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Abstract

"Luttinger's theorem" states that the volume enclosed by the Fermi surface of a system of

interacting fermions at zero temperature is independent of the strength of the interaction.

We give a rigorous proof of Luttinger's theorem to all orders of perturbation theory, based

on an argument due to E. Trubowitz.

The first step consists in the analysis of a system of weakly interacting fermions in

a finite volume. The dual lattice provides a natural infrared cutoff which allows the use

of nonperturbative methods, developed by J. Feldman, H. Knörrer and E. Trubowitz for

the insulator. The second step implements renormalization group ideas to control the

thermodynamic limit of the Green functions, order by order in the interaction strength.
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Résumé

Dans un système de fermions n'interagissant pas entre eux, l'état fondamental consiste

en un produit de tous les états simples, dont l'énergie est inférieure a l'énergie de Fermi.

Cette configuration est une conséquence du principe d'exclusion de Pauli, qui interdit à

deux fermions d'occuper un même état.

La surface délimitant les états occupés des états non-occupés dans l'espace des mo¬

ments est appelée la surface de Fermi. Par un calcul simple, on vérifie aisément que la

densité de fermions est, à un facteur 2 près, le volume contenu à l'intérieur de la surface

de Fermi.

Lorsque les fermions interagissent entre eux, cette définition de la surface de Fermi

perd son sens. L'état fondamental du système ne s'exprime plus comme le produit d'états

simples. Si le nombre moyen de particules par état est une fonction discontinue du

moment à temperature zero, alors le système est un liquide de Fermi. Dans ce cas,

la surface de Fermi est la surface où, dans l'espace des moments, le nombre moyen de

particules par état est discontinu.

Selon le théorème de Luttinger, le volume contenu à l'intérieur de la surface de Fermi

d'un système de fermions interagissant entre eux ne depend pas de l'interaction. Une

preuve perturbative rigoureuse de ce théorème, basée sur un argument de E. Trubowitz,
est donnée dans ce travail.

Pour ce faire, un système de fermions interagissant entre eux est d'abord analysé dans

un volume fini. La structure discrète de l'espace dual fournit une coupure infrarouge na¬

turelle, ce qui permet d'utiliser la méthode non-perturbative développée par J. Feldman,
H. Knörrer et E. Trubowitz pour les isolants. Le groupe de renormalisation permet

finallement de contrôler la limite thermodynamique des fonctions de Green à chaques
ordres.
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Chapter 1

Introduction and Overview

In a system of noninteracting fermions at zero temperature, the ground state is given by
the product of all single-particle momentum states, with one-particle energy less than the

Fermi energy. This configuration is a consequence of Pauli's exclusion principle, which

forbids the one-particle states to be occupied with more than one fermion.

The surface in momentum space representing the limit of occupation of the one-

particle momentum states is called the Fermi surface. A simple computation shows that

the density of fermions in the system is given, up to a factor two due to spin multiplicity,

by the volume enclosed in the Fermi surface.

In a system of interacting fermions, this definition of the Fermi surface becomes

meaningless, since the ground state is no more given by a product of single-particle states.

If the mean occupation number in momentum space exhibits a sharp discontinuity at zero

temperature, we refer to the system as a Fermi liquid. In that case, the Fermi surface is

the surface on which the discontinuity in the mean occupation number occurs.

Luttinger's theorem, first formulated in 1960 in [1], states that keeping the density

fixed, the volume enclosed in the Fermi surface is independent of the interaction strength.
The aim of the present work is to give a rigorous proof of Luttinger's theorem to all

orders in perturbation theory. Luttinger's theorem follows directly from the conservation

of the particle number under changes in the interaction strength.

1.1 Field Theory for Many-Fermion Systems

Consider a system of many spin | fermions on a discrete torus A^ = Zd/LZd, d = 2

or 3, containing Ld points. Let a G {Î, j} ~ { — 1,1} be the projection of the spin

on the vertical axis, measured in units of |. For x G AL and a G {Î, j}, let c+(x)
and ca(x) be fermionic creation and annihilation operators obeying the anticommutation

relations {c+(x), <v(x')} = ^'^ and let jF be the fermionic Fock space generated by

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

this algebra. The free Hamiltonian of the system is defined as

Ho= Yl 4(x)T(x-x')c,(x')
x,x'sAl

^6{î,|}

where T is the hopping amplitude between sites of the lattice. Let A be an operator

on jF, i.e a polynomial in the creation and annihilation operators. In the free-fermion

approximation, the thermal expectation value of the operator A at zero temperature in

the thermodynamic limit is

(A) = lim
a

lim -^— tr {e~ß^-^A)
AL^Zd /3^oo ZßAl

where N is the number operator on jF, ß = l/T the inverse temperature and Zßt\L =

^Te-ß(H0-ßN) js j-ne granci canonical partition function; /j, is the chemical potential. The

trace formula has the functional integral representation1

where tplT(x) and ipa(x) are Grassman fields with x = (x°,x) G 1R x Zd, x° being the

imaginary time, and A is the polynomial in tplT(x) and ipa(x) corresponding to the normal

ordered form of the operator A. The Grassman Gaussian measure is formally given by

dßCbaJi>^) = ^e-^>c^) ft dMx)dMx),
a;eMxZd

^6{î,|}

where 3\T is a normalization factor, and

(i>,c£ei>)= Y, [dx°dy° E Mx)c^.e(x,y)My)
^6{î,|} x.yeZd

with the inverse propagator

C£e(x, y) = 6aa,6(x° - y°)(6xy(dxo + ß) - T(x - y)).

In the thermodynamic limit, the momentum space is the first Brillouin zone T, i.e.

the torus T = Rd/27rZd. Under the Fourier transform

dp
d+l

„o

îxT \1^)

IxT

dpd- „_o_

(2n)d+l
'

1For a complete introduction into this subject, see [5]
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1.1. FIELD THEORY FOR MANY-FERMION SYSTEMS 3

the bilinear forms in the measure d/ic6ore(-0, -0) becomes, dropping the hats on the Fourier

transforms,

ad+i

Wi^bareVJ
~

^ J (2n)d+lv
^a-\FJ\°F0

where the band function

e(p)
xezd

-*pxT(x)

has been introduced. The propagator

A
—

e*PoO+

ipo - e(p) + ß

is singular for p0 = 0 and p G S^, where

S<°> = {p G T : e(p) = ß}

is the free Fermi surface.

We turn to a system of interacting fermions on the finite lattice A^. Let the Hamil-

tonian of the system be H = H0 + AU, where the interaction is given by a two-particle
translation invariant potential v.

V = - Y u^(x ~ x')c+(x)c^(x')cff/(x')cff(x).
x,x'eA

The thermal expectation value at zero temperature of an operator ion? becomes

{A)L = lim —!— tr (e-ß{H-^N)A) ,

/î^oo Z/3)Al

where now Zßt\L = tYe~^^H~ßN\ The connected Green functions of the system on the

finite lattice AL are defined as

^2mlXl) ^li
' ' '

j x2mi (J2m) =< Ca1Kxl) ' ' ' Cam\Xm)cam+i{xm+l) ' ' '

C(T2m (x2mj >L,connected •

The functional representation

G%l(xi,an ; x2m, a2m) = —- / exv^'^^ai(xi) 4>a2m(x2m)dßcbarM> 0)
^L J connected

does not exist in thermodynamic limit, i.e. in the limit A^ — Zd, reflecting the fact

that the Fermi surface gets distorted by the interaction. The propagator in the Grass-

man Gaussian measure has therefore the wrong surface of singularities, which leads to

unphysical divergences in the thermodynamic limit.

3



4 CHAPTER 1. INTRODUCTION AND OVERVIEW

The renormalization procedure allows to cure the divergences on the level of pertur¬

bation theory. Formally, the bare dispersion relation is split in the interacting dispersion
relation e(p; A) and a counterterm K(p; A, e), which is removed from the propagator and

put in the interaction. Thus

e(p) - ß = e(p;A) + ^(p; A> e)-

In the mathematical analysis of the problem, we begin directly with the interacting

dispersion relation e(p) rather than the band function. The counterterm is then chosen

such that the Fermi surface defined by the zero set of e(p) remains fixed. The existence

of the functional integral representation in perturbation theory in the infinite volume is

then given by the following theorem:

Theorem 1.1: Let e(p,/0) be a dispersion relation and v be an interaction satisfying
the following assumptions for r > 3:

Al The interaction vaT G Cr(T, C). The supremum norm over T of the first r deriva¬

tives of vaT is finite and var(p) = vTlT(—p).

A2 There is an interval M of positive numbers and a compact set (JcT, such that

V/x G M, eß G Cr(U, R) and eß is at least once differentiable in \x. Further, the

Fermi surface

V={pgtMp) = o}

is entirely in U, Sß C U and VeM(p) ^ 0 for all p G «S^.

A3 For all /jGM, the Fermi surface Sß is strictly convex.

Then there is a counterterm K(p, A; e) defined as a formal power series in A such that

(i) The connected Green functions generated by the generating functional

3(0, 0; A, e) = log
i j em^H^,^,e)M^)H^)dßcAij^ ^

are well-defined power series in A in the thermodynamic limit.2 Here d/ice(0, 0) is

the Grassman Gaussian measure with covariance3

Ce(p) =
e*PoO^

ipo - e(p):

2The generating functional S is probably not analytic m the dispersion relation e, l e there is no

formal power series of S m e If S would be analytic m e, it would also be analytic m the band function

e + K, which is m contradiction with the presence of infrared divergences
3The lattice structure m position space furnishes an ultraviolet cutoff, since the momentum p is on

the torus T
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1.1. FIELD THEORY FOR MANY-FERMION SYSTEMS 5

the interaction is

V(0, 0) = Y / dx° U^(X _ y)^^0) X)0r(^°, y)0r(>0, y)i>a(x°, x),
x,ySZd

^re{î,|}

and the counterterm

£(0,0; A, e) = J^ / tfe0 i\ (x - y; A, e)ij)a(x0, x)ij)a(x0, y),
x,ySZd

^6{î,|}

where A' is the inverse Fourier transform of K.

(ii) The self-energy E(p, A), defined as the formal power series in A satisfying the equa¬

tion

&(?>, A) = -

—, —,—TT,

wo - e(p) - s(p; A)

where 5*2 is the two-point Green function, is 2 + e-times differentiable with respect

to p for an e > 0. The counterterm is fixed by the renormalization condition

E(0,p;A) =0 for p G S.

(iii) Further, there is a small ball B in the Banach space of the dispersion relations,
such that the renormalization map

Rx: B - B

e(p) i-> e(p) + K(p; A, e)

is invertible in the sense of formal power series.

Corollary 1.2: The occupation number

rv(p;A) = lim (c+(p)c(7(p))L
AL^Zd

= lim [^Ls2(p,\ypoT
is a well-defined formal power series in A, such that for all R > 0, there is a Aß > 0 such

that for all A with |A| < Aß, the occupation number

R

n* (p;A) = ^Arnr)(7(p)
r=0

has a jump on S = {p G T : eAt(p) = 0}.

We refer to the literature for a precise formulation of theorem 1.1 and its corollary
1.2. The proof of the existence of the Green functions is given in [7]. The invertibility of

5



6 CHAPTER 1. INTRODUCTION AND OVERVIEW

the renormalization map is proved in [8],[9] and [10]. The proof of the corollary can be

found in [11].

Theorem 1.3: The density of fermions, defined as the formal power series

P(A):=J>r

Pr

r>0

where

dd+lksr^ f d k -

lim > / -—rT-rS2r{k)e%
n '= hm X I V

_
IM ^IKO T

^6{î,|}

exists, and is independent of the coupling constant A:

p{\) = p(0) = 2Vo\(S).

The proof of this theorem, which is the angle stone of the proof of Luttinger's theorem,
is the main result of the present work.

1.2 Luttinger's Theorem

Definition 1.4: The physical (or interacting) Fermi surface Sß of the system is the

surface of discontinuity of the occupation number na(p, A).

Luttinger's Theorem: Let e(k) -/ibea dispersion relation satisfying the assumptions
A2 and A3. Assume further that the interaction vaT between the fermions satisfies Al,
and let p be the (given) density of fermions in the system.

Then the volume enclosed by the Fermi surface is independent of the interaction

strength.

Proof of Luttinger's theorem: In the free-fermion approximation, the Fermi surface is

S<°> = {k G T : e(k) = fj}.

Since by assumption e(k) — p has convex level sets, there is a chemical potential po such

that

p = 2Vol(S£>).

We turn now to the interacting system. For each p! in a neighborhood of po, there is an

interacting dispersion relation

emt(Kß'-A) = Rxl(e(-)-p')(k)

6



1.3. SKETCH OF THE PROOF OF p(X) = p(0)

defined as a formal power series emf(k, p'; A) = 2_, Arer(k, p'). For each R > 0, there is

r>0

a Aß > 0 such that for A with |A| < Aß, the dispersion relation

R

l(k,p';\) = ^A^k,//)

R

eR{
,, , ,

r=0

satisfies the assumptions A2 and A3. For A' with |A'| < |A|, consider the model defined

by the generating functional

S(0,0;A',eA(-;A)) = />v(^)+£(^,y,e*( M)«*,*)«*,*)^^ ^^

which is well-defined by theorem 1.1 with e replaced by eÄ(-;A) and A replaced by A'.

The Green functions of the physical model are obtained setting A' = A in the generating
functional S(0, 0; A', eR(-; A)).4

By the corollary 1.2, we know that the occupation number corresponding to the model

described by S(0, 0; A', eR(-; A)) has a jump on the surface

^ = {kGT: eA(k,//;A) = 0},

which is therefore the interacting Fermi surface up to the order R in perturbation theory.
The theorem 1.3 implies that the density of the model is

p(\>;eR(-;\)) = p(Q;eR(-;\)) = 2Vol(S^).
In order to achieve the right physical model, the chemical potential p' has to be chosen

such that the density of the system is just p. Observe that eR(k, p'; A) = e(k) — p' + 0(X),
such that for Aß small enough, Vol(S , ) is a strictly increasing function of p!. Thus,
there is a p near p0 (depending on A) such that

p = 2Vol(S<Ä>).

Hence,

Vol(5f))=Vol(5g)),
and to each order R in perturbation theory, the volume enclosed in the Fermi surface is

independent of the interaction strength. D

1.3 Sketch of the Proof of p(X) = p(0

In order to prove that the density is independent of the coupling constant A, we consider
id

JL-
for each L G N the model on the finite lattice A^ = Zf. The finite volume induces a

4Observe that the Green functions are probably not analytic in A, since the Green functions are not

analytic in the dispersion relation eR

7



8 CHAPTER 1. INTRODUCTION AND OVERVIEW

natural infrared cutoff on the propagator, such that the model is analytic in the coupling
constant A. Further, the number operator has eigenvalues in the set of the natural

numbers. Since the number operator commutes with the Hamiltoman, the ground state

of the system is an eigenvector of the number operator, and if the ground state is non-

degenerate, the expectation value of the number operator at zero temperature is an

integer. On the other hand, the expectation value of the number operator is analytic in

the coupling constant.

The expectation value of the number operator is therefore an analytic function of

A, taking values in a discrete set. It follows that the expectation value for the number

operator is constant5. Thus, for each finite volume, the density is independent of the

coupling constant A.

In order to obtain the claim of theorem 1.3, the thermodynamic limit L — oo has

to be controlled. In this work, we construct for each L a counterterm, such that the

Green functions on the finite volume tends for L — oo to the Green functions defined

in the theorem 1.1. Observe that the proof of convergence in the thermodynamic limit

differs from the proof of theorem 1.1 given in [7], where a system in an infinite volume

is considered from the beginning, and the Green functions are defined with an infrared

cutoff. The limit in which the cutoff vanishes has to be controlled. This approach allows

to work on a continuous Brilloum zone rather than on a discrete one.

In chapter two, we present a rigorous proof of 1.3, assuming the analyticity of the

Green functions on the finite lattice, and their convergence to the Green functions of the

physical model defined in theorem 1.1. The proof of the analyticity is given in chapter

three, and the convergence is proved in chapters five and six.

1.3.1 The Thermodynamic Limit

In the thermodynamic limit, the natural infrared cutoff due to the lattice structure of

the dual space is removed. The radius of analyticity of the Green functions shrinks to

zero (before divergences appears in the computations), and naive (i.e. one-scale) non-

perturbative analysis breaks down.

Still, one can try to compute the thermodynamic limit of the Green functions at fixed

order in the coupling constant A, i.e. the coefficients of the Taylor expansion of the Green

functions in A. As it is well known, the Green functions at fixed order in A are obtained

by the techniques of Feynman diagrams, the propagator

pikoO+

ik0 — e(k)

being associated to the lines of the graphs (See [4] or [3]). Here e(k) is the dispersion
relation of the model, and ko G R is the Euclidean frequency at T = 0. Singularities

5This argument is due to H Knörrer and E Trubowitz

8



1.3. SKETCH OF THE PROOF OF p(X) = p(0) 9

appears on the Fermi surface S = {k G T : e(k) = 0} in the propagator for ko = 0. The

accumulation of propagators in the two-legged subdiagrams leads to infrared divergences
in the Green functions at fixed order in A.

1.3.2 The Renormalization

The divergences appearing in the Green functions at fixed order in A are not physical, but

reflect the fact that the Fermi surface of a system of interacting fermions gets distorted.

The diagrammatic expansion is then performed in the vicinity of the wrong surface of

singularities.
The renormalization procedure allows to take the change in the dispersion relation

due to interaction into account, and cures the infrared divergences. The renormalization

consists first in a resummation of the two-legged contributions, in order to get expressions
of the type

Sr(A:o,k)

iko — e(k)
'

rather than bare propagators. Er turns out to be a contribution to the self-energy.
In a second step, an appropriated counterterm is introduced in order to remove the

divergences. The renormalization condition

Efra(0,k) = 0for keS

allows to fix the counterterm, which is constructed projecting the self-energy Er onto

the Fermi surface S. The renormalization procedure can then formally be seen as the

replacement

£r(fco, k) ^ £r(fco, k) - Er(0, k)|kes = Efera(£0, k).

Thus, the divergences in the propagator are compensated by the vanishing denominator

obtained by the renormalization substraction.

Although, the projection onto the Fermi surface is not adequate in the finite volume.

In order to preserve the periodic boundary conditions, the operation has to be performed
on the dual lattice, rather than in the full Brillouin zone. Thus, we define a projection
from points of the dual lattice A*L onto points of the dual lattice that are close to the

Fermi surface. The projection on the dual lattice is defined such that in the limit L — oo,

the renormalization procedure described above is recovered.

Unfortunately, the counterterm defined with this projection fails in the suppression
of the divergences. Precisely, the renormalized self-energy will not vanish on the Fermi

surface, but rather be of order

Ef"(0,k)~^,
where 2-ir/L is the dual lattice spacing. Let cl > 0 be the natural infrared cutoff provided

by the lattice, i.e. |e(k)| > cl for k G \L. Geometric considerations show that cl is

9



10 CHAPTER 1. INTRODUCTION AND OVERVIEW

typically bounded by ~ L d+l in d dimension6. Thus

£f"(feo,k) L"1
d_2

iko - e(k) cL

and the infrared divergences remain present even after the renormalization. (For d = 2,

only special choices of the dispersion relation achieve the infrared cutoff cl ~ L~l.) This

is the reason why a regularization of the dispersion relation has to be implemented, in

order to introduce an effective cutoff at scales ~ l/L.

1.3.3 Scale Decomposition

Scale decomposition is the tool used to control the thermodynamic limit of the Green

functions to all orders in perturbation theory. The basic idea of scale decomposition is

to decompose the vicinity of the Fermi surface, where the divergences are located, into

shells fitting into each other, the width of the shells getting smaller near the Fermi surface.

The contributions of Feynman graphs at fixed scales are bounded by power counting, and

careful summation over the scales shows the convergence of the Green functions.

Note that when the width of the shell is of order l/L, the scale decomposition gets
sensitive to the lattice structure of the dual space. The power counting becomes worst,

and the scale decomposition proves to be useless in that case. The infrared cutoff imple¬
mented at energy ~ l/L stops the scale decomposition in the l/L neighborhood of the

Fermi surface, avoiding this problem.

1.4 Spin Magnetization

As in the original work of Luttinger [1], the argument proving the theorem 1.3 can be

extend to the spin magnetization. It follows that the spin magnetization is a function

depending only on the (physical) dispersion relation.

Consider a system of fermions in a weak, constant magnetic field h, oriented along
the vertical axis, and assume that the effect of the magnetic field on the orbital motion of

the fermions is encoded in the band function e(k). The free Hamiltonian takes the form

Ho = L~d Y (<k)-(-l)>^)c+(k)C(7(k),

keA^
^6{î,|}

6This can be proved as follows Consider the lattice Zd, and a sphere of radius kpL Suppose that

there is a shell of width 2c^ around the sphere, that contains no point of the lattice in its interior The

number of points in the shell is approximatively given by const c^L^1 Since there are no point in the

shell, we expect const ciyLd^1 < 1, and therefore the cutoff cj_, has to be smaller than ~ L1^d

10



1.4. SPIN MAGNETIZATION 11

where pB is the magnetic moment of the fermions and (—1)^ = — (—1)^ = —1. For the

chemical potential p, the band function e defines two Fermi surfaces in the free fermion

approximations,

Sf) = {k G T : e(k) - {-\ypBh = p}

The density of the system in the free fermion approximation is then given by

p(0)=Vol(Sf))+VolOSf)),

and the spin magnetization by

m(0) = pb (Vol(Sf}) - Vol(Sf})) .

We turn now to the system of interacting fermions. Theorem 1.1 can be extended to spin

dependent dispersion relation, with a spin dependent counterterm. Theorem 1.3 now

reads

Theorem 1.3bis: The density of fermions, defined as the formal power series

r>0

where

lim > / -—r-7-rSar(k)é

<r£{U}

exists, and is independent of the coupling constant A. Moreover, the spin magnetization,
defined by

i(X)

=

2_, mr X"m{A)
=

r>0

with

dd+lk
mr = pB rhm J j-^ (S,,r(k) ~ SUr(k)) e*"

in the sense of formal power series, is independent of the coupling constant A.

Definition 1.4bis: The physical Fermi surfaces Sa are the surface on which the occu¬

pation numbers na(p) have a jump.

Luttinger's Theorem: Let e(k) — p be a dispersion relation that satisfies the assump¬

tions A2 and A3, and vaT a potential satisfying the assumption Al. Assume further

that the magnetic field h is small enough, such that e(k) ± pBh —

p also satisfy the

assumptions A2 and A3, and let p be the (given) density of the system.

