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Abstract

“Luttinger’s theorem” states that the volume enclosed by the Fermi surface of a system of
interacting fermions at zero temperature is independent of the strength of the interaction.
We give a rigorous proof of Luttinger’s theorem to all orders of perturbation theory, based
on an argument due to E. Trubowitz.

The first step consists in the analysis of a system of weakly interacting fermions in
a finite volume. The dual lattice provides a natural infrared cutoff which allows the use
of nonperturbative methods, developed by J. Feldman, H. Knérrer and E. Trubowitz for
the insulator. The second step implements renormalization group ideas to control the
thermodynamic limit of the Green functions, order by order in the interaction strength.






Résumeé

Dans un systeme de fermions n’interagissant pas entre eux, I'état fondamental consiste
en un produit de tous les états simples, dont 1'énergie est inferieure a I’énergie de Fermi.
Cette configuration est une conséquence du principe d’exclusion de Pauli, qui interdit a
deux fermions d’occuper un meme état.

La surface délimitant les états occupés des états non-occupés dans l’espace des mo-
ments est appelée la surface de Fermi. Par un calcul simple, on vérifie aisément que la
densité de fermions est, & un facteur 2 pres, le volume contenu a l'intérieur de la surface
de Fermi.

Lorsque les fermions interagissent entre eux, cette définition de la surface de Fermi
perd son sens. L’état fondamental du systeme ne s’exprime plus comme le produit d’états
simples. Si le nombre moyen de particules par état est une fonction discontinue du
moment a temperature zero, alors le systeme est un liquide de Fermi. Dans ce cas,
la surface de Fermi est la surface oli, dans l'espace des moments, le nombre moyen de
particules par état est discontinu.

Selon le théoreme de Luttinger, le volume contenu a l'interieur de la surface de Fermi
d'un systeme de fermions interagissant entre eux ne depend pas de l'interaction. Une
preuve perturbative rigoureuse de ce théoreme, basée sur un argument de E. Trubowitz,
est donnée dans ce travail.

Pour ce faire, un systeme de fermions interagissant entre eux est d’abord analysé dans
un volume fini. La structure discrete de I'espace dual fournit une coupure infrarouge na-
turelle, ce qui permet d’utiliser la méthode non-perturbative développée par J. Feldman,
H. Knorrer et E. Trubowitz pour les isolants. Le groupe de renormalisation permet
finallement de controler la limite thermodynamique des fonctions de Green a chaques
ordres.
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Chapter 1

Introduction and Overview

In a system of noninteracting fermions at zero temperature, the ground state is given by
the product of all single-particle momentum states, with one-particle energy less than the
Fermi energy. This configuration is a consequence of Pauli’s exclusion principle, which
forbids the one-particle states to be occupied with more than one fermion.

The surface in momentum space representing the limit of occupation of the one-
particle momentum states is called the Fermi surface. A simple computation shows that
the density of fermions in the system is given, up to a factor two due to spin multiplicity,
by the volume enclosed in the Fermi surface.

In a system of interacting fermions, this definition of the Fermi surface becomes
meaningless, since the ground state is no more given by a product of single-particle states.
If the mean occupation number in momentum space exhibits a sharp discontinuity at zero
temperature, we refer to the system as a Fermi liquid. In that case, the Fermi surface is
the surface on which the discontinuity in the mean occupation number occurs.

Luttinger’s theorem, first formulated in 1960 in [1], states that keeping the density
fixed, the volume enclosed in the Fermi surface is independent of the interaction strength.

The aim of the present work is to give a rigorous proof of Luttinger’s theorem to all
orders in perturbation theory. Luttinger’s theorem follows directly from the conservation
of the particle number under changes in the interaction strength.

1.1 Field Theory for Many-Fermion Systems

Consider a system of many spin % fermions on a discrete torus Ay = Z4/LZ% d = 2
or 3, containing L¢ points. Let ¢ € {1,]} ~ {—1,1} be the projection of the spin
on the vertical axis, measured in units of 2. For x € Ay and o € {1,]}, let ¢} (x)
and ¢, (x) be fermionic creation and annihilation operators obeying the anticommutation
relations {c}(x), ¢y (X')} = 0,00xx and let F be the fermionic Fock space generated by

1



2 CHAPTER 1. INTRODUCTION AND OVERVIEW

this algebra. The free Hamiltonian of the system is defined as

Hy = Z et ()T (x — x)er (X))

x,X'€AT,
oe{T,1}

where T is the hopping amplitude between sites of the lattice. Let A be an operator
on JF, i.e a polynomial in the creation and annihilation operators. In the free-fermion
approximation, the thermal expectation value of the operator A at zero temperature in
the thermodynamic limit is

(A) = lim lim

tr (e—ﬁ(HO—MN)A) ’
Ap—Z4 f—00 Lig A

where N is the number operator on &, # = 1/7" the inverse temperature and Zg, =
tr e~ #Ho=1N) j5 the grand canonical partition function; p is the chemical potential. The
trace formula has the functional integral representation?

= f‘A("Z)7 '(/))dﬂCbare (J)a Ib),

where 9, () and 1,(z) are Grassman fields with z = (2°,x) € R x Z%, 2° being the
imaginary time, and A is the polynomial in 9, (x) and v, (z) corresponding to the normal
ordered form of the operator A. The Grassman Gaussian measure is formally given by

dpicy,,. (0, 1) = —e “20Cu ) T diy(x)dis (2),
rERxZ4
oe{T,l}
where N is a normalization factor, and
0. Cite) = Y [ Y ba()Cike )by

oe{1,1} x,y€z4

with the inverse propagator

Cl;zie(xa y) - 500’6(550 - yO) (6xy (aoco + ﬂ) - T(X - Y))

In the thermodynamic limit, the momentum space is the first Brillouin zone T, i.e.
the torus T = R¢/27Z%. Under the Fourier transform

— d d+1 . 0 . Fay
Vol(z) = / L ey, (p)
RxT

(27)d+t

dpd+1 Y
Yole) = /qur (27r)d+1ezpow ~ o (p)

'For a complete introduction into this subject, see [5].

2



1.1. FIELD THEORY FOR MANY-FERMION SYSTEMS 3

the bilinear forms in the measure dpuc,,,. (1, 1) becomes, dropping the hats on the Fourier
transforms,

0. Ctet) = S [ b — (o) + a(o),

oe{T,1}

where the band function

has been introduced. The propagator

ePo0+

Crare®) = G o) ¥ 1

is singular for py = 0 and p € S©, where

S ={peT:elp)=pu}

is the free Fermi surface.

We turn to a system of interacting fermions on the finite lattice Ay. Let the Hamil-
tonian of the system be H = Hy+ AV, where the interaction is given by a two-particle
translation invariant potential v:

Vot YD e X0 () )

x,x'€A
0,0 €{T,1}

The thermal expectation value at zero temperature of an operator A on F becomes

(A), = lim

tr (6—5(H—MN)A) ’
B—oo B,ArL

where now Zza, — tre ##=#N) The connected Green functions of the system on the
finite lattice A are defined as

Ggfn), (Xla 015 5 Xom, 02m) —< cjl (Xl) e C;rm (Xm)cam+1 (Xm,+1) © Cog (X2m) > L,connected -
The functional representation

1

L / VDL (1) -y (2am)dpic,,.. (0, )

(L) . . _
G2m($17 015" 3 Tom, UQm) -
I,

connected

does not exist in thermodynamic limit, i.e. in the limit Ay — Z% reflecting the fact
that the Fermi surface gets distorted by the interaction. The propagator in the Grass-
man Gaussian measure has therefore the wrong surface of singularities, which leads to
unphysical divergences in the thermodynamic limit.

3



4 CHAPTER 1. INTRODUCTION AND OVERVIEW

The renormalization procedure allows to cure the divergences on the level of pertur-
bation theory. Formally, the bare dispersion relation is split in the interacting dispersion
relation e(p; A) and a counterterm K (p; A, e), which is removed from the propagator and
put in the interaction. Thus

e(p) —p =e(p; A) + K(p; A e).

In the mathematical analysis of the problem, we begin directly with the interacting
dispersion relation e(p) rather than the band function. The counterterm is then chosen
such that the Fermi surface defined by the zero set of e(p) remains fixed. The existence
of the functional integral representation in perturbation theory in the infinite volume is
then given by the following theorem:

Theorem 1.1: Let e(p, 1) be a dispersion relation and v be an interaction satisfying
the following assumptions for r > 3:

A1l The interaction 0,, € C"(T,C). The supremum norm over T of the first r deriva-
tives of ¥, is finite and 7,,(p) = U,-(—P).

A2 There is an interval M of positive numbers and a compact set U C T, such that
Vi e M, e, € C"(U,R) and ¢, is at least once differentiable in . Further, the
Fermi surface

Sy ={peTle.p) =0}
is entirely in U, S, C U and Ve, (p) # 0 for all p € S,,.

A3 For all € M, the Fermi surface S, is strictly convex.
Then there is a counterterm K(p, A;e) defined as a formal power series in A such that

(i) The connected Green functions generated by the generating functional
_ 1 . 5 )3 . _
9(¢’ QS, )\’ 6) _ log ? /6>\V(1/1ﬂ/1)+8(1/171[1,/\, )+(¢ﬂ/’)+(¢:¢))dﬂge(,¢)’ ,(/))

are well-defined power series in A in the thermodynamic limit.? Here duc, (1, 1)) is
the Grassman Gaussian measure with covariance3
ewol+

Ce(p) = iro — ()’

’The generating functional G is probably not analytic in the dispersion relation e, i.e. there is no
formal power series of G in e. If § would be analytic in e, it would also be analytic in the band function
e + K, which is in contradiction with the presence of infrared divergences.

3The lattice structure in position space furnishes an ultraviolet cutoff, since the momentum p is on
the torus T.



1.1. FIELD THEORY FOR MANY-FERMION SYSTEMS 5

the interaction is

Vi) = ) / 02 vr(x — 3o (2, X)Br (20, y )60 (20, 3 )0 (2, ),

x,y€Z4
o,7e{T,1}

and the counterterm

e iihe) = 30 [ da Kix—yi A pdala® 000", y).
x,y€Z4
oe{1,1}

where K is the inverse Fourier transform of K.

(ii) The self-energy »(p, A), defined as the formal power series in A satisfying the equa-
tion |
5’2 (pa >\) - )
ipo — e(p) — X(p; A)
where 9, is the two-point Green function, is 2 + e-times differentiable with respect
to p for an € > 0. The counterterm is fixed by the renormalization condition

Y(0,p;\) =0forpes.

(iii) Further, there is a small ball B in the Banach space of the dispersion relations,
such that the renormalization map

Ry : B — B
e(p) — e(p) + K(p;Ae)

is invertible in the sense of formal power series.

Corollary 1.2: The occupation number

no(piA) = lim {c5(p)es(P))z

doe ~ ,
= lim ﬂSg (p, A)e'PoT
2m

T—>O+

is a well-defined formal power series in A, such that for all E > 0, there is a Az > 0 such
that for all A with |A| < Ag, the occupation number

R

nf(P; ) =Y Nn,.(p)

r=0
has a jump on S = {p € T: e,(p) = 0}.

We refer to the literature for a precise formulation of theorem 1.1 and its corollary
1.2. The proof of the existence of the Green functions is given in [7]. The invertibility of

5



6 CHAPTER 1. INTRODUCTION AND OVERVIEW

the renormalization map is proved in [8],[9] and [10]. The proof of the corollary can be
found in [11].

Theorem 1.3: The density of fermions, defined as the formal power series

:Z)‘Tpf

r>0

where

dd+1k .
1RO T
= Jim 3 [ s e
oe{T,1}

exists, and is independent of the coupling constant A:

p(A) = p(0) = 2 Vol(5).

The proof of this theorem, which is the angle stone of the proof of Luttinger’s theorem,
is the main result of the present work.

1.2 Luttinger’s Theorem

Definition 1.4: The physical (or interacting) Fermi surface S, of the system is the
surface of discontinuity of the occupation number n,(p, A).

Luttinger’s Theorem: Let (k) — i be a dispersion relation satisfying the assumptions
A2 and A3. Assume further that the interaction v,, between the fermions satisfies A1,
and let p be the (given) density of fermions in the system.

Then the volume enclosed by the Fermi surface is independent of the interaction
strength.

Proof of Luttinger’s theorem: In the free-fermion approximation, the Fermi surface is

SV ={keT: ek) = p}.

Since by assumption e(k) — p has convex level sets, there is a chemical potential o such
that

p = 2Vol(SV).

We turn now to the interacting system. For each p’ in a neighborhood of pg, there is an
interacting dispersion relation

eme(k, ps A) = Ry (e() — 1) (k)
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defined as a formal power series e;,(k, p/; \) = Z Ne,(k, p'). For each R > 0, there is
r>0
a Ar > 0 such that for A with |A| < A, the dispersion relation

R

ek, 1/ \) = Z Ne,(k, 1)

r=0

satisfies the assumptions A2 and A3. For X with || < |A|, consider the model defined
by the generating functional

S, p; N, ef (5 N) = /ewi’w)+8(¢’¢;X’6R(';A))+(¢’¢)+(¢’¢)dﬂOeRM) (1, ¥),

which is well-defined by theorem 1.1 with e replaced by ef(:;\) and A replaced by ).
The Green functions of the physical model are obtained setting A’ = X\ in the generating
functional G(¢, ¢; N, ef(-; \)).4

By the corollary 1.2, we know that the occupation number corresponding to the model
described by G(¢, ¢; N, ef(-; X)) has a jump on the surface

") _ DR 1\
SU —{keT: (ks \) =0},

which is therefore the interacting Fermi surface up to the order R in perturbation theory.
The theorem 1.3 implies that the density of the model is

PN eR(50) = p(0; R (5 0) = 2 Vol(S4).

In order to achieve the right physical model, the chemical potential i/ has to be chosen
such that the density of the system is just p. Observe that efi(k, /; \) = e(k) —p/ +O(N),

such that for Ag small enough, Vol(Sff")) is a strictly increasing function of p/. Thus,
there is a p near po (depending on A) such that

p = 2Vol(S{).

Hence,
Vol(S4) = Vol(50),

and to each order R in perturbation theory, the volume enclosed in the Fermi surface is
independent of the interaction strength. U

1.3 Sketch of the Proof of p(\) = p(0)

In order to prove that the density is independent of the coupling constant A\, we consider
for each L € N the model on the finite lattice A, = Z‘}J. The finite volume induces a

40Observe that the Green functions are probably not analytic in ), since the Green functions are not

analytic in the dispersion relation e®.



8 CHAPTER 1. INTRODUCTION AND OVERVIEW

natural infrared cutoff on the propagator, such that the model is analytic in the coupling
constant A\. Further, the number operator has eigenvalues in the set of the natural
numbers. Since the number operator commutes with the Hamiltonian, the ground state
of the system is an eigenvector of the number operator, and if the ground state is non-
degenerate, the expectation value of the number operator at zero temperature is an
integer. On the other hand, the expectation value of the number operator is analytic in
the coupling constant.

The expectation value of the number operator is therefore an analytic function of
A, taking values in a discrete set. It follows that the expectation value for the number
operator is constant®. Thus, for each finite volume, the density is independent of the
coupling constant \.

In order to obtain the claim of theorem 1.3, the thermodynamic limit L — oo has
to be controlled. In this work, we construct for each L a counterterm, such that the
Green functions on the finite volume tends for L — oo to the Green functions defined
in the theorem 1.1. Observe that the proof of convergence in the thermodynamic limit
differs from the proof of theorem 1.1 given in [7], where a system in an infinite volume
is considered from the beginning, and the Green functions are defined with an infrared
cutoff. The limit in which the cutoft vanishes has to be controlled. This approach allows
to work on a continuous Brillouin zone rather than on a discrete one.

In chapter two, we present a rigorous proof of 1.3, assuming the analyticity of the
Green functions on the finite lattice, and their convergence to the Green functions of the
physical model defined in theorem 1.1. The proof of the analyticity is given in chapter
three, and the convergence is proved in chapters five and six.

1.3.1 The Thermodynamic Limit

In the thermodynamic limit, the natural infrared cutoff due to the lattice structure of
the dual space is removed. The radius of analyticity of the Green functions shrinks to
zero (before divergences appears in the computations), and naive (i.e. one-scale) non-
perturbative analysis breaks down.

Still, one can try to compute the thermodynamic limit of the Green functions at fixed
order in the coupling constant )\, i.e. the coefficients of the Taylor expansion of the Green
functions in A\. As it is well known, the Green functions at fixed order in A are obtained
by the techniques of Feynman diagrams, the propagator

eik‘o 04

W= —em

being associated to the lines of the graphs (See [4] or [3]). Here e(k) is the dispersion
relation of the model, and ky € R is the Euclidean frequency at 7' = 0. Singularities

5This argument is due to H. Knérrer and E. Trubowitz.



1.3. SKETCH OF THE PROOF OF p()\) = p(0) 9

appears on the Fermi surface S = {k € T : e(k) = 0} in the propagator for kg = 0. The
accumulation of propagators in the two-legged subdiagrams leads to infrared divergences
in the Green functions at fixed order in \.

1.3.2 The Renormalization

The divergences appearing in the Green functions at fixed order in \ are not physical, but
reflect the fact that the Fermi surface of a system of interacting fermions gets distorted.
The diagrammatic expansion is then performed in the vicinity of the wrong surface of
singularities.

The renormalization procedure allows to take the change in the dispersion relation
due to interaction into account, and cures the infrared divergences. The renormalization
consists first in a resummation of the two-legged contributions, in order to get expressions
of the type

Zw(k(b k)
iko — 6(1{)’

rather than bare propagators. >, turns out to be a contribution to the self-energy.
In a second step, an appropriated counterterm is introduced in order to remove the
divergences. The renormalization condition

N0, k) =0 fork € S

allows to fix the counterterm, which is constructed projecting the self-energy >, onto
the Fermi surface S. The renormalization procedure can then formally be seen as the
replacement

ET(k(Ja k) - Zr(ko, k) - 27(07 k)|keS - Zﬁ%en(k(]’ k)

Thus, the divergences in the propagator are compensated by the vanishing denominator
obtained by the renormalization substraction.

Although, the projection onto the Fermi surface is not adequate in the finite volume.
In order to preserve the periodic boundary conditions, the operation has to be performed
on the dual lattice, rather than in the full Brillouin zone. Thus, we define a projection
from points of the dual lattice AﬁL onto points of the dual lattice that are close to the
Fermi surface. The projection on the dual lattice is defined such that in the limit . — oo,
the renormalization procedure described above is recovered.

Unfortunately, the counterterm defined with this projection fails in the suppression
of the divergences. Precisely, the renormalized self-energy will not vanish on the Fermi

surface, but rather be of order

2
R0, k) ~ T

where 27 /L is the dual lattice spacing. Let ¢y > 0 be the natural infrared cutoff provided
by the lattice, i.e. |e(k)| > ¢z, for k € A%. Geometric considerations show that ¢y, is

9



10 CHAPTER 1. INTRODUCTION AND OVERVIEW

typically bounded by ~ L= in d dimension®. Thus

Send) L7
iko — e(k) cr, '

and the infrared divergences remain present even after the renormalization. (For d = 2,
only special choices of the dispersion relation achieve the infrared cutoff ¢z, ~ L=!.) This
is the reason why a regularization of the dispersion relation has to be implemented, in
order to introduce an effective cutoff at scales ~ 1/L.

1.3.3 Scale Decomposition

Scale decomposition is the tool used to control the thermodynamic limit of the Green
functions to all orders in perturbation theory. The basic idea of scale decomposition is
to decompose the vicinity of the Fermi surface, where the divergences are located, into
shells fitting into each other, the width of the shells getting smaller near the Fermi surface.
The contributions of Feynman graphs at fixed scales are bounded by power counting, and
careful summation over the scales shows the convergence of the Green functions.

Note that when the width of the shell is of order 1/L, the scale decomposition gets
sensitive to the lattice structure of the dual space. The power counting becomes worst,
and the scale decomposition proves to be useless in that case. The infrared cutoff imple-
mented at energy ~ 1/L stops the scale decomposition in the 1/L neighborhood of the
Fermi surface, avoiding this problem.

1.4 Spin Magnetization

As in the original work of Luttinger [1]|, the argument proving the theorem 1.3 can be
extend to the spin magnetization. It follows that the spin magnetization is a function
depending only on the (physical) dispersion relation.

Consider a system of fermions in a weak, constant magnetic field h, oriented along
the vertical axis, and assume that the effect of the magnetic field on the orbital motion of
the fermions is encoded in the band function e(k). The free Hamiltonian takes the form

Hy= 173" (e(k) = (=) ugh) e} (K)o (K),
keAt
oe{T.1}

6This can be proved as follows. Consider the lattice Z?, and a sphere of radius kpL. Suppose that
there is a shell of width 2¢;, around the sphere, that contains no point of the lattice in its interior. The
number of points in the shell is approximatively given by constc;, L', Since there are no point in the
shell, we expect const c;, L1 < 1, and therefore the cutoff ¢; has to be smaller than ~ L'~¢

10



1.4. SPIN MAGNETIZATION 11

where pp is the magnetic moment of the fermions and (—1)" = —(—1)! = —1. For the
chemical potential i, the band function € defines two Fermi surfaces in the free fermion
approximations,

SO —{keT : e(k) — (—1)7puph = 1}

The density of the system in the free fermion approximation is then given by
p(0) = Vol(S) + Vol(s\”),

and the spin magnetization by
m(0) = pg (vol(sgm) . vol(sf‘”)) .

