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Visualisation taken from a large-eddy simulation (LES) of spatial K-type
transition in plane channel flow. Shown are isosurfaces of the negative-λ2

vortex-identification criterion. The two-dimensional wave disturbances
(yellow isosurfaces) at the inlet break down to turbulence through the
formation of Λ-vortices and hairpin vortices (red isosurfaces). A turbu-
lent spot (white) is formed which evolves into fully developed turbulent
channel flow further downstream (green). The colored bottom wall shows
the skin friction, the rear side wall displays the spanwise vorticity in the
valley plane.
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ZÜRICH

for the degree of
Doctor of Technical Sciences

presented by

Philipp Christian Schlatter

Dipl. Ing. ETH (Swiss Federal Institute of Technology Zürich)
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Abstract

Large-eddy simulations (LES) of transitional and turbulent wall-
bounded incompressible flow have been performed. A special focus
has been on the reliable and efficient modelling of laminar-turbulent
transition in plane channel flow at low resolutions, for which several
subgrid-scale (SGS) models have been evaluated, including the approxi-
mate deconvolution model (ADM) and related approaches, classical and
high-pass filtered (HPF) eddy-viscosity models, and dynamic models.
The simulations have been performed in both the temporal and spatial
transition framework.

The results show that a direct modelling involving a relaxation reg-
ularisation (ADM-RT model) provides the most accurate results for
both transitional quantities and turbulent statistics. By use of three-
dimensional visualisation of instantaneous flow structures it is inves-
tigated how well the SGS models on coarse grids are able to predict
the physically relevant mechanisms at successive stages of transition:
Λ-vortices, rollup of shear layers, and hairpin vortices. The results
show that the ADM-RT model predicts similar transitional structures as
present in fully resolved direct numerical simulation (DNS) data, how-
ever using less than one percent of the numerical resolution of the latter.
Other SGS models are not capable of predicting these physical structures
at the chosen coarse resolution.

Additionally, the different SGS models have been examined in homo-
geneous isotropic turbulence. The models provide an accurate prediction
of the energy and dissipation spectra even for high Reynolds numbers.

A Fourier method based on a windowing approach to prescribe non-
periodic inflow and outflow boundary conditions has been formulated
and evaluated. Test cases involving a travelling vortex core and a spa-
tially developing jet have shown very good outflow damping properties.
The spectral accuracy of the underlying numerical scheme is retained.
The windowing approach has been compared to the well-established
fringe method.



Kurzfassung

Large-Eddy-Simulationen (LES) von transitionellen und turbulenten
wandbegrenzten inkompressiblen Strömungen wurden durchgeführt.
Spezielle Beachtung fand dabei die verlässliche und effiziente Model-
lierung der laminar-turbulenten Transition in ebener Kanalströmung
bei geringer Auflösung. Es wurden verschiedene Turbulenzmodelle
untersucht, insbesondere das “Approximate Deconvolution Model”
(ADM) und verwandte Ansätze, klassische und hochpassgefilterte
Wirbelviskositätsmodelle (eddy-viscosity models), einschliesslich des
bekannten dynamischen Modells. Die Simulationen wurden sowohl
in räumlicher als auch zeitlicher Betrachtungsweise der Transition
durchgeführt.

Die Resultate zeigen, dass eine direkte Modellierung basierend auf
einer Regularisierung mittels eines Relaxationsterms die genauesten Re-
sultate sowohl für transitionelle Grössen als auch für turbulente Statis-
tiken liefert. Dreidimensionale Visualisierungen zeigen ausserdem, ob
und wie die verschiedenen Modelle die charakteristischen Stufen der
Transition wiedergeben: Λ-Wirbel, Aufrollen der Scherschichten und
Haarnadelwirbel. Die Resultate zeigen weiter, dass das ADM-RT-Modell
sehr ähnliche Strukturen wie die vollaufgelösten Daten der direkten nu-
merischen Simulation (DNS) vorhersagt, obwohl weniger als ein Prozent
der Gitterauflösung verwendet wurde. Andere Modelle waren hingegen
bei der gewählten niedrigen Auflösung nicht in der Lage, diese Struk-
turen vorherzusagen.

Zusätzlich wurden die verschiedenen Modelle auch in homogener
isotroper Turbulenz untersucht. Es zeigte sich, dass sie eine genaue
Voraussage der Energie- als auch der Dissipationsspektren auch für hohe
Reynoldszahlen erlauben.

Eine Fouriermethode basierend auf einem Windowing-Ansatz wurde
zur Aufprägung von Ein- und Ausflussbedingungen formuliert und be-
wertet. Testfälle mit einem Wirbel und einem sich räumlich entwi-
ckelnden Freistrahl (Jet) zeigten gute Dämpfungseigenschaften am Aus-
flussrand. Die spektrale Genauigkeit des zugrundeliegenden numerischen
Verfahrens bleibt erhalten. Die Windowing-Methode wurde verglichen
mit der etablierten Fringe-Methode.
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Nomenclature

Roman symbols

c wave speed
C model coefficient
CK Kolmogorov constant
ei unit vector in direction i

E, E total kinetic energy, kinetic energy of mean flow
E(k) energy spectrum
E1(k1, x3) one-dimensional Fourier spectrum
Eint

1 (k1) integrated one-dimensional Fourier spectrum
E3(k3) Chebyshev spectrum
E′

3(k3) Chebyshev spectrum of the fluctuations
F (x) fringe function
F2 second-order structure function
FF

i fringe-forcing term
GP primary spatial LES filter
G low-pass filter for ADM
Gex explicit low-pass filter for ADM
G2 secondary filter for ADM
G(2) second-order filter
Gtest test filter for dynamic Smagorinsky model
h channel half-width
H generic high-pass filter
HN high-order high-pass filter for ADM
H12 shape factor
i imaginary unit

√−1
i, j, k frequently used indices
I identity
k integer wavenumber
kmax maximum resolved integer wavenumber
L reference length
Li, Lx, Ly, Lz, L computational box dimensions (in direction i)
N deconvolution order
Ni, Nx, Ny, Nz, N number of grid points (in direction i)
p pressure
r filter order
QN approximate deconvolution filter



XII Nomenclature

Re Reynolds number
Reτ Reynolds number based on the friction velocity
Reλ Reynolds number based on the Taylor microscale
Sij strain rate
S(x) smooth step function
t time
Tk3 Chebyshev polynomial of order k3

TKE, k turbulent kinetic energy
ui, u, v, w velocity component (in direction i)
u�

i deconvolved velocity component
uτ friction velocity
u velocity vector
U reference velocity
x, y, z, xi streamwise, spanwise, and wall-normal direction
xstart, xend extent of the fringe domain
x spatial position vector

Greek symbols

α, β streamwise and spanwise wavenumbers
χ relaxation parameter
δij Kronecker symbol
∆ grid spacing, characteristic length scale
∆x, ∆y, ∆z grid spacing in direction x, y, z
∆rise, ∆fall parameters defining the fringe function
ε, εvisc, εSGS dissipation, viscous and SGS dissipation
Evisc, ESGS wavenumber-dependent viscous and SGS dissipation
ε−SGS, ε+

SGS forward, backward SGS dissipation
η Kolmogorov length
η wall-normal vorticity
λ wave length
λ2 second eigenvalue used in vortex-identification criterion
λ(x), λf fringe function, fringe strength
ν kinematic viscosity
νt eddy viscosity
ω wavenumber
ωc (ωtest

c ) cutoff wavenumber of filter (of test filter)
ωi vorticity component in direction i
τij subgrid-scale model stresses
τw skin friction



Nomenclature XIII

Other symbols and operators

Ui base flow
V computational domain
P turbulent production
O Landau symbol (order of)
| · | absolute value
‖ · ‖ Euclidian norm
(̂·) Fourier transformed quantity, spectral component
F Fourier transform
∇ Nabla operator
∝ proportional to
(·) ∗ (·) convolution
〈·〉 statistical Reynolds average
(·) filtered with primary LES filter GP

Subscripts

(·)b based on bulk velocity
(·)CL based on centre-line velocity
(·)τ based on friction velocity
(·)lam laminar
(·)S belonging to the Smagorinsky model
(·)SF belonging to the structure-function model
(·)FSF belonging to the filtered structure-function model

Superscripts

(·)HPF belonging to high-pass filtered model
(·)VMS belonging to variational multiscale model
(·)′ fluctuating part of Reynolds average or disturbance
(·)∗ complex conjugate
(·)� approximately deconvolved quantity
(·)◦ dimensional quantity
(·)+ scaling in viscous (wall) units



XIV Nomenclature

Abbreviations

2D, 3D two- and three-dimensional
ADM, ADM-3D approximate deconvolution model

(three-dimensional formulation)
ADM-2D approximate deconvolution model

(two-dimensional formulation)
ADM-RT relaxation-term model
CFD computational fluid dynamics
CPU central processing unit
DNS direct numerical simulation
DS, DS-3D dynamic Smagorinsky model

(three-dimensional test filter)
DS, DS-2D dynamic Smagorinsky model

(two-dimensional test filter)
FFT fast Fourier transform
FSF filtered structure-function model
GFlops 109 floating-point operations per second
HPF high-pass filtered
LES large-eddy simulation
rms root-mean-square
RT relaxation term
SF structure-function model
SGS subgrid scale
SSM scale-similarity model
SVV spectral vanishing viscosity
TKE turbulent kinetic energy
TS Tollmien-Schlichting
VMS variational multiscale
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Chapter 1

Introduction

1.1 Laminar-turbulent transition

The behaviour and properties of fluid flows are important in many dif-
ferent technical applications of today’s industrial world. One of the most
relevant characteristics of a fluid is the flow state in which it is moving:
laminar, turbulent, or the transitional state in between. Laminar flow
is a well predictable, structured and layered flow (Latin lamina: layer,
sheet, leaf), which usually exercises significantly less frictional resistance
to solid bodies and much lower mixing rates than the chaotic, swirly and
fluctuating state of fluid in turbulent motion. Understanding and pre-
dicting both turbulent and laminar flow is crucial in a variety of technical
applications, e.g. flows in boundary layers on aircraft wings, around cars,
intermittent flows around turbine blades, and flows in chemical reactors
or combustion engines. The evolution of an initially laminar flow into
a fully developed turbulent flow is called laminar-turbulent transition.
This process and specifically the triggering mechanisms of transition are
not fully understood even today, after more than a century of research.

The crucial non-dimensional parameter determining whether a flow
will likely be laminar or turbulent is the Reynolds number Re, which
can be defined as the ratio of inertial to viscous forces acting on the
fluid particles. Flows at low Re are laminar. Flow through a pipe with
circular cross-section, for example, will be turbulent above Reynolds
numbers of a few thousands, with the precise value depending mainly
on the level of disturbances at the inlet and the wall roughness within
the pipe. Reynolds numbers of practically important flows may be as
high as millions or even billions. This behaviour is generic: Although the
laminar flow remains a solution of the governing Navier-Stokes equations
at all Reynolds numbers, this solution becomes unstable to disturbances
at some finite critical Reynolds number Recrit. Under controlled circum-
stances, a sequence of linear and nonlinear (primary, secondary, higher-
order) instabilities leads, through a more or less extended transitional
state, to the fully developed turbulent state.

The history of transition research dates back to the classical experi-
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ments made by Osborne Reynolds already in the 19th century (Reynolds,
1883). By injecting ink into the flow in a glass tube, he discovered that
the change-over from laminar to turbulent flow is basically dependent
upon the above-mentioned non-dimensional Reynolds number Re = UD

ν
with U denoting the fluid velocity, D the tube diameter, and ν the kine-
matic viscosity of the fluid.

Later, Orr (1907a,b) and Sommerfeld (1908) independently derived
the linearised stability equations. The Orr-Sommerfeld equations are
still fundamental in transition research. After the theoretical descrip-
tion of the linear stages of transition by Tollmien (1929) and Schlicht-
ing (1933), the experimental verification of artificially excited Tollmien-
Schlichting (TS) wave disturbances in a flat-plate boundary layer by
Schubauer & Skramstad (1947) marked a major breakthrough towards
understanding transition phenomena. The introduction of the secondary
instability theory by Herbert (1988) allowed a theoretical approach to
transition into the early three-dimensional stages of transition.

Figure 1.1: Different transition types in a boundary layer: aligned Λ-vortices
(K-type), staggered Λ-vortices (H-type), laminar streaks (O-type). Flow is from
bottom to top (from Berlin et al. (1999))

The classical mechanisms of disturbance growth of modal instability
solutions are sketched in figure 1.1 displaying experimental PIV measure-
ments. In this figure, the classical fundamental K- (Klebanoff) and sub-
harmonic H- (Herbert) or N- (Novosibirsk) type breakdowns are shown
(Kachanov, 1994). These scenarios are usually called forced transition
and are the most dominant breakdown types for low levels of ambient
turbulence (turbulence intensity Tu < 1%).

Many additional transition scenarios have been proposed and veri-
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Figure 1.2: Visualisation of an instantaneous flow field displaying the stream-
wise and wall-normal velocity components in a plane parallel to the wall
(Schlatter, 2001; Brandt et al., 2004) for free-stream induced turbulence over a
flat plate. Top: Streamwise velocity component. Below: Wall-normal velocity
component. The formation of a turbulent spot embedded in a streaky laminar
base flow is clearly visible.

fied, e.g. oblique transition (O-type) (Schmid & Henningson, 1992) and
bypass transition triggered by ambient high-level turbulence, see fig-
ure 1.2 and Morkovin (1969). In bypass transition, a process different
from the exponential growth of modal waves is causing transition. Tran-
sient algebraic growth of disturbances can lead to turbulence at much
lower Re, bypassing the exponential growth altogether, see the review
by Reshotko (2001). Figure 1.2 shows a snapshot of bypass transition
taken from Schlatter (2001); Brandt et al. (2004).

A summary of developments in transition research is given in the
review article by Kachanov (1994) on boundary layer flow and in the
recent monograph by Schmid & Henningson (2001). Specifically for en-
gineering flows, Mayle (1991) reviews important transition results in the
field of turbine engines.

An overview of laminar-turbulent transition is sketched in figure 1.3
for the canonical case of the flow over a flat plate (boundary-layer tran-
sition). Figure 1.4 shows the corresponding vortical structures observed
during transition in plane channel flow (taken from the simulations pre-
sented in chapter 5). The fluid flows along the plate (position ➀) until at
a certain downstream position, indicated by Recrit, it becomes unstable.
Further downstream, two-dimensional disturbances are generated within
the boundary layer (pos. ➁), which rapidly evolve into three-dimensional
perturbations of triangular shape (Λ-vortices, pos. ➂). These vortical
structures in turn tend to break down into local turbulent spots through
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Figure 1.3: Schematic view of laminar-turbulent transition in a flat-plate
boundary layer.

➁

➂

➃

➄

➅

Figure 1.4: Visualisation of spatial K-type transition in plane channel flow ob-
tained from a large-eddy simulation (LES, see chapter 5). The vortical struc-
tures are visualised by the λ2 criterion (Jeong & Hussain, 1995).

the formation of pronounced hairpin vortices (pos. ➃), which grow and
merge together to form a fully turbulent boundary layer (pos. ➄-➅),
indicated by the downstream position Retr.
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1.2 Numerical simulation: DNS and LES

The governing equations for laminar, transitional and turbulent flows are
the Navier-Stokes equations (see section 2.1), which have been known for
almost 200 years. Except for a few simple laminar flow cases, no closed
analytical solutions to these nonlinear equations are known. Therefore,
one needs to resort to numerical simulation techniques in order to get
at least an approximate solution of a given fluid dynamics problem. In-
creasing the Reynolds number Re leads to the excitation of smaller and
smaller turbulent scales down to a lower limit. These smallest, so-called
Kolmogorov scales need to be resolved in numerical simulations based on
the Navier-Stokes equations; the simulation accuracy strongly depends
on the spatial and temporal resolution employed. The fully resolved di-
rect solution of the Navier-Stokes equations, referred to as direct numer-
ical simulation (DNS, see the review by e.g. Moin & Mahesh (1998)), is
in general extremely expensive even for moderate Re, since the required
CPU time roughly scales as Re3. Practical high Reynolds-number cal-
culations thus need to be performed using simplified turbulence models.
One commonly used possibility is to solve the Reynolds-averaged Navier-
Stokes equations (RANS) (Wilcox, 1998). Although this technique may
require a number of ad-hoc adjustments of the turbulence model to a
particular flow situation, quite satisfactory results can often be obtained
for practical applications.

A technique with a level of generality in between DNS and RANS is
the large-eddy simulation (LES). The first successful LES was performed
in the pioneering work by Deardorff (1970). His simulations of turbulent
channel flow were based on the eddy-viscosity model proposed some years
earlier by Smagorinsky (1963). He in turn devised his model mainly in
order to stabilise his meteorological simulation code; the Smagorinsky
model therefore closely resembles the von Neumann-Richtmyer artificial
diffusion (Richtmyer & Morton, 1965) to which it reduces in the one-
dimensional case.

In an LES, the eddies (turbulent vortices) above a certain size are
completely resolved on the numerical grid, whereas the effect of the
smaller scales needs to be only modelled. The idea behind this scale-
separation is that the smaller eddies are more homogeneous and isotropic
than the large ones and depend little on the specific flow situation,
whereas the energy-carrying large-scale vortices are strongly affected by
the particular flow conditions (geometry, inflow, etc.). Moreover, the
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self-similarity of the small scales is often supposed to allow an easier
modelling. Since for LES not all scales have to be resolved on the com-
putational grid, only a fraction of the computational cost compared to
fully resolved DNS (typically of order 1%) is required.

The success of an LES is essentially dependent on the quality of the
underlying subgrid scale (SGS) model and the applied numerical solu-
tion scheme. Substantial research efforts during the past 30 years have
led to more universal SGS models. The main benchmark cases for new
SGS models were, due to their geometrical and implementational sim-
plicity, homogeneous isotropic turbulence and turbulent channel flow in
the incompressible case. It soon became clear that especially the near-
wall behaviour of SGS models deserves special attention. Moin & Kim
(1982) used a van-Driest-type wall-damping function (van Driest, 1956).
A major generalisation of SGS modelling was achieved by Germano et al.
(1991) who proposed an algorithm which allows for dynamically adjust-
ing the model coefficient to the local flow conditions, e.g. reducing the
model contribution in the vicinity of walls or in laminar or transitional
flow regions. The dynamic procedure is based on the algebraic identity,
known as the Germano identity, which relates the energy fluxes over a
test filter level to the corresponding fluxes at the grid-filter level. An
additional transport equation for the kinetic energy is employed in the
more general dynamic model proposed by Ghosal et al. (1995).

An alternative approach was presented by Schumann (1975), who
split the model terms for his channel flow simulations into an isotropic
and an inhomogeneous part. Only the model contributions arising from
the inhomogeneous part were added to the momentum equations, which
were complemented with an additional transport equation for the SGS
energy. Similarly, in the variational multiscale approach (Hughes et al.,
2000) the SGS terms are computed by standard eddy-viscosity closures
from a velocity field which only contains the high-frequency oscillations.

The concept of spectral eddy viscosity, derived by Kraichnan (1976)
and yielding excellent results for homogeneous isotropic turbulence, was
transferred to physical space as of the structure-function model by Métais
& Lesieur (1992). The local kinetic energy near the numerical cutoff is
expressed through the second-order velocity structure function (Batche-
lor, 1953), which can easily be computed locally in physical space, thus
allowing its application to inhomogeneous flow with general, not neces-
sarily spectral numerics.

A new class of models has been introduced by Bardina et al. (1980,
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1983) based on the scale-similarity assumption. As the eddy-viscosity
closure assumes a one-to-one correlation between the SGS stresses and
the large-scale strain rate, the scale-similarity model (SSM) is based
upon the idea that the important interactions between the resolved and
subgrid scales involve the smallest resolved eddies and the largest SGS
eddies. In practise, this idea is realised by a double filtering of the
unclosed nonlinear terms. Although excellent correlations between the
real and the modelled SGS stresses were found in a-priori tests (see e.g.
Liu et al. (1994)), an application of the SSM in real applications does
not incorporate a correct SGS energy transfer. As a remedy, usually an
eddy-viscosity term is added to provide the necessary energy dissipation
yielding the so-called mixed model. Zang et al. (1993) introduced the
dynamic mixed model which includes a dynamic determination of the
model coefficient similar to Germano et al. (1991).

Considerable research effort has recently been devoted to the devel-
opment of SGS models of velocity estimation or deconvolution type, see
e.g. the review by Domaradzki & Adams (2002). These models can be
considered as a generalisation of the scale-similarity approach. Vari-
ants include e.g. the subgrid estimation model (Domaradzki & Saiki,
1997), the truncated Navier-Stokes simulations (Domaradzki et al., 2002)
and the approximate deconvolution model (ADM) developed by Stolz
& Adams (1999). ADM has been applied successfully to a number of
compressible and incompressible cases (Stolz et al., 2001a,b). With the
deconvolution-type models, it is tried to extract some information about
the SGS stresses from the resolved field, thus providing a better approx-
imation of the unknown model terms.

Without using an explicit expression for the subgrid-scale stresses,
Boris et al. (1992) introduced the MILES concept (for monotonically
integrated large-eddy simulation) for the simulation of compressible tur-
bulence. The SGS stresses are incorporated into the inherent artifi-
cial dissipation of the underlying numerical discretisation. However, it
was found that different numerical schemes produce very different SGS
stresses which are not always able to predict the correct SGS dissipa-
tion. Recent progress on MILES modelling is summarised in Grinstein &
Fureby (2002). An interesting extension of the MILES concept combin-
ing the LES formalism with an adapted numerical method is discussed
in Adams et al. (2004).

Concise reviews about different strategies for LES and SGS modelling
are given in Lesieur & Métais (1996); Domaradzki & Adams (2002); Men-
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eveau & Katz (2000); Piomelli (2001) and in the recent text books by
Sagaut (2002) and Pope (2000). A detailed description of some impor-
tant LES techniques is given in chapter 2 below.

It is expected that LES will play a major role in the future for
prediction and analysis of certain complex turbulent flows in which a
representation of unsteady turbulent fluctuations is important, such as
laminar-turbulent transition, large-scale flow separation in aerodynam-
ics, coupled fluid-structure interaction, turbulent flow control, aeroacous-
tics and turbulent combustion (Piomelli, 1999). However, LES applied
to complete configurations (e.g. airplanes) at high Reynolds numbers
still requires an immense computational effort, mostly due to the fine
resolution necessary to resolve the boundary layers at the walls. There
are new strategies to circumvent these problems, e.g. the concept of de-
tached eddy simulation (DES) which uses a combination of the LES and
RANS approaches, see e.g. the review by Squires (2004).

1.3 Simulation of transitional flows

Transitional flows have been the subject of intense experimental and
numerical research. Since the beginning of the 1980s, with the increas-
ing power of computers, and reliability and efficiency of numerical al-
gorithms, several researchers began to consider the simulation of the
breakdown to turbulence in simple incompressible shear flows. Pioneer-
ing work was performed by Fasel (1976), who concentrated on small
disturbance amplitudes in two-dimensional DNS. Fasel & Bestek (1980)
investigated the nonlinear disturbance development in plane Poiseuille
flow for both subcritical and supercritical Reynolds numbers. Kleiser
(1982) used very accurate spectral methods to calculate through the first
linear and nonlinear stages of three-dimensional channel flow transition
reproducing the experiment of Nishioka et al. (1975). One of the first
well-resolved simulations to actually compute three-dimensional tempo-
ral transition and the following fully developed turbulence was presented
in the DNS work of Gilbert (1988); Gilbert & Kleiser (1990), who simu-
lated fundamental K-type transition in plane Poiseuille flow. The three-
dimensional vortical structures of channel flow transition have also been
considered by DNS in Biringen (1987). A summary of early results on
spatial transition simulations is given in Fasel (1990).

Due to its simplicity and the availability of reliable experimental
results and highly resolved simulation data, the case of forced modal
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transition is still an important benchmark case for turbulence models
(see e. g. Gilbert & Kleiser (1991); Zang et al. (1990); Germano et al.
(1991); Schlatter et al. (2004c)). Comprehensive review articles on the
numerical simulation of transition can be found in Kleiser & Zang (1991)
and Rempfer (2003).

1.3.1 Numerical requirements for simulation of transitional
flows

In transitional flows one is typically dealing with stability problems
where small initial disturbances with energies many orders of magnitude
smaller than the energy of the steady base flow may evolve into turbu-
lent fluctuations. After disturbance growth and breakdown the resulting
energy of the turbulent fluctuations may be of the same order as that of
the base flow. Moreover, the spatial and temporal evolution of various
sorts of wave disturbances and their nonlinear interaction needs to be
computed accurately over many disturbance cycles. For these reasons
high-order numerical schemes which can accurately capture small dis-
turbances and wave propagation have to be employed (Rempfer, 2003).
These specific challenges have to be addressed when accurately simulat-
ing laminar-turbulent transition and make it one of the most demanding
problems of computational fluid dynamics. High accuracy and stability
of the underlying numerical scheme is mandatory to obtain meaningful
results.

Numerical schemes that are used for transition simulations often rely
on spectral methods (Canuto et al., 1988) or high-order finite-difference
methods (Lele, 1992). All methods currently in use work with spatial
discretisations that are at least fourth-order accurate. For time integra-
tion, typically third- and fourth-order schemes are used.

Numerical simulations always introduce modelling and discretisation
errors due to truncation of the physical domain and the discrete repre-
sentation of the solution and its derivatives. Moreover, aliasing errors
due to misrepresentation of high-frequency components which cannot be
resolved on the computational grid are present if no special dealiasing
treatment is employed. As in large-eddy simulations the computational
grid is much coarser than that of a corresponding DNS, the numerical
errors are more severe (Chow & Moin, 2003). Numerical errors mainly
contaminate the small-scale content of the resolved solution which in an
LES is the range of scales interacting with the non-resolved scales.
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In spectral simulations it is possible to minimise the derivative errors
and to eliminate the aliasing errors by employing the 3/2-rule with ad-
ditional computational effort (see Canuto et al. (1988)). On the other
hand, most LES simulations of flows in complex geometries are per-
formed with non-spectral discretisation (usually finite-difference meth-
ods) where these numerical errors are inherently present (Ghosal, 1996;
Kravchenko & Moin, 1997). Although strategies for the reduction of er-
rors with such methods exist, e.g. filtering (Lele, 1992), increased filter-
width-to-grid-ratio (Chow & Moin, 2003) and the skew-symmetric form
of the nonlinear terms in the Navier-Stokes equations (Kravchenko &
Moin, 1997), they are not commonly employed. For this reason, it seems
important to examine both the influence of dealiasing on the LES results
and the usability of SGS models minimising the effects of aliasing errors.

1.3.2 LES of transition

The use of large-eddy simulations (LES) to predict transitional and tur-
bulent flows is appealing as they promise to provide accurate results
at greatly reduced computational cost in comparison with fully resolved
direct numerical simulations (DNS). However, transitional flows are sub-
stantially different from turbulent flows in many respects. Not only is
there no fully developed energy cascade, but also slow growth and sub-
tly complex interactions between the base flow and various instability
modes can affect the physical changeover from the laminar to the tur-
bulent state and must thus be resolved or modelled reliably.

An SGS model suitable to simulate transition should be able to deal
equally well with laminar, various stages of transitional, and turbulent
flow states. The model should leave the laminar base flow unaffected
and only be effective, in an appropriate way, when nonlinear interac-
tions between the resolved modes and the non-resolved scales become
important. The initial slow growth of the instability waves is mostly
sufficiently resolved even on a coarse LES grid. Due to the usually
spatially intermittent character of transitional flows (e.g. spatial sim-
ulations, bypass transition), spatial averaging of the model coefficients
should be avoided. Furthermore, for the sake of generality and extend-
ability to more complex geometries, a three-dimensional formulation of
the model without any preferred directions is required. Another trouble-
some problem for SGS models is to avoid any singularity when dealing
with laminar flows (e.g. a singularity in the midplane of laminar channel
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flow for the dynamic Smagorinsky model, see section B.4). Moreover,
symmetries present in the initial conditions should be preserved as long
as they are physically justified.

While a number of different LES subgrid-scale (SGS) models with
applications to turbulent flows have been reported in the literature (see
e.g. the review of Lesieur & Métais (1996)), large-eddy simulations of
transitional flows have become an active field of research only recently.
Nevertheless, a number of successful applications of LES to transitional
flows are available, most of them based on an eddy-viscosity assumption
using the Smagorinsky model (Smagorinsky, 1963). It is well known that
Smagorinsky’s model in its original formulation is too dissipative and
usually, in addition to distorting laminar flows, relaminarises transitional
flows (see e.g. Piomelli & Zang (1991)). The eddy-viscosity closure, in
general, assumes a one-to-one correlation between the SGS stresses and
the large-scale strain rate tensor. For this reason, a dynamic or adap-
tive determination of the model coefficient is of vital importance when
simulating transitional flows. Consequently, Piomelli et al. (1990) intro-
duced, in addition to the van Driest wall-damping function (van Driest,
1956), an intermittency correction in the eddy-viscosity to decrease the
dissipation in (nearly-) laminar regions for their channel flow simulation.
By properly designing the transition function, good agreement to tem-
poral DNS results has been attained. Voke & Yang (1995) employed the
fixed-coefficient Smagorinsky model in conjunction with a low-Reynolds
number correction to simulate bypass transition. These authors at-
tribute their excellent results to the specific case of bypass transition,
which is characterised by relatively rapid growth of disturbances and
is therefore less susceptible to the specific SGS model. Piomelli et al.
(1991) studied the energy budget including the SGS terms from DNS
data of transitional and turbulent channel flow. They concluded that
for an appropriate modelling of both transitional and turbulent channel
flow backscatter effects (energy transfer from subgrid scales to resolved
scales) are important.

The class of dynamic SGS models proposed by Germano et al. (1991)
calculate their model coefficient during the simulation. The computation
of the model coefficient was subsequently refined by Lilly (1992). This
class of models is mainly used together with the Smagorinsky model,
however, the methodology can be transferred to other models. The dy-
namic Smagorinsky model has been successfully applied to, e.g., tempo-
ral transition in channel flow (Germano et al., 1991) and spatial transi-
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tion in incompressible boundary layers (Huai et al., 1997) and on a swept
wedge (Huai et al., 1999) using the localised dynamic version of Piomelli
& Liu (1995). Nevertheless, clipping of negative values and an averaging
in homogeneous directions needed to determine the dynamic model coef-
ficient has usually to be employed in order to minimise the occurrence of
singularities. Several remedies for this problem have been proposed, e.g.
the Lagrangian dynamic SGS model (Meneveau et al., 1996) in which
the evolution of the SGS stresses is tracked in a Lagrangian way. This
model has been applied to transitional channel flow with good results.

Ducros et al. (1996) introduced the filtered structure function (FSF)
model, which is also based on an eddy-viscosity assumption. In its orig-
inal form, the structure-function model (Métais & Lesieur, 1992) was
found to be too dissipative for transitional flows, similarly to the classi-
cal fixed-coefficient Smagorinsky model. In the FSF model, on the other
hand, the high-pass filter used for the computation of the structure func-
tion decreases the influence of low-frequency oscillations in the calcula-
tion of the SGS terms. As a consequence, the model influence is reduced
in regions of the flow which are mainly dominated by mean strain, e.g. in
the vicinity of walls or in laminar regions. The FSF model was success-
fully applied to weakly compressible spatial transition in boundary layer
flow. The formation of Λ-vortices and hairpin vortices could clearly be
detected, however, no quantitative comparison to experiments or DNS
data is given. A related approach is the selective structure function
(SSF) model, developed by David (1993) and recently modified by Ack-
ermann & Métais (2001). Basically, the eddy-viscosity is turned on as
soon as the flow is considered to be three-dimensional. Otherwise, if the
turbulence is not three-dimensional enough, e.g. in laminar or near-wall
regions, the model contributions are switched off reducing the energy
dissipation in such regions.

The combination of the dynamic Smagorinsky model in conjunction
with the scale-similarity approach (mixed dynamic model, Zang et al.
(1993)) yielded very accurate results for the case of a compressible tran-
sitional boundary layer at high Mach number (El-Hadi & Zang, 1995).
The same model in incompressible formulation was applied to the simu-
lation of bypass transition (Péneau et al., 2004) and was able to capture
the growth of laminar streaks and subsequently the appearance of tur-
bulent spots within the boundary layer.

Krishnan & Sandham (2004) simulated the highly intermittent evo-
lution of turbulent spots in an otherwise laminar supersonic channel em-
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ploying the mixed-time-scale (MTS) model of Inagaki et al. (2002, 2005).
The eddy viscosity for the MTS model is constructed as a combination
of a time and velocity scale, and guarantees the disappearance of the
eddy viscosity in laminar flow regions even with fixed model coefficients.

The variational multiscale (VMS) method (Hughes et al., 2000) pro-
viding a scale separation between the large-scale fluctuations and the
high-frequency oscillations has been used for the simulation of incom-
pressible bypass transition along a flat plate (Calo, 2004; Hughes et al.,
2004). Reasonable agreement with the corresponding DNS (Jacobs &
Durbin, 2001; Brandt et al., 2004) has been attained. The high-pass fil-
tered (HPF) eddy-viscosity models, which are closely related to the VMS
approach, and their application to transitional and turbulent channel
flow will be discussed in chapters 4 and 5, see also Stolz et al. (2004).

The approximate deconvolution model (ADM) has been applied for
a transitional and turbulent jet (Rembold et al., 2002). Recently, for the
present thesis work incompressible K-type transition in channel flow has
been simulated successfully using ADM and related modelling strategies
(Schlatter et al., 2004c), and the transitional vortical structures have
been closely examined and visualised (Schlatter et al., 2004a). These
findings will be detailed in chapters 4 and 5 of this monograph. Stolz
(2005b) used ADM and the HPF Smagorinsky model to simulate sub-
harmonic transition along a supersonic flat plate boundary layer in good
agreement with available DNS data.

