for the knock¬

down factors Per/Pel considering the number Nn and the circumferential

width 9 (angle) of the dimples, see Section 6.6.6, with:

Per n 1 -7Q AT ° 461 a0 187

-^- =0.92e-°173Nn
e

Fel

In this formula the reduction of the buckling load depends only on the

shell geometry and not on the shell material. However, the height of

the V-shaped dent is not considered and its initial depth follows from its

initial width.

(Edlund [32]) reports on tests of axially compressed brass cylinder hav¬

ing a dent which is approximatively circular with diameter a0 « 13 yRh.

When the amplitude of the initial dent w0 was successively increased

from Wf,/h = 1.0 to 7.0 the relative buckling load, the knock-down fac¬

tor, was found to decrease from Pcr/Pci = 0.71 to 0.18 [32]. Analytical

predictions on basis of an asymptotic formulation, similar to the above-

mentioned case with the flattened strip, with dents assumed in cosine

profile both in axial and in circumferential direction yielded only good
results for dent amplitudes up to Wb = 2.5 h [32].

The amplitudes and the dimensions in axial and in circumferential di¬

rection of the two localized imperfections described above were both not

arbitrarily and independently varied. That is, due to its geometry of a V-

shape the amplitude of the first local dent is interdependent on the given

cylinder radius and the chosen dent width. And the meridian length of

the second, circular dimple is identical to its width in circumferential

direction.

6.2 Definition of a Localized Dimple with

Free Parameters

As already mentioned, the purpose of the present thesis was to inves¬

tigate the instability behaviour of localized dimples of variable width,
variable meridian length and also of variable amplitude, whereby in con¬

trast to the majority of the previously described dimple shapes these

three measures were a priori assumed to be independent from each

other. Therefore, following the shape of the axisymmetric dimples used

by (Hutchinson, Tennyson & Muggeridge [51]) and the geometry

of the dimples considered in the German standard DIN 18800, for the
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Figure 6.7: Assumed shape of a single dent

studies on effect of single initial dents or bulges parametrically the ge¬

ometry of ideal cylindrical shells was modified by adding an imperfection
of the shape

i,M.5hl«)){l^(|()}
0 <(fi < ah/R

0<C<lb

Ar(^,o = o els

(6.4)

with the circumferential width ab, the meridian height lb and the ampli¬
tude Wb which may be arbitrarily varied, see Figure 6.7. The function

Ar describes the local radial deviation from nominal cylinder radius R,
thus the actual radius r(ip, Ç) is given by:

r(V,Q=R-A1 (6.5)

Consequently, the amplitude Wb is defined positive for imperfections

pointed inwards. Finally, the position of the dimple apex in the cylin¬
der shell surface is determined by Zb in axial direction and by <pb in

circumference.

The amplitude Wb and the lengths lb and ab are like the nominal cylin-



198 Buckling of Cylinders with Localized Imperfections

der measurements R, L, and h initial dimensions, i.e. they describe

the origin unloaded shell configuration. During compression the dimple

geometry will change.

The choice of this modelling of actual dents or bulges defined by (6.4)
bases on its simplicity for implementation. For comparison, also a dent

with partial V-shape was applied whose geometry in axial direction is

modelled with linear equations instead of the cosine in (6.4). In this case

the harmonic description in circumference was retained unchanged and

all dimensions are identical to the "double cosine"-dimple given by (6.4)
for like parameters Wb, h and ab- There are no buckling tests available of

cylinders afflicted with arbitrarily dimensioned initial dimple imperfec¬
tions as described above in (6.4) which could evidence the correctness of

the analytical results presented later. But a few buckling analyses were

conducted of an axially compressed isotropic cylinder with different large
diamond shaped dents (see Fig. 6.6) for comparisons with the buckling
test results of (Krishnakumar & Foster [57]), see above.

6.3 Limitations of the Investigation

The chosen imperfection geometry defined in (6.4) with the three dimple
size parameters (wb, h, ab), the two position parameters (zb, <fb), the

three cylinder quantities (R, L, h) as well as the material parameters

would enable, in principle, to investigate an infinite number of dents and

bulges applied in an infinite number of possible cylinders. As customary

in cases where such complex parameter spaces are studied, in order to

reduce the number of parameter combinations to be considered to a

manageable amount, the parameter study at hand was restricted to a

number of exemplary, middle-long thin cylinders and a search after initial

dimple dimensions which result in extremal effect on the reduction of the

axial buckling loads.

The investigation was limited on the one hand to isotropic shell material

with different Young moduli E and a PoiSSON's ratio v = 0.3, and on

the other hand to laminated CFRP cylinders with different membrane,

coupling and bending stiffness A, B, and D, respectively. All the in¬

vestigated cylinders are identical to those presented in Section 4.1 for

the buckling analyses of perfect cylinders. Hence, for the investigation

on the influences of the cylinder dimensions R, L, and h on the dam¬

aging effect of single dimples in isotropic cylinders the about forty thin,
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middle-long shells listed in Table 4.1 on page 120 exemplified. And for

the analysis of laminated cylinders the laminated CFRP shells taken

from the DEVILS project (Z28, ZZO, ZZ2, Z33) and the cylinders ZO.a

and Za.O with eccentric layer stacking and various ply angles a as well

as the two symmetrically laminated shells ZO.QOs and ZQO.Os served.

Again, these cylinders were introduced in Section 4.1.2 for the analyses
of these shells having perfect geometry.

For cylinders afflicted with only one initial dimple the position on the

circumference <pb may a priori be ignored. The axial distance of the

dimple apex from one cylinder edge Zb was set to L/2 for the determina¬

tion of critical parameter combinations, since at half the cylinder length

potential influences of the edge bearings are minimal.

Consequently, the problem to be analysed was reduced to two separate

parameter studies with searches for critical dimple dimensions and dim¬

ple imperfection sensitivities with

• pcr = f(R, L, h, Wb, lb, ab, E) for isotropic cylinders, and

• pcr = f{wb, h, a,b. A, B, D) for laminated cylinders.

For all buckling analyses it was presumed that the shells are stress-free

in the unloaded state, i.e. possible pre-stresses or residual stress fields

were excluded. It was further supposed that the resulting stresses in

the cylinder shells under-run the yield point or ultimate strength of the

chosen shell material. That is, the Hookean law for linear elastic mate¬

rial was assumed to remain valid for all states of loading. Furthermore,
initial material imperfections and shell thickness variations as well as

local material damages like cracks or delaminations during loading were

ignored. Hence, the material of the isotropic shells was supposed to

be linear elastic and homogenous and that of the composite cylinders

layer-wise likewise homogenous and linear elastic.

The analysed shells initially have the form of closed, circular cylinders.

Apart from the determined dimple imperfections the cylindrical shells

are free from further imperfections, and between the cylinder ends (at
x = 0 and x = L) possible stiffeners were excluded as well as longitudinal
cuts of the shell. Due to stress field rearrangements towards stiffeners

or additional edges between the cylinder ends the buckling behaviour of

the structure would become much more complex and the analysis of shell

afflicted with a dimple would be dominated not by the dimple pattern

but rather by the dimensions of the stiffeners and the type of boundary
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conditions at the longitudinal edges.

Since axially compressed circular cylinders are more sensitive to geo¬

metric imperfections than cylinders under external pressure or torsion

the investigations on the buckling behaviour of isotropic and laminated

cylinders having parametric dents or bulges was restricted to cylindrical
shells under pure axial compression.

Similar to the analysis of the shells without imperfections the cylinder
shells were considered being clamped. The two circular edge planes re¬

mained parallel and even during loading, simulating infinitely stiff end¬

plates and causing uniform end-shortening (boundary conditions CC4).
The influence of non-uniformly applied axial loads to the cylinder stabil¬

ity and local shell buckling was not considered for this work. But in order

to accentuate the importance of the boundary conditions, alternatively

buckling analyses were conducted of cylinders with uniform membrane

forces applied to the edges (boundary conditions CC3), see Section 6.4.

Recapitulating, the conducted parameter study was limited to

• cylinders under pure axial compression;

• cylinders with either isotropic, linear elastic homogeneous shell ma¬

terial, or ideal laminates of homogenous linear elastic layers;

• cylinders with perfect circular edges;

• cylinders without stiffeners between the two shell edges; and

• cylinders with constant shell thickness.

6.4 FE Models and Boundary Conditions

The finite element models of the cylinders with imperfections were es¬

tablished with the same number and type of elements as the cylinders
with perfect geometry. That is, independent from the shell material the

cylinder models consist of almost square bilinear, MlNDLlN-type shell

elements with initial side lengths given by the formula O.hyRh. The

number of elements and nodes of the cylinder models for the calcula¬

tions with single dimples were maintained from the perfect counterparts
and may be found in Section 4.1.3 (isotropic shells: Table 4.1, p. 120).

Due to rearrangements in the displacement and stress fields during load¬

ing in the vicinity of the initial dimples stress concentrations have to be

expected. Thus, a detailed static stress analysis at a particular load level
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would probably require local mesh refinements. But since any modifica¬

tion of the stress field leads to changes in the corresponding initial stress

stiffness matrix (see Section 3.5), the usage of locally refined meshes may

not be recommended if local buckling as well as the collapse of the entire

structure is analysed in the same calculation. Inadequately assembled

triangle elements, for instance, may cause some inhomogeneities in the

shear stress field. Such unintentional "intrinsic imperfections" finally
can result in unexpected local buckling of a cylinder without geometric

imperfections. Therefore, to ensure correct comparison with ideal cylin¬
ders the mesh of the cylinders having initial dimples should be identical

to the mesh of the cylinder with ideal circular surface, as well as the

analysis input parameters. However, departure from this recommenda¬

tion is indicated if the geometry of a local imperfection in an otherwise

perfect cylinder makes it impossible to built-up a homogeneously sized

and shaped element mesh (e.g. circular cutouts).

»cosine base line

-FE approximation of cosine-shaped dimple

FE approximation of V-shaped dimple

Figure 6.8: Radial and axial positions of nodes on the path over the apex of

a dimple with amplitude Wb = 0.15 mm and meridian length h = 67 mm.

Profiles of the cosine-shaped dimple according to the definition (6.4) and of
the dimple with axial \l-shape. FE approximations with a mesh size of 9.7

mm.

Obviously, the selected mesh size limits the minimal initial lateral mea¬

sures of the dimples which may be described. That is, with mesh sizes

specified by the length O.h^Rh the dimple width ab and height /& have

to be larger than the value VRh. In Figure 6.8 the radial deviations
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of an inward dimple from the nominal radius R = 250 mm depending
on the axial position is compared with the discrete initial nodal posi¬
tions of the FE modeling. In the example at hand the initial element

length is O.h^Rh = 9.7 mm and the meridian length of the dimple /& is

66 mm. This results in the presented rather rough approximation with

seven nodes involved in the description of the cosine line over the dimple

apex. The dashed line with triangles refers to an alternative dent with

identical /& and Wb but having a V-shape in axial direction. As it will

be shown later, the relatively small geometric differences between the

approximations of the two dimple shapes are accompanied by resulting

buckling loads which differ only a little.

axial load P

Nodes C; ---l.....,..*.

U(C0 =V(C0 u(°0
4>œ
(c,)

Translations at edge

„(-Bfc) =U(A)

v(Bk) =V(A) =0

w(Bk) =WW =0

Rotations at edge

4>iBk) = 4>iA) = o

4>iBk) = <PiA) = o

J°0

Figure 6.9: FE model with clamped edges simulated with tied nodes.

Again, as performed for the ideal cylinders (see Section 4.1.4), the bound¬

ary conditions on the shell edges were simulated with auxiliary nodes on

the cylinder axis whose degrees of freedom (DOF) were joint with the

nodes on an edge. Figure 6.9 illustrates the chosen modeling of clamped

cylinder edges: the loading was applied on the additional node A on the

axis which was linked with the k nodes Bj. on the loaded edge in the

form of a set of algebraic equations (listed in Fig. 6.9) which enforced

the translations and rotations of the nodes Bk to follow those of the

guiding node A. The specification of the boundary conditions for the /
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nodes C\ on the unloaded edge was done in a similar way, i e with a

further node of the center line

For clamped edges only the axial displacement u of A is left moveable,
the rotations <f>x and <f>y, and the lateral displacements v and w were

disabled For hinged edges only the translatonal DOF were considered

in the set of algebraic equations representing the joints between the

nodes, the rotations are left free

Such a modeling of clamped or hinged cylinder edges with tied nodes

ensures that the edge planes remain parallel and even during loading,
what simulates rigid endplates and the analytical boundary conditions

SS4 or CC4 The numerical analyses of cylinders with dimple imper¬

fections base on the experiences with the numerical analysis of cylinders
with measured imperfections for which the clamped boundary conditions

CC4 were applied Consequently, unless otherwise noted for the cylin¬
ders having single dents or bulges again always clamped edges (CC4)
were simulated

The direct application of the axial load not on a central node but uni¬

formly distributed on the edge nodes causes potentially non-uniform ax¬

ial edge displacements Such a setting simulates the boundary condi¬

tions SS3 or CC3 in the shell calculus, see Section 2 2 1 Since the

difference between uniform edge membrane forces (CC3) and uniform

edge displacements (CC4) may result in considerable discrepancies in

the cylinder stability, some comparable buckling analyses with a load¬

ing according to the boundary conditions set CC3 were conducted and

reported in this thesis, see Section 6 6 7

6.5 Adaptations to the Buckling Analyses

Since quasi no test results are available of cylinders which have single

dimples with dimensions in the wide range considered, to guarantee plau¬
sible numerical simulation results the way of the modeling of the shell

geometry and the boundary conditions as well as the analysis methods

were adopted from the calculations performed during the Brite-Euram

project DEVILS For these analyses it was profited from the opportunity

to compare buckling tests results with FE analysis results of cylinders
with measured imperfections applied Missing test data it would have

been beneficial to have at least analytical formulations and their re¬

sults for comparison The shell geometries analysed are analogous to a
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spherical cap with elastic foundation inserted in a perfect circular cylin¬
der whose lateral extent in the cylinder shell and foundation parameter

change continuously during loading The development of an analyti¬
cal approach for this problem would have been an honorable work, but

the solution of the emerging large systems of equations would have re¬

quired approximative numerical calculations anyway Thus and because

the Finite Element method implemented in commercial programs offers

numerical solutions also for analyses with localized imperfections no ef¬

forts were made to deduce a new, special analytical formulation and

relating codes The investigation on the imperfect cylinders consisted in

linear and mainly in nonlinear buckling analyses as well as in transient

dynamic analyses with suitable finite shell element models, see Section

3 5 The supply of useful recommendations and parameters for such

relatively sophisticated FE analyses might attract more attention by po¬

tential readers and program end-users than a list of series coefficients

involved in the shell calculus1

The confidence in the buckling analysis results of the shells with dimple

imperfections presented in the following may only be justified with the

experience of working with the used analysis methods, shell elements and

the manner of modeling of cylinders with only slightly different shell ge¬

ometries Consequently, the buckling analyses of cylinders afflicted with

dimple imperfections were conducted solely with MARC® Already dur¬

ing the project DEVILS it was found that basically a nonlinear buck¬

ling analysis is demanded if any imperfection is applied to the model

to adequately account for geometric nonlinearities Consequently, linear

buckling analyses were performed only for a few cases (see Section 6 6 7)
For the nonlinear buckling and the transient dynamic analyses large dis¬

placements and rotations were considered by use of the implemented

Updated Lagrangian formulations

6.5.1 Nonlinear Buckling Analysis with Adaptive
Load Step Control

For linear buckling analyses with finite elements basically no knowledge
about the bifurcation load level is needed to calculate the lowest eigen¬

value and the respective eigenvector, viz, after the input of the unloaded

geometry, material properties, and boundary conditions the values for

1Though the author complains the anticipated loss of the senior scientists' know-

how needed for the challenges associated with complex analytical formulations
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increments s

Figure 6.10: Results of nonlinear buckling analyses of an axially compressed
aluminium cylinder having a single dent of different initial depths Wb- The

lateral dent dimensions are lb = 67 mm and ab = 181 mm; the cylinder di¬

mensions are R = 250 mm, h = 1.5 mm, and L = 510 mm. The thick line

refers to the respective applied loads, the signs in the thin lines to buckling
loads calculated at the corresponding increments.

the applied loads in principle may be chosen arbitrarily2. But in any

nonlinear buckling analysis the loading is to be applied in increments

which have to be of sufficiently small step size. The schedule line of

the loading and the increments at which an accompanying linear eigen¬
value investigation is performed have to be pre-selected in a way that a

permissible final extrapolation towards the instability yield a sufficiently
accurate value for the buckling load. In Figure 6.10 the difficulties with

the arrangement of the loading and the accompanying buckling load cal¬

culations is demonstrated. In the case at hand an isotropic cylinder was

investigated which had one inward dimple with an initial depth Wb of

O.lh, 0.3h, or 0.5h. The lateral dimple parameters /& and ab were set to

67 and 181mm. respectively3. The buckling loads of the ideal cylinder

2
However, values close to the classical, analytical buckling loads are recommended

for good convergence.

3The values for l), and ab refer to the dimple with wi, = 0.1h which causes maximal

damage of this cylinder, see Section 6.6.3.
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with a radius R = 250 mm, a shell thickness h = 1.5 mm, and a length
L = 510 mm are 599 kN, analytically, and 570 kN resulting from a non¬

linear buckling analysis (see Table 4.2, p. 128). The markers in the lines

plotted in Figure 6.10 denote the buckling loads which were computed
via linear eigenvalue calculations at the corresponding increments. The

horizontal distances of the markers indicate the increasing frequency of

the buckling load predictions with increasing number of increments s.

That is, e.g. between s = 40 and 70 after each fifth increment, and

after s = 85 after each increment such eigenvalue calculations were per¬

formed, see Section 3.5.2. The shell with a dent having an initial depth

Wb = O.lh (top line with circlets) results in buckling loads which form a

curve that intersects the thick straight line with the total load between

s = 110 and 120 in a way that allows an accurate specification of the

searched nonlinear buckling load Pcro i « 460 kN. A dimple with an ini¬

tial depth Wb = 0.3h applied to the cylinder yield a considerably reduced

nonlinear buckling load Pcr o 3 compared with Pcr 01. In this case, the

intersection of the line marking the computed buckling loads (middle
line with squares) and the thick line is placed between s = 80 and 90

where only at each second increment a buckling load was calculated, and

hence a permissible visual estimate of the buckling load Pcr 0 3 « 355 kN

is less exact than that for Pcr 0 1. Applying the analysis method to the

cylinder with a dent of initial depth Wb = 0.5h, an irritating run of the

curve chaining the resulting buckling loads (line with triangles) may be

observed: at a first critical axial load level at which some local buck¬

ling occurs (Pcr0 5L ~ 299 kN), in Figure 6.10 at increment s = 72,
the two curves referring the axial load and the estimated buckling loads

approach each other but do not coincide. The buckling loads computed
after this level increase with continuous load accumulation, indicating
that further buckling loads predicted from the new state of stress and

deformation point at the load level at which the entire cylinder will

collapse (Pert) 1(7 ~ 392 kN). Possible explanations for such particular

buckling and nonlinear pre-buckling behaviour are given later. For both

load levels, Pcr oil and Pcr o 5 jy, the actual arrangement of the different

eigenvalue extracting frequencies is not ideal for an accurate visual judg¬
ment for the results. Thus, in contrast to a linear buckling analysis, for a

nonlinear buckling analysis some a priori-knowledge about the resulting

buckling load(s) is necessary to be able to pre-select a small step size

and a higher eigenvalue-extraction frequency only where needed. In the

examples of Figure 6.10 the dimples applied reduce the buckling load

down to only half the value of the ideal cylinder. Moreover, a linear

buckling analysis of the cylinder having a dimple with Wb = 0.3h yields



6.5 Adaptations to the Buckling Analyses 207

a buckling load which is more than 50% too high compared with the re¬

sult of a nonlinear buckling analysis. Hence, missing better information

on the resulting nonlinear buckling load prior to the calculations, in such

cases analysis reruns have to be expected. Thus, this conventional type
of a nonlinear buckling analysis is useful if only a small number of FE

models is investigated and expensive reruns of such nonlinear analyses
are justifiable. But for complex parameter studies with imperfections

considered, which may lead to widely scattered buckling loads of pos¬

sibly only 20% of that of the associated perfect cylinder, an analysis
method with a need of several trial-and-error reruns to obtain the final

result is surely not satisfying.

The nonlinear buckling analysis was therefore modified for an adaptive
load step control which does not need any precognition of the result. In

the modified method the loading step is continuously adjusted to the

intermediate buckling-load prediction and is a proprietary development
of a set of FORTRAN user-subroutines which intervene into the pre- and

post-processing codes of MARC®. In Figure 6.11 the scheme of the non¬

linear buckling analysis with adaptive load step control is diagrammed.

increments s

Figure 6.11: Nonlinear buckling analysis with adaptive load step control: Non¬

linear pre-buckling states of equilibrium and corresponding intermediate buck¬

ling loads.

Basically, only the number of increments INC g at which the buckling
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load is to be reached and an adequate schedule of the increments with

an eigenvalue extraction has to be pre-selected. But, in contrast to the

conventional procedure the schedule is not sensitive to the final buckling
load pcr. The first load increments, in principle, may be set arbitrarily.

Then, after a first eigenvalue calculation the predicted buckling load

according to the actual pre-buckling state, i.e. the applied total load

p, is calculated. With this information the subsequent load increments

are computed by the ratio of the difference between the already reached

total load p and the current predicted buckling load pcr to the number

of remaining increments before INCq, that is:

A+P = TNr"P
'

with
INC g — s

Per = P' + Xer Ap .

s + 1

The new load increment Ap is applied up to the next increment with

eigenvalue extraction and a resulting buckling load prediction. Close to

buckling the difference between the final buckling load and the applied
total load becomes smaller and smaller until the eigenvalue approaches

Acr = 1; this means that the applied load coincide with the final buck¬

ling load and thus the new load increment is zero. In cases with some

nonlinear pre-buckling behaviour where the prior load increment may

be oversized the eigenvalue is Xcr < 1 which results in a negative new

load increment, thus in a tensile load that corrects the loading towards

a lower buckling load. After having reached the buckling condition the

computation may continue; the load increments will not vanish totally
but will be of relatively small positive or negative value. Consequently,
the eigenvalue tend to zero since the applied loads at the actual and the

preceding increments become almost identical and hence both nearly
coincide with the buckling load. At this stage, the calculation may be

aborted due to difficulties in the numerical eigenvalue extraction for zero

load increments. However, intentionally the computation will end only
when the maximal number of increments lNCmax is reached or if the

provided break condition is fulfilled, e.g. if the relative difference be¬

tween the actual predicted buckling load and the actual applied total

load undershoots a given value.

In Figure 6.12 (right) the results of such an nonlinear analysis with adap¬
tive load step control are depicted. The resulting final buckling load is

identical to the value yielded by the conventional method (left chart),
but the adaptive method needs no visual judgement for the troublesome

extrapolation to the final buckling load (larger circle in Fig.6.12, left
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Figure 6.12: Applied axial loads and corresponding intermediately calculated

buckling loads. Conventional method (left), and with adaptive axial load step

control (right).

chart); in fact, the adaptive variant allows to identify the final buck¬

ling load adequately by picking up the last value in a list containing the

chronology of the loads pcr and p successively sampled during the com¬

putations. The two kinks of the thick axial-load line in the left chart at

increment 20 and 50 stem from the change of the axial load-step size to

allow for an accurate estimation of the final buckling load.

Note that the nonlinear run of the curves representing the applied loads

in charts like those in Figure 6.12 do not refer to a nonlinear stiffness or

pre-buckling behaviour. In contrast to the more familiar load-deflection

curves the abscissa indicates the increment number s at which a par¬

ticular axial load level is reached. Hence, the bends of the curves in

Figure 6.12 stem from the variation of the load step size and not from

the structural stiffness.

On the basis of the experience with this adaptive method provided for

buckling analyses of imperfect cylinders, it is recommended to initiate

new eigenvalue extractions at every load increment after about 80% of

the expected number of increments prior to buckling INCq, since nonlin¬

earities caused by imperfections may lead to a significant reduction of

the intermediate buckling loads with continuous increase of the applied

load, which in turn results in an early conjunction of the upper and lower

load curves in both charts of Fig. 6.12.

For the first analysis performed the number of increments for the pre-

buckling state INCq was set to 50, but later it was found that in cases
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1 Increment 0 is an null step, i e zero loading p = 0 ü = 0

First increment s = 1

Initial load step size is given by the fraction of an arbitrary load pA

a
Pa

Ap
=

INCg

2 Calculation of the nodal displacements ü with a Newton-Raphson algorithm

The total applied loads needed thereby are given by P = P + ^P

3 At some pre-selected increments an intermediate buckling load estimate is

conducted This gives the intermediate buckling load

Per = P + ^cr Ap

4 If at increment s a new buckling load was estimated according to 3
,

then update the load step size for the next increments with

s + i
p - p

a fer f

Ap =

incg — s

if s > incg then Ap = pcr
—

p

5 At buckling it applies

Pcr = P => AP = 0

6 Termination of the Newton-Raphson calculations if

s > iNCmax OR ^-s—- < V
P

where INCmQa, is the maximal number of increments (lNCmM > INCg),
and 'tp is an input tolerance

7 s = s+l Go to 2

Recommended parameter setttng

• p^4 Ri Pcrvd l e a value close to the classical or linear buckling load

of the investigated cylinder without imperfections

• incg = 100

• iNCmax = 250

• V = 10~6

Table 6.1: Scheme of the adaptive loading step control for the use in static

nonlinear calculations, provided for complex parameter studies on imperfect

cylinders. See also Fig. 6.11.
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with considerable pre-buckling deformations it is beneficial to select

INCq = 80 to INCq = 100 for smaller primary load steps.

increments increments

Figure 6.13: Results of nonlinear buckling analyses of an isotropic cylinder

(R = 250 mm, h = 1.5 mm, L = 510 mm) with an inward single buckle

of initial depth Wb = h/2. With (right) and without restricted load step size

enlargement (left). See Fig. 6.10.

In Figure 6.13 the results of two nonlinear buckling analyses pursuant

to Table 6.1 of the isotropic cylinder, already presented in Figure 6.10,
with a single dent of of initial depth Wb = h/2 are plotted. In the

left chart difficulties with an undesired zigzag course of the loads at

increments after a local buckling are in evidence. This phenomenon
due to unregulated alternating compressive and tensile load steps occurs

if no additional provisions are made which prevent excessive over- or

underestimations of the actual structural stability and the subsequent
corrections. Thus, in order to obtain an unambiguously identifiable value

also for the overall collapse load Pcr0 5U (see Fig. 6.10), a possible

enlargement (absolute value) of each load step was restricted to 1% of

the precedent step. The right chart in Figure 6.13 finally demonstrates

the results of a nonlinear buckling analysis with this step-size change
restriction: calculated with such a modification two resulting buckling
loads may clearly be distinguished: a first load level at the local minimum

of the curve with the buckling loads, denoting local buckling, and a

second, higher load level at the conjunction of this curve with the curve

of applied axial loads, marking cylinder collapse. The first critical load

appears at about 80% of INC g ,
the second need another about a hundred

increments (depending on the load difference between local and cylinder

buckling), thus with a INCq = 100 suggested the maximal number of

increments lNCmax should be set to more than 250.

Although it would be possible to start the nonlinear FE calculations

with an arbitrarily small initial load step size also set to ±1 N, due to
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the restriction of possible load step enlargements, as explained above,
it is recommended to begin with a large value and to enable a stepwise
reduction. Therefore, the initial load step should be set to

Ap =
J^
INCG

with a user-defined value pA close to the classical or linear buckling load

of the investigated cylinder without imperfections.

Nonlinear buckling analyses with the herein proposed adaptive step-size
control may also be performed with axial displacements instead of axial

loads applied to cylinder edges. In Figure 6.14 the results of a buckling

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

increments

Figure 6.14: Results of a nonlinear buckling analysis for a laminated cylinder

(Z33) with a single dent of initial depth Wb/h = 0.5 using adaptive displace¬
ment step control.

analysis with stepwise axial cylinder shortening of a laminated cylinder

(Z33) having a deep initial dent is demonstrated. The aligned circlets

stand for intermediately predicted buckling compressions, which were

used for the successive update of the applied compression step size. The

thick black curve represents the progression of the accumulated applied

cylinder end-shortening and the grey curve that of the corresponding
total axial reaction force. Note the presence of a local buckling event at
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increment 43 identifiable by the minimal value for the locally predicted

buckling compressions Noteworthy also the downfall of the reaction

force after increment 136 at an almost constant cylinder length This

might be explained by multiple solutions for the shell displacement field

for a given loading at collapse, however, in view of the post-buckling state

these solutions have no scientific relevance In the small graph included

into Figure 6 14 the total axial reaction force at corresponding axial

cylinder shortening is reproduced Hardly visible a kink in this curve

stemming from the mentioned local buckling event at about 100 kN

An important disadvantage of the nonlinear buckling analysis described

above consists in the numerous eigenvalue extractions which are con¬

ducted during a standard static nonlinear FE analysis as an optional,

accompanying analysis measure Compared with the solution of the

mam equation system (Newton-Raphson procedure) the solution of

eigenvalue problems with large matrices is very time consuming and

may even cause storage problems during the iterations For these eigen¬

value extractions the inverse power sweep procedure as implemented into

MARC® was used (see Section 3 5 1) The dimensions of the cylinders
which could be considered during the research work were therefore re¬

stricted by their number of degrees of freedom, their size of the system

matrices respectively, and the CPU time needed for a nonlinear buck¬

ling analysis The arc-length methods described shortly in Section 3 5 2

also account for possible large displacements and rotations but do not

contain expensive accompanying eigenvalue extractions This might be

a reason why the arc-length methods are preferred by many FE analysts
as the standard option for nonlinear buckling analyses also for large sys¬

tems The same specimen and dimple than shown in Figure 6 14 was

calculated using an arc-length method with a linearized constraint equa¬

tion4 for comparison In Figure 6 15 the relating results are plotted in

a load-axial displacement diagram similar to the small graph added to

Figure 6 14 The maximum load and the kink, indicating local buck¬

ling, are identical to the calculation using the nonlinear buckling load

with standard Newton-Raphson iterations and eigenvalue extractions

But with the arc-length method a solution path-tracing into the initial

post-buckling state was possible After a sharp inversion of the direc¬

tion having passed the peak load level the curve follows the decline of

the stiffness in terms of displacements and forces to re-mcrease up to

a second peak But, the sudden sharp inversion at the load maxima

imposes difficulties in the definition of adequately small load step sizes,

4In MARC® denoted by "modified Riks-Ramm method"
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Figure 6.15: Results of a nonlinear buckling analysis for a laminated cylinder

(Z33) with a single dent of initial depth Wb/h = 0.5 using arc-length controlled

iterations.

since the loading automation implemented in the code refers to the prior

step for the definition of the current step, and thus, since in the case at

hand the only slightly nonlinear behaviour prior to the cylinder collapse
does not indicate such severe nonlinearities, at and after buckling very

small increments have to be pre-selected for the critical range of load¬

ing. This, in turn, leads to some reruns or, again, to a need of a good
a priori-knowledge of the result if the number of increments should be

retained in a reasonable range.

Nevertheless, despite the considerable additional time exposure the spe¬

cially developed method with adaptive load step control was preferred for

the hundreds of different shells and dimple imperfections to be analyses

during the investigation. The benefit of the method to yield the searched

nonlinear buckling load already after a first analysis run prevailed the

mentioned disadvantage. And the minimisation of computation times

was not subject of the investigation, anyway. Implementation of new,

faster algorithms or improvements of the implemented Lanczos method

for its stable usage also in nonlinear buckling analyses with the Updated

Lagrangian procedure might reduce the problem with the CPU time and

storage space in the future, together with the further developments in

computer engineering to be expected.
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6.5.2 Transient Dynamic Analysis

Due to the relatively large computation time exposure transient dynamic

analyses were conducted only for a limited number of shells and imper¬

fections with some particular buckling behaviour For the direct time

integration in the transient dynamic analyses again the implicit single-

step Houbolt operator (SSH-method) was used with input parameters

which were adjusted to the result of a nonlinear buckling analysis and the

analysis of the cylinders with perfect geometry The successful usage of

the SSH-method for axial buckling analyses of cylinders with measured

imperfections was described in Section 5 3 2

With the transient dynamic analysis it is possible to pass over the crit¬

ical axial compression level where cylinder collapse occurs to reach the

post-buckling states The remaining stable load-carrying capacity of the

collapsed cylinder was not of interest, but the simulation of the dynamic
deflections of the shell close to and immediately after buckling enabled

by this method was used for explanations of some particular buckling
or pre-bucklmg behaviour Namely, in contrast to the static nonlin¬

ear buckling analysis possible local buckling in the vicinity of an initial

dimple prior to the total collapse of the cylinder may also be traced

Nevertheless, due to the efforts needed the transient dynamic analysis
has to be understood as a complementary method to specify the load

carrying capacity of a structure and not as the prime buckling analy¬
sis method that should be used at first The application for a buckling

analysis is possible but as long as only the critical load is of interest

the conducting of a less complex (static) nonlinear (buckling) analysis
will be sufficient and thus preferable But, for the investigation of shells

with dimple imperfections such dynamic analyses yielded results which

were a welcome confirmation of the results obtained with the respective

nonlinear buckling analysis

Figure 6 16 depicts the result of such an analysis for a laminated CFRP

cylinder (Z33) having a dent of initial depth h/2 The shell and the

dent are both identical to those exemplifying in Figure 6 14, computed
with a nonlinear buckling analysis, and those for Figure 6 15 analysed
with an arc-length method Such as for cylinder Z33 with perfect shell

the damping matrix was set to 25 000 times the mass matrix for a mass

density of 1600 kg/m3 and an axial compression velocity of 0 1 mm/s
Similar to the result of analysis with an arc-length method the collapse
load and the kink in curve between AL = 04mm and 0 5 mm, stemming

from some local buckling, are very close to the result of a nonlinear buck-
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Figure 6.16: Results of a transient dynamic analysis for a laminated cylinder

(Z33) with a single dent of initial depth Wb/h = 0.5 using the implicit SSH-

method for time integration.

ling analysis, see Figure 6.14. But the dynamic analysis yields a more

familiar run of the load-compression curve, quasi simulating a buckling

test, than the arc-length method which represents a rather "academic"

path-tracing of equilibrium states impossible to observe during tests.

Although the influences of dimples to the buckling loads observed may

also be demonstrated by means of laminated shells, the different sen¬

sitivities to the variations of the dimple size parameters were mainly

analysed with isotropic cylinders. The selected isotropic cylinders of in¬

terest were likewise calculated with a compression velocity of 0.1 mm/s;
and considering aluminium as shell material with a Young's modulus of

70 000 MPa and a mass density of 2700 kg/m3, the damping matrix was

introduced as 50000 times the mass matrix, a value successfully taken

from the dynamic analysis of the thin Mylar cylinder (see Section 4.3,

Fig. 4.18). Again, other input parameters were adopted and selected on

basis of a nonlinear buckling analysis.

The relatively large damping parameters am of 25 000 and 50 000 used

for the shells described herein were assessed on the basis of dynamic
transient analyses for the respective cylinders having perfect geometry,

always using SI units (m, kg, s) and the selected compression velocity of

10~4m/s (see Section 3.4).
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6.5.3 Accompanying Data Collection

The result of any finite element analysis consists primarily in nodal dis¬

placements and forces Other measures like stresses or strains are only

computed if required during the post-processing phase of an increment

or load step A nonlinear buckling analysis as described herein required

up to 200 increments, a transient dynamic analysis with the implicit

single-step Houbolt method even 4000 or more Hence, the extrac¬

tion and recording of all displacement and stress fields, all vectors and

scalars that might be of interest for the evaluation after the analysis,
would clearly blast any storage capacity For the analysis of the cylin¬
ders the evaluation of stress fields could therefore only be conducted

during additional nonlinear static FE analysis with constant load steps

And for three-dimensional deformation plots in a dynamic analysis only
each tenth increment, at most, was scheduled for the recording of all

nodal displacements and coordinates required

The continuous collection of scalars causes less storage space problems
than that of field or matrix measures, e g stress distributions, and are

basically preferred for the evaluation of FE analysis results For the

buckling analyses of axially compressed cylinders first of all the alter¬

ation of the axial force and the cylinder length are of interest The

eigenvalues calculated in some selected increments during a nonlinear

buckling analysis may also be understood as scalars which are to be

collected applying this method Other useful quantities which were ex¬

tracted continuously during transient dynamic analysis are the actual

radius and the local curvature at the nodal point of the dimple apex, see

Table 6 2 below Further possible variables which may come to mind for

the observation of different buckling effects are the strain and the kinetic

energy, the eigenfrequencies, or the compliance of adjacent state of defor¬

mation The monitoring of the latter was described by (WuLLSCHLEGER
& Meyer-Piening [81]) But the additional information received by
the observation of these quantities only confirm the indications already

given by the states of deformation visualized in 3D graphics or in load-

deflection diagrams

In Section 3 5 it was explained that during the incremental nonlinear fi¬

nite element analyses as conducted for the shells with dimples the volume

integral of the stresses over a FE model yields the current internal forces

at the state of increment which have to be equilibrated iteratively with

the external forces (Newton-Raphson procedure) Additionally, the

stresses are the mam component of the current initial stress or geometric
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stiffness matrix. For all calculations the Updated Lagrangian formula¬

tion was used, hence all kinematic variables referred to the last increment

in equilibrium. Consequently, the resulting stresses are CAUCHY stresses

cr, and accordingly all stresses presented within this thesis are CAUCHY

stresses. The numerical integration over a shell surface in general is

performed with the so-called Gaussian quadrature, whereas for the

integration through the shell thickness a Newton-Cotes quadrature
formula like the trapezoidal method or the Simpson's rule is preferred

[61, 84, 14]. For a four-node bilinear shell element, see Figure 6.17, in

Figure 6.17: Sampling points (stars) for numerical integration over finite shell

elements. Points for the GAUSSIAN quadrature (left) and for the NEWTON-

Cotes quadrature (right, Simpson'« rule).

general four sampling or integration points (tagged with stars) are pro¬

vided in a surface of a shell section; hence, for a shell with 10 sections

or layers 40 scalars of a stress quantity have to be calculated after a

load increment with requested data collection. The membrane force per

unit length Nt g
of an element « at a Gaussian integration point g was

calculated as the sum over the stress a^lg of the shell sections (layers),
multiplied by the shell thickness h and divided by the number of shell

sections or laminate layers n^.

h/2

f h
ne

N= adz -^ Ntg = —Y,Virg (6-6)

Àii ne
e=1

The number of integration points through the thickness may be specified

by the program user or is given by the number of laminate layers, whereas

the number of Gaussian integration points in a surface is determined

by the type of the used finite element. The effectively implemented

integration schemes as well as the sequence of the integration points are

specific to the program. Thus, for the output of stresses (or strains)
the reading of particular program manuals is advised. In the majority
of cases, the missing stress values between the integration points are
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calculated by linear interpolation. The presentation of stresses in finite

elements is then conducted by means of colour contour plots added to

the FE model surfaces.

In the shell theory of circular cylinders in Chapter 2 a travelling Carte¬

sian coordinate system was defined with the x-axes in direction of the

cylinder axes, the y-axes in tangential direction, and the z-axes parallel
to the radius towards the cylinder axes, see Figure 2.2, page 34. But

the Cartesian coordinate system defined for the finite element models

is substantially different: the z-axes is congruent with the cylinder axes

and the x- as well as the y-axes are positioned at the centre of the lower

circular cylinder edge. Thus, in order to guard against misunderstand¬

ings, the stresses and membrane forces per unit length resulting from

the FE analyses in axial direction were labelled with a subscript "axial",
the components in tangential direction accordingly with "hoop", and the

shear loading finally with "shear". That following, the membrane forces

per unit length Naxiai and Nhoop approximate the axial and hoop mem¬

brane forces per unit length Nx and Ny of the calculus, respectively. The

shear membrane forces per unit length Nxy finally are approximated by
the membrane forces Nshear- The membrane forces per unit length indi¬

cate the size of the corresponding membrane stresses, i.e. the respective

component of the stresses in the reference surface of a shell.

Figure 6.18: Horizontal and vertical paths over dimple apex, point A, for se¬

lective, disc-space saving, nodal or element data collection.
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In order to enhance the amount of significant information recordable

during an analysis, horizontal and vertical paths, see Figure 6.18, in¬

cluding the apex of a dimple imperfection, point A, were defined and

introduced into specially developed or complemented Fortran user-

subroutines which interfere into the post-processing codes of MARC®,
similar to the routines developed for the adaptive load step control de¬

scribed in Section 6.5.1. At each increment a row with the local values

of one measure along such a path was written in a text file. The re¬

sulting data matrices with sizes up to 6000 rows (increments) and 400

columns (number of nodes or elements in a path) could be managed with

programs like Excel® or Matlab® without notable problems. The quan¬

tities which were found to be useful for the evaluation and interpretation
of the results and which were extracted for nodes and elements on the

paths during the analyses were (1) the actual radius at the nodes, (2)
the mean membrane forces per unit length at the particular elements,
and (3) the local curvatures.

The radius rk at a nodal point Bk of load increment s equals the distance

of a node from the cylinder axis in the hoop plane of the path; that is:

r'k = \/xk2 + yk2 (6-7)

where îk and yk are the coordinates of the Node at increment s with

the cylinder axis at x = y = 0, see Figure 6.18. As mentioned above,
this Cartesian coordinate system was used for the finite element models

and differs from that used in the shell calculus with the x-axis parallel
to the cylinder axis there.

For a high sampling rate, to reduce the memory requirements only one

value per shell element of a path was stored. The so collected mean

membrane forces per unit length Nt of an element in a path were calcu¬

lated as the sum over the average stress a£t of the shell sections (layers),
multiplied by the shell thickness h and divided by the number of shell

sections or laminate layers n^.

h JJL. h JUL ( \ _i_ \

*=£e*.=£e(jE»«..) • <**>
1
£=\

l
£=\ \ 3=1 /
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Estimation of local curvatures on nodal paths

The curvature at a node Bk may be approximated by the inverse of the

circumference radius of a triangle given by the positions of node Bk and the

two adjacent nodes Bk-i and Bk+i (see Figure above):

1. Coordinates of the three nodes involved:

Nk: Xfc = {xk,Vk,Zk} ,
Nk-i: xfc_i = {xk-i,Vk-

Nk+i: Xfc+i = {xk+i,yk+i,Zk+i}

2. Definition of vector vi and V2-'

vi = Xfc - Xfc_i and v2 = xfc+i - xfc

where Zk = Zk+i = Zk

zk-

-i-

i}

Side lengths of the triangle:

h = ||xfc - Xfc_i||; h = ||xfc+i - Xfc|

Area of the triangle:

Ak = ^Js(s - h)(s - l2)(s - l3) with

circumference radius of the triangle:
if Ak > 0 then:

h = ||xfc+i -Xfc_i|

s = Hh+h+h)

fk =

1~Ik~

else: ffc = 10^u

6. The orientation of the local curvature (inwards/outwards) was speci¬
fied by the sign of the z-component of vector V3 = vi x V2.

The orientation is defined so that in case of perfect shells the positive

circumference radius ffc is equivalent to the nominal radius R of the

cylinder: ffc = -\-R.

7. Approximated local curvature: —

rk

Table 6.2: Scheme of the calculation of local curvatures 1/ffc on basis of triangle

circumferences.
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Due to the curvature of the shell a circular cylinder may resist more

axial load than a corresponding flat plate. Depending on imperfection

geometry and state of loading and deformation the local shell radius may

be or may become much larger than the nominal radius R of the cylin¬
der (see flattened strip in Fig. 6.5 or the V-shaped dent according to a

YOSHIMURA pattern in Fig. 6.6). This means that the respective cur¬

vature in circumferential direction becomes very small or zero. Because

of such a partial flattening of the shell the stiffening effect of the shell

curvature vanishes locally and a nonlinear instability of the shell region
at the imperfection has to be expected prior to total collapse of the cylin¬
der. Therefore, for a better understanding of the effects involved and the

change of the local curvature during loading along the horizontal path

through the dimples was calculated and recorded. The curvature at a

node Bk was approximated by the inverse of the circumference radius fk

of the triangle given by the node Bk and the two adjacent nodes Bk-i

and Bfc+i. The process of the calculation for a node Bk is described in

Table 6.2.

6.6 Isotropic Cylinders with Dimples

In the previous sections the tools, the models and the restraints of the

investigations were described. In the following, buckling analysis re¬

sults of thin-walled, axially compressed isotropic unstiffened cylinders of

medium length which have one or two outward or inward dimples are

presented.

For the analysis of cylinders with distributed imperfections as described

in Chapter 5 mainly the influence of the imperfection amplitude(s) to

the particular buckling load Pcr is of interest. The resulting normalized

buckling load Pcr/Pci indicates a reduction factor or knock-down factor

that should be applied to the analytical, classical buckling load Pci for

safe shell design. Pursuant to this it was assumed that results of the

variation of the initial depth or elevation Wb of the dimple imperfection
and the relating reductions of the nonlinear buckling analysis results

of the perfect cylinder Pcr td could attract more attention than those of

other influencing factors like the initial dimple width a& or height /& or the

nominal cylinder dimensions R, L, or h. Consequently, the presentation
of the analysis results of the variations of the initial dimple amplitude

Wb, including its sign, precedes that of the other parameters studies.
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Figure 6.19: Nonlinear buckling analysis results of an aluminium cylinder hav¬

ing one inward or outward dimple at L/2 for various initial amplitudes Wb/h.
Left ordinate: normalized buckling load with regard to the perfect cylinder; right
ordinate: axial buckling load. Cylinder with R = 250 mm, L = 510 mm, and

h = 1.5 mm, dimples with height h = 67 mm and width ab = 181 mm.
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Figure 6.19 represents the results of nonlinear buckling analyses for an

isotropic cylinder with a single dent or bulge of different initial amplitude

Wb/h. Positive «vvalues refer to inward dimples, negative to outward.

The circumferential width and the meridian height of these dimples are

always ab = 181 mm and /& = 67mm respectively. The right ordinate in

the diagram refers to the resulting axial buckling loads Pcr of the shells,
whereas the left indicates the normalized buckling load Pcr/Pcrid- With

a radius R of 250 mm, a length L of 510 mm, and a shell wall thickness

h of 1.5 mm the nonlinear buckling load of this aluminium cylinder with

perfect shell geometry, i.e. Wb = 0, is PCnd = 569.5kN (see Table

4.2, Section 4.2.1). It can be taken from Figure 6.19 that the curve

for the sensitivity to the dimple imperfections is not symmetrical to

Wb/h = 0: inward dimples within the given amplitude range reduce the

load carrying capacity of the cylinder more than outward dimples with

like width, length and amplitude.
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The unequal sensitivity of axially compressed cylinders to dents com¬

pared with that to bulges can be explained by means of the dimples
formed whilst the buckling of circular cylinders with perfect shell geom¬

etry as demonstrated in Section 4.3. Prior to instability thin perfect

isotropic cylinders under axial compression expand due to the PoiS¬

SON's ratio effect, except at the edges where the increase in diameter

in general is restrained. In this pre-buckling state of deformation and

stress the small deflections are axisymmetrical and the potential energy is

dominated by the share due to membrane action. In Section 4.3 the pro¬

gression of the shell deformation is described by means of a Hostaphan

cylinder (see Fig. 4.19). At buckling the shell starts to deform non-

axisymmetrically into a first post-buckling pattern with many small,
almost square buckles. With further axial compression this initial chess¬

board pattern changes to a diamond pattern which has ridges in the

incline directions and furrows in the circumferential direction. This so-

called YOSHIMURA pattern represents a quasi inextensible mapping of

the shell surface, i.e. the combined length of all furrows in each cross

section is approximately equal to the original cylinder circumference.

Consequently, after the formation of the large and deep buckles for this

pattern the membrane potential energy becomes negligible small and

most of the potential energy is caused by bending at the ridges and the

furrows [15]. From the contour-deformation plots in Figure 4.19 it can

be learned that in the large post-buckling deformations the buckles tend

to grow inward rather than outward: in contrast to an inward deflection,
which may be accommodated with bending, an outward deflection of the

buckles on the shell surface requires large membrane stretching.

However, in Figure 6.19 above all the splitting of the solution curve

into two lines for dents with amplitudes larger than circa Wb = O.Ah

strikes. These curves are typical for nonlinear buckling analysis results

of cylinders with an inward dimple imperfection of a shape according to

Section 6.2 and uniform axial edge displacements. In the next section

peculiarities of the analysis results for such dents are specified by means

of several isotropic cylinders. Afterwards some characteristics of outward

dimples are presented within Section 6.6.2, page 296, considering similar

cylinders.
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6.6.1 Inward Dimples

The investigations into the instability behaviour of isotropic cylinders
with single dents were performed mainly on basis of the cylinder with

nominal radius R = 250 mm, length L = 510 mm, and shell wall thick¬

ness h = 1.5 mm, and with aluminium as shell material (E = 70 000 MPa,
v = 0.3). This cylinder was then used as reference for the analysis of ef¬

fects due cylinder geometry variations.

Pure Variation of the Initial Dent Depth Wb

Although the initial meridian height /& and circumferential width ab of a

dimple with a given initial depth Wb also influence the buckling behaviour

of the shell, first the impact on the reduction of the axial stability and

stiffness are discussed for dents with different initial depth but with given
fixed initial width and height.

In the right half of Figure 6.19 the results of nonlinear buckling analyses
of this cylinder with a single dent of various depth Wb/h can be seen.

The initial width of the dent is always ab = 181 mm, the initial meridian

height always /& = 67 mm. These values for ab and /& are the result

of a search for the lateral dimensions of a dent with Wb/h = 0.1 that

yielded the minimal buckling load for the reference cylinder on hand,
see Section 6.6.3 on page 325 ff.

Figure 6.20 and 6.21 indicate how the points of the curve in Figure 6.19

were accomplished. Each small chart reproduce a result of a nonlinear

buckling analysis with adaptive load step control as described in Section

6.5.1. The lower curve in these charts denotes the applied axial load,
the upper the buckling loads calculated at selected increments. The left

picture in Figure 6.20 refers to an analysis of the reference cylinder with

a dent of depth Wb/h = 0.3: after circa 80 increments the eigenvalues
were zero and the continuously increased axial force attained the non¬

linear buckling load. This load Pcr = 330 kN is identical to the result

of a conventional nonlinear buckling analysis for this shell tagged with

PcrO 3 in Figure 6.10. Together with the result of a nonlinear buckling

analysis of this cylinder with perfect geometry PCnd = 570 kN a nor¬

malized buckling load of Pcr/Pcrid = 0.58 is obtained. This single value

is marked with a large circle in Figure 6.20 and 6.21 according to the

initial dimple depth Wb/h = 0.3. The curve progressions of the loads

in the right chart of Figure 6.20, resulting from a modified nonlinear
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Wb/h = 0.3

wb/h

Figure 6.20: Results of nonlinear buckling analyses with adaptive load step

control for an isotropic cylinder having an inward dimple of depth Wb/h = 0.3

or Wb/h = 0.5. The arrows demonstrate the relationship between the calcu¬

lated buckling loads of such analyses and the corresponding points in the curve

indicating the buckling load ratio Per/Per id vs the initial dimple depth Wb-

buckling analysis for a dent with an initial depth Wb/h = 0.5, is substan¬

tially different to that of the dent with Wb/h = 0.3: after 85 increments

the upper curve approaches the lower curve but there is no contact. In

this case a further increase of the axial load was possible until after ad¬

ditional about 100 increments finally the two curves coincided. Thus,
two critical load levels can be recognized: a first lower load at the mini¬

mum of the upper buckling load curve with Pcr = 291 kN, and a second

upper load at the intersection point with Pcr = 368 kN. This character¬

istic of a nonlinear buckling analysis for this dimple with Wb/h = 0.5

was already shown in Figure 6.10 where the lower load is denoted with

Per o 5 l and the upper with Pcr o 5 jy. The normalized loads of the former

is Per/Per id
= 0.51 and Pcr/Pcnd = 0.65 of the latter. According to the

initial depth Wb/h = 0.5 these two values are each marked with a large
circle in Figure 6.20 and also in Figure 6.21.

The five small charts in Figure 6.21 depict the progression of the result-



Figure 6.21: Plots indicating the resulting load curves of nonlinear buckling analyses with adaptive load step control and

corresponding normalized buckling loads Per/Per id for dents with selected initial depths Wb/h applied to an isotropic cylinder.
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ing buckling load curves for different initial dent depths. The ordinates

are each arranged in an axial-force range from 0 to 600 kN. The curves

in the first three charts with Wb/h = 0.1, 0.3, and 0.4 differ only in

the decreasing first buckling load (first circle close to the ordinate) with

increasing initial dimple depth Wb/h as well as in the decrease of the

resulting nonlinear buckling load at the contact point of the curve. The

lower of the two resulting critical loads of the cylinder with initial depth

Wb/h = 0.5 and Wb/h = 1 are both close to the single nonlinear buckling
load of the shell with Wb/h = O.A. But compared with the dimple of

initial depth Wb/h = 0.5 the specimen with Wb/h = 1, pictured in its

result chart down right, yield a straighter lower force curve and a mini¬

mum point of the also concave upper curve which in this case is notably
distant from the lower force curve.
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Figure 6.22: Normalized buckling loads of an isotropic cylinder having a deep
inward dimple with initial depths up to Wb/h = 10. See Figure 6.19 for the

range between Wb/h = 0 and 1.

From the lower dimple-sensitivity curve in Figure 6.21 at a depth of

about Wb/h = 0.75 a minimal load-carrying capacity of the cylinder

("worst" dimple depth) of Pcr/Pcrid = 0.51 may be identified. In

Figure 6.22 the nonlinear buckling analysis results for the isotropic cylin¬
der having a dent with severe initial depths of up to ten times the shell

wall thickness. It can be seen that the lower imperfection-sensitivity

curve, corresponding to the lower critical load of the particular analy¬
sis result, for dent depths Wb/h more than 0.75 increases with growing

dimple amplitude. The upper curve climaxes at wj/Zi = 2 with a nor-
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malized load of Pcr/Pcr id
= 0.68. For approximatively Wb/h = 5 the two

sensitivity curves coincide, indicating that the effect responsible for the

branching in two curves vanishes for shells with very deep dents. The

Figure 6.23: Nonlinear buckling analysis results of the isotropic cylinder in

Figure 6.21 having a single dent with an initial depth as indicated.

curve progressions of the nonlinear buckling analysis results of the shell

with Wb/h = 2, 5, and 10 may be found in Figure 6.23. The pattern

of the upper load curve in the left graph (wb/h = 2) is similar to that

of chart down right in Figure 6.21(wb/h =1): the curve is concave and

thus a minimum point different to the point where the curve touches the

lower applied-force curve may be identified. The analysis of the shell

with Wb/h = 5 yields a buckling-load curve which is almost horizontal,
and the applied-force curve rises relatively straight. The right chart fi¬

nally with the analysis result for Wb/h = 10 features load curves that

resembles the curves from initial dent depths of less than Wb/h = 0.425

plotted in Figure 6.21.

The analysis of other cylinders with accordingly dimensioned dents

yielded similar curve progressions in the resulting representations of the

knock-down factor to those depicted in the figures above. The mini¬

mal buckling loads Pcr/Pcrid obtained for the considered cylinders and

conditions are analysis results for dents with initial depths less than

Wb/h = 1. Thus, the buckling analyses for very large dimple amplitudes
as shown in Figure 6.22 were limited to the reference cylinder on hand.

As already mentioned, mainly the dimple imperfections which reduce the

cylinder stability the most were of interest. Therefore, it was found that

additional calculations to verify the quality of the nonlinear buckling

analysis results of the cylinders with imperfection amplitudes of more

than Wb/h = 2 are not indicated.

Smaller buckling loads for deeper dimples was expected, but the appear-
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ance of a second, higher buckling load for a given initial dimple depth

provoked several additional calculations. In Section 6.5.1 it was already
mentioned that the first critical load refers to a local instability at the

dimple imperfection, whereas the second corresponds to the total col¬

lapse of the cylinder. But, the observed differences in the load-curve

progressions of the nonlinear buckling analysis results could not give

any indication why the dent with Wb/h = 0.4 yields a single buckling

load, whereas the only slightly deeper dent with Wb/h = 0.45 results

in two buckling loads for otherwise identical dimple and shell geometry.

The analysis results above could lead to the assumption that from a cer¬

tain initial dent depth, due to deformations and growing curvatures, the

load-carrying capacity of the cylinder is increased during loading which

makes this "stability reserve" from the first, local buckling load to the

upper, over-all collapse load and the typical concave buckling-load curves

in the small charts above. According to the transient dynamic analysis
results for these dents however, it is more the modified nonlinear buck¬

ling analysis method that is either terminated when the applied axial

force reaches the lower buckling load or is continued up to the upper

collapse load. That is, not the load carrying capacity or axial system

stiffness of the cylinder is notably affected due to a little increase of Wb

at the branching of the buckling loads in Figure 6.21, but the particular

process of the nonlinear buckling analysis!

Figure 6.24 shows the resulting buckling loads Pcr of transient dy¬
namic analyses again of a single dent applied to the reference cylinder
with different initial depths Wb/h in the range from zero to one (see
Section 6.5.2). It can be recognized that for initial-dent depths between

Wb/h = 0.2 and 0.25 a branching in two loads developed: from this

particular depth up to that of Wb/h = 0.4 in contrast to the static buck¬

ling analyses the dynamic analyses yielded two critical loads. In Figure

6.25(a) the provenience of the upper und lower buckling loads is demon¬

strated by means of the shell with Wb/h = 0.3 as an example. The

line in the axial load-displacement diagram is almost straight between

the origin and a cylinder end-shortening AL of about 1.02 mm. After¬

wards, for an axial reaction force of P = 333 kN a first local maximum

with a subsequent decline in force is evident. This force was considered

as a lower buckling load and is very close to the single buckling load

Pcr = 330 kN obtained with a nonlinear buckling analysis as reproduced
in Figure 6.25(b). In the load-displacement diagram of the dynamic anal¬

ysis, subsequent to the local climax and the local minimum the curve

again increases for an axial compression of about AL = 0.1 mm until a

second maximum with a reaction force of 374 kN is reached. This load
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Figure 6.24: Transient dynamic analysis results of an aluminium cylinder af¬

flicted with a single dent of various initial depth Wb/h. Buckling loads obtained,

by nonlinear buckling analyses are indicated with thin lines for comparison.

was denoted as upper buckling load and, according to the deep "plunge"
after the second climax, signifies the load where the total collapse of the

cylinder occurs. There is no correspondent in the nonlinear buckling

analysis result in Figure 6.25(b) for this second, upper buckling load

level, because the analysis was aborted after having reached the first,
lower buckling load level with the distinct local maximum of the axial

load-displacement curve in Figure 6.25(a).

The resulting (first) buckling loads achieved with transient dynamic anal¬

yses agree well with the corresponding nonlinear buckling analysis results

for dents with initial amplitudes between Wb/h = 0.02 and 0.4, whereas

for the buckling load of the cylinder with perfect geometry and the up¬

per collapse loads for dents with Wb/h > 0.2 the dynamic analysis, due

to inertia forces, yielded somewhat higher loads (differences < 5%). In

Figure 6.26 the normalized buckling loads for the reference cylinder with

a dent are again plotted versus the initial dent width Wb/h. In this case,

due to the slightly higher PCnd, the dynamic analyses for the declining,
lower line gave somewhat smaller values than the nonlinear buckling

analyses, and for the upper buckling load level they led to values that

agree well with the values of the static analyses.
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Figure 6.25: Transient dynamic analysis result (a) of an axially compressed
aluminium cylinder having a single dent with an initial depth ofwb/h = 0.3,

and corresponding result of a nonlinear buckling analysis (b), see Fig. 6.20.

Analogous to the nonlinear buckling analysis results in Figure 6.21, the

plots reproducing the results of transient dynamic analyses are shown

in Figure 6.27 exemplarily for five initial dent depths Wb/h and the

resulting normalised buckling loads Pcr/Pcrid are marked accordingly.
The diagrams showing the buckling loads against the dimple ampli¬
tude in Figure 6.24, 6.26, and 6.27 can be divided into three parts: a

first for 0 < Wb/h < 0.2 with a heavily decreasing curve, a second for

0.2 < Wb/h < 0.4 with two load levels, and finally a third for 0.4 < Wb/h
with a single, almost horizontal load line. The first section meaning

relatively shallow dents includes dynamic analysis results like that for

Wb/h = 0.1 in the first chart of Figure 6.27. The progression of the load-

displacement curve is analogous to one of a perfect shell being a straight
line up to cylinder buckling. The second, probably most interesting sec¬

tion yields load-deformation curves with two distinct maxima like that

for Wb/h = 0.3 in Figure 6.25(a), or with a saddle point and a climax for

Wb/h = 0.4 as shown in the third sketch in Figure 6.27.

In both cases, between the origin and the first visible critical load the

resulting curves are nearly straight lines. The initial curve gradient (for
all shells and dents identical) may be used to define an axial cylinder
stiffness or pressure spring stiffness ks. For the given compression and

resulting force values this ratio is about ks « 324kN/mm. The curve
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Figure 6.26: Normalized buckling loads of transient dynamic analyses for an

aluminium cylinder with a single dent of various initial depth Wb/h. Corre¬

sponding results of nonlinear buckling analyses are indicated with thin lines for

comparison.

following the zig-zag course with the local maximum and minimum ob¬

tained for the shell with Wb/h = 0.3 again is almost a straight line, but

with a reduced gradient and thus smaller spring ratio: ks « 261 kN/mm,
what means that the axial geometric stiffness of the cylinder after local

buckling is almost 20% weaker than the initial one. With increasing
initial dimple depth Wb/h the characteristic of the local maximum in the

load-displacement curves diminishes and is replaced by a saddle point

(e.g. Wb/h = 0.4). In the third section of the Pcr/Pcr ^-diagram for

0.4 < Wb/h finally, a change of the curve gradient may not accurately
be assigned to a value of axial compression. Consequently, the lower

critical loads for such dents, ascertained by nonlinear buckling analyses,

may not be specified with transient dynamic analyses alone.