11



12 CHAPTER 1. INTRODUCTION AND OVERVIEW

Then the sum of the volumes enclosed in the Fermi surfaces is independent of the

interaction strength,

Vol(Sf}) + Vol(Sf}) = Vol(Sf}) + Vol(Sf}).

Further, the spin magnetization is given by the difference between the volumes enclosed

in the Fermi surfaces, times the magnetic moment of the fermions,

m = pB (Vol(^A)) - Vol(SfM .

Observe that the spin magnetization depends only of the interacting dispersion relation.

The proof of this version of Luttinger's theorem is identical to the proof given in the

absence of magnetic field, and can be found in the appendix.

12



Chapter 2

The Results

In this chapter we present the main results that lead to the proof of theorem 1.3. We first

construct a sequence of approximations for the model on the finite lattice, that converges

in the thermodynamic limit to the physical model of theorem 1.1. We then present the

main results concerning the analyticity and convergence of these approximations. The

proof of these results follows in the next chapters.

2.1 The Model

Definition 2.1:

(i) For L EN, let AL be the finite lattice defined by

Al = Zi,

where Z^ = Z/LZ. The dual lattice of A^ is

A«t = £zï.
The lattice AL and its dual A*L contain Ld points.

(ii) On the finite lattice A^, let c+(k) and ca(k) be the creation and annihilation

operators satisfying the fermionic anticommutation relations

{c+(k),<v(k')} = (27TL)rf^4,k'
K(k),<v(k')} = 0

{c+(k),c+(k')} = 0.

13



14 CHAPTER 2. THE RESULTS

Remark 2.2: Let T be the first Brillouin zone, T = Rd/27rZd being the d—dimensional

torus. There is an embedding of \L into T which maps the class of k = ^-(k\,... ,kd)
to ^-(ki,... ,kd) G T, for k% G {0,..., L — 1}, % = 1,..., d. In the limit L — oo, the

embedding of the set A*L in T tends to a dense subset of T.

Definition 2.3: Let M be an interval of positive numbers. For r > 2 and p G M, let

eß : T — R be a piecewise Cr—function on the torus T, called the dispersion relation, and

wbea Cr—function, such that for all k G AL, v(k) = v(—k).1 Define the Hamiltonian of

the system of fermions by

H^-pN^=L~d J2 eß(k)cUk)ca(k) + \V^ + K^(\),
keA^
^6{î,|}

where the interaction is given by

V{L) =
2ÎFd ^ 41+k3)k2+k4w(ki - k2)c+(k1)c+(k3)c(7(k2)cr(k4).

ki, ,k4SA^
^re{î,|}

and the counterterm

K^(X)=L-d Y A-(L)(k,A)c+(k)C(7(k)

keA^
^6{î,|}

has to be determined by the renormalization procedure. The number operator on the

fermionic Fock space is defined by

NiL)=L-d £ C+(kMk).

keA^
^6{î,|}

The free Hamiltonian is given by

H^ - pN^ = L~d Y e,(k)c+(k)cff(k) + i^)(A),

keAL

^6{î,|}

since eß is the interacting band function.

Remark 2.4: In position space, the creation and annihilation operators are obtained

by Fourier transform:

:+(x) = L~d Y 4(k)e*kx and C(7(x) = L~d J] C(7(k)

keA^ k6AL

e"*kx,

1For simplicity, we consider a spin independent interaction Further, we will often use e(k) instead

of eM(k)

14



2.2. THE ASSUMPTIONS 15

satisfying the anticommutation relation

{c+(x),cr(y)} = (27r)^^xy.

For vanishing interaction, the free Hamiltonian can be expressed as

H(L)= J2 TW(x-y)c+(x)cv(y),
x,yeAL

where

T(L)(x) = L"d Y £(k)e"ïkx,

keA^

for the band function e(k). The dispersion relation is then eAt(k) = e(k) — p. T^ is a

function on the lattice A^ that satisfies periodic boundary conditions. The interaction

in position space is

y{L) = \ £ ^(x-y)C+(x)C+(y)C(7(x)Cr(y),
x.yeAi

^,re{T,|}

with the translation invariant potential

U(L)(x - y) = L~d Y w(k)e-jk(x-y).
keA^

Finally, the position space representation of the number operator is

^v(L) = £ 4(x)c(x).
xSAl

2.2 The Assumptions

Definition 2.5: The Fermi surface is the zero set of eß(k)

Sß:={keT\eß(k)=0}.

Assume the following assumptions:

Al The interaction v G Cr(T, C). The supremum norm over T of the first r derivatives

of v is finite and v(k) = v(—k).

A2 There is an interval M of positive numbers, and a compact set (JcT, such that

\/p G M, Sß C U and eß G Cr(U,R). The dispersion relation is at least once

differentiable in p with dßeß(k) < 0. Further, VeM(p) ^ 0 for ail p G Sß.

15



16 CHAPTER 2. THE RESULTS

A3 For all /jGM, the Fermi surface S^ is strictly convex.

Remark 2.6:

(i) The assumption Al assures the interaction to be positive definite and short-range
in position space.

(ii) The second assumption excludes singular points on the Fermi surface. The fact

that the derivative of eß is negative reflect the fact that for A = 0, eAt(k) = e(k) — p.

(iii) Assumptions A2 and A3 imply the following bound:

Volume improvement estimate: For e\,e2,e^, > 0, let

l2\£i, £2, £3) =

SUp / d Pi<2 P2 l|e(pi)|<Eil|e(p2)|<E2l|eOipi+t>2P2+q)|<E3-
qST JTxT

t>l,t>2ë{l, — 1}

Then there is a constant Cvoi > 0 and

d- 1 1

e-

d-l/2
>

2

such that

^2(^15 £2) £3) < CvoiE\e2e\.

We refer to [7] for a proof of the volume improvement estimate.

Remark 2.7:

(i) The set ML = {p G M | 3 k G \{ with eß(k) = 0} is finite,

(ii) For each /jgM\ Ml, there is a constant cl that depends on p and L such that

VkeA», Mk)|>cL.

(iii) The set M = M ML is countable.

LeN

If we choose dispersion relations eß with p G M/M, the model on the finite lattice

has an infrared cutoff denoted by cl- This natural cutoff provided by the dual lattice

structure is to small in order to prove the convergence of the model in thermodynamic
limit. We will thus introduce a regularized dispersion relation which implements an

effective infrared cutoff at scale ~ l/L.

16



2.3. THE THERMODYNAMICS 17

2.3 The Thermodynamics

Definition 2.8: We define the following norms on T, IR x T, AL and IR x AL:

(i) For a function / : (IR x AL x {f, j})"- — C, the supremum norm in momentum

space is defined by

l/lo = sup sup \f(ki,<Ji,...,kn,<jn)\.
o-i, ,o-ne{î,|} ku ,fcneMxA^

(ii) For a function /:(lxTx{|, i})n -»• C,

||/||o= sup sup \f(ki,<Ji,..., kn, <jn)\.
(71, ,o-ne{î,|}fel, .fcnSMxT

(iii) If the function / : (1 x T x {f, j})"- — C is differentiable, then the derivative norm

is defined by

ll/lli = II/II0+ max sup \diaf{ki,(7i,...,kn,an)\,
*=1» >" fei, ,fcneMxT

where dia is the partial derivative with respect to the a—component of kt.

(iv) For a function / : (1 x T x {f, j})"- — C, the integral norm (or Li—norm) in

momentum space is defined as

^ f dd+1Pl dd+lpn.„,
2^ J (^pTT-'-T^pTrl/iPi^i---'^^)!-I 7:

o-i, ,o-ne{T,|}

For a function / : (IR x AL x \\, [})n — C, the Li—norm is defined by

\' = L~d- £ [^^\f(kl,al,...,kn,an
ki, ,k„eA»,

cri, ,o-ne{T,|}

Definition 2.9: Let A > 47rmax{l, ||e||i}. The set of possible counterterms is defined

by

f a
A

% = < u : AL x C — C I u is analytic in A G C with w(k, 0) = 0, and sup |w|0 < —-

I a 2L

By analytic in A, we understand that there is a A0 > 0 such that u is analytic in A in a

ball of radius A0 around 0. The supremum is taken over all A with |A| < A0.

17



18 CHAPTER 2. THE RESULTS

Definition 2.10:

(i) Let e be a dispersion relation defined in 2.3 and A > 47rsup{l, ||e||i}. Set

f e(k), if|e(k)|>f
e(L)(k) =

{ sgn(e(k))f, if|e(k)|<f.

(ii) For each u E%, define the regularized Hamiltonian

Hf = H(oL) + \VM + L~d Y «(k,A)c+(k)cv(k),

keA^
(7S{Î,|}

where2

Bf =L~d Y e<L>(k)c+(kMk).

L

(7S{T,|}

Remark 2.11:

(i) The dispersion relation é^1 is motivated by the scale decomposition that will be

used in the section 5. At energy scales of orders of the lattice spacing, i.e. with

e(k) ~ j-, the power counting gets worst. The dispersion relation e^ introduces

an effective cut-off at that scale, without modifying the ground state of the system.

(ii) For L big enough,

^<|e(L)(k)|<£:= ||e||o.

Remark 2.12: For each u E%, the number operator commutes with the Hamiltonian

[H[L),N^] = 0.

H{L)

Proof: One easily verify that

[N, 4 (k)] = {2*L)dc+ (k)

and

|A,C(7(k)] = -(27rL)dC(7(k).

2Observe that H0 does not correspond to the free Hamiltonian, since e^ is the interacting disper¬
sion relation

18



2.3. THE THERMODYNAMICS 19

Using [A, BC] = [A, B]C + B[A, C], we get

[N, c+(k)c(k)] = [N, c+(k)]c(k) + c+(k)[A, ca(k)} = 0.

Thus, the number operator commutes with the free Hamiltonian. Further, let c^ = c+ (pß
and ct = caßpt). Then

|c+(k)cr(k), c\c\c3c4\ = (2-KL)d(ôTŒ1ôkpl + ôTŒ2ôkp2 - ôTŒ3ôkp3 - ôTŒ4ôkp4)c^c^c3c4.

Hence, summing over k,

[A^L), V] = L~d Y w(7i-(74(Pi, • •

•, P4)cï4c3c4(6TŒ1 + ôTŒ2 - ôTŒ3 - ôTŒ4)
pi,...,p4

where Nr = L~d y. c^(k)cr(k). Multiplying with the spin structure 5aia25a30-4 con-

keA^
tained in the interaction, we see that the right hand side vanishes, such that the interac¬

tion commutes with the number operator. D

Definition 2.13:

(i) The grand canonical partition function at zero temperature is

#»= limtre-^L),
/î^oo

where the trace is taken over the fermionic Fock space.

(ii) For an observable A, i.e. a polynomial in the fermionic operators, the thermal

expectation value at zero temperature is given by

1
,

«Tf(L)

ÄL

Jß

(A)L = lim —^r tr(e_/ÎH" 'A)
ß^oo

2ß
)

1

tr(PoA),
trPo

where P0 is the spectral projection onto the zero energy states.

Lemma 2.14: For all p E M and each L EN, there is a \ß > 0 such that for all A with

|A| < \ß, the operator Hu has a non-degenerate ground state OSL\ In particular,

=

(QW,AQW)
{ >L

(OW,OW)

where (•, •) denotes the scalar product on the Fock space 3'.

19



20 CHAPTER 2. THE RESULTS

Proof: First consider the free operator H0 ,
whose state with minimal energy is

o(l) = n c^k)i°>>
k with e(L)(k)<0

(7S{T,|}

and its energy

Observe that

and

E<0L)=2L~d Y, e(L)(k)-

keA^
e(L)(k)<0

H{oL)c+a(k) = c+(k)^L) + e<L>(k)c+(k),

H(QL)ca(k) = ca(k)Hf - e(L\k)ca(k).

Recalling that for k with e^(k) > 0, a quasi-particle is created applying c+(k) to the

ground state Vt^L\ and for k with e^(k) < 0, a quasi-particle is created applying ca(k)
to Q(L\ we see that the energy of the one-particle state ca (k)Q(L) is given by

£1=L;o + |e(L)(k)|>L;o,

since |e^(k)| > A/L. Proceeding inductively, one sees that the energy of the n—particles

state cij^ki) • • • c^)(k„)0(L) is given by

n

i=i

By the orthogonality of the n—particle states, and the diagonality of H0 ,
we deduce

that the ground states is non-degenerate.
The full Hamiltonian is analytic in A, hence it exists a \ß > 0 such that for A with

|A| < \ß, the ground state of Hu is non-degenerated as well. D

Definition 2.15: The density of fermions in the system with Hamiltonian Hu is

defined by

p^(X,u)=L-d Y (4(k)c,(k))L.

keAL

(7S{T,|}

2.4 Green Functions

The thermal expectation value of an observable can be expressed in terms of Gaussian

Grassman integrals (See [5] for a rigorous proof). In particular, the generating functional

20



2.4. GREEN FUNCTIONS 21

for the connected amputated temperature Green functions is formally given by

9(ß,ß) = log^y exv^^dpCu^,4>),
where dpc(ß,ß) is the Grassman Gaussian measure with covariance

dk0 e-Kk,x-y>
Cu(x,a,y,r) = öaTL

d y~] /
2n iko - eßLßk) - u(k)

kSA^

on the Grassman algebra generated by the fermionic fields ßa(x), ßa(x)- Here < k,x >=

—k0x° + kx and u E%. The interaction is

V(ß,ß) = Y fdx0V^^-y)ßa(x0,X)ßT(x0,y)ßa(x0,X)ßT(x0,y).
x,ySAL

J

<7,tS{Î,|}

The connected amputated Green functions in position space are defined by the formal

Taylor expansion of S:

/ J / J

\ dxl dx2mG2m\Xi, (7\, . . .

, X2m, 02m) ßaßXi) ß<j2m\X2m),
m>l xi, ,X2m6AL

(71, ,(72me{î,l}

where xt = (x®, x») G IRx A^. The two-points (non-amputated) connected Green function

is defined by

S^(x, y) = CaT{x, y)+ Y / dz\dz\ Caaßx, zl)Gf}aßzl, z2)Ca2T{z2, y),

(7i,(72e{î,|}

i{L)where Gaßa2(zi, z2) is the two-points connected, amputated Green function.

Remark 2.16: The two-points connected Green functions G^Lßx, y) and S^ßx, y) are

independent of the spin indices, such that

GiLß(x, y) = 5aTG^(x, y) and s£ (x, y) = 5aTS^(x, y).

Définition 2.17: Let f{x\,o\;...;x2m,o2m) be a translation invariant function on

(1 x A[ x {j, j})2m. The Fourier transform / of / is defined by

2m

<H/
J
kßf{k\, <7i;... ; k2m_\, o2m_\, o2m) =

Y J dxl--- dx°2m f(x1, a1,..., x2m, a2m)e-«k^>+ +<^-—»,
xi, ,x2meAi

21



22 CHAPTER 2. THE RESULTS

where < k,x >= —kox° + kx, and 5(k — p) = 8{ko — po){2,Ti)dôyiV.

Theorem 2.18: For all L EN, there is a A0 > 0 that depends on L and p such that

(i) For all u E X, the connected Green functions G2rl(ki,..., k2m, A; u) are analytic in

A with analyticity radius Aq .

(ii) For all u E %, the density of fermions p^LßX,u) is analytic in A with analyticity

radius A0 .

Remark 2.19: In terms of Green functions, the density of fermions is given by

p{L\X,u) = lim 2L~dY f^S^(ko,k;X)e^x°,
xo^0+

^—' J 2-K

keA^

where S^ is the Fourier transform of the connected (non-amputated) two-points Green's

function S^L\

Theorem 2.20: For L < oo and all u E%, the density of fermions is independent of

the interaction:

p^(X;u) = p^(0).

Proof: By lemma 2.14, the ground state Cl^(X) for H is non-degenerate, and

A(L)Q(L)(A) = p(L)(A)Q(L)(A).

Since the spectrum of N^ is in N, p^(X) is an analytic function that have value in a

discrete set. There is therefore a A0 > 0 such that A i— p^(X) is a constant for |A| < A0.

By the analyticity of the density, p^ is constant for all |A| < Aq .
D

2.5 The Infinite Volume Limit

In [7], the thermodynamic limit is controlled in the following way. In a first step, the

propagator is regularized by an infrared cutoff at energy scale M1 with / < 0 and

M > 1. As long as this cutoff is present, the regularized Green functions G2m are

analytic in the thermodynamic limit. In a second step, the limit / — —oo is controlled

using renormalization group ideas.

22
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Definition 2.21:

(i) For / G Z_ and M > 1, let / G C0°°(M) such that supp / n [0, M27"4) = 0. Define

the regularized propagator

e® = M±4M.
ipo - e(p)

(ii) The connected, amputated Green functions G2m with infrared cutoff at scale M1

are defined as the formal power series

Lj2m •—

/ j

A "2m,D

where G2mr are the renormalized, connected amputated Green functions at order

r in A. The self-energy E7 = 2_, -^"S7 is given as a formal power series by the

equation

Y.I(p) = (l-GI(p)CI(p))-lGI(p),

where C1 is the propagator in the infinite volume, with infrared cut-off at scale M1.

The following theorem is proved in [7]:

Theorem 2.22: Assume that e and v verify Al-3. Then there is a formal power series

KI(V) = Y^KIÀV)

such that the following statements hold. For all m E N, the infrared limit / — —oo of

G2mr exists. More precisely, for every r > 1, there are Er G C^IRxT, C), Kr E Cl(T, C),
and G2mtr, such that as / — —oo,

(i) G2r — G2>r in the || • ||o—norm,

(ii) G2mr — G2m}r in the || • ||'—norm,

(iii) E7 — Er in the || • ||i—norm, and the renormalization condition

Er(0,p) = 0

is satisfied for all p G S.

(vi) K^Krm H-Hi.

23



24 CHAPTER 2. THE RESULTS

Moreover, there are constants r2TO,r, r2,r, nr and ar such that

wr1 II <r f
||tJ2,r-||0 ^

J- 2,r
I I V1 I I ^

II ^r ||l _: &r

11 Afr ||i < Kr

11/^ 11/ <- p

11 "-J" 2m,r 11 _i i 2m,t"

Denote

G2m := / y

A G2m)T

the formal amputated Green functions in the infinite volume, and let S(p) be the formal

(non-amputated), two-points Green's function in momentum space, defined by

S{p) = C{p) + C{p)G{p)C{p).

Corollary 2.23: The density of Fermions in the infinite volume, defined by the formal

power series

P(X) = Y AVr

where

dd+lkf d + k -

pr := }X2 J j2ny^Sr{k)e
exists.

Theorem 2.24: Assume Al-3. Then there is a sequence of counterterms (K(Lßk, A)), N

in % that converges uniformly in k G T to the formal power series A'(k, A) of theorem

2.22, such that

(i) For L — oo, the two-points Green function G^ converges uniformly in k =

(ko,k) G IR x T to the (formal) Green function G of the model in the infinite

volume with dispersion relation eß(k) and counterterm A^(k, A).

(ii) For each m > 1, the 2m—points Green function G2J converges in the limit L — oo

to the formal Green function of the model in the infinite volume in the Li—norm.

(iii) The density of fermions p^L> (A) converges in the sense of formal power series to the

density of fermions in the infinite volume:

p^(X)L^p(X)

Since p(X) is the limit of the density p(LßX) in the finite volume, theorem 2.20 implies:

24



2.5. THE INFINITE VOLUME LIMIT 25

Corollary 2.25: Assume Al-3, and let A'(k, A) be the counterterm obtained in theorem

2.24. Then the density of fermions in the thermodynamic limit is independent of the

interaction, that is formally,

P(A) = p(0),

or, for all r > 1,

pr = 0.

Further,

p(0) = 2Vol(S%

25





Chapter 3

Analyticity of the Green Functions

In this chapter, we prove the analyticity of the Green functions for the model on the

finite lattice, with the dispersion relation defined in 2.10. The analyticity of the density
follows from the analyticity of the Green functions. This section is similar to the analysis
of the insulator given in [12], and based on the techniques developed in [13].

Let A be the Grassman algebra generated by the fields ß(y, r) and ß(y, r) with (y, r) =

(y°,y,r) G IR x AL x {f, j}, and let W(ß,ß) be an even Grassman function. Then the

generating functional for the connected amputated Green functions is formally defined

as

OC(W)(0, ß) = log I j ew^^dpc{ß, ß)

where Z = J ew(-^'^dpc(ß, ip). dpc(ß,ß) is the Grassman Gaussian measure with co-

variance C on the Grassman algebra with coefficient in A, generated by the fields ß(x, a)
and ß>(x, a) with (x, a) E IR x AL x {f, j}.

In order to simplify the notation, let B = IR x AL x {f, j} x {0,1}, and for £ =

(x, a, a) EB,
ß(x, a), a = 1

^^
\ ß(x,a), a = 0.

The connected, amputated Green functions are given by the Taylor expansion of Qc

in the Grassman fields ß and ß:

OC(W)(0, ß) = Y [dîi d^2mG£(£i,..., £2m) ß{ßi) <K£2m),
m>l

''

where for £ = (x°, x, a, a) E B,

poo

*•= E £ E/ «fa0-

^e{î,|}ae{o,i}xeAL
J-°°

27



28 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

3.1 Contractions and Norms

Definition 3.1: Let / : Bm x Bn -»• C.

(i) Define the Li-L,^—norm by

max sup / TT d£,3 |/(£i, • •

•, £«)|, for m = 0

/nn<%j \f(Vi,---,Vm;Çi,---,Çn)\, for m> 0

,.
- „_1

l,oo
—

\

»71, flmS'B^
1

(ii) The supremum norm of / is defined by

oo
= SUp \f(T}l,---,Vm;£l,---,£n)\-

»71, flmSB

Remark 3.2: Let / be a translation invariant function on Bn, and / its Fourier

transform, defined in 2.17. Then / is a function on (IR x AL)n~l x {{}, [} x {0,1}), and

<
1,00'

Definition 3.3: Let ^(n) be the space of all functions f(r/i,... ,r]m;Çi,... ,£n) on

Bm x Bn that are antisymmetric in the r\ variables. For any function / in Bm x Bn, its

antisymmetrization in the external variables is

Antext /(771,..., r]m; &,..., £„) = — Y sgn(7r)/(^(i)) • • •

> Vn(m)] £i, • •

•, £«)•
7rSom

Let / be a function on Bm x 33. For a permutation n E Sn, let f71 be the function

defined by

riVli iVm'iili -An) = f{r}l, -,rim;£,TT(l), ,^Tv(n))-

A semi-norm || • || on ^(n) is called symmetric, if for all permutations n E Sn

11/11 = 11/11-

Definition 3.4: Let C(£, £') be a skew symmetric function on B x B,

m,n > 0 and 1 < % < j < n. For / G Jm(n), the contraction Con^/ G ^(n — 2) is

defined as

Con^/(r]i,... ,r]m;^i,.. . ,<^_i,<^+i,.. .,<^_i,<^+i,..., £n) =

{-iy-*+l f dcdßc{ß, co /(m,..., ^Ci,..., e.-i, ce+i,..., e,-i,c%+i, • •-,£«)•

28



3.1. CONTRACTIONS AND NORMS 29

Definition 3.5: Let || • || be a symmetric semi-norm on the spaces jFm(n). We say that

C > 0 is a contraction bound for the covariance C with respect to this semi-norm, if for

all m, n, m', n' > 0, there exist % and j with 1 < % < n and 1 < j < n' such that

||eon„(Antext(/x/0)||<e U/H-H/'ll.

