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Abstract

A physics-based software for the self-consistent electro-thermo-optical
simulation of vertical-cavity surface-emitting laser (VCSEL) devices is

presented. The simulator model is based on semiclassical microscopic

laser theory. The model self-consistently describes spatially resolved

quantities, namely, electrical potential, electron and hole densities,
local temperature, and mean optical intensity. The input parameters

to the model equations are the topology and the local physical material

parameters. Static, small signal modulation, and transient device

characteristics can be computed. The model is suitable for the analy¬
sis of a wide range of VCSEL types with realistic device structures.

The semiclassical laser model employs the slowly varying ampli¬
tude approximation: the optical field is decomposed into a given num¬

ber of modes at discrete frequencies, and the temporal evolution of

the mean electromagnetic energy in each mode is described by a sep¬

arate photon rate equation. The optical modes are determined by

solving Maxwell's vectorial wave equation, subject to an open bound¬

ary, taking into account diffraction of electromagnetic waves. Per¬

fectly matched layer absorbing boundaries are used to model the open

microcavity. Bulk electro-thermal carrier transport is modeled by a

thermodynamic model that accounts for self-heating. At abrupt het-

erointerfaces a thermionic emission model is used. Electro-thermal

transport in the distributed Bragg resonators is rendered by trans¬

port through a homogeneous region with an effective conductivity for

heat, electrons and holes, and an effective heat capacity. Quantum
wells are treated as scattering centres where ballistic transport applies
for electrons and holes.

The VCSEL simulator is based on the DESSIS device simulator.
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X Abstract

The LUMI mode solver library was developed as an extension in or¬

der to handle the optical problem. The Finite Element Method is

employed to formulate the physical equations: Box Method for the

electro-thermal problem, and combined edge / node finite elements

of different polynomial order for the optical problem. Expansions are

in cylindrical coordinates assuming rotational symmetry of the de¬

vice structure. The non-linear electro-thermal matrix equations aug¬

mented with a photon rate equation per optical mode are solved by
Newton's Method. Solutions to the inhomogeneous form of Maxwell's

wave equation are computed using a direct linear solver. The eigen-

pairs of the homogeneous form are obtained by the Jacobi-Davidson

QZ algorithm with a suitable preconditioner. The electro-thermal to¬

gether with the photon rate equations are coupled to Maxwell's wave

equation employing a Gummel type iteration scheme.

The efficient computation of the optical modes based on a contin¬

uation scheme allows, for the first time, that Maxwell's vectorial wave

equation - for VCSELs with realistic structures and optical sizes -

subject to an open boundary, can be solved self-consistently with the

electro-thermal device equations.

Simulation results are compared to measurements and show ex¬

cellent agreement. In order to demonstrate the practical use of the

simulator as a computer aided design tool a tutorial is given.



Zusammenfassung

Diese Arbeit beschäftigt sich mit der Entwicklung eines selbstkon¬

sistenten elektro-thermo-optischen Simulators für Vertikalresonator-

Laserdioden (VCSEL). Das Simulationsmodell basiert auf einer mi¬

kroskopischen, semiklassischen Lasertheorie. Es beschreibt das elek¬

trische Potential, Elektronen- und Löcherdichten, lokale Temperatur
und die mittlere optische Intensität räumlich aufgelöst und auf selbst¬

konsistente Weise. Die Eingabeparameter für die Modellgleichungen
umfassen die Topologie und die lokalen physikalischen Materialpara¬
meter des Bauelements. Statische Charakteristiken, Kleinsignal- und

Grossignalantworten können berechnet werden. Das Modell eignet sich

für die Analyse eines breiten Spektrums von VCSEL Typen.
Im verwendeten semiklassischen Lasermodell wird das schnell va¬

riierende Lichtfeld lokal durch die sich langsam ändernden Amplitu¬
de der optischen Intensität angenähert. Des weiteren wird das opti¬
sche Feld in eine Anzahl Moden mit diskreten Frequenzen zerlegt. Die

zeitliche Änderung der mittleren elektromagnetischen Energie in je¬
der Mode wird dann mit einer separaten Ratengleichung beschrieben.

Die optischen Moden werden durch Lösen der vektoriellen Maxwell

Wellengleichung mit abstrahlender Randbedingung bestimmt. Elek-

trothermischer Ladungsträgertransport wird durch ein thermodyna-
misches Modell berücksichtigt, welches Selbsterwärmung des Bauteils

einbezieht. An abrupten HeteroÜbergängen wird ein thermionisches

Emissionsmodell eingesetzt. Die verteilten Braggresonatoren werden

für den elektrothermischen Transport durch eine homogene Region
mit effektiver Leitfähigkeit für Wärme, Elektronen, Löcher und ei¬

ner effektiven Wärmekapazität angenähert. Quantentöpfe werden als

Streuzentren mit ballistischem Ladungsträgertransport behandelt.

XI



Xll Zusammenfassung

Das VCSEL Simulationsprogramm basiert auf dem DESSIS Bau¬

elementesimulator. Die LUMI Bibliothek wurde als Erweiterung für

die Behandlung des optischen Problems erstellt. Das physikalische
Problem wird mittels der Finiten Elemente Methode formuliert. Für

das elektrothermische Problem wird die Box Methode verwendet. Ei¬

ne kombinierte Kanten / Knoten Finite Elemente-Expansion mit ver¬

schiedenen Polynomgraden findet Anwendung für das optische Pro¬

blem. Beide Probleme werden in Zylinderkoordinaten formuliert und

gehen davon aus, dass die Anordnung rotationssymmetrisch ist. Die

nichtlinearen Matrizengleichungen werden mittels der Newtonmetho¬

de gelöst. Die inhomogene Form der Maxwell Wellengleichung wird

mit einem direkten Verfahren gelöst. Die Eigenpaare der homogenen
Form werden mit dem Jacobi-Davidson QZ Algorithmus mit einem

geeigneten Vorkonditionierer bestimmt. Die elektrothermischen Glei¬

chungen, zusammen mit den Photonenratengleichungen, werden mit¬

tels einer Gummel-Iterationsprozedur an die Maxwell Wellengleichung

gekoppelt.
Dank der effizienten Berechnung der optischen Moden, basierend

auf einem Reiterationsverfahren, ist es zum ersten Mal möglich die

vektorielle Maxwell Wellengleichung, für realistische VCSEL Struktu¬

ren, selbstkonsistent mit den elektrothermischen Gleichungen zu lösen.

Simulationsresultate werden mit Messungen verglichen und zeigen

ausgezeichnete Übereinstimmung. Der praktischen Nutzen des Simu¬

lators wird mittels eines Tutorials demonstriert.



Chapter 1

Introduction

Semiconductor laser diodes with a vertical optical resonator struc¬

ture were first proposed by Soda and Iga in 1979 [1]. The devices

were termed vertical-cavity surface-emitting lasers (VCSEL) due to

the novel concept of light emission perpendicular to the substrate

surface as opposed to in-plane emission by traditional edge emitting
lasers. The InGaAsP/InP material system was used for the original
device.

In 1988 Iga [2] and 1989, 1991 Jewell [3, 4] presented the first

room temperature continuous wave results for an electrically pumped
device. In [4] 980 nm emission was demonstrated employing the Al-

GaAs/GaAs system with an active region composed of InGaAs quan¬

tum wells. VCSELs in the wavelength range 750-1050 nm manufac¬

tured in the AlGaAs/GaAs material system with GaAs and InGaAs

active regions became available on a commercial scale in 19991.

VCSEL devices have attractive features:

• threshold current < 1 niA [5]

• wall plug efficiency > 50% [6]

1In 2002 around 9 million 850 nm, mostly 1.25-2.5 Gbit/s devices were shipped
in the datacom market. Source: Honeywell sees growth m VCSELs, 18 August

2003, http://www.fibers.org, IOP Publishing Ltd.

1



2 CHAPTER 1. INTRODUCTION

• small signal modulation response > 20 GHz [7]

• radially symmetric optical far field (easy coupling to fibre)

• batch fabrication in two-dimensional arrays (low cost)

• on-wafer test prior to chipping and packaging

• suitable for high density planar integration in hybrid modules

and photonic integrated circuits (small device size « 10 /im di¬

ameter) .

Recent advances have finally led to reliable VCSEL operation at

the important telecommunication wavelengths 1300 nm and 1550 nm

using the InGaAlAs/InP, InGaAsP/InP and InGaNAsSb/GaAs [8, 9,

10, 11].

1.1 Why Use CAD Software?

Traditionally, new designs of VCSEL device structures and changes to

existing designs have been investigated purely experimentally: fabri¬

cating test series with parameter variations, characterising the devices

and changing the design according to the results as shown in Fig. 1.1a.

Using a technology computer aided design (TCAD) software - as

the one presented in this work - the same can potentially be achieved

with a significantly reduced experimental effort, with drastically re¬

duced turn-around times, and hence at lower cost (Fig. 1.1b). Prior to

the fabrication of a prototype the new device design is analysed and

optimised using a simulator. Eventually, a test device is fabricated

and characterised. The measured results are then used to correct the

parameters of the model and the design procedure is restarted from

the top. In addition, special test structures are used to determine

specific model parameters. In this way the accuracy of predicting de¬

vice behaviour is continuously improved, and the number of prototype

fabrication cycles lowered.

A reliable device model in the form of a simulator software to¬

gether with an accurate set of parameters are preliminaries for fabless

design and production shown in Fig. 1.2. This approach has recently

gained interest among small photonics enterprises. The approach is
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Figure 1.2: Schematic illustrating the fabless design and production

approach.

promising for the manufacture of products with larger profit margins
for comparatively small and/or specialised markets, as for instance

the sensing market. Small design houses with in-depth expertise in a

certain application area can have photonic components manufactured

at low cost to their specifications at a large foundry. In this way,

they can gain access to high-end fabrication processes that they could

never afford and maintain in-house due to the prohibitive investments

required.
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1.2 Applications and Device Types

Present generation VCSEL devices are predominantly aimed at appli¬
cations as inexpensive high performance light sources in wavelength
division multiplexed optical fibre networks for data- and telecommu¬

nications. Devices for optical backplanes and short distance data-

communications (< 300 m) are primarily at 850 nm. More recently
1300 nm and 1550 nm VCSELs destined at metropolitan network

access and local area networks have become available. Furthermore,
VCSELs have gained the attention of manufacturers of optical storage

and signal processing equipment, displays, sensors and laser printers.

The basic structure of a VCSEL device is shown in Fig. 1.3. It

consists of an electrically driven pin diode with an active region at

the centre composed of one or more quantum wells2. Highly reflec¬

tive diffractive mirrors confine the light perpendicular to the substrate

and are embedded in the p and n regions. The mirrors, so called dis¬

tributed Bragg reflectors (DBR), consist of quarter wavelength (A/4)
layers with alternating refractive indices created by epitaxial growth

techniques.
VCSEL devices can be classified according to the wavelength that

they operate at and the method used to introduce lateral electrical

current and optical mode confinement. The former is dictated by the

material used for the active region as was already pointed out at the

beginning of Ch. 1. Control over the latter is one of the core issues

in VCSEL design. Only the advent of the popular oxide confinement

[12] has enabled VCSEL devices with truly low threshold currents

(< 1mA). An AlxGai_xAs layer, with a high Al content, placed in

a certain location on the vertical axis within the DBR is oxidized to

a desired lateral depth. This forms an electrically insulating current

aperture as well as a low refractive index optical confinement. The

depth of the oxide aperture is well defined because the rate at which

the AlxGai_xAs is oxidized to AI2O3 is accurately controlled by the

oxidation time and the Al content of the layer. Lateral confinement

may be introduced by

• oxide aperture

2There are also optically pumped VCSEL diodes which will not be discussed

in this work.
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light output

anode

DBR (p doped)

active region

DBR (n doped)

cathode

Figure 1.3: Basic VCSEL structure.

proton irradiation

etched mesa

buried heterostructure

• buried tunnel junction.

Heat management is another core issue in VCSEL design. VC¬

SELs are small in size and the layered DBR structures have inferior

heat conductivity, especially the ones in the InGaAlAs/InP and In-

GaAsP/InP material systems. Additionally, for cost saving reasons,

VCSELs have to operate uncooled over a large ambient temperature

range, typically from 0
...

80 °C. Hence, the optical gain spectrum

and the cavity resonance shift at different material dependent rates

over operating conditions. Moreover, at high temperatures optical

gain can degrade due to temperature activated carrier leakage and

non-radiative recombination. Additionally, the optical field distribu¬

tion in the cavity changes because of the temperature induced varia¬

tion of the refractive index. This effect is known as thermal lensing.
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In conclusion, self-heating must be taken into account in a practical
VCSEL simulation.

As an illustration, cross-sections of three different VCSEL struc¬

tures are shown in Fig. 1.4. Figure 1.4a shows an etched mesa VCSEL.

It is predominantly used for short distance communication at 850 nm

in the AlGaAs/GaAs material system.

Figure 1.4b is a buried tunnel junction (BTJ) VCSEL with a bot¬

tom (anode side) DBR made of only a few periods of high index

contrast insulating dielectric material. This VCSEL type is a promis¬

ing candidate for communication at 1300 nm and 1550 nm using the

InGaAlAs/InP material system. It is well known that this system

has a lower maximum refractive index contrast and a lower thermal

conductivity compared to the AlGaAs/GaAs system. This leads to a

conflict in the requirements for low electrical resistance to minimise

self-heating and high reflectivity which is particularly severe for the

p-type DBR. The BTJ VCSEL overcomes this problem by employ¬

ing the mentioned anode side dielectric DBR and an integrated metal

heat sink. Furthermore, a buried tunnel junction establishes lateral

current and optical mode confinement [8, 10].
Figure 1.4c is also targeted at 1300 nm and 1550 nm wavelengths.

The anode side DBR is a metamorphic structure grown in the Al¬

GaAs/GaAs system that provides higher maximum refractive index

contrast than the InGaAsP/InP system. Additionally, a sacrificial

layer between the cavity, that contains the active zone grown in the

InGaAsP/InP system, and the metamorphic mirror has been etched

away to make the latter a free structure suspended by the adjacent
arms only. With this construction the metamorphic mirror can be

electrostatically actuated and hence the resonant wavelength of the

VCSEL cavity tuned to a desired point within a certain range. An

oxide aperture for lateral current and optical mode confinement is

introduced on the anode side just above the cavity [8, 13].

1.3 Scope of Work

Simple rate equation models are commonly used by device designers
to obtain a qualitative insight into the operation of a device and can be

made to reproduce measured results by a parameter fitting procedure
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Figure 1.4: Schematic cross-sections of different rotationally symmet¬
ric VCSEL structures, (a) etched mesa VCSEL, (b) buried tunnel

junction (BTJ) VCSEL, (c) micromechanical, electrostatically actu¬

ated tunable VCSEL
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[14, 15]. A carrier rate equation describes the time evolution for the

charge carriers (electrons and holes in the active region which are

assumed equal in number) in a first reservoir

—— = Rsp — Rnr — G S (1-1)
at e

and a photon rate equation for the photons in a second reservoir

7, Ps'p-t^sp \ I ^
at \ Tph

— =ßspRsp+[G )S. (1.2)

•

•

The variable TV is the number of carriers, S the number of photons,
and G the modal optical gain3 due to stimulated emission. The optical

gain can be modeled empirically with the three parameter formula

G(7V's) = Golog]£T|- (L3)

The parameters are

• internal quantum efficiency r\% [1]

• spontaneous radiative emission rate Rsp [s_1]

non-radiative emission rate Rnr [s_1]

spontaneous emission coupling factor ßsp [1]

• optical gain coefficient Gq [s_1]

• transparency carrier number Ntr [1] (at which G becomes posi¬

tive)

• cavity photon life time rvh [s_1].

Moreover, e is the elementary charge, and Ns a shift to force the

natural logarithm to be finite at N = 0. The optical output power is

given by

Pout = —Shüü (1.4)
im.

5The optical mode confinement factor is included in G.
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with the photon energy fiuj and the energy loss rate l/rm through the

VCSEL aperture.

In contrast to the zero-dimensional rate equation model given in

Eqs. (1.1-1.4) the aim of this work is to devise a VCSEL model

that is based on a microscopic theory. That is, the model shall self-

consistently describe spatially resolved quantities, namely, electrical

potential, electron and hole densities, local temperature, and mean

optical intensity. The input parameters to the model equations are

the topology of the device and the local physical material parameters

as opposed to the effective parameters of the rate equation model.

The spatially resolved quantities already provide the designer with

valuable insights into device operation. Additionally, they can be

used to compute electrical, thermal and optical terminal quantities.

These can then be compared to results obtained from measurements.

The spatially resolved quantities are computed by a finite element

approach. In practice, its limitation lies in the maximum size of the

discretised problem that can be accommodated on a given computer,

and the maximum permissible time to numerically solve the associ¬

ated system of matrix equations. It will be shown in Ch. 4 that it

is feasible to use finite elements to handle design tasks involving re¬

alistic VCSEL device structures. VCSEL devices may have arbitrary

rotationally symmetric geometries such as the ones shown in Fig. 1.4.

Examples in Ch. 4 are restricted to 840 nm and 980 nm devices us¬

ing AlGaAs/GaAs with GaAs and InGaAs quantum wells. However,
the approach is applicable to all common VCSEL material systems

mentioned at the beginning of Ch. 1.

The laser model follows a semiclassical approach. The optical field

is described by Maxwell's equations with a polarisation term. This

term is due to the interaction between light and charge carriers and

is determined by quantum mechanics.

In order to appreciate the modeling approach taken in this work

an overview of important time constants of the physical processes

involved is given. The figures give the correct order of magnitude for

a VCSEL device with emission wavelength at À = 1 /im.

1. Electron and hole mobilities are governed by the effective car¬

rier mass, impurity and phonon scattering with a total rate of

10 ps_1 [16]. This determines how quickly the carrier density in
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the intrinsic region of the pin diode can be modulated by alter¬

natingly supplying and removing carriers by drift and diffusion.

2. Quantum well carrier capture and escape rates are 0.1-1.0 ps_1

[17, 18] given by carrier phonon scattering.

3. Relaxation of non-equilibrium carrier distributions is by carrier

carrier scattering at a rate of 10 ps_1 [18, 19].

4. Recombination rate due to spontaneous emission, Auger, Shock-

ley-Read-Hall (SRH, defect assisted) « 1.0 ns_1 (GaAs, strongly

dependent on processing).

5. Recombination rate due to stimulated emission is proportional
to G S and can thus be controlled by modal gain G and optical

intensity S.

6. Polarisation decay time is 100 fs [18, 19, 20].

7. Period of optical field is 3.3 fs.

8. Cavity round trip time for optical field is 100 fs (assume cavity
diameter « 10 /im).

9. Decay time of optical energy stored in cavity is 10 ps.

The model assumes that carriers remain in thermal equilibrium
with the lattice. Hence, carrier transport is modeled by a thermo¬

dynamic (energy balance) model that takes into account self-heating
of the device. At heterojunctions and quantum wells the model is

enhanced by a thermionic emission model and a carrier capture and

escape model, respectively.
The former assumption breaks down at high modulation frequen¬

cies when phonon scattering is becoming too slow to establish thermal

equilibrium between carriers and lattice. This is particularly severe for

quantum well capture and escape scattering (2). The relaxation mech¬

anism (3) is normally still fast enough to maintain a Fermi distribution

for electrons and holes at an elevated oscillating plasma temperature

in the quantum well. Moreover, due to the slow phonon scattering
the electron and hole density in the quantum well start to lag behind

and oscillate out of phase with the bulk carrier density. This leads to
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a carrier bottleneck at the bulk quantum well interface and hence to

additional damping of the modulation response [18].

The model assumes that carrier carrier scattering (3) always es¬

tablishes Fermi distributed carrier populations. This breaks down at

very high optical intensities when stimulated recombination rate is

high and carrier carrier scattering becomes too slow to maintain the

Fermi distribution of the electrons and holes in the quantum well.

This effect leads to spectral hole burning and applies to both contin¬

uous wave and modulated operation. In general, optical intensities in

VCSELs are not sufficiently high to burn spectral holes in the active

medium [18].

Items (4) and (5) state the reason why the modulation bandwidth

of a laser diode exceeds by far the one of a light emitting diode. The

resonance frequency of the modulation transfer function is approxi¬

mately proportional to the modal differential gain ajsr and the optical

intensity S. A laser diode is therefore a gain controlled device whose

bandwidth is intrinsically only limited by the optical gain available.

However, in practice the bandwidth will be limited by gain saturation

and the maximum rate at which carriers can be supplied and removed

from the quantum well. In a light emitting diode the maximum band¬

width is limited by the relatively slow recombination process (spon¬
taneous emission, Auger, SRH) to < 1 GHz. This can be improved

by a resonant optical cavity that enhances the spontaneous emission

process (Sec. 4.1.2).

In practical devices the modulation response is additionally limited

by external wiring. This is represented by a compact model composed
of resistances, capacitances and inductances external to the device

model.

Two distinct groups of time constants can be identified in items

(1-9): one of the order of femtoseconds and the other of picoseconds

separated by approximately 2 orders of magnitude. Simulation on the

fast femtosecond timescale is computationally prohibitive, especially
for the spatially resolved complex structures shown in Fig. 1.4, and

unsuitable to compute static (DC) and stationary (AC) characteris¬

tics of the VCSEL device that are important in practice. Instead a

frequency domain approach changing in time on the slow picosecond
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scale is employed4.
Consider continuous wave operation first. At each point in the

optical cavity the optical field on the fast timescale is Fourier trans¬

formed from the time domain to the frequency domain. It is then

assumed that the wanted part of the optical field can be represented

by a discrete spectrum. That is, in each point of the optical cavity a

discrete complex valued spectrum is assumed over the same small set

of frequencies. According to items (6) and (7) the period of the fast

time domain optical field is short with respect to polarisation decay.
If polarisation is equal to a term constant with the electric field plus

a linear term, and polarisation dynamics is neglected, the effect of the

polarisation can be represented by a constant optical gain term and

a constant source term in the frequency domain representation. This

approach works particularly well for VCSEL devices since they have

a discrete optical spectrum with only a small number of frequencies

corresponding to the optical modes.

If the VCSEL is modulated on the slower pico- to nanosecond

timescale, the optical gain term, source term, and hence the complex

amplitudes of the spectra also change on the slow time scale. It is then

assumed that the optical field only depends on the instantaneous value

of the gain term and source term.

By restricting the frequency domain representation to a discrete

spectrum, linearising the polarisation in the electric field, and neglect¬

ing polarisation dynamics, the model can no longer reproduce certain

effects. Emission linewidth, gain saturation at higher optical power,

and coupling between optical modes are important features that are

no longer rendered by the model.

1.4 Contents

This thesis is organised as follows:

Chapter 1: Introduction. VCSEL device simulation is motivated

and different VCSEL device types and applications are pre¬

sented. General aspects, scope and limitations of the device

model are outlined.

