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Abstract

The microarray technology has attracted a tremendous amount of interest re-
cently because it allows to monitor a large number of genes in parallel in a
single experiment. While a considerable amount of research has been done in
the field of microarray image analysis, relatively little work has been spent on
oligonucleotide design. The selection of the oligonucleotides which will be put
on the microarray stands at the beginning of every experiment. Because the
hybridization and melting process is at the core of the microarray technology,
we first conceive a model to predict the melting temperatures between oligonu-
cleotides and the DNA in the sample. For the actual oligonucleotide selection,
different strategies need to be pursued depending on the type of experiment.
In principle we always start with a large pool of candidate oligonucleotides and
then narrow down this set until we have the desired number of oligonucleotides.
We present two complementary approaches. The first approach uses suffix ar-
rays to efficiently select oligonucleotides which are as specific as possible to a
specified gene. The chosen algorithm is optimized to minimize memory and
time requirements. The second approach can be used to produce characteristic
fingerprints or signatures of a gene. Fingerprinting only works if we restrict
ourselves to a particular family of genes, for example from a single organism.
Our fingerprinting algorithm uses the concept of entropy from information the-
ory. This method attempts to maximize the information content of the chosen
oligonucleotides. We conclude our work by analyzing the running times of the
algorithms and a description of our implementation in DARWIN.





Zusammenfassung

Die Microarray-Technologie ist in letzter Zeit auf enormes Interesse in der
Forschergemeinde gestossen, weil sie es zum ersten Mal ermöglicht, in einem
einzigen Experiment eine grosse Anzahl von Genen gleichzeitig zu untersu-
chen. Während auf dem Gebiet der Microarray-Bildanalyse schon recht viel
Forschung betrieben wurde, gibt es über das Design der Oligonukleotiden rela-
tiv wenig Material. Die Auswahl der Oligonukleotiden steht immer am Beginn
eines Microarray-Experiments. Weil der Schmelz- und Hybridisierungsvorgang
den Kern der Microarray-Technologie ausmachen, entwickelten wir zuerst ein
Modell um die Schmelztemperaturen zwischen den Oligonukleotiden und der
untersuchten DNA zu bestimmen. Für das eigentliche Auswahlverfahren gibt es
verschiedene Möglichkeiten, wobei je nach Art des Experiments die eine oder
andere Möglichkeit näher liegt. Das Prinzip ist dabei immer dasselbe. Wir be-
ginnen immer mit einer grossen Auswahl von Kandidatenoligonukleotiden und
filtern dann ungeeignete Kandidaten heraus, bis wir die gewünschte Anzahl
von Oligonukleotiden haben. Wir stellen zwei Ansätze vor, die sich ergänzen.
Der erste Ansatz benutzt Suffix-Array-Datenstrukturen um möglichst effizient
Oligonukleotide auszuwählen, die spezifisch für ein bestimmtes Gen sind. Der
vorgestellte Algorithmus minimiert Speicher- und Zeitanforderungen. Der zweite
Ansatz generiert charakteristische Fingerabdrücke von Genen. Dies kann aber
nur funktionieren, wenn wir uns auf eine bestimmte Familie von Genen be-
schränken, z.B. von einem einzelnen Organismus. Der vorgstellte Algorithmus
benutzt dabei das Konzept der Entropie aus der Informationstheorie. Diese Me-
thode versucht den Informationsgehalt der ausgewählten Oligonukleotiden zu
maximieren. Wir schliessen die Arbeit mit einer Untersuchung der Laufzeiten
der beiden Algorithmen und einem Überblick über unsere Implementation in
DARWIN ab.
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Chapter 1

Introduction

1.1 DNA Microarrays

It is today widely believed that in all living organisms thousands of genes and
their products such as RNA or proteins function in a complex and orchestrated
way that creates the mystery of life. However, traditionally research in molecular
biology has worked on a “one gene in one experiment” basis which meant that
throughput has been very limited and that it was hard if not impossible to
obtain the “whole picture” of a gene function. In the past few years, DNA
microarrays have attracted a tremendous amount of interest among biologists.
For the first time this technology promises to monitor the whole genome in a
single experiment which provides a much better insight into the complicated
interactions between the genes in a genome of an organism. Terminologies that
describe this technology that are being used include, but are not limited to:
Biochip, DNA chip, DNA microarray, genome chip and gene array. Affymetrix
Inc.1 owns a registered trademark, GeneChip, which refers to its patented and
proprietary DNA array technology. Figure 1.1 shows such a GeneChip.

Base-pairing (i.e. A-T and G-C for DNA; A-U and G-C for RNA) or hy-
bridization is the key principle behind microarrays. A microarray is a plastic
or glass slide containing a large number of so-called spots. Each spot consists
of many copies of a known DNA sequence, also called a probe. The spot size
is typically less than 200 microns in diameter and one microarray can contain
thousands of spots. The probes in the spots are then allowed to hybridize
with the DNA under examination which we will call the target. Whenever the
Watson-Crick complementary sequence of a probe is present in the target DNA,
that DNA will bind (hybridize) to the probe. After a while, all unhybridized
sequences are washed off the chip and the amount of hybridized sequences at
each spot can be measured. DNA microarrays are fabricated by high-speed
robotics. There are two variants of the DNA microarray technology in terms of
the properties of the probes:

cDNA probes. Each spot consists of probe cDNA (complementary DNA, 500–
5000 bases long) immobilized to a solid surface such as glass. The probes
are put on the slide by robots and are immobilized for example by using
an amino linker. The slide can be reused by replacing the probes.

1http://www.affymetrix.com
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Affymetrix GeneChip probe array. Image courtesy of Affymetrix.

Figure 1.2: GeneChip probe arrays are manufactured through a combination of
photolithography and combinational chemistry. Image courtesy of Affymetrix.

Oligonucleotide probes. Each spot consists of oligonucleotide (20–80 bases
long) or peptide nucleic acid (PNA) probes synthesized either in situ (on-
chip) or by conventional synthesis followed by on-chip immobilization like
it is done with the cDNA probes. Affymetrix uses a proprietary in situ
technique where the oligonucleotides are synthesized layer by layer using
photolithography. This process is similar to the one used in computer
chip fabrication. Figure 1.2 depicts the process. Microarrays with on-chip
synthesized probes cannot be reused with different probes.

Furthermore, we will distinguish three major fields of application for the DNA
microarray technology:

Identification and detection of DNA sequences. The goal of these exper-
iments is usually the identification or detection of a particular gene or gene
mutation in the target.

Comparative gene expression experiments. In these experiments the ex-
pression levels of certain genes in the target are compared against the
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expression levels in a reference sample, for example to determine the im-
pact of certain external factors. The target DNA is obtained by reverse-
transcribing mRNA (messenger RNA) from the cell nucleus of the target
organism. We thus only deal with coding regions of the DNA.

Classification of genes. Here we use microarrays to obtain signatures or fin-
gerprints of genes or gene families to classify them without the need to
completely sequence them.

There are several steps in the design and implementation of DNA microarray
experiments as the following overview shows:

Probe design The first step is to determine the probes that will be put on the
chip. Since all the following steps will depend on the quality of the probes,
this step is important in order to maximize the information gained from
an experiment. A simple and straightforward solution would be to put
the whole genome of the organism under examination on the chip, but in
most cases this is not feasible but also not necessary. Various effects such
as cross-hybridization or melting temperature need to be considered.

Chip fabrication After the first step which was a purely theoretical exercise,
the chosen probes have to be synthesized and then immobilized on the
chip. As already mention, the synthesis can be done directly on-chip or
in a separate step. Figure 1.3 shows the relation between the microarray,
spots and oligonucleotides. If we want use cDNA we first have to reverse-
transcribe the mRNA.