In Figure 6.28 the results of a transient dynamic analysis for the same

shell as in Figure 6.25 but with the axial compressive force P as loading

parameter are depicted. Both the lower local buckling load at about

333 kN and the upper collapse load at circa 374 kN could be attained

prior to the abort due to excessive displacements at total cylinder col-
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Figure 6.27: Plots indicating the resulting load curves of transient dynamic analyses and corresponding knock-down factors

Per /Per id for dents with selected initial depths Wb/h applied to an aluminium cylinder.
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Figure 6.28: Transient dynamic analysis results for an aluminium cylinder-

having a single dent with an initial depth ofwb/h = 0.3. Comparison between

force-controlled (bold line) and displacement-controlled axial compression (thin
line).

lapse. Rigid plane-parallel endplates simulated5, after the sudden snap¬

ping inwards of the dent further increase of the load was possible since

the over-all stability limit of the partially flattened cylinder was not yet

reached.

In order to find possible explanations for the observed differences in the

curve progressions of the transient dynamic and nonlinear buckling anal¬

ysis results merely due to the variation of the dent amplitude shown in

the charts of Figure 6.27 and 6.21, a few dents were calculated with

more elaborateness with regard to the data recording as introduced in

Section 6.5.3. For the investigation of the effects responsible for the dif¬

ferent buckling behaviour mainly the particular alteration of the local

curvatures gave valuable information. In Figure 6.29 the local radii r^ at

nodal points along the horizontal path between the dimple apex and the

opposite point are shown for the dent with an initial depth of Wb/h = 0.3

and an initial width of ab = 181mm applied to the reference cylinder
for four different states of deformation corresponding to the given axial

compression AL as indicated. The radius of the node at the dent apex

may be found along the ordinate. The line — depicts the unloaded

state (AL = 0) of the hoop over the dimple apex (point A) where the

original radius of the dimple apex is ta = 250.0 — 0.3 • 1.5 = 249.55mm.

BBoundary conditions CC4: uniform edge displacements
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Figure 6.29: Radii rk at nodal points along a horizontal path (CCW) for half
the cylinder circumference starting at the apex of a dent with an initial depth

of Wb = 0.3h and an initial width of ab = 181 mm.

With increasing loading the dent continuously deepens, but for a com¬

pression less than AL =1.0 mm the reduction of the apex radius ta is

less than 1mm (thin line). After further loading, close to local buck¬

ling with an axial compression of about AL = 1.03 mm (thick line, see

Figure 6.25(a)), the dent moves quickly a few millimeter inwards. The

dash-dotted, "sinusoidal" line finally represents the radii r^ of a config¬
uration after total cylinder collapse for AL = 1.25 mm. The continuous

denting of the imperfection centre is accompanied by formation of grow¬

ing lateral bulges at the sides of the initial dent, in Figure 6.29 marked

with a vertical dotted line. The amplitudes of outward dimples formed

whilst the loading process are smaller than the occurring depths of the

buckles. This observation, confirmed by the buckling behaviour of other

cylinders, can be explained with the potentially higher imposed circum¬

ferential stretching of the shell and thus higher membrane energy for the

formation of a large bulge compared with that of a dent with similar di¬

mensions. In the present example, after cylinder buckling (dash-dotted
line) the outward deviation from the origin shell radius is about 6 mm,

compared with that inwards of more than 15 mm.

Figure 6.30 reproduces the approximated circumferential curvatures 1/f&

at the nodes of the horizontal path between the dimple apex and its op¬

posite point in the shell surface again for the dent with Wb/h = 0.3 and
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Figure 6.30: Approximated circumferential curvatures 1/fk at nodal points

along a horizontal path for half the cylinder circumference starting at the apex

of a dent with an initial depth of Wb = 0.3h and an initial width of ab =

181 mm.

the four axial-compression levels already used for Figure 6.29. The lo¬

cal curvatures correspond to the particular run of the local radius r^

and were calculated by the procedure described in Section 6.5.3, page

221. The curvature of the unloaded perfect cylinder with a radius R of

250 mm is 1/fk = 0.004 1/mm- For comparisons width the radii r^ along
the path the curves of the local curvatures 1/fk are plotted with identical

line-styles than the r^-curves in Figure 6.29: the line — stands for the

initial pattern with a dent of ab = 181mm, the thin line for the shape
close to local buckling (axial compression AL = 1mm), and the thick

line for deformed shell at local buckling; the dash-dotted line finally cor¬

responds to the state after cylinder buckling with a row of large buckles.

The main attention was turned to the thick line which gives the approxi¬
mated curvatures just at the local buckling with an axial compression of

about AL = 1.03 mm. The curvature at the dimple apex is about zero,

what means that there the additional stiffening effect due to the shell

curvature compared with a flat plate vanishes. As a consequence some

local buckling occurs with the already mentioned reduction of the axial

cylinder stiffness already prior to cylinder collapse. The local curvatures

in Figure 6.30 cannot be derived by observing the curve progressions of

the local radii in Figure 6.29 since the abscissa of the graph is the path
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Figure 6.31: Deformed finite element model of the cylinder with the dent of ini¬

tial depth of Wb = 0.3h resulting for an axial compression of AL = 1.032 mm.

Displacements plotted without magnification. View from top to the node series

of the horizontal path over the dimple apex. Thin line depicts a circle of radius

R = 250 mm.

around the curved cylinder shell unwound to a straight line, and the

amplitudes of the radii are plotted with large magnification. Figure 6.31

depicts a top view on the node series of the shell above for an axial com¬

pression of AL = 1.032 mm with the dent in the middle. In this case

the real spatial position of the element nodes are shown without mag¬

nification of the displacements. The radii resulting from these positions
for the part at the right side of the dashed symmetry line correspond to

the radii along the thick line in Figure 6.29 for the nodes from the dent

apex to 0.64 x2nR. In fact, at local buckling (AL = 1.03mm) the edges
of the first three elements on both side of the symmetry line (dimple
apex) are straight horizontal lines und thus there the local curvature is

quasi zero. Accordingly, for the first nodes the thick line in Figure 6.30

indicates almost zero curvature 1/fk-

To clarify the influence of the local curvature on the local buckling be¬

haviour at the dimple imperfection the continuous alteration of the ap¬

proximated curvature 1/f'A at the dimple apex was plotted in dependence
of the axial compression AL. In Figure 6.32 such a l/f^-curve is shown

for the shell and the dent presented in Figure 6.30. The thick lines refer

to the curvature, the thin line to the axial reaction force of the respec¬

tive transient dynamic analysis results. Chart 6.32(b) focuses the range

of the loading AL where local buckling develops. It can be seen that

this local maximum of the thin axial-force curve at about AL = 0.3 mm

is located where after a dynamic fall of the curve standing for the dent

apex-curvature reaches zero and travels to negative values. The values of

1/f'A close to zero for AL > 0.35 mm with the some outliers imposed nu-
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—local curvature

— axial reaction force

> 0.000
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axial compression AL
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Figure 6.32: Alteration of the approximated curvature 1/fa at the apex of a

dent with an initial depth of Wb/h = 0.3. Chart (b) points out the framed part

in chart (a) including the lower buckling load indicated by the local maximum

of the thin axial-force line.

merical difficulties due to possible division by zero during the curvature

calculation for quasi infinite local radii of curvature f& (see page 221).
The presented local curvatures are approximated values; thus, the small

local curvatures resulting after buckling may be considered as 1/fa ~ 0.

Figure 6.33 depicts the curve progressions of the curvature at the apex

of five exemplary initial dent depths Wb/h as indicated and presents the

associated normalized buckling loads Pcr/Pcrid- The appropriate load

curves of the transient dynamic analyses may be found in Figure 6.27.

The amplification of the depth of the dent with Wb/h = 0.1 in the pre-

buckling state is only small, but very close to the cylinder collapse the

dimple suddenly increases and deepens so far that at the apex nega¬

tive curvatures result. The local-curvature curves for the dimples with

Wb/h = 0.3 and Wb/h = 0.4, which exhibit local buckling in a distinct

way, have a continuous enlargement of the gradient and a drop to zero

in case of Wb/h = 0.3 or to a value close to zero in case of Wb/h = 0.4

at local buckling. Former dent results in a local buckling that is linked

with a local maximum in the load curve, latter in such that is associated

with a saddle point in its load curve (see Fig. 6.27). The gradient of the

curve resulting for the dent with Wb/h = 0.5 increases more harmoni¬

cally, i.e. with a smoother edge than the three preceding curves; and,
instead of following the trend towards zero, the curve gradient suddenly
decreases with a small round edge. This edge is found about a value of
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Figure 6.33: Plots reproducing the approximated circumferential curvature 1/fa at the dimple-apex node resulting from
transient dynamic analyses for cylinders having a single dent of initial depth Wb/h as indicated.
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axial compression where with nonlinear buckling analyses a lower criti¬

cal buckling compression may be determined (ALcrL = 0 91mm) The

curvature curve for Wb/h = 1 finally has an increase as well as a decrease

in its gradient with a smaller alteration rate compared to the curves

of the other shells In this case, the local buckling compression found

with nonlinear buckling analyses at ALcr j_,
= 0 92 mm could not be con¬

firmed, since at this critical axial compression no special feature of the

curvature curve is identifiable which could be used for the ascertainment

of a critical loading

Although the differences in the alteration of the local curvature between

the dimples with Wb/h = 0 3, 0 4, and 0 5 are rather indistinct, the curves

in the charts of Figure 6 33 gave indications that the distance covered

by the dimple apex between the initial position and the flattened shell

configuration is responsible for the obvious differences in the load curves

shown in the graphs of Figure 6 27 In the following the influence of the

deformation process of the shell around the initial dimple on the buckling

behaviour, local or of the entire cylinder, is displayed in more details by
means of the three exemplary dents with an initial depth of Wb/h = 0 1,
of Wb/h =0 3, and of Wb/h = 05 The presented plots were extracted

from results of nonlinear buckling analyses as well as from transient dy¬
namic analyses To facilitate comparisons, the graphical representations

of buckling modes, stress fields, displacements, and curvatures of these

three shells were included in succession consistently with identical order,

graph styles and perspectives Some results were already shown earlier in

alternative graphs which can be consulted for comparisons To prevent

unnecessary repetitions some explanations on the content of the figures
are anticipated

The first set of charts, Fig 6 34, Fig 6 40, and Fig 6 49, always con¬

sists of a plot reproducing the result of a nonlinear buckling analysis
with adaptive load step control (a), of a plot showing the deformations

of the cylinder for an axial load close to a critical value (c), and of pic¬

tures of linear buckling modes for an axial load of P = 40 kN in (b)
as well as for the axial load level given in (c) The lower curve in the

load-diagram (a) again gives the run of the total axial force applied to

the cylinder, the upper curve chains the buckling loads derived from the

lowest eigenvalues which were calculated at selected axial load levels

The shaded deformation plot (c) depicts the scaled-up nodal displace¬
ments which were nonlmearly calculated with constant load steps The

buckling modes shown in plot (b) and (d) correspond to the eigenvectors

linked with the lowest linear eigenvalues found at the selected load level
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The items of such eigenvectors represent values of nodal point displace¬
ments which have no significance in terms of real shell deformation at

buckling; thus, on principle modal deflections may be displayed with any

arbitrary magnification factor. To ensure direct comparison, the plots
in (b) to (d) do not result from the analysis shown in chart (a) with

at each case differently adopted load steps but from standard nonlinear

buckling analyses with a constant step size of 4000 kN. The graph (a)
was included as an orientation guide concerning the difference between

the indicated axial load levels and the critical load(s).

The second illustration set, Fig. 6.35, Fig. 6.41, and Fig. 6.50, at each

case includes the membrane stress distribution in axial direction Naxtai

(left, force per unit length) and in circumferential direction Nhoop (right)
for a selected applied axial load. The contour plots were applied to the

appropriate scaled-up deformation plots, the icon with the force-curve

progressions are again included to mark the applied load compared to

the buckling loads. The membrane forces per unit length equal to the

stresses averaged over the shell normal times the shell wall thickness. The

cylinder segment opposite to the dimple approximate the shell field of the

shell without imperfection and hence the color there corresponds with

the nominal membrane force per unit length of P/(2nR) with the given,

applied total axial load P. Note the variation of the membrane stresses

close to the cylinder edges and the presence of considerable compressive

hoop stresses resulting from the restraint of the tangential expansion due

to the PoiSSON's ratio effect at the cylinder edges.

The third set, Fig. 6.36, Figs. 6.42, and Fig. 6.51, at each case presents

the result of a transient dynamic analysis with the single-step Houbolt

operator for time integration and input parameters for the aluminium

cylinder as given in Section 6.5.2. The included deformation plots depict
the resulting shell deflections for the applied axial compression as marked

in the P-AL-diagram. The displacements are shown without magnifica¬
tion and the colors of the applied contour plots refer to absolute values of

total-displacement vector lengths (in metres). The top color-map level

(light gray) always indicates the maximum total displacement for the

corresponding loading.

The fourth representation, Fig. 6.37, Fig. 6.43 and Fig. 6.46, as well as

Fig. 6.52 and Fig. 6.55, by means of a lower surface plot always describes

the variation of the local radius r^ along the horizontal path (CCW)
between the dimple apex and its opposite point successively arranged for

a critical section of axial compression AL. Each node of the resulting
surface mesh reproduces the local radius for a given end-shortening AL
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and a point in the horizontal path. Curves from the left to the right
surface edge correspond to r^-curves along the horizontal path for given
AL-values similar to the four curves introduced in Figure 6.29. The

curve along the left edge (bottom-up) at 0.5 x 27rl? is identical with

the red line in the upper diagram showing the alteration of the radius

at the dimple apex ta for a section of axial compression AL, whereas

the blue line equals with the curve along the right edge of the surface

plot and represents the alteration of the radius at the point with 1 x

27rl? thus diagonally opposite to the dimple. The thin line in the upper

diagram finally marks the axial reaction forces for the given values of

end-shortening AL.

The fifth plot, Fig. 6.38, Fig. 6.44 and Fig. 6.47, as well as Fig. 6.53 and

Fig. 6.56, at each case displays the progressions of the approximated cir¬

cumferential curvatures 1/fk along the horizontal path (CCW) between

the dimple apex and its diagonally opposite point successively arranged
for a critical section of axial compression AL, again in form of a surface

plot. The settings of the x- and the y-axes as well as the view angle corre¬

spond to that of the preceding surface plot which depicts the progressions
of the local radii as described above. The line »»» serves to indicate the

upper edge of a plane with zero curvature 1/fk = 0. The curvature of

the perfect cylinder in the unloaded state is 1/fk = 4 x 10~3 1/mm.

The sixth and last plot, Fig. 6.39, Fig. 6.45 and Fig. 6.48, as well as

Fig. 6.54 and Fig. 6.57, always shows, again by means of a surface plot,
the progressions of the local radii r^ of nodal points along the vertical

path over the dimple apex from one cylinder edge to the other, suc¬

cessively arranged for a critical section of axial compression AL. This

section includes the same AL than the two preceding figures that present

the radii and curvature along the horizontal path. The apex of the dim¬

ple is located at the middle of the path (long x-axis from left to right);
therefore, the run of the curve from the bottom up in the furrow of the

surface mesh at 0.5 x L corresponds with the red line in the upper dia¬

gram of the always preceding page displaying the alteration of the radius

at the dimple apex ta for a given section of axial compression AL.

1. Inward Dimple with Initial Depth Wb/h = 0.1 :

The nonlinear buckling analysis of the aluminium cylinder having a sin¬

gle, shallow inward dimple with an initial depth of Wb/h = 0.1 and initial

lateral dimensions ab = 181mm and h = 67 mm yielded an axial buck-
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ling load of Pcr = 459 kN. This critical load could be confirmed by

a transient dynamic analysis which gave a maximum reaction force of

Per = 461 kN for an applied cylinder end-shortening of ALcr = 1A2 mm.

Figure 6.34(b) depicts the buckling mode calculated at an applied ax¬

ial load of only P = 40 kN. Note the visible buckles also at the shell

segment diagonally opposite to the dimple imperfection. This buckling

pattern resembles the shape which results with a linear buckling load

and is also similar to the modes of the cylinder without imperfection.
But the buckling mode of the shell with the dent in Figure 6.34(d), re¬

sulting for an axial load of P = 452 kN just before cylinder collapse has

only visible deformations close to the imperfection which build bulges in

form of an 'X' with the initial dent in its centre. This pattern can also

be recognized in the contour plot for the axial membrane forces per unit

length Naxiai in Figure 6.35 of the shell at hand calculated for an axial

load of P = 400 kN. This compressive load corresponds to a nominal

axial membrane force per unit length of Naxlai = —255 N/mm. Despite
the load difference of 52 kN the shape and position of the buckles in

6.34(d) may be derived from the variations of the contour colors, of the

axial membrane stresses respectively. The maximal axial compressive

force per unit length with NaXiai = —263 N/mm is to be found at the

apex of the initial dent. Due to the bulging of the shell around the

imperfection developed at that load level, see Figure 6.34(c), left and

right of the imperfection the axial membrane force is slightly reduced

to Naxlai = —250 N/mm. The distribution of the tangential membrane

stress or membrane force per unit length Nhoop shown in the right con¬

tour plot of Figure 6.35 may be deduced from the bulging and denting
of the shell indicated in the deformation plot in Figure 6.34(c): former

leads to tensile stresses (white), latter to compressive stresses (red).
The nominal tangential membrane force per unit length is Nhoop = 0

(lime-green).

Figure 6.36 reproduces the result of a transient dynamic analysis. The

rising axial-force curve prior to buckling of the cylinder is a straight
line. Shortly after collapse a quasi vertical fall of the axial reaction force

manifests itself from a critical load of Pcr = 461 kN down to a first stable

post-buckling load level of almost P = 200 kN. This curve in the P-AL-

diagram with a sharp angle at buckling resemble the curve resulting for

the Hostaphan cylinder with assumed perfect geometry in Figure 4.19,

page 146. The included plots in Figure 6.36 show five selected states

of deformation during and after cylinder buckling. The first displays
that the depth of the applied dent just before collapse does increase

only a little. The following dynamic decrease of the reaction force is

associated with a rapid, considerable denting of the imperfection, see

Figure 6.37, and a sudden axial widening of the dent, see Figure 6.39.

The transaction responsible for the almost vertical force line first consists
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of a settlement of new buckles at the left and the right of the deepened

imperfection, afterwards on both sides of the initial dent successively
further buckles develop in three rows until all the cylinder surface is

covered by buckles The first stable post-buckhng state is reached when

the rearrangement of the shell into three rows of nine dimples of equal

size is accomplished The step down of the axial reaction force between

AL = 15 and 1 6 mm stems from the rearrangement to the second post-

buckhng pattern with two rows of larger dimples, whereby the initial

dent is squeezed outwards, see fifth plot in Figure 6 36

The transformation process to the first post-buckhng pattern is also dis¬

played in Figure 6 37 The cylinder collapse, i e the decline of the force

curve (thm line), commences after the accelerated inward displacement
of the dent apex, visible by the first elbow along the red line in the upper

chart or along the left boundary of the radius surface in the lower plot
The short re-rise of the red line after this plunge refers to an adjustment
after an over-shoot inwards of the dimple apex during the local buckling
This sudden local buckling by snapping inwards of the dent initiates the

immediately following propagation of new dents and bulges and hence

also the total collapse of the cylinder The snapping of the dimple apex

to a position with negative curvature can be recognized by the sharp
decline of the respective curvature-curve along the left surface edge in

Figure 6 38, or in the first chart of Figure 6 33, page 240 The total

cylinder collapse occurs instantaneously after the local buckling

The successive formation of dimples for increasing cylinder compression

around the cylinder (along the path from left to right) is also demon¬

strated with the transversely arranged lower ends of the valleys in the

radius surface The positions of these ends indicate at what axial com¬

pression (left short y-axis) the associated dimples emerge Towards the

end of the transformation the "wave-front" reaches the point across from

the apex of the imperfection Occasionally placed on a bulge, this point

moves outwards what is shown with the runs of the right boundary of

the radius surface and of the blue line in the graph above Finally the

rearrangement in nine buckles around the cylinder is completed, the ra¬

dial shell movements almost vanish and hence the local radii as well as

the axial reaction force remain quasi constant
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—applied axial force

-^buckling loads

increments

(a) Nonlinear buckling analysis result (b) Buckling mode at P = 40 kN

(c) Displacements at P = 452 kN (d) Buckling mode at P = 452 kN

Figure 6.34: Results of a nonlinear buckling analysis with adaptive load step

control (a) for the cylinder having a dent of initial depth Wb/h = 0.1 and

selected buckling modes (eigenvectors) calculated for an applied axial load of
P = 40 kN (b) and P = 452 kN (d). Chart (c) displays the scaled-up cylinder

deformations which lead to the buckling mode in (d).
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Figure 6.35: Axial membrane forces per unit length NaXiai and circumferential
membrane forces per unit length Nhoop of the cylinder with a dent of initial

depth Wb/h = 0.1 at an applied axial load of 400 kN. Values in color maps are

given in N/mm. Result of a nonlinear static analysis.
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Figure 6.36: Result of a transient dynamic analysis for the isotropic cylinder having an inward dimple of initial depth

Wb/h = 0.1. The deformations in the pictures are displayed without magnification, the contour color maps refer to total-

displacement vector lengths in metres.
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Figure 6.37: Sequenced progressions of the local radii rk along the horizontal

path between the dimple apex and its opposite point (lower surface plot) for a

dent of initial depth Wb/h = 0.1. The progression of the left edge of the radius

surface matches with the red line, that of the right surface edge with the blue

line in the upper diagram. The thin black line follows the axial reaction force.
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Figure 6 38 Sequenced progressions of the local curvatures 1/fk along the hor¬

izontal path between the dimple apex and its opposite point for a dent of initial

depth Wb/h = 01

0 01 02 03 04 05 06 07

vertical path over dimple apex (X L)

Figure 6 39 Sequenced progressions of the local radii along the vertical path
over the dimple apex at L/2 for a dent of initial depth Wb/h = 0 1
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2. Inward Dimple with Initial Depth Wb/h = 0.3:

The nonlinear buckling analysis of the aluminium cylinder having an

inward dimple with an initial depth of Wb/h = 0.3 and initial lateral

dimensions ab = 181 mm and h = 67 mm yielded an axial buckling load

of Per = 330 kN, whereas the transient dynamic analysis resulted in a

lower critical reaction force, with PcrL = 333 kN close to the static value

above, as well as in an upper, maximum reaction force Pcru = 374 kN,

see also Figure 6.25. These forces correspond to applied compressions of

ALerL = 1.03 mm for the lower, and ALcru = 1.23 mm for the upper

load.

Figure 6.40 reproduces the results of nonlinear buckling analyses for the

shell at hand. In plot (b) the buckling mode calculated at an axial load

of P = 40 kN is shown, which has buckles only in the front half of the

cylinder shell that contains the initial dent. This shape differs substan¬

tially from that in Figure 6.34(b) of the antecedent dent of initial depth

Wb/h = 0.1 for the identical load that has visible dimples distributed

throughout the entire cylinder surface. The dimples of the eigenmode

given in plot (d) for an applied load of P = 328 kN, hence close to buck¬

ling are even more concentrated within the immediate vicinity of the

deepened dimple imperfection. This estimated buckling pattern corre¬

lates modally with the shape of the dimples formed in the cylinder shell

at the load of P = 328 kN as presented in the deformation plot (c).

According to the nonlinear buckling analysis with adaptive load step

control buckling with accelerated increase of the amplitudes of the im¬

perfection is expected. On the behaviour after this local buckling and

hence on the collapse of the cylinder no indication is available. In con¬

trast to the deformations of the cylinder with the dent of initial depth

Wb/h = 0.1 near its total collapse (see 6.34(c)), the dent with Wb/h = 0.3

immediately prior to local buckling results in deformations as displayed
in plot 6.40(c) with a deeper indentation of the initial dimple, although
with an applied axial force of P = 328 kN the cylinder with the initial

dent at hand is less loaded than the shallower dent (P = 452 kN). Fur¬

ther, the bulging of the shell at hand in (c) around the imperfection is

dominated more distinctly by the two outward dimples beside the initial

dent than the previous shell with a flattish ring-formed bulge around the

dent as indicated in 6.34(c).

Notably wider differences between the shell having a dent with initial

depth Wb/h = 0.1 and that with Wb/h = 0.3 can be seen in the the

membrane stress distributions in the cylinder charged with an axial force

close to the (local) buckling loads. In the left color contour plot of

Figure 6.41 the membrane forces per unit length Naxlai of the shell

at hand, calculated for an axial load of P = 328 kN, are displayed.
The nominal axial membrane force per unit length of this compressive
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load is Naxlai = —209 N/mm. First, the two dark spots beside the

dimple apex strike which refer to maximal compressive membrane forces

of about NaXiai = —230 N/mm. Compared to the dent with Wb/h = 0.1,

depicted in Figure 6.41, the concentration of compressive axial stresses

at the apex is split into two peaks at the edge of the dimple. On the

two bulges on the left and the right of the dimple the axial compressive
membrane force is diminished to a minimum value of about Naxlai =

— 189 N/mm. Despite the lower applied load the maximum deviations

from the nominal value with ±20 N/mm absolute or ±10 % relative are

about three times higher than the deviations calculated for the dent

with Wb/h = 0.1 (about ±3%). In addition to the spots with extremal

values at the dent and the bulges a bright yellow, vertical strip from the

bottom-up stands out with weakened axial membrane stresses, flanked

by red } ( -formed shell parts with elevated stresses. The pattern of the

contribution of the tangential membrane force per unit length Nhoop is

similar to that of the shell with Wb/h = 0.1, but with the deeper denting
the compressive stress concentrated at the dimple apex is considerably

higher (max. —95 N/mm). Again, the slight bulging above and below

the dent leads to notable tensile tangential stresses. The deviations from

zero of the hoop force per unit length Nhoop are more than twice higher
than those for the dent of initial depth Wb/h = 0.1.

The transient dynamic analysis of the cylinder with a dent of initial

depth Wb/h = 0.3 resulted in a progression of the axial reaction force

with a first, lower critical load and a second, higher load of instability, as

already mentioned. In Figure 6.42 the results are presented by means of

two sub-figures: the first shows the pre-buckling state up to the distinct

local maximum in the force curve indicating the first critical load, the

second focuses on the subsequent buckling load with total collapse of

the cylinder and the first stable post-buckling state. From the first two

contour-deformation plots included in Subfigure 6.42 A can be taken

that just prior to the first local maximum in the force curve the dimple
is indented only for less than 1.5 mm. But this critical load reached,
the dent vertex rapidly moves inwards for some seven millimeters until

a visible local minimum in the curve is attained, see 3r and 4* plots.
That following, with further end-shortening the continuous deepening of

the dimple is decelerated. In Subfigure 6.42 B can be seen that during
the continuous compression from the first, local buckling load to the

load where the entire cylinder shell starts to buckle the further denting
of the initial dimple is marginal. The over-all buckling is initiated by
the accelerated formation of two new buckles beside the initial dent and

its lateral bulges, see second deformation plot. The that following drop
of the axial reaction force with two little cusps (delayed shell motions)
is guided by the step-wise formation of new buckles around the cylinder
in one row at L/2, until the entire cylinder circumference is filled with

seven large and deep dimples, see 4* and 5* plot. This is the first
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stable post-buckhng pattern which differs substantially from that of the

previous dent of Wb/h = 0 1 in Figure 6 36

The deformation process of the shell whilst the local and the over-all

buckling was also displayed in the plots which demonstrate the alter¬

ation of the radius and the curvature at special points or along paths in

the cylinder surface with increasing loading Figure 6 43 reproduces the

resulting progressions of the radii rk at nodal points along the horizontal

path from the dent apex half around the cylinder, sequenced bottom-up
for increasing end-shortening Following the alteration left boundary of

the radius surface or the red line in the diagram above, i e the radius

of the dimple apex ta, it can be seen that the local force maximum

(thm line) is situated at a AL where the radius of the dimple starts to

shrink rapidly The sudden denting of the imperfection during the local

buckling at hand is combined with a widening of the dimple in circum¬

ferential as well as in axial direction, see Figure 6 45 The movement

inwards of the dimple vertex leads to a local flattening of the shell This

can be recognized at the run of the left boundary of the curvature sur¬

face in Figure 6 44 which displays the alteration of the local curvatures

1/fk along the middle hoop for subsequent load levels according to the

local radii in Figure 6 43 Compared with the previous shallower dent

of Wb/h = 0 1 the indentation of the initial dimple during buckling is

smaller and less abrupt and no notable "snap-through", i e snapping

to negative circumferential curvatures occurs

In Figures 6 46 to 6 48 the process of continuous formation and propa¬

gation of buckles around the cylinder during the buckling of the cylinder

after further compression is described The initial dent only deepens a

little after the local buckling and also its height and width only alter

marginally
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increments

(a) Nonlinear buckling analysis result (b) Buckling mode at P = 40 kN

(c) Displacements at P = 328 kN (d) Buckling mode at P = 328 kN

Figure 6.40: Results of a nonlinear buckling analysis with adaptive load step

control (a) for the cylinder having a dent of initial depth Wb/h = 0.3 and

selected buckling modes (eigenvectors) calculated for an applied axial load of
P = 40 kN (b) and P = 328 kN (d). Chart (c) displays the scaled-up cylinder

deformations which lead to the buckling mode in (d).
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»««,1 Nhoop

Figure 6.41: Axial membrane force per unit length NaXiai and circumferential
membrane forces per unit length Nhoop of the cylinder with a dent of initial

depth Wb/h = 0.3 at an applied axial load of 328 kN. Values in color maps are

given in N/mm. Result of a nonlinear static analysis.
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Figure 6.42 A: Result of a transient dynamic analysis for the isotropic cylinder having an inward dimple of initial depth

Wb/h = 0.3. First part with the local buckling. The deformations are displayed without magnification, the contour color maps

refer to total-displacement vector lengths in metres.



pi
Ol

vi

o

Î
n'

.0

ta
CL

vi

Ö

'S.

1.0 11 1-2 13

axial compression AL fmmi

1.4 1.5

Figure 6.42 B: Continuation to previous ßm,n> Q„ j

t"emous ^ure-
Äeconrf part with cylinder collapse.

to

^1



258 Buckling of Cylinders with Localized Imperfections

255 -

£ 240 -

^-radius of dimple apex ra

235 - radius of opposite point

- force

230 -I

1 020 1 070 1 120 1 170 1 220

axial compression AL [mm]

Y 100

1 270

i^r%^^^' t^
-XtS^'Z.—^n^1" "- ;^*£%^*
Ü^-^tiCj

* *

;^*C-^V
T-T-^W— ïn^v^ ^ ^ ^4^_-—14*5

.

'
X "t^l:1!,

^l^r^^i^n*%%* _^-t^ "vXi

T
"""" 711 Ï^Çj^^ v !it+iC^arr"

'T^fï^cAJfi p^ft^t^.

ï^ ^~ -ti-T/j^ S -^^*ySl~S3 "Z\t
^— "• -r^ ^X -^ 1 V|3VJ— -Xl^-r—d^T-.

*7u ^-

~'

VH"H^-154^^5Ä3^^
-15^— i_l.TT"t_^

055 06 065 07 0 75 0

horizontal path (X 2irfi)

0 9 0 95 1

Figure 6.43: Sequenced progressions of the local radii rk along the horizontal

path between the dimple apex and its opposite point (lower surface plot) for

a dent of initial depth Wb/h = 0.3. Part 1 as indicated in the upper chart

including local buckling. The progression of the left edge of the resulting surface
matches with the red line in the upper diagram, that of the right edge with the

blue line. The thin black line follows the axial reaction forces.
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0 5 0 55 06 065 07 075 Of

horizontal path (x 2irfi)

0 9 0 95 1

Figure 6 44 Sequenced progressions of the local curvatures 1/fk along the hor¬

izontal path as given in Fig 6 43 for a dent with Wb/h = 03 ist part

01 02 03 04 05 06 07

vertical path over dimple apex (X L)

Figure 6 45 Sequenced progressions of the local radii along the vertical path
over the dimple apex at L/2 for a dent with Wb/h = 03 ist part
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Figure 6.46: Sequenced progressions of the local radii rk along the horizontal

path between the dimple apex and its opposite point (lower surface plot) for a

dent of initial depth Wb/h = 0.3. Part 2 including cylinder collapse as indicated

in the upper chart (see Fig. 6.43, p. 258).
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Figure 6 47 Sequenced progressions of the local curvatures 1/fk along the hor¬

izontal path for the dent with Wb/h = 0 3 2nd part, see Fig 6 44> P %59

01 02 03

vertical path over dimple apex (X L)

Figure 6 48 Sequenced progressions of the local radii along the vertical path

for the dent with Wb/h = 03 2nd part, see Fig 6 45, p 259
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3. Inward Dimple with Initial Depth Wb/h = 0.5:

The nonlinear buckling analyses of the aluminium cylinder having an

inward dimple with an initial depth of Wb/h = 0.5 and initial lateral

dimensions ab = 181 mm and h = 67 mm yielded an axial buckling load

of Per = 368kN (Peru). Additionally, according to a minimum value

of buckling loads calculated in between the nonlinear static analysis,

a lower critical load of Pcr = 291 kN could be determined (Pctl). The

upper load Pcr u for cylinder collapse could be confirmed with a transient

dynamic analysis which yielded a maximum reaction force of Pcr =

377 kN, whereas for the lower load in the force curve of the dynamic

analysis only a slight bend could be attributed to. The lower critical

load was found at compressions of about ALcr l ~ 0.9 mm, and the total

cylinder collapse occurs at an end-shortening of ALcru = 1.24 mm.

In Figure 6.49 the results of nonlinear buckling analyses for the initial

dent at hand are displayed. The buckling mode in plot (b) resulted for an

applied compressive load of only P = 40 kN has additional dimples only
in the vicinity of the original dent, similar to the results for the dent with

Wb/h = 0.3 and an identical axial force but more pronounced, see Figure

6.40(b), and in contrast to the dent with Wb = O.lh, see Figure 6.34(b).
Mainly the buckling mode depicted in plot (d), calculated at an applied
axial force of P = 288 kN thus close to Pcr l ,

attracted attention. This

mode does not correspond in position and lateral extents of the dimples
to the pattern of the deformed cylinder as shown in plot (c) resulting
for this given load level, but includes an inward and an outward dimple
at the flanks of the initial dent. The middle node of the sine which

these two buckles form is located at the apex of the origin dent. This

peculiar eigenmode on hand is a consequence of the membrane forces

distribution resulting for this state of deformation at the given axial load

of P = 288 kN as reproduced in Figure 6.50: both the axial membrane

forces per unit length NaXiai and the hoop membrane forces per unit

length Nhoop have two separate peaks of compressive load at the flanks of

the deepened dent. Simulating the axial compression of longer cylinder
with like radius and wall thickness afflicted with deep dents of like lateral

extents, in fact such asymmetric local buckling shapes could be observed,

see pages 283 ff for a 50 % longer cylinder as an example.

In the left contour-deformation plot of Figure 6.50 the axial membrane

forces per unit length NaXiai are shown which again result for an axial

compressive load of P = 288 kN. The nominal axial membrane force per

unit length corresponding to this load is Naxlai = —183 N/mm. The

maximum compressive axial membrane force in the above mentioned

dark spots beside the dent is about NaXiai = —254 N/mm. In-between

these spots a vertical bright colored strip with diminished axial stresses

can be seen with a minimum axial membrane force per unit length of

NaXiai = —112 N/mm placed at the dent apex. These extremal devia-
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tions from the nominal value of the axial membrane force per unit length
with ±71 N/mm or ±33 % are again about three times higher than that

of the previously presented dent with Wb/h = 0 3 despite the lower ap¬

plied force Similar to the two shallower dimple imperfections, further

spots with minor axial compressive stresses are to be found on the vertex

of the two bulges beside the dent formed during the cylinder loading

Furthermore, again two red } (-formed shell parts with elevated stresses

can be recognized which flank the bright colored strip of reduced axial

stress The contribution of the hoop membrane force per unit length

Nhoop shown in the right contour plot of Figure 6 50 with the two sep¬

arate spots of maximum compressive stress at the dimple flanks (mm

Nhoop = —106 N/mm) differs clearly from that of the two precedent,

initially shallower dents with a single peak at the dimple apex Above

and below the dimple hardly visible bulges are formed on which notable

tensile hoop stresses emerge (max Nhoop = 73 N/mm)

In Figure 6 51 the results of a transient dynamic analysis is shown Be¬

tween an applied axial compression of AL = 0 85 and 0 9 mm a bend

of the reaction-force curve can be seen which indicates some weakening
of the axial cylinder stiffness This loading is near the lower critical

end-shortening ALcr l or load Pcr l determined by a nonlinear buckling

analysis, see Figure 6 49 By means of the dynamic analysis no such

exact value of axial force can be specified in this case with a smooth

transition from the initial curve gradient to the other The first and

the second contour-deformation plots in Figure 6 51, which depict shell

configurations just before and after the visible force-curve bend, differ

only marginally, solely an accelerated denting of the dimple can be de¬

tected Afterwards, with continuous axial cylinder compression further

shell deformation is again decelerated (see 3r plot) until up to maxi¬

mum reaction force close to the cylinder collapse The over-all buckling

(4th to 6th plot) is initiated by the formation of two new buckles beside

the bulges which flank the initial dent During the quasi vertical drop
of the axial reaction force then further buckles propagate around the

cylinder The first stable post-buckhng pattern finally consists of seven

large dimples in one row, alike the cylinder with the dent of initial depth

Wb/h = 0 3 in Figure 6 42

The absence of a really striking change of the shell configuration at the

load level where the axial stiffness decreases is also demonstrated with

the sequenced curve progressions of Figures 6 52 to 6 54 From the red

line in the upper chart of Figure 6 52 can be taken that the weakening
of the cylinder resistance is accompanied merely by a slight short-term

acceleration of the continuous dent deepening That is, being already

relatively deep prior to loading, the dent whilst axial compression is

deformed in a way that it approaches a shape of a flattened dimple

more gently than the precedent shells In Figure 6 53 the vanishing
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curvatures in the dent centre manifest the slow flattening of the shell.

For the sake of completeness, in Figure 6.55 to 6.57 also the alteration of

the subsequent deformation states including those for the total collapse

is reproduced. The shape of the widened and deepened initial dimple

alters only a little during the total collapse of the cylinder. Again similar

to the other shells in succession continuously new buckles are formed

which settle beside the already existing dimples.
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500 -,
—applied axial force

— buckling loads

0 50 100 150 200

increments

(a) Nonlinear buckling analysis result (b) Buckling mode at P = 40 kN

(c) Displacements at P = 288 kN (d) Buckling mode at P = 288 kN

Figure 6.49: Results of a nonlinear buckling analysis with adaptive load step

control (a) for the cylinder having a dent of initial depth Wb/h = 0.5 and

selected buckling modes (eigenvectors) calculated for an applied axial load of
P = 40 kN (b) and P = 288 kN (d). Chart (c) displays the scaled-up cylinder

deformations which lead to the buckling mode in (d).
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»«„1 Nhoop

Figure 6.50: Axial membrane forces per unit length NaXiai and circumferential
membrane force per unit length Nhoop of the cylinder with a dent of initial

depth Wb = h/2 at an applied axial load of 288 kN. Values in color maps are

given in N/mm. Result of a nonlinear static analysis.
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Figure 6 52 Sequenced progressions of the local radii rk along the horizontal

path between the dimple apex and its opposite point (lower surface plot) for a

dent of initial depth Wb/h = 0 5 ist part including local instability at about

AL = 09 mm The progression of the left edge of the resulting surface matches

with the red line in the upper diagram, that of the right edge with the blue line

The thin black line follows the axial reaction forces
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Figure 6 53 Sequenced progressions of the local curvatures 1/rfc along the hor

izontal path as given in Fig 6 52 for a dent with Wb/h = 05 ist part

vertical path over dimple apex (x L)

Figure 6

over the

54 Sequenced progressions of the local radii along the vertical path

dimple apex at L/2 for a dent with Wb/h = 05 ist part
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Figure 6 55 Sequenced progressions of the local radii rk along the horizontal

path between the dimple apex and its opposite point (lower surface plot) for a

dent of initial depth Wb/h = 0 5 Part 2 including cylinder collapse as indicated

in the upper chart (see Fig 6 52, p 268)
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Figure 6 56 Sequenced progressions of the local curvatures 1/fk along the hor¬

izontal path for the dent with Wb/h = 0 5 2nd part, see Fig 6 53, p 269

01 02 03

vertical path over dimple apex (X L)

Figure 6 57 Sequenced progressions of the local radii along the vertical path

for the dent with Wb/h = 0 5 2nd part, see Fig 6 54, p 269
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The runs of the forces, local radii, and local circumferential curvatures

presented in the figures above served to find an explanation for the differ¬

ent load-displacement curves. Whilst axial loading the cylinders having
an initial inward dimple are continuously deformed in a way that the

depth as well as lateral size of the dimple are increased. This deforma¬

tion process with a deepening of the dent centre and some bulging at

the dent edges leads to a shape of a dimple with considerably smaller

circumferential curvature than the unloaded ideal cylinder. Therefore,
the so developed partially flattened shell strip loses in geometric stiffness

and thus also the axial cylinder (spring) stiffness decreases. The contour

plots for the axial membrane-stress distributions indicate that due to the

initial dent and the successively resulting deformations always a stress

rearrangement proceeds in a way that the shell above and below the ini¬

tial dimple is relieved, whereas the shell segments sideways of the dimple
have to sustain growing additional loading. The more or less deepened
and widened dimple with further compression leads to an axial-stress

relief in the dimple and a rearrangement of the stress towards the lateral

bulges, where in turn the curvature and hence the geometric stiffness

is increased due to the bulging. Rigid end plates provided6, additional

axial loading can be applied to the partially flattened cylinder. The

over-all collapse of the cylinder then occurs when the stability limit of

the shell with the new configuration is reached.

The tgpe of nonhnearitg of the state prior to the cylinder collapse depends
on the distance between the initial amplitude Wb of the dent and the depth

of the deflected dimple which forms a flattened strip. The depth of the

dimple without circumferential curvature is about 8 mm. That is, for a

deep dent of initial depth Wb/h = 5 almost no movement of the dimple

apex is necessary to flatten the cylinder partially.

In Figure 6.58 above-presented diagrams including the alterations of (a)
the axial reaction force P, of (b) the radius ta and (c) the circumfer¬

ential curvature ta at the dimple centre of the three dents with initial

depths Wb/h = 0.1, Wb/h = 0.3, and Wb/h = 0.5 were put on top of

each other to enable quantitative comparisons. The dent with an initial

depth of Wb/h = 0.1 (blue lines) applied to the aluminium cylinder is

relatively shallow. Hence, similar to a perfect cylinder prior to instabil¬

ity the loading of the shell is dominated by membrane stress. During

compression, in this state the dimple is deepened only marginally and

also the local membrane stresses deviate only a little from the nominal

values. Consequently, for small axial loads the buckling mode consists

6
Boundary conditions CC4 or SS4
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(a)

(b)

IS

(c) axial compression AL [mm]

Figure 6.58: Comparisons of the alteration of (a) the axial reaction force P,

(b) of the radius of the dimple apex ra, and (c) of the approximated curvature

at the dimple apex 1/fa for the cylinder having one of the three selected dents

of initial depth as indicated. Results of transient dynamic analyses.
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of buckles distributed over the entire cylinder surface Close to collapse
then the denting of the dimple is accelerated and suddenly the dent

apex quickly moves about 8 mm inwards The dimple centre thereby
overshoots the above-mentioned position for a buckle shape with vanish¬

ing circumferential curvature The new configuration of the shell after

this local snapping inwards including the deep and wide buckle is not

stable at the current load level That is, the current state of stress and

deformation exceeds the stability limit of the partially flattened shell,
and therefore instantaneously after the "local buckling", i e the snap¬

ping of the initial dimple, the cylinder collapses totally The dimple
of initial depth Wb/h = 03 (black lines) results in a zigzag-shaped ax¬

ial load-displacement curve with a distinct local maximum referring to

"local buckling" Compared with the shallower dent of initial depth

Wb/h = 01 above, during loading more bending of the shell around the

dimple is initiated and local buckling occurs already after about 1 03 mm

of axial compression At this load the dimple centre suddenly and rapidly
moves inwards to a radius of about 242 mm which corresponds approx¬

imately to the radius of a shell strip centre with zero circumferential

curvature Consequently, the axial stiffness is decreased, but at this

lower load level the state of deformation and stress of the cylinder with

a flattened strip the stability limit of the entire cylinder is not reached

yet7 Therefore, with a visible lower gradient of the axial-force curve

further axial compression of about 0 1 mm can be applied up to the to¬

tal cylinder collapse The relatively deep dimple with an initial depth of

Wb/h = 05 (red lines) finally results in a curved axial load-displacement
curve without a clear local maximum point prior to the over-all buck¬

ling of the cylinder From the beginning of axial loading the dimple

deepens continuously until at an end-shortening of about 0 9 mm the

radial displacement of the dimple apex is only slightly accelerated to

reach a local radius which again belongs to a flattened shell strip After

this slow flattening further compression is possible since at the current

load the state of stress and deformation under-runs the stability limit

of the partially flattened cylinder The weakened axial cylinder stiffness

is again identical to that of the dent of initial depth Wb/h = 03 after

local instability The buckling behaviour of the cylinder with a dent of

initial depth Wb/h = 05 differs solely from that of the shell with a dent

of initial depth Wb/h = 0 3 m the lack of a sudden snapping inwards

Instead of a short and rapid flattening of the cylinder shell the dimple

deepens and flattens continuously

7
Rigid endplates provided
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New Definitions

Introductory, the buckling phenomenon was classified into either "bifur¬

cation buckling" or "nonlinear collapse" Former term means a sudden,
fundamental change of the structure pattern, whereas the latter refers

to a sudden increase of the amplitude (s) of the deformation shape at

buckling In connection with thm cylinders under axial loading "bifur¬

cation buckling" refers to an analytical model where at the critical load

the axisymmetrical pre-bucklmg pattern is immediately replaced by a

non-axisymmetrically pattern with many small formed buckles Conse¬

quently, this type of buckling may only be attributed to cylinders with

perfect shell geometry Cylinders having imperfections will buckle in a

way which can be related to "nonlinear collapse" which more generally
denotes an acceleration of shell deformations at a limit load However,

problems are provoked in the description of the buckling behaviour of

cylinders which have a single dimple Normally "buckling" is simply as¬

sociated with a sudden appearance of small visible buckles in an initially

ideal-looking shell surface Thus, if dealing with cylinders having one or

more visible buckles already in the initial state, the question may arise

"can a buckled shell buckle7" The semantic troubles joint with this

question were managed considering the initial dimples as small spheri¬
cal caps which are elastically supported in a cylinder, and which have

their own deformation and possible buckling behaviour In the preceding

pages it was shown that some initial dents resulted in a particular local

instability due to a sudden partial flattening of the shell in the initial

dent, e g the dent of initial depth Wb/h = 0 3 on page 254 ff Under

the boundary conditions on hand and for some initial dent depths after

this first critical load additional axial loading up to the over-all collapse
of the cylinder could be applied The subsequent consistent terminol¬

ogy was introduced for a clear and simpler distinction between these two

buckling events in further explanations and descriptions, see Figure 6 60

Cylinder collapse denotes the over-all buckling of the cylinder at the

maximum load Pcr u in an axial load-displacement curve, associated with

a rapid propagation of further dents beside the initial dimple

Local buckling represents the dynamic radial displacement inwards of

the dent apex to form a shape of a flattened shell strip at a load Pcr j_,

below the cylinder collapse load, associated with a loss of axial geometric

stiffness

The term "local buckling" is also used in connection with the instability
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shallow dents deep dents

/
PcrU

/

dynamic transient analyses

nonlinear buckling analyses

initial dent depth Wb/h

Figure 6.59: Differentiation between shallow and deep dents.

cylinder collapse

axial displacement AL

(a) Shallow dents

axial displacement AL increment

(b) Deep dents

Figure 6.60: Typical curve progressions for shallow and deep dents. Left
charts for dynamic transient analysis results, right charts for nonlinear buck¬

ling analysis results. Dashed lines denote buckling loads, continuous lines axial

loads.
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behaviour of beams having cross sections that consist of L-profiles. In

such cases local buckling refers to the collapse of a single profile face at

a load different to the Euler load at which the entire beam buckles like

a column. The buckling in a shell between stringer-stiffeners of a panel

(see Introduction Section 1.1) before collapse of the entire structure may

also mentioned as an example for "local buckling".

The kind of local buckling in a cylinder with a dent depends on its initial

depth Wb- For initial depths smaller than a certain marginal depth wl,
see Figure 6.59, the local buckling consists of a sudden snapping in¬

wards of the dimple with a possible local maximum in the axial load-

displacement curve at a load Pcr j_, below the cylinder collapse load Pcr u
For initially deeper dents with Wb > w^, in contrast, the radial displace¬
ment of the apex prior to the cylinder collapse is smaller and less dy¬
namic. During axial loading the shell is continuously flattened locally
and the axial cylinder stiffness slowly decreased. In case of the reference

cylinder the marginal was about w^/h = 0.45, see Figure 6.20 and 6.24.

In the following, depending on the local buckling behaviour, and there¬

fore on the initial dent depth Wb/h, the inward dimples will be called

either shallow dents or deep dents, see Figure 6.60:

Shallow dents are initial inward dimples of initial depths Wb < w^ which

led to pronounced local buckling caused by sudden dynamic radial dis¬

placement of the dent apex to a position for vanishing circumferential

shell curvature. Nonlinear buckling analyses were aborted at the local

buckling load PcrL, see Figure 6.60(a). In case of very small initial dent

depths Wb the cylinder collapse occurred immediately after dynamic local

buckling (e.g. reference cylinder with dent of Wb/h = 0.1). For deeper

depths Wb the cylinder collapse resulted at a load above the local buck¬

ling and with dynamic transient analyses axial load-displacement curves

were obtained with a zig-zag course (Pcr l = local maximum, e.g. refer¬

ence cylinder with dent of Wb/h = 0.3).

Deep dents are initial inward dimples of initial depths Wb > w^ which

led to an initial or slow loss of the local geometric stiffness caused by
initial dent apex positions with vanishing circumferential shell curvature

or by continuous arrangement of the dent apex to such positions. The

only slow or initial partial shell flattening allowed for achievement of the

cylinder collapse load Pcru also with nonlinear buckling analyses, see

Figure 6.60(b). Nonlinear buckling analyses also yielded a lower buck¬

ling load Pcr l identified by the minimum value within the series of buck¬

ling loads which were obtained by eigenvalue extractions after selected

loading increments. Dynamic transient analyses in contrast yielded axial
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load-displacement curves solely with a bend or smooth kink which made

it impossible to ascertain a lower buckling load Pcr j_, with these analyses

(e.g. reference shell with Wb/h = 0.5).

The distinction between shallow and deep dents proposed above is only
suitable for cylinders with uniform edge displacements, i.e. for boundary
conditions CC4 or SS4 which simulate rigid and plane-parallel endplates.
Due to their minor axial stiffness the flattened shell strips are stress

released and their contribution to the resistance to axial buckling is

decreased. But these boundary conditions provide that the curved shell

remaining to the left and the right of the flattened strip may absorb

the share of the additional axial loading until cylinder collapse occurs.

It will be shown later (Section 6.6.7) that for shells with uniform axial

edge loads applied (conditions CC3 or SS3), however, uncontrolled axial

displacement of the edge over the dent resulted what provoked local

buckling of the flattened shell with directly following cylinder collapse.
That is, under these boundary conditions the lower (local) buckling load

is about the upper (cylinder collapse) load, Pcrl ~ Peru, not only for

shallow dents but also for deep dents.

Uniform edge displacements provided, in case of deep dents the lateral

displacement of the dent apex forming a flattened shell strip evolved

slowly without a dynamic snapping inwards. Consequently, in principle
the lower load Pcr j_, ascertained with nonlinear buckling analyses cannot

be attributed to "buckling" in the mentioned sense but is rather a result

of large displacements and rotations. Nevertheless, since the loads Pcr l

resulted close to the loads at which local buckling in evidence has to be

expected for shells with uniform axial edge loads, the expression "buck¬

ling load" for Pcr l was found acceptable also for deep dents in shells

with uniform edge displacements.

Minimum buckling loads Pcr min are the lowest local buckling load Pcr l

obtained with nonlinear buckling analyses of a cylinder having a single
dent of given initial width a& and height /&, see Figure 6.61. The mini¬

mum buckling load Pcr min depends on the cylinder dimensions and on

the initial dent height and width.

Further distinctions of cases would have been possible, for instance be¬

tween shallow dents with the cylinder collapse directly following the local

buckling and shallow dents with local buckling at loads notably below

the cylinder collapse load. But additional terms or abbreviations de¬

rived from these differentiations could hardly help the analyses and were

therefore not considered.
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Figure 6.61: Specification of the minimum buckling load PcrMiN resulted from
a series of nonlinear buckling analyses of a cylinder with a single dent.

Influence of the Cylinder Dimensions R and h

After the investigation of the effect of a single dimple on the buckling
behaviour of the aluminium cylinder with a radius of R = 250 mm, a

length of L = 510 mm, and a shell wall thickness of h = 1.5 mm, the

reduction of the stability due to different dimples was also calculated

for some further aluminum cylinders with other lengths, radii and wall

thicknesses. The selected shells are included in the list of the isotropic

cylinders with ideal shell geometry presented in Section 4.2.1, page 127.

The initial circumferential width and the initial meridian height of all the

dents presented above with ab = 181mm and /& = 67mm respectively
resulted from a systematic search for the pair of initial lateral dimen¬

sions (a&, lb) of the shallow dent with initial depth Wb/h = 0.1 that

leads to minimum stability of the above-mentioned reference cylinder.
These calculations with fixed initial dimple amplitude Wb but varied ini¬

tial dimple width ab and height /& for a number of isotropic cylinders are

detailed in Section 6.6.3, page 325. It will be shown that for a shallow

dent the "worst" initial dent height /& was close to the classical axial

wave-length for axisymmetric buckling8 of (perfect) isotropic cylinders

2/c « 3.46a/P7Ï. The "worst" initial dent width a,b is about 2.5 to 3

times the height /&, depending on the cylinder length L. Consequently,
for isotropic cylinders with like products R h and length L, the lateral

dimensions ab and /& of the dent for minimal cylinder stability are identi¬

cal. After the determination of these lateral initial lengths ab and /&, sets

of shells were built by applying dents with the specified ab and /& fixed

8See Section 2.2.2.
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but the initial dimple depth Wb/h varied, and then again the buckling
loads were calculated systematically. For cylinders with identical factors

R h and length not only the dimensions ab and Wb are equal but for

like normalized initial dent depths Wb/h the normalized local buckling
loads Per u/Per id are also congruent. In Figure 6.62 this agreement is

R = 500 mm, ft. = 0 75 mm

R = 375 mm, ft = 1 0 mm

R = 250 mm, ft = 1 5 mm

Figure 6.62: Normalized buckling loads of three isotropic cylinders having a

single dent of various normalized initial depth Wb/h. Cylinder radius R and

shell wall thickness h as indicated for constant factor R h. Cylinder length:
L = 510 mm: initial lateral dent dimensions: ab = 181 mm, h = 67 mm.

demonstrated by means of the buckling loads PCr/Pcnd of three cylin¬
ders with a length of L = 510 mm having a dent of different normalized

initial depth Wb/h. Their radii and the wall thicknesses indicated in the

figure were selected so that R h = 375 mm2. For these shells the initial

lateral dimensions resulted in ab = 181mm and lb = 67 mm, minimizing
the cylinder stability for Wb/h = 0.1. The buckling loads normalized in

respect of the limit load of the perfect cylinder PCnd, resulting from non¬

linear buckling analyses as detailed above, in fact nearly coincide for the

local buckling loads Pcr l in cases of shallow dents (wb/h < 0.45) as well

as for the lower buckling loads Pcr j_, in cases of deep dents. But obviously
the upper loads Pcr u referring to the cylinder collapse are higher for the

cylinders with longer radius R. This might stem from their larger cylin-
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der circumference and the therefore relatively wider shell surface range

without notable stress deviations at like ab and decay length for equal
\JRh resulting in the states of deformation with an already flattened

dimple.

Influence of the Cylinder Length L

The cylinder length L notably influences the reduction of the critical

loads of a cylinder due to a dent of given dimensions. Figure 6.63 re¬

produces the normalized buckling loads PCr/Pcnd for cylinders with a

radius of R = 250 mm, a shell wall thickness of h = 1.5 mm, and lengths
between L = 255 and 765 mm. The initial meridian height /& and cir¬

cumferential width ab of the dents added to these cylinders, specified for

minimal cylinder stability at a fixed initial dimple depth, also depend
on the cylinder length L, see Section 6.6.3. The initial dimple length /&

for L = 255 mm resulted in 65 mm, for L = 765 mm in 69 mm, and the

initial dimple width ab resulted in 176 mm and 183 mm respectively. The

differences in the initial dent dimensions are still negligible. The mini¬

mum buckling loads Pcr min of a given cylinder with various initial dimple

amplitudes decreases with increasing cylinder length L; that is, the im¬

perfection sensitivity of longer cylinders is higher compared to that of

shells with otherwise identical dimensions. This effect may be explained
with the comparatively larger lateral displacements at the dimples of

longer cylinder shells placed at L/2. With a longer distance from the

cylinder edges during axial loading the dimple tip is displaced inwards

with less shell bending resistance, and therefore local buckling occurs for

lower axial loads. The three shells in Figure 6.63 were created by initial

shortening or elongation of the reference cylinder by 255 mm. Obviously,
the alteration rate of the minimum buckling loads Pcr m\n/Pend varying
L for longer cylinder is notably smaller than that for shorter shells. The

reference cylinder with L = 510mm yields a minimum PCr MIN/Pcrjd of

about 0.52, that of the 50% longer shell with L = 765 mm such of 0.47,
thus a difference of circa 0.05. A further doubling the length of the longer
shell to a length of L = 1430 mm (not pictured) yielded a minimum nor¬

malized buckling load of about 0.41, hence again a difference of 0.06,
but here for a 200% longer cylinder. That is, further initial increase of

the length L of an already "long" cylinder affects the reduction of the

minimum buckling load only little.

In Figure 6.63 the vertical distances between the lower and the up¬

per normalized buckling loads, i.e. between the local buckling load
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- L = 255 mm; short

-L = 510 mm; reference

- L = 765 mm; long

Figure 6.63: Influence of the cylinder length L on the normalized buckling load

of an isotropic cylinder with a single dent of various initial depth. Cylinder
radius R = 250 mm, shell wall thickness h = 1.5 mm. Mean initial dimple
dimensions ab = 180 mm and h = 68 mm.

Per l/Per id and the cylinder collapse load Pcru/Pcrid, for deep dents

is about 0.15 for the reference cylinder with a length of L = 510 mm and

also for the 50 % shorter shell with L = 255 mm. But, in case of the

longer cylinder with L = 765 mm these differences are only about half

as large. These buckling loads were obtained with nonlinear buckling

analyses with adaptive load step control. In Figure 6.64 also the nor¬

malized buckling loads Pcr/Pcrid resulting of transient dynamic analyses
for the initially elongated cylinder with L = 765 mm, accordingly with

dents of different initial depths Wb/h, are displayed. See Figure 6.24,

page 231, for comparisons with the results for the reference cylinder of

length L = 510 mm. The minimum normalized buckling load of about

Per u/Per id ~ 0.47 obtained by nonlinear buckling analyses were con¬

firmed by the dynamic transient analysis for the dent of initial depth

Wb/h = 0.5. But the dynamic analyses yielded maximum buckling loads

which built a quasi straight horizontal chain of bold dots at buckling
loads Pcru/Pcrid of about 0.6; thus, the cylinder collapse loads resulted

for the transient dynamic analyses are substantially higher compared
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• transient dynamic analyses

—•- nonlinear buckling analyses

Figure 6.64: Comparison between buckling loads Pcr/Pcnd resulting for tran¬

sient dynamic and nonlinear buckling analyses for an aluminium cylinder of

length L = 765 mm with a single dent of various initial depth Wb/h. Cylinder-
radius R = 250 mm and wall thickness h = 1.5 mm correspond to those of the

shorter reference cylinder.

with the maximum buckling loads obtained by means of modified non¬

linear buckling analyses. And, in contrast to the nonlinear buckling

analysis results, the mentioned distances between the lowest and the

topmost buckling loads of the dynamic analysis results for the cylinder
of initial length L = 765 mm are similar in size to those of the cylinder
of length L = 510 mm, see also Figure 6.63 and 6.24.