4Refer to Sec. 2.1 for a more detailed derivation.
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Chapter 2: Device Model Equations. The laser model and its

sub-components are discussed. Particular emphasis is on the

optical cavity model. Electro-thermal transport model, carrier

transport models at heterointerfaces and quantum wells are re¬

viewed briefly.

Chapter 3: Simulator Implementation. The numerical formula¬

tion of the optical cavity model and the electro-thermal trans¬

port model using finite elements is presented. Numerical so¬

lution methods are described including an efficient scheme to

self-consistently couple optical and electro-thermal equations.

Chapter 4: Simulation Benchmarks and Examples. The opti¬
cal solver is compared to other methods. Spontaneous emis¬

sion enhancement of a microcavity, and a calibrated self-con¬

sistent electro-thermo-optical simulation of a VCSEL device is

presented. In order to demonstrate the practical use of the sim¬

ulator as a design tool the simulation of a modulation response,

and the task of finding a device structure with maximum single
mode power is performed in a design tutorial.

Chapter 5: Conclusion. Conclusions are given and open issues are

discussed.



Chapter 2

Device Model Equations

The VCSEL model outlined in Ch. 1 is described in more detail. The

model shall predict spatially resolved electrical potential, electron and

hole densities, local temperature, and mean optical intensity using a

semiclassical microscopic laser device model. Furthermore, the elec¬

trical, thermal and optical terminal quantities are determined. Static

device characteristics as well as modulation and transient response

shall be covered by the model. The input parameters to the model

equations are the topology of the device and the local physical mate¬

rial parameters.

The solution given here respects the trade off between selected

model complexity and reasonable computational effort to solve the as¬

sociated numerical problem. For this work the limit of reasonable was

set at 1 day computation time on a given reference computer1.

2.1 Laser Model

The common feature of all semiclassical laser models is that they
treat the optical field as a classical quantity using Maxwell's equa¬

tions, while the polarisation due to the active medium is described

by quantum theory. The reason why the optical field can be treated

classically is due to the high optical intensity, equivalent to a large

1
HP/Compaq AlphaServer ES45 1250 MHz / 32 GBytes.

15
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number of photons. The high intensity is a consequence of the laser

action in potentially one discrete optical mode at frequency uj. The

electromagnetic energy stored in this mode is therefore well approx¬

imated by a continuous value in a classical sense as opposed to a

quantized value in packets of energy fiuj.

Semiclassical laser models essentially differ

• in how Maxwell's equations are represented

• in the extent that quantum physics is used to describe the po¬

larisation term in Maxwell's wave equation.

The choice of descriptions is dictated by the physical effects that are

to be captured and the desired input —> output characteristic of the

model.

At the core of the model developed in this work lies the photon
rate equation [21, 22, 23]. That is, the optical field is decomposed
into a given number of modes at discrete frequencies, and the tem¬

poral evolution of the mean electromagnetic energy in each mode is

described by a separate rate equation. Related work with respect to

VCSEL simulation is described in [16, 24, 25].

2.1.1 Semiclassical Laser Theory

There are two categories of representations for Maxwell's equations:

The first represents the optical field on the fast time scale given by
the period of electromagnetic oscillations. The wavelength À = 1 /im

corresponds to a frequency of approximately 300 THz or a period of

3.3 fs. A time discretisation in this representation would therefore be

in the sub-femto seconds.

The second category simplifies the representation considerably by

employing the slowly varying amplitude approximation. It benefits

from the fact that under certain conditions to be specified shortly the

electromagnetic field can be represented as a product of a slowly vary¬

ing complex amplitude and a complex phase rotating at the frequency
of the optical field. The slowly varying amplitude can, for instance,

be the result of modulating the VCSEL with a 1 Gbit/s data stream.

Consequently, a time discretisation six orders of magnitude coarser

than in the first category results. If a current transient has to be
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dealt with by the device model envisaged here using the given compu¬

tational resources the slowly varying amplitude approximation must

be used.

The first category of models is required in order to render effects

that emerge from changes of the optical field that evolve on a shorter

timescale than the round trip time of a photon in the optical cavity.
In contrast, the second, approximative representation is valid if the

period during which the optical field changes exceeds the photon round

trip time by far. This time is very short in a VCSEL cavity (< 1 ps)
due to its small size.

It is therefore essential how fast the amplitude of the optical field

changes in order to know which one of the two categories applies. In a

dielectric medium with negligible magnetic properties the constitutive

equations are

D(r,t) = e0E{r,t)+P{r,t)+K{r,t) (2.1)

B(r,t)=noH(r,t) (2.2)

where P(r,t), K(r,t) are the polarisation terms, E(r,t) is the elec¬

tric, H(r, t) the magnetic field, £o and /io are the vacuum permittivity
and permeability, respectively.

The polarisation P(r,t) is the response of the active medium to

the electric field. If a linear response is assumed it is obtained by
convolution of the electric field with a response function

oo

P(r, t)=e0J X(r,t, r)E(r,t - r)dr (2.3)

o

where x{ri ^ T) 1S the causal, first order polarisation impulse response

of the medium. Furthermore, K(r,t) represents the contribution to

D(r,t) due to spontaneous emission and is, therefore, independent of

the electric field.

Using Maxwell's equations in the time domain, with charge density
and current set to zero, and making use of the constitutive equations

Eqs. (2.1) and (2.2) yields Maxwell's wave equation in the time domain

l_ d2
r , . , _, „

d2
V x [V x E(r,t)} + -2^2 i£r(r,t,T) * E(r,t-r)} = -/i0^K(r,t)

(2.4)
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where cq is the vacuum speed of light, the star denotes convolution in

t and

er{r,t,T)=ô{r)+x{r,t,r). (2.5)

It is seen from Eqs. (2.4) and (2.5) that E(r,t) can be excited by

X{r,t,r) and K(r,t).
It is assumed that the term x{ri~kiT) 1S Quasi time-translationally

invariant. The response function x{r^t^T) has a limited range be¬

cause the polarisation induced by a pulse of electric field decays after

a short time (« 100 fs [18, 19, 20]). However, xir^^T) 1S n°t time-

translationally invariant because it depends on how strongly the ma¬

terial is polarised, which is time dependent if, for instance, the VCSEL

is modulated. The modulation period is a lot longer (10 GHz corre¬

sponds to 100 ps) than the time needed for the polarisation to decay.

Therefore, xir > ^ T) 1S time-translationally invariant on the time scale

of the polarisation r but varies slowly on the time scale t.

Whereas in semiclassical laser modeling two major categories of

representing Maxwell's wave equation can be identified, many different

ways of computing the polarisation have been proposed with varying

degrees of rigour and computational requirements. An overview of

some of the methods is given in [18, 20, 26, 27]. The method chosen

in this work is presented in Sees. 2.1.3 and 2.1.4.

2.1.2 Photon Rate Equation

The photon round trip time is very short in a VCSEL cavity (<
1 ps), due to its small size. Hence, the first order polarisation im¬

pulse response of the medium x{ri~kiT) m Eq. (2.3) can be assumed

time-translationally invariant. It is therefore valid to assume that

the optical field depends only on the instantaneous value of the time-

dependent dielectric function £r(r,t,cj) 2. Thus, the slowly varying

amplitude approximation can be applied and holds up to high modu¬

lation frequencies3.

2This is called the adiabatic approximation [21].
3Note that if the condition for the photon round trip time is only fulfilled

marginally an additional criterion applies that also includes the modulation depth.
If this criterion breaks down it turns out that the concept of the photon rate

equation can still be maintained if the spontaneous emission term is modified [21].
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Employing the mode expansion [21]

N

E(r,t) = ^ak(t)Ek(r,t)e -*/o UJ'k(T)dl + C.C ;2.6)
fc=l

with the complex-valued vector Ek(r,t), the complex-valued scalar

ak{t) the real-valued scalar function uik{t), and c.c. denoting the com¬

plex conjugate, Maxwell's wave equation

Vx/i-x(r)- [VxE(r,t)] +
c2dt2

[er(r,t,T)*E(r,t-T)]=F(r,t)

(2.7)
is transformed into a set of N decoupled scalar differential equations

pk(t) = -2u'kf(t)Sk(t)+Rk*(t) XS)

with k = 1,..., N, called photon rate equations, for the N optical
modes considered, and the following eigenproblem

Vx/i"1(r)-[VxEfe(r,t)] +

= uk'(t)ër(r,t,uk)-Ek(r,t)

to be evaluated for every t with

WW
£r(r,t,uk)-Ek(r,t)

[2.9)

èrfr, t, cui.

d

dui

<4(*):
£r[r, t, cui.

2iu'k(t)
Cr 2 duo

7£r(r,t,ujk) + er(r,t,u'k)

(2.10)

The photon rate equations describe the time evolution of electro¬

magnetic energy SM(£) in each mode. The source term F(r,t) replac¬

ing the right hand side in Eq. (2.4) is due to spontaneous emission.

The term Rsk{t) is its equivalent in the picture of the photon rate

equation and is given in Sec. 2.1.4. The rate of change 2uj''(t) is de¬

termined by the eigenvalue of Eq. (2.9). Because optical gain and

lRefer to App. A for more details on the derivation of Eqs. (2.7-2.12).
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loss are present in /i^1^), £r(r,t,tJk)
5 and materials are reciprocal,

Eq. (2.9) is a generalised, non-Hermitian, complex symmetric eigen-

problem. The modal frequency ook{t) can be found by solving Eq. (2.9)
and requiring ojk(t) to be real-valued.

The eigenvector E_k(r, t) is the complex field representation of the

optical mode k. The terms £r(r,t,tJk), Sfe(t), uik{t), ojk{t) and Ek(r,t)
are all functions of time that vary at most with the modulation.

Assuming the dielectric function

er(r,t,uk) = (n(r,t)2 - -^«(r,*)2) +,^^a(r,£) (2.11)

with refractive index n(r,t) and material absorption and gain a(r,t)
independent of uj'k

6 and \ujk\ <C \oj'k\, which is true for optical modes

of practical VCSEL devices, the eigenproblem (2.9) can be rewritten

in the familiar form

V x ß-\r) [V x Ek(r,t)} = ^-er(r,t,uk) Ek(r,t). (2.12)
co

For practical calculations a linear eigenproblem is obtained if uk

in £r(r,t,(jü'k) of Eq. (2.9) and ujk in er(r,t,ujk) of Eq. (2.12) are set

to a fixed reference frequency ujq which is chosen close to the frequen¬
cies of the modes under consideration. Consequently, the solutions of

Eq. (2.9) can be normalised and the orthogonality relation be given by
the following generalised inner product with respect to the reference

üJo [21, 22]
7

(E*M)^M))e~,W0 = JJJM*(r,t) ër(r,t,uo) E3(r,t) dV = 5tJ

(2.13)
where V is the mode volume8.

In general, as the laser simulation evolves in time, ujk(t) and E_k(r,t)
and Rsk{t) have to be re-evaluated.

5The material functions ^ (r) and er(r, t, ui'k) will later turn out to be tensors

and therefore the dot product applies.
6 Since the uj'k of the set of modes considered are close together in frequency

this is a valid assumption.
rThe optical mode pattern Ez(r,t) used here was defined in Eq. 2.6 and has

unit 1.

8The mode volume V will defined in Sec. 2.2.3.
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2.1.3 Optical Material Gain and Loss

The local optical material gain (negative sign) and absorption (posi¬
tive sign) in the quantum well active region with respect to energy E

is given by [23, 26]

oo

a(r, E) =Co ]T J \MhJ\V(r, E')(/f (r, E') + tf(r, E') - 1)
hJ o

L(E,E')dE' [cm"1]
(2.14)

with

ire2
Co = -r-, —. (2.15)

n{r ) Co £q ttiq uj

Here \Mt)J \2 is the optical matrix element, pel(r, E') the reduced elec¬

tronic density of states, f^{r, E') and fj{r, E') the local Fermi-Dirac

distributions of electrons and holes at temperature T(r) and quasi

Fermi energies EFDn(r) and EFD(r), L(E, E') is the linewidth broad¬

ening function [23], n(r) is the refractive index, and mo the free elec¬

tron mass. Integration is over energy space and summation is over

the electron and hole sub-bands of the quantum well. Formulas for

the optical matrix element are given in [26].
Free carrier theory is employed to calculate the optical gain and

Fermi's Golden Rule is applied. An effective mass parabolic band

approximation with a linear temperature dependence of the band gap

is used for the bandstructure of electrons, light and heavy holes, which

is a fair assumption for the AlGaAs/GaAs system. Flat bands are

assumed in real space. This assumption is valid if the diode is turned

on in the forward conducting state which is true for a laser diode above

threshold. The stationary Schrödinger equation is solved in ID to

obtain the quantum-mechanical wave functions for bound states and

the corresponding sub-band structure of the quantum well. Strain is

included using a single band approximation. The quasi Fermi energies

EFDn and EFD govern the occupation of the combined states of all

conduction sub-bands or valence sub-bands, respectively [23].
The simulation approach used here is not limited to the above

assumptions. More advanced models are available if an increase in
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computational effort can be afforded. In [28, 29] the bandstructure is

determined by a k p calculation including strain and valence band

mixing effects. Moreover, the optical gain is computed taking into

account tilting of the band edges in real space. It is feasible to include

many-body effects up to the screened Hartree-Fock approximation.

Due to the high computational requirements more rigorous treatments

are only possible in special cases [20, 29, 30].
The assumption of Fermi distributions for carriers is not valid in

general. It breaks down, for instance, in the case of strong spectral
hole burning, in which carriers are distributed in energy space accord¬

ing to a non-equilibrium distribution. Nevertheless, in the VCSEL

case, a quantum kinetic approach [18] has shown that for realistic

carrier carrier scattering rates l/rc_c « 10 ps-1 optical intensities are

normally not sufficiently high to burn spectral holes in a semiconduc¬

tor active medium. If required, spectral hole burning can be included

empirically via a gain saturation term [31].
Outside the active region the dielectric function uses static param¬

eters. That is, constant complex refractive indices are assumed for

optical absorption induced by carriers or metallic regions (Sec. 3.1.1).

2.1.4 Spontaneous Emission

A rigorous model of spontaneous emission requires a quantum me¬

chanical description of the optical field [32], which semiclassical laser

theory does not provide. The spontaneous emission process depends
on the spectral mode density given by its environment. That is, spon¬

taneous emission can be enhanced or inhibited with respect to the

situation in free space by placing the electron-hole pairs in a resonant

cavity. This is called the Purcell effect. In a VCSEL cavity one has

such a situation.

Since this work aims at modeling VCSEL operation above thresh¬

old, the power contributed by the spontaneous emission term Rsk \t)
in Eq. (2.8) will be negligible on the scale of the laser output power,

and is only required to initiate the laser action. Moreover, since the

optical losses of the cavity are rather high, lasing threshold currents

will not be affected by a change of Rsk{t) within the bounds of typical

spontaneous emission enhancement factors [33]. Thus, in the simula¬

tion examples presented in Ch. 4 the free space optical mode density
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is used instead of the optical mode density in the cavity9.
The local spontaneous emission photon rate per unit volume per

energy interval is given by [23, 26]

r^(r,E) =C0 °^(r,E)£; / \MhJ\V(r, E')/tc (r, E')f^(r, E')
%>3 0

L(E,E')dE' [s-1cm-3eV_1]
(2.16)

where the meaning of the parameters is the same as in Eq. (2.14).
The enhancement or inhibition of spontaneous emission is taken into

account classically by the optical mode density function popt(r,E),
which gives the number of states with photon energy E per unit vol¬

ume and energy interval in cm-3 eV_1. In a VCSEL cavity the opti¬

cal mode density depends on the direction of the polarisation vector.

Therefore, popt(r, E) gives an effective mode density averaged over the

solid angle.
The spontaneous emission photon rate contribution Rsk{t) to mode

k in Eq. (2.8) is [22, 23]

Rskp(t) = Re
(Efe(r,£),F^,K)EfeM))e~,Wo

[s"1] (2.17)
(Ek(r,t),Ek(r,t))ëjUJo

using the inner product (2.13) and the rate given by10

oo

fV{r,E) -C0^-Y.j \M,^p'l(r,E')f?(r,E')fJ(r,E')
i,3 o

'

L(E,E')dE' [s"1].

For this choice of units for Rsk{t) the scalar Sk in Eq. (2.8) corresponds
to the number of photons in mode k.

9Clearly, such reasoning does not apply to spontaneous emission devices as

resonant-cavity LEDs (RCLED) [34] or to investigations into VCSEL spontaneous

emission power.

10This is the spontaneous emission rate rsp(r,E) in Eq. (2.16) before shaping
with the optical mode density function popt(r, E).
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2.2 Optical Cavity Model

A VCSEL cavity is by nature an open boundary structure: the main

purpose of the device is to emit electromagnetic energy stored in opti¬
cal modes inside the cavity into free space. It is essential to know how

high the emission rate of this radiation is, how much of it is available

at the aperture of the VCSEL, and how much is lost due to radiation

in other directions. In practical VCSEL devices additional scattered

radiation is often caused by oxide apertures and related device fea¬

tures which can lead to unwanted additional cavity losses. Equally,
such scattering effects can be employed to introduce losses by design.
The goal is to control the emission of each mode individually and, for

instance, to enhance power emitted by a wanted optical mode and

suppress others. Moreover, in devices such as resonant cavity light

emitting diodes (RCLED) the mode density is altered to achieve en¬

hanced spontaneous emission. Clearly, these emission phenomena are

only present when the VCSEL cavity is modeled as an open structure.

Practical VCSEL simulation examples in which the effect of the open

boundary is demonstrated are given in Ch. 4.

The actual VCSEL cavity structure, as pointed out in Sec. 1.3, is

described in terms of a dielectric function

er(r, u) = 4(r, u) + i£'!(r, u) (2.19)

with a potentially arbitrary spatial profile. It assumes a complex
valued form in the frequency domain due to the presence of optical

gain and loss. In addition, the fact that the spatial profile can change

stepwise has to be accounted for.

If general VCSEL structures are to be treated, the scalar approxi¬

mation of Maxwell's vectorial wave equation assuming weak guidance
does no longer hold [35]. Furthermore, due to the cylindrical sym¬

metry of the VCSEL cavity, electromagnetic waves can no longer be

decomposed into scalar TE and TM waves as is possible for a planarly

layered medium with infinite extension in layer direction. Instead,

hybrid vectorial HE and EH modes are obtained. Hence, a general
VCSEL structure demands solving Maxwell's vectorial wave equation.

The inhomogeneous form in the frequency domain of Eq. (2.12) is
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given by

u2
V x ßr(r)-1 [V x E(r)] - —£r(r) E{r) = F(r,u) (2.20)

co

subject to an open boundary. The term F_(r,cj) corresponds to a

source of finite extent as, for instance, given by spontaneous emission

in the active region. At frequency uj of the source the response of the

cavity is given by the electric field E_[r).
If F_(r,(jj) is set to 0 the eigenproblem (2.12)

V x ^(r)"1 • (V x Ek(r)) = ^(r) Ek(r) (2.21)
co

results. The solutions ujk = oj'k —ioJk and Ek(r) are the complex eigen-

frequency and eigenmode respectively, with uj'k the resonance angular

velocity and ujk the rate of increase (negative sign) or decay (positive
sign) of the electric field of mode k.

Equation (2.21) has nontrivial solutions Ek(r) ^ 0 with V x

Ek(r) = 0, the nullspace of the curl, and consequently ujk = 0. These

solutions are equivalent to the ones that can be obtained by taking
the gradient of a certain scalar function 4>{r)

E(r) = -V0(r). (2.22)

They correspond to static ujk = 0 solutions when the presence of a

certain distribution of free charges is assumed. Although no charges
were assumed originally in Sec. 2.1.1 such a hypothetical charge dis¬

tribution does not alter the form of Eqs. (2.20) and (2.21). Hence,
in order to reinstate the no charges requirement and to suppress the

static solutions the divergence free condition

V £r{r) E{r) = 0 (2.23)

has to be imposed in addition to Eqs. (2.20) and (2.21). This condition

is implicitly assumed throughout this work.

In order to reconstruct the response to an arbitrary source distri¬

bution F_(r,u) in an inhomogeneous medium it is useful to define a

diadic Green's function G(r,r') as follows [36]

V x (ßr(r)-1 (V x G(r, r'))) - ^£r(r) • G(r, r') = ßr(r)IO(r - r')
co

(2.24)
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as response to a point dipole source with a certain orientation given

by the unity vector I. By virtue of linearity the response to an arbi¬

trary source F_(r,uj) oscillating at frequency uj can be written as the

superposition of responses to point sources at r'

E_{r) = G(r, r') F(r',u)dr' (2.25)

over the domain Vp where the source is nonzero.

2.2.1 Uniqueness of Solutions

In order to further discuss the implications of a cavity with open

boundaries the uniqueness theorem for boundary value problems has

to be recalled. It provides the conditions under which a solution

to Eq. (2.20) is unique. These are the boundary conditions, and,

additionally, the radiation condition for open boundary problems.

Uniqueness of Solutions for the Bounded Problem

Consider first the problem bounded by a surface Ty shown in Fig. 2.1a

with a source of finite extent and an inhomogeneity of finite extent

given by er(r) and /ir(r)_1. Two solutions of Eq. (2.20) for uj real-

valued are called E} '{r) and E} '{r) and their associated magnetic

fields H} ' (r) and Hr (r), respectively, are given by the relation

H{r) = —/lo/irir)-1 V x E(r). (2.26)
UJ

The uniqueness theorem states that the two solutions E} '(r),

H{1\r) and E(2)(r), H{2\r) are identical for all r if

• en x E(1) = en x E(2) on part of Tv and en x H(1) = en x H(2)

on the rest of IV.

and er(r), /ir(r)_1 provide loss or gain and en is the unity vector

normal to the boundary IV. That is, provided either a net loss or

gain is present in the cavity, and the two solutions for a real-valued uj

satisfy the same boundary condition for the tangential component of

EorH the two solutions are identical for all r inside Ty [36].
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inhomogeneity
r„->

source

Figure 2.1: Radiation losses in VCSEL Cavity; (a) bounded problem,

(b) open boundary problem

Loss or gain have to be present in such a way that the resonances

Uk given by Eq. (2.21) are shifted off the real axis in the complex

plane. If an ujk comes to lie on the real axis the uniqueness of the

solution for uj = ujk in Eq. (2.20) can no longer be guaranteed. It is

then possible to generate multiple distinct solutions by superposing
the particular solution of Eq. (2.20) with an arbitrary linear combina¬

tion of eigenvector solutions (corresponding to eigenvalue ujk) of the

homogeneous problem in Eq. (2.21). Uniqueness can in this case be

reinstalled by adding an arbitrarily small constant gain or loss to both

er(r), /ir(r)_1. In this way, uniqueness can be achieved even if, as

is the case for practical VCSEL cavities, loss and gain are present

concurrently.
In the following, homogeneous boundary conditions will be used.

That is, one of

• en x E(r) = 0, the perfectly electric conducting (PEC) surface

• en x H_(r) = 0, the perfectly magnetic conducting (PMC) sur¬

face
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will be used.