Target labeling In order to later detect the target DNA which has hybridized
with the probes on the microarray, we must label them with a reporter
molecule that identifies their presence. This is usually done with fluores-
cent tags. Depending on the microarray used, it is sometimes also possible
to use two samples in one experiment which is particularly useful for com-
parative gene expression experiments. In that case we use two different
fluorescent tags so that we are able to distinguish the two samples. Note
that the number of fluorescent molecules that label each target sequence is
unknown since it depends on its length and sequence composition. Fluo-
rescent intensities can therefore not be quantitatively compared. However,
results from two experiments where the same number of labeling molecules
are added to the same target are still comparable.

Assay The target is now allowed to hybridize with the probes. It is important
that also strands which are not perfectly complementary in the Watson-
Crick sense may hybridize. Figure 1.4 shows the hybridization process.

Scanning After the target samples which did not hybridize have been washed
off the slide, the intensities of the reporter molecules can be measured
using a scanner. Figure 1.5 shows such a scan. It should be noted that
the colors on these images are false colors and are just for illustration.
The actual fluorescent tags do not show their colors unless stimulated
with a specific frequency of light by a laser. Even then, the colors are not
directly observed, rather the wavelength of the emitted light is used to
tune a detector which measures the fluorescence.



10 CHAPTER 1. INTRODUCTION

Millions of DNA strands built up in each cell

Actual strand = 25 base pairs

Actual size of GeneChip¤

500,000 cells on each GeneChip¤ array

AA
1.28 cm

1.28 cm

Figure 1.3: A single spot (cell in Affymetrix terminology) with oligonucleotides
of length 25 on a microarray. Image courtesy of Affymetrix.

Interpretation The final product of such a microarray experiment is the afore-
mentioned scanned image. While in principle one can now simply measure
intensities, there are a number of problems which need to be considered.
Besides the actual intensities, the scanned image also contains different
kinds of noise, for example from irregular spots, dust on the slide or non-
specific hybridization. Even after overcoming these detection and calibra-
tion problems, there are other issues, such as inherently lower concentra-
tions of some of the target sequences. A considerable amount of research
has been done in the field of microarray analysis. [Sch03] provides a good
overview.

While there are numerous publications about microarray analysis, relatively
little material is available about the probe design and selection.

1.2 Thesis Objectives and Purpose

The goal of this thesis is to investigate ways how to design suitable oligonu-
cleotide molecules for DNA microarray experiments and to implement the found
methods in DARWIN 2. In order to design oligonucleotides, one must understand
the interactions between the microarray and the sample under examination and
then conceive a model of those processes. In this thesis we will look at two ap-
proaches to these issues, the first approach is primarily for experiments where
the goal is to identify or detect genes and the second approach allows to cre-
ate fingerprints or signatures of genes. Both methods will be implemented in

2For more information about DARWIN see http://cbrg.inf.ethz.ch/Darwin/
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RNA fragment hybridizes with DNA on GeneChip

RNA fragments with fluorescent tags from sample to be tested

Figure 1.4: Depiction of the hybridization between probes and target. Here the
target is RNA. The spheres represent the reporter molecules. Image courtesy
of Affymetrix.

Figure 1.5: A scanned microarray image.
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DARWIN using interpreted DARWIN code or compiled C code where inter-
preted code is too slow. An overview over the implementation and results will
conclude the thesis.

1.3 Related Work

The selection algorithm we will present here is closely related to the method
presented in [Rah02] by Rahmann et al. Unlike earlier methods, the approach
presented there is not based so heavily on melting temperature prediction. While
it is true that the hybridization and melting process is at the core of every mi-
croarray experiment, it is still not fully understood and most existing research
focuses on melting temperature prediction in solution and not on microarrays.
Another advantage of the Rahmann approach is that it is considerably faster
than earlier methods, even though it still gets quite time-consuming with large
sequences. Those are the two main reasons why we chose this method as the
basis of our implementation. Notable earlier work include [LS01] and [KS02].
The method presented in [LS01] by Li and Stormo is based on the fact that
the melting temperature of a near-match is sufficiently low if the near-match
contains more than four errors (mismatches, insertions or deletions). Melting
temperature estimation is then done only for the remaining candidate oligonu-
cleotides. The approach taken by Kaderali and Schliep in [KS02] uses a heuristic
dynamic programming algorithm that tries to find the most stable alignment
of a candidate oligonucleotide to every sequence. The specificity of a candidate
oligonucleotide is determined by looking at the difference of the melting tem-
peratures between the perfect match to the target gene and the second best
match. In principle this approach should provide good results but because of
the uncertainties with respect to melting temperature prediction and the heuris-
tic alignment algorithm it remains unclear how close this unspecificity measure
comes to reality.

The work mentioned so far mostly deals with oligonucleotide selection for
gene identification or detection. For the class of experiments where the goal
is to create characteristic signatures or fingerprints of genes, our work will be
based on the results presented in [HSS+00] which uses the concept of entropy
from information theory.



Chapter 2

Melting Temperature

Prediction

When DNA microarray experiments are performed, what is actually measured in
the end is the amount of oligonucleotide molecules on the chip that hybridized
with a matching sequence. It is therefore of importance to understand the
hybridization process in order to choose the best oligonucleotide molecules. In
particular it is very useful to predict the temperature at which a given DNA
sequence hybridizes.

2.1 DNA Hybridization Properties

When DNA in the double helix state is heated, it will start to denature at
a certain temperature and if the temperature is being increased even further,
the two strands will separate or melt completely. Conversely, if single DNA
strands are being cooled down, they will hybridize appropriately i.e. they will
form complementary base pairs in the Watson-Crick sense. This is also termed
annealing. The definition of the melting temperature Tm is as follows:

Definition (Melting Temperature Tm) Given an equal amount of a known DNA
sequence and its reverse complement. The melting temperature Tm of this
sequence is the temperature at which 50% of the strands are in denatured (or
random coil) form and 50% are in double helical form.

Note that the above definition implies that only perfectly complementary
sequences will hybridize. This is not true but for the moment it is being assumed
to be the case. Furthermore, the transition from double helical state to a fully
denatured state is not a single cooperative transition but may happen with
many intermediate stable states. Since a large number of melting temperature
predictions have to be performed for our purpose of probe design, a two-state
model where a particular sequence is either in random coil or double helical
state is being chosen to keep the computational complexity at an acceptable
level.[AS97] and [San98] showed that for oligonucleotides on DNA chips this
is a reasonable approximation of the reality and that the intermediate melting
states are mainly significant in natural polymers with heterogeneous sequences.

13
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Therefore the following two-state reversible equilibrium annealing reaction of
two DNA single strands will be the basis of our subsequent considerations.

S1 + S2

Keq

⇀↽ D (2.1)

S1 and S2 denote the two reverse complementary single DNA strands, Keq

is the equilibrium constant, i.e. the ratio of the concentration of the double
stranded oligonucleotide to the concentrations of the single stranded oligonu-
cleotides.

Keq =
[D]

[S1][S2]
(2.2)

The interactions between bases in nucleic acids can be divided into two kinds
(see also [Cup97]):

Base pairing in the plane of the base pairs due to hydrogen bonding between
the opposing bases. Between G and C there are three hydrogen bonds but
between A and T there are only two of them.