Figure 6.65 demonstrates the alteration of the reaction force with in¬

creasing cylinder end-shortening AL resulting for a transient dynamic

analysis of the cylinder of length L = 765 mm having a dent of initial

depth Wb/h = 1, as an example to explain the origin of the different

critical load levels. The lateral initial dimple dimensions were again

ab = 183 mm and lb = 69 mm, the other cylinder dimensions again that

of the reference cylinder. The fifth chart in Figure 6.27, page 234, depicts
the corresponding load-displacement curve for the reference cylinder with

L = 510 mm having also a dent with an initial depth of Wb/h = 1 with

respective lateral dimensions. Similar to the behaviour of the reference

cylinder with the dent of initial depth Wb/h = 0.5 presented in pages
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Figure 6.65: Result of a transient dynamic analysis for the reference cylinder elongated to a length of L = 765 mm, having an

inward dimple of initial depth Wb/h = 1. The deformations in the pictures are displayed without magnification, the contour

color maps refer to total-displacement vector lengths in metres.
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267 ff, up to an applied compression of about AL = 1.6 mm the dimple

apex was continuously displaced inwards to slowly flatten the cylinder
shell partially, what led to a continuous decrease in axial cylinder stiff¬

ness and hence to the first bend in the P-AL-curve in Figure 6.65 (1st
and 2nd deformation plots). BUT, after some further compression to

AL = 1.66 mm the apex of the deepened and flattened dent was shifted

laterally (3rd plot). This striking second, local buckling incident is

responsible for the zig-zag in the load-displacement curve prior to the

cylinder collapse load. There is no local maximum point in the axial load-

displacement curve for an adequate specification of a critical load, but

roughly this buckling phenomenon occurred at an axial reaction force of

about P = 328 kN. Normalized with the collapse load of the ideal cylin¬
der of length L = 765 mm, Pcr = 579 kN, this value yields a normalized

buckling load of Pcr/Pcrid ~ 0.57. During this local buckling or shell-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

horizontal path (x2-7rß) >

Figure 6.66: Radii rk at nodal points along a horizontal path (CCW) over the

apex of a dent with an initial depth of Wb = h and an initial width of ab =

183 mm. Results for the cylinder with length L = 765 mm, radius R = 250 mm

and wall thickness h = 1.5 mm.

shape transformation process no elements or nodes were shifted, but the

radius r^ of several nodes involved were increased or decreased. In Fig¬
ure 6.66 the local radii along the horizontal path around the cylinder
over the dent are shown for the initial configuration (dotted line), and

for patterns resulting for axial compressions prior (blue line) and after

this local buckling process (bold red) as indicated. Initially and before

the transformation, thus AL < 0.6 mm, the dimple apex is located at
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0.5 times the circumference. After the transformation the apex is ar¬

ranged at the middle of the left flank of the origin dent, i.e. displaced
to the left (CW) by a fourth of the initial dent wave-length, hence by

aft/4. Furthermore, during the rearrangement the dimple is deepened by
about further 2 mm.

After reaching the peak level of the reaction force at Pcr = 350 kN for

an applied compression of about ALcr = 1.78 mm, the cylinder collapse
was initiated by the sudden deepening of one further dimple beside the

shifted origin dent. That following further buckles settled beside the

first one in a row until the entire cylinder circumference is filled with six

large buckles. Thus, in contrast to the shorter reference cylinder with

such dents, during cylinder collapse dimples emerge not on both side

of the initial dent but only on that side to which the dent priorly was

displaced, cf Figure 6.42 or 6.51. The collapse load Pcr = 350 kN gives a

normalized buckling load of Pcr/Pcrid = 0.6, in Figure 6.64 for Wb/h = 1

accordingly marked with a bold dot.

The transformation process at about P = 328 kN described above for

the dynamic analysis results corresponds to a transition from one local

buckling mode to a next one. Concerning the instability behaviour of

the entire cylinder these two patterns may also be called "pre-buckling

shapes" since they occur prior to the total collapse of the cylinder. In

Figure 6.67 the results of a nonlinear buckling analysis with adaptive
load step control are reproduced for the cylinder with length L = 765 mm

having a dent of initial depth Wb/h = 1, thus for the shell also shown in

Figure 6.65. Graph (a) reproduces the alterations of the applied axial

force and the intermediately calculated buckling loads with increasing
number of load increments. These curves are similar to that of the

shorter reference cylinder with the respective dent, see fifth chart in

Figure 6.21. The deformation plot in Figure 6.67 (c) shows the scaled-up

displacements of the shell resulting for an applied axial force of 220 kN,

again large rotations and displacements considered. The plots (b) and

(d) display the buckling modes to the smallest eigenvalues calculated

at axial loads of P = 40 kN and P = 220 kN, respectively. The state

of stress and deformation at P = 220 kN yielded the lowest buckling
load within the upper dotted line in graph (a) (—> Perh)- Apart form

the displacements amplitudes the first buckling mode in (b) with one

deepened dent flanked by two small bulges is similar to the deformation

pattern in (c). But, the second buckling mode (d), calculated for a load

of P = 220 kN, is substantially different: instead of one deep single dent

two large inward and outward dimples are arranged on the left and the
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increments

(a) Nonlinear buckling analysis result (b) Buckling mode at P = 40 kN

(c) Displacements at P = 220 kN (d) Buckling mode at P = 220 kN

Figure 6.67: Results of a nonlinear buckling analysis with adaptive load step

control (a) for the cylinder of length L = 765 mm having a dent of initial depth

Wb/h = 1.0 and selected buckling modes calculated for an applied axial load of
P = 40 kN (b) and P = 220 kN (d). Chart (c) displays the scaled-up cylinder

deformations which lead to the buckling mode in (d). The bold lines in the FE

mesh indicate the initial edges and position of the dent.
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right of the initial vertex of the applied dent. The thick lines in the

FE mesh added to the plots (c) and (d) indicate the initial edges of

the dent with an initial width a& = 183 mm and an initial height /& =

69 mm. It can be seen that the vertices of the two main buckles in plot

(d) are arranged in the middle of the half of the framed shell segment,

hence at ab/A from the initial apex of the applied dent. This position of

the inward dimple apex is identical to that of the dent apex displaced

laterally after the local buckling incident as reproduced in Figure 6.65 for

the results of a transient dynamic analysis. Consequently, this process

was interpreted as dynamic reconfiguration or "jump" from a pattern
like the buckling mode in plot (b) of Figure 6.67 to a pattern which

resembles the lateral inward dimple of the buckling mode in plot (d).
Nonlinear buckling analyses of this cylinder having this dent yielded an

upper buckling load of only Pcr/Pcrid = 0.54. The small gap between

this factor and the normalized load Pcr/Pcrid ~ 0.57 at the lateral shift

of the dimple resulting from a dynamic analysis led to the assumption
that the nonlinear buckling analyses with adaptive load step control were

aborted when reaching the load at which this second local instability

phenomenon occurs. Consequently, this process was regarded as "local

buckling" and not simply as a matter of large displacements.

Prior to this local buckling, due to the deformation process described

above, the shell is already partially flattened. This leads to stress rear¬

rangements with elevated compressive membrane stresses at the lateral

dimple flanks and to reduced stresses at the centre of the dent. The

membrane stress (membrane forces per unit length) fields resulting for

such deformation states of the shell in Figure 6.67 with L = 765 mm are

similar to that of reference cylinder with L = 510 mm having a dent of

initial depth Wb/h = 0.5 as displayed in the contour-deformation plots of

Figure 6.50, page 266, for an axial load of P = 288 kN. The deformations

in the plots of Figure 6.50 are pictured with scaled-up displacements,
thus the real shape of a partially flattened strip at the dimple is not

visible. According to these nonlinear static analyses results two concen¬

trations of compressive membrane stresses are placed at the flanks of the

flattened dimple for the axial forces Naxtai as well as for the hoop mem¬

brane forces Nhoop per unit length. The antisymmetric buckling mode

with an inward and an outward dimple in Figure 6.67(d) is a result of

this particular, combined axial and tangential compressive loading of the

plate-like shell strip.

The buckling mode or eigenvector of the reference cylinder calculated

at an axial load of P = 288 kN presented in Figure 6.49, page 265, is
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also of the type with two lateral buckles alike the mode of the longer

cylinder in Figure 6.67(b). However, for all considered dents applied
to the reference cylinder of length L = 510 mm the transient dynamic

analysis yielded deformation and buckling processes without the lateral

travel of the previously flattened dimple prior to the cylinder collapse as

it was observed for the 50% longer cylinder, see Figure 6.51. Missing
this local buckling incident the choice of the geometry parameters for

the reference cylinder was "a bit unlucky", since for a representation of

the general instability behaviour of cylinders with dents this shell was

obviously too short. Probably the ratio of the initial dent width to the

cylinder length (boundary effects), ab/L, plays an decisive role for the

appearance of this local buckling behaviour in the numerical simulation

of axially compressed cylinders afflicted with deep dents. For dents with

a shorter initial circumferential width ab applied to the reference cylinder
of length L = 510 mm also local buckling with lateral dimple-apex shift

could be observed. The 50 % longer cylinder, in turn, having a dent with

a notably elongated initial width ab was not affected by this phenomenon.

0.8
7
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0

shallow dents

500 1000 1500 2000 2500 3000

Figure 6.68: Maximum initial dent depths for shallow dents wl/h versus

Batdorf's cylinder parameter Z. Results of nonlinear buckling analyses for

some isotropic cylinders having a dent with lateral dimensions specified for

wb/h = 0.1.

From Figure 6.63 can be taken that for shorter cylinders the marginal
dent depth w^/h, which separates shallow from deep dents, is shifted

towards smaller initial depths Wb/h. The normalized dent amplitudes

wl/h are marked with circlets. The alteration of the normalized buckling
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loads with increasing normalized initial dent depth Wb/h was calculated

at selected points for several cylinders with divers lengths, radii, and

shell thicknesses and dents with initial lateral dimensions always deter¬

mined for a given initial amplitude. In Figure 6.68 the marginal initial

dent depths wl/h are plotted in dependency of Batdorf's parameter

Z which relates the square of the cylinder length to the factor R h. By
means of these resulting dent depths a trend line could be added for

a rough estimate of the maximum initial amplitude wl/h for shallow

dents, i.e. for dents which cause distinct local buckling prior to cylinder

collapse, see also Fig. 6.71.

Influence of Initial Dimple Width a& and Height /&

The effect of the initial dimple depth on the buckling loads is coupled
with the influence of the initial lateral dimensions of the dimple. Both the

circumferential width a& and the meridian height /& for minimal cylinder

stability increase with increasing initial dimple depth Wb- And, for deep
dents with sized initial dent width and height the lower buckling load

Pcr l denoting local buckling decreases.

In Figure 6.69 the results of nonlinear buckling analyses are displayed
for the reference cylinder having a dent with various normalized initial

depths Wb/h. The black lines follow the normalized buckling loads re¬

sulting for dents with a fixed initial width of a& = 181mm and a fixed

height of lb = 67 mm. These two lateral dimensions, as already men¬

tioned, correspond to the extents of a shallow dent with an initial depth
of Wb/h = 0.1 which yielded the lowest buckling load, see Section 6.6.3. A

similar minimum search for a dent of initial depth Wb/h = 0.5 resulted in

an initial height of /& = 82 mm and an initial width of a& = 283 mm. That

is, the deep dent yielded a 24 % longer initial height /& and a 32 % larger
initial width a& compared to the shallow dent. By variation of the initial

amplitude Wb/h of the dent with this sized pair of lateral dimensions a

further set of cylindrical shells was formed and again nonlinear buckling

analyses were performed. The resulting critical loads for these shells are

reproduced in Figure 6.69, plotted with bold gray dots and lines. The

dark lines and diamonds refer to buckling loads obtained with the refer¬

ence cylinder having a dent with a 9 % longer initial width, a& = 196 mm,

and a 13 % longer initial height, /& = 75 mm compared with the lengths to

the shallow dent. The local buckling loads Pcr l as well as the minimum

buckling load Pcr min /Per id of the shell with the wider dents are lower

than the values for the smaller dents. The normalized minimum buckling
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Figure 6 69 Normalized buckling loads PCr/PCnd of the reference cylinder with

a single dent of various initial depth Wb/h Comparison between nonlinear-

buckling analysis results for dents with lateral dimensions as indicated

load found for the smaller dents is Pcr M in/Per »d
= 0 51, whereas that

of the larger dent is Pcr min/Per »d
= 0 49 (—5%) for the medium size

and Per MIN/Pcrjd = 0 44 ( — 13%) for the big size The first minimum

value resulted at an initial depth of about Wb/h = 0 75, the last at about

Wb/h = 1 5, thus, by increasing the initial lateral dimple lengths ab and

lb the "worst" dent is shifted to a larger initial amplitude

Note that having lateral dimensions which led to minimal cylinder sta¬

bility for a shallow dent of initial depth Wb/h = 0 1, for amplitudes

Wb/h < wl/h the smaller dents in fact resulted in slightly lower buckling
loads than the wider dents

In case of the reference cylinder with its length of L = 510 mm the dif¬

ferences between the cylinder collapse load Pcr u resulting for the two

sets of dimple dimensions are negligibly small withm the range of initial

dent depths presented in Figure 6 69 But, the cylinder collapse loads

resulting for longer cylinders in contrast are considerably raised when

increasing the initial lateral lengths of the applied dent Figure 6 70 dis¬

plays the normalized buckling loads Pcr/Pcrid resulting for the cylinder
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Figure 6.70: Normalized buckling loads Per/Per id of the reference cylinder

initially elongated by 50 %, to L = 765 mm (R = 250 mm, h = 1.5 mm),
with a single dent of different initial depth Wb/h. Comparison between sets

of dents with initial widths ab and lengths h as indicated; reference dent with

h = 69 mm and ab = 181 mm.

with a length of L = 765 mm having a dent of different initial width

ab and meridian height /& again in dependency of the normalized initial

depth Wb/h of the dent. The cylinder length is 50% longer than that

of the reference cylinder whereas the radius with R = 250 mm and the

wall thickness with h = 1.5 mm are identical. The instability behaviour

of this cylinder having dimples of initial width ab = 181mm and initial

height lb = 69 mm resulting for nonlinear buckling analyses as well as for

transient dynamic analyses were detailed in the previous subsection, see

Figures 6.64 to 6.67. It could be shown that these dimple and cylinder

parameter combinations lead to aborts of the nonlinear buckling analyses
at loads below the cylinder collapse load due to a second local buckling

incident, and thus to underestimations of the cylinder stability ignoring
the notable gaps between the second buckling loads and the cylinder

collapse loads found for this cylinder length9. The bold gray dots in¬

dicate the results for dents with an initial width of ab = 238 mm and

Rigid endplates provided.
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an initial height of /& = 85 mm, that is for dents initially widened and

elongated by 32% and 23% respectively. The thin lines with squares

and rhombi chain the resulting buckling loads for dents with an either

widened initial width ab or an elongated meridian height /&, see legend
included. As for the reference cylinder the sized dent diminishes the

lower buckling load Pcr l by about 14%. But in case of the longer cylin¬
der at hand the second buckling loads are drastically elevated for large
initial depths. The effect of the single elongation of the initial meridian

height lb to the buckling loads is rather small, whereas the expansion
of the initial dent width ab seems to be responsible for the important
differences in the buckling loads. As already mentioned in the previous

section, for notably increased ratios of the dimple width to the cylinder

length, ab/L, the collapse load of the longer cylinder was reached with

modified nonlinear buckling analyses since in this case the second local

buckling did not occur. The cylinder collapse loads of the shell with

L = 765 mm having dents of initial width ab = 181mm resulting for

the dynamic analyses, plotted in Figure 6.64, page 283, yielded buckling
loads Per/Per id close to 0.6. Therefore, the effective distances between

the cylinder collapse loads for ab = 181mm and for ab = 238 mm are

essentially smaller.

Initially wider dents gave deeper marginal initial dent depths wl/h for

distinct local buckling. In Figure 6.71 depths wl/h obtained for dents

with initial heights and widths specified for Wb/h = 0.1 are marked with

bold dots, the deeper depths wl/h which resulted for dents initially
widened by 32% are labelled with circlets, see Figure 6.68. But, ac¬

cording to these three shells of different Batdorf parameter Z for such

wider dents the marginal depth wl/h can be roughly estimated with a

vertical shift of about 0.05 from the trend line included for the wl/h of

initially smaller dents.

Finally, as already mentioned, the minimum buckling loads PcrMiN of

wider dents resulted at deeper initial depths compared with the smaller

dent dimensioned for minimal buckling loads due to a dent of initial

depth Wb/h = 0.1, see Figure 6.69. Further elongations of the initial

dent width ab yielded still lower minimum buckling loads Pcr min /Per id

with the values for ring-shaped dents as lower bound. For example, ring-

shaped dents of initial meridian height lb = 64 mm and varied initial

depths Wb/h, applied to the reference cylinder with a length of L =

510 mm, resulted in the low normalized loads Pcr/Pcrid reproduced in

Figure 6.72 (bold line). According to these nonlinear buckling analysis
results the minimum load carrying capacity of the shell with such a local
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Figure 6.71: Maximum initial dent depths for shallow dents wl/h versus

Batdorf's cylinder parameter Z. Results of nonlinear buckling analyses for

some isotropic cylinders having a dent with lateral dimensions specified for

Wb/h = 0.1 (bold dots) or for a dent with a 32% longer initial width ab and a

24 % longer initial height lb (circlets).

axisymmetric dent is only about 30 % of the buckling load resulting for

the cylinder with perfect geometry, whereas the localized dent with the

elongated initial width and height reduces the minimal stability limit to

about 44% (small gray dots), the dent with the smaller initial lateral

dimensions to about 51 % (small black dots) of the perfect cylinder. Note

that for initial dimple depths between Wb/h = 0.1 and 0.4 the localized

dents yielded slightly lower buckling loads than the ring-shaped dent; that

is, shallow dents with short initial width were more damaging than wide

or ring-shaped dents, see also Section 6.6.3.

Influence of the isotropic material parameters E and v

For the isotropic cylinder having a small single dent nonlinear buckling

analyses were performed with a Young's modulus of E = 7000MPa,
thus with an elasticity only 10 % of that of aluminium. The normalized

buckling loads which resulted for a few dent depths were almost identical

to that obtained for the reference aluminium cylinder with the corre¬

sponding dimple. Consequently, the influence of the Young's modulus
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Figure 6 72 Normalized buckling loads Per/Per id for the reference cylinder

(L = 510 mm) with a single dent of different initial depth Wb/h Compari¬

son between results for a ring-shaped dent (bold line) and dents with initial

circumferential widths ab as indicated

E on the buckling behaviour of isotropic cylinders with a single dimple

imperfection can be neglected

Isotropic cylinders under axial compression increase in radius because

of the PoiSSON's ratio effect At the edges in general the change of

the diameter is restrained, what leads to some shell bulging and stress

elevations close to the cylinder ends For a short-term investigation of

the influence of these effects on the stability of the reference cylinder with

a single dent, the PoiSSON's ratio v of the cylinder shell material was set

to zero and nonlinear buckling analyses were performed for perfect shell

geometry and for dents of various initial dent depth The buckling load

resulting for the perfect cylinder with v = 0 was about 4 % higher than

with i/ = 03 But the buckling loads for the shell having a dent resulted

about 6 % lower without transverse strain compared to the corresponding
shell with standard material, probably since with v = 0 the positive effect

of the circumference expansion against the continuous deepening of the

dimple was missing
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6.6.2 Outward Dimples

As for isotropic cylinders with an inward dimple, the analysis of isotropic

cylinders having a single outward dimple (bulge) was made mainly by
means of a the reference aluminium cylinder with a radius R = 250 mm,

a length L = 510 mm, and a shell thickness h = 1.5 mm. The yielded
results were then again used for comparisons with other shells.

The inward dimples applied to the reference cylinder and used to describe

the effects of dimple depth variations had an initial meridian height /&

and an initial circumferential width a& which yielded the minimal cylin¬
der stability for a shallow dent of initial depth Wb/h = 0.1. As demon¬

strated in the previous section, in fact shallow dents of this initial width

and height resulted in lower critical loads than wider dents or axisym¬
metrical dimples. In Section 6.6.3 it will be shown that for outward

dimples short initial circumferential widths a& always resulted in higher

buckling loads than a ring-shaped bulge of similar height. That is, for a

given meridian height /& and initial elevation Wb no initial circumferential

width with a& < 2nR could be found that yield a lesser axial buckling
load of the aluminium reference cylinder, neither for small initial am¬

plitudes —Wb- Thus, an investigation limited into bulges which lead to

the minimum cylinder stability would probably require exclusive finite

element calculations of cylinders with a ring-shaped dimple. Neverthe¬

less, this thesis focuses the impact of localized dimple imperfections, i.e.

with limited initial dimensions in all directions. Consequently, the initial

heights lb and widths a& specified for the inward dimples were also ap¬

plied to the outward dimples to investigate the reduction of the cylinder

buckling loads due to a single, relatively small bulge in dependency of

its initial elevation Wb-

Pure Variation of the Initial Bulge Elevation —Wb

In Figure 6.19, page 223, the buckling loads for the reference cylin¬
der with a single dent of various normalized initial depth as well as

for the shell with a single bulge of different initial normalized elevation

Wb/h (left half) is depicted. As mentioned above, with an initial width

ab = 181mm and an initial height /& = 67 mm the lateral dimensions

of the bulges are identical to those of the dents shown in this figure.

Figure 6.73 again reproduces these nonlinear buckling analysis results

for the reference cylinder having a single bulge also for initial elevations

up to Wb/h = —10. Rightmost of the chart the normalized buckling
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Figure 6.73: Normalized buckling loads of an aluminium cylinder having an

outward dimple with initial amplitudes up to Wb/h = —10. Cylinder with

R = 250 mm, L = 510 mm, and h = 1.5 mm. The initial width and the initial

height of the bulge are always ab = 181 mm and h = 67 mm respectively.

loads Per/Per id of the corresponding inward dimples with depths up to

Wb/h = 0.75 are plotted for comparison. Thus, above all for absolute

dimple amplitudes \wb\ of about the wall thickness h outward dimples
caused considerably higher buckling loads than dents with like lateral

dimensions. However, for large amplitudes the difference tends to di¬

minish: the normalized buckling loads of bulges seem to converge with

growing elevation towards about the same value than that of the deep
dents displayed in Figure 6.22, page 228. For the shell and the dimple
size on hand the normalized minimum bucking load of the bulges is about

Pcr/Pcnd = 0.55 for an initial amplitude close to Wb/h = —1.5, com¬

pared with the lower minimum of Pcr min /Per id
= 0.51 of the dents at

an initial depth of only Wb/h = 0.75. Hence, the sensitivity of the cylin¬
der to bulges is notably lower than that to dents as regards the initial

amplitude as well as the minimum buckling load of the most damaging

dimples.

The nonlinear buckling analyses with adaptive load step control of

isotropic cylinders having a single bulge caused less troubles to realize

feasible results compared to the analyses of deeper dents: the bulges with

moderate initial elevations yielded always only one single buckling load.

That is, the intermediate buckling loads calculated within a nonlinear
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static analysis decreased steadily and finally coincided directly with the

applied total loads. Loads ascertainable at the minimum value of a con¬

cave chain of buckling loads could not be found for bulges, in contrast

to deep dents as described in Section 6.5, or in Figure 6.20, page 226,
for a dent of initial depth Wb/h = 0.5.

In Figure 6.74 as an example the results of nonlinear buckling analyses
for the bulge with an initial elevation of Wb/h = —0.5 are shown. The

set-up of this page corresponds to that of Figures 6.34, 6.40, and 6.49, see

also the explanations on page 241 ff. Chart 6.74(a) depicts the applied
axial force resulting for a nonlinear buckling analysis with adapted load

increments (thick line) which finally correlates with the linear buckling
loads computed after selected load steps. This conjoint value yields the

nonlinear buckling load Pcr = 373 kN and the ratio Pcr/Pcrid = 0.65.

Plot (c) illustrates the scaled-up deformations of the shell resulting for

an applied axial load of P = 368 kN close to buckling. Again, the dimple
climax is originally located at L/2. Whilst axial compression this nodal

point is only little displaced, whereas the upper and the lower flanks

of the bulge form two new inward dimples. Similar to the initial single

dents, besides the initial bulge and the two dents the shell is slightly

bulged. In Figure 6.75 the formation of the two dimples above and

below the bulge is demonstrated by means of the radii of the nodal

points along the axial path including the bulge climax for an axial force

of P = 368 kN in comparison with the origin radii. The apex of the

applied bulge remains almost immobile during loading, since a radial

displacement outwards would cause a circumferential shell stretching in

addition to the expansion due to the PoiSSON's ratio effect. The shell

with its initial concave curvatures at the upper und lower bulge flanks

is rather bend inwards about the quasi fixed bulge climax, forming the

two inward dimples.

Figure 6.74(b) and (d) display the linear buckling modes calculated for

states of stress and deformation at a small force of P = 40 kN and at a

force with P = 368 kN close to instability. In both cases the horizontal

arc over the bulge apex at L/2 serves as a swivelling axis for the shell

segment which above buckles inwards and outwards below. That is,

according to these eigenvectors at buckling one of the two formed dents

is put over to be converted into a bulge.

In the two color contour plots of Figure 6.76 membrane stress distri¬

butions in the reference cylinder again having an bulge of initial eleva¬

tion Wb/h = —0.5 are shown for an axial load of P = 368 kN. Thus, the

plots give the state of membrane stress which lead to the eigenmodes in
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—applied axial force

— buckling loads

368 kN

increments

(a) Nonlinear buckling analysis result (b) Buckling mode at P = 40 kN

(c) Displacements at P = 368 kN (d) Buckling mode at P = 368 kN

Figure 6.74: Results of a nonlinear buckling analysis with adaptive load step

control (a) for the cylinder having a bulge of initial elevation Wb/h = —0.5 and

selected buckling modes (eigenvectors) calculated for an applied axial load of
P = 40 kN (b) and P = 368 kN (d). Chart (c) displays the scaled-up cylinder

deformations which lead to the buckling mode in (d).
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Figure 6.75: Local radii along the vertical path from the bottom up over the

apex of an outward dimple with an initial elevation Wb/h = —0.5. Initial

configuration (black) and calculated deformed state for an applied axial force

of P = 368 kN (red).

6.74(d). The nominal axial membrane stress to this compressive force is

Naxiai = 234 N/mm. The variations of the axial membrane stress within

the deformed shell are displayed in the left plot. Similar to the shells with

a single inward dimple (e.g. Fig. 6.41), the vertical strip over the dimple

apexes is released, at the peak of the applied bulge the axial membrane

stress is diminished by 34 N/mm or 14 % of the nominal value. At the

two lateral ends of the two formed dents, but also at the cylinder edges,
concentrations of elevated compressive membrane stresses can be recog¬

nized. However, the maximum compressive membrane stress Naxtai at

these spots is only 11 N/mm or 5 % over the nominal value. That is, the

local relief due to stress rearrangement at the bulge tip is about three

times larger than the local additional loading at the buckle flanks and

shell edges. Again as for cylinders with a single dent but with higher
extremal values, on bulges notable tensile hoop membrane stresses Nhoop
emerge, visualized in the right plot of Figure 6.76 with a bright strip.

And, in turn, on the inward dimples dark dots can be seen which refer

to high compressive membrane stresses in circumferential direction.

To complete the calculations, transient dynamic analyses were also con¬

ducted for the isotropic cylinder with single outward dimples of identical
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»a„»l Nhoop

Figure 6.76: Axial membrane stress Naxlai and circumferential membrane

stress Nhoop of the cylinder with a bulge of initial elevation Wb/h = —0.5

at an applied axial load of 368 kN. Values in color maps are given in N/mm.
Result of a nonlinear static analysis.

initial lateral dimensions to those of the dents detailed in the previous
section. In Figure 6.77 the normalized buckling loads PCr/Pcnd are

reproduced for the reference cylinder having bulges with different ini¬

tial elevations Wb/h, an initial width of ab = 181mm and an initial

height of lb = 67 mm. The results of the transient dynamic analyses are

marked with big dots, those of nonlinear buckling analyses with adaptive
load step control as given in Figure 6.73, page 297, are chained with a

thin line. Obviously, for initial elevations larger than Wb/h = —0.5 the

top buckling loads obtained by transient dynamic analyses could not be

reached with nonlinear buckling analyses. These topmost axial forces

correspond to the cylinder collapse loads. Similar to the correspond¬

ing dents with initial depths of more than Wb/h = 0.2, see Figure 6.24,
nonlinear buckling analyses with bulges were aborted when reaching a

load level where some local buckling occurs and the force-axial displace¬
ment curve of a transient dynamic analysis has a more or less distinct

zigzag course. The axial reaction forces to the local maxima in such
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# transient dynamic analyses

—•- nonlinear buckling analyses

Figure 6.77: Transient dynamic analysis results of the reference cylinder having

a single bulge of various initial elevation Wb/h. Buckling loads obtained by
nonlinear buckling analyses are chained with a thin line for comparison.

load curves yielded the bottom dots or buckling loads in Figure 6.77.

In Figure 6.78 typical axial load-displacement curves and the respective
normalized buckling loads are shown for some selected initial bulge am¬

plitudes. These transient dynamic analyses results serve to point at the

origin of the dots in Figure 6.77. The lower red dots with dashed circlets

for initial bulge elevations from Wb/h = —0.4 to —0.6 are ignored in Fig¬
ure 6.77 because they refer to loads merely located about a bend in the

load curves missing a distinct local maximum value that could be used

to determine a precise amount of axial loading for some local buckling.

Two different kinds of local buckling processes in the vicinity of the initial

bulge could be distinguished which may occur prior to total cylinder

collapse and which are associated with a bend or a local maximum in

the axial load-displacement curves:

(I) Snapping inwards of one of the formed dents above and below the

initial bulge and arising of the other (bright red dots). The new

shape resembles the buckling mode in Figure 6.74(d).
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Figure 6.78: Resulting axial load-displacement curves of transient dynamic analyses and corresponding normalized buckling
loads Per/Per id for bulges with selected initial elevations —Wb/h applied to the reference cylinder.
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(II) Dynamic lateral shifting of the apex of one of the growing dents

above or below the initial bulge, followed by a deepening of the

accordingly staggered opposite dent (yellow dots).

In order to demonstrate these two different local-buckling-mode changes

observed, in the following the axial-compression process with respec¬

tive deformation states of the cylinder with one of the bulges in Figure
6.78 are demonstrated by means of selected contour-deformation plots
extracted from the transient dynamic analyses results. These analyses
were again conducted with the single-step Houbolt operator for time

integration and input parameters as given in Section 6.5.2. As already

mentioned, during cylinder compression up to the cylinder collapse the

origin bulge apex is almost unmovable and the formed dimples may

emerge everywhere in the shell around the initial bulge. Thus, the al¬

teration of the local radii at the nodes along the preselected horizontal

or vertical path over the bulge climax as introduced in Section 6.5.3 in

general were not informative for the analysis of different critical local

movements of the cylinder shell.

Similar to the selected inward dimples in the previous Section 6.6.1, the

deformation plots included in the Figures 6.79 to 6.82 and 6.85 give the

resulting shell deflections for the applied axial compression as flagged in

the P-AL-diagram. The displacements are shown again without mag¬

nification and the colors of the applied contour plots refer to absolute

values of total-displacement vector lengths (in metres). The top color-

map level (light gray) always indicates the maximum total displacement
for the corresponding loading.

1. Outward Dimple with Initial Elevation Wb/h = —0.2:

Figure 6.79 depicts the transient dynamic analysis results for the ref¬

erence cylinder having a relatively flat bulge with an initial elevation

Wb/h = —0.2. The P-AL-curve is a straight line up to the single climax

for total cylinder collapse at an axial reaction force of Pcr = 466 kN re¬

sulting for an applied axial compression of ALcr = 1.44 mm. This buck¬

ling load is very close to the result of an nonlinear buckling analysis with

Per = 462 kN.

According to the sequence of deformation plots included, prior to cylin¬
der collapse the shell consists of two almost identical inward dimples

emerged below and above the origin bulge (1st plot). The buckling is

locally initiated by a sudden snapping inwards of the upper dent (2n
plot) followed by the arise of the opposite dent. This action immedi¬

ately starts the settlement of new dimples in two staggered rows beside
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the formed inward respectively outward buckles (3r plot) The ring in¬

cluding the apex of the initial bulge separates these two rows and splits
the deforming cylinder into two symmetric halves Finally the collapse

process is terminated and the first stable post-buckhng state reached

when the buckles in the two rows fill the entire cylinder circumference

(4th plot)

The behaviour of the shell and imperfection on hand can be compared

with the corresponding shallow dent of initial depth Wb/h = 0 1, which

at cylinder collapse also at first snaps inwards, followed by a rapid settle¬

ment of buckles in staggered rows around the cylinder, see Figure 6 36
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Figure 6.79: Result of a transient dynamic analysis for the isotropic cylinder having an outward dimple of initial elevation

Wb/h = —0.2. The deformations in the pictures are displayed without magnification, the contour color maps refer to total-

displacement vector lengths in metres.
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2 Outward Dimple with Initial Elevation Wb/h =—0 5

The transient dynamic analysis results for the reference cylinder having
a bulge with an initial elevation Wb/h = —0 5 are reproduced in Figure
6 80 The P-AL-curve once again is straight-line up to the first peak
at an axial reaction force of Pcr = 378 kN for an applied axial compres¬

sion of ALcr = 1 17 mm This force confirmed the value yielded with a

nonlinear buckling analysis of Pcr = 373 kN

The first two included plots give information about the local deforma¬

tion process responsible for the loss of axial cylinder stability at local

buckling the dent which emerged above the initial bulge suddenly snaps

inwards, increases and flattens the shell, whereas the dent below ac¬

cordingly arises and disappears This process fits with type (I) of local

buckling defined above The so emerged large dent acts alike the applied

single inward dimple of initial depth Wb/h = 0 3 presented in Section

6 6 1, see e g Figure 6 42, page 256 The dent apex rapidly moves to a

position where the hoop curvature quasi vanishes and the dimple forms a

flattened shell strip Accordingly the axial cylinder stiffness is reduced

However, the new geometry with rearranged stresses allows further axial

loading of the cylinder, until at an end-shortening of ALcr = 1 23 mm

the cylinder collapses totally The resulting axial reaction force is

Per = 378 kN, thus a value almost identical to the first peak The cylin¬

der buckling begins with the formation of buckles beside the big dent

formed during local buckling (3r plot), then further dimples emerge

which settle around the cylinder side by side (4* plot) The first stable

post-buckhng pattern, finally arranged with a single row of buckles, re¬

sembles the pattern resulting for the dents of initial depth Wb/h = 0 3 in

Fig 6 42 or Wb/h = 0 5 in Fig 6 51 But the apex of the dimple which

emerged at last and opposite to the initial bulge is located at L/2, i e

at half the cylinder length, in contrast to the first buckle that is eccen¬

trically formed prior to buckling above the origin bulge Consequently,

the row of buckles around the cylinder in the post-buckhng pattern at

hand is slightly skew
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Figure 6.80: Result of a transient dynamic analysis for the isotropic cylinder having an outward dimple of initial elevation
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3 Outward Dimple with Initial Elevation Wb/h =—10

The force-axial compression curve resulting for a dynamic transient anal¬

ysis of the reference cylinder with an outward dimple of initial elevation

Wb = —h is shown in Figure 6 81 A and 6 81 B The first figure in¬

cludes deformation plots which demonstrate the local buckling of the

shell around the bulge, the second one plots which give the total cylin¬
der collapse for continued cylinder compression The resulting axial

force for the local instability is Pcr l =324kN, that for the cylinder

collapse Per l = 378 kN Nonlinear buckling analyses yielded only one

buckling load of Pcr = 316 kN, which is slightly below the force PcrL

obtained with the transient dynamic analysis at local buckling The

nonlinear buckling analysis with adaptive load step control were again

aborted when reaching the local buckling load, ignoring any remaining

axial buckling resistance of the cylinder with simulated rigid endplates

Prior to local buckling two similar dents emerge above and below the ap¬

plied bulge, see first plot in Figure 6 81 A At an applied axial compres¬

sion of about ALcr l = 10 mm the upper dent suddenly snaps inwards

whereas the lower arises and almost vanishes This local instability led

to a zigzag course of the P-AL-curve with a distinct local maximum that

enabled accurate determination of the critical axial reaction force Pcr l

This local buckling behaviour is similar to that of the previous bulge
of initial elevation Wb/h = —05 or the dent of initial depth Wb/h = 0 3

detailed in Section 6 6 1 The upper dent then deepens, increases and

its apex reaches a position of considerably reduced local circumferential

curvature Therefore, the axial cylinder stiffness is suddenly reduced

what leads to the load curve progression on hand with a zigzag course

and a reduction of the ascending slope

At the axial load level immediately after the local buckling the state

of strain and stress of the cylinder with the wide, flattened dent is be¬

low the stability limit of the deformed cylinder Thus an additional

end-shortening of about AL = 0 22 mm could be applied until the to¬

tal collapse of the cylinder was reached From the deformation plots in

Figure 6 81 B can be taken that whilst further loading, prior to cylin¬
der collapse, the deep dent above the origin bulge is continuously dis¬

placed to one side of the meridian line over the bulge vertex, whereas the

hardly visible, shallow dent below the bulge is displaced to the opposite

side The radial displacement of the bulge apex during axial cylin¬
der compression again remains very small in comparison to the ampli¬
tudes of the emerged buckles At an applied axial compression of about

ALcr u = 1 23 mm the cylinder collapse is initiated by the formation of

a new dimple beside the large dent, followed by the re-amphfication of

the smaller, but also staggered dent below the origin bulge Afterwards,
beside the now increased lower dent new buckles are formed side by side

in a slightly skew row around the cylinder The dimples settled around
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the cylinder in one direction beside the dent above the origin bulge, to¬

gether with the dimples which settled in the other direction beside the

dent below the bulge, finally fill the entire circumference in one spiral
row. Then, above and below the initial bulge two staggered dents of

almost identical size have come to a rest. This first stable post-buckling

pattern with further compression is modified in a way that the apex of

the increasing buckles in the row on the right and the left of the origin

bulge are axially displaced to the circumference at L/2.

Similar to the local buckling behaviour of the previous bulge of

half initial elevation Wb/h = —0.5, the deformation process which

leads to the zigzag course of the P-AL-curve and which is shown in

Figure 6.81 A for the local buckling corresponds to kind (I) of the two

mode replacement-incidents described on page 304. The that following

successive deformation process prior to the cylinder collapse and con¬

sisting in a lateral displacement of the dent apex above the origin bulge

correspond to kind (II).

4. Outward Dimple with Initial Elevation Wb/h = —1.5:

The results of a transient dynamic analysis for the reference cylinder

having an outward dimple of initial elevation Wb/h = —1.5 are depicted
in Figure 6.82, again separated in two parts for local buckling and for

cylinder collapse. For the bulge on hand, in Figure 6.78, page 303, three

different critical load levels are marked. In Figure 6.83 a close-up view

of the axial load-compression curve resulting for the transient dynamic

analysis shows the peaks or bends which led to the specification of these

three particular load levels. The first local buckling incident occurred

between an applied axial compression of ALcr = 1.0 and 1.02 mm, or at

a resulting axial reaction force of about Pcr ~ 323 kN. The shape of the

bend in the P-AL-curve found at this load level allowed only a rough
estimate of this critical axial reaction force. However, the buckling load

obtained with a nonlinear buckling analysis of Pcr = 311 kN is close to

the critical load range of the transient dynamic analysis result. The

static analysis with adaptive load step control was again aborted due to

the local buckling. The local maximum, i.e. the first lower peak in the

P-AL-curve of the transient dynamic analysis at an applied axial com¬

pression of ALcr l = 1.11mm enabled an accurate determination of a

further local buckling load with PcrL = 347 kN. Cylinder collapse finally
occurred at the maximum reaction force of Pcr u = 364 kN resulting for

an applied end-shortening of ALcru = 1-21 mm.

The first two deformation plots included in Figure 6.82 A reproduce the

deformation process responsible for the first local buckling and the bend

in the P-AL-curve. Similar to the local buckling behaviour of the two
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previous bulges again during axial compression above and below the ini¬

tial bulge dents continuously emerge and deepen Reaching the critical

load the upper dent increases in amplitude whereas the lower dimple
decreases In Figure 6 84 this transformation process is demonstrated

by means of the alteration of the radii at the nodal points along the

vertical path over the bulge vertex placed at 0 5L resulting for axial

compressions between AL = 1 and 1 3 mm This process again corre¬

sponds to the local buckling of kind (I) described in page 304 The local

instability led to a small reduction of the slope of the P-AL-curve, i e

to a slight decrease in axial cylinder stiffness due to the shell-flattening

in the upper dent, but for the initial bulge amplitude on hand no zigzag

course with an intermediate fall of the reaction force occurred

The second local buckling incident at about AL = 1 11mm, however,
caused such a curve progression with a distinct local maximum Accord¬

ing to the third to the sixth deformation plots in Figure 6 82, this critical

load reached, the larger upper dent suddenly is displaced towards the

left side of the vertical path over the bulge vertex The lower dent is also

displaced but in opposite direction and re-mcreases in size At the end of

this local bucklmg-event the lower staggered dent is also flattened and as

large as the upper, the apexes of the two dents are placed in a line tilted

about the origin bulge tip This local deformation process corresponds
to kind (II) of local buckling defined above Due the now wider range

with flattened strips and hence of reduced geometric stiffness the axial

cylinder stiffness is once again slightly diminished, but the rearranged
state is still below the stability limit of the deformed cylinder

After further compression finally the peak load followed by the total

cylinder collapse is reached The down-fall of the reaction force displayed

in Figure 6 82 B is associated with the settlement of new buckles around

the cylinder in a row beside the upper dent as well as in a row beside the

lower dent The first stable post-buckhng shape is attained when the two

rows of formed buckles is united to one hoop of large buckles, which then

travel to the centre of the cylinder surface This pattern resembles the

post-buckhng pattern of the previous bulge with Wb/h = — 1 in Figure

6 81 B
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Figure 6.82 A: Result of a transient dynamic analysis for the isotropic cylinder having an outward dimple of initial elevation

Wb/h = —1.5. First part with two local instabilities. The deformations are displayed without magnification, the contour color

maps refer to total-displacement vector lengths in metres.
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Figure 6.82 B: Continuation to previous figure. Transient dynamic analysis results for a bulge of initial elevation Wb/h
— 1.5. Second part with cylinder collapse.
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Figure 6.83: Close-up view of the axial force-compression curve resulting for a

transient dynamic analysis of the bulge of initial elevation Wb/h = —1.5 applied
to the reference cylinder. The bend (Ft circle) and the first local maximum

(2n circle) in the P-AL-curve indicate twice local buckling, the top peak (3e
circle) refers to the cylinder collapse.

Figure 6.84: Sequenced progressions of the local radii along the vertical path

for the bulge with Wb/h = —1.5. Local instability with a replacement of the

deformation mode prior to cylinder collapse according to the ist and the 211

deformation plot in Fig. 6.82 A.
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5 Outward Dimple with Initial Elevation Wb/h = —1 75

The results of a transient dynamic analysis for the reference cylinder

having a bulge with an initial elevation oiwb/h= —1 75 are displayed in

Figure 6 85 The axial force-displacement curve has one local maximum

stemming from local buckling and a climax indicating total collapse
of the cylinder The local buckling occurred for an axial compression

of about ALcr l = 1 04 mm where with a first resulting axial reaction

force of Per l = 330 kN a first peak is reached The analysis yielded a

maximum axial force of Pcr u = 364 kN for an applied end-shortening
of ALerU = 1 21 mm Again only the lower buckling load Pcr l could

be confirmed by nonlinear buckling analyses, resulting in a critical load

of PcrL = 315 kN, since the static analyses were aborted due to local

buckling

Whilst compression prior to local buckling again two deep dents of sim¬

ilar size are formed which deepen continuously The first three deforma¬

tion plots included in Figure 6 85 show that during the local buckling
the two dents above and below are displaced aside from the meridian

over the bulge tip The upper, slightly deeper dimple moves counter¬

clockwise, the lower clockwise After this process, which corresponds to

the kind (II) of local buckling defined in page 304, the axial cylinder
stiffness is reduced, probably since the staggered dents mean a widening
of the range of partially flattened shell segments with reduced geometric

stiffness

However, due to load rearrangements, with the axial load level after

local buckling the stability limit of the locally deformed cylinder is not

reached yet enabling further axial compression The cylinder collapse

finally is initiated by the formation of new buckles in a row around the

half cylinder circumference beside the upper dent and another beside the

lower dent, similar to the collapse of the cylinder with a bulge of initial

depth Wb/h = —1 5 That is, the deformation process to the first stable

post-buckhng pattern is accomplished when the two rows are filled with

dimples and joint to a single ring
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According to the analysis results above two typical buckling modes are

involved in the local instability behaviour of isotropic cylinder shells

having an initial outward dimple. In the shaded deformation plots of

Figure 6.86 these patterns are shown by means of the eigenvectors close

to local buckling calculated during nonlinear buckling analyses of the ref¬

erence cylinder with a bulge of initial elevation (a) Wb/h = —0.5 and (b)
Wb/h = —1.75. The two particular local buckling processes introduced

(a) Buckling mode for Wb/h = — 0 5 (b) Buckling mode for Wb/h = —1 75

Figure 6.86: Buckling mode (eigenvector) to the lowest eigenvalue calculated

at applied forces close to local buckling of the reference cylinder afflicted with

an outward dimple of initial elevation Wb/h = —0.5 and —1.75 as indicated.

in page 304 which were observed in the dynamic transient analysis re¬

sults above finally end in patterns similar to one of these two buckling
modes. Process type (I) leads to a deep inward dimple above the initial

bulge according to the buckling mode in 6.86(a). And type (II) ends

with a deep dimple again above the initial bulge but laterally shifted

in one direction and another below the initial bulge, shifted in opposite

direction, similar to the buckling shape in plot (b). During axial loading
above and below the initial bulge always an inward dimple is formed.

The local buckling behaviour is guided by the manner the depth and the

location of the apex of these dents change. Hence the local buckling be¬

haviour of cylinders with an initial bulge resembles that of the cylinder
with an initial dent.

The upper inward dimple in Figure 6.86(a) is similar to the dimple of the

buckling mode of the cylinder with an dent of initial depth Wb/h = 0.3
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in Figure 6 40(d), page 6 40 And in fact, the corresponding deformation

process above the bulge of initial amplitude Wb/h =—0 5 resulting for a

dynamic analysis and reproduced in Figure 6 80, page 308, is analogous
to that at the dent with Wb/h = 0 3, see Figure 6 42 in page 256 the

dent is only slightly deepened until at a critical load the dent suddenly

snaps inwards to form a flattened shell strip The upper and the lower

pair of inward and outward dimples in Figure 6 86(b), in turn, corre¬

spond to the two adjacent dimples in the buckling mode for the cylinder

having a deep dent, for instance with an initial depth of Wb/h = 05

as displayed in Figure 6 40(d), page 254 Also in this case an analogy
can be found between the local buckling behaviours resulting for tran¬

sient dynamic analyses for the cylinder afflicted with a bulge of initial

amplitude Wb/h = — 1 75, see upper cylinder halves in Figure 6 85, and

for the longer cylinder with L = 765 mm having a dent of initial depth

Wb/h = +1 shown in Figure 6 65, page 284 prior to this local buckling
incident the dents are already deepened and hence similar to a flattened

horizontal strip with two peaks of combined axial-tangential compres¬

sive loading, the dent apex then suddenly travels laterally towards one

of these peaks

Simultaneous increase in depth of both dents above and below the bulge

requires increasing bending about the tangent at the bulge vertex Thus,
this tangent acts rather as a swivelmg axes about which the two dim¬

ples are tilted in-, respectively outwards Consequently, in the buckling
modes of Figure 6 86 the dimple above the initial bulge is directed in¬

wards, the dimple below outwards, or vice versa These buckling modes

are eigenvectors, hence the (normed) amplitudes are arbitrarily scalable,
and the consequences for the formation of such shapes (e g strains) are

ignored In contrast to the eigenvectors, the transient dynamic analy¬
ses yields amplitudes of outward dimples which are considerably smaller

compared to the amplitudes of the dents, since an immoderate local in¬

crease of the radius would lead to excessive tangential stretching But as

already mentioned, whilst axially compression and buckling of cylindrical
shells rather the bending energy is increased than the strain energy

Influence of the Cylinder Dimensions L, R, and h

As shown above, the modified nonlinear buckling analyses of the refer¬

ence cylinder having an outward dimple yielded only one buckling load

Pcr for some local buckling Consequently, for bulges of large10 initial

10Reference cylinder 'large' ifwb/h > —0 5, see Fig 6 78, p 303
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elevations with such static calculations the cylinder collapse load of the

shell with rigid endplates simulated remains unknown. But, in contrast

to the shells with an initial inward dimple, for the initial bulges the in¬

vestigation on the influence of the cylinder radius R, the initial cylinder

length L, and the shell wall thickness h on the nonlinear buckling analy¬
sis results could be limited to the alteration of the lower, local buckling
load (Perh)-

As for the initial dents, cylinders with identical factor R h having an

initial bulge yielded identical normalized buckling loads PCr/Pcnd for

like normalized initial dimple amplitudes Wb/h, see pages 279 ff and

Figure 6.62.
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Figure 6.87: Influence of the cylinder length L on the normalized buckling load

Per /Per id of an isotropic cylinder with a single bulge of various initial elevation

—Wb/h. Cylinder radius R = 250 mm, shell wall thickness h = 1.5 mm. Mean

initial dimple dimensions ab = 180 mm and h = 68 mm.

The influence of the cylinder length L on the buckling loads for initial

bulges is similar to that for initial dents as detailed in page 281: the

distance between the shell edges and the initial dimples at L/2 increases

with growing initial cylinder length L; thus, for like axial loading the

radial displacements increase as well, and therefore lower buckling loads

resulted for longer shells compared to the reference cylinder. In Figure
6.87 the nonlinear buckling analysis results for the reference cylinder with

radius R = 250 mm, wall thickness h = 1.5 mm, and length L = 510 mm
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are displayed together with the results for cylinders with like R and h but

a longer length of L = 765 mm, or a smaller length of only L = 255 mm.

Again, the difference between the normalized buckling loads PCr/Pcnd
for the reference cylinder (middle curve) and for the 50 % shorter cylinder

(upper curve) is significantly larger than the difference between the loads

of the reference cylinder and the 50 % longer cylinder (lower curve).

For initial bulges, the distances between the cylinder collapse load and

the local buckling load, see Figure 6.78 in page 303, of the cylinder with

initial length L = 765 mm are of the same size as those of the reference

cylinder, only the initial amplitudes of minimum buckling load are again

slightly shifted. Accordingly, no notable difference in the local buckling
behaviour of these cylinders in Figure 6.87 could be observed.

Influence of Dimple Width ab and Height /&

l
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Figure 6.88: Resulting normalized buckling loads Per/Per id for the elongated

reference cylinder with L = 765 mm, R = 250 mm, h = 1.5 mm, having a

single bulge of different initial elevation —Wb/h. Comparison between two sets

of bulges with initial widths ab and lengths lb as indicated; reference dimple
with h = 69 mm and ab = 181 mm.

In Figure 6.88 the normalized buckling loads PCr/Pcnd of the cylin¬
der with L = 765 mm, R = 250 mm, and h = 1.5 mm having a sin¬

gle bulge of various initial amplitude Wb/h and either of initial width
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a,b = 181mm and height /& = 69 mm, or ab = 238 mm and /& = 85 mm,

respectively. The former dimension pair corresponds to the initial cir¬

cumferential width and meridian height of the inward dimple applied
to the cylinder on hand which yielded the minimum nonlinear buckling

analysis results for an initial depth of Wb/h = 0.1, see Section 6.6.3.

The later pair contains the lengths ab and /& for an initially 23 % longer
and 32% wider bulge. Buckling loads resulting for the cylinder with

L = 765 mm having a single inward dimple with these two sets of initial

dimple dimensions are plotted in Figure 6.70, page 292. The effect of

an increase of the initial width ab and the initial height /& for bulges
is notably less important than that of dents, see page 290. Nonlinear

buckling analyses of the sized bulge yielded a minimum local buckling
load of Pcr = 253 kN for an initial elevation of Wb/h = —1.5, which is a

value 9 % below that for the bulge with the smaller lateral dimensions,

Pcr = 279 kN. In comparison, the corresponding two sets of dents re¬

sulted in a difference between the smallest local buckling loads of about

14%, see Figure 6.70. The upper thin lines in Figure 6.89 show that the

effect of a similar expansion of the initial bulge width ab and height /&

in case of the reference cylinder with L = 510 mm is analogous to that

of the longer cylinder in Figure 6.88.

The buckling loads in Figure 6.88 are results of nonlinear buckling anal¬

yses with adaptive load step control and refer to the loads at which first

local buckling occurs. In contrast to the initial dents, as already men¬

tioned, for initial bulges the nonlinear buckling analyses gave no further

axial buckling loads beyond these loads which would indicate cylinder

collapse. Consequently, only the impact of the bulge-size variations on

the local buckling load is apparent. However, the cylinder collapse loads

found with transient dynamic analyses for the shell having one of the

bulges in the two sets of ab and /& confirmed the observation for dents:

the differences in the loads PCr/Pcnd for like amplitudes Wb/h between

the cylinder collapse load of the shells having a bulge with a initial width

ab = 181mm and such with a sized bulge of ab = 238 mm are much

smaller compared to the differences between the lower local buckling
loads.

As aforementioned, the initial width ab and heights /& of the bulges

given above correspond to the origin lengths of the inward dimples with

a given initial depth Wb (mostly Wb/h = 0.1) which yielded the lowest

buckling load of the shell involved. According to the results detailed in

Section 6.6.3, page 325 ff, shallow dents (wb < wl) with widths ab of

only 12% of the cylinder circumference 2nR tend to result in smaller
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buckling loads than any ring-shaped dent, see Figure 6.72 on page 295.

But by contrast, outward dimples with initial widths a& smaller than

the cylinder circumference always provoked higher buckling loads than

ring-shaped bulges. Figure 6.89 depicts the normalized buckling loads

—— bulges with ab = 181 mm and lb = 66 mm

-^>- sized bulges with ab = 238 mm and lb = 83 mm of

0 9 - • ring-shaped bulges with lb = 64 mm Pf
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Figure 6.89: Normalized buckling loads Per/Per id for the reference cylinder

(L = 510 mm) with a single bulge of different initial elevation —Wb/h. Com¬

parison between results for a ring-shaped bulge (bold line) and bulges with initial

circumferential widths ab as indicated.

Per /Per id of the reference cylinder having a single bulge with initial

elevations Wb/h between 0 and —2 and initial widths ab and heights /& as

indicated. The critical loads along the bold line resulted for the cylinder
with a single axisymmetric bulge. It can be seen that the buckling loads

of the ring-shaped bulge are always below those of the dimples with an

initial width of ab = 181mm as well as of ab = 238 mm (compare with

Fig. 6.72, page 295).

Influence of the isotropic material parameters E and v

As explicated for inward dimples in Section 6.6.1, page 294 ff, the in¬

fluence of the Young's modulus on the buckling analysis results of the

isotropic cylinders having a single dent is negligible. According to a

few analysis results, this applies also for isotropic cylinders with a single
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bulge.

The behaviour of an isotropic cylinder with a PoiSSON's ratio of v = 0

having a single bulge is analogous to such a cylinder having a single

dent, see page 6.6.1 ff; and also the differences between the buckling
loads resulting for v = 0 and v = 0.3 correspond to those for dents.

6.6.3 Lateral Dimensions of Dimples Provoking
Minimal Cylinder Stability

In the previous sections the buckling behaviour and the critical loads

of axially compressed isotropic cylindrical shells with a single inward or

outward dimple depending on the initial amplitude Wb of the dimple were

discussed. The initial meridian height /& and the initial circumferential

width ab of these dents or bulges were considered given measures for

the selected cylinder dimensions R, L, and h. This section deals with

the results of scores of nonlinear buckling analyses which yielded these

initial dimple widths and heights used for a number of isotropic cylinders
of different length, radius and wall thickness.

The initial height Zg and the initial width a^ are defined herein as the

meridian height /& and the circumferential width ab of a single dimple
with a pre-selected amplitude Wb which resulted in the lowest buckling
load Pcr of an axially compressed circular cylinder with this dimple and

otherwise perfect geometry:

initial height h(wb) '= min{Pcr(/6, ab, Wb)} (6-9)

initial width aj,(wb) := mm {Pcr(Ib,ab,Wb)} (6.10)
ab

The initial dimple height /& as well as the initial dimple width ab are

free parameters of a "double cosine-dimple" as defined in Section 6.2,

page 196.

Without any numerical analysis which considers geometric nonlinearities

the continuous radial displacements during the axial compression of a

cylinder having a single dimple may not be quantified accurately. Fur¬

ther, there was no obvious indication given by the initial cylinder and

dimple geometry for an analytical approach of the searched initial dent

dimensions provoking minimal cylinder stability. The minimum searches

were therefore performed by means of nonlinear buckling analyses vary¬

ing iteratively either the initial dimple height /& or the dimple width ab

for each preselected initial dimple amplitude Wb-
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The dependence of initial dimple amplitude Wb and the cylinder dimen¬

sions L, R, h on the "pessimum lengths" Zg and ag is different for in¬

ward and for outward dimples. Thus, again first the search for the Zg
and the ag of inward dimples is detailed. That of bulges will follow on

page 326. In contrast to isotropic cylinders, the buckling behaviour of

laminated cylinders depends strongly on the material parameters, and

so for laminated cylinders the lengths ag and Zg also vary not only with

different cylinder dimensions and initial dimple amplitude but also with

the laminate stacking; thus, the behaviour of single dimples in laminated

cylinders is dealt with separately in Section 6.7, page 445.

According to the results the initial height Zg as well as the initial width

ag of a dimple in a cylinder are different from zero also for vanishing
initial dimple amplitude. It was found that these dimple dimensions

are correlated with the analytical wavelength of axisymmetric cylinder

buckling 2 Zc. This wavelength may be understood as eigenvalue which is

characteristic for an isotropic cylinder and which is independent of the

buckle amplitude. Consequently, the initial dimple height Zg and width

ag may be interpreted as eigenvalues of a particular cylinder with a single

cosine-shaped dimple of a particular initial amplitude.

Nonlinear buckling analyses of cylinders having dimples with initial

depths Wb/h less than 0.05 resulted in buckling loads Pcr almost identi¬

cal to those of the perfect cylinder PCnd- Therefore, with load variations

within the range of the those due to general numerical discrepancies ac¬

curate minimum searches for the initial dimple height Zg and width ag

were ruled out.

Isotropic Cylinders with Inward Dimples

In Figure 6.90 the results of nonlinear buckling analyses of the isotropic
reference cylinder with R = 250 mm, L = 510 and h = 1.5 having
an single inward dimple of fixed initial depth (a) wg/Zi = 0.1 and (b)
Wb/h = 0.3 with different initial meridian heights Zg and initial circum¬

ferential widths ag are reproduced. The shaded surfaces represent the

buckling loads of the shells normalized with respect to the perfect ref¬

erence cylinder, PCr/Pcnd, plotted over the matrix of the varied lateral

dimple dimensions Zg and ag. For a better visibility only values for dents

with a height Zg smaller than a half of the cylinder length and a width

ag smaller than a half of the cylinder circumference are shown. The

thick lines in the contour plots below these surfaces refer to lateral dent
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lb = 67 mm

aj = 181 mm

(a) Wb/h = 0.1

lb = 77 mm

ai = 185 mm

(b) Wb/h = 0.3

Figure 6.90: Normalized buckling loads Pcr/Pcnd of the isotropic reference

cylinder having a single dent of initial depth (a) Wb/h = 0.1 or (b) Wb/h =

0.3 with different lateral initial meridian heights h and initial circumferential
widths ab. Thick lines in the contour plots refer to h and ab which give minimal

buckling loads.
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dimensions which give the largest impact to the axial cylinder stability.
Their intersection points, in the minimum of the shaded surface, finally

yield the searched values for the initial height Zg and width ag of a single
dent for the given cylinder dimensions and the given initial dimple depth

Wb that results in the smallest buckling resistance.

To reduce the analysis effort not all combinations of the lateral dimple
dimensions were calculated for all considered cylinders as it was done

for the reference shell. The thick "minimum lines" in the contour plots
of Figure 6.90 for varied widths ag are quite straight. Thus, for each

cylinder and each given initial depth wg first the extremal value of the

meridian height for an initially estimated extremal value of the width

was iteratively searched. With the initial height Zg found this way, the

extremal value for the length ag was educed. That is, any interdepen¬
dence of the two lateral dimensions were neglected. This assumption is

not totally correct, since the thick lines are neither perpendicular nor

straight. Therefore, in cases with solutions for the "pessimum width"

Zg far from the initially estimated value the search procedure was reit¬

erated. This procedure was not very elaborate but nevertheless quite

time-consuming, since to obtain the searched lengths Zg and ag with

good accuracy together more than twenty nonlinear buckling analyses
were needed for each cylinder and each initial depth wg considered.

In Figure 6.91 the dependency of the buckling load on the initial merid¬

ian dent height Zg for the reference cylinder having an single inward

buckle with a given initial depth wg/Zi = 0.3 and a fixed initial width

2-nRj'ag = 8.0 (8.4 in enclosed chart) is shown. The minimal buckling
load may be found at Zg between 10 and 20 percent of the cylinder length

L, which corresponds to 5 to 10 full waves in axial direction. In order

to obtain accurate solutions for the searched extremal values, the in¬

vestigated variable was split at each case to get ten to twenty sampling

points with increments which close to the minimum are smaller than one

percent of the cylinder length or of its circumference. The black circles

in the curves of Figure 6.91 mark the buckling loads Pcr yielded for the

dent with dimensions pursuant to the values at the sampling points. In

the included close-up about the minimum value Zg the distances between

these points are 1/10 or 1/20 of the number of full waves L/Zg in ax¬

ial direction. In the case on hand, the meridian length referring to the

minimum value was found at Zg = 77mm or L/Zg = 6.65.