Uniqueness of Solutions for the Open Boundary Problem

Consider now the problem bounded by a surface Ty —> oo shown

in Fig. 2.1b with a source of finite extent and an inhomogeneity of

finite extent placed at the origin. The inhomogeneity is given by

er(r) and /ir(r)_1. When Ty —> oo the resonance frequencies ujk of

Eq. (2.21) become gradually denser and eventually form a continuum

in the limit. This implies that uniqueness of solutions of Eq. (2.20) is

not guaranteed at any frequency uj. The same remedy as in the last

section will be applied here to obtain uniqueness. A small loss is intro¬

duced. With this small loss Ek(r) will either decrease exponentially
when |r| —^ oo (if the wave is outgoing) or increase exponentially when

\r\ —> oo (if the wave is incoming). If only the outgoing solutions are

kept, which are the solutions that are relevant from a physical point
of view, uniqueness is reestablished.

The uniqueness theorem stated for the bounded problem can be

extended for open boundary problems as follows. The two solutions

E(1)(r) (H(1)(r)) and E}2\r) (H(2)(r)) are identical for all r if

• only outgoing waves are allowed at the boundary Ty —> oo.

This can be achieved by introducing an arbitrarily small constant loss

in £r(r) and ßr^r)-1 [36].
In conclusion, the boundary conditions at Ty assure that a solu¬

tion to Eq. (2.20) is unique. If the problem has an open boundary,

additionally, the radiation condition, only outgoing waves at Ty —> oo,

can be invoked to maintain uniqueness11.

2.2.2 Practical Radiation Boundary Conditions

Numerical calculations can only deal with finite size computational

problems. For arbitrarily shaped sources and inhomogeneities of finite

extent it is therefore often not possible to impose the true radiation

condition because of the infinite nature of the condition: only outgoing

waves at Ty —> oo.

11A similar treatment can be applied to extend the validity of Huygens' Principle
to open boundary problems.
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A practical open boundary problem is therefore characterised as

follows in the context of this work: there is a region of interest V

that contains the finite source and inhomogeneity. The region V is

bounded by the surface Ty at a finite distance from its contents. Out¬

side this boundary electromagnetic waves are only outgoing. There¬

fore, the radiation condition at Ty is an approximation of the true

radiation condition that requires outgoing waves at \r\ —> oo. If the

finite element method is used to solve Eqs. (2.20) and (2.21) inside

Ty the radiation condition at Ty is replaced by an artificial bound¬

ary condition on Ty. The aim is to make the boundary appear as

transparent as possible to outgoing waves or, put differently, to min¬

imise non physical reflections from the boundary. Different boundary
conditions have been devised for this purpose:

• Absorbing Boundary Conditions (ABC)

• Boundary Integral Equations

• Eigenfunction Expansions

The main advantage of ABCs is that they lead to localised rela¬

tions between the fields at the boundary. It will become apparent in

Sec. 3.1.3 that this retains the highly sparse structure of the finite

element systems matrices, which enables their treatment by efficient

standard numerical methods. The disadvantage is that ABCs realise

the radiation condition only approximately. In order to keep the error

low they have to be placed some distance away from the finite source

and inhomogeneity12. An overview of classical methods is given in

[37]. A more recent approach employing so-called Perfectly Matched

Layers (PML) will be presented in Sec. 2.2.3.

The boundary integral method incorporates the radiation condi¬

tion using appropriate Green's functions for the exterior fields. As

a result the domain that has to be discretised by finite elements for

the interior fields can be kept to a minimum. The interior and ex¬

terior fields are coupled using the field continuity conditions at the

interface Ty of the interior and exterior region. Boundary integral
methods have the disadvantage of being inflexible if large classes of

12 As rule of thumb placing the boundary Ty "a couple of wavelengths" away

from the VCSEL cavity produces reasonable results.
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different structures have to be dealt with. Furthermore, they yield full

or partially full system matrices whose numerical treatment requires
excessive amounts of memory and computation time.

Alternatively, the exterior fields can be expanded in eigenfunc-
tions instead of Green's functions as in the method described previ¬

ously. The two methods are closely related since, in theory, a Green's

function can always be expressed in terms of an eigenfunction expan¬

sion. Similar advantages and disadvantages follow. An overview of

the boundary integral and eigenfunction expansion method is given
in [38].

In summary, ABCs are suitable if the inhomogeneity inside Ty

consists of many small homogeneous regions or, in the limit, con¬

tinuously changing material properties as in the case of a VCSEL

cavity. For problems with large, piecewise homogeneous regions, for

example problems that address antenna radiation and scattering from

perfectly conducting objects in air, the boundary integral and eigen¬
function expansion method are appropriate. Additionally, as will be

shown, ABCs give accurate results as long as most of the electromag¬
netic energy of a solution is concentrated within Ty. Otherwise poor

accuracy results and boundary integral and eigenfunction expansion

methods have to be used.

Solutions of Eq. (2.21) for a free dielectric sphere subject to the

radiation condition will be presented as an illustration [39, 40]. The

advantage of this example is that, due to the spherical symmetry of the

problem, placing Ty at the sphere/air interface is equivalent to placing
it at Ty —> oo. The problem is then reduced to fulfilling the interface

conditions at the sphere/air interface for the electromagnetic wave

inside the sphere and waves that are only outgoing outside the sphere.
The solutions can be separated in TE and TM waves. Semi-analytic
solutions are available for this problem. That is, the expressions for

the electric and magnetic field Ek(r), M.kir) can be written down

explicitely using the complex resonance frequency ujk that is obtained

by numerically solving the transcendent characteristic equation for

TEnmr waves

T (7 \ H^ (Znmr )

'Jn-l/2{^nmr)
_

n-l/2V y^ >

Jn+l/2(Znmr) V^#i2+l/2(%f)
(2.27)
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and for TMflm, waves

7 ( 7 \ J-T ( ^

U <Jn-l/2\Anmr) _n-£r ^JJn-l/2V v^r fO 281

^nmr "n+1/2 y^nmr ) ^nmr H
.
,A—'

n+1/2

nmr

with

_

sj^rß-r ( I
\

I' \ (n on\

^nmr — r0 X^nmr ' î<jJnmr) • \Z.Z\))

CO

For each integer n > 1 there is a corresponding discrete set of solutions

ujnmr in r. The system is degenerate in the index m that governs the

periodicity of the field in azimuthal direction. The terms £r and /ir are

the relative permittivity and permeability of the sphere, respectively,
and are assumed £r = \ir = 1 for air. Furthermore, vq is the radius of

the sphere and cq the speed of light in vacuum. The term Jn+i/2 is

(2)
the first kind Bessel function and H

, ln
the Hankel function of the

n+l/2

second kind of the order n + 1/2. For details of the field solution refer

to [39].
The characteristic equations can be solved with arbitrary finite

precision. The problem, therefore, lends itself perfectly as a bench¬

mark to assess methods of imposing the radiation condition, as for

instance PML.

Figures 2.2a and 2.2b show the results of Eq. 2.27 (TE waves) and

Figs. 2.3a and 2.3b show the results of Eq. 2.28 (TM waves) for a

variation in er. Two distinct types of solutions can be identified. For

£r —> oo solutions are either the zeroes of the first kind Bessel function

where Znmr is finite and real-valued, or the zeroes of the second kind

Hankel function where Znmr/y/ë7 is finite and complex-valued. The

former can be identified in Fig. 2.2a as a curve virtually constant

with £r —> oo, whereas the latter is a curve increasing exponentially
on a semilogarithmic scale. The former will be called interior and the

latter exterior solutions. The distinction between interior and exterior

modes is clear for any value of £r in the TE case. In the TM case,

however, coupling phenomena between the two types are evident. The

two types of modes can be explained physically. The interior modes

concentrate the electromagnetic energy in the volume of the sphere
or close to its surface. In contrast, exterior modes concentrate the

electromagnetic energy outside the sphere. In the limit £r —> oo the
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Figure 2.2: TE interior (int) and exterior (ext) mode eigenvalues Zr

versus £r of the free dielectric sphere; (a) Re [Znmr], (b) Im [Znmr

surface becomes totally reflective and waves can exist only either on

the inside (zero of the first kind Bessel function) or the outside (zero of

the second kind Hankel function) of the sphere. Only interior modes

can achieve quality factors Q ^> 1 that are of practical relevance in

optical resonators. The Q factor of external modes is always smaller

than 1.

2.2.3 Perfectly Matched Layers

The perfectly matched interface proposed in [41] is an interface be¬

tween two half spaces. One of them is lossy, the Perfectly Matched

Layer (PML), and the interface is non-reflecting for plane waves of all

frequencies and all angles of incidence and polarisations. The PML

is therefore an ABC that can be used to truncate a computational
domain.

The principle underlying the PML concept is most easily under¬

stood by interpreting it as a coordinate stretching method in the fre-
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Figure 2.3: TM interior (int) and exterior (ext) mode eigenval¬
ues Znmr versus £r of the free dielectric sphere; (a) Re[Znmr], (b)
im yZjnrnT J.
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quency domain [38, 42]. This view is summarized in the first half of

this section. In the second half the validity of using a PML to trun¬

cate a computational domain is assessed by the free dielectric sphere

example.

Consider the source-free, modified Maxwell equations in the fre¬

quency domain

Vs x E(r) = iüJßQßrH{r) (2.30)

Vs x H(r) = -iuj£Q£rE{r) (2.31)

Vs • (e0erE(r)) = 0 (2.32)

Vs • (/io/irH(r)) = 0 (2.33)

with Vs defined as

_

1 d Id Id
t A,

Vs = --ex + --ey + --ez (2.34)

for the Cartesian coordinate system, that is, the standard V operator

with coordinates stretched by certain factors sx, sy and sz. Similar

formulations exist for cylindrical, spherical coordinate systems and

anisotropic £r and \ir [43]. Here, £r and \ir are assumed isotropic.

First, the behaviour of a plane wave subject to the modified Maxwell

equations shall be investigated. The plane wave

E(r) = E0etkr (2.35)

H{r) = H0eikr (2.36)

with wave vector k is inserted in Eqs. (2.30-2.33). The set of equations

ks x E(r) = üJßQßrH{r) (2.37)

ks x H(r) = -üü£0£rE(r) (2.38)

ks (e0erE(r)) = 0 (2.39)

ka (/xoMrH(r)) = 0 (2.40)

with

ks = —ex +
-^

ey +
— ez (2A1]

Sx Sy Sz
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is then obtained. Taking the cross product (ksx) of Eq. (2.37) gives

u2
ks x [ka x E(r)} = ujiiQiirks x H(r) = ^/j,r£rE(r). (2.42)

co

Using the vector identity ax (b x c) = (a • c) b — (a • b) c on the last

equation and applying Eq. (2.39) yields

u2
(ks ka) E(r) = —ßr£rE(r) (2.43)

co

for all r and hence the dispersion relation

^=&+&y+{iï=&'=*• (2-44)

The latter equation describes the surface of a sphere and the solutions

for k are

k = k,sx sin 6 cos cp ex + «sy sin 0 sin cp ey + «sz cos 9 ez. (2.45)

Going back to Eqs. (2.35) and (2.36), it can be seen that a wave will be

attenuated in the x direction if sx is a complex number, and similarly
for the y and z directions.

Next, the plane wave reflection by the interface between two half

spaces 1 and 2, with stretching factors six, siy, s\z and S2X, S2y, S2Z

is investigated. For the TE case with E_(r) perpendicular to the z

direction (Fig. 2.4) the incident, reflected and transmitted fields can

be written as

E» = E0e*kV (2.46)

Er{r) = RTEE0eikrr (2.47)

Et(r)=TTEE0eïktr. (2.48)

Using tangential continuity conditions at the interface for the electric

and magnetic field the reflection and transmission coefficients

nTE kizS2zßr2 ~ &2z<Slz/irl /r) ,nN
K =

{lAv)
klzS2zßr2 + k2zSlzßrl

TTE =

2kizS2zßr2
,^ 5qx

klzS2zßr2+k2zSlzßrl

(2.51)
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Figure 2.4: Plane wave reflection at an interface between two half

spaces.

and similarly for the TM case

?TM
_

kjzS2z£r2 — k2zSlz£rl

k\zS2z£r2 + k,2zS\z£r\

•TM ^kizS2z£r2

k\zS2z£r2 + k,2zS\z£r\

R

T

[2.52)

12.53)

are obtained. The phase matching conditions k\x

give

&2x and k\y = k-'2y

K-iSix sin d\ cos (pi = K-2S2x sin 62 cos (p2

K-iSiy sin d\ sin cpi = K,2S2y sin 62 sin cp2-

Setting £ri = £r2, ßri = ßr2, Six = s2x and siy = S2y yields

Ol = 02, ip\ = (f2, R
TE

0, R=0,

[2.54)

[2.55)

[2.56)

independent of the choice for s\z and S2Z, the frequency and the angle
of incidence. For S2Z = s' + is" evanescent waves with Im [k\z] > 0

decay faster with s' > 1 and propagating waves with Re [k\z] > 0

decay exponentially with s" > 1 in half space 2.

According to Eqs. (2.41) and (2.35) the propagating waves will be

attenuated by the factor

eK2s"z cos6
(2_57)
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SX= Sy= S + IS
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Figure 2.5: Choice of sx, sy and sz for PML terminated by PEC

boundary.

in the z direction. If the computational domain is truncated with a

Dirichlet boundary at a distance L from the interface, the magnitude
of residual reflections due to the Dirichlet boundary becomes

\R(9) -2k2-s L cos (

f2.58]

assuming «2 to be real valued. Moreover, the perfectly matched inter¬

face is only non-reflecting for the continuous problem. Discretisation

by finite elements introduces additional parasitic reflections.

The choice of sx, sy and sz in a transversal plane that is normal

to the z axis is shown in Fig. 2.5. The extension of the scheme along
the z axis is straightforward.

In the remaining part of this section the validity of the PML

ABC is assessed using the free dielectric sphere example introduced

in Sec. 2.2.2. The results computed by the finite element method
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employing a PML ABC to truncate the computational domain are

compared to the accurate semi-analytic solutions of the problem.

Figures 2.6 and 2.7 show the interior modes of a free dielectric

sphere with radius 1 /im .
The cross-section of the sphere is approx¬

imated with a 50 segment polygon. Inside the PML region s' = 1,
and s" evolves with a quadratic profile from s" = 0 on Tj to s0 =

5.0 on To according to App. B. All results are given for the same

second order « À/20 discretisation with a sphere to PML separation

dsep of 2.90À and a PML thickness dpml of 0.75À. The structure

specifications are with respect to À = 6.6 /im which corresponds to

the vacuum wavelength of the interior TElml mode at £r ~ 10 13.

Figures 2.8 and 2.9 show the effect of changing the PML parameter

s'q and varying the separation dsep, respectively. Results change only

slightly if dSeV is varied and as long as s0 « 5.0. Note that results for

very weak confinements are affected only.
The experiment shows that finite elements combined with a PML

ABC are suitable for modeling interior modes of radiating cavities

as long as they sufficiently concentrate the electromagnetic energy in

their volume, that is, in the sphere example, for sufficiently high er.

For weak confinements the dispersion characteristic of the finite ele¬

ment / PML solution changes to an exterior like solution, although
the semi-analytic reference solution continues to show interior type

behaviour. This is demonstrated in Fig. 2.6 for the interior TElml

mode when £r < 5 (Q < 3). The transition from interior to exterior

with changing £r for this mode is also apparent in the optical field

pattern shown in Fig. 2.10. Although finite elements with PML ABC

yield solutions with exterior type dispersion characteristic they have

no correspondence to the true exterior modes of the cavity. With

the exception of TElml, finite element solutions in Figs. 2.6 and 2.7

are only shown down to values of £r where they still correctly repro¬

duce the respective interior modes. At lower values the spectrum is

contaminated with the mentioned incorrect exterior type solutions.

Despite these shortcomings for very weak confinements the com¬

bination of finite elements with a PML ABC is perfectly suited for

13Inside and in the vicinity of the sphere the mesh density is increased by a

factor of y/e^ for er = 10. Note that the relative mesh density with respect to the

vacuum wavelength of the interior TElml mode varies as the latter changes from

3.2 jim to 12.5 /im over the range considered here.
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Figure 2.6: TE interior mode eigenvalues Znmr versus £r of the free

dielectric sphere; dsep = 2.90A, dpML = 0.75A at A = 6.6 /im, s0 =

5.0; semi-analytic solution (solid line) and finite element solution +:

(a) Re[Znmr], (b) Im [Znm
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Figure 2.7: TM interior mode eigenvalues Znmr versus £r of the free

dielectric sphere; dsep = 2.90A, dpml = 0.75A, at A = 6.6 /im, s0 =

5.0; semi-analytic solution (solid line) and finite element solution +:

(a) Re[Znmr], (b) Im [Znm
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Figure 2.8: TElml interior mode eigenvalue Zimi versus £r of the

free dielectric sphere; dsep = 2.90A, dpML = 0.75A, at A = 6.6 /im;

semi-analytic solution (solid line) and finite element solution s0 = 1.0

O, 'o
5.0 o, »o 25.0+ : (a)Re[Zimi], (b)Im[Zlml]
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Figure 2.10: Intensity of TElml interior mode, logarithmic colour

scale; transition from solution with electromagnetic energy concen¬

trated inside sphere to solution with energy concentrated outside

sphere.



42 CHAPTER 2. DEVICE MODEL EQUATIONS

the task of modeling VCSEL optical resonators because their Q val¬

ues are orders of magnitude in excess of the limit detected here for a

dielectric sphere. Remember that the high Q values in VCSEL optical
resonators are achieved by highly reflective diffractive mirrors.

2.2.4 Electromagnetic Energy Density and Its Rate

of Change

In order to compute the optical power generated in the active region,
the power coupled through the aperture of a VCSEL device and dissi¬

pated in the DBR material, etc. the modal parameter ujk in the photon
rate equation (2.8), has to be decomposed into its constituents. More¬

over, it will be shown in Sec. 2.4 that it is necessary to compute the

local generation and dissipation of optical energy to compute the local

carrier recombination and generation rate.

In order to obtain these parameters it is helpful to calculate the

local generation and dissipation rates of optical energy for a medium

with local optical gain and loss, recalling that the latter was derived

from quantum mechanical considerations. These local quantities are

summed up appropriately over space and yield the required modal

parameters.

It is assumed here that the rate of change of the field amplitudes
and frequency is small compared to their frequency. It is then possible
to use a stationary time dependence of the electric and magnetic fields

in complex phasor notation

E(r, t) = \/2Re [E(r) e~%ujt} (2.59)

H(r, t) = \/2Re [H(r) e~%ujt} (2.60)

to compute the local instantaneous energy density and its rate of

change. This is a valid approximation on the time scale of a modula¬

tion period within the bounds that were defined in Sec. 2.1. The de¬

pendence of the field amplitudes and frequency on the slow timescale

is omitted here for the sake of clarity.
The local time dependent Poynting vector, electric and magnetic

energy density are [44]

S(r,t) = E(r,t)xH(r,t)

= Re [E(r) x H*{r) + E(r) x H{r) e"2^]
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we{r,t) = -^D{r,t)-E{r,t)
-Re
2

ET(r) £0£r(r) E*(r) + ET(r) e0er(r) E(r) e~2iUjt

^2.62)

wm(r,t) = ^B(r,t)-H(r,t)
-Re
2

HT(r) /i0/ir(r) • H*(r) + HT(r) ßoßr{r) H{r) e"2^

(2.63)

written as the sum of contributions constant and oscillating at fre¬

quency 2uj. Due to Faraday's equation

V x E(r) = iüJßQßr{r)H{r) (2.64)

Eq. (2.63) can be recast in terms of the electric field

wm(r,t) = -W[V x E(r)]T -J- [^(r)]* • [V x E*(r)]
Z I UJ ß()L

1
, (2-65)

+ [V x E(r)]T —ß-\r) [V x E(r)} e~2wt
.

^ Mo J

Noticing that the real part of a complex number does not change when

the complex conjugate of it is taken

(w(r)) = ^ReJET(r) • e0er(r) E*(r)
1

(2.66)

+ [V x E(r)]T —ß-\r) [V x E*(r)]
u Mo J

is obtained for the total local electromagnetic energy averaged over

time. If PMLs are employed, Vs presented in Sec. 2.2.3, instead of V

should be used in all equations. Alternatively, if PMLs are interpreted
as complex anisotropic diagonal tensor material, as will be shown in

Sec. 3.1.1, er(r) and /ir(r) are complex diagonal tensors.

According to Poynting's theorem the divergence of Eq. (2.61) av¬

eraged over time, that is, the local mean generation or dissipation rate

of electromagnetic energy per volume, can be written as

(V • S(r)) = Re [H*{r) (V x E(r)) - E(r) (V x H*{r))] , (2.67)
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which by Eq. (2.64) and Ampere's equation

V x H(r) = -iüü£0£rE(r) (2.68)

can be rewritten in terms of the electric field only

V • S(r)) = Re iuET(r) £0£r(r)-E*(r)

T 1

;VxE(r))J —^(^(VxfW)

;2.69)

again noticing that taking the complex conjugate does not change the

result.

Integrating Eqs. (2.66) and (2.69) over a certain volume gives the

electromagnetic energy and its generation or dissipation rate for that

region. For example, the power coupled through the aperture of the

VCSEL device can be calculated as

rff{V-S{r))dV (2.70)Lout ~

TPML

with TPML defined in Fig. 2.11. Similarly, the optical power gen¬

erated in the active region, the power dissipated in the DBRs, the

laterally radiated power, etc. can be calculated individually.
Assume that the electric field is given by optical mode k. By

normalising the power supplied from a source or dissipated to a sink

with the optical energy stored in the mode a characteristic energy

transfer rate is obtained. In the example of the power coupled through
the aperture this is

Iff (V Sk(r)) dV
t _TPML ,9 7U
ou"~

M(Mr))dv
{2-n)

o

with O bounded by To shown in Fig. 2.11. In the limit of a scalar

electric field approximation Eq. (2.71) for the modal gain and loss is

equivalent to the so-called overlap integral [14]14.

14In simple rate equation models this is replaced by Tvga where T is the con¬

finement factor, vg is the group velocity, and a is the material gain or loss.
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r0 , TPML

Figure 2.11: The region labelled TPML is the portion of the PML lin¬

ing that absorbs the usable optical power emitted through the aper¬

ture of the VCSEL.

2.2.5 Variational Principle

Variational methods were originally developed to solve problems in

theoretical physics. The basic idea is to formulate the physical prob¬
lem in terms of a functional that has a stationary property at the

exact solution of the problem. A functional is a mapping from a vec¬

tor space to a scalar space. Often this scalar has a direct physical

significance. In a second step trial functions are used to approximate

the solution in order to minimise or maximise the functional.

With the advent of the computer it was shown that variational

methods are ideally suited to formulate boundary value problems
that are to be solved using numerical methods. It will be shown

in Sec. 3.1.3 how this applies to the finite element method. Alterna¬

tively, Galerkin's Method can be used. An important advantage of

the variational method over the latter is that the difference between

essential and natural boundary conditions is clearly demonstrated.