Base stacking in the plane perpendicular to the plane of the basis due to
London dispersion forces and hydrophobic effects

2.2 Simple Models

A very simple model to estimate the melting temperature of DNA duplexes
simply counts the base pairs. A very common formula is the following:

TM = 2 (number of AT pairs) + 4 (number of GC pairs) (2.3)

The reasoning behind this formula is that in AT base pairs there are only
two hydrogen bonds whereas in GC pairs there are three hydrogen bonds and
therefore more energy is needed to break up the bonds between the GC pairs
which yields a higher melting temperature in GC rich DNA duplexes. Obviously
the above formula does not model the reality very precisely. A more accurate
version which is still based mostly on the composition of the base pairs but
also accounts for the concentration of Na+ in the solution has been proposed in
[BD98]:

TM = 87.16 + 34.5
number of GC pairs

total number of base pairs
+

log[Na+]

(

20.17− 6.6
number of GC pairs

total number of base pairs

)

(2.4)

It can be seen that a high concentration of cations such as Na+ (measured

in mol
l

) increase the stability of the double helix structure i.e. it increases

the melting temperature. Measurements (see also [BD98]) have shown that the
stabilizing effect of the cations decreases with increasing GC content of the DNA
duplex. There exists an earlier version of the formula where the logarithm is
not multiplied with the term which depends on the GC content.
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While there is no disagreement over the fact that the melting temperature
depends on the composition of the solution in which the experiment takes place,
there have been only very few measurements of actual melting temperatures on
microarrays. Usually for microarray experiments not the same solutions are
used as for the PCR or other experiments. Furthermore, the fact that the
oligonucleotides are immobilized on the chip surface by a linker does have an
influence on the melting behavior. There have been many measurements con-
ducted for melting temperatures in solution (not on a chip) and it has been
shown ([OVG+98] and [San98] provide a good overview) that the nearest neigh-
bor model which will be investigated in the following sections provides a good
approximation of real melting temperatures. Even though the more simple
models which have been presented above are only good enough for a rough
approximation, they are widely used in practice.

2.3 A Short Overview of Thermodynamics

Let us consider a generic chemical reaction:

A + B ⇀↽ P + Q (2.5)

What happens if we mix A, B, P and Q together? It really depends on
the initial concentrations. The concentrations will shift toward the equilibrium
position, so depending on the initial concentrations the direction of the reaction
can be to the left or to the right. The equilibrium constant is defined as follows:

Keq =
[P ]eq [Q]eq

[A]eq [B]eq

(2.6)

Therefore if the initial ratio of products to reactants,

[P ][Q]

[A][B]

is different from the equilibrium ratio, the reaction will proceed until the
actual ratio equals the equilibrium ratio and then stops at equilibrium. Note
that thermodynamics does not tell anything about how long a reaction will take,
this belongs to the field of kinetics.

If

[P ][Q]

[A][B]
<

[P ]eq [Q]eq

[A]eq [B]eq

then the reaction goes in the direction that increases P and Q and decreases
A and B, so the reaction goes to the right. Conversely, if

[P ][Q]

[A][B]
>

[P ]eq [Q]eq

[A]eq [B]eq

the reaction goes to the left.
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Another important concept is the free energy ∆G. ∆G is a measure of
how far a chemical reaction is from equilibrium and thus represents the amount
of energy that can be released by a chemical reaction. If ∆G is negative for
a reaction, it is called an exergonic reaction and it will happen from left to
right. An endergonic reaction happens from right to left and ∆G is positive.
Generally, exergonic reactions are more favorable because the reaction proceeds
from a state of higher energy to one of lower energy, hence the more negative
∆G is, the more favorable the reaction.

The definition of ∆G:

∆G = −RT ln
Keq

[P ][Q]
[A][B]

(2.7)

or rearranged:

∆G = −RT lnKeq + RT ln
[P ][Q]

[A][B]
(2.8)

R is the gas constant (1.987 cal
K·mol). Note that the free energy of a favorable

reaction can be used to make an unfavorable reaction happen. In order to be
able to compare different reactions, ∆G0 is defined as the free energy change for
a reaction under conditions where the product/reactant ratio is 1. Note that
∆G0 is not the free-energy change at equilibrium (that is zero).

∆G0 = −RT lnKeq (2.9)

and therefore

∆G = ∆G0 + RT ln
[P ][Q]

[A][B]
(2.10)

The free-energy change of a chemical reaction is a balance between two
factors, heat and entropy. In general, reactions that release heat are more
favorable than those that do not. Similarly, reactions that increase entropy
tend to be more favorable than reactions that make more organized products.
Heat energy arises from chemical reactions by making and breaking chemical
bonds. Some of that generated heat may be used during the reaction to organize
or order the products of the reaction.

∆G = ∆H − T∆S (2.11)

∆G = free energy This is the useful energy that can be obtained from a chem-
ical reaction. Negative for favorable reactions.

∆H = enthalpy This is the net amount of energy available from changes in
bondings between reactants and products. If heat is given off, the reaction
is favorable and ∆H is negative.

∆S = entropy This is the change in the amount of order during a reaction.
Order (i.e. ∆S < 0) is unfavorable, disorder (i.e. ∆S > 0) is favorable.
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Figure 2.1: Schema of the CA respectively the TG doublet. The dots represent
the hydrogen bonds.

AA = TT
AT
TA
CA = TG
GT = AC
CT = AG
GA = TC
CG
GC
GG = CC

Table 2.1: The 10 unique doublets.

Like with ∆G and ∆G0 we can define ∆H0 and ∆S0 as the enthalpy re-
spectively the entropy change for a reaction where the initial product/reactant
ratio is one. Note that the enthalpy or the entropy of a favorable reaction can
still be positive if the entropy respectively the enthalpy is negative enough to
result in a negative free energy.

2.4 The Nearest Neighbor Model

The models presented so far do not account for the sequence of the strands, i.e.
we only look at a particular base pair and we do not consider the neighboring
bases in the two strands. The Nearest Neighbor (NN) model always considers a
so-called doublet which simply consists of two successive base pairs. In duplex
DNA there are ten such unique doublets. Some combinations are identical, for
example the doublet depicted in figure 2.1 corresponds to both the CA and TG
doublet. Table 2.4 lists the doublets.

[San98] compares experimental data from seven different sources and unified
them into a single parameter set which is shown in table 2.2.

In order to estimate the melting temperature of a sequence we first compute
the enthalpy and entropy using the unified measured values by just adding up
the values of the individual doublets. This means that for a DNA duplex with
n base pairs, we have n-1 doublets and thus twice n-1 values which we sum
together for the entropy and the enthalpy. Additionally we add for each end of
the oligonucleotide another correction parameter, depending if the duplex ends
with a GC or an AT base pair. It can be shown (see [OVG+98], [BDTU74])
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Doublet ∆H0 in kcal
mol

∆S0 in cal
K·mol

AA = TT -7.9 -22.2
AT -7.2 -20.4
TA -7.2 -21.3
CA = GT -8.5 -22.7
GT = AC -8.4 -22.4
CT = AG -7.8 -21.0
GA = TC -8.2 -22.2
CG -10.6 -27.2
GC -9.8 -24.4
GG = CC -8.0 -19.9
Terminal GC 0.1 -2.8
Terminal AT 2.3 4.1

Table 2.2: Unified oligonucleotide parameters in 1 M NaCl

that the melting temperature can be estimated by the following formula:

Tm =
∆H0

∆S0 + R · logCT

4

− 273.15 (2.12)

Here CT is the concentration of DNA strands (bound and unbound). We
subtract 273.15 from the fraction to obtain the temperature in Celsius instead
of Kelvin. For the enthalpy and entropy change we simply use the values from
table 2.2. Take care of the units (kcal vs. cal). Even though the values provided
by this formula agree quite well with measurements, it has to be noted that
these values are for experiments for DNA free in solution and that the behavior
on a microarray chip is indeed different. There are various publications which
investigate this issue (for example [FDP+98] and [VP02]) it is currently still
not very well understood and most implementations of oligonucleotide design
software use the above formula. Another issue is the dependence on the strand
concentration CT . Of course, this concentration is unknown since, in some way,
it is what we want to find out. So in practice, just a fixed value is used, most

commonly 10−6 mol
L .