In search of the extremal values of the initial width of dents ag it was pro¬

ceeded similarly to those of the initial height Zg. In Figure 6.92 the non¬

linear buckling loads of the cylinder above having an inward dimple again
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with a given initial depth wg/Zi = 0.3, a given initial height L/Zg = 7.0,
but variable initial widths ag are reproduced. Worth mentioning that a

dent with one full wave in circumference, i.e. with an initial width ag

equal to the cylinder circumference, is four percent less damaging than

the the axisymmetric, ring-shaped dimple. For clarification some icons,

showing the particular cylinder plan views, are included. It is of vital

importance that in cases with inward dents two minimal values may be

identified: one minimal buckling load exists for an inward axisymmetric

dent, marked with a gray circlet, and another at about 10 percent of the

cylinder circumference. For the latter minimum value at ag = 184mm

or 2-nRj'ag = 8.5, again a close-up is included in Figure 6.92.

In Table 6.3 the resulting initial meridian heights Zg and the initial cir¬

cumferential widths ag of a single dent with an initial depth wg/Zi = 0.1

are listed. Every table row refers to an isotropic cylinder with length L,
radius R, and wall thickness h, whose buckling loads due to the applied
dent with wg/Zi = 0.1 and the indicated lengths Zg and ag were reduced

the most. The finite element modeling of these aluminium cylinders are

listed in Table 4.1 in Section 4.1.1 on page 120. The respective buckling
loads of the cylinders without any imperfection Pcr td may be found in

Table 4.2 in Section 4.2.1 on page 128. The shells cover a range of the

radius/wall thickness ratio R/h from 100 to 1333 and a range of the

length/radius ratio L/R from 0.38 to 5.1. Batdorf's geometry param¬

eter Z in the seventh table column ranges between 57 and 2544 for a

general PoiSSON's ratio of v = 0.3. From the table finally also the wave¬

lengths 2 Zc of the classical axisymmetrical buckling mode of the listed

cylinders can be taken, see Section 2.2.2.

In the following first the resulting initial dent heights Zg in the table

above and their predictions are commented. Subsequently the resulting
initial dent widths ag and their predictions will be discussed similarly.

Initial dent heights Zg:

The resulting initial dent heights Zg provoking minimal buckling loads of

the cylinders having a dent with initial depth wg/Zi = 0.1 in Table 6.3

are almost equal to the analytical wavelength 2 Zc for axisymmetri¬
cal buckling; that is: Zg/2ZC « 1.0. However, for deeper initial dent

depths Wb/h the dent-height/wavelength ratio Zg/2ZC is slightly higher.
In Figure 6.93 the ratio Zg/2ZC versus the initial normalized dent depth

Wb/h is plotted for some of the isotropic cylinders in Table 6.3 above.

The thick trend line follows the results of an empirical formula for the
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375 0 40 57

375 0 53 102

375 0 68 165

375 0 80 229

375 1 02 372

375 1 20 515

375 1 36 662

375 1 60 916

375 2 04 1489

375 2 67 2544

66 9

66 9

66 9

66 9

66 9

66 9

66 9

66 9

66 9

66 9

68 1 02

67 1 00

65 0 98

67 1 00

70 1 04

66 0 99

66 0 99

70 1 04

69 1 03

69 1 03

68 0 4 %

68 -1 9 %

68 -3 8 %

68 -1 9 %

68 2 4 %

68 -2 6 %

68 -2 5 %

68 2 7 %

68 1 4 %

68 1 5 %

162 2 43

175 2 61

177 2 65

171 2 55

177 2 65

177 2 65

181 2 70

178 2 67

184 2 75

183 2 73

176 -7 60 %

176 -0 84 %

176 0 53 %

176 -3 23 %

177 0 14 %

177 -0 13 %

178 1 50 %

179 -0 13 %

181 1 90 %

184 -0 83 %

500 0 75 255

500 0 75 382 5

500 0 75 510

500 0 75 765

667 0 51 165

667 0 77 372

667 1 02 662

667 1 53 1489

66 9

66 9

66 9

66 9

65 0 98

70 1 04

66 0 99

69 1 03

68 -3 8 %

68 2 4 %

68 -2 5 %

68 1 4 %

176 2 64

178 2 67

181 2 70

184 2 74

176 0 16 %

177 0 90 %

178 1 50 %

181 1 70 %

see Figure 6.7, page 197; Z = -y^Vl - v2 ; 2Ze = ,12(1^2)]i/4 V-Rfo ~3 46^Rh (i/ = 03)

Table 6.3: Lateral initial lengths ab and lb of a single inward dimple of initial depth Wb/h = 0.1 which provokes a

buckling load for divers isotropic cylinders. See also Table 4-1 und 4-2.
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Figure 6.93: Ratio of the initial dent height lb to the classical axial wavelength

2lc subject to the initial normalized dent depth Wb/h. Results for six isotropic

cylinders of different radius, length and wall thickness.

ratios of the initial dent heights Z| to the wavelength 2ZC

is given by the following parabolic function:

This formula

7*

lb

2L
= 1.0+1.5 wgy

h)
V 0 < Wb < wl (6.11)

The lengths Zg approximate the initial heights Zg which result for shallow

dents, i.e. for dents with initial depths wg not deeper than the marginal

depth wl. For dents initially deeper than the respective marginal depths

wl inconsistent results for the searched initial dent heights Zg were ob¬

tained.

Figure 6.94 displays the marginal depths Wg which resulted for dents

with lateral dimensions specified for an initial depth of wg/Zi = 0.1

(black), subject to Batdorf's parameter Z of some cylinders to which

these dents were applied. According to the gray circlets for dents with

24 % longer initial heights Zg and 32 % longer initial widths ag marginal

depths wl resulted which are about 0.05h deeper. Hence, the marginal

depth Wg which serves as application range of the formula for the ini¬

tial dent height Zg depends also on this length Zg, albeit in a weak way.

Though longer initial dent heights led to lower minimum buckling loads

Per min/Pend, the consideration of the trend line along the smaller depths
in Figure 6.94 is preferable for an estimate of the marginal depth «;£.
Figure 6.95 includes the relative deviations AZg of the initial dent heights
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Figure 6.94: Marginal initial depths for shallow dents wl/h versus Batdorf's

cylinder parameter Z. Results of nonlinear buckling analyses for some cylin¬
ders having a dent with lengths lb and ai specified for Wb/h = 0.1 (black) or

for a dent with a 32 % longer initial width ab and a 24 % longer initial height

h (gray).
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Figure 6.95: Relative deviations Alf, of the initial dent heights li in Fig. 6.93

from the dent heights l^(wb), calculated, by means of Equation (6.11), in de¬

pendence on the initial dent depth wb/h.
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Figure 6 96 Ratio of the initial dent height lb to the wavelength 2lc versus

the initial dent depth Wb/h for the reference cylinder within the respective

application range Wb < wl of the formula ll(wb) (dashed, lines) Results for
the standard FE mesh size (black dots) and for a finer mesh size (gray dots)
as indicated

Zg m Figure 6 93 from the dent heights Z* calculated with Equation (6 11)
The bold dots refer to good results with deviations smaller than ±5 %,
whereas the gray markers stand for values with larger differences be¬

tween prediction and analysis result The two upper gray dots mark the

results for a cylinder with Z = 279 and wl/h = 0 35, the two lower those

for the reference cylinder with Z = 662 and wl/h = 0 425 Thus, these

dent heights with larger deviations (|AZ6| ^5%) exceed the application

range wg < wl for the estimation of the dent height with the formula

For shallow dents however the parabolic function m (6 11) yields feasi¬

ble estimates Z* of the initial meridian heights achievable with nonlinear

buckling analyses lb

The repetition of the minimum searches for the initial dent height lb
for the reference cylinder with a finer element mesh size of half the

standard size yielded results which confirmed the parabolic progression

of the dent-height/wavelength ratio Z6/2ZC with increasing initial dent

depth Wb/h m Figure 6 93 Figure 6 96 shows the ratio of the initial

dent height lb to the classical axial wavelength 2ZC subject to the initial

dent depth wg/Zi for the reference cylinder and initial dent depths withm

the application range for this shell (0 < wg < 0 425 h) The black dots

and the black curve refer to dent heights which were obtained with the

standard element mesh size of 0 5VRh, whereas the gray dots below

mark heights that resulted for a finer mesh of half the element-edge
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length: 0.25a/Rh. The heights Zg resulting for the finer mesh are about

5% shorter than those yielded with the "standard" FE model. The

bold dashed line corresponds to the adapted parabolic trend curve for

the predicted dent heights Zg for the finer mesh with a constant term

(vertical shift) of 0.95 instead of 1.0 in Equation (6.11). Mentionable

that the buckling loads Pcr resulting for nonlinear buckling analysis with

the finer mesh were less than 5 % below those obtained with the standard

element mesh size, see Section 6.6.7.

The longer initial heights Zg for a dent with deeper initial depth wg and

also the lower minimum buckling loads resulting for the finer element

mesh might be explained with the different initial axial curvatures in

the dent with the cosine profile and its more or less coarse discretization

with bi-linear finite elements, see Figure 6.8 on page 201: a smaller ini¬

tial dimple height Zg for a given initial depth wg/Zi, for example, leads

to smaller initial axial curvatures in the dent; but, changing the axial

curvatures and the position of the element nodes along the curved shell

means a modification of the states of stress and hence also of the dam¬

aging effect of the dents; therefore, depending on the initial dent depth
and the element mesh size the length Zg corresponds to dent height which

yielded the axial curvatures with the states of stress damaging the axial

stability of the cylinder FE-model the most.
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Figure 6.97: Ratio of the initial dent height lb to the classical axial wavelength

2lc versus Batdorf's parameter Z. Results for a dent of initial depth Wb/h =

0.1 and the isotropic cylinders in Table 6.3.
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Figure 6.98: Comparison between the initial dent heights lb in Fig. 6.97 and

the dent heights approximated with l^ = 1.015 • 2ZC for an initial dent depth

Wb/h = 0.1. Relative deviations Alb subject to Batdorf 's cylinder parameter

Z.

While the application range of the formula for the initial dent height Zg
in Equation (6.11) depends also on the length L of the isotropic cylinder
to which the dent is applied, the estimate of the ratio of the dent height
to the axial wavelength l?/2lc is solely a parabolic function of the ini¬

tial dent depth normalized with respect to the wall thickness, wg/Zi. In

Figure 6.97 the dent-height/wavelength ratio Zg/2ZC for a dent of initial

depth Wb/h = 0.1 are displayed in dependence of Batdorf's geome¬

try parameter Z for the isotropic cylinders listed in Table 6.3. With

Equation (6.11) for standard FE models, the initial depth wg/Zi = 0.1

on hand, leads to predicted initial dent heights Zg almost equal to the

classical axial wavelength; thus: Zg = 1.015 • 2ZC or Zg « 3.51^/Rh for

v = 0.3. As can be taken from Figure 6.98, for all cylinders above the

so approximated dent heights K differ less than ±5 % from the values Zg
in Figure 6.97 which were calculated with nonlinear buckling analyses.
From this follows that for medium long cylinders the initial dent heights

Zg are independent from the cylinder length L.

Initial dent widths ag:

The initial widths ag of dents provoking minimal cylinder buckling loads

with an initial depth wg/Zi = 0.1 listed in Table 6.3 yielded ratios of these

widths to the corresponding dent heights, ag/Zg between two and three.

Thus, it was found obvious to investigate the dependence of the dent

width ag on the initial dent depth and cylinder dimensions by means of
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Figure 6.99: Ratio of the initial dent width ai to the wavelength 2lc subject
to the initial dent depth wb/h. Results for six isotropic cylinders of different

radius, length and wall thickness.

the resulting ratios of the circumferential dent width to the classical axial

wavelength 2 Zc, as it was done for the dent height. The behaviour of the

width/circumference ratios ag/Zg was considered being less meaningful.

Figure 6.99 reproduces the width/wavelength ratios ag/2Zc versus the

initial dent depth wg/Zi for some isotropic cylinders. For relatively small

initial depths up to circa wg/Zi = 0.3 the ratios ag/2Zc are almost constant

with a mean value of about 2.7. But for deeper dents with increasing
initial dimple amplitude the initial widths ag increases. That the initial

width is longer for a deeper initial depth is plausible since the arc-length
of a circle segment increases also with an increasing segment height. The

arc-length ag of a cosine-shaped dent which initially has zero circumfer¬

ential curvature at its apex (1/fa = 0) depends on the initial dent depth

Wb and the cylinder radius R and is given by the equation

2-kR
a,h =

2(t"l)
(6.12)

Thus, the initial width ag of a dent with an initially flat shell increases as

well with increasing initial dent depth wg. But, according to this formula

for Wb = 0 the dent width ag is zero, whereas the dent-width/wavelength
ratios ag/2Zc in Figure 6.99 exceed the level 2.6 also towards the ordinate.
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Figure 6.100: Ratio of the initial dent width ai to the wavelength 2lc in depen¬
dence on the initial dent depth wb/h. Results for the reference cylinder and

with a standard FE mesh size (black dots) and a finer mesh size (gray dots) as

indicated. Dashed, line refers to a, simple cubic formula a^(wb) for an estimate

of the initial dent width.

Moreover, with Equation 6.12 such values for the ratio og/2/c are reached

only for initial dent depths deeper than wg/Zi > 4.0 for R = 250 mm.

But, with the shallow dents with wg/Zi < wl/h <C 1.0, for which the

initial widths ag resulted, the cylinder shells are not flat in the initial

state. Shallow dents having initial dent widths ag provoke partial shell

flattening and states of deformation which are the worst for the cylin¬
der stability during the deformation process due to axial cylinder com¬

pression. And since initially the complex deformation process including

bulging at the initial-dent sides and local buckling is unknown, there is

no obvious indication given by the initial cylinder and dent geometry

for an analytical approach of the initial dent dimensions resulting in the

minimum cylinder stability.

In Figure 6.100 again ratios of the initial dent width ag to the axial

wavelength 2ZC subject to the initial amplitude wg/Zi are shown for a

FE model with standard mesh size of 0.5VRh and a model with half

this mesh size considering the reference cylinder as example. Both shell

element dimensions yielded similar initial dent widths ag. Since the

circumferential width ag of the cosine wave is more than twice as long as

the corresponding initial height and axial wavelength Zg of the dent, the

influence of the mesh size and the resulting dent-profile approximation
with linear elements is smaller for the initial dent width ag compared to
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Figure 6.101: Ratio of the initial dent width ab to the wavelength 2lc of dents

with an initial depth Wb/h = 0.1 in dependence on Batdorf's cylinder param¬

eter Z for the isotropic cylinders in Table 6.3.

that for the shorter meridian dent height Zg (see Figure 6.96).

The dashed line in Figure 6.100 shows an estimate of the initial dent

width ag by means of a simple cubic function in terms of the initial dent

depth Wb/h which fits better with the resulting widths for deeper dent

depths than a cubic function like that for the dent heights Zg. But in

contrast to the initial dent heights the resulting ratios of the initial dent

widths to the wavelength ag/2Zc exhibit an obvious dependence on the

cylinder length L. Figure 6.101 depicts the resulting width/wavelength
ratio ag/2Zc versus Batdorf's geometry parameter Z for the isotropic

cylinders in Table 6.3. It can be seen that for longer cylinders and

hence larger Z the ratio ag/2Zc is higher. With an additional linear

term considering the cylinder dimensions an empirical formula could be

devised for estimates of the initial dent width ag. Together with the

mentioned cubic term including the initial dent depth wg the estimated

dent widths aZ are given by the function:

= 2.62 +4.5 (^) +5-10~5Z V 0 < wb < w*b (6.13)

The lengths aZ are again approximations of nonlinear buckling analysis
results for shallow dents and medium length cylinders. For deep dents

with initial depths wg deeper than the marginal initial depth Wg long
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widths ag resulted with large deviations from the predicted value, see

Figure 6.94. Comparisons between the initial dent widths ag obtained

with minimum searches and the corresponding widths aZ due to the

formula above are displayed in Figure 6.102 and Figure 6.103. Almost

all relative deviations Aag are very small (|Aag| < ±5%), only for the

reference cylinder having a deep dent of initial depth wg/Zi = 0.5, which

exceeds the marginal depth wl/h = 0.425, and for a short cylinder with

Z = 57 and L/R = 0.4 larger discrepancies resulted.

In Section 6.6.1 it was demonstrated that for deep dents with wg > Wg

the buckling loads Pcr decreased with increasing initial dent widths ag

with the loads for the ring-shaped dent as lower bound. For shallow dents

with Wb < wl however the buckling loads obtained for dents with shorter

initial widths ag, which had been specified for shallow dents, are smaller

than the loads for the wider or axisymmetrical dents. Consequently, the

minimum searches after the initial dent width ag was performed only for

shallow dents, and therefore also the formula for the estimates of the

widths a| is only applicable for dents with initial depths wg not deeper
than wl.

Isotropic Cylinders with Outward Dimples

In contrast to inward dimples, for outward dimple imperfections only one

unique minimal value could be identified in graphs showing the depen¬
dence of the buckling load Pcr on the initial dimple width ag, see Figure
6.104 in comparison to Figure 6.92 for dents. In this chart the nonlinear

buckling analyses results for the reference cylinder having a bulge with

an initial elevation wg/Zi = —0.3 and a given meridian height L/Zg = 8.1

are shown. The minimum buckling load Pcr resulted for the ring-shaped,

axisymmetric bulge to be found at the right limit of the admissible range

of ag: the cylinder circumference 2nR = 1571mm. There is also a local

minimum at about ab/(2nR) = 0.2 identifiable in the chart, but the ring-

shaped bulge caused a notably lower buckling load. In Figure 6.105 the

nonlinear buckling analysis results for the reference cylinder having a

bulge with an initial elevation wg/Zi = —0.1 and various initial widths ag

and heights Zg are displayed. As for the dents in Figure 6.90, the shaded

surface represent the resulting normalized buckling loads PCr/Pcnd ver¬

sus the corresponding initial bulge widths ag and heights Zg, again with

focus on the bulge-length ranges with minimal buckling loads. The thick

straight line in the contour plot below the load-surface and parallel to

the ag-axis chains the values for the bulge height Zg which yielded the
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Figure 6.102: Relative deviations Aaj of the initial dent widths ab in Fig. 6.99

from the dent widths a^, estimated by means of Equation (6.13), in dependence
on the initial dent depth wb/h.
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Figure 6.103: Comparison between the initial dent widths a^ in Fig. 6.101 and

the dent widths approximated with Equation (6.13) for an initial dent depth

Wb/h = 0.1. Relative deviations Aaj subject to Batdorf's parameter Z.
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Figure 6.104: Buckling loads of the reference cylinder having a single outward

dimple width a given elevation Wb/h = —0.3, a fixed initial meridian height

L/lf, =8.1 and a variable initial circumferential width ab-

smallest buckling loads for the respective initial dimple widths. The line

pointing at the minimum values for the initial widths ag runs top down

along the right end of the contour plot.

According to the buckling analysis results for several different isotropic

cylinders axisymmetrical outward dimples are more damaging than out¬

ward dimples with short initial widths ag also for small initial dimple

amplitudes wg. Therefore, the initial width ag of a bulge equals to the

"width" of a ring-shaped bulge, independent of the initial dimple eleva¬

tion Wb'.

ag = oo V Wb < 0

The initial width ag of the dimples, considered for this thesis, is the full-

length of a cosine wave, which is infinity for a constant amplitude. For

practical reasons in the graphs above the results for the axisymmetrical

bulge were plotted close to those for the bulge with a width ag identical

to the cylinder edge circumference 2nR.

Since the "pessimum bulge" is always axisymmetrical only the initial

dimple height which causes the minimum cylinder stability Zg had to be

searched with nonlinear buckling analyses. These minimum searches for
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h = 62 mm

Figure 6.105: Normalized buckling loads Pcr/Pcrid of the reference cylinder

having a bulge of initial elevation Wb/h= —0.1 with different initial meridian

heights lb and initial circumferential widths ab Thick lines in the contour plot

point to ab and h with minimal load Pcr.

the height Zg of bulges yielded curve progressions of the buckling loads

Pcr versus the varied bulge height Zg similar to the curves for the heights
of dents, see e.g. Figure 6.91. Compared with the results for dents, the

minimal values for the bulge height Zg are somewhat short-wavier; for

example for the reference cylinder in Figure 6.105 and an initial absolute

amplitude of \wb/h\ = 0.1 the minimal value resulted in L/Zg = 8.2 or

Zg = 62 mm, which is, compared to the dent of like initial amplitude
with Zg = 67 mm, an about seven percent shorter initial meridian length
of the dimple.

The buckling loads of cylinders having axisymmetrical

imperfections may not only be calculated with numeri¬

cal methods but also with analytical formulations. For

cosine ring-shaped dimples defined by

A«(C) = f
= 0

1 £«} lcl<-

|C|>2
(6.14)

(Hutchinson, Tennyson & Muggeridge [51]) pre¬

sented a solution for the general asymptotic formula
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Figure 6.106: Buckling loads of the reference cylinder having an axisymmetric

dimple subject to the initial dimple height lb for a particular initial dimple

amplitude. Results of the asymptotic formula in (6.15).

which yields buckling loads for axially compressed, infinitely long cylin¬
ders having a single axisymmetrical imperfection of small amplitude, see

Section 6.1. The term Ia m Equation (6.15) is the FOURIER transformed

imperfection function Ar(Ç) of (6.14), which in present case is given by

I Ja I

I Ja I

wb

h (Ib_

(*è)

\2lcJ

1Ï Wb

2~h
v A = i

2L

(6.16)

This solution yields buckling loads for various initial inward and out¬

ward dimple amplitudes wg and different ratios of the dimple height Zg

(full wavelength) to the analytical axial wavelength 2ZC for axisymmet¬
rical buckling of perfect cylinders. But the solution11 also allows exact

determination of the wavelengths ratio Zg/2ZC which yields the smallest

buckling load for a particular initial dimple amplitude! In Figure 6.106

the resulting normalized buckling loads Pcr/Pci of a cylinder having an

inward or an outward dimple of the shape as defined in (6.14) with

a given initial amplitude of wg/Zi = 0.3 are reproduced for different

dimple-height to wavelength ratios Zg/2ZC. The minimum buckling load

Per/Pel = 0.46 results for a normalized dimple height of Zg/2ZC = 0.84,

11The explicit power function which solves the asymptotic formula in (6.15) is

lengthy and therefore not written out.
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but the variation of the buckling loads withm the range of the wave¬

length ratio Zg/2ZC from 0 7 to 1 0 is below 1 5 % This thesis focusses on

cylindrical shells with dimple imperfections which are localized in axial

as well as in circumferential direction, hence, the behaviour of cylin¬
der having dents and bulges with a full extent in their circumference

was not investigated with the same efforts as for the single dimples of

smaller wavelengths presented on the previous pages However, for a

few aluminium cylinders having a single axisymmetric cosine bulge the

initial bulge height lb provoking the lowest buckling load Pcr was also

searched numerically by means of nonlinear buckling analyses in order

to compare the FE analysis results with the analytical solution above

In Figure 6 107 the resulting bulge-height/wavelength ratios Z6/2ZC ver¬

sus the initial bulge elevation -wg/Zi are depicted for some cylinders of

different radius, length and wall thickness It can be seen that for small

amplitudes the resulting bulge heights are at about Z6/2ZC = 0 9, but with

increasing elevation -wg/Zi the values grow linearly to about lb = 2lc for

bulges with amplitudes wg close to the wall thickness h The linear

function /*, given by

Z, Wh

-^=09-0 12-^ V wg<0
, (6 17)

2ZC h

follows the results in Figure 6 107 approximatively and yields feasible

estimates for the initial bulge height lb The deviations AZg of these

numerical analyses results from the values due to the linear formula

(6 17) are reproduced in Figure 6 108, they are all smaller than ±5%

Compared with the minimum value Zg/2ZC = 0 84 obtained with the

asymptotic formula the nonlinear buckling analysis results are slightly

higher, probably due to the relatively coarse approximation of the cosine-

shaped radius variation with only eight bi-lmear shell elements in axial

direction involved The gray dots in Figure 6 107 refer to initial bulge

heights Zg resulting for the reference cylinder modelled with twice as much

bi-lmear shell elements in axial and circumferential direction These two

values are about Z6/2ZC = 0 04 closer to the asymptotic theory results for

very small initial amplitudes compared with the results obtained with

the coarser reference mesh size
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Figure 6.107: Ratio of the initial bulge height lb to the classical axial wavelength

2lc subject to the initial bulge amplitude -wb/h. Results for a few isotropic

cylinders of different radius, length and wall thickness. Gray dots results for
the reference cylinder with half FE mesh size.
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Figure 6.108: Relative deviations of the initial bulge heights lb in Fig. 6.107

from the bulge heights lb, approximated by means of Equation (6.17), in de¬

pendence on the initial bulge amplitude -wb/h.
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6.6.4 Minimum Buckling Loads for

Isotropic Cylinders with Single Dimples

In the previous sections the instability behaviour and the buckling loads

of isotropic cylinders having a single initial inward or outward dim¬

ple was discussed. Section 6.6.1 and 6.6.2 contain the descriptions of

buckling analysis results and deformation behaviour patterns of various

cylinders with a dent or bulge, respectively, of varied initial amplitude
and predefined initial circumferential dimple width and meridian dimple

height. Section 6.6.3 includes results for the initial width and height
of the dimples which yielded the minimum cylinder buckling resistance

for a predefined initial dimple amplitude. For design engineers however

the minimum buckling loads to be expected for cylinders with a dimple

imperfection might be of more importance than the buckling behaviour

and the dimple geometry. Thus, in the following the minimum buck¬

ling resistance of isotropic shells with a dent or bulge is discussed and

results compared with the values recommended for design by other au¬

thors and in standards which base on tests of shells that have some ran¬

domly distributed imperfections. Minimum buckling loads of cylinders
with a single parametric dent or bulge obtained with nonlinear buckling

analyses were already indicated in Section 6.6.1 and are now pointed
out to demonstrate the influences of the nominal cylinder geometry and

the initial dimple size observed. Finally, the sensitivity to a single ini¬

tial non-axisymmetric dimple is compared with impact of a single initial

ring-shaped dimple as well as with the effect of evenly distributed im¬

perfections that relate to classical or linear buckling modes of perfect

cylinders.

With increasing initial amplitude wg of a single dimple with fixed initial

width and height the resulting local buckling load of a cylinder decreased

to a minimum value. For further growth of the initial dimple ampli¬
tudes again slightly higher buckling load were obtained. In Figure 6.109

the nonlinear buckling analysis results for the reference cylinder with a

single dimple are reproduced. The buckling loads are normalized with

respect to the buckling load Pcr td
= 569 kN of the perfect aluminium ref¬

erence cylinder with radius R = 250 mm, length L = 510 mm, and wall-

thickness h = 1.5 mm. The minimum buckling load resulted for an in¬

ward dimple of initial depth Wb/h = 0.75. For this initial depth the non¬

linear buckling analysis yielded a local buckling load of Pcr min = 290 kN,
or of Pcr min/Pend = 0.51 if normalized.

The buckling loads reproduced in Figure 6.109 resulted with dimples
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Figure 6.109: Buckling load Pcr/Per id of the reference cylinder having a single

dimple against the initial dimple amplitude wb/h. Results of nonlinear buckling

analyses for the initial dimple width ai = 181 mm and the height If, = 67 mm.

Buckling loads normalized with respect to the result for the perfect cylinder

1er id •

having an initial circumferential width of ag = 181 mm and an initial

meridian height of Zg = 67 mm. These dimple dimensions are the re¬

sult of a systematic search after the initial width ag and height Zg of a

dent with an initial depth of wg/Zi = 0.1 which reduced the reference

cylinder buckling resistance the most, see Section 6.6.3. But, for dents

with initially longer width ag > ag and height Zg > Zg the minimum

buckling load PCr M in/Per »d achieved was smaller. In Figure 6.110 the

nonlinear buckling analysis results for the reference cylinder having a

single dent or bulge given in Figure 6.109 are compared with results

for longer initial dimple widths and and heights. It can be seen that

for the shell with a 32 % larger width ag and a 32 % larger height Zg

a notably lower minimum buckling load PcrMiN resulted. In this case

the normalized minimum is PCr M in/Per »d
= 0.44 for an absolute load of

Per min = 253 kN. This minimum buckling load is 13% below the value

for the smaller dent of initial height Zg(0.1) and width ag(0.1) specified
with Wb/h = 0.1. Further elongations of the initial width ag alone re¬

sult in further reductions of the minimum buckling load Pcr min with the

values for the ring-shaped dimple as lower bound.
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Figure 6.110: Normalized buckling load of the reference cylinder having a single

dimple against the initial dimple amplitude wb/h. Nonlinear buckling analysis
results for an initial dimple width ab and height lb as indicated.

For the ring-shaped inward dimple also a minimum buckling load could

be found, whereas for the ring-shaped outward dimple the buckling loads

continuously decreased with increasing initial amplitude. The initial

height Zg = 64 mm applied for the ring-shaped dimples in Figure 6.110

was specified with such bulges of initial elevation wg/Zi = —0.4 and is

shorter than the dimple heights Zg resulted for the non-axisymmetric
dents of similar initial absolute amplitude, see Section 6.6.3. For ring-

shaped outward dimples always significantly lower buckling loads were

obtained than for outward dimples of small initial widths, contrary to

ring-shaped inward dimples for which in case of small initial dimple

depths Wb < wl almost or even slightly higher buckling loads resulted

than for non-axisymmetric dents.

Provided that the dimple width is small compared to the cylinder cir¬

cumference, the minimum buckling load for outward dimples is higher
than the minimum buckling load PcrMiN for inward dimples. From this

follows that dents tend to be more damaging than bulges. Therefore the

analyses to the lowest critical loads focussed on cylinders with dents of

different size. In Figure 6.111 the normalized buckling loads depicted
in Figure 6.110 are reproduced for the dents with initial depths up to
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Figure 6.111: Normalized buckling load Pcr/Pcnd of the reference cylinder

having a single dent versus the initial dent depth wb/h. Nonlinear buckling

analysis results for initial dent widths ab and heights lb as indicated. Focus on

initial depths of shallow dents. See Figure 6.110.

Wb/h = 3/4. It can be seen again that for initial depths wg/Zi below the

marginal depths wl/h for shallow dents the small dimples with initial

width ag(O.l) and height Zg(0.1) as well as the large dimples with 32%

and 23 % longer initial width and height, respectively, yielded almost

equal or even lower buckling loads PCr/Pcnd than the ring-shaped dents

of similar initial height Zg! Additionally, in this initial-dent-depth range

the reduction rate per increasing dimple amplitude and hence the sen¬

sitivity to an initial dent is maximal. For deep dents with wg > Wg,

however, the change in the buckling loads with increasing initial dent

depth is small compared with that for shallow dents. But for these ini¬

tial depths the buckling loads resulting for axisymmetric dents are always
smaller than those for non-axisymmetric dents of like initial height. For

these reasons, and since the study of cylinders having a localized dimple
focussed on small dents which are not ring-shaped, minimum buckling
loads Pcr min of further isotropic cylinders with an initial dent were calcu¬

lated solely for dimples of initial width ag small compared to the cylinder
circumference and specified with initial depths wg > wl of shallow dents.

The initial meridian dent height Zg and the initial circumferential width
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Figure 6.112: Initial dent width and height ratios to the classical axial wave¬

length versus initial dent depth for isotropic cylinders. Curves approximate

solutions for selected shells found with nonlinear buckling analyses.
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Figure 6.113: Normalized marginal initial depth for shallow dents wl/h against

BATDORF 's parameter Z. Curves and formula approximate results for small

dents of initial height lb and width ai specified for Wb/h = 0.1 (thick line) and

for larger dents of 23 % and 32 % longer initial height and width respectively

(thin line).

ag found with systematic searches depend strongly on the initial dent

depth Wb/h for which these lengths were calculated; that is: ag = ag(wg)
and Zg = Zg(wg). In Figure 6.112 curves for (a) the initial width aZ and

(b) the initial height Zg depending on the initial dent depth wg/Zi are

shown, see Section 6.6.3. In both cases the initial lengths are normalized

with respect to the analytical wavelength 2 Zc for axisymmetric buckling.
The curves, i.e. the values ai/2lc and lf/2lc, approximate the lengths

ag/2Zc and Zg/2ZC which resulted with nonlinear buckling analyses. The

formulas associated with the curves are given above the graphs. Con¬

trary to the initial dent height K/2lc the initial dent width a|/2Zc is also

weakly dependent on Batdorf's cylinder-geometry parameter Z. The

bold line in Figure 6.112 (a) refers to initial-width/wavelength ratios for

the reference cylinder with Z = 662. The initial depth, for which the first

and also the most subsequent initial heights Zg and widths ag were speci¬

fied, was arbitrarily set to wg/Zi = 0.1. Therefore also the majority of the

nonlinear buckling analyses of different shells with varied initial dimple

amplitude wg/Zi which also yielded minimum buckling loads Pcr min (see
Fig. 6.109) was performed with dimples having an initial height Zg(0.1)
and an initial width ag(0.1), i.e. specified with wg/Zi = 0.1. The initial

dimple dimensions Zg(0.1) and ag(0.1) of a series of isotropic cylinders
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are listed in Table 6.3 on page 331. But, as demonstrated in Figure
6.110 by means of the reference cylinder, for widths and heights larger
than ag(O.l) and Zg(O.l), respectively, smaller minimum buckling loads

Per min/Pctid were obtained. Consequently, in order to calculate the low¬

est minimum loads for cylinders with dents of initial height and width

maximal for shallow dents, the initial widths and heights would have

been specified which result with the marginal initial depth wl/h for

shallow dents, that is: ag(w^) and Zg(w^), see Figure 6.109. In Figure
6.113 the marginal initial depths wl/h are depicted against Batdorf's

parameter Z. The curves and the logarithmic formula included approx¬

imate the maximum initial depths w*h/h which caused termination of

nonlinear buckling analyses at the local buckling load, see definitions

in Section 6.6.1 on page 275 ff. The thick line again follows from cal¬

culations with dents of initial height Zg(O.l) and width ag(O.l) specified
for Wb/h = 0.1. The thin line refers to slightly higher marginal depths
obtained with the 32 % and 23 % longer initial widths and heights, re¬

spectively. Thus, unfortunately like the minimum buckling loads Pcr min

the marginal initial depths wl/h depend on the initial width ag and

height Zg of the dents, which in turn depend on the initial depth wg/Zi.
Therefore, for a exact determination of the marginal initial depths wl/h
some iteration loops would have been required, where a new marginal
initial depth would have been specified with dents of initial dimensions

specified with the first marginal depth, and so on. But so resulting cor¬

rections would hardly exceed marginal-depth differences of 0.05. For

example, in case of the reference cylinder via the logarithmic formula a

marginal initial depth of wl/h = 0.25 • log662 — 0.28 = 0.43 for small

dents and w*b/h = 0.25 dog 662-0.23 = 0.48 for 32 % wider dents results.

These depths inserted into the formula for the initial dent dimensions

yields a|/2Zc = 2.62 + 4.5 • 0.433 + 662 • 5 • 10~5 = 3.0 and a|/2Zc = 3.14,
for the initial dent widths, and l\/2lc = 1 + 1.5 • 0.432 = 1.27 and

Zg/2ZC = 1.34 for the initial dent heights. The difference between first,
smaller width a|/2Zc to the width a|/2Zc(0.1) = 2.66 resulting with

Wb/h = 0.1 is about 13%, that between the second, wider width and

the width a|/2Zc(0.1) = 2.66 is about 18%. The heights, in turn, differ

in the range of about 30%. Thus, and since the buckling load reduction

depends stronger on the initial width than the height, the buckling loads

obtained for the large dents will be close and slightly below the buckling
loads that would result with the initial dimensions above specified for

the marginal initial width wl/h, see Figure 6.110 and 6.111. But, due

to the only small corrections expected and the vast time exposure addi¬

tional calculations with dents of initial dimensions specified with wl/h
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were not conducted to prove this assumption.

As already mentioned, almost all analyses of the isotropic cylinders

having a dent of varied initial depth were performed with initial dent

heights and widths which were most damaging for an initial dent depth
of Wb/h = 0.1, i.e. with Zg(O.l) and ag(O.l). Therefore, also most of

the minimum buckling loads PCrMiN/Pcr»d for isotropic cylinders, re¬

sulted from these nonlinear buckling analyses with these smaller initial

dent sizes. For three cylinders, however, additionally analyses were per¬

formed with dents of 32 % and 23 % longer initial widths and heights,

respectively. In Figure 6.114 the normalized minimum buckling loads
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Figure 6.114: Minimum buckling loads Pcrum/Pcrid versus Batdorf's pa¬

rameter Z for isotropic cylinders with a single dent. Results for initial lateral

dimple dimensions which caused minimal cylinder stability for an initial dent

depth of Wb/h = 0.1 (black dots) and for larger dents of 23 % and 32 % longer
initial height and width respectively (gray dots).

Per min/Pend found by means of nonlinear buckling analyses of some

cylinders of different length, radius and shell thickness are shown in de¬

pendency of Batdorf's cylinder geometry parameter Z. The black dots

stand for dents applied to the cylinders with respective lateral lengths

ag(0.1) and Zg(0.1) specified with wg/Zi = 0.1, the three gray dots refer

to dents with 32 % longer initial widths and 23 % longer initial heights,
see Figure 6.110 and 6.111. According to these results the normalized

minimum buckling loads of the smaller dents differ from those of the

larger dents in an about constant vertical shift of circa 0.7 or between



6.6 Isotropie Cylinders with Dimples 355

13 and 15 percent. For small Z, i.e. for short cylinders the sensitiv¬

ity to a dent is smaller than for medium-length cylinders. For longer

cylinders with high Z the minimum buckling loads converge to about

PcrMiN/Pcrîd ~ 0.37 in case of the wider dents.

The minimum buckling loads PcrMiN in Figure 6.114 were normalized

with respect to the buckling loads Pcr td resulting for the nonlinear buck¬

ling analysis of the cylinders without imperfections. In design guidelines
however the recommended critical loads refer to the buckling loads of

classical analytical solutions, Pc;. Figure 6.115 depicts the minimum

o perfect cylinders Pcr %dlPel
• dents with small width ab

o dents with 32% wider initial width ab

— approximation formula P*T/Pci
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Figure 6.115: Knock-down factors Per/Pel against BATDORF parameter Z for

isotropic cylinders. Nonlinear buckling analysis results for cylinders with per¬

fect geometry and cylinders with a single dent as indicated. Included curves

for estimates of the buckling load of isotropic cylinders having a single dents

of either small or large initial width and height.

buckling loads PcrMiN in the ratio of the classical buckling loads for

isotropic cylinders Pc; = 3.8E/i2, again plotted against Batdorf's

cylinder geometry parameter Z. The small diamonds refer to the load

ratios PCnd/Pci for the nonlinear buckling analysis results of the cylin¬
ders with perfect geometry. These loads PCnd were about four to seven

percent smaller than the classical buckling loads Pc;. Consequently, the

minimum-buckling-load ratios Pcr/Pci which resulted for the shells with
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a dent are slightly smaller than the ratios Pcr min /Per id- The normalized

minimum buckling loads Pcr min/Pci (black dots) which resulted for dents

of initial width ag(O.l) and height Zg(O.l), specified with wg/Zi = 0.1, may
be approximated with the exponential equation P*r(Z)/Pci

^- = l-0.6(l-e-A^) (6.18)
Fcl \ '

included in the chart. For the three lower loads obtained with the ini¬

tially 32 % wider and 23 % higher dents (gray dots) the approximation

^ = l-0.65(l-e-A^) (6.19)
Fcl ^ '

was derived similarly, which might also serve as lower bound for loads re¬

sulting with the aforementioned dents of initial width ag(wg) and height

Zg(wg), thus specified with the marginal dent depth for shallow dents

wl/h.

The smallest factor to which the lower curve converges, P*r/Pci = 0.35 is

notably higher than the smallest values to be expected due to the knock¬

down factors recommended for design by the NASA Space Vehicle Design

Criteria, SP-8007 [62], for instance, see page 5.2ff.. In Figure 6.116 the

curve to these knock-down factors is reproduced which are given by the

formula in Equation 5.4 on page 158:

-^- = 1 -0.902 (l -e-ÄV
Fcl ^

In this representation the imperfection sensitivity depends on the cylin¬
der radius/wall-thickness ratio R/h, but possible influences of the cylin¬
der length L are ignored. According to the test results of (WEINGARTEN
et al. [79]), on which above curve in Figure 6.116 bases, for large R/h
buckling loads less than 20 percent of the classical buckling load have to

be expected, see page 157 ff.. For comparisons again the buckling loads

normalized with respect to the classical buckling load of Figure 6.115

were added using the identical markers for the results with perfect shells

and with small or large dents, see legends. It can be seen that for thin

cylindrical shells with R/h > 300 the reduction of the load carrying

capacity due to a single dent was less severe than those caused by the

multiple, randomly distributed imperfections in tests. But, for cylinders
with a single dent of radius/wall-thickness ratios between R/h = 100 and

200 buckling loads considerably below the loads according to the NASA

design curve were obtained. These loads may be explained with the
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o perfect cylinders PCr -idj Pel

• dents with small width a^

o dents with 32% wider initial width a^

lower bound curve based on tests, Ref [79] and [62]
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Figure 6.116: Knock-down factors PCT/ Pel against radius/wall-thickness ra¬

tio R/h for isotropic cylinders. Comparison between values for cylinders with

dents as indicated, for cylinders with perfect geometry, and from the curve

recommended in the NASA Space Vehicle Design Criteria, Ref. [62]. Design

curve derived from test results of cylinders with unspecified, distributed imper¬

fections, see Ref. [79].

relatively larger wall-thickness h of such shells and the associated lower

probability that their real imperfection patterns include single dimples as

considered in the analyses with initial depths of about half the wall thick¬

ness. That is, the imperfections of the tested cylinders with these R/h
ratios were probably much smaller and hence also less damaging than the

relatively deep dimples associated with the calculated minimum buckling
loads. For cylinders with high radius/wall-thickness ratios and thus thin

shell walls, in contrast, the presence of small multiple random dents and

notches with depths of about only half the wall-thickness is unavoidable

and hence very likely. Nevertheless, according to the nonlinear analysis
results in Figure 6.116 care has to be taken using the NASA design rec¬

ommendation for rather thick cylinders with R/h < 200 if single dents

of dimensions like those considered for the numerical investigations are,

or may be present.

In Figure 6.115 the minimum buckling loads ratios of the cylinders hav-
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ing a single dent are shown versus Batdorf's geometry parameter Z

which takes the radius and the shell wall-thickness as well as the cylinder

length into account. This graphic representation of the nonlinear buck¬

ling analysis results was found more meaningful than that in Figure 6.116

where the loads are depicted against the radius/wall-thickness ratio R/h.
Ignoring the cylinder length L the resulting minimum buckling loads are

"arbitrarily" scattered and thus possible correlations between load and

cylinder geometry can hardly be detected. The normalized minimum

buckling load PCrMiN/Pcr»d decreases with increasing cylinder length,
see Section 6.6.1 on page 281 ff. And for shells with like length and

factor R h similar buckling loads of cylinders with a dent of equal nor¬

malized initial depth and equal initial height and width resulted. In

Figure 6.115, the loads plotted subject to the geometry parameter Z,
these facts are considered.

Alternatively, the buckling stresses linked with the values of Figure 6.115

were divided by the square of the length/wall thickness ratio (L/h)2
and the bending stiffness parameter D to yield the respective buckling
load coefficient k and these again plotted against the parameter Z, see

Figure 5.2 on page 156. Figure 6.117 depicts these coefficients k ver¬

sus Z in logarithmic scales. The chart includes the minimum buckling
stresses for the cylinders with a dent of size as indicated and those for the

perfect cylinders. The markers correspond with those in the two previ¬

ous figures, the bold straight line refers to the theory for ideal cylinders.
The coefficients k smaller than 10 differ for clamped and hinged cylinder

edges and were therefore omitted. The 90 percent probability curve for

a ratio R/h = 100 finally proposed for shell design by (Harris et al.

[71]) was added for comparison (thin line). This curve again bases on

test results and should yield safe buckling stresses for 90 percent of the

cylinders in the shown Z range. The straight line is parallel to the thick

perfect-cylinder line, whereas the results for the cylinders with a dent

seem to be arranged more along a single line with a smaller gradient

(dashed line), indicating that the damaging effect of a single dent in¬

creases with increasing Z (or length L). But, in contrast to the NASA

design curve in Figure 6.116 the values for the cylinders with dents are

always above the design curve recommended by (Harris et al. [71]) also

for the relatively thicker cylinders of small ratio R/h = 100. For larger
ratios R/h the researchers recommended other parallel lines with further

vertical distances to the thick line. Thus, these design curves are conser¬

vative subject to the smallest buckling analysis results with single dents

PcrMiN for all isotropic cylinders considered in the parameter studies on

hand.
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Figure 6.117: Buckling load coefficient ka against BATDORF 's parameter Z for

isotropic cylinders. Values resulting for cylinders with perfect geometry, as per

theory and nonlinear buckling analyses, and for cylinders with single dents as

indicated. Thin line corresponds to the 90 % probability curve for R/h = 100

recommended for design by (HARRIS et al. [71]).

The buckling load reductions recommended by the German standard

DIN 18800 part 4 could not be reproduced with the analyses of the

cylinders having a single initial dimple, see Section 6.Ion page 6.1 ff.

Only the axial gauge length for single dimples in the standard with

lmx = A^/Rh is close to the axial wavelength for classical axisymmetric

buckling 2ZC « 3.5a/Rh and thus also close the initial meridian heights

Zg of dents found with the calculations. For the reference cylinder the

gauge length is lmx = 63 mm, see example on page 192. The standard

stipulates that the initial dimple depth wg should not exceed 1 % of

lmx, thus: WbMAX = 0.63mm or WbMAx/h = 0.42 with h = 1.5mm.

But the nonlinear buckling analyses of the reference cylinders with a

dent yielded drastic load-reduction rates for initial depths smaller than

this value. For initial depths deeper than this value the buckling load

reduction changes only little or even decreases with further increase of

the initial depth, see Figure 6.109 on page 348. For single dents which

theory for perfect cylinders

O perfect cylinders PCT %dlPel
# dents with small width ab

o dents with 32% wider initial width ab

90% probability curve for R/h = 100
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are initially deeper than the value 0.01 • lmx a reduction factor is to be

applied which depends strongly on the ratio of the classic buckling stress

to the yield stress of the shell material. Finally, for imperfection sensitive

shells in addition a rather small security factor (e.g. 1.22) is to be applied
which should consider small stochastic dimension tolerances. Neither

this security factor could be followed nor any source of the reduction

factors could be identified by means of the nonlinear buckling analysis
results of the cylinders having a single initial dent. Additionally, since

the final knock-down factors recommended in DIN 18800 part 4 result

from formulas which include not only the shell geometry but also the

yield stress, possible correlations between the analysis results Pcr min/Pel
and these factors may hardly be found. And a reasonable application of

the standard DIN 18800 on cylinders with shells of a material without a

"yield stress", e.g. CFRP laminates, is also not possible.

In Figure 6.110 and 6.111 normalized buckling loads for

the reference cylinder with a short-waved localized initial

dimple were compared with loads for this cylinder having
a single ring-shaped dimples. As already explained in

Section 6.6.3, for cosine ring-shaped dimples in isotropic
circular cylinder shells an analytical solution exists to

predict the buckling loads. (Hutchinson, Tennyson

& Muggeridge [51]) published a solution of the general

asymptotic formula

(, Pcr\3/2
_

3^/3(1 -I/2) , , Pcr

[l-p^J ¥Ti I/a'p^

derived by (Amazigo & BUDIANSKY [3]). For a single cosine ring-shaped

dimple in infinitely long cylinders under axial load, see Section 6.1, they
obtained the FOURIER transformed imperfection function Ia with

The solution12 of the formula above yields knock-down factors Pcr/Pci
for different initial inward and outward dimple amplitudes wg and dimple

height ratios Zg/2ZC, see Section 6.6.3. The knock-down factors Pcr/Pci

I Ja I

I Ja I

Wb

h

sin (*&]

\2lc)

TT Wb

2~h

The explicit power function which solves the asymptotic formula is lengthy and

therefore not written out.
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Figure 6.118: Buckling loads of the reference cylinder having an axisymmet¬

ric dimple versus the initial dimple amplitude Wb/h for the particular initial

dimple height ratio indicated. Comparisons between results obtained with the

asymptotic formula (black line) and with nonlinear buckling analyses (dots)
for axisymmetric dents and bulges.

of cylinders with a ring-shaped dimple due to the asymptotic formula

are identical for bulges and for dents. But, calculated with nonlinear

buckling analyses the buckling loads resulting for axisymmetric inward

dimples are considerably smaller than the buckling loads for axisym¬
metric outward dimples, see Figure 6.118. In both cases the numerical

analyses yielded notably higher loads than the asymptotic theory. How¬

ever, (Hutchinson, Tennyson & Muggeridge [51]) also conducted

numerical calculations of clamped cylinders with ring-shaped dimples
with a nonlinear approach (see Section 5.2) and obtained similar results

as regards the differences between dents and bulges, as well as between

numerical and asymptotic theory results.

Several commercial FE programs (e.g. MARC®, ABAQUS®) provide pro¬

cedures with which a linear buckling mode or linear combinations of such

eigenvectors can be applied to an FE model prior to a buckling analy¬
sis. The linear buckling modes involved result from a preceding common

linear buckling analysis of the shell having perfect geometry. The ap¬

plication of such notional buckling-mode affine imperfections is found in

0 1 02 03 04 05
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the intention to consider the unavoidable presence of any random irreg¬
ularities also in FE analyses and bases on KoiTER's asymptotic theory,
see Section 5.1, and on the assumption that such imperfection patterns

damage the axial stability of a shell structure the most. To compare the

sensitivity of isotropic cylinders to such distributed imperfections with

the impact of a single dimple a series of buckling modes that relate to

the classical analysis was used as initial deformation patterns for the ref¬

erence cylinder. In the following the nonlinear buckling analysis results

of these additional shells are briefly explained. Figure 6.120 reproduces
the nonlinear bukcling analysis results for the reference cylinder having a

classical buckling mode-affine imperfection of various initial amplitude.
In Figure 6.119(a) the applied pattern given by a bi-harmonic function

of 11 half-waves in axial and 7 waves in circumferential direction (m,n)
is depicted. As shown in Section 4.2.1, for an ideal isotropic cylinder the

classical buckling analysis gives almost the same buckling load for many

combinations of to and n. For instance, the classical buckling load of

the reference cylinder is Pc; = 599 kN and results approximatively for

axisymmetric buckles with to = 15, but also for m = 13 together with

n = 8, and many others more. However, the mode in Figure 6.119(a)
with m = 11 and n = 7 yields a 6 % higher buckling load of Pcr = 633 kN!

But this buckling mode, i.e. this imperfection pattern is the result of

a systematic search after the (to, n)-combination which minimizes the

buckling load of the simply supported reference cylinder. The search

was conducted again with a number of nonlinear buckling analyses for

an initial imperfection amplitude wmn of 0.1 h, similar to the procedure
for the initial dimple dimensions described in Section 6.6.3. The reduced

buckling load for m/n = 11/7 was Pcr = 381 kN, whereas that for the

mode m/n = 13/8 -which yields about the classical buckling load- was

Pcr = 390 kN. Thus, contrary to the mentioned assumption the buckling
mode associated with the buckling load of the perfect reference cylinder
was not the most damaging imperfection shape for this shell!

In Figure 6.120 the normalized buckling loads PCr/Pcnd achieved for

the imperfections pattern in 6.119 (a) of m/n = 11/7 are plotted versus

the double of the normalized initial amplitude, thus 2 • wmn/h. By this

means for small initial amplitudes the loads correlate with the values

for a single dent as well with the results for a single ring-shaped, all

of simple initial depth wg/Zi. The results for the initial dents of initial

widths ag and heights Zg as indicated correspond to the values already
shown in Figure 6.110. Figure 6.119(b) above gives information about

the geometric difference between the amplitude wmn of the bi-harmonic

deformation function w(x,y) in the classical analysis (Section 2.2.2, p.
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(a)

Figure 6.119: (a) classical buckling mode with m =11 half-waves in axial and

n = 7 waves in circumferential direction, (b) amplitudes of buckling modes

(wmn) and of single dimples (wb).
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Figure 6.120: Nonlinear buckling analysis results for the reference cylin¬
der having a classical buckling mode-shaped imperfection with wavenumbers

as indicated. Comparison with results for a single dent of initial height

lb = 181 mm and width ab = 67 mm and a single axisymmetric dent of initial

height lb = 64 mm.
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51) and the amplitude wg of the initial dimples defined in Equation 6.4

on page 197. The minimum buckling load obtained for the classical

buckling mode of initial amplitude 2wmn = 1.5h is PcrMiN = 236 kN.

This value lies between the -21 % lower minimum for the ring-shaped

dimples of PcrMiN = 185 kN and the 23% higher minimium for deep
dents of PcrMiN = 290 kN.

Although the numerical results could not be be assured by analytical
solutions or tests it was concluded that

• a linear buckling mode, which yields the minimum buckling load

for a perfect cylinder, does not necessarily correspond to the most

damaging imperfection pattern for a given initial imperfection am¬

plitude, that

• single shallow dents (wg < wl) may reduce the buckling load of

a cylinder as much as the initial deformations of double initial

amplitude related to a classical buckling mode, and that

• single non-axisymmetric shallow dents with initial heights Ig and

widths ag small compared to the cylinder length and circumfer¬

ence tend to reduce the buckling resistance of isotropic cylinders
as much as ring-shaped dents of similar initial height.

6.6.5 Stress Distributions

Finite element models are probably most commonly used to detect ten¬

sile or compressive stresses which are critical referring to mechanical

strength, i.e. yielding or rupture. The searched stress field values have to

be calculated from the priorly evaluated nodal displacements by means of

the material law and interpolation functions. However, such stress anal¬

yses need less computational efforts than buckling analyses since neither

for linear nor for nonlinear stress analyses expensive eigenvalue extrac¬

tions are necessary. But, analysts dealing with lightweight structures

are often more confronted with stiffness problems than with material

strength limitations, since above all local buckling may occur at stresses

far below the yield or rupture point of the material. The possible pres¬

ence of local compressive stresses may give information on the existence

of a structural instability problem, but wether the tested loading under-

runs the critical buckling load remains unknown. The total collapse of
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a structure in general leads to very large displacements and hence also

to exorbitant strain and stress values, but in cases of localized instabil¬

ity problems excessive displacements may be prevented by the support

of stable parts of a structure as a whole In such a case, the resulting
stress values do not point to any instability problem The eigenmodes to

an analysis case, in turn, which result from the eigen problem with the

initial stress stiffness matrix, demonstrate the location of possible buck¬

ling problems, but these analytical deformation patterns follow from the

combination of the stress distributions (see Section 3 5)

Although from stress values no critical buckling loads can be derived

directly, the stress and strain fields give valuable information for the

investigations of the local buckling behaviour at single dimples in cylin¬
ders The membrane force-per-umt-length distributions show the type

of local loading of the shell in and in the vicinity of the dimples in de¬

pendency of the axial cylinder compression, and also the varying range

of the shell surface influenced by single dimples is indicated Therefore,
this special section was included to present distributions of stresses and

membrane forces/unit length in different directions and their alterations

during axial loading for some selected cylinder shells with single inward

dimples, in addition to the contour-deformation plots of cylinders with

dents and bulges already displayed in Section 6 6 1 and 6 6 2

The strain fields follow from the stress fields via the constitutive law and

vice versa, thus, in case of linear material elasticity they would differ in

amplitudes and unites, but not in the pattern of their distribution in the

shell surface Therefore, an additional display of strains was not found

necessary

Membrane Forces in a Perfect Circular Cylinder

The deformation pattern of a perfect circular cylinder under axial load

prior to its collapse is axially symmetrical and hence the variation of the

axial membrane force in the pre-bucklmg state is also purely axisym¬

metric In classical analysis the membrane stress, treated via membrane

force per unit length, is separated in a stress of the fundamental state

and a stress associated with the shell deflections, see Section 2 2 For

perfect isotropic circular cylinder under pure axial loading the membrane

forces per unit length of the fundamental state are assumed to be the
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following:

axial: Nx =

^-kr !

circumferential : Ny = 0 ;

shear: Nxy = 0 ;

with P for the axial compressive load. However, axisymmetric radial

deflections w produce circumferential membrane forces per unit length
of Ny = w/R E/i. Boundary effects neglected and for axial loads P

small regarding the buckling load Pcr, in ideal cylinders the deflections

w are negligibly small and hence the total axial membrane force Nx in

the shell is approximatively that of the fundamental state, Nx. In Fig¬
ure 6.121 the axial and circumferential membrane forces per unit length
of the aluminium reference cylinder with perfect geometry are plotted
for a small axial load of P = 40 kN. The membrane forces were cal¬

culated with a nonlinear static analysis and displayed with colour con¬

tour plots applied to the cylinder surface with amplified deformations.

The nominal axial membrane force for this axial compressive load is

(a) axial membrane forces (b) circumferential membrane forces

Figure 6.121: Axial and circumferential membrane forces per unit length of an

aluminium cylinder with perfect geometry resulting for an applied axial load

of P = 40 kN. Results of a nonlinear static analysis. Reference cylinder with

R = 250 mm, L = 510 mm, h = 1.5 mm; buckling load: Pcr = 569 kN.
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Nx = —P/(2ttR) = —25.5 N/mm. In Figure 6.121 (a) the resulting axial

membrane force per unit length Naxtai in the central part of the cylinder
shell surface, colored in yellow, agreed well with the nominal value, as can

be taken from the colour map at the left side of the plot. But at the two

cylinder edges the axial membrane forces deviate a little from the nomi¬

nal membrane force: at the border of the first and the last element some¬

what increased axial membrane forces of about Naxtai = —25.8 N/mm
emerged, flanked by slightly relieved elements with minimum compres¬

sive forces of Naxtai = —25.4 N/mm. These small deviations from the

nominal value stem from bending at the clamped cylinder edges where

the radial expansion of the shell due to the PoiSSON's ratio effect is re¬

strained. The decay length of the deviation measures about the analyt¬
ical wave-length of the axis-symmetrical buckling mode for this cylinder
with 2ZC = 3.A6vRh = 66mm, see Section 2.2. The resulting circumfer¬

ential membrane forces per unit length Nhoop in the reference cylinder for

an axial compressive load of P = 40 kN are depicted in Figure 6.121 (b).
The light gray colour of the surface with sufficient distance of the cylin¬
der edges stands for values close to zero, in agreement with assumption
for quasi zero deflections. Again due to the boundary condition and the

restrained radial expansion at the cylinder edges circumferential com¬

pressive membrane forces of maximal Nhoop = —7.7 N/mm and small

tensile forces of maximal Nhoop = 0.5 N/mm resulted. With increasing
axial compression the axially symmetrical bulges at the two edges of

an ideal cylinder grow and above and below these first dimples slowly
further axis-symmetric dents and bulges are formed, until close to buck¬

ling the cylinder is filled in its full length with ring-formed buckles of

small amplitude and axial wavelength 2 Zc, approximatively. The dis¬

tribution of the membrane forces per unit length again follow from the

state of deformation and hence the axial as well as the circumferential

membrane forces vary axis-symmetrically with the distance of the shell

edges. In Figure 6.122 again the axial membrane forces Naxtai and the

circumferential membrane forces Nhoop of the reference cylinder are re¬

produced, but for an applied axial load of P = 568 kN just prior to

the cylinder collapse, which according to nonlinear buckling analyses
occurs at a load of Pcr = 569 kN, see Section 4.2.1. The nominal mem¬

brane forces per unit length appendant to the applied compressive load

P is Nx = —362 N/mm. The plot in Figure 6.122(a) demonstrates that

the resulting compressive axial membrane force Naxtai are reduced on

the apexes of the outward dimples and amplified in the furrows of the

inward dimples, since the neutral surface of the superposed shell bend¬

ing is shifted from the middle surface towards the cylinder axis. The
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(a) axial membrane forces (b) circumferential membrane forces

Figure 6.122: Axial and circumferential membrane forces per unit length of
the ideal reference cylinder in Figure 6.121 resulting for an applied axial load

of P = 568 kN. State just prior to the buckling of the ideal cylinder at circa

Per = 569 kN.

circumferential membrane force per unit length Nhoop, shown in Fig¬
ure 6.122(b), now deviate from zero in the entire cylinder shell. Due

to the the PoiSSON's ratio effect and thus following the distribution of

the flexural stress in axial direction, on the bulges the shell is stretched

circumferentially whereas in the dents the shell is compressed. Conse¬

quently, tensile circumferential membrane forces +Nh00p resulted on the

bulges and compressive forces —Nhoop in the inward dimples. For both

axial forces the resulting shear membrane forces per unit length are very

small and vary only marginally owing to numerical inadequacies, that

is: Nshear ~ 0, as expected.

Membrane Forces in Cylinders with a Single Initial Dent

Contrary to perfect cylinders, in cylinders with initial imperfections from

the beginning of the axial compression stress distributions emerge with

axial membrane forces which may differ considerably from the nominal

value, and the circumferential as well as the shear membrane force devi¬

ate substantially from zero. Furthermore, during loading the stresses are

continuously rearranged according to the actual state of deformation. In
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the following, the alteration of the complex stress distributions whilst

axial compression of isotropic cylinders afflicted with an initial single
inward dimple is detailed again by means of the reference cylinder, but

having a single dent of initial depth wg/Zi = 0.3. This imperfection also

exemplified in Section 6.6.1 and has an initial width of ag = 181 mm and

an initial meridian height of Zg = 66 mm.

Figure 6.123: Axial membrane forces per unit length NaXiai of the reference

cylinder with L = 510 mm, R = 250 mm, and h = 1.5 mm, having a single in¬

ward dimple of initial depth Wb/h = 0.3. Result of a nonlinear static stress

analysis for an axial load of only P = 40 kN.