We turn now to the system of interacting fermions. Theorem 1.1 can be extended to spin
dependent dispersion relation, with a spin dependent counterterm. Theorem 1.3 now
reads

Theorem 1.3bis: The density of fermions, defined as the formal power series

:pr‘

r>0

where :
d +1k ikoT
pr*)f& Z / d+1 r(k)e™
oe{1,1}

exists, and is independent of the coupling constant A. Moreover, the spin magnetization,

defined by
= Z my A"

r>0
with

li - =
my = [ip Tf& (27)d+1

L N )

in the sense of formal power series, is independent of the coupling constant A.

Definition 1.4bis: The physical Fermi surfaces S, are the surface on which the occu-
pation numbers n,(p) have a jump.

Luttinger’s Theorem: Let ¢(k) — 1 be a dispersion relation that satisfies the assump-
tions A2 and A3, and v,, a potential satisfying the assumption Al. Assume further
that the magnetic field A is small enough, such that e(k) & pgh — p also satisfy the
assumptions A2 and A3, and let p be the (given) density of the system.

11



12 CHAPTER 1. INTRODUCTION AND OVERVIEW

Then the sum of the volumes enclosed in the Fermi surfaces is independent of the
interaction strength,

Vol(S™) + Vol(S™) = Vol(S1”) + Vol(S™).

Further, the spin magnetization is given by the difference between the volumes enclosed
in the Fermi surfaces, times the magnetic moment of the fermions,

m = ip (Vol(S%’\)) - Vol(Sj’\))) .

Observe that the spin magnetization depends only of the interacting dispersion relation.

The proof of this version of Luttinger’s theorem is identical to the proof given in the
absence of magnetic field, and can be found in the appendix.

12



Chapter 2

The Results

In this chapter we present the main results that lead to the proof of theorem 1.3. We first
construct a sequence of approximations for the model on the finite lattice, that converges
in the thermodynamic limit to the physical model of theorem 1.1. We then present the
main results concerning the analyticity and convergence of these approximations. The
proof of these results follows in the next chapters.

2.1 The Model
Definition 2.1:

(i) For L € N, let Ay be the finite lattice defined by
AL - chi,a
where Zj, = Z/LZ. The dual lattice of Ay is

2

The lattice Ay, and its dual AﬁL contain L¢ points.

(i) On the finite lattice A%, let ¢f(k) and ¢, (k) be the creation and annihilation
operators satisfying the fermionic anticommutation relations

{cf(k),cor(K)} = (27L) %00 0w

{Ca(k)aca’(kl)} = 0
{ci(k),ch(K)} = 0.

13



14 CHAPTER 2. THE RESULTS

Remark 2.2: Let T be the first Brillouin zone, T = R?/27Z? being the d—dimensional
torus. There is an embedding of AﬁL into T which maps the class of k = 2%(]{;1, ooy ka)
to 2 (ky, ..., kq) € T, for k; € {0,...,L =1}, i = 1,...,d. In the limit L — oo, the
embedding of the set AﬁL in T tends to a dense subset of T.

Definition 2.3: Let M be an interval of positive numbers. For r > 2 and p € M, let
ey, : T — R be a piecewise C" —function on the torus T, called the dispersion relation, and
v be a C”—function, such that for all k € A% v(k) = v(—k).! Define the Hamiltonian of
the system of fermions by

HD — yNB =170 3" e(k)ef (K)eo (k) + AV + KO (),
keAl
oe{T,1}

where the interaction is given by

1
v = 5134 Z Oty ks o s U (K1 — k) (ke (Ks)co (ko)er(ka).
ki, ka€A?

o,me{T,1}

and the counterterm

KD =17 Y KW(k Nef(k)eo (k)
keAl
oe(1,l}

has to be determined by the renormalization procedure. The number operator on the
fermionic Fock space is defined by

NP == 3" of

keAl
oe{l,1}
The free Hamiltonian is given by
HY = uN® = 170 3" e, (k)ek (K)eo (k) + K P (),
keAl
oe{l,}

since e,, is the interacting band function.

Remark 2.4: In position space, the creation and annihilation operators are obtained
by Fourier transform:

— L™ Z cHk)e™ and  c,(x) = L7 Z co(k)e ™,

keA? keAt

'For simplicity, we consider a spin independent interaction. Further, we will often use e(k) instead
of e, (k).

14



2.2. THE ASSUMPTIONS 15

satisfying the anticommutation relation

{ed (%), ex(y)} = (27) 657y

For vanishing interaction, the free Hamiltonian can be expressed as

HY = 3 10 (x —y)cf (x)e,(y).

x7y€AL
oe{T,1}

T(L —d Z —zkx

keAd

where

for the band function e(k). The dispersion relation is then e, (k) = e(k) — p. T is a
function on the lattice Ay that satisfies periodic boundary conditions. The interaction
in position space is

v % Y VP (x - y)k (x)et (y)es (X)e-(v),

X, yEA]
ore{1,1}

with the translation invariant potential

V(L)(X y —d Z —zk(x v)

keA?

Finally, the position space representation of the number operator is

ND — Z et (x)cp (x).

xXEAT
oe{T,l}

2.2 The Assumptions

Definition 2.5: The Fermi surface is the zero set of e, (k)
S, ={keTle,k)=0}.

Assume the following assumptions:

A1l The interaction v € C"(T, C). The supremum norm over T of the first  derivatives
of v is finite and v(k) = v(—k).

A2 There is an interval M of positive numbers, and a compact set U C T, such that
Vp e M, S, € U and ¢, € C"(U,/R). The dispersion relation is at least once
differentiable in p with d,e, (k) < 0. Further, Ve, (p) # 0 for all p € S,,.

15



16 CHAPTER 2. THE RESULTS

A3 For all p € M, the Fermi surface S, is strictly convex.

Remark 2.6:
(i) The assumption A1l assures the interaction to be positive definite and short-range
in position space.

(ii) The second assumption excludes singular points on the Fermi surface. The fact
that the derivative of e, is negative reflect the fact that for A = 0, e, (k) = e(k) — p.

(iii) Assumptions A2 and A3 imply the following bound:

Volume improvement estimate: For ;,e,,63 > 0, let

I2(51a €2, 53) -

d d
sup d*p1d®py 1|e(p1)|<€11|e(p2)|<621|e(’01p1+v2p2+Q)|<€3‘
qeT TxT
vi,v2€{l,—1}

Then there is a constant C,,; > 0 and

d—1
>

|
> —
‘=d-127 2

such that
Iy(ey,e9,63) < Cypic16265.

We refer to [7] for a proof of the volume improvement estimate.

Remark 2.7:

(i) The set My, = {pn € M |3k € A} with e,(k) = 0} is finite.
(ii) For each p € M\ My, there is a constant ¢y, that depends on g and L such that

Vke AL, le (K)| > cr.

(iii) The set M = U My, is countable.
LeN

If we choose dispersion relations e, with © € M/M, the model on the finite lattice
has an infrared cutoff denoted by cr. This natural cutoft provided by the dual lattice
structure is to small in order to prove the convergence of the model in thermodynamic
limit. We will thus introduce a regularized dispersion relation which implements an
effective infrared cutoff at scale ~ 1/L.

16



2.3. THE THERMODYNAMICS 17

2.3 The Thermodynamics

Definition 2.8: We define the following norms on T, R x T, AﬁL and R x AﬁL:

(i) For a function f : (R x A% x {1,]})* — C, the supremum norm in momentum
space is defined by

|f|0: sup sup |f(k1;0'17~~7kn70'n)|'
T &{To L} Ry oo ke ERX AL

(ii) For a function f: (Rx T x {1,|}H"™ —

||fH0: sup sup |f(k17017"'7kn70n)|‘
01y on €{T,1} k1,0, Bn ERXT

(iii) If the function f: (R x T x {1, |})™ — C is differentiable, then the derivative norm
is defined by

||f||1* ||f||0+ maX sup |ai06f(k170-17"'7kn70-n)|7
7777 7k, kn€RXT

Oé:O ..... d Oy U'ne{T l}
where 0y, 18 the partial derivative with respect to the a—component of £;.

(iv) For a function f : (R x T x {7,]})* — C, the integral norm (or L;—norm) in
momentum space is defined as

dd+1 dd+1 D
||f||I: Z / 27T d+1 27r)d+1‘f(p170-17"'7pn70n)|‘

01,.on€{T,]}

For a function f: (R x AﬂL x {T1,1}H)™ — C, the Li—norm is defined by

dk dkon,
I / ok, o,

ki,...kneAl

Definition 2.9: Let A > 4xmax{l, ||e||;}. The set of possible counterterms is defined
by

A
K= {u A% x C — C|uis analytic in A € C with u(k, 0) = 0, and sup|u|0 < ﬁ}

By analytic in A, we understand that there is a A\g > 0 such that u is analytic in A in a
ball of radius A\ around 0. The supremum is taken over all A with |A| < Aq.

17



18 CHAPTER 2. THE RESULTS

Definition 2.10:

(i) Let e be a dispersion relation defined in 2.3 and A > 47w sup{l, ||e||1}. Set
e(k), if le(k)| > 7

P (k) =
sgn(e(k)4, if [e(k)| < 4.

(ii) For each u € KX, define the regularized Hamiltonian

oY =T+ v ® 4 17wk et (K)e, (K),

keA?
oe{T,l}
where? i
Hy' =L Y eP(k)ch(k)eo (k).
keA?
oe{l,l}
Remark 2.11:

(i) The dispersion relation e is motivated by the scale decomposition that will be
used in the section 5. At energy scales of orders of the lattice spacing, i.e. with
e(k) ~ %, the power counting gets worst. The dispersion relation e™ introduces
an effective cut-off at that scale, without modifying the ground state of the system.

(ii) For L big enough,
A
T <P ®)] < E = lello.

Remark 2.12: For each u € X, the number operator commutes with the Hamiltonian
(L)
H,

U

@, N®] = 0.

Proof: One easily verify that
[N, ey ()] = (2nL)"c; (k)

and
[N, c, (k)] = —(27rL)dcg(k).

2Observe that H (() ) does not correspond to the free Hamiltonian, since e(%) is the interacting disper-
sion relation.

18



2.3. THE THERMODYNAMICS 19

Using [A, BC| = A, B]C + B|A, C], we get
IV, ¢ (e (0] = [N, (6 e () + (W), ¢ ()] = 0.

Thus, the number operator commutes with the free Hamiltonian. Further, let ¢ = ct (ps)
and ¢; = ¢, (p;). Then

[ch(k)e (k) ¢f cf ezeq] = (QWL)d(éTglékpl + 0705 0kp, — OrosOkpy — OroyOkp, )C1 C3 C3Ca-

Hence, summing over k,

[N(L — _d Z Voy-oy pla T p4)61 62 C3Cy (67'01 + (57'02 - 67’03 - 67'04)

.....

where N — [~ Z ct(k)e (k). Multiplying with the spin structure d4,,,0550, con-

keA?
tained in the interaction, we see that the right hand side vanishes, such that the interac-
tion commutes with the number operator. [l

Definition 2.13:

(i) The grand canonical partition function at zero temperature is

7 = Tim tr e‘ﬁﬁg)

B—o0 ’
where the trace is taken over the fermionic Fock space.

(ii) For an observable A, i.e. a polynomial in the fermionic operators, the thermal
expectation value at zero temperature is given by

1 )
e = Jim o @A
1
= tr( P A
tTPO r( 0 )’

where P, is the spectral projection onto the zero energy states.

Lemma 2.14: For all p € M and each L € N, there is a A, > 0 such that for all A with

|A] < A, the operator FELL) has a non-degenerate ground state Q). In particular,

B (Q(L)’AQ(L))
(A= QD QD)

where (-, -) denotes the scalar product on the Fock space F.

19
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Proof: First consider the free operator ﬁ(()L), whose state with minimal energy is

o= J[ o),

k with () (k)<0
o&{T.1}

and its energy
P =2rm YT ek,
keAl
e (k)<0
Observe that
e (k) = e (0T + el (k) (),

and . .
T ey (k) = o (TS — e (K)ey (K).

Recalling that for k with e (k) > 0, a quasi-particle is created applying ¢} (k) to the
ground state QU and for k with e (k) < 0, a quasi-particle is created applying ¢, (k)

to Q). we see that the energy of the one-particle state C(Jr)(k)Q(L) is given by
FEi = FEo+ |€(L)(k)| > Eo,
since [e”) (k)| > A/L. Proceeding inductively, one sees that the energy of the n—particles

state C(+)(k1) > ocgt)(kn)Q(L) is given by

n*EO+Z| |>EO

By the orthogonality of the n—particle states, and the diagonality of F((JL), we deduce
that the ground states is non-degenerate.
The full Hamiltonian is analytic in A, hence it exists a A, > 0 such that for A with

|A] < A, the ground state of FELL) is non-degenerated as well. O
Definition 2.15:  The density of fermions in the system with Hamiltonian Fff) is
defined by
PPN u) = L7 > (eh (K)es (k).
keA?
oe{T,1}

2.4 Green Functions

The thermal expectation value of an observable can be expressed in terms of Gaussian
Grassman integrals (See [5] for a rigorous proof). In particular, the generating functional

20



2.4. GREEN FUNCTIONS 21

for the connected amputated temperature Green functions is formally given by
- 1 o -
5(6.9) —log 5 [ 1 e, (5, v),

where duc(1),1) is the Grassman Gaussian measure with covariance

—i<k,z—y>

dk e
d 0
Culw,0,y,7) = 057 L~ Z / 21 iko — e (k) — u(k)

keA?

on the Grassman algebra generated by the fermionic fields ¥, (), 1, (z). Here < k, 7 >=
—kox' + kx and u € K. The interaction is

= Y [ VOl y0 00 a3 (020 0, )

X, yEA]L
ore{l,l}

The connected amputated Green functions in position space are defined by the formal
Taylor expansion of G:

5(¢,¢) =
> [l def G ) G0 G )

where z; = (2, x;) € Rx Ap. The two-points (non-amputated) connected Green function
is defined by

Sy;)(x,y) - Cm'(xa y) + Z /dz?dZQ oo1 ‘T zl)GUldz(Zl’Zz) UZT(ZQ’y)’

z1,722€A ],

o1,026{T,]}

where Gg]izm(zl, Zo) is the two-points connected, amputated Green function.

Remark 2.16: The two-points connected Green functions G (z, ) and S (z,y) are
independent of the spin indices, such that

Gz, y) = 6,,GP(z,y) and SE(z,y) = 6,-SP(z,y).

Definition 2.17:  Let f(x1,01;.. xzm,azm) be a translation invariant function on
(R x Ajj x {1, 1})#™. The Fourier transform f of f is defined by

E k kla 015+ k2m—17 02m—15 UQm) —

0 0 —i(<k1,x1>+ A+ <kam, >
§ dml”.demf(xlao-la"'7$2m70-2m>e <k @1> 4t <kam,om )7

21
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where < k, 2 >= —kox° + kx, and 6(k — p) = (ko — po)(27)%0kp.

Theorem 2.18: For all L € N| there is a )\(()L) > 0 that depends on L and p such that

(i) For all u € K, the connected Green functions @g;l)(kl, <« kam, A; u) are analytic in
A with analyticity radius )\((JL).

(ii) For all u € X, the density of fermions p™ (X, u) is analytic in A with analyticity
: (L)
radius A\g .

Remark 2.19: In terms of Green functions, the density of fermions is given by

dk
PP\ u) = lim 2L7¢ —
x0—>0+ w

keAt

SO (Ko, k; N)etkor”,

where S@) is the Fourier transform of the connected (non-amputated) two-points Green’s
function S@).

Theorem 2.20: For L < oo and all u € K, the density of fermions is independent of
the interaction:

PP (Au) = ptP(0).

)

Proof: By lemma 2.14, the ground state Q%) (\) for 7" s non-degenerate, and

N QW) (A) = pE QB ().

Since the spectrum of N is in N, pt()\) is an analytic function that have value in a
discrete set. There is therefore a Ao > 0 such that A — p()\) is a constant for || < Ag.

By the analyticity of the density, p™ is constant for all |\| < )\(()L). O

2.5 The Infinite Volume Limit

In [7], the thermodynamic limit is controlled in the following way. In a first step, the
propagator is regularized by an infrared cutoff at energy scale M! with I < 0 and
M > 1. As long as this cutoff is present, the regularized Green functions G are
analytic in the thermodynamic limit. In a second step, the limit 7 — —oo is controlled
using renormalization group ideas.

22



2.5. THE INFINITE VOLUME LIMIT 23

Definition 2.21:

(i) For I € Z_ and M > 1, let f € CZ°(R) such that supp f N[0, M?=%) = . Define
the regularized propagator

f(5 + *(p)

o) = ipo — e(p)

(ii) The connected, amputated Green functions G-}  with infrared cutoff at scale M7
are defined as the formal power series

Gl =Y NG,

r>1

where G2

am,» are the renormalized, connected amputated Green functions at order

r in A. The self-energy %/ = ZX’Ef is given as a formal power series by the

r>1

2 (p) = (1 - G (p)C () G (),

where C! is the propagator in the infinite volume, with infrared cut-off at scale M.

equation

The following theorem is proved in [7]:

Theorem 2.22: Assume that e and v verify A1-3. Then there is a formal power series

K'(p) => XNKl(p)

r>1

such that the following statements hold. For all m € N, the infrared limit [ — —oo of
G exists. More precisely, for every r > 1, there are ¥, € C*(Rx T, C), K, € C*(T, C),

2m,r
and Gap,r, such that as I — —oo0,

i) GL, — Gy, in the || - ||o—norm,
2,r »
(i) Gi,,, — Gam, in the || - |['=norm,
iii) 2! — ¥, in the || - ||;—norm, and the renormalization condition
i

27(07 p) - O
is satisfied for all p € S.
(vi) K2 — K, in || [l

23
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Moreover, there are constants "o, ,, '2,, &, and o, such that

||G2,r||0 S FQ,T
||Er||1 S Or
||Kr||1 S Ry
||G2m,r | |I S F2m,r'

Denote

GAQm = Z )\TGQm,r

r>1

the formal amputated Green functions in the infinite volume, and let S’(p) be the formal
(non-amputated), two-points Green’s function in momentum space, defined by

A

S(p) = C(p) + C(p)G(P)C(p).

Corollary 2.23: The density of Fermions in the infinite volume, defined by the formal
power series

p(N) =Y Np,

r>0

where

exists.

Theorem 2.24: Assume A1-3. Then there is a sequence of counterterms (K% (k, )\))LGN
in K that converges uniformly in k € T to the formal power series K(k, A) of theorem
2.22, such that

(i) For L — oo, the two-points Green function CA?(L)A converges uniformly in £ =
(ko, k) € R x T to the (formal) Green function G of the model in the infinite
volume with dispersion relation e, (k) and counterterm K (k, \).

(ii) For each m > 1, the 2m—points Green function (?gf,i converges in the limit L. — oo
to the formal Green function of the model in the infinite volume in the L;—norm.

(iii) The density of fermions p® () converges in the sense of formal power series to the
density of fermions in the infinite volume:

PP () T p(N)

Since p()) is the limit of the density p™)(\) in the finite volume, theorem 2.20 implies:

24



2.5. THE INFINITE VOLUME LIMIT 25

Corollary 2.25: Assume A1-3, and let K (k, A) be the counterterm obtained in theorem
2.24. Then the density of fermions in the thermodynamic limit is independent of the
interaction, that is formally,

or, for all » > 1,

Further,

25






Chapter 3

Analyticity of the Green Functions

In this chapter, we prove the analyticity of the Green functions for the model on the
finite lattice, with the dispersion relation defined in 2.10. The analyticity of the density
follows from the analyticity of the Green functions. This section is similar to the analysis
of the insulator given in [12], and based on the techniques developed in [13].

Let A be the Grassman algebra generated by the fields ¢(y, 7) and ¢(y, 7) with (y,7) =
(', y,7) € Rx Ap x {1, 1}, and let W(2), 1)) be an even Grassman function. Then the
generating functional for the connected amputated Green functions is formally defined
as

Q(W)(6,8) = og ; [ 5 Ddyo(i,0)

where 7 = few(w’@dug(z/;,w). dpc(y, 1)) is the Grassman Gaussian measure with co-
variance C' on the Grassman algebra with coefficient in A, generated by the fields ¢(z, o)
and ¢ (x, o) with (z,0) e R x Ap x {1, ]}

In order to simplify the notation, let B = R x Ay x {1,]} x {0, 1}, and for £ =
(z,0,a) € B,

Uz, o), a=1
W(g) = { Yz, o), a=0.