Whether the variational method is applicable or not therefore de¬

pends on the availability of a variational formulation of a physical

problem. In electromagnetics the physical problem is usually given in

terms of differential equations (Eq. 2.20). In [36, 38] a route to de¬

riving functionals for wave equations in electromagnetics is outlined.
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The generalised variational principle has to be applied to Eq. (2.20).
Due to optical gain, loss, and a radiation condition imposed by PML

er(r) and /ir(r) are complex symmetric tensors. Using homogeneous
Dirichlet (PEC) and von Neumann (PMC) boundary conditions, the

variational functional reads15

uj2
V x E) /i"1 • (V x E) -

-,j£r E E

co

dV

(2.72)
E F(u) dV.

The dependence of E and F on r is omitted for the sake of clarity.

Integration is over O given in Fig. 2.11. Homogeneous von Neumann

boundary conditions (PMC) are natural boundary conditions. Homo¬

geneous Dirichlet boundary conditions are essential boundary condi¬

tions and have to be imposed in addition to finding the stationary

point of Eq. (2.72). For the eigenproblem Eq. (2.21) the variational

functional is given by Eq. (2.72) with the source term F_(cj) set to

zero.

The Rayleigh-Ritz method is used here to formulate the varia¬

tional functional Eq. (2.72) as a numerical problem. It is based on

the idea that an approximation of the accurate solution of Eq. (2.20)
can be found by minimising or maximising the variational functional

Eq. (2.72) with respect to a test function that is inserted. This can

be done by varying the coefficients c3 of a test function expanded like

N

E{r) = YJC3Eh\r) (2.73)

where E (r) are expansion functions that have been chosen before¬

hand. In practice, the goal consists in bringing the variation of the

functional as close to zero as possible, that is, to locate the station¬

ary point of Eq. (2.72) as accurately as possible. How well this goal
is reached depends on the test function employed and the expansion
functions chosen. Finite element expansion functions are one possi¬

bility for this choice and will be discussed in Sec. 3.1.3.

15
Note the absence of the * (complex conjugate) in the inner product.
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2.2.6 VCSEL Mode Designation

A labeling scheme analogous to the one for the step-index optical fibre

[45] is commonly used to identify the optical modes that are relevant

to the lasing operation of circularly symmetric VCSEL devices. Such

a scheme will only cover a subset of all eigensolutions of Eq. (2.21) for

a VCSEL cavity. Nevertheless, it will be employed throughout. Note

that only circularly symmetric devices will be considered, although
other structures, such as square devices, have been proposed.

The modes of circular waveguides with a PEC boundary can be

divided into two sets: the TEmn (transverse electric field) modes with

Ez = 0 and Hz ^ 0, and the TMmn (transverse magnetic field)
modes with Hz = 0 and Ez ^ 0. The z axis is directed along
the waveguide, index m is the azimuthal, and index n the radial

mode order. The transversal fields in a cylindrical coordinate system
rp rp

E = (Er,E(f,,Ez) ,
E = (Hr,H(f,,Hz) are linked to the z compo¬

nents Ez and Hz as

E =

1 fmujßQH _ .k
dEA

n2uj2/c2 — k2 \ r
z

dr J

t-,

1 ( ®Hz kzm \
E<f> = 9 9/2 r? lupo-z 1 Ez (2.75)

nzujz/Cq
—

kj, \ or r J

1 fmn2u£o
„ ,

dHz\
, „

.

Hr =

^2-27-2 72 -Ez+ikz—^ 2.76

nAujA/Cq
—

kAz \ r or J

1 /
o dEz kzm \

H^ =

9 9/9 T? m w£o^ Hz (2.77)
nzuz/Cq

—

kj \ or r J

with the local refractive index n, angular frequency uj and propagation
constant kz.

For the step-index fibre, assuming an infinite external cladding

region, only the modes for m = 0 with radial field patterns split
into TEon and TMon modes. If m ^ 0, hybrid HEmn and EHmn

modes result with both Ez and Hz non zero and two-fold degeneracy.
The hybrid mode designation derives from the observation that for

HEmn modes the transversal fields according to Eqs. (2.74-2.77) are

dominated by Hz and for EHmn by Ez. HEn is the fundamental mode

of the circular step-index fibre since it propagates for all frequencies

UJ.
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If the fibre is only weakly guiding, that is

2 n{
'

the hybrid modes can be re-expressed in terms of linearly polarised

(LPmn) modes according to the following rules:

• LPon is derived from an HEin mode

• LPin is derived from a TEon, TMon, and HE2n mode

• LPmn (m > 2) is derived from an HE(m+i)n and an EH(m_i)n
mode.

Figure 2.12 shows a schematic representation of the correspondence
between hybrid and LP modes in the weakly guiding approximation.

Again, as for the hybrid modes, index m is the azimuthal and index

n the radial mode order. The axial fields Ez and Hz are of the order

A times the magnitude of the non-vanishing transverse field compo¬

nents. The approximate LP modes are therefore almost TEM waves

for very small A. Depending on whether the sums or the differences

of the hybrid modes are formed, two linearly polarised modes with

orthogonal fields result. From the hybrid mode degeneracy a two-fold

degeneracy for LP modes with m = 0 and a four-fold degeneracy for

those with m ^ 0 follows.

From a mathematical point of view circularly symmetric structures

provide no preferred direction for the polarisation of the LP or the un¬

derlying hybrid modes. From a physical point of view this symmetry

is always broken by the non-circular symmetry of the material that is

used to make a VCSEL device, and by imperfections of the circular

VCSEL structure itself. If follows that practical VCSEL devices emit

in two different polarisation states: a parallel and an orthogonal state.

The directions relate to the crystallographic axes of the material [46].
In almost any application polarisation flips have to be prevented.

That is, a change of lasing on one polarisation of a mode to the other

polarisation. There are several methods that are used to pick the

wanted polarisation direction and suppress the other: polarisation

dependent gain medium and mis-oriented substrates to achieve a po¬

larisation dependent modal gain, sub wavelength gratings on top of
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HE11
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HE31

TE01 TM01
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LP11 (4 fold)
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EH11 LP21 (4fold)

HE12 LP02 (2 fold)

Figure 2.12: Schematic of correspondence between hybrid and LP

modes in weakly guiding approximation. Arrows indicate direction of

electric field.
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the DBR to provide a polarisation dependent reflectivity; further¬

more, strain induced birefringence [47], asymmetric mesa shapes and

top metal contacts [46].
The model developed in this work assumes stable polarisation of

the optical modes and no flips.

2.3 Electro-Thermal Transport Model

For the bulk electro-thermal carrier transport a thermodynamic model

that accounts for self-heating is employed. A detailed description can

be found in [29, 48, 49, 50]. Only a brief summary is given here.

The main prerequisite of the model is the assumption of local thermal

equilibrium between the charge carriers and the lattice. Optionally,
it is possible to invoke a hydrodynamic model in case the lattice and

the charge carriers are not in thermal equilibrium.

The basic equations of the thermodynamic model comprise the

Poisson equation

V • (eV0) = -e (p - n + N+ - N^) (2.79)

for the electrostatic potential, and the continuity equations for the

electrons, holes and the local heat

V-jn = e(R+^n) (2.80)

____

dt1
V-jp = e (R+—p) (2.8i;

-V-S = H + cth^T, (2.82)

respectively. The electron and hole densities n and p, the lattice

and carrier temperature T, and the electrostatic potential 4> are the

unknowns of this system of non-linear equations. The electron and

hole current densities, and the conductive heat flow are denoted by

jn, jP and S, respectively. All of these quantities are in fact functions

of r and t, but the arguments will be omitted in the following to keep
notation simple. Furthermore, Np and N^ are the ionised donor and
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acceptor concentrations, e is the elementary charge, e the electrical

permittivity and cth the total heat capacity of the semiconductor.

The net recombination rate R in the non-active bulk region is

assumed equal to the radiative recombination rate due to spontaneous

emission Rsp plus the non-radiative recombination rate composed of

the Auger Ra and SRH Rsrh rates [51]

RSP

Ra

Rsr h

Csp (np-n2) (2.83)

(Cnn + Cpp) (np-n2) (2.84)

np
— n2

(2.85)
tp (n + nt) +rn (p + n%)'

tp are the bulk spontaneous emission co-The coefficients Csp, rn,

efficient, and the minority carrier lifetimes for electrons and holes,

respectively. The parameter n% is the intrinsic carrier density. Since

Rsp and Rsrh are assumed to contribute only little to the total current

when the VCSEL is in the lasing state Csp is taken as a constant and

rn, Tp as dependent on the doping concentration only. The Auger
coefficients assume a temperature dependence

Cn(T) = An+ BW (J^ +B {^j (2.86)

CP(T) = AP + BW (£) +B (J^j (2.87)

with T0 = 300 K 16. The coefficients in Eqs. (2.83), (2.85) and (2.86)
can vary strongly and often depend on device processing conditions.

They are therefore regarded as fitting parameters in the following.
The net heat generation rate H is given by

H = è±kL+JjLJp+eR [0 _ 0n + T (p _ Pn)]-jn.TVPn-jp-TVPp.
enfin epfip

(2.88)

16Moreover, the temperature dependence of the Auger coefficients has been

shown to exhibit an exponential characteristic with a threshold at a certain acti¬

vation energy [52]. This behaviour is observed in long wavelength devices at 1300

and 1550 nm in particular.
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The first two terms represent the electron and hole Joule heating rates

where \in and \iv are the electron and hole mobilities. The second

term is the recombination heat with quasi Fermi potentials 4>n and 4>v
for electrons and holes. The last term is the Thomson/Peltier heating
rate. The absolute thermoelectric powers Pn and Pp are approximated

by the analytical formulas for a non-degenerate semiconductor and

parabolic energy bands

*=¥(*£-§) (2-89)

p>=t(-**wA) (2-90)

with Boltzmann's constant kp and the effective density of states Nc,

Nv for the conduction and valence band.

To account for the high carrier densities Fermi-Dirac distribution

functions are employed and hence

' —vsh
—
F \

(2.91)

applies, where -F1/2 are Fermi integrals of order one half. The conduc¬

tion and valence bands Ec and Ev are defined as

Ec = -x + AE9)C - e (0 - (j>reJ) (2.93)

Ev = -x
- Eg + AE9jV - e (0 - 0re/) (2.94)

with electron affinity \i band gap Eg, and band gap narrowing de¬

scribed by AE9)C and AE9jV. The reference potential 4>ref is normally
set to the Fermi potential of the intrinsic semiconductor. The quasi
Fermi potentials are linked to the quasi Fermi levels by

Ef,u = -e0n (2.95)

Ef,p = -e(j>p. (2.96)

In the bulk region Eqs. (2.79-2.82) are completed by the flux equa-
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tions for the charge carriers and the conductive heat

jn = -enfin (V0n + PnVT) (2.97)

jp = -epfip (V0P + PpVT) (2.98)

S = -nthVT (2.99)

with the total thermal conductivity Kth of the semiconductor.

The effect of the Peltier heat generated at the anode and cath¬

ode contacts is assumed negligible with respect to the remaining heat

sources.

2.4 Carrier Transport at Heterointerfaces

and Quantum Wells

Heterointerfaces can be modeled using a thermionic emission model

[53]. However, the carrier transport in the DBR of a VCSEL structure

(Fig. 1.3) is rendered by transport through a homogeneous region,

except for the DBR layers closest to the A cavity. The homogeneous

region is assigned an effective conductivity for heat, electrons and

holes, and an effective heat capacity.
This is justified by the fact that the forward biased doped het¬

erointerfaces graded over 20 nm merely introduce an additional series

resistance due to a small potential barrier formed by a space charge

region caused by majority carrier diffusion from the wide band gap to

the lower band gap material as shown in Fig. 2.13. Furthermore, the

net carrier recombination rate in the DBR away from the A cavity is

comparatively low. Figure 2.13 shows that the minority carrier den¬

sity reaches thermal equilibrium very quickly moving away from the A

cavity into the DBR. Hence, the net Peltier/Thomson effect will also

be low in a region where one wide and one narrow band gap material

are alternated in a periodic fashion, as is the case in an AlGaAs DBR

stack.

However, to appropriately account for the carrier injection from

the DBR region into the A cavity the first one or two periods of the

DBR periods have to be included in the electro-thermal model. The

key advantage substituting the DBR stack with a homogeneous mate¬

rial is the reduced computational effort in solving the electro-thermal
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Figure 2.13: Cut of energy band diagram along symmetry axis of

VCSEL device structure for a forward bias of 1.0 V. Conduction and

valence bands, and quasi Fermi energies for electrons and holes are

shown. Peaks in conduction band on n-doped side and valence band

on p-doped side are caused by majority carrier diffusion from wide

band gap to low band gap material.

system of equations in the 2D finite element formulation that is envis¬

aged here. The effective parameters of the homogeneous material can

easily be determined in a ID simulation taking all heterointerfaces

into account, or be derived from measurements.

Abrupt heterointerfaces are modeled using a thermionic emission

model [23, 53]. The model provides current density equations perpen¬

dicular to the interface. Graded heterointerfaces are covered by the

thermodynamic model described in Sec. 2.3.

Quantum wells are treated as ballistic transport scattering centres

for carriers [17, 23, 54, 55]. This yields current density equations

perpendicular to the edges of the quantum wells, and, additionally,

capture and escape rate equations for the scattered carriers. In the

quantum well the carrier densities bound to a quantum well n2D, p2D
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are connected to the mobile carrier densities n, p "above" the quantum

well via a net carrier capture rate given by

n2D \ n3D

C"'=[l-e—V>^\ll-7m\— (2.100)

for the electrons and similarly for the holes with the electron quasi
Fermi potentials (j)n and (j)2^ for the mobile and bound electrons,

respectively. The parameter N2D is the sum of all quantum well

states per unit volume, and re is an effective electron scattering time.

Equation (2.100) holds as long as (j)2^ and (J)2D remain below the band

edge of the barrier.

In the quantum well region the continuity equation (2.80) is re¬

placed by the following set of equations

V-jn = e(R+Ccap +^ (2.101)

V • j2nD = e (Rnr + Rsp + Rst - Ccap + ^-n2D J (2.102)

for the electrons and equally for the holes. The quantum well re¬

gions correspond to the active region of the device. Therefore, the

net recombination rate consists of stimulated radiative recombination

and optical generation Rst, spontaneous radiative recombination Rsp,
and non-radiative recombination (Auger and SRH) Rnr. For the lat¬

ter the heat generated by the recombination processes is taken into

account as part of H in Eq. (2.82). Equation (2.102) together with

current equations similar to Eqs. (2.97) and (2.98), using the appro¬

priate parameters for lateral current flow, describe carrier transport in

the quantum well plane. For the Poisson equation (2.79) the electron

and hole densities n and p are equal to the sum of mobile and bound

electrons n2D and holes p2D.

The local carrier recombination / generation rate per unit volume

due to stimulated emission / optical absorption in the active region



56 CHAPTER 2. DEVICE MODEL EQUATIONS

comprising all N modes is [23, 26]

N

Rst(r) = J2 V-Sfe r

k=

N

USSvMr)dV

—Im

>fc

E
u/kEk(r)-er(r,u'k)-Ei(r)

k=i ±Re jjjvEk(r).£r(r,u'k)-E_Ur)dV
[s"1 cm

;2.103)

according to Sec. 2.2.4 for a scalar er(r) neglecting the contribution

of the magnetic field. The local relative generation / dissipation rate

is evaluated with respect to the optical energy contained in mode k
17

The local recombination due to spontaneous emission in the active

region is given by integrating Eq. (2.16) over energy space

oo

Rsp(r] rsp(r,E)dE [s xcm 3
;2.104)

The quasi Fermi potentials (jy^D and 4>2D govern the occupation
of the combined states of all conduction sub-bands or valence sub-

bands, respectively. The assumption of Fermi distributions is not

valid in general. It breaks down, for instance, in the case of strong

spectral hole burning in which carriers are distributed in energy space

according to a non-equilibrium distribution. Nevertheless, in the case

of VCSELs, intensities are normally not sufficiently high to burn spec¬

tral holes in the carrier distribution of the active region. According to

[18] it is more important to take into account a carrier temperature

Tp for the electron-hole plasma separate from the lattice temperature

at high modulation frequencies. Carrier phonon scattering is then no

17The unit in which this energy is counted is immaterial here, but it is deter¬

mined by the choice of the unit for i?^,p(t) in Eq. (2.8). In this work i?^p(t) is a

photon rate and given in s_1. Hence, Sk corresponds to the number of photons
in mode k. Alternatively, by multiplying Rs^'(£) with the photon energy hu'k in

Joules the variable Sk would correspond to the electromagnetic energy in mode k

in SI units.
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longer sufficiently effective to cool the carriers that are approximately
Fermi distributed at a temperature Tp down to a Fermi distribution

at lattice temperature Tj. This leads to an additional damping of the

modulation response of the device.





Chapter 3

Simulator

Implementation

The VCSEL simulator was implemented in the DESSIS device simula¬

tor [23, 29, 48, 49, 56]. The LUMI mode solver library was developed
as an extension in order to handle the optical problem presented in

Sec. 2.2. The mode solver library can be used stand-alone via a Tel

[57] scripting interface or coupled to the DESSIS device simulator.

When used in the latter configuration the electro-thermal and op¬

tical equations can be solved self-consistently by an iteration scheme

(Sec. 3.3.3). Static, small signal modulation, and large signal transient

responses of the VCSEL device can be computed with the simulator.

The simulator assumes a rotationally symmetric VCSEL device

structure that is discretised with 2D finite elements in the cross-section

perpendicular to the wafer surface as shown in Fig. 1.3. In principle,
one could use 3D finite elements to even compute rotationally non-

symmetric devices. However, a full 3D formulation is not feasible with

the computational resources presently available.

The complexity of the electro-thermal device equations does not

permit a 2D finite element discretisation of the individual DBR het¬

erointerfaces. Instead, the DBRs are represented as homogeneous

regions with effective material parameters, except for the DBR lay¬
ers closest to the A cavity. In contrast, due to the long-ranging wave

59
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HE11 TE01

Figure 3.1: Normalised optical intensity of fundamental HE11 and

first order TEOl modes on logarithmic grey scale. Inset shows por¬

tion of the mesh used to discretise the optical problem. The VCSEL

structure has an intra cavity contact and an oxide aperture with rox

= 1 /im at a field node position.
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Figure 3.2: Total current density distribution on logarithmic colour

scale and lattice temperature profile lattice temperature distribution

on linear colour scale. Terminal current is 5.3 mA and output power

1.3 mW. Inset shows portion of mesh used to discretise the electro¬

thermal problem. The VCSEL structure has an intra cavity contact

and an oxide aperture with rox = 1 /im at a field node position.

nature of the electromagnetic radiation in the VCSEL resonator, the

DBR heterointerfaces have to be resolved for the optical problem.

Consequently, two separate meshes are used. A coarser one for the

electro-thermal problem and a finer one for the optical problem. Lin¬

ear interpolation translates variables between the two meshes. The

insets in Figs. 3.1 and 3.2 show representative examples of meshes

used for the optical and electro-thermal problem, respectively, for a

VCSEL structure with an intra cavity contact.

In order to adapt the size of the computational problems to the

individual physical problems the simulation is decomposed into three

domains shown in Figs. 3.1 and 3.2. The largest area is covered by
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the thermal domain shown on the right of Fig. 3.2 where only the

thermal equations are solved. This ensures that the contacts to the

thermal bath held at the ambient temperature can be kept sufficiently
remote from the core VCSEL device. The influence of the thermal

contacts on the temperature distribution in the VCSEL device can be

reduced in this way. The area shown on the left in Fig. 3.2 defines the

extent of the electro-thermal domain, where in addition to the thermal

equations, the electronic equations are solved (Sec. 3.2). This domain

is deliberately chosen smaller to reduce the memory requirement and

run-time of the computational problem. Figure 3.1 shows the extent

of the optical domain where the optical equations are solved (Sec. 3.1).

3.1 Maxwell Wave Equation

Various methods of computing the optical modes of VCSEL devices

were proposed in the past [24, 58] - [72]. Only some of them [24,
63, 67, 69] can take into account a general form of an arbitrary, non¬

uniform dielectric function (2.19) and are potentially suitable to in¬

tegrate self-consistently with a laser simulator. Other methods are

computationally less demanding but assume idealised dielectric func¬

tions and neglect effects of continuous temperature, carrier, optical

gain and loss distributions, and the detailed geometry of the optical

cavity.
A promising approach is described in [63]. The beam propagation

method (BPM) is combined with the discrete Bessel transform (DBT).
Laterally homogeneous regions are represented by transfer matrices in

a Fourier-Bessel form, and laterally inhomogeneous layers are treated

using BPM. The method is efficient as long as only a small proportion
of all regions has to be treated using BPM, as the method becomes

too computationally intensive otherwise.

In [24] a Green's function formalism is used. For a general VCSEL

structure the computation of the Green's functions and the solution

of the resulting dense eigenvalue problem becomes prohibitive in com¬

putational complexity, especially, if they have to be re-evaluated over

the operation range of the VCSEL device.

A layer-wise expansion into a discrete set of vectorial modes and

mode-matching at the layer interfaces is employed in [69]. As sam-
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pling along an interface is less costly than over a region this can be

an effective approach. However, the finer the vertical discretisation

into layers and the more terms in the discrete set of modes the more

time consuming this method will become. In principle, the former

method can be extended to handle an arbitrary subdivision of the

device structure in the lateral direction: a multiple cylindrical shell

problem. It is clear that at a certain number of subdivisions there will

no longer be an advantage of sampling the problem along the region
interfaces compared to sampling it over the region. At this point, the

tasks reduces to selecting suitable expansion functions for the regions.

Finite element expansion functions are a possible choice. Because

they are simple to compute they can be used for structures subdivided

into a large number of regions. That is, to use an element expansion

per region which is then equivalent to an element of a mesh. In ad¬

dition, by using the variational method they yield sparse matrix nu¬

merical problems that can be solved efficiently by standard numerical

methods. Furthermore, the finite element formulation of the problem

can be tuned by changing the order of the expansion functions. In

this way the number of elements can be traded for the sparsity of the

matrix problem for a given accuracy of the result.

The finite element approach employed in this work is related to

[65, 67]. With this approach, in principle, optical modes for arbitrary
VCSEL geometries can be computed. Up to now the finite element

approach has always fallen short of handling problems that occur as

soon as realistic VCSEL devices are considered. How this limitation is

overcome by a finite element approach and its efficient solution using
the iterative Jacobi-Davidson [73, 74] algorithm is demonstrated here.

This section deals with the finite element formulation of Eqs. 2.20 and

2.21 for realistic, circularly symmetric VCSEL structures.