Figure 6.123 reproduces the axial membrane forces per unit length Naxtai

of this shell resulting for an applied axial compressive load of P = 40 kN

that equals a nominal membrane force of Nx = —25.5 N/mm. The as¬

sociated resulting distribution of the circumferential membrane forces

per unit length Nhoop are depicted in Figure 6.124. The stresses and
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Figure 6.124: Circumferential membrane forces per unit length Nhoop resulting

for the shell in Fig. 6.123 with a dent of initial depth Wb/h = 0.3 and an

applied axial load of P = 40 kN.

membrane forces were again obtained with a nonlinear static analysis,
and the relatively small axial compression corresponds to that of the

reference cylinder without imperfections whose membrane force distri¬

butions are shown in Figure 6.121. Similar to the ring-formed buckles of

the ideal cylinder in Figure 6.122(a) in the dimple the axial membrane

force per unit length Naxtai is increased, whereas at parts where the

shell is bulged the membrane force is reduced. According to the colour

map in Figure 6.123 the resulting maximum axial compressive membrane

force on the vertex of the dent is Naxtai = —26.2 N/mm, which deviate

0.7 N/mm or 2.8 % from the nominal value Nx. On the apices of the two

bulges on the left and the right of the dent, and also above and below

the dent, bright-toned staines indicate shell elements where the analysis

yielded axial compressive membrane forces below the absolute nominal
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Figure 6.125: Axial membrane forces per unit length NaXiai of the reference

cylinder with a dent of initial depth Wb/h = 0.3 resulting for an axial load of
P = 328 kN close to local buckling (Pcr = 330 kN).

axial membrane force. The minimum value is Naxtai = —25.0 N/mm,
thus —0.5 N/mm or 1.9% below the nominal value. Above and below

the dent the grey to bright yellow colour shows that the curved, almost

undeformed zones are relieved. But beside these vertical strips four skew

orange shell sectors emerged, radiating from the lateral flanks of the dent,
with elements that have slightly increased axial membrane forces. These

parts around the imperfection with additional compressive axial loading

spreads out to the clamped cylinder edges. That following, above and

below the dent at these edges the axial membrane forces are diminished

whereas aside these minima they are raised.

With increasing axial loading of the cylinder the amplitudes of the dim¬

ples grow and consequently the deviations of the membrane forces from
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Figure 6.126: Circumferential membrane forces per unit length Nhoop resulting

for the cylinder shell in Fig. 6.125 with a dent of initial depth Wb/h = 0.3 and

an applied axial load of P = 328 kN close to buckling.

the nominal value increase. Therefore, the distribution of the axial mem¬

brane force per unit length Naxtai with brighter vertical strips of dimin¬

ished stress below and above the initial dent, with a dominate shell

loading in the dent, and with two red ) or (-formed shell parts of ele¬

vated axial loading becomes more distinctive. In the color contour plot
of Figure 6.125 the axial membrane forces per unit length Naxtai of the

shell at hand, calculated for an axial load of P = 328 kN, are reproduced.
This compressive force is close to the local buckling load Pcr = 330 kN

of the reference cylinder with the dent of initial depth wg/Zi = 0.3, the

corresponding nominal membrane force is Nx = —208.8 N/mm. Con¬

trary to the shell loaded with only P = 40 kN and a single membrane

force concentration at the centre of the dent, now two dark spots be¬

side the dimple apex resulted which refer to maximal forces of about
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NaXiai = —230.4 N/mm. That is, the concentration of axial membrane

force at the apex is split into two peaks at the lateral edges of the dimple.
On the two bulges on the left and the right of the dimple the axial com¬

pressive membrane force was diminished to a minimum value of about

NaXiai = —189.4 N/mm. The maximum deviation from the nominal

value is circa 22 N/mm absolute or about 11% relative. In addition to

the spots with extremal values at the dent and the bulges again a bright

yellow, vertical strip from the bottom-up with weakened axial membrane

forces emerged, flanked by red shell parts with elevated membrane forces

which radiate from the dark peaks.

The region of the cylinder shell around the dent, where the circumferen¬

tial membrane forces per unit length Nhoop deviate perceivably from the

nominal value in an perfect cylinder (Ny = 0), is much smaller than that

for the axial membrane forces described above. The contour deforma¬

tion plots in Figure 6.126 and 6.124 show the resulting circumferential

membrane forces per unit length Nhoop for the shell above loaded with

an axial compressive load of P = 328 kN and P = 40 kN accordingly to

the plots in Figure 6.125 and 6.123 for the axial membrane forces. For

both loads in the dent a concentration of the compressive circumferential

membrane force Nhoop occurred, in case of the applied axial load close to

local buckling with a maximum of circa Nhoop = —95 N/mm. The slight

bulging above and below the dent led to tensile circumferential forces,
for the higher loading with a maximum of about Nhoop = 56 N/mm. But

besides the dent the circumferential membrane forces are almost zero, as

in the vertical strip above and below the dent where the axial membrane

force is clearly reduced.

In Figure 6.127 the shear membrane forces per unit length Nshear for the

shell above is shown, again resulting for an applied axial force of P =

328 kN. The contour deformation plot with the shear membrane forces

supplement the similar plots in Figure 6.125 and 6.126 which include the

axial and circumferential membrane forces per unit length of the shell

with this axial load. The nominal shear membrane force per unit length
in an ideal cylinder is zero, but around the dent shear membrane forces

resulted with peaks up to ±23 N/mm placed at the edge of the dimple.
The colour pattern in the contour plot give reason for the existence

of small shear membrane forces also at the cylinder half opposite to the

imperfection, but the coloured spots there are rather a result of numerical

inconsistencies due to small numbers.

All the finite element calculations presented so far were conducted for

cylinders with controlled axial edge displacements according to the
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Figure 6.127: Shear membrane forces per unit length Nshear resulting for the

cylinder shell in the two previous figures with a dent of initial depth Wb/h = 0.3

and an applied axial load of P = 328 kN.

clamped boundary conditions CC4 in the shell calculus. Both edges
are clamped retaining all rotations, the radial and the circumferential

displacements of the nodes along the cylinder boundaries. By means

of a central auxiliary node tied to the edge nodes, rigid, plane parallel
end plates were simulated, see Section 6.4. Consequently, an axial com¬

pression of such a cylinder model by application of either given cylinder

end-shortenings AL or total axial compressive loads P on the auxiliary
node provokes axial displacements u identical for all edge nodes but po¬

tentially non-uniformly distributed axial membrane forces Naxtai along
the cylinder edges. In Figure 6.128 the axial membrane forces per unit

length NaXiai in the elements along the path over the dent apex at L/2
around the reference cylinder with the dent of initial depth wg/Zi = 0.3

are shown again for an applied axial load of P = 328 kN. The axial mem-
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Figure 6.128: Axial membrane forces per unit length Naxiai in the elements

along the upper cylinder edge and along the horizontal path over the dent of
initial depth Wb/h = 0.3 applied to the reference cylinder. Results of a non¬

linear static analysis at an applied axial compressive load of P = 328 kN and

for cylinder edges with the clamped boundary conditions CC4 which simulate

rigid, plane parallel endplates with resulting uniform axial edge displacements

of AL = —1.01 mm.

brane forces Naxiai in this cylinder shell resulting for this load close to the

local buckling load were already presented in the contour-deformation

plot of Figure 6.125, page 371. Additional to the progression of the

membrane forces along the path over the dent apex also that around

the upper cylinder edge was included for comparison. At the right of

the drawn cylinder with a more qualitative indication of the membrane

force-per-unit-length distribution applied, in two charts the respective
uncoiled membrane-force curves around the shell are reproduced with

an adapted scale. It can be seen that the resulting axial membrane

forces per unit length Naxiai along the upper edge vary in a similar way

to the forces distributed along the path over the dent, albeit with lower

deviations from the nominal value. As already mentioned, whilst axial

cylinder compression the membrane force in the vertical strip over the

dent from the bottom cylinder edge up to its top edge diminishes. Dur¬

ing this stress relief at the dent centre, the axial compressive membrane

force concentration is split into two peaks to the left and the right of the

dent vertex. Two small peaks of compressive membrane force emerged
also along the cylinder edge, but the distance of these peaks from the
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dent apex (at 0.5 x 2nR) is larger compared with that of the two peaks
at the lateral dent sides. From Figure 6.125 it can be taken that this

longer distance stems from the shape of the four red zones of higher com¬

pressive axial membrane forces which radiate slantwise from the peaks
beside the dent apex up to the cylinder edges.

As detailed in the previous sections, during axial cylinder compression
the depth of an inward dimple continuously increases and at the edges
of the initial dimple further bulges and dents emerge. Then, depending
on the width and the depth of the so deformed dimple the cylinder shell

is flattened locally. As a consequence thereof, within the vertical strip
from bottom-up over the dent the axial stiffness due to the shell curvature

vanishes. With decreasing curvature in the dimple the axial membrane

force in the shell strip diminishes as well, whereas the two lateral flanks

of the dent are additionally stressed. That is, the axial membrane force

is transferred from the flattened vertical strip over the dent to the curved

shell parts between the inward and and the two outward dimples. To

demonstrate the positions of the membrane-force maxima and minima

whilst axial cylinder compression in Figure 6.129 the axial membrane

forces per unit length in the shell elements Naxtai along a horizontal

path are shown in comparison to the curvatures 1/fk and the radii r^

of the nodes along this path, see Section 6.5.3. These values are results

of a transient dynamic analysis of the reference cylinder afflicted with

dent above of initial depth wg/Zi = 0.3, initial arc-length ag = 181mm,
and initial height Zg = 66 mm. In contrast to nonlinear buckling analyses
the transient dynamic analyses enables to display membrane-force dis¬

tributions after the local buckling of the shell at hand with only minor

deviations of static analysis results due to damping. The axial mem¬

brane force per unit length Naxtai plotted in the bottom chart resulted

for axial compressions AL of 1.012 mm, 1.030 mm, and 1.039 mm which

yielded the reaction forces P of 328 kN, 333 kN, and 326 kN, respectively,
as indicated. The first load is before, the third after the sudden shell

flattening during the local buckling. The values are axial membrane

forces per unit length averaged in each element of the path which starts

at the apex of the dent and runs counterclockwise around the half cylin¬
der circumference, as indicated with the small sketch in the centre of

Figure 6.129 or as introduced in Section 6.5.3. In the top chart the lo¬

cal radii r^ and in the chart below the approximated local curvatures

1/fk along the nodal path corresponding to the element path for the

membrane forces are plotted which result for the aforementioned axial

loadings. The thin lines with circlets show the radii and curvatures of

the unloaded initial configuration. The vertical dash-dotted line in all
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Figure 6.129: Axial membrane forces per unit length NaXiai, approximated
curvatures 1/fk, and radii rk along the horizontal path from the apex of the

dent f— small sketch). Results of an transient dynamic analysis referring
to axial loads P as indicated. Reference cylinder having an initial dent with

Wb/h = 0.3, ab = 181 mm, lb = 66 mm.
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three charts give the distance from the initial lateral end of the dent

to the apex of the applied dent, in the present case ag/2 = 90.5 mm.

According to the distributions of the membrane forces per unit length
and the respective local curvature and radii for the three load levels

the peaks with the highest compressive axial membrane forces per unit

length NaXiai are shifted to the element where the respective curve for

the local-curvatures 1/fk crosses the thin line with circlets for the initial

state. That is, the shell elements at the lateral flanks of the dent had

to sustain additional axial membrane loading where the shell curvature

is about that of the unloaded state. After local buckling (red lines) the

approximated curvatures at the first four nodes beside dent centre fell

to quasi-zero and also the axial membrane forces were reduced to a min¬

imum of less than —50 N/mm, thus about 1/4 of the nominal value of

—208 N/mm. The radius r^ at the lateral edges of the dent (vertical
dash-dotted line) increases whilst cylinder compression since new bulges
are formed where the axial membrane force diminishes. And again adja¬
cent to these bulges further inward dimples emerge which slightly raise

the axial membrane force locally.

The main deviations of the axial membrane forces as well as of the local

radius and the curvature from the values for the ideal cylinder, prior
to the total cylinder collapse, are decayed after a lateral distance from

the initial dent of about 1.5 ag, as denoted with the second vertical, thin

dash-dotted line in the bottom chart.

The alteration of the radii and curvatures of the nodes along the hor¬

izontal path above with increasing axial compression of the reference

cylinder with the dent of initial amplitude wg/Zi = 0.3 is also shown in

Section 6.6.1 by means of surface plots which are formed by a sequence of

curvature or radius curves similar to the curves in the upper two charts

in Figure 6.129. In Figure 6.130 the progressions of the axial membrane

forces per unit length Naxtai in the elements along the horizontal path
from the dent apex around half the cylinder circumference are plotted
also sequenced bottom-up for increasing axial loading. The uncoiled

path again serves as x-axis from left to right of the surface plots with

the dent apex at the left end. The y-axis from the bottom up indicates

the applied axial compression AL. Figure 6.130(a) shows the runs of

the axial membrane forces for the deformation process whilst local buck¬

ling, and plot (b) below for that during total cylinder collapse. The runs

of the radii r^ of the nodes along the path resulting for the analysis at

hand and for the sequence of load steps AL in plot (a) are presented
with a similar surface plot in Figure 6.43, page 258, and the radii for the
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(a) Part 1: local buckling
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(b) Part 2: cylinder collapse

Figure 6.130: Sequenced progressions of the axial membrane forces per unit

length NaXiai along the horizontal path between the dimple apex and its opposite

point for a dent of initial depth Wb/h = 0.3 applied to the isotropic reference

cylinder.
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sequence of AL during cylinder collapse in plot (b) are given similarly
in Figure 6.46, page 260. The approximated curvatures 1/fk along the

path according to the surface plots in Figure 6.130(a) and (b) are dis¬

played in Figure 6.44, page 259, and Figure 6.47, page 261, respectively,

again in similar surface plots. The axial membrane forces Naxtai are re¬

sults of the same transient dynamic analysis as the values in the bottom

chart of Figure 6.129, but in the surface plots negative values standing
for compressive loading are oriented downward. The line -•-» serves to

indicate the upper edge of a plane in the plot with zero axial membrane

force NaXiai = 0. The curve made up by the lower boundary of the "sur¬

face" in Figure 6.130(a) resembles the black membrane-force curve in

the bottom chart of Figure 6.129 for the state of stress and deformation

prior to local buckling but is upside down, i.e. mirrored with respect to

Naxial = 0. The curve to the upper "surface" boundary of the surface

plot accordingly is similar to the inverted red curve in the line chart

representing the state of a partially flattened shell after local buckling.
In the successively deepening and flattening dent, close to the y-axis of

the surface plot (a), the axial membrane force is significantly reduced

and hence the surface grid lines there change from red to yellow. The

adjacent black valley in the "surface" depicts the high concentration of

axial compressive membrane force arisen at the right flank of the dent.

In Figure 6.130 (b) also the alteration of the axial membrane forces per

unit length along the path during the total collapse of the cylinder is

shown. After the collapse, in the cavities of the applied dent and the

laterally formed new dimples the axial membrane force is almost zero,

what can be taken from the yellow tops of the wider "hills" in the "sur¬

face"
.
The black furrows at each side of these quasi-zero-load segments

refer to the elements at the lateral flanks of the buckles which are mas¬

sively stressed. Between these compressive force peaks, on the top of

the narrow bulges formed between the inward dimples, due to outward

bending small tensile axial membrane forces +Naxiai resulted, which in

the surface plot are represented by light-coloured "pinnacles".

Influence of the initial dent depth wg/Zi

The deviation values of the membrane forces in an isotropic cylinder with

a single initial dimple from the their values for the ideal cylinder depend
on the applied axial load and on the actual size and amplitude of the

dents and bulges in the shell. The alteration of the shell geometry during

loading, in turn, follows from the initial dimensions of the applied dimple
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and of the cylinder. The influences of the initial dimple amplitude, the

initial width and height of the dimple, as well as of the cylinder length,
radius and wall thickness on the deformation process and the reduced

axial buckling load of the cylinder are explained in Section 6.6.1 for

dents and 6.6.2 for bulges. To demonstrate the impact of the initial dent

depth Wb on the axial load at which the shell flattens partially, and on the

process of this local stiffness reduction (e.g. local buckling), in Section

6.6.1 additional to the analysis results for the dent of initial depth wg/Zi =

0.3 also the resulting critical loads and deformation states for the dents

with Wb/h = 0.1 or wg/Zi = 0.5 but otherwise identical geometry are

depicted. These exemplary dents with an initial width of ag = 181mm

and height Zg = 66 mm were added to the reference aluminium cylinder
above with length L = 510 mm, radius R = 250 mm and shell thickness

h = 1.5 mm. Already there the axial membrane forces per unit length

Naxiai together with the circumferential membrane forces Nhoop for these

three dents were reproduced in contour deformation plots: in Figure 6.35

on page 247 the membrane forces for the dent of initial depth wg/Zi = 0.1,
in Figure 6.41 on page 255 those for the dent of initial depth wg/Zi = 0.3,
and finally in Figure 6.50 on page 266 those for the dent of initial depth

Wb/h = 0.5. These distributions are results of nonlinear static analyses
with constant load step size for axial compression forces close to local

buckling or to the lowest critical load referring to local shell flattening.

In contrast to the two shallower dents the dimple with wg/Zi = 0.5 pro¬

voked a continuous convergence to a flattened shell at the dent. Thus

the given membrane forces in Figure 6.50 resulted for a load and state of

strain with an already flattened shell strip. This shell geometry leads to

rearrangements of the axial compressive stress with a more distinctive

relief at the centre of the dent and peaks at the lateral dent flanks.

But a more significant difference between the resulting force distribu¬

tions for the dent with initial depth wg/Zi = 0.5 in Figure 6.50, p. 266,
and those for the dent with wg/Zi = 0.3 in Figure 6.41, p. 255, may be

detected for the circumferential membrane forces Nhoop'- in the case of

the dent with wg/Zi = 0.3 prior to local collapse in the centre of the dent

resulted a single concentration of compressive circumferential membrane

forces —Nhoop, whereas in the case of the already flattened dent of initial

depth Wb/h = 0.5 two separate peaks of —Nhoop at the flanks of the dent

emerged, in the plot identifiably by the two dark stains. To enlighten
this particular type of membrane-force distribution, in Figure 6.131 the

circumferential membrane forces Nhoop and the axial membrane forces

Naxiai for a deep dent of initial depth wg/Zi = 1 are depicted which were
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(a) axial membrane forces NaXiai

(b) circumferential membrane forces Nhoop

Figure 6.131: Axial and circumferential membrane forces per unit length re¬

sulting for a dent of initial depth Wb = h applied to the reference cylinder with

length L = 510 mm (left column) and to the 50 % longer cylinder with length
L = 765 mm (right column). Results of nonlinear static analyses for an applied
load of P = 304 kN. Wall thickness and radius for both cylinders h = 1.5 mm

and R = 250 respectively. The initial width of the dent is Wb = 181 mm for
both cases, the initial height lb = 66 mm for the left and 69 mm for the right
shell.
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yielded with a nonlinear static analysis for an axial load of P = 304 kN

in the range of already accomplished shell flattening. Thus, this load

is above the lower buckling load for local instability Pcr l = 293 kN

which resulted from a nonlinear buckling analysis of the mid-long refer¬

ence cylinder having this dent (L = 510mm, left column), see Section

6.6.1. On the left contour-deformation plot of Figure 6.131(b) for the

circumferential membrane force distribution two separate dark stains

can be recognized which denote a high compressive-force maximum of

Nhoop = —142 N/mm at the lateral, far apart dent sides. But whereas in

the centre of the dent the compressive force is small (orange coloured), at

the upper and the lower side of the dent further "dark zones" with high

compressive forces. The dent is again framed by tensile circumferen¬

tial membrane forces with their maximum of about Nhoop = +79 N/mm
above and below the dent. Thus, in this state the horizontal flattened

strip from dent side to dent side resembles a longish plate which is loaded

lengthwise at its narrow edges. Since the deformation plot were created

with amplified radial displacements the actually flat shell strip in the

initial dent is shown with an unreal curvature. The buckling mode in

Figure 6.49(d), Section 6.6.1, page 265, with a dent flanked by bulge
follows from this particular local state of stress and deformation; it cor¬

responds to the first buckling mode of a longish plate with respective

boundary conditions and loading.

The nominal axial membrane force per unit length to the applied com¬

pressive load is Nx = —193.5 N/mm. In the left contour-deformation

plot of Figure 6.131 (a) the two dark spots for maximal axial compressive
membrane force —Naxtai are separated by a wide vertical light-coloured

strip with only small compressive axial forces. The resulting maximum

compressive force at the flanks of the dent is Naxtai = —353 N/mm, thus

about 82 % in excess of the nominal value above. In contrast to the axial

membrane force distribution for the dent with wg/Zi = 0.3, a minimal

axial membrane force of Naxtai = —59 N/mm has settled in the centre

of the wide vertical strip and not on the also relieved bulges at the left

and the right side of the dent. This minimum value means a reduction

to less than one third of the nominal value.

Influence of the Cylinder Dimensions L, R, and h

In Figure 6.131 the contour-deformation plots with the axial and the cir¬

cumferential membrane forces/unit length for the 50% longer cylinder
of length L = 765 mm afflicted with the dent of initial depth wg/Zi = 1
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Figure 6.132: Transient dynamic analysis results for a single dent of initial

depth Wb = h in two cylinders with lengths as indicated, radius R = 250 mm,

and shell thickness h = 1.5 mm. Shells identical to those in Figure 6.131.

and also loaded with P = 304 kN were added for comparisons (right
column) to the plots for the reference cylinder with this dent (left col¬

umn) .
This shell resulted a first buckling load of Pcr j_,

= 265 kN with

a nonlinear buckling analysis, but a transient dynamic analysis led to

the observation of a second local buckling event at an axial load of circa

P = 320 kN including a lateral shift of the dent to the left or the right
of its initial position according to the aforementioned buckling mode of

the compressed horizontal flattened strip, see Section 6.6.1. In Figure
6.132 the transient dynamic analysis results for the two shells of differ¬

ent length L in Figure 6.131 are charted. The two circlets indicate the

axial load level P = 304 kN for which the membrane forces are shown

above. It can be seen that the membrane forces in Figure 6.131 were

obtained for an axial load below the second local buckling load in case

of L = 765 mm and above the load (« 250 kN) at which both curves

start to differ from a straight line due to the loss in axial stiffness in the

flattened shell strip. The curves give the resulting axial reaction force P

for the applied normalized axial compression AL/L. The small offset in

the blue curve left below the peak load stems from the mentioned sec¬

ond local buckling event during compression of the longer cylinder. This

behaviour could not be observed for the shorter reference cylinder and

hence the red curve is also bend but without any zig-zag course of the

ascending curve prior to the cylinder collapse load. On the influences of

the cylinder length L on the buckling behaviour of cylinders with a single

-cylinder lengtn 1^ = too mm

-cylinder length L = 510mm
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initial dimple it was already reported in Section 6.6.1. For both cylin¬
der lengths the initial width of the dent was specified as ag = 181mm,

enabling direct comparison of the resulting state of stress and deforma¬

tion of the two cylinder shells with different lengths but otherwise like

shell and imperfection geometry. For the identical applied axial load of

P = 304 kN the sized distance between the clamped cylinder edges of the

longer shell leads to larger radial displacements at the mid-length of the

shell without a higher bending energy needed. Thus, the critical state

of a partially flat shell and also the total collapse of the cylinder with

L = 765 mm occurs at lower axial loads, as can be recognized in Figure
6.132 with the blue curve. The larger resulting displacements yield also

higher deviations of the axial membrane forces per unit length Naxtai

in Figure 6.131(a) as well as the circumferential membrane forces per

unit length Nhoop in (b) from the same nominal values. The maximum

axial membrane force, again located at the lateral sides of the dent, with

Naxiai = —460 N/mm is circa 30 % higher than the maximum value for

the reference cylinder with L = 510 mm. In the vertical flattened strip,
which is somewhat wider than that of the mid-long reference shell, and

the bulges at the dent sides again the axial membrane force is consider¬

ably reduced to a minimum of only Naxtai = —32 N/mm, thus to about

the half of the minimum value of the reference shell. However, probably
more distinctive differences between the two cylinders may be found in

the circumferential membrane force distributions in Figure 6.131 (b). In

both cases high compressive forces/unit length —Nhoop settled around

the four dent sides with two peaks at the lateral flanks of the dimple;
but in contrast to the reference cylinder, at the dent apex and centre

of the flattened shell small tensile forces +Nh00p resulted; the maximum

compressive circumferential force of Nhoop = —159 N/mm is 12%, the

maximum tensile force of Nhoop = +94 N/mm 18 % in excess of the max¬

imum value for the reference cylinder. The mentioned main differences

between the distributions in left plots and those in the right plots of

Figure 6.131 were probably decisive that a further axial compression of

the longer cylinder led to the occurrence of the mentioned second local

buckling incident, whereas that for the reference cylinder did not.

Nevertheless, the cylinder radius R and the shell wall thickness h exert

the major influence on the absolute deviation values of the membrane

forces in a cylinder having a dent. According to the formula for the buck¬

ling stress of perfect isotropic cylinder, acr = 0.6 E h/R, cylinders with a

larger radius have basically a smaller critical stress than cylinders with

smaller diameter and otherwise like wall thickness and material. There¬

fore also local peak stresses are smaller for imperfect cylindrical shells
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with larger radius. And at a given axial load for larger cylinder cir¬

cumferences smaller stresses and membrane forces result. However, the

extremal values of membrane forces in different cylinders, all having a

dimple imperfection of a given initial amplitude, resulting for axial com¬

pressions always relative to the respective buckling loads become almost

identical if normalized with respect to the corresponding nominal mem¬

brane forces Nx. That is, for example, the maximal relative deviation

of the compressive axial membrane force per unit length resulting for an

applied axial load of 90% of the collapse load, P = 0.9 Pcr, from the

nominal membrane force Nx is identical for all cylinders having a dent

with like initial depth and adequate initial lateral dimensions.

cylinder

R h L

[mm] [mm] [mm]

V~Rh

[mm]

dent

ab h

[mm] [mm]

buckling loads

*cr L *cr U

[kN] [kN]

applied loads

P Nx

[kN] [N/mm]

187.5 1.0 382.5

250 1.5 510

500 0.75 510

13.7

19.4

19.4

124 50

181 66

181 66

127 157

291 368

74 97

156 -132

368 -234

97 -31

width height local cylinder force nommai

Table 6.4: Dimensions of three aluminium cylinders and initial lateral lengths

of their dent with initial depth Wb/h = 0.5. Resulting local buckling and

cylinder-collapse loads. Applied axial loads P related to the nominal axial

membrane forces/unit length NaXiai used for Figure 6.133.

In Table 6.4 the radius, the length and the shell thickness of the refer¬

ence cylinder and two further exemplary aluminum cylinders are listed.

The shells have a single inward dimple of initial depth wg/Zi = 0.5 whose

appropriate initial width ag and initial height Zg are given in the table.

Furthermore, the lower buckling loads Pcr j_, referring to local shell flat¬

tening and the total collapse loads Pcru, both obtained with nonlinear

buckling analyses, can be taken. The first two cylinders have both a

diameter 2R almost as long as their length L, compared to the last shell

with a diameter/length ratio 2R/L of about 0.5. And, all three shells

differ in the radius/wall thickness ratio R/h. For the consideration of the

axial membrane forces close to the total collapse of these three cylinder
shells again nonlinear static analyses were performed and the resulting
values along the horizontal path over the dent vertex listed. For the ref¬

erence cylinder in the second row of Table 6.4, for instance, at an applied
axial load of P = 368 kN just prior to the cylinder buckling Pcru (see
penultimate column) the calculation yielded a maximum compressive
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Figure 6.133: Relative deviations of the compressive axial membrane forces

per unit length —Naxlai from the nominal compressive membrane force —Nx

along a horizontal path for three cylinders as indicated with a dent of initial

depth Wb/h = 0.5. Distances from the dent apex in ratio to the length \/Rh.

Corresponding initial dent lengths ab and lb, and applied axial loads P listed

in Table 6.4-

axial membrane force of Naxtai = —461 N/mm. This peak value means

a deviation from the nominal axial membrane force Nx = —234 N/mm
(last column) of AN = —227 N/mm. The corresponding relative devia¬

tion with respect to the nominal value results in AN/NX = +97%. The

similar calculation for the shell of radius R = 500 mm in the last row at

an axial load of P = 97 kN yielded a peak of compressive axial membrane

force of NaXiai = —60 N/mm and an deviation from Nx = —31 N/mm
of only AN = —29 N/mm. Compared with the reference cylinder, the

radius/wall thickness ratio R/h of this wider shell is four times larger;

therefore, the membrane forces as well as their extremal values are only
a fourth of that of the reference shell. However, the relative deviation of

the peak value above for the wider cylinder is AN/NX = +94%, hence

very close to the previous relative tolerance resulting for the reference

cylinder.

In Figure 6.133 the relative deviations of the compressive axial mem¬

brane forces per unit length with respect to the nominal value AN/NX
of the three cylinders in Table 6.4 with a dent of initial depth wg/Zi = 0.5

and applied axial loads just before collapse are depicted. To the left of

the first vertical dash-dotted line, which indicates the initial right side of
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the dent, the peaks with large relative deviations between 90 and 100 %

for the reference cylinder (red line) and the wider shell with R = 500 mm

(green line) can be relocated. As abscissa of the chart serves the distance

of the elements in the horizontal path from the dent apex normalized in

terms of the "wave-length" \/Rh. As already repeatedly mentioned,

during axial compression the zone of maximal axial compressive mem¬

brane force is shifted from the dent centre to its lateral flanks, and in

the dent as well as on the bulges beside the dent the axial membrane

force is diminished. The initial arc-length ag and the initial meridian

height Zg of the dent applied to the three cylinders, see Table 6.4, are the

initial lateral dent lengths which resulted in the smallest buckling loads

for an initial depth of wg/Zi = 0.1, see Section 6.6.3. According to the

results for the considered cylinders with common isotropic material both

dent dimensions can be related to the wavelength 2ZC = 3.A6^/Rh for

the axis-symmetric buckling of ideal isotropic cylinders. Consequently,
the position of these extremal values measured in arc-length per root

y/Rh for isotropic cylinders with an accordant dent will be identical,
and hence the runs of the three relative-deviation curves in Figure 6.133

agree almost completely.

From these results follows that isotropic cylinders of moderate length

having a single dimple of a given normalized initial amplitude Wb/h,
and axially compressed with a load at a given percentage to the buckling
load P/Pcr, yield identical peak values and distributions of relative axial-

membrane-force deviations AN/Nx in dependency of the length V'Rh.

That is, with results for a cylinder such as given in Figure 6.133 and

known buckling loads it is possible to make good estimates of the axial

membrane loading in any other cylinder with equal dimple amplitude

Wb/h, appropriate dimple dimensions ag and Zg, similar normalized axial

load P/Pcr, and adequate cylinder length L. But due to the afore¬

mentioned impact of the cylinder length L on the force amplitudes, for

the comparisons of cylinders with different wavelength y/Rh, a similar

length/radius ratio L/R or nondimensional parameter L/yRh is pro¬

vided, otherwise a larger underestimate of the peak membrane forces is

probable.

The right dash-dotted line in Figure 6.133 horizontally distant 1.5 • ag

from the dent apex indicates that the main A^aXja;-deviations along the

path over the dent with wg = h/2 close to cylinder collapse are limited

within an arc of a length three times the initial dimple width, 3 • ag. This

approximative decay length along the horizontal path can be considered

as a maximum lateral spread of the stress or membrane-force distur-
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bances for applied axial loads below the collapse load of an isotropic

cylinder with a single dimple imperfection.

Stress Distributions in Selected Shell Cross-Sections

Membrane forces per unit length stem from the mean stresses in cross

sections of a shell. Thus, with the reproduction of membrane forces the

peak stress values within a shell remain hidden. In case of pure shell

bending, for example, the membrane force is zero despite high stresses

at the outer skins of the shell.

«„„„I = -461 N/mm

-59 N/mm

Figure 6.134: Distributions of the axial stress oaXiai m the shell cross section at

three selected spots in the reference cylinder with a dent of initial depth wb/h =

0.5 as indicated, resulting for an applied axial force of P = 368 kN. CAUCHY

stresses obtained with a nonlinear static analysis. Contour-deformation plot

in background to display the respective axial membrane forces per unit length

l'aXial •

Since the cylinder shells with initial dents are not only compressed but
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also considerably bent, in Figure 6.134 the distributions of the axial

Cauchy stress o~axiai in three shell cross sections are depicted again

resulting for the reference cylinder with a dent of initial depth wg/Zi = 0.5

as given in the second row of Table 6.4. The stresses in the charts aaxial

as well as the axial membrane forces/unit length Naxtai are results of

a nonlinear static analysis at an applied axial load of P = 368 kN. The

cylinder, the dent and the applied load agree with those which yielded the

red A^aXja;-deviations curve in Figure 6.133. The selected cross sections

are located at spots with maximal or minimal compressive membrane

forces NaXiai, as indicated with white arrows in the contour-deformation

plot. The membrane forces associated with the stresses in the cross

sections are given at the lower chart border. The stresses aaxiai at the

outer shell skin are left at the ordinates, that of the inner surface at

the right side of the stress charts. Thus, from the slope of the straight
line joining the axial stresses in the second chart follows that there,

additionally to axial compressive stresses, high bending stresses due to

the indentation are superposed. In the centre of the dent the shell is

almost flat; however, during the deformation process at the dent apex

high bending stresses are formed at small membrane forces, see first

chart. The tensile stresses are located at the inner shell skin, hence the

stresses are result of the bending whilst the continuous deepening of the

dent. In the third chart, in contrast, the tensile stress are at the outer

shell skin, and thus in this case the moderate bending stresses result for

the bulging of the shell at the lateral dent sides.

Similarly, in Figure 6.135 the distributions of the circumferential Cauchy

stress o~hoop in three shell cross sections again for the shell and load level

as in Figure 6.134 are shown. The resulting circumferential membrane

forces Nhoop at the selected spots in the shell, again marked with arrows,

are indicated at the right or below the stress charts. The stresses ahoop

at the outer shell surface are now at the top, that of the inner surface at

the bottom of the charts. At the centre of the dent the compressive cir¬

cumferential membrane force Nhoop is small, nevertheless large bending
stresses of more than o~hoop = —300 MPa resulted (top chart). Although
in the configuration of the cylinder on hand the shell in the dent is quasi

flat, during axial compression the dent deepened, the shell bended and

thus tensile stresses at the inner shell side emerged. But at the lateral

flanks of the dent and on the adjacent small bulges at its inner surface

the shell was compressed due to bulging. At the spot with maximal

circumferential membrane force (second chart) large compressive hoop
stresses of about ahoop = —250 MPa accumulated at the inner shell skin

but only small tensile stresses at the outer. On the bulges (third chart),
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Nhoop = +32 N/mm

Figure 6.135: Distributions of the circumferential stress Ohoop m the shell cross

section at three selected spots in the reference cylinder with a dent of initial

depth Wb/h = 0.5 as indicated, resulting for an applied axial force of P =

368 kN. Cauchy stresses obtained with a nonlinear static analysis. Contour-

deformation plot in background to display the respective axial membrane forces

1'hoop•

in turn, larger tensile stresses at the outer surface front and smaller

compressive stresses at the inner arose; therefore, as indicated, a small

tensile membrane force per unit length Nhoop resulted.

For all calculations linear elastic material was provided; that is, it was

presumed that possible yielding in the cylinder shells can be ignored.
With the resulting stress values up to almost 500 MPa in the aluminium

shell as presented in Figure 6.135, the validity of this assumption has

to be questioned, since also the top yield stresses of high-strength alu¬

minium alloys are below this value. Thus, during a compression test

of the aluminium reference cylinder with radius R = 250 mm and wall

thickness h = 1.5 mm, prior to the total collapse permanent plastic strain
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at edges of a deeper dent has to be expected. However, the cylinder with

a wall thickness of only h = 0.75 mm, a radius of R = 500 mm, and a

length equal to the reference cylinder yielded stress values in the shell

that are solely a fourth of those in the reference cylinder, despite the

equally sized dimple imperfection, the same buckling behaviour, and the

similar relative stress deviations. This shell has half the wall thickness

and double the radius of the reference cylinder and hence an identical

wave-length y/Rh, yet its radius/wall thickness ratio R/h is four times

bigger. Concerning the buckling behaviour, the qualitative differences

between this cylinder und the reference cylinder are negligible, due to

the constant wave-length yRh and identical length L. Moreover, the

absolute initial depths of the dimples are specified in relation to h and

both the used initial widths and the heights of the dimples depend on

the length VRh. Thus, by means of a reduction of the wall thickness h

and an appropriate increase of the radius R always new shells with equal
\/Rh can be specified which have the identical buckling behaviour and

the same relative deviations of the membrane forces, but whose maxi¬

mum stresses are arbitrarily reduced and therefore underrun the lowest

existing yield stress. For instance, with peak stresses in the range of

125 MPa for the shell above with R = 500 mm, yielding of the shell prior
to cylinder collapse will be unlikely. For this reason, additional buckling

analyses under consideration of plasticity were not performed. Since the

edge lengths of the finite shell elements in the used models have the

length 0.5 y/Rh, the reduction of the wall thickness and thus also of the

stresses has the disadvantage that with the required increase of the ra¬

dius also the number of shell elements in the circumference accumulate.

The cylinder with h = 1.5 mm and R = 250 mm was selected as reference

shell due to its smaller number of elements and thus shorter computing

times, and not because of the resulting high "academic" peak stresses.

Cylinders with Uniformly Distributed Edge Loads

As aforementioned, the finite element calculations presented so far were

conducted for cylinders with controlled axial edge displacements accord¬

ing to the clamped boundary conditions CC4 in the shell calculus. Thus,
the axial displacement around the cylinder edge is identical for all edge
nodes but potentially, whereas axial membrane forces per unit length

Naxiai along the cylinder edges non-uniformly distributed. Alternatively
to the application of the loading on an auxiliary node tied to the edge

nodes, the force may also be distributed directly to the edge nodes in
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equal shares. Contrary to the boundary conditions CC4 above, in such

a case the now uniformly distributed edge load is given by the nom¬

inal compressive axial membrane force Nx = —P/2irR. Retaining all

rotations as well as the radial and the circumferential displacements of

the edge nodes, a clamped but axially flexible cylinder end is simulated.

Such a setting corresponds to the analytical boundary condition set CC3

for clamped edges with controlled axial edge loads Nx and resulting po¬

tentially non-uniformly distributed axial edge displacements.

—> For cylinders having a dimple important discrepancies of the buck¬

ling behaviour and the buckling loads between the conditions CC'4 and

CC3 may result.

=> Buckling analysis results (loads and stresses) for clamped bound¬

ary conditions CC3 with controlled axial edge load are detailed in

Section 6.6.7, page 426.
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Remarks on Measures to Prevent Local Buckling of a Dent

The lower buckling loads of cylinders having an initial dent compared to

those of perfect cylinders stem from local variations of the stress distri¬

bution related to local buckling at the imperfection prior to the cylinder

collapse. These variations in the stress fields in turn are caused by the

imperfection and change with particular shell deformations. The lin¬

ear buckling modes (eigenvectors) follow from these stress fields. End

effects ignored in perfect cylinders the stresses are constant and their

linear buckling modes consist in evenly distributed dimples of equal size.

In the cylinders with an initial dent however stress peaks result and their

linear buckling modes contain a few single, large dimples at the imper¬

fection, whereas the rest of the shell is "dimpleless". Hence, measures

to prevent local instability prior to cylinder collapse may be successful if

they anticipate the appearance of local stress variations within the shell.

Probably the first measures which come into mind to remove local stress

peaks in an axially compressed cylinder having a dent is to reduce the

stiffness or to increase the wall thickness locally. But the amplitude as

well as the positions of the stress peaks in the shell change continuously

during cylinder compression. Thus, a local change in wall thickness for

instance may be successful at a particular load level, but will be idle or

even impairing at an other load.

Nevertheless, local changes in the wall thickness yielded remarkable in¬

creases of the buckling loads considering the initial dent geometry and

dimensions instead of the stress disturbances: by attaching a shell strip

on the outer cylinder surface over the dent the damaging effect of the

dent could be compensated. Without much additional calculation effort

a few series of nonlinear buckling analyses of the reference cylinder with

a single dent of initial depth wg/Zi = 0.2 or wg/Zi = 0.5 and a shell

strip of different wall thickness affixed over the dent were conducted.

The dents had an initial width of ag = 185 mm and an initial height of

Zg = 64 mm. With a width of 194 mm and a of height of 77 mm the strip

or tape overlapped the dent edges somewhat to match the additional

shell elements, with which the tape was modeled (8 x 20 elements), with

the elements of the cylinder (52 x 162 elements). The nodes of the tape
elements were linked with the adjacent nodes of the cylinder elements

by means of rigid beam elements. The length of these elements were

given by half the wall thickness of the tape and the cylinder. In this

manner ideal bonding between tape and cylinder was simulated, addi¬

tionally the eccentric loading of the tape due to its larger mean radius
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compared to that of the coaxial cylinder shell was taken into account.

In Figure 6.136 the shell strip applied on the outer cylinder surface is

Figure 6.136: Cylinder model under axial load with a small shell strip applied

over the dent on the outer cylinder surface. Rigid beam elements to model

perfect cylinder-strip bonding elongated for illustration.

depicted with drastically elongated beam elements to clarify the config¬
uration with the additional finite elements. The effect of the tape was

investigated for different initial tape thicknesses ht, either constant for

the entire tape or thicker in the tape centre and zero along its four edges.
In case of the tapes with variable shell thickness distribution different

values ht were specified on each of the four integration points per shell

element using cosine formulas simular to those for the dent geometry in

Equation 6.4 on page 197. The material of the tape was the same than

that of the reference cylinder shell (aluminium).

Figure 6.137 depicts the nonlinear buckling analysis results of the shells

with a tape of sinusoidal thickness distribution for an initial dent depth
of Wb/h = 0.2 and of wg/Zi = 0.5. The buckling loads normalized with

respect to the perfect cylinder are shown against the amplitude ht of

the tape thickness normalized with respect to the initial dent depths

Wb- It can be seen that for a tape-thickness amplitude ht almost equal
to the initial dent depth wg the buckling load of the cylinders with a
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ht/wb

Figure 6.137: Buckling loads of the reference cylinder having a dent of initial

depth as indicated and a tape affixed over the dent versus the amplitude ht of
the variable tape thickness. Results for a tape of thickness ht at its centre and

zero at its edge. Buckling loads normalized with respect to that of the perfect

cylinder Pcrid', tape thickness amplitude normalized with respect to the initial

dent depth wb.

dent and a tape is about that of the cylinder with perfect geometry.

This tape thickness distribution corresponds to the complete filling of

the dent furrow with shell material, resulting in a local swelling inwards

of the cylinder shell instead of the concave inward dimple. Additional

tape thickness or cylinder swelling did not yield better results: the tape

with ht/wb « 1 is the optimum.

With a tape of constant thickness, however, the buckling load of the

cylinder with a dent could be increased only up to 94 or 91 % of the load

of the perfect cylinder. In case of the shallow dent the former higher
maximum resulted again for ht/wb = 1, but for the deep dent the latter

lower maximum was at bout ht/wb « 3/4. The smaller efficiency of

the tape with constant thickness compared with that of the tape with

variable thickness distribution is probably due to the saltus of the shell

stiffness at its edges and any associated stress peaks at these edges.

The tapes discussed above are all of isotropic material. For tapes with

constant thickness also the effect of orthotropic shell stiffness was in¬

vestigated. For this purpose unidirectional laminated CFRP strips were

modeled with the ply properties known from the DEVILS cylinder shells:

Buckling of Cylinders with Localized Imperfections

-o- initial dent depth wb/h = 02

-•-initial dent depth wb/h = 05
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Figure 6.138: Buckling loads of the reference cylinder having a dent of initial

depth as indicated and a tape affixed over the dent versus the constant tape

thickness ht- Buckling loads normalized with respect to that of the perfect

cylinder PCTid', tape thickness normalized with respect to to the initial dent

depth wb.

E„ 123550 MPa, Ehoop 8708 MPa, v„ 0.32, G„ 5695 MPa,

see Section 4.1.2. These laminated tapes of height and width given
above were again affixed to the isotropic aluminum reference cylinder
with E= 70000 MPa and v = 0.3. Figure 6.139 depicts normalized buck¬

ling loads of the cylinder having a deep dent of initial depth wg/Zi = 0.5

with an unidirectional laminated tape affixed over the dent on the outer

cylinder surface. All carbon fibres of the tape were either oriented in

axial direction (red) or in circumferential direction (blue). The loads

were again plotted against the constant tape thickness ht normalized

with respect to the initial dent depth wg = 0.75 mm. Due to the differ¬

ent and more arbitrarily selected tape material stiffness these structure

configurations are "academic" ; hence the analysis results should be con¬

sidered only qualitatively. Nevertheless, it is surely of some importance

that the tape with high circumferential stiffness (blue) was more success¬

ful in increasing the buckling load than the tape with high axial stiffness

(red). Consequently, in the design of frames, tapes or other counter-

measures against local imperfections in axially compressed cylinders the

circumferential stiffness should receive attention.
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-4-CFRP tape with fibres in axial direction

-chCFRP tape with fibres in circumferential direction
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Figure 6.139: Buckling loads of the reference cylinder having a dent of initial

depth Wb/h = 0.5 and a laminated CFRP tape affixed over the dent versus

the constant tape thickness ht- Buckling loads normalized with respect to that

of the perfect cylinder PCTid', tape thickness normalized with respect to to the

initial dent depth wb.

6.6.6 Isotropic Cylinders with Two Dents

In the previous sections the damaging effect of a single dimple imper¬
fection to the axial stability of isotropic cylinders was described. In this

section the buckling analysis results for cylinders with two inward dim¬

ples are discussed. These calculations were performed to investigate if

an additional dimple may cause a further reduction of the axial stabil¬

ity of a cylinder already reduced by a similar dimple, and under what

conditions and with what amount. The investigation was limited to

nonlinear buckling analyses with isotropic cylinders and inward dimples.
Both dents in a cylinder are always initially of the same size, their initial

width and height correspond to the length ag and Zg respectively to be

found in Table 6.3, p. 331, specified by means of the procedure detailed

in Section 6.6.3. The dents were located in the cylinders by specification
of the axial distance of the dent apexes from the cylinder edges and the

circumferential spacing Av between the dent apexes, see Figure 6.140.

Only two axial distances were analysed: (I) both dents arranged around
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Figure 6.140: Cylinder with two inward dimple imperfections. Layout of the

dents by specification of the vertical and circumferential spacing between the

dimple apexes, Aç and Av respectively.

the circumference at half the cylinder length L/2, and (II) each dent

located around a circumference with a distance from the cylinder edge
of L/3. In the former case the axial spacing between the dent peaks A^
is zero, in the latter 0.4 L. With the so predefined axial distances the

circumferential spacing Av was varied in steps of ten or twenty degrees
for the set-up of the series of the additional cylinder shells.

In Section 6.6.5 stress and membrane-force distributions were shown

which resulted for isotropic cylinders with a single dimple. The extent of

the stress disturbance around a dent and the kind of stress distribution

is of vital importance for the interaction of two dents in a shell. Thus,
to explain the analysis results it was found sufficient to consider the re¬

sulting differences in the interfering membrane forces. The arrangement
of the dents was rather arbitrary ignoring the particular distribution of

the membrane stress peaks in and at a dent, see Section 6.6.5. Hence,
other configurations with two dents in a cylinder causing a larger im¬

pact on the cylinder stability cannot be excluded; a systematic search

for extremal values was not conducted in this context.
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In the majority of cases, the nonlinear buckling analyses performed with

the finite element model of the isotropic reference cylinder simulating

clamped edges and rigid, plane-parallel endplates. Thus, unless other¬

wise noted the cylinder ends were set for boundary condition CC4, see

Section 6.4. For the reference cylinder with a length L = 510 mm, a

radius R = 250 mm, and a shell wall thickness h = 1.5 mm the calcula¬

tions described in Section 6.6.3 with a dent of initial depth wg/Zi = 0.1

yielded the initial circumferential dent width ag = 181 mm and the ini¬

tial meridian dent height Zg = 66 mm. These lateral dent lengths were

used for all dents in the reference cylinder.

In the following first the results for the series with two dents located

in one row around the circumference at half the cylinder length are

presented, followed by those for series with two axially distant dents

located in two rows. Finally, the numerical analysis results are compared
with test data available for thin epoxy cylinders having one, two or

multiple deep V-shaped notches.

I. Both Dents along the Cylinder Circumference at L/2

In Figure 6.141 the buckling loads of the reference cylinder having two

dents of initial depth wg/Zi = 0.2, which are both located around the

circumference at L/2, are plotted against the circumferential spacing
between the dent apexes. The buckling loads Pcr are normalized with

respect to the buckling load of the ideal perfect cylinder PCnd- The

result leftmost for zero spacing is identical with the result for the shell

with only one single dent, and the rightmost value denotes the case with

two dents each located diagonally opposite to the other. The buckling
load for a circumferential spacing Av = 20° is 6 % higher than the load

for only one dent, the buckling load for a spacing Av = 40° in turn is 3 %

lower. For circumferential spacings Av = 60° and above the difference

in the resulted buckling load is negligible small. In the following pages,

for the case with only one dent and for the spacings Av = 20°, 40°, 60°,
and 180° the distributions of the axial and the circumferential membrane

forces per unit length, Naxtai and Nhoop respectively, for the axial load

P = 360 kN are pictured by means of contour-deformation plots as intro¬

duced in Section 6.6.5. On the left below these figures additionally the

local radii r^ of the nodes in the path around the full circumference of

the cylinder at L/2 are depicted for the initial unloaded state, for an ax¬

ial load of P = 200 kN, and for an axial load of P = 360 kN. On the right

finally the deviations of the axial membrane forces AN = Naxtai — Nx,
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Figure 6.141: Normalized buckling loads for the isotropic reference cylinder-

having 2 dents, both of initial depth Wb/h = 0.2, width ab = 181 mm and height

lb = 66 mm. Loads versus circumferential spacing Av between the apexes of
the dents arranged around the circumference at L/2.

relative to the nominal force per unit length Nx = —P/(2irR), in the

middle of the shell elements in the circumferential path at L/2 are dia¬

grammed again for the two mentioned loaded states. The reference cylin¬
der with a single dent of initial depth wg/Zi = 0.2, width ag = 181mm

and height Zg = 66 mm yielded a buckling load of Pcr = 380 kN; thus,
the higher load used for the graphs is close to buckling.

In Figure 6.142 and 6.143 on page 404 the results for the reference cylin¬
der having a single dent with an initial depth Wb/h = 0.2 are displayed.
The membrane-force distributions and the deformation progress typical
for isotropic cylinders with such a dent were detailed in the previous
sections: The dent centre moves to the cylinder axis whereas the lateral

sides of the dent are bulged outwards; this is also reflected in the axial

membrane forces which in case of P = 360 kN form a twin peak of an

about +4.3% deviation from the nominal value flanked by peaks of re¬

duced loading with 4.9 % smaller values. The maximum axial membrane

force in the contour plot is Naxtai = —242 N/mm.
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Figure 6.144 and 6.145 on page 405 depict the results for a circum¬

ferential spacing between the apexes of the two dents of Av = 20° or

Av = 87 mm. The initial width of the dents is ag = 181 mm hence the

apex of one dent is located close to the lateral boundary of the other

dent. That is, one flank of each dent is replaced by the peak of the

adjacent dent. The buckling load for this configuration is Pcr = 402 kN

and thus 6% above that for the cylinder with only one dent. Since the

peaks of maximum axial membrane force Naxtai in a single dent are lo¬

cated at these flanks for the case at hand the membrane force peaks in

a dent are abated by the other dent. The maximum axial membrane

force along the circumferential path is now only 2.6% higher than the

nominal membrane force, and with Naxtai = —238 N/mm the maximum

in the contour plot is about 2% smaller than that for a single dent.

In Figure 6.146 and 6.147 on page 406 the effect due to two dents

with a circumferential spacing between the dent apexes of Av = 40° or

Av = 175 mm is demonstrated. In this case the two dents adjoin to each

other. Since the initial width of the dents ag is somewhat longer than

the spacing Av the left boundary of one dent overlap the right boundary
of the other. The buckling load for this configuration is Pcr = 369 kN

and thus 3% below that for the cylinder with only one dent. This con¬

figuration leads to a larger increase in the depth of the dents and in the

elevation of the bulges during axial cylinder compression in comparison
to the shell with a single dent. Above all the bigger bulging of the shell

lying in between the two dents strike. Consequently, the axial membrane

force in the larger bulge is about twice as much reduced compared with

the bulges for a single dent. The maximum axial membrane force along
the circumferential path resulted 5.3% higher than the nominal value,
and with Naxtai = —245 N/mm the maximum in the contour plot is al¬

most 1% above that for a single dent. According to Figure 6.141 the

smallest buckling load with two dents of that size arranged around the

cylinder circumference will probably be obtained with a spacing equal
to the dent width, i.e. for Av = ab-

In Figure 6.148 and 6.149 on page 407 the effect due to two dents

with a circumferential spacing between the dent apexes of Av = 60° or

Av = 262 mm is demonstrated. In this case the two dents adjoin to each

other. Since the initial width of the dents ag is somewhat longer than

the spacing Av the left boundary of one dent overlap the right bound¬

ary of the other. For this configuration the buckling load is Pcr = 380 kN

and thus almost identical with that for the cylinder with only one dent.

With NaXiai = —242 N/mm the maximum in the contour plot also ap-
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proximates that for a single dent. The dents are so far apart that the

stress-raising area of one dent does not overlap with that of the other

dent in a way that the peak values increase. Only close to the cylinder

edge the shell parts of elevated axial membrane force aslope radiating
from the flanks of the two dents interfere with each other positively, i.e.

they increase the membrane force locally due to superposition of the

undulating stress distribution with amplitudes in equal direction.

Figure 6.150 on page 408 finally depicts the results for two dents with

a circumferential spacing between the dent apexes of Av = 180°, i.e.

for two dents arranged diagonally opposite. These plots were added

only for demonstration of the geometric conditions and that the minor

difference in the buckling load between a single dent and two opposing
dents obviously comes along with quasi identical membrane force peak
values. Thus, the local radii r^ and the axial membrane force/unit length

Naxiai along the circumferential path obtained for this configuration were

not included and can be derived from those for a single dent (Fig. 6.143).

The differences in the distribution of the circumferential membrane force

per unit length Nhoop for these dent configurations are less impressive
than those for the axial membrane force, the plots including the circum¬

ferential membrane forces were added for the sake of completeness. The

maximum circumferential membrane forces per unit length Nhoop, tensile

and compressive, resulted for an circumferential spacing of Av = 40°,
the minimum Nhoop for A,„ = 20°.
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Single Dent: A^ = 0; Av = 0

^ axial

(a) axial membrane forces

''hoop

(b) circumferential membrane forces

Figure 6.142: Axial and circumferential membrane forces per unit length of
the reference cylinder with a single dent of initial depth Wb/h = 0.2, width

ab = 181 mm and height lb = 66 mm. Results of a nonlinear static analysis for

an axial load of P = 360 kN.
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Figure 6.143: Local radii rk and deviations of the axial membrane forces/unit
length from the nominal values AN/NX for a cylinder with a single dent as

shown in the Figure above. Results for axial loads P as indicated.
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2 Dents: Ac = 0; Av = 20°

^ axial

(a) axial membrane forces

^ hoop

(b) circumferential membrane forces

Figure 6.144: Axial and circumferential membrane forces per unit length of
the reference cylinder with two dents of initial depth wb/h = 0.2, width ab =

181 mm and height h = 66 mm. Spacing between dent apexes Av = 20° or

Av = 87 mm. Results of a nonlinear static analysis for an axial load of P =

360 kN.
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Figure 6.145: Local radii rk and deviations of the axial membrane forces per-

unit length from the nominal values AN/NX for a cylinder with two dents as

shown in the Figure above. Results for axial loads P as indicated.
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2 Dents: Ac = 0; Av = 40°

^ axial

(a) axial membrane forces

^ hoop

(b) circumferential membrane forces

Figure 6.146: Axial and circumferential membrane forces per unit length of
the reference cylinder with two dents of initial depth Wb/h = 0.2, width ab =

181 mm and height lb = 66 mm. Spacing between dent apexes Av = 40° or

Av = 175 mm.
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Figure 6.147: Local radii rk and deviations of the axial membrane forces per-

unit length from the nominal values AN/NX for a cylinder with two dents as

shown in the Figure above. Results for axial loads P as indicated.
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2 Dents: Ac = 0; Av = 60°

^ axial

(a) axial membrane forces

^ hoop

(b) circumferential membrane forces

Figure 6.148: Axial and circumferential membrane forces per unit length of
the reference cylinder with two dents of initial depth wb/h = 0.2, width ab =

181 mm and height h = 66 mm. Spacing between dent apexes Av = 60° or

Av = 262 mm.
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Figure 6.149: Local radii rk and deviations of the axial membrane forces per-

unit length from the nominal values AN/NX for a cylinder with two dents as

shown in the Figure above. Results for axial loads P as indicated.
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2 Dents: Ac = 0; Av = 180°:

^ axial ^ hoop

(a) axial membrane forces (b) circumferential membrane forces

Figure 6.150: Axial and circumferential membrane forces per unit length of
the reference cylinder with two dents of initial depth Wb/h = 0.2, width ab =

181 mm and height h = 66 mm. Spacing between dent apexes Av = 180°

or Av = 785 mm. Results of a nonlinear static analysis for an axial load of
P = 360 kN.

In Section 6.6.5 the importance of the "wavelength" \jRh was already
demonstrated by means of the analogy between the accordingly modi¬

fied distributions of the relative deviation of the axial membrane force

Naxiai for three isotropic cylinders of different radius, length and wall

thickness, see Figure 6.133 on page 387. Additional to the reference

cylinder the effects of two dents with an initial depth of wg/Zi = 0.2 in

a row in dependence on their spacing were calculated also for the cylin¬
der with radius R = 500 mm and for that with radius R = 187.5 mm.

The data to these shells are listed in subsequent Table 6.5. Figure 6.151

shows the normalized buckling loads Pcr/Pcrid for these three cylinders
with two dents of initial depth wg/Zi = 0.2 located around the cylinder
circumference at half the cylinder length. The buckling loads are plotted

against the ratio of the circumferential spacing Av to the length yRh.

Similar to the results for the membrane force deviations in Figure 6.133

the variation in the buckling load with increasing relative dimple dis¬

tance for the reference cylinder accords well with those for the two other
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cylinder

R h L

[mm] [mm] [mm]

VRh

[mm]

dents

ab h

[mm] [mm]

187.5 1.0 382.5

250 1.5 510

500 0.75 510

13.7

19.4

19.4

124 50

181 66

181 66

width height

Table 6.5: Dimensions of three aluminium cylinders and initial lateral lengths

of their dents with an initial depth Wb/h = 0.2.
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Figure 6.151: Normalized buckling loads for three isotropic cylinders as indi¬

cated having two dents of initial depth Wb/h = 0.2 in a row around the cylinder

circumferences at L/2 in dependence on the ratio of the circumferential spac¬

ing between the dent apexes Av to the length \/Rh. Dimple dimensions listed

in Table 6.5.
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cylinders. For all three shells the decay lengths of the load variations is

about 1.5 times the initial dent widths ag.

The results for two dents of initial depth wg/Zi = 0.2 arranged around

the circumference of the reference cylinder with boundary condition CC4

(constant axial edge displacements) could also be compared with results

for the same shells but with distributed axial edge loads (condition CC3
at the loaded side). The difference between the buckling loads are neg¬

ligible, since initially the applied dents are shallow; the buckling loads

for the reference cylinder with distributed edge loads and one dent of

that initial depth are also only little below the respective results for the

reference boundary condition CC4, see Section 2.2.

• lower buckling load Pcr l

-#—upper buckling load Pcr u

•- shallow dent wb/h = 02

10 20

Av/VRh,

30 40

Figure 6.152: Normalized buckling loads for the reference cylinder having two

deep dents of initial depth wb/h = 0.5 arranged around the cylinder circumfer¬
ence at L/2 in dependence on the ratio of the circumferential spacing between

the dent apexes Av to the length \/Rh. Cylinder dimensions: R = 250 mm,

L = 510 mm, h = 1.5 mm; initial dent dimensions: ab = 181 mm, h = 66 mm.