The connected, amputated Green functions are given by the Taylor expansion of (¢
in the Grassman fields ¢ and ¢:

QW)(6.0) = Y [ a6 dtan G o) 9160 -+ 0l6an),

m>1

where for £ = (2%, %, 0,a) € B,

Joe= X S ¥ [

oe{l,l} a{0,1} xeAL ¥ ™

27



28 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

3.1 Contractions and Norms

Definition 3.1: Let f:B™ x B" — C.
(i) Define the Li-Ls—norm by

masx sup [ 651760 &, for m—0

1<i<ngeq ) +4
#1
1 f 100 = W
sup /Hdéj|f(n1,...,nm;&,...,snﬂ, for m > 0
Myeers M EB J=1

(ii) The supremum norm of f is defined by
Hf”oo: sup |f(n17777m3£1)a€n)|

Nsee st EB
&1y &neB
Remark 3.2:  Let f be a translation invariant function on B", and f its Fourier
transform, defined in 2.17. Then f is a function on (R x A%)"~* x ({1, ]} x {0, 1})", and
[flo < [1f]]100-

Definition 3.3: Let F,,(n) be the space of all functions f(n,...,7m;&1,-..,&) on
B™ x B™ that are antisymmetric in the n variables. For any function f in B™ x B”, its
antisymmetrization in the external variables is

1
Antext f(nla ceey ﬁm?fb . >€n) - Sgn(ﬂ-)f(nﬂ(lﬁ e nﬁ(m);gla ce 7571)
m!

" wESm

Let f be a function on B™ x B™. For a permutation = € S, let f™ be the function
defined by

fw(nla"'anm;gla"'agn) - f(nla"'anm;gﬁ(l)a“'agﬁ(n))‘

A semi-norm || - || on F,,(n) is called symmetric, if for all permutations = € S,

7= LA

Definition 3.4: Let C(£, &) be a skew symmetric function on B x B,
m,n > 0and 1 <i < j<n Forf e F,(n), the contraction Con;; f € F,(n — 2) is
defined as

eonijf(nh .- ‘7???71;517 .- '7§i—17§i+17 .- '7£j—17€j+17 cee 75”1) -

(_1)j_i+1 /dCdC,C(C7 C/> f(nla ) nm;éla o ‘75’&'—17 C)gi-l—h . ‘7§j—17 CI7Ej+17 < 7577,)

28



3.1. CONTRACTIONS AND NORMS 29

Definition 3.5: Let || -|| be a symmetric semi-norm on the spaces F,,(n). We say that
€ > 0 is a contraction bound for the covariance C' with respect to this semi-norm, if for
all m,n,m’,n’ > 0, there exist 7 and j with 1 <i <mn and 1 < j <n’ such that

[|Cony; (Ante (f x SN < CISI- (1]

Remark 3.6: The L;-L,—norm of definition 3.1 accepts
max{||C|1,0, [|Cl[}

as a contraction bound for the covariance C.

Definition 3.7: We say that b € R, is an integral bound for the covariance C' with
respect to the semi-norm || - ||, if the following holds:

Let myn>0and 1 <n' <n. For f € F,,(n), define f' € F,,(n —n’) by
fl(nla"'777n;£n’+17'“7£n) -

/37# dgldén’f(nla77771)5177§n)/¢(§1)¢(§n/)dﬂc(’¢))
Then /
A1 < (/2™ [ 11-

Remark 3.8: Suppose that

\ v vednets)| < 5

for a 5 > 0. Then 25 is an integral bound for C' with respect to the Li-L.,,—norm of
definition 3.1.

Definition 3.9: We define A,,[n] as the subspace of the Grassman algebra that consists
of all elements of the form

GT(f) - /dnl o 'dnmdgl o dgn f(771, < Thms 517 s afn)gb(nl) o ¢(77m)1/)(§1) o 'Qb(gn)a

for a function f on B™ x B".

Every element of A,,[n] has a unique representation of the form Gr(f) with a function
F, oo &, oo, &) € Fn(n) that is antisymmetric in its € variables. Hence a semi-
norm || - || on F,,(n) defines a canonical semi-norm on A,,[n|, which we denote with the
same symbol.

29
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Definition 3.10: Let || - || be a symmetric semi-norm, and W(¢, ) be a Grassman
function. Write
W=> Wun
m,n>0

with W,,,,, € Ap,[n]. Forany € >0, b >0 and o > 1 set

1
N(W; € b,0) = 3 € > [ Wonall.

m>0,n>0

Definition 3.11: The Wick ordering with respect to the covariance C'is the linear map

teiogt A— A with

oY) (n,Cn)+(n,)

Cap— € .
In order to prove the analyticity of the model on the finite lattice, we use the following
results of [13]:

Theorem 3.12: Let || - || be a symmetric semi-norm and let C' be a covariance with
contraction bound € and integral bound b. Then the formal Taylor series Qc(: W )
converges to an analytic map on

2
{W|Weven, N(W;C,b,8x) < %}

Furthermore, if W(¢, 1) is an even Grassman function such that
2

N(W; €, b,8a) < O‘I

then 2 N(W:€b 8a)?
; a
NQc(W:) —=W;Cb < — e .
(ol W) = WiC, ’O‘)—an—%w(w;e,b,w)
Here : - : denotes the Wick ordering with respect to the covariance C'

Theorem 3.13: Let, for s € R in a neighborhood of 0, C's be an antisymmetric function
2
on B x B and W, an even Grassman function. Assume that o > 1, € < £ and

m
N(Wq; €, b,8a) < o
Assume further that Cy has contraction bound €, /2 is an integral bound for Cy, and €’
. Then

s=0
d
N (—(QCS(: Ws 1) — Wy) ;G,b,a)
ds <0

1 N(Wy; €, b, 32a) d
< i N(—
2021 — s N(Wq; €, b, 32ar) ds

d
is a contraction bound for I
S

o4
W,; €, b,8a) + N(Wo; €, b, 32a)—) .
s=0 4/’L
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3.2. BOUNDS FOR THE COVARIANCE 31

3.2 Bounds for the Covariance
Definition 3.14:

(i) Let e (k) be as in 2.10. Define

~ 1
C(k) o m.

(ii) Define the covariance C' on B x B as follows:

S L% Z /dko micke=e>C(k)  ifa=0,d =1

p

keAl
no_
CE =Y 0% /dko miska'=z> (k) ifa — 1,d = 0
keAd
L 0 ifa=d,
where < k,z >:= —koz” + kx. The case zo = 2}, = 0 is defined through the limit

2o —xy — 0_.

(iii) Let v e K. Set
1

Cou(k) = iko — e (k) — u(k)’

(iv) For u and du € K and s € R in a neighborhood of 0 such that u 4 séu € K, let

. 1
Cs(k) = iko — e (k) — (u + séu)(k)’

(v) The covariances Cy, (€, &) and C(€, &) are defined in the same way as the covariance

C'(&,¢) in (ii).

Remark 3.15:  For the proof of the analyticity, the counterterm is considered as
a change in the dispersion relation ). In order to prove the convergence (order by
order in the coupling constant), the covariance C, is expended in powers of u, and the
counterterm is considered as a two-points interaction with vertex function u(k).

Definition 3.16: For a skew symmetric function C' on B x B, define

S(C) = sup  sup (‘ / (&) (Eam)duc(y >Dmm.

meN €1,y &om€B
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Remark 3.17: For covariance (' and Cj,

S(Cy+ Cy) < S(Cy) + S(C).

Lemma 3.18: For all dispersion relations e(™ (k) with
2 <1 (9| < B
L
for all k € Ai, and u,du € K and s € R in a neighborhood of 0 with u 4+ séu € K,
(1) [|Cll1.00 < 2L /A and ||Cyl|1 00 < ALMT/A.
(i) [IC]lee < 1 and [|Cyfloo < 1.
(ili) S(C) <1+ 4/2EL and S(Cy) < 1+25(0).

(iv) || %‘S:OCSHOO <1 and || d%‘s:oCSHLOO < 4Ld+1/A,

Proof:

(i) First perform the ky integral in the definition of C:

dky et <ka> , L) (101,10

—d 0 —d ikx—|e() (k)a0|
E - g E

/ 27 1ky — e (k) © ’

#
keAl keAb
20e(L) (k) <0

Integrating over the x variable, one gets

i<k,x>

dko e
—d 0
Z/dw L Z/Qﬂ'lko—e(L )(k)

xXEAL keA ﬁ

o) d+1
< 2L% sup / 1P 0l 7,0 < 2L .
keAl /0 A

Using
sup Z Ogor = 1
oe{1,1} o' e{1,1}

and the analog for the sum over the index a, we get the claim. The bounds for C,
and C follow in the same way, using

909 — (k)| > 7
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(i)

(iii)

in order to get

—i<k,x> Ld+1

dk e
—d 0 <4=
Z/dw L Z/Qﬂ'lko—6(L I(k)+uk)| — A

xXEAL ke Aﬁ

In the supremum norm, we bound for C'

L—d Z 6—ikx—|e(L)(k)rtO| < 1.

kGAuL:mOe<L)(k)<O
The same bound can be apply to C.
For E} > 0, decompose!

1 B 1 n 6(L)(k) — B
iko—e@ (k) iko— B (iko — B)(iko — e® (k)

and let C1 (&, &) and Cy(&, &) be the covariances defined by Z.kol_E and —— 00

(iko—E) (tko—e L) (k)) *

The first part of the propagator is given by

(=1 = (=)
2 3

Cr(€,€) = LeBrnat) 3™ pmikx

keAl
for o — x{ < 0, and for xg — xy > 0,
Ci (g, 5/) -
Thus, for zg — xj < 0,

(=1 = (-1
2 3

C’1 (5) 51) - 6_E|T0_m6| <wx,m wx’,a’>%

where H is the (finite dimensional) Hilbert Space of the functions on AﬁL x {T,1}
with scalar product

<f7g>f7‘f =L Z f*(ka U)g(k7 U)a

keAl
oe{1,l}

and

wxo(k,7) = e x5

ISee [12], lemma 1V .4
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Using the Proposition B.1 of [13], we get
S(Cy) <1,

since
||wx,0||% = L

We turn now to Cy. Let H = Ly(R x A% x {1,]}), with the scalar product

Urghse— 170 3 /%fk@g (k, ).
keAl
oe{l,1}
Then
(foos o o), a=0anda =1
Coz,0,a;7",0',d") = —{faos o), a=1landa =0
0, a=d,
where . ;
(k) = 6 et<kz> e(k) - E
oA 7" (iko — E)(tko — e® (k)12 | /]eD (k) — E]
. (iko — B)(iky — ¢ (K)
) ko — FY(ikg — e
x,0 k — 607’ i<ke> il 0 (L) ky— F
sl = b e By ko — @V 1)~ F
such that
D) (kY —
7—d let? (k) — B
ool = llgaalie = 27 / V([ e

keAl
We bound the ko-integral setting £ = max{||e||o, 3}:

L dho _/ ik
VIR T+ eDWE) 2r — 7wJo KA eD2
1

e (k)|
Hence | ) |

E 2FL

< ¢ ¢ <=z
keAl
By the Gram bound,
2F L
S(Cy) <

p— A .
The bound on S(C) follows from the remark 3.17. The claim for C,, and C follows
in the same way, with now

AFEL
< —_
1l < ==,

since e (k) — u(k)| > A/2L.
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3.2. BOUNDS FOR THE COVARIANCE 35

(iv) First observe that

A B du(k)
L OW = =m0 —wr

By Cauchy formula,
dkg  ehor” o 1 od -
- — @ _ - 1Ko
/QW@%—QW“ (ir@mdka c
1

- = 0 0\n _—|ax
= n!@( x a)(x”)"e

—ia
‘]

The integral over 2° of such an expression can be bounded by
& 1 0 1
dx0_|$0|n€—|aw | < a1
0 n'

Using this remark, we bound

/% eikoxo
27 (iky — e (k) — u(k))

sup < |20 1lzE
keA?
Hence,
d Ld+1 n Ld+1
||d_ C’s||1,o<>§4 A 2—n: A .
Sls=o0 n>1
Further,
d 2
=] Cille<-<1
ds|,_q e
U
Remark 3.19:
(i) In the || - ||1.co—norm, the covariance C, has contraction bound
4Ld+1

€ = max{||Cs[[1.00, [|Cslloc} < —5—

The integral bound b for the covariance C; is bounded by

2B,
B = 45(C,)? <

T
The contraction bound for the derivative of the covariance %‘s:o C s
d d 4141
¢ = -5 Cs ooy || 7 Cs o) < .
malll | Gl ll 5| Culle} <77

(ii) In the bounds € and €', the factor L% is not relevant. A better bound can be found,
since the propagator in position space is integrable.

35



36 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

3.3 The Analyticity of the Green Functions

Definition 3.20: Let V € Ag[4] be

VW) =5 [ Vi€ &G - 0iE

where
V(fEl, 01,01, - .., T4, 04, (14)
- 6‘1116“216‘1306@40(50103602046($1 - $3)6($2 - x4)va102 (:El - $2)7
with
Voios (1’1 - 582) = 6($(1J )Vg(lLUZ (Xl — Xz).
Remark 3.21:

@) [Vl = Sup > WP x)| < 2Ll
XEAL
Te{l,1}

(i) N(V,a) = |Aa*b?*€ sup Z VB (x)] < 2|\ B?CL vlo.

UE{T l} XEAL
{11}

Definition 3.22: Let W, be the Grassman function

Ws =V+ usa
where
W= [ deadaU., (&)
and
Us(xla 01,01, X2, 02, a2) -
f— 2(5(111(5@20 (_Cs(xl - $2)6o'10'2 VJlUl (xl - xz) ; VUlUl (':Ez — xl)
017' - + ‘/7'01 T2 — 2
+26(xy — x2) Z /do 2)2 (2 )C'S(z,z)
zZEAT
Te{1,1}
Remark 3.23:

(i) : Wy :=V + C — number.
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3.3. THE ANALYTICITY OF THE GREEN FUNCTIONS 37

(ii) Qc(V) = Qc(: Wy 1),
(i) |[Usl[1.00 < 4[IV[]100-

(iv) fa>1land b> 1, N(Us,a) <AN(V,a) and N(Ws,a) <5N(V,a)

Proof: In order to prove the point (i), remark that

A
v - 5/«@.-.d§4v<§1,...,54>«/}(§1>---¢<s4>
. / A& ey U, (61, &) 0(E)1(&)
+C — number,
and
:Us := Us + C — number.
Hence

W, =V :+4+:U; : =V + C — number.

For point (iv),

1
N(Us, @) = Ca?||Ug]|100 < 4|)\|Gb—2a4b4||V||1,oo < ANV, a).

Theorem 3.24: Let u € K. Assume that

2

Q

N(V,8a) <

[\
o

Then the generating functional Q¢ (V) is analytic in A, for A satisfying

AQ

A < .
| | 222E0é2Ld+2||V||1700

Further

N(@e(¥) = V.0) < N s0) (14 5 )

21— IN(V,8a)

Proof: Applying successively remark 3.23(ii) and (i), theorem 3.12 and remark 3.23(iv),
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38 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

we get
NQc(V) =V, a) < NQc(:W:) =W, a)+ NV -W, a)
2 N(W,8x)?
< = NV -W
- 0[21—%N(W,804)jL ( )
27 2
< AN(YV.a)+ N(V,8a)

21— LNV, 8a)

27 N(V,8a)
< NV, 8ux) {1+ — : .
< N, a)( Jr0[21—%N(\7,80z))

By the definition of the norm N and remark 3.19,

FE Jat2
N(V,8a) < 22 AlCa't?||V]|10 < 219a4u|%'

If |\ < A%2/(22Ea®L?||V |1 00), then

[\

o
N < —
(¥,80) < &
OJ
Corollary 3.25:
(i) For |A] < Ao where
A2
Ao

- 225 B2 L 2| V]| 00

the amputated 2m—points Green functions Géﬁz are analytic functions of A\. Fur-

ther,
L %4 1,OOCM2EL
16y e < 222 M lmTBE

For the four-points function,
1G5 oo < (L2 YAV 1

and for m > 2, 5
G 100 < 2TV 100

(ii) The connected two-points Green function SgL) (x,y) is analytic in A with

155 oo < 11C1 o1 + [|C]1,00 /1G5 1,00)

and
L L
155 1100 < 1€ 1,00 (1 + 1O 1,00 |GS []1,00)-
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3.3. THE ANALYTICITY OF THE GREEN FUNCTIONS 39

(iii) The Fourier transform G(L of G5 as well as the Fourier transform S(L of S(L)

2m»
are analytic functions of A, bounded in the sup-norm.

Proof: Observe that by hypothesis, N(V,8a) < a?/64, such that for m # 2,

2
Qe < N (e, (V) ~V,0)
b? 27 N(V,8a)

< EN(V,SOZ)(lJr— )

1— 2 N(V,8a)

2 8

-4WVﬁax1+§yWVﬁa»

IA

50

27 A [V 100

IN

IA

Thus, for m = 1 we have
1G] 10 < 2”a%2||A|| JHVHI,EL
222 2 A 1,00
AT

and for m > 2, since « > 1 and b > 1 for L big enough,

N

1Gomllee < 27BN (V]| 06
< 27Vl

For m = 2, in the same way,
"G = AV |10 < 20BN V]300
such that 5
G lheo < (L4 2NV oo
The point (ii) is trivial, and the last point follows from remark 3.2. U

Remark 3.26: For |A| < A,

1

IGO0 < —— S

Ld+1 |C o < 572

Theorem 3.27: For each dispersion relation e defined in 2.10 and v € K, the
occupation number defined by

nP(k,\) = lim dkOS (ko,k,)\)e”oko

iZO—)O+
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40 CHAPTER 3. ANALYTICITY OF THE GREEN FUNCTIONS

is an analytic function of A for |A\| < Ag. Further, the density

p(L)()\) . Z n@)

keAl
oe{,1} "
_ ; —d “ro S(L) ixOk
— Qmolgr(LL /QW > 85 (ko k, Ne ke
keAl
oe{1.1}

is analytic in A for |A] < Ag.

Proof: By the corollary 3.25, the functions
/d]”OS L)(ko K, \)e ia? § :S(L) QC X, \e —ixk
27 | eA
x€AL

are well-defined and analytic in \. We prove that the limit
lim S( (x,y, \)

20—y0 -0,

exists. Since hm C(z2",x) exists, we have to verify it for the functions
29—04

S\ (2, y) — Clz,y) = Z /dzodz'o C(z,2)GP (2, 2)C = y)

z,z' EAT,

— Z /dzodz’o Clz —y,2)GS (2, )C(Z, 0),

2,8/ €A
by translation invariance. Note that
Cla —y,2)G5" (2, 2)C(, 0)] < |01l G5 (2, )C (', 0)],
such that by dominated convergence,
mgg&( D(a,y) - Cla,y)) =
/ d2°d2° lim O(z, 2)GSP (2, 2)C (2, 0),

fo —)O+

which is well-defined.

The sum over Ay, and over {1, ]} is finite, such that the occupation number is well-

defined. The sum over AﬁL is finite as well, hence the density is well-defined and analytic.
0

Remark 3.28: The theorem 2.18 follows from the corollary 3.24 and the theorem 3.27.
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Chapter 4

The Renormalization

As we saw in last chapter, the Green functions on the finite lattice are analytic, with
a radius of analyticity that shrinks to zero as L goes to infinity. Further, it turns out
that the Green functions at each order in A\ diverge as L tends to infinity. In order to
control the Green functions at given orders in A\, we have to perform renormalization,
which cures the infrared divergences.

In the diagrammatic analysis, the divergences appear in graphs containing two-legged
insertions. The renormalization procedure consists in subtracting to each two-legged
insertion its value, projected onto the Fermi surface. This corresponds to a particular
choice of the counterterm, which is determined by the condition that the Fermi surface
is held fixed.

In this section, we first describe the main tool of the renormalization, namely the
localization operator, following the construction given in [7]. On the dual lattice AﬁL, the
localization operator has to be modified in such a way, that points in A’% are projected
onto points of the lattice that are close to the Fermi surface.

In the second part of this section, we prove that for each finite L, there is a counterterm
satisfying the renormalization condition, which preserves the analyticity obtained in the
previous chapter.

4.1 Norms in Momentum Space

Definition 4.1: Let T : A‘}J — C be a function on the lattice. For 1 < a < d, we define
the “derivative” on the dual lattice by

V. T(k) := % (T(k + 2%ea) - T(k)) :
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42 CHAPTER 4. THE RENORMALIZATION

where e, is one of the vector of the standard basis in R If o = 0, set
Vo = (‘9ko,

the usual derivative with respect to ko.

Definition 4.2: Let u: (R x A%)” — C be a function of n variables. The | - |;—norm
of u is defined by

luli = |ulo + maxi=i...n |Viaulo.

a=0,...,d

Here V,, is the derivative on the lattice defined above with respect to the a-component
of the i—th variable.

Remark 4.3:

(i) For a differentiable function 7": T — C, we have
VT < [T,
where || - ||; is the derivative norm defined in 2.8.

(ii) For two functions 77 and 75 on AﬁL, the following “Leibniz product rule” in the
supremum norm yields

(Vo (Tt - T2) o < |T1]0|VaTzlo + [VaTilo|T2]o-

4.2 The Localization Operator

The localization operator [, defined in [7], implements the projection onto the Fermi
surface for functions defined on R x T. On the finite lattice A%, we need a localization
operator [(®) which projects points of the lattice onto other points of the lattice, that are
close to the Fermi surface. This is necessary in order to preserve the periodic boundary
conditions of the model in finite volume.

4.2.1 The Projection onto the Fermi Surface

For the projection [ onto the Fermi surface, we give here the main results of 7], and refer
to it for the proofs.

Remark 4.4: By assumption A2, S is a compact (d— 1)—dimensional C"—submanifold
of T. There is 6 > 0 such that

Go = sup{|Ve(p)|,p € Us;s(S5)}
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4.2. THE LOCALIZATION OPERATOR 43

is finite, and go = inf{|Ve(p)|,p € Uas(S)} > 0. Here Uss(S) = {p € T |d(p, S) < 25}.