Most of the above references show that, e.g. for the model problem
of temporal transition in channel flow, spatially averaged integral flow
quantities like the skin friction Reynolds number Reτ or the shape factor
H12 can be predicted reasonably well by LES even on comparably coarse
meshes, see e.g. Germano et al. (1991); Schlatter et al. (2004c). However,
for a reliable SGS modelling strategy it is equally important to faithfully
represent the physically dominant transitional flow mechanisms and their
three-dimensional vortical structure such as the formation of Λ-vortices
and hairpin vortices. A successful SGS model needs to predict those
structures well even at low numerical resolution, as demonstrated by
Schlatter et al. (2004a).

1.4 Objectives and outline of the present work

This thesis aims at contributing to the development of appropriate
subgrid-scale modelling approaches for large-eddy simulations of tran-
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sitional and turbulent shear flows. Classical and newly devised SGS
models are tested in the canonical case of K-type transition in incom-
pressible plane channel flow. This standard test case is appealing since
detailed experimental data (Nishioka et al., 1975) and accurate results
from direct numerical simulations (Gilbert & Kleiser, 1990) are avail-
able. Moreover, the physical processes of this transition scenario are
already well understood and thus allow a better validation of the SGS
models. It is believed that many physical and modelling issues present
in transitional flows can be studied by considering this canonical flow.

The thesis is organised as follows. In chapter 2, the governing equa-
tions and the different SGS models are introduced and characterised.
Chapter 3 presents the numerical method for the channel flow simula-
tions. The simulation results obtained for temporal channel-flow tran-
sition and turbulence are discussed in chapter 4. In particular, integral
quantities and instantaneous flow structures are analysed for forced K-
type transition and fully developed turbulent channel flow at a friction
Reynolds number Reτ of up to 590.

The temporal transition study is then extended to spatial simula-
tions in chapter 5. In the spatial framework the disturbances grow in
in the streamwise direction rather than in time. Whereas the similarity
of the spatial and temporal approach is well-established for the early
transitional and the turbulent phases (Kleiser & Zang, 1991), there are
differences during the highly intermittent later transitional stages con-
cerning the evolution of the physical flow structure and, possibly, the
effect of appropriate subgrid-scale (SGS) modelling.

Additionally, the high-pass filtered eddy-viscosity models and ADM
have been tested in homogeneous isotropic turbulence at a Taylor mi-
croscale Reynolds number of up to Reλ ≈ 5500 (chapter 6). For those
cases detailed analysis including energy and dissipation spectra is shown.
A summary and conclusions of this thesis are given in chapter 7 together
with an outlook.

In the appendix A a new Fourier method to prescribe non-periodic
boundary conditions while retaining periodic discretisation of the com-
putational domain is summarised (a full description is given in Schlatter
et al. (2005a)). Appendix B describes some general implementation de-
tails of the SGS models used throughout this thesis.



Chapter 2

Large-eddy simulation

2.1 Governing equations

The governing equations for laminar, transitional, and turbulent
flows are the Navier-Stokes equations for the velocity components ui

(i = 1, 2, 3) and the pressure p, given here in non-dimensional form for
an incompressible flow,

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
, (2.1)

complemented with the incompressibility constraint,

∂ui

∂xi
= 0 . (2.2)

The summation convention over repeated indices is used throughout this
thesis unless stated otherwise. The Reynolds number Re is defined as

Re =
U◦L◦

ν◦ (2.3)

with some dimensional reference quantities U◦, L◦ and the kinematic
viscosity ν◦. In the traditional LES approach (Leonard, 1974), the
equations (2.1) and (2.2) are spatially filtered by a low-pass filter GP

(primary LES filter) with some filter width ∆. The primary low-pass
filtered velocity is given by

ui(x) := GP ∗ ui :=
∫
V

GP (x, x′, ∆)ui(x′)dx′ , (2.4)

where V is the computational domain. The filtering operation yields the
LES equations

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+

1
Re

∂2ui

∂xj∂xj
(2.5)
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and the filtered continuity equation

∂ui

∂xi
= 0 . (2.6)

The LES equations govern the evolution of the large, energy-carrying
scales of motion. Note that the primary filter GP may have a continuous
transfer function (graded filter, see below) or be the implicit grid filter
due to the discretisation of the LES equations (see e.g. Domaradzki &
Adams (2002)).

The effect of the non-resolved small scales enters in (2.5) through the
subgrid-scale (SGS) term

τij := uiuj − uiuj , (2.7)

which is not closed since uiuj cannot be obtained from the filtered quan-
tities ui alone. τij must thus be modelled by an appropriate SGS model.
The energy dissipation due to the SGS stresses τij is (see section B.3)

εSGS = τijSij , (2.8)

with the large-scale strain rate

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.9)

εSGS describes the amount of kinetic energy which is dissipated by the
SGS model in addition to the (physical) viscous dissipation. It is often
argued that a correct prediction of the SGS dissipation is one of the
crucial statistical features of a successful LES (see e.g. Meneveau & Katz
(2000)).

2.1.1 Filtering

The conceptually most important operation in the derivation of the LES
equations (2.5) and (2.6) is the spatial low-pass filtering of the velocity
field (and related quantities) according to equation (2.4). The primary
filter GP provides the scale separation between the large scales, which
are to be discretised and resolved on the numerical grid, and the small
scales, which are only modelled through τij . Depending on this primary
filter and its shape and cutoff frequency the modelling strategy has to
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be chosen accordingly. A rough distinction of SGS models can be made
depending on the nature of the primary filter GP . The primary filter
can simply be the implicit grid filter due to the discretisation on the
coarse LES grid, e.g. in a spectral context a spectral cutoff filter at the
highest resolved wavenumber. Classical eddy-viscosity models usually
employ the implicit grid filter as primary filter GP . Conversely, explicitly
filtered LES, e.g. the approximate deconvolution model (ADM) (Stolz
& Adams, 1999), make use of a graded primary filter. A comparison of
some explicitly filtered models is given in Gullbrand & Chow (2003).

Graded filters

For the SGS models which will be introduced in the following section 2.2
the definition of a graded high-order filter (i.e. one having a continuous
transfer function in spectral space) is necessary. Here, we adopt the filter
definition by Stolz et al. (2001a) for a low-pass filter G which is defined
for arbitrary grids and has been used with great success in the approxi-
mate deconvolution model (see section 2.2.3). On non-equidistant grids,
e.g. the Gauss-Lobatto collocation points used in the wall-normal direc-
tion of the channel flow simulations, the filter is implemented in physical
space on an implicit five-point stencil. Derivation details and the filter
weights can be found in Stolz et al. (2001a).

For discretisations on equidistant grids in Fourier space, the transfer
function Ĝ of the filter G (see figure 2.2) can be written as

Ĝ(ω) =
Ĝex(ω)

1 + K[Ĝex(ω) − 1]
, K =

2Ĝex(ωc) − 1
Ĝex(ωc) − 1

, (2.10)

with the explicit filter Ĝex

Ĝex(ω) = 0.625 + 0.5 cosω − 0.125 cos2ω . (2.11)

The cutoff wavenumber ωc is defined by Ĝ(ωc) = 1/2 and can be chosen
freely. Based on the low-pass filter G a class of corresponding high-pass
filters

HN (ω) = [I − G(ω)]N+1 (2.12)

can be defined with their order increasing with N . The high-pass filter
HN is at least of order O(∆r(N+1)) with ∆ being the grid spacing and r
the order of the filter G (Stolz et al., 2001a). The latter is at least r = 3
on arbitrary grids for the filter G introduced above. Figure 2.2 shows
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the transfer function of the high-pass filters H0 and H5 with a chosen
cutoff frequency ωc = 2π/3. In figure 2.1, Ĥ0 is depicted for different ωc.
Note that ĤN is equivalent to the high-pass filter used in ADM (Stolz
et al. (2001a)), see section 2.2.3,

HN (ω) = [I − G(ω)]N+1 = I − QN (ω) ∗ G(ω) , (2.13)

with

QN (ω) =
N∑

ν=0

[I − G(ω)]ν ≈ G−1(ω) (2.14)

being the approximate deconvolution filter.
The formulation of the filters in physical space allows greater flex-

ibility, e.g. the extension to non-spectral discretisations such as finite
differences. Note that for spectral discretisations in directions with non-
equidistant grids a filtering in spectral space can alternatively be per-
formed, see e.g. Boyd (1998). This approach has been tested yielding
similar results as the filtering in physical space.

The three-dimensional high-pass filter is derived from the one-
dimensional filter by a tensor product, i.e.

G ∗ u = G1 ∗ G2 ∗ G3 ∗ u (2.15)

and e.g.
H0 ∗ u = u − G ∗ u = u − G1 ∗ G2 ∗ G3 ∗ u (2.16)



2.1 Governing equations 19

ω

tr
an

sf
er

 f
un

ct
io

n

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 2.2: Transfer function of the primary and secondary filters used for the
ADM and related models: Primary low-pass filter Ĝ eq. (2.10), high-
pass filter Ĥ0 = 1−Ĝ, high-pass filter Ĥ5 = (1−Ĝ)6. Cutoff wavenumber
ωc = 2π/3.

with Gi being the one-dimensional low-pass filter in the direction xi.
Note that the tensor product introduces a slight anisotropy of the fil-
ters. This issue will be discussed further in the context of homogeneous
isotropic turbulence (chapter 6).

With a suitable filter HN with N ≥ 0, high-pass filtered quanti-
ties HN ∗ ui are effectively vanishing for smooth velocity profiles (e.g.
low-order polynomial) which represent laminar and flows such as those
occuring, e.g., in the near-wall and early transitional flow regions. It is
therefore readily possible to use a high-pass filtering operation to sepa-
rate the large scales from the small-scale fluctuations, which are, as will
be discussed further down, important for SGS modelling.

Test filter for the dynamic Smagorinsky model

The dynamic Smagorinsky model (Germano et al. (1991), see also section
B.4) requires a test filter at a lower cutoff wavenumber than the implicit
grid filter. For our calculations using this model, different test filters have
been evaluated with the cutoff wavenumber fixed at ωc = π/2 (Germano
et al., 1991), see also the discussion in Stolz et al. (2005). These filters
are shown in figure 2.3 and include G (equation (2.10), I − H1 (see
equation (2.12)) and the second-order filter G(2). This filter is defined
in physical space as

αũi−1 + ũi + αũi+1 =
(

1
2

+ α

)[
1
2
ui−1 + ui +

1
2
ui+1

]
, (2.17)
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Figure 2.3: Filter transfer functions used as test filter Ĝtest for the dynamic
Smagorinsky model, cutoff wavenumber ωc = π

2
. 1 − Ĥ1 = 2Ĝ − Ĝ2,

Ĝ, second-order filter Ĝ(2) = 1
2
(1 + cos(ω)).

with α = −(1/2) cos(ωc) and the filtered and unfiltered grid functions
ũi, ui, respectively. The corresponding transfer function reads

Ĝ(2) =

(
1
2 + α

)
[1 + cosω]

1 + 2α cosω
. (2.18)

For ωc = π/2 the transfer function reduces to

Ĝ(2) =
1
2

(
1 + cos(ω)

)
. (2.19)

The filter I−H1 = Q1G = 2G−G2 is based on the filter G defined in
equation (2.10). To obtain a cutoff wavenumber ωc = π/2 for the filter
I − H1, a cutoff wavenumber

ωc = arccos
(

1 −
√
−8 + 6

√
2
)

≈ 1.2626 (2.20)

has to be chosen to evaluate G. Note that I − H1 is at least of sixth
order on arbitrary grids.

Simulation results using the different test filters for the dynamic
Smagorinsky model are presented in section 4.3.

2.2 Subgrid-scale modelling

In this section, we present the SGS models which have been employed to
obtain the results presented in chapters 4-6. For a more general overview
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of various SGS models and their application we refer to the introduction
in sections 1.2 and 1.3 and the review articles by Lesieur & Métais (1996);
Meneveau & Katz (2000); Piomelli (2001); Domaradzki & Adams (2002).

2.2.1 Classical eddy-viscosity models

The most widely-used SGS models are the eddy-viscosity models, given
by

τij − δij

3
τkk = −2νtSij , (2.21)

where Sij is the large-scale strain-rate tensor defined in equation (2.9).
The eddy viscosity νt is usually modelled according to Smagorinsky
(1963) yielding the popular Smagorinsky model

νt = (CS∆)2|S| , (2.22)

with the definition
|S| = (2SijSij)1/2 . (2.23)

∆ denotes a typical length scale of the spatial filter generally computed
from the grid size as ∆ = (∆x∆y∆z)1/3. The model coefficient CS

(“Smagorinsky constant”) has to be determined empirically and is de-
pendent on the particular flow situation. Assuming that the cutoff fre-
quency lies within a k−5/3 Kolmogorov cascade, an approximate value
for the Smagorinsky coefficient can be derived (Lilly, 1992)

CS =
1
π

(
3CK

2

)−3/4

≈ 0.18 , (2.24)

assuming a Kolmogorov constant CK ≈ 1.4. However, as reported by
Deardorff (1970) and Moin & Kim (1982), in practise the coefficient has
to be reduced to values CS ≈ 0.1 to sustain turbulence in a channel flow.

Another approach is the structure function (SF) model (Métais &
Lesieur, 1992) in which the eddy viscosity is given by

νt = CSF C
−3/2
K ∆

√
F2(u,x, ∆) (2.25)

with the Kolmogorov constant CK ≈ 1.4 and F2 being the second-order
velocity structure function which is computed from the values of u at
the six neighbouring grid points surrounding x (see appendix B.1). In
the filtered structure function (FSF) model (Ducros et al., 1996), the
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argument of F2 in equation (2.25) is high-pass filtered with a suitable
filter. However, in the original formulation for inhomogeneous flows
the structure function is computed in a two-dimensional formulation
including the four neighbouring points only.

Classical variants of eddy-viscosity models with constant model coef-
ficients, e.g. the above-mentioned Smagorinsky model and the structure-
function model, are quite successful in certain flow situations. Neverthe-
less, for some flows, e.g. wall-bounded shear flows, transitional or in-
termittent flows, ad-hoc remedies have to be used to obtain acceptable
results, e.g. a van-Driest wall-damping function (van Driest, 1956) or a
low-Reynolds number correction (Voke & Yang, 1995).

Another widely-used option is to resort to dynamic SGS models,
which were introduced by Germano et al. (1991) and further refined by
Lilly (1992), see also chapter 1. These models, in particular the dynamic
Smagorinsky (DS) model (see section B.4), attempt to use a spatially
and temporally varying local model coefficient CS(x, t) which is adapted
dynamically to different flow situations, e.g. laminar, transitional, and
turbulent flow. In principle, a second test filter level is introduced, usu-
ally with cutoff wavenumber ωtest

c = π/2 (see section 2.1.1). The energy
flux across this wavenumber band is then measured and is related to the
exchange of energy between the resolved and the subgrid scales by use
of the Germano identity (Germano et al., 1991).

The dynamic models, however, in general do not correctly predict a
laminar base flow depending on the test filter used. Moreover, clipping
possible negative values and averaging in homogeneous directions dur-
ing the computation of the dynamic model coefficient has usually to be
employed for turbulent flows in order to minimise the occurrence of in-
stabilities (see section B.4). Several remedies to this problem have been
proposed, e.g. the Lagrangian dynamic SGS model (Meneveau et al.,
1996) in which the evolution of the SGS stresses is tracked in a La-
grangian way.

2.2.2 High-pass filtered eddy-viscosity models

Alternatively, high-pass filtered (HPF) velocities can be used instead of
the full LES velocity field for the computation of the subgrid-scale model
terms. In Sagaut et al. (2000) a high-pass filter has been employed
for the computation of the eddy viscosity, comparable to the filtered
Smagorinsky model (Nicoud & Ducros, 1999). Similarly, Ducros et al.



2.2 Subgrid-scale modelling 23

(1996) extended the structure-function model, see previous section 2.2.1.
In laminar flow regions and in the viscous sublayer of turbulent wall-

bounded flows, the SGS model contributions should vanish or at least
be very small. Using the classical Smagorinsky or the SF model, this
condition is not necessarily fulfilled since the strain rate Sij(u) actually
peaks at the walls. Therefore, van-Driest-type wall-damping functions
are usually employed to reduce the model influence close to the walls.
The FSF model and the dynamic Smagorinsky model aim at directly
reducing the eddy viscosity in the vicinity of the walls by computing
a spatially varying value of the model coefficient CS . However, truly
vanishing SGS stresses are not attained for both of these SGS models
in their three-dimensional formulation which is necessary for inhomoge-
neous flows.

In addition to filtering the arguments of the eddy viscosity, it is also
possible to compute the strain rate from the high-pass filtered LES ve-
locity field too. This type of models, henceforth called HPF models, has
been proposed independently by Vreman (2003) and Stolz et al. (2004);
Meyer (2003). The approach can be considered a generalisation of the
variational multiscale (VMS) method presented by Hughes et al. (2000).
Therein, the scale separation is performed by projection onto disjunct
functional spaces, whereas in our methodology, a filtering approach with
graded (as opposed to sharp cutoff) filters has been chosen.

The HPF eddy-viscosity models employ high-pass filtered quantities
H ∗ u instead of the LES quantities u for the computation of both the
strain rate and the turbulent eddy viscosity,

τij − δij

3
τkk ≈ −2νHPF

t Sij(H ∗ u) (2.26)

with the high-pass filtered strain rate

Sij(H ∗ u) =
1
2

(
∂H ∗ ui

∂xj
+

∂H ∗ uj

∂xi

)
, (2.27)

and a suitable high-pass filter H . The fixed-coefficient HPF Smagorinsky
model for the SGS stresses τij is thus given by

νHPF
t = (CHPF

S ∆)2|S(H ∗ u)| . (2.28)

Similarly, from the structure-function model an expression for the
HPF-SF model can be derived by employing high-pass filtering for both
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the strain rate Sij(H ∗ u) and the structure function F2(H ∗ u)

νHPF
t = CHPF

SF C
−3/2
K ∆

√
F2(H ∗ u,x, ∆) . (2.29)

Results obtained with the HPF models defined above will be pre-
sented in chapters 4 and 6. In particular, the models have been employed
successfully to incompressible turbulent channel flow at Reτ ≈ 180 (Stolz
et al., 2004, 2005) and Reτ ≈ 590 (Schlatter et al., 2005c). Furthermore,
different high-pass filters were evaluated. The HPF models were also ap-
plied to simulate forced temporal K-type transition in channel flow (Stolz
et al., 2004, 2005) and in the spatial approach (Schlatter et al., 2005d).
It turned out that the high-pass filtering in fact reduces the SGS dissi-
pation in the transitional flow regions, allowing the simulation of such
flows even with a fixed model coefficient.

The extension of the HPF Smagorinsky model to compressible flows
has been studied and applied to a spatial supersonic turbulent boundary
layer by Stolz (2004, 2005c) and to supersonic boundary-layer transition
(Stolz, 2005b). Additionally, the behaviour of the models in homoge-
neous isotropic turbulence is examined in chapter 6, see also Schlatter
et al. (2005c).

A close relation to the variational multiscale (VMS) method (Hughes
et al., 2000, 2001) can be established, see also Vreman (2003). The
“small-small” models presented therein can be recovered by our method-
ology, equations (2.26)-(2.29), by using the spectral cutoff filter as high-
pass filter H which guarantees that the model contributions are com-
puted from the high-frequency velocity field only. Note that for an exact
representation of the “small-small” VMS method, τij has to be restricted
to the “small” wavenumber range, i.e. τVMS

ij = H ∗ τHPF
ij . However, this

difference is minor as shown by Vreman (2003).
The SGS model proposed by Schumann (1975) separating the locally

isotropic part from the inhomogeneous part of the flow can be repro-
duced with our methodology by filtering out only the respective mean
quantities, e.g. in the wall-parallel directions. Schumann’s model is also
included in the study of the turbulent channel flow presented in chap-
ter 4.

High-pass filter and model coefficent

The performance of the high-pass filtered eddy-viscosity models strongly
depends on the high-pass filter H used for the scale separation. It is
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therefore advisable to use a filter which can be applied in three dimen-
sions even on non-equidistant grids and in the presence of solid walls, in
order to comply with the requirement for LES of transitional flows dis-
cussed section 1.3.1. Moreover, the filter should be of high order in such
a way that model contributions from smooth velocity profiles (near-wall
region, laminar base flow) are evanescent (Stolz et al., 2005; Schlatter
et al., 2005c). However, to allow for an extension to non-spectral, e.g.
finite-difference methods, the cutoff frequency of the filter should not
be too high due to the misrepresentation of the high-frequency content
in finite-difference methods (Lele, 1992). It therefore seems natural to
use the filter G (equation (2.10)) and its corresponding high-pass fil-
ter H0 = I − G (equation (2.12)) to perform the high-pass filtering for
these models. A comparison of different filters, including the one used
by Vreman (2004), has been made by Stolz et al. (2005).

As detailed in section 2.1.1, the cutoff wavenumber ωc of H0 can be
chosen and adapted to specific requirements. The influence of ωc on the
simulation results (refer to chapter 4) can be minimised by adapting the
model coefficient according to the empirical relation (Stolz et al., 2004)

CHPF
S =

1
1 − 1

π ωc

· C0 (2.30)

for the HPF Smagorinsky model with the recommended value
C0 = 0.1/3. Similar relations are given for the HPF-SF model and the
FSF model (Schlatter et al., 2004b) (see figure 2.4),

CHPF
SF =

1
112 − 41.7ωc

(2.31)

and
CFSF =

1
58.8 − 15.2ωc

. (2.32)

The corresponding filter transfer functions Ĥ0(ω, ωc) = 1 − Ĝ(ω, ωc) for
the cutoff wavenumbers ωc ∈ {π

3 , π
2 , 2π

3 , 3π
4 } have already been shown in

figure 2.1.
The relations (2.31) and (2.32) have been found by performing sev-

eral LES of turbulent channel flow at Reτ ≈ 180 with different coeffi-
cients CFSF , CHPF

SF and cutoff wavenumbers ωc and optimising for the
most accurate value of the averaged skin friction Reτ . However, the
results presented in section 4.7 indicate that the optimised model coef-
ficients CHPF

S , CFSF , CHPF
SF are applicable for other Reynolds numbers.
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Figure 2.4: Adaptation of the model coefficient to the filter cutoff wavenum-
ber ωc: CHPF

S for the HPF Smagorinsky model, CF SF for the FSF
model, and CHPF
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Additionally, transitional channel flow was also predicted well by using
these model coefficients (Stolz et al., 2004). Moreover, for homogeneous
isotropic turbulence (see chapter 6) only a slight adaptation of the coef-
ficients was necessary.

2.2.3 Approximate deconvolution model (ADM)

Another recent modelling approach is the approximate deconvolution
model (ADM) which was proposed by Stolz & Adams (1999) for the
LES of incompressible and compressible flows. The model is based on
an approximate defiltering of the explicitly filtered LES data by a trun-
cated series expansion of the inverse filter. Furthermore, a relaxation
regularisation which acts only on the scales close to the numerical cutoff
is used to model the interaction of the resolved and represented scales
with those not represented numerically.

The ADM SGS model to close equation (2.5) can be written as follows
(Stolz et al., 2001a)

∂τij

∂xj
=

∂u�
i u

�
j

∂xj
− ∂uiuj

∂xj
+ χ(I − QN ∗ G) ∗ ui . (2.33)

Note that the LES filter operation (2.4) is performed using G as the
primary filter GP . In equation (2.33), a star denotes the approximately
deconvolved quantities

u�
i := QN ∗ ui . (2.34)
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G is the graded discrete primary low-pass filter defined in equation (2.10)
and QN its approximate inverse (refer to equation (2.14))

QN =
N∑

ν=0

(I − G)ν ≈ G−1 .

The transfer functions of G and HN = I−QN ∗G are shown in figure 2.2.
The relaxation term −χ(I − QN ∗ G) ∗ ui = −χHN ∗ ui (see equa-

tion (2.13)) provides the necessary drain of energy out of the coarsely
discretised system. In case of constant χ, it can be interpreted as a
secondary filter operation with the filter QN ∗ G applied every 1/(χ∆t)
time steps with ∆t being the time step of the numerical integration (Stolz
et al., 2001a). This secondary filter operation is similar to the “trun-
cated Navier-Stokes dynamics” approach presented by Domaradzki et al.
(2002). Furthermore, the relaxation regularisation is related to the spec-
tral vanishing viscosity (SVV) concept first introduced by Tadmor (1989)
to suppress oscillations in the spectral solution of the inviscid Burgers
equation. Recently, the SVV was extended to the Navier-Stokes equa-
tions by Karamanos & Karniadakis (2000). In section 4.7.3 a formal
comparison of the ADM relaxation term to the SGS model term intro-
duced by the HPF eddy-viscosity model (section 2.2.2) is presented.

The complete ADM equations combining the equations (2.5) and
(2.33) can be written as

∂ui

∂t
+

∂u�
i u

�
j

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
− χ(I − QN ∗ G) ∗ ui . (2.35)

The actual implementation of ADM in numerical codes is based on this
equation (2.35). A drawback of the ADM formulation is that the result-
ing equation (2.35) is not Galilean-invariant (see Speziale (1985); Stolz
(2005a)). The additional term appearing in a coordinate system moving
with the constant velocity Vj is

Vj
∂(ui − u�

i )
∂xj

. (2.36)

This term is proportional to the difference between the filtered veloc-
ity ui and the filtered approximately deconvolved velocity u�

i which is
presumably small but not exactly vanishing. However, due to the fil-
ter properties, only the high-wavenumber range is affected. Related
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SGS models, e.g. the dynamic reconstruction (DRM) model proposed
by Gullbrand (2003), are also not Galilean-invariant. However, by intro-
ducing a slight modification in the ADM equations, a Galilean-invariant
formulation can be obtained (Stolz et al., 2001a)

∂τij

∂xj
=

∂u�
i u

�
j

∂xj
− ∂u�

i u�
j

∂xj
+ χ(I − QN ∗ G) ∗ ui , (2.37)

which can be considered a scale-similarity approach based on the de-
convolved velocities. Compared to equation (2.35), this modified ADM
model using equation (2.37) is considerably more expensive to evaluate
in numerical codes since the nonlinear product has to be evaluated three
times instead of only once as in equation (2.35).

It is instructive to consider an alternative notation of the approximate
deconvolution model by using the approximately deconvolved quantities
as dependent variables. After convolution of equation (2.35) with QN

and neglecting commutation errors (for a discussion on commutation
errors see Stolz (2001)) one obtains for constant χ (Stolz, 2005a)

∂u�
i

∂t
+

∂QN ∗ (u�
i u

�
j )

∂xj
= −∂p�

∂xi
+

1
Re

∂2u�
i

∂xj∂xj
−χ(I−QN ∗G)∗u�

i . (2.38)

By replacing u�
i with ui and defining the primary LES filter GP (equa-

tion (2.4)) as QN ∗ G, i.e.

ui = QN ∗ G ∗ ui ,

the previous equation (2.38) can be rewritten as

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
− χ(ui − ui) , (2.39)

which is equivalent to the ADM formulation given in equation (2.35)
under the given assumptions. Note that in the context of equation (2.39)
the primary LES filter to obtain the quantities ui, p is GP = QN ∗G and
not G as in the ADM formulation of equations (2.33) and (2.35). From
equation (2.39) it becomes evident that the ADM formalism corresponds
to an explicit high-order low-pass filtering of the nonlinear terms together
with the relaxation regularisation

−χHN ∗ ui = −χ(ui − ui) ,
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which acts on high-frequency components of the solution ui only. The
explicit high-pass filtering of the nonlinear term reduces numerical errors
present in the solution, e.g. aliasing errors and differentiation errors (the
latter evidenced by the modified wavenumber concept). A discussion of
these numerical effects is given in e.g. Gullbrand (2003); Gullbrand &
Chow (2003).

The advantage of the formulation (2.39) compared to (2.35) is that
only one filter level is needed, which simplifies the model implementation.
Moreover, the filter shape and cutoff wavenumber of the primary LES
filter can be easily adapted to the properties of the underlying numerical
discretisation scheme (see e.g. the adaptive deconvolution order used by
von Kaenel et al. (2004)). In particular, the primary filter (·) is now
the same as the secondary filter implied by the relaxation term (see
discussion above). Moreover, due to the higher cutoff wavenumber of the
primary filter more realistic comparisons to DNS results are possible.

Similarly to equation (2.35), the new notation used for equa-
tion (2.39) yields a non-Galilean-invariant model. The error term is
(compare to equation (2.36))

Vj
∂(ui − ui)

∂xj
, (2.40)

i.e. proportional to the same velocity difference also used in the relax-
ation term. In the new notation, the subgrid-scale force of the deconvo-
lution is written as

∂τij

∂xj
=

∂uiuj

∂xj
− ∂uiuj

∂xj
, (2.41)

which is strikingly similar to the scale-similarity model by Bardina et al.
(1980)

∂τSS
ij

∂xj
=

∂uiuj

∂xj
− ∂uiuj

∂xj
. (2.42)

The difference of the singly filtered velocities ui and the doubly filtered
quantities ui is vanishing for low wavenumbers and is small for higher
frequencies. Note also that the scale-similarity model in the formula-
tion (2.42) is Galilean invariant (Speziale, 1985), however it is known
to amplify the high-wavenumber content of the solution (Lund, 1997).
Note that the models described in equations (2.37) and (2.42) are not
equivalent, but their difference is minor.
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Relaxation parameter χ

If χ > 0 is constant on equidistant grids, the relaxation term is purely
dissipative. However, with spatially varying χ and filter HN , also non-
dissipative (backscatter) effects are possible (Stolz & Adams, 2003).
Note that this low-order relaxation regularisation is not equivalent to the
use of an eddy-viscosity-type dissipation (used e.g. in the Smagorinsky
and the structure-function model) because the affected spectral compo-
nents are different.

The local model coefficient χ(x, t) of the relaxation term can be es-
timated from the instantaneous LES solution by a dynamic procedure
(Stolz et al., 2001a,b)

χ(x, t+∆t) = χ(x, t)
F2(x, t + ∆t)|χ=0 − F2(x, t)

F2(x, t + ∆t)|χ=0 − F2(x, t + ∆t)|χ=χ(x,t)
, (2.43)

where F2(t) = F2(HN ∗ u, t) is the second-order velocity structure func-
tion (see section B.1) computed from the high-pass filtered velocity field
HN ∗ u. This dynamic determination of χ aims at keeping the energy
at small scales constant, for which F2(HN ∗ u) is a measure. Usually,
χ is updated only every couple of time steps, but changing this interval
somewhat was found to have negligible influence in developed flows. In
order to ascertain numerical stability, χ is clipped to

0 ≤ χ ≤ 1/∆t , (2.44)

or else the time step ∆t could be reduced accordingly. Moreover, a filter
operation has to be applied to smoothen χ in regions where it strongly
varies in space. A second-order Padé filter is used for this purpose with
cutoff wavenumber ωc = π/8 (Stolz et al., 2001b), see the definition in
equations (2.17) and (2.18). The computation of F2 is performed with
the six-point formulation on all grid points according to Lesieur & Métais
(1996) to account for non-equidistant grid spacing.

The dynamic procedure (2.43) is in principle parameter-free. How-
ever, numerical tests in channel flow showed that the dynamically com-
puted model coefficient χ(x, t) strongly depends on the clipping bounds
(2.44) and thus leads to a dependence of χ on the actual time step ∆t of
the simulation. In particular, for the fully developed turbulent channel
flow at Reτ ≈ 180 presented in Stolz et al. (2001a), at about 12% of
the grid points χ had to be clipped. Moreover, during the early stages
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of transition in channel flow (see section 4.4), the determination equa-
tion (2.43) for χ is ill-posed since the values for F2 are very small due
to the (nearly) laminar flow field. On the other hand, as shown in Stolz
et al. (2001b), the above dynamic algorithm detects the appearance of
shocks in compressible flow and increases χ accordingly in such regions.
Moreover, χ also correctly reacts to the presence of aliasing errors at
small scales and acts to damp such artefacts (Schlatter et al., 2004d).

Therefore, additional LES have been performed with simplified defi-
nitions of χ as an alternative to the dynamic procedure (2.43). In par-
ticular, the following choices have been tested: simulations with fixed
χ > 0,

χ = C1 = constant , (2.45)

χ based on the velocity gradient tensor,

χ = C2‖∇u‖ , (2.46)

and χ based on the high-pass filtered velocity gradient tensor,

χ = C3‖∇(HN ∗ u)‖ . (2.47)

The term ‖∇(HN ∗ u)‖ is closely related to
√

F2(HN ∗ u)/∆ (see ap-
pendix B.2) with the grid spacing ∆ (Lesieur & Métais, 1996). Since the
structure function is easier to evaluate in physical space, the definition

χ = C4

√
F2(HN ∗ u)/∆ (2.48)

was also implemented and evaluated. A similar approach was also stud-
ied by Müller et al. (2004) for isotropic homogeneous turbulence. In
principle, the coefficients Ci can be derived from energy considerations
similar to Ducros et al. (1996) for homogeneous isotropic flow. No ad-
ditional artificial bounds (clipping) or filter operations were found to be
necessary. Results obtained for the different variants of χ are reported
in chapter 4 and in Schlatter et al. (2004d).

ADM for turbulent and transitional flows

Large-eddy simulations using ADM as SGS model in the fully turbu-
lent regime have shown very good agreement with filtered DNS data for
a wide range of flows, e.g. for incompressible channel flow (Stolz et al.,
2001a), shock/turbulent-boundary-layer interaction (Stolz et al., 2001b),
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and high-Reynolds-number supersonic boundary layer flow (Stolz &
Adams, 2003). A transitional/turbulent rectangular jet has been simu-
lated successfully by Rembold et al. (2002). Müller et al. (2002) used
ADM for the simulation of forced and decaying homogeneous isotropic
turbulence. The application of ADM in a semi-industrial finite-volume
CFD code has been demonstrated by von Kaenel et al. (2003).