3.1.1 Permittivity and Permeability Functions

According to Sec. 2.2 the optical field in a VCSEL structure is ob¬

tained by solving Maxwell's wave equation in the frequency domain

subject to a radiation condition

u2
V x A"x(r)- (V xE(r))-—A(r)£r(r) E(r) =F{r,u) (3.1)

co
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with

£r[r,u e'Jr.uj) + ie"(r,uS). (3.2)

The tensor function A(r) [75] is given by

A(r)

Vsy(r)sz(r)
sx(r)

0

0

0

:(r)gx(r)
S2/(r)

0

0

0

Xr)sv(r)

(3.3)

for the Cartesian coordinate system using sx(r), sy(r), and sz(r) as

prescribed in Fig. 2.5. The tensor A(r) represents the operator Vs

(Eq. 2.34) in terms of a material with anisotropic permittivity and

permeability. The advantage of this approach is that the standard

V operator can be used for the formulation of the problem. The

equivalence of the two representations can immediately be verified by

comparing Eqs. (2.30-2.33) and

V xEa(r)

V xHa(r)

V-(£o£rA(r)-Ea(r))

V-(/io/irA(r)-Ha(r))

i(jüßoßrA(r) Ha(r)

-iuj£Q£rK(r) -Ea(r)

0

0.

(3.4)

(3.5)

(3.6)

(3.7)

The fields in Eqs. (2.30-2.33) and Eqs. (3.4-3.7) are related according
to E%(r) [rJEnir) and H%(r) (r)Hn(r) with rf = x,y, z.

For the complex refractive index n{r)+in,{r) the dielectric function

reads

£r(r,ui) = (n2(r,ui) — K2(r,ui)) + i 2n(r, üü)n(r, üü). (3-8)

Due to causality the real and imaginary part e'r(r,uj) and £"(r,u)) of

Eq. (3.2) are inter-related by the Kramers-Kronig relation [26]. The

refractive index is assumed linearly temperature dependent according
to

n(r, u, T) = n0(r, u) (1 + an(r,u) (T - T0)) (3.9)

with a temperature coefficient an(r,uj). Equation (3.8) together with

(3.9) is used to cover the following processes1

^^An extensive review of the dielectric functions and their dependence on tem¬

perature, doping and extrinsic carrier density for some material systems can be

found in [76] and [77]
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• direct and indirect interband absorption near the band edge (for
non active regions)

• free-carrier absorption (particularly severe for long wavelength
1300 nm and 1550 nm VCSEL devices)

• interconduction band and intervalence band absorption

• absorption in metallic regions

everywhere except in the active region, where the dielectric function

reads

£r(r, uj) = (n(r, uj)2 - -^«(r, uj)A + tn^^C°'a(r> uj) (3.10)

with loss / gain a(r,uj) given in Eq. (2.14) due to local interband

absorption / stimulated emission.

The source term F_(r,uj) in Eq. (3.1) is used to represent fluctua¬

tions due to spontaneous emission in the active region.

3.1.2 BOR Variational Functional

A Body Of Revolution (BOR) variational functional for rotation-

ally symmetric device structures is presented. Maxwell's vectorial

wave equation Eq. (2.20), subject to the radiation condition imposed

by PML in the form of an anisotropic material A(r) according to

Eqs. (3.4-3.7) with complex scalar relative permittivity er(r) and per¬

meability fir
= 1, is given by Eq. (3.1). The corresponding variational

functional according to Eq. (2.72) reads

F(£)4//j
o o

2tt

UJ2
(V x E) A"1 • (V x E) - -rE -£rA-E

c2
p dcf) dp dz

2tt

// E-F_(uj)pd(f)dpdz

o o

(3.11)
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Figure 3.3: VCSEL device structure for simulation. The contours of

the boundaries Tj and To are shown on a cross-section of the device.

in cylindrical coordinates with the dependence of E and F_ on p, <\>
and z omitted for clarity. The VCSEL cavity is enclosed by an in¬

ner boundary Tj (Fig. 3.3). Outside this boundary electro-magnetic
waves are only outgoing due to the PML. Since the waves will be

extinct by the PML when they reach the outer boundary To it can

be used to truncate the computational problem. Integration is over

the cylindrical volume V. Its cross section O in cylindrical coor¬

dinates is bounded by To- Homogeneous Dirichlet (PEC) and von

Neumann (PMC) boundary conditions are applied on To- PMC are

natural boundary conditions. PEC are essential boundary conditions

and have to be imposed.

Since the VCSEL device structure is assumed rotationally sym¬

metric, a Fourier series in 0, shown in Fig. 3.4, is used to expand E

inEq. (3.11).
The field E can be split with respect to the p-z plane for 0 = 0

into a symmetric part

Es{p,(j>,z)=ETj0{p,z)
oo

+ ^2 [ET,m(p^ z) cosm^ + E4>,m(p, z)e(f)smm^]
m=l

(3.12)
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z

Figure 3.4: Fourier series expansion in <\> (BOR)

and an asymmetric part

Ka(p,(/>,z) =E<f>$(p,z)e<f>
oo

+ ^2 [ET-m(p, z) s^m^ + E4>,-m(p, z)e(f) cosm^

(3.13)
m=l

iT
where ETjm(p,z) = [EPjm(p, z),0, EZjTn(p, z)Y is the in-plane and

E(f,,m(p, z) the out of plane component of the vector E(p, 0, z).
Inserting the expansion E_(p, 0, z) = E_s(p, 0, z) + Ea(p, 0, z) into

the variational functional and taking the first variation gives

F(E) = F(ES+Ea]

OF OF ÖE

SE SE ÖEC
+

E,

ÖF ÖE

JËJËZ
0

(3.14)

(3.15)
E„

and similarly if E is expanded like the series shown in Eqs. (3.12) and

(3.13). Hence, due to the linearity of the sum in the expansion, find¬

ing the stationary point with respect to E is equivalent to finding the

stationary point with respect to each term in the expansion. Further¬

more, when multiplying the terms of the expansion in Eqs. (3.12) and

(3.13) to evaluate the variational functional, only products containing
sin 77i0 and cos mcf) or products constant in 0 yield contributions in
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the integration for 0 from 0 to 2tt. That is, all cross products vanish.

It follows that the variational problem in F(E) can be treated by solv¬

ing a series of variational problems Fm(Em), each one corresponding
to a term of the expansion.

Note that decoupling F(E) into independent problems Fm(E_m) is

only possible if the functions £r, A and F_(uj) can be separated into

two components: one with a radial and the other with an azimuthal

dependence. Only then will the cross products of terms in the expan¬

sion vanish. Otherwise, there will be coupling between the terms. The

decoupling property is the requirement that the 3D VCSEL problem

can be solved as a set of 2D problems2.
Since the field must be continuous on the axis of the circularly

symmetric structure, certain properties follow for the coefficients of

the expansion along the z axis. They are easily deduced from symme¬

try considerations evident from Fig. 2.12:

• m = 0 => Ep,o{0, z) = 0 and £^)0(0, z) = 0

• m=i^£Z)0(0,z) = o

• m > 1 => EPi0(0, z) = 0, £^0(0, z) = 0 and Ezfi(0, z) = 0

Inserting the 0th term of the asymmetric expansion Eq. (3.13) and its

curl into Eq. (3.11), and integrating <j) from 0 to 2tt yields

VtK,<^,o H—&PEa,<f>,o j • AT • ( VrEa^o H—epEa^o j p

co
2 ^r^<j)Ea,<j),oEa^fip dp dz
o

2tt / / Ea^0Fa^o(uj)pdpdz,

o

(3.16)

2Given the computational resources mentioned at the beginning of Ch. 3 the

decoupling property is a necessary requirement to obtain numerical problems of

manageable size.
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inserting the Oth term of the symmetric expansion Eq. (3.12)

F(ESj0) = 7TJJ±(VTx ES)T)0) (VT x ES)T)0)
o

UJ2
- —£rESjTj0 AT ESjT0pdpdz

co

-2?r // ESjTj0-FSjTj0(uj)dpdz,

(3.17)

o

and inserting the 777th term with m > 1 of the symmetric expansion

Eq. (3.12)

F(ESjm) = irJJ |(VTx ESjTjm) (VT x FS)T,m)
o

+ ( ^TEs,4>,m H ESjT^m + -epEs^m j • Arf
\ r r /

/'
„

777

_

1

„

\777 1

VtEs^tti + —E^T,m + -ep£/.—„,^',m 1 ^p^s,(f>,m (3.18)

CJ2
2"er [Es>T>m • AT • ESjT^m + A^Ea^mEa^m] Pdpdz

co

-2tt ESjT^m • FS)T,m + Es,<f>,mFs,<f,,mpdpdz,

o

with Vt defined as

<9 <9
Vt = ^-ep + —ez. (3.19)

The diagonal tensors A, At and AT read

A =

"Ap 0 0

0 A^ 0

0 0 Az

AT =

Ap 0 0

0 0 0

0 0 Az

AT =

'Az 0 0

0 0 0

0 0 A
p.

(3.20)

for cylindrical coordinates. The entries for Ap, A^ and Az are given
in App. B.
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It is evident from Eqs. (3.16) and (3.17) that the variational func¬

tional decouples into two problems for 777 = 0. Functional Eq. (3.16)
in Ea^ß will give solutions that correspond to the TEmn modes, and

Eq. (3.17) in FsT0 solutions that correspond to the TMmn modes.

In Eq. (3.18), for 777 > 1, the components of the field FsT0 remain

coupled. Hence, the solutions will be the HEmn and EHmn modes of

the cavity. The asymmetric counterpart of Eq. (3.18) will yield the

same HEmn and EHmn modes, but rotated by 90 degrees in azimuthal

direction. This corresponds to the two polarisation directions pointed
out in Sec. 2.2.6.

Some of the integrals in Eqs. (3.16-3.18) contain a factor with

a 1/p dependence. What seems unbounded for p —> 0 at first sight
turns out to be bounded if the continuity conditions for the field on the

symmetry axis of the structure are observed. The 1/p behaviour still

poses a problem if the integrals have to be evaluated numerically close

to the symmetry axis, as this leads to very large numerical values and

cancellation effects. The 1/p behaviour can be removed by introducing
a variable substitution [78, 79, 80] for Eq. (3.16) 777 = 0

J-Ja,(f),'m * J-Ja,(f),'mj v" J
r

and for Eq. (3.18) m > 1

777 1 ~

—ESjTjm + -epEg^m <- mFS)T)m. (3.22)
r r

Equation (3.17) does not show the 1/p problem.
The variational problem is now solved by searching for the station¬

ary point of Eqs. (3.16-3.18) subject to a PEC boundary condition

on To and a PMC boundary condition on the axis.

If the substitutions in Eqs. (3.21) and (3.22) are not used, the

continuity conditions on the axis may be imposed additionally in order

to reduce the order of the finite element problem. However, they must

not necessarily be imposed according to [81].
The BOR expansion yields the two lowest order, linearly polarised,

fundamental LP01 (HE11 for 777 = 1) and first order LP 11 (TEOl for

777 = 0 + TM01 for 777 = 0 + HE21 for 777 = 2) modes immediately

(Fig. 3.1).
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3.1.3 Combined Edge Node Finite Element Basis

Functions

Finite element basis functions are used to expand the test function

Eq. (2.73). The subdomains of the finite element basis functions

are the triangle and the rectangle. The test function is inserted into

Eqs. (3.16-3.18) and the integrals evaluated element by element. Sim¬

ple analytical expressions for the integrals are available only for some

special cases. In general, evaluation is performed by Gauss quadra¬
ture.

As finite element basis functions, the standard first order Lagrange

(vertex) and first order Nédélec (edge) [82] (Whitney [83]), and the

second order vertex and edge basis functions presented in [84] are

employed. The latter form a hierarchical basis. That is, the first

order basis is a subset of the second order basis. The advantage of

hierarchical bases is that the element order can be changed in a sys¬

tematic fashion. This is particularly useful for the so-called hp finite

element method in which the resolution of finite element discretisation

is traded for the order of the basis. The aim of the hp method is to

give an optimum balance between required computational resources

and accuracy of the approximation for a wide range of problems. A

hierarchical basis is then useful because compatibility amongst finite

elements is assured even if they differ in the selected basis orders.

A hierarchical basis with arbitrary order for node and edge finite

elements is given in [85] (Ainsworth and Coyle basis) and discussed

in the context of circularly symmetric cavities in [81].
The idea of solving Eqs. (3.16-3.18) with a combination of node

and edge finite elements is presented in [78]. The assignment of the

transverse ET(p, z) and azimuthal field component E(ß(p, z) to degrees
of freedom (DOF)3 of first order node and edge finite element basis

functions is illustrated in Fig. 3.5. This choice eliminates the issue of

spurious modes, which will be discussed in Sec. 3.1.4.

The placement of DOF for first and second order triangular and

rectangular subdomains [84] is shown in Fig. 3.6. The first and second

order basis functions corresponding to these DOF are given in App. C.

3The degrees of freedom correspond to the coefficients of the finite element

basis functions that have to be determined in the course of finding the solution

for Eqs. (3.16-3.18).
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Figure 3.5: Combined node and edge finite element basis function

ensures continuity of the tangential component of E(r) on the surface

of the circularly symmetric body formed by a finite element.

The finite element matrix assembly procedure is demonstrated in

the following for the variational functional (3.18) with m > 1 using
the substitution (3.22) for first order basis functions. The procedure
for higher order basis functions is performed along the same lines.

The finite element expansion of the field

Em(p,(J),z) = FT,m(p,z) cosm(j> + E<f,,m(p, z)e<f, sinmcj) (3.23)

over either a triangular or rectangular subdomain of element e is then

given by

3,4 3,4

ETjm(P,z) = YJ^^:(p,z) E<pjm(p,z) = YJ^%N:(P,z). (3.24)
%=\ %=\

When Eq. (3.23) and Eq. (3.24) are inserted into the variational

functional (3.18) and integrations are carried out elementwise a matrix
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(0,1) (1,1)

(0,0) (1,0)1
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(0,1)
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11

p (0,0) (5)5

(1.1)

(8)6 12<3o>10 0(6)

(1.0)

X DOF of edge basis function

X DOF of node basis function

Figure 3.6: Placement of degrees of freedom (DOF) in triang

rectangles for first and second order functions.
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equation of the form

(3.25)

results. The variable cpTt determines the value of the DOF of edge
i in element e and cp%t the value of the DOF of node i in element e.

The constant source term F_m(p, </>, zuj) is expanded accordingly using
constants çTt çl. Matrix A, B, and C can be identified as discretised

versions of the three terms given in the variational functional (3.18).
In order to find the stationary point of the discretised variational

functional, Eq. (3.25) is differentiated with respect to the components

of
r ^T

(3.26)

and set to zero. Applying similar reasoning as in Eq. (3.15) this

yields the sparse generalised complex symmetric non-Hermitian ma¬

trix equation

(3.27)

If all ÇT,m and ç^m are set to zero the eigenproblem

ATT,m

**-<f>T,m -<i 4>(f>,m ^P(f>,m,k

UJÎ BTT,m

£><f>T,m

is obtained with the index k = 1... N counting the modes.

The order of the sparse matrices is

^P(f>,m,k J

(3.28)

• nedge + nnode for first order basis functions
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* Fledge T T^node T Pledge T '^edge T ^Hr% T ^T^rect T '^rect

= 3nedge +nnode +2ntri +5nreci for second order basis functions

where nm is the number of triangles in the mesh, nrect the number

of rectangles, nnode the number of nodes, and nedge the number of

edges.
The essential PEC boundary conditions are introduced by erasing

rows and columns in matrices A, B and C corresponding to the DOF

being set to zero [38].
The convergence behaviour of first and second order basis functions

is assessed in Fig. 3.7 for the TElml mode of the free dielectric sphere.
A x/X discretisation with x = 3, 7, 15, 30, 60 was chosen for air and

the dielectric sphere with À the wavelength in the respective material4.

The cross-section of the sphere is approximated with a 20 x segment

polygon. In the PML s' = 1, and s" evolves with a quadratic profile
from s" = 0 on Tj to s" = 5.0 on r0. The PML is 0.75A thick and

2.0À away from the surface of the sphere. The second order basis

functions show a substantially higher exponential convergence rate

than the first order functions.

3.1.4 Spurious Modes

Spurious modes are numerical solutions of the discretised Maxwell

vectorial wave equation that have no correspondence to physical re¬

ality. In any case they should not be confused with unwanted but

physically existing modes.

In the context of this work spurious modes are defined as inconsis¬

tent finite element approximations of static solutions of the continuous

Maxwell vectorial wave equation

uj2
V x ßr(r)-1 (V x E(r)) = —£r(r) E(r) (3.29)

co

given here in the homogeneous form. That is, spurious modes only

appear in the discretised version of the Maxwell vectorial wave equa¬

tion. The divergence of both sides of Eq. (3.29) is taken, and since

That is, the dielectric sphere is discretised more densely than air according to

its refractive index.
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Figure 3.7: Convergence of first and second order basis functions for

the TElml mode of the free dielectric sphere with e = 12.
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the divergence of the curl of any vector is zero,

uj2
0= _V-(er(r)-E(r)) (3.30)

co

is obtained. It follows that solutions of Eq. (3.29) are either divergence
free V • (£r(r) E(r)) = 0, uj ^ 0 or static uj = 0.

The consistent static solutions of the continuous Eq. (3.29) can be

formed by taking the gradient of a certain scalar function 4>(r)

E(r) = -V0(r). (3.31)

These are the nontrivial solutions E(r) ^ 0 with V x E(r) = 0, the

nullspace of the curl, and uj = 0, accordingly.
The inconsistent static solutions - that is the spurious solutions -

of Eq. (3.29), which was discretised using a certain finite element basis,
are solutions for which no scalar functions 4>(r) in Eq. (3.31) exist. The

function <j)(r) is, of course, never computed. Nevertheless, assuming
its non-existence, it can be concluded that Eq. (3.31) will only be

poorly approximated during the process of finding the stationary point
of the variational functional. The consequence is that eigenvalues of

inconsistent static solutions will not lie at uj = 0 (as they should)
but at some finite value, because the eigenvectors of the inconsistent

static solution do not fulfil Eq. (3.31) accurately. It turns out that

the degree of inconsistency of the static solution is linked to the finite

element basis and mesh employed.
This shall be illustrated with an example. A 2D triangular mesh

is given in the p-z plane shown in Fig. 3.8 where the surface f(p, z)
is shown. It is formed by the scalar node basis functions Nf(p,z)
associated with node 1. Two cases are considered:

1. The surface f(p,z) represents the p and z components of the

2D vector field ET(p,z). That is, the finite element basis func¬

tions are given by f(p, z) and each component of the vector field

is continuous. Which potential (f)(p,z) would fulfil ET(p, z) =

—Vt</>(/>, z) in this case?

2. The surface f(p, z) represents the potential function (f)(p, z). It

is continuous, but its derivative Vt </>(/>, z) is not. The potential
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A/°(p,z)

Figure 3.8: 2D mesh of triangles showing the surface generated by the

scalar node basis functions Nf(p, z) associated with node 1 for finite

elements e = 1... 6.

function (f)(p, z) is then said to have C° continuity. Which finite

element basis functions could render the derivative Vt </>(/>, z) in

this case?

For case 1 only quadratic functions (f)(p,z) with Vt </>(/>, z) linear

and continuous are possible. The potential function cf)(p, z) is then

said to have C1 continuity. If a C1 quadratic function can be found
rp

where —Vt4>(Piz) = [f(Pi z)i^i f(Pi z)\ 1S fulfilled on the vertices,

equality is automatically guaranteed everywhere because —Vt</>(/>, z)
rp

and [f(p,z),0,f(p,z)\ are linear inside each element. References

[87, 88] show that such quadratic C1 piecewise polynomials for the

interpolation of functions prescribed by discrete values on mesh ver¬

tices only exist over special meshes. In [88] a procedure is given by
which a quadratic C1 mesh can be generated from an arbitrary mesh

by subdividing each of the triangles of the original mesh into six trian¬

gles (Fig. 3.9). On such subdivided meshes a quadratic C1 potential
function (f)(p, z) can always be defined. Consequently, on such special
meshes the static solutions are approximated correctly, and all eigen¬
values uj = 0 are computed as exactly zero. However, the required

special mesh properties will restrict the use of this approach.

For case 2 the question is reversed with respect to case 1. Since

the potential function cf)(p, z) is continuous along the element edge, the

derivative parallel to each element edge is continuous. The derivative
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iL

Z

p

Figure 3.9: In an arbitrary triangular mesh each triangle has to be

divided into six to ensure continuity of the derivative of the quadratic
surface interpolating the vertices.

normal to each element edge is discontinuous. Consequently, if 4>(p, z)
is approximated by first order finite element basis functions, the ap¬

proximation for ET(p, z) must be chosen in such a way that on the

element edges its tangential components are continuous, but its nor¬

mal components are discontinuous. This requirement is automatically
fulfilled by the edge finite element basis employed here (Fig. 3.10): the

trick is to make the tangential component of ET(p, z) on the element

edge equivalent to the DOF shared by elements on the boundary. Note

that the edge finite element basis shown in Fig. 3.10 is identical to the

linear edge basis used in this work (Sec. 3.1.3 and Fig. C.l in App C).
The normal component of ET(p, z) is discontinuous on element edges
and is minimised in the process of finding the stationary point in the

least squares sense5.

Moreover, it shall briefly be noted that pth order edge element

bases with p > 1 can be constructed similarly, starting from potential
functions (f)(p, z) given by pth order piecewise polynomials.

This also applies to the combined node and edge finite element

bases and the modified bases introduced in Eqs. (3.21) and (3.22), be-

5This edge basis is sometimes also called the linear normal, constant tangential

(LNCT) edge basis.

• arbitrary point inside triangle
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• edge DOF set to zero

edge DOF

Et(P,z)

Figure 3.10: The edge finite element basis (also see Fig. C.l) ensures

continuity of the tangential component of ET(p,z) = —Vt^(p,z)-
The normal component is discontinuous on element edges.

cause they retain the continuity property of the tangential component
of the 3D vector E_(p, z) on the circularly symmetric body shown in

Fig. 3.5.

The issue of spurious modes has been a source of confusion in

electromagnetics over years. It was originally thought that spurious
modes appeared in the spectrum due to the fact that their divergence

integrated over the computational domain was non-zero, which turned

out to be wrong. Although edge finite element basis functions have

zero divergence within each element, the solutions of the discretised

Eq. (3.29) spanned by them do not, if the solution is static uj = 0.

In fact, for uj = 0 the solution includes a non-zero divergence along
the element edges. It is important to note that the success of edge
elements in eliminating spurious modes derives from the fact that

they approximate the null space of the curl operator correctly and

not because they are divergence free. Also note that the presence of

spurious modes has no connection to using PML ABC whatsoever.

Spurious solutions have to be discussed at this point because of

their relation to the static solutions of Maxwell's vectorial wave equa¬

tion. It was stated in Sec. 2.2 that the static solutions are unwanted

solutions in the context of VCSEL simulation. It is essential that,

by using the combined edge node finite element basis, they appear at
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uj = 0 in the spectrum of the eigenproblem Eq. (3.29), where they do

not interfere with the wanted solutions.