Definition 4.5: Let u be a C*—vector field on a neighborhood U,(S) of S. w is
transversal to S, if there is ug > 0 such that for all p € S, Ve(p) - u(p) > uo > 0. Denote
the integral curve of u through p € S by ~y:

Y% (—to,te) — T
t = W/P(t)a

with 75(0) = p and 4p(£) = u(1p (1))
Lemma 4.6: Assume A2. Then:

(i) There is a C*°—vector field u transversal to S, and t5 > 0 such that

v: S§x (—to,to) — \I/(S X (—to,to)) cT
(p, 1) = W(p,t) = ()

is a C"—diffeomorphism.
(ii) There are § > 0 and uy € (0, 1) such that

U25(5) C \I/(S X (—to,to)),
and such that for all q € Uss(S):

(iii) Define the functions

and

as follows. For q € Uss(5),

In other words, v,(q) (7(q)) = q. Then

q=w(q)+ /O " u(Yee (1)) dt
so |q —w(a)| < |7(q)| and
4= (@] < o-lefa)]
Furthermore, uo < e(q)/7(q) < Go.
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41 CHAPTER 4. THE RENORMALIZATION

Figure 4.1: The projection onto the Fermi surface

(iv) Let p € Us(S) and p = e(p). The map

¢o:p—(p,w)

is a C"—diffeomorphism from Us(S) to a subset of R x S. Denoting its inverse map
by p(p, w), there are constants Ag and Ay such that the Jacobian J(p, w) = det %
obeys

Ag
sup |J(p,w)| < —,
peUs(S) Uog

and its derivative d.J obeys

A
sup [0(p.w)| < .

peUs(S) Up

Ap depends on 0, ug, and ||u||;; A; also depends on the second derivative of w.

Definition 4.7: Let x € C*°(T, [0, 1]) be such that x|y,s) = 1 and x|mw,,s) = 0. Let
(p,w) denotes the coordinates defined in the preceding lemma.

For a function 7' : R x T — X, where X is a linear space, we define the projection
operator [ as follow:

0 B 0, q ¢ Uss(S)
WN%®{T&M®M@,qH£@)

Lemma 4.8: For each differentiable function on 7": R x Us(S) — C,

0= 07 < i~ (@l 17
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4.2. THE LOCALIZATION OPERATOR 45

for q € Uys(S). Further
1T o < [|T|o

and
T < (14 dlfw]|[)T ],

where

.....

we denoting the a—component of the vector function w. A proof of this lemma is given
in [7].

4.2.2 The Projection on the Lattice

We turn now to the projection on the lattice A% . Let {ea}%_, be the standard basis of
R%, and for k € A} let

27 d
k=— 2} ko€,
with k., € Z.

Definition 4.9: Let A > 4w sup{l, ||e||1}. Define

8 — {k e A

091 < 2}

Lemma 4.10: For r > 4 let N(L,r) := |[{k € A} ||e(k)| < r}| be the number of

points of A% in the shell of width r around the Fermi surface. Then there are constants
¢y > ¢y > 0 independent of L, r and |S|, such that

alS|r LY < N(L,7) < S| r LY,
where |S] is the (d — 1)—area of the Fermi surface S.

Proof: Let x € C§°(T, [0, 1]) be such that x(k) = 1 for k with |e(k)| < r, and x(k) =0
for k with |e(k)| > 2r. Further, assume that ||x||; < C/r for a constant C' > 1. Then

LY legoier < 74 x(K)

keA? keAl
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o i [ J
| A

° i ® k/ °
1 We

.

Figure 4.2: The lattice and its fundamental zone.

The last term is bounded by

_ dp 27 dép
7Y 0 - [ el < Flidh [ Gt

keA?

such that

A

B 27 dp
L Z Leay<r < (1+CL—T)/W1Ie(p)|§2r

keA
1+ C/2 /27“ /
d dwJ(p,w
ame )y, J )

2C
(27m)

IA

IA

/1l [S] 7.

It follows that
2C

_ 1l o 7a
N(T, L) - Z 1|e(k)|§7’ S W|S| L.
keAl
We turn to the first inequality. For each point k € Ai, let Vi denotes the fundamental
cell of the lattice that contains k. The volume of Vi is (27)%/L%. Define the set S, :=

{p € T||e(p)| < r}. Remark that for k € Ai, if Vien S,_a # (), then k € S,
Let k + A € Vi such that |e(k + A)| <r — A/2L (See Fig. 4.2). Then

le(k)| < le(k+ A)|+ |e(k+ A) — e(k)]
< =g el
< r

It follows y
—d P
L Z Legoi<r 2 /Wlk(p)lgr—%'
keAl
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4.2. THE LOCALIZATION OPERATOR 47

On the other hand,

v

/ (27r)d1|e(p)|9”—% (27 <p,w)12£6(3) |J(p,w)||S] (r— ﬁ)

1
inf | J(p,w)||S]|r.
2n)? <p,w§2U6<S)| (p, )| |S]r

Hence
N(r,L) > 2m)™ inf |J(p)||S|rL°.

peUs(S)

Remark 4.11:

. . . A
(i) k € 8 implies that d(k, S) < ¥24,
(i) 8% £ . The number of points in 8 grows like L.

(iii) For L big enough, 8% C Us(S).

Proof: For point (i),

\/§|€(L)

2A
206.5) = nf [k~ p| < [k — 1k < Ve < Y2A
pES Ug U

k
() < Y22
We turn to point (ii), and apply the lemma 4.11, with » = A/L. Then

Acy|S|L < |8WV)] < Acy|S|L4L.

Definition 4.12: For k € A%, define the projection {(Pk as follows:

- If k € 8, then [Pk = k.
- Ifk ¢ 8 and k € Uys(S), then [Pk is one of the points in 8, with d(I'Mk, Ik) —

mh(nL) d(K, Ik), and sgn(e™(k)) = sgn(e(I'Pk)). If several points fulfill this condi-
Kes

tion, choose one of them arbitrarily.

- Finally, if k ¢ Uys(S), then [Pk = k.

Remark 4.13: If k ¢ 8, then |k — [(Pk| < 4=
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48 CHAPTER 4. THE RENORMALIZATION

Proof: Let Ba

Tw(lk) denotes the ball of radius 47 /L around k. For each p € B%(lk),
i A
e(p)] = le(p) = (1] < llels Ip — k| < [lelh - < 7.

such that Bas (Ik) N AL 8™ and B (Ik) N A% £ 0. Hence for X € S, d(K, k) =

mi?L) d(k”,1k) implies k' € Biz (Ik). In particular, 1Pk € Bz (lk), such that [k —
klles
[Pk < 4z,

U

Definition 4.14: For a function 7" : R x AﬁL — X, define the projection operator [(%)
as

B 0, k ¢ Uss(S)
(Z(L>T) (Ko, k) = { T(0,I%k)x(k), ke U2j(5)a

where x was defined in 4.7.

Lemma 4.15: Let T : R x A% — C be a function with |T'|; < co. Then for k € Us(S),

(i) |1 =1DYT(k)| < aliko — P (k)| T
(ii) ({970 < [T o.
(i) [[(BT]; < BI|T);.

The constant o and [ are given by
a = VL VALE ) and  F= V@A AL+ d]|]]).

In order to prove this lemma, we need the following definition:

Definition 4.16: Let k and k' be two points in A%

(i) A path ~ of length n € N between k and k' is a finite sequence

Y= (k: Po; P1,- -, Pn-1,Pn — kl)
of points p; € AﬁL such that for all 0 <7 <n—1,

27

|Pz’ - Pz’+1| = f

and for all 1 <14 < j <n, p; # p;. Here

Pi — Piy1| = \/(Pz' = Pit1) - (Pi — Pit1)
is the Buclidean distance in RY. We say that + has length || = n.
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49

ii) A path v between k and K’ is said to be minimal, if
(i) gl

|v| = min {|7/] : 7 is a path from k to k'}.

Remark 4.17: Given k and k’ in Ai, there always exists at least one minimal path o
between k and k'.

d d
27 , 2w ,
If k= f Oégl kaea and k' = f Oégl kaeom then

I d
_ o
[l = 5 ;l [Fa = Fa-

By Hélder’s inequality,

L
|70| S \/E |k_k/|7
27

where |k — K| = /(k — k) - (k- K.

Proof of 4.15:

(i) By definition of x, x(k) = 1 for k € Us(S). Observe that

|(1 = I"NT (k)| < |T(ko, k) — T(0,K)| +|T(0,k) — T(0,{"k)]| .

The first term is bounded by

T (ko, k) —T(0, k)| < |0To - |ko| < |kol|T]:.

If |e™) (k)| < A/L, then [Pk = k, and the claim is trivial. In the case [e® (k)| >
A/L, let v be a minimal path between k and (k. Then

Further,

vl

‘T(Oa Z(L)k) - T(Oa k)‘ < Z |T(O> pz) - T(Oa pz—1)|

v
27
S Z f |vaiT(pi—1) |

i=1

IA

27
2~ T
71Tk

IA

Vd|k — 1P| - |T];.

[k — IPK| < |k — k| + |Ik — IPK],
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(i)
(iif)

and by the construction of I, |k — Ik| < v/2/ug - [e®)(k)|. We use the remark 4.13

and
47

A ar

L L

in order to bound the second term with | (k)|. Hence
k= 10k < (14 2) e g,

Uo

e (k)| > = >

and the first point follows with
2
— VA(L+ V(L ui)).
0

Trivial.

By hypothesis k € Us(S), and x(k) = 1. Since the projection is constant with
respect to ko, we consider only the derivative with respect to the spacial variables,
defined by

Vol DT (k)| = %|T(Z(L)(k + Q%ea)) —T(I"K)].

If kand k + Q%ea are both in S(L), then the claim is trivial. If k or k + Q%ea is not
in 8, we choose a minimal path v between [(¥)(k + 2Xe,) and {“k. Then

IVl PT(0) < [Tl < VA |Tl® (e + 2Fe,) — 19K
The last term can be bounded as follows

1D (k + —ea) — 1Pk < IV(k+ Ze,) - l(k+ e,
1Pk — 1k| + |I(k + Tea) — IK|.
Using
Ik — IK| < d||w]|]:|k — K,

we bound the last term with d||w||;25. If both k and k+ 2Fe, are not in 8, then
use the remark 4.13 in order to get

o
(L) Wy <
[ (k + —~eq) — kK| L(4+d||w||)

If one of the points is in 8 ie. k € 8 then [Pk =k, and

f“L VA

()] < 222

|k lk| <
Uo
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4.3. THE RENORMALIZATION CONDITION 51

In that case,

2 2 2
100+ ey 1019 < o 4 4Y2 4 glfully).
T, L U

Finally, we get

Vol T ()] < V(4 + Ag +dl[wl[)]T]s-
0

We get therefore the last claim, with 3 = v/d(4 + A‘g + dl|w]]1).

U
Lemma 4.18: Let T: R x T — C be a C'—function. Then
Am
L
1OT (k) ~ 1T(R)], < [T
Proof:
IO (k) — 1T(R)] — (T, 1PK) — X (QT(0,1)] < [T}, 1Pk — 1K,
The remark 4.13 implies the claim.
U

4.3 The Renormalization Condition

Lemma 4.19: For each generic dispersion relation e, v € K, and |A\| < Ao, the
self-energy N (k, \; u) defined by the equation

SO (kX w) = (L4 Gy (ks N Culh)) ™G5 ()
is analytic in A. Further,

IS (E, A w)| < 2802||V]|]1.00 EIAL/A.

Proof: Since for|A| < Ag, by remark 3.26
G570l Culo < 1/2,
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the self-energy is analytic in A for |A| < Ao. We bound the self-energy as follows:

B (kX u)| <L+ G (ks N Culk) - 1G5 o
223a2||V| l1.00 2 LIA|

<
- A

Remark 4.20:

(i) For |A] < o, [P (k, \; u)| < g, such that

(i) |Cu(B)SE (k, Vo < 1.

Definition 4.21: The renormalization condition is given by the equation

1Pk, \) — 1U2E (kg k, X u) = 0.

Remark 4.22: We will prove that it is always possible to find a counterterm K@ € K
such that [0 K (k; \) = KD (k; \).

Theorem 4.23: Let e be a dispersion relation defined in 2.10, and u, éu € K.
Further, let s € R be close to 0, such that u + séu € K. If

042
N(V,320) < —

then

2 N(V,320)°
a?1— ZN(V,32a)

d

N[ =

< ds

Proof: First note that for L big enough, € < €2, such that we set ;= 1 in the theorem
3.13. Further

d d
N{ — — W .
(dS dS s=0 )

Since

Qc, (V); a) < (1+€)+4N(V, )

s=0

QMWW)SN(%

«mvm»-w&@+w(

s=0 s=0

d
Ul < AlIVIILooll 7

Cslloo < 4[IV]l1,00,

s=0

L
ds 40

the second term is bounded by

d
N[ =
(ds

us) < ACAAIN ||V [1.00 S ANV, ).
=0

ws) N (i
60 ds|,._
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53

The first term is bounded by theorem 3.13:

N3] o Qo We 1) = W) )

1 N(Wo,320q) d e

N(+— . = N(Wo, 32

= 202 1= LN (Wo, 320) ( (G|, W Ba) TN (Wo, 320)

2 N(V,320)

— ’ N(V,8a) + C'N(V, 32
—a21—a—52N(\7,32a)( (V. 8a) + EN(V, 520))

2 N(V,32a)

— 1+ €.
_azl—a—%N(V,?;Zoz)( &)

Remark 4.24: For |\| < A, where

py— A
0 2290[2Ld+2E||V||1,oo’

the hypothesis of the theorem is satisfied, and N(V,32a) < o?/10.

Corollary 4.25: For |[A\| < [,

L
| Gl <AL

s=0

A2

Proof:

1 d
GTPN(E » Qc,(V), a)
4" N(V,32a)? N 4
Catl—5N(V,32a) Ca?

4

IN

L
[E e

IA

IA

Ca?

8¢/

Ca?

22°C' a?b? | \| V100
BV |10 L

27 2 :

R

IA

N(V, 320)

IA

IA

Al

53

227Ld+2Ea2||v| |1,oo

NV, a)

2 !
— N(V,32a)(1 + a—(ZN(V, 32a))

)
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Lemma 4.26: For |\| < A,

d 22802||V||1 o0 EL4+?
el (L) . 00
|2 SZOE (k, A u)| < [A] e .
Proof: First remark that
d . )
— (k) = —C2(k)ou(k).
| (k) W (k)du(k)
Thus,
. 1= SOk, N, (k
SOt sow) = L AP @ N A(L)(  NCu(k)
ds|,q ds |, 1+ G5 (k, N Cu(k)

+2B) ke, \2C2 (k) ou(k).

Thus, by remarks 4.20 and 3.26,

d .
d% SO (B, N u+ séu)| < 4‘£ Gk, )\)’+ 1B (k, A, u)]
s=0 =0, A7d41
L
22802||V||1.00 ELH2

<

Corollary 4.27: If |\| < Aj, where

AS
)\// —
0 99202 |[V|[ o ELAT3
then y )
el () . kel
|ds — (k7)\)u)|<4L

Theorem 4.28: For dispersion relations e defined in 2.10, there is a unique countert-
erm K%Y € K with [P K®) = K& guch that the renormalization condition is satisfied
for [\| < Aj.

Proof: We have to solve the equation

u(k) — 195D (0,k, A\;u) =0
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4.3. THE RENORMALIZATION CONDITION 59

for u € K. By the corollary 4.27, the map u — [DXE)(;u) is a contracting map. We
define the sequence u™ € K as follow. Let (¥ =0, and

u™ (k) = 1O (0, %, A uY).
By the remark 4.20(i), the sequence is in K. Further,
|u — =] = ‘Z(L)E(L)(O, k, \; w7y — (D50 k, \; u(n—2))‘

<

‘i SO0,k A w2 4 sou V)| [uD — Y|
ds o0 ) ? ?

where Ju™ Y = ¢~ — (=2 Hence by corollary 4.27,
A
ju™ — D] < E|u(n—1) —uY).

Iterating the bound, we get

A n

The sequence of the u™ is therefore a Cauchy sequence in the Banach space of the
function on AﬁL x C that are analytic in A. Hence

KB (X \) = lim u™(k, \) € K

n—oo
is the counterterm.

Suppose that two functions K; and Ky € K solve the renormalization equation. Then
for all k € A% and A,

|K1(k; \) — Kok A)| = [R50, 100k, \; Ky) — 250,100k, \; Ky)|
< sup |—| 20,k \; Ky + sou)| | Ky — Kalo.
oueX ds s—0

Since A/4L < 1 for L big enough, this leads to a contradiction unless K; = K,. By
definition of K" as the solution of the equation

ue (k) — 1549(0, %, A u) = 0,
we have
IDKB (ko) = 1P (1880, k, N\ K57))

= 1B,k A KY)
KB (k, o, )).

5D






Chapter 5

The Thermodynamic Limit

5.1 The Graphs Expansion

Definition 5.1:

(i) The amputated Green functions Ggm, at order r in A\ are defined through Taylor

expansion,
Gom = D NGyl

r>0

For the two-point (non-amputated) Green function,

SE (k) = Cky+ Y N SH(k

r>1
where 57 (k) = C(K)GS) (k) C (k).
(ii) The conterterm K% at order r in \ is defined in the same way':

KX (k; \) ZX‘K@

r>1

(iii) The self-energy 2% at order r in A is defined by:

Pk, A) =) NS (k)

r>1
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Remark 5.2:

(i) It is well-known that

Gyl = Y Val,G

GeG2m(r)

where the sum runs over all the 2m—legged, connected, amputated graphs of order
r, with n four-legged vertices V' and n; two-legged vertices KZ.(L), foro=1,...,r,
such that n+n; +2ny+ -+ rn, = r.

The value of the graph G is given by

6(f:ki)ValL(G) LDy / 11 ‘ZZOC@ (k1)

kieA! 1€ L(@) lGL(G)

IT | 1I Zkz R
IT [ TT ok + k) EP (k) |

weVa(G) I,lae L(w)

where

(5(]{3 — kl) — (QWL)d(Skk/(S(ko - ]{16)

We define L(G) to be the set of internal lines of G/ and E(G7) the set of external
legs of G7. V(G) denotes the set of all vertices of G7, and V5(G) resp. V,4(G)
denotes the set of the two- resp. four-legged vertices of G.

The propagator in momentum space is

6ik00+

(L) -
C (k) Zko _ 6([’)(1{)

For the self-energy,

E(L Z ValL

GEQZ(T)

where 92(r) is the set of all two-legged, 1PI graphs built up from n four-legged
vertices V| and n; two-legged vertices KZ.(L), for+2 =1,...,r, such that n + n; +
T, =71
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5.2. THE CONVERGENCE IN THERMODYNAMIC LIMIT 59

Remark 5.3:

(i) We consider the counterterm KﬁL)(k) as a 1PI graph build up from one two-legged

vertex. The counterterm K\ is therefore absorbed in the self-energy. Thus, the
renormalization condition reads now:

1ORE (k) = 0.

(ii) It is useful to solve the renormalization equation explicitly in terms of graphs. For
that purpose, remark that

(5P (k) = KM (k) + 157 Val, G,
Ge¥

where G is the set of all graphs in G2(r) that contain at least one four-legged vertex.

It follows that the two-legged vertex K% cannot enter the composition of the
second term. We get an inductive procedure to determine the counterterm order
by order in A, which is given by

K" (k) = =1 )" Val, G,

Geg

the right hand side containing only counterterms at order ' < r in A.

5.2 The Convergence in Thermodynamic Limit

Theorem 5.4: Suppose that the assumption A1-A3 are verified. Then:

(i) For each L € N, there are constants Ay, By and B that are independent of L but
depend on r such that
GS2)]o < Ao,

and
)< By and 2|, < By

(ii) In thermodynamic limit,

Ggﬁ? e Gs, in the || - [|o — norm,
and
» () P20 5, in the | - ||lo — norm,

where Gy, and ¥, are defined in 2.22.
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(iii) For L — oo, the counterterms K& converges to the counterterms K, in the supre-
mum norm || - |[p—norm.

(iv) In the thermodynamic limit,

G(L L—>oo

S Gam,» in the || - ||' = norm.

(v) The same is true for the two-points Green function at order r > 1 in A:
S F22° 8, in the || - || = norm,

where Gy, , and S, are the Green functions defined in 2.22.

Corollary 5.5: In thermodynamic limit, the density p”(\) converges in the sense of
formal power series to p(A), that is for all r > 0,

pb 2y,

and
(L) L—>oo

2o 2 Vol(S).

Proof: By remark 2.19,

PRy /dko S5 (k).
keAl
e}

By point (v) of the theorem 5.4,

_ dko = d* kg
1y [ GRsEm) = [ s il

keAh
Hence,
L—>oo dd+1 kO 2k00+ B
Z d+1 = Pr
oe{1,1}
Further,
dko €Zk00+
— 2L~ —2r7¢ o(—
> [ Y el
keA keAl

which tends to twice the volume enclosed in the Fermi surface, since ©(—e™(k)) —
©(—e(k)) is non vanishing on a set of volume bounded by const L=!. 0

Remark 5.6: The theorem 2.24 follows directly from theorem 5.4 and its corollary 5.5.
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Chapter 6

Proof of the Convergence

In this section, we prove the convergence of the Green functions in thermodynamic limit
at each order in A. The proof given here follows the proof given in [7] on the continuum
momentum space, performing the same scale decomposition, and using the same power
counting. The difficulties appear at energy scales lower than the dual lattice spacing.
The effective cutoff implement in definition 2.10 allows to apply the same bound as in
the continuous case.

6.1 Scale Decomposition

In order to bound the value of a graph, we decompose the propagator in a sum over
energy scales. The problem of computing a possibly divergent integrals is replaced by
the question of the convergence of series. In order to perform the decomposition over the
scales, we first define a C'"*°—partition of the unity.