ADM-2D and the relaxation-term model (ADM-RT)

In addition to the standard ADM (also denoted as ADM-3D) methodol-
ogy described above, two alternative variants have been analysed, both
of which were found to be suitable for LES of transitional and turbulent
channel flow on very coarse grids, as demonstrated in Schlatter et al.
(2004c) and chapter 4. The reason for introducing these new models
is that with the standard ADM methodology destabilising properties of
the deconvolution operation on coarse grids have been observed in the
wall-normal direction. The problem arises mainly due to the use of ex-
plicit filtering within the ADM approach with deconvolution used for the
nonlinear terms and subsequent filtering. This further reduces the range
of resolved wavenumbers (see details in section 4.4.1 in chapter 4).

The first variant uses, instead of three-dimensional filtering and de-
convolution, only two-dimensional filtering in the homogeneous wall-
parallel directions. Similarly, the relaxation term is also applied only
in a two-dimensional formulation. Consequently, this model is termed
ADM-2D. The two-dimensional deconvolution operator is maintained all
the way through the transitional and turbulent phases. Herewith the ad-
vantages of the ADM technique are retained, although this model is not
as general as the original formulation since it is restricted to filtering in
the two homogeneous directions only while in principle the third direc-
tion requires full DNS-like resolution. However, for LES of transitional
and turbulent channel flow a special treatment of the inhomogeneous
wall-normal direction is common practise, e.g. in the four-point formula-
tion of F2 in the filtered structure-function model (Ducros et al., 1996) or
the two-dimensional spectral cutoff test filter in the dynamic Smagorin-
sky model (Germano et al., 1991). Results of the ADM-2D model are
presented in section 4.4.

As will be demonstrated in chapters 4 and 5, the most promising
alternative to the standard ADM formalism (2.33) turned out to be the
relaxation-term model (ADM-RT). For this model, the three-dimensional
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filter definition is used to evaluate the relaxation term (RT), but the
nonlinear terms are evaluated as

∂uiuj

∂xj
, (2.49)

i.e. computed from the LES quantities without approximate deconvolu-
tion as in a no-model calculation. Different from ADM-3D and ADM-2D,
within this procedure the quantities ui have to be considered as filtered
by the grid filter only, GP in equation (2.4). This modification is still as
general as the standard ADM procedure but does not use deconvolved
quantities for the nonlinear terms (see also Schlatter et al. (2004d)).
Note that the high-pass filter still involves the approximate deconvolu-
tion operator QN in the definition of the relaxation term, however no
actual deconvolution of the convection terms is performed. The SGS
forces thus simply read

∂τij

∂xj
= χ(I − QN ∗ G) ∗ ui = χ(I − G)N+1 ∗ ui = χHN ∗ ui , (2.50)

leading to the LES equations for the ADM-RT model

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui

∂xj∂xj
− χHN ∗ ui . (2.51)

The ADM-RT model has been shown to produce very accurate results
in spectral simulations of fully turbulent channel flow even on rather
coarse grids. These results are presented in this thesis in chapter 4 and
Schlatter et al. (2004c,d). Moreover, for temporal and spatial transition,
the ADM-RT model was able to produce excellent results including the
prediction of the correct transition location together with the dominant
vortical structures, see section 4.6 and chapter 5 (Schlatter et al., 2004a,
2005d).

Note however that for LES of compressible boundary-layer flow using
finite-difference discretisation, the deconvolution was found to be benefi-
cial (Stolz & Adams, 2003), which is mainly due to a reduction of aliasing
and discretisation errors. This will further be discussed in section 4.5.

For all of the models ADM-2D, ADM-3D and ADM-RT the different
definitions of the relaxation parameter χ detailed in the previous section
can be used.





Chapter 3

Numerical method

3.1 Geometry and simulation method

The geometry for the simulation of transitional and turbulent chan-
nel flow is given in figure 3.1. The streamwise direction is denoted
by x = x1, the spanwise direction by y = x2 and the wall-normal di-
rection by z = x3. Similarly, the non-dimensional extents of the domain
are denoted by L1, L2 and L3 = 2, respectively. Periodic (homogeneous)
boundary conditions are applied in both the spanwise and the streamwise
direction. No-slip conditions are prescribed at the solid walls (z = ±1).

x1

x2
x3

L1
L2

L3
u1

Figure 3.1: Sketch of the channel flow configuration. The coordinates x = x1

denote the streamwise, y = x2 the spanwise, and z = x3 the wall-normal
direction, respectively.

The incompressible Navier-Stokes equations (2.5) are discretised by
a fully spectral method with Fourier representation in the periodic wall-
parallel directions and by Chebyshev expansions in the wall-normal di-
rection. The approximation of the velocities is thus given by

ui(x1, x2, x3, t) =
∑
k1

∑
k2

∑
k3

ûi(k1, k2, k3, t)e
2πi(

k1x1
L1

+
k2x2

L2
)
Tk3(x3) ,

(3.1)
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with the imaginary unit i =
√−1 and wavenumbers kj . The spectral

velocity is denoted by ûi. The Chebyshev polynomials Tk3(x3) are given
by

Tk3(x3) = cos(k3 arccos(x3)) . (3.2)

In the wall-parallel directions N1 × N2 computational nodes are used
with equidistant grid spacing ∆x = L1/N1 and ∆y = L2/N2. The wall-
normal direction x3 is discretised on the N3 non-equidistantly distributed
Gauss-Lobatto collocation points (Canuto et al., 1988)

x3,j = cos(jπ/N3) , 0 ≤ j ≤ N3 − 1 . (3.3)

In the Fourier directions periodic boundary conditions are fulfilled.
Therefore, the Galerkin method for the minimisation of the residuals
can be chosen. In the wall-normal direction, the tau method (see Canuto
et al. (1988)) has been applied since the Chebyshev polynomials Tk3(x3)
do not statisfy the no-slip conditions individually. The equations for
the two highest Chebyshev modes TN3−2 and TN3−1 are replaced by the
boundary conditions (see Canuto et al. (1988)).

The divergence-free condition is enforced exactly up to machine ac-
curacy in the discretised velocity field by an influence-matrix technique
(Kleiser & Schumann, 1980; Kleiser, 1982; Kleiser & Schumann, 1984)
with appropriate correction of the tau errors (Kleiser et al., 1998). Time
advancement is achieved by a semi-implicit low-storage second-order
Runge-Kutta/Crank-Nicolson scheme (Wray, 1987; Sandham & Kleiser,
1992). A constant time step has been used which was always lower
than half of the stability limit of the explicit Runge-Kutta scheme. The
nonlinear advection terms of the Navier-Stokes equations are computed
pseudospectrally with full dealiasing employing the 3/2-rule in all spa-
tial directions (see Canuto et al. (1988)). The odd-ball modes in the
wall-parallel planes |kj | = Nj/2, j = 1, 2 arising from the use of even-
numbered fast Fourier transform (FFT) routines are explicitly set to
zero. During the simulation, a constant flow rate is maintained through
a forcing term (Gilbert, 1988).

3.2 Implementation

The actual code implementation is based on the work by Gilbert (1988);
Gilbert & Kleiser (1990) and written in Fortran 77 with some For-
tran 90/95 extensions to allow for dynamic memory management. The
programme is entirely controlled by the use of parameter files.
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Figure 3.2: Performance of the spectral code used for channel flow simulations
for a fixed problem size of N1×N2×N3 = 160×160×161 grid points. Perfor-
mance data for shared-memory version on the NEC SX-5. Left: • Measured
sustained performance, linear speed-up. Right: Sustained efficiency of
the code in relation to the theoretical peak performance.

Moreover, the code has been completely parallelised using the shared-
memory approach with standard and portable OpenMP compiler direc-
tives (Dagum & Menon, 1998; Chandra et al., 2001) based on explicit
loop-level parallelism. 70% of the CPU time of a typical run is spent
in the FFT routines for which the self-adapting FFTW library has been
adopted (Frigo & Johnson, 1999). Alternatively, for simulations per-
formed on vector computers, the FFT library by Temperton (1983, 1985)
and the machine-optimised NEC Advanced Scientific Library (ASL) are
preferred.

Performance data for the NEC SX-5 vector supercomputer, located
at the Swiss National Supercomputing Centre (CSCS), Manno (Switzer-
land), are shown in figure 3.2. The theoretical peak performance per
processor for this machine is 8 GFlops. For a direct numerical simu-
lation (DNS) on 160 × 160 × 161 grid points (with dealiasing, problem
size 1700 MB), nearly linear speed-up for up to 8 processors could be
attained. The efficiency compared to the peak performance is about 38%
on a single processor and drops to approximately 32% on 8 processors for
this fixed problem size. This measured performance can be considered
quite reasonable for this moderate problem size.

In figure 3.3, different computer architectures are compared for DNS
at two resolutions, 160 × 160 × 161 and 32 × 32 × 33 grid points.
The efficiency of the vector computer (NEC SX-5) strongly degrades
for the smaller problem size (compare to figure 3.2) due to the un-
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Figure 3.3: Performance of the spectral code for different resolutions, full sym-
bols correspond to resolution N1 × N2 × N3 = 160 × 160 × 161, open symbols
N1 × N2 × N3 = 32 × 32 × 33. ◦ NEC SX-5 (peak performance per processor
8 GFlops), � and � IBM SP-4 (5.5 GFlops), ♦ and � Linux dual-CPU PC
(2 GFlops, 32 bit), � and � Linux PC (2.2 GFlops, 64 bit). Left: Measured
sustained performance. Right: Sustained efficiency of the code compared to
the respective peak performance.

favourably small vector length. On the other hand, the efficiency for
the (super-)scalar architectures (IBM SP-4 and Linux PC) is similar for
both resolutions, and it is only slightly decreasing with increasing num-
ber of processors. However, for the bigger case the actual speed of the
scalar machines is substantially smaller than for the vector computer,
e.g. roughly 8 processors of the IBM SP-4 are needed to equal the per-
formance of one NEC SX-5 processor.

The GFlops numbers presented in figure 3.3 have been computed
based on the hardware counter on the SX-5 and the measured wall-clock
time on the different architectures. It is therefore not accounted for the
possibly varying number of floating-point operations of the different FFT
libraries. The GFlops numbers of figure 3.2 thus have to be interpreted
with some caution.

It is expected that by using a combination of shared-memory paral-
lelism (OpenMP) and the distributed-memory approach (using the mes-
sage passing interface MPI, see e.g. Pacheco (1997)) an additional in-
crease in performance could be gained especially on massively-parallel
architectures.



Chapter 4

Temporal transition and turbulence

The temporal simulation framework provides a simplified way to perform
simulations of transition and turbulence. In contrast to the physical flow
situation, periodic boundary conditions are imposed in the streamwise
direction, which avoid the need for prescribing well-posed inflow and out-
flow boundary conditions. Especially in the channel geometry, where the
mean flow is not spatially evolving in either the laminar or the turbulent
phase, the temporal approach is a popular alternative to the more costly
spatial simulation (see chapter 5).

In the present chapter, results of large-eddy simulations using the
various models introduced in chapter 2 are compared to fully resolved
direct numerical simulations at different Reynolds numbers. The param-
eter settings of the DNS are based on the simulations by Gilbert (1988);
Kim et al. (1987); Moser et al. (1999). However, all the data have been
recomputed in the course of this work to provide a database of fully
resolved simulation results and to allow detailed analysis of those data.

Section 4.1 describes the initial conditions and the parameter set-
tings used for the channel simulations. Results of an evaluation of the
subgrid-scale stresses from a DNS of K-type transition are presented
in section 4.2. Large-eddy simulation results are given in section 4.3
using the dynamic Smagorinsky model applying different test filters for
transitional and turbulent channel flow. The approximate deconvolution
model (ADM) is examined in section 4.4, and the ADM relaxation-term
model in section 4.5. Visualisations of temporal K-type transition com-
puted with LES are presented in section 4.6. Turbulent channel flow
results at higher Reynolds number Reτ ≈ 590 are given in section 4.7
for the high-pass filtered eddy-viscosity models and ADM-RT.

4.1 Initial conditions and parameter settings

4.1.1 Initial conditions for K-type transition

The initial disturbances for the transition simulations consist of a two-
dimensional (stable) Tollmien-Schlichting (TS) wave with maximum
streamwise velocity amplitude of 3% of the laminar centre-line velocity
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Figure 4.2: Two-dimensional eigenfunction for the eigenvalue
c = 0.28 − 2.5 · 10−3i, Reb = 3333, α = 1.12, β = 0. Real part,

imaginary part. Left: Streamwise velocity disturbance u′
2D . Right:

Wall-normal velocity disturbance w′
2D.

and two superimposed weak oblique (stable) three-dimensional waves
with amplitude 0.1% with the same fundamental streamwise wavelength
as the two-dimensional disturbance. The superposition of the three
waves is such that the maximum amplitude of the disturbance occurs at
y = Ly/2 (spanwise “peak position”). The computation of the TS waves
was performed using a standard Chebyshev collocation method involv-
ing the solution to the Orr-Sommerfeld and Squire equations (see e.g.
Schmid & Henningson (2001)). The eigenvalue spectra for the two-
dimensional and three-dimensional waves are shown in figure 4.1. In
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figures 4.2 and 4.3, the eigenfunctions of the disturbances included in
the initial conditions are displayed.

This type of initial disturbance promotes the growth of an aligned
pattern of Λ-vortices leading to standard K-type breakdown (see e.g.
Kachanov (1994)). The above initial conditions are chosen similar to
the experiments by Nishioka et al. (1975). The Reynolds number based
on bulk velocity and channel half-width is Reb = 3333. The non-
dimensional box dimensions are 5.61 × 2.99 × 2, non-dimensionalised
by the channel half-width (see also table 4.1). Moreover, the same pa-
rameters have been used in the fully resolved DNS by Gilbert (1988)
and Gilbert & Kleiser (1990). These authors used a resolution of up to
1282 × 129 grid points, however for the present work the simulation was
recomputed on 1602×161 grid points. However, no significant differences
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Figure 4.4: Chebyshev spectrum |ak| of the streamwise velocity component of
the initial disturbance. The vertical dashed line indicates a wall-normal reso-
lution of N = 33 used for some of the results presented herein.

in the results could be observed.

In figure 4.4, the Chebyshev spectrum of the streamwise velocity
component of the initial disturbance for the K-type transition is shown.
As it can be inferred from the figure, the disturbances are fully resolved
(up to machine precision O(10−16)) at k ≈ 90. For k > 25 the energy
content of the modes decreases monotonically, indicating that the mini-
mum resolution to resolve the initial disturbance lies above k = 25. For
this reason a minimum wall-normal resolution of about k = 33 will be
chosen for an LES using those initial conditions.

To further validate this point, two simulations with sufficiently fine
resolution (1282 × 129 grid points) were conducted starting from fields
with resolution 322×33 at t = 0 and t = 80, respectively. Both showed no
significant differences in the integral quantities such as skin friction and
shape factor during transition compared to the reference DNS calculation
(1602 × 161 grid points for simulation and initial condition). Moreover,
it can be concluded that the early transitional phase of the saturated
Tollmien-Schlichting wave is sufficiently resolved with only 33 points
across the channel. Further test calculations were conducted to confirm
the accuracy of the results with respect to the choice of the time step
which is limited by the usual CFL condition, indicating that the results
presented herein are not affected by the choice of the time step of the
numerical integration.



4.1 Initial conditions and parameter settings 43

4.1.2 Parameter settings

The parameters for the various simulations in channel geometry are given
in tables 4.1 and 4.2. The parameters are chosen to match standard
cases found in the literature. The simulation of turbulent channel flow
at the parameters of case A was first performed by Kim et al. (1987)
and later revisited by Moser et al. (1999) together with case C at an
increased Reynolds number. The simulations of standard fundamental
(K-type) transition is performed using the parameter settings of Kleiser
(1982); Gilbert (1988); Gilbert & Kleiser (1990) (case B), which were
chosen to reproduce the experimental setup of Nishioka et al. (1975).
Note that all DNS results for cases A, B and C have been recomputed
in the course of the present work in order to allow detailed analysis of
the fully resolved data, in particular to be able to obtain filtered DNS
data (filtered to the respective LES resolution). Note that for case A
the streamwise resolution of the DNS is lower than for cases B and C,
however as reported in Kim et al. (1987) no significant differences in the
averaged results could be observed. The LES resolution for case A was
thus chosen rather coarse in the streamwise direction. Case D denotes
the spatial simulation presented in chapter 5, included here for reference.

All statistical quantities have been averaged over the wall-parallel
planes x, y and, as appropriate, over time t, for which the notation
according to the Reynolds decomposition

ui = 〈ui〉 + u′
i = 〈ui〉x,y,t + u′

i (4.1)

is used.
For the non-dimensionalisation of the velocity and length scales the

channel half-width h◦ and the laminar streamwise velocity in the chan-
nel centre (z = 0) u◦

CL|lam have been used, see section 2.1. The non-
dimensional bulk velocity is defined as

ub =
1
2

∫ 1

−1

〈u〉dz =
2
3

. (4.2)

ub and the respective Reynolds number Reb = u◦
bh

◦/ν◦ = (2/3)ReCL|lam
are held constant during the simulations (see chapter 3). The Reynolds
number based on the centre-line velocity is given by

ReCL =
u◦

CLh◦

ν◦ = ReCL|lamuCL . (4.3)
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Table 4.1: Parameters for the simulations in plane channel geometry.

Lx × Ly × Lz Reτ ReCL H12 Reb ReCL|lam
A 4π × 4π/3 × 2 179 3262 1.655 2800 4200
B 2π/1.12× 2π/2.1 × 2 208 3857 1.637 3333 5000
C 2π × π × 2 587 12576 1.574 10935 16403
D 100 × 3 × 2 208 3857 1.637 3333 5000

The shape factor is calculated as

H12 =
∫ 1

−1

(1 − 〈u〉) dz/

∫ 1

−1

〈u〉 (1 − 〈u〉) dz . (4.4)

The Reynolds number based on the friction velocity is defined as

Reτ =
u◦

τh◦

ν◦ =

√
ReCL|lam

∣∣∣∣∂〈u〉∂z

∣∣∣∣
wall

. (4.5)

The friction velocity is given as

u◦
τ =

√
τ◦
w

ρ◦
, (4.6)

using the dimensional density ρ◦ and the skin friction

τ◦
w = ν◦ρ◦

∣∣∣∣∂〈u◦〉
∂z◦

∣∣∣∣
wall

. (4.7)

The values given in table 4.1 are statistically averaged results taken
from the DNS. In figures 4.5 and 4.6 the results for the DNS at the
different Reynolds numbers are summarised together with the corre-
sponding no-model LES (coarse-grid DNS). The averaged Reynolds
stresses 〈u′

1u
′
1〉1/2/uτ , 〈u′

2u
′
2〉1/2/uτ , 〈u′

3u
′
3〉1/2/uτ , 〈u′

1u
′
3〉/u2

τ and the
mean streamwise velocity profile 〈u(z+)〉+ are depicted in figure 4.5.
For the fully resolved DNS data, it can be seen that with increasing
Reynolds number the peak of the turbulent kinetic energy moves closer
to the wall, whereas in the mean streamwise velocity profile the forma-
tion of a distinct logarithmic layer can be observed, see the discussion
in Moser et al. (1999). The data of the no-model calculations deviate
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Table 4.2: Resolution of the simulations of table 4.1. For LES the data using
a typical resolution is given.

Nx × Ny × Nz ∆x+ × ∆y+ × ∆z+|wall/∆z+|centre

A DNS 128 × 128 × 129 18 × 5.8 × 0.044/5.4
LES 32 × 32 × 33 70 × 23 × 0.86/18

B DNS 160 × 160 × 161 7.3 × 3.9 × 0.040/4.1
LES 32 × 32 × 33 37 × 20 × 1.0/21

C DNS 384 × 384 × 257 9.7 × 4.8 × 0.044/7.2
LES 64 × 64 × 65 58 × 29 × 0.7/29

D LES 1024 × 32 × 33 41 × 20 × 1.0/21

z

<
R

ey
no

ld
s 

st
re

ss
es

> x,
y,

t

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

z+

<
u+

>
x,

y,
t

10
0

10
1

10
2

0

5

10

15

20

Figure 4.5: Comparison of turbulent channel flow results for the cases given
in table 4.1. Reτ = 179, Reτ = 208, Reτ = 587. Thick lines:
Fully resolved DNS. Thin lines: LES resolution (no-model LES). Parameters
see tables 4.1 and 4.2. Left: Reynolds stresses. Right: Mean velocity profile.

clearly from the reference DNS data, indicating that the LES resolu-
tion is indeed not sufficient without an appropriate SGS model. The
analytical correlations

u+ = y+ (4.8)
u+ = 2.5 log(y+) + 5.5 (4.9)

are included in the plots of the mean streamwise velocity profile for
reference.

The energy budget for the DNS and the no-model LES is displayed in
figure 4.6. Shown are the turbulent production P , the viscous dissipation
due to mean-flow strain εvisc,mean and the viscous dissipation due to



46 Temporal transition and turbulence

z+

E
ne

rg
y 

bu
dg

et

0 10 20 30 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2 P

εvisc,mean

εvisc,fluct

Figure 4.6: Energy budget normalised by viscous wall units, (u◦
τ )4/ν◦: Pro-

duction P, viscous dissipation due to mean-flow strain εvisc,mean, viscous dis-
sipation due to strain of fluctuations εvisc,fluct. Line caption see figure 4.5.

strain of fluctuations εvisc,fluct. These quantities are defined in section
B.3 in the appendix, see also section 4.7.4. Due to the scaling in viscous
units, the influence of the Reynolds number is small. However, again a
distinct difference between the fully resolved DNS and the coarse-grid
simulations can be observed.

4.2 Analysis of DNS results during transition

During the temporal evolution of K-type transition, a saturated TS wave
is formed (t < 100), which undergoes secondary instability with the for-
mation of strong shear layers and pronounced open Λ-vortices (t ≈ 130)
(Gilbert & Kleiser, 1990; Sandham & Kleiser, 1992). These vortices in
turn provoke the appearance of hairpin vortices (roll-up of shear layer,
t ≈ 136) first in the peak plane (y = Ly/2), which are also visible in the
streamwise velocity signal as sharp low-velocity “spikes”. The roll-up of
the shear layer then proceeds to more complex flow states and eventually
the whole flow domain is affected (t ≈ 155).

During the transitional processes, the resolution requirements for a
fully resolved simulation naturally increase with the growing complex-
ity of the flow field. By an examination of the DNS data similar to
an a-priori analysis, quantitative information important for an LES can
be obtained, see also Schlatter et al. (2004a). Figure 4.7a shows the
excited computational modes during transition taken from the respec-
tive DNS. In the wall-parallel directions, a threshold of 10−15 has been
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Figure 4.7: Left: Excited modes of the DNS (resolution 1602×161 grid points).
Streamwise direction, spanwise direction, wall-normal direc-

tion (number of Chebyshev modes is halved to allow comparison with Fourier
modes). In the Fourier directions a threshold of 10−15 is used whereas the
threshold value in the wall-normal direction is 10−6. Right: Maximum of SGS
dissipation maxx,y,z εSGS. 322 × 33, 322 × 49 (almost coinciding
with 322 × 33), 482 × 49, 642 × 65, 962 × 97.

chosen, whereas in the wall-normal direction due to the full Chebyshev
spectrum (see figure 4.4) a threshold of 10−6 has been used. It can be
seen that at first higher and higher Fourier harmonics in the streamwise
direction are excited, which is attributed to the formation of the satu-
rated two-dimensional Tollmien-Schlichting wave (Kleiser, 1982; Gilbert,
1988). Starting from t ≈ 80 the flow undergoes secondary instability
due to the three-dimensional disturbance (Herbert, 1988), which leads
to an increased resolution requirement in both the spanwise and the
wall-normal directions.

By choosing a resolution of only 322 × 33 grid points (16 Fourier
modes), the simulation is underresolved in all directions for at least
t > 70. In figure 4.7b, the SGS dissipation εSGS (see section B.3) was
computed from DNS data, i.e. (see equations (2.7) and (2.8))

τij := uiuj − uiuj

and
εSGS = τijSij ,

for a number of LES grids with full dealiasing. The spatial filtering
implied by the overbar was performed by a spectral truncation of the
wall-parallel Fourier components and an interpolation in physical space
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for the wall-normal direction. The physical-space interpolation was cho-
sen in order to leave the mean velocity profile unchanged between the
high-resolution data and the truncated data and to maintain the wall
boundary conditions (see also section 4.7).

Similarly to figure 4.7, the resolution 322× 33 indicates the necessity
of an SGS model even for the early laminar stages prior to transition,
mainly due to the underresolved 2D saturated TS wave. Based on these
findings, for the following an LES resolution of 322 × 33 grid points was
chosen in order to assess the ability of the SGS model to predict laminar,
transitional and turbulent flows (see the following sections and Schlatter
et al. (2004c,d)). The choice of this resolution has also been prompted
by the examination of the intial disturbances, see section 4.1.1.

4.3 Dynamic Smagorinsky model

The dynamic Smagorinsky model, introduced by Germano et al. (1991)
and slightly modified by Lilly (1992), is one of the most popular SGS
models for LES. A description of the algorithm is given in section B.4.
As mentioned in section 2.1.1 the computation of the dynamic model
coefficient relies on a low-pass test filtering of the turbulent stresses.
For the results presented in this section, four different test filters have
been examined with fixed cutoff wavenumber ωc = π/2. The filters are
I − H1 = Q1G (equation (2.12)), G (equation (2.10)), a second-order
filter (2.19) and the spectral cutoff filter (acting only on the wall-parallel
Fourier modes). The filter transfer functions are depicted in figure 2.3.

Results obtained using the dynamic Smagorinsky model with the dif-
ferent test filters are shown in figures 4.8-4.11. The Reynolds stresses
〈u′

1u
′
1〉1/2/uτ , 〈u′

2u
′
2〉1/2/uτ , 〈u′

3u
′
3〉1/2/uτ , 〈u′

1u
′
3〉/u2

τ and the mean
streamwise velocity profile 〈u(z+)〉+ in wall scaling are shown in fig-
ure 4.8 for the three different Reynolds numbers at the resolutions given
in table 4.2. It is evident from the figure that for all Reynolds numbers
the dependence of the model on the test filter is similar. The use of the
second-order filter leads to a too dissipative model behaviour resulting in
an overprediction of the mean velocity profile 〈u〉+and of 〈u′

1u
′
1〉1/2/uτ .

Moreover, the restriction of the second-order filter to two dimensions
(filtering in wall-parallel directions only) gives similar results as with
the three-dimensional formulation. The filter G (equation (2.10)) as test
filter is also too dissipative for all Reynolds numbers. The spectral cutoff
filter (acting in two dimensions only) provides an increased accuracy in
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Figure 4.8: Turbulent channel flow simulated by the dynamic Smagorinsky
model using different test filters. From top to bottom: Reτ ≈ 180, Reτ ≈ 210,
Reτ ≈ 590. Left: Mean streamwise velocity profile. Right: Averaged Reynolds
stresses. Second-order filter (3D), G, I − H1, spectral
cutoff filter (only 2D), second-order filter (only 2D), ◦ no-model LES,
• DNS interpolated onto LES grid.

the prediction of both the Reynolds stresses and the velocity profile, how-
ever this filter is restricted to spectral numerics. Moreover, its generality
is limited since the filtering is performed in the wall-parallel directions
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only. Note that the original paper of Germano et al. (1991) was based on
this filter. Similar or slightly improved accuracy as with the cutoff filter
can however been obtained by using the three-dimensional high-order
filter I − H1 = Q1G (sixth order), see also Stolz et al. (2005).

Figure 4.9 shows the energy budget and the different contributions
to the SGS dissipation for the three Reynolds numbers. No major dif-
ferences between the various test filters and Reynolds numbers can be
observed for the energy budget including production and viscous dissi-
pation, and all LES show a significant improvement over the no-model
calculation. To the contrary, the SGS dissipation, however, is strongly
dependent on the test filter used. In particular, the contribution to the
SGS dissipation εSGS,mean due to the mean flow is nearly twice as high
for the second-order filter compared to e.g. the spectral cutoff filter. This
is certainly one reason that the dynamic Smagorinsky model with the
second-order test filter is too dissipative. Similar conclusions can also be
drawn for the other filter types.

Using the dynamic Smagorinsky model it is possible to simulate
laminar-turbulent transition (Germano et al., 1991). In the laminar and
early transitional regions, the algorithm computes a vanishing or at least
small value for the model coefficient such that the (usually weak) dis-
turbances present in the flow are not overly affected. Figure 4.10 shows
the evolution of Reτ during temporal K-type transition. It can be ob-
served that the higher-order filters (I − H1 and spectral cutoff filter)
are predicting transition too early similar to the no-model calculation.
More dissipation during the early stages of transition is provided by
the second-order test filter providing a good prediction of the transition
location compared to the fully resolved DNS.

In figure 4.11 the model coefficient C2
S is shown, both for the tempo-

ral evolution during transition and averaged during the fully turbulent
phase well after transition. The dynamic determination algorithm indeed
predicts a negligible CS for early times t < 100 with all test filters. As
transition proceeds, the model coefficient rises according to the increased
turbulent activity within the flow field. In the fully turbulent chan-
nel flow, all test filters predict a vanishing coefficient at the solid walls
(z = ±1) and thus a vanishing eddy viscosity. The asymptotic behaviour
for all filters is ∝ (z+)3 as predicted by theory (see e.g. Piomelli (1993)).
However, a drastic difference in the magnitude of the model coefficient
(and hence in the eddy viscosity) can be observed for the different filters.
The lowest coefficient is obtained for the spectral cutoff filter, whereas
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Figure 4.9: Turbulent channel flow simulated by the dynamic Smagorinsky
model using different test filters. From top to bottom: Reτ ≈ 180, Reτ ≈ 210,
Reτ ≈ 590. Left: Production P, viscous dissipation due to mean-flow strain
εvisc,mean, viscous dissipation due to strain of fluctuations εvisc,fluct. Right:
SGS dissipation due to mean flow εSGS,mean, SGS dissipation due to fluctu-
ations εSGS,fluct (note that for all models εSGS,mean > εSGS,fluct close to the
wall). Second-order filter (3D), G, I − H1, spectral
cutoff filter (only 2D), second-order filter (only 2D), ◦ no-model LES,
• DNS interpolated onto LES grid.
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Figure 4.10: Time evolution of Reτ for temporal K-type transition at
Reb = 3333 using the dynamic Smagorinsky model with different test filters.
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Figure 4.11: Smagorinsky coefficient C2
S as computed by the dynamic

Smagorinsky model for temporal K-type transition, Reb = 3333, Reτ ≈ 210.
Left: Time evolution of C2

S during transition. Right: Averaged model co-
efficient well after transition for turbulent channel flow at Reτ ≈ 210.

Second-order filter (3D), G, I − H1, spectral cutoff fil-
ter (only 2D), second-order filter (only 2D). Thick dashed line indicates
asymptotic progression ∝ (z+)3 close to the walls (Piomelli, 1993).

the largest value is computed with the second-order filter, which results
in an increased SGS dissipation (see figure 4.9). However, the general
three-dimensional formulation using the high-order filter I − H1 as test
filter is predicting a comparably low value for the model coefficient.

To conclude, the dynamic Smagorinsky model allows the simulation
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of laminar, transitional, and turbulent channel flow with all the men-
tioned test filters, however the influence of the filter type on the results is
significant. For the following considerations and the results presented in
chapter 5 we will routinely compare to the dynamic Smagorinsky model
evaluated using the three-dimensional second-order test filter, since this
filter seems to provide the most accurate description of transitional flows.
Additionally, this filter is general in formulation (three-dimensional) and
straightforward to implement in simulation codes with other than spec-
tral numerics.

4.4 Temporal transition and turbulence using the
approximate deconvolution model

In this section, the approximate deconvolution model (ADM, equa-
tion (2.35)) and related LES strategies like the SGS model based on
relaxation regularisation (ADM-RT, equation (2.51)) are considered for
transitional and turbulent channel flow at Reτ ≈ 210 and Reτ ≈ 180,
see also Schlatter et al. (2004c, 2003a). The description of the ADM
model is given in section 2.2.3 and is based on the original formulation
provided in Stolz & Adams (1999); Stolz et al. (2001a).

4.4.1 ADM for transitional flows

For both laminar and turbulent flow, the standard ADM formulation
with deconvolution and relaxation in three dimensions, equation (2.33),
henceforth denoted as ADM-3D, gives very accurate results as reported
in Stolz et al. (2001a) for turbulent channel flow at Reτ up to 590. How-
ever, initial tests on very coarse grids (i.e. only 33 points in the wall-
normal direction, see section 4.1) using ADM-3D in its original form
(Stolz et al., 2001a) have indicated that for this resolution it cannot di-
rectly be applied to simulate transitional flows in which the initial state
consists of a laminar base flow with superimposed small-amplitude dis-
turbances. However, with increased resolution the transitional process
is predicted well. The problem arises mainly due to the use of explicit
filtering within the ADM approach with deconvolution used for the non-
linear terms and subsequent filtering. This further reduces the range of
resolved wavenumbers from [0, π] to [0, ωc], e.g. [0, 2π/3].

Figure 4.12 shows the evolution of the 2D Fourier modes with van-
ishing relaxation term, i.e. χ = 0 and only deconvolution and explicit
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Figure 4.12: Evolution of the wall-normal maximum of the 2D Fourier ampli-
tudes maxx3 |û1(ki, 0, x3, t)| during the initial phase of transition. The stan-
dard ADM-3D SGS model is used with deconvolution, but without relaxation
( i.e. χ = 0). Left: Resolution 322 × 33. Right: Resolution 322 × 49.

filtering used for the nonlinear terms. The physical solution at this stage
of development (t < 100) consists of a saturated 2D wave, the harmon-
ics of which exhibit a geometric progression with increasing wavenum-
bers, with each of the Fourier modes slowly decaying in time (Gilbert &
Kleiser, 1990), see also figure 4.16. However, with 33 points only in the
wall-normal direction the influence of deconvolution on the laminar so-
lution is such that small-scale perturbations are amplified until they are
dominating the flow field. The reason for this is the repeated application
of the filter G in regions close to the wall. Fulfilling the wall boundary
conditions can lead to oscillations in the near-wall region. Note that this
phenomenon only occurs if wall-normal (three-dimensional) filtering and
deconvolution is used and the wall-normal resolution is fairly coarse. As
also shown in figure 4.12 (see also section 4.4.5), when using 49 or more
points in the wall-normal direction the deconvolution gives acceptable
results even close to the wall due to the lower energy content of the
modes near the cutoff (see figure 4.4).