Nonlinear buckling analyses with the reference cylinder having two deep
dents in a row around the cylinder circumference yielded results which

include some additional complexity. Figure 6.152 depicts the normal¬

ized buckling loads for this cylinder with two dents of initial depth
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Wb/h = 0.5. The loads are again plotted against the ratio of the cir¬

cumferential spacing between the dent apexes to the length, Av/yRh.
Note that the initial height Zg and the initial width ag of these dents

equal those for the shallower dents of initial depth wg/Zi = 0.2 which

were used for the previously described analyses. The additional, proba¬

bly somewhat irritating markers in the graph (blue diamonds), joint with

interrupts, denote upper buckling loads Pcr u, i.e. loads for total cylinder

collapse. The red circlets mark the lower buckling loads Pcr j_, associated

with local instability events. As detailed in Section 6.6.1, depending on

the initial size of the applied dent and the associated dynamic of the

shell deformation process a nonlinear buckling analysis is either aborted

when reaching the lower buckling load or continued until reaching the

total cylinder collapse load. The result leftmost for zero dent spacing Av
again is that for the single dent: the lower normalized buckling load is

Pcrp/Pcrid = 0.51, the upper PCru/Pcnd = 0.65. For dent spacings Av
between 5° and 30° as well as between 40° and 60° no upper buckling
loads were obtained, since probably the associated initial shell configu¬
rations led to particular local deformation processes with sudden shell

flattening. The upper buckling load for dent spacings Av = 120° and

longer with PCru/Pcnd = 0.61 are 6% below the value for the single
dent. The lower buckling loads for these dimple spacings in contrast

differ only 1 %. The larger sensitivity of the upper buckling loads Pcru

to variations of the initial dimple geometry and the cylinder dimensions

in comparison to the lower buckling load was already observed by means

of the nonlinear buckling analysis results for single dents as presented in

Section 6.6.1. The larger load reduction for two opposing dents and the

somewhat higher upper buckling load for a spacing of only 5° confirm

these observations. Better insights into the deformation processes which

are involved in the peculiar variation of the upper buckling load could

be provided by a series of transient dynamic analyses. But not only
the upper buckling loads strike, there are also noticeable differences in

the variation of the lower buckling loads Pcr j_, between the deep dents

with Wb/h = 0.5 and the shallow dents with wg/Zi = 0.2, see Figure
6.152. The minimum lower buckling load resulted for a dent spacing
of Av = 50° or 218 mm and is 6% below the value for one dent. This

reduction of the load Pcr j_, is twice as much as the minimum buckling
load for the two shallow dents, which was obtained for a dent spacing of

only 40°. The maximum buckling load resulted again for the dent spac¬

ing Av = 20° or 87 mm and is 4% higher than the load for the single
dent. Thus, compared to the elevation of 6% for the shallow dents the

positive effect due to the two deeper dents with like spacing is consid-
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erably smaller. But, above all the particular additional minimum for a

spacing of Av = 10° attracts attention. For such dent spacings shorter

than half the initial dent width the shallow dents caused buckling loads

even higher than for the single shallow dent. The initial width used for

the dents is ag = 181mm, but the initial width which causes minimal

stability for the initial depth wg/Zi = 0.5 is much longer (ag = 238 mm;

+32%). A spacing of only Av = 10° or 44 mm between the two dent

apexes forms a single dent with a twin cusp and a total width of 225 mm.

That is, with this configuration a wider dent is formed which matches

better with the dent of initial depth wg/Zi = 0.5 that reduces the cylin¬
der stability the most. Consequently, the buckling load is smaller than

that for the dent with the shorter width. The difference between the

initial dent width ag applied and the wider width for minimal stability

ag might also explain the longer spacing Av = 50° for the minimum

load in comparison to the normalized length a,b/\/Rh. Calculations with

two dents of this initial depth but with the wider initial width ag would

probably result in load variations similar to that for the shallow dents,
thus with one maximum load at Av = 1/2 ag and one minimum load

only at Av = ag. Nevertheless, the explanations given for the results

in Figure 6.152 base on the experience with cylinders having one single
dent of different initial depths; further static stress or transient dynamic

analyses with two deep dents in a cylinder were not performed for their

verification.

II. Two Dents with Axial and Circumferential Spacing

The buckling analysis results above include cylinders with two dents in a

single row around the cylinder circumference at half the cylinder length,
thus shells having dents without axial spacing between their apexes. To

deal also with cylinders having two dents with circumferential spacing

Av as well as with axial spacing A^ between the dent tops, again on the

basis of the isotropic reference cylinder a series of shells having two dents

with a constant axial spacing of A^ = 2/5 L was created, arranging one

dent around the cylinder circumference at 0.3 L and the other around

the circumference at 0.7 L again with varied circumferential spacing Av.
Both dents have an initial depth of wg/Zi = 0.2 and an initial width

and height of ag = 181mm and Zg = 66 mm respectively. Figure 6.153

depicts the normalized buckling loads for the reference cylinder with

L = 510 mm having such two dents located accordingly. The loads are

once again plotted against the circumferential spacing Av between the
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Figure 6.153: Normalized buckling loads for the isotropic reference cylinder

having 2 dents, both of initial depth Wb/h = 0.2, width ab = 181 mm and height

lb = 66 mm. Loads versus circumferential spacing Av between the apexes of the

dents which are located around the circumferences at 0.3 L and 0.7 L resulting

in an axial spacing of Aç = 2/5L.

dent apexes. In the graph the result leftmost with zero circumferential

spacing denotes the configuration with two dents arranged in a single
column one upon the other. The axial spacing between the two dent

apexes is A^ = 2/5 L = 204 mm and the distance of the dent apexes

from closer cylinder edge 0.3 L = 153 mm. The associated buckling load

is the maximum value among these results and 2 % above the load for the

cylinder with one dent ofthat depth located at 0.3 L or 0.7 L. Contrary
to the cases without axial spacing including maximum loads for the

circumferential spacing Av = 20° and minimum loads for Av = 40° (see
Fig. 6.141, p. 401), the nonlinear buckling analyses of the reference

cylinder with the axial spacing A^ = 2/5 L yielded a second peak of

higher buckling load for a circumferential spacing of Av = 40° and

two minimum values for the spacings Av = 20° and 60°. That is, in

Figure 6.153 a minimum resulted for a spacing where in Figure 6.141

a maximum was obtained and vice versa. But the maximum and the

minimum buckling loads differ about three times less from the values for
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the cylinder with the single dent located at 0.3 L or 0.7 L compared with

cylinder having the dents all at L/2, see Figure 6.141: the maximum

load elevation is 2 % and the maximum load reduction 1 %, against 6 %

resp. 3% for the dents in a row at L/2. Additionally, the decay length
of the buckling load variation is longer than 1.5 ag, i.e. that for two

dents around one circumference. The reasons for these differences lie in

the interacting, undulating membrane force fields in the cylinder shell

area above and below the two dents which differ from the undulating
membrane force fields directly to the left and to the right of the two

dents in amplitude and phase. In the subsequent contour-deformation

plots the distributions of the axial and the circumferential membrane

forces per unit length, Naxtai and Nhoop resp., are displayed for the

circumferential dent spacings Av =0°, 20°, 40°, and 180° which are

results of nonlinear static analyses for an axial load of P = 360 kN. For

the first and the last case additionally the local radii r^ and deviations

of the axial membrane forces from the nominal values AN/NX along the

axial path over the apex of the lower dent are graphed.

In Figure 6.154 and 6.155 on page 416 the results for the reference cylin¬
der having two dents arranged in a single column one upon the other

(Av = 0) are displayed. The buckling load is Pcr = 395 kN which is 2%

above the load for the cylinder with one dent of that initial size at 0.3 L

or 0.7 L. Thus, latter cylinder resulted in a buckling load of Pcr = 386 kN

which in turn is 1.6 % above the load Pcr = 380 kN for the shell also with

a single dent of this initial size but located at half the cylinder length.
The higher buckling load for the dent closer to the cylinder edge can

be explained with the smaller increase in dimple and shell deformations

during axial compression due to the shorter shell length above or below

the dent free for radial shell displacements. For similar reasons the cylin¬
der with two dents in a single column one upon the other resulted in a

higher buckling load than the shell with only one dent at 0.3 L or 0.7 L.

The states of stress and deformation for the cylinder with a single dent

approximate those for the cylinder having two dents of equal initial size

with an circumferential spacing of Av = 180°. The results for this con¬

figuration are depicted in Figure 6.159 and 6.160 on page 419. For better

comparisons between the stress and deformation fields of the shell with

two dents in a column and of that with only one dent in Figure 6.155

and 6.160 on the left the local radii r^ of the nodes in the axial path over

the dent apexes are depicted for the unloaded state, for an axial load of

P = 200 kN, and for an axial load of P = 360 kN close to the buckling
load of the cylinders (95%Pcr). To the right in these figures the devia¬

tions of the axial membrane forces per unit length AN = Naxtai — Nx,
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relative to the nominal value Nx = —P/(2irR), in the middle of the shell

elements in the axial path are shown for the two mentioned loaded states.

It can be seen that in case with only one dent the axial membrane force

peak in the dent apex is higher: Naxtai = —241 N/mm compared with

Naxiai = —238 N/mm for P = 360 kN, thus plus one percent. Addition¬

ally, in the free surface above the single dent the axial membrane force

is less reduced than that for the shell with the second dent above the

other.

Figure 6.156 on page 417 shows the membrane forces for the cylinder

having two dents arranged with a circumferential spacing of Av = 20° or

Av = 87 mm. The initial width of the dents is ag = 181 mm, hence about

twice the spacing Av. That is, the right edge of the upper dent lies about

in a vertical line over the apex of the upper dent and vice versa. With

a buckling load of Pcr = 383 kN this dimple configuration yielded the

minimum value for the dents located around these two circumferences.

According to the plot in Figure 6.156(a) the circumferential spacing on

hand makes a bulge with reduced Naxtai at a flank of one dent to lie

directly in an axial straight line over the apex with maximum Naxtai

of the other dent. Due to axial bending, at this axial positions above

and below the dents the shell tend to move outwards, and the bulges
formed by the other dent amplify this bulging. The increased radial

displacements are accompanied by an increased axial membrane force

relief (bright coloured areas) in the bulged shell and by the somewhat

higher peak values in the dents.

In Figure 6.157 on page 417 the membrane forces for the cylinder with

two dents having a circumferential spacing of Av = 40° or Av = 175 mm.

Since Av is only little shorter than the initial width of the dents

ag = 181mm the left boundary of the upper dent is located directly
above the right boundary of the lower dent. This configuration yielded
the second maximum buckling load of Pcr = 390 kN among these shells,
since in this case the apexes of the bulges at the lateral dent flanks lie in

a vertical straight line, and so do their adjacent inward dimples. Thus,
the shallow inward dimples formed above and below the initial dents act

like the two dents in a single column one upon the other presented above

but with a smaller positive effect contrary to the bulging above or below

a single dent.

Figure 6.158 on page 418 finally depicts the results for the cylinder hav¬

ing two dents arranged with a circumferential spacing of Av = 60° or

Av = 262 mm. This means a lateral distance between the boundary of

one dent and that of the other of about half the initial dent width. Since
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(a) axial membrane forces

hoop

(b) circumferential membrane forces

Figure 6.154: Membrane forces per unit length for the reference cylinder with

two dents of initial depth Wb/h = 0.2, width ab = 181 mm and height lb =

66 mm and an axial load of P = 360 kN. Axial spacing between dent apexes

Aç = 2/5L or Aç = 204 mm, circumferential spacing Av = 0.
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Figure 6.155: Local radii rk and deviations of the axial membrane forces per

unit length from the nominal values AN/NX for a cylinder with two dents as

shown in the Figure above. Results for axial loads P as indicated.
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^axial ^ hoop

(a) axial membrane forces (b) circumferential membrane forces

Figure 6.156: Membrane forces per unit length for two dents of initial depth

Wb/h = 0.2 and an axial load of P = 360 kN. Axial spacing between dent apexes

Aç = 2/5L, circumferential spacing Av = 20° or Av = 87 mm.

^axial ^ hoop

(a) axial membrane forces (b) circumferential membrane forces

Figure 6.157: Membrane forces per unit length for two dents of initial depth

Wb/h = 0.2 and an axial load of P = 360 kN. Axial spacing between dent apexes

Aç = 2/5L, circumferential spacing Av = 40° or Av = 175 mm.
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^ axial ^ hoop

(a) axial membrane forces (b) circumferential membrane forces

Figure 6.158: Membrane forces per unit length for two dents of initial depth

Wb/h = 0.2 and an axial load of P = 360 kN. Axial spacing between dent apexes

Aç = 2/5L, circumferential spacing Av = 60° or Av = 262 mm.

the undulating axial membrane force distribution along the circumfer¬

ence over the apex of the upper dent is again in antiphase with that

along the circumference over the apex of the lower dent, for the reasons

mentioned above for the circumferential spacing Av = 20° this config¬
uration yielded also a minor buckling load close to the value for that

spacing, i.e. Pcr = 383 kN.

As for the two dents arranged without axial spacing the distributions

of the circumferential membrane force Nhoop in these figures differ only

marginally. Thus, the interactions of the Nhoop in and around the dents

may be neglected.

The effects of two dents of initial depth wg/Zi = 0.2 with an axial spacing
of 2/5 L were also analysed for the isotropic cylinder 50 percent longer
than the reference cylinder but with equal radius and wall thickness,
thus: L = 765mm, R = 250mm, h= 1.5mm. The initial width and

the initial height of the two dents are equal or almost equal to those

in the reference cylinder: ag = 181mm, Zg = 67 mm. The dents were

arranged around cylinder circumferences with an axial spacing between

the two dent apexes A^ = 2/5 L = 306 mm and a distance of the dent

apexes from closer cylinder edge 0.3 L = 230 mm. The nonlinear buck¬

ling analyses for this longer cylinder were again conducted for clamped
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Figure 6.159: Membrane forces for the reference cylinder with two dents of
initial depth Wb/h = 0.2; width at = 181 mm and height h = 66 mm and

an axial load of P = 360 kN. Axial spacing between dent apexes A^ = 2/5L;
circumferential spacing A^ = 180° or A^ = 785 mm.
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Figure 6.160: Local radii rk and deviations of the axial membrane forces from
the nominal values AN/NX for a cylinder with two dents as shown in the

Figure above. Results for axial loads P as indicated.
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edges (boundary condition CC4) and the resulting normalized buckling
loads are plotted in Figure 6.161 against the ratio of the circumferen¬

tial spacing Av to the term The graph also includes the results

- R = 765 mm, L = 510mm, ft = 1 5mm

- R = 510 mm, L = 510mm, ft = 1 5mm

Figure 6.161: Normalized buckling loads for the reference cylinder and the 50 %

longer cylinder having two dents of initial depth Wb/h = 0.2 arranged around

the cylinder circumferences at 0.3 L and 0.7 L in dependence on the ratio of the

circumferential spacing between the dent apexes Av to the length \/Rh. Initial

dent dimensions ab = 181 mm, h = 67 mm. (66 mm).

for the reference cylinder for comparisons. The buckling loads obtained

for the longer cylinder are slightly below those for the reference cylin¬
der due to the larger radial displacements at like bending efforts for

longer cylinders, see Section 6.6.1 page 281. Since in the longer cylinder
the dents have a longer axial distance the effects due interaction of the

stress fields around the dents is smaller, and hence the amplitudes of the

buckling load variation in Figure 6.161 are somewhat smaller compared
with those for the reference cylinder above. The shift of the maximum

and the minimum buckling loads towards longer circumferential spac¬

ings Av probably stem from the different axial positions of the formed

dents and bulges and the therefore different resulting interference pat¬

terns in the stress and the displacement fields. With equal radius and

wall thickness the lengths of the waves in the undulating stress and the
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displacement fields are identical. The axial positions 0.3 L and 0.7 L of

the dents were set arbitrarily and the resulting absolute axial distances

of the dents are different for different cylinder lengths L. That is, the

constant wavelength of the displacement field was ignored. Thus, the

waves of the shells formed in circumferential direction are superposed
with those formed in axial direction differently for the different absolute

axial dent spacings, or similarly only by pure coincidence.

Comparisons with Test Results for Multiple Local Imperfec¬
tions

Figure 6.162: Diamond shaped dent as applied by fKRISHNAKUMAR & FOSTER

[57]) for experimental investigations on epoxy cylinders having one ore multiple
dents of this type.

As already mentioned in Section 6.1 (Krishnakumar & Foster [57])
conducted tests of cylindrical spun-cast epoxy shells having one or more

deep diamond or V-shaped dents, see Figure 6.162 and 6.6 on page 195.

These more than forty thin cylinders had a mean radius of R = 77 mm,

a length L between 70 and 90 mm, and a wall thickness h from 0.13 to

0.39mm. The dents were introduced into the cylinders by local softening
of the epoxy shells with heat from a hairdryer, whereby the shell around

the dent was protected with a cardboard mask. The size of the dimples
was controlled by the size of the V-shaped notch cut into a wooden

mandril [57, 38]. Thus, the width of the imperfection was always close

to the length of the straight intersection line of the two flat faces of the

notch. Additionally, the initial depth wn of the imperfections were also

determined by the intersection line and the cylinder radius R. Three

different sizes of such dents or notches were applied to their specimens,

specified by their initial height ln and width an. In the table below
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the dimensions of the notches denoted with Dl, D2, and D3 are listed

according to the notation used herein:

6

[mm]

^n wn

[mm]

Dl 21° 28 24 1.3

D2 27° 36 30 2.1

D3 42° 57 50 5.0

The angle 0 defined the width of the notches with an = 9 (27rP)/360°.
The actual size of the notch in the epoxy shells was usually smaller

than that of the template listed above and later measured accurately
from photographs. Each of the three notches above was added to 12

cylinders. Most of the shells had one ore two of such imperfections,
but four cylinders were tested with eight or nine notches around the

circumference at half the cylinder length. In the cases with two notches

the second notch was located either adjacent or diagonally opposite to

the first. Both notches were arranged at L/2, or in a way that the directly

adjacent second notch was located above or below with an axial offset

Ac of Zn/2. The axial wavelengths 2ZC of the analytical axisymmetric

buckling patterns of these epoxy cylinders lie between 11 and 19mm.

Thus, the three notches listed above are notably higher than the initial

meridian heights Zg « 2ZC for double-cosine dimples that would have

been used for numerical buckling analyses such as described above. The

initial widths of the notches in turn are close to their heights; hence, the

width/height ratio is much smaller than the mean value obtained for the

double-cosine dents in isotropic cylinders of about 2.7. But above all,
with depth ratios from wg/Zi = 3 up to about wg/Zi = 30 (!) the notches

are very deep in comparison to those of the dents in the FE models above

with only wg/Zi = 0.2 or 0.5.

The shells were subjected to several buckling tests in a screw operated

loading frame, first without notch, and then with a first a notch and

subsequently again with a second, and so on [57]. Figure 6.163 depicts
the test results for the epoxy cylinders having two of the notches above

with positions as indicated. The normalized buckling loads vary between

Per/Pel = 0.5 and 0.8, but experiments with a single notch yielded loads

in the same range [57]. Variations of the buckling load due to different

distances between the notches as shown in Figure 6.151 could not be
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Figure 6.163: Test results of thin epoxy cylinders having two deep, diamond

shaped notches located as indicated. Buckling loads normalized with respect to

the analytical buckling loads for ideal cylinders and plotted against the measured

notch size. From ^KRISHNAKUMAR & FOSTER [57]).

spotted, i.e. two notches adjacent or diagonally apposite appeared to

have the same effect. A comparison of the test results for the epoxy

shells having deep V-shaped notches with the buckling loads of the own

numerical analyses for different isotropic shells having relatively shal¬

low double-cosine dents was hardly possible. For the epoxy shells own

numerical nonlinear buckling or transient dynamic analyses were not

performed. However, as regards the relative reduction of the buckling
resistance due to one and two local imperfections at least the test re¬

sults of (Krishnakumar & Foster [57]) are not contrary to the own

nonlinear buckling analysis results. The drop of the buckling load due

to a first notches is much more drastic than the further load reduction

caused by a second notch. The linear regression lines in Figure 6.163

fitted to the test results for one and two notches indicate an additional

reduction in the buckling load due to the second notch of 5 to 6 %, which

matches with the maximum load reduction obtained for the nonlinear

buckling analyses of the reference cylinder having two adjacent double-

cosine dents.

The regression lines to the test data of (Krishnakumar & Foster [57])
indicate a reduction in the buckling load of about 5 % with increasing
notch size. The nominal geometry of the cylinder in turn seemed to

have no influence on the damaging effect of the notches. On the basis

of these results with one, two and multiple notches the two researchers
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Figure 6.164: Empirical relation by ^KRISHNAKUMAR & FOSTER [57]) for the

normalized axial buckling load of isotropic cylinders having multiple notches

considering their number Af„ and their average width 0.

finally derived an empirical relation for the normalized axial buckling
load of isotropic cylinders having one and more diamond-shaped notches

considering their number J\fn and their average width 6. Figure 6.164

includes this formula and shows the so calculated buckling loads for

various numbers of notches as indicated and for notch widths 6 up to

50°. The drastic reduction of the buckling load due to a single notch

might stem from the presence of stress concentrations in the shells at

the edges of the notches. This would explain the large gaps also for very

small notch sizes [57]. But the further smaller load reductions caused

by additional imperfections depend on the increase in the width of the

shell section affected by the stress disturbance. Within the imperfections
the axial membrane force is reduced and the added loading has to be

carried by the area at the edges of the dimples and the shell outside

the imperfections. According to this, since the remaining width of the

shell unaffected by imperfections decreases with increasing total width

of all imperfections the reduction of the buckling load should be direct

proportional to the number and size of the imperfections.

The numerical buckling analyses were performed only with one or two

double-cosine dents. The initial width ag = 181mm of the dents in

the reference cylinder with R = 250 mm corresponds approximately to

an angle 6> = ag • 360°/(27rP) « 40°. According to the stress analysis
results in Section 6.6.5 the width of the shell strip with noticeable axial
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membrane force variations prior to buckling is about 3 times the initial

dent width Hence, for two dents arranged around a circumference the

total width with relevant membrane-force variations is circa 6 ag or 240°

and the remaining width of the unaffected shell area is 120° or a third of

the circumference Since in the numerical simulations the contribution

of the shells above or below the dents to the loading is not zero but only
reduced and the effective width of the area with axial membrane forces

below the nominal value13 is smaller and closer to the initial width of

the dents, for the cylinder with the boundary condition considered the

dimension of the shell remaining unaffected is less reduced by a second

dent than the considerations above probably would expect

Extremal values are attained for Krishnakumar & Foster's formula

if the entire cylinder circumference is filled up with dents or notches

For example, having a width of 9 = 40° nine notches arranged around

the circumference would yield the minimum buckling load In Figure
6 164 the lowest curve denotes the expected buckling loads for a cylinder
with nine notches For the exemplifying notch size a load of Pcr/Pci =

0 36 result This configuration resembles the cylinder having a single

deep ring-shaped inward dimple A nonlinear buckling analysis of the

reference cylinder having a deep axisymmetric dent with an initial depth

Wb = 2h and an initial height Zg close to the classic-analysis wavelength

2ZC yielded also a minor buckling load of about Pcr/Pcrid = 03 This

value may be considered being the lower bound for this cylinder having
one or more localized dimple imperfections

Worth mentioning finally that with the reference cylinder having one or

two dents of initial depth wg/Zi normalized buckling loads were obtained

below Per/Per id
= 05 These results are below the loads calculated

with Krishnakumar & Foster's formula for a imperfection width of

9 = 40°, despite the much smaller initial depth and height of the used

dents in comparison to the notches applied for the tests But, it contrast

to the size of their notches the height and the width of the dents used for

the numerical calculations are results of minimum searches and critical

for the geometry of the cylinder involved

The variations in the shell of width 3 ab also include the maximum peak values
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6.6.7 Alternative Conditions and Models

During the modeling of a structure with finite elements prior to any

analysis the suitable type(s) of elements, the adequate element mesh

size and the set of boundary conditions have to be selected, which in¬

fluence the analysis results. The choice of such parameters and options
should be performed under consideration of the geometries, the materi¬

als, the analysis case, and the expected structural behaviour as well as

the available hard- and software. The manner how the cylinders were

simulated for the studies presented herein bases on the experience with

the buckling analyses of the laminated cylinders during the DEVILS

project. This section deals with the buckling analysis results of isotropic

cylinders having a single dimple imperfection which were obtained with

boundary conditions, mesh size, dimple geometry, and dimple positions
which differ from those always used for the analyses above. The refer¬

ence shape of the dimples and cylinder modeling is subject of Section

6.4 on page 200 ff. The reasons for the reference options and parameters

in general are founded on the accuracy and the the comparability of the

results and the time consumption of the calculation.

The possible influences of the parameters to the transient dynamic anal¬

ysis of axially compressed cylinders was described in connection with the

analysis of cylinders with perfect geometry in Section 4.3, p. 143, and is

not further followed up.

All analyses presented in this section were made with the isotropic ref¬

erence cylinder with radius R = 250 mm, length L = 510 mm, and wall

thickness h = 1.5 mm. The initial circumferential width and meridian

height of the dimples applied are always ag = 181mm and Zg = 66 mm,

respectively.

Other Boundary Conditions

The test results for the laminated cylinders of the DEVILS project were

used for the calibration of the numerical analysis settings. These spec¬

imens were clamped in endplates. Thus, for the numerical buckling

analyses the clamped boundary conditions CC4 were applied simulating
ideal rigid and plane-parallel end plates, see Section 6.4 and 2.2.1. Af¬

terwards, these boundary conditions were also adopted for the numerical

analysis of cylinders with dimple imperfections.

The boundary conditions CC4 and SS4 were simulated with auxiliary
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nodes on the cylinder axis whose degrees of freedom were joint with the

nodes on an edge. The loading was applied on one of these auxiliary
nodes which was linked with the nodes on the loaded edge in the form

of algebraic equations. These enforced the translations and rotations of

the edge nodes to follow those of the guiding auxiliary node on the axis.

Consequently, the displacements of all edge nodes are identical, also the

non-zero axial displacements. The clamped boundary conditions CC4

with uniform edge displacements and all rotations, the radial and the

circumferential displacements retained are the reference conditions and

were applied for all numerical analyses presented in this work so far.

Alternatively, the axial load may also be applied directly by means of

equal forces on the edge nodes. With such a setting the boundary con¬

ditions CC3 or SS3 of the shell calculus are simulated with uniform

membrane forces along the edges but with potentially non-uniform axial

edge displacements, see 2.2.1.

In the following (a) the important differences in the buckling behaviour

and buckling loads between uniform edge membrane forces (CC3) and

uniform edge displacements (CC4) are detailed. That followed, (b) the

results obtained for the simply supported boundary conditions SS4, i.e.

with unconstrained rotations, are compared with results for the clamped
reference conditions CC4.

(a) Controlled cylinder edge loads —> boundary conditions CC3

All the finite element calculations presented so far were conducted with

boundary conditions CC4 applied for clamped cylinder edges with con¬

trolled axial edge displacements. Consequently, axial compression of

such a cylinder model with rigid and plane-parallel endplates simulated

provokes axial displacements u identical for all edge nodes but poten¬

tially non-uniformly distributed axial membrane forces per unit length

Nx along the cylinder edges.

The direct application of the compressive load via equal forces on the

edge nodes, however, causes uniformly distributed axial membrane forces

Nx along the edges but potentially non-uniformly distributed axial edge

displacements u. For a simulation of the clamped boundary conditions

CC3 on the edge nodes all rotations, the radial and the circumferen¬

tial displacements are retained without any use of an auxiliary node

on the cylinder axis. The controlled axial membrane force Nx linearly
distributed along the edge is the membrane force/unit length of the fun¬

damental state —Nx and applied on the k edge nodes Bk with equal
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(a) boundary conditions CC3 (b) boundary conditions CC4

Figure 6.165: Runs of the axial membrane force per unit length (red) and

the axial displacement (blue) around the upper cylinder edge for (a) boundary
conditions CC3 with constant axial membrane forces per unit length Nx and for

(b) boundary conditions CC4 with constant axial displacements u simulating

rigid, plane-parallel endplates. Qualitative representations for a cylinder with

a single dent.

compressive forces p(Bfc). With the applied total force P the k nodal

forces are given by

p(B>°) = - (6.20)
k

where P = —Nx (2nR), see Figure 6.9 on page 202. In Figure 6.165

the distribution of the axial membrane force and the axial displacement
around the loaded cylinder edge for the boundary conditions CC3 (a)
is compared with the distributions for the reference boundary condi¬

tions CC4 (b). The curves are qualitative representations of results

for a cylinder with a single dent. In case of the conditions CC3 the

axial membrane forces along the edge Naxtai = Nx (red) are uniform

(dNx/dy = 0) and the resulting axial edge displacements u (blue) are

non-uniform (du/dy ^ 0), whereas in case of the conditions CC4 the ax¬

ial membrane forces/unit length along the edge Naxtai are non-uniform
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(dNx/dy y^ 0) and the resulting axial edge displacements u are uniform

(du/dy = 0).

-1 -0.5 0 0.5 1

< outwards Wj^j tl inwards >

1.5

Figure 6.166: Normalized buckling loads for the reference cylinder having a

dimple with an initial amplitude Wb/h as indicated. Results for boundary con¬

ditions CC3 (uniform axial edge load) and for boundary conditions CC4 (uni¬
form axial edge displacement) as indicated. Dents and bulges of initial width

ab = 181 mm and height lb = 66 mm.

Figure 6.166 depicts the normalized buckling loads Pcr/Pcrid result¬

ing for the reference cylinder having a single dimple of initial width

ag = 181 mm and height Zg = 66 mm in dependence of the initial dimple

amplitude wg/Zi. The black bold marks denote the results of nonlin¬

ear buckling analyses with clamped boundary conditions CC3 on the

loaded edge but CC4 on the unloaded. That is, contrary to the condi¬

tions CC3 in the classical analysis only along the loaded edge the axial

membrane force/unit length is uniform; to simplify matters, along the

unloaded edge the axial displacement was constrained and hence the

axial membrane force per unit length along this edge is not necessarily
uniform. The thin line shows the results of analyses with the reference

conditions CC4 described in the previous sections. The loads Pcr/Pcrid
were normalized with the buckling load obtained for the reference cylin¬
der with ideal geometry and with the reference conditions CC3 applied,
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Per id
= 558 kN. This buckling load is only 2 percent smaller than the

load Per id
= 569 kN that resulted accordingly with the reference con¬

ditions CC4. For shallow inward dimples (wg/Zi < 0.45) the difference

between the normalized buckling loads for CC3 and CC4 are less than 5

percent. But the smallest buckling load achieved for dents and CC3 is

Perh = 258kN for wg/Zi = 0.75, which is about 12% below the smallest

load Pcr l
= 290 kN for dents and CC4. With the reference boundary

conditions CC4 applied the nonlinear buckling analyses of cylinders with

shallow dents yielded a lower buckling load PcrL, associated with local

buckling, and additionally a higher buckling Pcru, associated with the

cylinder collapse, see Section 6.6.1. During compression the depth of a

shallow dent is continuously increased and the circumferential curvature

at the dent apex decreased until at a load Pcr l flattened vertical strip

over the dent is formed with locally reduced axial buckling resistance.

Since with the boundary conditions CC4 the axial edge displacement of

the flattened strip is controlled and identical with the edge displacement
of the still unaffected cylinder shell, this local buckling is not immedi¬

ately followed by the total cylinder collapse due to excessive axial dis¬

placement of the edge over the dent. But, in case of a cylinder with the

boundary conditions CC3 after having reached the state with a flattened

strip the axial edge displacement is not controlled but the axial load, and

hence after the local buckling the shell strip including the deepened dent

is more compressed than the rest of the cylinder. The cylinder edge
tilts rapidly towards the initial dent and shortly afterwards the cylinder

collapses totally. As can be taken from Figure 6.166, for deep dents

with initial depths between wg/Zi = 0.6 and 2.0 also with the boundary
conditions CC3 second buckling loads Pcru, which are slightly higher
than the local-buckling loads PcrL, were obtained. These loads denote

the total cylinder collapse and are probably somewhat above the local-

buckling load because of the relatively slow local shell flattening and the

therefore only later accelerated shell deformations.

The results for the nonlinear buckling analyses of the reference cylinder
with a single outward dimple performed with the boundary conditions

CC3 are also included in Figure 6.166. The variations between these

loads and the results for the reference conditions CC4 increase contin¬

uously with increasing initial bulge amplitude. For bulges with initial

amplitudes above wg/Zi = —0.4 deviations of more than 5 percent re¬

sulted. The bulge with wg/Zi = —1.5 yielded a deviation of more than

20%. Additionally, the minimum buckling load of the reference cylin¬
der having a bulge with this initial width and height results for a larger
initial amplitude compared with that obtained with the conditions CC4.
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Figure 6.167: Results of transient dynamic analyses of the reference cylinder

having an inward dimple of initial depth Wb/h = 0.3, width ab = 181 mm,

and height lb = 66 mm. Calculations with applied axial forces simulating ei¬

ther boundary conditions CC3 (uniform edge loads) or CC4 (uniform edge

displacements).

In Figure 6.167 and 6.168 the results of a dynamic transient analysis
of the reference cylinder with a single dent of initial depth wg/Zi = 0.3,
width ag = 181mm, and height Zg = 66 mm are displayed. The upper

edge is clamped with the conditions CC3 applied and hence loaded by
means of increasing nodal forces, whereas the bottom unloaded edge is

clamped with the conditions CC4. The reference conditions CC4 applied,
nonlinear buckling analyses of the reference cylinder having this dent of

initial depth wg/Zi = 0.3 yielded only one buckling load (Pcr = 330kN).
Due to a distinctive local buckling the nonlinear buckling analyses were

aborted when reaching this load. With transient dynamic analyses and

controlled edge displacements, however, for this shell a collapse load of

about Pcru = 374 kN could be reached. But the transient dynamic

analysis with the conditions CC3 resulted that with uncontrolled edge

displacements already directly after local buckling total cylinder collapse
occurs. In Figure 6.167 the load-axial displacement curve (bold line) re¬

sulting for this analysis is shown. After reaching the local buckling load

the uncontrolled edge displacements increase rapidly at an almost con-
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Figure 6.168: Results of a transient dynamic analysis for the reference cylinder having a dent of initial depth Wb/h = 0.3.

Analysis with clamped boundary conditions CC3 (controlled axial edge load —Nx) for the upper cylinder end and CC4 (all
degrees of freedom fixed) for the bottom. Thin line results of an edge displacement controlled calculation. Deformations in

the pictures displayed without magnification; contour color maps refer to total-displacement vector lengths in metres.
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stant load. The horizontal load curve indicates a rapid displacement
of the upper edge towards the bottom. In Figure 6.168 the four small

included plots depict selected deformation states prior, at, and imme¬

diately after local buckling. It can be seen, that after local buckling

unilaterally new large dimples were performed and that the upper cylin¬
der edge tilted towards the initial dent. In Figure 6.167 the results of a

transient dynamic analysis of this shell with the conditions CC4 (uniform
edge displacement) but with the total axial force P as loading parameter

are reproduced (thin line) for comparison. In the resulting load-axial dis¬

placement curve at the load for local buckling a kink resulted, indicating
that after the shell flattening the axial cylinder stiffness is reduced. But

in this case, shortly afterwards the load reincreases up to the remarkable

higher collapse load. Only having passed this peak load again the upper

edge is rapidly displaced towards the bottom.

104 J

honzontal path (x 2jiK )

'^v u along upper cylinder edge

Figure 6.169: Varying axial displacements u of the nodes along the upper edge

of the reference cylinder having a dent of initial depth Wb/h = 0.3. Results of a

nonlinear static analysis at an uniformly distributed axial membrane force per

unit length of Nx = —208.8 N/mm applied to the upper edge. Total external

compressive force P = 328 kN. Upper cylinder edge with clamped boundary
conditions CC3, lower edge with CC4-

In Figure 6.169 the axial edge displacements u along the upper edge
of the shell above are depicted which resulted from a nonlinear stress

analysis for an uniformly distributed load of Nx = —208.8 N/mm applied
to the upper cylinder edge. The resulting axial compressive load for
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this axial membrane force/unit length is P = 328 kN, which is identical

to the applied axial load P for the analysis case in Figure 6.125 on

page 371 with uniform edge displacements (CC4). The red "railing"
of constant height on the upper edge of the drawn cylinder stands for

the with conditions CC3 evenly distributed compressive edge load —Nx;
the blue ring "hanging" below shows the varying axial displacement u

with a maximal local compression located above the dent apex and two

minima formed on the left and the right of the lateral dent sides. The

nominal axial displacement of the upper reference cylinder edge for the

shell without imperfection and the axial load on hand is AL = 1.01 mm.

To the right of the drawn cylinder in Figure 6.169 the uncoiled blue curve

around the upper shell edge is reproduced in a chart with an adapted
scale for a better visibility of the resulting axial displacement variations.

At the cylinder edge diagonally opposite to the dent (at 0 or 27rP) the

nominal value of cylinder contraction AL was achieved, whereas above

the dent with u = — 1.032 mm a maximum local compression of about 2 %

above the nominal value was obtained. Without a guidance of the axial

edge displacement, due to the continuous increase of the dent depth and

the that following the axial contraction of the vertical shell strip over the

dent, the cylinder edge sags more above the dent. The bulges at the dent

sides, in turn, increase the axial stiffness of the shell locally and hence

the axial edge displacement above these bulges underruns the nominal

value.

Figure 6.170 finally represents the axial membrane forces Naxtai and

the circumferential membrane forces Nhoop, both again per unit length,

resulting for above shell, boundary conditions CC3 and uniformly dis¬

tributed edge load Nx applied on the upper edge. Since in contrast to

the upper edge nodes the axial displacement of the lower edge nodes

are fixed, a direct comparison between results for cylinders boundaries

modeled according to the analytical conditions CC3 and such accord¬

ing to the conditions CC4 is enabled. In the lower cylinder half of the

contour deformation plot (b), similar to the results in Figure 6.125 on

page 371, the red zones of higher axial membrane forces Naxtai radiating
slantwise from the lateral dent flanks reach the cylinder bottom, and

consequently the axial membrane force along the edge is non-uniform.

In the upper shell half, in contrast, the red zones of higher axial mem¬

brane forces are faded away some element rows below the shell boundary
since there the axial membrane force Naxtai equals the given edge load

Nx. The local extremal deviations of the axial membrane forces Naxtai

from the nominal value Nx are slightly higher compared with the values

in Figure 6.125 due to the somewhat larger deformations. The differ-
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(a) axial membrane forces (b) circumferential membrane forces

Figure 6.170: Axial and circumferential membrane forces per unit length of
the reference cylinder with a dent of initial depth Wb/h = 0.3 resulting for an

evenly distributed axial membrane force of Nx = — 208.8 N/mm, a total load of
P = 328 kN. Results of a nonlinear static analysis for a clamped lower cylinder

edge and a flexible upper edge with boundary condition set CC3. See Fig. 6.169

and Section 6.4-

ences between the circumferential membrane forces/unit length Nhoop
in Figure 6.170(b) and those in Figure 6.126 are negligibly small, con¬

sidering the colour distribution as well as the maximal compressive and

tensile membrane forces. Therefore, the change from the cylinder edge

modeling with boundary conditions CC4 to that with conditions CC3

affected the axial membrane forces Naxtai within the cylinder shell only
close to the cylinder edge substantially; the resulting differences in the

tangential membrane forces Nhoop and the axial membrane forces Naxtai

around the dent are both negligibly small.

The numerical analyses of cylinders having a single dimple yielded con¬

siderably lower buckling loads ifperformed with uniform edge loads (CC3)
than the calculations with uniform, controlled edge displacements (CC'4)
applied. Hence, a more conservative investigation on the minimum loads

of cylinders with single dimples would have required to apply the bound¬

ary conditions CC3 as reference for the parameter studies to this thesis.

But, the reasons for the application of the other conditions CC'4 as ref~
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erence lie in the better comparability with test results and the interest in

the particular behaviour of the shells after local buckling which is rarely
observable using the conditions C'C'3 due to instantaneous total collapse.

(b) Simply supported cylinder edges —> boundary conditions SS4

To investigate how much buckling loads of cylinders with hinged edges
differ from those with clamped edges, the nonlinear buckling analyses
of the reference cylinder having a dent or bulge at half the cylinder

length and of varied initial amplitude wg was repeated with the boundary
conditions SS4 applied. For these conditions the rotational degrees of

freedom were left free, but the translations were treated identically to

clamped edges by means of tied nodes and application of the load on an

auxiliary node on the cylinder axis, see Section 6.4.

-^- clamped edges, CC4

• hinged edges, SS4

-1 -0.5 0 0.5 1

< outwards Wb/h inwards >

Figure 6.171: Buckling loads Pcr for the reference cylinder having a dimple with

an initial amplitude Wb/h as indicated. Results for hinged and for clamped

cylinder edges. Dents and bulges located at half the cylinder length and of
initial width ab = 181 mm and height lb = 66 mm.

In Figure 6.171 the resulting buckling loads are depicted. It may bee

seen that for the perfect cylinder (wg = 0) a difference in the load of

about seven percent between clamped and hinged edges may be iden-
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titled, whereas for the dimples with amplitudes above \wb/h\ = 0.1 the

loads are almost identical. Consequently, the sensitivity to single dim¬

ples, given by the ratio Pcr/Pcrid, is larger for clamped edges since in

this case the buckling load for the ideal geometry Pcr td is higher and the

buckling loads with dents are equal to those for hinged edges. Therefore,

buckling analyses of cylinders with clamped boundary conditions CC4

applied having an initial dimple yield more conservative results than with

hinged conditions SS4. But, it has to pointed out that the dimples were

located at half the cylinder length L/2, thus with sufficient distance to

the edges to ignore end-effects. Similar calculations with hinged condi¬

tions and dimples close to a cylinder edge were not performed; hence, for

such cases the different influence of the boundary conditions CC4 and

SS4 could not be estimated.

Finite Element Mesh Size

The finite element mesh sizes of the analysed cylinders, i.e. the edge

length of the almost square finite elements in the models, was speci¬
fied by the length O.h^Rh, see Section 4.1.3. This element size bases

on the decay length of edge bending disturbances and is recommended

for bilinear MlNDLlN-type shell elements in FE models established for

buckling analyses of axially compressed cylinders. Buckling analyses of

perfect circular cylinders with finer mesh sizes yields slightly lower buck¬

ling loads. But, the only small improvement of the results would hardly

justify the increase of the computation costs involved.

Figure 4.3 on page 123 contains linear buckling analysis results for two

laminated cylinders with ideal geometry and demonstrates the only very

small buckling-load reduction for a 50 percent shorter mesh size.

In Figure 6.172 the buckling loads Pcr of the isotropic reference cylinder

having a single dimple are graphed which resulted either for the standard

mesh-size of O.hyRh or for half this mesh-size. With the standard ele¬

ment length the reference cylinder contained 162 x 52 = 8424 elements,
whereas with half this length four times more elements were needed:

324 x 104 = 33 696 elements. Because of the vast time-consumption of

the nonlinear buckling analyses with the shorter element edge length,

only for the ideal reference cylinder and for dimples with small initial

amplitudes not larger than \wb/h\ = 0.4 such additional analyses were

performed. Within this range the deviation of the buckling load that

resulted with the standard element mesh from those achieved with the
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Figure 6.172: Nonlinear buckling analysis results for the reference cylinder hav¬

ing a dimple with an initial amplitude Wb/h as indicated, a width ab = 181 mm,

and a height h = 66 mm. Buckling loads obtained with 162 x 52 bilinear finite
shell elements for a mesh size of 0.5 VRh, and with 324 x 104 elements for half
this mesh size.

finer mesh seems to be independent of the initial dimple amplitude. Ad¬

ditionally, the deviations vary solely between 2 and 5 percent.

The finite element mesh-size also influences the initial circumferential

width ag and initial meridian height Zg of shallow dents for maximum

buckling load reduction which were obtained by means of minimum

searches for given initial dimple amplitudes wg, see Section 6.6.3. In Fig¬
ure 6.173 the initial heights Zg and the initial widths ag of shallow dents

in the reference cylinder achieved for a fine FE mesh-size of 0.25%/Rh

(324 x 104 elements) are compared with those obtained for the standard

mesh-size of O.hyRh (162 x 52 elements). The initial dent heights Zg
which resulted for the fine mesh-size are 6% or less shorter than the

heights that yielded the analyses for the standard mesh-size. The differ¬

ences between the initial dent widths ag, finally, are 2% or smaller and
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Figure 6.173: Initial meridian dent height lb and initial circumferential dent

width ab against the initial dent depth Wb/h. Results for the reference cylinder
with 162 x 52 elements (standard mesh) and 324 x 104 elements (fine mesh).

can therefore be negleted.

Dimple Shape

The element mesh-size also affects the initial geometry of the surface in

the dimple imperfections. The multiply curved cylinder shell surface was

approximated by a mesh of almost square plate-like elements. Since the

mesh-size equals the length of their straight edges it determined the ac¬

curacy of the approximation by the resulting polygon-surface. The shape
of the dimples used for the studies was defined by a "double-cosine" func¬

tion. The initial cosine profiles of these dimples were then approximated
with polygons, see Section 6.2. Additionally, for comparison a series

of nonlinear buckling analyses were performed of the reference cylinder
with dimples having V-shaped profiles in axial direction. That is, in ax¬

ial direction the dimple geometry is given by linear equations instead of

a cosine. But, in circumferential direction the profiles of these dimples
were identical with those of the cosine-shaped reference dimples. Like

the dimensions of these reference dimples, the initial width ag, the initial

height Zg, as well as the initial amplitude wg of the V-shaped dimples are

independent variables. Contrary to the flat faces of the diamond shaped
dent in a YOSHIMURA buckling pattern, the two faces of these V-shaped
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cosine base line

-FE approximation of cosine-shaped dimple
-FE approximation of V-shaped dimple

Figure 6.174: Radial and axial positions of nodes on the path over the apex

of a dimple with amplitude Wb = 0.15 mm and meridian height h = 66 mm.

Profiles of the cosine dimple and of the V'-shaped dimple for FE approximations

with a mesh-size of 9.7 mm.
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Figure 6.175: Nonlinear buckling analysis results of the reference cylinder hav¬

ing a dimple of shape and initial depth as indicated. Initial circumferential
width of the dimples ab = 181 mm. Initial meridian height of the cosine dim¬

ples lb = 66 mm, that of the \l-shaped dimples h = 59 mm.
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dimples are elhptically curved In Figure 6 174 the exemplary axial pro¬

file of a V-shaped dent is shown A minimum search with the reference

cylinder having a V-shaped dent of initial depth wg/Zi = 01 yielded that

the lowest buckling load is obtained for an initial width of ab = 181 mm

and an initial height of lb = 66 mm, thus for lengths identical to those

of the cosme-shaped dent associated to that initial depth Figure 6 175

depicts the normalized buckling loads of the reference cylinder having
a dimple imperfection of various initial amplitude wg and with the lat¬

eral lengths a6 and lb mentioned The graph compares the nonlinear

buckling analysis results for the reference cosme-shaped dimple geom¬

etry with those for the V-shaped dimples It can be seen that almost

all buckling loads obtained with V-shaped dimples are somewhat higher
than the loads resulted with the reference dimples Only for deep dents

the upper, i e cylinder collapse loads the results for V-shaped dimples
are slightly below the reference values

The initial heights lb of the dimples which provoke minimal buckling
resistance of isotropic cylinders correlate approximatively with the ana¬

lytical axial wavelength 2ZC « 3 5vRh The length of the shell element

edges is about 0 5vRh Therefore, for dimples of initial height lb in ax¬

ial direction only seven element nodes are involved to form polygons to

the axial dimple profile, see Figure 6 174 In case of the reference cosme-

shaped dimples this polygon yields a rather rough approximations of the

associated cosine base lines Thus the difference between the initial dim¬

ple geometries with V-shapes and that with polygons is very small also

for large amplitudes Moreover, after first cylinder compression in the

deformed shell the resemblance between the dimple geometries is even

better But, the cosme-shaped dimples was preferred to the V-shaped,

mainly because of the better analytical comparability with the common

bi-harmomc buckling patterns for ideal cylinders

Axial Position of Dimple Apex

The analyses for the investigation on the buckling behaviour of cylin¬
ders having a single initial dimple were conducted with such dimples all

located at half the cylinder length L On the one hand to minimize the

influence of the clamped cylinder edges, on the other hand because of

the lower buckling loads obtained for dents at L/2 compared to those

resulted for identical dents located closer to a cylinder edge In Figure
6 176 the normalized buckling loads of the reference cylinder (clamped,
CC4) having a dent of initial depth wg/Zi = 02 are graphed for different
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Figure 6.176: Nonlinear buckling analysis results for the clamped reference

cylinder having a dent of initial depth Wb/h = 0.2, initial circumferential width

ab = 181 mm, and meridian height lb = 66 mm. Normalized buckling load ver¬

sus the ratio of the axial position of the dent apex to the cylinder length L.

axial positions of the dent. The loads, again obtained with nonlinear

buckling analyses, are plotted against the ratio of initial axial dimple-

apex position Zb to the cylinder length L. The shell with the dent located

at half the cylinder length zg/L = 0.5, in fact, yielded the lowest load.

With decreasing edge distance zg the buckling load increases. The buck¬

ling loads that resulted for distances from the dent apex to the closer

cylinder edge longer than the initial dent height Zg are only little above

the minimum value. An axial position of zg = Zg/2 means that one edge
of the dent matches with the cylinder edge. The buckling loads obtained

for this apex position and for dent apexes closer to the cylinder edge
are almost that of the perfect cylinder. For axial positions zg < Zg/2 the

geometry of the cylinder edge is also affected by the dent, i.e. the shape
of the edge is not that of perfect circle. But, despite the imperfect edge
these dimple imperfections at a cylinder edge are much less damaging
than in the middle of the sell surface.

Close to the edge axial compression leads to axisymmetrical bulging of

the clamped cylinder because of the prevented radial expansion due to

PoiSSON's effect. The height of these axisymmetrical bulges is about the
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classical wavelength 2ZC for axisymmetric buckling. Since the height of

the dent is also close to 2ZC the height of the bulge is also about that of

the applied dent. For zg = Zg/2 the applied inward dimple locally com¬

pensates the ring-shaped bulging and hence the damaging effect the dent

on hand is reduced. Additionally, due to their support close to the edges
the lateral displacements are smaller than in the middle of the shell, and

therefore the increase in stress due to bending at and in a dent close to

the cylinder edges is also smaller than for an identical dent at half the

cylinder length. However, the review wether axially compressed cylin¬
ders tend to be more sensitive to dents in the middle of the shell than to

such close to an edge was limited to calculations with (i) inward dimples,

(ii) with a dimple size close to 2ZC, (iii) with the mid-long reference cylin¬

der, and (iv) with clamped boundary conditions. Searches for the initial

heights and widths of dents or bulges close to a cylinder edge with min¬

imum buckling loads were not performed. Consequently, the existence

of dimples close to a cylinder end with particular size and/or geometry

different to the dent considered which cause considerable reduction of

the axial buckling resistance can not be excluded.

Linear Versus Nonlinear Buckling Analysis

Design engineers and stress analysts are confronted with not necessar¬

ily pleasant questions about the time and the costs needed for their

calculations. In case of structural stability sometimes the operation of

nonlinear buckling analyses with incremental-iterative solutions of equi¬
librium equations and a few tens of eigenvalue extractions have to be

justified, since with the linear buckling analysis a much faster method

with only one eigenvalue extraction is available. In Figure 6.177 the

normalized buckling analyses Pcr/Pcrid of the reference cylinder with a

single dimple calculated with either linear or nonlinear buckling analy¬
ses are shown for different initial dimple amplitudes wg/Zi. The buckling
loads were normalized with respect to the buckling load of the ideal

cylinder PCnd calculated with the relating analysis method; the buck¬

ling load of the ideal reference cylinder is Pcr td
= 569 kN with a nonlin¬

ear buckling analysis and PCnd = 617 kN (+8%) with a linear buckling

analysis. It can easily be recognized that above all for very small initial

dimple amplitudes the discrepancies between the results of linear and

nonlinear analyses are dramatic. A dent with an initial depth of only

Wb/h = 0.1 already yielded loads with a deviation of 24%, and a dent

with Wb/h = 0.4 gave a difference of about 40%. Moreover, with linear
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buckling analyses the behaviour of deep dents between the local buck¬

ling and the cylinder collapse may not be analysed. Already during the

DEVILS project the important finding was confirmed that the inclusion

of imperfections demands the use of nonlinear analysis methods which

consider large displacements and rotations.

—•—linear buckling analyses

—°—nonlinear buckling analyses
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Figure 6.177: Results of linear buckling analyses and nonlinear buckling anal¬

yses. Buckling loads Pcr for the reference cylinder having a dimple with an ini¬

tial amplitude Wb/h as indicated, normalized with respect to the particular load

of the perfect cylinder PCTid- Dents and bulges of initial width ab = 181 mm

and height h = 66 mm.

Thus, the reason for the consequent use of the more sophisticated and

time-consuming nonlinear buckling analysis for the parameter studies of

dimples in cylinders founds on the obvious quasi-uselessness of the linear

buckling analysis for circular cylinders which differ from their perfect ge¬

ometry! The extraordinary generous allocation of computing and human

resources for the present thesis was condition but not reason for the use

of the more expensive analysis methods.
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6.7 Laminated Cylinders with Dimples

In the previous sections buckling analysis results for isotropic cylinders of

medium length having a single inward or outward dimple were discussed.

The changes in the axial buckling loads due to the variation of the initial

dimple amplitude at given lateral dimple lengths were detailed. Further,
the initial dent widths and heights of the dimples which yielded the min¬

imum buckling loads for a particular initial amplitude were presented for

different cylinder radii, wall thicknesses and lengths. According to these

results the instability behaviour of such isotropic cylinders with a single
dent or bulge, the resulting progressions of the normalized buckling loads

and the initial sizes of the most damaging dimple depend on the normal¬

ized initial dimple amplitude wg/Zi, the length VRh, and the cylinder

length L. The stiffness of the shell material however has no influence

on the sensitivity of isotropic cylinders to dimple imperfections. In de¬

sign guidelines or standards for isotropic cylinder shells the imperfection

sensitivity and critical measures of imperfections are taken into account

similarly being functions of the cylinder radius R, the cylinder length L,
and the shell wall thickness h, but not of the Young's modulus E for

isotropic ideal-elastic material. On the basis of the experiences with the

numerical buckling analysis of imperfect CFRP cylinders, see Section

5.3, it was aimed at investigating if for laminated cylinders of medium

length similar design guidelines can be derived which include the impact
to the axial stability and the critical size of single dimples, and which

parameters influence these limits the most. The buckling load as well

as the buckling mode of laminated cylinders with perfect shell geome¬

try strongly depend on the fibre orientations of the laminate layers and

their stacking sequence. This led to the assumption that the buckling
behaviour of laminated cylinders with local dimples and the dimensions

of dimples provoking minimum axial stability also depend on the lam¬

inate stacking and the resulting material stiffness ratios, and not only
on the nominal cylinder geometry. This section deals with the buckling

analysis results for laminated CFRP cylinders having a single dent or

bulge which confirm the assumption mentioned above widely.

The specifications of the eccentrically laminated cylinders Z28, Z30,

Z32, and Z33 of the project DEVILS as well as of the series of additional

shells which exemplified for FE calculations were introduced in Section

4.1.2, page 119 ff. The analysis results for these cylinders with perfect
shell geometry, including explanations of the effects observed, were de¬

tailed in Section 4.2.2, page 131 ff. These laminated CFRP cylinders
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have a length L of 510 mm and a radius of R of 250 mm. The shell wall

thickness h is 1.25 mm in case of the DEVILS cylinders with ten layers,
and 1.0 mm in case of the additional cylinders with eight layers, see Sec¬

tion 4.1.2. Thus, the computations of the buckling loads of laminated

cylinders afflicted with single dimples were confined to shells which dif¬

fer in the material parameters and the initial dimple size. In contrast

to the analyses for isotropic cylinders, where the impacts also due to

the variation of the cylinder length and radius and the wall thickness

were of interest, for the laminated cylinders the influences of the fibre

orientations and stacking sequences were focussed. It was assumed that

the influence of the cylinder dimensions observed for isotropic cylinders

apply also for laminated cylinders and that they are independent of the

material parameters. That is, according to this assumption the effects of

a change in the length of a laminated cylinder, for instance, is similar to

that of isotropic shells and superimposable over the effect of a change in

the material parameter such as due to a variation of the layer stacking.

For the FE calculations exclusively the standard conditions and models

were used, see Section 6.6.7. That is, the edges of the cylinder models

were clamped for the boundary conditions CC4 to simulate rigid end¬

plates, the shell-element edge length was given by O.h^/Rh, the dimples
of cosine-shape were always arranged at half the cylinder length, and

only nonlinear buckling analyses and transient dynamic analyses were

performed.

In the following first the resulting change in the buckling loads due to

the variation of the initial dimple amplitude wg at given lateral dimple

lengths Zg and ag is described for selected laminated cylinders. After¬

wards, the initial meridian heights Zg and circumferential widths ag of

the inward dimples are dealt with which yielded minimum buckling loads

for a given initial dimple amplitude wg. Finally, the minimum buckling
loads PcrMiN which resulted from the nonlinear buckling analyses with

inward dimples of various initial depth are discussed.
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6.7.1 Variation of the Initial Dimple Amplitude

In order to investigate the change in the reduction of the axial buckling
resistance exclusively due to the variation of the initial amplitude of a

single dimple, for a few laminated cylinders a series of nonlinear buckling

analyses were performed with a dent or a bulge of constant initial dimple
width ag and height Zg. For all selected cylinders and priorly specified re¬

spective initial dimple widths and heights sets of shells were established

with the initial dimple amplitude as the only stepwise varied sampling

parameter. This procedure is similar to that for the isotropic cylinders

having a dent described in Section 6.6.1. After a few calculations for

dimples with an initial height and width of ten percent of the cylin¬
der length and of the circumference respectively, the particular initial

widths ag and the initial heights Zg of the dents which yielded minimum

cylinder stability for an initial depth wg/Zi = 0.1 were applied for the

analyses. The initial widths ag and heights Zg of the "pessimum" dents

which resulted for the laminated cylinders are subject of the subsequent
Section 6.7.2.

The investigations described in this section were motivated by the expe¬

riences with the buckling analyses of DEVILS cylinder Z33 with its mea¬

sured imperfection pattern which includes some small dents or notches,
see Section 5.3. Therefore, the first computations with a parametric

"cosine"-dimple added to a laminated cylinder were conducted also with

cylinder Z33 [81]. The results were then compared with those obtained

for Cylinder Z32 with the reversed layer stacking (i.e. axially stiff layers

outside), but also with cylinder Z28 and Z30 with maximised buckling
loads for perfect circular cylinder geometry.

1er id

stacking [kN]

Z28 ±53°, ±8°, ±90°, ±68°, ±38° 269

Z30 ±53°, ±38° ±22°, ±90°, ±30° 265

Z32 ± 0°,±19° ±37°, ±45°, ±51° 105

Z33 ±51°, ±45°
, ±37°, ±19°, ± 0° 199

Table 6.6: Identification of the DEVILS cylinders, their stacking sequences

from outside to inside layers (0° : axial), and the buckling loads for the perfect

cylinders obtained with nonlinear buckling analyses. See Figure 4-1, page 121.

In Table 6.6 the stacking sequences of the four DEVILS cylinders con-
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sidered are listed together with the buckling loads for the ideal cylinders

Per id obtained with nonlinear buckling analyses. The ply properties of

these carbon fibre reinforced laminates are given in Section 4.1.2, page

121. Cylinder Z30 was designed as the shell with the highest buckling
load among the DEVILS shells, whereas cylinder Z32 is the one with

the lowest buckling load. The stacking sequence of cylinder Z33 was

provided by reversing the ply order of cylinder Z32. In Section 4.2.2 it

was pointed out that the perfect cylinder Z33 with axially stiff layers
at the inner side buckles at about double the load compared with the

"pessimum" cylinder Z32 with axially stiff layers at the outer side. The

optimization of the buckling resistance was performed by means of an

analytical solution as introduced in Section 2.2.3 which yielded a buck¬

ling load Pci = 287kN for cylinder Z30 and only 255 kN for cylinder Z28.

Nonlinear buckling analyses however resulted in almost equal buckling
loads for these two shells, see Section 4.2.2.
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Figure 6.178: Normalized buckling loads for the laminated DEVILS cylinders

Z28, Z30, Z32, and Z33 having a single inward or outward dimple versus

the initial dimple amplitude Wb/h. Results of nonlinear buckling analyses for

dimples with initial widths ai and heights If, as indicated.

As different the buckling loads and the buckling modes of these cylin-
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ders of perfect geometry are, as different is their sensitivity to a single
localized dimple: in Figure 6.178 the buckling loads Pcr normalized with

respect to the buckling load of the ideal shell Pcr td are depicted versus

the normalized initial amplitude wg/Zi of an inward or outward dimple

applied to these four DEVILS cylinders. The loads are nonlinear buck¬

ling analysis results for dimples with initial circumferential widths ag

and meridian heights Zg as indicated. In case of cylinder Z28, Z30, and

Z33 these lengths equal those widths and heights of a dent with initial

depth Wb/h = 0.1 which provoked minimum cylinder stability, i.e. ag

and Zg respectively, see subsequent Section 6.7.2. Cylinder Z32 without

imperfections buckles axisymmetrically (nc = 0), and also the "pessi-
mum" single dents are axial symmetrical, i.e. ag = oo; hence, the initial

height Zg used for shell Z32 is the height Zg of the ring-shaped dent spec¬

ified with Wb/h = 0.1, whereas the selected width ag is about 1/12 of

the circumference, close to the width ag of cylinder Z33.

The progressions of the reduction of the buckling loads Pcr/Pcrid with

increasing initial dimple amplitude wg are similar to the curves which

resulted for the isotropic reference cylinder with like radius and length,
as displayed in Figure 6.19, page 223, for instance. As it can be seen in

the right half of the diagram (i.e. for dents), for the laminated cylinders
there are also limit dent depths which separate the analyses results in

shallow dents with a distinct local buckling and deep dents with a slow,
continuos local shell flattening prior to the cylinder collapse as it was

described in Section 6.6.1 for various isotropic cylinders. In the former

cases the nonlinear buckling analyses are stopped at the load where the

shell in the dimple suddenly snaps inward to form a configuration with

a locally flat shell strip. In the latter case two buckling loads can be

specified: a first Pcr l for a the axial stiffness reduction due to local shell

flattening and a second for the cylinder collapse Pcru- With dynamic
transient analyses the distinct local snapping of shallow dents could be

reproduced, whereas the lower buckling load Pcr j_, of deep dents could

not be associated with a significant change in the run of resulting axial

load-displacement curves. Figure 6.179 shows the results of a transient

dynamic analysis for cylinder Z33 having a dent with various initial

depths Wb/h and with an initial height of 10% of the cylinder length
and an initial width of 10 % of the cylinder circumference. The buckling
loads are again normalized with respect to the nonlinear buckling anal¬

ysis result for the perfect cylinder Z33. The corresponding nonlinear

buckling analysis results are added to the chart and connected with thin

lines. As for the transient dynamic analyses for the DEVILS cylinders
without and with measured imperfections the compression velocity was
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transient dynamic analyses

-nonlinear buckling analyses

04 05 06

Wb/h

Figure 6.179: Transient dynamic analysis results for cylinder Z33 having a

dent of various initial depth Wb/h, an initial height Zj, = 51 mm, and an initial

width ab = 157 mm. Corresponding buckling loads due to nonlinear buckling

analyses added (thin lines) for comparison.