Definition 6.1: Let ¢ be defined by the volume improvement estimate, ug and ¢
defined in 4.5, and M > max{4'/¢ (ugd)~'}. Then |e(p)| < M~" implies p € Us(S). Let
a € C(R,,0,1]) be such that

(z) — 0 for z <M
A= 1 for x> M2

and a'(x) > 0 for all z € (M=%, M~2). Set

0 for < M
B B N a(x) for M= <zx< M2
F@) = ale) —aa/pry = {0 o MU M
0 for x>1
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so that for all z > 0, f(x) > 0, and

1 —alx) = i f(M~%g).

Jj=—00
With f;(x) = f(M~%z), we have
supp f; C [M¥ =4, M*]

and for all z > 0,
fi(@) fir(x) = 0 if |5 — 5| > 2.

09}
08
0.7

0.6

05-

04r

0.3r-

0.2

01F

M2j74 M2j

Figure 6.1: The j—shell

Definition 6.2:

(i) The propagator at scale j < 0 of the model on the finite lattice is defined by

s (k2 +e*(k

(ii) The propagator at scale j < 0 of the model in the infinite volume is defined by

Cy(poyp) = & @‘(jjj js(g))'

(iii) The propagator at scale 0 is defined to be the UV-part of the propagator:
1

(L) _ o 2 2
Cy ' (p) = Colp) = ma((ﬁ‘o) +e*(p))-

62



6.1. SCALE DECOMPOSITION 63

Remark 6.3:

(i) Let

o InA—InL 49
JL = In M )

where for z € R, [z] € Z with [z] — 1 < 2 < [z]. Then for j > j., supp f; C
(g, M=), and O (k) = C;(k).

(ii) By definition,

-1

etPo0+ ePo0+ 5 9 0
, = - a +e*(p)) + Pt Ci(po, P),
ipo —e(p)  ipo — e(p) (7o) () j;oo i(po, )
and
etko0t etko04 ‘ -1
= ko)? + e2(K)) + e*o0+ ' (ko ).
iko — e (k) ikg —e(k)a(( o)” +e'(k)) +e jz_:oo ;7 (ko, k)

(iii) On the finite lattice, for dispersion relations with g € M \ M, there is a natural
cut-off at scale
In Cr,

In M

I(L) = [ } +2.

Lemma 6.4:

(i) For j <0, |Cjlo < M?*7 and HC(L llo < M?~9. More precisely,

|Cj(ko, k)| < M* 7 Likg— e elpri-2, a0

and
1G5 (o, )| < M7 L cqrofeqpas—=.aai)

(ii) There is a constant Ky > 0 such that for j < 0,

CPr =17 Z/%%“mwmw

keA?

and

161 = [ gl ot < Ko’
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64 CHAPTER 6. PROOF OF THE CONVERGENCE

(iii) With the same constant Ko > 0,

dd+1k )
su su Co(k)Co(p+vk)| < KoM=,
peREme{E—}/ (27T)d“| o(k)Colp ) ’

and

sup L7 Z /%Wg YCo(p £ k)| < KoM?2.

GRXAL keAu

(vi) For each 0 < o < d, there is a constant W > 0 such that
IVaC]gL)(k’)I < WM™ 1ikg —eqole[mi—2,M9]

and .
laacj(k)‘ < WM2_2] 1|ik0—e(k)|€[Mj_27Mj]

(v) Volume improvement bound: For all jy, ja, j3 < 0,

dkd+l dk/dJrl , . )
iﬁpﬂ‘ |/ 271' d+1 27r)d+10 (k)oﬂé(k )ng(Uk+Uk +p)| < Ky Motz
pER X
v,o' €{+,—}
and
dk dk o |
o LDy / 27r0 o RO (YO 0k + 0K+ p)| < Ky MIHRH D,
PERXAY k! A”
v,vle{+7_} S

Proof:

(i) This claim follows trivially from the support properties of C;. For j < ji, we use
N
5 < )

(ii) We begin with the continuous case, using (i):

dd+1k . dd+1k
/WICj(k)I < M j/Wluko—dkne[Mﬂ,Mﬂ

2M? d%k

< 5 / (QW)d1|e(k>|<Mﬂ
2M2 M

< =

< o /_Mj dp/sdle(p,w
4M?

< (2 )d+1||‘]H0’S’M]
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6.1. SCALE DECOMPOSITION 65

On the finite lattice A 7, we distinguish the cases j > jr and 7 < jr. In the first
case, using lemma 4.10

dk _
4 Z / ] < |Gyl Z / % ik e [€[MI—2 0]
keA? keAl
dk
< |G |0/ 01|k0|<MJL Z Ljeqwy|<ass
keAl
2M?
S o CQ|S|MJ

If j < jg, then

. dk dk _
L dz/ “|o5 (k)] < /201|ko|<M’L D A1|e(k <4

keA) KkeAb
L . A
< —M —
- Arx 62|S|L
C2|S|Mj

™

<

We set Ko = sup{ der||7]lo] S, 2-ca| S| }.

(iii) The integral over the torus T of the propagators is harmless:

[ o Gt Cap £ )| < sup p [ SRICuRICofp )

27 )d+1 keT

< dko Likgp>m—1 Liggtpo|> a1

~ 2R M (ko po)® o+ M2
< 1,

where I = sup I(y) with
yER

dx
o .
() /lml)mwl V(@2 M=2)((x +y)? + M~2)

If l[y| < 1/2M, then for |z| > M~ |y|/|z| < 1/2 and
et M2 a1 D s et Y s a2
T x
Hence

©
sup  I(y) < 2/ = <2M <2M,
jyl<(20)-1 M1 T
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We turn to the case |y| > 1/2M. First observe that I(y) = I(—y):

I(y) =

dx
/|w+y/2|,|x—y/2|>M1 Ve + 52+ M=) ((x - 5)? + M2
5 dx
y2i>m-1 /(T + §)2+ M=2)((x — )2 + M~2)
- I(_y)a

such that I = sup I(y). We bound the denominator with
y>0

2 2 2
(02 = 2 4 2M 2?4+ 2 4 M > (0 - )

and get

o] -1
](?J)SQ/ ydx y :lln%.
vy @+ g)@—3) y M-

Thus, the function I(y) is bounded by a decreasing function of y > 1/2M. Thus,
for y > 1/2M,

1) < S n(3/2) < 20r?

and

dderl )
/WWo(k)Co(Pi k)| <2M°.

The same bound holds on the lattice A’ﬁ;.

We first bound the derivative of the propagator on R x T. In that case,

|00 f5(p5 + €*(p))] N |f5(p% + €*(p))]

OaC(p)| < 22 1, .
| J(p)’ "LPO _ €(p)| p% T+ 62(p) Sup{ HeHl}
Since by definition,

100 [k + €2 (k)| = |0alks + e* ()M~ [/(M~ (kg + e* (k)|

< 2sup{L, [le]|i}]iko — e(k)| M~
LF1 M2 (kg + € () L jikg—eol <
< 2sup{L, [lel[}I /1M,

we get the claim with W = sup{1, |le||s}(1 + 2||f][1)M2. On R x A%, for j > jy,
the remark 4.3 implies the bound. For j < jz,

(kg + e*(k))

‘8@fj : - SWM2_2j,
Zko—f
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6.1. SCALE DECOMPOSITION 67

in the same way as for C;, using L/A < M*77. Further, for a = 1,...,d,

Va

iky — 2 = iko — 2|

fi(k +ez<k>>‘ _ Al

by the remark 4.3. The claim follows.

(v) We prove first the bound on R x T. Performing the ky—integral, we get

dderl dk/d+1
| e

AMA=7s [k dk

2r7 | @ry 2m)d lewisaon Leooisie Hewicierplsin

4 M3
LR

C, (B)C, (KNCjy(vk + V'K + p)‘

](Mjl, Mﬁz) Mja).

Applying the volume improvement bound, we get the claim. We turn now to the
lattice case. Observe that without lost of generality, one can set j3 = min{jy, jo, j3 }-
If 33 > jr, then performing the ky—integrals, we get

dko dk
Py /27r 5 Cin (K)Cp (K) G (0k 4 'K+ p)
kk'eAl
AMAIB
= (27)2 L Z Liegoi< i Leqe) <aaiz Le(uicrvictp) <ass -
kk'eAt

We bound the sums over the lattice points using lemma 4.10. For this purpose,
define the set

AMI, M2, M) = {(p,p) € TX T : |e(p)| < M7, [e(p)] < M” and
le(vP +v'p’ + q)| < M=} .

Thus,
Lieao<ami Legery<miz Ljeokqoi4py<iis = Laeryeaaain aiz sy

Further, define x € C*(T x T, [0, 1]) with
A(M*, M2, M%) C suppx C A(2M7 2M7 2M7%),

and

X|A(Mj1,Mj2,Mj3) =L
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We choose x such that ||x||; < DM~"nit < DL/27, for a constant D > 1.

Then
L= Z Lacxyeaqmin, vz wss)
kk'eAt
< L 2d Z k kl
kk'eAt
ddp dd/ ddp ddp/ 04
< [ it ® P | [ i) -1 3 k)

kk'eAt

dip d%p’ 27
< 2n)7 Wl(kk)eA@Mﬂl amiz 2misy | L+ HXHIT
< (1+ D)YI(2M7*, 2M7 2M7).

Applying the volume improvement, one get the claim with
M4

Ky = (1+ D)Cp 2" ——.
1= (L4 D)l (2m)?

If j3 < 71, we proceed essentially in the same way, replacing M7 by A/L, if j; < jz,
for v = 1,2 or 3. We present here the case where ji, j» and j3 < j;. Performing the
ko—integrals, we obtain

dkq dk!
p Y [ SRS MO RO ok + K+ p)
kk'eA?

i1+ —2d
< M7 ” L Z Legoi<# ety Letuic o rapi<4-
kk'eAl

where the factors M7t and M7 are the length of the integration range of the vari-
ables ko and k), and L3/A? > M~91792733 hounds the supremum of the propagators.
We then proceed as in the case j3 > jr, and get

Y[R me W ok + ok + )
kk'eA?

A A
L L

o~ e

(1+D)M71“2 1(2 222

)

? ’

A3

e—1
< D23+6Mj1+j2 (é)
- L

< D23+6Mj1+j2M(6_1)j3.
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6.2 The Tree Expansion

Let G € §2™(r) be one of the connected, amputated graphs contributing to P We

2m,r*
decompose all the propagators of the graph G using the scale decomposition. Each line of

G gets therefore an additional scale labeling. We denote a labeled graphs by G, where
J={5|l € L(G)}, and sum over all j; from I(L) to 0.

Definition 6.5:

(i) Let G’ be a connected labeled graph. We define the tree ¢(G”) associated to G
inductively as follows. If G consists in a single vertex v, then

ta’y = {a"}.

Consider now a graph G with N vertices, N > 1. Assume that the trees cor-
responding to all graphs with N’ vertices, N’ < N have been constructed. Let

j o= ir(lfj)jl be the lowest scale of the graph GY. Suppose that the graph
leL(G

G/{l € L(G)|j, = j}, obtained cutting all the lines at scale j of G/, has n con-
nected components Gy,...,GG,,, with associated trees t(Gy), ..., t(G,). Then

Ha?y = {G7yu Ut(Gi).

Hence the tree t(G7) is the set of all connected subgraphs of G, obtained cutting
recursively all lines at a given scale.

For f and g € t(GY),
f<gegCf
define a partial ordering on ¢(G7). If f < g and f # ¢, we write f < g.

(i) Let f be a fork of the tree t(G”). We denote G; the connected subgraph of G
corresponding to the fork f. 2m; is the number of external legs of G, and j; :=

z g(lcf; )jl is the scale of the fork f. u; is the number of upward branches of the fork
LGy

[ in t(G7).
Remark that for f and g € +(G7),

J<9=17r <7y

For simplicity, we call “two-legged forks” the forks f with m; = 1 and “four-legged
forks” the forks f with m; = 2, referring to the number of branches of G rather
than the number of legs of f in ¢.

69



70 CHAPTER 6. PROOF OF THE CONVERGENCE

(iii) The root ¢ of the tree t(G”) is the fork corresponding to the graph G”. In particular,
f<¢= f=¢. Thescale j = j, is the root scale of t(G’) or G".

A fork v € t(G’) with no upwards branches, i.e. u, = 0, is called a leaf of t(G”).
The scale of a leaf v is j, := 1, and the graph corresponding to the leaf v is a single
vertex in V(GY). In particular, v < f implies v = f.

We call “two-legged leaves” the leaves that corresponds to two-legged vertices of
G7, and “four-legged leaves” the leaves corresponding to four-legged vertices of G7.

(iv) Let f € t(G7). We call w(f) the fork preceding f in t(G7):
7(f) € t(G7) with 7 (f) < f such that there is no g € t(G”7) with 7(f) < g < f.

(v) The graph G(f) is obtained collapsing all the subgraphs G, with 7(g) = f into
vertices. The tree t(G(f)) is obtained from the tree t(G”), replacing the forks g
with 7(g) = f by a leaf. In particular, the graph G(¢) contains only lines at scale
j, and generalized vertices at scales > 7 + 1.

Remark 6.6: It is possible to show (See [7] and [6]) that the sum over the graphs of
the remark 5.2 can be replaced by the sum over the trees:

POEDIACIACEDSD B | P ZZV&]LGJ

Gegm(r) J i1t ger : J Ges(t)

where the sum over ¢t runs over all the rooted trees with less than sup |L(G)| forks
GeG2m(r)

and less than r leaves. The sum over the scales runs over all the scale sets J = {j¢, f € t}

such that j, < jy if g < f, the root scale j4 = 7 remaining fixed. The last sum over the

graphs is taken over the graphs G € G™(r) such that ¢(G”) = t.

Remark 6.7: Let consider a graph G”/. We introduce the following labeling of the
two-legged forks of +(G7). If f € t(G7) is a two-legged fork, G is 1PI, and f is not a

leaf of t(G”), then we say that fis ar — fork of t(G”). If f is a two-legged fork and G
is one particle reducible, then f is a s — fork.

Let f be one of the two-legged leaves of ¢(G”), corresponding to the counterterm

KP () = =1 3" 3 Val, &7

Geg J

where G’ is the set of all the two- legged, 1PI graphs that have at least one four- legged
vertex. (See remark 5.3) Let G7 ¢ 9’ be one of the graph contributing to K™, with
associated tree ¢(G7) and root scale j > 1.

The tree t(G7) can be expanded, replacing the leaf f with the two-legged root of the
tree ¢(G7). The fork f is now a two-legged fork that corresponds to a two-legged, 1PI
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6.2. THE TREE EXPANSION 71

graph. Remark that the scale of the fork f is independent of the root scale of G7. A
two-legged fork obtained in this way will be called a c—fork.

Following this procedure, all the two-legged leaves of the graph ¢(G”) can be replaced
by c—forks, ending with a new tree ¢ that has only four-legged leaves. The value of
the graph G associated to the root of f has to be computed inductively, replacing first
in GG each subgraph G associated to a c—fork f by a vertex with the vertex function
—1D Valy, Gy

Hence, we have

D, D vae' =3 > ][ ZEV&]LGJ

GeG2m(r) J j>I t  fet

where now the sum over the trees runs over all the trees with less than 2r 4+ m lines. The
sum runs also over the labeling of the two-legged forks in s—, r—, and c—forks. The sum
over the scales is taken over the sets J = {j;, f € t} such that j, < jy if g < f, if g is
not a c—fork. If g is c—fork, then j, > I.

Observe that each tree ¢ containing a two-legged fork corresponding to a 1PI subgraph
contributes once to the sum with the f fork labeled with r and once with the f fork labeled
with ¢. Both those contributions can be grouped together. The contribution of a 1PI,
two-legged fork f to the value of the graph is given by

o> Va6 1P Y N Val Gy =

J5>dn(s) Jr€A(ts.d5) Jr2I Jped(ty.is)
iy
J J
=(@=1") > > Val G =1 Y Y Val G
I5>dn(s) Jp€A(ts.ds) Jr=1 Jp€d(ts.is)

Resuming the contribution in that way, we see that a r—fork f gives a contribution at
scale bigger than jr(s), projected by the operator 1 — [P and the c—fork f gives a
contribution at scales less or equal jr(s), projected onto S by 1D,

We get finally
G- Y Y ILY Y vie!
J>I(L) t fet uy! G Jediib)

where the sum over the trees runs over all planar trees with r leaves. The sum over the
graphs runs over all connected graphs G with 2m external legs, and r vertices. There is
also a sum over the labeling in r—, s— and c—forks. The scales label are in the set

3, t) ={Ur, f €)1 Jr > Juipy if 2mp >20r fisar— oras— fork
and j > j; > ['if f is a ¢ — fork}.

Remark 6.8: Integrating out successively the different energy shell, one would obtain
a semi-group structure associated with renormalization. The results described above can
be as well obtained using this idea, see [7].
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Definition 6.9: Let G’ be a labeled graph with tree t = ¢(G”) and root ¢.

(i)

(i)

A graph G is called overlapping if it contains two loops that share at least a common
line. If the graph G(¢) defined in 6.5(v) is overlapping, we say that G overlaps at
the root scale. We denote with O the set of all overlapping graphs.!

Let G be a non-overlapping graph at the root scale. We construct the following
subtree 7 of the tree ¢, rooted at ¢. A fork of ¢ is in 7 if and only if G is non-
overlapping, and 7 (f) € 7. Define the non-overlapping graph G(7) to be the graph
obtained from G collapsing all leaves of 7 to vertices. Define the overlapping scale

of G to be j* = ; ing e Jf. 7 is the maximal subtree of ¢ such that G(7) is
€t an T

non-overlapping.

Definition 6.10:

(i)

We construct inductively the spanning tree T(G”) of G as follows. Suppose that
we have constructed the spanning trees T'(Gy) for all the forks f directly above ¢
in ¢. Construct then the spanning tree T of the graph G(¢). If G(¢) is overlapping,
then there are two loops in G(¢) that share at least one line [*. Choose a spanning
tree that contains the line I*. The momenta in G(¢) can be set in such a way that
each line of the spanning tree carries an external momentum.

The tree T(G) is then obtained replacing in 7' all the vertices by the trees T(G/).

The value of a labeled graph G7 with two-legged vertices O, (k) and four-legged
vertices U, (ky, ko, k3) is given by

Val(GF) = L@l § I L | A

K eAY IEL(G)\L(T) lEL(G)\L(T) leL(G
[T vy ks k) T ©ulk
VeV (G) wEVL(G)

where T is the spanning tree of GG/ defined above. For [ € L(T), k; is a linear
combination of external and loop momenta.

In order to construct the thermodynamic limit of the Green functions, we defined

Definition 6.11: Let [ € Z_. Then

G = 3 Sl 2 ¥ Vako,

J>I(L) t fet uy! G Jediit)

1See [7] for a rigorous definition of overlapping graphs.
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where the value Valy of a graph is defined by

d+1
Zk Valoo (G7) = /H d+d]f1 Cy, (ko)
1eL(@)
4
11 T 6 k)b, ... k)

veVA(G) \l1,.,lu€L(v) =1

H H 6(kl1 + klz)Kw(kll)

weVa(G) \I1,lo€L(w)

The projection operator I is replaced by the projection operator [, and the root scale
s ) > 1.

6.3 The Power Counting

Remark 6.12: It follows from lemma 6.4 that the same power counting applies for
Val(G) and Val,(G). Hence, we simply denote Val(G) the value of a graph when no
distinction between the lattice case and the continuous case is needed.

If no distinction is needed, we further denote with | - |g and | - |; the supremum and
derivative norms, meaning || - || and || - || on R x T, and |- |o and | - |; on R x A%,
Further, we abusively replace the Riemann sum over the lattice AﬁL by an integral, in
order to simplify the notation.

Definition 6.13: Let G7 be a labeled graph. For a fork f € t(G”), we define
Dy = [L(Gp)| = 2(V(Gp) = 1).

Remark 6.14: Counting the lines of the graph G/, one get 4 half-lines for each four-
legged vertex, and 2 half-line for each two-legged vertex, minus 2m half-lines from the
external lines:

4\Vi(G)| +2|Va(Gy)| = number of half-lines of Gy = 2|L(Gy)| + 2my.

Using this equality, we get

1
Dy = 5(4 —2my) — |Va(Gy)l.

Theorem 6.15: Let G’ be a 2m—legged connected, amputated labeled graphs. We
denote with U, the four-legged vertices of G, and with ©,, its two-legged vertices. Then
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| Val(G7)|o < (4K0)|L(G)IK1MEJ'*MD¢J' H MPrGr=ixs)) H 16,0 H Uy o,

>0 veV2(G) veVa(G)
where j* is the scale at which G overlaps. If G’ does not overlap, then j* = 0.

(ii) For the integral norm,

| V&l (GJ) |I S (4KO)IL(G)| H (|@w|OM_jﬂ<w)) H |Uv |O Sz'nt Sf,emt Sv,emta

weV2(G) vEV4(G)
where
S [ MPFO

>, internal

where the product is only over those forks of ¢(G”) such that G}’ does not contains
any external vertices, and Df = Dy + |Va(Gy)l.

Steat = H MArGr—in))

>¢, external

where the product is only over those forks of t(G”) such that G}’ contains an external
vertex of GG, and

1
Ap=—— ‘{l . [ internal line of G’ and external line of GJ}‘ .
f 9 f
Finally,
S’u,ert — H MAv (O_jw(v)).

v, external

The product is over the vertices of G to which an external leg of G” is joined, and

1
A, = =5 ‘{l . [ internal line of G’ [ € U}‘ .

Remark 6.16:

(i) The products run only over the fork of the tree t(G”) that are not leaves of t(G7).