We now have a reasonable model which allows us to predict the melting
temperature of an oligonucleotide given its composition. We will later use this
model to estimate the melting temperatures of desired (i.e. between oligonu-
cleotides and their respective target DNA) and undesired hybridizations. The
goal will be to choose the melting temperature and the oligonucleotides in a
way that maximizes the desired hybridizations while minimizing undesired hy-
bridizations.



Chapter 3

Suffix Arrays and Related

Structures

3.1 Introduction

When we design oligonucleotides for DNA microarrays to find a particular se-
quence, for example a gene or a whole genome, one of the main tasks is to check
if a candidate oligonucleotide is specific to the gene we want to identify or if it
occurs somewhere else which would mean that we cannot use the oligonucleotide.
Since hybridization can also occur with imperfect matches, we must also look for
sequences which do not match exactly but which have a high similarity. Since
the data we have to process can be quite large, it is essential to use an efficient
search algorithm to perform these searches. We will use suffix arrays for this
purpose which are more space-efficient than suffix trees and achieve almost the
same performance.

3.2 Basic Definitions and Concepts

Before we can look at the exact details of the suffix array construction algo-
rithm, we need to define some concepts which we will later use. The most basic
definition is how we represent DNA as a string.

Strings over the DNA alphabet. Let Σ := A, C, G, T be the DNA alphabet.
Sometimes additional characters such as a wildcard character (usually denoted
as X) are introduced, however we will not consider these, thus all input data
must only contain the characters in Σ. We use the character order A < C <

G < T . In the implementation of the algorithms sometimes we use integers
instead of characters and then we code the A as a 1, the C as a 2, the G as a 3
and the T as a 4. We write Σ+ for the set of all non-empty strings consisting
of characters from Σ. For a string s = (s0, . . . , s|s|−1), we use the notation
s(i) := si...|s|−1 to denote the suffix of s starting at position i.

Definition (Longest Common Factor) A common factor of two strings s and t

is a string that is both a substring of s and of t. A common factor is a longest
common factor if no longer common factor exists. We write lcf(s, t) for the

19
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length of the longest common factor of s and t. This is sometimes also called
the shared length of two strings.

For a string s, let sp be the prefix consisting of the first p symbols of s if s

contains more than p symbols, and s otherwise.

Definition (Longest Common Prefix) The longest common prefix of two strings
s and t is the longest string that is both a prefix of s and t. We write lcp(s, t) :=
max0≤i<min(|s|,|t|){i : si = ti} for its length.

Definition (Suffix Array) Let s = (s0, . . . , sn−1) ∈ Σ+ be a sequence of length
n. Let s(i) be the suffix of s starting at position i. The suffix array of s is an
array p = (p[0], . . . , p[n]) of length n + 1 that contains the starting positions of
the suffixes of s in lexicographical order, i.e. sp[0] < sp[1] < . . . < sp[n].

Definition (Longest Common Prefix (lcp) Array) Let s = (s0, . . . , sn−1) ∈ Σ
be a sequence of length n and p be the suffix array of s. Then lcp is an array of
length n + 1, where lcp[i] is the length of the longest common prefix of s(p[i−1])

and s(p[i]) (for i > 0) and lcp[0] = 0.

Definition (h-gram) Let a be a string of length n. We will call the h-gram at
ai the string (ai, ai+1, . . . , ai+h−1) with subscripts taken mod n, except that for
h = 0 the “0-gram” at ai is simply ai. Or more succinctly, the h-gram at ai is
(ai, . . . , ai+max(h,1)−1).

Definition (h-successor) Let a again be a string of length n. The h-successor
of the h-gram at ai is the h-gram at ai+h again with the subscripts taken mod n.

Definition (q-Bucket) Let x be an array which encodes substrings of a string
s (for example a suffix array). A q-Bucket is an interval [l, r] such that lcpl <

q, lcpr+1 < q and lcpi ≥ q for all i = l + 1, . . . , r.

Definition (<p,≤p, =p, 6=p, >p,≥p) We define the relation <p to be the lexi-
cographical order of p-symbol prefixes; that is, u <p v if and only if up < vp.
The relations ≤p, =p, 6=p, >p and ≥p are defined in a similar way.

3.3 Suffix Sort

3.3.1 Suffix Sort Introduction

We first construct a suffix array from a given sequence which we can later use
to perform efficient searches and other operations on that sequence. As we have
seen, a suffix array is simply a lexicographically sorted array of all suffixes of the
sequence. Note that suffix sort and suffix array construction mean the same.

To start off, we will look at an algorithm to construct a suffix array which
will form the basis of our further considerations and which we will further refine
and enhance subsequently. Our suffix sort algorithm follows closely the ideas
presented in [MM93] and [MM97].

The input of our algorithm is a DNA sequence (or, to be precise, an integer
array; we use the terms array, string and sequence interchangeably for a data
structure which holds DNA sequence information) a and its length n. We will
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use an integer coding, where the nucleotide A is coded as a 1, C as a 2, G as a 3
and T as a 4. We will modify the elements of this array in the algorithm, so it
is necessary to make a copy before calling the algorithm. The array a may only
consist of integers 1 ≤ x ≤ 4 except the end of the array needs to be marked
with a 0, i.e. an−1 = 0.

The following data structures will be used during computation of the suffix
array:

• a: Array of h-gram codes. Initially holds the array for which we want to
find the suffix array. The code ai encodes the h-gram at the ith position
of the original array a.

• al: Linked-list area (or list “body”), no initial value.

• p: Permutation of original array a. Initially the identity permutation.

• pl: List heads, no initial value.

• k: Variable with the number of buckets we have in the current iteration.
The array a can contain values in the range 0 . . . k−1. Initially k = 5 since
elements in a can be in the range 0 . . . 4 before we start the algorithm.

• BUCK: Flag at the beginning of “buckets”. Used for elements of p.

Note: All the arrays (i.e. a, al, p and pl) have length n.

Precondition of the algorithm: The array a holds n values with n ≥ 1.
Each element is in the range 1 . . . 4 except the last element an−1 which
has value 0 and serves as an end marker. The values of the array represent
a DNA sequence.

Postcondition of the algorithm: The array p is the suffix array of a.

We will order 2h-grams for h = 0, 1, 2, 4, 8, 16, . . . by iteratively performing these
four steps (the individual steps will be detailed further down):

1. Lists creation. Construction of linked lists of like-valued elements of a or-
dered in reverse order of their h-successors as given by p. Save the resulting
list headers in pl and the list “bodies” in al.

2. Sort. Make the elements of the array p point to the elements of a in order
of increasing value. This is done in reverse, i.e. we start with the biggest
values. Mark the first element of each h-bucket in p with the BUCK flag to
demarcate the buckets.

3. Refinement. Refine the buckets by placing a BUCK mark on each pi where
the h-successors of api

and api−1
differ.

4. Recode. Recode a according to the new buckets. Count the new number
of buckets and assign that value to k.

Keep in mind that this is just a rough overview of the algorithm, we look at
each step more closely in the subsequent sections. Let us look at an example.
Suppose we want to find the suffix array of the following array:

ainitial = (1, 4, 3, 1, 2, 4, 1, 2, 1, 4, 2, 1, 1, 4, 3, 2, 4, 1, 3, 4, 0)
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As we already stated above, p is initially the identity permutation:

pinitial = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

Hence, in our case n=21 which is also the length of a and p. So in the first
iteration h is equal to 0. After the first iteration a is still unchanged and p is a
permutation of a which simply sorts the elements:

p = (20, 0, 3, 6, 8, 11, 12, 17, 4, 7, 10, 15, 2, 14, 18, 1, 5, 9, 13, 16, 19)

This permutation puts the elements of a in this order:

(0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4)

After the second iteration (where h = 1)

a = (4, 13, 7, 2, 6, 11, 2, 5, 4, 12, 5, 1, 4, 13, 8, 6, 11, 3, 9, 10, 0)

and

p = (20, 11, 3, 6, 17, 0, 8, 12, 7, 10, 4, 15, 2, 14, 18, 19, 5, 16, 9, 1, 13)

We will now look in detail at the third iteration in which h is equal to 2.