0.1 mm and the damping matrix 25000 times the mass matrix. The dy¬
namic transient analysis results for cylinder Z30, Z32, and Z33 with

ideal geometry and with measured imperfections were presented in Sec¬

tion 4.3, page 143 et seq., and Section 5.3.2, page 179 ff, respectively.
Similar to the example with the isotropic reference cylinder having a

dent of different initial depth shown in Figure 6.24, page 231, within a

first range single buckling loads resulted for nonlinear buckling as well as

for transient dynamic analyses; then, for deeper but still shallow dents

two buckling loads were obtained with transient dynamic analyses but

only the lower with nonlinear buckling analyses; for deep dents finally
with dynamic transient analyses only the cylinder collapse load could be

identified whereas the nonlinear buckling analyses yielded two buckling
loads. Hence, the different deformation processes for laminated cylinders

having a dimple with particular local buckling phenomena do not differ

notably from those observed for isotropic cylinders. It may therefore

be assumed that the explanations given in Section 6.6.1 for the effects

observed for isotropic cylinders with a dent or a bulge of various initial

amplitude also apply for laminated cylinders having such dimple imper¬
fections.

With a minimum buckling load of Pcr/Pcrid = 0.48 the two cylinders
Z28 and Z30 having a dimple yielded the maximal buckling-load reduc¬

tion among the four DEVILS cylinders, see Figure 6.178. With perfect
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Figure 6.180: Normalized buckling loads for cylinder Z32 and Z33 having a

ring-shaped dimple (bold line) or a localized dimple (bold dots) versus the nor¬

malized dimple amplitude. Results of nonlinear buckling analyses for dimples
with particular initial widths ab and heights lb as indicated.

cylinder geometry these two laminates yielded also the highest buckling
load Per id- Thus, the calculations with single dimples in the DEVILS

cylinders confirmed the finding that cylinders with maximised buckling
resistance tend to be maximal imperfection sensitive, as already demon¬

strated on the basis of these cylinders with measured imperfection sur¬

faces considered for their initial geometry, see Section 5.3. Cylinder Z32

in contrast, the DEVILS shell with minimal buckling load in case of ideal

geometry, is almost not affected due to single dimples of initial height

Zg = 73 mm and initial width ag = 131 mm: the resulted minimum buck¬

ling is Pcr/Pcrid = 0.93. These dimples however have not the shape of

the dimple which reduced the buckling resistance of cylinder Z32 the

most. As mentioned above, for this cylinder the maximum reduction is

reached with ring-shaped dimples. Figure 6.180 (left) depicts the buck¬

ling loads resulting for Z32 with either the localized, short-waved dim¬

ples in Figure 6.178 or with single ring-shaped dimples of initial height

Zg = 73 mm again in dependency of the initial dimple amplitude wg/Zi.
In the right chart the buckling loads which resulted for the inversely lam¬

inated cylinder Z33 having axisymmetric dimples or dimples of limited

width are similarly graphed. Having an axisymmetric inward dimple of

initial height Zg the buckling resistance of cylinder Z32 is notably reduced

down to a minimum normalized buckling load of Pcr/Pcrid = 0.53 close

to the minimum buckling load for cylinder Z33 with a non-axisymmetric

g
= io mm; axisymmetric

lb = 76 mm; ag = 128 mm
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dent. But, the minimum for Z32 was obtained for a ring-shaped dent of

initial depth wg/Zi = 1.4 (out of displayed range), whereas that for Z33

resulted for wg/Zi = 0.45. For outward dimples the bold line for the buck¬

ling loads due to axisymmetric dents in Z32 follows approximatively the

thin line for the short-width dimple in Z33. Consequently, ignoring the

initial dimple amplitude involved, in comparison to the other DEVILS

shells cylinder Z32 may only be denoted as "insensitive to single dim¬

ples" only for short-waved dents or bulges of non-axisymmetric shape.

Cylinder Z33 having a ring-shaped dimple yielded normalized buckling
loads somewhat higher than the loads due to localized dimples in case of

shallow dents with initial depths between wg/Zi = 0.3 and 0.4. For deep

ring-shaped dents and axisymmetric bulges considerably lower loads were

achieved compared with the non-axisymmetric dimples in Z33, but also

compared with the axisymmetric dimples in Z32.

In contrast to outward ring-shaped dimples, for inward ring-shaped dim¬

ples with varied initial dimple amplitude minimum buckling loads were

found, similar to non-axisymmetric dents. Additionally, also results with

an upper and a lower buckling load were obtained, see black buckling-
load curves for wg/Zi > 0.75 in Figure 6.180. For isotropic cylinders with

a ring-shaped dimple also an analytical approach is available on basis

of the asymptotic theory (see Section 6.6.3), which however yields nor¬

malized buckling loads independent of the sign of the dimple amplitude
and which ignores the special progressions of the buckling resistance of

deep ring-shaped inward dimples observed with the numerical analyses.
Transient dynamic analyses of isotropic cylinders with deep axisymmet¬
ric dents resulted that the lower buckling load is probably associated with

the formation of short-waved, non-axisymmetric dimples in the furrow

of the initial dent which change the axial cylinder stiffness. But, since

the main focus of this thesis lies in the investigation of cylinders af¬

flicted with localized dimples no further time-consuming computations
like transient dynamic analyses were conducted to ascertain the buckling
behaviour and the different states of stress and deformation for cylinders
with axially symmetrical dimples.

The analysis results for the only four eccentrically laminated DEVILS

cylinders are not sufficient for a general statement on the sensitivity
of laminated cylinders to single dimples. Therefore, similar nonlinear

buckling analyses were also conducted for some selected shells of the

series of laminated CFRP cylinders ZO.a and Za.O with inward dimples
of different initial depth. The length, the radius and the ply properties
of these laminate shells equal those of the DEVILS cylinder, but their
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wall thickness is only h = 1.0 mm. Near either the inner or the outer

shell surface four of the eight unidirectional layers are always oriented in

cylinder axis direction, whereas the orientation of the other four layers
is given by the ply angle ±a, see Section 4.1.2, page 122. The cylinders
ZO.a with stacking sequences [0°4, (+a, —0)2] have the axially stiff layers
at the outer laminate side, the cylinders Za.O with stacking sequences

[(—a, +a)2,0°4] at the inner side. In Figure 6.181 the buckling loads

15 30 45

ply angle a

ZO.a

90 15 30 45

ply angle a

Za.O

90

Figure 6.181: Buckling loads for the laminated cylinders ZO.a and Za.O with¬

out imperfections for various ply angles a. Results of nonlinear buckling anal¬

yses. Gray circlets mark cylinders with ring-shaped buckling.

Per id resulting for nonlinear buckling analyses of cylinders ZO.a (left)
and Za.O (right) having perfect geometry are depicted versus the ply

angle a between 0° and 90°. The gray circlets refer to solutions with

axisymmetric buckling. Section 4.2.2, page 131 ff, details the different

buckling loads and modes of cylinder Z0.A5 versus the cylinder ZA5.0 as

well as the similar behaviour of cylinders Z0.90 and Z90.0 and give a

mechanical explanation for the observed effects.

For those cylinders with limit values or extremal buckling loads in the

two cylinder series ZO.a and Za.O in Figure 6.181 the impact of a single
dent with various initial depth and particular initial lateral dimension

was investigated. As it was observed for isotropic cylinders, the reduc¬

tion of the buckling resistance which resulted for the laminated cylinders
due to an outward dimple is less severe compared with that due to an in¬

ward dimple; consequently, the additional computations were restricted

to shells with dents. The normalized buckling loads Pcr/Pcrid result¬

ing for nonlinear buckling analyses of cylinders with a = 0°, 45°, 70°,
and 90° all having a single dent of initial height Zg and width ag are

included in Figure 6.182 for different initial dent depths wg/Zi. The ini¬

tial meridian heights Zg and circumferential widths ag indicated in the
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charts are once again the lateral dimensions of the dents of initial depth

Wb/h = 0.1 which provoked minimum buckling loads. Cylinder Z0.70

with axially stiff layers near the outer laminate surface and a ply angle of

a = 70° yielded the highest buckling load for ideal shell geometry Pcr td

among the cylinders in Figure 6.181. Confirming the results for cylinder

Z30, also with maximum buckling resistance, cylinder Z0.70 resulted in

maximal sensitivity to a single dimple imperfection. With a minimum

normalized buckling load of PCrM\n/Pcrid = 0.51 for this laminate, see

upper chart of Figure 6.182, the lowest resulting normalized buckling
load of the considered shells was obtained for wg/Zi < 1. For the three

shells with axially stiff layer at the inner side in the lower chart, likewise

the cylinder ZA5.0 with a = 45° and the highest buckling load PCnd of

the cylinders Za.O gave the lowest normalized buckling load among these

cylinders: PCrM\n/Pcrid = 0.57. Cylinder Z0.A5, also with a = 45° but

with axially stiff layer at the outer side, having perfect geometry buck¬

les axisymmetrically at a relatively low buckling load. Similar to the

cylinder Z32, the worst single dent to this shell is also ring-shaped. The

progression of the buckling loads with increasing dent depth, which re¬

sulted for Z0.A5 with such axisymmetric dents, resembles that of cylinder
Z32: the minimum normalized buckling load PCrM\n/Pcrid is about 0.51

and hence about as low as that of the cylinder Z0.70, but for a consider¬

ably deeper initial dent depth which is out of the displayed range. The

three cylinders Z0.0, Z0.90, and Z90.0, finally, with a half of the carbon

fibres in circumferential direction in the two latter cases or with fibres

solely in axial direction in the former case resulted in low buckling loads

for ideal shell geometry. In turn, their sensitivity to single dents is low

compared with that of Z0.70 and ZA5.0: the minimum normalized buck¬

ling loads is above PCrM\n/Pcrid = 0.7. As these three cylinders yielded

very similar buckling loads for ideal geometry, the runs of the lower nor¬

malized buckling loads resulting for a = 0° and 90° resemble each other.

However, the level of the upper buckling loads PCru/Pcnd for cylinder
Z0.90 as well as for Z90.0 are considerably higher than those for Z0.0.

This might be explained with the much higher circumferential elasticity
of the shell after partial flattening in case of ZO.O and the therefore re¬

duced resistance to the total collapse of the partially flattened cylinder;
the curved shell part adjacent to the strip including the flattened dent

serves as an "elastic foundation" of the strip which depends directly on

the tangential stiffness of the shell.
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Figure 6.182: Normalized buckling loads Pcr/Pcnd of eccentrically laminated

cylinders having an initial single inward dimple of appropriate size versus the

initial dimple depth Wb/h. Nonlinear buckling analysis results for cylinders
ZO.a with axially stiff layers at the outer laminate side (top) and for cylin¬
ders Za.O with axially stiff layers at the inner side (bottom). Lateral dent

dimensions ab and lb as indicated.
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6.7.2 Lateral Dimensions of Dimples Provoking
Minimal Cylinder Stability

The dents above with varied initial depth wg in eccentrically laminated

cylinders have predefined initial meridian heights Zg and initial circumfer¬

ential widths ag. In the following the determination of these two lateral

dimple lengths is described for a series of laminated cylinders with differ¬

ent ply angles and laminate stacking. Similar to the dimple dimensions

for isotropic shells discussed in Section 6.6.3, page 325, by means of non¬

linear buckling analyses the initial dimple widths ag and initial dimple

heights Zg were specified which reduced the axial stability of the lami¬

nated cylinders the most for a given initial amplitude wg. Again first

the initial height Zg for minimal stability was searched with an also fixed

initial width ag, estimated as close to ag as possible. Subsequently, the

initial width ag was calculated accordingly using the previously found

initial height Zg.

For the isotropic shells in Section 6.6.3 the investigations focussed on

the impact of the ideal cylinder dimensions L, R, and h on the "pessi-
mum" dimple dimensions Zg and ag, whereas for the laminated cylinders

mainly the influence of the material parameters on these imperfections
dimensions was of interest.

Laminated Cylinders with Inward Dimples

Table 6.7 contains the initial meridian heights Zg and circumferential

widths ag of a single dent in the four laminated DEVILS cylinders which

resulted for an initial dimple depth wg/Zi = 0.1. Additionally the num¬

ber of axial half-waves mc and complete circumferential waves nc of the

buckling pattern are listed which were obtained with the classical anal¬

ysis for axially compressed laminated circular cylinders of perfect geom¬

etry introduced in Section 2.2.3. Furthermore, the axial wavelength for

axisymmetric buckling 2ZC of these shells can be taken, calculated with

Equation 2.63

Zc = Ti\JR\JDiia22 Fh\x

considering the cylinder radius R, the laminate eccentricity term 621,
the modified axial bending stiffness D\\, and the circumferential flex¬

ibility a22, see Section 2.1.2, page 39, and 2.2.3, page 54. The initial

dent heights Zg of the DEVILS cylinders resulting for nonlinear buckling
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clas ic analysis initia1 dent height miti il dent width

mc nc 2ZC h
L

mc

'g
2la ag

2irR °g

2la

Z28 1 6 56 56 510 1.00 175 262 3.12

Z30 8 13 61 61 64 0.99 164 121 2.67

Z32 13 0 76 70 39 0.92 oo oo oo

Z33 1 7 76 76 510 1.01 128 224 1.69

Table 6.7: Initial meridian dent height li and initial circumferential dent width

ai of the four laminated DEVILS cylinders resulting from nonlinear buckling

analyses for the initial dent depth Wb/h = 0.1. Values listed together with

the number of half-waves in axial and of complete waves in circumferential

direction, mc and nc respectively, and the axial wavelengths for axisymmetric

buckling 2lc, which yielded the classic analysis for laminated cylinders under

axial loading.

analyses (FE) are very close to the axial wavelength for axisymmetric

buckling 2ZC. Only cylinder Z32 with an axisymmetric dent (ag = oo)
yielded a ratio Zg/2ZC of only 0.92, but this value fits with the heights Zg of

flat axisymmetric outward dimples in isotropic shells, see Figure 6.107 on

page 346. The axial half-wave lengths L/mc of the cylinder Z28 and Z33

obviously do not correlate with the initial dent heights Zg. With mc = 8

for shell Z30, however, the axial half-wave length L/mc = 64 mm is

close to the dimple size Zg = 61mm. And for Z32 the full-wave length
2 • L/mc = 78 mm differs only a little from the axial wave-length for

axisymmetric buckling with 2ZC = 76 mm. Thus, for the initial dimple

heights Zg of the DEVILS cylinders on basis of the axial wavelengths for

the ideal shells good approximations could be derived. But, apart from

shell Z32 for the resulting initial circumferential widths ag considerable

differences to the wavelengths 2nR/nc derived from the buckling modes

for perfect shell geometry resulted. Also the dent width/height ratios

ag/2Zc vary apparently in an arbitrary way.

The important irregularities between the calculated initial dent widths ag

and the axial wavelengths of the analytical buckling mode of the eccen¬

trically laminated cylinders may stem from the discrepancy between the

analytical buckling patterns, given by bi-harmonic functions, and those

yielded with linear buckling analyses of FE models. The FE analyses of

ideal laminated cylinders often resulted in some spiral shape. Cylinder

Z33, for instance, according to the classic analysis buckles in one dim¬

ple in axial direction (mc = 1) and in seven dents in the circumference
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crcumferent.al distance [mm]

(a) Classic analysis result rac = 1, nc = 7

„rcumferent.al d.stance [mm]

(b) Linear buckling analysis result spiral pattern with helix angle 6 -
: 23°

Figure 6.183: Buckling modes for cylinder Z33 with ideal geometry resulting

for (a) a classic analysis and (b) a linear buckling analysis with a finite element

model. Uncoiled circular cylinder shell; only half the circumference displayed.

(nc = 7). In Figure 6.183(a) this mode is depicted by means of the

uncoiled half shell. In the picture (b) below the pattern resulting from

a linear buckling analysis (eigenmode) is accordingly represented. This

buckling shape with 12 long skew dents corresponds to that in Figure
4.11 (right) on page 134 and was reproduced mathematically with the

coupled bi-harmonic function

w(x,y) - wmnsm

n

mir \ fn
— x-Oxy) cos \—y-@yxL

Qy = — tan 9
R

rrvK ©„
e„

L 2nR m

(6.21)
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Figure 6.184: Contour plot of the buckling mode for cylinder Z33 with perfect
shell geometry and lateral lengths lb and ab of the inward dimple with initial

depth Wb/h = 0.1 which provoked the minimum buckling load. The frame of
the dent is drawn to scale and placed around the cylinder median to fit best

with the skew buckles for the ideal cylinder. Red sinuous lines indicate the axial

and circumferential wavelike shape of the dent, blue ones those of the buckles

for the ideal cylinder.

using the helix angle 9 to define the local phase shifts. In case of cylin¬
der Z33 the helix angle is approximately 9 = 23°. Thus, due to the

potentially skew configurations of the buckles the meridian as well as

the circumferential distances between two wave peaks may differ from

the analytical wavelengths given by mc and nc also in case of identical

number of resulting buckles. To demonstrate this effect, a single dent

with the initial height and the initial width in Table 6.7 was placed in

the buckling mode of the ideal cylinder Z33 with skew buckles. In Figure
6.184 the contour plot of the pattern in Figure 6.183(b) is shown with

the frame of the dent given by Zg and ag which was drawn to scale and

positioned around the cylinder meridian appropriately to the configura¬
tion of the skew inward or outward dimples of the buckling mode. The

resulting axial and circumferential progressions of the wave lines over the

apices of the skew buckles are plotted in blue colour at the left side of
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the dent, in comparison to the red coloured complete wave of the dent.

It can be seen that the circumferential width of the dent ag matches

with the horizontal or circumferential wavelength of the skew dimples.

And, in vertical or axial direction the dent height Zg approximate the

half length of the vertical half-wave of the skew buckles. Hence, in case

of cylinder Z33 the initial circumferential width ag of dent which caused

minimal stability for an initial depth of wg/Zi = 0.1 follows from the

buckling mode obtained with a linear buckling analysis of the ideal shell

(eigenvector).

class ic analysis initial dent h eight mitia 1 dent W, idth

label O. &21

[mm]

On
D22

mc nc 2ZC

[mm]

h
[mm]

L

mc

[mm]

h
2la ag

[mm]

2irR

nc

[mm]

ag

2la

ZO 0 0° 0 0000 14 2 5 14 104 113 102 1 09 131 112 1 26

ZO 10 10° 0 0467 13 4 5 14 103 104 102 1 01 133 112 1 30

ZO 15 15° 0 1007 12 4 7 13 101 98 73 0 97 143 121 1 41

ZO 20 20° 0 1656 10 9 10 0 98 85 51 0 86 00 00 00

ZO 30 30° 0 2729 7 1 11 0 90 81 46 0 90 00 00 00

Z0 35 35° 0 2898 5 4 12 0 84 74 43 0 88 00 00 00

Z0 45 45° 0 2465 3 1 14 0 71 65 36 0 93 00 00 00

Z0 55 55° 0 1607 1 9 17 0 59 53 30 0 91 00 00 00

Z0 60 60° 0 1201 1 6 19 0 54 51 27 0 95 00 00 00

Z0 65 65° 0 0854 1 4 20 0 50 51 26 1 02 153 00 3 05

Z0 70 70° 0 0573 1 2 22 0 47 49 23 1 04 135 00 2 87

Z0 75 75° 0 0359 1 1 12 15 45 52 43 1 14 124 105 2 73

Z0 90 90° 0 0092 1 0 10 15 43 56 51 1 29 122 105 2 81

Z0 0 0° 0 0000 14 2 5 14 104 113 102 1 09 131 112 1 26

Z10 0 10° -0 0467 13 4 5 14 103 111 102 1 08 129 112 1 25

Z20 0 20° -0 1656 10 9 5 15 98 100 102 1 02 125 105 1 27

Z30 0 30° -0 2729 7 1 5 15 90 91 102 1 01 117 105 1 30

Z35 0 35° -0 2898 5 4 5 15 84 84 102 1 00 115 105 1 37

Z45 0 45° -0 2465 3 1 6 16 71 70 85 0 99 111 98 1 58

Z55 0 55° -0 1607 1 9 7 16 59 67 73 1 15 106 98 1 81

Z60 0 60° -0 1201 1 6 8 16 54 65 64 1 20 106 98 1 97

Z75 0 75° -0 0359 1 1 9 15 45 57 57 1 25 113 105 2 49

Z90 0 90° -0 0092 1 0 9 14 43 55 57 1 28 121 112 2 79

Table 6.8: Ply angle a, eccentricity term 621, and modified bending stiffness
ratio D11/D22 for the eccentrically laminated cylinders ZO.a and Za.O and

their resulting initial meridian height If, and the initial circumferential width

ai of a single dent causing minimal stability for the initial depth Wb/h =

0.1. For comparison the buckling mode with mc half-waves in axial and nc

complete waves in circumferential direction as well as the axial wavelength 2 lc

for axisymmetric buckling resulting from classic analysis.

For a systematic investigation into the importance of the ply angle and

the layer stacking of eccentrically laminated cylinders to the lateral dent

dimensions the minimum searches with nonlinear buckling analyses were
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also applied to the two series of CFRP cylinders ZO a and Za 0 with

clearly eccentric stackings, see Section 4 12 and 4 2 2 In Table 6 8

the initial circumferential widths ab and the initial meridian heights lb
resulting for these cylinder shells are listed These dent widths and

heights are again the dimensions which gave minimum buckling loads for

an initial dent depth of wg/Zi = 01 In the upper block are the results of

the cylinders ZO a with laminates [0°4, (+a, —0)2] and axially stiff layers
near the outer shell surface, m the lower those of the cylinders Za 0 with

laminates [(—a, +a)2,0°4] and axially stiff layers near the inner surface,

always depending on the given play angle a The table also includes

the buckling mode of classic analyses according to Section 2 2 3 with mc

half-waves m axial and nc waves m circumferential direction as well as

the axial wavelength 2 Zc for axisymmetric buckling The values of the

eccentricity term 621 and the modified bending stiffness ratio D\\/D22
m the third and fourth table column are later used for comparisons with

other laminated as well as with isotropic shells

The initial heights lb yielded for the cylinders ZO a are close to the

analytical axial wavelengths 2 Zc only for some ply angles a near 10° and

70° For the solutions with ring-shaped dents (ab = 00) and small ply

angles the dimple heights lb are notably below the respective 2 Zc values,
and the cylinders with angles near 90° yielded dent heights more than

25 % longer than the associated analytical wavelengths 2 Zc In the latter

case the half-wave length L/mc of the classic buckling mode is closer to

the dent height lb found with numerical analyses In Figure 6 185 the

initial dent heights lb listed m Table 6 8 are compared with the analytical
axial wavelengths 2 Zc and the axial half-wave lengths L/mc of the classic

analysis which resulted for the cylinders ZO a (left) and Za 0 (right) of

different ply angle a The initial heights lb for the shells Za 0 with ply

angles from a = 20° to 45° are m accordance with the wavelength 2 Zc,
whereas for angles between a = 55° and 90° the lengths lb match better

with the half-wave length L/mc For the cylinder Z0 0 the deviation of

the initial dent height lb from the axial wavelength 2 Zc is about 10 %,
for the cylinders Z0 90 and Z90 0 about 29 % The differences between

the axial wavelength 2 Zc and the dent height lb m dependence of the ply

angle is readily identifiable m Figure 6 186 by means of the wavelength
ratios Zg/2ZC resulting for the shells Z0 a and Za 0 Small values between

0 95 and 0 86 were obtained for cylinders Z0 a having a ring-shaped dent

(gray markers) Large ratios Z6/2ZC above 1 1, m turn, up to 1 29 resulted

for laminates with ply angles between a = 45° and 90°

The initial circumferential dent widths ab of the two series of laminated
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-•-nonlinear buckling analyses: £g

-^classic analysis: 2 lc

. classic analysis: L/mc
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Figure 6.185: Resulting initial meridian heights If, for cylinders ZO.a (left)
and Za.O (right) subject to the ply angle a in comparison to the half-wave

lengths L/mc and wavelengths 2lc for axisymmetric buckling due to the classic

analysis. Gray circlets denote solutions with a ring-shaped dent.

cylinders in Table 6.8 vary between 106 and 153 mm, thus the variation

range of the widths ag is much smaller compared with that of the initial

meridian dent heights Zg which vary between 49 and 113 mm. But, all

listed widths Zg are notably wider than the circumferential wavelengths

2nR/nc that resulted from the buckling modes of the classic analyses.
Maximum deviations were obtained for small ply angles a with initial

widths Zg about 20 % longer than the classical wavelengths 2nR/nc. But

above all the results for cylinder Z0.65 and Z0.70 strike: the classic

analyses yielded axisymmetric buckling modes associated to the lowest

stability for ideal geometry (nc = 0), but the calculated initial shape
of the "pessimum dent" is non-axisymmetric, i.e. ag 7^ oo. In Figure
6.187 the initial circumferential dent widths ag listed in Table 6.8 are

compared with the circumferential wavelengths 2nR/nc of the classic

analysis which resulted for the cylinders ZO.a (left) and Za.O (right) of

different ply angle a. The widths ag that approximate the classical wave¬

lengths 2nR/nc the best are for shells Za.O with ply angles a between

60° and 90° whose resulting deviations are about circa 8 %. But, the dif¬

ferences between the lengths ag and 2nR/nc of the cylinders Za.O and

ZO.a in Table 6.8 are smaller than those between the DEVILS cylinders,
which measures more than 40 % in case of shell Z33. One reason for these

discrepancies may lie in the difference between the buckling patterns for

the ideal cylinders resulting from the classic analyses, specified by mc

and nc, and those from the FE analyses. As demonstrated by means
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Figure 6.186: Ratios of the initial dent heights If, to the classical axial wave¬

length 2lc which resulted for the laminated cylinders Za.O and ZO.a plotted

against the ply angle a. Gray markers for results of shells ZO.a with a ring-

shaped dent.

of the buckling modes for cylinder Z33 in Figure 6.183 and 6.184 with

the bi-harmonic functions of the classic analysis the often spiral-shaped
linear buckling modes cannot be described. Only cylinder Z0.0, Z0.90,
and Z90.0 yielded linear buckling modes with multiple staggered rows

of dimples as predicted by the classic analysis (see Fig. 4.14, p. 136),
all other shells in Table 6.8 gave either axisymmetric patterns or modes

with spiral shapes and long skew buckles (see Figure 4.13, p. 136). It

is also of crucial importance that the linear buckling modes result from

the stress distributions in the perfect shell prior to collapse. The stress

distribution in and around an applied single dent in an otherwise perfect

cylinder shell result in different stress distributions with stress concentra¬

tions located differently to those associated with the pre-buckling states

of perfect cylinders, see Section 6.6.5. The calculated dent widths ag

finally stem from the stress distributions for a particular single dimple

imperfection, and not from those for a perfect shell. This may explain the

considerable discrepancy between the dent width ag and the analytical

wavelength 2nR/nc also for the cylinders which yielded linear buckling
modes without skew or spiral-shaped buckles. Consequently, in general
the wavelengths 2nR/nc of the classic analysis will be inappropriate for

a prediction of the initial dent width ag. More encouraging results in

this context were obtained with the ratios of the initial circumferential

dent width ag to the classical axial wavelength 2 Zc in dependence of the
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-nonlinear buckling analyses: ag

-classic analysis:
2

10 20 30 40 50

ply angle a

Figure 6.187: Resulting initial circumferential widths ai for cylinders ZO.a

(left) and Za.O (right) subject to the ply angle a in comparison to the wave¬

lengths 2ixR/nc due to the classic analysis.

laminate parameters. This dent-width/axial-wavelength ratio ag/2Zc was

already used for the quantification of the different dimple dimensions for

isotropic cylinders, see Section 6.6.3; hence, it was obvious to test its ap¬

plication also for the laminated shells. In Figure 6.188 the ratios ag/2Zc
which resulted for the laminated cylinders ZO.a and Za.O are shown,

again subject to the ply angle a. As can be taken from Figure 6.186 the

meridian heights of non-axisymmetric dents calculated for these shells

vary between about Zg = 2ZC and Zg = 1.3 -21
c. Therefore, for small angles

a with dent-width/axial-wavelength ratios of only circa ag/2Zc =1.2 the

resulting "pessimum" dent for these laminates and an initial dent depth
of Wb/h = 0.1 is of almost square shape. For the isotropic cylinders,
in contrast, width/height ratios ag/Zg resulted between 2.4 and 2.8 for

wider dimples. Wider non-axisymmetric dents were obtained also for the

laminated cylinders of large ply angles a up to 90° with resulting initial

dent width/height ratios ag/Zg of about 3.0.

The DEVILS cylinders as well as the two series of cylinders ZO.a and

Za.O are eccentrically laminated, i.e. they have CFRP laminates with

layer stackings asymmetric in respect of the middle shell surface. The

cylinders ZO.a and Za.O are more "academic" since shells with such lam¬

inates will distort already during the fabrication. Therefore, two sym¬

metric laminates both composed of eight layers with ply angles either

a = 0° or 60° were added to the calculations. Cylinder ZQO.Os with the

symmetric laminate [±60°,0°4, =f60°] has the axially stiff layers in the
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Figure 6.188: Ratios of the initial dent widths ai to the classical axial wave¬

length 2lc which resulted for the laminated cylinders Za.O and ZO.a, plotted

against the ply angle a.

core of the shell, whereas the cylinder ZO.QOs with its symmetric lam¬

inate [0°2, ±60°, =f60°,0°2] has the axially stiff layers close to the two

shell surfaces. In Table 6.9 the initial meridian heights Zg and circumfer-

Table 6.9: Resulting initial meridian height lb and circumferential width ab

of a dent provoking minimal stability of the symmetrically laminated cylinders
ZQO.Os with laminate [±60°2,0°2]s and ZO.QOs with laminate [0°2,±60°2]s
for an initial dent depth Wb/h = 0.1. Values to the eccentrically laminated

cylinders Z0.60 and Z60.0 added below for comparisons.

ential widths ag of a dent in these two cylinders, again provoking minimal

stability for wg/Zi = 0.1, are listed together with the terms of eccentricity

&2i, the bending stiffness ratios -Ö11/-D22, and the buckling modes and

axial wavelengths 2 Zc of the classic analysis. The buckling modes and

loads of these two cylinders are described in Section 4.2.2, page 131. The
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respective values for the cylinders Z0.60 and Z60.0 also with ply angles
a = 0° and 60° but eccentrically laminated, see Table 6.8, were attached

for direct comparisons and are in the last two table rows. Since with sym¬

metric layer stackings for cylinder ZQO.Os as well as for ZO.QOs the term

of eccentricity 621 is zero. But, in contrast to the two eccentric shells,
their axial/circumferential bending stiffness ratio -D11/-Ö22 differ from

each other. In case of ZQO.O the axial bending stiffness is smaller than

the circumferential one, and without imperfections the cylinder buckles

axisymmetrically (nc = 0). The initial meridian dent height yielded for

this shell is very close to the wavelength 2 Zc for classic axisymmetric

buckling and also to the full-wave length 2 • L/mc of the classic analysis.
The initial dent width ag is infinite, as expected due to the linear buck¬

ling mode and the classic analysis for the ideal cylinder. Cylinder ZOQOs

has a bending stiffness ratio of D\\/D22 = 6.5, thus for the shell with

axially stiff layers lying outside in axial direction the bending stiffness is

higher than that in circumferential direction. In this case, the buckling
mode for perfect geometry is non-axisymmetric, and also the initial dent

width is not infinity resulting in ag = 98 mm. This length, however,
is again far from the wavelength 2nR/nc given by the classic analysis.

Additionally a considerable deviation between the resulting initial dent

height Zg and the analytical axial wavelength 2ZC (+12%) was obtained

for this laminate.

For the isotropic cylinders simple formulas in terms of the initial dent

depth Wb and Batdorf's parameter Z, considering the ideal cylinder ge¬

ometry, could be derived to predict the initial widths ag and heights Zg of

dents and bulges quite accurately, see Section 6.6.3. Finally the question

came up wether, despite the large variations in the resulting dent sizes,
for arbitrarily laminated cylinder also rules may be derived considering
the material parameters, additionally to those for the perfect cylinder

geometry. For this purpose many parameters and ratios were tested, but

with little success. However, with the term of eccentricity 621 and the

modified bending stiffness ratio D\\/D22 at least rough approximations
of the dent dimensions should be possible for laminated cylinders such

as presented herein. As already mentioned, the cylinder geometry, i.e.

the cylinder length L, the radius R, and the wall thickness h, was fixed

for the investigation of dents in laminated cylinders, there influence on

the worst dimple size was presumed independent of the shell material

and to be taken into account separately.

Figure 6.189 and 6.190 depict the ratios of the initial meridian dent

height Zg to the classical axial wavelength 2 Zc for the laminated DEVILS
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Figure 6.189: Ratios of the initial meridian dent height lb to the classical axial

wavelength 2 lc for a series of laminated or isotropic cylinders as indicated

with equal length and radius. Dent-height ratio versus term of eccentricity 621-

Gray circlets denote ratios for shells ZO.a with a ring-shaped dent.
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Figure 6.190: Ratios of the initial dent height lb to the classical axial wavelength
2 lc for a series of laminated or isotropic cylinders as indicated. Dent-height
ratio versus the modified axial/circumferential bending stiffness ratio F>\\/F>22.
Gray circlets denote values for shells ZO.a with a ring-shaped dent.
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cylinders, the also eccentrically laminated cylinders ZO.a and Za.O, the

symmetric cylinders ZO.QOs and ZQO.O, as well as for two isotropic cylin¬

ders, all with L = 510 mm and R = 250 mm. In Figure 6.189 the axial

dent-height/ wavelength ratios Zg/2ZC are plotted against the eccentricity
term 621 and in Figure 6.190 against the modified axial/circumferential
bending stiffness ratio D\\/D22- With the term 621 useful statements

can be made only for eccentric laminate stackings. For cylinders with

621 larger than 0.1 mm the pessimum dents are ring-shaped and the ini¬

tial height Zg is small compared to that for the other dent patterns.

The dent height ratios for the DEVILS cylinders Z28 and Z30 (gray
quadrats) with small 621 follow more the results for the cylinders ZO.a

and Z90.0 with ply angles a below 45°. For symmetrically laminated

and isotropic cylinders (621 = 0) however no one-to-one assignment can

be conducted since three different ratio ranges at about Zg/2ZC = 1.0,

1.1, and 1.3 resulted. In contrast to the eccentricity term 621 with the

bending stiffness ratio -D11/-Ö22 also for the two symmetric cylinders
ZO.QOs and ZQO.Os (diamonds) a determination of the resulting initial

dent height Zg can be made. Unfortunately, their result, as plotted in

the diagram of Figure 6.190, are not close to the ratios for the other

cylinders. Again, for ring-shaped dents a group with length ratios be¬

low 1.0 resulted, and for stiffness ratios between -D11/-Ö22 = 1 and 2 a

cluster of results, including the isotropic and the DEVILS shells, was

obtained. The dent-height/wavelength ratios for all considered cylinders

vary between Zg/2ZC = 0.86 and 1.29 with a mean value of Zg/2ZC = 1.04.

The variations of the dent heights Zg from the mean are ±20%. Hence,
since no other useful trend line subject to one of the material parameter

(ratios) could be found the mean value above had to be sufficient for a

rough prediction of the dent-height/wavelength ratio lf/2lc, of the initial

dent height Zg respectively for a given cylinder shell material:

Similarly to the initial dent heights, in Figure 6.191 and the 6.192the

ratios of the initial circumferential dent width ag to the classical axial

wavelength 2 Zc that resulted for the investigated laminated and isotropic

cylinders with L = 510 mm and R = 250 mm are plotted versus either

the eccentricity term 621 or the modified axial/circumferential bending
stiffness ratio D\\/D22- The cylinders with ring-shaped dents have in¬

finite dent widths and were therefore not included in the graphs. In

Figure 6.191 the dent-width/axial-wavelength ratios ag/2Zc yielded for

the DEVILS cylinders Z28, Z30, and Z33 are about 0.3 higher than the
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Figure 6.191: Ratios of the initial circumferential dent width ab to the classical

axial wavelength 2lc for a series of laminated or isotropic cylinders with equal

length and radius. Dent-height ratio versus eccentricity term 621-
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Figure 6.192: Ratios of the initial dent width ab to the classical axial wavelength
2 lc for a series of laminated or isotropic cylinders as indicated. Dent-height
ratio versus modified axial/circumferential bending stiffness ratio F>\\/F>22.
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values for the cylinders Za 0 and ZO a with ply angles larger than 45°, in

contrast to the ratios Z6/2ZC above which match better for angles smaller

than 45° But, as for the dent height for the symmetrical cylinder ZO 60s

with zero eccentricity term 621 the ratio ab/2lc resulted closer to the ratio

for cylinder ZO 0 with alike 621 = 0 than to the cylinders with a = 90°

More significant marker positions to the width/wavelength ratios ab/2lc
in a graph resulted for the analysed cylinders were achieved with the

bending stiffness ratio -D11/-D22 as axis of abscissae, see Figure 6 192

Ratios D11/D22 near 1 0, 1 e for the isotropic cylinders and cylinders
Za 0 and ZO a of ply angles a at 90 degrees, yielded long initial widths

with ratios ab/2lc above 2 5 For large bending stiffness ratios D\\/D22
(1 e a —> 0), in turn, shorter dent widths for more square dents resulted

in width/wavelength ratios ab/2lc less than 1 5 With the exponential
function

a* _1 fie; £11
-^

= 135 + 10e ^22

2ZC

that was introduced as trend line in Figure 6 192, approximations of the

FE calculations are enabled But the maximum deviations which result

between the dent widths ab and a* are still at about ±25%

The cylinders above have all a length of L = 510 mm For the laminates

Z0 10 and Z0 70 the initial dent width ab and the initial height lb for a

initial depth wg = 0 1 was additionally calculated for a 50% longer cylin¬
der length, 1 e for L = 765 mm The so achieved lateral dent lengths
differ less than 3 % According to these results, for first estimates of the

dent size and shape considering the ideal cylinder geometry (parameter
Z) the rules in Section 6 6 3 may be used, since the errors due to the

inclusion of material parameters will be more important

With cylinder Z0 70 the influence of the initial dimple amplitude wg

on the initial lateral dimple lengths lb and ab was investigated briefly
also for laminated shells The calculations for Z0 70 and an initial dent

depth Wb/h = 01 yielded a height and a width as listed in Table 6 9,
thus a dent-height/axial-wavelength ratio of Z6/2ZC = 1 04 and a dent-

width/axial-wavelength ratio of ab/2lc = 2 87 Accordingly, for an initial

dent depth wg/Zi = 03 resulted a dent-height/axial-wavelength ratio

of Zg/2ZC = 1 32 and a dent-width/axial-wavelength ratio of ab/2lc =

3 03 The new height is 27 %, the new width 5 % above the value for

Wb/h = 01 The amplitude wg/Zi = 03 corresponds to the marginal
value wl for shallow dents, see Figure 6 182 on page 455 The impact

of the dent depth is more important for this laminated cylinder than for

the analysed isotropic cylinders with the Equation 6 11 introduced in
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Section 6 6 3 for wg/Zi = 0 3 a predicted ratio of Z*/2ZC = 1 14 results

This discrepancy would have justified further calculations with more

cylinders, but due to the vast variations withm the dent dimensions

specified with wg/Zi = 0 1 no further attempts were made for closer

approximations considering the lammated-cylmder material parameters

Laminated Cylinders with Outward Dimples

As for isotropic cylinders m cases of outward dimples the axisymmetric

shapes always cause the lowest buckling load independent of the initial

bulge elevation wg, therefore the calculations on laminated cylinders were

limited to inward dimples That is, there are no analysis results for the

heights and widths of bulges m laminated cylinders to be discussed

6.7.3 Minimum Buckling Loads for

Laminated Cylinders with Single Dimples

Comprising the nonlinear buckling analysis results for laminated cylin¬
ders with a single dent of different initial depth discussed m the previous

sections, mainly the minimum buckling loads Pcr min interested Since

these shells differ m their material parameters but not m the nominal

cylinder dimensions (R, L, h) it was attempted to derive reliable pre¬

dictions of the worst possible buckling resistance of arbitrary laminated

cylinders solely by means of their shell material Section 6 6 4 deals

with the minimum buckling loads Pcr min resulting for isotropic cylin¬
ders which depend solely on the shell geometry In this section finally
the minimum buckling loads which resulted for a series of laminated

cylinders were compiled and their dependencies on laminate stiffness

components observed are discussed

In the lower charts of Figure 6 193 the minimum normalized buck¬

ling loads PcrMiN /Per id found for a few laminated cylinders are plotted

against the ratio of the axial to the circumferential modified14 bending
stiffness D11/D22 (left) and against the term of eccentricity 621 (right)
In the two charts above, the buckling loads Pc„d of the two series of

eccentrically laminated cylinders ZO a and Za 0 of ideal geometry are

displayed with the same abscissae, see Figure 4 16 page 139 Diamonds

denote the minimum loads Pcr m\n/Per id which resulted for cylinders

In fact, the differences between D11/D22 and D11/D22 are negligible
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Figure 6.193: Minimal normalized buckling loads PCrU\n/Pcnd versus the mod¬

ified bending stiffness ratio D11/D22 (left) and versus the eccentricity term 621

(right) for the laminated cylinders ZO.a and Za.O having a single dent of ini¬

tial height lb and width ab. Includes also solutions for an isotropic cylinder

of identical dimensions and the four DEVILS cylinder. Above accordingly the

buckling loads of the cylinders without imperfections PCTid- Gray circlets mark

solutions with axisymmetric buckling.

Za.O, circlets those for cylinders ZO.a. Gray circlets identify solutions

with axisymmetric buckling. The charts also include the minima ob¬

tained for the four DEVILS cylinders and the load which resulted for

the isotropic cylinder with dimensions equal to that of ZO.a and Za.O.

The loads vary between Pcr m\n/Pend = 0.48 and 0.72. High values

resulted for cylinders ZO.a and Za.O with low buckling resistances in

case of perfect geometry and non-axisymmetrical buckling; that is, for

laminates with small |&2i| as well as for maximal and minimal bending
stiffness ratios (a = 0° and 90°). Low values in turn were obtained

for the isotropic and the DEVILS cylinders as well as for Z0.70 with

the maximal buckling load of Pc„d = 117kN in the upper charts for

621 = 0.06 mm and -D11/-D22 = 1-3.

This consideration includes the special cases of a ring-shaped dent ap¬

plied to cylinders with axisymmetric buckling in absence of imperfections

(Z32 or gray circlets) which yielded small buckling resistances Pc„d

without, but also low normalized buckling loads PCrM\n/Pcrid with an
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imperfection. Thus, solutions with ring-shaped buckles ignored, the ob¬

vious fact that the laminates and the associated material parameters

for maximal classical buckling loads also lead to maximal sensitivity to

localized dimple imperfections was confirmed. However, one-to-one rela¬

tionships between material parameters and the minimum buckling loads

could not be found for reliable, quantitative predictions of the factors

-PcrMiN/Perid for arbitrarily laminated cylinders. Material parameters

and stiffness ratios alternative to those used for Figure 6.193 gave not

more significant diagrams. The markers to the load for the DEVILS

and the isotropic cylinders were always apart from those to the cylinders
Za.O and ZO.a, as shown in the chart for the term 621- After all, there

was no indication found that laminated cylinders are more sensitive to

dimples than isotropic cylinders with similar nominal shell geometry and

imperfection shape.

03 H -m-L = 510mm
afo

= 133mm lb=49i

02] ^L = 765 mm a^ = 135mm i^ = 51i

01

00

0 01 02 03 04 05 06 07 08 09 1

Wb/h

Figure 6.194: Normalized buckling loads versus initial dent depth for the cylin¬
der Z0.70 with the reference length L and for the 50 % longer version, both

having a dent of initial width ab and height lb as indicated.

In addition to the important effect of the material parameters, the min¬

imum buckling load Pcr min of a laminated cylinder with a dimple is also

determined by the nominal cylinder dimensions, above all the length L,
and the initial dimple width and height. All laminated cylinders used

for the calculations and described above have the length L = 510 mm.

Figure 6.194 depicts the buckling loads Pcr/Pcrid which resulted for

cylinder Z0.70 having a dent of different initial depth wg/Zi and for a
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cylinder with the identical laminate stacking [0°4,±70°2] but a 50 per¬

cent longer shell (L = 765 mm), likewise having a dent of different depth.
The radius and the wall thickness of both shells are identical, the ini¬

tial lateral dent dimensions to the two cylinder lengths are indicated

in the graph and differ only a little. With a minimum buckling load

of PcrMiN/Pcrjd = 0.47 the longer cylinder yielded an about 0.05 lower

value compared to cylinder with the shorter reference length. Analyses
of cylinders with the laminate of shell Z0.10 and the two lengths, 510 and

765 mm, resulted a similar vertical distance between their lowest buck¬

ling load levels Pcr m\n/Pend- In Section 6.6.1, page 281 ff, especially the

influence of the cylinder length L to the axial buckling resistance and

behaviour of isotropic cylinders was detailed. In case of isotropic shell

material the material stiffness does not affect the normalized buckling

loads, and the other important parameters either remained unvaried or

were adapted to the particular length L. Figure 6.63 on page 282 in¬

cludes the normalized buckling loads which resulted for the isotropic
reference cylinder with L = 510 mm and also for a longer shell of length
L = 765 mm, both having a dent of various depth. The curve progres¬

sions of these isotropic shells resemble those of the laminate cylinders
above with the same two lengths. Furthermore, the vertical distance

which resulted between the minimum loads Pcr m\n/Per id of the isotropic
reference cylinder and that of its 50% longer alternative is about 0.05,
hence of the same size than the value resulting for the laminated shells.

Alike it was observed for the longer isotropic cylinder, in case of the

longer laminated cylinder in Figure 6.194 the vertical distance between

the lower and the upper buckling load, i.e. between thick and thin

lines (Pcr u — Perh)-, is notably smaller than the distance for the shorter

shell. Consequently, the particular local buckling incident with a lat¬

eral displacement of the dimple described in Section 6.6.1 has also to

be expected for laminated cylinders of arbitrary, medium length. How¬

ever, calculations with cylinders of both lengths L = 510 and 765 mm

but with the laminate Z0.10 (lower buckling load PCnd) yielded curve

progressions for the normalized buckling loads similar to the results for

shorter isotropic cylinders without the characteristic associated with the

mentioned local-buckling phenomenon; thus: larger differences between

Per fj and PcrL at higher minima Pcr Min/Perid-

The large variation range of the minimum normalized buckling loads

PcrMiN/Pcrjd of the laminated cylinders ZO.a and Za.O solely due to

different ply angles a in addition to the similar variation range result¬

ing for various cylinder dimensions, as found for isotropic shells, and

comparisons with the results for the DEVILS cylinders led to the aban-
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Figure 6.195: Minimum normalized buckling load versus cylinder geometry

parameter L2/Rh for laminated and isotropic cylinders. Nonlinear buckling

analysis results for shells as indicated. Trend lines according to analysis
results for isotropic shells with either small dents (ab(0.1)) or wider dents

(ab(0.1) +30%). Axisymmetric dimples not considered.

donment of the task to derive a formula for the minimum buckling loads

Per min/Per id versus a suitable material parameter as well as of the cylin¬
der length L, radius R, and wall thickness h. But, according to the

analysis results above, the influences of the cylinder length and of the

initial dimple dimensions to the minimum loads for laminated cylinders
accord with those of the isotropic shells and are hence independent of

the shell material properties. And, ignoring the results with axisymmet¬
ric dimples there is no indication that an arbitrarily laminated cylinder
results in a notably lower minimum load Pcr m\n/Per id than an isotropic

cylinder with identical L, R and h. Consequently, for a prediction of the

minimum axial buckling load PCrMiN/Pcr»d to be expected as the worst

case for a laminated cylinder the rules for isotropic shells may be used

to consider the cylinder length L, radius R, and wall thickness h, see

Section 6.6.4.

Figure 6.195 includes the minimum normalized buckling loads Pcr min/Pct id
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which resulted for the isotropic cylinders and the laminated cylinders
as indicated, all having a single, non-axisymmetric dent. The loads are

plotted against the geometry parameter L2/Rh which equals Batdorf's

parameter Z but without the root term that takes the transverse con¬

traction of the shell material into account. The dents referred to as

"small" have initial circumferential widths ag(O.l) and meridian heights

Zg(O.l) which provoked minimal buckling resistance for an initial dent

depth of wg = 0.1, the other dents have about 30% wider initial widths

and also similarly longer heights, see previous Section 6.7.2. Deep dents

have longer lateral dimensions for smallest buckling resistance than shal¬

low dents; and, in turn, longer initial dent widths cause lower minimum

buckling loads Pcr min /Per id than smaller widths, with the results for

ring-shaped dents as lower bound. The initial widths and heights ag

and Zg found for laminated cylinders are subject of the preceding sec¬

tion. According to the analysis results, again under consideration of the

numerical modelling and the boundary conditions, the minimum normal¬

ized buckling load PCrMiN/Pcr»d of a medium length isotropic cylinder
with the dimensions L, R, and h having a non-axisymmetrical dent of

initial width and height as specified for shallow dents will result about

between the values

1 L \

e
i2 vTfh j for small dents, and

(6.22)
1 L \

V '

e
i2 vin: J for wider dents.

solely with the cylinder dimensions taken into account, see Section 6.6.4.

For a laminated cylinder, again having a non-axisymmetrical dent

of appropriate initial width and height, a minimum buckling load

Per m\n/Per id for the identically dimensioned isotropic cylinder or a value

above will result with nonlinear buckling analyses, depending on the ma¬

terial parameters (i.e. layer angles and stacking) of the shell.

The vast imperfection sensitivity of axially compressed cylinders com¬

pared to cylinders subjected to external pressure or torsion was explained
with the substantially larger number of periodic buckling modes mc and

nc in in the classical theory for isotropic cylinders that are associated

with the same or almost the same buckling load. The classical analysis of

laminated cylinders under axial load in contrast yields also only a single

buckling mode to the lowest buckling load of a shell and a smaller group

of modes associated with slightly higher buckling loads. This might jus¬

tify the assumption that laminated cylinders are rather less imperfection-
sensitive than axially compressed isotropic cylinders of equal size.

PerMIN

±cr id

PerMIN

P

= 1 -0.57(1

= 1 -0.64 (l
cr id
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A single, local axisymmetric dent in a laminated or isotropic cylinder will

cause a significantly lower minimum buckling load Pcr min /Per id than a

non-axisymmetric dent, also for shells which in absence of imperfections
buckle non-axisymmetrically Cylinders, in turn, whose classical buck¬

ling mode is axially symmetrical are relatively insensitive to dents of

initial width ag small compared to the cylinder circumference (e g shell

Z32) This may be used to design cylindrical shells tolerant to shallow,
localized dimple imperfections, whose unintentional presence in a real

shell is more likely than that of ring-shaped dimples of short meridian

height as applied to cylinder Z32 or ZO 45

As already mentioned, the buckling analyses results of the laminated

cylinders did not allow to develop any relationship between minimum

buckling load Pcr min /Per id and a material parameter consistent for all

analysed laminated as well as isotropic cylinders and usable to predict the

PcrMiN /Per id only on basis of the shell material data According to the

results obtained for non-axisymmetric dents, the minimum buckling load

PerMIN /Per id of a laminated cylinder having a dent will not be smaller

than that of a isotropic cylinder with like dimensions having a dent of

similar size Further, the non-axisymmetric dimples reduce the load car¬

rying capacity of axially compressed cylinders-laminated or îsotropic-

less than local ring-shaped dimples of like initial amplitude For safe

shell design this is of importance since by means of the cylinder length,
radius and wall thickness the lowest buckling load to be expected for a

laminated cylinder may therefore be taken from the knock-down factors

and recommendations provided for isotropic cylinders, see Section 6 6 4

But with adequately designed layer stacking sequences and fibre orien¬

tations the sensitivity of a laminated cylinder to localized dimples may

effectively be reduced to save weight In order to utilize this possibility
to dimension light-weight shell structures with larger reduction factors

some calculation effort is needed to find a reasonable compromise be¬

tween shell stiffness and sensitivity to dents and bulges The lowest

buckling load of a laminated cylinder to be designed finally may only
be quantified by means of nonlinear finite element analyses15 consider¬

ing either measured imperfection patterns, if available, or a single dent

which approximates the "worst single dimple" that might occur in real¬

ity Dimensions for such critical single initial dimples were discussed in

Section 6 7 2

Imperfections imply nonlinear analyses as introduced in Section 3 3 and 3 5
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Chapter 7

Conclusions

Finite element analysis results of thin-walled, unstiffened isotropic and

laminated composite cylinders under pure axial compression with initial

dimple imperfections were discussed and pictured with several examples.

By means of nonlinear static buckling and transient dynamic analyses
the critical loads and the particular states of deformation and stress were

calculated for a series of such shells having a single inward or outward

dimple. Parameter studies were conducted for a number of cylinders with

dimples of different initial amplitude wg but fixed initial circumferential

width ag and axial height Zg, see Figure 1.5 on page 18. In addition, for a

few cylinders and for some predefined initial amplitudes the initial axial

height Zg and circumferential width ag of the dimple was specified which

reduced the buckling load the most. Finally, the influence of the relative

position of a second, initially identical inward dimple to the load-carrying

capacity was investigated.

The finite element models of the shells were analysed under consideration

of nonlinear deformations using Lagrangian formulations with geometry

update as incorporated in MARC®. To manage the large number of shells

with different bucking loads and behaviour considered, a nonlinear buck¬

ling analysis with adaptive load step control was developed which utilized

linear eigenvalues, intermediately calculated after a selected number of

small loading steps to determine the stability of pre-buckling states of

stress and deformation. The transient dynamic finite element analyses
were performed with significant inertia damping introduced, using the

implicit single-step Houbolt operator for time integration implemented
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into MARC®.

The laminated composite cylinders considered were already investigated
for a Brite-Euram project which focussed on the correlation of buckling
loads of test cylinders with analytical and numerical predictions. It has

been demonstrated that carefully conducted tests including extremely
careful equalization of load introduction, implementation of actual ra¬

dial geometries and consideration of non-linear deformations yielded an

excellent agreement between analysed and experimental buckling loads.

The finite element analyses of these shells have shown that for such

cylinders buckling loads close to test values may be attained with ac¬

curacies which differ barely from those resulting for other types of FE

analyses.

According to the investigations of the cylinders with perfect geometry,
with measured imperfections, and finally with dimple imperfections con¬

sidered, the following conclusions concerning the finite element modeling
and the analysis methods have been drawn:

i. Considering imperfections in FE analyses nonlinear procedures are

mandatory! However, for perfect cylinders the application of non¬

linear procedures yields hardly notably different results than that

of linear methods. —> Figure 6.177, page 444.

ii. In nonlinear buckling analyses the continuous monitoring of the

lowest eigenvalue throughout the iteration is recommended to un¬

derstand the situation close to buckling. —> Section 6.5.1, page

204.

iii. The modified nonlinear buckling analysis with adaptive load step

control enabled consistent extraction of the buckling load from

the incremental results and minimized the pre-processing effort for

adjustments to each new shell. —> Section 6.5, page 203.

iv. The relatively large time exposure for a nonlinear buckling analysis
was dominated by the eigenvalue calculations at selected load steps.

Thus, further development of fast but still reliable and accurate

eigenvalue extraction methods suitable also for nonlinear buckling

analyses would be beneficial.

v. Additional data extracted by user subroutines developed for post¬

processing, e.g. local curvatures, purpose to help to understand the

behaviour of the investigated cylinder. The effort to generate such

codes appears to be feasible in case of large number of imperfection

parameters, and hence different shells to be analysed.



481

vi. Numerical buckling simulations by means of transient dynamic

analysis are possible but time consuming. The choice of adequate

damping parameters is the most demanding part, as the calcula¬

tion time has to be kept to reasonable limits (CPU time in days).
However, such analyses help to study the buckling as well as the

post-buckling behaviour.

vii. For the transient dynamic analyses the use of an implicit operator

was preferred as for the rather slow compression velocities assumed

the number of time steps needed to guarantee equilibrium is signifi¬

cantly smaller than needed using an explicit operator. The explicit

operators are only stable for very small time steps; thus, their use

can not be recommended as long as the structure is not an object
of a crash analysis which deals with much higher deformation ve¬

locities and shorter process durations.

—> Section 3.5.3, page 112.

viii. The use of arc-length methods without continuous control of the

system matrix to ascertain the axial buckling load of a perfect

cylinder is not advisable, since at the bifurcation points of such

shells the equilibrium paths often intersect with a small acute an¬

gle. The correct path may then be traced beyond buckling only
with very small load steps and arc-lengths. Moreover, any indi¬

cation wether the largest load found in the results correlates with

the effective buckling load is not provided.
—> Figure 6.15, page 214.

ix. FE cylinder models with square bi-linear shell elements should have

a mesh size not wider than O.h^Rh. The use of higher-order shell

elements in nonlinear buckling analyses is not recommended.

—> Section 4.1.3, page 123, and Figure 6.172, page 438.

x. The differences between buckling loads for cylinders under axial

load with clamped or hinged boundary conditions are negligible as

long as the radial as well as the tangential edge displacements are

restrained (i.e. SS3, SS4, CC3, or CC4). This applies for perfect

cylinders and cylinders with distributed imperfections only.
—> Item (xvi) below and Section 4.2.2, page 131.

The positive experience with the FE analyses of cylinders having perfect

geometry or measured imperfections set the stage for the subsequent
calculations of such cylinders but with a single initial parametric dent

or bulge. These dimple imperfections were applied to the cylinders by
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means of user-subroutines, developed for the pre-processing in which the

coordinates of all element nodes of a cylinder model were specified via

mathematic formulas. In general, the shape of the dents or bulges was

predefined with a cosine function in axial and one in circumferential

direction, enabling arbitrary variation of the initial amplitude wg as well

as of the initial circumferential width ag and of the initial axial height Zg

of the dimple. Any local initial stress disturbance in the shell or variation

of the shell-wall thickness, in turn, was not considered.

The influence of the initial dimple size and of the cylinder dimensions on

the instability behaviour was investigated systematically with several pa¬

rameter studies of accordingly established FE models. Such studies were

performed for linear-elastic isotropic cylinders (aluminium) of different

cylinder radius R, length L and wall-thickness h, but also for laminated

composite cylinders (carbon fibre reinforced epoxy). For both shell ma¬

terials the influence of the initial amplitude wg of a dimple with a given
initial width ag and a given initial height Zg on the buckling behaviour

and the buckling loads was analysed. Furthermore, for fixed initial am¬

plitudes the initial width ag and the initial height Zg of the dimple were

searched which give the minimum axial stability for a selected cylinder.

Finally, only for an isotropic reference cylinder having an initial dent the

impact of a second, identical initial dent was investigated for different

relative positions in the cylinder surface.

The FE analyses of the cylinders having a localized initial dimple yielded

particular deformation processes including different local buckling phe¬
nomena which were hardly known from circular monocoque cylinders
with neither perfect geometry nor with imperfections distributed over

the entire shell surface. Nevertheless, by means of systematic variation

of the shell parameters some interrelationships between the results and

the nominal dimensions of the cylinder and the dimple could be derived.

As for the concluding remarks on the numerical analysis methods above,
afterwards compiled the conclusions drawn from the observations of the

shells with single local dents and bulges:

xi. The design recommendations in standards and literature consid¬

ered for thin-walled, unstiffened isotropic cylinders under pure ax¬

ial compression seem to be conservative if the nominal cylinder

length L, radius R, and wall-thickness h are taken into account.

The buckling loads found for a given cylinder having a single dim¬

ple were higher compared to the values provided for the dimples
of amplitude and geometry whose occurrence in the corresponding
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real random imperfection surface cannot be excluded. But the load

reduction factors recommended in the German standard DIN 18800

(usable solely for isotropic shells) could not be reproduced with the

FE analyses as therein the related formulas consider the cylinder

geometry together with the yield stress.

—> Section 6.6.4, page 347.

xii. Axisymmetric, i.e. ring-shaped dimples are more damaging than

non-axisymmetric dimples of like amplitude wg. Only localized in¬

ward dimples of small initial amplitude and particular initial width

ag and height Zg reduce the buckling load as much as ring-shaped
inward dimples of identical, small initial amplitude.
—> Figure 6.110, page 349.

xiii. Localized outward dimples (bulges) reduce the load carrying ca¬

pacity less than localized inward dimples (dents) of like absolute

amplitude |wg|, initial width ag and initial height Zg. The ampli¬
tude of bulges increases only little during cylinder compression,
but above and below the initial bulge inward dimples of increasing

depth are formed instead which cause local loss in stability simi¬

larly to the processes observed for initial dents.