Remark 3.6: The Li-L^—norm of definition 3.1 accepts

maxdlClkooJICIU}

as a contraction bound for the covariance C.

Definition 3.7: We say that b E K+ is an integral bound for the covariance C with

respect to the semi-norm || • ||, if the following holds:

Let m, n > 0 and 1 < n' < n. For / G Jm(n), define /' G ^(n — n') by

f'(Vl,---,Vn;Cn'+l,---,Cn) =

d£l--- d£n>f(Vl, ---,Vn,£l,---,£n) / V>(£l) ' ' ' $'(£«') dPC(ß)
Bn'

Then

\\f\\<wr'

Remark 3.8: Suppose that

^(ii)---^(in)dpc(ß) <S'n

for a S > 0. Then 2S is an integral bound for C with respect to the Li-L,^—norm of

definition 3.1.

Definition 3.9: We define ATO[n] as the subspace of the Grassman algebra that consists

of all elements of the form

Gr(f) = / drii dr]md^ - - - d£n /(r?i,..., r]m; &,..., ^n)<f>(Vi) • • • <f>(Vm)fp(îi) • • • V>(fn),

for a function / on Bm x Bn.

Every element of ATO[n] has a unique representation of the form Gr(f) with a function

/(771,..., r/m; £1,.. •, £n) G îm(n) that is antisymmetric in its £ variables. Hence a semi-

norm || • || on 3m{p) defines a canonical semi-norm on ATO[n], which we denote with the

same symbol.
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30 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

Definition 3.10: Let || • || be a symmetric semi-norm, and W(ß,ß) be a Grassman

function. Write

W = Y ^rn,n
m,n>0

with "WTO)ra G AnM- For any C > 0, b > 0 and a > 1 set

N(W;e,b,a) = ^e Y an&n||W>n||-
m>0,ri>0

Definition 3.11: The Wick ordering with respect to the covariance C is the linear map

: •

:c,-4> : A — A with

: e*-77'^ :cii= e(-'?'c''?')+(-'?'^').

In order to prove the analyticity of the model on the finite lattice, we use the following
results of [13]:

Theorem 3.12: Let || • || be a symmetric semi-norm and let C be a covariance with

contraction bound C and integral bound b. Then the formal Taylor series Oc(: "W :)

converges to an analytic map on

a2
{W | W even, A(W; C, b, 8a) < —}.

Furthermore, if W(ß,ß) is an even Grassman function such that

then

N(W;e,b,8a) <

N(QC(:W:)-W;e,b,a) <

a

N(W;e,b,8af

an-^N(W;e,b,8aß
Here : • : denotes the Wick ordering with respect to the covariance C.

Theorem 3.13: Let, for s G IR in a neighborhood of 0, Cs be an antisymmetric function

on B x B and "VVS an even Grassman function. Assume that a > 1, C < — and

A(W0; C, b, 8a) <a2.

Assume further that C0 has contraction bound C, b/2 is an integral bound for C0, and C

d
Cs. Then

s=0

is a contraction bound for —
ds

N[ A(oCs(:Ws:)-Ws) ; C, b, a
s=0

<
1 A(W0; C,M2qQ /M_d

-

2a21-^A(W0; 6,6,32«) V ds
Ws; C, 6, 8a) + A(W0; C, 6, 32a)—

s=0 ±V>,
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3.2. BOUNDS FOR THE COVARIANCE 31

3.2 Bounds for the Covariance

Definition 3.14:

(i) Let e(L)(k) be as in 2.10. Define

C(k) :--

ik0-eßLßk)'

(ii) Define the covariance C on B x B as follows:

c(ß,e) = {

'

^L-dYJ(-
keA^

àaa>L-d Y f

2tt

dk

fl
—i<k,x—x'> C(k) if a = 0, a' = 1

2tt

0

Q_ —i<k,x'—x>C(k) ifa=l,a' = 0

if a = a',

where < k,x >:= — kox° + kx. The case xo = x'0 = 0 is defined through the limit

xo — x'Q -^ 0_.

(iii) Let u E%. Set

Cu(k) -.--

1

iko - eßLßk) - u(k)'

(iv) For u and öu E % and s G IR in a neighborhood of 0 such that u + sou E %, let

1

Cs{k) :

ik0-ßL)(k)-(u + söu)(k)'

(v) The covariances Cu(ß, £') and Cs(ß, £') are defined in the same way as the covariance

C(£,Oin(ii).

Remark 3.15: For the proof of the analyticity, the counterterm is considered as

a change in the dispersion relation eßL\ In order to prove the convergence (order by
order in the coupling constant), the covariance Gu is expended in powers of u, and the

counterterm is considered as a two-points interaction with vertex function u(k).

Definition 3.16: For a skew symmetric function C on B x B, define

l/2m

S(C) = sup sup ß(ßi)---ß(ß2m)dpc(ßj)
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32 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

Remark 3.17: For covariance G\ and G2,

S{Cl + C2)<S{Cl) + S{C2).

Lemma 3.18: For all dispersion relations e^(k) with

A

L
< |e(L)(k)| <E

for all k G AL, and u,5u E X and s G IR in a neighborhood of 0 with u + sou E X,

(i) ||C||1)00 < 2Ld+l/A and \\CS\\1>00 < 4Ld+l/A.

(ii) HCIU^land \\Cs\U < 1.

(iii) S(C) < 1 + a/^P and S(CS) < 1 + 2S(C).

(iv) M #1 nCsWoo < 1 and || -f| nCs\\loo <ALd+l/A.

Proof:

(i) First perform the ko integral in the definition of C:

i-'E
keA»

dko e
t<k'x>

2n ik0-eßLßk)

Integrating over the x variable, one gets

L" E
keA/1

a:ML)(k)<0

3«kx-|e(L)(k)a;0|

Y dxc i-"E
keA»

dko e
t<k'x>

2n ik0-eßLßk)

/>oo

< 2Ld sup / e-|e(L)(k)l*° dxo < 2

keA» ^o

Ld+l

~A~'

Using

sup Y &<,„> = l

and the analog for the sum over the index a, we get the claim. The bounds for Cu

and Gs follow in the same way, using

A
e^(k)-u(k)\> —
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3.2. BOUNDS FOR THE COVARIANCE 33

in order to get

Y [dxc
xeAz/

*-'E
keA»

dh
o e" -i<k,x>

2n iko - eW(k) + u(k)
<4-

Ld+i

A

(ii) In the supremum norm, we bound for G

d V^ -«kx-|e(L)(k)a:0|

keA^::cML)(k)<0

< 1.

The same bound can be apply to Cs.

(iii) For E > 0, decompose1

1 1
+ 771

ßLßk)-E
iko-e(Lßk) iko-E ßko-E)ßko-e(Lßk))

and let C\ (£, iß) and C2(ß, £') be the covariances defined by , l_F and —-^—
Ofco-E)Ofco-e(L)(k))

'

The first part of the propagator is given by

Cßß,C') = L-deE{x°-<) Y <(x-x'W (-l)a-(-l)a,
V

'Oaa'
g

:

keA»

for Xo — x'Q < 0, and for x0 — x'0 > 0,

Ci(£,£') = o.

Thus, for xo — x'0 < 0,

CßC,e) = e-Elx°-x°l(wx,a,wx,,aß
(-l)a-(-l)a'

"K-

where "K is the (finite dimensional) Hilbert Space of the functions on AL x {], [}
with scalar product

{f,g)K = L~d Y r(k,a)#(k,a),

keA»

^6{î,|}

and

u>X)(7(k,r) = e*kx£,

^ee [12], lemma IV.4
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34 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

Using the Proposition B.l of [13], we get

S(Cß) < 1,

since

||wx,(t||:k = I-

We turn now to C2. Let "K = L2(IR x AL x {f, j}), with the scalar product

(Lg)K = L-d Y f^f(k,a)gßk,a).
2tt

keA^

^6{î,|}

Then

where

and

(fxa, gx>,<r>)M, a = 0 and a' = 1

C2{x, a, a; x', a , a!) = { -{fxa-,9x',a')n-, a = 1 and a' = 0

0, a = a',

fx,a(k,r) = 50
e
i<k,x> ;(L>(k)-£

\(ik0 - E)(ik0 - eW(k))|V2 ^\e{L){]i)-E\

(iko-E)(iko-eLßk))

9xAKr) =

^e^>|(;-_
—

;_e(;)(^,/aVl^(k) - *l

such that

ifco |e(L)(k)-L;|
11/ ||2 _ ||„ ||2 _

r-d V^ /

keA„-
^V(k2o + E2)(k2 + eW(kßy

We bound the A;0-integral setting E = max{||e||0, 3}:

dko
< -T„ '**

V(fcg + £2)(fcg + e(L)(k)2) 2tt
"

Tr Jo £2 + eW(k)2

"

|e(L)(k)|"

Hence

Nf 1,2 ^r-,v^ |e(£)(k)-£| ^2EL

\\M\k<^ /^ j (L)(k)|
< —•

keAi
' l ;|

By the Gram bound,

The bound on 5'(C) follows from the remark 3.17. The claim for Gu and Cs follows

in the same way, with now

llfll2 <
—

\\Jx\\3i 2: 4 ,

since |e<L>(k) - w(k)| > A/2L.
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3.2. BOUNDS FOR THE COVARIANCE 35

(iv) First observe that

d_
ds

c (k) =

ôu{k)

s=0

S[ ]
(iko-e^(k)-u(k)y

By Cauchy formula,

ko=—ia

dko e^x „T (f
T~i x—TT

=
Of—

x
a)
— —

2tt (iko - a)n+l
v '

n\ dk^

= ^-Q(-x0a)(x0)ne-lax°l.
TV.

The integral over x° of such an expression can be bounded by

dx°-^\x0\ne-lax°l < (Tn-1.
IV.

ikgX0

Using this remark, we bound

dko

Hence,

Further,

sup

keA^

oikçfX0

2n (iko - eßLßk) - u(k))2

. i Ol -\x°\^-
< \x \e

'
'2i.

d_
ds

jd+l jd+l
Cs loo<4—— > — =4

*l |l,Oü _ a / j nn

n
A ^2

s=0 n>l
A

'

d_
ds

G \\ <
-

< 1

^s\ no
x ^ 1.

s=0

Remark 3.19:

D

(i) In the |l,oo~ -norm, the covariance C« has contraction bound

C = max{||Cs||i)00, ||Cs||oo} <
4Ld+1

A
'

The integral bound b for the covariance Gs is bounded by

b2 = 4S(CS)2 <
25EL

A
'

The contraction bound for the derivative of the covariance -7-I
_

Cs is
ds I s=0 *

e' = max{|| 4-
ds

s=0

r 11 11 —
^S I |l,CO) I I 7

ds
Gs\\oof <

s=0

ALd+l

A

(ii) In the bounds C and C, the factor Ld is not relevant. A better bound can be found,
since the propagator in position space is integrable.

35



36 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

3.3 The Analyticity of the Green Functions

Definition 3.20: Let V E A0[A] be

W) = \jd^- --dtuv&u... ,£4>M£i) • • -ß{ß4)

where

V{x\, o\,a\,... ,x4,o4, a4)

= <J~aiiÖa2iÖa3oÖarenas ^a2cr^{Xl — X3)Ö{X2 — X4)Vail72{Xi — X2),

with

Vaia2(Xl - x2) = 6(4 - 4)V^JXl - x2).

Remark 3.21:

(i) \\V\\1>00 = sup Y \V^(x)\<2Ld\v\o.
"^M

XSAL

re{î,|}

(ii) N(V,a) = \X\a4b2e sup V |U(L)(x)| < 2|A|o;VeLd|W|o.
-6{T,I} xsAl

re{î,|}

Definition 3.22: Let "Ws be the Grassman function

Ws = V + Us,

where

and

Us(xi, (Ti,ai,x2,a2,a2) =

_ 0r c
(
n /

^,
N c Ki^iQ^l ~ ^2) + Ki^i (^2 ~ %l)

—

^0aii0a2o I -os^i
—

X2)Oai(j2

\

+2d(a;i - a;2) /^ j dz Cs{z,z)
z6AL

J
.

re{î,|} /

Remark 3.23:

(i) : Ws := V + C — number.
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3.3. THE ANALYTICITY OF THE GREEN FUNCTIONS 37

(ii) QC(V) = Qc(: Ws :).

(iii) ||^||i,oo<4||U||1)00.

(iv) If a > 1 and b > 1, N(US, a) < 4JV(V, a) and N(WS, a) < 5N(V, a)

Proof: In order to prove the point (i), remark that

:V: = ^JdC1---dC4V&,...,C4)ß&)---ß^4)
-x j ^1^2^(6,6) ß&)ß&)

+C — number,

and

: Us := Us + C — number.

Hence

: Ws :=: V : + : Us := V + C - number.

For point (iv),

N(Us,a) = ea2||f/s||1)00 < 4|A|e-^o!464||U||1)00 < AN(V,a).

Theorem 3.24: Let u EX. Assume that

N(V,8a)<^.
Then the generating functional Oc(A?) is analytic in A, for A satisfying

A2
\X\<

D

222L;o;2Ld+2||U||i)00'

Further

AM - V, „) < AW«) (i 4rJg^()

Proof: Applying successively remark 3.23(ii) and (i), theorem 3.12 and remark 3.23(iv),
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38 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

we get

N(nc(V)-V,a) < N(Çlc(: W:)-W,a) + N(V-W,a)

<
-2, y::zJ,^+N(v-w,a)

2 N(W,8a)2

a2l-ß2N(W,8a)

27 N(V,8a)2
< AN(V,a) +

< N(V,8a)[l +

a2l-^N(V,8a)

27 N(V,8a)

a2l-§N(V,8a)

By the definition of the norm N and remark 3.19,

12|M/o„472||TA|| ^

O19„4|\|-E'll^lll,oo^

N(V,8a) <
2i2|A|eo;V||U||i)00 < 2iya4|A|

If |A| < A2/{222Ea2Ld+2\\V\\hoo), then

A2

N(V,8a)<^.
D

A2

Corollary 3.25:

(i) For |A| < Aq where

the amputated 2m—points Green functions G2J are analytic functions of A. Fur¬

ther,
h ooa2EL

2^Ea2Ld+2\\V\\lJ

wr<{L)\\
^

o22i\i

11^2 lll.oo < l |A| .

For the four-points function,

||Gf)||1)00<(l + 217)|A|||U||1)00,

and for m > 2,

||gS||1)00<217|A|||U||1)00.

(ii) The connected two-points Green function S2 (x,y) is analytic in A with

Halloo < HCIUl + ||G||1)00||G?)||1)00)

and

||-S,f)||i)oo<||C||i)00(l + ||C||i)00||G?)||i)00).
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3.3. THE ANALYTICITY OF THE GREEN FUNCTIONS 39

(iii) The Fourier transform G2J of G2J, as well as the Fourier transform S2 o£ S2
are analytic functions of A, bounded in the sup-norm.

Proof: Observe that by hypothesis, N(V, 8a) < a2/CA, such that for m/2,

«2m62m||GS||1)00 < b^N(ÇîCu(V)-V,a)
b-N(V8a)(l+* N{V>8a) '

C
[ ' )[l+

a2l-^Niy,8a)'

Thus, for m = 1 we have

< b^NCV,8a)(l + ^NCV,8a))
< 23^N(V,8a)
< 21V64|A|||U||1)00.

IIG^IIi.00 < 217a262|A|||U||1)00

< 222a2\X\mk^EL,

and for m > 2, since a > 1 and b > 1 for L big enough,

I|g£||i,oo < 21V-2m64-2m|A|||U||1)00
< 217|A|||U||1)00.

For m = 2, in the same way,

a4b4\\G{4L) - AU||1)00 < 21V64|A| ||U||1)00,

such that

||GiL)||1)00<(l + 217)|A|||U||1)00.

The point (ii) is trivial, and the last point follows from remark 3.2. D

Remark 3.26: For |A| < A0

\GKß'Cu\o < —^\Cu\o <
2Ld.

i(L)A .
A.A., 1

Theorem 3.27: For each dispersion relation eßL^ defined in 2.10 and u E X, the

occupation number defined by

nf\k,X)= lim [^siL\ko,k,Xyx°x°
x°^0+ J ZTT
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40 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

is an analytic function of A for |A| < Ao- Further, the density

p<L>(A) = L-ä £ niL\k,X)
keA^
^6{î,|}

r Ah
3
k02 iim L-ä f^h y

s{2L)(ko,k,xyx°k
x°->0+ J 2-k ^—'

keA^
^6{î,|}

is analytic in A for |A| < A0.

Proof: By the corollary 3.25, the functions

[^ks(L\ko,k,xyx°ko = Y S(L\x°,x,X)e-^
J n

xeAL

are well-defined and analytic in A. We prove that the limit

exists. Since lim C(x°, x) exists, we have to verify it for the functions
x°^0+

S{2L\x,y)-C{x,y) = Y [ dz°dz'° C(x, z)G{2L\z, z')C(z',y)
z,z'eAL

^

= Y [ dz0dz'0C(x-y,z)G{2L\z,z')C(z',0),
z,z'eAL

J

by translation invariance. Note that

\C(x-y,z)GiL\z,z')C(z',0)\ < \\C\UG{2L\z, z')C(z', 0)|,

such that by dominated convergence,

lim (S{2L\x,y)-C(x,y)) =
x°^0+

= V [ dz°dz'° lim C(x,z)G{2L)(z,z')C(z',0),
z,z'eAL

J +

which is well-defined.

The sum over A^ and over {], {} is finite, such that the occupation number is well-

defined. The sum over AL is finite as well, hence the density is well-defined and analytic.
D

Remark 3.28: The theorem 2.18 follows from the corollary 3.24 and the theorem 3.27.
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Chapter 4

The Renormalization

As we saw in last chapter, the Green functions on the finite lattice are analytic, with

a radius of analyticity that shrinks to zero as L goes to infinity. Further, it turns out

that the Green functions at each order in A diverge as L tends to infinity. In order to

control the Green functions at given orders in A, we have to perform renormalization,
which cures the infrared divergences.

In the diagrammatic analysis, the divergences appear in graphs containing two-legged
insertions. The renormalization procedure consists in subtracting to each two-legged
insertion its value, projected onto the Fermi surface. This corresponds to a particular
choice of the counterterm, which is determined by the condition that the Fermi surface

is held fixed.

In this section, we first describe the main tool of the renormalization, namely the

localization operator, following the construction given in [7]. On the dual lattice AL, the

localization operator has to be modified in such a way, that points in AL are projected
onto points of the lattice that are close to the Fermi surface.

In the second part of this section, we prove that for each finite L, there is a counterterm

satisfying the renormalization condition, which preserves the analyticity obtained in the

previous chapter.

4.1 Norms in Momentum Space

Definition 4.1: Let T : AL -^Cbea function on the lattice. For 1 < a < d, we define

the "derivative" on the dual lattice by

VaT(k):=|^T(k+Çea)-T(k)),
41



42 CHAPTER 4. THE RENORMALIZATION

where ea is one of the vector of the standard basis in IR
.

If a = 0, set

Vo := dk0,

the usual derivative with respect to ko-

Definition 4.2: Let u : (IR x AL)n — C be a function of n variables. The | • |i—norm
of u is defined by

\u\i := \u\o + maXi=i} ,n \Vtau\0.
a=0, ,d

Here Via is the derivative on the lattice defined above with respect to the a-component

of the i—th variable.

Remark 4.3:

(i) For a differentiable function T : T — C, we have

|VQT(k)| < IITIU,

where || • ||i is the derivative norm defined in 2.8.

(ii) For two functions 7\ and T2 on AL, the following "Leibniz product rule" in the

supremum norm yields

|Va(T! -T2)|0 < |T1|o|VaT2|0+ iVaT^olTalo.

4.2 The Localization Operator

The localization operator /, defined in [7], implements the projection onto the Fermi

surface for functions defined on IR x T. On the finite lattice AL, we need a localization

operator ß^ which projects points of the lattice onto other points of the lattice, that are

close to the Fermi surface. This is necessary in order to preserve the periodic boundary
conditions of the model in finite volume.

4.2.1 The Projection onto the Fermi Surface

For the projection / onto the Fermi surface, we give here the main results of [7], and refer

to it for the proofs.

Remark 4.4: By assumption A2, S is a compact (d— 1)—dimensional Cr—submanifold

of T. There is ö > 0 such that

G0 = sup{|Ve(p)|,pe ^(S)}
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4.2. THE LOCALIZATION OPERATOR 43

is finite, and g0 = inf{|Ve(p)|, p E U2S(S)} > 0. Here U2S(S) = {p E T | d(p, S) < 25}.

Definition 4.5: Let u be a G°°—vector field on a neighborhood UvßS) of S. u is

transversal to S, if there is uo > 0 such that for all p E S, Ve(p) • u(p) > uo > 0. Denote

the integral curve of u through p E S by 7P:

7p : (-*o,*o) - T

* ^ 7p(*),

with 7P(0) = p and jp(t) = u(jp(t)).

Lemma 4.6: Assume A2. Then:

(i) There is a G°°—vector field u transversal to S, and t0 > 0 such that

tf: 5 x (-t0, t0) ^ y(Sx(-to,t0))cT
(p,t) ^ *(p,t)=7p(t)

is a Gr—diffeomorphism.

(ii) There are 5 > 0 and w0 G (0,1) such that

U25(S)c^(Sx(-to,to)),

and such that for all q E U2s(S):

0 <
y

< Mo < Ve(q) • w(q) < G0.

(iii) Define the functions

r : U25(S)

and

u; : U2s(S) — S

as follows. For q E U2§(S),

(a;(q),r(q))=*-1(q).