3.2 Electro-Thermal Transport Equations

The numerical formulation as implemented in the DESSIS device sim¬

ulator is used. The electro-thermal transport equations are discretised

by application of the Box Method. Only a brief sketch of the numer¬

ical formulation of the equations in 2D is given here6. More details

can be found in

• [89, 90, 91] for the electronic transport equations

• [48, 92] for the extension to the non-isothermal case (energy
balance or thermodynamic model)

• [23, 29] in the context of laser simulation.

Consider the general non-linear partial differential equation of the

form

Vx-F(x,y)+g(x,y)=0 (3.32)

where F(x,y) is a vectorial and g(x,y) a scalar function of x and y.

Furthermore, consider Gauss' Divergence Theorem

Jfvx F(x,y)d2x = JF{x,y)en (3.33)

A C

with A the area bounded by contour C and en the unity normal vector

on C pointing outward. The integral on the left gives the total flux

leaving area A.

On a domain discretised by rectangular and triangular elements

for each mesh vertex i a box with area A% and contour C% is defined

by the mid-perpendiculars of the mesh edges as shown in Fig. 3.11.

The Box Method exploits the fact that the device equations of the

thermodynamic model Eqs. (2.79-2.82) are given in the divergence

6The extension to 3D is straightforward [89, 90] using Gauss' Divergence The¬

orem in three dimensions.
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Figure 3.11: Box Method discretisation:

perpendiculars of the mesh edges.

box is defined by the mid-

form Eq. (3.32). The following approximation is made using Eq. (3.33)

F{x,y)+g{x,y)d2x^[ ^ leFe\ + gtAt. (3.34)
edges(t)

The flux through each one of the edges emerging from vertex i is

approximated with leFe where le is the length of edge e and Fe is

the mean flux of F(x,y) through edge e. Moreover, g% is the average

value of g(x,y) inside A%.
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As a consequence the integration of the scaled (de Mari [93]) device

equations (2.79-2.82) over the box area A% can be approximated by

NXtt) (3.35)

(3.36)

(3.37)

(3.38)

for the Poisson equation and the continuity equations for the elec¬

trons, holes and the local heat, with (F)e denoting the mean flux of

F through edge e. By discretising the current equations (2.97-2.99)
along each edge and substituting the fluxes in Eqs. (3.35-3.38) a cou¬

pled non-linear system of device equations with the variables (\),^n,^p,^

T% for each vertex i is obtained. It is completed by suitable boundary
conditions on the outline of the computation domain [51, 90].

In the VCSEL simulator the integral in Eq. (3.34) is over a ro¬

tationally symmetric torus with cross-section A% using Gauss' Diver¬

gence Theorem and approximated with a corresponding sum. At het¬

erojunctions and at quantum well edges the appropriate current equa¬

tions have to be used [17, 23, 53, 54]. In the quantum well Eqs. (3.36)
and (3.37) are modified according to Eqs. (2.101) and (2.102).

Meshes fulfilling the Delaunay criterion are employed. Note that

this ensures stable solutions if the above discretisation of the device

equations is used [89].

Small Signal Modulation and Large Signal Transient

Response

The analysis of the VCSEL small signal modulation response is intro¬

duced via the Impedance Field Method [94, 95], which was extended

to comprise a photon rate equation Eq. (3.49) per optical mode con¬

sidered. The method computes the response to a small signal sinu-

E u^v</>)e
edges(t)

E leUn)e
edges(t)

edges(t)

- E 4s)e

A, (p, - n, + AT+s

A, (R, + |n„)
A, (R, + |p„)
A% ( H% + ci/M —T%
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soidal excitation at frequency uj by evaluating the Jacobian of the

electro-thermal system of equations (3.35-3.38) and the photon rate

equations (3.49) in a certain bias point. The modulation response is

obtained by performing this task for range of frequencies uj.

To obtain large signal transient responses the system of equations

(3.35-3.38) and (3.49) is integrated in time using the trapezoidal rule /
backward-differentiation formula (TR-BDF2) composite method [96].

3.3 Numerical Solution Methods

The non-linear electro-thermal matrix equations presented in Sec. 3.2,

augmented with a photon rate equation per optical mode, are solved

by Newton's Method [89, 97]. The numerical formulation of Maxwell's

vectorial wave equation was discussed in detail in Sec. 3.1. The in-

homogeneous form is solved by a LU factorisation with a direct lin¬

ear solver and subsequent forward and back substitution for differ¬

ent right hand sides [98]. The eigenpairs of the homogeneous form

are computed by the Jacobi-Davidson QZ algorithm with a precondi-
tioner [73]. In a laser simulation the electro-thermal and the photon
rate equations are coupled to Maxwell's wave equation employing a

Gummel-type iteration scheme [99].

3.3.1 Newton-Raphson

The Newton-Raphson scheme available in the DESSIS device simu¬

lator is used. A conceptual summary shall be given here. Refer to

[89, 97] for more details.

The discretised electro-thermal equations (3.35-3.38) together with

the photon rate equations (3.49) and appropriate boundary conditions

can be written as

T{x) = 0 (3.39)

where the vector function J~(x) depends non-linearly on x. The latter

vector contains the variables of the system.

Starting from an initial guess xt for a zero of J~(x) a correction

Ax, is computed by finding the zero of a Taylor series expansion of

JF(x) with up to linear terms at the point x = xt. The new guess is
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then given by

where

x,+i = x, - Jj} (x,) • T(x%) (3.40)

{JAx)}m,„ = Ö-^ (3.41!

is the Jacobian matrix of J~(x) evaluated at x. In practice, Jj?(xt)
is not inverted directly as suggested by Eq. (3.40). Instead the linear

system

Jf(x,) • Ax, = -F(xt) (3.42)

is solved. In this work a LU factorisation is computed using a direct

solver and the result obtained by forward and back substitution [98].
The update is then given by

x,+i = x, + a,Ax, (3.43)

where the scalar parameter a,, 0 < a% < 1 is an additional damping
factor that can be used to prevent overshoot effects if x% is far away

from the final solution [97].
The scheme is repeated until a convergence criterion is met. Com¬

mon criteria are the norm of J~(x) or the norm of the change Ax,

with respect to the norm of x,

HAx II

||^(x,)|| < eabs
L_ill < erei- (3.44)
11x* 11

In this sense, Newton's Method replaces a system of non-linear

equations with a sequence of linear equations. The convergence rate of

Newton's method is normally quadratic [100], but the algorithm has to

be started reasonably close to a solution in order to converge. Compu¬
tational complexity in terms of operations and memory requirements
is strongly dependent on how dense Jjr(x) is. Computation time and

memory requirement for some selected practical examples are given
in Ch. 4.

3.3.2 Jacobi-Davidson QZ Iteration Method

Solutions to Maxwell's wave equation (3.1) in the homogeneous form

are obtained by searching for the stationary point of its discretised
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variational functional, that is, by solving the sparse generalised com¬

plex symmetric7 matrix eigenproblem (3.28). The order of the eigen¬

problem depends on the required accuracy of the solutions or equiva-

lently on the number and the polynomial order of the finite elements

in the mesh. For VCSEL cavities practical orders range from 500'000-

2'000'000. Only a few (1-10) inner eigenpairs have to be computed.

Eigenpairs are closely spaced in the part of the spectrum that is of

interest. Hence, the matrix eigenproblem is solved using the Jacobi-

Davidson QZ subspace iteration method with high spectral selectivity.
The implementation that is used in this work and the presentation in

this section follows reference [73].
The eigenproblem (3.28) can be rewritten in the general form

Aq = XBq (3.45)

with eigenvalue À = uj2/c2 and eigenvector q. Matrices A and B are

in CnXn. Multiplying from the left by Zk and substituting q = Q^x
the partial generalised Schur form [73] with dimension k

Z^AQkx = XZ^BQkx

of the large eigenproblem can be obtained. Matrices Sk and Tk are

upper triangular with dimension k x k, Qk and Zk are unitary n x k

matrices8. Furthermore, if x À is an eigenpair of Eq. (3.46) then

q = QfeX À is an eigenpair of Eq. (3.45).
The goal of the Jacobi-Davidson QZ algorithm is to construct con¬

tinuously improving approximations of the matrices Qk and Zk that

yield the partial generalised Schur form (3.46).
To this end a low-dimensional subspace is generated onto which the

given eigenproblem is projected, which is the standard Rayleigh-Ritz
method. The generalised Schur form of the small projected eigenprob¬
lem can be computed easily by the QZ algorithm. From this Schur

form approximations for the wanted eigenpair, and the partial gener¬

alised Schur form of the given large eigenproblem can be obtained.

A correction equation of the order of the large eigenproblem is

set up
- the Jacobi correction equation - that attempts to correct

7The eigenproblem is complex symmetric and non-Hermitian.

8The superscript H denotes complex conjugate transposition.

(3.46)
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the current eigenvector approximation in the space orthogonal to it.

That is, the result of the correction equation is an optimal orthogo¬
nal extension of the low-dimensional subspace. The Jacobi correction

equation may be solved by any method of choice. If the exact value

for the eigenvalue was known, the correction equation, if solved ex¬

actly, would yield the exact eigenvector. Since the eigenvalue of an

eigenproblem is usually only known approximately in advance, there

is no point in solving the correction equation exactly. Also, for large

problems it is more efficient to solve this equation only approximately

using an iterative method. The convergence properties of such an

iterative method can be improved by preconditioning.
In this work the solution of the Jacobi correction equation is deter¬

mined using the biconjugate gradient stabilised (BiCGstab) method

[101] with a preconditioner

M = (A-XB)~1 (3.47)

where À is a guess for the eigenvalue uj2/c2. A method to determine a

guess for À for a problem with closely spaced eigenvalues is presented
in Sec. 4.1.2.

At the beginning, the low-dimensional subspace is initialised with

a random eigenvector. The algorithm is repeated until the following

convergence criterion is met

||Aq
-

ABqll
, , N" "

< e. (3.48)

The preconditioner is computed exactly and once per eigenproblem

using a parallel direct LU factorisation [98]. Numerical experiments

using cheaper preconditioners based on geometrical multigrid have

been carried out. So far only the preconditioner given in Eq. (3.47)
has provided reliable convergence properties for solving Eq. (3.28).

3.3.3 Coupling the Optical and Electro-Thermal

Problems

It was shown in Sec. 2.1.2 that Maxwell's wave equation, by applying

expansion (2.6), is transformed into a set of N decoupled photon rate
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equations

jtSk(t) = -2ujUt)Sk(t)+RlP(t) (3.49)

with k = 1... N and the eigenproblem (2.9). The electric field which

corresponds to the eigenvector of this problem is normalised according

toEq. (2.13).
The photon number Sk (t) changes by several orders of magnitude

when the VCSEL drive current passes the lasing threshold. In con¬

trast, the normalised electric field E_k(r,t) barely changes over the

entire operation range of the VCSEL device, if the field is mainly in¬

dex guided. Often, partial index guiding is sufficient for the approach
to work, that is, if some sort of guiding is provided by the cold9 optical

cavity. Furthermore, the angular frequency uj'k(t) of mode k changes

only weakly.
It follows that the non-linear system of equations (3.39) is aug¬

mented by a photon rate equation (3.49) per optical mode. Accord¬

ingly, the photon numbers Sk (t) appear as new variables in the vector

x of J-(x). From a conceptual point of view, the new variable is

treated as a virtual vertex in the mesh of the device. For the com¬

putation of static and stationary VCSEL characteristics an auxiliary
variable and equation is introduced to ensure that uj'k' > 0 in Eq. (3.49)
at all times [23]. In this way quadratic convergence of the Newton

Method is maintained even around threshold.

In order to be able to apply Newton's Method to the new equa¬

tions, their derivatives with respect to all variables in x have to be

computed to construct the Jacobian Jjr(x). To this end derivatives

of 2uj'l(t) and Rskp(t) with respect to the variables x are needed. The

variables are the local electron and hole density, electro-static po¬

tential, temperature, and the photon number of each mode. So far,

2uj'l{t) has been determined as the result of eigenproblem (2.9), which

is unsuitable because the required derivatives cannot be calculated

directly. Note that 2ujk{t) has the significance of a relative rate of

change of electromagnetic energy stored in mode k and can alterna¬

tively be expressed by evaluating the integral in Eq. (2.71) for the

9The term cold cavity refers to the optical cavity without any change induced

by the electro-thermal equations: optical gain and loss in the active region, tem¬

perature induced change of refractive index.
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entire mode volume. It turns out that this integral can be split into

one that is coupled strongly to the variables x and one that is only

weakly coupled

2uJk = 2uJstrongjk + 2Lüweak,k

JJJ (V • Sk(r)) dV
'strong

Jjj(wk(r))dV
o

The two regions Ktrong and K,eak are chosen in such a way that they
are disjoint but that their union covers the volume O bounded by

To shown in Fig. 2.11. Since the optical dissipation or generation
rate changes by several orders of magnitude in the active region it

is covered by VstTong. Region K,eak comprises the remainder of O. In

this area optical dissipation changes only weakly because of small

changes in the electric field Ek(r) that are due to gain or absorption
in the active region, temperature dependence of the refractive index

and changing radiative losses.

It is evident from comparing Eqs. (2.66) and (2.69) to Eq. (3.11)
that the rates given in Eq. (3.50) can be computed directly by sum¬

ming expressions involving the discretised operators in Eq. (3.25) and

the electric field over the respective volumes. Due to the linearity of

the sum and by virtue of the chain rule, derivatives of 2uj"atr k
and

2uj"weak k
with respect to the variables x can be made to act on the

dielectric function (3.10) and, hence, on the optical material loss /
gain (2.14). For the latter, assuming the free carrier optical loss /
gain model that was presented, analytical derivatives with respect to

x are readily available. Derivatives are only computed for 2uj"atr k.

They are neglected and set to zero for 2uj"weak k.

Similarly, derivatives of Rkp(t) with respect to x are obtained using

Eqs. (2.17) and (2.18).

In contrast to the photon number Sk (t) the normalised electric field

Ek(r,t) changes only little over the operation range of the VCSEL.

That is, the eigenproblem (2.9) and the non-linear equations (3.39) are

only weakly coupled, and a Gummel-type iteration scheme is therefore

f£V-SW (3.50)

JJJ(wk(r))dV
o
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employed [29]

F(Et(r),uj[ - xl+i) = 0 Newton's Method

SF(xt+1 - El+1(r),uj[+1) = 0 JDQZ
(3'51)

that is shown here for step i —> i-\-l. The mode index k is omitted for

the sake of clarity. If a multi-mode problem is solved, Et(r) and uj[
represent all eigenpairs k = 0,..., N at step i since they are obtained

concurrently during a JDQZ solve step. The variables to the left of

the arrow are held at fixed values whereas the ones on the right are

computed in each step. The iteration is continued until the error

criteria set out in Eqs. (3.44) and (3.48) are concurrently met. At

this point the electro-thermo-optical equations are said to be self-

consistently solved. Figure 3.12 shows a flow chart of the coupled
iteration scheme and Fig. 3.13 a Gummel iteration history. The latter

is for a simulation of the VCSEL device shown in Figs. 3.1 and 3.2,
and is comparable to the ones carried out in Sec. 4.4. The increase

in required Gummel iterations per bias point towards higher currents

can be explained with the increased self-heating and, consequently,

stronger coupling of the electric field via the temperature dependence
of the refractive index.

Hence, a sequence of eigenproblems has to be solved, where each

one can be seen as the perturbed version of the former in the sequence.

This fact can be exploited by the JDQZ subspace iteration method.

Firstly, the search subspace is constructed starting from the eigenvec¬
tor of the former eigenproblem, instead of a random vector, and the

guess À in Eq. (3.47) is taken as the former eigenvalue. This contin¬

uation type approach results in less time required to find a solution

as long as the eigenproblem changes only little [102]. Secondly, the

preconditioner (3.47), that was obtained expensively by direct matrix

LU factorisation, is re-cycled for several of the eigenproblems in the

sequence [103].
The example shown in Fig. 3.13 takes approximately 24 hours

(86'186 seconds) to compute 78 bias points and requires a total of 406

Gummel iterations for this. The preconditioner is recomputed only 38

times and re-cycled in the remaining iterations. The time to compute

a Gummel iteration is about 220 seconds on average: 160 seconds

are spent on the electro-thermal problem and 60 seconds on the opti-
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|VCSEL Structurel

Solve Optical Problem

(JDQZ)

Solve Electro-Thermal Problem

(Newton)

Increase bias

reduce step

Terminate

Figure 3.12: Flow chart describes procedure for self-consistent coupled

electro-thermo-optical simulation as implemented in DESSIS.
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Figure 3.13: Gummel iteration history for self-consistent coupled

electro-thermo-optical simulation.
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cal problem. Computing the preconditioner once takes approximately
120 seconds, and solving the optical problem with a given precondi¬
tioner 50 seconds. Therefore, if the preconditioner was computed in

every Gummel iteration an approximate run time of 406 • (160 + 120

+ 50) = 134'000 seconds would result. This translates into a time

saving of around 35% if the preconditioner is re-cycled.
It was already mentioned in the introduction of Ch. 3 that the

complexity of the non-linear system of equations Eq. (3.39) does not

permit resolving the VCSEL DBR stacks by a Scharfetter-Gummel

discretisation, due to excessive requirements in memory and compu¬

tation time. DBR stacks are, therefore, represented as homogeneous

regions with effective material parameters. In contrast, the DBR

stacks have to be resolved for the optical problem. Consequently, two

separate meshes are used: a coarse one («lO'OOO elements) for the

electro-thermal problem and a finer one («200'000 elements) for the

optical problem (see Figs. 3.1 and 3.2). Linear interpolation trans¬

lates variables between the two meshes [29]. It is beneficial for the

convergence properties of the Gummel iteration (3.51) to evaluate the

strongly coupled integral in Eq. (3.50) on the coarse electro-thermal

mesh. Evaluating the weakly coupled integral on the finer optical
mesh is unproblematic. Hence, the coarser electro-thermal mesh has

to be capable of resolving the optical field in the active region, so that

errors in 2uj"atr k originating from grid interpolation can be kept
low.



Chapter 4

Simulation Benchmarks

and Examples

Practical aspects of optical mode calculation in cylindrical microcav-

ities and coupled electro-thermo-optical VCSEL simulation are dis¬

cussed and illustrated.

Results computed with the LUMI mode solver package are com¬

pared with other methods. The spontaneous emission enhancement

for a microcavity device is calculated. It is shown how the latter result

can be applied to reliably find a target value to initialise the JDQZ

algorithm which is used to numerically compute optical modes (see
Sec. 3.3.2).

Static characteristics and modulation response are computed with

the electro-thermo-optical VCSEL simulator for various device types.

The VCSEL simulator is calibrated and assessed with measured data

of a commercial VCSEL device1. Finally, in order to demonstrate the

practical use of the simulator as a design tool, the task of finding a

device structure with maximum single mode emission power is per¬

formed2. All examples were computed on a HP/Compaq AlphaServer

1The VCSEL structure and measurements are provided by courtesy of Avalon

Photonics AG, Switzerland.

2The evaluations of the second order bilinear forms given in App. C were de¬

veloped by Oscar Chinellato (Institute of Computational Science, ETH Zürich)
and kindly provided to produce some of the results [104].

93
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ES45 1250 MHz / 32 GBytes, and computation times are given for

this machine using one processor.

4.1 Optics Solver

4.1.1 COST268 Benchmark

The LUMI optical mode solver described in Sec. 3.1 is assessed using

part of the COST268 VCSEL benchmark [35]. The VCSEL structure

shown in Fig. 4.1 has an antinode oxide aperture with variable radius.

It is discretised with approximately 84'000 finite elements, depending
on the radius of the oxide, using a mesh approximately 70 elements

wide and 1200 elements high. PML thickness is 0.5 um and the PML

layers are resolved using 16 finite elements in the direction perpendic¬
ular to the boundary. The mesh length in the VCSEL DBR mirrors

is A/32, where À is the wavelength in the material.

For linear finite elements this discretisation results in an eigenprob¬
lem of order 240'000, for second order finite elements of order 960'000.

Computation takes around 2 minutes and 2.0 GBytes for the linear

finite elements and 6 minutes and 8.5 GBytes for the second order

finite elements.

Figures 4.2 and 4.3 show how resonance wavelength and thresh¬

old gain for the fundamental and first order mode compare to other

vectorial models Green [24], CAMFR [69] and the effective frequency
EF [62, 105] scalar model. The results are computed with second or¬

der finite elements and are shown for the fundamental HE11 mode

(vectorial models), LP01 (scalar models), and first order TEOl mode

(vectorial models), LP 11 (scalar models), versus a variation in the

antinode oxide radius. For the first order vectorial mode TEOl was

chosen. Alternatively, TM01 or HE21 could have been taken since,

according to Sec. 2.2.6, all three modes degenerate to LP 11 in the

scalar limit.

The LUMI results agree well with data generated using the vecto¬

rial solvers Green and CAMFR. This is also confirmed by the conver¬

gence of second order elements for the 32/À discretisation determined

for the dielectric sphere in Fig. 3.7. As pointed out in [35], the scalar

solver EF does not take into account diffraction losses, and therefore
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Figure 4.1: COST268 benchmark AlGaAs/GaAs VCSEL structure,

25 DBR pairs at top and 29.5 DBR pairs at bottom.
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981

1 1.5 2 2.5 3 3.5 4

antinode oxide aperture radius [urn]

4.5

Figure 4.2: COST268 benchmark VCSEL structure. Resonance wave¬

length of the fundamental HEll (vectorial models) / LPOl (scalar
model) and first order mode TEOl (vectorial models) / LPll (scalar
model).
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predicts too optimistic threshold gains for small oxide radii.

Note that computations with linear finite elements perform equally
well for the threshold gain on the scale shown, but the resonance

wavelength is offset to shorter wavelengths by approximately 2 nm.

This corresponds to the 0.3% error predicted by Fig. 3.7 for the 30/À
discretisation with linear elements. Note that, in practice, this is not

a severe limitation.

In the AlGaAs/GaAs material system, at a nominal wavelength of

980 nm, control within a monolayer corresponds to a layer thickness

accuracy of ±0.5 nm 3. The refractive index n is 3.53 at this wave¬

length. Assuming no uncertainty in the Al content, this translates into

a control over the optical length of ±1.8 nm which corresponds to a

relative accuracy of ± 0.2% with respect to the nominal wavelength.
In reality, there is uncertainty in the Al content and the optical length
can typically only be reproduced within ±0.5% at 980 nm. That is,
the wavelength is expected to be accurate within ±5 nm at 980 nm.

Hence, linear elements or second order elements with a coarser mesh

are sufficiently accurate for many applications.
It has to be emphasised at this point that the flexibility of the

finite element method regarding the device structure comes at the

price of a higher computational effort compared to the mode expansion
method used in CAMFR. The latter is optimised to treat structures

of the type shown in Fig. 4.1. In practice, it turns out that the

additional flexibility is a requirement if different device types (Fig. 1.4)
and device features have to be covered in a coupled electro-thermo-

optical model.