3.3.2 Suffix Sort Step 1: Lists Creation

State before step 1. Each element ai of the array a encodes an h-gram. We are in
the third iteration i.e. h = 2 (remember that h = 0, 1, 2, 4, 8, . . ., it is increased
at the beginning of each iteration, i.e. before step 1). a has this value:

a = (4, 13, 7, 2, 6, 11, 2, 5, 4, 12, 5, 1, 4, 13, 8, 6, 11, 3, 9, 10, 0)

Note that this a is not equal to the initial a. Also this a has values which are
greater than four (unlike the initial a). It will later be seen how this happens.
In the example, a would encode the following 2-grams:

a0 = 4 encodes (1, 4)
a1 = 13 encodes (4, 3)
a2 = 7 encodes (3, 1)
a3 = 2 encodes (1, 2)
a4 = 6 encodes (2, 4)
a5 = 11 encodes (4, 1)
. . .

Furthermore, when h > 0, p (the permutation of a) lists h-grams in lex-
icographical order. If h = 0, p contains the input order (i.e. the identity
permutation: p = (0, 1, . . . , n)). As we already stated, in our example p has this
value:

p = (20, 11, 3, 6, 17, 0, 8, 12, 7, 10, 4, 15, 2, 14, 18, 19, 5, 16, 9, 1, 13)

and therefore puts the 2-grams in the following order (remember that we take
the subscripts mod n and therefore also p0 which points to the last element of
a, namely a20, encodes a 2-gram of length two):
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(0,1) (2,4)
(1,1) (3,1)
(1,2) (3,2)
(1,2) (3,4)
(1,3) (4,0)
(1,4) (4,1)
(1,4) (4,1)
(1,4) (4,2)
(2,1) (4,3)
(2,1) (4,3)
(2,4)

Figure 3.1 shows again the relation between a and p.
Step 1. We construct linked lists of like-valued codes in a ordered in the

reverse order of their h-successors as given by p. For our example, at the end
of this step we would have these 14 linked lists:

0 → a20

1 → a11

2 → a3 → a6

3 → a17

4 → a12 → a0 → a8

5 → a7 → a10

6 → a15 → a4

7 → a2

8 → a14

9 → a18

10 → a19

11 → a16 → a5

12 → a9

13 → a13 → a1

This means for example that the elements a12, a0 and a8 have value 4, that the
element a11 is the only one with value 1 and so forth. We store the list heads
in pl and the list areas in al, we therefore have:

pl0 = 20
pl1 = 11
pl2 = 3, al3 = 6
pl3 = 17
pl4 = 12, al12 = 0, al0 = 8
pl5 = 7, al7 = 10
pl6 = 15, al15 = 4
pl7 = 2
pl8 = 14
pl9 = 18
pl10 = 19
pl11 = 16, al16 = 5
pl12 = 9
pl13 = 13, al13 = 1

As already stated, we iterate over the elements in a in a very particular order
and push each element to the front of the corresponding list. We iterate over
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Figure 3.1: Relation between a and p before a new iteration, here h = 2 and a

as in the example.
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p from p0 . . . pn−1. Each element pi points to an element of a. We retrieve the
h-predecessor of this element and put it to the front of the corresponding linked
list. Let us look again at our example. Consider we start iterating over p and
we look at p0. It has the value 20 and thus points to a20. Now we want the
h-predecessor of a20 which is a18, since h = 2. Remember that the h-predecessor
of ai is simply ai−h with the subscripts taken mod n. The value of a18 is 9. To
push a18 to the front of the list of elements with value 9 we let the list head pl9
point to a18 by assigning the value 18. We let al18 point to the old first element
of the list by assigning the old value of pl3 to al18. This is actually not necessary
in this particular case since the list was empty before.

As defined before, the integer variable k contains the current maximum value
that elements of a can contain, in the example k = 14.

The following C code snippet shows how this can be done:

for (i=0; i<n; i++) {

j = p[i];

j = predecessor(j, h);

l = a[j];

al[j] = pl[l];

pl[l] = j;

}

There is one problem with the given solution. How do we know where the
linked lists end? This can be resolved by flagging the elements which are the
last elements of a linked list. A good solution is to use the sign bit since we
only deal with positive integer values.

It is obvious that the two arrays al and pl contain exactly the same informa-
tion as a and p. It would therefore be sensible to use the same arrays for both
representations of the data and to convert the data “in place”. We will show
later that this can be done, but for the moment we suppose that we duplicate
the data and thus maintain all four arrays.

3.3.3 Suffix Sort Step 2: Sort

State before step 2. We have k linked lists, with the list heads in pl and the list
areas in al.

Step 2. In this step we make p point to the elements of a in the order given
by the linked lists. We assign the values starting from pn−1 and then move down
to p0. We start with the list header plk. Since the elements in the linked lists
are already in reverse order we can process the linked lists in ascending order
while assigning the values to p in descending order. In our example, this results
in the following assignments, in this particular order:
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p20 = pl13 = 13
p19 = al13 = 1
p18 = pl12 = 9
p17 = pl11 = 16
p16 = al16 = 5
p15 = pl10 = 19
p14 = pl9 = 18
p13 = pl8 = 14
p12 = pl7 = 2
p11 = pl6 = 15
p10 = al15 = 4
p9 = pl5 = 7
p8 = al7 = 10
p7 = pl4 = 12
p6 = al12 = 0
p5 = al0 = 8
p4 = pl3 = 17
p3 = pl2 = 3
p2 = al3 = 6
p1 = pl1 = 11
p0 = pl0 = 20

Furthermore we set the BUCK flag for each element that starts a new bucket
(i.e. the list heads). In the example above, this would be p20, p18, p17, p15, p14,
p13, p12, p11, p9, p7, p4, p3, p1 and p0.

3.3.4 Suffix Sort Step 3: Refinement

State before step 3. Permutation p lists h-grams in lexicographical order. Fur-
thermore it is bucketed by h-grams. Within each bucket h-grams are ordered by
their h-successors. The array a which we will use again in step 3 is still the same
as in step 1. Following our example, table 3.1 shows the 2-grams encoded by p

and the corresponding 2-successors and it can be easily seen that the 2-grams
are sorted by their 2-successors within each bucket.

Step 3. We refine the buckets by values of h-successors in a. This means
that we iterate over all elements of p and mark each element which differs from
its h-successor with a BUCK flag to indicate the beginning of a new bucket. The
following C code snippet shows how this can be implemented:

for (i=0, j=-1; i<n; i++, j=l) {

l = a[successor(pos[i] & ~BUCK, h)];

if (l != j)

pos[i] |= BUCK;

}

Since in our example the 2-successors within a bucket always differ from each
other, each element of p will get the BUCK flag.