In other words, 7w(q)(r(q)) = q. Then

rr(p)

q = w(q)+ / u(^(q)(t))dt

so |q —o;(q)| < |r(q)| and

|q-w(q)| < —|e(q)|.
«o

Furthermore, w0 < e(q)/r(q) < G0.
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44 CHAPTER 4. THE RENORMALIZATION

Figure 4.1: The projection onto the Fermi surface

(iv) Let p E Us(S) and p = e(p). The map

ß:p^(p,u)

is a Cr—diffeomorphism from Ug(S) to a subset of IR x S. Denoting its inverse map

by p(p, uj), there are constants A0 and A\ such that the Jacobian J(p, u) = det
a(

*\

obeys

sup |J(p,o;)|<—,
peus{s) Uo

and its derivative dJ obeys

sup \dJ(p,uj)\ < —.

peUg(s) u0

A0 depends on 5, u0, and ||w||i; Ax also depends on the second derivative of u.

Definition 4.7: Let % E G°°(T, [0,1]) be such that x\us{s) = 1 and xh\u2S(s) = 0. Let

(p, lo) denotes the coordinates defined in the preceding lemma.

For a function T : IR x T i— X, where A is a linear space, we define the projection

operator / as follow:

(IT) (a0 a)-I °' q ^ U25{S)
1 M9'qj

lT((Wq)k(q), qEU25(S)

Lemma 4.8: For each differentiable function on T : IR x Ug(S) — C,

i(i-on9)i<—N°-e(q)i-imii,
Uo
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4.2. THE LOCALIZATION OPERATOR 45

for q E U2s(S). Further

and

where

icto< imio

wim < a+dWuMiT^,

\cü\\i '= max 11c^q.||i,
a=l, ,d

coa denoting the a—component of the vector function u. A proof of this lemma is given
in [7].

4.2.2 The Projection on the Lattice

We turn now to the projection on the lattice AL. Let {ea}^,=1 be the standard basis of

Rd, and for k E AL let

L
a=l

with k„ E Z.

Definition 4.9: Let A > 47rsup{l, ||e||i}. Define

S<L> kGA |e(k)| <
A

I

Lemma 4.10: For r >
j;,

let N(L,r) := |{k E AL | |e(k)| < r}\ be the number of

points of AL in the shell of width r around the Fermi surface. Then there are constants

c2 > Ci > 0 independent of L, r and [«S^, such that

d\S\rLd< N(L,r) <c2\S\rLd,

where |jS'| is the (d — 1)—area of the Fermi surface S.

Proof: Let x G G0oo(T, [0,1]) be such that x(k) = 1 for k with |e(k)| < r, and x(k) = 0

for k with |e(k)| > 2r. Further, assume that ||xlli < C/r for a constant G > 1. Then

L~d Y l\e^)\<r < L~d Y X(k)

keA» keA»

<
ddp

(2tt)c
a(p) + L~d Y x(k) - /

kSA»

ddp

(2n)a
x(p)
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46 CHAPTER 4. THE RENORMALIZATION

A

U

Figure 4.2. The lattice and its fundamental zone

The last term is bounded by

^£x(k)-/(gïX(P)
keA»

<
2tt

T
ddp

(2nY
d1|e(p)|<2r,

such that

keA»

|e(p)|<2r

1 + G/2 f2r f
< —-——— / dp dujJ(p, to)

-2r JS

<

(27r)d

2G

It follows that

(27r)rf

N{r,L) = Y l\e(K)\<r <

\\J\\o\S\r

keA»
(2n)d

' '

We turn to the first inequality. For each point k G AL, let Vk denotes the fundamental

cell of the lattice that contains k. The volume of Vk is (27r)d/Ld. Define the set Sr .=

{p G T | |e(p)| < r}. Remark that for k G AL, if Vk n Sr_A_ ß 0, then k G Sr.

Let k + A G Vk such that |e(k + A)| < r - A/2L (See Fig. 4.2). Then

|e(k)| < |e(k+A)| + |e(k+A)-e(k)
<

r

< r

<

r_A+||e|L2£
—

'
2L
^ IIe!!1 L

It follows
r HT)

L~d Y l\<n<r > / 7^wl|e(p)|<,-^
keA»

V ;
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4.2. THE LOCALIZATION OPERATOR 47

On the other hand,

Hence

> —i-y inf \J(p,u)\\S\r.

N(r,L) >(27r)-rf inf |J(p)||S|rLd.
pecks')

Remark 4.11:

(i) k G S<L> implies that d(k, S) < &à.

(ii) S^ ß 0. The number of points in S^ grows like Ld~l.

(iii) For L big enough, S(L) C U5(S).

Proof: For point (i),

d(k, S) = inf |k - p| < |k - /k| < — |e(L)(k)| < —4-
pes' uo Uo L

We turn to point (ii), and apply the lemma 4.11, with r = A/L. Then

ACl\S\Ld-1 < |S(L)| < Ac2\S\Ld-ß

D

D

Definition 4.12: For k G AL, define the projection ßL^k as follows:

- IfkGS(L), then/(L)k = k.

- If k (/ SW and k G U25(S), then /^k is one of the points in S^, with d(l^k, Ik) =

min d(k',lk), and sgn(e^L)(k)) = sgn(e(/^L-)k)). If several points fulfill this condi-
k'es(L)

tion, choose one of them arbitrarily.

- Finally, if k £ U2S(S), then l^k = k.

Remark 4.13: If k ^ S<L\ then |/k - ßL^k\ < Ç
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48 CHAPTER 4. THE RENORMALIZATION

Proof: Let Bi^ßk) denotes the ball of radius An/L around Ik. For each p G B^ßk),

4:7V A
le(p)l = le(p) - e(;k)l < llelli |p - ;kl < IMIiy- <

y,

such that B^ßk) n AL C S(L), and B^ßk) n AaL ^ 0. Hence for k' G S^, d(k', Ik) =

min d(k", Ik) implies k' G B^/k). In particular, ß^k E B^ßk), such that |/k—
k//e§(L) L L

l^k\ < f.

D

Definition 4.14: For a function T : IR x A^ — A, define the projection operator l^

as

(*<L>T) (fco, k) = | T(0j /(L)k)x(k)) k G ^*(5)j
where % was defined in 4.7.

Lemma 4.15: Let T : M x AL -> C be a function with |T|i < oo. Then for k G US(S),

(i) |(1 - Z(L))T(fc)| < a\ik0 - e(L)(k)||T|1.

(ii) |/(L)T|o < |T|0.

(iii) |/(L)T|! < ß\T\v

The constant a and ß are given by

a = v^(l + v^(l + ^)) and ß = Vd(4 + A^ + d\\co\\ß.

In order to prove this lemma, we need the following definition:

Definition 4.16: Let k and k' be two points in AL.

(i) A path 7 of length n G N between k and k' is a finite sequence

7 = (k = PO, Pi, • • •

, Pra-1, Pra = k')

of points p» G Al such that for all 0 < i < n — 1,

_

2tt

h-iI —

and for all 1 < i < j < n, pt ß p3. Here

P* - P*+i I = -y

|p* - p*+il = Vfa - Pt+i) • (p* - Pt+0

is the Euclidean distance in lRd. We say that 7 has length I7I = n.
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4.2. THE LOCALIZATION OPERATOR 49

(ii) A path 7 between k and k' is said to be minimal, if

I7I = min {[7'I : 7' is a path from k to k'} .

Remark 4.17: Given k and k' in AL, there always exists at least one minimal path 70

between k and k'.

If k = —Y kaea and k' = — Y K^a, then

a=l a=l

L
d

\i*\ = yßY\ka-k'*\-

By Holder's inequality,

M^v^lk-k'i,
where |k - k'| = y^k - k') • (k-k').

Proof of 4.15:

(i) By definition of %, x(k) = 1 for k G Ug(S). Observe that

I (1 - l^)T(k) j < \T(k0, k) - T(0, k)| + |T(0, k) - T(0, l^k) \ .

The first term is bounded by

|T(fc0,k) -T(0,k)| < |a0T|0 • I fco I < |fco| |T|i.

If |e^(k)| < A/L, then ß^k = k, and the claim is trivial. In the case |e^(k)| >

A/L, let 7 be a minimal path between k and ß^k. Then

l7l

|T((M<L>k)-T(0,k)| < ^ITCO.pO-TCO.p.-x)!
1=1

M
2

1=1

< |i7i-m,
< v^lk-Z^kl • |T|i.

Further,

|k-/(L)k| < |k-/k| + |/k-/(L)k|
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50 CHAPTER 4. THE RENORMALIZATION

and by the construction of /, |k — /k| < \[2/uo |e^(k)|. We use the remark 4.13

and

i^(k)i > £ > ß
in order to bound the second term with |e^(k)|. Hence

|k-/(L)k|<(l + ^)|e(L)(k)|,
Uo

and the first point follows with

« = ^(1 + ^(1 + —)).
Uo

(ii) Trivial.

(iii) By hypothesis k G Ug(S), and x(k) = 1- Since the projection is constant with

respect to fco, we consider only the derivative with respect to the spacial variables,
defined by

|V«/(L)T(k)| = ±-\T{lW(k + ^ea)) - Tß^k)|.

If k and k+ jf^a are both in §>(L\ then the claim is trivial. If k or k+ jf^a is not

in §>(L\ we choose a minimal path 7 between ßLßk+ jfea) and ß^k. Then

|V«J<L>T(k)| < ITlxM < Vd^lTlxl^Ck+^O-^kl.

The last term can be bounded as follows

O77-

\ßL\k+—ea)-l^k\ < |/W(k+fea)-/(k+fea)|
2tt

+ |/(L)k-/k| + |/(k+—eQ)-Zk|.
1j

Using

|/k-/k'| <d|M|i|k-k'|,

we bound the last term with d||a;||i^. If both k and k+ jfea are not in S(L\ then

use the remark 4.13 in order to get

2ir 2-7T

\l^(k+Tea)-l^k\<T(A + d\\cü\\ß.

If one of the points is in §>(L\ i.e. k G S^L\ then ß^k = k, and

lk"/kl<—|e(L)(k)l<—i
Uo Uo L
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4.3. THE RENORMALIZATION CONDITION 51

In that case,

|/(L)(k+^ea)-/Wk|<^(2 +^ + d||a;||1).
L L Uo

Finally, we get
Pi

|V«/(L)T(k)| < Vd(4 + A— + d|M|i)|T|i.
Uo

We get therefore the last claim, with ß = \fd(A + A— -\- d\\io\\i).

Lemma 4.18: Let T : M x T -> C be a G1-function. Then

Air

|/(L)T(fc)-/T(fc)|0<---||T||1.

Proof:

|/WT(fc) _ iT(k)\ = |X(k)T(0, l^k) - x(k)T(0, /k)| < Unix |/^k - /k|.

The remark 4.13 implies the claim.

D

D

4.3 The Renormalization Condition

Lemma 4.19: For each generic dispersion relation e^L\ u E X, and |A| < A0, the

self-energy T.^ßk, X; u) defined by the equation

E^(fc, A; u) = (l + G2L)(k; X)Cu(k))-lG{2L) (fc; A)

is analytic in A. Further,

|E(L)(fc,A;w)|<22V||Vl|1)00£|A|L/A

Proof: Since for|A| < A0, by remark 3.26

\G2 |o|Gu|o < 1/2,
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52 CHAPTER 4. THE RENORMALIZATION

the self-energy is analytic in A for |A| < Ao- We bound the self-energy as follows:

\^L)(k,X;u)\ < \(l + G{2L\k;X)Cu(k))-l\-\G{2L)\o
23^,2

<
22do;: l,oo EL\X\

A

D

Remark 4.20:

(i) For |A| < Ao, |E(L)(fc, A; u)\ < j^h+t,
such that

(ii) |GM(fc)EW(fc,A)|o<l.

Definition 4.21: The renormalization condition is given by the equation

l{L)u(k, X) - /(L)E(L) (fco, k, A; u) = 0.

Remark 4.22: We will prove that it is always possible to find a counterterm K^ E X

such that /(L)A-(L)(k; A) = K^Lßk; A).

Theorem 4.23: Let eßL^ be a dispersion relation defined in 2.10, and u, öu E X.

Further, let s G IR be close to 0, such that u + sou E X. If

„2

N(V, 32a) <
a

then

Niß
ds

s=0
^'V»^'^l4ViV(TaL)(1 + e') + 4Ar(V-Q)

Proof: First note that for L big enough, C < C2, such that we set p = 1 in the theorem

3.13. Further

N

Since

d_
ds

ttcßVßa) <N
s=0

d_
ds

(ncß:Ws:)-Ws);a\+N
s=0

d_
ds

W.

s=0

d_
ds

C/J|i,oo<4||V||1
s=0

d_
ds

G,IL<4 l,oo,

s=0

the second term is bounded by

N d_
ds

s=0

W, = N
ds

s=0

Us) <4ea2|A|||F||1)00<4A(V,o!).
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4.3. THE RENORMALIZATION CONDITION 53

The first term is bounded by theorem 3.13:

N(£\s=0(Qcß:Ws:)-Ws);a)

<
1 A(Wp, 32a)

2a^l-4,A(Wo,32ûO
N( d_

ds
s=0

Ws,8a) + jN(Wo,32a)

< -4 iV(A?,32Q!)
. (N(V, 8a) + &N(V, 32a))

<

a2l-^N(V,32a)
2 N(V,32a)2

^l-^N(V,32a)
(l + C).

Remark 4.24: For |A| < A0, where

D

A'
=

A2
0

229a2Ld+2E\lv llloo

the hypothesis of the theorem is satisfied, and N(V, 32a) < ck2/10.

Corollary 4.25: For |A| < A0,

d_
ds

s=0

o27 Td+2 771 2

G^ll
< IAI^2 ||l,ooS|A|- -p-

l,oo

Proof:

d_ I ^(£) 11

ds\s=0 2 lll.oo

1
»„

d
< A( —
-

Ca2
K
ds

nc.(V),a)
s=0

<
44C JV(V, 32a)2

e«41 - 4at(v, 32«)
'

e«2
+ —-JV(V,a)

4 26'
< —,-N(V,32a)(l + —TN(V,32a))

a1

<

ea2

8C
JV(V, 32a)

Ca2

< 225e/a262|A|||F||1)00

< 22V^^|A|.
A2

D
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54 CHAPTER 4. THE RENORMALIZATION

Lemma 4.26: For |A| < A0

d_
ds

E{L)(k,X;u)\ < \X\
s=0

22Sa2\\V\ß0OELd+2
A2

Proof: First remark that

d_
ds

Cs(k) = -C2u(k)ôu(k).
s=0

Thus,

d_
ds

Z{L\k,X;u+s6u)
s=0

ds

Gf\k,X)l-^X)ÔÀk)
s=o l + G{2L)(k,X)Cu(k)

+E(L)(fc,A)2G2(fc)^(k).

Thus, by remarks 4.20 and 3.26,

Z{L\k,X;u + s6u)
d_
ds

s=0

< 4 d_
ds

G{2\k,X)
s=0

+ |E(L)(fc,A,w)|

< |A|-2
23
a 1>00E\X\L /24Ld+1

A

< |A|-
22»a2 VhooEL

d+2

A
+ 1

A2

Corollary 4.27: If |A| < A0', where

A"
=

A3
0 932^,2

then

d_
ds

232a2\\V\\hooELd+3

A

s=0

sW(fe,A;u)|<-.

D

Theorem 4.28: For dispersion relations eßL^ defined in 2.10, there is a unique countert¬

erm K^ E X with ß^K^ = K^ such that the renormalization condition is satisfied

for |A| < A0'.

Proof: We have to solve the equation

u(k)-l^^LßO,k,X;u) = 0
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4.3. THE RENORMALIZATION CONDITION 55

for u E X. By the corollary 4.27, the map u i— /^S^(-;w) is a contracting map. We

define the sequence u^ E X as follow. Let u^ = 0, and

»,u^(k) :=l(L)E(L»(0,k,A;«(,,-1)).

By the remark 4.20(i), the sequence is in X. Further,

|w(n)_w(n-l)| = m^L\0,k,\]U^-^)-l^^L\0X^^n-^)\

<
d

ds
E(L) (0,k, A; u(n~2) + s5u(n-l))

s=0

|w(n-l)_w(n-2)|

where 5u^n ^
= u^n ^

— «(n 2-). Hence by corollary 4.27,

|WW-W(-D|< A|UM)_UM)|.
1 '~ 4L1 '

Iterating the bound, we get

,„(»)_ U(»-D|< (AV.

The sequence of the u^ is therefore a Cauchy sequence in the Banach space of the

function on AL x C that are analytic in A. Hence

A-(L)(k;A) := lim u{n)(k,X) EX

is the counterterm.

Suppose that two functions K\ and K2 E X solve the renormalization equation. Then

for all kGA'L and A,

\Kßk;X)-K2(k;X)\ = |£(L>(0, l^k, A; Kß - E^(0, l^k, A; K2)\
d

< sup
ds

^L)(0,k, ^Ki + sSu)
s=0

Kx-K2\o.

Since A/4L < 1 for L big enough, this leads to a contradiction unless K\ = K2. By
definition of K^ as the solution of the equation

u, .(k)-l<L)E^(0,k,A;«) = 0,

we have

l^K^(k,a,X) = l^{l^^(ßk,X;K^))
= l{L)^\<d,k,X;K{L))
= K^(k,a,X).

D
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Chapter 5

The Thermodynamic Limit

5.1 The Graphs Expansion

Definition 5.1:

<L)
(i) The amputated Green functions G2ßr at order r in A are defined through Taylor

expansion,

'2m,r'
ML)

_ \^ xrr{L)
b2m —

2-^ 2

r>0

For the two-point (non-amputated) Green function,

S{LHk) = C(k) + YXrSrL)(k^
r>\

where S{rL)(k) = G(fc)G^(fc)G(fc).

(ii) The conterterm Kr at order r in A is defined in the same way:

K^(k;X) = Y^Ki:L)(k).
r>\

(iii) The self-energy Er at order r in A is defined by:

^L\k,X) = Y^iL\k).
r>l
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58 CHAPTER 5. THE THERMODYNAMIC LIMIT

Remark 5.2:

(i) It is well-known that

G2m,r — Z_^ Vali G,

GeS2m(r)

where the sum runs over all the 2m—legged, connected, amputated graphs of order

r, with n four-legged vertices V and nt two-legged vertices K\ ', for i = 1,..., r,

such that n + ri\ + 2n2 + • • • + rnr = r.

The value of the graph G is given by

£(f>)ValL(G)= L-^)l Y [ Il f^(L)(*0
l=\

where

kiSA^, l£L(G) 1&L{G)

n ( n HY2k)v(kh,...,kl4)
veV4(G) \h,...,l4eL(v) i=l

n ( n ^1+^)^iL)(^)),

5{k - k') = {2^L)d5^5{ko - fc0).

We define L(G) to be the set of internal lines of GJ and E(GJ) the set of external

legs of GJ. V(G) denotes the set of all vertices of GJ, and V2(G) resp. V4(G)
denotes the set of the two- resp. four-legged vertices of G.

The propagator in momentum space is

G(L)(fc)
g*fcoO+

ik0-eßLßk)'

(ii) For the self-energy,

ErL) = Y ValL G'

GeS2(r)

where S2(r) is the set of all two-legged, IPI graphs built up from n four-legged

vertices V, and nt two-legged vertices K\ ', for i = 1,..., r, such that n + ri\ +

• • • + rnr = r.
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5.2. THE CONVERGENCE IN THERMODYNAMIC LIMIT 59

Remark 5.3:

(i) We consider the counterterm Kr (k) as a IPI graph build up from one two-legged

vertex. The counterterm Kr is therefore absorbed in the self-energy. Thus, the

renormalization condition reads now:

/(L)E(L)(fc) = 0.

(ii) It is useful to solve the renormalization equation explicitly in terms of graphs. For

that purpose, remark that

/(L)E^(fc) = KiL\k) + Z<L> Y Val^G'

GeS'

where S' is the set of all graphs in S2(r) that contain at least one four-legged vertex.

It follows that the two-legged vertex Kr cannot enter the composition of the

second term. We get an inductive procedure to determine the counterterm order

by order in A, which is given by

KiL\k) = -l^ J]ValLG,
GeS'

the right hand side containing only counterterms at order r' < r in A.

5.2 The Convergence in Thermodynamic Limit

Theorem 5.4: Suppose that the assumption A1-A3 are verified. Then:

(i) For each L E N, there are constants A0, B0 and Bx that are independent of L but

depend on r such that

|^2,r |0 -: A),

and

\XrL)\o<B0 and |e£l)|i<#i.

(ii) In thermodynamic limit,

G2r — G2,r in the || • ||0 — norm,

and

Tjtl> ^° Er in the || • ||0 — norm,

where G2r and Er are defined in 2.22.
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60 CHAPTER 5. THE THERMODYNAMIC LIMIT

(iii) For L — oo, the counterterms Kr converges to the counterterms Kr in the supre¬

mum norm || • ||o—norm.

(iv) In the thermodynamic limit,

G2m,r -^ G2m>r in the || • || — norm.

(v) The same is true for the two-points Green function at order r > 1 in A:

ç<(L) ^° ^ m ^ne || . ||/ _ norni)

where G2mr and Sr are the Green functions defined in 2.22.

Corollary 5.5: In thermodynamic limit, the density p(LßX) converges in the sense of

formal power series to p(X), that is for all r > 0,

(L) £-°o

Hr Hr

and

Proof: By remark 2.19,

\P:

p^L^°2Vo\(S).

îL)\<L-d Y J^\SiL)(k)\-
keA^

^6{î,|}

By point (v) of the theorem 5.4,

Äo,^n„,,i^co f dd+lka

^E/^1,wi^/|-£i*mi.
keA^

Hence,

Further,

keA^ keA^

which tends to twice the volume enclosed in the Fermi surface, since ©(—e^(k)) —

0(—e(k)) is non vanishing on a set of volume bounded by const L~l. D

Remark 5.6: The theorem 2.24 follows directly from theorem 5.4 and its corollary 5.5.
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Chapter 6

Proof of the Convergence

In this section, we prove the convergence of the Green functions in thermodynamic limit

at each order in A. The proof given here follows the proof given in [7] on the continuum

momentum space, performing the same scale decomposition, and using the same power

counting. The difficulties appear at energy scales lower than the dual lattice spacing.
The effective cutoff implement in definition 2.10 allows to apply the same bound as in

the continuous case.

6.1 Scale Decomposition

In order to bound the value of a graph, we decompose the propagator in a sum over

energy scales. The problem of computing a possibly divergent integrals is replaced by
the question of the convergence of series. In order to perform the decomposition over the

scales, we first define a G°°—partition of the unity.