4.1.2 Spontaneous Emission Enhancement in Mi¬

crocavity

Spontaneous emission due to radiative recombination of an electron

and a hole can be represented by the polarisation term K(r,t) in

Eq. (2.1), which is independent of the electric field. It enters the time

domain Maxwell wave equation (2.4) on the right hand side and re¬

appears as F(r,uj) in the frequency domain Maxwell wave equation

(2.20).

3The lattice constant of GaAs is 5.653 Â.
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By applying an expansion similar to Eq. (2.6) to K(r,t)

F{rJuj) = pQuj2K{rJuj) (4.1)

is obtained. Assume that the polarisation vector field is a point source

with a certain direction. It turns out that for a given amplitude of

K_(r,uj) the optical power radiated by the point source is dependent
on its environment. That is, the radiation power and, hence, the

spontaneous emission rate can be enhanced or inhibited with respect

to the situation in free space.

The matrix equation (3.27) is solved for a certain source distribu¬

tion in order to simulate this effect. The LUMI result was verified for

a point source between two PEC plates [106] in [107]. Here, the effect

is demonstrated for the microcavity in Fig. 3.1 and a point source lo¬

cated on the symmetry axis in the active region. The modification of

the power radiated relative to the situation without cavity is shown

in Fig. 4.4 for part of the spectrum for vertical gv(X) and horizon¬

tal polarisation gn{X) of the point source. The refractive index for

the space without the cavity is set to n = 3.5. The presence of the

HEll and HE12 modes have a noticeable effect on the radiation of the

horizontally polarised source. The vertically polarised source remains

almost unaffected. The radiated power is calculated by evaluating
the expression for dissipated power Eq. (2.69) in the entire simulation

domain.

The polarisation will normally be randomly oriented. Hence, due

to the rotational symmetry of the device structure, a weighted average

of the functions gv{X) and gh{X) [106]

9tot{X) = ^gv{X) + ^gh{X) (4.2)

must be used.

It is evident from Fig. 4.4 that the procedure of sweeping the

wavelength À of a point source and recording the cavity response can

be used to reliably find target values to initialise the JDQZ algorithm

presented in Sec. 3.3.2. The target values can easily be identified as

pronounced peaks in the modification of the radiated power. The

separation into functions gh{X) and gv(X) is particularly useful since

additional a priori knowledge on the direction of the radiation within

the VCSEL cavity can be exploited.
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4.2 Calibrated VCSEL Simulation

The example is based on an AlGaAs/GaAs 840 nm narrow oxide-

confined multi-quantum well (MQW) single mode VCSEL device struc¬

ture. The top emitting VCSEL device has a À cavity with an adjacent
AlAs oxidation layer positioned in an optical field minimum. The ox¬

ide confinement has a diameter smaller than 4 /im. The top DBR stack

is p doped and the bottom DBR stack n doped. At room temperature

the MQW emission wavelength is 847.4 nm and the wavelength of the

fundamental HEll cavity mode is 840.7 nm. The two wavelengths
coincide at a temperature of around 273 K. A device comparable to

the one used here is given in [108] and [109].
The VCSEL achieves single mode operation by a narrow oxide

aperture that causes additional diffractive losses. This effect is ac¬

curately rendered by the optical model employed in this work. The

electro-thermal and optical equations are solved self-consistently and

take into account the fundamental HEll and first order TEOl mode.

Figure 4.5 shows the evolution of the HEll and TEOl modal gain and

loss with respect to laser current. The modal loss of the TEOl mode

decreases with increasing current because the evolving thermal lens

pulls the mode towards the symmetry axis of the VCSEL and less

power is absorbed in the annular top metal contact as a consequence.

It follows that the correct threshold current for the first order mode

can only be reproduced by a comprehensive self-consistently coupled
model. In Figs. 4.6 and 4.7 excellent agreement between the simu¬

lated and measured DC terminal current, voltage, optical power, and

wavelength characteristics is demonstrated over the specified opera¬

tion range of the VCSEL. The simulation reproduces the threshold

of the HEll and TEOl modes at 0.40 mA and 1.75 mA that were

determined from measurements of the emission spectrum versus drive

current. The change in wavelength is due to the thermally induced

change in the refractive index of the resonator material. The char¬

acteristic mode splitting is clearly visible and indicates valid thermal

modeling of the VCSEL structure.

The electro-thermal model takes the first mirror pair of the DBR

stacks on either side of the À cavity into account in order to correctly
model the carrier injection into the cladding region. The remaining

portion of the DBR stacks is represented by a homogeneous region
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using an effective carrier mobility. The simulator parameters that

were used to perform the simulations in this example are listed in

Tabs. 4.1, 4.2 and 4.3.

Table 4.1 summarizes the optical parameters. The real parts of

the refractive indices n were obtained from the manufacturer of the

device. The relative changes with temperature are taken from [110].
The imaginary part k is a fitting parameter and is set to the given
value only in the extrinsic regions of the DBR. It is set to zero in the

intrinsic region.
In Tab. 4.2 the variable T is the local temperature in Kelvin, To is

300 K, and N is the doping concentration in cm-3. Bandgap shrinkage
due to temperature is only accounted for in the QW regions. The QW
electron and hole mobilities are set equal to the bulk carrier mobilities

in GaAs [111].
The imaginary part of the complex refractive index in Tab. 4.1,

the SRH, Auger recombination parameters and the DBR electron and

hole mobilities in Tab. 4.2 were used to match simulated and measured

results in Figs. 4.6 and 4.7.

The VCSEL structure is discretised with 14'526 finite elements
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X n 4 *k (extrinsic) n 4 *k (intrinsic)
1 dn Xf — 1

n d.T
IY

0.000

0.200

0.300

0.600

0.900

1.000

3.644 4* • 1-500 • 10-5

3.477 4* • 1-500 • IO"5

3.405 4* • 1-500 • IO-5

3.214 4* • 1-500 • IO"5

3.044 4* • 1-500 • IO-5

2.990 4* • 1-500 • IO-5

3.644 4* • 0.000

3.477 4* • 0.000

3.405 4* • 0.000

3.214 4* • 0.000

3.044 4* • 0.000

2.990 4* • 0.000

2.000 • IO-4

1.900 • IO"4

1.700 • IO-4

1.600 • IO"4

1.400 • IO-4

1.250 • IO-4

Table 4.1: Optical parameters for simulation of AlxGai_xAs at

840 nm used in the simulation.

bandgap:
x < 0.45 (dir.)
x > 0.45 (ind.)

shrinkage A.Eg

1.424 4 1.247- x

1.900 4 1-250 • x 4 0.143 • x2

5.5 40~41, TJ
K 225K+T

eV

eV

eV

[111]

[111]

[111]

eff. masses:

electron

heavy hole

light hole

^-^
= 0.067 4 0.083 • x

^^
= 0.500 4 0.290 • x

^^
= 0.087 4 0.063 • x

1

1

1

[26]

[26]

[26]

mobthty:
electron (DBR)
hole (DBR)
electron (QW)
hole (QW)

740

37

8000

400

cm2V-1s-1

cm2V-1s-1

cm2V-1s-1

cm2V-1s-1

-

QW capture

SRH T T
100

ps

ns

cm s—

cm s—

[17]
' srh ,e 'srh,h 1l j\

Auger (electrons)

Auger (holes)

1016cm"3

(0.19 4 1000.0^4 • IO-30

M.2 4 1000.0^-) • IO-30

-

thermal:

cond. (bulk)
cond. (DBR)
capacity

0.44- 1.79 • x 4 2.26 • x2

0.11

1.6

W K-^m"1

W K^cm"1

W K"1-1

[Ill]

[14]

[111]

Table 4.2: Electro-thermal parameters of AlxGai_xAs used in the

simulation. Last column shows references.

ambient temperature 300 K -

thermal contact surface resistances:

top contact

bottom contact

2.7-IO"6 K cm2W-1

2.7-IO"6 K cm2W-1

-

electrical contact resistances:

top contact

bottom contact

1 Q

1 n

-

Table 4.3: Thermal and electrical terminal parameters.
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for the electro-thermal mesh and 93'545 finite elements for the op¬

tical mesh. For the presented multi-mode computation 4.5 GBytes
of memory are required. Calculating the 60 bias points shown in

Fig. 4.6 self-consistently takes approximately 9 hours. In this case

approximately 200 'Newton + optical mode solve steps' have to be

performed. On average, a Newton step takes around 2 minutes and

an optical solve step around 30 seconds. The latter takes less time

than stated in Sec. 4.1.1 due to the continuation scheme and the pre¬

conditioner re-cycling employed (Sec. 3.3.3).

4.3 VCSEL Small Signal Modulation Re¬

sponse

Figure 4.8 shows the small signal modulation amplitude and phase

response of the device shown in Figs. 3.1 and 3.2 at different bias cur¬

rents. The modulation response is shown for the fundamental HEll

optical mode. The VCSEL structure has a thin oxide aperture with

rox = 2 am. at a field node position. The AlGaAs/GaAs material

system is employed with InGaAs quantum wells that emit at 980 nm.

Section 4.4 provides a detailed discussion of the device structure4. Its

current versus optical power characteristic is given in Fig 4.22.

All modulation responses show high damping behaviour even for

currents as low as 1.3 mA due to the parasitic effect of the thin ox¬

ide aperture and damping effects caused by a decrease in differential

gain. The general behaviour is essentially given by a second-order

low-pass response with a 40 dB per decade roll-off at the resonance

frequency. The 3dB cut off frequencies are at 3 GHz, 5 GHz, and

6 GHz, respectively.

Note that the device structure is not optimised for high modulation band¬

width.
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Figure 4.8: Small signal modulation amplitude and phase response at

different bias currents: 1.3 mA +, 2.9 mA o, 5.7 mA .

4.4 Optimising a VCSEL for Maximum

Single Mode Power

Single mode control is an important aspect in VCSEL design for a wide

range of applications. For instance, in order to minimise the pulse

dispersion in a fibre optic link, it is desirable to keep the spectrum

of the laser emission as narrow as possible and, therefore, to restrict

the emission ideally to a single mode at a given optical power level.

Sensing applications constitute an additional field where single mode

control is essential. Pure single mode operation is needed in this case

to achieve ultimate spectral detection resolution.

Section 4.4.1 gives a detailed description of the VCSEL structure

and the design parameters in question. Two design concepts that

are expected to enhance the single mode behaviour of the VCSEL

are described: one of them uses a metallic absorber and the other

employs an anti-resonant structure. The effectiveness of both metallic

absorber and anti-resonant structure is significantly compromised by
an intricate interplay of electronic, thermal and optical effects. In

conclusion, the proposed design task can only be handled by a 2D

model that takes these effects into account in a self-consistent manner.
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thickness [nm] material

air air

28 period DBR 69.49 GaAs

79.63 Al0 sGa0 2As

oxide aperture

69.49 GaAs

49.63-x Al0 sGa0 2As
30.00 AlAs r < rox

30.00 A1203 r > rox

x Alo sGao 2AS

À cavity

136.49 GaAs

8.00 In0 2oGa0 soAs
136.49 GaAs

31.5 period DBR 69.49 Alo sGa0 2As
79.63 GaAs

substrate GaAs

position X

1 49.63

2 33.09

3 16.54

4 0.00

Table 4.4: Material composition and thicknesses of epitaxial layers in

basic VCSEL device structure.

The two device concepts are investigated and compared in Sec. 4.4.2.

4.4.1 VCSEL Device Structure

The device structure that will be investigated is based on the same

VCSEL benchmark [35] that was already presented in Sec. 4.1.1. Since

this is a purely optical benchmark it had to be augmented by addi¬

tional electronic specifications.
The structure is detailed in Fig. 4.9 and Tab. 4.4. The VCSEL

is designed in the AlGaAs/GaAs material system with an InGaAs

active region that emits at 980 nm. It is an etched mesa structure

with an AI2O3 aperture. The A cavity at the centre of the device is

enclosed with a bottom A/4 DBR with 31.5 mirror pairs and a top

DBR with 28 mirror pairs. A 30 nm thick AlAs layer can be placed
in 4 different positions in the vertical direction inside the A/4 layer in

the top DBR closest to the cavity (see bottom inset in Fig. 4.9). This

AlAs layer can be oxidized to an arbitrary lateral depth. In this way

a low refractive index, insulating aperture for both the optical field

and the electrical current is formed. The active region is given by
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a single strained Ino.20Gao.80As 8 nm thick quantum well embedded

in GaAs barriers at the centre of the A cavity. The anode side is

connected with an intra-cavity contact. The top DBR can therefore

be left undoped and the free carrier absorption kept to a minimum.

The intrinsic region is assumed p-doped at IO17 cm-3. The current

spreading layer next to the anode is p-doped with 2 • IO18 cm-3 and

the cathode side n-doped with 2 • IO18 cm-3.

Two variants of the basic VCSEL structure described above will

be investigated in Sec. 4.4.2. One variant has a metallic absorber

composed of 100 nm Pt and 100 nm Au placed on top of the anode

side DBR. The metallic absorber has an aperture with a given radius.

In the other variant the top layer of the anode DBR stack is 3A/4
thick instead of the original A/4. A surface relief is etched into the

top layer. This forms an off-centre anti-resonant structure outside

a given radius. The thicker top layer is used to accommodate the

surface relief without exposing any aluminium containing layers to

air. This would lead to the formation of an unwanted oxide layer and

deteriorate the optical properties of the anti-resonant structure.

The following design parameters will be varied in the course of

finding a device structure with maximum single mode power:

• vertical position and radius rox of AI2O3 aperture

• radius of aperture rm in metallic absorber

• depth te and radius re of surface relief

4.4.2 Design Tutorial

Simulations of the device structure shown in Fig. 4.9 are performed

using the VCSEL simulator and the results discussed. The tutorial is

arranged step by step. First, the properties of the cold cavity opti¬
cal resonator are investigated in detail. The effect of the position of

the oxide aperture in the cavity is analysed. Building onto this basic

structure, the effect of two different design concepts aiming at enhanc¬

ing the single mode behaviour of the original device are assessed. The

first concept uses a metallic absorber and the second one an integrated
anti-resonant structure. Once some familiarity has been reached with

the cold cavity problem, the performance of the different approaches
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are compared in a self-consistently coupled electro-thermo-optical sim¬

ulation.

Single Mode Control in VCSEL Devices

Two basic categories of single mode control strategies can be distin¬

guished. The first category comprises methods that employ some sort

of lateral optical guide to cut off higher order modes. Methods of the

second category introduce mode-selective loss or gain by integrating
filter structures in the resonant cavity.

Methods belonging to the first category are based on the fact that

the existence of higher order modes depends critically on the lateral

geometrical dimensions of the optical guide. For example, VCSEL

devices with oxide apertures below a critical radius will operate in

the fundamental HEll mode and will no longer support higher or¬

der modes. Unfortunately, rather narrow oxide apertures are required
for this, increasing the electrical resistance of the device. As a con¬

sequence, the maximum single mode output power is often limited

by the increased heating. Additionally, narrow oxide apertures are a

device reliability hazard and can cause significant optical scattering
losses with respect to the total optical losses of the cavity.

The second category introduces some kind of integrated mode-

selective filtering. Several approaches have been described early in,

for instance, [112] and more recently in [113, 114, 115]. This approach
relaxes the requirements with respect to the lateral mode confinement.

That is, larger oxide apertures can be used and therefore higher laser

currents without causing excessive heating. One idea is to tailor the

current injection in such a way that the radial optical gain profile is

restricted to a small region at the centre of the device where the fun¬

damental mode sits. A method to direct current injection is proton

implantation. The other approach is based on deliberately introduc¬

ing losses to higher order modes. This can easily be done by using

ring shaped metallic absorber apertures. As the fundamental mode

is the only one with its optical intensity confined to the centre of the

device, it will experience less absorption in the metal than all other

higher order modes. Firstly, this leads to increased losses for the un¬

wanted modes, and secondly to some screening of radiation coming
from higher order modes once they turn on. An even more efficient



110 CHAPTER 4. BENCHMARKS AND EXAMPLES

technique introduces a relief by etching the top surface of the optical
resonator. By choosing the depth of this relief appropriately higher
order modes can be made to reflect out-of-phase from the etched semi¬

conductor air interface. In this way losses for higher order modes can

be increased substantially.

VCSEL Optical Modes

The properties of the cold cavity optical resonator are investigated
in detail. Numerical experiments comparing results for different mesh

densities using second order finite elements and verification with other

methods [103] suggest that the error in the results shown in Figs. 4.10-

4.13 lies within ±0.2 nm for the wavelength and ±1% for the quality
factor. The quality factor is defined as [44]

Q» = £, (4.3)

where uj'k is the angular velocity and 2uj'k is the modal rate of change
of the electromagnetic energy in mode k.

Figures 4.10 and 4.11 show an analysis of the effect of the vertical

and lateral oxide aperture position on the wavelength and the qual¬

ity factor of the fundamental HEll and the first order TEOl optical
mode. The optical simulation parameters assuming To = 300 K, are

summarized in Tab. 4.5 and will be used throughout the entire tu¬

torial section. The intracavity contact design allows the anode side

mirror to be left undoped. Negligible absorption is therefore assumed

in the optical resonator material, except for the active and the metal

absorber regions. Optical gain and absorption in the active region will

be calculated and taken into account in the coupled electro-thermo-

optical simulation and are not considered in this section.

If the oxide aperture is moved from the node position, where the

electric field has an intensity minimum, to the antinode position,

where it has a maximum, the quality factor decreases sharply for

apertures with a small radius. For apertures with a large radius the

quality factor remains almost the same and only the wavelength shifts

to lower values. The strong decrease in the quality factor for apertures

at or close to the antinode position is caused by the rapid increase of
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Figure 4.10: Wavelengths and quality factors for HEll mode. Values

are plotted for different oxide aperture radii rox and different oxide

aperture positions: position 1 ±, position 2 o, position 3 , position
4 O.

material n 4 in an K"1

air 1 0 0 0

Au 0 20 4 «5 50 0 0

Pt 2 99 4 «5 17 0 0

GaAs 3 53 2 0 10-4

Alo sGao 2As 3 08 2 0 10"4

AlAs 2 95 1 2 10-4

A1203 1 60 0 0

Ino 2oGao so As 3 82 2 0 10-4

Table 4.5: Complex refractive indices and temperature coefficients.
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Figure 4.11: Wavelengths and quality factors for TEOl mode. Values

are plotted for different oxide aperture radii rox and different oxide

aperture positions: position 1 ±, position 2 o, position 3 , position 4

O. Please note that TEOl modes are cut off for oxide apertures with

rox = 1 urn at positions 2 and 3, and furthermore for rox = 1 urn, 2

urn at position 4.
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scattering losses that the optical field experiences for narrow aperture

radii.

The strong confinement exerted by such an aperture even leads

to cutting off the TEOl mode in some cases, as shown in Fig. 4.11.

This effect can, in fact, be used to obtain single mode operation of

a VCSEL device. However, this approach is usually compromised by
excessive heating caused by current flow through a narrow aperture.

Additionally, narrow antinode apertures cause excessive optical losses

and hence results in VCSEL devices with high threshold currents and

poor efficiency. The remainder of this tutorial will therefore focus

on oxide apertures in the node position, which is the technologically
relevant case.

Similarly, the properties of the enhancements to the original de¬

sign are investigated. The geometry of the two variants, metallic ab¬

sorber and integrated anti-resonant structure, is described in Fig. 4.9.

Figures 4.12-4.15 show the effect of varying the radius of the oxide

aperture versus either the radius of the metal aperture or the radius

of the edge of the surface relief. For reference, data of the original
structure with an oxide aperture at position 1 (node) is also shown.

The key feature is that the quality factor not only decreases for

narrow oxide apertures, as was the case in the original structure, but

also for larger apertures from a certain radius onwards. This is due to

the additional loss caused by either increased absorption in the metal

or out-of-phase reflection from the etched semiconductor air interface

for part of the optical mode. The affected portion of the optical mode

is determined by the lateral extent of the structure causing that loss.

Therefore, as the radii rm (metallic absorber) and re (anti-resonant
structure) are decreased the effect becomes more pronounced. How¬

ever, decreasing rm and re causes the quality factor to decrease in

general. Furthermore, the anti-resonant structure has the stronger

effect than the metallic absorber.

For the cold cavity an interesting figure of merit is the relative

difference between the quality factors of the HEll and TEOl optical
modes. Maximising this figure will yield a device structure that ex¬

hibits maximal discrimination between HEll and TEOl optical modes.

Although investigating the cold cavity is a necessary initial design
task to be carried out, it is by no means sufficient to optimise a VC¬

SEL structure for maximum single mode power emission because it



114 CHAPTER 4. BENCHMARKS AND EXAMPLES

60'000

979 980

wavelength [nm]

981

Figure 4.12: Wavelengths and quality factors for HEll mode for an

oxide aperture at position 1 (node). Values are plotted for different

oxide aperture radii rox versus radii rm of the metallic absorber: orig¬
inal structure ± (no metallic absorber), rm = 1.5 urn o, rm = 2.0 urn

, rm
= 2.5 urn O, rm = 3.0 urn A, rm = 3.5 urn *.
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Figure 4.13: Wavelengths and quality factors for TEOl mode. Oxide

aperture at position 1 (node). Values are plotted for different oxide

aperture radii rox versus radii rm of the metallic absorber: original
structure ± (no metallic absorber), rm = 1.5 urn o, rm = 2.0 urn ,

rm = 2.5 urn O, rm = 3.0 urn A, rm = 3.5 urn *.
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Figure 4.14: Wavelengths and quality factors for HEll mode. Oxide

aperture at position 1 (node). Values are plotted for different oxide

aperture radii rox versus radii re of the surface relief: original structure

± (no surface relief), re = 1.5 urn o, re = 2.0 urn , re = 2.5 urn O,

re = 3.0 urn A, re = 3.5 urn *.
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Figure 4.15: Wavelengths and quality factors for TEOl mode. Oxide

aperture at position 1 (node). Values are plotted for different oxide

aperture radii rox versus radii re of the surface relief: original structure

± (no surface relief), re = 1.5 urn o, re = 2.0 urn , re = 2.5 urn O,

re = 3.0 urn A, re = 3.5 urn *.
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neglects the interplay between electronic, thermal, and optical effects.

In principle, the entire parameter space would have to be scanned

by coupled electro-thermo-optical simulations. However, in order to

keep the problem manageable within the framework of this tutorial

the design task will focus on finding an optimum radius rox of the ox¬

ide aperture for a given geometry of the anti-resonant structure and

metallic absorber. This is an interesting exercise because, by changing
the radius of the aperture, the temperature and optical gain profiles
and therefore the interaction between electronic, thermal, and optical
effects can be adjusted. The nominal radius of the oxide aperture is

set at rox = 4.0 urn for additional cold cavity simulations that were

performed to determine re and te for the surface relief and rm for the

metallic absorber. The relative difference between the quality factors

of the HEll and TEOl optical modes was maximised for rm and re

between 2.5 urn and 3.5 urn and a depth te of 72 nm. In the following,

rm of the metallic absorber will be set to 2.5 urn and re = 2.5 urn,

te = 72 nm will be chosen for the surface relief. The values for re

and rm are deliberately set to values at the lower end of the range

obtained from the cold cavity simulations since this is expected to ap¬

proximately compensate the shift of the optical mode profiles towards

the symmetry axis of the VCSEL device due to thermal lensing.