Applying the filter operation in Chebyshev spectral space instead of
a real-space implementation does not remedy the described difficulties,
which are inherent to such coarse grids. It should be noted again that
the grid was deliberately chosen very coarse and furthermore, explicit
filtering was employed.

To overcome the above-mentioned difficulties of the standard ADM
procedure on very coarse grids, the modified ADM versions, i.e. ADM-2D
and ADM-RT, have been investigated, for which simulation results are
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summarised in table 4.3. The formal definition of those models has been
given in section 2.2.3.

All computations were started at t = 0 with the initial condition
described in section 4.1 and integrated up to at least a non-dimensional
time t = 1000. For the statistically stationary results of fully developed
turbulent channel flow the data is averaged over the time period t = 500
to t = 1000 well after the transitional phase. At resolution 322 × 33, the
grid spacing is

∆x+ × ∆y+ × ∆z+|wall/∆z+|centre = 36.6 × 19.5 × 1.01/20.5 ,

see also tables 4.1 and 4.2. For ADM-2D and ADM-RT the relaxation
term −χ · (I − QN ∗ G) ∗ ui was computed in real space. The use of a
dealiasing procedure (see Canuto et al. (1988)) to calculate the nonlin-
ear product in the relaxation term was tested but found not necessary,
due to a sufficiently smooth relaxation coefficient χ. For the simula-
tions presented in this section, the model coefficient χ has been de-
termined dynamically using the procedure explained in equation (2.43)
(section 2.2.3). However, tests have shown that using a constant χ pro-
duces similar results, see also section 4.5 below.

DS-3D denotes the dynamic Smagorinsky model (Germano et al.,
1991; Lilly, 1992), included for reference. The test filter used for the
dynamic Smagorinsky model is the three-dimensional filter of second
order with ωc = π/2, equation (2.19), see also previous section 4.3. No
significant differences between two and three-dimensional test filtering
have been observed for the dynamic Smagorinsky model.

4.4.2 Transitional phase

During the initial phase of transition (t < 100) the saturated two-
dimensional Tollmien-Schlichting wave is dominant, and thus all integral
quantities like Reτ remain at their laminar values. In the secondary in-
stability phase (Herbert, 1988), the onset of transition becomes visible
(at t ≈ 100) by the typical Λ-shaped vortices which evolve with their
own dynamics (t ≈ 120). This leads to the distinct spanwise “peak-
valley splitting” (Nishioka et al., 1975; Gilbert & Kleiser, 1990). In the
following “spike stage” the flow is dominated by strong wall-normal shear
layers which rapidly break down to turbulence, first in the peak plane
(y = Ly/2) and shortly thereafter in the valley region (y = 0). Although
the Λ-vortices can be identified in all the different simulations, the time
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Table 4.3: Temporally and spatially averaged Reynolds number Reτ obtained
for the different simulations of fully developed turbulent channel flow at
Reb = 2800 and Reb = 3333.

Reτ for Reb = 2800 3333
ADM-2D 322 × 33, 2D filt./deconv. 180.8 214.0
ADM-3D 322 × 33, 3D filt./deconv. 170.8 n/a
ADM-RT 322 × 33, only 3D relax. 177.5 208.9
DS-3D 322 × 33, dyn. Smagorinsky 165.8 195.1
no-model LES 322 × 33 202.7 220.0
no-model LES 322 × 48 203.1 219.9
fully resolved DNS 1602 × 161 178.6 208.2

grid-filtered to 322 × 33 178.9 208.4 •
filtered with G (2D) 178.9 208.4 ◦
filtered with G (3D) 176.8 206.2

of breakdown is different for the various computations. This is shown in
figure 4.13 which depicts the temporal evolution of the Reynolds number
Reτ based on the friction velocity and the channel half-width, averaged
over the two walls. The onset of transition and the initial growth of Reτ

is still comparable for all simulations, while they begin to separate dur-
ing the spike stage (t ≈ 140). Furthermore, the peak value of the skin
friction is similar and the well-known overshoot of Reτ of about 15% is
visible for DNS, ADM-2D and ADM-RT. The formation of fully devel-
oped turbulence seems to proceed on the same time scale. The stationary
values of Reτ after transition are given in table 4.3 (Reb = 3333).

The shape factor H12 is a measure which indicates a reorganisation of
the mean velocity profile (figure 4.14). Starting from the value H12 = 2.5
of the laminar base flow profile all simulations reach the turbulent value
at around the same time t ≈ 170. The mean-velocity reduction in the
middle of the channel, seen from ReCL in figure 4.14, shows again at
least two different paths from the laminar to the turbulent values, which
are more distinct than a slight translation in time.

It is common to all these results that the no-model LES and the two-
dimensionally filtered ADM-2D go through transition at earlier times
than the fully resolved DNS, see Figures 4.13 and 4.14. Conversely,
ADM-RT on coarse grids undergoes transition slightly later than the
reference data. Note that due to the two-dimensional formulation of
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Figure 4.13: Evolution of Reτ averaged in a wall-parallel plane during the
transitional phase (Reb = 3333). Line caption see table 4.3. Multiple values
indicate lower/upper channel wall.
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Figure 4.14: Left: Evolution of the shape factor H12 averaged in a wall-parallel
plane during the transitional phase (Reb = 3333). Right: Evolution of ReCL

averaged in a wall-parallel plane during the transitional phase (Reb = 3333).
Line caption see table 4.3.

the SGS model in ADM-2D, actually no SGS model is employed in the
wall-normal direction. DS-3D seems to first follow the evolution of the
no-model LES and then to change to the path of the fine-grid DNS.

Better insight can be gained by looking at the velocity fluctuations,
e.g. the wall-normal maximum, urms,max, of the streamwise urms, given
for the “valley” plane (Gilbert & Kleiser, 1990) in figure 4.15. It is obvi-
ous that the no-model LES and ADM-2D are close together, indicating
that the SGS model is still inactive until t ≈ 150. For ADM-RT at
t ≈ 120 some minor differences can already be observed and due to SGS
influence the urms peak at t = 160 is accurately predicted. The dynamic
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Figure 4.15: Evolution of urms,max during the transitional phase
(Reb = 3333). The wall-normal maximum urms,max of the streamwise urms

in the “valley” plane is shown. Line caption see table 4.3.

Smagorinsky model again follows a route in between the no-model LES
and the fully resolved DNS calculation. In the peak plane (not shown
here), the phase of intense fluctuations is observed at the same time
(t ≈ 150) for all simulations.

4.4.3 Detailed analysis of ADM-RT results

From the results presented in figures 4.13-4.15 it can be concluded that
ADM-RT (see equation (2.51)) is quite accurate despite its formal sim-
plicity. It is therefore interesting to take a closer look at the evolution of
the Fourier components that correspond to the 2D saturated Tollmien-
Schlichting wave. Figure 4.16 shows results of both the DNS and the
ADM-RT calculation (in figure 4.26 in section 4.5 the spectrum of the
no-model LES is also shown). The modes with an amplitude level above
10−6 for the LES are approximately on the respective DNS level. The
higher modes are on a lower level in the LES due to dissipation intro-
duced by the relaxation term. The higher modes are somewhat noisy,
which must clearly be attributed to the SGS model. As will be shown
in section 4.5, using a constant relaxation parameter χ these oscillations
are not present, see figure 4.26. On the other hand, these perturbations
appearing using the dynamically determined χ do not grow in time and
do not lead to inaccurate integral results. They originate close to the
wall boundaries where the three-dimensional high-pass filter used in the
dynamic procedure is difficult to apply.

The temporal evolution and the spatial distribution of the dynamic
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Figure 4.16: Evolution of the wall-normal maximum of the 2D Fourier am-
plitudes maxx3 |û1(ki, 0, x3, t)| corresponding to two-dimensional waves during
the transitional phase (Reb = 3333). Left: fully resolved DNS 1602 × 161.
Right: ADM-RT 322 × 33, χ = χdyn.

coefficient χ for the relaxation term is shown in figure 4.17. Every full
Runge-Kutta time step, χ is updated according to equation (2.43). This
definition was derived aiming at keeping the energy content of the small
scales in equilibrium, which holds, e.g., for fully turbulent flows. The
consequence can be seen in figure 4.17 for t < 135: Since the energy of the
smallest scales is growing at these times due to physical interactions, the
relaxation term is growing as well to counteract the generation of small-
scale energy. The total influence of the relaxation term −χ(H ∗ ui) is
still very limited because H ∗ui is small. However, during the secondary
instability phase, a broad range of modes is excited which increases the
effect of the relaxation term (growing H ∗ ui) and in turn reduces χ ac-
cordingly. Only when the flow shows a full (developed) energy spectrum
the equilibrium between production and dissipation becomes relevant,
indicated by the statistically constant values of χ (t > 160).

In figure 4.17, also wall-normal profiles of χ are shown. During the
saturated TS-wave phase a flat maximum is visible close to the wall
(t = 60), whereas during the secondary instability phase (t = 100) χ is
on a high level and evenly distributed over the channel height. In the
fully developed turbulent flow, χ is fairly constant across the channel; a
slight decrease close to the wall can be observed. This is actually desired
as the influence of the model close to the wall should be smaller.

Note that using a constant relaxation parameter χ all the way from
t = 0 through transition and in the fully turbulent phase yields results as
accurate as with the dynamically determined χ. This will be discussed
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Figure 4.17: Left: Evolution of χ averaged over wall-parallel planes during the
transitional phase (Reb = 3333, ADM-RT). z = 1 (at wall), z = 0
(centre), z = 0.55. Right: Wall-normal distribution of χ averaged over
wall-parallel planes during the transitional phase (Reb = 3333, ADM-RT).

t = 60, t = 100, t = 150, averaged t = 500 − 1000.

further in section 4.5, see also section 2.2.3.

4.4.4 Fully turbulent phase

In table 4.3, the averaged values for Reτ are also given for Reb = 2800
(see Moser et al. (1999)). For the cases with Reb = 3333, statistical
averaging is performed from t = 500 to t = 1000. It is obvious that the
no-model LES overpredicts the stationary value of Reτ by approximately
10% compared to the fully resolved DNS. Both model calculations ADM-
2D and ADM-RT provide a much better prediction of the wall friction.
The dynamic Smagorinsky model (DS-3D) does similarly, although it
seems to be too dissipative.

A similar conclusion can be drawn from the mean velocity profile;
especially ADM-RT agrees very well with the fully resolved DNS, see
figure 4.18.

The prediction of the velocity fluctuations (figure 4.19) for the dy-
namic Smagorinsky model is not very accurate, whereas the ADM vari-
ants ADM-2D and ADM-RT show a substantial improvement. The sim-
ulation ADM-RT is very close to the values of the fine-grid reference DNS
calculation. ADM-2D is slightly less accurate, leading to the conclusion
that capturing of three-dimensional effects in the relaxation and decon-
volution are important during both transition and in the fully developed
turbulence (compare also the three-dimensional filtering and deconvolu-
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Figure 4.18: Averaged velocity profile 〈u〉+ scaled in wall units in the fully
turbulent regime (Reb = 3333). Line caption see table 4.3.
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tion in Stolz et al. (2001a) at Reb = 2800).
One-dimensional energy spectra are displayed in figure 4.20. The

one-dimensional Fourier spectra in the streamwise direction averaged in
time and the spanwise direction are defined as

E1(k1, x3) = 〈û1(k1, x2, x3, t)û1(k1, x2, x3, t)∗〉x2,t , (4.10)

with a star denoting the complex conjugate. Alternatively, these spectra
can be integrated in the wall-normal direction yielding

Eint
1 (k1) =

∫ 1

−1

〈û1(k1, x2, x3, t)û1(k1, x2, x3, t)∗〉x2,tdx3 . (4.11)
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Figure 4.20: Spectra in the fully turbulent case (Reb = 3333). Line caption
see table 4.3. Left: Integrated streamwise Fourier spectra Eint

1 (k1) (top) and
E1(k1, x3) at two wall-normal positions (bottom). Right: Wall-normal Cheby-
shev spectra E3(k3) (top) and E′

3(k3) (bottom). Definition of the spectra see
equations (4.10)-(4.13).

The spectrum of the Chebyshev expansion is defined as

E3(k3) = 〈|û1(x1, x2, k3, t)|2〉x1,x2,t . (4.12)

Its zigzag appearance at lower k3 is caused by the wall-normal symme-
try of the mean-flow profile which is represented by the even Chebyshev
modes. Removing the mean flow, a Chebyshev spectrum of the fluctua-
tions can be defined as

E′
3(k3) = 〈|û1 − 〈û1〉x1,x2,t|2〉x1,x2,t . (4.13)

It is visible in figure 4.20 that the no-model LES clearly overpredicts
all spectra. On the other hand, the ADM-RT model closely follows
the interpolated DNS for low wavenumbers, and is strongly damped for
smaller scales (k1 > 11, k3 > 25). This is caused by the relaxation
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Table 4.4: Temporally and spatially averaged skin friction Reynolds number
Reτ obtained for the different simulations of fully developed turbulent channel
flow at various resolutions. The DNS value is Reτ = 208.2, see table 4.1.

Reτ 322 × 33 322 × 49 482 × 49 642 × 65
ADM-2D 214.0 210.4 211.5 209.6
ADM-3D n/a 198.4 196.6 204.2
ADM-RT 208.9 210.7 210.0 207.8
DS-3D 195.1 192.4 194.0 198.8
no-model LES 220.0 219.9 212.2 209.7

acting as a secondary filter operation by the filter I − HN as explained
in section 2.2.3. ADM-2D is also strongly damped in the wall-parallel
directions whereas in the wall-normal direction no decline is observed,
since no explicit filtering in this direction is used. The data obtained by
the dynamic Smagorinsky model is slighly too dissipative for all spectra
shown, i.e. the spectrum is lower than the reference DNS data.

Results of ADM-RT for turbulent channel flow at a higher Reynolds
number Reτ ≈ 590 are presented in section 4.7.3 below together with a
comparison to high-pass filtered eddy-viscosity models.

4.4.5 Convergence study

In order to assess the dependence of the LES results on grid refinement,
calculations at different resolution have been performed for the SGS
models previously discussed. In table 4.4, results for Reτ in the turbulent
phase at Reb = 3333 are given. Figure 4.21 depicts the results for
ADM-2D, ADM-3D and ADM-RT, whereas in figure 4.22 the respective
data for the dynamic Smagorinsky model and the no-model LES are
shown. All the models show convergence towards the unfiltered reference
DNS in both the turbulent Reynolds stresses and the temporal evolution
of Reτ .

ADM-2D is clearly converging towards the DNS results. As men-
tioned earlier, the flow undergoes transition somewhat too early, because
during the initial phases of transition (t < 150, see also figure 4.13) the
model contributions are negligible due to the two-dimensional filtering
and the disturbance nature at this stage. Simulations using ADM-3D
are only possible with a resolution equal or above 322 × 49 grid points
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Figure 4.21: Convergence study showing the Reynolds stresses 〈u′
1u

′
1〉1/2/uτ

and 〈u′
2u

′
2〉1/2/uτ , and Reτ during transition, see also continuation in

figure 4.22. Top: ADM-2D. Middle: ADM-3D. Bottom: ADM-RT.
322 × 33, 322×49, 482×49, 642×65, • DNS 1602×161

(unfiltered, every third data point shown).

due to the oscillations created by the deconvolution at lower resolution
(see figure 4.12). The value of Reτ and its peak at t ≈ 175 are slightly
underpredicted.

Considering ADM-RT, in the fully turbulent regime all simulations,
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Figure 4.22: Convergence study showing the Reynolds stresses 〈u′
1u

′
1〉1/2/uτ

and 〈u′
2u

′
2〉1/2/uτ , and Reτ during transition, continued from figure 4.21.

Top: Dynamic Smagorinsky model DS-3D. Bottom: DNS (no-model LES).
322×33, 322×49, 482×49, 642×65, • DNS 1602×161

(unfiltered, every third data point shown).

starting already with 322 × 33 grid points, collapse on the reference
data. With a resolution of 322 × 49 grid points and higher, also the
transition time is predicted accurately, whereas a slight delay is visible in
the data of the coarsest resolution. As already mentioned in section 4.1.1,
a resolution of 33 points in the wall-normal direction is a lower limit for
accurate LES at the present parameters. It is important to note that the
evolution of Reτ shown in figure 4.21 for ADM-RT on the 322×49 grid is
quite similar to that of ADM-3D with 482×49 grid points: As mentioned
earlier, the deconvolution reduces the range of resolved wavenumbers.
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4.5 Detailed analysis of relaxation-term models
(ADM-RT)

The results of the previous section 4.4 have shown that for ADM with
deconvolution applied for the computation of the nonlinear terms a cer-
tain minimum resolution in the wall-normal direction has to be main-
tained. It was shown further that an ADM-type SGS model without
deconvolution yielded very appealing results for incompressible channel
flow using spectral numerics at even lower resolution. In this section
we will extend the analysis of these relaxation-term models (ADM-RT,
see equation (2.51) in section 2.2.3 and Schlatter et al. (2004d)). The
influence of the determination procedure of the relaxation parameter χ
is examined (see equations (2.43)-(2.48)) and, additionally, the necessity
of a dealiasing procedure using the 3/2-rule (see Canuto et al. (1988))
for the computation of the nonlinear terms is discussed.

Two different incompressible flow situations are considered, see ta-
bles 4.1 and 4.2 in section 4.1: Subcritical temporal K-type transition
with the Reynolds number based on bulk velocity and channel half-
width Reb = 3333 (Reτ ≈ 210 in fully developed turbulence) and fully
turbulent channel flow with Reτ ≈ 180 (Reb = 2800, Kim et al. (1987);
Moser et al. (1999)). For the LES a deliberately chosen coarse resolu-
tion of 322 × 33 points is used (see previous section 4.4 for a discus-
sion). The same LES resolution was also used for the turbulent case
with Reb = 2800. At this resolution, a computation without any model
is significantly underresolved (except for the laminar case) in all three
spatial directions, see the comments in section 4.2.

Figure 4.23 shows different calculations of turbulent channel flow,
both with aliasing errors and with full dealiasing. It can be seen that for
the simulations involving a relaxation term of the form (2.50), the lack
of dealiasing does not produce inferior results. On the other hand, the
calculations using the dynamic Smagorinsky model (three-dimensional
second-order test filter with ωc = π/2, equation (2.19)) and the no-model
calculations are much worse without the dealiasing procedure. It should
be noted that the computational effort without dealiasing is reduced
by at least a factor of two for the present spectral code. Moreover,
proper dealiasing can usually be performed with spectral numerics only
(Chow & Moin, 2003). However, as shown here, the effects of aliasing
errors can be reduced significantly in an LES using a relaxation term.
An interesting observation is that with the dynamic estimation χdyn,
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Figure 4.23: Turbulent statistics for Reb = 2800. Left column: Calculations
without dealiasing. Right column: Calculations using 3/2-rule for dealiasing.
Top row: Mean velocity profile in wall units. Bottom row: Reynolds stresses
〈u′

1u
′
1〉1/2/uτ and 〈u′

1u
′
3〉/u2

τ : χ = χdyn, ADM-3D (with deconvo-
lution), no-model LES 322 × 33, dynamic Smagorinsky model.

equation (2.43), is automatically increased if no dealiasing is employed.
This is mainly due to increased energy in the tail of the energy spectra
causing the dynamic procedure to increase the model coefficient.

Furthermore, the different variants of determining the relaxation
parameter χ as detailed in section 2.2.3 (see also appendix B) have
been investigated for transitional and fully turbulent channel flow with
Reb = 3333. The dynamic determination of χ based on the description
in Stolz et al. (2001a,b) has been examined, equation (2.43). Addition-
ally, substantially simplified definitions are also included, in particular
a constant χ, equation (2.45), χ based on the velocity gradient tensor,
(2.46), on the high-pass filtered velocity gradient tensor, (2.47), and com-
puted from the second-order velocity structure function, (2.48). For the
present results, C1 = 10, C2 = 1, C3 = 10 have been chosen as model
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Figure 4.24: Turbulent statistics for Reb = 3333 for ADM-RT using different
definitions of the relaxation parameter χ. Left column: Calculations without
dealiasing. Right column: Calculations using 3/2-rule for dealiasing. Top
row: Mean velocity profile in wall units. Bottom row: Reynolds stresses
〈u′

1u
′
1〉1/2/uτ and 〈u′

2u
′
2〉1/2/uτ : χ = χdyn, χ = C1 = const.,

χ = C2‖∇u‖, χ = C3‖∇H ∗ u‖, no-model LES 322 × 33,
• grid-filtered DNS 1602 × 161

coefficients. A statistical evaluation of the dynamic determination of χ
is given in figure 4.17 in the previous section.

In figure 4.24, statistical quantities of the fully turbulent simulations
with and without dealiasing are depicted. It is evident that the no-
model LES (coarse-grid DNS) deviates significantly from the fine-grid
DNS. However, all LES results agree better with the fully resolved DNS
data. The simulations without dealiasing depicted on the left confirm
the above-mentioned findings and show that it is possible to reduce the
effects of aliasing errors significantly even when using a constant χ.

It is interesting to note that the results of the three LES are similar,
although different definitions of the model coefficient χ were used. It can
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Figure 4.25: Time evolution of the shape factor H12 and the Reynolds num-
ber Reτ based on the skin friction for simulations of K-type transition. Left
column: Calculations without dealiasing. Right column: Calculations using
3/2-rule for dealiasing. Line captions see figure 4.24. Multiple values indicate
lower/upper channel wall.

therefore be concluded that for fully turbulent channel flow the specific
form of χ is less important as long as an appropriate amount of energy
is dissipated and, additionally, effects of aliasing errors are reduced.

The evolution of the shape factor H12 and Reτ during the transitional
phase is shown in figure 4.25. The underresolved DNS (no-model LES)
shows premature transition compared to the fully resolved DNS for the
dealiased simulation whereas it completely fails in the presence of aliasing
errors (H12 ≈ 1.8 after transition). Generally, the effects of aliasing
errors lead to slightly earlier transition for the LES. Nevertheless, all
LES with the relaxation term as model produce acceptable results for
transition, i.e. showing correct onset of transition and the well-known
overshoot of Reτ of approximately 15%.

In figure 4.26 the evolution of the Fourier components



70 Temporal transition and turbulence

t

Fo
ur

ie
r 

am
pl

itu
de

0 50 100 150 200

10
−10

10
−5

10
0

 i=3 
 i=2 

 i=15

 i=1 
 i=0 

t

Fo
ur

ie
r 

am
pl

itu
de

0 50 100 150 200

10
−10

10
−5

10
0

i=3  

i=15  

i=2 

i=1  
i=0  

Figure 4.26: Evolution of the wall-normal maximum of the 2D Fourier am-
plitudes maxx3 |û1(ki, 0, x3, t)| corresponding to two-dimensional waves during
the transitional phase (Reb = 3333). Left: No-model LES 322 × 33 (with
dealiasing). Right: ADM-RT 322 × 33, χ = C1 = const. (with dealiasing).
Compare also to figure 4.16 depicting the spectrum of the fully resolved DNS.

maxx3 |û1(ki, 0, x3, t)| is displayed (compare to figure 4.16). These
modes correspond to the 2D saturated Tollmien-Schlichting wave.
Shown in the figure are results for the no-model LES and the ADM-RT
model with constant χ, both obtained with dealiasing of the nonlinear
terms. The no-model LES shows a distinct kink in the higher Fourier
modes (i > 10) at t ≈ 30. This feature is clearly an artefact of the
insufficient resolution especially in the wall-normal direction, since the
kink is not present in the fully resolved calculation, see figure 4.16, and
in simulations using 49 points in the wall-normal direction (not shown).
For the LES using ADM-RT with constant relaxation parameter χ on
322 × 33 grid points the kink is also not present, the two-dimensional
Fourier modes slowly decay as in the fully resolved DNS (figure 4.16).
The modes with an amplitude level above 10−6 for the ADM-RT model
are approximately on the respective DNS level. The higher LES modes
are on a lower level due to SGS dissipation introduced by the relaxation
term (secondary filtering). In particular, the spectra obtained using a
constant χ = 10 are clearly less noisy than those obtained using the
ADM-RT model with dynamic χdyn, see figure 4.16.

In general, the inclusion of high-pass filtering in the model coefficient,
e.g. χ, seems to lead to more accurate results. This is also true for
transitional flows, see Stolz et al. (2004). On the other hand, assuming
constant χ = C1 gives very appealing results, only slightly less accurate
than the dynamic determination χ = χdyn. Similar observations can
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also be made for the HPF eddy-viscosity models (section 2.2.2) for which
results are shown in section 4.7.

4.6 Visualisation of transitional structures

Transitional flows are dominated by the growth of disturbances and the
subsequent formation and evolution of typical vortical structures which
in turn break down into turbulent flow. In this section, visualisations
of those transitional structures are presented for the case of forced fun-
damental K-type transition in channel flow with the initial conditions
given in section 4.1 (Reb = 3333).

Results of LES using the dynamic Smagorinsky (DS) model (section
2.2.1) the ADM-RT model (equation (2.51) in section 2.2.3) together
with a no-model LES (coarse-grid DNS) are presented. Note that for
the dynamic Smagorinsky model a three-dimensional graded filter of
second order (ωc = π/2, equation (2.19)) has been used as test filter (see
section 4.3). The SGS stresses for the ADM-RT model are given by (see
equation (2.50) in section 2.2.3),

∂τij

∂xj
= χH5 ∗ ui ,

i.e. a relaxation regularisation (relaxation term, RT) has been added
to the momentum equations. H5 denotes the three-dimensional high-
pass filter defined by equation (2.12) in section 2.1.1 and χ is the model
coefficient, set constant in the present section, motivated by the findings
of the previous section 4.5. A value χ = 10 has been chosen, compare
to figure 4.17. The model contribution of the ADM-RT model are thus
confined to the smallest scales.

Three-dimensional visualisations of the breakdown process for the
different models are depicted in figure 4.27 for the times tDNS = 136,
tDNS = 140 and tDNS = 154.5 using the negative-λ2 vortex-identification
criterion by Jeong & Hussain (1995). To allow a direct comparison of the
LES and the DNS, the selected times for the LES were slightly shifted
such that the stage of transition development is matched at tDNS ≈ 128.
Note that the DNS results have been coarsened to the LES grid prior to
plotting in order to allow for a more meaningful comparison.

The results for the ADM-RT model show a similar behaviour as the
DNS: Hairpin vortices (tDNS = 136) and the related roll-up (tDNS = 140)
of the shear layer are clearly visible and their position, convection speed
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DNS (interpolated onto LES grid)

No-model LES

Dynamic Smagorinsky model

ADM-RT model

Figure 4.27: Three-dimensional visualisation of the transitional structures for
the different simulations by isocontours of the negative-λ2 criterion (same
isolevel for respective times). From left to right: tDNS = 136, tDNS = 140,
tDNS = 154.5.
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Figure 4.28: Contour plots in the peak plane (y = Ly/2) for the different
simulations at tDNS = 140 (three-spike stage). Left column: Shear ∂u/∂z.
Right column: Vortices identified by the negative-λ2 criterion.

and growth rate are similar to the DNS. Moreover, the initial stages of
the turbulent breakdown are confined to a region close to the peak plane
(tDNS = 154.5). The no-model LES shows fragments of hairpin vortices,
but these are disguised by a high level of ambient high-frequency oscilla-
tions (noise) which is attributed to missing SGS dissipation. Unlike the
DNS data, at the latest time shown (tDNS = 154.5) already the whole
span of the channel is turbulent. The simulation using the dynamic
Smagorinsky model does not show a proper roll-up of the shear layer.
Vortices are generated, but these are not so pronounced, closer to the
wall, and spread further away from the peak plane. Moreover, no hairpin
vortex can be detected.

In figure 4.28, the wall-normal shear ∂u/∂z and λ2 are shown in
the peak plane (y = Ly/2) at the early three-spike stage (tDNS = 140).
Similar visualisations have alread been presented by Sandham & Kleiser
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Figure 4.29: Streamwise velocity u for the three spike stage at z = −0.3.
DNS, ADM-RT. Left: tDNS = 143, peak plane (y = Ly/2). Right:

tDNS = 154.5, valley plane (y = 0).

(1992). The “kinks” in the shear layer (x ≈ 1.5) coincide with the
hairpin vortices, clearly detectable by the λ2 criterion (figure 4.28, right
column). Again, the results obtained with the ADM-RT model compare
favourably to the DNS data. The no-model LES also shows the roll-
up of the shear layer in an overall more noisy environment. The DS
model, however, does not predict the physically correct transitional flow
structure.

A quantitative comparison of the streamwise velocity component dur-
ing the three-spike stage at both the peak and the valley position is given
in figure 4.29 for the DNS and the ADM-RT model only since these
stages could not be identified properly in either the DS or the no-model
simulation. It is evident that the three-spike stage is captured quite ac-
curately by the ADM-RT model. Note that at tDNS = 154.5 transition
at the peak position is already well advanced (see also figure 4.27), but
the ADM-RT model is still able to accurately predict the roll-up at the
valley position.

4.7 High-pass filtered eddy-viscosity models

In this section, the high-pass filtered (HPF) eddy-viscosity models as
introduced in section 2.2.2 are employed for the simulation of turbulent
channel flow at moderate Reynolds numbers (see also Schlatter et al.
(2005c)). Results using the HPF models applied to transitional and tur-
bulent channel flow at lower Reynolds numbers are presented in Stolz
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et al. (2004) and Stolz et al. (2005), while homogeneous isotropic turbu-
lence is considered in chapter 6 of this thesis.

4.7.1 Parameter settings

The Reynolds number based on the bulk velocity is set to Reb = 10935
resulting in Reτ ≈ 590 (see table 4.1). The corresponding DNS was
performed on 3842 × 257 grid points using the same parameters as in
Moser et al. (1999). The LES results reported here were obtained with
a resolution of N1 × N2 × N3 = 642 × 65 grid points. For all cases, the
physical dimensions of the simulation box are 2π × π × 2 resulting in a
resolution in wall units of

∆x+ × ∆y+ × ∆z+
∣∣
wall

/∆z+
∣∣
centre

= 9.65 × 4.83 × 0.0444/7.24

for the DNS and approximately

∆x+ × ∆y+ × ∆z+
∣∣
wall

/∆z+
∣∣
centre

= 58 × 29 × 0.7/29

for an LES. All simulations were continued until t ≈ 1000 when fully
converged statistics were reached.

Simulations for the high-pass filtered eddy-viscosity models with dif-
ferent cutoff wavenumbers wc ∈ {0, π/3, π/2, 2π/3, 3π/4} are compared
to calculations using the filtered structure-function model at the same
cutoff wavenumbers. Note that the filter is applied in three dimensions
as defined in section 2.1.1.

Reference calculations have been performed using the Smagorin-
sky model with CS = 0.05 and without wall-damping, the dynamic
Smagorinsky model (DS), and a simulation on the LES grid without
model (no-model LES). Furthermore, the data of the high-resolution
DNS was interpolated onto the LES grid. This reduction included a
spectral truncation of the wall-parallel Fourier components and an in-
terpolation in physical space for the wall-normal direction. The physical-
space interpolation was used in order to leave the mean velocity profile
and all boundary values unchanged between the high-resolution data and
the truncated data. The same interpolation algorithm has been used in
the analysis of the DNS data presented in section 4.2.

For the dynamic Smagorinsky model (Germano et al., 1991) the for-
mulation of Lilly (1992) was used, see section B.4. As test filter a three-
dimensional second-order filter defined in equation (2.19) with ωc = π/2
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was used. The averaging needed for the computation of the dynamic co-
efficient was performed in wall-parallel planes and negative values of CS

were clipped, see equation (B.47). For the FSF model and the HPF-SF
model, the structure function F2 was evaluated in three dimensions (i.e.
using the six-point formulation), see section B.1. The high-pass filter H0

defined in equation (2.16) was used for the argument of F2 and for the
evaluation of the strain rate Sij .

The filter G, given by equation (2.10) in section 2.1.1, is not defined
for a cutoff frequency ωc = 0. High-pass filtering with ωc = 0 is thus
defined as subtracting the mean flow 〈ui〉x,y(z, t), i.e.

H ∗ ui = ui − 〈ui〉x,y(z, t) . (4.14)

This definition is identical to the one used by Schumann (1975) for his
channel flow simulations. In the following, we include results for ωc = 0
because this modification to the classical eddy-viscosity models is strik-
ingly simple, but turns out to have a significant positive effect on the
quality of the results.

4.7.2 Turbulence statistics

The parameters and scalar results of the simulations are presented in
tables 4.5-4.8. The quantities A and B in these tables are defined as

A =
∫
〈εSGS〉dz/

∫
〈εvisc〉dz , (4.15)

B =
∫

εSGS,fluctdz/

∫
〈εSGS〉dz , (4.16)

which will be further discussed in section 4.7.4. For the HPF eddy-
viscosity models using the formulae for the model coefficient C given in
section 2.2.2, the averaged Reτ varies by approximately 2% around the
DNS value, Reτ = 587. The no-model LES, as anticipated for spectral
numerics, features too little viscous dissipation to compensate for the low
resolution leading to an overprediction of the skin friction, Reτ ≈ 630.
On the other hand, the dynamic Smagorinsky model is too dissipative
leading to an underprediction of the skin friction, Reτ ≈ 550. Similar
results have also been obtained for lower Reynolds number (see Stolz
et al. (2004) and previous sections).

The mean velocity profile 〈u〉+ and the different Reynolds stresses
are shown in figure 4.30 for the HPF Smagorinsky model, in figure 4.31
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Table 4.5: Parameters and results for the channel-flow simulations performed
using the HPF Smagorinsky model. A and B are defined in equations (4.15)
and (4.16).