Definition 6.1: Let e be defined by the volume improvement estimate, Uo and S

defined in 4.5, and M > max{41A) (w0#)-1}. Then |e(p)| < M~l implies p G U§(S). Let

a E G°°(M+, [0,1]) be such that

r x
_

/ 0 for x < M~4
a[X)

~\l for x > M~2

and a!(x) > 0 for all x E {M~4, M~2). Set

f(x) = a(x) - a(x/M2) =

0 for x < M~4

a(x) for M~4 <x< M~2

a{x/M2) for M~2 <x<l

0 for x > 1
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62 CHAPTER 6. PROOF OF THE CONVERGENCE

so that for all x > 0, f(x) > 0, and

-l

l-a(x) = Y f(M-2]x).

With fßx) = f(M~2^x), we have

0=-oo

and for all x > 0,

supp/, C \M23~4,M2ß

/,(*)/;,'(*)= 0 if |j- /| > 2.

Figure 6.1: TTie j
— shell

Definition 6.2:

(i) The propagator at scale j < 0 of the model on the finite lattice is defined by

ML)(k
w_fAk2o + e2(k))

C> {k°'k)-
»fco-eW(k)

•

(ii) The propagator at scale j < 0 of the model in the infinite volume is defined by

/,(pg + e2(p))
Cßpo,p) =

rpo - e(p)

(iii) The propagator at scale 0 is defined to be the UV-part of the propagator:

1
C^L\p)=Co(p)

rpo - e(p)
aßpoY + eß{p)).
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6.1. SCALE DECOMPOSITION 63

Remark 6.3:

(i) Let

3l =
In A- InL

hÏM
+ 2,

where for x E M, [x] E Z with [x] — 1 < x < [x]. Then for j > jL, supp/, C

(§, M-4), and Cf(k) = Cßk).

(ii) By definition,

3*PoO^ =*Po04

îpo - e(p) ipo - e(p)
a((po)2 + e2(p)) + e^°+ Y ^(Po,P),

j= -oo

and

=«fc0o^ 3«fc0o^

îfco-e(L)(k) îfco-e(k)
a((fco)2 + e2(k)) + e^°+ J] GJL)(fc0,k).

j = -oo

(iii) On the finite lattice, for dispersion relations with p E M \ M, there is a natural

cut-off at scale

lncL
I(L) : =

In M
+ 2.

Lemma 6.4:

(i) For j < 0, |Cj|o < M2~3 and ||CW||0
< M2~K More precisely

(i)i

|Gj(fco,k)| < M Jl|jfc0_e(k)|e[M3-2,M3]

and

\C3 (fc0,k)|<M2 Jl|jfco-e(k)|e[M^-2,M^]-

(ii) There is a constant A'o > 0 such that for j < 0,

\d;L)\'= L~d Y, f ^\C?\k)\ < K0M>

keA»

and

ll^l|/ = /(0T^W|-i"oMJ-
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(iii) With the same constant K0 > 0,

dd+lk

pSKxTv{+,-}

and

sup sup I ——\Co(k)Co(p + vk)\ < KoM2,

sup L~d Y [ ^\Co(k)Co(p ± k)\ < KoM2.
L keA^

pSMxAj

(vi) For each 0 < a < d, there is a constant W > 0 such that

L|«fc0-e(k)|e[M3-2,M3],|V«G7(L)(fc)| <WM2~2n{

and

|ö«G,(fc)| < wM2-2nltko_eme[M3-2tM3]

(v) Volume improvement bound: For all j\,j2,]3 < 0,

dkd+l dk'd+l
sup

pSRxT

v,v'£{+,-}

and

jy^jy^Cn(k)c32(k')c33(vk + ßk' + p)\ < Kim*+»+W\

sup |L"2d Y /^^4L)(^)4L)(^^3L)(^ + ^^/ + P)l<^i^1+^+(e-1^.
:tvA«

. .

»
J 2-K 2-K

pSRxA^

Proof:

(i) This claim follows trivially from the support properties of Cr For j < jl, we use

\ < M2~K

(ii) We begin with the continuous case, using (i):

dd+lk f dd+lk
-------|G,(fc)| < M2-'

J j^—^ßlko_e(y)\&[M]-2M]]
2M2 f ddk

~ ~2A J J^rl\e^\<M,
2M2 fM3 f

- wr*LP" ]mjm\
4M2

< (27FttIIjHoI^-
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6.1. SCALE DECOMPOSITION 65

On the finite lattice AL, we distinguish the cases j > Jl and j < jl- In the first

case, using lemma 4.10

L~d Y / ~2~p\G^k)\ < \Cß0L~d Y / -y^hk0-e(k)\e[M3-^M3}
keA^ keA^

^ |CJo / — l\k0\<MjL Y 1
|e(k)|<MJ

2M2
< -y^c2\S\M^.

If j < jl, then

^E/ficfmi < J'^M.L-'^ßKk)|<1

keA» keA»r

< ß-M',AsßL
< =^V.

7T

We set Ko = ^{j0tt\\ A\o\S\, ^fc2\S\}.

(iii) The integral over the torus T of the propagators is harmless:

dhd+l C dkn
—-—|Co(fc)C0(p±fc)| < sup/--^|Go(fc)Go(p±
(27r)d+i keTJ 27T

dko
<

< L

l|fco|>M-1l|fc0±po|>M-1
2tt AiPo + M-^ßko + PoP + M-2)

where / = sup/(y) with

i{y) =
dx

'|x|,|x-h/|>m-i y/(x2 + M-2)((x + y)2 + M-2)'

If |y| < 1/2M, then for \x\ > M~l, \y\/\x\ < 1/2 and

(x + yf + M-2 > x2(l + V-)2 > x2(l - V-Y> x2/4
x

Hence

sup I{y) < 2 / % < 2M < 2M2.
\y\<(2M)- M-l X"
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We turn to the case \y\ > 1/2M. First observe that I(y) = I(—y):

i(y) =
dx

\x+y,2l\x-y,2\>M^ y/((x + |)2 + M~2) ßx - |)2 + M~2)
dx

2

'\X±y/2\>M-i y/((x + |)2 + M~2)ßx - |)2 + M-2)
= H-y),

such that / = sup/(y). We bound the denominator with

y>0

(x2 - V-)2 + 2M~2(x2 +V-) + M-4 > (x2 - V-)2,

and get

i{y) < 2
dx

_

1 y + M~l

m-1+ï (x+y2)(x-y2) ~yU M"1

Thus, the function /(y) is bounded by a decreasing function of y > 1/2M. Thus,
for y > 1/2M,

I{y)< — ln(3/2)<2M2,

and
/7fcd+1

-^----|Go(fc)Go(P±fc)|<2M2.

The same bound holds on the lattice AL.

(vi) We first bound the derivative of the propagator on IR x T. In that case,

la.cwi < \MM±ßmßjM±4mmplum.
\Wo-e(p)\ Po + e2(p)

Since by definition,

|aa/,(fc2 + e2(k))| = |aa(fco2 + e2(k))M-2V/(M-2^(fc2 + e2(k)))|

< 2sup{l,||e||i}|îfc0-e(k)|M-2j
•|//(M-2^(fc2 + e2(k)))|l|,fc0_e(k)|<M,

< 2sup{l,||e||1}||/||1M-J,

we get the claim with W = sup{l, ||e||i}(l + 2||/||i)M2. On M x AL, for j > jL,

the remark 4.3 implies the bound. For j < jl,

d.
fPk2 + e2(k))

tko-j;
< WM2~2ß
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in the same way as for C3, using L/A < M2 3. Further, for a = 1,..., d,

V,
fßk2 + e2(k))

iko-j;
<

11/:]\\i

\iko-i\'

by the remark 4.3. The claim follows.

(v) We prove first the bound on IR x T. Performing the fco—integral, we get

dkd+l dk'd+l

{2n)d+i {2n)d+iCn(k)Cn(kr)C33(vk + v'k' + p)

<
4M4"« f dkd dk

d J ljd

/27r)2 J (27r)d(27r)dl|e(k)l-MJ11le(k')l^MJ2 1Hv^+v^+p)\<m^
4M4"«

(2nß
-I(Mn,Mn,Mn).

Applying the volume improvement bound, we get the claim. We turn now to the

lattice case. Observe that without lost of generality, one can set j3 = min-fji, j2, j3}.
If J3 > Jl, then performing the fc0—integrals, we get

L_2d ^ j ^^Cn(k)Cj2(k')CJßvk +v'k' + p)

k.k'eA^

4M4"«
2d ^

— ~p)~\2~ Z-^i ^|e(k)|<Mnl|e(k')|<M32 l|e(t)k+t)'k'+p)|<MM-
(27T)

k,k'eA»

We bound the sums over the lattice points using lemma 4.10. For this purpose,

define the set

AßM^ßMißMiß = {(p,p') G T x T : |e(p)| < Mn, |e(p')| < Mn and

\e(vP + v'p' + q)\ < M«}.

Thus,

l|e(k)|<M« l|e(k')|<MMl|e(t,k+t)'k'+p)|<MM = l(k,k')eA(M« ,MnMn) '

Further, define x G G°°(T x T, [0,1]) with

A(Mn,Mn,Mn) CsuppxC A(2Mn,2Mn,2Mn),

and

XU(MW,M^2,MM) 1.
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68 CHAPTER 6. PROOF OF THE CONVERGENCE

We choose x such that ||x||i < DM~in^n'^ < DL/2n, for a constant D > 1.

Then

L
/ y

l(k,k')eA(MJi,MJ2,MJ3)

k'eA^

<L"2d J] x(k,k')

k,k'eA»

ddp ddp'

k.k'eA^

-y (27F(27Fx(p'p)+

/• ddp ^y
- y 7^^7^p1(k,k')eA(2Mn,2M«,2MM)
< (1 + D)I{2Mn,2Mn,2Mn).

X(p,p')-L~2d Y X(k.k')

k,k'eA»r

i + llxlliÇ

Applying the volume improvement, one get the claim with

M4
K1 = (l + D)Cvol24+e

(27T) 2'

If j3 < jl, we proceed essentially in the same way, replacing MJl by A/L, if jt < jl,

for i = 1, 2 or 3. We present here the case where ji, J2 and j3 < Jl- Performing the

fc0—integrals, we obtain

L
-2d

E
k,k'eABr

dk0 dk'0 (L) (L) (L)

2tt 2tt ^i W^ (k)CA' (vk + v'k' + p)

[3
< Mn+n—L~2d

A3
Y 1|e(k)|<41|e(k')|<41|e(«k-N'k'+q)|<4'

k,k'eA»r

where the factors Mn and Mn are the length of the integration range of the vari¬

ables fco and fc0, and L3 /A3 > M~n~32~n bounds the supremum of the propagators.

We then proceed as in the case j3 > Jl, and get

L_2d £ f^^C^(k)C^(k')C^(vk + v'k' + p)

k,k'eA»r
2tt 2tt

L3
„

A A A,
<(l + D)M»+*>—I(2-,2-,2-)

e-l

< D23+eMn+n I -
L

< D23+eMn+nM{e~l)n.

D
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6.2 The Tree Expansion

Let G G S2m(r) be one of the connected, amputated graphs contributing to G2Jir. We

decompose all the propagators of the graph G using the scale decomposition. Each line of

G gets therefore an additional scale labeling. We denote a labeled graphs by GJ, where

J = {ji | l G L(G)}, and sum over all ji from I(L) to 0.

Definition 6.5:

(i) Let GJ be a connected labeled graph. We define the tree t(GJ) associated to GJ

inductively as follows. If GJ consists in a single vertex v, then

t{GJ) := {GJ}.

Consider now a graph GJ with N vertices, N > 1. Assume that the trees cor¬

responding to all graphs with N' vertices, N' < N have been constructed. Let

j := inf ji be the lowest scale of the graph GJ. Suppose that the graph
ieL(GJ)

G/{I E L(G) \ji = j}, obtained cutting all the lines at scale j of GJ, has n con¬

nected components G\,...,Gn, with associated trees t(Gß,... ,t(Gn). Then

n

t(GJ):={GJ}u\Jt(Gß.
t=l

Hence the tree t(GJ) is the set of all connected subgraphs of GJ, obtained cutting

recursively all lines at a given scale.

For / and g E t(GJ),

f<g&gCf

define a partial ordering on t(GJ). If / < g and / ß g, we write / < g.

(ii) Let / be a fork of the tree t(GJ). We denote G/ the connected subgraph of GJ

corresponding to the fork /. 2m./ is the number of external legs of G/, and jf : =

inf ji is the scale of the fork /. Uf is the number of upward branches of the fork
lL(Gf)

f in t(GJ).

Remark that for / and g E t(GJ),

f < 9 => Jf < h-

For simplicity, we call "two-legged forks" the forks / with m./ = 1 and "four-legged
forks" the forks / with nif = 2, referring to the number of branches of G/ rather

than the number of legs of / in t.
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70 CHAPTER 6. PROOF OF THE CONVERGENCE

(iii) The root ß of the tree t(GJ) is the fork corresponding to the graph GJ. In particular,

f < (j) => f = (j). The scale j = j^ is the root scale of t(GJ) or GJ.

A fork v E t(GJ) with no upwards branches, i.e. uv = 0, is called a leaf of t(GJ).
The scale of a leaf v is jv := 1, and the graph corresponding to the leaf v is a single
vertex in V(GJ). In particular, v < f implies v = f.

We call "two-legged leaves" the leaves that corresponds to two-legged vertices of

GJ, and "four-legged leaves" the leaves corresponding to four-legged vertices of GJ.

(iv) Let / G t(GJ). We call 7r(/) the fork preceding / in t(GJ):
7r(/) G t(GJ) with 7r(/) < / such that there is no g E t(GJ) with 7r(/) < g < f.

(v) The graph G(f) is obtained collapsing all the subgraphs Gg with nßj) = f into

vertices. The tree t(G(f)) is obtained from the tree t(GJ), replacing the forks g

with n(g) = f by a leaf. In particular, the graph G(0) contains only lines at scale

j, and generalized vertices at scales > j + 1.

Remark 6.6: It is possible to show (See [7] and [6]) that the sum over the graphs of

the remark 5.2 can be replaced by the sum over the trees:

E Ev-fcG^E-EIlèEEv.iLG',
G£92m(r) J 3>I t f&

J'
J GeS(t)

where the sum over t runs over all the rooted trees with less than sup |£(G)| forks

GeS2m(r)

and less than r leaves. The sum over the scales runs over all the scale sets J = {jf, f E t}
such that jg < jf if g < f, the root scale j</> = j remaining fixed. The last sum over the

graphs is taken over the graphs G G S2m(r) such that t(GJ) = t.

Remark 6.7: Let consider a graph GJ. We introduce the following labeling of the

two-legged forks of t(GJ). If / G t(GJ) is a two-legged fork, G/ is IPI, and / is not a

leaf of t(GJ), then we say that / is a r — fork of t(GJ). If / is a two-legged fork and G/
is one particle reducible, then / is a s — fork.

Let / be one of the two-legged leaves of t(GJ), corresponding to the counterterm

KlL\k) = -l^ J]J]ValLGJ,
GeS' J

where S' is the set of all the two-legged, IPI graphs that have at least one four-legged
vertex. (See remark 5.3) Let GJ E §' be one of the graph contributing to Kr

,
with

associated tree t(GJ) and root scale j > I.

The tree t(GJ) can be expanded, replacing the leaf / with the two-legged root of the

tree t(GJ). The fork / is now a two-legged fork that corresponds to a two-legged, IPI
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6.2. THE TREE EXPANSION 71

graph. Remark that the scale of the fork / is independent of the root scale of GJ. A

two-legged fork obtained in this way will be called a c—fork.

Following this procedure, all the two-legged leaves of the graph t(GJ) can be replaced

by c—forks, ending with a new tree t that has only four-legged leaves. The value of

the graph G associated to the root of / has to be computed inductively, replacing first

in G each subgraph G/ associated to a c—fork / by a vertex with the vertex function

-l^Xa\LGf.

Hence, we have

E Ev«JLC = EEIlàEEv«i^.
GeS2m(r) J j>I t f&

f'
J G

where now the sum over the trees runs over all the trees with less than 2r + m lines. The

sum runs also over the labeling of the two-legged forks in s—, r—, and c—forks. The sum

over the scales is taken over the sets J = {jf, f E t} such that jg < jf if g < f, if g is

not a c—fork. If g is c—fork, then jg > I.

Observe that each tree t containing a two-legged fork corresponding to a IPI subgraph
contributes once to the sum with the / fork labeled with r and once with the / fork labeled

with c. Both those contributions can be grouped together. The contribution of a IPI,

two-legged fork / to the value of the graph is given by

3f>Mf) Jf£3(tf,3f) 3f>Uf3(tf,3f)

= (1_/W) Y Y Va\LGJ/-l^Y E Val*G/'
3f>3*(f) Jf£d(tf,3f) 31=1 Jl&3(tf,3l)

Resuming the contribution in that way, we see that a r—fork / gives a contribution at

scale bigger than jnif), projected by the operator 1 — ßL\ and the c—fork / gives a

contribution at scales less or equal j-wif), projected onto S^ by l^L\

We get finally

Gfl,= EEïïiE E V^GJ.

3>I(L) t f&
/' G J£3(3,t)

where the sum over the trees runs over all planar trees with r leaves. The sum over the

graphs runs over all connected graphs G with 2m external legs, and r vertices. There is

also a sum over the labeling in r—, s— and c—forks. The scales label are in the set

#0, t) = {{jf, f E t) | jf > jn(J) if 2mf >2or/isar- or as- fork

and j > jf > / if / is a c — fork}.

Remark 6.8: Integrating out successively the different energy shell, one would obtain

a semi-group structure associated with renormalization. The results described above can

be as well obtained using this idea, see [7].
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Definition 6.9: Let GJ be a labeled graph with tree t = t(GJ) and root ß.

(i) A graph G is called overlapping if it contains two loops that share at least a common

line. If the graph G((f)) defined in 6.5(v) is overlapping, we say that GJ overlaps at

the root scale. We denote with G the set of all overlapping graphs.1

(ii) Let GJ be a non-overlapping graph at the root scale. We construct the following
subtree r of the tree t, rooted at ß. A fork of t is in r if and only if G/ is non-

overlapping, and ir(f) G r. Define the non-overlapping graph G(t) to be the graph
obtained from GJ collapsing all leaves of r to vertices. Define the overlapping scale

of G to be j* = inf jf. r is the maximal subtree of t such that G(t) is
f& and ffr

non-overlapping.

Definition 6.10:

(i) We construct inductively the spanning tree T(GJ) of G as follows. Suppose that

we have constructed the spanning trees T(Gp for all the forks / directly above ß
in t. Construct then the spanning tree T of the graph G((f)). If G((f)) is overlapping,
then there are two loops in G(ß) that share at least one line I*. Choose a spanning
tree that contains the line I*. The momenta in G(ß) can be set in such a way that

each line of the spanning tree carries an external momentum.

The tree T(G) is then obtained replacing in T all the vertices by the trees T(Gf).

(ii) The value of a labeled graph GJ with two-legged vertices Qw(k) and four-legged
vertices Uv(k\, k2, k3) is given by

ValL(G^)= L-WWI y / n fr n C*W

kjGA^,iGL(G)\L(r) 1&L(G)\L(T)
*

1&L(G)

J_J_ Uv\ki, k2, fc3) J^ Ow(fcw),

vev4(G) wev2(G)

where T is the spanning tree of GJ defined above. For l G L(T), ki is a linear

combination of external and loop momenta.

In order to construct the thermodynamic limit of the Green functions, we defined

Definition 6.11: Let / G Z_. Then

G2m,r - Y Z^llßßßZ^ Z^
Val°oGJ

3>I(L) t f&
/' G J£3(3,t)

1 See [7] for a rigorous definition of overlapping graphs
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where the value Valoo of a graph is defined by

dd+lh

t=l
"

lGL(G)

6(Y2kßVal0O(GJ)= j J] j^CM

• n n s(Ykßv(kh,...,ki4)
v£V4(G) \h, ,l4&L{v) i=l

• n II Hkh + ki2)Kw(kh)
weV2{G) \li,l2L(w)

The projection operator ßLS) is replaced by the projection operator /, and the root scale

is j>I.

6.3 The Power Counting

Remark 6.12: It follows from lemma 6.4 that the same power counting applies for

Vali(G) and Valoo(G). Hence, we simply denote Val(G) the value of a graph when no

distinction between the lattice case and the continuous case is needed.

If no distinction is needed, we further denote with | • |0 and | • |i the supremum and

derivative norms, meaning || • ||0 and || • \\x on M x T, and | • |0 and | • |t on R x A«,
Further, we abusively replace the Riemann sum over the lattice AL by an integral, in

order to simplify the notation.

Definition 6.13: Let GJ be a labeled graph. For a fork / G t(GJ), we define

Df = \L(Gf)\-2(\V(Gf)\-l).

Remark 6.14: Counting the lines of the graph G/, one get 4 half-lines for each four-

legged vertex, and 2 half-line for each two-legged vertex, minus 2m half-lines from the

external lines:

4\V4(Gf)\ + 2\V2(Gf)\ = number of half-lines of Gf = 2\L(Gf)\ + 2mf.

Using this equality, we get

Df = ±(4-2mf)-\V2(Gf)\.

Theorem 6.15: Let GJ be a 2m—legged connected, amputated labeled graphs. We

denote with Uv the four-legged vertices of GJ, and with Qw its two-legged vertices. Then
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(i)

|Val(GJ)|0< (4Ko)lL{G)lK1Me3*MD^Y[MDf{3f-3<P JJ |e,|0 f[ \Uv\o,
f>4> vev2(G) vev4(G)

where j* is the scale at which GJ overlaps. If GJ does not overlap, then j* = 0.

(ii) For the integral norm,

|Val(GJ)|/<(4A'o)|L(G)l J] (\ew\0M-^p ]J \Uv\0StraSf>extSv>ext,
wev2(G) vev4(G)

where

f>4>, internal

where the product is only over those forks of t(GJ) such that GJ does not contains

any external vertices, and DR = Df + |V2(G/)|.

sf,ext = n M^pf-^p

f>4>, external

where the product is only over those forks of t(GJ) such that GJ contains an external

vertex of G, and

A/ = — {/ : / internal line of G and external line of Gj}| .

Finally,

sv,ext= n ma^°-^p.

v, external

The product is over the vertices of G to which an external leg of GJ is joined, and

A„ = — - |{Z : / internal line of GJ, I E v}\ .

Remark 6.16:

(i) The products run only over the fork of the tree t(GJ) that are not leaves of t(GJ).