(ii) Observe that since 7(f) denotes the fork preceding f in the tree ¢(G), it holds

jf - jw(f) 2 0.
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Proof of 6.15:

(i) Let T be the spanning tree of G defined in 6.10(i). We first bound all the vertex
functions by their sup-norms, and get

[Val(G)o < [T €0 J] 1UuloX
vEVR(G) veVa(G)

where X is given by

d 1k,
WW@(]@H 11 e

£EL(G JL(T) te L(T) 0

where the P, are linear combinations of momenta k;, [ € L(G)/L(T) and of external
momenta. In the lattice case, the integrals over the Brillouin zone have to be
replaced by sums. We prove now that

X < (2K0)|L(G)|(KlMEj)lé<¢)€o MDs H M s —ixs) Dy
>¢

which directly implies the claim. If the root scale j of G7 is strictly negative,
decompose L(G7) in the set of the lines of G(¢), which are at scale j, and the set
of the lines of subgraphs corresponding to forks in

a(¢) ={f etlx(f) = ¢}.

We obtain: )
LGy = L(Gg)Hu | LGy

feo(9)
Let T(¢) be the spanning tree of G(¢). We get then

XS/ 11 dplCip)l [T 161 T Xy,
1eL(G($))/L(T(9)) teL(T(¢)) fea(9)

where X; is the corresponding of X for the graph 4. The integration are taken
only over propagator with scale j < 0, such that we can bound the integral with
the point (ii) of lemma 6.4. If G(¢) is overlapping, there is a line in T'(¢) belonging
to two independent loops. Such a line brings a factor

[ o dpalC I G| Con 1+ 0)| < KK,

due to the volume improvement estimate. The other lines are bounded by the naive
power counting, such that

X < (Klee>1é(qs>eo K(|]L(é(¢))| H M—h H M H X;.
IEL(G(9)) teL(G(¢))/L(T($)) feo(ry)
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If the root scale j of G is zero, then all the propagators are UV-propagator. The
integral is performed over the loop momenta, which enter at least two lines. We
use the point (iii) of lemma 6.4 in order to bound the integrals.

We apply the induction hypothesis in order to bound X:
X, < (KlefE)IGfEOKéL(Gf” H M0 H M2
1eL(Gy) teL(Gy)/L(Ty)
and get
X < K(IJL(GNKIMJ'*E H Mh H szt’
IEL(G) teL(G)/I(T)

where j* is the overlapping scale defined above. If G7 does not overlaps at any
scales, set 7* = 0. In order to obtain the final bound, we use the telescope sum

Gi=3+ > (s = dxtn)s

f>¢
Gy3l
such that
H Mh H M2t —  ppICILGI=2 LD = L(@)]),
IEL(G) teL(G)/L(T)

. H M s =) CIAG I =2|L(Ty) = L(G5)1)

>¢
Dyj it —dr() D
—  MPDed I I MUs=I=)Ps
>¢

by recursive construction of the tree 7' from the trees T%.

In order to bound the integral norm, we construct the graph G*, with 2m* external
legs, satisfying:

— G* has the same vertices as GG, with one 2(m + m*)—legged additional vertex
v*, with vertex function (k1 + - -+ + Koy ome)-

— G* has the same lines as G, and 2m additional lines that join the external
legs of G to v*. This lines carry a propagator C* at scale 1, with supremum
|C* o < 1.

— The other propagators of G* are given by |C’§L)(k)|, resp. |C;(k)| in the infinite
volume, and the other vertices functions by |U, (k)| and |©,(k)]|.

The fact that the propagator C*(k) is not integrable is harmless, since we can choose
a spanning tree T of G* that contains all the lines I* of G*\ G. Since |C*|y < 1,
the lines {* do not contribute to the power counting.

The conservation of the external momenta of G* imposes the condition

2m*
E k2m+z’ - 07
=1
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such that
|ValL(GJ)|’ < | Val,(G")]o.

We apply now the theorem 6.15(i) on | Val,(G*)|o:

[ Valp(G9)]o < KON T j0ule T 1Uude [T 750700,
veV2(G) veVy(G) f>¢r

Let {jo = j < j1 < -+ < jn = 0} be the set of the scales of G’. The product over
the forks of t(G*) can be rewritten as

N
H MPUs=inp) H MPiGi=ixp)
I>¢* =1 fEL(G"), ir=]i
i—1

N
_ H H M P Gi=ir)
i=1 k=0  fet(G*)
Jf=Ji:In(f)=Jk

N -1
I 1 11w
i=1 k=0  fei(G*) =i+l

J=ds In(p)=Ik

H I "
J'=j+1  fet(G*)
Jn(p)<J'<iy

f[ I] m".

i'=i+1 feC;,

Here (7}, is the set of the connected components of {I € G* | j; > j'}. 7 is composed
from subgraphs of G at scale j’ that do not contain any external vertices of G,
and one subgraph G+ of G* that contains the vertex v*, and all external vertices of
7. Since for internal forks f of G7, i.e. the forks of G that contains no external
vertices of G/, D} = Dy,

0

0
[T IT v~ I1 | w7 I |
i'=i+1feC; Gi=j+1 fec;

finternal

where Cj is the set of the connected components of {I € G”|j, > j'}.

The subgraphs G4+ is composed of the vertex v*, r external subgraphs G4, ..., Gy, €
Cy of G7, and s external vertices vy,..., v, of G/, that are not in any Gy, i =
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1,...,r. Hence
Dy, = |L(G )| = 2(|V(Gge)| — 1)
= D (LG =2V(GR)]) =2+ 2m — 25 + 2
i=1
- _Z(H/Q(Gﬁ) +my) +2m —2s
i=1

+m — 2s

- =) (G

1 : L k *
+§Z(|{é € G*\ G |1* hooked to Gy, }| — 2my,)

1
+5 > [{Ir € G*\ G|I* hooked to v;}

z 1

= —Z|Vz Gy,)

.
+= Z (4 — |{l internal line of G hooked to v}|)
veEV(G)N{v1,..svs }
1 . .
+§ Z (2 — |{l internal line of G hooked to v}|)
vEVz(G)ﬁ{m ..... vs}

— —ZH/Q Gf@ +ZAfl+m+ZAm |‘/2 m{’Ul,...,’USH«

+ZAfl+m—23

Therefore
0 0
H H MPr . AP | = H H MPs H MAr=IV2(G D
i'=5+1 fECj/, fint j'=j+1 feCj/, fint fECj/, fext
0
. H ME izt Ao = [V2(G)N{v1, 05 H M™
J'=j+1 J'=j+1
Further
0
[T 2 som,
=it
and

0

j'=j+1
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The product over the vertices can be rewritten in a more convenient form, using

OB ILTEEED DI D

- Z > Z A
vext: j'=j;+
jﬂ'(v) =Ji

— § § A ]w(v)
vext:
jﬂ'(v) =Ji

= D A0 — ).

vext

Remark that
D = |[L(GT)| =2(|V(G")] = 1) = [L(G)| + 2m = 2[V(G)] = —|[Va(G)| + m,

and

—iVa(@) =D ValCG G = drip) = Y dnw)-

>6 weVa(G)

With Df = Dy + [Va(Gy)|, we get therefore

MR H MPFGr=ixes) < AV (@li H MPrr=ix)

f>0* fyint
. H M A =IVa(@G DG —inis) H AR (0=ir )
frext v, ext
< H MDf(jf—j«m) H MAGr=ixp)
[, int f,ext
H MAO0=rw) H Mm@
v, ext veVa(G)

6.4 The 1PI Graphs

6.4.1 Non-Overlapping two-legged Graphs

Definition 6.17: Let G be a connected, two-legged graph with N vertices, all having
even incidence number.

(i) If Gy, ..., G, are 1PI, two-legged graphs, the graph obtained by connecting G;_;
to G; for ¢ running from 2 to n by a propagator is called a string.
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(ii) G is called a self-contracted two-legged (ST) diagram if G consists only of one two-
legged vertex with two external legs, or if G has exactly one vertex v; with incidence
number bigger than 2, to which both external legs of G connect, all remaining legs
of v; being joined pairwise by strings of two-legged vertices to form a loop.

(iii) A generalized ST (GST) diagram with N vertices is defined recursively: if N = 1,
then G is a ST diagram. If N > 1, and GST diagrams are defined for N' < N,
a GST diagram with N vertices is a graph such that G has exactly one external
vertex vy to which the two external legs of G join, and all other legs of v; are joined
pairwise by strings of GST with at most N — 1 vertices, to form a loop.

Lemma 6.18: Let GG be a connected, two-legged graph, all vertices of G having even
incidence number. If GG is non-overlapping, then G is a string of GST graphs.

Proof: First note that if the statement is true for 1PI-graphs, then it is true as well for
all connected, two-legged graphs. Let therefore G be a two-legged, 1PI graph. We prove
the lemma by induction over the number of vertices of G.

If GG consists only in one vertex v of incidence number 2m, then G is obtained con-
necting 2(m — 1) legs of v together. By definition, G is a ST-graph.

Let consider now a graph G with n vertices. Distinguish two cases:

e (& has only one external vertex v. Then G consists in the vertex v connected to
the external legs of GG, and of N 1PI-graphs Gy,..., Gn, that are connected to v by
strings of two-legged graphs, and pairwise disjoint. By the induction hypothesis,
the strings connecting v and the G; are GST.

Suppose that for a ¢ with 1 <7 < N, G; has an external vertex v;, m; > 2 legs of
which are connected to v. In that case, G contains two loops that share at least
one line, that is, G is overlapping.

It follows that all the G; are two-legged, 1PI. By induction hypothesis, they are all
ST graphs, and consequently, G as well.

e Consider the case where GG has two external vertices v; and v,. By the same
argument as before, vy and vy cannot be connected to connected subgraphs of G
with more than two strings. Using the fact that the incidence numbers of v; and
vy are even, it follows that v; and vy are connected by one string of two-legged
subgraphs of G, which is not possible, since GG is 1PI.
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6.4.2 The Graph G’

In order to bound the value of a graph G” inductively, we define the graph G’, which is
obtained collapsing all 1PI two- and four-legged subgraphs of G into vertices. We define
t’ to be the tree corresponding to G'. The graph G’ has the following properties:

e (& has only two- and four-legged vertices, with vertex functions that are either
interaction vertices or values of 1PI two- or four-legged subgraphs of G.

e The only non-trivial two-legged subgraphs of G’ are strings of two-legged vertices of
', and any non-trivial four-legged subgraphs of G’ consists of a single four-legged
vertex with strings of two-legged vertices appended.

Definition 6.19: Let G be a labeled graph, and ¢t = ¢(G”) its corresponding tree. We
construct the graph G’ corresponding to G as follows.

Let ¢ be the root of ¢, and let fi,..., f. be all forks of ¢ that satisfy:
VEke{l,....r}, F(Gy,) € {2,4} and fi is minimal,

that is #g with ¢ < g < f such that E(G,) € {2,4}. Let # be the tree rooted at ¢ and
obtain from ¢ trimming ¢ at fi,..., f,, that is replacing the forks fi,..., f. by leaves,
with vertex functions Val(Gy,), k=1,...,r

The graph G corresponding to the tree { is obtained collapsing all the two- or four-
legged subgraphs of & into vertices. ¢ has no fork that corresponds to a non-trivial two-
or four-legged subdiagram, but it is not the tree with the stated properties, because the
leaves of ¢ do not need to correspond to 1PI subgraphs of G.

In order to construct ¢’ from £ we proceed as follow. Pick up f € {f1,..., f-}.

o If [ is a 2-legged, r— or c— fork, then Gy is 1PI by definition, and f will be a leaf
of t/.

o If fis a two-legged s—fork, then it consists in a string of two-legged vertices. The
external legs of Gy are at scale jr(s) or above, and by the support property of the
propagators, the scales of the propagators of the string are in {jx(s), jr(s)+1}. Hence
Gy is a string of two-legged graphs, joined by propagators at scale j; = jz¢) + 1.

The vertex function corresponding to f is given by

Val(G7)(p HT C;, () Tulp),

where T; = Pg, Val;,(0;). The 6, are two-legged graphs, which can correspond to
a c—, r— or a s—fork g directly above f, or it can be a two-legged subgraph of G
at scale j;. We call the latter case a same scale insertion.
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If ©; corresponds to a c—fork, then Po, = I¥), ©; is 1PI, g is added to £, and
becomes a leave of ¢'.

If ©; correspond to a r—fork, then Po, = 1 — (1), ¢ is added to ¢, and becomes a
leave of t'.

In the case where ©; is a same scale insertion, set Pg, = 1. In that case add a fork
g, with corresponding subgraph ©; to the tree {. If ©; is 1PI, then ¢ will be a leave
of t'.

The case where ©; corresponds to a s—fork is treated in the same way as the same
scale insertion.

o If f is four-legged and one particle reducible, remove the strings attached to Gy,
and add a leaf above the fork f for the 1PI core of Gy, as well as for each 1PI
2-legged subdiagram ©; of the strings. The strings have the same properties as the
ones discussed in the s—fork case.

e Follow this procedure, extending £ to a larger tree until all the leaves correspond to
1PI subdiagrams. The final tree is t'.

Observe that if GG is 1PI, then G’ is also 1PI.

The vertices of G’ carry a scale, which has to be summed over. The relation between
the sums over the scales for G and G’ is

Z Val(G7) = Z Val(G'").

JEA(t,5) Jedt )

Note that the set J is the same in both sums, but some scales in J’ correspond to vertices.
Let denote with j, the scale index of the vertex w. If j, = 1, then w is also a vertex
of GG, and the associated function is v. Otherwise, j, is the root scale of a subgraph of
G, whose value is a vertex function in G', and j,, is summed over. For fixed jr(w), the

summed vertex function is
=P,y Y Val(G(ta)),

Jw JEH(tw ]w)

where P, € {1 — 10 [} for 2-legged vertices associated to r— or c—forks. For same
scale insertion, s—forks or for 4-legged vertices, P,, = 1. The range of summation for j,
Is

I < ju < jrw) for c—forks,

Jrw) < Juw <0 forr— or s — forks or 4-legged vertices,

Jw = Jr(wy + 1 for same scale insertions.

Remark 6.20: By construction, all the two-legged vertices of G’ have label r or ¢, but
not s, since the last would correspond to one particle reducible graphs.
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6.4.3 Bounding the Value of 1PI Graphs

Definition 6.21: Forn e N, j € Z_ and € € (0, 1), let

o9}

M(Gie) =D (il +p+ 1M,

p=1

Lemma 6.22: ) is monotonically increasing in [j| and in n, and

(U‘ + 1)m)\n(]’ 6) < )\n+m(j; 6)‘

Fore>0, M>2Y a>¢ mnecZandjcZ_,

(i) An(jla G)Am(j% 6) < )‘n+m(ja 6)7 where j = min{jlaj2}~

0

() > Aalh,€) < Aasi(fr o).

h=j+1

J .
(i) Y (I + 1" M\, (1 e) < Al”im—]g’_?M“j <2, )M

[=—00

0
(iv) D (bl + )" M Aa(h, €) < 2Xnim(j, €.
h=j+1

0

(V) > (hl+ ™M= DN, (B €) < 20 4m(j, €).-

h=j+1

(Vi) An(j,€) < ang™ + ba,
where @, = 2"/(M* — 1) and b, = Y (2p+ 1)"M 7.

p>1

See |7] for a proof of this Lemma.

Theorem 6.23: Let GG be a graph with 2m external legs, and ¢ be a planar tree rooted at
¢ compatible with GG such that the pair (¢, G) contributes to the 2m—points renormalized
Green function at order r in \ at the scale j > I. For J € (¢, j), let Val(G”) be the
value of the labeled graph G” with root scale j. For each fork j € ¢, let

ng=|{f €t: f' > f, G(t') non-overlapping , F(Gy) = 4 and G 1PI}|.
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Then for s =0 or s = 1,

(G V(G . ;
S Val(G?)]s < QY Nl DN, (5, e/2) M@,
Jed(t,g)

The power counting function Y(G) is given by

2—m—s if F(G)=2m and C:}(gb) non-overlapping
Yi(G) =19 2—m—s+ec if E(G)=2m and G(¢) is overlapping
€ if F(G) =2 and s =1,

where € is the volume improvement exponent.

Proof: This theorem is proved by induction over the depth of the pair (¢, G), which is
defined as

P=max{k e N|3fi > fo > > fr > ¢ with E(G},) € {2,4}},

that is, given any leaf of ¢, there are at most P two- or four-legged forks on the unique
path between this leaf and ¢. We first prove the naive power counting bounds with
volume improvement using the theorem 6.15(i).

P=0

Case 1: s =0, E(G) > 2.

In this case, we bound the value of G using the naive power counting given by theorem
6.15(i):

p Thm. 6.15(i) IL(G)| ei\1cweo prDgi
> Val@)lo < RPN (KiMT) Coce M

Jed(t,)
) Z H MPrGs=ine) H vl
JEA(t,5) >¢ veVa(G)
In order to bound the sum over the scales, we use

0 7 ()]

o > 1
MPsGs=in) — MPrt < 1Y A —
D> > M) i
Jr=i=(p+1 =1 =1

since Dy < —1. The sum is therefore bounded by (1 — M)~ because the number
of forks in ¢ is bounded by |L(G)|. Using Dy =2 — m — |Vo(G)| and |Va(G)| = 0, we get

IL(G)]
Z | Val(GJ>|O < (%) |’U|l)V(G>|Mj<2_m+61@(¢)60).
JeJ(t,5) -
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6.4. THE 1PI GRAPHS 85

Case 2: s = 1, E(G) =4 or E(G) =2 and G(¢) is overlapping

The derivative can act on interaction lines, in which case its effect is bounded by
|v]y < |v[tM~7. The derivative can also hit a line of the spanning tree T'(G). In this case,
a factor WM~ < W M7 appear for each derivative in addition to the bound obtained
in the case 1. The number of terms obtained by the Leibnitz rule is bounded by:

V(G| + V(G| =1 < 142|L(@)] < 2N,
N—— N——

Vertices Lines of the tree

The sum over the scales is performed exactly like in the case 1, and we obtain

2\ A&
S pvaah < (RS i o)
Jedt,9)

Case 3: s = 1, E(G) =2 and G(¢) is non-overlapping.

Let consider the graph G(T), which is a ST-graph. The derivative with respect to the
external momentum can only act on the external vertex of G(7), which is an overlapping
subgraph of G at scale j*.

If the derivative hits an interaction line, then bound its effect with |v]; < MED |y,

since € < 1. If the derivative acts on a fermionic line, then it produces a factor WM =t <
WM~ since j; > j*. The overlapping loop brings an additional factor K;M". The
effect of the derivative is therefore bounded by

WK M7 < WK MY,

The number of terms obtained by the product rule is bounded like in the case 2, and
apart from the derivative and from the overlapping loop, we use the naive power counting
in order to prove the claim.

Set

Q > 4KOK1M(1 -+ W)€2
0= 1— M-

in order to take into account the factor A\o(j,¢) = (M€ —1)~L.

(]\46 - 1)7

P>1

Consider a graph G with P > 1. Construct the graph G’ obtained collapsing all the
two- and four-legged 1PI subgraphs of G into vertices. By construction, P’ = 0, and
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86 CHAPTER 6. PROOF OF THE CONVERGENCE

for each vertex w € V(G'), the depth P, of the corresponding 1PI subgraph G, of G
satisfies P, < P. We can therefore use the inductive hypothesis.

We first bound the vertex functions F,, associated to w € V(G').

o If wis a c—fork, then

jﬂ'(w)

Fulo = I >0 > Val(G)
jw:I Jeg(twij)
jﬂ'(w)

< D D ValGhl
jw:I Jeg(twij)
ULl Ve ~
< o uly Z A, (G, €/2) M7
jw:]
6.22(il) ‘
< |L(Gw || ||VGw)|)\nw (jw(’w); E/Q)MJ"(’“”).

Using the lemma 4.15, the derivative is bounded by

Jw(w)

[Fuli < 1P > Val(Go)h

j’w:I Jeg(tw Jw)
I (w)

A+ > [Val(Ghh

jw:I Jeg(twij)

IA

jﬂ'(w)

< (1+ ﬁ>@£L<Gw>'|v|'¥<Gw>' Z M (G €/2) M7
=]

o If w belongs to a r—fork, then in the sup-norm:

Folo = 10=19) 3" > Val(G))lo

Jw >.77r(u)) Jeg(tw ]w)

< > a s ig—e(@] Y, [Valg(Goh

u>in(wy (AODE SWPCG TEtujn)
< aQu NN Y A Gy e/2) M
Jw>Jx (w)
< 20Q) Mol Ny, Gnga €/2) M0
And for the derivative,

Fuli < (048 > Y [Val (G
jw>j7r(w) Jeg(tw Jw)
L(Gy V{(Gw . jw€
< (AR NN N G /2 M
Jw>Jr(w)

Iem V(G .
< 201+ QY Mol N, (nuy €/2).
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The lemma 4.15 can be applied by the support properties of the propagator at scale
Jr(w) that accompanies F,.

e If w corresponds to a same scale insertion, then there is no sum over the scale j,.
We get therefore

Fulo < QY Nu\VEDIN, (5, e/2) M7,

and

Fuly < QY NulV N, (5, e/2) MP<.

o If F, belongs to a four-legged vertex, and G, is non-overlapping at scale j,,, then

L(Gyw V{(Gw . — 87w
Fuls < QU Mol ST A G e/2) M

Jw>Jz(w)

QNI 5 G2

< l] ( )||’U||1 ( )|M j“(w))\nw+1(]w(w)7€/2)’

IA

o If F, belongs to a four-legged fork, and G, is overlapping at scale j,, then

Fule < QPN ST 6 (G e/2) b
jw>j7r(w)
Q%L(Gwﬂ |U||1V(GW)|M_5jW(w) Z )\nw (jwa 6/2)]\4jw6

Jw >j1r(w)

Ql} ( )||’U||1 ( )|M j"'<w))\nw(3ﬂ'(m)7€/2)‘

IA

IA

We consider now the graph G’ having vertex functions F,. The two-legged subgraphs
of G’ are string of two-legged vertices, while the four-legged subgraphs of G’ are four-
legged vertices with string two-legged vertices attached to it. For simplicity, we denote
with f (rather than f) the forks of the tree ¢/, and Dy := D¢(G’). In the same way,
Dy = Dy(G"). As for P = 0, we consider the following cases separately:

Case 4: s = 0.
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We bound the value of the graph G’ using the naive power counting of theorem 6.15(i).