3.3.5 Suffix Sort Step 4: Recode

State before step 4. The array p holds an ordered, bucketed list of 2h-grams.
Table 3.2 shows p and the refined buckets for our example.
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p a 2-gram 2-successor BUCK flag

p0 = 20 a20 = 0 (0,1) (4,3) x
p1 = 11 a11 = 1 (1,1) (4,3) x
p2 = 6 a6 = 2 (1,2) (1,4) x
p3 = 3 a3 = 2 (1,2) (4,1)
p4 = 17 a17 = 3 (1,3) (4,0) x
p5 = 8 a8 = 4 (1,4) (2,1) x
p6 = 0 a0 = 4 (1,4) (3,1)
p7 = 12 a12 = 4 (1,4) (3,2)
p8 = 10 a10 = 5 (2,1) (1,4) x
p9 = 7 a7 = 5 (2,1) (4,2)

p10 = 4 a4 = 6 (2,4) (1,2) x
p11 = 15 a15 = 6 (2,4) (1,3)
p12 = 2 a2 = 7 (3,1) (2,4) x
p13 = 14 a14 = 8 (3,2) (4,1) x
p14 = 18 a18 = 9 (3,4) (0,1) x
p15 = 19 a19 = 10 (4,0) (1,4) x
p16 = 5 a5 = 11 (4,1) (2,1) x
p17 = 16 a16 = 11 (4,1) (3,4)
p18 = 9 a9 = 12 (4,2) (1,1) x
p19 = 1 a1 = 13 (4,3) (1,2) x
p20 = 13 a13 = 13 (4,3) (2,4)

Table 3.1: 2-grams and 2-successors encoded by p in the example. The horizon-
tal lines demarcate the buckets.
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p a 2-gram 2-successor BUCK flag

p0 = 20 a20 = 0 (0,1) (4,3) x
p1 = 11 a11 = 1 (1,1) (4,3) x
p2 = 6 a6 = 2 (1,2) (1,4) x
p3 = 3 a3 = 2 (1,2) (4,1) x
p4 = 17 a17 = 3 (1,3) (4,0) x
p5 = 8 a8 = 4 (1,4) (2,1) x
p6 = 0 a0 = 4 (1,4) (3,1) x
p7 = 12 a12 = 4 (1,4) (3,2) x
p8 = 10 a10 = 5 (2,1) (1,4) x
p9 = 7 a7 = 5 (2,1) (4,2) x

p10 = 4 a4 = 6 (2,4) (1,2) x
p11 = 15 a15 = 6 (2,4) (1,3) x
p12 = 2 a2 = 7 (3,1) (2,4) x
p13 = 14 a14 = 8 (3,2) (4,1) x
p14 = 18 a18 = 9 (3,4) (0,1) x
p15 = 19 a19 = 10 (4,0) (1,4) x
p16 = 5 a5 = 11 (4,1) (2,1) x
p17 = 16 a16 = 11 (4,1) (3,4) x
p18 = 9 a9 = 12 (4,2) (1,1) x
p19 = 1 a1 = 13 (4,3) (1,2) x
p20 = 13 a13 = 13 (4,3) (2,4) x

Table 3.2: The refined buckets in the example.
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Step 4. In this final step of an iteration, a is recoded according to the new
buckets. In particular, for each ai, ai = k where k indicates the current bucket
number. Initially k is minus one and it is incremented each time a BUCK flag is
encountered in p as we go through the elements in p. Therefore the elements in
a are in the range 0 . . . k. after this step. In addition we increment k once more
such that it is equal to the number of buckets. In our example, the recoded a is

a = (6, 19, 12, 3, 10, 16, 2, 9, 5, 18, 8, 1, 7, 20, 13, 11, 17, 4, 14, 15, 0)

and the C source for a possible implementation of this step looks like this:

for (i=0, k=-1; i<n; i++) {

if (pos[i] & BUCK)

k++;

a[pos[i] & ~BUCK] = k;

}

if (++k >= n)

break;

At the end of each iteration we check if k = n. If this equality holds true, this
means that each bucket holds only one element and we have found the suffix
array. In our example, at the end of this step k = 21 which means that the
algorithm has finished. We do not need the array a anymore and the suffix array
is p:

p = (20, 11, 6, 3, 17, 8, 0, 12, 10, 7, 4, 15, 2, 14, 18, 19, 5, 16, 9, 1, 13)

which puts the suffixes in the following order

0
1143241340
121421143241340
124121421143241340
1340
1421143241340
143124121421143241340
143241340
21143241340
21421143241340
24121421143241340
241340
3124121421143241340
3241340
340
40
4121421143241340
41340
421143241340
43124121421143241340
43241340
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3.3.6 Space Requirement Reduction

In this section, it will be shown how the space requirement can be reduced from
4n to 2n. This comes not without a price in the form of a slight performance
penalty. The algorithm presented in the preceding sections already paved the
way for this improvement. As already mention, the arrays p and a basically
contain the same information as the arrays pl and al. Let us look at the usage
of those arrays:

Step 1. Construction of al and pl from a and p.

Step 2. We use al and pl to fill the array p

Step 3. We add additional BUCK flags in p. We use a to look up h-gram codes.

Step 4. We recode a by using p.

Now consider that al and a share one array and also p and pl share one array.
In step one this means that the array p holds two different types of data:

• Elements of p

• Elements of pl

a holds three different types of data:

• Elements of a

• List links of al

• List ends

It was already suggested in the discussion of step one that a flag should be used
to mark the end of the linked lists. A flag ORIG will now be used instead on
the elements of p to mark the elements which have not yet been processed. So
before step one, we mark all elements of p with this ORIG flag. As before we
push the elements to the list fronts in the order given by the h-successors in
p. As we push an element to the respective list front, we remove the ORIG flag.
So at the end of this step, only the elements in p which are at the end of a
linked list still have the ORIG flag set. The following code snippet implements
the refined step one:

for (i=0; i<n; i++) {

for (j=pos[i]; !(j&ORIG); j=al[j])

j = pred(j&~ORIG,h);

l = a[j];

al[j] = posl[l];

posl[l] = j;

}

Besides the removal of the ORIG flag there is an additional change with respect
to the original version. There is an additional for-loop. It is necessary to take
care of the lists ends. Consider for example the case where we are in the first
iteration, i.e. p is the identity permutation. Furthermore say a0 = 1. Now for
i = 0 we would assign the value of zero to pl1. Thus this element will be the last
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in the linked list of elements with value one. But also p1 has changed and no
longer carries the ORIG flag. We must not process this element again and this
is exactly what the for-loop does. So after the first step the array a and p have
been overwritten by al and pl.

During the second step there can be no collisions between the arrays because
we start with the biggest values. New values fill in the n-size array p from the
top while the size-k array pl of list heads shrinks towards the bottom. Since no
list is empty, the two uses of p will not collide.

In the original version of the algorithm, the next step would be to place BUCK
marks in p to refine the buckets. But it is necessary to look up the h-successors
in a. Because a has been overwritten, it needs to be reconstructed first. The
third step will be divided into two sub-steps:

Step 3a: Reconstruction. Reconstruction of a from the buckets in p.

Step 3b: Refinement. The bucket refinement as described in the initial al-
gorithm.

In the fourth step we only use a and p which we still have from the third step.
Note that the reconstruction phase in step 3a is exactly the same as in step four.
One additional task that needs to be done is to mark all elements of p with the
ORIG flag for the first step of the next iteration.

3.4 Bucket Arrays

A suffix array is a great help to reduce the time to search for a short sequence
in a long sequence. But it is still necessary to look through the suffix array
to see if there is a matching suffix, for example by performing a binary search.
In order to further reduce the search time, the concept of the bucket array is
introduced. The bucket array contains the left endpoints of all q-buckets that
occur in the sequence.