(ii) Observe that since ir(f) denotes the fork preceding / in the tree t(G), it holds

Jf
~

Mf) > 0.
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Proof of 6.15:

(i) Let T be the spanning tree of GJ defined in 6.10(i). We first bound all the vertex

functions by their sup-norms, and get

|Val(GJ)|0< J] |e„|0 J] l^l°X'
vev2(G) vev4(G)

where X is given by

n t^i^wi n i^(^)i,
l£L(G)/L(T)

y '
t£L(T)

Q

where the Pt are linear combinations of momenta ki,l E L(G)/L(T) and of external

momenta. In the lattice case, the integrals over the Brillouin zone have to be

replaced by sums. We prove now that

X < (2Ko)lL{G)l(KlMeßl^^°M]D^ Y[M{]f-^PDß
f>4>

which directly implies the claim. If the root scale j of GJ is strictly negative,

decompose L(GJ) in the set of the lines of G((f)), which are at scale j, and the set

of the lines of subgraphs corresponding to forks in

a(ß) = {/ G 11 n(f) = ß}.

We obtain:

L(G)=L(G(ß))U (J L(Gf).

Let T((f>) be the spanning tree of G(ß). We get then

x<j n dpi\cpVi)\ n \cppß\ n xf,

lL(G(4>))/L(f(<t>)) t£L(f(4>)) /6<t0)

where Xf is the corresponding of X for the graph G/. The integration are taken

only over propagator with scale j < 0, such that we can bound the integral with

the point (ii) of lemma 6.4. If G((f)) is overlapping, there is a line in T(ß) belonging
to two independent loops. Such a line brings a factor

fdp1dp2\CPpß\\CPp2)\\CPp1 ±p2 + q)\ < KlKxM^~^M2ß

due to the volume improvement estimate. The other lines are bounded by the naive

power counting, such that

X < (KiM^yzweoKMëm Yl M~n fi M2h \[ Xf.

lL{G{<t>)) t£L(G(</>)) /L(T'(») /6<x(t>)
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If the root scale j of G is zero, then all the propagators are UV-propagator. The

integral is performed over the loop momenta, which enter at least two lines. We

use the point (iii) of lemma 6.4 in order to bound the integrals.

We apply the induction hypothesis in order to bound A/:

xf < (^M^ß^f^K^0^ Yi M~n n m2h-

leL(Gf) teL(Gf)/L(Tf)

and get

X <K0LmKxMfe W M~n W M2h,
l£L(G) t£L(G)/L(T)

where j* is the overlapping scale defined above. If GJ does not overlaps at any

scales, set j* = 0. In order to obtain the final bound, we use the telescope sum

3i=3 + Y(P~Mf))>
f>4>

Gf5l

such that

TT M~n TT m2h = m]{21l{g)1-21l{t)HL{g)1)-

leL(G) t£L(G)/L(T)

.

IT M0/-J7r(/))(2|L(G/)|-2|L(T/)|-|L(G/)|)

f>4>

= M0*3 TTm^-^w)^,
i>4>

by recursive construction of the tree T from the trees Tf.

(ii) In order to bound the integral norm, we construct the graph G*, with 2m* external

legs, satisfying:

— G* has the same vertices as G, with one 2(m + m*)—legged additional vertex

v*, with vertex function 8(k\ + + k2m+2m*).
— G* has the same lines as GJ, and 2m additional lines that join the external

legs of G to v*. This lines carry a propagator G* at scale 1, with supremum

|C*|o < 1-

— The other propagators of G* are given by \C3 (k)\, resp. |GJ(fc)| in the infinite

volume, and the other vertices functions by \Uv(k)\ and |©„(fc)|.

The fact that the propagator G*(k) is not integrable is harmless, since we can choose

a spanning tree T* of G* that contains all the lines /* of G* \ G. Since |G*|o < 1,
the lines /* do not contribute to the power counting.

The conservation of the external momenta of G* imposes the condition

2m*

/ y
k2m+l = 0,

«=i

76



6.3. THE POWER COUNTING 77

such that

ValL(GJ)r<|ValL(G*)|0.

We apply now the theorem 6.15(i) on | Vali(G*)|0:

|ValL(G*)|o<(4A-o)|L(G)lM^* J] |e„|0 J] 1^1° II MDP^P.
vev2(G) vev4(G) f>4>*

Let {jo = J < Ji < • • • < Jn = 0} be the set of the scales of GJ. The product over

the forks of t(G*) can be rewritten as

TT m^z-m/))

i>4>*

/0.-.M/))

N

n n md>

%=1 f&{G*),3j=3i
N i-l

nn n m^-^

î=1 fc=0 f&{G*)

3f=3i,3n(f)=3k

N t-1 3i

nn n n ^
i=i fc=o /et(G*) /=jfc+i

3f=3i,3n(f)=3k

n n ^d;

y=j+i /et(G*)

n n^;-
y=j+i/eG*

Here G*, is the set of the connected components of {I E G* \ji> j'}. G*, is composed

from subgraphs of GJ at scale j' that do not contain any external vertices of GJ,
and one subgraph Gf* of G* that contains the vertex v*, and all external vertices of

GJ. Since for internal forks / of GJ, i.e. the forks of GJ that contains no external

}
= Df,vertices of GJ, D*f = D

(

n n^?= n
3'=3+ l feC* 3'=3+ l

\

MDr fi M

f^P>
\ / internal

D,

)

where Cy is the set of the connected components of {/ G GJ \ ji > j'}.

The subgraphs Gf* is composed of the vertex v*, r external subgraphs Gfx,..., Gfr E

G3i of GJ, and s external vertices V\,... ,vs of GJ, that are not in any G/t, i =
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1,..., r. Hence

Dß = \L(Gfß\-2(\V(Gr)\-l)
r

= J](|L(G/t)|-2|U(G/t)|)-2 + 2m-2s + 2

«=i
r

= -X)(l^(G/l)| + m/l) + 2m-25
i=i
r

= -Y,\V2(Gft)\ + m-2s
i=i

i
r

+- J] (|{T G G* \ G I T hooked to Gfi}\ - 2mfß
i=i

i
s

+- J] \{l* EG*\G\l* hooked to ut}|
i=i
r r

= -5]|U2(G/t)| + J]A/t + m-25
i=i i=i

+ - ^^ (4 — \{l internal line of G hooked to v}\)
vev4(G)n{Vl, ,v3}

+ - 2_, (2 — |{^ internal line of G hooked to v}\)
vev2(G)n{vl, ,v3}
r r s

= -5]|U2(G/t)| + J]A/t + m + J]A^-|U2(G)n{Wl,...,MI-
%=i %=i %=i

Therefore

fl ( J] MDf MDh )= f[ ( U M°f U M<AH^/)I)

3'=3+l\f&C]l, fvnt ) 3'=3+l\f&Cy, f vnt f£Cy,fext

0 0

.

TT ^fEf=iA«,-|V2(G)n{«i, ,v,}\
.
TT Mm.

3'=3+1 3'=3+1

Further

and

W Mm = M~3m,

3'=3+1

0

TT M-\v2(G)n{Vl, ,v,}\ < L

3'=3+ 1
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The product over the vertices can be rewritten in a more convenient form, using

Ê ÉA- = Ê E A-

J-J+l 1=1 3'=3+1 vext 3tt(v)<3'
N

EE E a.
t=0 v ext /=.j.+i

3n(v)=3i
N

EE A„(0-;„-(„))
t=0 v ext

3n(v)=3i

EA»(°-" >(V))-

Remark that

D;t = \L(G*)\ - 2(\V(G*)\ - 1) = |L(G)| + 2m- 2\V(G)\ = -\V2(G)\ + m,

and

-j\V2(G)\ = Y\v2(Gf)\(jf-J,(f))- Y M«>

f>4> wev2(G)

With Df = Df + \V2(Gf)\, we get therefore

MD> TT MD*f{3f~3<P < M"|y2(G)b TT M^bf-Mt))

f>4>* f,int

TT M{Af-lV2{GP){3f-3<P TT mAv{°-3<P

/, est f, est

< TT MDf{3f~U(P TT M^f-Mn)

/, «rat /, eœt

• TT M^^'^tP TT M-^^).

D

6.4 The IPI Graphs

6.4.1 Non-Overlapping two-legged Graphs

Definition 6.17: Let G be a connected, two-legged graph with A vertices, all having
even incidence number.

(i) If Gi,..., Gn are IPI, two-legged graphs, the graph obtained by connecting G»_i

to G% for i running from 2 to n by a propagator is called a string.
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80 CHAPTER 6. PROOF OF THE CONVERGENCE

(ii) G is called a self-contracted two-legged (ST) diagram if G consists only of one two-

legged vertex with two external legs, or if G has exactly one vertex v\ with incidence

number bigger than 2, to which both external legs of G connect, all remaining legs
of V\ being joined pairwise by strings of two-legged vertices to form a loop.

(iii) A generalized ST (GST) diagram with N vertices is defined recursively: if A = 1,
then G is a ST diagram. If A > 1, and GST diagrams are defined for A' < A,

a GST diagram with N vertices is a graph such that G has exactly one external

vertex v\ to which the two external legs of G join, and all other legs of V\ are joined

pairwise by strings of GST with at most A — 1 vertices, to form a loop.

Lemma 6.18: Let G be a connected, two-legged graph, all vertices of G having even

incidence number. If G is non-overlapping, then G is a string of GST graphs.

Proof: First note that if the statement is true for IPI-graphs, then it is true as well for

all connected, two-legged graphs. Let therefore G be a two-legged, IPI graph. We prove

the lemma by induction over the number of vertices of G.

If G consists only in one vertex v of incidence number 2m, then G is obtained con¬

necting 2(m — 1) legs of v together. By definition, G is a ST-graph.

Let consider now a graph G with n vertices. Distinguish two cases:

• G has only one external vertex v. Then G consists in the vertex v connected to

the external legs of G, and of A IPI-graphs G\,..., Gn, that are connected to v by

strings of two-legged graphs, and pairwise disjoint. By the induction hypothesis,
the strings connecting v and the Gt are GST.

Suppose that for a i with 1 < i < N, Gt has an external vertex vt, mt > 2 legs of

which are connected to v. In that case, G contains two loops that share at least

one line, that is, G is overlapping.

It follows that all the Gt are two-legged, IPI. By induction hypothesis, they are all

ST graphs, and consequently, G as well.

• Consider the case where G has two external vertices V\ and v2. By the same

argument as before, V\ and v2 cannot be connected to connected subgraphs of G

with more than two strings. Using the fact that the incidence numbers of V\ and

v2 are even, it follows that v\ and v2 are connected by one string of two-legged

subgraphs of G, which is not possible, since G is IPI.

D
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6.4.2 The Graph G'

In order to bound the value of a graph GJ inductively, we define the graph G', which is

obtained collapsing all IPI two- and four-legged subgraphs of GJ into vertices. We define

t' to be the tree corresponding to G'. The graph G' has the following properties:

• G' has only two- and four-legged vertices, with vertex functions that are either

interaction vertices or values of IPI two- or four-legged subgraphs of G.

• The only non-trivial two-legged subgraphs of G' are strings of two-legged vertices of

G', and any non-trivial four-legged subgraphs of G' consists of a single four-legged
vertex with strings of two-legged vertices appended.

Definition 6.19: Let GJ he a labeled graph, and t = t(GJ) its corresponding tree. We

construct the graph G' corresponding to GJ as follows.

Let ß he the root of t, and let f\,..., fr he all forks of t that satisfy:

Vfc G {1,..., r} , E(Gfk) E {2, 4} and fk is minimal,

that is $g with ß < g < f such that E(Gg) E {2, 4}. Let t he the tree rooted at ß and

obtain from t trimming t at ß,..., fr, that is replacing the forks ß,..., fr by leaves,
with vertex functions Val(G/fc), fc = 1,..., r.

The graph G corresponding to the tree t is obtained collapsing all the two- or four-

legged subgraphs of G into vertices, t has no fork that corresponds to a non-trivial two-

or four-legged subdiagram, but it is not the tree with the stated properties, because the

leaves of t do not need to correspond to IPI subgraphs of G.

In order to construct t' from t we proceed as follow. Pick up / G {/i,..., fr}-

• If / is a 2-legged, r— or c— fork, then Gf is IPI by definition, and / will be a leaf

oft'.

• If / is a two-legged s—fork, then it consists in a string of two-legged vertices. The

external legs of Gf are at scale j^/) or above, and by the support property of the

propagators, the scales of the propagators of the string are in {j^f), Jtt(/) + 1}- Hence

Gf is a string of two-legged graphs, joined by propagators at scale jf = jx{f) + 1-

The vertex function corresponding to / is given by

n—l

Va\(GJf)(p) = l[Tßp)C3f(p)Tn(p),
t=i

where T% = 3>et Val^O»). The Qt are two-legged graphs, which can correspond to

a c—, r— or a s—fork g directly above /, or it can be a two-legged subgraph of G

at scale jf. We call the latter case a same scale insertion.
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82 CHAPTER 6. PROOF OF THE CONVERGENCE

If 0» corresponds to a c—fork, then J)@i = ßL\ <dt is IPI, g is added to t, and

becomes a leave of t'.

If 0» correspond to a r—fork, then J)@i = 1 — ßL\ g is added to t, and becomes a

leave of t'.

In the case where Qt is a same scale insertion, set 3>et = 1. In that case add a fork

g, with corresponding subgraph Qt to the tree t. If Qt is IPI, then g will be a leave

oft'.

The case where Qt corresponds to a s—fork is treated in the same way as the same

scale insertion.

• If / is four-legged and one particle reducible, remove the strings attached to Gf,
and add a leaf above the fork / for the IPI core of Gf, as well as for each IPI

2-legged subdiagram Qt of the strings. The strings have the same properties as the

ones discussed in the s—fork case.

• Follow this procedure, extending t to a larger tree until all the leaves correspond to

IPI subdiagrams. The final tree is t'.

Observe that if G is IPI, then G' is also IPI.

The vertices of G' carry a scale, which has to be summed over. The relation between

the sums over the scales for G and G' is

Y Val(GJ)= Y Val(G'J').
J&3(t,3) J'&3(t',3)

Note that the set d is the same in both sums, but some scales in J' correspond to vertices.

Let denote with jw the scale index of the vertex w. If jw = 1, then w is also a vertex

of G, and the associated function is v. Otherwise, jw is the root scale of a subgraph of

G, whose value is a vertex function in G', and jw is summed over. For fixed j^^), the

summed vertex function is

Fw = ywY Y Val(G(tw)),
3w Je3(tw,3w)

where 3>w G {1 — l^L\l^} for 2-legged vertices associated to r— or c—forks. For same

scale insertion, s—forks or for 4-legged vertices, 3>w = 1. The range of summation for jw

is

I <Jw < Jtt(w) for c - forks,

Jtt(w) < Jw < 0 for r — or s — forks or 4-legged vertices,

Jw = Jtt(w) + 1 for same scale insertions.

Remark 6.20: By construction, all the two-legged vertices of G' have label r or c, but

not s, since the last would correspond to one particle reducible graphs.
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6.4.3 Bounding the Value of IPI Graphs

Definition 6.21: For n E N, j E Z_ and e G (0,1), let

oo

Xn(j,e) = Y(\3\+P+PnM-pi.
p=i

Lemma 6.22: A is monotonically increasing in \j\ and in n, and

(\j\ + pm\n(j,e)<Xn+m(j,e).

For e > 0, M > 24'e, a > e, m, n E Z and j E Z_,

(i) Xn(jl,t)Xm(j2,t) < Xn+m(j,t), where j = minjji,^}-

o

(ii) Y XPh,e) < Xn+ßj,e).
h=3+l

(iii) Y 0*1 + VmMalXn(l, e) < ^M«' < 2An+m(j, e)M^.
£=—oo

0

(iv) Y^h\ + PmMhtXn(h, e) < 2A„+m(j, e).
/î=j+i

o

(v) J] (\h\ + l)mM-<h-^Xn(h, e) < 2A„+m(j, e).
/î=j+i

(vi) A„(j,e) < anjn + bn,

where a„ = 2ra/(M2e - 1) and bn = Y(2P + P"M~2tp
p>i

See [7] for a proof of this Lemma.

Theorem 6.23: Let G be a graph with 2m external legs, and t he a planar tree rooted at

ß compatible with G such that the pair (t, G) contributes to the 2m—points renormalized

Green function at order r in A at the scale j > I. For J G 3(t,j), let Val(GJ) be the

value of the labeled graph GJ with root scale j. For each fork j E t, let

nf = \{f'tt: f > f, G(t') non-overlapping , E(Gfß = 4 and Gr 1PI}|.
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Then for s = 0 or s = 1,

Y I Val(GJ)|, < Q0L(G)ll4y(G%(W2)M^).
J&3(t,3)

The power counting function YS(G) is given by

{2
— m — s if E(G) = 2m and G(ß) non-overlapping

2 — m — s + e if E(G) = 2m and G(ß) is overlapping
e if E(G) = 2 and s = 1,

where e is the volume improvement exponent.

Proof: This theorem is proved by induction over the depth of the pair (t,G), which is

defined as

P = max{fc G N | 3 fx > f2 > > fk >ß with E(Gfß E {2, 4}},

that is, given any leaf of t, there are at most P two- or four-legged forks on the unique

path between this leaf and ß. We first prove the naive power counting bounds with

volume improvement using the theorem 6.15(i).

P = 0

Case 1: s = 0, E(G) > 2.

In this case, we bound the value of G using the naive power counting given by theorem

6.15(i):

,__
Thm 6 15(i) .

Y |Val(GJ)|0 < (4K0)lL{G)l (^M^)0^-0 MD^
J&3(t,3)

y n MB/ör3*(/>) n Hi-
J3(t,3)f><t> vGV4(G)

In order to bound the sum over the scales, we use

0 bir(/)l OO

y MDfp-MP =
y MDfl <Ym~1 =

—-—,Z^ Z^ - Z^
i _ m~1

3f=3ir(J)+ l 1=1 1= 1

since Df < —1. The sum is therefore bounded by (1 — M-1)-'1^', because the number

of forks in t is bounded by |L(G)|. Using D^ = 2 — m — |V2(G)| and |V2(G)| = 0, we get

Y |Val(GJ)|0< [i^^V^Vl^'M^2-^1^«).
J&3(t,3)

^
1 / \u\0
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Case 2: s = 1, E(G) = 4 or E(G) = 2 and G(ß) is overlapping

The derivative can act on interaction lines, in which case its effect is bounded by

\v\\ < \v\\M~3. The derivative can also hit a line of the spanning tree T(G). In this case,

a factor WM~n < WM~3 appear for each derivative in addition to the bound obtained

in the case 1. The number of terms obtained by the Leibnitz rule is bounded by:

\V(G)\ + \V(G)\ - 1 < 1 + 2|L(G)| < e2|L(G)l.

Vertices Lines of the tree

The sum over the scales is performed exactly like in the case 1, and we obtain

„2\ \L(G)\

Eivai,^)|lS(i=f=^=-)l,"Mr>|M'
1 "v~ 7|i - V 1 - M-i I ' ~n

J&3(t,3)

Case 3: s = 1, E(G) = 2 and G(ß) is non-overlapping.

Let consider the graph G(t), which is a ST-graph. The derivative with respect to the

external momentum can only act on the external vertex of G(t), which is an overlapping

subgraph of G at scale j*.

If the derivative hits an interaction line, then bound its effect with \v\\ < M^e_1^|u|i,
since e < 1. If the derivative acts on a fermionic line, then it produces a factor WM~n <

WM~3*, since j\ > j*. The overlapping loop brings an additional factor K\Mej*. The

effect of the derivative is therefore bounded by

IUA'iM^-1^* < lUA'iM^"1^.

The number of terms obtained by the product rule is bounded like in the case 2, and

apart from the derivative and from the overlapping loop, we use the naive power counting
in order to prove the claim.

Set

4A-oA-iM(l + lU)e2
^ ^

ßPPw-i (M ~ P>

in order to take into account the factor Ao(j, e) = (Me — 1)_1.

P> 1

Consider a graph G with P > 1. Construct the graph G' obtained collapsing all the

two- and four-legged IPI subgraphs of G into vertices. By construction, P' = 0, and
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for each vertex w E V(G'), the depth Pw of the corresponding IPI subgraph Gw of G

satisfies Pw < P. We can therefore use the inductive hypothesis.

We first bound the vertex functions Fw associated to w E V(G').

• If w is a c—fork, then

Jir(vp

\Fw\o = 1{L)Y E Xa\(GJw)
3w=l Je3(tw,3w)

Jir(vp

< E E iVal(G-)io
3w=l Je3(tw,3w)

Jir(vp
IH

< Q,
\L{Gw)\\„,\\V{Gw)\

0 W l Y^nw(jW,t/2)M^
3w=I

62<U) 2QiL{G-)l\v\llVGw)^nPj,{w),P2)M^K

Using the lemma 4.15, the derivative is bounded by

J7r(w)

i^ii < i*(L)E E Val(G-)ii
3w=l Je3(tw,3w)

J7r(w)

< p+ß)Y E iVal(^)ii
3w=l Je3(tw,3w)

J7r(w)

< P + ß)Qlo

\L{Gw)\\„,\\V{Gw)\
w 1 Y^nw(jW,t/2)M^

3w=I

< 2(l + ß)Q\^G-\fY{Gw)lXnw(j7T{w),e/2)M^^.

• If w belongs to a r—fork, then in the sup-norm:

i^io = i(i -i{L)) Y E Val(^; o

3vj>3tt(w) J^3{twyjw)

a sup No-e(q)| Y lVali(G»)li< Y
J&3(tw,3w)

< aQlL{G-\\lY{Gw)lM^ Y ^nw(jw,p2)M^

<
2aQ0

And for the derivative,

\L(Gw)\L<\\V{Gw)\
J^>Jtt(^)

v\[v^"XnPjn{w),e/2)M^.

li^li < (l + ß) Y E iVal^(G»)ii
3vj>3tt(w) J^3{tw yjw)

\L(Gw)\LA\V{Gw)\ Y KPjw,e/2)M^< (l + ß)QPK^w,P\i

J^>Jtt(^)

< 2(l + ß)Q0L{G^\vtY{G-)lXnw(j7T{w),e/2).
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The lemma 4.15 can be applied by the support properties of the propagator at scale

Jtt(w) that accompanies Fw.

• If w corresponds to a same scale insertion, then there is no sum over the scale jt

We get therefore

)\L(GW)\,AV(GW)\

and

Fw\o<QP^w>P\[v^w>Pnw(j,e/2)Mß

Fwh < QoL[Gw\\^{G^Xnw(j,p2)M^

If Fw belongs to a four-legged vertex, and Gw is non-overlapping at scale jw, then

\FW\S < Qo^'Mi^1 E ^nPjw,e/2)M-s^
,7ui>,77r(u!)