IVal(G7)|o < (Moo (K )EEON TT (R T 1Flo

veVL(G) weVa(G")
M P H MPiUr—ixs)

>
’ NS evian [I(GY)]
2(8 + D)V N4 Ky Ky )HENQFvev@d

H MEjﬂ(v)leEO)‘nv (jw(v)a 6/2)) H )‘nw (jw(w)a G/Q)Mjr(w)
veVy(G') weVa(G")
MPsi H MPsGr=in)
>é

V(G
B

IA

The product over the A—functions is bounded by lemma 6.22:

H Anv(jﬁ(w)aé/Q) < )\n¢(ja 6/2)7

veV(G’)

and the improvement factor for the four-legged vertices can be bounded by one. We use
the telescope sum

Jewy =3+ Y Ur = dxin)s
w>f>¢
YEL
where the sum runs over the forks in ¢, in order to get

ST ey = dVa(G+ DD IVAGAHIGr — dnir)-

weVL(GY) w>f>¢
It follows that the product

M M M .

vEVR(GY) w>f>

Collecting both products over the forks of ¢', we get

[Val(G 7)o < Mo (28 + 1)) VORI Qg O 1)

Ay (G €/2)M P T M P70,
I>¢

where D = Dy — |V4(G")| = 2 — my. The claim follows finally, summing over the scales
as in case 1. We have to choose

8(6 -+ 1)&KOK1M(1 —+ W>€2

>
o= 1— M-

(M —1).
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Case 5: s =1, E(G) > 2 or E(G) =2 and G(¢) is overlapping.

In this case, the derivative can apply on a line of T'(G’), or on the vertices F, of
G'. We bound the number of term obtained by the product rule with 2|V (G")|, and use
M=I=@ < M~J_in order to obtain the desired bound. Follow the case 4 in order to get
the final result.

Case 6: s = 1 and E(G) =2 and G(¢) is non-overlapping.

This case is similar to case 3. The graph G’ is a ST-graph, with a unique external
vertex vy, which corresponds to a connected subgraph of G’ at the overlapping scale
or higher. Thus, as in case 3, the derivative applies only on vy, and the effect of the
derivative is bounded by

Afle—1)i" < M(E—l)j’

as in case 3. Up to this factor, the claim follows exactly in the same way, as in case 4. [J

6.5 Removing the Cutoff

6.5.1 The Convergence of 1PI Graphs with j fixed

Lemma 6.24: Let (f)1cn be a sequence of functions
fERx A —C

that converges uniformly to a differentiable function f : (R x T)” — C in the limit
L — 0o. Assume further that all the functions ) and f have a compact support in the
ko—variables, independent of L. Then for each m < n,

dk dkm —oo deTE Ak,
L—dm Z / 2rMo Of(L (klj...’kn)[/—) / L. f(kl,...,kn),

(2m)dHL (27)dHL
ki, km€A?
in the supremum norm with respect to the n — m remaining variables.

Proof: Since the support of the functions f) and f are compact, the ky—integrals can
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be bounded by a constant times the supremum over the kg—variables. Hence, we bound

dk d%k,,
L ST Bk = [ S )

2amyd (2
ki,...kmEAL (27) ( )
<L N [Py k) = R k)
ki,...km€A%
i d%,  d'%k,,
+|L S flhy k) - R CF ke k)|
ki,...km€A%

By hypothesis, the first term of the right hand side tends to zero as . — oo. For the
second term,

d d
L_dm Z f(khakn)_/dkl Q)df(kla“‘a )

2m\d
ki,..kmeA) (2m) (
d'p d'prm
<y (QT)/ SR 1K) = /(1P
ki,...kmeA} Viey Viem

A7

< md||f||1f
Since the derivative norm of f is independent of L, the claim follows. U

Definition 6.25:

(1)

Let Co be the space of the functions on (R x T)?*™~! with finite || - ||o-norm, and €;
be the space of the C'—functions on (R x T)?™~! with finite norm || - ||;. Further,
let £ be the space of the L;—functions on (R x T)?™~!.

Let [1(Z_, B) be the space of the absolute summable sequences in the Banach space
B, where B is €y, €1 or L.

Let G be a 1PI graph with 2m external legs, and ¢ be a planar tree rooted at ¢

compatible with GG, such that the pair (G, t) contributes to the renormalized Green
function GS& or GL at scale j < 0. For J € J(t,7), let G’ be the labeled graph

2m,r 2m,r

with ¢(G7) = t. For L > 0, define the sequence 7" as

o | 2o Vak(@D), =1
Y= Jed(jt)
0, J<I

(L)

where we consider ;™ as a step function on R X T, with constant value on the

fundamental zone of the lattice A% .
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6.5. REMOVING THE CUTOFF 91

(iii) Let 0 > I > —oo. Define the sequence

> Valo(GY), j=1

=1 Jémie
0, g <.

Remark 6.26:

(i) %(.L) € Cy and %(.L) e L.

(i) %[ € Co, %[ € @y, and fy]I- e L.

Proof: The bounds of 6.15 imply that the ||- |Jo—norm of v} and its || ||'=norm are finite,
such that vf € Gy and wf € L. The bound for the derivative and integral norms follows
in the same way. U

Lemma 6.27: There is a sequence (y;);ez_ in €y, such that for each fixed j € Z_,

J I—>—00

v; = ; inthe || ||y — norm,
and .
fyj(.L) = «; in the || - |Jo — norm.
Further,
o 25 4, and %@) P28 in the || - ||/ — norm.

Proof: The proof of this theorem follows the proof of the theorem 6.23, by induction on
P. Pick up L > 0 such that 7 > jr.

P=0

In the case P = 0, the graph G contains no 1PI two- or four-legged subgraphs. All
the propagators are therefore at scale j or higher, and since j > 71, e (k) = e(k). Hence
7} = 7;, and %(L) is a Riemann sum that converges to ; by lemma 6.24 in the supremum

as well as in the integral norm.

P>1

As in the proof of theorem 6.23, we consider the graph G’ defined in 6.19. Since all
the scales of G’ are bigger than j > jr, e (k) = e(k). We first apply the induction
hypothesis (IH) on the vertex functions F& or FI corresponding to the vertex w of G/,
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92 CHAPTER 6. PROOF OF THE CONVERGENCE

and in a second step prove the claim for G' itself. Let w be a Vertex of G’ given by the
value of the graph G,,. Let 75 and % be the corresponding of % ) and % for the graph
Gu.

By induction hypothesis, there is a sequence 7;,, such that ﬁfw — 7, for I — —o0,

and ﬁj(.j) — 7, for L — oo in the supremum and derivative norms. We consider the
following cases:

e w corresponds to a c—fork: Let us consider the sequence

I l%ﬁ, hE{I,...,jW(w)}
e 0 otherwise.
By theorem 6.23, g} is bounded by

llgilln < Const A, (h, ) M™,

such by dominated convergence in 4 (Z_, Cy),

jﬂ'(w)

e D

Jw=—00
in the || - ||1—norm. We turn to the thermodynamic limit of
jﬂ'(w)
EP = > 15

Jw=I(L)

Observe that

19552 = o < 190552 = 331l + 1EP = D3 lo

The first term on the right hand side vanishes for L — oo by IH. The lemma 4.18
implies

_ _ 47
I = D35,1l0 < ||%~w||1f,

hence
L L—>o<> _

in the sup-norm. Using the theorem 6.23 on W(. )

;. » we apply once again the dominated
convergence in [y(Z_,€C;) and prove

FD e g

w

in the || - ||o—norm.
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e w is a r—fork

By the same argument as for the c—forks, we see that in the sup-norm,
(1 =107 = (L= 1

Since the sum over the scales j,, contains only |jr(w)| < [j| < oo terms, the function

L)

FI as well as the function FS converge to

0
Jw=7+1

e w corresponds to a same scale insertion

Since they are no sum, and no projection operator [)| the convergence is given by
the I.H.

e w corresponds to a four-legged forks

Since the sum over the root scale j,, has at most [j| terms, and that joi

no projection operator {(¥), the convergence follows from the I.H.

contains

We turn now to the proof of the claim for G’, using the fact that G’ is a graph with
vertex-functions I1 or F that converge to F, in the limit I — —oo resp. L — oo.

The convergence of v/ and v in €, and €y follows from the lemma 6.24, since the
value of GG’ is given by the integral of a bounded function with compact supports. The
convergence in L follows in the same way. U

6.5.2 Bounds on X" and GéLT)

Lemma 6.28:

(i) Let G be a 1PI, two-legged graph, that contributes to the self-energy at order r in
A, and ¢ a tree compatible with G rooted at ¢. Then

|Z > Vall(GY)|o < Qplul,

j=I Jej(j,t)

where Q) is a constant independent of r. Further,

[Z Z Valp (G |1 < Q1|U‘1'

Jj=I Jed(jt)
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(ii) Let G be a two-legged, connected graph that contributes to the two-points Green
function Gg;) at order r in A. Then

IZ D Vall(GY)|o < Qpluli.

J=I Jej(j,t)

Proof: The claim (i) for 1PI graphs follows directly from theorem 6.23:

|Z > Val (G < Z > [ Vall(G7)]o

j=I Jed(j,t) j=—00 JeJ(j,t)
G .
< QY M@ Z A3, €) MY
j=—00
< QQEL(GMIUHV(G)')\R(O, €).

Since |L(G)| = 2|V4(G)| + [Va(G)| — m, with in our case, |V4(G)| = r, |Vo(G)| = 0 and
m = 1, and n < |L(G)|, we get the claim. The proof of the bound for the derivative
norm is similar.

The bound (ii) for the two-legged graphs is obtained applying the power counting
6.15(i) on the graph G’ corresponding to G:

> ) Val(¢? Z > [ Valg(G)o,

J=I Jej(gt) Jj=—00 J€J(5,t")

where t' is the subtree of ¢, corresponding to the graph G’. Further, by 6.15(i),

| Val,(G")]o < (AK) M T 1000 [ 1©uloMPe? ] paPs0s w00,
veVL(G") veVR(G") >

where the product runs over the forks f € ¢, and Dy = D;(G’). We bound the sup-norms
of the vertices of G’ with the help of theorem 6.23, and for all the two-legged vertices v
of G’, we use the telescope sum

Jewy = > 200 = Jap) + 4,

v>f>¢
such that
H My — pgIlva(@)l H MGG =in)
veVR(G) >
Hence , .
| Val (G)]o < (4KO)IL(G)I H Uy o H M™% |8,]
veVy(G') veEVL(G")
DEj H MD?(jf—jﬂf))’

>¢
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where DE = Dy + |Vo(Gy)| = 2 — my < 0, as in the proof of theorem 6.23. By lemma
6.22 and theorem 6.23,

) IL(G)

| Val, (G)]o < (Ko M@NQeev @ Oy WOy (5, ) P83 T M7 Gr=inca),

>¢

We can therefore perform the sum over J € J(j,¢') in the same way as in the proof of
6.23, and get

SVl (G < QF Ml DN, ) M7
JeJG,t')

since Df = 1. The sum over the root scale is therefore convergent. U

Proof of 5.4(i): By remarks 6.6 and 6.7,

|E|<ZZH ZZ | Val, G7)..

J=I(L) t fet uy! G Jedi)

Using the previous lemma,

Sl < Qe ST ,Zl

t fet

The lasts term corresponds to the number of connected graphs, with r four-legged vertices,
which is bounded by const”(r!)2. Hence,

13,]s < Const” (r!)2.

The supremum norm of the two-points Green function is bounded in the same way. [J

6.5.3 The Convergence of the Green Functions

Lemma 6.29: Let GG be a 1PI, two-legged graph, contributing to the self-energy >3,,
and t a planar tree with r leaves, compatible with G. Let v be the sequence defined in
6.27. Then

(i) For I — —o0, v converges to v in [(Z_, Cy).

(ii) For L — oo, v converges to v in [, (Z_, Co).

Further, for a two-legged connected graph G that contributes to G ,, FE) - 5 in
ll(Z—>€0)‘
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Proof: If G is a 1PI, two-legged graph, we have
|7§~L)|0 < Const A\n(j, €)M? and ||7§||0 < Const A\, (j, €) M7,
by 6.23. Hence, by dominated convergence in Iy (Z_, Cp),
0 0
L
S 30
i=1 j=—o0

The convergence of v/ in [;(Z_, ;) follows in the same way.

If ’yj(-L) corresponds to a graph contributing to the two-points Green function Géﬁ?, we
apply the bound obtained in 6.28 and get

L L(G V(G . ;
7} F < QY M| VN, (5, ) M7

such that the dominated convergence in [1(Z_, C) proves the claim. U

Remark 6.30: Point (ii) of theorem 5.4 follows directly from lemma 6.29, since the
sum over the graphs that contribute to & or Gg;) is finite.

Proof of 5.4(iii):

We prove the convergence of the counterterm K order by orderin r. Set K, = —[3.,.
Then

[HAS25 > ) SH1

1KY = K[l =
< B EE =)o + 10D = D%, o,

The first term of the right hand side of last line tends to zero as I — oo by 5.4(ii), and
the second term vanishes by 4.18, and the fact that ||%,]|1 < Const. O

6.5.4 The Convergence of GYY in the L1—norm

2m,r

Lemma 6.31: Let ¢ be a planar tree with r leaves, and G be a 2m—legged graphs,
compatible with ¢. For j < 0, let J € J(t, j) be such that ¢(G/) = ¢. Then

37 | Valp (@Y < QF O]V, (7, ¢/2) M/,
JeH(t,j)
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6.5. REMOVING THE CUTOFF 97

Proof: Let consider the graph G’ defined in 6.19. Then by theorem 6.15(ii),

|ValL(GJ)|’ < (4K0>|L(G/J)| H |Uv|0 H M_jﬂ'(w)|@w|0
veVy(G’) weV2(G’)
. H MD?(jf_jﬂ—(f)) H MArUs=in) H MR O0=drw))

frint f,ext v, ext

Bounding the vertex function with 6.23, and using the lemma 6.22 in order to bound the
product over the A—functions, we get

[Val (GN)] < (AK)MEI T (@5 Ml M, e/2)

veV(G")
. H MPFGr=in) H MATUs=ins) H MAU(O—J}T@))’

fyint f,ext v, ext

where n = >~ n,. Let v be one of the external vertex of G'/. Observe that
—j = (s = Jrxip) = Jrtw,
IEY
such that

[Valp (G < (@K TT @ Mol SN NG, e/2) Mo/

veV(G)
H MPsUr=ins) H MAGr=in)
f,mt foextvéf
.HM(Aeri)(jf—j«(f)) H M—Avjw@)M—(AaJri)jﬂ(a).
VEY v, ext, V£

The sum over the scale of the four products over the forks is bounded by

Z H M~10r=i=) < (1 — M=Y/4H=ILEl,

JeJ(Gt) >
such that .
> Val (@)l < QO O art
JEIG.t)
U
The convergence of ngzyr in the || - ||'—norm is proved in the same way as the conver-

gence of the two-points function Gg;) in the || - [|o—norm.
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Appendix A

The Fourier Transform

The discrete Fourier transform of a function f on the lattice A satisfying

> X)) < oo,

XEA

for a r > 1 is defined by

f) =" flx)e™™.

XEA

f is a r—time differentiable function on the torus B = R?/27xZ%. The inverse Fourier
transform is given by

1 ¢ ikx 3d
109~ oz [ TR

Consider now a function f on the finite lattice AﬁL satisfying
> 1] < 0.
keAl

The discrete Fourier transform of f is defined by

Fo0 =27 e,

keAl

and its inverse is given by

fk) = > fx)e™™x.

xXEAL

Note that f satisfies periodic boundary conditions on Az, and is given by a Riemanian
sum that converge to the Fourier coefficient of the function f on the torus T. In particular,

Z 6z'kx _ Ld5x0~

keAd
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100 APPENDIX A. THE FOURIER TRANSFORM

Let = (2°,x) € Rx Ar. For k = (ko, k), the Fourier transform of an integrable function
f is given by
fy =Y [a e,

xeA”L

where < k, x >= —kz° + kx. Remark that by the periodic boundary conditions,

> [atra-n =Y [,

XEAL xeAp
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Appendix B

Grassman Integrals

Let A be the Grassman algebra on C generated by the fields (&), with £ = (z,0,a) € B,
where B =R x Ay x {1,]} x {0,1}. A Grassman function f(v) is a function on A of
the form

1) =3 [ [ deatuters. o 600 016

n>0

where the f,(&1, ..., &,) are totally antisymmetric complex functions of the variables &;,

and N
/df- >y Z/mdxo..

UG{TML} a’e{071} x€AL Y™

A Grassman function with Grassman coefficients is a function g of the form

s6) =3 [der o [ deaga(oi6rs. . &0 - 0(6)

n>0
where the g,’s are Grassman functions in ¢.

For Grassman fields ¢ and v, define the antisymmetric bilinear form

(6,0) = / ¢ / dn$(€) 3, 1) ¥(n).

where

3(57 77) - 6($O - yo)éxy(sam]aba
0 —1
e (0

G0 = 3 / 410 3 (30(@)00(2) + B0 (@) (2))

oe{1,l} xEAL

with

In other words,
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102 APPENDIX B. GRASSMAN INTEGRALS

The exponential function is defined by its Taylor expansion,

I (A

n>0

Definition B.1: Let C' be an antisymmetric bilinear form on A, defined by

cww>{/%mw©0@mmm»

where
0 _CTO' y L
C(fl?, g, G; 3/7 7-7 b) = ( Om—(x y> O(y ) ) *

The Grassman Gaussian integral with covariance C'is then the unique linear map on the
space of the Grassman functions

/ dpc (¥ = / fQb) duc(a

/e(w) duc () = e~ 3C(6:0)

In particular, if @; =1 fori =1,....,n/2and a; =0 fori=n/2+1,...,n

such that

/¢ 1) (&) dpc(y) = det (Co'io'j (xivxj))zj':p

and the integral vanishes if Z a; 7 5

i=1

B.1 Integral Bound

Lemma B.2: Let F,,(n) be the set of the antisymmetric functions on B” x B", defined
in 3.3. For f € F,,(n), define [/ € F,,(n —n’) by

fl(nla"'7nma§n'+1)"'7§n) —
/5 dew .. %@ww@/@a (Ew) dpic ().

Then
1 1,00 < S™ (O 111,005
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B.1. INTEGRAL BOUND 103

where

1/2m
S(C) = sup  sup ( [ vt vt duc(d))) .

meN &1,..,82m B

Proof: Consider first the case m > 0. Then

SO G, - o) A -+ déa

sup /w& D) dpic (i ‘/|fnl,...,nm,él,...,§n>|d§1mdsn
51 ..... & €B
< S (O)If]]100r
If m =0, then fori € {n'+1,...,n},
/|f' b6l T] d6 < 57(C /!f ..... e [T e
Jj=n/+1 j=1
i£j i#]

such that
[ fll1,00 < S™(CYHf]1,00-

Lemma B.3: Let C and C’ be two antisymmetric bilinear forms on the Grassman
algebra A. Then
S(C+C") < S(C)+ 8(C).

Proof: For &,...,&, € B,

/ BE) - (Em) dpicser (W) = / (&) +U/(E0) - (W(Em) + 0 (Em)) dpic()dpcr (&),

(&) + ' (&) W) 2" En) = > @ED v [Tv' ),

IuJ={1,..m} iel jeJ
InJ=p

]/w& V(&) dpco w)] < /Hw@)duc ‘ ‘/Hzp (&) dpc(v

TuJ= {1 ..... m} iel jeJ
InJj=¢
< Z SIII(C)SIJI(C/)
TuJ={1,...m}
InJ=g
= (S(@)+Ss@)”
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104 APPENDIX B. GRASSMAN INTEGRALS

B.2 Gram Bound

Theorem B.4: Let H be an Hilbert space with scalar product (-, )¢, and let f1,..., f, €
Hand g1,...,9, € H. Then

[det ((fi 950907520 | < 1T Iillac ] T llgslloc
=1 j=1

Proof: Without restriction of the generality, we can assume that the vectors f; are linear
independent. (In the other case, the determinant would vanish.) In the same way, the
vectors g; are also assumed to be linear independent. Further, let P be the orthogonal
projection on the span of the vectors f;. Then

det ((f;, gj>f}f)2j:1

- ‘det (<fiapgj>9‘f)2j:1 )

and ||Pg;||9c < ||g;l|oc. Thus, we assume that the vectors g; are in the span of the f;’s.