—> Section 6.6.2, page 296.

xiv. According to the deformation behaviour patterns of the cylinder
shells observed, inward dimples may be divided into shallow dents

and deep dents. Shallow dents with an initial amplitude smaller

than a certain marginal depth w^ provoke a distinct local buckling
with a snapping inwards of the dent to form a local, flattened

shell strip of reduced geometric axial stiffness. Deep dents with

an initial amplitude larger than w^, in turn, result in a continuous

flattening of the shell, if not initially flattened, without dynamic

local-buckling incident prior to the total cylinder collapse.
—> Section 6.6.1, page 225; extra: Figs. 6.59 & 6.60, page 276.

xv. A non-axisymmetric, shallow dent of adequate initial width and

height may be as damageing as an evenly distributed imperfection-

pattern that is given by a classical buckling mode of initial ampli¬
tude wmn that is half the initial amplitude wg of the dent with

Wb = 2 wmn. —> Figure 6.120, page 363.

xvi. The difference between uniform edge loads (boundary conditions

SS3 and CC3) and uniform edge displacements (SS4 and CC4)
is important for cylinders having a single deep dimple. For uni¬

form edge loads after local loss in stability of the flattened dimple
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the edge tilts towards the imperfection and the cylinder collapses

directly. With controlled edge displacement, in turn, after local

flattening of the shell within the dimple the cylinder is still sta¬

ble and further compression is possible up to the cylinder collapse.
But the difference between the effects due to a single dimple at half

the cylinder length for clamped cylinder edges (CC4) and those for

hinged boundary conditions (SS4) is negligible.
—> Section 6.6.7, page 426.

xvii. The rate in decrease of the load carrying capacity with increasing
initial amplitude wg is greatest for small amplitudes. The decline is

maximal for shallow dents, whereas for deep dents the local buck¬

ling load, i.e. the load associated with local instability, decreases

only little or even increases with increasing depth wg.

-> Figure 6.22, page 228.

xviii. The cylinder length L exerts important influence on the buckling
loads of cylinders with a single dimple. The minimum buckling
loads of such shells decrease with increasing cylinder length, and

the deformation behaviour pattern prior to collapse of a partially
flattened cylinder shell depends also on the length L. Predictions

of the critical loads for cylinders having a single dimple are more

accurate if referenced to Batdorf's cylinder geometry parameter

Z = L2/(fi/i)Vl — v2 than if only referenced to the nominal cylinder
radius R and wall thickness h. —> Section 6.6.4, page 347.

xix. For large parameter Z the minimum buckling load PcrMiN of

isotropic cylinders with a single, non-axisymmetric dimple con¬

verges to about 35% of the classic buckling load of the perfect

cylinder Pc;. —> Figure 6.115, page 355.

xx. The marginal initial depth w^, i.e. the maximum dent depth for

which distinct local buckling of the dent occurs, varied between

0.25Zi for small Z and 0.58h for Z above 2500. The depth w*

depends also weakly on the initial width ag of the dent.

—> Figure 6.113, page 352.

xxi. For isotropic cylinders the initial axial heights Zg of dents that re¬

duced the buckling load the most for a preselected initial depth

Wb varied between Zg = 2>.AyRh and 4.3\AR/î. The height Zg is

thus close to the wavelength for classical axisymmetric buckling of

a perfect cylinder, 2ZC = 3.46yRh, and increases with increasing
initial depth wg.
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For bulges somewhat smaller initial dimple heights Zg between

3.0%/P/i and 3.6\ARZi were found. The heights Zg for bulges are

only little affected by the dimple amplitude.
The initial widths ag of the "pessimum" dents resulted between 2

to 3 times the initial height Zg. The width ag of a dent increases

faster with increasing initial depth wg and depends also weakly on

the cylinder geometry parameter Z.

The worst bulge is always axisymmetric (ag = oo), independent
from the initial amplitude.
—> Section 6.6.3, page 325.

xxii. Isotropic cylinders of moderate length having a single dimple
of a given normalized initial amplitude wg/Zi which are axially

compressed by a load at a given percentage to the buckling
load P/Pcr yielded identical values and distributions of the rela¬

tive axial-membrane-load deviations, normalized with respect to

the nominal axial compressive membrane force per unit length

Nx = —P/(2ttR), in dependency of the length yRh. Conse¬

quently, having stress analysis results for one cylinder and with

known buckling loads Pcr the axial membrane load distribution

and peak values in any other cylinder of equal dimple amplitude

Wb/h, appropriate dimple dimensions, similar normalized axial

load P/Pcr, and adequate cylinder length L can be predicted.
—> Figure 6.133, page 387.

xxiii. The buckling load of a cylinder with single dent is only little differ¬

ent from that of a cylinder having two dents of identical size. The

buckling loads depend on the relative position of the two dimples
and the resulting interference between the single displacement and

stress fields caused by the dents. Compared with the load for a sin¬

gle deep dent the load for a second was maximal 6 percent smaller

if one dent was arranged directly adjacent to the other around a

single row. —> Section 6.6.6, page 398.

xxiv. Laminated composite cylinders with maximised buckling resistance

tend to be imperfection sensitive in buckling analyses. Laminates

associated with relatively small load-carrying capacity in turn may

be used to design imperfection tolerant shell structures.

—> Section 6.7, page 445.

xxv. For many laminated cylinders of perfect geometry helical buckling

patterns were obtained which could not be described by means of

the bi-harmonic deflection functions usually considered in classical
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analyses. —> Figure 6.183, page 458, and Figure 4.11, page 134.

xxvi. For the laminated cylinders accurate and general predictions of the

minimum buckling loads and of critical dimple dimensions could

not be derived on the basis of the cylinder geometry alone as the

buckling behaviour patterns of such shells depend strongly on the

laminate stacking. However, there was no indication that any lam¬

inated cylinder with any non-axisymmetric dimple will result in a

smaller buckling load than an isotropic cylinder of identical radius,

length and wall thickness also having a non-axisymmetric dimple.
- Fig. 6.190, p. 467, Fig. 6.192, p. 469, and Fig. 6.195, p. 475.

The subsequent answers to the questions of the Introduction serve to

recap the prime conclusions:

• Are there single, localized initial dimples which reduce the nominal

axial buckling load of an unstiffened circular cylinder more than im¬

perfections derived from classical buckling patterns for ideal shells?

=$ No, but a shallow dent of initial depth wg and adequate initial

width and height may he as damagemg as a classical-bucklmg-mode

affine imperfection pattern of initial amplitude wmn = wg/2.

• Is there a worst geometry of such a single dimple imperfection?
That is, are there initial aspect ratios of the dimple that damage
the most?

=>• Yes, for isotropic cylinders the initial axial height Zg of the worst

dents is close to the wavelength for classical axisymmetric buckling

of ideal cyhnders, 2lc = ZA&\/Rh. The initial widths ag of the

"pessimum" dents are between & to 3 times the initial height. The

worst bulge is always axisymmetric.
For laminated composite cylinders such "pessimum" dimples exist

as well; but, if not axisymmetric their initial shape can only be

estimated roughly on the basis of the nominal cylinder geometry as

well as the material parameters.

• Is the effect of inward dimples (dents) on the axial cylinder stability
the same as of outward dimples (bulges)?

=> No, localized bulges are less damaging than localized dents of same

initial width ab, height lb, and absolute amplitude |wg|.
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• Is the instability behaviour the same for isotropic shells as for

laminated composite shells (anisotropic) having such a localized

dimple imperfection?

=£ No, for laminates whose classical buckling pattern is axisymmetric

the sensitivity to localized, non-axisymmetric dimples is small. A

single localized dimple reduces the axial stability of a laminated

cylinder maximal as much as the axial stability of an isotropic

cylinder of same nominal L, R, and h. And: yes, the effects of
localized dimples in laminated cylinders on the deformation process

is similar to those for isotropic cylinders (e.g. local buckling due

to local shell flattening).

• Is there an important interaction between two initial dimples?

=> No, the further reduction of the axial cylinder stability caused by
a second dent of identical size to the first one is small. Compared
with the load for a single deep dent the load for a second was max¬

imal 6 percent smaller if one dent was arranged directly adjacent
to the other.

To make allowance for the extraordinary sensitivity to imperfections of

unstiffened cylinders under axial load, in many commercial FE programs

procedures have been implemented with which after a linear buckling

analysis scaled buckling modes can be added to the initial shell geom¬

etry for subsequent nonlinear analyses. However, for save shell design
the pattern which yields the minimum buckling load has to be consid¬

ered, though in general the wave numbers as well as the amplitudes of

the buckling modes which contribute to this pattern are not known a

priori. Best analysis results may be achieved introducing measured im¬

perfections, but these are available only with substantial effort or are

unavailable for structures that exist only virtually in design. The the¬

sis on hand deals with localized dimples which were initially added to

otherwise perfect cylinders. With this alternative notional type of im¬

perfection hopefully a contribution to the solution of the difficulties in

specifying suitable imperfection patterns for shells could be made. The

application of the "worst dimple", whose possible appearance under op¬

eration condition may not be excluded, could provide a basis for a more

realistic critical scenario already in the design of a structure. In addition,

according to the analysis results discussed herein, for isotropic cylinders
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the initial shape and size of a single dimple that minimizes the axial sta¬

bility the most is given by the nominal cylinder dimensions alone. That

is, the critical initial aspect ratio and amplitude of the single dent to be

applied can easily be specified prior to a buckling analysis as they follow

solely from the nominal cylinder radius, length and wall thickness. For

laminated cylinders, however, a few numerical analyses will be unavoid¬

able for the specification of the critical dimple geometry; anyway, after

a linear analysis of the ideal shell, e.g., at least good initial estimates of

the appropriate aspect ratio and amplitude should be possible.

In leaflets about commercial FE programs sometimes the ease of use of

linear buckling analyses is pointed out, although in practice for cylindri¬
cal shells this method can be used only for a first estimate of the critical

load level, in order to get appropriate parameter settings for subsequent
nonlinear buckling analyses. With nonlinear buckling and transient dy¬
namic analyses convincing results can be obtained, but they are time

consuming and hence quite expensive. Using these nonlinear FE meth¬

ods the analyst is confronted with several input parameters (e.g. load

step sizes, damping) which are difficult to specify a priori. Nevertheless,
their application is possible and the effort appears manageable. In ad¬

dition, nonlinear FE analysis basically requires the choice of the right

type of finite elements, mesh size, boundary conditions, loading incre¬

mentation, material parameters, and so on. Hence, correct introduction

of adequate imperfections provided, nonlinear buckling analyses of cylin¬
drical shells are not more elaborate than other nonlinear analyses as for

contact or thermal-mechanical coupled problems, for instance. Finally,

although the time exposure of numerical buckling test simulations is

still discouraging, presuming that the boost of the CPU rates proceeds
as hitherto, in the not so far future the transient dynamic FE analysis
method might become a widely used tool for buckling problems, albeit

as a complement to static analyses.

The dissertation covered the application of single dent and bulges in or¬

der to initially weaken thin-walled, unstiffened circular cylinders. How¬

ever, the usability of such localized dimple imperfections for buckling

analyses of other, more commonly used shell structures (e.g. stiffened

panels) has not been investigated. Furthermore, the study was limited

to ideal, linear elastic shell material. Hence, further efforts could aim

in the consideration of yielding, laminate failure, or rupture throughout
the simulation of buckling processes of cylindrical shells, as well as of

other shell structures.
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Appendix A

Nonlinear Continuum

Mechanics

Nonlinearity in mechanics of deformable bodies is either physical or ge¬

ometrical; that is, the theory is concerned either with the stress-strain

relations or with expressions which represent the influence of rotations

of structural elements on the behaviour of the structure. In this thesis

ideal linear elasticity is assumed for the stress-strain relations; hence,
the nonlinearity is purely geometrical [18].

A.l Deformation and Rotation

The description of macroscopic deformations of a body requires beneath

the knowledge of its current position also information about its initial

position. A particle 0P of the initial configuration 0B of an arbitrary

body, relative to the origin of a orthogonal Cartesian coordinate system

in a three dimensional Euclidean space, may be identified by the position
vector

X = 0xiei + 0x2e2 +0^363 (A.l)

where 0xt: 0^1, 0^2, 0^3 are LAGRANGIAN or material coordinates and

et are unit vectors along the 0Xj-axes (Fig. A.l). The configuration 0B

is supposed to be unloaded and undeformed. At a certain time t the

body takes the current configuration B, i.e. the particle 0P is moved
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Figure A.l: Particle kinematics

into the position P which can be described by the vector

x = xiei + x2e2 + x3e3 (A.2)

where xt: x\, X2, x3 are Eulerian or spatial coordinates.

The motion of the particle may be specified in two different ways: in

a Lagrangian or material description all behaviour is expressed with

respect to the initial particle coordinates X, whereas in a Eulerian or

spatial system all description is expressed with respect to the current

coordinates x of the particle:

x = x(X,t) ^=> X = X(x,t) (A.3)

In other words, in the material system a particle is constantly labelled

with coordinates X, whereas in a spatial system the coordinates of a

particle are continuously changing when it moves from one spatial coor¬

dinate to another. The material system is more common in structural

analysis, in contrast to the spatial system which is usually applied in

fluid mechanics.

A deformation of a body is always a comparison of two configurations.
The displacement vector u may be defined by the position vector of

particle P relative to 0P (Fig. A.l):

u = u(X,t) =u(x,t) = x-X (A.4)
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For later use and a distinction between rigid body motions and deforma¬

tions the distance of two neighbouring particles of the body is defined by
dX in the initial configuration 0B and dx in the current configuration
B. With (A.3) the relation between these two "fibre" lengths may be

described as

dx = F-dX (A.5)

with
dx

dX
(A.6)

The so-called deformation gradient tensor F is the fundamental mea¬

surement describing deformations of a solid. The second-order tensor

written out in matrix form is

[Fi3] =

dxi

doxt

dxi

dox2

dxi

dox3

dx2

doxt

dx2

dox2

dx2

dox3

dx3

doxt

dx3

dox2

dx3

dox3

With x = X + u(X,t) and (A.6) the deformation gradient may alter¬

natively be expressed in terms of displacements u:

du

dX
(A.7)

In general F is asymmetric. According to the polar decomposition the¬

orem F may be multiplicatively decomposed into a orthogonal rotation

tensor R and a symmetric stretch tensor U:

F = R U (A.8)

Thus, the deformation gradient tensor contains not only information on

stretch but also on rotation.

With an elemental volume 0dV prior to deformation and such a volume

dV after deformation the Jacobian determinant is defined by

J
dV

0dV
det F (A.9)

This scalar measure corresponds to the third invariant of F and has to

be positive, otherwise the corresponding deformation is physically not
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possible Mass conservation during a deformation of a solid demands

that

p dV = 0p0dV

Thus, it is additionally

J=^ (A 10)
P

A.2 Strain Measures

As already mentioned, the deformation gradient tensor includes also in¬

formation on rigid body motions Thus, F does not vanish for rigid body
movements of a body which may consist of a rotation and a translation

and can therefore not be used as an objective strain measure

To define an objective strain measure the change of the distance between

two particles shall be examined With (A 5) the square of the length in

the initial configuration is defined by dX dX and dxT dx in the

current state, respectively Using the right Cauchy-Green tensor c

with -1

c = FT F = U2 (All)

the squared current "fibre" length may be expressed in terms of the

initial lengths dX, i e

dxT dx = dXT c dX (A 12)

The difference between these lengths (dxT dx — dX dX) may then

be written as

dXT c dX-dXT dX = dXT (c - I) dX = dXT (2E) dX (A 13)

The right side of (A 13) together with (All) finally yields the following
definition of the GREEN-LAGRANGE strain tensor E

° = \ F -I (A 14)

1ln literature often referred to as C The "unorthodox" notation was chosen to

prevent possible confusions with the constitutive tensor
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With expression (A.7) for F the symmetric Green-Lagrange strain

tensor may be expressed in terms of displacements. In index notation

this second-order tensor consequently is given by

3
2

dt dt

OqX-i o0xt

y-~r duk duk

O0Xt OqXj
(A.15)

Note the presence of nonlinear terms. The components EtJ are defined

with respect to the undeformed configuration.

The tensor E is an objective strain measure: it vanishes if the body in

the initial configuration 0B is subjected to a pure translation as well as

in case of pure rotation.

Similar to the derivation above a spatial "counterpart" to the material

strains E may be defined. The difference between the "fibre" lengths
now expressed with respect to the spatial vector dx, yields the EULARIAN

or ÄLMANSI strain tensor e, which is given by

e=-\l-(F

2
L V

-l\T F-1] (A.16)

Again, the symmetric strain tensor alternatively expressed in terms of

displacements and in index notation:

1 dui

<9x, dx,.
E

duk duk

dx, <9x,
(A.17)

The Almansi strain tensor of second order is an objective measure as

well, i.e. e will remain unaffected by rigid body motions.

If the displacement gradients (du/dx) are small then the nonlinear term

in (A.17) may be neglected. What remains is the familiar linear strain

tensor e, expressed as

dui

<9x,

di

da
(A.18)

It has to be emphasized that this strain measure is only appropriate
if both the strains and the rotations are small. Viz, a body subjected
to pure rotation cause components etJ which become nonzero as the

rotation increases.
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0t — o • 0n

Z3,

el.
Ê2

Figure A.2: Material and spatial stresses

A.3 Stresses

Be P an arbitrary point inside a homogeneous body in its deformed con¬

figuration B, in which external forces induce internal forces. Further¬

more, AA is defined by the surface element of the slice plane passing P

with n as the outward unit normal to AA at P. With Ap as the internal

force fraction across the area AA the stress vector t is defined by the

following limes

t= lim -4 (A.19)
AA^O AA

The stress vector represents a force per unit area of the deformed surface.

t is invariant regarding the selection of coordinates.

The CAUCHY stress tensor cr is defined by

t = cr n (A.20)

The spatial Cauchy stress tensor includes the familiar "true stresses".

According to the Cauchy theorem, a is the symmetric second-order

tensor which transforms the field of the normal vector n to the stress

vector t acting on dA (Fig. A.2).

To define further useful stress tensors the spatial stress vector t may be

"pulled back" from the deformed state to the initial basis (Fig. A.2)
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with

dA
0t= 1

0dA

Since 0t describes the actual force upon the undeformed area 0dA it is

named pseudo stress vector. The material stress tensor related to 0t is

called the nominal or 1st PlOLA-KlRCHHOFF stress tensor P:

0t = P 0n

Accordingly, by a purely mathematical transformation the 2nd PlOLA-

KlRCHHOFF stress tensor S may be introduced as

0t = S0n (A.21)

with (see Fig. A.2)

-

^ 1
dA

„
-,

„t = F •„* resp. 0t = F •*

0dA

The 2nd PlOLA-KlRCHHOFF stress gives the transformed current force

per unit undeformed area. Despite its absence of a real physical meaning,
the 2nd PlOLA-KlRCHHOFF stress tensor S is widely used, especially in

a Total Lagrangian nonlinear analysis.

One reason for the popularity of 2nd PlOLA-KlRCHHOFF stress tensor S

might be its invariance to rigid body motions; in contrast to the Cauchy

stress tensor the components of the 2nd PlOLA-KlRCHHOFF stress tensor

does not change due to pure rotations. In addition, contrary to the first

PlOLA-KlRCHHOFF stress tensor P, the second, S, is symmetric.

Despite the above-mentioned advantages of the 2nd PlOLA-KlRCHHOFF

stresses, at the end of any analysis "true" Cauchy stresses have to be

calculated. For this purpose, with

0t = F_1 • t = F_1 a n = J F_1 • cr F~T 0n (A.22)

the following relations between cr and S may be deduced:

S = JF-1 cr-F-T

a = J-1 F S FT
(A.23)
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A.4 The Principle of Virtual Displacements

Based on Newton's second low the equation of motions for an arbitrary
deformable body can be expressed as

[ tdA+ [ bdV= f püdV (A.24)
Ja Jv Jv

where t is the surface traction vector, b the body force vector, and ü

the acceleration vector. The explanations in this section are confined to

time independend measures. Thus, the inertia term at the right side is

neglected in the subsequent equations. In the remaining translational

equilibrium equation the traction t may be replaced by Cauchy stresses

according to (A.20). Moreover, by applying the divergence theorem the

surface integral may be transformed into a volume integral, consequently

[11, 31, 46]:

[ cr-ndA+ f bdV = f div cr dV + f bdV = 0 (A.25)
Ja Jv Jv Jv

Since equilibrium has to apply to the whole body, the integral over the

arbitrary volume V must vanish and the spatial differential equilibrium

equation finally may be expressed as

r = div cr + b = 0 (A.26)

with r introduced as residual force vector.

The partial differential equation system in the form of (A.26) is not suit¬

able for the construction of a numerical system of equations! Therefore,
the differential equation is transformed into an energy expression. The

virtual work formulation of equilibrium delivers a scalar value with which

it is easier to handle if, for numeric reasons, equilibrium may only be

reached approximatively.

Consider vector r to be the forces which act on an arbitrary body. This

body is displaced by an imaginary or virtual displacement Su. According
to (A.4) an infinitesimal virtual displacement field may be defined by

Su = Su(X) = Su(x, t) (A.27)

Note that virtual displacements are independent of real forces of the real

deformation process, but should not violate boundary conditions.
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The virtual work is defined by the scalar product

SW = f r-5udV = 0 (A.28)
Jv

Thus, if SW = 0 for any kinematically permitted Su, the stress state

satisfies the equilibrium conditions. Now, by replacing r in (A.28) the

differential equilibrium equation (A.26) is transformed into a weak for¬

mulation:

SW

With the chain rule follows that

/ [div a + b] Su dV = 0 (A.29)
Jv

div [cr Su] = [div cr] Su + cr : ( ——
\ dx

where two dots ":" denote a double scalar product of two second-order

tensors2 (double contraction).
Thus, it is

/ [div cr] Su dV = I div [cr Su] — cr : I —— ) dV ,
or

= a -n-SudA- a : [ —— ) dV

using the divergence theorem.

The first term may be transformed according to the definition of

Cauchy stress. The virtual work formulation, again supplemented with

the body force, consequently becomes

SW = f t-5udAa- [ a: (-^-\ dV + [ b-5udV = 0 (A.30)

As mentioned in Section A.l the deformation gradient F may be de¬

composed into a symmetric stretch tensor and a antisymmetric rotation

tensor (A.8). Similarly, the virtual deformation gradient (dSu/dx) is

decomposed into a symmetric virtual strain tensor Se and a antisym¬
metric virtual rotation tensor 6ui. Since a contraction (": -product") of

a antisymmetric tensor with a symmetric one (the stress tensor) is zero,

(A.30) can be rewritten in the familiar form

SW = J cr-.SedV - J b-SudV -
f t-5udAa=0 (A.31)

Jv Jv JA„

24:B = EEAA
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The first integral is the virtual strain energy SU and the last two terms

give the virtual external work 5Wex. Thus, the principle of virtual dis¬

placements states briefly that equilibrium applies if

SW = SU - 5Wex = 0 (A.32)

For numerical procedures, as presented in the sections to come, it is

found to be unfortunate that the weak variational equilibrium equation
above is expressed in terms of integrals over an unknown and varying
volume V and surface area Aa. Therefore, the virtual work expres¬

sion is transformed in terms of a known, e.g. undeformed configuration.
For constant volume and surface area or small changes the definition in

(A.28) becomes:

SW = f 0r-Su 0dV = 0 with 0r = J r (A.33)
J0v

The energies have to be the same regardless of the state the integrals
are taken. Thus, in order to make SU invariant, different virtual strain

measures require respective stresses to be paired with, i.e. the stress and

virtual strain measures have to be work conjugate. Ultimately, it applies

[31]

[ cr:5edV= [ S : SE0dV (A.34)
Jv J0v

with the 2nd PlOLA-KlRCHHOFF stress tensor S and the virtual Green-

Lagrange strain tensor SE, according to the measures presented in Sec¬

tion A.3 and A.2 respectively. Finally, the entire virtual work expression
with respect to the undeformed, initial configuration can be completed
and becomes

SW = f S:SE0dV-[ 0b-Su0dV-[ 0t Su0dAa = 0 (A.35)
JoV J0V JoAa

with 0b = Jb and 0t = (dA/0dA) t. In contrast to the differential equa¬

tion system (A.26), there are no problems to use the undeformed state as

reference. In addition, during a deformation process, the reference con¬

figuration can be any one of the previous, thus known equilibrium states

and not necessarily the original, unloaded state. This is used in the

incremental updated Lagrange procedure for numerical simulations.
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stress stress yielding

linear elastic

strain

elastic-plastic

strain strain

Figure A.3: Typical material behaviour patterns.

TIME

A.5 Constitutive Equations

To complete the collection of the "ingredients" necessary for structural

analyses and to construct numerical procedures, the relations between

stresses and strains are to be arranged which are given by the material

behaviour. Since the present work is restricted to geometrically non¬

linear behaviour of thin-walled structures, the procedures of which the

derivations are described consider possible large displacements and rota¬

tions but small strains. Therefore, material nonlinearities, like yielding
or creep (see Figure A.3), are not taken into account herein; and from

a description of nonlinear elasticity models, plasticity models or creep

laws could be refrained.

The used materials are assumed to be linear elastic. The HOOKEAN law

for elastic material describes the relationship between the 2nd PlOLA-

KlRCHHOFF stress tensor 5,, and the Green-Lagrange strain tensor

Eki by the forth-order tensor C,

ijkl •

\j —

/ J
Cijki L]. resp. S=C :E (A.36)

k,i

Since both the strain tensor and the stress tensor are invariant to ro¬

tations only the current strain of the material affects the components

of the stress tensor. Thus, as long as the strains are small, the general
relation for elastic materials above may be used also for geometrically
nonlinear problems.

In (A.36) the HOOKEAN law is specified with respect to the initial config¬
uration of an arbitrary deformable body. For the case of linear elasticity
it is assumed that the strains are small and that the material tensor C

remains constant during the deformation process. Therefore, the relation

can also be expressed in terms of the current state by cr = C : e with the

Cauchy stress tensor cr and the Almansi strain tensor e. For larger
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strains the constitutive tensor has to be "pushed forward", i.e. trans¬

formed by the adequate use of the transformation gradient [14, 17]. But

in case of infinitesimal small displacements the stresses are connected

with the linear strains e in the form

C (A.37)

This relation, applicable in linear continuum mechanics, is probably the

best know version of the the HOOKEAN material law.

Due to the symmetry in S and E the number of independent coefficients

Cijki reduces from 81 to 36. Furthermore, the rule of C as derivative of

the strain energy density function gives that

a
ij kl cklij

which yields a further reduction to 21 constants.

The constitutive relation of the general linear elastic, anisotropic mate¬

rial in (A.36) can also be expressed in matrix form:

f ^i 1
5*22

5*33

5*23

5*13

5*12

>

Cii C\2 Cl3 C14 Cl5 Cl6

c*21 C21 C*23 C*24 C25 C*26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C%\ C*62 C63 C*64 ^65 ^66

F11

E11

E33

2E23

2Eis

2E\2

> (A.38)

or in common abbreviated form:

{Sij} - C{Eij} (A.39)

with the symmetric 6x6 material matrix C and the stresses {Sl3} and

strains {EtJ} in vector form.

Special materials have reduced forms of the relation above. Orthotropic
materials for instance have three planes of symmetry which reduces the

number of material coefficients to nine. The flexibility matrix C
,

i.e.

the inverse of the elastic matrix C, for orthotropic materials is given by

{Eij} - C {Sij} (A.40)
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c-x =

Ei

"12

Ei

Ei

"21

E2

J_
E2

"23

E2

"31

E3

"32

E3

J_
E3

0 0

0 0

0 0

1
0

0

(A.41)

with the material constants relative to the symmetry planes, which are

the Young's moduli Ei, E2, and E3, the shear moduli G23, G13, and

G12, as well as the PoiSSON ratios

E.

Ë,,

33

Furthermore, due to the symmetry of C and C it applies:

E„, En

and thus only three of the six PoiSSON's ratios have to be specified.

Transversally isotropic materials need only five constants in the matri¬

ces C and C for their constitutive description, because C55 = Cqg and

C44 = \(C\\ — C12) [31]. A single ply of a laminated composite shell for

instance is usually considered to be transversally isotropic and homoge¬
nous. In this case, the material constants are given with respect to local

coordinate systems which are given by the particular fiber orientation of

the ply.

Isotropic materials finally may be specified by only two independent

constants, since in this special case every plane is a plane of symmetry

and every axis an axis of symmetry [31]. Alternatively to (A.36) the

according constitutive relation is often expressed in the form

Jij — 2 G Eij A Si3 2_^ Ekk (A.42)

with the Lamé constant A and the shear modulus G. The Young's

modulus E and the PoiSSON's ratio v are related to these two coefficients

by

G(3A + 2G) .

A
E =

G + A
and

2(G + A)
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respectively.

In analysis of thin-walled structures the special case of plane stress arise,
where the stress orthogonal to the middle surface of a plate or shell is

approximately zero such that S*33 « 0 [31]. Infinitesimal changes in the

wall thickness are therefore given by the two in-plane stresses, viz:

F

33

^13
c ,

^23 „

--Ä11 +
—b22 (A.43)

for orthotropic materials. Furthermore, for thin laminated composite
shells it is assumed that the shear strains F23 and Fi3 as well as the

shear stresses S23 and 513 may be neglected (KlRCHHOFF hypothesis; see

Section B). Hence, for plane stress and transversally isotropic material

the constitutive equations (A.41) and (A.38) are further reduced to

"21

E2
0

"12 1
Q

Ei E2

Gi

1-1 1

(A.44)

0 0

for the strain-stress relation {Fjj} = C~l{Sij}, and by inversion

1-"12"21

"21 El

1-"12"21

0

"12 E2

1-"12"21

E2

1-"12"21

0

0

0

G12

(A.45)

for the stress-strain relation {Sl3} = Q{Et:J}. The material matrix

Q is the reduced elastic matrix for plane stress and thin, transversally

isotropic plates or shells, i.e. a reduced version of the elastic matrix C.

Figure A.4: Positive rotation from the structure reference coordinates (x,y) to

the local ply coordinates (1, 2)

As aforementioned, the material constants of laminated shells are given
with respect to local ply coordinate systems, which are given by the
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particuclar fibre orientation, i.e. the reduced material stiffnesses Qfc of

a single ply are specified in terms of the particular principle axes (1,2).
In order to describe the contribution of the plies to the stiffness of the

laminate consistently, in the classical lamination theory the constants

of each ply are transformed form the ply coordinate system (1,2) to

the reference coordinate system of the laminate (x,y), see Figure A.4.

This transformation consists of a rotation about the shell normal, which

with the transformation matrix T may be written in form of a matrix

manipulation; first for the stresses:

Sx

yy

Sxx 1 T cos2 O sin2 O 2 sin O cos O ( S\\

sin26 cos26 -2 sinO cosO I S22
- sinO cos O sinO cos e cos2 e — sin2 e [ S\2

(A.46)
Since it may be assumed that the in-plane deformations of laminated

shells remain small, in general the constitutive equations are formulated

with components of the linear strain tensor and Cauchy stress tensor.

For the transformation of the strains the transformation matrix T in

(A.46) has possibly to be modified to consider that the common shearing
strains 7^ correspond to the double shear distortions, 2EtJ [34]. With

the rotation matrix Te for the strains (in present case identical with T)
the transformation of the stress-strain relation may finally be written in

the following form:

bx

Sy
Sx

r'QT£
EXi
F

^yi

2EX

(A.47)

Hence, the transformed reduced stiffness matrix for single ply is given

by

Q = T_1QTe (A.48)

Finally, the constitutive equation (A.46) may be rewritten in short form

cr = Qe (A.49)

In the classical lamination theory this equation is used to determine the

stress-strain relation for each layer in laminated composite.
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Appendix B

Bending of Plates

Plates are structure elements where one of the dimensions, the plate

thickness, is considerable smaller than the other two. In three-

dimensional thin-walled structures the plates may support both in-plane
and out-of-plane loading. Since plates are thin, also when the structure

are three-dimensional the local behaviour is two-dimensional under plane
stress. Furthermore, the plate thickness h is assumed to be constant.

The comments on plates herein are restricted to Cartesian coordinates

with the axes x and y lying in the middle surface of the undeformed

structure. The z-axis is perpendicular to the middle surface. The coor¬

dinates x, y and z correspond to the spatial coordinates x\,X2, and x3,

respectively, defined in Appendix A.l. Accordingly, the displacement

components u\, «2, and w3 of the displacements vector u are assigned
to u, v and w, respectively.

In order to emphasize the essentials, primarily the deflections and the

strains are assumed to remain small. Therefore and since the plate is

thin the displacements may approximatively be described by

u(x, y, z) « u(x, y) + z(f>x (x, y)

v(x,y,z) Kiv(x,y)+z4>y(x,y) (B.l)

w(x,y,z) ^w(x,y)

Thus, the deformation is controlled by the in-plane displacements u(x, y)
and v(x,y), the out-of-plane displacement w(x,y) and the rotations of

the middle surface <f>x(x,y) and <f>y (x, y). The middle surface of the plate
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i U := zf>x

<>--•
~

*

_ ^^

w </>2^\/

c rz ( -

) / X

Figure B.l: Displacement in x direction due to rotation <j>x

is specified at z = 0. The rotations <f>x and <f>y describe the slope of the

middle surface normal to its initial direction (see Fig. B.l).

In accordance with the definition of the linear Almansi strain tensor e

(Eq. A.18), the normal strains eu and the shear strains %0 relating to

the deformations above are given by

£xx -

du dû, d(px

dx dx dx

Ixy =

du dv (dû dv

dy dx \ dy dx

Ixz =

du dw dw
-

"7 1 7 Vx H 7 -,

dz dx dx

Jv d(bv
p

— — |_ 7
——M.

+ z

dv d

dy dy

df>x d(f>y

dy dx

dv dw

dy

(B.2)

lyz =
dz

dw

Ty=^ +
-y

For thin plates the stress in z-direction may be neglected. Thus, a

state of plane stress with a (Cauchy) stress azz = 0 is assumed. The

HOOKEAN law (see Appendix A.5) for plane stress and isotropic mate¬

rials connects the normal stresses an with the strains eM by

E
"

\&xx ~T V £yy ) )

E
^ XX -, o

1 — V1

The shear stresses rtJ are specified by

7~xy ^^fxy -, Tyz ^ lyz

'yy \_v2v yy
(£yy+V£xx) (B.3)

rzx = G~fzx (B.4)

where E stands for the Young modulus, G for the shear modulus and

v for the PoiSSON's ratio. Thereby it is additionally assumed that the

plate thickness does not change due to deformation, thus: ezz = 0.
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With the strain definitions in (B.2) the stresses may be written as

E

1-z/2

E

du dv\ {d(f)x
dx dy J \ dx

dv

dy

du

1-z/2

'dû d

d(py

dy

d(px(df)y
dx J \ dy dx

G

G

_v_
\

z
fdjfx_ vdf>y

dy dx J \ dy dx

dw

dx
G

dw

(B.5)

B.l Pure bending of plates

To derivate the equilibrium equations a plate element with all acting
lateral loads and stress resultants is considered as shown in Figure B.2.

For the stress resultants the integrations are conducted over the plate

Mv +^dy

Figure B.2: Segment of a plate

thickness, thus, the dimensions are force per length and moment per

length. In the classical linear plate theory for small displacements in-

plane loads are ignored or treated separately as a membrane problem,

consequently in the strain and stress expressions in (B.2) and (B.5) the

terms with in-plane displacements u or v are omitted. The remaining
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resultants are

Shearing forces: Qx

/h/2

/ txz dz
,

J-h/2
Qy —

/h/2

/ TyZ dZ

l-h/2

Bending moments: Mx =

,-h/2

\ oxx z dz
,

J -h/2

,-h/2

My =

,-h/2

\ ayy z dz
J-h/2

Torsional moments: Mxy = — I rxy z dz = —Myx
h/2

(B.6)

The balance of forces in z-direction yields

-Pz (B.7)
dQx dQy
dx dy

Accordingly, the balance of moments about the x and the y axis gives

V CB 8)

dM]L_dMx]L=Q
K '

dy dx v

By inserting Qx and Qy from (B.8) into (B.7) and with Mxy = —Myx
the following equilibrium equation may be determined [76] :

d2Mx d2Mxy d2My
_

dx2 dxdy dy2

B.l.l Mindlin-Reissner plate theory

The stress expressions (B.5) inserted into the formulas for the stress re¬

sultants in (B.6) special elasticity relations may be defined. For instance

(neglecting the in-plane strains):

Mx = / axx z dz = [ —-^ + v—r*- ) z2 dz

-h/2
1-v2 \dx dy J J_h/2

'

Eh3 (d4>x dfr

v
v

12(1 — ^2) V dx dy

(B.10)
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The term1

D =

E

1-v2

h/2

h/2

Z dz =
Eh3

12(1 -v2)
(Bll)

is called the flexural rigidity of the plate [76] or plate bending stiffness

[31] Accordingly, the elasticity relations of all stress resultants may be

obtained

Qx=Gh

Mr = D

4>x -

d(px

dx

dw

dx

d<t>y

dy

df>,

Qy = Gh

My=D

dw

v
+

^y~.
d4>y

| ,

dy

d(px

"."f^ +^X1-"

(B12)

With the three equilibrium equations (B 7) and (B 8) and the five elas¬

ticity relations in (B 12) eight equations are available to specify the eight

unknown, i e the five stress resultants and the three kinematic measures

w, 4>x and 4>y The plate theory based hereunto is called after E Reiss-

NER and R D MlNDLlN [43] Important is that this theory considers

also the transverse shear elasticity of "thick" or sandwich plates

B.1.2 Kirchhoff thin-plate theory

Since the partial differential equations including the transverse shear

influence is difficult to solve for "thin" plates additional simplifications
are done by assuming that the shear stiffness is infinite Because the

transverse forces remain finite, with the first row of (B 12) it follows

that

lx 4>x
dw

dx
0 lyz

dw
(B13)

Consequently, a vector perpendicular to the undeformed middle surface

is also perpendicular to the deformed middle surface The corresponding

theory of "thin", shear stiff plates traces back to G KlRCHHOFF [43]

According to (B 13) the rotations <f>x and <f>y are given by <f>x = —dw/dx
and 4>y = —dw/dy respectively Hence, in accordance to (B 1) the dis-

1To simplify matters the plate material is assumed to be homogeneous and

isotropic
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placements for the flexural motion may be approximated as

u(x,y,z) « -z—(x,y)
, v(x,y,z) k, -z—(x,y)

,

dx dy (B.14)

w(x,y,z) ^w(x,y)

Assuming that the strains of the middle surface are negligibly small the

linear strains corresponding to small deflections are given by

du d2w dv d2w

dx dx2
' vv

dy dy2
'

du dv d2w

^=d^+dx-=-Z2dx^> 7" = 0' 7-=°

assuming that w = w. These strains inserted into the HOOKEAN law for

plane stress yields, similarly to (B.5), the following stress expressions:

Ez f d2w d2w\ Ez f d2w d2w
'

v——-
, cr,,,, = -—- + v

1 — v2 \ dx2 dy2 J 1 — v2 \ dy2 dx2

2wd2„
Txy- 2Gzdxdy

(B.16)

The elasticity relations of the stress resultants in (B.6) may also be

modified for the case of pure plate bending. The moments written in

terms of curvatures are

^

1' d2w d2w\
,, ^

1' d2w d2w

Mxy = D(l-„)^- = -Myx

(B.17)

For the transverse forces Qx and Qy there is no elasticity relation in the

KlRCHHOFF thin plate theory. They are ascertainable by the use of the

equilibrium equations (B.8).

With the equilibrium equation (B.9) and the moments in (B.17) above

four equations are available to specify the the four unknown (the de¬

flection w and three moments) [43]. The expressions (B.17) inserted

into (B.9) finally yields the common KlRCHHOFF differential equation
for thin, flat plates and small deformations

dAw dAw dAw pz

~dx~A+ dx2dy2 +lhrr
=

~D ( '
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B.2 Combination of bending and in-plane

loading

In the plate theories presented above it is assumed that the plates are

bent by lateral loads and that the deflections are so small that any strain

of the middle surface of the plate may be neglected The middle surface

is considered as the neutral plane of the plate If in addition to the lateral

loads m-plane forces are acting at the middle surface, then stretching of

the middle surface is provoked and the corresponding stresses are to be

considered [76]

Ignoring any lateral load the pure m-plane membrane behaviour may be

considered Then the resultants of the normal and shear stresses on the

cross section of an undeformed plate or "membrane" element are defined

as

Nx

N„

Nx

h/2

c

-h/2

h/2

c

-h/2

h/2

-h/2

dz

,
dz

E

1-v2

E

1

,
dz = G

du

dy

du

dx

dv

dy

dv

dx

dv
/—

dy

du

dx
(B 19)

These are the m-plane or membrane forces per unit length due to the

stresses acting on the edge faces, see Figure B 3

Projecting the forces shown in Figure B 3 in the x- and y-axes the fol¬

lowing equilibrium equations may be obtained

dNT dN,

dy

xy

9a

dN„ dN,

dy

dx

= 0

(B20)
xy

Inertia and body forces were set to zero to shorten subsequent formu¬

lations Above equations are independent of deflections and moments

Thus, as long as the plate remains flat, the equilibrium equations of a

membrane above may be treated separately of the equilibrium equations

of lateral loaded plates But, if the stresses in the middle surface are not

small their effect of bending of the plate has to be considered [76] Re¬

specting the projection of the forces shown in Figure B 3 in z-direction,
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Figure B.3: Membrane forces with deflections

the deflection of the plate has to be taken into account. The deflection

is still assumed to be small and the applied forces remain therefore un¬

changed. Thus, due to the different slopes at x and at x + dx of the

deformed plate segment the membrane force Nx generates a resulting
force on the z-axis of

-Nxdy
dw

dx

dNx
7

Nx + —r—dx

ox

dw d2w
+ -z-ndx dy

dx dx2

After neglecting the small member of higher order it remains

32 „

Nx^-Tdxdy +
dxz dx dx

dx dy (B.21)

The projection of the membrane force Ny on the z axis yields similarly

N,
y ».a
dy2

dx dy
dy dy

dxdy (B.22)

r\ r\ r-f2/ j^l

With the angles ^- and ^ + S
^
dx about the x axis and ^- and

°
oy oy ox oy ox

tt1 + S
a

dx about the y axis, the z components of the shear forces Nxy
ox ox oy

&
"

l Jjy
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and Nyx may be obtained as

Ar
d2w

j j ,

dN*ydw
j j

Nxy „ „
ax dy -\ —dx dy , resp

dxdy dx dy

dNyx dw

'dxdy
"

dy dx
Nyx———dx dy -\ 7r~~7~~dx dy

With Nxy = Nyx one expression for all shear forces projected on the

z-axis is given by

d2w
7 7

dNxv dw
7 7

dNxv dw
7 7 ,^

.

2N*yiT7rdx dy + -ir^^rdx dv + -ir^^rdx dv B 23

dxdy dx dy dy dx

Now, the expressions m (B 21), (B 22) and (B 23) may be added to

the equilibrium equation (B 7) of the plate According to (B 20) the

first derivatives of the membrane forces disappear Finally, the following

equilibrium equation remains

^
+

^9l.
+
Nx^+2Nx ^-^+N

— = -Pz (B24)
dx dy

x

dx2 xy
dxdy

v
dy2

With the balance of moments (B 8) the transverse shear resultants may

be eliminated and the differential equation of equilibrium may be ex¬

pressed as

d2Mx „d2Mxy d2My (
_

d2w
_

d2w
_

d2w
2^71^ + ^^

= -

Pz + Nx7^+2NXy—-+Nydx2 dxdy dy2 \
x

dx2 xy
dxdy

v
dy2
(B25)

With the elasticity relations m (B 17), which is still valid for small dis¬

placements, the moments may be replaced by terms of deflection, that

d4w d4w d4i

dx4 dx2dy2 dy4

If
,T

d2w
,T

d2w
,T

d2
Pz + Nx—

+

2Nxy—— + Nt
w

D yz^ xdx2
^

xydxdy^ ydy2

(B26)

This common differential equation of equilibrium, which traces back to

Saint Venant, is to be used instead of the Kirchhoff plate equa¬

tion (Eq B 18) if the membrane forces Nx, Ny and Nxy are not small

compared to critical (compression) forces [76]
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B.2.1 Large deflections of plates

To calculate the lateral deflections of a plate which is combined loaded

laterally and in the middle surface, the St. Venant differential equa¬

tion (B.26) may be solved by determining bi-harmonic functions, which

satisfy the boundary conditions, only if the deflections are small in com¬

parison with the plate thickness. In the plate theories for small deflec¬

tions it is assumed that stretching of the middle surface may be neglected
in case of pure bending or that the strain of the middle surface is given

by external membrane forces. After TlMOSHENKO the stretching of the

middle surface of a plate due to bending has to be taken into account

in the cases where the deflection exceeds about 40 percent of the wall

thickness [76]. Considering large deflections of plates the St. Venant

differential equation (B.26) may be used but the membrane forces Nx,

Ny and Nxy now depend not only on the external loads applied in the

middle surface but also on the strain of the middle surface due to bend¬

ing.

Since in the equation system of equilibrium (B.20) there are three un¬

known membrane forces Nx, Ny and Nxy an additional equation has to

be specified to determine them [76]. To do so, the strain in the mid¬

dle surface of a plate during bending is considered: the elongation of a

-dx

B

u

*>i

A
\

%^dx
ox

dx
< >

oB X

Figure B.4: Elongation of a plate element due to large deflection [76].

linear plate element 0A0B (see Fig. B.4) due to the displacement u in

x-direction is (du/dx) dx. The z component of the distance between A

and B due to the rotation angle dw/dx is (dw/dx)dx. Thus, the new
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length ds of the element is

ds =

dx < 1
du

dx

dx
dx =

du ( du\ ( dw \

dx \dx I \dx I

dw

dx

(B27)

kc2
using the approximation a/1 + £ «l + ^£— g£

With the initial element length dx and the new length ds a strain measure

may be defined as

ds — dx

dx

du

dx

dw

dx
(B28)

truncating the series as of the mixed terms and those to the power of

three The expressions for the other m-plane components follow accord¬

ingly

dv

dy

dw

dy
Ixy —

du

dy

dv

dx

dw dw

dx dy
(B29)

The same strain measures are obtained by considering the Green-

Lagrange strain tensor (Eq (A 15) in Appendix A 2) The x-

component of this tensor for example is

E —

du

d0x

du

d0x

dv

d0x

dw

d0x
(B30)

using the large displacements coordinate description introduced in Ap¬

pendix A, thus, the differences refer to the initial configuration of a body

Now, assuming that the lateral deflection w is substantially larger than

the m-plane displacements u and v the corresponding first two square

terms in (B 30) are omitted and the remaining expression correlates with

the strain component in (B 28)

E —

du

d0x

dw

d0x
(B31)

Nevertheless, without the square term in w a small rigid body rotation

about the y-axis of the element in the (x, z)-plane of Figure B 4 would
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lead to a strain in x-direction different from zero In case of large rota¬

tions the two omitted square terms have to be retained Thus, using the

strains (B 28) and (B 29) the deflections are considered to be not small

in comparison to the plate thickness, but still small enough for simplified

expressions for curvatures [76]

By differentiating the strain expressions in (B 28) and (B 29) it follows

that

d2ex d2ev dH
xy ( d2l d2w d2w

dy2 dx2 dx dy \dx dy J dx2 dy2

After replacing the strain components by their expressions in terms of

the membrane forces the third equation in terms of Nx, Ny and Nxy is

obtained

By introducing an AlRY stress function T(x, y) the concurrent solution

of the three equations in (B 20) and (B 32) may be simplified [76] With

the definitions

Nx =

d2T

dy2
NXy =

d2T

dxdy
(B33)

the two equations in (B 20) are identically satisfied [76] Thus, for homo¬

geneous isotropic material the strain components in terms of the stress

function are

Ixy

^NX vN„

vNx

1

~h~Ë

1

h~Ë

d2T d2T

dy2

d2T

dx2

dx2

d2T

dy2

Nxv

hG xy

2(l + i/) d2T

h E dxdy

(B34)

These expressions2 inserted into (B 32) yields the compatibility equation

d4T d4T d4T

dx2dy2 dy4
= Eh

d2i

dx dy

d2w d2w

dx2 dy2
(B35)

2 Note that in literature the derivatives of T are sometimes multiplied with the

wall thickness h [76]
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Compliance of this differential equation satisfies the condition that the

strains are "compatible" and that the contributions of the strains and

the (small) rotations to the deflections are considered.

By the use of the stress function definitions in (B.33) the St. Venant

differential equation of equilibrium becomes:

d4w d4w d4w
l_ 2 | =

dx4 dx2dy2 dy4

IfEl d2£d2w_2^^^_ &T_&w\
6)

D \ h dy2 dx2 dx dy dx dy dx2 dy2 J

The use of stress functions reduces the analysis of large deflections to

the solution of only two equations, the equilibrium equation (B.36) and

the compatibility equation (B.35), which are to be solved simultaneously

together with the boundary conditions. This system of coupled differ¬

ential equations determine the two functions T(x,y) and w(x,y). For

some simple cases, with approaches of the function w(x, y) and T(x, y)
the compatibility condition is primarily solved exactly. Then, the equi¬
librium condition is solved at least approximatively. Solutions with ap¬

proaches in form of functions for u, v and w fulfilling both the equilibrium
and the compatibility equations without inclusion of a stress function

might be found but the particular specification of unknown coefficients

is much more demanding.

B.3 Buckling of plates

The calculation of the critical values of the membrane forces at which

the flat form of equilibrium becomes unstable and the plate begins to

buckle is surely one of the most important applications of the differential

equilibrium equation (B.26). The critical forces, i.e. the buckling forces,

acting in the middle surface of a plate may be obtained by assuming
that the plate has some initial curvature or some lateral loading. Then,
the membrane forces at which the deflections tend to grow indefinitely
are usually the searched critically values [76]. Thus, for the purpose of

a buckling load estimation of a plate the integration of the differential

equilibrium equation (B.26) with pz = 0 may be used. However, close-

form solutions of these equations which fulfill the boundary conditions

may only be found for some special cases.
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For instance, in the case where a simply supported rectangular plate is

loaded uniformly only in one direction the truncated differential equation
for isotropic materials is with Ny = Nxy = 0

d4w d4w d4w
_

Nx d2w

dx4 dx2dy2 dy4 D dx2

The deflection surface of the buckled, simply supported plate with edge

lengths a and b may be represented by the double series:

oo oo

w(x, y) = Y^ E Wmn sin^ sin ^ m,n= 1,2,...
m=ln=l

(B.38)
This basic approach fulfills the boundary conditions w = Mx = My = 0

at all four edges. Equation (B.38) derivated several times and inserted

into (B.37) yields [43]

EEMWMir)2] +Nx(^)2\wmnSm^Sm^=0
m=l n=l ^ ^

(B.39)
At least one coefficient wmn has to be different from zero, thus the ex¬

pression in curly brackets has to vanish. Consequently, the searched

membrane force is given by

D

-Nx = —
\ a I "•" V b )

V a

(B.40)

The buckling load is found by the search after the combination of the

number of half-waves m and n which gives the lowest compressive force

| — Nx\. For instance, with n = 1 for all width-to-height ratios a/b and

with w = 1 in the case of a square plate the following formula may be

specified which is analogous to the common Euler equation for buckling
of columns [76] :

Dtt2
-Ncr = A^- (B.41)

a1

where —Ncr is the critical compressive membrane force —Nx.



Appendix C

Initial Stress Stiffness

Matrices for Plate

Elements

For the finite element analysis of the instability behaviour of shell struc¬

tures the generation of the contribution of the nonlinear displacement
terms to the tangent stiffness matrix is essential. For a better survey

the formulations of the nonlinear or initial stress stiffness matrix are

explained on basis of a flat plate.

The deformations of plates which are loaded below the load where buck¬

ling occurs are not infinitesimal but also not excessively large [84]. As

mentioned in Section B.2.1 the lateral deflections then combine bending
strains with membrane strains. According to Appendix A and B as well

as Section 3.3, the Green-Lagrangian strains at increment s + 1 may

be expressed as

UEij} = {eEij} + {eEij} + zeK + {eritJ} (C-!)

where £ marks the reference state of a LAGRANGIAN formulation. In an

Updated Lagrangian formulation (£ = s) the vector {s£v,} includes the

membrane strain increments of the reference surface

uut={!^!^+!^} (c.2)
[dsx dsy dsy dsx)
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and in sKi0 are the increments of the curvatures and the twist

T
,K =

df>x

d,x
'

d(f>y

dsy'

d(f>x

dsy

d(f>y
d,x

(C.3)

where û and v are the membrane displacement increments in the refer¬

ence surface and <f>x and <f>y are the rotations about the local x-axis and

y-axis, respectively1. A possible contribution of transverse shear defor¬

mations is neglected. For a better comparison with (3.19) and (3.50) the

linear and nonlinear components of the strain vector are separated, that

is,

{sEi0} = {tEtJ} + {.EtJ + zsk} + {sVt0}

The nonlinear term {erii7} is> anY initial curvature ignored, given by

(C.4)

Ui3}T =

1 ( dw\ d2w
'

2 dsy)
'

dsxdsy
(C.5)

The virtual work expressions (see Section 3.3) need also the virtual vari¬

ants of the strain components. The virtual vectors {5sËtJ} and {5sKtJ}
only differ from their "real" counterpart in the "(5" at the displacement
and curvature increment components. The nonlinear virtual strain con¬

tribution in turn may be written as

R^,} =

dôw dw

dsx dsx

dw

dsx
0

| dôw

dôw dw

dsy dsy
= 0

dw

dsy

) dsx

I dôw

dôw dw i dw

dsx dsy dsx

dôw 1 dw

- 9sy

dw

dsx _

\ Qsy

(C.6)

It can be assumed that for all kinematic variable û, v, w, <f>x, and <f>y the

same shape functions Hi are defined (as for the geometry); thus, with

the matrix H containing the shape functions it is

u = Hü (C.7)

whereby u stands for the displacement field and rotations field vector

u= {u,v,w, 4>x, 4>y} (C.8)

1In a Total Lagrangian formulation contributions of initial displacements have to

be considered (see Section 3.3, Eq. 3.20)
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and u includes the degrees of freedom at the N element nodes

ü = {wW,,W,wW,^),^),...,wW,,W,wW,e),4Ar)} (C-9)

(see Section 3.2). For later use the vector ü is split into a vector contain¬

ing the displacements in the element reference surface üm, one including
the rotations ü^, and finally a vector üw which contains the lateral dis¬

placements at the nodes [27]:

um = {u

Ü«, = {w(1),

(i) „(i) ,(N) JN) } e^

.,
w
Wi

^i),...,e),e)i

(CIO)

With the corresponding derivatives of the shape functions relations be¬

tween the nodal degrees of freedom and the strain components may be

found:

{sEi3} = sDl

SK = sß;Ü0

B,

u„ {SsEij} = sBiSu„

Ssk = sBi JÜ0
(C.ll)

Similarly, the relations between the slopes and the lateral deflection w

may be expressed as

di

d.
resp.

( dSw 1

1 dsXi J
SBWSÛW (C.12)

With these expressions the nonlinear strains in (C.5) and (C.6) may be

rewritten as

{.V}
di dw di

V.V}
dw

(C.13)

The slope dw/dsxt and the rotations 4>t are linked to each other via the

transverse shear strains. Thus, the "B-matrices" have to respect the

continuity conditions according to the choice of the element type (e.g.
"Mindlin" or "Discrete Kirchhoff" element, see Ref. [4, 84]).

In an Updated Lagrangian formulation, as in present case, the 2nd

PlOLA-KlRCHHOFF stresses SS are equal to Cauchy stresses cr (see Eq.

(3.51) in Section 3.3). Consequently, according to (3.25) in Section 3.3

the virtual strain energy may be expressed as

(K,} + .S) 5({sËi0+zsK} + {srllJ})sdV = 5sWex (C.14)
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(C.15)

The expression above expanded becomes

f {aiJ}T{SsËiJ+zSsH,}JV+ f {cTi^iS^JV
JBv Jsv

s^{5sEl3 + zSsk}JV = 5sw!x
V

T

whereby the term with SS {5srjtJ} is neglected (see Section 3.3).

The constitutive relation between an increment of the 2nd PlOLA-

Kirchhoff stresses and an increment of the Green-Lagrangian

strains are given by

.S = .C({.EK+z.K} + {.Vv}) (C16)

with the linear elastic material matrix SC. In order to obtain the stress

resultants the equation above is integrated through the thickness coor¬

dinate z [27]. Thus,

/h/2 ph/2
{sNtJ}= sSdz= ,C ({,Ët3 + z ,k} + {aTitJ}) dz

J -h/2 J-h/2

= sCA{sEi:J+sr]l:/} + sCBsK

ph/2 ph/2
{sMtJ}= / sSzdz= ,C({,Et3+zaK} + {aTi })zdz

J-h/2 J-h/2

= ,CB {,Et3 + ai]t3} + aCD ,k

(C.17)

where sCa is the membrane stiffness matrix, SC^ the coupling stiffness

matrix and sCc the bending stiffness matrix [27]. When the reference

surface of the plate correlates with the neutral surface, where bending
stresses vanish, coupling between membrane deformations and bending

may be neglected (i.e. sCb = 0); For the sake of simplification in the fol¬

lowing it is assumed that sCb = 0. Since in an Updated Lagrangian for¬

mulation {sNij} and the moments {sMtJ} at increment s are composed

of Cauchy stresses, the membrane forces {sNtJ} and their increments

{sNtJ} may be also be written as

s-' * XX I I 0~XX '

S^yy ) = l Öyyh \ reSp. <^ sNyy \ = { ßyyh ) (C.18)

aN xy I I O'xyh I I SNXy I I s^xyh
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with the average membrane stresses atJ and sSl3, respectively, and the

wall thickness h.

The third term in (C.15) gives the linear contribution to the tangent
stiffness matrix. Neglecting the nonlinear term in (C.16) and (C.17) it

applies accordingly

SS {5sEi3+zsn}sdV = / {sNl3}T{5sEl3} + {sMl3}TàsKsdA
V JSA

5vLmsBl sCAsBium + Su4>sBl sCDsBiXi,psdA

(C.19)

where the definitions of the stress resultants in (C.17) and the definitions

of the B matrices in (C.ll) were used.

The second term in (C.15) finally yields the searched initial stress stiff¬

ness matrix. With (C.13) the nonlinear contribution to the virtual strain

may be written as

13i \us'ii3is^y
—

/ \"s'ii3i \s^i]i
V JSA

Wi3}T{^ViAJV= / {öar,„}T{,Nt3}adA
=

_T s 1

Suw SBW
dw

{sNi3}sd,A

(C.20)

It can be shown that, because of a special property of the transposed
matrix [dw/dsxf]T [84], the following transformation is allowed:

dw n dw

dsx dsy

n dw dw

dsy dsx

.Nx

i:

„AT.

yy

xy

s^ xx s^ xy

s^ xy s^ yy

(C.21)

Insertion of the expression above into (C.20) yields

W s W {.Nt3},dA

_T sT

Suw SBW
s IVxx s IVxy

s
IV

xy s
IV

yy

JA

(C.22)
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or with (C.12)

Su.,, ,B„„
.N.

,NX

Xy sN yy

sBwnWsdA (C.23)

Now, in accordance with the formulations in Section 3.3 a nonlinear

stiffness matrix may be specified:

,K. B
s IVxx s IVxy

s
IV

Xy s
IV

yy

JSw JA (C.24)

This matrix is only combined with the lateral nodal displacements üw;
thus in connection with the complete nodal degrees of freedom vector ü

the stiffness matrix above, as a sub-matrix, has to be placed accordingly
in the larger initial stress stiffness matrix of an plate or flat shell element

[84]. Alternatively, for a general formulation the relation between the

slopes and the nodal degrees of freedom in (C.12) and (C.13) is redefined

as

di

d.
Bniu— sDnl resp. {jt} = *-**" (a25)

simultaneously allowing for any displacement constraints stemming from

the relationship between the slope, the rotations and possible transverse

shear deformations [27]. With this, finally the element initial stress

stiffness matrix in a general form, similar to that given in Section 3.3, is

obtained:

,Knl jsnl N,,. BnisdA (C.26)

In a Total Lagrangian formulation the matrix is obtained similarly. The

nonlinear stiffness matrix is mostly called either geometric stiffness ma¬

trix or initial stress stiffness matrix. The components of the matrix

depend on the applied loads, in present case on the membrane forces.

A central feature of the nonlinear stiffness matrix is that for its spec¬

ification a precedent static analysis is necessary where the reaction of

the structure due to a given loading is calculated. Further, in a finite

element analysis the deflections and thus also the slopes, i.e. the geo¬

metric variables which bring the nonlinearity, are finally members of the

searched nodal degrees of freedom vector.



Curriculum Vitae

Luc Wullschleger

11th of June 1970 Birth in Binningen, Switzerland

1977 — 1987 Primary and secondary school in Binningen,
Canton Baselland, Switzerland

1987 — 1990 Grammar school in Oberwil, Canton Basel-

land, Switzerland, Matura (school leaving

examination)

1991 — 1997 Studies of Mechanical Engineering at the

Swiss Federal Institute of Technology ETH in

Zürich, Switzerland

1997 Diploma degree in Mechanical Engineering
from ETH Zürich (MSc ETH)

1997 — 2002 Research and Teaching Assistant to

Prof. Meyer-Piening (emeritus), Institute

for Mechanical Systems IMES, former Insti¬

tute for Lightweight Structures and Ropeways

ILS, ETH Zürich

2002 — 2003 Teaching Assistant to Prof. Ermanni, Insti¬

tute for Mechanical Systems IMES, Structure

Technologies, ETH Zürich

2004 CAD Engineer at Helbling Technik AG in

Aarau, Switzerland

2004 — CAD Engineer at the Swiss Federal Laborato¬

ries for Materials Testing and Research Empa
in Dübendorf, Switzerland