ωc CHPF
S Reτ

∫ 〈εvisc〉dz A B
0 0.0333 598 −5.70 · 10−2 0.097 0.941

π/3 0.05 587 −5.47 · 10−2 0.146 0.918
π/2 0.0667 580 −5.73 · 10−2 0.146 0.956
2π/3 0.1 574 −5.78 · 10−2 0.158 0.977
3π/4 0.133 588 −5.74 · 10−2 0.161 0.985

Table 4.6: Parameters and results for the channel-flow simulations performed
using the HPF-SF model. A and B are defined in equations (4.15) and (4.16).

ωc CHPF
SF Reτ

∫ 〈εvisc〉dz A B
0 0.0089 582 −5.68 · 10−2 0.138 0.965

π/3 0.0146 578 −5.65 · 10−2 0.159 0.953
π/2 0.0215 582 −5.60 · 10−2 0.147 0.973
2π/3 0.0405 584 −5.58 · 10−2 0.147 0.985
3π/4 0.0727 583 −5.60 · 10−2 0.151 0.990

Table 4.7: Parameters and results for the channel-flow simulations performed
using the FSF model. A and B are defined in equations (4.15) and (4.16).

ωc CFSF Reτ

∫ 〈εvisc〉dz A B
0 0.017 596 −4.60 · 10−2 0.399 0.591

π/3 0.0233 594 −4.54 · 10−2 0.433 0.585
π/2 0.0286 592 −4.57 · 10−2 0.416 0.577
2π/3 0.0371 592 −4.60 · 10−2 0.407 0.591
3π/4 0.0435 592 −4.61 · 10−2 0.398 0.560

for the HPF-SF model and in figure 4.32 for the FSF model, each using
a cutoff wavenumber ωc ∈ {0, π

3 , π
2 , 2π

3 , 3π
4 }. A very close agreement

of the data with the fully resolved DNS can be observed for the HPF
models. Note also that the proposed adaptation of the model coefficient
(section 2.2.2) is indeed able to virtually eliminate the influence of the
cutoff wavenumber ωc: The velocity profiles and the Reynolds stresses
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Table 4.8: Parameters and results for the various reference channel flow sim-
ulations. A and B are defined in equations (4.15) and (4.16). νt denotes the
eddy viscosity, see section 4.7.3 and equation (2.26).
† DNS data interpolated onto LES grid (64 × 64 × 65).
‡ DNS with 3842 × 257 grid points.

Model Reτ

∫ 〈εvisc〉dz A B
Smag. CS = 0.05 577 −5.61 · 10−2 0.558 0.504
dyn. Smagorinsky 550 −5.40 · 10−2 0.343 0.753
HPF νt = 3 · 10−5 585 −5.80 · 10−2 0.114 0.993
ADM-RT χ = 2 586 −5.41 · 10−2 0.186 0.998
no-model LES 628 −5.65 · 10−2

DNS (interp.)† 588 −5.05 · 10−2

DNS‡ 587 n/a
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Figure 4.30: HPF Smagorinsky model. Left: Mean streamwise velocity profile
〈u1〉+ in wall units. Right: Reynolds stresses 〈u′

1u
′
1〉1/2/uτ , 〈u′

2u
′
2〉1/2/uτ ,

〈u′
3u

′
3〉1/2/uτ , 〈u′

1u
′
3〉/u2

τ . ωc = 0, ωc = π/3, ωc = π/2,
ωc = 2π/3, ωc = 3π/4, • DNS (interpolated onto LES grid).

nearly collapse onto each other. This is also true for the FSF model,
figure 4.32, but this model seems to be too dissipative close to the wall
around z+ ≈ 15, which is clearly visible by an underprediction of 〈u〉+
and in 〈u′

1u
′
1〉 by a slight shift of the peak away from the wall.

Data for the reference calculations are shown in figures 4.33 and 4.34
allowing a comparison of the present HPF results to those of previous
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Figure 4.31: HPF-SF model. Left: Mean streamwise velocity profile
〈u1〉+ in wall units. Right: Reynolds stresses 〈u′
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′
3〉/u2

τ . ωc = 0, ωc = π/3, ωc = π/2,
ωc = 2π/3, ωc = 3π/4, • DNS (interpolated onto LES grid).
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Figure 4.32: FSF model. Left: Mean streamwise velocity profile 〈u1〉+ in wall
units. Right: Reynolds stresses 〈u′

1u
′
1〉1/2/uτ , 〈u′

2u
′
2〉1/2/uτ , 〈u′

3u
′
3〉1/2/uτ ,

〈u′
1u

′
3〉/u2

τ . ωc = 0, ωc = π/3, ωc = π/2, ωc = 2π/3,
ωc = 3π/4, • DNS (interpolated onto LES grid).

SGS models. The velocity profiles displayed in figure 4.33 show that the
dynamic Smagorinsky model is too dissipative, in contrast to the no-
model calculation, which clearly underpredicts the dissipation, see also
table 4.8. Except for the vicinity of the wall, the classical Smagorinsky
model correctly predicts the mean streamwise velocity profile but the
Reynolds stresses are not approximated accurately.

It is interesting to compare the near-wall region z+ ≈ 15 of the ve-
locity profile 〈u〉+ for the various SGS models (figure 4.34). Unlike the
fixed-coefficient eddy-viscosity models, the HPF models achieve an accu-
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Figure 4.33: Left: Mean streamwise velocity profile 〈u1〉+ in wall
units. Right: Reynolds stresses 〈u′

1u
′
1〉1/2/uτ , 〈u′

2u
′
2〉1/2/uτ , 〈u′

3u
′
3〉1/2/uτ ,

〈u′
1u

′
3〉/u2

τ . HPF-SF model (ωc = 2π/3), HPF Smagorinsky
model (ωc = 2π/3), Smagorinsky model (CS = 0.05), dynamic
Smagorinsky model, FSF model (ωc = 2π/3), • DNS (interpolated onto
LES grid), ◦ no-model LES. See also enlargement in figure 4.34.
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Figure 4.34: Enlargement of the data given in figure 4.33 depicting the near-
wall region. Left: Mean streamwise velocity profile. Right: Reynolds stresses.
Line captions see figure 4.33.

rate prediction of the velocity profile without the need for ad-hoc wall-
damping functions, whereas the classical Smagorinsky model and the
FSF model show a distinct departure from the DNS results. Similar re-
sults have already been found for the lower Reynolds number Reτ ≈ 180
by Stolz et al. (2004).

One-dimensional energy spectra are displayed in figures 4.35 and 4.36.
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In particular, the one-dimensional Fourier spectra in the streamwise di-
rection averaged in time and the spanwise direction E1(k1, x3) (see equa-
tion (4.10)), the Fourier spectra integrated in the wall-normal direction
Eint

1 (k1) (4.11), the Chebyshev spectrum E3(k3) (4.12) and the Cheby-
shev spectrum of the fluctuations E′

3(k3) (4.13) are shown. Note that
the zigzag appearance of E3(k3) is caused by the wall-normal symme-
try of the mean-flow profile which is represented by the even Chebyshev
modes.

For the HPF-SF model, figure 4.35, a minor overprediction of the
spectra at higher wavenumbers is seen for low ωc, improving continu-
ously with increasing ωc. This behaviour is visible for both the stream-
wise Fourier spectra and the Chebyshev spectra. As can be inferred
from figure 4.36, the data for the LES with the Smagorinsky, dynamic
Smagorinsky and FSF model deviate from the DNS results already at
lower wavenumbers k1 < 4, overpredicting the integrated spectrum
Eint

1 (k1). For the smaller scales, the FSF model shows a very accu-
rate approximation of the DNS data, whereas the dynamic Smagorinsky
model clearly underpredicts the energy content at high wavenumbers.
The streamwise spectrum of the Smagorinsky model in the centre of
the channel is significantly overpredicted and nearly collapses with the
no-model data.

4.7.3 Comparison to ADM/ADM-RT

Averaged results of LES using the ADM-RT model (see section 2.2.3,
equation (2.51)) are presented in figure 4.37. Note that in the figure the
lines for ADM-RT model and the HPF-SF model virtually collapse. It
can be concluded that the performance of the HPF eddy-viscosity models
is similar to those of the ADM-RT model for turbulent channel flow.

In order to determine the influence of the exact shape of the eddy
viscosity νt on the quality of the statistical results, an additional LES has
been performed using the HPF eddy-viscosity methodology with a con-
stant value of νt, i.e. νt(x, y, z, t) = νt = 3·10−5. The numerical value for
νt was chosen empirically corresponding approximately to the spatially
averaged νt in the calculations with the HPF-SF and HPF Smagorinsky
models. The results of the simulation with constant νt are compared
to those of the HPF Smagorinsky model and the HPF-SF model in fig-
ure 4.38. It is interesting to note that the data basically coincide for
both the mean velocity profile and the Reynolds stresses. It can there-
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Figure 4.35: Spectra of the HPF-SF model. Left: Integrated streamwise
Fourier spectra Eint

1 (k1) (top) and E1(k1, x3) at two wall-normal positions
(bottom). Right: Wall-normal Chebyshev spectra E3(k3) (top) and E′

3(k3)
(bottom). ωc = 0, ωc = π/3, ωc = π/2, ωc = 2π/3,

ωc = 3π/4, • DNS (interpolated onto LES grid), ◦ no-model LES. Def-
inition of the spectra see equations (4.10)-(4.13).

fore be concluded that the shape of νt, i.e. which closure methodology
is applied for determining νt, is not of particular importance when using
HPF models. However, it is of course crucial to use a correct estimate
for the magnitude of νt. A similar conclusion was also drawn in sec-
tion 4.5 concerning the determination of the relaxation parameter χ for
the ADM-RT model.

It is instructive to pay attention to the similarity of the model term
with constant νt to the relaxation term used in the approximate decon-
volution model (ADM) and the relaxation-term model (ADM-RT), see
section 2.2.3. From equations (2.5) and (2.26) the HPF model terms
occurring in the i-th momentum equation assuming constant νt read in
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Figure 4.36: Left: Integrated streamwise Fourier spectra Eint
1 (k1) ( top)

and E1(k1, x3) at two wall-normal positions (bottom). Right: Wall-normal
Chebyshev spectra E3(k3) ( top) and E′

3(k3) (bottom). HPF-SF model
(ωc = 2π/3), HPF Smagorinsky model (ωc = 2π/3), Smagorinsky
model (CS = 0.05), dynamic Smagorinsky model, FSF model
(ωc = 2π/3), • DNS (interpolated onto LES grid), ◦ no-model LES. Definition
of the spectra see equations (4.10)-(4.13).

Fourier space (F denoting the Fourier transform)

F
{
−2

∂

∂xj
[νtSij(H ∗ u)]

}
= νt|k|2Ĥ · ûi . (4.17)

Similarly, from equations (2.35) and (2.51) the relaxation term of ADM
and ADM-RT is defined, assuming a constant model coefficient χ as well,
as

F {χHADM ∗ u} = χĤADM · ûi , (4.18)

with a high-pass filter ĤADM. Equating the right-hand sides now yields

νtĤ = χ
ĤADM

|k|2 . (4.19)
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Figure 4.37: Left: Mean streamwise velocity profile 〈u1〉+ in wall units. Right:
Reynolds stresses 〈u′

1u
′
1〉1/2/uτ , 〈u′
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2〉1/2/uτ , 〈u′
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′
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′
3〉/u2

τ .
HPF-SF model (ωc = 2π/3), ADM-RT model (χ = 2), • DNS

(interpolated onto LES grid), ◦ no-model LES. Note that the solid and the
dashed line virtually collapse.
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Figure 4.38: Left: Mean streamwise velocity profile 〈u1〉+ in wall
units. Right: Reynolds stresses 〈u′

1u
′
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2u
′
2〉1/2/uτ , 〈u′
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′
3〉1/2/uτ ,

〈u′
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′
3〉/u2

τ . HPF Smagorinsky model (ωc = 2π/3), HPF-SF
model (ωc = 2π/3), HPF eddy-viscosity model (ωc = 2π/3) with
νt(x, y, z, t) = const. = 3 · 10−5.

This indicates that using the filter |k|2Ĥ in the relaxation term is in fact
analytically equivalent to the HPF model with constant νt. The results
for turbulent channel flow indeed show this similarity, see figure 4.37.
The relation between the ADM relaxation regularisation and other LES
approaches is also discussed in e.g. Adams & Stolz (2002) and Müller
et al. (2004).
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4.7.4 Energy budget

For the LES presented in the previous sections, the turbulent energy
budget has been evaluated (for notation see also appendix B.3). The
turbulent production P is defined as

P = 〈u′
iu

′
j〉〈Sij〉 . (4.20)

The total viscous dissipation 〈εvisc〉 = − 2
Re 〈SijSij〉 is split into the part

of the viscous dissipation arising due to the mean flow

εvisc,mean = − 2
Re

〈Sij〉〈Sij〉 , (4.21)

and the viscous dissipation due to the velocity fluctuations

εvisc,fluct = − 2
Re

〈SijSij〉 +
2

Re
〈Sij〉〈Sij〉 . (4.22)

Similarly, the total dissipation due to the SGS model contributions is
defined as 〈εSGS〉 = 〈τijSij〉 and split accordingly into

εSGS,mean = 〈τij〉〈Sij〉 , (4.23)
εSGS,fluct = 〈τijSij〉 − 〈τij〉〈Sij〉 . (4.24)

Note that negative values of the dissipation correspond to a loss of kinetic
energy.

Figure 4.39 shows the energy budget for the HPF-SF model. Note
that these quantities are dependent on an accurate description of the
velocity field in terms of velocity profiles and Reynolds stresses. The
production and the two contributions to the viscous dissipation collapse
onto one line for the different cutoff wavenumbers. However, a distinct
influence of the cutoff wavenumber on the SGS dissipation is visible in
the figure. Apart from the simulation using ωc = 0 (Schumann’s model),
both εSGS,mean and εSGS,fluct are decreasing with increasing ωc. The
contribution of εSGS,fluct to the total SGS dissipation is also decreasing
with ωc, see

∫
εSGS,fluctdz/

∫ 〈εSGS〉dz in table 4.6. Consistent results can
also be found for the HPF Smagorinsky model. This behaviour indicates
that the SGS dissipation acting only on smaller scales is more effective
in terms of total dissipation, i.e. less dissipation is needed.

The energy budget for the different SGS models is shown in fig-
ure 4.40 together with the DNS data. The mean viscous dissipation
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Figure 4.39: Energy budget for the HPF-SF model, normalised by viscous wall
units, (u◦

τ )4/ν◦: Left: Production P, viscous dissipation due to mean-flow
strain εvisc,mean, viscous dissipation due to strain of fluctuations εvisc,fluct.
Right: SGS dissipation due to mean flow εSGS,mean, SGS dissipation due
to fluctuations εSGS,fluct. ωc = 0, ωc = π/3, ωc = π/2,

ωc = 2π/3, ωc = 3π/4.

εvisc,mean deviates from the data obtained from DNS for the FSF and the
Smagorinsky model, which is primarly due to an incorrect mean velocity
profile (see also figure 4.34). The turbulent production predicted by the
Smagorinsky model peaks further away from the wall compared to the
DNS and has a higher integral value. On the other hand, the FSF model
slightly underpredicts P . The HPF models and the dynamic Smagorin-
sky model are predicting P and 〈εvisc〉 quite accurately. The mean and
fluctuating SGS contribution of the Smagorinsky model is much higher
than that of the other models. The FSF model also has a strong con-
tribution from εSGS,mean which is due to the full (non-HPF) strain-rate
tensor. The dynamic Smagorinsky model predicts much lower values for
both parts of the SGS dissipation, however, it still has a significant value
of εSGS,mean. On the other hand, for the HPF models, εSGS,fluct is much
lower, see figure 4.39 (note the different scaling of the ordinate).

Classical eddy-viscosity models with positive model coefficient are
strictly dissipative, i.e. they do not allow for any energy flux from the
subgrid scales back to the resolved scales. This is obvious by looking at
the SGS dissipation for eddy-viscosity models (see equation 2.21),

εSGS = τijSij = −2νtSijSij = −νt|S| ≤ 0 , (4.25)

which is always negative for positive eddy viscosity νt.



4.7 High-pass filtered eddy-viscosity models 87

z+

E
ne

rg
y 

bu
dg

et

0 10 20 30 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

z+

SG
S 

di
ss

ip
at

io
n

0 10 20 30 40
−0.4

−0.3

−0.2

−0.1

0

Figure 4.40: Energy budget for the different SGS models. Left: Production
P, viscous dissipation due to mean-flow strain εvisc,mean, viscous dissipation
due to strain of fluctuations εvisc,fluct. Right: SGS dissipation due to mean
flow εSGS,mean, SGS dissipation due to fluctuations εSGS,fluct for the classical
eddy-viscosity models (note that for all models εSGS,mean > εSGS,fluct close to
the wall). HPF-SF (ωc = 2π/3), Smagorinsky model (CS = 0.05),

dynamic Smagorinsky model, FSF model (ωc = 2π/3), HPF
Smagorinsky model (ωc = 2π/3), • DNS (evaluated on the LES grid), ◦ no-
model LES.

However, several studies have shown that for wall-bounded flows
there is indeed an intermittent backscattering, e.g. Piomelli et al. (1991);
Härtel et al. (1994) and Domaradzki & Saiki (1997). The SGS term of
the HPF eddy-viscosity models does actually permit backscatter, since
the SGS dissipation is not necessarily negative,

εSGS = τijSij = −2νtSij(H ∗ u)Sij . (4.26)

In order to examine this effect in simulations of turbulent channel
flow, a conditional averaging of the two quantities

〈ε−SGS〉 =
〈

εSGS − |εSGS|
2

〉
and 〈ε+

SGS〉 =
〈

εSGS + |εSGS|
2

〉
(4.27)

has been performed, similar to Piomelli et al. (1991); Domaradzki & Saiki
(1997). Here, 〈ε−SGS〉 is the forward dissipation and 〈ε+

SGS〉 the backward
dissipation (backscatter). The results for the HPF Smagorinky model
(ωc = 2π/3) are shown in figure 4.41. Also shown is the total SGS
dissipation obtained from DNS data interpolated onto the LES grid

〈εDNS
SGS 〉 = 〈τijSij(u)〉 = 〈(ujui − uiuj)Sij(u)〉 . (4.28)
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Figure 4.41: The SGS dissipation for the HPF Smagorinsky model
(ωc = 2π/3). Total SGS dissipation 〈εSGS〉, forward dissipation
〈ε−SGS〉, backward dissipation (backscatter) 〈ε+

SGS〉, • total SGS dissipa-
tion 〈εDNS

SGS 〉 from DNS data.

Note that the interpolation operation denoted by the overbar is per-
formed as described in section 4.7.1. It can be seen that the plane-
averaged total SGS dissipation 〈εSGS〉 is always negative for the LES
and the DNS data, showing an overall forward scatter in both cases.
The total amount of SGS dissipation for the LES data agrees reasonably
well with the DNS data, see also figure 4.40 for the other SGS models.
Moreover, close to the wall, for the LES a significant amount of backscat-
ter peaking at z+ ≈ 3 can be observed, which amounts to about 70% of
the total SGS dissipation at this wall-normal position.

In order to correlate the locations at which backscatter is observed,
wall-parallel slices of the flow domain are considered. In figure 4.42, an
instantaneous LES velocity field indicating the positions of the low and
high-speed streaks by the use of gray-scales is depicted. Although no
two-point correlation data is shown, the typical streak spacing can be
estimated from the plot as approximately 100 wall units. Superimposed
in figure 4.42 are contours of εSGS = τijSij of the same realisation. Note
that positive values of εSGS represent backscatter. A close correlation
between the regions of the intense backscatter and low-speed streaks can
be observed.

Similarly, the same visualisation is given in figure 4.43 for the DNS
data, however, of a different instantaneous realisation. Although not as
conclusive as in figure 4.42, the correlation between backscatter regions
and low-speed streaks can be anticipated also for the DNS data. It
can therefore be concluded that the present LES based on the high-pass
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Figure 4.42: Visualisation of the instantaneous velocity field u′ = u − 〈u〉x,y

taken from LES with the HPF Smagorinsky model. Gray-scales ranging from
u′ = −0.05 (black) to u′ = 0.05 (white) in a plane z+ = 2.8. Superimposed
are contours of εSGS = τijSij = 0.00001 (≈ 0.0004 in viscous scaling) showing
backscatter regions of the same realisation. Left: Full computational domain.
Right: Enlargement of region [0, 2] × [0, 1.4].

Figure 4.43: Visualisation of a section of the instantaneous velocity field
u′ = u − 〈u〉x,y taken from an evaluation of the DNS data. Gray-scales ranging
from u′ = −0.05 (black) to u′ = 0.05 (white) in a plane z+ = 2.8. Superim-
posed are contours of εSGS = τijSij = 0.00001 (≈ 0.0004 in viscous scaling)
showing backscatter regions of the same realisation.

filtered eddy-viscosity models predict a reasonably correct total SGS
dissipation together with backscatter located at the same positions as
found in the DNS data.
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4.8 Comparison of the SGS models

To summarise the different results presented in this chapter, table 4.9
provides an qualitative assessment of the various SGS models used in
this chapter. In particular, the variants of the approximate deconvolu-
tion model (ADM, section 2.2.3) are included, i.e. ADM-3D, ADM-2D
and ADM-RT. Variants of the dynamic Smagorinsky (DS) model (sec-
tion B.4) using different test filters are also considered, i.e. using the
three-dimensional second-order filter (2.18), the sixth-order filter Q1 ∗G
and the spectral cutoff filter. Additionally, classical eddy-viscosity
models (section 2.2.1) including the Smagorinsky model, the structure-
function (SF) model and the filtered structure-function (FSF) model
are compared together with their high-pass filtered (HPF) counterparts,
HPF Smagorinsky and HPF-SF model (see section 2.2.2).

Note that the conclusions summarised in the table 4.9 are limited to
the flow cases, model implementations and resolutions used in this work
and should not be mistaken as being generally valid.

Different criteria assessing the LES performance are compared in a
qualitative way. In particular, for transitional channel flow the evolution
of the integral quantities Reτ and H12 and the prediction of the tran-
sitional vortical structures is assessed. For turbulent channel flow, the
averaged skin friction and shape factor, the prediction of the Reynolds
stresses and the mean velocity profiles are compared.

For the case of homogeneous isotropic turbulence (HIT, see chapter 6)
the quality of the simulated compensated energy spectrum is evaluated.

The block entitled Model Formulation refers to details of the defi-
nition and implementation of the different SGS models. Specifically, it
is noted whether the models are formulated in a three-dimensional way
(e.g. three-dimensional filtering), whether an averaging of the model co-
efficient is needed in homogeneous directions, whether the model coef-
ficients can be considered being generally valid for different flow types
and Reynolds numbers, and what is the additional computational cost
for the model terms compared to the no-model LES at the same reso-
lution. Furthermore, the convergence towards the exact (DNS) solution
with increasing grid resolution (grid refinement) and the ability of the
SGS model to predict energy backscatter is compared.

As reported in section 4.4.1, using the standard formulation of ADM
(ADM-3D) it was not possible to simulate the temporal transition at
the coarse LES resolution chosen for this case (i.e. only 33 points in the
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wall-normal direction, see section 4.1). However, with slighlty increased
resolution the ADM-3D model is able to calculate through transition
and predict the characteristic transitional quantities comparably well.
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Table 4.9: Comparison of the SGS model performance in LES of transitional
and turbulent channel flow and homogeneous isotropic turbulence (HIT). The
symbols + and - refer to good and bad results, respectively. ++ is better than
+, similarly -- is worse than -. Note that the conclusions summarised in this
table are limited to the flow cases, model implementations and resolutions used
in this work.
1) The ADM-3D model was not able to simulate transition at the chosen coarse
grid resolution, see discussion in the text.



Chapter 5

Spatial transition and turbulence

The temporal simulations presented in the previous chapter 4 assume
that the disturbance growth within one period of the primary Tollmien-
Schlichting (TS) wave λTS is small. Based on this assumption, only one
wavelength of the TS wave is considered and its growth is simulated
in time, in a moving frame of reference, rather than in space, whereas
in a physical experiment disturbances grow in space. The boundary
conditions in the streamwise direction are thus chosen to be periodic,
rendering the streamwise direction homogeneous. The main advantages
of the temporal simulation approach are that the domain is much smaller
in the streamwise direction than for a spatial simulation and, due to
the periodic boundary conditions, neither inflow nor outflow need to be
specified and efficient Fourier methods can thus be used.

During the first, weakly nonlinear and slowly evolving stages of tran-
sition, the temporal approach is well justified (Kleiser & Zang, 1991).
Additionally, for the turbulent stages the similarity of the spatial and
temporal approach is well-established and such simulations are com-
monly performed by the temporal approach (e.g. Moser et al. (1999)).
However, there are differences during the highly intermittent later tran-
sitional stages concerning the evolution of the physical flow structures
and, possibly, the appropriate subgrid-scale (SGS) modelling. For a dis-
cussion of various aspects of spatial simulations see Fasel (1990); Kleiser
& Zang (1991).

In this chapter, the temporal large-eddy simulations presented in
chapter 4 are extended to the spatial framework, see also Schlatter et al.
(2005d). For boundary treatment, the fringe method (see Bertolotti
et al. (1992); Nordström et al. (1999) and appendix A) has been imple-
mented in the numerical simulation code (chapter 3).

5.1 Governing equations and SGS modelling

The governing equations for LES are the (spatially) filtered Navier-
Stokes equations (2.5) for the non-dimensional velocity components
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ui, i = 1, 2, 3 and the pressure p,

∂ui

∂t
+

∂ujui

∂xj
+

∂p

∂xi
− 1

ReCL|lam
∂2ui

∂xj∂xj
= −∂τij

∂xj
+ FF

i , (5.1)

complemented with the incompressibility constraint (2.6)

∂ui

∂xi
= 0 .

The non-dimensionalisation is similar to the temporal case, section 4.1.2.
The effect of the non-resolved small scales enters through the SGS term
τij := uiuj − ujui, which is not closed and must be modelled appropri-
ately as detailed in section 2.2. The term FF

i in equation (5.1) arises
from the fringe forcing which will be discussed in the following section.

For the present results, a number of different SGS models have been
examined. All of these models have already been tested in temporal
K-type transition in plane Poiseuille flow (see chapter 4 and Schlatter
et al. (2004c); Stolz et al. (2004); Schlatter et al. (2004d)) with the same
spectral numerical method explained in chapter 3. We follow the nomen-
clature introduced in section 2.2 and briefly review the SGS models that
will be used in the spatial simulations.

The dynamic Smagorinsky model is implemented according to Ger-
mano et al. (1991) and Lilly (1992) with a three-dimensional second-
order test filter (ωc = π/2, equation (2.19)), with its transfer function
shown in figure 2.3. The eddy viscosity is then defined as

νt = (CS∆)2|S(u)| , (5.2)

with the dynamic model coefficient CS(x, z, t) where negative values were
clipped. The averaging involved in the computation of the model coef-
ficient (Germano et al., 1991; Lilly, 1992) is performed in the spanwise
direction y only, see section B.4 and equation (B.47). Note that in the
temporal case the averaging is usually done in wall-parallel planes.

In the filtered structure function (FSF) model (Ducros et al., 1996)
the eddy viscosity is given by (see equation (2.25))

νt = CFSF C
−3/2
K ∆

√
F2(H0 ∗ u,x, ∆) , (5.3)

with CFSF = 0.0371 (Schlatter et al., 2004b) and the second-order ve-
locity structure function F2 computed in the three-dimensional six-point
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formulation from the high-pass filtered velocity field H0 ∗u = (I−G)∗u.
H0 is defined in equation (2.12) (section 2.1.1, see also Stolz et al.
(2001a)). The filter transfer functions Ĝ and Ĥ0 are shown in figure 2.2.
The cutoff wavenumber ωc, defined as Ĝ(ωc) = Ĥ0(ωc) = 1/2, is set
to ωc = 2π/3 for the results presented in this chapter. The filter is
defined on an implicit five-point stencil in physical space, and it is as-
sured that all moments in physical space up to second order are vanish-
ing even for non-equidistant grids, as e.g. used in the the wall-normal
direction of the channel. For this reason smooth (i.e. low-order poly-
nomial) flow profiles are virtually invariant with respect to the filter
operation with kernel G, and are small when high-pass filtered with the
filter HN := (I − G)N+1, N ≥ 0.

In contrast to classical eddy-viscosity models (section 2.2.1), the high-
pass filtered (HPF) eddy-viscosity models (section 2.2.2, see Stolz et al.
(2004)), compute both the strain rate and the eddy viscosity from the
high-pass filtered velocities (see equation (2.26)), i.e.

τij − δij

3
τkk ≈ −2νHPF

t Sij(H0 ∗ u) , (5.4)

with the corresponding eddy viscosity for the HPF-SF model (equation
(2.29)),

νHPF
t = CHPF

SF C
−3/2
K ∆

√
F2(H0 ∗ u,x, ∆) , (5.5)

and CHPF
SF = 0.0405 (Schlatter et al., 2004b).

The ADM-RT model is based on the relaxation term (RT) of the ap-
proximate deconvolution model (ADM) (Stolz et al., 2001a) presented
in Stolz & Adams (2003) and Schlatter et al. (2004d ,c). In this mono-
graph, ADM and the ADM-RT model are discussed in section 2.2.3,
equations (2.35) and (2.51). The model consists of a regularisation term
χH5 ∗ ui which is employed in the momentum equations (5.1),

∂τij

∂xj
= χH5 ∗ ui . (5.6)

H5 = (I − G)6 is defined in equations (2.10) and (2.12) and denotes
the high-order three-dimensional high-pass filter (Stolz et al., 2001a) re-
specting the boundary conditions, see figure 2.2. χ is a model coefficient,
which is set to a constant value herein. The ADM-RT model proved to
be accurate and robust in predicting transitional and turbulent incom-
pressible flows with spectral methods, see chapter 4 and Schlatter et al.
(2004d ,c).
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5.2 Simulation method

The simulations use the standard Fourier-Chebyshev spectral method
which is discussed in chapter 3. Periodic boundary conditions are im-
posed in the streamwise (x) and spanwise (y) directions together with
no-slip conditions at the solid walls (z = ±1). The nonlinear convection
terms are computed with full dealiasing employing the 3/2-rule in all spa-
tial directions. No dealiasing has been used for the SGS model terms.
The divergence-free condition is enforced exactly by an influence-matrix
technique (Kleiser & Schumann, 1980). Time advancement is achieved
by a semi-implicit Runge-Kutta/Crank-Nicolson scheme (Sandham &
Kleiser, 1992; Wray, 1987).

To account for the spatially evolving flow a fringe region has been
added to the flow domain in the streamwise direction similar to Bertolotti
et al. (1992) and Nordström et al. (1999). Within this region, which
accounts for 20% of the streamwise extent of the computational domain,
the term

FF
i = λ(x)(Ui − ui) (5.7)

in equation (2.1) forces the flow to return from the (turbulent) outflow
profile upstream of the fringe region back to the prescribed inflow pro-
file Ui. The fringe function is defined as λ(x) = λf ·F (x) with F (x) given
by Nordström et al. (1999); Lundbladh et al. (1999), see figure 5.1,

F (x) = S

(
x − xstart

∆rise

)
− S

(
x − xend

∆fall
+ 1

)
, (5.8)

with the smooth step function

S(x) =


0 , x ≤ 0
1/[1 + exp( 1

x−1 + 1
x )] , 0 < x < 1 .

1 , x ≥ 1
(5.9)

The fringe function λ(x) ≥ 0 and thus the forcing term FF
i is non-

vanishing only within the fringe region extending from xstart = 80 to
xend = 100 for the present setup. The shape of the fringe function is
further defined by ∆rise = 14 and ∆fall = 4.

The inflowing disturbances are superimposed onto the laminar
Poiseuille flow profile and forced within the fringe region as distributed
boundary conditions ui ← Ui(x, y, z, t). They consist of a two-
dimensional spatially evolving Tollmien-Schlichting (TS) wave and two
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Figure 5.1: Fringe function F (x) on the subdomain [60, 100].

superimposed oblique three-dimensional waves with the same temporal
frequency ωTS = 0.3 as the two-dimensional disturbances. The compu-
tation of the TS waves was performed similarly to the temporal case (see
section 4.1.1) using a standard Chebyshev collocation method involving
the solution to the Orr-Sommerfeld and Squire equations (see e.g. Schmid
& Henningson (2001)). Note that in the coupled Orr-Sommerfeld/Squire
equations the eigenvalue α appears up to fourth power (as opposed to
the temporal eigenvalue ω which only appears linear). The resulting
eigenproblem was solved using the companion matrix method. It was
necessary to solve the eigenproblem using 128bit accuracy in the com-
puter programme.

The eigenvalue spectra for the two-dimensional and three-
dimensional waves are shown in figure 5.2. In figures 5.3 and 5.4, the
eigenfunctions of the disturbances included in the initial conditions are
displayed. The corresponding TS waves used in the temporal simulations
have been described in section 4.1.1 and are depicted in figures 4.1-4.3.