Let {fl, e fn} be the set of orthogonal vectors, obtained applying the Gram-Schmidt
orthogonalization procedure on the f;’s. Define the vectors g; in the same way. In
particular,

4,j=1

det (i 35) )

det ((f3, 95)90); ;1 . ‘

n

Further, since the span of the f;’s and of the g;’s are the same, the matrix ((ﬁ, §j>g{)

1,7=1
is, up to reordering of the columns, diagonal. Thus,

det ((fis 95950751 = LT 1A Moc TT 1315
i=1 =1
Finally, by construction, || f;||sc < ||fi|lsc and ||g;]|s¢ < |lg;]|a¢, and the claim follows. O

Corollary B.5: Suppose that the covariance of definition B.1 can be written in the form
CU’U'/ (:Ea xl) - <fac,m gm’,a’>f}6,

where f, , and g, , are vectors in an Hilbert space H with scalar product (-, )5, Suppose
further that for all x € R x Ay and o € {1, |}, || fao|lsc < K7 and ||g20||3c < K3. Then

S(C)=sup  sup ( / w@l)--.wszm)duc(w))mmgKIKQ‘

meN&y,...,LomeB

104



B.3. SYMMETRIES 105

B.3 Symmetries

Definition B.6: For a function S : B x B — C, consider the following linear transfor-
mation of the fields

v(©) = [ deS(EOvee)
(i) The transformation S is invertible if there is a function S™' : B x B — C such that

/ d¢ S(€, OS¢ ) = / d¢ 571E, OS¢ m) = 8(6,m),

where §(£, ) = 0007 0xyd (2 — y°).

(ii) A Grassman function

O / Q1 dn al€rs s En) D(ED) -+ ()

n>0

is invariant under the transformation S if f(1%) = f(¥), or equivalently

f;zg(gla o 7571) - fn(gla .- '7571)7 for all n > Oa

where!

e ) /d&i'"dé’zS(Si,&)mS(&;,&) o€l ).

Remark B.7: The generating functional for the Green functions contain the Grassman
function (¢, ). All the physical symmetries should therefor leave this function invariant.
Hence, we consider only symmetries satisfying

7° =4,
or
[ dean s sttmacea) — aie.
Suppose that the symmetry does not mix the particle and the hole states,
S(&m) = sor (2, Y5 a)dan,

where s is a transformation of the spacial and spin coordinates only, that depends on the
particle species. For such a transformation, the condition J° = J reads

3 / 02 S 5502, 2)850 (2, ) = Banb(a® — ")y,

oe{T,l} ZEAL

1Observe that the coefficients f, transform as contravariant tensors.

105



106 APPENDIX B. GRASSMAN INTEGRALS

with 855 (2,2) = ss0(2,2,0) and ss,(z, ) = S50(2, x, 1). Thus
550 (2,2) = (57 os(, 2)

which corresponds to a “unitarity” condition.

Example B.8: Let R € SO(3) be a rotation. Then
SU’T(mO) X3 yO’ Y) = 6($O - yo)éRTx,yUaT(R)a

and
Sor (2, %59%, y) = 8(2° — y°)ORrray UL (R),

where U(R) is the two dimensional spinor representation of the rotation R, and U}_ is
the complex conjugate of U,,. Thus,

PE(Y x) = ZU‘” Yo (20, RTx),
Te{T,l}

and

= D Un () (s, RTx).

T{T.1}

Remark B.9: Suppose that the covariance C'(¢,n) defined in B.1 is invariant under the
transformation S(&, 1) = Sor (%, y; a)dqp. Then

/ de'dif S(&,€) S(n,1f) C(€ ) = C(€,m).

Proof: First observe that?
[dean s sttm o -
0 —8or0(@, ) S (Y, y) Crro (Y, @) )
. d Ay ’ ’ ’ .
Z/ / Y ( 1) 820 (Y y) Corrr (2, ) 0

a—/ 7—/

Since ' is invariant under the transformation S,

Z/dw /dysmx )87 (Y, y)Cror (Y, 7') = Cro(y, 7).

a—/ 7—/

’In order to simplify the notation, we write J da instead of Z / da?.
xEAL
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B.3. SYMMETRIES 107

Further,

/ de'df S(€,€') S(n, ) CE 1) =
- ! ' 0 —Sgo’ (:E, x’)gﬂ, (ya yl)CT’U’(yla xl)
B ;;,/dm /dy ( gUU’(xaxl)sTT’(yayl)CU’T’(xlayl) O > ’

Using the “unitarity” condition, one gets

Z / w / Ay 000 (2,2') 8120y, ) Crvr (3, @) =
Z/dm /dy Doro(@',2) (57 e (v, ) Cror (', 7).

The invariance of C' under the transformation S, and consequently under its inverse S~}
leads us to

Z//dfﬂ/dy Soo/ (1, 2") 87 (y, Y ) Crror (Y, ') = Cro(y, ).

U

Lemma B.10: Suppose that the covariance is invariant under the transformation S.
Then

[ o5t v € dnetv) = [ w(6)+ v@) ductw),

Proof: By definitions of the transformation S and of the Grassman Gaussian integral, for
n even,

/ W) S (6 dc ) —

n/2
=Y (i / 4] dg, S(€,€) - S(Em ) [ €L €y
7T€Sn/2 =1

If the covariance C' is invariant under the transformation S, the claim follows directly

form remark B.8. For odd n, the Grassman integral vanishes, and the claim is verified.
O

Lemma B.11: Suppose that the covariance is invariant under the transformation S.
Then, if f € F,,(n) is a Grassman function which is invariant under the same transfor-
mation S,

ro=y
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108 APPENDIX B. GRASSMAN INTEGRALS

where )
f (7717'~-a77m§£n’+1a~~a£n) —

/d&...d@z/ f(nl,...,nm;&,...,sn)/w<&>-~¢(§n/>duc<w>.

Proof:

fls(nla .- '7nm;§n’+17 cee )gn)

v S m) < - S (s Mm) /d&lz’ﬂ 2 d€y, S (6 Gan)
S &) S s G-, 6)
/
1

e dn:nS(nia 771> o 5(777/717 nm) /daz’-{—l e dgz S(S’L’—l—la g’ll"f‘l) e S(gza gn)
~/dfs;~~~d§;/f<n1,..,,ng;si,...,5;>/w<§1>~~w< 1) dpc ()

dn

/
fo

I

/dsl...dsn//dni---dn:nS(n;,m)~'S(n:n,nm/d&«~~d§;5(§1,sl>'--
S EN (e s El L) / QY- gl S (60, €0 - S (6w E1)
. / BED - (ED) duo ()

= / ey d& [5 (s s 61y ) / IE) Y (&) dpc (W)

By the previous lemma and the invariance of f, the claim follows. U

Corollary B.12: The generating functional for the Green functions is invariant under
the symmetries of the Hamiltonian. Thus, the Green functions have the same symmetries
as the Hamiltonian.

B.3.1 Spin Symmetry

Lemma B.13: Suppose that the covariance is diagonal in the spin index, Cy (z,y) =
85-C(z,y), and that the interaction is given by the potential

V(gla 527 537 54) - 6(11(126113(146(1116(13060103602046(551 - $3)5(x2 - $4)V0102 (ml - $2)'

Then the two-point Green function is diagonal in the spin index.

Proof: Consider the following transformation, involving only the spin structure of the
fields:
S(x,0,a;y,7,b) = a0 (x — 1y)s'?

oT)
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B.3. SYMMETRIES 109

where s € SU(2). Then

Cs(xa g, 1;y77-7 O) - Z S:;U’STU/C(UI)(xa y)
o'e{1,1}

and

VE(€1,65,€3,€4) = 001000300001 80018(11—23)8(@a—4) D Vo (21=23)[50,01*[ 0,03 |-
of,ohe{T,1}

Let s be the spinor representation of a rotation along the vertical axis,

e’ 0
Sg — 0 6—z’9 )

then C% = C and V% = V, and all Green functions are invariant under the spin
transformations Sy defined above. In particular,

G§9 (CE, a3y, T) — GQ(xa 03y, T)'
Hence for all 6 € [0, 27)
Golx, 15y, 1) = G5 (2, 15y, 1) = €7 Gal, 13y, ),

and we deduce

G2($7 Ta Y, i) = 0.
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Appendix C

Spin-Dependent Hamiltonian

In this chapter, we consider a system of spin % fermions in a weak, constant magnetic field,
parallel to the vertical axis. Fermions with different spin orientations have a different
energy, such that the Fermi surface is actually split in two folds, corresponding to the
two different spin orientations. With the argument that proved Luttinger’s theorem, we
derive the results obtained by Luttinger in [1].

C.1 Free Electrons in a Weak Magnetic Field

Let T'(x —y) be the hopping amplitude between sites of the lattice A in a weak magnetic
field h, parallel to the vertical axis.! The (non-interacting) Hamiltonian of the system is
then given by

Ho= Y Y Tx-y)et®)e(x) +ush Y (¢f (®)e;(x) - ¢f (x)ep(x)) -

oe{T,l} x,yeA xXEA

In momentum space,

Hi= 3 [ Graee (96 ()

oe{T,1}

where

and

Tn the tight-binding approximation, the electrons are trapped in bounded states by the positive ions.
The hopping amplitude determines the probability for an electron to jump from one ions to an other. A
weak magnetic field modifies slightly the bounded states, and the hopping amplitude is modified as well.
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112 APPENDIX C. SPIN-DEPENDENT HAMILTONIAN

Let consider a many-particle state containing n electrons, obtained filling all the energy
levels of the spin up states up to the energy I, and all the levels with spin down, up to
the energy F/|. The total energy of such a many-particle state is given by

E / A0 — ) 1 / B0+ psh)
0 - — K 2
o e(k)<E;+upH (2m)d b e(k)<E|—ugh (2m)4 b

Er+ugh E|—pph
= [ dentoe = uah) 1 [ deptie b
0 0
where p(e) is the spectral density of states. Minimizing the total energy with respect to
E; and E)|, fixing the total density of particles
Ey—uph Ei+uph
n= [ dep(e)+ [ dep(e),
0

0

one gets F; = F| = Ep.2 Thus, the ground state of a system of n independent electrons
in a weak magnetic field is obtained filling all the one-particle states with energy less
than the Fermi energy Fp, which is defined by the condition

Ep—pph Ep+ugh
n= / de p(e) + / de p(e).
0 0
The ground state energy is then given by
Ep+pph Ep—uph
Ey = / de p(e)(e — pph) + / de (e + pph),
0 0

and the Pauli magnetization is

Ep+uph
m =pg [ deple).
Ep—pph

The surfaces of Fermi are defined by
Sy={keT:ek) =FEp+puph}and S| ={k e T:ek)= Epr — pph},

such that
m = pp(2m)~(Vol(S,) — Vol(S))),

while
n = (27)~4(Vol(S;) + Vol(S))).

2In order to avoid the confusion with up, we use Ep for the Fermi energy, instead of the usual
notation p for the chemical potential.
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C.2. INTERACTING ELECTRONS IN A WEAK MAGNETIC FIELD 113

C.2 Interacting Electrons in a Weak Magnetic Field

We turn now to the study of a system of interacting fermions in a weak magnetic field h,
parallel to the vertical axis. In order to avoid divergence problems, we work on the finite
lattice Ap. We refer to chapter two for the basic definitions. Let e(k), defined as in 2.3,
be a band function describing electrons on a lattice with a weak magnetic field parallel
to the vertical axis, and satisfying the assumptions A2 and A3. Define

ea(k) — €(k) - (_1)UﬂBh7

where (—1)" = —(—1)! = 1. If the magnetic field A is small enough, the functions e, (k)
still satisfies the assumptions A2 and A3. Let the Hamiltonian of the system on the
finite lattice be?
Y =17 )+ Av® 4 kO,
keA?
oe{1,1}
where

es(k), if |e; (k)| =

S

sgi(eq (k) 7, if les (k)| <

is defined as in 2.10. The interaction is given by

PN

1
v = 2134 Z Ok, ks ko +ke Vor (K1 — k2)-
ki, 7k4eAuL
ore{T,1}

¢y (ki)ef (ks)eo(ka)er (ka),
and the counterterm is now spin dependent:
KP0) = L7 Y ulk 0, \et (k)eo(k),

keAl
oe{T,1}

with the function u in the set of the possible counterterms
K = {u:Ai x Cx{1,1} — C|uis analytic in A € C with u(k,o,0) =0,

d ||<A
an sgpuo_QL )

Remark C.1: The magnetization operator

MP = L7 (ef (K)er(k) — ¢f (K)ey (k)

keAl

3We assume that L is such that % is much smaller than ppgh.
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114 APPENDIX C. SPIN-DEPENDENT HAMILTONIAN

commutes with the Hamiltonian E(L)

Proof: We proved in 2.12 that*
NP,V =0,

and thus [M), V] = 0. One easily verify that
(NP, et (K)eo (k)] = 0,

and the magnetization operator commutes with the Hamiltonian. U

Remark C.2: The spectrum of the magnetization operator M%) is a subset of Z.

We can repeat the construction of the Green functions presented in the second chapter,
using now the spin dependent propagator

1

CP (k) = ——————.
(&) iko — S (k)

The theorem 2.18 of chapter two can easily be extend to the spin dependent case, in
order to obtain

Theorem C.3: For all L € N, there is a )\((JL) > (0 that depends on L such that

(i) For all u € K, the connected Green functions G( (k1,01 ..o kom, Oom, A; u) are an-
alytic in A with analyticity radius )\((J . In particular, the two—point Green function
c(,L)(k; A) is analytic in \.

(ii) For all u € X, the density of fermions p(™ (), u) is analytic in A with analyticity
: (L)
radius A\ ”.

(iii) For all u € K, the magnetization density of fermions, defined by

mB0) = L3 (e ey () — e (e (1)

keAl

= lim LY / (S8 (k) = 5 (k) ) et

$0—>O+
keAl

is analytic in A with analyticity radius )\(()L)

4Observe that the determining condition was that the interaction was of the form V =

Y Vi ()b ()b () ().

ore{l,l} x,yEA
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C.2. INTERACTING ELECTRONS IN A WEAK MAGNETIC FIELD 115

Further, one easily verify that with the same argument as in 2.20,

Theorem C.4: For each L < oo, and u € K, the density and the spin magnetization
are independent of the coupling constant:

p(L)()\) = p(L)(O) and m(L)()\) = m(L)(O).

Finally, one can extend the proof of the convergence of the density in the thermody-
namic limit to the magnetization density:

Theorem C.5: Assume A1-3. Then there is a sequence of counterterms (K(L) (k, o, )\))LGN
in K that converges uniformly in (k, o) € T x {7, |} to the formal power series K (k, o, \)
of theorem 2.22, such that

(i) For L — oo, the two-point Green function G converges uniformly in k = (ko, k) €
R x T to the (formal) Green function GG, of the model in the infinite volume with
dispersion relation e, (k) and counterterm K(k, o, \).

(ii) For each m > 1, the 2m—point Green function (?5{;2 converges in the limit L — oo
to the formal Green function of the model in the infinite volume in the L;—norm.

(iii) The density of fermions p™ (\) converges in the sense of formal power series to the
density of fermions in the infinite volume:

PP T p(N)

(iv) The magnetization density m”()\) converges in the sense of formal power series to
the magnetization density in the infinite volume:

mP ) "2 m(\)
where m(A) is defined by the formal power series

d+1
m) — tim [ -2

=0, ) (2m)dH!

(S: (k) = S, (k)) e,
We deduce as in the case of the density,

Corollary C.6: The spin magnetization m(A) is independent of the coupling constant.
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116 APPENDIX C. SPIN-DEPENDENT HAMILTONIAN

C.3 Luttinger’s Theorem

Definition C.7: The physical (or interacting) Fermi surfaces S, of the system are the
surfaces of discontinuity of the occupation numbers n,(p, \).

Luttinger’s Theorem: Let ,(k) — i be a dispersion relation of a system of fermions in
a constant weak magnetic field h parallel to the vertical axis, satisfying the assumptions
A2 and A3. Assume further that the interaction v,, between the fermions satisfies A1,
and let p be the (given) density of fermions of the system.

Then the sum of the volumes enclosed by the Fermi surfaces is independent of the
interaction strength.

Proof: In the free-fermion approximation, the Fermi surfaces are
SO —(keT: e, (k) = Ep}.

Since by assumption ¢,(k) — Er has convex level sets, there is a chemical potential Fy
such that
p = Vol(SV) + Vol(S©).

Once the chemical potential is fixed, the spin magnetization is determined by
m® = Vol(8\”) — Vol(5).

We turn now to the interacting system. For each F in a neighborhood of Ej, there is an
interacting dispersion relation

eini(k, 0, B A) = Ry (e() — B)(K)

defined as a formal power series e;.(k, o, I/ \) = z Ne,(k, o, F). For each R > 0, there
r>0
is a A\g > 0 such that for A with |[A] < Ao, the dispersion relation

R
ko, B\ =Y Neyk 0, E)

r=0

satisfies the assumptions A2 and A3. For X with || < |A|, consider the model defined
by the generating functional

S(h, p: N ef' (5 N) = /6>\IV(¢7¢)+8(w7¢;>\/76R(.;>\))+(¢)¢)+(¢7w)dﬂCeRc;)\) (1, 1),

which is well-defined by theorem 1.1. By corollary 1.2, we know that the occupation
number corresponding to this model has a jump on the surfaces

SB —(keT: efk o E;\) =0},

116



C4. EXAMPLE: SPHERICAL FERMI SURFACES 117

which are therefore the interacting Fermi surfaces up to the order R in perturbation
theory. The theorem C.4 implies that the density of the model is

p(N5 el (5 0)) = p(05 €™ (5 1)) = VoI(S™) + Vol(S[™).
Further, we obtain for the magnetization
m(N; (- 0)) = m(05 (5 \)) = Vol(ST™) — Vol(s™).

In order to achieve the right physical model, the chemical potential I/ has to be adjust
such that the density of the system is just p. There is a Fp near Fy (depending on R
and A) such that

p = p(0;e" (1)) = Vol(SI™) + Vol(s1).

Hence,
Vol($7) + Vol(S™) = Vol(51) + Vol (51,

and to each order R in perturbation theory, the volume enclosed in the Fermi surface is
independent of the interaction strength. U

Remark C.8: Observe that the Pauli magnetization of the interacting system is still
given by the difference between the volumes enclosed in the two Fermi surfaces:

m(0; e (- 1)) = Vol(S{"™) — Vol(s™).

Nothing allows to say that the difference between this two surfaces should be constant,
and thus, in general, the volume of each Fermi surface is not conserved separately.

C.4 Example: Spherical Fermi Surfaces

Strictly speaking, the case of a spherical Fermi surface is incompatible with the lattice
structure considered in our work®. We although present this example, in order to illustrate

the construction presented above.

Let consider a system of fermions, described by the band function €,(k) = 21;; —
(=1)?ugh, where m. and pp are the mass and the magnetic moment of the fermions.
Obviously, the assumptions A2 and A3 are satisfied for small h-fields. Let p be the

density of Fermion in the system.

5The band function corresponding to the discrete Laplacian on the lattice would be > i(cosk; — 1)
rather than |k|?.
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118 APPENDIX C. SPIN-DEPENDENT HAMILTONIAN

C.4.1 The Non-Interacting Case

In the free-fermion approximation, the ground state is obtained filling all the one-particle
states with energy less than the Fermi energy Fy. We have

Vol(s) — / Ak O (Ey — £,(k))

Sa—
_ | azl 1| (Qm)d/2 (EO + (_1)UﬂBh)d/2 .

Thus, in the free-fermion approximation, the Fermi energy Fj is determined by

[Sa-1]

P=— == (2m)"* ((Bo + psh)"* + (Fo — pph)?)

In particular, in two dimension, d = 2,

p = 4dmmIy,

and Fy = p/(47wm). Observe that the density is independent of the magnetic field. In
three dimension, d = 3

A 3/2 peh 3/2 peh 3/2
p = Temm (4 2y - Ly

83” (2m B,/ <1 + g (%) + 0(4)) .

The Pauli magnetization is given by

12

Sa—
m@wL§H>W«E+Mm — (o — psh)™?).

In two dimensions, d = 2

m© = drmpuih?.

In three dimensions, d = 3,

m® MB%T(QWE )32 ((1 n MBh)g/z (1— @)3/2)

FEq Fq
~ Ar(2m)**EY? iLh + O(3)
37 ,[,I,Bh
= P +O0(3).
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C.4.2 Interacting Fermions

We consider now the case of interacting fermions, and proceed as in the proof of Lut-
tinger’s theorem. In order to find the interacting dispersion relation, we invert the renor-
malization map

eimt(k, 0, \, ) = Ry (6,() — B) (k).

By the rotational symmetry, we know that e;.(k, o) = % — (=1)%uph — E\x(E), where
the term (—1)7ugh is single out for convenience. The Fermi surfaces are the surfaces on

which the energy takes the value Fy\(F).

In order to recover the initial model, one has to pick up Fg, such that the sum of the
volumes enclosed in the Fermi surfaces is just p, solving the equation

Ey = EX\(Ep),

since Fy gives the radius of the Fermi surfaces for which the density is just p. In order to
compute the density and the Pauli magnetization, we don’t need to solve explicitly this
equation. Since Vol(S,) depends only on F\(Fr) = Ey, we see that

Vol(S,) = Vol(S™).

The case of a spherical Fermi surface is thus particular, in the sense that the volume of
each Fermi surface is independent of the interaction strength. This conclusion cannot be
proved in general.
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