Definition (Bucket (bck) array) Define a code 〈a〉 for each letter a ∈ Σ as fol-
lows: Let 〈A〉 = 1, 〈C〉 = 2, 〈G〉 = 3, 〈T 〉 = 4. For a q-gram Q = (Q0,. . . ,Qq−1)

∈ Σq , let 〈Q〉 =
∑q−1

i=0 4q−1−i(〈Qi〉 − 1). For c = 0, . . . , 4q − 1, let bckc be the
index in the suffix array of the left end l of the q-bucket [l, r] of the q-gram Q

with 〈Q〉 = c if Q exists in the suffix array string. If Q does not exist in the
suffix array, set bckc = ∞.

Note that the bucket array element denotes the left end of the corresponding
q-bucket. To find the other matches, we can simply look at the following suffixes
in the suffix array.

Consider the following example. We want to construct a bucket array of
q-grams with length five, therefore q = 5 and hence the length of the bucket
array is 4q = 45 = 1024. Now say Q=ACGTA, according to the above definition
〈Q〉 = 44(〈A〉−1)+43(〈C〉−1)+42(〈G〉−1)+41(〈T 〉−1)+40(〈A〉−1) = 108.
If Q occurs in the suffix array pos at position i, bck108 = i. There must be no
other occurrence of Q in the sequence which is more to the left, i.e. if there is
another occurrence of Q at posj , then posj > posi must hold true.

Before the bucket array of a particular sequence can be constructed, q must
be fixed. The bucket array can be constructed at the same time as the suffix
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array and the lcp array of the background sequences. These data structures
will subsequently be used to search for prefixes of candidate oligonucleotides in
the background sequences. These concepts will be introduced later, but at this
point it is important to see the impact of the choice of q. Since all matches
between a candidate oligonucleotide and a suffix where the common prefix is
smaller than q will be ignored, relevant matches might be lost if q is chosen too
small. Furthermore it is desirable to have a large q in order to keep the buckets
(i.e. the number of matching suffixes) small. This is beneficial because otherwise
for each lookup we have to look through a large number of suffixes in the suffix
array which we wanted to avoid with the introduction of the bucket array in
the first place. On the other hand, a small q is advantageous for the time and
space requirements of the bucket array construction. In [Rah02] Rahmann et
al. suggest q = blog4

n
128 c as a good default value for q, where n is the length of

the suffix array. With this choice of q, the expected size of a bucket is constant
for all buckets.

3.5 Enhanced Suffix Arrays

In the preceding sections we have seen three key data structures which will
later play a central role in the oligonucleotide selection process. All three data
structures are integer arrays which can be built taking a sequence as an input.

Suffix Array A sorted list of all suffixes of the sequence. The length is the
same as the length of the input sequence.

LCP Array An array of the longest common prefixes between two consecutive
elements in the suffix array. The length is the same as the length of the
input sequence.

Bucket array Array of the left endpoints of q-buckets. The length is 4q and
we choose q = blog4

n
128c.

Since all these three arrays are closely related to each other and can be built
conveniently at the same time, we call them together as a whole the enhanced
suffix array of a sequence.



Chapter 4

Probe Selection with Suffix

Arrays

4.1 Overview

Most existing oligonucleotide selection algorithms take a set of sequences as
an input. Initially there is a large pool of candidate oligonucleotides from all
those input sequences. Subsequently the number of candidate oligonucleotides
is narrowed down by applying various selection criteria. While some of those
criteria are rather simple such as self-complementarity of the oligonucleotides,
others can be very costly both in terms of time and memory requirements.

The algorithm which is presented here allows for the identification of genes
in the sample under examination (i.e. in the target). Possible applications
include the measurement of gene expression, gene detection or classification.
The algorithm divides the target sequences in two classes:

Master sequences. These are the sequences we wish to detect. In the case
we want to measure the expression of a particular gene, this gene would
be the master sequence. The information gained from the experiment
will be whether or not the master sequences were detected in the target
sequences. There can be one or more master sequences.

Background sequences. The background sequences help to improve the qual-
ity of the oligonucleotides. Consider again the case where we want to
measure the expression of a gene. Here we would choose the genes from
which we know that they are expressed in the target as the background
sequences. We want to choose the master sequences as specific as possi-
ble with respect to the background sequences. Since it is possible that
there are genes in the background sequences which are very similar to the
ones in the master sequences, the quality of the resulting oligonucleotides
would be very low if we would choose the oligonucleotides just based on
the sequences we are interested in.

Consider the following example. Say the first sequence is our master sequence,
the other two sequences are background sequences.

Sequence 1: 5’-GCTTCGATGCTAAAGCTAAAA-3’

33
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Sequence 2: 5’-AFGGCTTCCGTAGCTAGCTAA-3’

Sequence 3: 5’-AGCTAAAGCCATAGCAT-3’

Now if we would choose our oligonucleotides by simply looking at the first
sequence, we do not know if it is specific or not. In fact, the beginning as well
as the end of the sequence is not specific, as we can see:

Sequence 1: 5’-GCTTCGATGCTAAAGCTAAAA-3’

|||||

Sequence 2: 5’-AFGGCTTCCGTAGCTAGCTAA-3’

and furthermore:

Sequence 1: 5’-GCTTCGATGCTAAAGCTAAAA-3’

|||||

Sequence 2: 5’-AFGGCTTCCGTAGCTAGCTAA-3’

|||||

Sequence 3: 5’-AGCTAAAGCCATAGCAT-3’

So clearly, it would be sensible to not include the sequences that are shared by
sequence one and any of the other two sequences in our oligonucleotides since
we are interested in the presence of the first sequence only. Another way to look
at the background sequences would be to look at the master sequence as the
“signal” we want to examine and at the background sequences as the “noise”.
The more knowledge we have about the “noise”, the better we can increase the
“signal-to-noise ratio”.

We are always choosing oligonucleotides for one master sequence at a time.
So in the case where we have more than one master sequence, every master
sequence except the one which is currently “under examination” is also a back-
ground sequence. The goal of the algorithm is to find oligonucleotides which are
as specific as possible. Now of course, “specificity” can be defined in a number of
ways and we will later introduce our definition of specificity. The steps involved
in the oligonucleotide selection algorithm are as follows:

1. Read input sequences and append to each sequence its reverse comple-
ment.

2. Compute the enhanced suffix array for all sequences.

3. Do the following for each master sequence (during each iteration, we just
have one current master sequence and all other sequences are background
sequences because we process only one master sequence at a time):

(a) Compute melting temperature for each candidate oligonucleotide.

(b) Determine self-complementarity of candidate oligonucleotides and re-
move substantially self-complementary oligonucleotides from candi-
date set.

(c) Compute LCF statistics against background sequences for each re-
maining candidate oligonucleotide.

(d) Compute unspecificity of all remaining candidate oligonucleotides
taking into account the LCF statistics and melting temperature.
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(e) Create a ranking of all candidate oligonucleotides sorted by unspeci-
ficity.

(f) Remove overlapping candidate oligonucleotides.

(g) Choose the best oligonucleotides (i.e. the ones with the lowest un-
specificity) for the current master sequence.

4. Determine lowest oligonucleotide melting temperature.

This algorithm is inspired by the one presented in [Rah02] but it contains several
modifications such as the inclusion of the self-complementarity criterion. We
formally define a master sequence as follows:

Definition (Master sequence) A master sequence is a 4-tuple M = (m, s, l, T )
where

• m is a non-negative integer (the index number of the sequence)

• s = s1, . . . , s|s| is a sequence of length |s| with si ∈
∑

∀i

• l is the desired oligonucleotide length and is > 0

• T = (T1, . . . , T|s|) is a vector of non-negative integers. If Ti = 0 it means
that we have eliminated the oligonucleotide si . . . si+l from consideration.
Otherwise (i.e. if Ti > 0) Ti is the melting temperature of the oligonu-
cleotide si . . . si+l.