The amplitude of these disturbances is set to 6% and 0.2% of the
centre-line velocity, respectively, being twice as high as in the tempo-
ral reference simulation of Gilbert & Kleiser (1990) and Schlatter et al.
(2004c) in order to trigger transition earlier and thus to allow for a
shorter computational domain. These initial conditions excite standard
K-type transition with an aligned pattern of Λ-vortices. The Reynolds
number based on the bulk velocity and the channel half-width h is
Reb = 3333 (corresponding to Reτ ≈ 210 in the fully turbulent regime).
Statistical data has been averaged in y and in time from t = 200 to
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Figure 5.2: Spectrum of the eigenvalues α = αr + αii (streamwise wavenum-
ber α) of the coupled Orr-Sommerfeld/Squire equations with parabolic base
flow, Reb = 3333, ω = 0.3. Left: Two-dimensional waves, β = 0. Right:
Three-dimensional waves, β = ±2.0944.
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Figure 5.3: Two-dimensional eigenfunction for the eigenvalue
α = 1.08 + 4.44 · 10−3i, Reb = 3333, ω = 0.3, β = 0. Real part,

imaginary part. Left: Streamwise velocity disturbance u′
2D . Right:

Wall-normal velocity disturbance w′
2D.

t = 410, corresponding to 10 periods of the initial TS wave,

ui = 〈ui〉 + u′
i = 〈ui〉y,t + u′

i . (5.10)

At the beginning of the statistical sample (t = 200) the flow was found to
be sufficiently settled. t = 200 corresponds to nearly three box through-
flows. The dimensions of the computational box are 100h× 3h× 2h. An
overview of the flow development within the computational box is shown
in figure 5.5.
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Figure 5.4: Three-dimensional eigenfunction for the eigenvalue
α = 0.803 + 0.231i, Reb = 3333, ω = 0.3, β = 2.0944. Real part,

imaginary part. From left to right and top to bottom: Streamwise
velocity disturbance u′

3D, spanwise velocity disturbance v′
3D, wall-normal
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Figure 5.5: Visualisation of an instantaneous solution (isocontours of λ2)
within the entire computational domain in a (x, y)-plane. The inflow is lo-
cated on the left, whereas the fringe domain 80 ≤ x ≤ 100 is appended on the
right-hand side (see also figure 2.2).

5.3 Results

As a first step, the application of the fringe method to the LES equa-
tions using an SGS model has to be examined. Several LES using the
ADM-RT model have been performed varying both the fringe strength
λf and the relaxation parameter χ. In figure 5.6, three simulations on
a 768 × 48 × 49 grid are compared for which λf was varied by a factor
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Figure 5.6: Evolution of the shape factor H12 during transition using ADM-RT
on 768 × 48 × 49 grid points, χ = 25. λf = 10, λf = 40,

λf = 100. Left: Full domain. Right: Enlargement of the fringe region.

x

H
12

0 20 40 60 80

1.6

1.8

2

2.2

2.4

2.6

Figure 5.7: Evolution of the shape factor H12 during the transitional phase
using ADM-RT on 512 × 32 × 33 grid points. χ = 25, λf = 40,

χ = 50, λf = 40, χ = 25, λf = 10.

of up to 10 with fixed χ = 25. In the physically relevant subdomain
x ∈ [0, 80], the shape factor H12 nearly collapses for the different runs,
whereas in the fringe region x > 80 a higher λf leads to slightly ear-
lier (i.e. at earlier x) reestablishment of the laminar profile H12 ≈ 2.5.
At a lower resolution of 512 × 32 × 33 grid points, figure 5.7 displays
H12 for different combinations of χ and λf , again showing no significant
discrepancies. For the remainder of the chapter, χ = 25 was chosen.
Additionally, tests have been conducted with gradually reducing the in-
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Figure 5.8: Streamwise velocity u close to the inflow at z = −0.47 computed
using ADM-RT and no-model LES on 512 × 32 × 33 grid points.

fluence of the SGS model within the fringe region by setting

∂τij

∂xj
= (1 − F (x))χH5 ∗ ui . (5.11)

It was found that such a modification was not necessary for an accurate
prescription of the inflow conditions.

On the other hand, the application of the fringe method without any
SGS model (no-model LES) at the low LES resolution (512× 32 × 33
nodes) caused the appearance of small wiggles in the instantaneous ve-
locity as shown in figure 5.8. These wiggles are not present if an SGS
model is used at the same resolution. They are most likely caused by
the underresolution in the later stages of transition and in the turbulent
part of the flow domain. These numerical instabilities are then able to
affect the whole flow domain due to the global discretisation scheme.
By increasing the resolution, these artefacts are reduced gradually and
eventually vanish as soon as sufficient resolution is reached in the late
transitional and turbulent parts of the domain. Conversely, in the LES
these wiggles do not exist even at low resolution since they are effectively
damped by the SGS model.

It can thus be concluded that the fringe method provides an accu-
rate way to enforce inflow and outflow boundary conditions also in the
presence of an SGS model. Moreover, it can be seen that the ADM-RT
model is not very sensitive to the choice of the model coefficient χ (see
also Schlatter et al. (2004d); Stolz et al. (2001a)).
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Figure 5.9: Evolution of Reτ and H12 during the transitional phase com-
puted on 512 × 32 × 33 grid points in the spatial framework ( left column,
λf = 40) and in the temporal framework on 32 × 32 × 33 grid points ( right
column). ADM-RT model with χ = 25, dynamic Smagorinsky
model, FSF model, HPF-SF model, no-model LES, • tempo-
ral DNS (resolution 160 × 160 × 161).

5.3.1 Transitional phase

In figure 5.9 the evolution of the Reynolds number based on the friction
velocity and the channel half-width Reτ and the shape factor H12 during
transition from the slightly disturbed laminar flow to the turbulent state
is shown for both the spatial and the temporal framework. The various
spatial LES have been performed with a resolution of 512 × 32 × 33
grid points, which corresponds to 32 × 32 × 33 points for one period
of the initial TS waves, similar to the temporal LES (Schlatter et al.,
2004c; Stolz et al., 2004). It can be seen from the figure that all LES are
able to predict transition to turbulence in both the temporal and spatial
framework. Compared to the LES with an active SGS model and to
the temporal DNS data, the no-model calculation undergoes transition
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somewhat too early in both the temporal and the spatial simulations. At
this resolution the no-model calculation is clearly underresolved, which
can also be seen in visualisations of the instantaneous fields showing
small wiggles in the velocities (see previous section and figure 5.8).

The qualitative behaviour of the different models is quite comparable
between the temporal and spatial approach; i.e. the FSF model closely
follows the no-model LES at lower x (earlier times in temporal LES),
and during later stages it seems to be too dissipative. The same conclu-
sion can be drawn for the dynamic Smagorinsky model, which however
provides a more accurate description of the earlier transitional stages. It
is interesting to note that in the spatial simulations the typical overshoot
of Reτ during transition is predicted only by the ADM-RT model with
similar amplitude (approximately 15%) as in the temporal DNS and the
corresponding temporal LES.

5.3.2 Transitional structures

Instantaneous streamwise velocity signals are displayed in figures 5.10
and 5.11 showing the typical low-velocity “spike” stages associated with
the transitional breakdown (Nishioka et al., 1975; Gilbert & Kleiser,
1990). From figure 5.10 it can be inferred that the one-spike stage is
predicted accurately only by the ADM-RT model at the present low
resolution. Both the no-model simulation and the data of the dynamic
Smagorinsky model do not show this distinct early transitional stage
at any time, which is associated with the appearance of the first hair-
pin vortex. However, by doubling the resolution to 1024× 64 × 65 grid
points, the one-spike stage becomes also visible in the no-model compu-
tations (low-resolution DNS), nearly collapsing with the ADM-RT data
(figure 5.10)

For the ADM-RT model, a sequence of velocity signals from the one-
spike to the four-spike stage is shown in figure 5.11. Note that in this
figure the velocity is shown as a function of the streamwise distance, in
contrast to the time signal usually shown from experiments or temporal
simulations (see also discussion below). All stages can be clearly iden-
tified and are qualitatively similar to those obtained by either temporal
or spatial simulations at higher resolutions (see chapter 4 and Sandham
& Kleiser (1992); Schlatter et al. (2004a)).

Visualisations of the instantaneous flow field by means of the
negative-λ2 vortex-identification criterion (Jeong & Hussain, 1995) are
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Figure 5.10: Streamwise velocity u for the one-spike stage at z = −0.47. Left:
Resolution 512×32×33, ADM-RT, dynamic Smagorinsky model,

no-model LES. Right: Resolution 1024 × 64 × 65, high-resolution
ADM-RT, no-model LES (low-resolution spatial DNS).

presented in figures 5.12–5.15 for different SGS models and resolutions.
During the one-spike stage displayed in figure 5.12, only the ADM-RT
model is able to predict the dominant single hairpin vortex (see also
figure 5.10 and the corresponding discussion). At this time the no-
model calculation already shows signs of (numerical) instability around
the breakdown location (x ≈ 23), which is also shown in figure 5.8.

At the two-spike stage (figure 5.13), for all models, the remainders
(legs) of the Λ-vortices are visible at x ≈ 19. The no-model data does not
show the two typical hairpin vortices expected at this stage of develop-
ment, and the flow field breaks down to turbulence too fast without the
appearance of these distinct vortical structures. The data obtained with
the ADM-RT model for both resolutions show the two distinct hair-
pin vortices with comparable downstream evolution of the structures
and spreading of the turbulent region from the peak plane (y = Ly/2)
towards the lateral boundaries of the domain. The dynamic Smagorin-
sky model also features some of these structures, however they are not
as distinct as for the ADM-RT model. Especially further downstream
(x ≈ 35) the former model is too dissipative as indicated by an appar-
ently coarser vortical structure present in the data. Note that with the
chosen low LES resolution the spanwise extent of the hairpin vortex is
resolved by approximately 5 grid points only.

The three-spike stage in figure 5.14 clearly shows the emergence of
very fine structures for the high-resolution LES, which are naturally not
resolved on the coarser LES grid. Similar to the visualisation at the
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Figure 5.11: Streamwise velocity u for the various spike stages at z = −0.47
computed using ADM-RT on 512× 32× 33 grid points. The streamwise extent
of the plotted region corresponds approximately to the streamwise wavelength
of the initial TS wave. From left to right and top to bottom: one-spike stage,
t∗ = 0, two-spike stage, t∗ = 4, three-spike stage, t∗ = 8, four-spike stage,
t∗ = 10 (t∗ relative time).

four-spike stage (figure 5.15), the ADM-RT model is able to provide a
detailed prediction of the vortical structures, whereas the data for the
dynamic Smagorinsky seems to be less pronounced.

In figure 5.16 a comparison of the vortical structures between the
temporal and the spatial simulation during the transitional breakdown
is shown. For both cases, the data is obtained from LES using the ADM-
RT model at resolution 32×32×33 and 512×32×33, respectively. The
different stages of flow development of the temporal and spatial simula-
tions which are compared have been chosen according to the appearance
of spikes in the streamwise velocity signal, i.e. the times displayed in
figures 4.29 and 5.11.

Up to the two-spike stage, a fairly close resemblance of the spatial
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and temporal simulation results can be observed, i.e. the visual appear-
ance of the vortical structures and their early transitional evolution is
similar. However, during the three- and four-spike stages it is increas-
ingly difficult to match the data between the two simulation methods,
although both calculations feature the typical low-velocity spikes (fig-
ures 4.29 and 5.11) in the streamwise velocity signal which are closely
connected to the roll-up of the shear layers into hairpin vortices.

This discrepancy in appearance is mainly caused by a different way of
presenting the simulation data which was chosen for ease of data process-
ing to alleviate manipulating the large amount of data. For the spatial
simulation method the data is displayed at a fixed time t showing the
evolution of the vortical structures in the streamwise direction x. The
data of the temporal simulation, however, can be considered to be shown
at a fixed streamwise location x displaying the (periodic) temporal evo-
lution of the transitional structures (Kleiser & Zang, 1991). In order to
obtain a closer comparison of the spatial and temporal simulations, the
data should be shown for both methods at a fixed (physical) streamwise
station, i.e. at a fixed x showing the evolution in time for the spatial sim-
ulation and at a fixed t for the temporal simulation (Alternatively, the
results could also be compared at a fixed time t for the spatial simula-
tion and a fixed location x for the temporal simulation data.). Note that
the initial conditions for the spatial simulation were chosen to match a
physical experiment (forced transition induced by e.g. a vibrating rib-
bon) by using the same temporal frequency ωTS for the two-dimensional
and the three-dimensional wave. In the temporal approach, on the other
hand, the streamwise wavenumber αTS was held constant for the two-
and three-dimensional waves. It could be an interesting extension of the
results presented in figure 5.16 to use the same initial conditions for both
the spatial and temporal simulations and compare the data as detailed
above.
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a)

b)

c)

d)

Figure 5.12: Visualisation of the instantaneous vortical structures at the one-
spike stage at resolution 512×32×33. (a) No-model LES, (b) ADM-RT model,
(c) dynamic Smagorinsky model, (d) ADM-RT model on 1024 × 64 × 65 grid
(high-resolution LES).
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a)

b)

c)

d)

Figure 5.13: Visualisation of the instantaneous vortical structures at the two-
spike stage at resolution 512×32×33. (a) No-model LES, (b) ADM-RT model,
(c) dynamic Smagorinsky model, (d) ADM-RT model on 1024 × 64 × 65 grid
(high-resolution LES).
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a)

b)

c)

d)

Figure 5.14: Visualisation of the instantaneous vortical structures at the three-
spike stage at resolution 512×32×33. (a) No-model LES, (b) ADM-RT model,
(c) dynamic Smagorinsky model, (d) ADM-RT model on 1024 × 64 × 65 grid
(high-resolution LES).
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a)

b)

c)

d)

Figure 5.15: Visualisation of the instantaneous vortical structures at the four-
spike stage at resolution 512×32×33. (a) No-model LES, (b) ADM-RT model,
(c) dynamic Smagorinsky model, (d) ADM-RT model on 1024 × 64 × 65 grid
(high-resolution LES).
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Figure 5.16: Comparison of the transitional structures during transition for
the spatial framework ( left column, ADM-RT model on 512 × 32 × 33 grid
points) and the temporal framework ( right column, 32 × 32 × 33 grid points,
ADM-RT model). From top to bottom: Zero-spike stage to four-spike stage.
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5.3.3 Turbulent channel flow

To confirm the accuracy of the LES in the turbulent phase, the spanwise
and temporally averaged mean velocity profiles and Reynolds stresses
are shown in figure 5.17 for the downstream position x = 77 close to
the fringe region (which begins at x = 80). The temporal averaging was
performed over at least 10 periods of the initial TS wave. As a reference,
the corresponding data obtained from the temporal simulations are also
shown. Although turbulence is not yet completely developed at that po-
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Figure 5.17: Averaged turbulent statistics: Reynolds stresses 〈u′
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′
1〉1/2/uτ ,
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′
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τ and the mean streamwise velocity pro-
file 〈u〉+ in wall units computed on 512×32×33 grid in the spatial framework
( left column, λf = 40) and on 32 × 32 × 33 grid in the temporal frame-
work ( right column). ADM-RT model with χ = 25, dynamic
Smagorinsky model, FSF model, HPF-SF model, no-model
LES, • temporal DNS (resolution 160 × 160 × 161).

sition, a close agreement between the temporal DNS and the ADM-RT
model can be observed. Moreover, the same qualitative behaviour for the
Reynolds stresses and the mean streamwise velocity profile can be estab-
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lished for the various LES data obtained from the spatial and temporal
simulations (Stolz et al., 2004; Schlatter et al., 2004c). This conclusion
can also been drawn from the discussion of figure 5.9.





Chapter 6

Homogeneous isotropic turbulence

In general, an SGS model needs to compensate for the lack of energy
transfer across the numerical cutoff frequency. Although the benefits
of the high-pass filtering approach detailed in the previous section lie
mainly in the treatment of wall-bounded flows (viscous sublayer) and for
laminar-turbulent transition (filtering out mean shear), it is nevertheless
important for any SGS model to correctly predict the SGS dissipation
in the context of isotropic turbulence. It will therefore be shown in this
section that the HPF models are equally well applicable for simulations
of homogeneous isotropic turbulence, see also Schlatter et al. (2005c).
Simulation results using the ADM-RT model are also provided.

6.1 Numerical method and initial conditions

The simulations of homogeneous isotropic turbulence (HIT) are per-
formed in Fourier space on a periodic cubic domain with dimensions
L3 = (2π)3 by a standard pseudospectral method solving the incom-
pressible LES equations (2.5) (see e.g. Canuto et al. (1988)). The do-
main is discretised equidistantly with N grid points in each direction xj .
N is assumed to be even. The approximation of the velocities is thus
given by

ui(x1, x2, x3, t) =
∑
k1

∑
k2

∑
k3

ûi(k1, k2, k3, t)ei(k1x1+k2x2+k3x3) , (6.1)

with the spectral velocity ûi, the imaginary unit i =
√−1, and the

integer wavenumbers

kj = −N/2 + 1, . . . , N/2 − 1 . (6.2)

Dealiasing using the 3/2-rule (see Canuto et al. (1988)) is applied
in all spatial directions for the computation of the nonlinear convection
terms. No dealiasing was employed for the SGS model terms. The
odd-ball modes |ki| = N/2, i = 1, 2, 3 arising from the use of even-
numbered fast Fourier transforms (FFT) routines are explicitly set to
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zero. Time advancement is achieved by an explicit third-order Runge-
Kutta method (Williamson, 1980) for both the convective and viscous
terms. The divergence-free condition is fulfilled exactly by a pressure
projection.

Nearly 95% of the computer time is spent to evaluate the FFT. As
in the channel flow simulation code described in chapter 3, the efficient
FFTW library has been adopted (Frigo & Johnson, 1999) on scalar ma-
chines including the IBM SP-4 and Linux PCs. The calculations on
vector computers were done using the FFT library by Temperton (1983,
1985). The FFT part of the code is parallelised by inserting OpenMP
compiler directives (Dagum & Menon, 1998; Chandra et al., 2001). On
a single processor a maximum performance of 3.3 GFlops was obtained
(N = 120) on the NEC SX-5 located at the Swiss National Supercomput-
ing Centre (CSCS) in Manno (peak performance 8 GFlops). In parallel
mode a sustained speed-up of 5.3 on 6 processors was reached with fixed
problem size.

The simulations are started from a generic three-dimensional spec-
trum E0(k) with random phases for the Fourier coefficients (Chasnov,
1991),

E0(k) ∝ k4e−2(k/kp)2 , (6.3)

with kp = 4, normalised to unit kinetic energy. In order to obtain sta-
tistically stationary turbulence, a forcing of the flow is implemented by
freezing the Fourier modes within the innermost spectral shells |k| < 2.
The turbulence is first allowed to decay until the forcing is started at
t = 0.5. Although this forcing inhibits all dynamics at low wavenumbers,
the results show that at higher wavenumbers homogeneous turbulence is
generated.

6.2 Parameter settings

The SGS models have been implemented into the simulation code with
the SGS model terms being computed without dealiasing procedure. For
all the results, the high-pass filter Ĥ0 = 1− Ĝ given by equations (2.12)
and (2.10) with ωc = 2π/3 has been used. The transfer function of Ĥ0

is shown in figure 2.2. The model coefficients used for the simulations of
isotropic turbulence are given in table 6.1. Compared to channel flow,
the values had to be increased by a factor of approximately 3 for the
structure-function-based models and by

√
3 for the Smagorinsky-based
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Table 6.1: Parameters for LES of forced high Reynolds number homogeneous
isotropic turbulence, Re = 4 · 105, Reλ ≈ 1100, grid resolution of N3 = 323.
Data averaged from t = 30 to t = 60.

Case Model Reλ 104 · η C, CS

HPF-Smag. 1106 2.40 0.17
HPF-SF 1129 2.42 0.13
Smag. 1180 2.56 0.12

SF 1138 2.53 0.05
FSF 1094 2.55 0.10

ADM-RT 1044 2.38 0.75

Case Model 102 · TKE 106 · εvisc εSGS/εvisc

HPF-Smag. 4.66 12.5 377
HPF-SF 4.65 11.9 380
Smag. 4.37 9.08 402

SF 4.29 9.95 379
FSF 4.09 9.68 383

ADM-RT 4.48 14.0 349

models. This is consistent with previous investigations of the classical
models, see e.g. Lesieur & Métais (1996).

The energy spectrum is defined as

E(k) = 4πk2

〈
1
2
ûi(k)û

∗
i (k)

〉
shell

, (6.4)

with the averaging performed over all modes in the spectral shell

k − 1
2
≤ |k| < k +

1
2

of thickness ∆k = 1. Additionally, all data has been averaged in time
from t = 30 to t = 60 after statistically stationary conditions of forced
isotropic turbulence have been reached. The total turbulent kinetic en-
ergy is thus given by

TKE =
∫ kmax

0

E(k)dk =
∫ kmax

0

4πk2

〈
1
2
ûi(k)û

∗
i (k)

〉
shell

dk . (6.5)
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Table 6.2: Parameters for LES of forced high Reynolds number homogeneous
isotropic turbulence, N3 = 323.

Case Re Reλ (approx.)
� 500 50
� 104 200
� 4 · 105 1100
♦ 107 5500
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Figure 6.1: Normalised energy spectra of forced homogeneous isotropic tur-
bulence for the different SGS models, at the Reynolds numbers of table 6.2.
Left: Classical eddy-viscosity models: Smagorinsky model, SF model (×102),
FSF model (×104). Right: HPF eddy-viscosity models. HPF Smagorin-
sky model, HPF-SF model (×102). Pao spectrum (Pao, 1965),

CK(kη)−5/3 (CK = 1.5). Symbols see table 6.2.

The upper bound of the integral is kmax =
√

3(N/2 − 1)2, i.e. the diag-
onal of the cube with edge length N/2 − 1.

6.3 Results

In figure 6.1, normalised energy spectra obtained using the different SGS
models for a range of Reynolds numbers are shown (parameters see ta-
ble 6.2). The results are compared to the analytical spectrum of high-
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Reynolds number turbulence (Pao, 1965)

E(k)/(εRe−5)1/4 = CK(kη)−5/3 exp
[
−1.5CK(kη)4/3

]
, (6.6)

where η = (Re3ε)−1/4 denotes the Kolmogorov length and CK the Kol-
mogorov constant.

The dissipation ε = εvisc + εSGS can be decomposed into two compo-
nents, i.e. the viscous dissipation,

εvisc =
∫ kmax

0

Evisc(k)dk = −
∫ kmax

0

2
Re

k2E(k)dk , (6.7)

and the dissipation resulting from the SGS model,

εSGS =
∫ kmax

0

ESGS(k)dk (6.8)

= −
∫ kmax

0

4πk2

〈
1
2

(
û
∗
i ikj τ̂ij + ûi(ikj τ̂ij)∗

)〉
shell

dk .(6.9)

It can be seen from figure 6.1 that the prediction of all LES for the nor-
malised spectra is very close to the analytical reference, equation (6.6).
For the case with the lowest Reynolds number Reλ ≈ 50, it can be in-
ferred from the figure that the classical eddy-viscosity models are slightly
too dissipative, which is due to an unphysically large SGS dissipation.
It should be noted that for the highest Reynolds number Reλ ≈ 5500
the ratio εvisc/εSGS is approximately 10−4, which can be considered to
be close to the inviscid limit.

In figure 6.2 the energy spectra E(k) and the dissipation spectra
Evisc(k) and ESGS(k) are depicted for Reλ ≈ 1100, see also table 6.1. The
viscous dissipation follows the k1/3 law according to equation (6.7) for
all models considered. Similarly, the spectral slope of the subgrid-scale
dissipation for the classical eddy-viscosity models is 1/3, which is due
to the second-order derivatives involved in the computation of ∂τij/∂xj .
On the other hand, ESGS(k) for the HPF models is significantly lower
at small wavenumbers (kη < 10−3) and rises approximately as k3.5 for
higher k. ESGS saturates for kη > 6 · 10−3. This behaviour is typical for
the HPF models, as the large-scale fluctations are filtered out prior to
the calculation of the SGS terms. The strong rise of ESGS(k), similar to
a hyperviscosity, is closely related to the filter transfer function Ĥ0(ω).
The saturation of the SGS dissipation near kmax is caused by the slightly
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Figure 6.2: Energy and dissipation spectra for forced homogeneous isotropic
turbulence (Reλ ≈ 1100, N3 = 323) for the different SGS models. Left:
Classical eddy-viscosity models: Smagorinsky model, SF model,

FSF model. Right: HPF eddy-viscosity models. HPF Smagorinsky
model, HPF-SF model (see also table 6.1).
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Figure 6.3: Compensated energy spectra ε−2/3k5/3E(k) ≈ CK for forced ho-
mogeneous isotropic turbulence (Reλ ≈ 1100) for the different SGS mod-
els. HPF Smagorinsky model, HPF-SF model, Smagorinsky
model SF model, FSF model. Left: N3 = 323, kmax = 26 (see also
table 6.1). Right: N3 = 1203, kmax = 102, only the HPF Smagorinsky
model and the Smagorinsky model are shown.

anisotropic three-dimensional filter evaluated as a tensor product of one-
dimensional filters, equation (2.16).

Averaged compensated three-dimensional energy spectra
ε−2/3k5/3E(k) ≈ CK for the different SGS models are shown in
figure 6.3 for two resolutions at Reλ ≈ 1100. Note that the slight
kinks in the curves at k ≈ N/2 and k ≈ √

2(N/2)2 are artefacts due
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Figure 6.4: Compensated energy spectra ε−2/3k5/3E(k) ≈ CK for forced ho-
mogeneous isotropic turbulence (Reλ ≈ 1100), N3 = 323. Left: Smagorin-
sky model, CS = 0.12, CS = 0.096, CS = 0.144. Right:
HPF Smagorinsky model, CS = 0.17, CS = 0.136, CS =
0.204.

to the discrete wavenumber population according to the definition of
the energy spectrum, equation (6.4). Qualitatively, the results for the
classical eddy-viscosity models compare well with the compensated
spectra shown in Lesieur & Métais (1996). An average value for the
Kolmogorov constant CK ≈ 1.4 can be inferred, which is slightly less
than the value given in recent publications, e.g. the high-resolution DNS
of Kaneda et al. (2003). The HPF models, however, indicate a value of
CK ≈ 1.5 − 1.6 with a flat spectrum, see also Schlatter et al. (2004b).

The sensitivity of the classical and the HPF Smagorinsky model
to the choice of the (constant) Smagorinsky coefficient CS , which has
been varied by ±20%, is displayed in figure 6.4. A higher CS value
results in increased dissipation and, consequently, in lower values for
ε−2/3k5/3E(k) ≈ CK near the numerical cutoff. Conversely, a lower
model coefficient increases the slope of the compensated spectrum. Fig-
ure 6.4 also suggests a slightly decreased sensitivity to the model coeffi-
cient for the HPF Smagorinsky model.

Figure 6.5 presents results obtained using the ADM-RT model (see
equation (2.51) in section 2.2.3) compared to data obtained by the HPF
eddy-viscosity models (see figures 6.2 and 6.3). For ADM-RT a cut-
off wavenumber for the filter G of ωc = 2π/3 was chosen together
with N = 5, see equation (2.12). The fixed model coefficient was set
to χ = 0.75. The energy spectrum E(k) and the dissipation spectrum
Evisc(k) is similar for both the HPF models and ADM-RT. The com-
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Figure 6.5: Results for forced homogeneous isotropic turbulence (Reλ ≈ 1100,
N3 = 323). Left: Energy and dissipation spectra. Right: Compensated energy
spectra ε−2/3k5/3E(k) ≈ CK. HPF Smagorinsky model, HPF-SF
model, ADM-RT model, χ = 0.75 (see also table 6.1).

pensated energy spectrum ε−2/3k5/3E(k) ≈ CK shows a plateau at
CK ≈ 1.7, however not as flat as for the HPF models. Considering the
SGS dissipation spectrum ESGS(k) the model influence of the ADM-RT
model is clearly visible. The relaxation term, which is based on the high-
order high-pass filter HN (equation (2.12)), acts only on the small-scale
content of the velocity field. The SGS-dissipation is therefore vanishing
for small wavenumbers, whereas a strong rise for higher wavenumbers is
visible. The increase of ESGS(k) is more pronounced than for the HPF
models since for the relaxation term the filter H5 has been applied as
opposed to H0 used for the HPF models. Note also the formal similarity
of the ADM-RT and HPF models discussed in section 4.7.3.

In homogeneous isotropic turbulence, it is possible to further re-
strict the spectral range of wavenumbers to the sphere |k| ≤ N/2 − 1
(“spherical truncation”) in order to improve the isotropy of the solu-
tion. In the present contribution, the whole range of wavenumbers
−(N/2 − 1) < ki < N/2 − 1 (“cubical truncation”) was retained. Ad-
ditionally, similar to the channel flow case the three-dimensional filter
has been defined by a tensor product of one-dimensional operators, equa-
tion (2.16)

H0 ∗ u = u − G ∗ u = u − G1 ∗ G2 ∗ G3 ∗ u ,

with Gi being the one-dimensional low-pass filter in the direction xi.
This evaluation of the filter results in a slightly anisotropic three-
dimensional filter, mainly close to the numerical cutoff. However, tests
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Figure 6.6: Compensated energy spectra ε−2/3k5/3E(k) ≈ CK for forced ho-
mogeneous isotropic turbulence (Reλ ≈ 1100), N3 = 323. Left: Smagorin-
sky model, cubical truncation, CS = 0.12, spherical truncation,
CS = 0.14. Right: HPF Smagorinsky model, cubical truncation with
non-isotropic filter eq. (2.16), CS = 0.17, cubical truncation with
isotropic filter eq. (6.10), CS = 0.16, spherical truncation with isotropic
filter eq. (6.10), CS = 0.23.

have been performed using the above-mentioned spherical truncation
together with the isotropic formulation of the filter

H(k) = I − G(|k|) . (6.10)

Data obtained with these modifications are presented in figure 6.6.
The results suggest that the respective model coefficients for both the
classical and the HPF Smagorinsky model have to be increased by ap-
proximately 20-30% to account for the lower SGS energy transfer due
to the reduced number of computational modes. Moreover, the com-
pensated spectra shown in figure 6.6 using the spherical truncation are
clearly not as flat as the respective spectrum using the cubical wavenum-
ber space and, additionally, indicate a higher value for CK . Additional
calculations with higher resolution indicate that this result is not an
artefact of the reduced number of computational modes.

Also shown in figure 6.6 are results of LES calculations using the
HPF Smagorinsky model applying the isotropic version of the filter,
equation (6.10). The results are similar to those obtained with the non-
isotropic filter arising from the tensor product, equation (2.16), however
with a slightly adapted model constant due to an effectively smaller ωc.

To conclude, the results for forced isotropic turbulence presented in
this section have shown that the high-pass filtered eddy-viscosity models
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and the ADM-RT model work well for this basic flow type. An analysis of
homogeneous isotropic turbulence using the approximate deconvolution
model (ADM) has been presented in Müller et al. (2002), and using SGS
models based on relaxation regularisation in Müller et al. (2004).



Chapter 7

Summary and conclusions

Flows undergoing transition to turbulence are of great practical impor-
tance. The ability to accurately simulate transitional flows using large-
eddy simulation (LES) is a key problem that has to be solved before
LES can routinely be applied in practical industrial applications. LES
of transitional flows has become an active field of research only recently.
Compared to studies of fully turbulent flows, there are only relatively
few detailed LES results available by now for transitional flows (see also
section 1.3.2). This thesis aims at further contributing to the develop-
ment of appropriate subgrid-scale (SGS) modelling approaches suitable
for large-eddy simulations of transitional and turbulent shear flows. An
overview of the work is presented in section 7.1, the main conclusions
are summarised in section 7.2. An outlook is given and open questions
are discussed in section 7.3.

7.1 Summary

In the present work, results obtained by large-eddy simulation of tran-
sitional and turbulent incompressible channel flow and homogeneous
isotropic turbulence are presented. The simulations have been performed
using spectral methods in which numerical errors due to differentiation
and aliasing are small. For the transition computations, both the tem-
poral and the spatial simulation approach have been considered. Various
classical and newly devised subgrid-scale models have been implemented
and evaluated, including the approximate deconvolution model (ADM)
(Stolz & Adams, 1999), the relaxation-term model (ADM-RT) (Stolz &
Adams, 2003; Schlatter et al., 2004c), and the new class of high-pass
filtered (HPF) eddy-viscosity models (Stolz et al., 2004; Schlatter et al.,
2005c).

As appropriate, comparisons to standard SGS models like the classi-
cal Smagorinsky model (Smagorinsky, 1963), the dynamic Smagorinsky
model (Germano et al., 1991) and the (filtered) structure-function model
(Métais & Lesieur, 1992; Ducros et al., 1996) have been made. For the
dynamic Smagorinsky model and the filtered structure-function model,
different definitions of the respective filters have been tested. Where
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possible, high-resolution direct numerical simulations (DNS) have been
performed to allow a detailed assessment of the performance of the re-
spective LES. Moreover, no-model LES (i.e. coarse-grid DNS using the
LES resolution) are provided for reference. Comparisons are made for
turbulent statistics such as Reynolds stresses, mean velocity profiles,
spectra, and energy budgets including the SGS model terms. As ap-
propriate, resolution studies are performed to show the convergence of
the LES towards the DNS results. Furthermore, visualisations of three-
dimensional instantaneous transitional flow structures have been gener-
ated and analysed. A qualitative comparison of the various SGS models
examined in this work is presented in figure 4.9.

In order to facilitate the use of deliberately chosen coarse LES grids,
the standard ADM methodology has been adapted. This was necessary
due to the observed destabilising properties of the deconvolution opera-
tion on such coarse grids in the wall-normal direction. In addition to the
original ADM algorithm, new variants have been examined, in particular
the SGS model based on a direct relaxation regularisation of the veloci-
ties (ADM-RT model) which uses a three-dimensional high-pass filtering
of the computational quantities. This model is related to the spectral
vanishing viscosity (SVV) approach by Tadmor (1989) and Karamanos
& Karniadakis (2000).

A further study exploring various procedures for the dynamic deter-
mination of the relaxation parameter χ has been presented. The appro-
priate definition of the relaxation term causes the model contributions
to vanish during the initial stage of transition and, approximately, in the
viscous sublayer of wall turbulence. Moreover, the influence of aliasing
errors on the LES results obtained with the ADM and ADM-RT models
has been assessed.

The new high-pass filtered (HPF) eddy-viscosity models have been
applied to incompressible forced homogeneous isotropic turbulence with
microscale Reynolds numbers Reλ up to 5500 and to fully turbulent
channel flow at moderate Reynolds numbers Reτ ≈ 590. The application
of the HPF models to transitional channel flow was presented in Stolz
et al. (2004, 2005). These models have been proposed independently in
Vreman (2003) and Stolz et al. (2004), and are related to the variational
multiscale method (Hughes et al., 2000). Various high-pass filters with
different cutoff wavenumbers have been considered.