Figure 4.16 compares the discrimination between HEll and TEOl

optical modes for the basic VCSEL structure and the enhanced vari¬

ants versus the radius rox of the oxide aperture. In Fig. 4.17 the HEll

output coupling efficiency is shown for the same parameter variation.

The output coupling efficiency describes the optical power radiated

through the top of the VCSEL structure with respect to the total op¬

tical loss of the resonator comprising material and radiation loss. An

output coupling efficiency of 1.0 would correspond to the ideal case in

which all optical power generated would be coupled through the top

of the VCSEL device.

Figure 4.16 shows that the anti-resonant structure provides the

stronger enhancement of the mode discrimination than the metallic

absorber. The latter is only slightly superior to the enhancement the

basic structure provides already. Moreover, in all cases a maximum

mode discrimination is achieved for an rox between 1.0 urn and 2.0 urn.

In Fig. 4.17 it can be seen that for the basic structure a larger radius

rox leads to less scattering losses and, therefore, to a higher output
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Figure 4.16: Relative difference between the quality factors of the

HEll and TEOl optical modes for the basic VCSEL structure and

the enhanced structures with surface relief and metallic absorber.
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coupling efficiency. Figure 4.17 also reveals the main disadvantage of

the metallic absorber: the output coupling efficiency is lower than in

the other two variants due to the screening effect that the metal layer
exhibits. The HEll mode is increasingly affected for rox > 2.5 urn.

Compared to the basic structure for narrow rox some scattered light
that is normally radiated through the top is also absorbed by the metal

layer. The anti-resonant structure shows the opposite behaviour. The

larger rox the higher the output coupling efficiency. Furthermore, for

narrow rox an increase in efficiency is observed.

In the subsequent coupled electro-thermo-optical simulations it is

expected that device structures that offer the best compromise be¬

tween mode discrimination and output coupling efficiency will be can¬

didates for maximum single mode power emission.

Coupled Electro-Thermo-Optical Simulation

The parameters used for the coupled electro-thermo-optical simula¬

tions are summarized in Tabs. 4.5, 4.6, 4.7 and 4.8.

Figure 4.18 shows the simulation results for a VCSEL structure

with surface relief and rox = 3 urn. The roll-over at high currents is

mainly caused by increased Auger recombination as a consequence of

self-heating. The curves marked with circles are from a self-consistent

electro-thermo-optical simulation. The emission is single mode up to

a current of 11.5 mA when the TEOl mode starts to läse. If the optical

problem is not solved self-consistently, but is only computed once at

the beginning of a simulation run, the curves marked with crosses are

obtained. In this case the VCSEL device remains single mode over

the entire operation range.

The reason for the difference in the two results can be gathered
from Fig. 4.19. The modal optical gain contributed by the active

region and the loss (radiation and material loss) contributed by the

remaining optical resonator are plotted for the HEll and the TEOl

mode. The self-consistent result is shown at the top of Fig. 4.19 and

the non-self-consistent one at the bottom.

For each mode the modal gain generated by the active region rises

up to the point where it compensates the loss of the remaining op¬

tical resonator. At this point the corresponding mode starts to läse.

Clearly, heating effects lead to a perturbation of the optical problem
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Table 4.6: Parameters for AlxGai_xAs. Last column shows reference.
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Table 4.7: Parameters for In0.2Ga0.sAs. Last column shows reference.
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ambient temperature 300 K -

thermal contact surface resistances:

top contact

bottom contact

0.1 K cm2W-1

0.01 K cm2W_1

-

electrical contact resistances:

top contact

bottom contact

1 n

1 fl

-

Table 4.8: Thermal and electrical terminal parameters.

8 12

current [mA]

Figure 4.18: Current voltage and current optical power characterstics

for VCSEL structure with surface relief and rox = 3 urn. Curves with

+ show result if optical problem is solved only once at the beginning of

the simulation. Curves with o show results for self-consistent electro-

thermo-optical solution.
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is solved only once.



122 CHAPTER 4. BENCHMARKS AND EXAMPLES

so that significant deviations, as shown in Figs. 4.18 and 4.19, arise.

These deviations can be as severe as causing the complete absence of

the threshold of a second order mode. It is therefore essential that

a self-consistent electro-thermo-optical model is employed for the op¬

timisation task that is envisaged in this tutorial. Most heating in

the device can be attributed to Joule heating. Further contributions

come from Thomson/Peltier heat and recombination heat in the À

cavity. Heating affects the refractive index according to Eq. (3.9) and

reduces scattering losses. Via the effect of thermal lensing, which is

dependent on the the design of the VCSEL structure, the material

absorption and gain experienced by the optical mode is altered.

Further to the results in Fig. 4.18 hole current, total heat power,

temperature, refractive index close to the active region, normalised

intensity, hole density, optical material gain in the active region, and

wavelength tuning of the HEll and TEOl modes, and the maximum

of the optical gain are given in Figs. 4.20 and 4.21, respectively.
Current crowding at the oxide aperture rox = 3 urn is visible in Fig.
4.20. Strong thermal lensing and spatial hole burning can be observed

in Fig. 4.21 respectively.

Single-Mode Optimisation Using Metallic Absorbers and Anti-

Resonant Structures

In this section an optimum radius rox of the oxide aperture is de¬

termined using self-consistent simulations. The results are shown in

Fig. 4.22 for the original structure, in Fig. 4.23 for the metallic ab¬

sorber, and in Fig. 4.245 for the surface relief enhancement of the

optical resonator.

It is obvious that the VCSEL with the anti-resonant structure

beats the other candidates by far: 4.4 mW single mode power is

achieved for an oxide aperture of 4 urn compared to 2.1 mW for the

best original VCSEL structure with an aperture of 2 urn. The best

VCSEL device structure with the metallic absorber reaches 2.3 mW

with an aperture of 2 urn and performs only slightly better than the

best original structure.

For rox = 1 Mm all devices show pure single mode operation and

5Please note that the scale changes in Fig. 4.24.
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Figure 4.20: Hole current density, total heat power density, temper¬

ature, and relative refractive index distributions in a plane at 50 nm

from the quantum well on the anode side. Distributions are shown at

different terminal currents for a VCSEL structure with surface relief

and rox = 3 urn
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Figure 4.22: Optical power versus current for HEll and TEOl modes.

Values are plotted for different oxide aperture radii rox.
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current [mA]

Figure 4.23: Optical power versus current for HEll and TEOl modes,

rm of the metallic absorber is set to 2.5 urn. Values are plotted for

different oxide aperture radii rox.
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Figure 4.24: Optical power versus current for HEll and TEOl modes,

re of the surface relief is set to 2.5 urn and te = 72 nm. Values are

plotted for different oxide aperture radii rox.

maximum single mode power is limited by self-heating. By increasing
the aperture radius self-heating can be lowered and higher power levels

can be reached before roll-over occurs. At the same time higher order

modes are no longer cut off and consequently limit the maximum sin¬

gle mode power. The larger the aperture the lower the discrimination

between the fundamental and higher order modes and the lower the

maximum single mode power becomes.

The enhanced structures manage to push the TEOl threshold to

higher values compared to the original structure, due to the higher
discrimination between HEll and TEOl modes. In the case of the

metallic absorber with rox = 4 urn in Fig. 4.23, 4 mA are reached

compared to 2.1 mA in Fig. 4.22. Unfortunately, this effect is not

exploited effectively by the metallic absorber. Although TEOl thresh¬

olds are now higher, the absorber increasingly screens radiation as

the oxide aperture is made larger. This has already been observed in

Fig. 4.17 and is seen here to gradually lower the slope of the current

versus optical power curve in Fig. 4.23 and compromise the maximum

single mode power that can be reached.

The anti-resonant structure (Fig. 4.24) pushes the TEOl threshold
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to even higher values because the optical resonator offers the highest
discrimination between HEll and TEOl modes of the three design
variants. For oxide apertures with 4 urn and 5 urn TEOl thresholds are

not present at all. Here, the roll-over has an additional contribution

from lateral carrier leakage [33] that originates from the misalignment
of the HEll mode with the optical gain profile. Figure 4.21 reveals

strong spatial hole burning in the optical gain profile at higher currents

and the effect of thermal lensing on the optical modes. The overlap
of the optical gain profile with the HEll mode determines the spatial

profile of the current sunk by stimulated emission in the HEll mode.

If that profile does not match the one given by the current injection,
the optical mode will start to deplete carriers in the active region.
In order to maintain the HEll modal gain, additional current has to

be provided to counterbalance the carrier depletion. This additional

current cannot be turned into photons and is therefore lost as lateral

leakage current. This leads to the roll-over observed in Fig. 4.24 for

larger oxide apertures.

Conclusion

The task was to optimise a device structure to achieve maximum

single mode emission. The exercise, although not carried out exhaus¬

tively, gives essential insights into designing a VCSEL device for the

envisaged goal. Only marginal improvements are possible with the

proposed metallic absorber structure. It only slightly improves mode

discrimination over the original structure and is limited by its inher¬

ently low HEll output coupling efficiency. In contrast, high mode

discrimination and high HEll output coupling efficiencies are possi¬

ble using an anti-resonant structure. The necessity of an additional

tightly controlled masking and etch step to fabricate a surface relief

make this the more expensive solution. A further increase in single
mode power would be expected if the current injection could be con¬

centrated further to the symmetry axis of the device without affecting
the optical field.





Chapter 5

Conclusion and Outlook

5.1 Major Results

A comprehensive VCSEL device model and its software implementa¬
tion in a simulator was presented. The input parameters to the model

equations are measurable physical material parameters and the topo¬

logy of the device structure, as opposed to the effective parameters

of a simple rate equation model. The spatially resolved electrical

potential, electron and hole densities, local temperature, mean opti¬

cal intensity, and derived secondary quantities provide the user with

valuable insights required for device design and optimisation. Ad¬

ditionally, electrical, thermal and optical terminal quantities can be

computed and compared to measured characteristics.

It was shown that the self-consistent solution of the electro-thermal

and optical problem is mandatory for VCSEL simulation. It was

recognised that the Gummel iteration procedure employed for this is

only useful in practice if solutions to Maxwell's vectorial wave equation

can be computed efficiently. For this purpose a method was devised

based on a continuation scheme. This allows, for the first time, that

Maxwell's vectorial wave equation - for VCSELs with realistic struc¬

tures and optical sizes - subject to an open boundary imposed by

PML, can be solved self-consistently with the electro-thermal device

equations.

129
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The accuracy of the method to compute the optical modes was

assessed. Further to this, the practical relevance of the simulator

software as a design tool for the analysis and optimisation of VCSEL

device structures was demonstrated.

5.2 Further Work

Important future work is summarized. Some suggestions relate to

improvements of the present model and others to extending the capa¬

bilities of the simulator.

• Improve optical gain model with k p bandstructure calculation

of varying order, and including many-body effects [20, 30, 29].

• Introduce electron and hole temperature different from the lat¬

tice temperature for carriers in the quantum well [18].

• Verify dynamic response (modulation and transient) of present

model with measurements. In particular, verify quantum well

capture and escape rate model.

• Devise relative intensity noise model based on small signal mod¬

ulation response feature of present simulator.

• Introduce higher polynomial order (> second order) finite ele¬

ments for expansion of Maxwell's vectorial wave equation.

• Optimise preconditioning of Jacobi-Davidson QZ algorithm used

to compute eigenpairs of Maxwell's vectorial wave equation (mul¬
ti-level preconditioning).

Investigations in this work indicate that a better trade-off between

computational complexity and accuracy of the solution can be reached

for higher or mixed element polynomial orders.

Higher order finite elements and optimisation of preconditioning
are the preliminaries for a true 3D formulation and solution of the

electro-thermo-optical problem using finite elements. Photonic crystal

optical resonators and other circularly non-symmetric cavities could

then be analysed.



Appendix A

Photon Rate Equation

In the following the important steps in deriving the photon rate equa¬

tions and the accompanying eigenproblem that yields a useful expan¬

sion of the electromagnetic field into modes will be reviewed for the

VCSEL case. The detailed development is in [21].
In a dielectric medium with negligible magnetic properties the con¬

stitutive equations are

D(r, t) = e0E{r, t) + P{r,t) + K(r, t) (A.l)

B{r,t) = u0H{r,t) (A.2)

where P(r,t), K(r,t) are the polarisation terms, E(r,t) is the elec¬

tric, H(r, t) the magnetic field, £q and uq are the vacuum permittivity
and permeability, respectively.

The polarisation P(r,t) is the response of the active medium to

the electric field. If a linear response is assumed it is obtained by
convolution of the electric field with a response function

oo

P{r, t)=e0J X{r,t, r)E{r,t - r)dr (A.3)

o

where x(r?^ T) 1S the first order polarisation impulse response of the

medium and causal. It is assumed quasi time-translationally invari¬

ant. Therefore, x{r-<t-<T) 1S time-translationally invariant on the time
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scale of the polarisation r but varies slowly on the time scale t. Fur¬

thermore, K(r,t) represents the contribution to D(r,t) due to spon¬

taneous emission and is therefore independent of the electric field.

Using Maxwell's equations in the time-domain, with charge density
and current set to zero1, and making use of the constitutive equations

(A.l and A.2) yields the wave equation

1 Pl'2 f)2

V x [V x E{r,t)\ + -2^2 [er{r,t,r) * E{r,t-r)\ = -u0-^K{r,t)
(A.4)

where the star denotes convolution in r and

er(r,t,r) =ô(t) +X(r,t,r). (A.5)

The Fourier transform of Eq. (A.5)

oo

£r(r,t,uj)= £r(r,t,T)eiùJTdr (A.6)

o

is the frequency dependent dielectric function in a medium dependent
on time t due to the modulation of the density of electron hole pairs2

The electric field is expanded into modes as follows

N

E(r,t) = J2^(t)Ek(r,t)e-^>'^dT+c.c. (A.7)
fe=i

with the complex-valued scalar coefficient ak(t), and the real-valued

scalar function uj'k (t) given by

^W=<nom+MW (A-8)

where uj'k nom is the nominal optical frequency and Auj'k(t) the fre¬

quency shift or chirp of term k in the expansion (A.7). A useful choice

for oj'k{t) and Ek(r,t) will be made in due course. Equation (A.7) is

1 Current flow and formation of space charge are negligible at optical frequen¬

cies; there is only local polarisation of the dielectric medium.

2Using this definition of the Fourier transform, a local gain or loss results in a

local negative or positive imaginary part of er(r, t, uj), respectively.
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inserted into Eq. (A.4) and only first order terms of the time derivative

on the left hand side of Eq. (A.4) are taken into account3

£ -*/o wfe(T)d7

V x V x Ek(r,t) +
<oï(t)

£r{r,t,uJk)Ek{r,t) ak(t)

+
2tuj'k(t)

F(r,t)

<4W d

2 duj

(A.9)

7£r(r,t,ujk) +£r(r,t,ujk] Ek(r,t)àk(t)

where F(r,t) is equal to the right hand side of the wave equation

(A.4).
Furthermore, E_k(r,t) are chosen to satisfy the following eigen¬

problem

Vx(Vx) + ^er(r,t,w];;
Cr

Ek(r,t)
(A.10)

= uJk'(t)ër(r,t,uJk)Ek(r,t)

at each point in time t with

£r(r, t, UJh,
2tuj'k(t)

Cr 2 duj
7£r(r,t,ujk) +£r(r,t,ujk) (A.n;

where 0Jk{t) is the eigenvalue which has the unit of a rate. Because

optical gain and loss are present in the dielectric function, Eq. (A. 10) is

a generalised, non-Hermitian, complex symmetric eigenproblem. For

the eigenpairs of Eq. (A. 10) the orthogonality relation

(Efc(r,t),^(r,t))e>;o= j"jJEfe(r,£) • e?r(r, t,^0)^(r, t) dy = 8%3

(A.12)
holds. The frequency oj'k{t) can be determined by solving Eq. (A. 10)
and requiring 0Jk{t) to be real-valued for every t.

3If higher order terms are included at this point one arrives at a coupled set of

photon rate equations for the non-adiabatic regime [21] which will not be discussed

here.
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Replacing the expression in the first round bracket of Eq. (A.9)
with Eq. (A. 10) multiplying from the left by

elSZ«',d'r)d'rEi(r,t) (A.13)

and integrating transforms Eq. (A.9), due to the orthogonality prop¬

erty Eq. (A.12), into a set of decoupled scalar rate equations

uj'l'(t)-al(t) + jtal(t) = fl(t) (A. 14)

that describe the time evolution of the electric field. A rate equation
is obtained for each term of the expansion (A.7), with

ft(t) = f f f E^(r,t) F(r,t)dV etti"^T)dT. (A.15)

v

Accounting for the stochastic nature of the spontaneous emission

source term F(r,t) the photon rate equations for the time evolution

of electro-magnetic energy Si (t) in mode I

ftSl(t) = -2uj'l'(t)-Sl(t) + Rr(t) (A.16)

can be derived from Eqs. (A. 14), using field-field correlation functions

and the Wiener-Khinchine theorem. The latter relates correlation

functions of fields to energy spectrum densities [21] via the Fourier

transform. The term R^p is given by Eq. 2.17.

It follows that in the adiabatic approximation Eq. (A.4) can be

transformed into a set of decoupled scalar differential equations (A.16).
The variables of these equations are co-ordinates on a basis given by
the eigenvectors of eigenproblem (A. 10).
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Perfectly Matched

Layers

The diagonal tensor A for cylindrical coordinates is given

A
[Ap 0 0"

0 A^ 0 =

0 0 A*J

EäjL 0
P sp

0 £s?s

0

0

P Sz
.

The complex spatial variable p is defined as

P = Po + sp (p') dp

PO

A quadratic profile is used

fl 0 <p<pi

sp(p)={,^. fP-PI\2 ^

l+i8»{ZIdBZ) z<zi*

Sz (z) = < 1 zIjb < z < pIjt

1 +is0
Z-ZTt

1T
Z > ZTt

135



136 APPENDIX B. PERFECTLY MATCHED LAYERS

with pi, zj^j zj^t the coordinates of the side, bottom, and top bound¬

ary Tj of region I. Moreover, dR, dß, and dr are the thicknesses of

the respective PML layers, and so the PML absorption parameter.

The complex spatial variable p is then given by

p 0 < p < pi

P={
,

.
(p-pj)3

^
(B-5)

p + is0yH £J p>pi-



Appendix C

Hybrid Edge-Node
Finite Element

Expansion Functions

The element basis functions are illustrated in Figs. C.l - C.4. For the

triangles the simplex coordinates £1 = 1 — p
—

z, (2 = P, and (3 = z are

introduced. The first order triangular node and edge element basis

functions are defined as [84]

N? (p, z) = C (C.l)

Nf (p, z) = CVtC+i " C+iVtC (C.2)

and for second order as

N^+3(p,z) = 4C+iCt (C.3)

Nf+3 (P, z) = C.VtC+i + C+i VtC. (C.4)

Nf+6 (p, z) = C+2 (CVtC+i " C+i VtC.) (C.5)

(C.6)

with index i in Çt wrapping modulo 3. Note Ng" can be formed as a

linear combination of N^ and Nf\ It may therefore be discarded.
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Ni(p,z) N|(p,z) n|(p,z)

Figure C.l: First order node and edge finite element basis functions

for triangle.

The simplex coordinates are redefined (i = 1 — p, (2 = 1 — z,

C3 = p, and (4 = z for rectangles. The rectangular node and edge
element basis functions read

N?(p,z)=ÇiÇi+1 (C.7)

N?(p,*) = -C<+iVtC< (C.8)

for first order and

4C<CmC<+2 (C9)

I6C1C2C3C4 (CIO)

(1-20)C,+iVtO (C.ll)

CiCi+iCi+2^Td+i (C12)

for second order. The index i in Q is assumed to wrap modulo 4.

The integrals in Eqs. (3.16-3.18) over triangular and rectangular
domains in p, cj), z are transformed to Q coordinates with i = 1... 3

for triangles and i = 1... 4 for rectangles. The transformed integrals
are evaluated numerically using Gauss quadrature [84].

N?+4 (P, z)

N9R (p, z)

Nf+4 (P, z)

Nf+8 (p, z)
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Figure C.2: Second order node and edge finite element basis functions

for triangle.

N *(p,z) N 2e(p,z) N ,e(p,z) N|(p,z)

Figure C.3: First order node and edge finite element basis functions

for rectangle.
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Figure C.4: Second order node and edge finite element basis functions

for rectangle.



Appendix D

List of Symbols

B Magnetic flux density
B Pattern of magnetic flux density, frequency domain (complex)
CO Vacuum speed of light

cth Total heat capacity
/^cap Carrier capture rate

D Electric displacement flux density
D Pattern of electric displacement, frequency domain (complex)
e Elementary charge
E Energy

E9 Band gap

tc j tv Conduction and valence band edge

Ep,n, Ep,p Quasi Fermi energies
E Electric field

E Electric field pattern, frequency domain (complex)
fCJV Distribution function for electrons and holes

f Frequency
G Modal optical gain
G Green's function, frequency domain (complex)
H Magnetic field

H Magnetic field pattern, frequency domain (complex)
h Reduced Planck constant

i Imaginary unit, i2 = — 1

Im [... ] Imaginary part of a complex number

j Current density
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K Constant polarisation
k Wave vector

k Wave number, k = \k\
kß Boltzmann constant

L Modal optical loss

me, nth Electron and hole effective mass

too Free electron mass

n Electron density
n Refractive index

N^, N^ Activated donor and acceptor concentrations

NC,NV effective density of states for conduction and valence band

P Polarisation in response to electric field

Pn,Pp Absolute thermoelectric power for electrons and holes

Pout Optical output power

p Hole density

Q Resonator quality factor

r Location in space

rsp Local spontaneous emission

Rskp Spontaneous emission rate into optical mode k

R Carrier recombination rate

Re [... ] Real part of a complex number

Sk Photon number in optical mode k

S Poynting vector

S Heat flux

T Temperature

t Time

v Phase velocity

vg Group velocity
w Electromagnetic energy density
a Material absorption or gain

an Temperature coefficient of refractive index

S Dirac function

er Relative permittivity

£o Vacuum permittivity

Kth Thermal conductivity
k Absorption coefficient

A Wavelength

/io Vacuum permeability

pr Relative permeability

ßn, ßP Electron and hole mobility

popt Optical mode density



Reduced density of states for electrons and holes

Characteristic time constant

Quasi-Fermi potentials for electrons and holes

Electric potential
Electric susceptibility
Electron affinity

Angular frequency

Complex angular frequency
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