< Q[L(G-\\Y(G^M-S^ Y Xnw(jW,p1)

,7ui>,77r(u!)

< Ql^^f^^M-^^X^^j^^ep).

If Fw belongs to a four-legged fork, and Gw is overlapping at scale jw, then

\FW\S < Qo^'Mi^1 E ^nPjw,e/2)M^-s^
J^>Jtt(^)

< QoL(Gw\\Y(Gw)^M-s^ Y ^nw(jw,tp)M^

J^>Jtt(^)

< Ql^^f^^M-^^X^j^^ep).

We consider now the graph G' having vertex functions Fw. The two-legged subgraphs
of G' are string of two-legged vertices, while the four-legged subgraphs of G' are four-

legged vertices with string two-legged vertices attached to it. For simplicity, we denote

with / (rather than /') the forks of the tree t', and Df := Df(G'). In the same way,

D<t> = DpG'). As for P = 0, we consider the following cases separately:

Case 4-' s = 0.
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We bound the value of the graph G' using the naive power counting of theorem 6.15(i).

|Val(G'J')|o < (K1M3ß1^^p4K0)lL{G')l J] lF-l° II lF»l°
v£V4(G>) w£V2(G>)

.MD4>3 W MDf(-3f~^(P

f>4>

< (2(ß+ l)a)ly(G')l(4A'oA'1)|L(G')lQoE"V'(G')|L(^Vliy(G)l
• u M^)l^XnPjn{v),e/2)) H XnJj7T{w),e/2)M3^
vev4(G') wev2(G')

.MD,t>3 TT MDf{-3s~3l'<-P.

f>4>

The product over the A—functions is bounded by lemma 6.22:

H XnPjTT(w),£p) < Xn4>(j,t/2),
vGV(G')

and the improvement factor for the four-legged vertices can be bounded by one. We use

the telescope sum

3n(w) =J+ Y (3f-3n(j)),
w>f>4>

fBw

where the sum runs over the forks in t', in order to get

Y J<W)=J\V2(G')\+ Y \UGf)\(jf-j<f)).
w£V2(G>) w>f><j>

It follows that the product

W M3^ = M3mG')l Yl MmGP{3f~3^P.

v£V2(G>) w>f>4>

Collecting both products over the forks of t', we get

I Val(G'J')|o < M^1«'6o(2(/3+ l)a)ly(G')l(4ir0A'1)lL(G')lQ0EJL(Gï)l|W|iy(G)l

XnYj,P2)MD*3l[MDfP-3^P,
f>4>

where DR = Df — |V2(G')| = 2 — m./. The claim follows finally, summing over the scales

as in case 1. We have to choose

^8(ß+l)aKoKlM(l + W)e2(^e
Qo> PPpppi (M -P-
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Case 5: s = 1, E(G) > 2 or E(G) = 2 and G(ß) is overlapping.

In this case, the derivative can apply on a line of T(G'), or on the vertices Fw of

G'. We bound the number of term obtained by the product rule with 2|U(G')|, and use

jyf-3n(w) < M~3, in order to obtain the desired bound. Follow the case 4 in order to get
the final result.

Case 6: s = 1 and E(G) = 2 and G(ß) is non-overlapping.

This case is similar to case 3. The graph G' is a ST-graph, with a unique external

vertex v\, which corresponds to a connected subgraph of G' at the overlapping scale

or higher. Thus, as in case 3, the derivative applies only on v\, and the effect of the

derivative is bounded by

M{f-l)3* <M{f-l)3,

as in case 3. Up to this factor, the claim follows exactly in the same way, as in case 4- D

6.5 Removing the Cutoff

6.5.1 The Convergence of IPI Graphs with j fixed

Lemma 6.24: Let (/^)lsn be a sequence of functions

/(L) : (R x AL)n - C

that converges uniformly to a differentiable function / : (IR x T)n -=> C in the limit

L — oo. Assume further that all the functions f^ and / have a compact support in the

fco—variables, independent of L. Then for each m < n,

j-dm SP fdkw dkm0
f(L)(h

h\L-T f—
—

d km
ill? nL

2^ J 2n
'"

2n
J ^'•••'^ ~*

J (2n)d^
" '

(2tt)^
Î{u

' ' '

' nh

ki, ,kmeA^

in the supremum norm with respect to the n — m remaining variables.

Proof: Since the support of the functions /^ and / are compact, the fc0—integrals can
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be bounded by a constant times the supremum over the fco—variables. Hence, we bound

L
-dm Y f{L\h,...,kn)- f ddkx ddK

ki, ,kmeA^
(2n)d (2n)d

/(fci,..., kn)

ki, ,kmeA5_

<L~dm Y \f{L)(k1,...,kn)-f(k1,...,kn)\

V- rfl 7 A
f ddkx ddkn

}_^ f(h,...,kn)-
/+ L

-dm

ki, ,kmeA^
(2pd (2pd

/(fci,..., kn)

By hypothesis, the first term of the right hand side tends to zero as L -=> oo. For the

second term,

L
-dm Y f(h,---,kn)- t

.
» J

ddkx ddkn

ki, ,kmeA^
(2n)d (2n)d

/(fci,..., kn)

< E
J

ddpx

[2Pd
ki, ,kmeA»

4tt
< mdWfWi T

vk.

ddp„

(27T)«
;|/(k!,...,km) -/(p!,...,p,

Since the derivative norm of / is independent of L, the claim follows. D

Definition 6.25:

(i) Let Co be the space of the functions on (R x Y)2m~l with finite || • ||o-norm, and Ci

be the space of the G1—functions on (IR x T)2"7--1 with finite norm || • ||i- Further,
let L he the space of the i^—functions on (IR x j")2m~l.

Let Zi(Z_, B) he the space of the absolute summable sequences in the Banach space

B, where B is Co, Ci or L.

(ii) Let G be a IPI graph with 2m external legs, and f be a planar tree rooted at ß

compatible with G, such that the pair (G, t) contributes to the renormalized Green

function G2ßir or G2mr at scale j < 0. For J G 3(t,j), let GJ he the labeled graph

with t(GJ) = t. For L > 0, define the sequence j^ as

7 ==

Y ValL(GJ), j > I

J<P

J&3(3,t)

0,

SL)
where we consider 7; as a step function on IR x T, with constant value on the

fundamental zone of the lattice AL.
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6.5. REMOVING THE CUTOFF 91

(iii) Let 0 > / > —oo. Define the sequence

Y Val00(GJ), j>I

&3l(3,t)

0, 3<I-

l] '= \ J&3l{3,t)

Remark 6.26:

(i) 7f} G Co and 7f>
G L.

(ii) 777G C0, P E Ci, and 7' G £.

Proof: The bounds of 6.15 imply that the 11 • 110—norm of P and its 11 • 11'—norm are finite,
such that j3 G Co and j3 G £. The bound for the derivative and integral norms follows

in the same way. D

Lemma 6.27: There is a sequence p3)3e%_ in Ci, such that for each fixed j E Z_,

7 — 7j m the || • ||i — norm,

and

Further,

(L) L^oo
. , m m

7 -=> 7j m the || • 110 — norm.

7^ -=> 7j and 7^ — 7^ m the 11 • 11 — norm.

Proof: The proof of this theorem follows the proof of the theorem 6.23, by induction on

P. Pick up L > 0 such that j > Jl-

P = 0

In the case P = 0, the graph GJ contains no IPI two- or four-legged subgraphs. All

the propagators are therefore at scale j or higher, and since j > jl, e^(k) = e(k). Hence

l] = lo, and 7 is a Riemann sum that converges to j3 by lemma 6.24 in the supremum

as well as in the integral norm.

P> 1

As in the proof of theorem 6.23, we consider the graph G' defined in 6.19. Since all

the scales of G' are bigger than j > jl, e^(k) = e(k). We first apply the induction

hypothesis (IH) on the vertex functions iv, or F^ corresponding to the vertex w of G',
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92 CHAPTER 6. PROOF OF THE CONVERGENCE

and in a second step prove the claim for G' itself. Let w be a vertex of G', given by the

value of the graph Gw. Let ß3ß and ß3w he the corresponding of 7 and 7^ for the graph

By induction hypothesis, there is a sequence ^3w, such that j3w -=> ^3w for / -=> —00,

and x -=> ß3w for L -=> 00 in the supremum and derivative norms. We consider the

following cases:

• w corresponds to a c—fork: Let us consider the sequence

1
.=

f 111 h^ {I, - -

-, 3n(w)}
\ 0 otherwise.

By theorem 6.23, g^ is bounded by

11^||i < Const Xnph,e)Mh%

such by dominated convergence in /i(Z_, Ci),

Jir(vp

j /^oo F ._
V^ 7 =

1
w

J- w •— / j

b ]w

jœ=-oo

in the || • ||i—norm. We turn to the thermodynamic limit of

J7r(w)

F(L) = V 1{LP{L)

3w=I(L)

Observe that

l|/(L)7^ -*7*J|o < l|/(L)(7^ -PPW0+ \\(1{L) -l)PJ\o

The first term on the right hand side vanishes for L -=> 00 by IH. The lemma 4.18

implies
4.77-

ll(/(L)-07,J|o<||7,J|i^,
hence

in the sup-norm. Using the theorem 6.23 on ß3w ,
we apply once again the dominated

convergence in l\(7L_, Ci) and prove

F(L) L^oc
1
w

L w

in the || • ||0—norm.
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6.5. REMOVING THE CUTOFF 93

• w is a r—fork

By the same argument as for the c—forks, we see that in the sup-norm,

Since the sum over the scales jw contains only Ij,^«,) | < \j \ < oo terms, the function

F^ as well as the function Fw converge to

o

Fw= Y P-

3w=3+l

• w corresponds to a same scale insertion

Since they are no sum, and no projection operator ßL\ the convergence is given by
the LH.

• w corresponds to a four-legged forks

Since the sum over the root scale jw has at most \j | terms, and that Fw contains

no projection operator ßL\ the convergence follows from the LH.

We turn now to the proof of the claim for G', using the fact that G' is a graph with

vertex-functions F^ or Fw that converge to Fw in the limit / — —oo resp. L — oo.

The convergence of j1 and 7<-L-) in Ci and Co follows from the lemma 6.24, since the

value of G' is given by the integral of a bounded function with compact supports. The

convergence in L follows in the same way. D

6.5.2 Bounds on sfL) and df]

Lemma 6.28:

(i) Let G be a IPI, two-legged graph, that contributes to the self-energy at order r in

A, and t a tree compatible with G rooted at ß. Then

o

| Y E Xa\L(GJ)\o<Qro\v\\,
3=1 J3(3,t)

where Q0 is a constant independent of r. Further,

o

| Y Y ValL(GJ)|i<QïMï.
3=1 J3(3,t)
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94 CHAPTER 6. PROOF OF THE CONVERGENCE

(ii) Let G be a two-legged, connected graph that contributes to the two-points Green

function G2 r
at order r in A. Then

o

| Y Y ValL(GJ)\o < Qr0\v\ß
3=1 J3(3,t)

Proof: The claim (i) for IPI graphs follows directly from theorem 6.23:

o o

i y Y pgj)\o < y E iVal^(GJ)io
3=1 J&3{3,t) 3 =-oo J&3{3,t)

< Q0L(G)lMiy(G)l E X^+)M3
]=—oo

< 2Q[L^\vtY{G)lXn(0,e).

Since |L(G)| = 2|U4(G)| + \V2(G)\ - m, with in our case, |U4(G)| = r, \V2(G)\ = 0 and

m = 1, and n < |L(G)|, we get the claim. The proof of the bound for the derivative

norm is similar.

The bound (ii) for the two-legged graphs is obtained applying the power counting
6.15 (i) on the graph G' corresponding to G:

o o

| Y Y VaU(GJ)|o< Y E |ValL(G'J)|0,
3=1 Je3(3,t) 3=-oo Je3(3,f)

where t' is the subtree of t, corresponding to the graph G'. Further, by 6.15(i),

|ValL(G'J)|o<(4A-o)lL(G')l \[ \UV\0 \[ \QV\0MD*> \[ MD*f~Mf)),
v£V4(G>) v£V2(G>) f>4>

where the product runs over the forks / G t', and Df = Df(G'). We bound the sup-norms

of the vertices of G' with the help of theorem 6.23, and for all the two-legged vertices v

of G', we use the telescope sum

Jn(v) = Y f 3 V(P ~ Mfi) + 3,

v>f>4>

such that

Hence

TT m3^) = M3lV2{G')l TT M+2(GP(3f-3^P.

v£V2(G>) f>4>

ValL(G'J)|o < (4A-0)|L(G,)I J] \UV\0 J] M~3^\Qß
vev4(G') vev2(G')

MD*3Y[MDf{3f-3^P,
f>4>
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6.5. REMOVING THE CUTOFF 95

where DR = Df + |"\^(C/) | = 2 — m./ < 0, as in the proof of theorem 6.23. By lemma

6.22 and theorem 6.23,

I ValL(G'J)|0 < (4A'o)lL(G')lQoE"V'(G')|L(^Vliy(G)lA„0,e)M^ J] M2^'"*«/)).

f>4>

We can therefore perform the sum over J G 3(j, t') in the same way as in the proof of

6.23, and get

Y |ValL(G'J)|o<Q0L(G)l|-ir(G)lAraO,e)M^
J&3(3,t')

since DR = 1. The sum over the root scale is therefore convergent. D

Proof of 5.4(i): By remarks 6.6 and 6.7,

Ê EIliE E ivokci-
o

IV I <

3=I{L) t f&
Uf'

G J£d(3,t)

Using the previous lemma,

Z_J/y> o
"^

Jr \s
«KEniE1-

< fa"'' c

The lasts term corresponds to the number of connected graphs, with r four-legged vertices,
which is bounded by const(r!)2. Hence,

|Er|s < Constr(r!)2.

The supremum norm of the two-points Green function is bounded in the same way. D

6.5.3 The Convergence of the Green Functions

Lemma 6.29: Let G be a IPI, two-legged graph, contributing to the self-energy Er,
and t a planar tree with r leaves, compatible with G. Let 7 be the sequence defined in

6.27. Then

(i) For / -=> —00, 77 converges to 7 in /i(Z_, Ci),

(ii) For L — 00, 7^ converges to 7 in /i(Z_, Co).

Further, for a two-legged connected graph G that contributes to G2r, 7^ — 7 in

/i(Z_,C0).
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Proof: If G is a IPI, two-legged graph, we have

l7,(L)|o < Const Xn(j,e)M3 and ||^||0 < Const Xn(j,e)M3,

by 6.23. Hence, by dominated convergence in l\(7L_, C0),

3=1 3 =-oo

The convergence of 77 in /i(Z_, Ci) follows in the same way.

If 7^ corresponds to a graph contributing to the two-points Green function G2J, we

apply the bound obtained in 6.28 and get

^L)<Q\^G\\rG)lUj,PM3,

such that the dominated convergence in l\(7L_, C) proves the claim. D

Remark 6.30: Point (ii) of theorem 5.4 follows directly from lemma 6.29, since the

sum over the graphs that contribute to Er or G2 r
is finite.

Proof of 5.4(iii):

We prove the convergence of the counterterm Kr order by order in r. Set Kr = —/Er.

Then

\K^L)-Kr\\0 = ||/(L)ErL)-/Er||0
< ||/W(ErL)-Er)||o+||(/(L)-/)Er||o.

The first term of the right hand side of last line tends to zero as L -=> oo by 5.4(ii), and

the second term vanishes by 4.18, and the fact that ||Er||i < Const. D

6.5.4 The Convergence of G22r in *ne ^i—norm

Lemma 6.31: Let i be a planar tree with r leaves, and G be a 2m—legged graphs,

compatible with t. For j < 0, let J G 3(t,j) he such that t(GJ) = t. Then

Y I ValL(G7)|' < Q[L^\vfY{G)l Xn(j,P2)M3'4.
J&3(t,3)
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Proof: Let consider the graph G' defined in 6.19. Then by theorem 6.15(ii),

|ValL(GJ)|' < (4A-0)|L(G'J)I J] \UV\0 ]J M~3^\Qw\o
v£V4(G>) w£V2(G>)

TT MDf{3f~3^P TT MAf{3f~3*(P TT mAv{0~3*(P.

f,mt f,ext v,ext

Bounding the vertex function with 6.23, and using the lemma 6.22 in order to bound the

product over the A—functions, we get

|ValL(GJ)|' < (4A-0)^G'J)I u (Qo(GOIbliy(GOI)A„0,e/2)
vGV(G')

TT MDf{3f~3^P TT MAf{3f~3*(P TT mAv{0~3*(P,
f,mt f,ext v,ext

where n = Jßv nv. Let v he one of the external vertex of G'J. Observe that

-J = zP,(3f-3n(j))-3n(v),
fBv

such that

|ValL(G'J)|' < (4A-0)|L(G'J)I J] (Qo(Gï)l^liy(Gï)l)AraO,e/2)M^4
vGV(G')

TT MDf(-3f~3^(P TT MAf(3f~3*(P

f,vnt f,extvff

. TT]^/-(A/+^)0/-^(/)) TT M-AvU(v)M-{AV+D^(v)^

fBv v,ext,v^v

The sum over the scale of the four products over the forks is bounded by

Y u M--Pf-3^)) < (1 _ M-i/+y\L(G>J)\^
J3(3,t) f><P

such that

Y |ValL(G'^)|'<QoL(G)l|-ir(G)lAraO,e)M^.
J&3(3,f)

D

The convergence of G2ßir in the || • ||'—norm is proved in the same way as the conver¬

gence of the two-points function G2r in the || • ||0—norm.
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Appendix A

The Fourier Transform

The discrete Fourier transform of a function / on the lattice A satisfying

j>n/(x)i<oo,

for a r > 1 is defined by

/(k) = J]/(x)e-*kx.
xSA

/ is a r—time differentiable function on the torus B = !Rd/27rZd. The inverse Fourier

transform is given by

/(x) = Ty\~d [ f(k)e^ddk.
(2p JT

Consider now a function / on the finite lattice AL satisfying

Ei/(k)i<o°-
keA^

The discrete Fourier transform of / is defined by

/(x) = L~d Y /(k)eJkX>

and its inverse is given by

/(k) = y /»e~*kx-
xSAl

Note that / satisfies periodic boundary conditions on A^, and is given by a Riemanian

sum that converge to the Fourier coefficient of the function / on the torus T. In particular,

Y e*kx = Ld5x0-

keA^
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100 APPENDIX A. THE FOURIER TRANSFORM

Let x = (x°, x) G K x A^. For k = (ko, k), the Fourier transform of an integrable function

/ is given by

/(*)= E jdx°f(x)P<k'x>,
xSA^

where < k,x >= —kox0 + kx. Remark that by the periodic boundary conditions,

Y fdx°f(x-y)= Y fdx°f(x).
xsal

J
xsal

J
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Appendix B

Grassman Integrals

Let A he the Grassman algebra on C generated by the fields ß(ß), with £ = (x, a, a) E B,
where B = IR x AL x {f, 1} x {0,1}. A Grassman function f(ß) is a function on A of

the form

f(P) = Y f dil [dCnfPßl, -Pn)ß(ßl) --ß(ßn),
n>0

J J

where the fn(ß\,..., £n) are totally antisymmetric complex functions of the variables £j,
and

/'CO

«• = E E E/ «fa0-

(reit,!} ae{o,i} xsal
J-°°

A Grassman function with Grassman coefficients is a function g of the form

#w>,vo = Y / ^ " / ^«^(^Ci,---,^)^!)---^),

where the gßs are Grassman functions in ß.

For Grassman fields ß and ß, define the antisymmetric bilinear form

where

with

In other words,

(ß,ß) = J dCj dnß(03(ß,v)m,

3(ß,v) = Hx0-y0)S^SaTJab,

0-1
~~

1 0

(ß,ß)= Y l^°X] (iWiW + iWiW)
(ts{T,|}

J
xsal
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The exponential function is defined by its Taylor expansion,

Àm
= Y~M^n-

Definition B.l: Let G be an antisymmetric bilinear form on A, defined by

C(P,ß) = j dtdnßßpC^^ßß)),

where

C(x,a,a;y,r,b)=^CMx^y) Q j.
The Grassman Gaussian integral with covariance G is then the unique linear map on the

space of the Grassman functions

j

dpc(ß):f(ß)^ I f(P)dpc(P)

such that

e<**> dpc(ß) = e-*c<*>*>.

In particular, if a% = 1 for i = 1,..., n/2 and a% = 0 for i = n/2 + 1,..., n,

V>(6) • • • 4>(£P dpc(ß) = det (CŒiŒj (xt, x3))" ,

and the integral vanishes if y. a% P 77 •

2
«=i

B.l Integral Bound

Lemma B.2: Let 3rm(P) he the set of the antisymmetric functions on Bm x Bn, defined

in 3.3. For / G Jmßi), define /' G Jmßi — n') by

f'(f]li ,Vm] Cn'+l, ••-,£«) =

d£i--- d^' f(r]i, ...,î]m-Pi,...pn) \ ß(ßß -ß(ßn>) dpc(ß).

Then

ll/lli.oo <^'(G)||/||i)00,
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B.l. INTEGRAL BOUND 103

where

meN£i, .femë-B

S(C) = SUp SUp I / ß(ßß -ß(ß2m) dpcßß)
l/2m

Proof: Consider first the case m > 0. Then

/ \f(Vl, ---,Vm] Cn'+l, -, ßn)\dßn'+l •••(%„

< sup
ft, ,É„'eS

^(î\) • • • ^(în')dp,C(^) \f(Vl,---,VmPl,---Pn)\dCl---dßn

<^'(G)||/||i)00.

If m = 0, then for i E {n' + 1,..., n},

/n

„ n

\f(în'+l,--.Pn)\ u ^<^'(^)/l/(Cl,---,en)in^-
3=n'+l

J
3

=

1

3=n'+

t+3

3

= 1

X3

such that

l,oo <^'(G)||/|| 1,00'

D

Lemma B.3: Let G and G' be two antisymmetric bilinear forms on the Grassman

algebra A. Then

S(C + C') <S(C) + S(C).

Proof: For 6 £m G B,

Mi) Mm) dpc+cpß) = J 0M6) + P(Ù)) • OMU + P(U) dpc(ß)dpcpß').