The different SGS models have been tested in both the temporal and
the spatial transition simulation approach. For the spatial simulations,
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the fringe method has been used to obtain non-periodic flow solutions
in the spatially evolving streamwise direction while employing periodic
spectral discretisation. The combined effect of the fringe forcing and the
SGS model has also been examined.

Additionally, a new inflow/outflow boundary treatment procedure
has been described. The “windowing method” is based on a windowing of
the computational variables to prescribe non-periodic inflow and outflow
boundary conditions for numerical discretisations that rely on periodic
spatial boundary conditions. Due to this periodicity, e.g. efficient and
accurate Fourier discretisation schemes can be employed. Comparisons
to the established fringe region technique have been given.

The computer codes used for the simulations presented in this the-
sis have all been parallelised explicitly based on the shared-memory
approach. The codes have been optimised for modern vector and
(super-)scalar computer architectures, running on different machines
from desktop Linux PCs to the NEC SX-5 supercomputer.

7.2 Conclusions

The results obtained for transitional channel flow using the various SGS
models show that it is possible to accurately simulate transition us-
ing LES on relatively coarse grids. In particular, the ADM-RT model,
the dynamic Smagorinsky model, the filtered structure-function model
and the different HPF models as well as the no-model LES were able
to predict the laminar-turbulent changeover on the canonical case of
incompressible channel-flow transition. For standard ADM, a slightly
increased resolution in the wall-normal direction had to be employed,
which is mainly attributed to reduced actual resolution due to the ex-
plicit filtering and the deconvolution operation. However, distinct differ-
ences in the performance of the various examined models concerning an
accurate prediction of e.g. the transition location and the characteristic
transitional flow structures could be observed.

During the early stages of K-type transition, the results of no-model
LES calculations on coarse LES grids, which have sufficient resolution
at that stage of flow development, are recovered by all considered mod-
els (except of course for the classical Smagorinsky and the structure-
function model which both relaminarise the flow). This confirms that
the SGS models are virtually inactive there, as they should. During the
rapid mean-flow development, the model contributions begin to provide
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additional dissipation. Since those initial stages of breakdown involve
the formation of strong shear layers mostly in the wall-normal direc-
tion, SGS models that are defined three-dimensionally generally perform
better than their two-dimensional counterparts. For three-dimensional
models a coarser resolution in the wall-normal direction can therefore be
chosen.

By examining instantaneous flow fields from LES of channel flow
transition, distinct differences between the SGS models could be estab-
lished. The dynamic Smagorinsky model fails to correctly predict the
first stages of breakdown involving the formation of typical hairpin vor-
tices on the coarse LES grid. The no-model calculation, as expected,
is generally too noisy during the turbulent breakdown preventing the
identification of transitional structures. In the case of spatial transi-
tion, the underresolution of the no-model calculation affects the whole
computational domain by producing noisy velocity fluctuations even in
laminar flow regions. On the other hand, the ADM-RT model, whose
model contributions are confined to the smallest spatial scales, allows
an accurate and physically realistic prediction of the transitional struc-
tures even up to later stages of transition. Clear predictions of the one
to the four-spike stages of transition in the velocity signal could be ob-
tained. Moreover, the visualisation of the vortical structures shows the
appearance of hairpin vortices connected with those stages.

It has also been shown that the above SGS models behave similarly
for both the temporal and the spatial transition simulation framework.
Conclusions derived from temporal results transfer readily to the spatial,
more physically relevant, but much more expensive, simulation method.
It can thus be concluded that for the evaluation of LES for transitional
flows the temporal framework is sufficient. Concerning the non-periodic
boundary treatment, the combination of LES with the fringe method
was assessed, and did not raise any difficulties even with an SGS model
active within the fringe region. The fringe method allows an effective
damping of the outflowing turbulent channel flow and provides an accu-
rate prescription of the inflowing, weakly disturbed laminar flow.

In turbulent channel flow, the results obtained by the ADM-RT
model nearly collapse onto the filtered DNS data, whereas a no-model
LES is clearly not dissipative enough. Very accurate results were also
obtained with the HPF eddy-viscosity models (see below) and, depend-
ing on the choice of the test filter, with the dynamic Smagorinsky model.
The examination of different filters for use as test filter in the dynamic
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Smagorinsky model showed that increasing the order of the filter leads
to more accurate results. Very good results have been obtained using the
three-dimensional sixth-order filter I −H1 (see equation (2.12)). Unlike
the spectral cutoff filter originally proposed by Germano et al. (1991),
the sixth-order filter can also be used in general geometries since it is
defined fully three-dimensionally.

The excellent results obtained for transitional and turbulent channel
flow with the SGS model based on relaxation regularisation (ADM-RT
model) on coarse grids demonstrate the applicability of subgrid models
which provide dissipation based on a high-pass filtering approach. As
shown in this thesis, the model contributions of the ADM-RT model
virtually vanish in laminar or slightly disturbed flow regions. Due to
the properties of the three-dimensional high-pass filter, the model pro-
vides an accurate description of the near-wall region, even permitting
backscatter close to the walls. This SGS model is easy to implement
and requires only a small computational overhead. Therefore, especially
for coarse grids, the ADM-RT model should be preferred, whereas for
higher resolution the standard ADM is also applicable, however with
slightly less accurate results than the ADM-RT model. It is interesting
to note that for LES of compressible boundary-layer flow using finite-
difference discretisation, the deconvolution was found to be beneficial
(Stolz & Adams, 2003). Note that the ADM formalism can be rewritten
as a low-pass filter of the nonlinear convection terms and in fact damps
the high-frequency content of those terms. For non-spectral numerical
methods this provides a reduction of aliasing and differentiation errors
in the high-frequency modes. Conversely, for spectral discretisations em-
ployed in the present work this additional filtering is not needed because
the aliasing and differentiation errors are very small.

Additionally, numerical tests confirmed that LES using ADM and
ADM-RT in channel flow are less sensitive to aliasing errors than DNS
calculations and classical SGS models such as the dynamic Smagorinsky
model. This property is very important for the widely-used numerical
schemes for which full dealiasing is not straightforward or impossible.
For spectral simulations additional computational effort can be saved
by omitting dealiasing procedures. In other words, the relaxation-term
based SGS models can be employed to reduce the effects of aliasing errors
inherently present in most flow computations.

The ADM and ADM-RT models are also quite insensitive to the ex-
act determination procedure of their model coefficient χ and its absolute
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value. It turned out that even with a fixed (empirically determined)
model coefficient both transition and turbulence could be predicted as
accurately as when using more sophisticated determination procedures.
Nevertheless, a robust and general dynamic procedure is eventually de-
sirable, see section 7.3.

The results further demonstrate that a proper treatment of each spa-
tial direction, in particular any inhomogeneous direction, should be in-
cluded in the computation of the SGS model in order to faithfully rep-
resent the relevant physical features such as the local velocity gradients.
By using a model that is defined three-dimensionally, usually a coarser
grid can be chosen, e.g. in the wall-normal direction of channel flow.
Moreover, the generality of the model with respect to complex geome-
tries is certainly improved by using a three-dimensional model definition.

Very good results have been obtained with the HPF eddy-viscosity
models for the energy and dissipation spectra in forced homogeneous
isotropic turbulence up to Reλ ≈ 5500. The analysis of the SGS dis-
sipation showed that the model contributions of the HPF models are
virtually zero at low wavenumbers and increase rapidly for higher har-
monics, similar to a hyperviscosity. The compensated energy spectra
showed a flat plateau at CK ≈ 1.6. Using the same models, very accu-
rate results have also been obtained for statistics of turbulent channel
flow at Reτ ≈ 590, including the mean flow, energy spectra and the
Reynolds stresses. Furthermore, detailed analysis of the energy budget
including the SGS terms revealed that the contribution to the mean SGS
dissipation is nearly zero for the HPF models, while it is a significant
part of the SGS dissipation for other SGS models. Moreover, unlike the
classical eddy-viscosity models, the HPF eddy-viscosity models are able
to predict backscatter. It has been shown that in channel flow loca-
tions with intense backscatter are closely related to low-speed turbulent
streaks in both LES and filtered DNS data. In the near-wall region, sig-
nificant backscatter occurs, e.g. at z+ ≈ 3 roughly 70% of the forward
SGS dissipation is balanced by backscatter.

The HPF eddy-viscosity models provide an easy way to implement an
alternative to classical fixed-coefficient eddy-viscosity models. The HPF
models have shown to perform significantly better than their classical
counterparts in the context of wall-bounded shear flows, mainly due to
a more accurate description of the near-wall region. The results have
shown that a fixed model coefficient is sufficient for the flow cases con-
sidered in this work. No dynamic procedure for the determination of the
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model coefficient was found necessary, and no empirical wall-damping
functions were needed.

The effect of the filter cutoff wavenumber ωc on the performance of
the HPF models has been studied and an empirical adaptation of the
HPF model coefficient minimising the influence of ωc has been proposed
and employed successfully. Through the three-dimensional definition of
the high-pass filter, the models are also applicable for general geometries,
i.e. no special treatment of selected spatial directions is needed.

It has been demonstrated that the HPF eddy-viscosity models pro-
duce very accurate results even while using a constant eddy viscosity
νt, i.e. without using the Smagorinsky or the structure-function eddy-
viscosity closures. Moreover, a close relationship between the modelling
approach of the HPF models and the relaxation term from ADM and
ADM-RT could be established. By an accordingly modified high-pass
filter, these two approaches become analytically equivalent for homoge-
neous Fourier directions.

A new boundary-treatment procedure (“windowing method”) was de-
veloped and compared extensively to the well-established fringe method
for a number of test cases. By properly designing the window function,
spectral accuracy of a Fourier discretisation can be obtained. It is found
that the accuracy of imposing the boundary conditions is similar for
both techniques. Moreover, for flow problems with a spatially evolving
base flow, the windowing method does not require the base flow to be
periodic. It was further found that the performance of the fringe method
strongly depends on the choice of the parameters: fringe strength, blend-
ing, start and length of the fringe region. While excellent results can be
obtained for ideal parameters, the imprudent choice of those parameters
can even lead to numerical problems due to the fringe forcing. The re-
duction of the time step in such cases is undesirable as it decreases the
efficiency of the computation significantly. The windowing method, on
the other hand, contains only a small number of tuning parameters and
their influence is limited.

The windowing method provides an attractive alternative way to
perform accurate simulations in non-periodic geometries using periodic
discretisation schemes. Since it poses no restriction on the type of in-
flow conditions, its use for transitional and turbulent flows is perfectly
possible.
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7.3 Outlook

As discussed in the previous section, in this thesis a number of differ-
ent investigations on large-eddy simulation of transitional and turbulent
flows have been performed successfully. However, there are additional
important flow types and modelling aspects that could not have been
addressed in the course of this work. In the following an overview of
these issues is given.

A natural continuation of the present work is the extension of the
LES results to the flow case of transition and turbulence in boundary
layers. Especially the spatially evolving nature of the mean flow and
the need to impose well-posed free-stream boundary conditions are the
main differences to the channel-flow case considered here. It is however
believed that the main conclusions drawn in the previous section 7.2
transfer directly from channel to boundary-layer flow.

Additionally, more challenging transition scenarios could be consid-
ered, e.g. the simulation of free-stream turbulence induced transition in
boundary layers (bypass transition, see e.g. the DNS by Brandt et al.
(2004)). Another very interesting, and for technical applications im-
portant, flow case is a laminar boundary layer which separates due to
an adverse pressure gradient, undergoes transition within the separation
bubble and subsequently reattaches as a turbulent boundary layer. For
this case detailed experimental data exist (Watmuff, 1999), which would
serve well as reference data for LES.

Most SGS models assume that the turbulent flow is in energetic equi-
librium between turbulent production and dissipation. It is however cru-
cial for a successful LES strategy to faithfully cope with flows that depart
from such equilibrium conditions, e.g. an impulsively started transverse
pressure gradient (Moin et al., 1990). The evaluation of different SGS
models coping with non-equilibrium flows would certainly give further
insight into future modelling strategies.

Transition in free shear flows, e.g. the formation and breakdown of
Kelvin-Helmholtz vortices in developing mixing layers, could be an inter-
esting extension of the present work on LES of transitional flows. This
test case has already been considered by a number of other researchers
in order to assess the performance of LES (see e.g. Lesieur et al. (1997)).
The consideration of this flow case would allow the separation of the
modelling aspects of transition in free shear flows from those involving
solid walls. Results obtained by Rembold et al. (2002) using ADM for
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the simulation of a transitional compressible rectangular jet flow are
encouraging.

From a more technical point of view, a detailed examination of the
combined influence of the numerical discretisation method and the SGS
model is a very important issue. Despite recent development in that
direction (see e.g. Adams et al. (2004); Grinstein & Fureby (2002);
Kravchenko & Moin (1997)), there is still a need for deeper understand-
ing of this coupling.

In particular, it would be instructive to recompute the present flow
cases for incompressible transitional and turbulent channel flow with
non-spectral discretisations such as finite differences of various orders
and to compare those LES results to the ones obtained by spectral nu-
merical methods. Finite-difference schemes are susceptible to a number
of numerical errors including numerical dissipation, differentiation errors
at high wavenumbers (modified wavenumber concept) and aliasing errors
(see e.g. Lele (1992)), which are not present in spectral methods. The
interplay of those errors with the SGS modelling strategy is of major
importance, especially for industrial applications of LES.

The ADM-RT model presented in this work has been shown to pro-
duce very accurate results for both transitional and turbulent flows, in
particular results that are more accurate than those obtained by the
standard ADM model using the same resolution (see section 4.4). How-
ever, an investigation of compressible boundary-layer flow using finite-
difference schemes (Stolz & Adams, 2003) showed that the deconvolution
seems to be beneficial for the accuracy of the results, which is thought
to be mainly due to a reduction of aliasing and discretisation errors. It
would therefore be essential to investigate and quantify the detailed in-
fluence of the deconvolution operation used in the ADM model on the
performance of an SGS model and to point out differences between the
different flow cases and numerical methods.

For the ADM and the ADM-RT model, it has been shown e.g. in
Schlatter et al. (2004d) that the exact determination procedure for the
relaxation coefficient χ is of minor importance as long as its order of
magnitude is adapted to the current flow situation. A similar conclusion
could also be drawn from the HPF eddy-viscosity models in conjunc-
tion with a constant eddy viscosity νt (see section 4.7.3, Schlatter et al.
(2005c)). Nevertheless, a robust dynamic procedure for the determina-
tion of the respective model coefficients within a model that is capable of
predicting laminar, transitional, turbulent, and possibly non-equilibrium
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flows is certainly a challenging task in any future SGS model and should
therefore be investigated further.



Appendix A

Periodic boundary treatment of

non-periodic flows

In this chapter, a new inflow/outflow boundary treatment procedure is
described. The presentation is based on the publication Schlatter et al.
(2005a) and the technical report Schlatter (2002). The boundary treat-
ment method is applicable to the numerical computation of non-periodic
flows which allows for the use of periodic spatial boundary conditions.
Due to this periodicity, e.g. efficient and accurate Fourier spectral meth-
ods can be applied. The governing equations of the flow are modified
using window functions as known from signal processing. Thereby, the
windowed solution is forced to zero to high order at the artificial bound-
aries. The physical solution near the boundaries is obtained by a reg-
ularised dewindowing operation and boundary conditions are imposed
with the help of a suitable base flow which needs to be defined only
within the window-boundary regions. On the inner domain, the unmod-
ified flow equations are solved. The base flow can contain spatially and
temporally varying disturbances. Hence it is possible to employ transi-
tional and turbulent inflow conditions using the windowing technique.

By properly designing the window function, spectral accuracy of a
Fourier discretisation can be obtained. The performance of this scheme
is analysed theoretically in this section. A numerical verification and
comparisons to the more widely-used fringe region technique is given in
Schlatter et al. (2005a) and Schlatter (2002). There, it is found that
the accuracy of imposing the boundary conditions is similar for both
techniques. Furthermore, for flow problems with a spatially evolving
base flow, the windowing method does not require the base flow to be
periodic.

The spatial simulations presented in chapter 5 of this thesis have been
performed using the fringe region technique due to its simpler implemen-
tation. However, large-eddy simulation using the windowing method are
also possible without problems.

In this chapter, only the theoretical foundation and a short summary
of the implementation of the windowing method in a two-dimensional in-
compressible Navier-Stokes code is given. The full details and an exten-
sive comparison to the fringe region technique are presented in Schlatter
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et al. (2005a) and Schlatter (2002) for three test cases. In those refer-
ences, the validity of the windowing method is first shown by applying
the solution procedure to an ordinary differential equation. Using a two-
dimensional Navier-Stokes solver, the convection of a localised vortical
disturbance and a stationary, spatially evolving jet are then considered.

A.1 Introduction

For the numerical modelling of a flow problem in an Eulerian description
the computational domain is usually a truncation of the real (physical)
domain. At the computational domain boundaries the solution is often
(partially) unknown, resulting in the need of artificial boundary condi-
tions (see the reviews by Givoli (1991) and Colonius (2004)). The pre-
scription of suitable conditions at an artificial boundary requires that
some properties of the solution are known a priori. Since in most cases
these properties are known only approximately or can only be guessed,
differences between the approximate conditions and the proper physical
solution are present near the boundaries. These regions, which are char-
acterised by the changeover from the physical solution to the solution
imposed by the (approximate) boundary condition, are commonly con-
sidered as “non-physical”. At the artificial boundaries also the spatial
discretisation has to be constructed such that the resulting numerical
scheme is stable and reflections from the boundaries are suppressed.

For finite-difference schemes one usually needs to employ special
boundary closures. This is avoided if periodic boundary conditions can
be imposed at the artificial boundaries. Then the schemes used in the
exterior of the domain can be extended across the artificial boundary
and the solution algorithms usually gain robustness and efficiency. Since
for the above reasons non-physical regions near artificial boundaries are
practically unavoidable, one can exploit this fact by modifying the gov-
erning equations in such a way that near the artificial boundaries periodic
boundary conditions can be assumed for the discretised spatial-derivative
operators of the underlying flow equations without significantly increas-
ing the size of the computational domain. The procedure has to ensure
that away from the artificial boundaries the correct physical solution is
recovered.

Reducing the effect of artificial boundary conditions by use of a forc-
ing term was first applied by Israeli & Orszag (1981). They used a
sponge layer to damp oscillations in the solution near the boundaries
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before being treated by the artificial boundary conditions. In the per-
fectly matched layer (PML) approach (Bérenger, 1994), it is ensured
that the damping layer is non-reflecting by changing the phase speed
of the incoming waves such that they are damped. The PML approach
has been extended to the treatment of non-uniform Euler flows (see e.g.
Hagstrom & Nazarov (2003)).

The idea of obtaining non-periodic solutions on periodic domains
is due to Spalart (1988), who modified the Navier-Stokes equations in
“fringe regions” at the computational domain boundaries such that the
solution was forced towards periodicity in these regions without affecting
the physically meaningful solution in the valuable part of the domain.
Spalart demonstrated that accurate results using the fringe method could
be obtained. Some justification of the method was also given. The
fringe method has found widespread use and was employed successfully
in a number of publications involving transitional and turbulent flows,
see e.g. Bertolotti et al. (1992), Lundbladh et al. (1999) and the refer-
ences therein. The fringe method was further analysed in more detail
by Nordström et al. (1999). These authors gave a justification of the
method and showed quantitatively that for incompressible flow the in-
flow/outflow problem on the example of the spatially evolving Blasius
profile can be simulated with high accuracy.

Here, we adopt a different approach, which was proposed for the sim-
ulation of transitional compressible boundary layer flow by Guo et al.
(1994). The underlying idea is related to that of the spectral multido-
main technique of Israeli et al. (1993) and is based on a windowing
operation used for the spectral analysis of non-periodic data in signal
processing (e.g. Otnes & Enochson (1978)). Colonius & Ran (2002)
used a related approach to simulate flows on unbounded domains by
employing a super-grid scale model to stretch the grid near the domain
boundaries. In the present work, the method of Guo et al. (1994) is revis-
ited and modified with respect to the treatment of the solution near the
boundaries. It is then applied to incompressible flows and an extended
analysis of its properties is performed.

In Schlatter et al. (2005a) both the windowing and fringe method
and their application to flow problems are described. A model problem
based on an ordinary differential equation is discussed to demonstrate
the convergence properties of the windowing technique. Additionally,
two numerical test cases involving the Euler and Navier-Stokes equations
are presented. Test case 1 examines the ability of both methods to damp
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out a single localised vortical disturbance as it travels out of the physical
domain. Test case 2 considers a spatially evolving jet and assesses the
performance of the fringe and the windowing method in simulating a
spatially evolving flow.

A.2 Mathematical formulation

A.2.1 Problem description and governing equations

We consider incompressible fluid flow on a rectangular two-dimensional
physical domain ΓI with boundary ∂ΓI . A Cartesian coordinate system
is defined such that the streamwise (x1 or x) and spanwise/cross-stream
(x2 or y) axes are aligned with the straight domain boundaries. The
non-dimensional velocity vector with components u1 = u and u2 = v is
denoted by u. The non-dimensional density ρ and the non-dimensional
dynamic viscosity µ are assumed to be constant. Non-dimensionalisation
is such that the Reynolds number is given by Re = ρ/µ. The flow is then
governed by the incompressible Navier-Stokes equations

∂tui + uj∂jui +
1
ρ
∂ip =

1
ρ
∂jµ(∂iuj + ∂jui) , (A.1)

and the continuity equation

∂kuk = 0 . (A.2)

∂i and ∂t denote the partial derivatives with respect to xi and time t,
respectively. Unless stated otherwise, the summation convention over
repeated indices applies.

Parts of the boundary ∂ΓI of the physical domain ΓI can coincide
with physical boundaries (e.g. walls), the remainder coincides with artifi-
cial boundaries (in particular inflow/outflow boundaries). For notational
simplicity we assume that the entire boundary ∂ΓI is artificial. In an ap-
plication where this is not the case (e.g. at solid walls) the boundary ∂ΓI

has to be split accordingly and the following applies to the artificial parts
of ∂ΓI . Note that for well-posedness of the original problem formulation
boundary conditions on the entire boundary ∂ΓI are necessary.

For the following considerations, periodic boundary conditions are
assumed in the spanwise/cross-stream direction. In the streamwise di-
rection x the flow is assumed to be spatially evolving. Therefore, the
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Figure A.1: Sketch of the computational domain Γ consisting of the physical
domain ΓI and the artificial boundary region ΓA with Γ = ΓI ∪ΓA. The mean
flow velocity is assumed to be from left to right. Periodic boundary conditions
are applied in all directions.

inflow/outflow boundary treatment is imposed in the streamwise direc-
tion only. The subsequently described boundary treatment transfers
directly to problems in three spatial dimensions and to periodic bound-
ary treatment in more than one direction, but for simplicity we consider
here only the two-dimensional case with one inhomogeneous direction.

For the boundary treatment, the physical domain ΓI is enlarged
in the streamwise direction forming the computational domain Γ (fig-
ure A.1). On ΓI we would like to recover an accurate physical solution
to the original flow problem according equation (A.1). The added sub-
domain ΓA = Γ \ΓI , on the other hand, is responsible for the boundary
treatment and is usually called fringe region. Here, we denote this re-
gion – to avoid confusion with the fringe region technique introduced in
section A.2.2 – more generally artificial boundary region. The computa-
tional solution within ΓA is not part of the physically relevant solution
to the original flow problem. The boundary treatment thus modifies the
underlying initial-boundary value problem (IBVP) on ΓI to an IBVP
with periodic boundary conditions in the x-direction on the enlarged
domain Γ. For a unique solution of the periodic problem both the fringe
and the windowing approach require distributed boundary data to be
provided within the artificial boundary region ΓA. The boundary con-
ditions to the computational problem are thus assumed to be given on
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Figure A.2: Sample fringe function λ(x) with parameters λmax = 30,
xstart = 20, xend = 32. ∆rise = 60% and ∆fall = 10% of fringe extent.

the subdomain ΓA in the form of distributed boundary conditions Ui,

ui(x, t) → Ui(x, t) for x → ∂ΓA . (A.3)

The function Ui needs to be defined on ΓA only and is usually referred
to as (computational) base flow of the problem. Ui is allowed to vary
both in space and time.

A.2.2 Fringe region technique

The following description of the fringe region technique is based on Lund-
bladh et al. (1999). The same form has been analysed in Nordström
et al. (1999) and has been successfully applied in a number of cases, e.g.
Brandt et al. (2004).

In order to be able to assume periodicity within the computational
domain, the fringe region ΓA is appended downstream of the physi-
cal domain ΓI (see figure A.1). Within the fringe region, the flow is
forced back to the desired inflow condition and possible disturbances are
damped by adding a suitable volume force Gi to the right-hand side of
the Navier-Stokes equations (A.1) which vanishes within ΓI .

The general form of the fringe forcing is given by

Gi = λ(x)(Ui − ui) . (A.4)

The fringe function λ(x) ≥ 0 is non-vanishing only within the fringe
region ΓA, defined to extend from xstart to xend. Ui is a prescribed flow
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field, periodic in x, referred to as (computational) base flow, containing
the inflow and outflow conditions (see Figure A.2).

If the physical base flow evolves in the streamwise direction x, the
streamwise velocity component Ux of the computational base flow is
a blending between inflow and outflow velocity and can be written as
(Lundbladh et al., 1999)

Ux(x, y) = U(x, y) + [U(x − LP , y) − U(x, y)] S
(

x − xmix

∆mix

)
. (A.5)

U(x, y) describes a solution to the Navier-Stokes (or boundary layer)
equations in the absence of the periodic boundary treatment, e.g. the
Blasius solution in the case of boundary layer flow. LP = xend − xin

denotes the length of the periodic computational domain and the smooth
step function S(x) is given in equation (A.7) below. xmix and ∆mix define
the properties of the blending and are explained in the following. Note
that the blending (A.5) is only needed for a physical base flow U that
is evolving in space, e.g. the simulation of spatially evolving boundary
layers. For a base flow that is not dependent on x, U = U holds.

In two-dimensional flows, the other non-vanishing velocity compo-
nent Uy of the base flow can be calculated using the continuity equation,
especially in the blending region where the base flow is non-physically
modified and Uy cannot be recovered otherwise. A natural choice for the
parameters of the blending region for the coordinates introduced above
is xmix = xstart and ∆mix = xend − xstart. This choice ensures that the
blending uses the maximum streamwise extent of the fringe region which
is preferred for laminar or nearly laminar flows (Lundbladh et al., 1999).
Hereby it is assured that the effects on the valuable part of the flow
domain are minimised.

It is perfectly possible to include temporally and/or spatially varying
inflow disturbances into Ui. Even completely turbulent inflow conditions
can be employed in the fringe region, e.g. Brandt et al. (2004). Note that
these superimposed disturbances should satisfy continuity in such a way
that the entire base flow Ui is divergence-free (see details in Schlatter
et al. (2005a)).

The form of the fringe function λ introduced in Lundbladh et al.
(1999) is

λ(x) = λmax

[
S

(
x − xstart

∆rise

)
− S

(
x − xend

∆fall
+ 1

)]
. (A.6)
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The maximum strength of the fringe function is λmax and its shape is
defined by the function S(x) and the parameters ∆rise and ∆fall. S(x)
is a smooth step function with S(x) = 0 for x < 0 and S(x) = 1 for
x ≥ 1. The following form of S has continuous derivatives of all orders
for x �= 0 and x �= 1

S(x) =


0 , x ≤ 0
1/[1 + exp( 1

x−1 + 1
x )] , 0 < x < 1 .

1 , x ≥ 1
(A.7)

Note that the superposition given in equation (A.5) is continuously dif-
ferentiable only for x �= xmix and x �= xmix + ∆mix.

The application of the fringe method imposes an additional restric-
tion on the maximum possible time step of the integration scheme.
Straight-forward analysis of the linear temporal stability characteristics
of the damping term Gi yields the condition

λmax∆t ≤ 2.51 resp. λmax∆t ≤ 2.78 (A.8)

for a third and a fourth-order Runge-Kutta scheme, respectively.

A.2.3 Windowing approach

Theoretical consideration

The windowing method has its roots in signal processing, where the
windowing operation allows the spectral analysis of non-periodic signals
(Otnes & Enochson, 1978; Harris, 1978). Similarly, the windowing op-
eration in the present context can be understood as an artificial window
through which the physical flow field is projected onto a computational
domain.

As a window function on the domain x ∈ [xL, xR] we define a function
w(x) ∈ C∞ on R with the following requirements (xL < xl < xr < xR)

• (R1) 0 ≤ w(x) ≤ 1 on the entire real axis R,

• (R2) max {1 − w(x)} ≤ ε2 on the inner domain [xl, xr],

• (R3) w(x) ≤ ε1e
−α|x−xL| for x < xl, w(x) ≤ ε1e

−α|x−xR|

for x > xr with some α > 0, i.e. w(x) decays at least expo-
nentially for x → ±∞. An implication of this requirement is
max {w(xL), w(xR)} ≤ ε1.
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Any bounded and continuous function f(x) defined on R has a Fourier
transform if it is multiplied with such a window function w(x). Accord-
ingly, we define the windowing operation by

f̃(x) := w(x)f(x) . (A.9)

The Fourier transform of f̃ is then defined as

ˆ̃f(k) =
∫ ∞

−∞
f̃e−ikxdx , (A.10)

and for f̃ (p) integrable and f̃ ∈ Cp−1 one can show by partial integration
that ∣∣∣ ˆ̃

f(k)
∣∣∣ = O(|k|−p) . (A.11)

For f̃ ∈ C∞ the inverse transform of ˆ̃
f converges to f̃ spectrally.

The error introduced by performing the Fourier integral (A.10) only
over a bounded domain [xL, xR] according to

ˆ̃
fδ(k) =

∫ xR

xL

f̃(x)e−ikxdx , (A.12)

instead of (−∞, +∞) is estimated with (R3) as

ε′δ = max
∣∣∣ ˆ̃
f − ˆ̃

fδ

∣∣∣ ≤ ∣∣∣∣∫ xL

−∞
f̃ e−ikxdx

∣∣∣∣+ ∣∣∣∣∫ ∞

xR

f̃ e−ikxdx

∣∣∣∣ ≤ 2
Mε1
α

(A.13)

with M ≥ max |f(x)|. Considering the band-limited inverse transform
of equation (A.10)

f̃N =
1
2π

∫ kN

−kN

ˆ̃
f(k)eikxdk , (A.14)

where the cutoff wavenumber kN is the Nyquist wavenumber kN = π/h
with the grid spacing h, the estimate for the truncation error

εN = max
∣∣∣f̃N − f̃

∣∣∣ ≤ ∣∣∣∣∣ 1
2π

(∫ −kN

−∞
+

∫ ∞

kN

)
ˆ̃f(k)eikxdk

∣∣∣∣∣ ≤ C |kN |1−p

(A.15)
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with a constant C decays at least as O
(
|kN |1−p

)
. For band-limited

f̃N , it can be shown using Whittaker cardinal functions that the Fourier
transform of f̃N is given as (Boyd, 2000)

ˆ̃
fN (k) = h

∞∑
j=−∞

f̃(xj)e−ikxj with xj = j · h; h =
π

kN
. (A.16)

By a similar procedure as for the relation (A.13), the window truncation

is imposed on ˆ̃
fN by terminating the summation in equation (A.16) at

some integer lower and upper bounds jL and jR, respectively, where
xL ≤ xjL < xL + h and xR − h < xjR ≤ xR. For the resulting ˆ̃

fNδ
one

arrives at the estimate

ε′′δ = max
∣∣∣ ˆ̃
fN − ˆ̃

fNδ

∣∣∣ ≤ h

∣∣∣∣∣∣
jL∑

j=−∞
f̃(xj)e−ikxj

∣∣∣∣∣∣ + h

∣∣∣∣∣∣
∞∑

j=jR

f̃(xj)e−ikxj

∣∣∣∣∣∣
≤ 2ε1hM

(
1 + e−αh

)
, (A.17)

which is larger than ε′δ of equation (A.13) only for (αh) � 0.6590, i.e.

for coarse grids. The error
∣∣∣f̃Nδ

− f̃N

∣∣∣ can be estimated by taking the

inverse Fourier transform of ( ˆ̃
fN − ˆ̃

fNδ
) and using equation (A.17) as

εδ = max
∣∣∣f̃Nδ

− f̃N

∣∣∣ ≤ 2ε1M
(
1 + e−αh

) ≤ 4ε1M (A.18)

and is usually referred to as window truncation error. The overall er-
ror εw is then composed of both the truncation error and the window
truncation error as

εw = max
∣∣∣f̃Nδ

− f̃
∣∣∣ ≤ εδ + εN . (A.19)

For f(x) ∈ C∞ in particular this means that the error εw decays expo-
nentially until the window truncation error εδ is reached. εδ can be made
as small as the machine precision by adjusting the value of ε1 accordingly
(see equation (A.13)).

For functions which are defined on a discrete grid, analogous deriva-
tions and estimates hold. In this case the Fourier transforms are replaced
by discrete transforms and the integrals are replaced by summations us-
ing the trapezoidal rule.
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The inverse windowing process is singular or at least ill-posed on the
domain boundaries x = xL and x = xR since there w ≈ 0. Retriev-
ing the quantity f from the windowed value f̃ is ill-conditioned for any
x ∈ [xL, xl] and x ∈ [xr, xR] for which w is small. Therefore, a regu-
larised dewindowing operation is introduced as

f = (1 − w)F + f̃ . (A.20)

Here F is a function defined at least on x ∈ [xL, xl] and x ∈ [xr, xR]
describing the distributed boundary data required for the solution of the
periodic IBVP. In the context of a flow simulation, F is the base flow.
The maximum regularisation error |f − f | on x ∈ [xl, xr] is bounded by
(ε2 ·max |F − f |), whereas on x ∈ [xL, xl] and x ∈ [xr, xR] it is bounded
by max |F − f |.

Different types of window functions can be designed. Since no win-
dow function used in signal processing (see Harris (1978)) directly suits
the needs for the present application, different approaches were studied
in Guo (1993). A window function satisfying the requirements (R1) to
(R3) is

w(x) = 10−an|2(x−xL)/(xR−xL)−1|n , (A.21)

which assumes that the window function describes a symmetric window
(xl + xr = xL + xR). We refer to the window function (A.21) as an ex-
ponential window since it satisfies requirement (R3) and thus preserves
spectral convergence of the Fourier series of a sufficiently smooth win-
dowed function according to the above derivation. The parameters a and
n can be calculated from the conditions that for some xL < xl < xr < xR

w(xL) = w(xR) ≤ ε1 and w(xl) = w(xr) ≥ 1 − ε2 (A.22)

with small numbers ε1 and ε2, e.g. comparable to the machine precision.
Analytical relations for the derivatives ∂xw and ∂xxw can be derived

easily. If desired, an extension to non-symmetric windows is straight-
forward by connecting two windows according to equation (A.21) with
different parameters a and n in the middle of the domain x = 1

2 (xL+xR).
An example of an exponential window function is shown in figure A.3

together with the spectrum of the windowed non-periodic function intro-
duced in Guo et al. (1994) (scaled according to x′ = (x − xL)/(xR − xL))

f(x′) = tanh(4x′) + e−4x′
4∑

k=0

sin(2π2kx′) , 0 ≤ x′ ≤ 1 . (A.23)
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Figure A.3: Left: Window function with parameters n = 27, a = 1.111,
xL = 0, xR = 32, xl = 12.5, xr = 19.5 (vertical dashed lines), w(x) = 0.99
at x = 4.3 and x = 27.7 (vertical dotted lines), spectral bandwidth kw ≈ 200.
Right: Spectra of w(x), f(x) (equation (A.23)), f(x)w(x).

It is evident from figure A.3b that this particular choice of the window
function w(x) preserves the spectral convergence of the Fourier repre-
sentation of f(x)w(x).

The efficiency of a window function can be estimated by the following
consideration: The spectral bandwidth kw of a window function w(x) is
defined by

|ŵ(k)| < δ for |k| ≥ kw (A.24)

with ŵ(k) denoting the Fourier coefficients according to equation (A.10)
and δ a fixed small error level. A harmonic function g(x) with unit
amplitude is given as (assuming xL = 0)

g(x) = sin
(

2π

xR
kgx

)
. (A.25)

The windowed function g̃(x) is then, due to the convolution properties
of the windowing process in Fourier space, resolved up to the error δ if
at least

N ≥ 2(kw + kg) (A.26)

grid points are used in the discretisation of w(x) and g(x). For an
exponential window the spectral bandwidth kw is proportional to the
physical extent of the domain divided by the extent of the windowing
regions

kw ∝ xR − xL

(xl − xL) + (xR − xr)
. (A.27)
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Figure A.4: Sketch of the computational domain Γ, adapted for the windowing
technique, consisting of the physical domain ΓI

I , the inflow domain ΓA
I and the

outflow domain ΓA. Γ = ΓI ∪ ΓA with ΓI = ΓI
I ∪ ΓA

I .

Therefore, kw is determined by the choice of the computational domain
Γ alone. Equation (A.26) now shows that the overhead cost of the win-
dowing process, i.e. the fraction kw/N , will decrease with increasing
resolution of the discretisation, i.e. with increasing kg. The efficiency
of the windowing methods lies thus in large N ; moreover, the efficiency
of a Fast Fourier Transformation (FFT) possibly used in the numerical
algorithm also increases with N .

To apply the windowing procedure in the general case of D > 1
dimensions, the window function is extended tensorially by introducing
functions Wi(xi) for each coordinate direction xi analogously to w(x) of
equation (A.9). The window function is then defined as

W (x) =
D∏

i=1

Wi(xi) (A.28)

and the windowing operation as

f̃i(x) = W (x)fi(x) , i = 1, . . . , D , (A.29)

for a D-component vector funtion fi(x).

Application to non-periodic flows

We again consider the flow in the domain Γ. Similarly to the fringe
method, ΓI denotes the subdomain of Γ in which we want to recover
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the physically relevant solution (see sketch figure A.4). ΓI consists of
the domain ΓI

I , where a solution of the unmodified equations (A.1) is
sought, and the domain ΓA

I , where physically correct inflow data are
prescribed (distributed inflow conditions). The (normally not exactly
known) outflow is treated in ΓA, which is not part of the physical solution
to the problem (distributed outflow conditions). The class of problems
that can be treated with the windowing technique is summarised by the
following properties:

• (A1) There exists a base flow Ui which is at least defined on ΓA
I

and ΓA. This base flow is used as distributed inflow and outflow
condition and therefore contains the boundary data for the flow
problem. Ui can be constructed similar to equation (A.5) for the
fringe method. It should satisfy continuity ∂iUi = 0. For parts of
section A.3.2 it will further be assumed that Ui is periodic in the
flow direction x;

• (A2) The solution on ΓI is subject to the distributed boundary
data

ui → Ui for x → ∂ΓA . (A.30)

On the inflow boundary of the physical domain ΓI the inflow con-
dition ui = Ui on the inflow portion of ∂ΓI is fulfilled exactly;

• (A3) The solution ui is integrated according to the unmodified
equations (A.1) only on ΓI

I . The known solution on ΓA
I is expected

to provide accurate inflow data (solution to the Navier-Stokes equa-
tions). On ΓA the outflow condition is imposed.

In analogy with the fringe technique, the base flow Ui on ΓA
I can

e.g. contain superimposed temporally and spatially varying disturbances.
Again, it is advisable that these disturbances satisfy continuity. It should
be noted that, since the inflow window is located within the physical
domain ΓI , there should be no non-physical energy feed into the flow
and the velocities should follow physical evolution equations, e.g. in case
of transition simulations results from linear stability theory.

The main difference of (A1)-(A3) to the properties of the fringe
method is that ΓA

I is assumed to be part of the physical domain ΓI .
This slight modification, however, does not pose a serious restriction on
both the generality of problems that can be treated using the windowing
method and the validity of the solution. Flow problems that are to
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be treated with the windowing technique (and similarly with the fringe
method) can be distinguished into two categories:

• Damping of outflowing disturbances together with an undisturbed
inflow within an otherwise periodic base flow. In this case, pertur-
bations of the base flow are usually introduced in the domain ΓI

I

and the downstream evolution is investigated, e.g. the flow around
bodies or the spatial evolution of turbulent spots in a channel flow.
For these cases, the base flow is usually independent of the stream-
wise variable x.

• A spatially evolving flow is examined. Here, the inflow on ΓA
I

is a valid solution to the Navier-Stokes equations. In this case
the starting point of the physical domain is usually a matter of
definition or its precise location is not important, e.g. boundary
layer simulations starting downstream of the leading edge (Brandt
et al., 2004).

Windowed flow equations

In this section, the windowed evolution equation for the velocities ui and
pressure p are derived from the Navier-Stokes equations (A.1). Recall
from equation (A.29) that the windowing operation is defined as

ũi(x) = W (x)ui(x) , (A.31)

and from equation (A.20) the definition of the dewindowing operation

ui = (1 − W )Ui + ũi . (A.32)

As mentioned earlier, the maximum regularisation error on ΓI
I is

bounded by (ε2 · max |Ui − ui|), whereas on ΓA and ΓA
I it is bounded

by max |Ui − ui|, which is small by (A2). The distributed boundary
data of the solution are enforced by means of the dewindowing opera-
tion (A.32). From equation (A.31) follows that

∂jui =
1
W

(∂j ũi − ui∂jW ) , (A.33)

which is singular on ∂Γ. Note that in equation (A.33) derivative oper-
ations are taken only on windowed variables and the window function.
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Therefore, it is possible to use schemes assuming periodic boundary con-
ditions to evaluate the derivatives, e.g. accurate global Fourier methods.

Similarly, we obtain for the gradient of the convective fluxes
F c

ij = uiuj

∂jF
c
ij =

1
W

(
∂jF̃

c
ij − F c

ij∂jW
)

=
1
W

(∂j ũiuj − uiuj∂jW ) . (A.34)

The diffusive fluxes become

F d
ij = µ(∂iuj + ∂jui) =

1
W

µ(∂iũj + ∂j ũi − uj∂iW − ui∂jW ) , (A.35)

and the respective windowed flux is

F̃ d
ij = µ(∂iũj + ∂j ũi − uj∂iW − ui∂jW ) . (A.36)

On taking the gradient of the diffusive flux one obtains by (A.33)

∂jF
d
ij =

1
W

(
∂jF̃

d
ij − F d

ij∂jW
)

. (A.37)

Note that either form of F d
ij in equation (A.35) can be inserted in (A.37).

Depending on the numerical scheme it might be impractical to compute
derivatives ∂iuj on the non-windowed quantities. On the other hand, it
is usually possible, depending on the window function W , to evaluate
the term ∂jW/W despite the singularity of W−1 on ∂Γ since ∂jW/W is
bounded; e.g. for the exponential window (A.21) an analytical expression
can be given. The second form in equation (A.35) is preferred in such
cases.

On substitution of (A.34) and (A.37) into (A.1) and (A.2) one can
derive the modified Navier-Stokes equations governing the evolution of
ũi

∂tũi + ∂j ũjui +
1
ρ
∂ip̃ − 1

ρ
∂j [µ(∂iũj + ∂j ũi)] =

= uiuj∂jW +
p

ρ
∂iW − 1

ρ
∂j [µ(uj∂iW + ui∂jW )]− (A.38)

−1
ρ

∂jW

W
µ(∂iũj + ∂j ũi − uj∂iW − ui∂jW ) ,

∂kũk = uk∂kW , (A.39)
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together with the dewindowing operation (A.32), which enforces the dis-
tributed boundary conditions.

The linear stability properties of the temporally discretised equa-
tion (A.38) have been analysed in Guo (1993). There, it is concluded
that no additional time step restrictions are encountered.

Further refinements of the scheme just described are possible. Guo
(1993) proposes for his compressible calculations the introduction of a
sponge region close to the outflow and a buffer domain within the win-
dowing region. However, for the present study, neither of these refine-
ments were found to be necessary.

Formal comparison

It is instructive to compare the fringe and windowing techniques on a
formal level by a simple analogy. Consider the fringe method applied to
an evolution equation ∂tui +Fi(u) = 0 in the following form (see section
A.3.1)

∂tui + Fi(u) = λ(Ui − ui) . (A.40)

Using a fractional step approximation in the framework of an Euler-
forward integration, the discrete time step ∆t is split into two substeps
of length τ and τ ′

u′
i − u

(n)
i

τ
= −Fi(u) , (A.41)

u
(n+1)
i − u′

i

τ ′ = λ(Ui − u′
i) . (A.42)

The second equation can be rewritten as

u
(n+1)
i = (1 − τ ′λ)u′

i + τ ′λUi . (A.43)

The windowing approach enforces the boundary conditions via the
dewindowing (A.32) at the end of each substep. Formally written

u
(n+1)
i = (1 − W )Ui + Wu′

i , (A.44)

where u′
i is calculated in a forward integration similar to (A.41). Com-

paring equations (A.43) and (A.44) yields the result

W = 1 − τ ′λ . (A.45)
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Without going into further details, equation (A.45) gives, except for the
fractional step error, a formal framework to compare the fringe and the
windowing techniques.

A.3 Implementation for 2D Navier-Stokes equations

In Schlatter et al. (2005a), the windowing and the fringe method were
implemented into a two-dimensional Navier-Stokes code and compared
for two different test cases. For the overview given here, only a schematic
summary of the implementation details are given. The divergence-free
condition (A.2) is enforced by a Helmholtz projection (Chorin, 1968).
For an explicit Runge-Kutta time discretisation, it is sufficient to ex-
plain the numerical details of an Euler-forward time step. The updated
velocity of a substep will be denoted by u(n+1). At time t(n) = nτ the
solution u(n) on Γ is assumed to satisfy continuity, ∇ · u(n) = 0.

A.3.1 Fringe method

For the fringe method, the forcing term Gi (see equation (A.4)) is eval-
uated and included into the Navier-Stokes equations according to (A.1).
We proceed as follows:

• (F1) Using equation (A.1) and the abbrevation Fi including the
nonlinear and viscous terms and the forcing term Gi

∂tui +
1
ρ
∂ip = Fi(u(n)) , (A.46)

we obtain for the first step of the algorithm

u∗
i = u

(n)
i + ατFi(u(n)) . (A.47)

The step size of the Runge-Kutta step is given by ατ where τ is
the full time step.

• (F2) The divergence-free condition on the intermediate solution
u∗ is enforced by a Helmholtz projection

u
(n+1)
i = u∗∗

i = u∗
i − ∂iφ . (A.48)

where φ is a scalar function and is determined from

∂ku∗
k = ∂k∂kφ . (A.49)
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The pressure can in principle be recovered directly from the fractional
step algorithm, although the accuracy of the pressure solution is limited
to first order in time (Brown et al., 2001; Perot, 1993).

A.3.2 Windowing technique

For the windowing technique, equations (A.38) and (A.39) have to be
solved. Basically, the same algorithm as for the fringe technique is used,
although some modifications are appropriate. Instead of using the win-
dowed quantity ũ as computational variable, the regularised dewindowed
quantities ui (see equation (A.32)) have been used in the code to min-
imise the code changes.

Similarly to section A.3.1, for each Runge-Kutta substep we proceed
as follows:

• (W1) Using equation (A.38) we introduce F̃i according to

∂tũi +
W

ρ
∂ip = F̃i(u(n)) . (A.50)

The forward projection is given for the windowed solution ũ as

ũ∗
i = ũ

(n)
i + ατF̃i(u(n)) , (A.51)

or using the regularised dewindowed variables due to linearity

u∗
i = u

(n)
i + ατF̃i(u(n)) (A.52)

for a stationary base flow. Alternatively, for non-stationary base
flows Ui = Ui(t), the time derivative of ui (see equation (A.32))
has to be included, replacing equation (A.52) by

u∗
i = u

(n)
i + ατ

(
F̃i(u(n)) + (1 − W )∂tUi

)
. (A.53)

Note that (1 − W )∂tUi can alternatively be added in step (W3)
since Ui is divergence-free by assumption.

The test cases have shown (Schlatter et al., 2005a) that an addi-
tional dewindowing operation at this point increases the accuracy
of the results slightly

u∗+
i = (1 − W )Ui + Wu∗

i . (A.54)
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The reason for this is that the additional dewindowing enforces the
boundary data on the intermediate solution u∗+

i and damps possi-
ble artefacts of F̃i in the windowing regions. A similar observation
is also made by Colonius & Ran (2002), who found an additional
filtering step in the fringe region to be beneficial.

• (W2) The divergence-free condition on the intermediate solution
u∗ is enforced by a Helmholtz projection

u∗∗
i = u∗

i − ∂iφ . (A.55)

Using (A.32) and the continuity equation one requires

∂ku∗∗
k = ∂kũ∗∗

k − Uk∂kW = 0 , (A.56)

and applying the divergence operator to (A.55) using (A.56) we
obtain

∂ku∗
k = ∂k∂kφ . (A.57)

• (W3) The final dewindowing is then performed as

u
(n+1)
i = u∗∗∗

i = (1 − W )Ui + Wu∗∗
i . (A.58)

The divergence error of the solution due to dewindowing at time
t(n+1) is

∂iu
(n+1)
i = (u∗∗

i − Ui)∂iW . (A.59)

It is non-vanishing only in the windowing regions where, however,
(u∗∗

i − Ui) is small due to (A2).

The Poisson equation (A.57) can be solved accurately by a Fourier
transform only if u∗ is periodic on Γ. A non-periodic u∗ can be treated
directly using a non-periodic Poisson solver of high order (e.g. Braverman
et al. (1998)). Alternatively, u∗

k in equation (A.57) can be split into a
periodic part and a non-periodic part. Formally assuming the additional
dewindowing in (W1) given in equation (A.54), u∗

k can be written as

u∗
k = (1 − W )Uk + ũ∗

k (A.60)
= Uk︸︷︷︸

non−periodic

−WUk + ũ∗
k︸ ︷︷ ︸

periodic

. (A.61)
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Since the base flow Uk satisfies continuity, ∂kUk = 0, equation (A.57)
simplifies to

∂ku∗
k = ∂k (Uk − WUk + ũ∗

k) = ∂k (−WUk + ũ∗
k) = ∂k∂kφp , (A.62)

which is a periodic problem on Γ and can thus be solved in Fourier space
with periodic boundary conditions. The new solution is then given as

u∗∗
i = u∗

i − ∂iφp (A.63)

with φp denoting the periodic part of φ.
The pressure is obtained from

∆p = −ρ∇ · (u · ∇u) . (A.64)

with suitable boundary conditions (see e.g. Rannacher (1992)). If the
pressure is not required on the entire domain, e.g., a windowing operation
can be employed to restrict the solution to the physically meaningful part
of the domain and to allow for an efficient (spectral) solution.

A.4 Summary and conclusions

The windowing technique presented in Schlatter et al. (2005a); Schlat-
ter (2002) has been summarised in this chapter. It was adapted from
Guo et al. (1994) and refined by introducing a regularised dewindowing
procedure, and proved to be successful in solving non-periodic prob-
lems governed by the Navier-Stokes equations while employing periodic
Fourier discretisation. Analytical predictions on the convergence rate of
the numerical solution can be made, which were confirmed by our numer-
ical results. The convergence rate depends fundamentally on the choice
of the windowing function. Properly designing this function allows for
recovering spectral accuracy (Guo, 1993). An adaptation of the present
algorithm to compressible flows is possible. The exact satisfaction of
inflow conditions is ensured due to the dewindowing procedure even for
base flows which do not accurately satisfy continuity. For this type of
(non-physical) base flow the fringe method produces inferior results.

The accuracy of the windowing and the fringe method (see Nordström
et al. (1999)) was compared in Schlatter et al. (2005a) for a number
of parameters and three test cases. They cover essential requirements
encountered in real applications, e.g. spatial laminar-turbulent transition
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and turbulence simulations. Both methods were successful in providing
an accurate inflow condition and an artificial outflow condition with
limited upstream influence. The global errors of the windowing method
were found to be at least as low as the errors of the fringe technique.

It was further found that the performance of the fringe method
strongly depends on the choice of the parameters: fringe strength, blend-
ing, start and length of the fringe region. While excellent results can be
obtained for ideal parameters, the imprudent choice of parameters can
even lead to numerical problems due to the fringe forcing. The reduc-
tion of the time step in such cases is undesirable as it decreases the
efficiency of the computation significantly. The windowing method, on
the other hand, contains only a small number of tuning parameters and
their influence is limited.

Implementing the fringe method into an existing simulation code does
not pose any problems. For the windowing method, additional terms in-
volving derivatives have to be included in the differential equation, which
is more complicated. The cost of the additional calculations for the fringe
forcing is negligible, and that for the evaluation of the windowed quan-
tities and fluxes is small (increase of CPU time due to windowing opera-
tions around 5%). For both methods, the fraction of the computational
domain needed for the treatment of the artificial boundary conditions is
similar, typically of order 10% of the computational domain size. How-
ever, for spatially evolving, non-periodic base flows the fringe method
relies on a blending to provide a periodic base flow. The windowing
method, on the other hand, can be applied directly using a non-periodic
base flow and does not necessarily need an extension of the domain by
a blending region.

The influence of the fringe region on the accuracy is difficult to es-
timate. For the windowing technique, simple estimates can be used to
assess the impact of the boundary treatment on the accuracy. These
relations show that the accuracy can be increased with finer resolution
of the window function.

The windowing method provides an attractive alternative way to
perform accurate simulations in non-periodic geometries using periodic
discretisation schemes. Since it poses no restriction on the type of inflow
conditions, its use for transitional and turbulent flows is possible.



Appendix B

Summary of mathematical expressions

This section describes some important mathematical expressions for
modelling and turbulent quantities used throughout this thesis. In par-
ticular, details of the structure function F2, the strain rate Sij and the
transport equation for the turbulent kinetic energy (TKE) are discussed.
The implementation of the dynamic Smagorinsky model is described in
section B.4.

B.1 Structure function

The local second-order velocity structure function of the velocity field u
at position x is defined as

F2(u,x, ∆) =
〈‖u(x) − u(x + r)‖2

〉
‖r‖=∆

(B.1)

with a length scale ∆ and the Euclidian norm ‖·‖. If the flow is assumed
to be one-dimensionally isotropic, Batchelor’s formula (Batchelor, 1953)
yields

F2(u,x, ∆) = 4
∫ ∞

0

E(k)
(

1 − sin(k∆)
k∆

)
dk , (B.2)

with E(k) denoting the three-dimensional energy spectrum of the veloc-
ity u. The actual implementation of F2 given an equidistant cartesian
grid xi,j,k = (i∆, j∆, k∆) in six-point formulation is (Lesieur & Métais,
1996)

F2(u,xi,j,k, ∆) =
1
6
( ‖ui+1,j,k − ui,j,k‖2 + ‖ui−1,j,k − ui,j,k‖2

+ ‖ui,j+1,k − ui,j,k‖2 + ‖ui,j−1,k − ui,j,k‖2

+ ‖ui,j,k+1 − ui,j,k‖2 + ‖ui,j,k−1 − ui,j,k‖2
)
, (B.3)

or written more compactly with ei as unit vector in direction i

F2(u,x, ∆) =
1
6

3∑
i=1

(‖u(x + ∆ei) − u(x)‖2 + ‖u(x− ∆ei) − u(x)‖2
)

.

(B.4)
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For the extension to non-equidistant grids, Kolmogorov’s scaling law
(Kolmogorov, 1991; Lesieur & Métais, 1996)

F2(∆∗) ∝ (ε∆∗)2/3 (B.5)

can be used. For a grid with local mesh sizes ∆x−
i and ∆x+

i , this leads
to

F2(u,x, ∆∗) =
1
6

3∑
i=1

[
‖u(x) − u(x + ∆x+

i ei)‖2

(
∆∗

∆x+
i

)2/3

+

‖u(x) − u(x − ∆x−
i ei)‖2

(
∆∗

∆x−
i

)2/3 ]
(B.6)

with the averaged grid size assumed as ∆∗ = (Π3
i=1∆x+

i ∆x−
i )1/6.

B.2 Strain rate

The strain rate of the velocity field ui is defined as

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (B.7)

The norm |S| is then written as

|S|2 = 2SijSij = 2(S2
11 + S2

22 + S2
33) + 4(S2

12 + S2
13 + S2

23)

= 2
(

∂u1

∂x1

)2

+
(

∂u2

∂x1

)2

+
(

∂u3

∂x1

)2

+
(

∂u1

∂x2

)2

+ 2
(

∂u2

∂x2

)2

+
(

∂u3

∂x2

)2

+
(

∂u1

∂x3

)2

+
(

∂u2

∂x3

)2

+ 2
(

∂u3

∂x3

)2

+2
∂u2

∂x1

∂u1

∂x2
+ 2

∂u3

∂x1

∂u1

∂x3
+ 2

∂u2

∂x3

∂u3

∂x2
. (B.8)
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From the definition of Sij and ω = ∇× u one can show that

2SijSij + ωiωi = 2
∂ui

∂xj

∂ui

∂xj
= 2

[
(
∂u1

∂x1
)2 + (

∂u1

∂x2
)2 + (

∂u1

∂x3
)2

+ (
∂u2

∂x1
)2 + (

∂u2

∂x2
)2 + (

∂u2

∂x3
)2

+ (
∂u3

∂x1
)2 + (

∂u3

∂x2
)2 + (

∂u3

∂x3
)2
]

. (B.9)

Alternatively, a first-order expansion of the differences in the definition
of the structure function

∆2

∥∥∥∥ ∂u
∂xi

∥∥∥∥2

≈ ‖u(x) − u(x + ∆ei)‖2 , (B.10)

yields the following relation for an equidistant grid with mesh size ∆
(Lesieur & Métais, 1996)

F2(u,x, ∆) ≈ 1
6
∆2(2SijSij + ωiωi) , (B.11)

which can be extended to non-equidistant grids in a straightforward way.

B.3 Transport equation for the turbulent kinetic en-
ergy

The transport equation for the turbulent kinetic energy (TKE) is derived
from the filtered LES equations (2.5),

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+

1
Re

∂2ui

∂xj∂xj
, (B.12)

by multiplication with ui. The velocity is split into a mean and a fluc-
tuating part according to the Reynolds decomposition

ui = 〈ui〉 + u′
i , (B.13)

where 〈·〉 denotes a linear statistical average. Evolution equations for
the total kinetic energy E = 1

2uiui, the kinetic energy of the mean flow
E = 1

2 〈ui〉 〈ui〉 and the kinetic energy of the fluctuations k = 1
2u′

iu
′
i can

be readily derived. Note that 〈E〉 = E + k. The notation〈
Sij

〉
=

1
2

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
and S

′
ij =

1
2

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)
, (B.14)
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is used. Then, the equations for the total kinetic energy read

∂E

∂t
+ui

∂E

∂xi
+

∂uip

∂xi
− 2

Re

∂ujSij

∂xi
+

∂ujτij

∂xi
= − 2

Re
SijSij+τijSij , (B.15)

for the kinetic energy of the mean flow

∂E

∂t
+ 〈ui〉 ∂E

∂xi
+

∂ 〈uj〉
〈
u′

iu
′
j

〉
∂xi

+
∂ 〈ui〉 〈p〉

∂xi

− 2
Re

∂ 〈uj〉
〈
Sij

〉
∂xi

+
∂ 〈uj〉 〈τij〉

∂xi
=〈

u′
iu

′
j

〉 〈
Sij

〉− 2
Re

〈
Sij

〉 〈
Sij

〉
+ 〈τij〉

〈
Sij

〉
, (B.16)

and for the kinetic energy of the fluctuations

∂k

∂t
+ 〈ui〉 ∂k

∂xi
+

1
2

∂ 〈uiujuj〉
∂xi

+
∂ 〈u′

ip
′〉

∂xi

− 2
Re

∂
〈
u′

jS
′
ij

〉
∂xi

+
∂
〈
u′

jτ
′
ij

〉
∂xi

=

− 〈
u′

iu
′
j

〉 〈
Sij

〉− 2
Re

〈
S
′
ijS

′
ij

〉
+

〈
τ ′
ijS

′
ij

〉
. (B.17)

The SGS contributions have been split into a mean and a fluctuating
part,

τij = 〈τij〉 + τ ′
ij . (B.18)

The turbulent production is defined as

P = − 〈
u′

iu
′
j

〉 〈
Sij

〉
(B.19)

with P > 0 denoting a net transport of energy from the mean flow to
the fluctuating field.

The total viscous dissipation is given by

εvisc = − 2
Re

SijSij . (B.20)

Note that negative values for the dissipation mean a net loss of energy.
The viscous dissipation due to the mean flow and due to the fluctuating
field are given as

εvisc,mean = − 2
Re

〈
Sij

〉 〈
Sij

〉
, (B.21)
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and

εvisc,fluct = − 2
Re

〈
S
′
ijS

′
ij

〉
= − 2

Re

〈
SijSij

〉
+

2
Re

〈
Sij

〉 〈
Sij

〉
. (B.22)

Similarly, the total dissipation due to the SGS model is

εSGS = τijSij . (B.23)

It can be split accordingly into

εSGS,mean = 〈τij〉
〈
Sij

〉
(B.24)

for the SGS dissipation acting on the mean field, and the dissipation of
the fluctuating field

εSGS,fluct =
〈
τ ′
ijS

′
ij

〉
=

〈
τijSij

〉− 〈τij〉
〈
Sij

〉
. (B.25)

Some SGS models are directly acting on the velocity components by
means of a forcing term, e.g. the ADM relaxation term

∂τij

∂xj
= χHN ∗ ui . (B.26)

In this case, it is generally not possible to separate the SGS dissipation
term from the transport part of the model contribution. The approxi-
mate SGS energy transfer terms thus read

ε∗SGS = −ui
∂τij

∂xj
. (B.27)

The corresponding mean and fluctuating parts are

ε∗SGS,mean = −〈ui〉 ∂ 〈τij〉
∂xj

, (B.28)

and

ε∗SGS,fluct = −
〈

u′
i

∂τ ′
ij

∂xj

〉
= −ui

∂τij

∂xj
+ 〈ui〉 ∂ 〈τij〉

∂xj
. (B.29)
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B.4 Dynamic Smagorinsky model

The LES equations (2.5) for the filtered velocities ui and pressure p are
given by

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+

1
Re

∂2ui

∂xj∂xj
, (B.30)

together with the filtered continuity equation (2.6)

∂ui

∂xi
= 0 . (B.31)

The filter operation denoted by the overbar (·) is the primary LES filter
GP , equation (2.4). In the context of the dynamic Smagorinsky model,
usually the implicit grid filter onto the coarse LES grid is assumed. The
subgrid-scale stresses are given by (see equation (2.7))

τij := uiuj − uiuj . (B.32)

The class of dynamic SGS models was first introduced by Germano
et al. (1991). These models allow for a dynamic adjustment of the model
coefficient to the local flow conditions, e.g. reducing the model contri-
bution in the vicinity of walls or in laminar or transitional flow regions.
The dynamic procedure, which will be described below, is based on the
algebraic identity, known as the Germano identity, which relates the
(known) subfilter stresses of a test filter to the corresponding (unclosed)
subgrid-scale stresses of the grid filter. The cutoff wavenumber of the
test filter is chosen lower than the primary LES filter, e.g. in Germano
et al. (1991) half the filter width of the primary filter has been proposed,
i.e. ωc = π/2 (see also section 2.1.1).

The LES equations are filtered by use of the test filter (̃·) yielding

∂ũi

∂t
+

∂ũiũj

∂xj
= − ∂p̃

∂xi
− ∂Tij

∂xj
+

1
Re

∂2ũi

∂xj∂xj
. (B.33)

The subfilter-scale stresses at the test-filter level are then

Tij := ũiuj − ũiũj . (B.34)

Following the presentation in Germano et al. (1991) and Lilly (1992)
the resolved turbulent stresses are defined as

Lij := ũiũj − ũiuj . (B.35)
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Lij describes the turbulent stresses associated with the scales between
the test and the grid scale. Note that Lij can be computed from ui. By
combining equations (B.32) and (B.34) the Germano identity (Germano
et al., 1991; Germano, 1992) is found

Lij = τ̃ij − Tij . (B.36)

Using the Smagorinsky closure (see Smagorinsky (1963) and sec-
tion 2.2.1) to model both the subgrid-scale stresses τij and the subfilter
stresses Tij , one obtains

τij − δij

3
τkk = −2(CS∆)2|S|Sij (B.37)

Tij − δij

3
Tkk = −2(CS∆̃)2|S̃|S̃ij . (B.38)

Note that for both filter levels the same constant Smagorinsky coefficient
CS has been assumed. ∆ and ∆̃ denote a typical length scale of the
respective filters. Employing the Germano identity (B.36) yields

Lij − δij

3
Lkk = τ̃ij − δij

3
τ̃kk − Tij +

δij

3
Tkk (B.39)

= 2(CS∆̃)2|S̃|S̃ij − 2(CS∆)2 |̃S|Sij . (B.40)

By using the abbrevation

Mij = ∆̃
2

|S̃|S̃ij − ∆
2 |̃S|Sij , (B.41)

equation (B.40) is simplified to

Lij − δij

3
Lkk = 2CdynMij . (B.42)

Cdyn replaces the squared Smagorinsky coefficient C2
S and might be nega-

tive. In (B.42) six individual equations for the scalar coefficient Cdyn are
formulated. In Germano et al. (1991) these equations were contracted
with the resolved strain rate Sij to yield a single equation for Cdyn. How-
ever, no physical justification for using Sij has been given. Lilly (1992)
suggested a least-squares approach to minimise the quadratic error of
the individual equations, i.e. the residual

Q = (Lij − δij

3
Lkk − 2CdynMij)2 (B.43)
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shall be minimal. Cdyn is then determined from

Cdyn =
1
2

Mij(Lij − δij

3 Lkk)
MlmMlm

. (B.44)

If the filtered velocity fields ui and ũi are exactly divergence-free, equa-
tion (B.44) can be simplified to

Cdyn =
1
2

MijLij

MlmMlm
, (B.45)

since Mij
δij

3 Lkk = 1
3MllLkk and Mll = 0 if ∂ui/∂xi = ∂ũi/∂xi = 0. This

is only true for filters that commute with the numerical differentiation,
e.g. the spectral cutoff filter applied in Fourier space. Numerical tests re-
vealed, however, that only minor differences between the results obtained
using equation (B.44) and (B.45) are present even for non-commuting
filters. Additionally, these tests showed that Cdyn is fluctuating consid-
erably in space and, occasionally, negative values were obtained (mainly
during the laminar and transitional phases). Therefore, the determina-
tion equation for the Smagorinsky coefficient used throughout this thesis
is given as

Cdyn =
1
2

〈MijLij〉
〈MlmMlm〉 , (B.46)

CS =
{ √

Cdyn , Cdyn > 0
0 , Cdyn ≤ 0

. (B.47)

The averaging 〈·〉 is performed over homogeneous directions, i.e. over
wall-parallel planes in the temporal channel flow simulations and over
the spanwise direction in the spatial channel flow simulations. It has
been tested to use the spanwise averaging for the temporal channel flow
simulations, however no significant differences have been observed.

In laminar or slightly disturbed transitional (e.g. low-amplitude
Tollmien-Schlichting waves, see section 4.1.1) channel flow, the resolved
stresses Lij are virtually zero across the channel. On the other hand,
Mij is in general not vanishing except for the channel midplane (z = 0).
Whereas a small Lij assures a vanishing model coefficient for such flow
types, a vanishing Mij leads to a 0/0 problem for which, depending on
the numerical discretisation scheme, special care has to be taken. In the
present implementation a vanishing Mij is trapped and equation (B.47)
is replaced by CS = 0.
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