Since

(Mi)+^'(îi))--PMm)+^'(U)= Y (±i) n^ceo Il^'te),
IUJ={1, ,m} i&I

lnJ=9

3&J

re get

JMi)- ß(ßm)dpc+cßP) * E
IUJ={1, ,m}

lnJ=9

f\\ß(ßßdpc(P)
J

tel

[Hß'(Qdpc(ß')
J

3&J

< Y S^(C)PJ\C')
IUJ={1, ,m}

lnJ=9

= (S(C) + S(C'))m.

D
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B.2 Gram Bound

Theorem B.4: Let Ji he an Hilbert space with scalar product (•, •)% and let /i, ...,/„ G

Ji and g\,... ,gn E Ji. Then

det«/„Ä>M)^=1i<nii/.n«n
3= 1

"K-

t=l

Proof: Without restriction of the generality, we can assume that the vectors f% are linear

independent. (In the other case, the determinant would vanish.) In the same way, the

vectors g3 are also assumed to be linear independent. Further, let P he the orthogonal

projection on the span of the vectors f%. Then

<iet((ft,g3)x)lJ=1 = det({ft,Pgj)^)?1=1

and H-P^jHiK < II^Hm- Thus, we assume that the vectors g3 are in the span of the fp.

Let {/i,..., /„} be the set of orthogonal vectors, obtained applying the Gram-Schmidt

orthogonalization procedure on the fp. Define the vectors g3 in the same way. In

particular,

det((f\,g3)PlJ=1
det ((pPgßit

'-,3 = 1

Further, since the span of the fp and of the ^'s are the same, the matrix ( (p,gß

is, up to reordering of the columns, diagonal. Thus

)<K
'-,3 = 1

3 = 1

•a-

t=i

Finally, by construction, ||/»||m < ||/»||m and ||^||^ < H^Hm, and the claim follows. D

Corollary B.5: Suppose that the covariance of definition B.l can be written in the form

Caaßx,X ) = (fx,a, gx',aß+C,

where fx>a and gx>a are vectors in an Hilbert space Ji with scalar product (•, -)^. Suppose
further that for all x E IR x AL and a E {], [}, \\fxP\<K < Kf and H^o-IIm < K\. Then

S(C) = sup sup I / -0(d) ' ' ') ß(ß2m) dpC(ß)
l/2m

< KXK2.
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B.3 Symmetries

Definition B.6: For a function S : B x B -=> C, consider the following linear transfor¬

mation of the fields

ijs(0--= Jd(S(p()ß(().
(i) The transformation S is invertible if there is a function S~l :!Bxî^C such that

^C S(p ()S-l((, n) = Jd( S-l(Ç, ()S((, n) = £(C, n),

where 8(ß, rj) = öaböaTöxyö(x0 - y°).

(ii) A Grassman function

f(ß) = Y f dîl dßn /„(Cl, ---Pn) ß(ßl) ß(ßn)
n>0

''

is invariant under the transformation S if f(ßs) = f(ß), or equivalently

fn(îl, ---Pn) = fn(ßl, Pn), for all U > 0,

where1

In (Cl, • • •

, in) = d£[- --d£'n S(£ß Cl) • • • S(Ç'n, ßn) /n(CÎ, • • •

, Cn)-

Remark B.7: The generating functional for the Green functions contain the Grassman

function (ß, ß). All the physical symmetries should therefor leave this function invariant.

Hence, we consider only symmetries satisfying

3s = 3,

or

C

di'dßS(ß',OS(P,r])3(ß',P) = 3(ß,v)-

Suppose that the symmetry does not mix the particle and the hole states,

S(Pv) = saT(x,y;a)ôab,

where s is a transformation of the spacial and spin coordinates only, that depends on the

particle species. For such a transformation, the condition 3s = 3 reads

E dz° Y ^sa(z, x)sSt(z, y) = öaTö(x° - y°)6xy,
5e{î,|}J zsal

1 Observe that the coefficients /„ transform as contravanant tensors
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106 APPENDIX B. GRASSMAN ÎNTEGRALS

with ssa(z, x) = ssa(z, x, 0) and ssa(z, x) = ssa(z, x, 1). Thus

S5a(z,x) = (S~l)a5(x,z)

which corresponds to a "unitarity" condition.

Example B.8: Let R E SO(3) he a rotation. Then

saPx°, x; y°, y) := 6(x° - y°)ôRTx,yUaPR),

and

saPx°, x; y°, y) := 6(x° - y0)6RT^yUP(R),

where U(R) is the two dimensional spinor representation of the rotation R, and U*T is

the complex conjugate of UaT. Thus,

ß*(x°,x) = Y Ua4R)ß4x°,RTx),
re{î,|}

and

VvV,x)= E KPR)ßPx°,RTx).
re{î,|}

Remark B.9: Suppose that the covariance C(ß, n) defined in B.l is invariant under the

transformation S(ß, n) = saT(x, y; a)öab- Then

di'dpS(ßP')Sß1,P)C(ß',ß) = C(ß,r]).

Proof: First observe that2

dedV's(e,os(r]',v)c(e,p) =

0 -sa>a(x', x)sT>T(y', y)CT>aßy', x')
Sa>a(x', x)sT>T(y', y)Ca>Tßx', y') 0

= YJdx' j dv'
a' ,r'

Since G is invariant under the transformation S,

E/W^W^W.ricW.^cu»,*).

'In order to srnphry the »otaforr, we wnte / ä, llls,ead of £ / är
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Further,

di'dßs(ßp')sß1,p)c(p,p) =

=

sr[dx'[dy'( ° -saaßx,x')sTTßy,y')CT,aßy',x')

p^J J \P*'(x,x')sTTßy,y')Ca,Tßx',y') 0

Using the "unitarity" condition, one gets

a' ,r'

= Y / dx' / dy'(s~1)ir>ir(x',x)(s~1)T>T(y',y)CT>ir>(y',x').

The invariance of G under the transformation S, and consequently under its inverse S
l

leads us to

<7',r'
^ ^

D

Lemma B.10: Suppose that the covariance is invariant under the transformation S.

Then

V(Cl) • • -PS(CP dpC(ß) = (ß(ßl) --ß(ßn) dpC(ß).

Proof: By definitions of the transformation S and of the Grassman Gaussian integral, for

n even,

jßS(ßß---ßS(ßn)dpC(P) =

, n/2

= E WJ dî'i- dUS(ßiP'i) S(ßn,QUC^^-
ttGS„/2 î=1

ff the covariance G is invariant under the transformation S, the claim follows directly
form remark B.8. For odd n, the Grassman integral vanishes, and the claim is verified.

D

Lemma B.ll: Suppose that the covariance is invariant under the transformation S.

Then, if / G 3rm(P) is a Grassman function which is invariant under the same transfor¬

mation S,

fS = f,
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where

f(f]li , Vm] Cn'+l, • • •

, Cn) =

d£l--- d^n' f(Vl, ---,Vm-pl,---Pn) / ß(ßl) • • • ß(ßnßdpCßß)-

Proof:

/' (Vi, ,f]mpn'+l, -Pn)

= dn[--- dr/m S(px,ni) S(pm, r]m) / di'n,+1 ---dgn S(ßß+i, C«'+i) • • •

' ' '

»J \S,n> sn)j (Til, , Vm'i Sra'+l, • • •

, Sn)

= I dr}[--- drfm S (rißriß S(pm, rim) / dßpn,+l ---di'n S(ßß+l, ßn,+l) S(i'n, ßP

dei---den'f(ri'l,---,V'mP'l,---P'n) f Ml) ' ' ' Mn') dpC (ß)

= j d^--- din, dri[--- dr[m S^ßnß S(pm, <qm) d£[--- dtßn S(i[, iß • • •

S(C £»)/foi, , V'm-, Ci, • • •

, O f dî'I dC S-'&P'D S~l(ßn', &)

ß(ß';)---ß(C)dpc(p)

pS(m
m .t t \ I J,S~1(ù\ j.s-1

(%!••• dîn' fPVl, , Vm-, Cl, • • •

, Cn) J ß" (Cl)
' ' '

V (C«') dpC(ß)

By the previous lemma and the invariance of /, the claim follows. D

Corollary B.12: The generating functional for the Green functions is invariant under

the symmetries of the Hamiltonian. Thus, the Green functions have the same symmetries
as the Hamiltonian.

B.3.1 Spin Symmetry

Lemma B.13: Suppose that the covariance is diagonal in the spin index, CaT(x,y) =

öarC^ßx, y), and that the interaction is given by the potential

MCI, C2, C3, iP = ^a1a2^a3aPa1l^a30^a1a3^a2aP(Xl ~ X3)Ö(x2 — X4)Vail72(Xi — X2).

Then the two-point Green function is diagonal in the spin index.

Proof: Consider the following transformation, involving only the spin structure of the

fields:

S(x, a, a; y, r, b) = 6ab6(x - y)s(ß},
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where s<°) G SU(2). Then

Cs(x,a,l;y,r,0)= Y s*aalsTa,C^\x,y)
^'6{î,|}

and

VS(il,i2,i3,i4) = ÖaioÖa2oÖa3iÖa4iÖ(Xi-X3)Ö(x2-X4) Y V^2 (X1 ~X^) Ki^ ? \So2a'2 ? •

^i,^6{î,|}

Let s he the spinor representation of a rotation along the vertical axis,

_

/ Ce 0 \
Se { 0 e~M ) '

then CSe = C and VSe = V, and all Green functions are invariant under the spin
transformations Sq defined above, fn particular,

G2e(x,a;y,p = G2(x,o;y,p.

Hence for all 9 E [0, 2p

G2(x, Î; y, i) = Gsp(x, Î; y, 1) = eG2(x, î; y, 1),

and we deduce

G2(x,î;y,|) = 0.

D
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Appendix C

Spin-Dependent Hamiltonian

fn this chapter, we consider a system of spin | fermions in a weak, constant magnetic field,

parallel to the vertical axis. Fermions with different spin orientations have a different

energy, such that the Fermi surface is actually split in two folds, corresponding to the

two different spin orientations. With the argument that proved Luttinger's theorem, we

derive the results obtained by Luttinger in [1].

C.l Free Electrons in a Weak Magnetic Field

Let T(x —y) be the hopping amplitude between sites of the lattice A in a weak magnetic
field h, parallel to the vertical axis.1 The (non-interacting) Hamiltonian of the system is

then given by

Ho = Y E T(x-y)4(x)cCT(x) + /iij/i^(c+(x)ci(x)-c+(x)cT(x)).
ffS{î,|} x,ySA xSA

fn momentum space,

^6{î,|}

where

ePk)

and

Ho= Y J 7^^(k)4(k)c,(k),

(27T)

e(k) - pBh, a =î

e(k) + pBh, a=i

d

«kx
r rlkd

1In the tight-binding approximation, the electrons are trapped in bounded states by the positive ions

The hopping amplitude determines the probability for an electron to jump from one ions to an other A

weak magnetic field modifies slightly the bounded states, and the hopping amplitude is modified as well
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Let consider a many-particle state containing n electrons, obtained filling all the energy

levels of the spin up states up to the energy E^, and all the levels with spin down, up to

the energy E±. The total energy of such a many-particle state is given by

f dkd f dkd
Etat = / 7-lïï(e(k)-/iS/i)+ / ——(e(k) + pBh)

Je{\<.)<E}+ßBH \Z7T) Je(k)<Ei-/us/i \Z7T)

cE^+ßBh rEy-ßBh

de p(e)(e — pBh) + / de p(e)(e + pBh),
Jo

where p(e) is the spectral density of states. Minimizing the total energy with respect to

E^ and E^, fixing the total density of particles

n = dep(e) + / dep(e),
Jo Jo

one gets E^ = E^ = EF.2 Thus, the ground state of a system of n independent electrons

in a weak magnetic field is obtained filling all the one-particle states with energy less

than the Fermi energy Ep, which is defined by the condition

çEF-p,Bh rEF+ßBh

n= de p(e) + / dep(e).
Jo Jo

The ground state energy is then given by

E0 = de p(e)(e — pBh) + / de(e + pBh),
Jo Jo

and the Pauli magnetization is

i'Ep+ßBh

m = pB de p(e).
J Ep—ßßh

The surfaces of Fermi are defined by

ST = {k G T : e(k) = EF + pBh} and St = {k E T : e(k) = EF - pBh},

such that

m = pB(2p-d(Vol(Sß - VolOSjJ),

while

n = (2p-d(Vol(Sß + Vol(Sß).

2In order to avoid the confusion with fiß, we use Ep for the Fermi energy, instead of the usual

notation /x for the chemical potential
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C.2 Interacting Electrons in a Weak Magnetic Field

We turn now to the study of a system of interacting fermions in a weak magnetic field h,

parallel to the vertical axis, fn order to avoid divergence problems, we work on the finite

lattice AL. We refer to chapter two for the basic definitions. Let e(k), defined as in 2.3,
be a band function describing electrons on a lattice with a weak magnetic field parallel
to the vertical axis, and satisfying the assumptions A2 and A3. Define

ea(k) = e(k) - (-l)apBh,

where (—1)^ = — (—1)^ = 1. If the magnetic field h is small enough, the functions ea(k)
still satisfies the assumptions A2 and A3. Let the Hamiltonian of the system on the

finite lattice be3

KL)=L-d Y eiL\k) + XV^ + K^L\X),

keAL

^6{î |}

where

4L)(k) =
ePk), if|e„(k)|>4

sgn(eff(k))£, if\ea(k)\<j;
is defined as in 2.10. The interaction is given by

V{L) =
y-yd E <Wk3k2+k4tw(ki-k2)

ki k4SA^
^re{î|}

c^(kßcß(k3)ca(k2)cT(k4),

and the counterterm is now spin dependent.

K^(X) = L-d Y u(k,a,X)4(k)cPk),

keA^
^6{î|}

with the function u in the set of the possible counterterms

X I u . AL x C x {|, 1} — C | u is analytic m À G C with u(k, a, 0) = 0,

, ,
A

and sup |w|o <
——

a 2L

Remark Cl: The magnetization operator

M(D = L-d J2 (c+(k)cT(k) - c+(k)Ci(k))
keA^

3We assume that L is such that ß is much smaller than fißh
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commutes with the Hamiltonian H

Proof: We proved in 2.12 that4

[Af),Vl=0,

and thus \M^L\ V] = 0. One easily verify that

[Af),c+(k)C(7(k)] = 0,

and the magnetization operator commutes with the Hamiltonian. D

Remark C.2: The spectrum of the magnetization operator M^ is a subset of Z.

We can repeat the construction of the Green functions presented in the second chapter,

using now the spin dependent propagator

cP(k)=
l

iko - ea (k)

The theorem 2.18 of chapter two can easily be extend to the spin dependent case, in

order to obtain

Theorem C.3: For all L E N, there is a A0 > 0 that depends on L such that

(i) For all u E X, the connected Green functions G2rl(ki, <J\..., k2m, a2m, X; u) are an¬

alytic in A with analyticity radius A0 .
In particular, the two-point Green function

Sa (k; X) is analytic in A.

(ii) For all u E X, the density of fermions p^LßX,u) is analytic in A with analyticity

vo •

(iii) For all u E X, the magnetization density of fermions, defined by

>(I)(A) = L-d5](4(k)Cî(k)-c+(k)q(k))L

(Lßi-P e^ox°

radius A0

my

keA»

is analytic in A with analyticity radius A0 .

4Observe that the determining condition was that the interaction was of the form V

zZ zZ ^T(x-y)Vv(x)Vv(y)Vv(y)Vv(x)

o-,i"6{î,f}x,y6A
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Further, one easily verify that with the same argument as in 2.20,

Theorem C.4: For each L < oo, and u E X, the density and the spin magnetization
are independent of the coupling constant:

p(L)(A) = p(L)(0) and m(L)(A) = m(L)(0).

Finally, one can extend the proof of the convergence of the density in the thermody¬
namic limit to the magnetization density:

Theorem C.5: Assume Al-3. Then there is a sequence of counterterms (K(Lßk, a, A)),
in X that converges uniformly in (k, cr) G T x {], {} to the formal power series A^(k, a, X)
of theorem 2.22, such that

(i) For L -=> oo, the two-point Green function Ga converges uniformly ink = (k0, k) G

IR x T to the (formal) Green function Ga of the model in the infinite volume with

dispersion relation ea(k) and counterterm K(k,a,X).

(ii) For each m > 1, the 2m—point Green function G2rß converges in the limit L — oo

to the formal Green function of the model in the infinite volume in the Li—norm.

(iii) The density of fermions p^ (A) converges in the sense of formal power series to the

density of fermions in the infinite volume:

p^(X)LP°°p(X)

(iv) The magnetization density m^LßX) converges in the sense of formal power series to

the magnetization density in the infinite volume:

rPL)(X)L-T m(X)

where m(X) is defined by the formal power series

m(X)=J^JJ^(Sßk)-Sßk))e^x.
We deduce as in the case of the density,

Corollary C.6: The spin magnetization m(X) is independent of the coupling constant.
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C.3 Luttinger's Theorem

Definition C.7: The physical (or interacting) Fermi surfaces Sa of the system are the

surfaces of discontinuity of the occupation numbers na(p, A).

Luttinger's Theorem: Let ea(k) — phe a dispersion relation of a system of fermions in

a constant weak magnetic field h parallel to the vertical axis, satisfying the assumptions
A2 and A3. Assume further that the interaction vaT between the fermions satisfies Al,
and let p he the (given) density of fermions of the system.

Then the sum of the volumes enclosed by the Fermi surfaces is independent of the

interaction strength.

Proof: fn the free-fermion approximation, the Fermi surfaces are

S(o) = {keT . £a{k) = Ep},

Since by assumption ea(k) — Ep has convex level sets, there is a chemical potential E0

such that

p = Xol(S\0)) + Xol(Sf)).
Once the chemical potential is fixed, the spin magnetization is determined by

m(°)=Vol(Sf)-Vol(Sf).

We turn now to the interacting system. For each E in a neighborhood of Eo, there is an

interacting dispersion relation

emßk,a,E;X) = R-1(e(-)-E)(k)

defined as a formal power series eint(k, a, E; X) = y^ Arer(k, a, E). For each R > 0, there

r>0

is a Ao > 0 such that for A with |A| < Ao, the dispersion relation

R

eR(k, a, E;X) = Y Arer(k, a, E)
r=0

satisfies the assumptions A2 and A3. For A' with |A'| < |A|, consider the model defined

by the generating functional

S(ß, ß; X', eR(-, A)) = j e^P^)+^^'^P^)+im+imd^c^ ^ (^ ^

which is well-defined by theorem 1.1. By corollary 1.2, we know that the occupation

number corresponding to this model has a jump on the surfaces

S^={kET : eR(k,a,E;X) = V},
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which are therefore the interacting Fermi surfaces up to the order R in perturbation

theory. The theorem C.4 implies that the density of the model is

p(X'; eR(-, A)) = p(0; eR(-, A)) = Vol(^Ä)) + Vol(fif>).

Further, we obtain for the magnetization

m(X'; eR(-, A)) = m(0; eR(-, A)) = Vol(^Ä)) - Vol(Sf]).

fn order to achieve the right physical model, the chemical potential E has to be adjust
such that the density of the system is just p. There is a Ep near E0 (depending on R

and A) such that

p = p(0; eR(-, A)) = Vol(^Ä)) + Vol(fif>).

Hence,

Vol(Sf}) + Vol(S{R}) = Vol(S\0)) + Vol(Sf}),

and to each order R in perturbation theory, the volume enclosed in the Fermi surface is

independent of the interaction strength. D

Remark C.8: Observe that the Pauli magnetization of the interacting system is still

given by the difference between the volumes enclosed in the two Fermi surfaces:

m(0; eR(-, A)) = Vol(^Ä)) - Vol(S[R)).

Nothing allows to say that the difference between this two surfaces should be constant,

and thus, in general, the volume of each Fermi surface is not conserved separately.

C.4 Example: Spherical Fermi Surfaces

Strictly speaking, the case of a spherical Fermi surface is incompatible with the lattice

structure considered in our work5. We although present this example, in order to illustrate

the construction presented above.

Let consider a system of fermions, described by the band function ea(k) = ^
(—l)apBh, where me and pB are the mass and the magnetic moment of the fermions.

Obviously, the assumptions A2 and A3 are satisfied for small /i-fields. Let p he the

density of Fermion in the system.

5The band function corresponding to the discrete Laplacian on the lattice would be ^(cosfcj — 1)
rather than Ikl2
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C.4.1 The Non-Interacting Case

fn the free-fermion approximation, the ground state is obtained filling all the one-particle
states with energy less than the Fermi energy E0. We have

Vol(Sl0)) = fdkdQ(Eo-ePk))

= ]^(2m)d'2(Eo + (-irpBh)d/P
d

Thus, in the free-fermion approximation, the Fermi energy E0 is determined by

P = ]^(2mf2 ((Eo + pBh)d'2 + (Eo - pBh)d'2)

fn particular, in two dimension, d = 2,

p = 4-KmEo,

and Eo = p/(47rm). Observe that the density is independent of the magnetic field, fn

three dimension, d = 3,

n = |(2m£(lp((i + ^p + (i
pBh

Eo

3/2

^msWl + fgt) +0(4)|.

The Pauli magnetization is given by

m<°> = pB^-^(2mf2 {(Eo + pBh)d'2 - (E0 - pBh)d'2) .

fn two dimensions, d = 2,

m(0) = 4nmp2Bh2.

fn three dimensions, d = 3,

(0) = „

JtT 3;
/
^ „^m =

pB-(2mEoM[(l
+
^-M-(l-^-)

~ 47r(2m)3/2E10/2p2Bh + O(3)

3_ ßßh . ,

~ öPßß--- + 0(3).
2 ho
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C.4.2 Interacting Fermions

We consider now the case of interacting fermions, and proceed as in the proof of Lut¬

tinger's theorem, fn order to find the interacting dispersion relation, we invert the renor¬

malization map

emßk,a,X,E) = R~xl(eP-) - E)(k).

By the rotational symmetry, we know that emf(k, er) = \ß- — (—l)apBh — EpE), where

the term (—l)apBh is single out for convenience. The Fermi surfaces are the surfaces on

which the energy takes the value EpE).

fn order to recover the initial model, one has to pick up Ep, such that the sum of the

volumes enclosed in the Fermi surfaces is just p, solving the equation

Eo = E\(Ep),

since E0 gives the radius of the Fermi surfaces for which the density is just p. fn order to

compute the density and the Pauli magnetization, we don't need to solve explicitly this

equation. Since Vol(Sa) depends only on E\(EF) = E0, we see that

Vol(Sa)=Vol(S^).

The case of a spherical Fermi surface is thus particular, in the sense that the volume of

each Fermi surface is independent of the interaction strength. This conclusion cannot be

proved in general.
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