In the first step we read all the input sequences (normally from a FASTA file).
We assign an index number to each sequence. Since the target sequences are
double-stranded, we will also have to take the reverse complements into account.
So we will append to each sequence read its reverse complement. In the next
step we compute the enhanced suffix array for each sequence. The following sub-
steps are performed for each target sequence. We first build a master sequence
from the current target sequence and compute the melting temperatures for
each candidate oligonucleotide. We remove the candidate oligonucleotides which
include the “concatenation point” between sequence and reverse complement
from the candidate set.

4.2 Self-complementarity

Candidate oligonucleotides which are substantially self-complementary are re-
moved from the candidate set. We use the method suggested by Li and Stormo
in [LS00] which is basically a simplified global alignment with cost-free ends.
Consider the following candidate oligonucleotide

GGGGGGTATA
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We now compare the oligonucleotide and its complement by filling in a matrix.
For equal bases the matrix value is one and zero otherwise.

G G G G G G T A T A

T 0 0 0 0 0 0 1 0 1 0
A 0 0 0 0 0 0 0 1 0 1
T 0 0 0 0 0 0 1 0 1 0
A 0 0 0 0 0 0 0 1 0 1
C 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0

Of course we could also align the oligonucleotide with its reverse and then
look for complementary bases, but it is simpler to take the reverse complement
and then look for equal bases. After the matrix is built, we search for the
longest diagonal sequence of ones which is underlined in the example above.
This corresponds to the following alignment:

5’-GGGGGGTATA-3’

||||

3’-ATATGGGGGG-5’

If the self-complementarity exceeds a certain threshold (usually 40% of the
oligonucleotide length) the oligonucleotide is removed from the candidate set.

4.3 LCF Profile and LCF Statistics

We compute the LCF statistics for the current master sequence against the
background sequences. The LCF statistics will provide information about the
specificity of the candidate oligonucleotides with respect to the background se-
quences. The LCF statistics is based on the longest common factor (LCF)
between sequences. Let us first look why the LCF is a good basis for an un-
specificity measure. Consider the following example:

ATCTCCACCCGGAGCTTGTTCAT ATCTCCACCCGGAGCTTGTTCAT

||| |||||| |||| ||| ||| |||||||||||||||||||

ATCACCACCCTGAGCGTGTCCAT ATCTCCACCCGGAGCTTGTCAGG

1) lcf=6, matches=19 2) lcf=19, matches=19

ATCTCCACCCGGAGCTTGTTCAT

|||||||||| ||||||||||||

ATCTCCACCCTGAGCTTGTTCAT

3) lcf=12, matches=22

If we would choose the number of matches instead of the LCF as the basis of our
unspecificity measure, we would exclude the first sequence from our candidate
oligonucleotides because the number of matches is quite high (19 out of 23).
But this is overly pessimistic since this duplex is not very stable. The LCF
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reflects this much better. The number of matches of both the first and the
second duplex is 19, but the second duplex has a higher melting temperature
because of the many consecutive matches. It is therefore more stable than the
first duplex. There are some rare cases where the LCF is overly optimistic. The
LCF of the third duplex is quite low. Here the high match count of 22 is better
since this duplex is indeed very stable. But the LCF is still preferable because
the first case is much more common than the third one.

Definition (LCF profile) Given a master sequence M = (m, s, l, T ) with candi-
date oligonucleotides o1, . . . , o|s| where the candidate oligonucleotide oi is equal
to si . . . si+l and a set C of N background sequences γ1, ..., γN . The LCF profile
LCF = (LCFi,j)i=1...|s|,j=1...N is defined by

LCFi,j =

{

lcf(oi, γj) if oi is a candidate
0 if oi is not a candidate (i.e. if Ti is zero)

In other words, LCF(i,j) is the longest common factor between candidate oligonu-
cleotide oi and the background sequence j if oi is a candidate oligonucleotide
and zero otherwise.

The LCF profile gives us information about the similarity between the master
sequence and each background sequences. But in principle, it does not really
interest us to which background sequences the master sequence is similar but just
to how many. This is why we transform the LCF profile to the LCF statistics.

Definition (LCF statistics) Given a master sequence M = (m, s, l, T ) with
candidate oligonucleotides o1, . . . , o|s| and a set C of N sequences. Fix an integer
∆ > 0 for the width of the LCF statistics. LCFS = (LCFSi,j)i=1...|s|,j=1...∆ is
then defined by

LCFSi,j =

{

#(k : k 6= m and LCFi,k = l − j + 1) if oi is a candidate
0 if oi is not a candidate

In other words, LCFSi,j is the number of incidents where the longest common
factor between candidate oligonucleotide oi and any background sequence equals
to l − j + 1 where l is the desired oligonucleotide length as defined before.
In particular, the first column LCFSi=1...|s|,j=1 contains the number of perfect
matches between candidate oligonucleotide oi and any background sequence.
#(·) denotes the counting function, e.g. #(42, 54, 0, 3) = 4. Note that we
exclude the master sequence from the considered background sequences (recall
that all master sequences are also background sequences) since obviously there
would be a perfect match since this is just exactly the sequence where the
candidate oligonucleotide comes from.

The parameter ∆ is used to bound the size (or more precisely the width)
of the LCFS array. For example, if we want to find oligonucleotides of length
30, we may find it irrelevant how many background sequences have a string of
length 9 or less in common with the oligonucleotide. So if we set ∆ = 21, we
only consider the number of background sequences that have a factor of length
10 to 30 in common with the oligonucleotide.

4.4 Unspecificity Measure

Now we have a set of candidate oligonucleotides for the current master sequence,
each with a melting temperature and the LCFS matrix. We combine this infor-
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mation now into a one-dimensional unspecificity measure which we will evaluate
for each candidate oligonucleotide.

Ui =

{

l·
∑

∆

δ=1
log(LCFSi,δ+1)·(log(N+2))−δ+1

T [i] if oi is a candidate

+∞ if oi is not a candidate

This measure is based on a suggestion in [Rah02] which we extended to account
for the melting temperature.

4.5 Avoiding Overlaps

We can now sort the oligonucleotides by ascending unspecificity. There is one
issue that needs to be taken care of, which is the overlapping of the oligonu-
cleotides. Obviously it is not desirable to have oligonucleotides that overlap, so
we pick the oligonucleotide with the lowest unspecificity and then remove all
oligonucleotides from the rest of the candidates that overlap with the picked
oligonucleotide. Then we pick the second best oligonucleotide and again remove
all overlaps. We repeat this procedure until we have the desired number of
oligonucleotides for the current master sequence.



Chapter 5

Oligonucleotide

Fingerprinting

5.1 Introduction

The method we will present in this chapter uses a quite different foundation
than the algorithm discussed in the preceding chapters. Let us first introduce
the notion of an oligonucleotide fingerprint of the target DNA.

Definition (Oligonucleotide Fingerprint) An oligonucleotide fingerprint repre-
sents the interaction between the target DNA and the oligonucleotides in a
microarray experiment. The fingerprint is a vector of numerical values where
each element describes the hybridization signal between the target DNA and
an oligonucleotide, therefore the number of elements in the fingerprint vector
corresponds to the number of oligonucleotides we have chosen to put on the mi-
croarray. We will only consider vectors with binary values where a zero simply
means that the target DNA did not hybridize with the corresponding oligonu-
cleotide and a one indicates hybridization.

Consider the following example. Say we have 10 oligonucleotides which are
numbered from 1 to 10. We perform a microarray experiment and the target
DNA hybridizes with oligonucleotide 3, 4 and 7. So in this case our finger-
print would be [0011001000]. Now the goal of the algorithm is to choose the
oligonucleotides in such a way that the information gained from the resulting
fingerprints is maximized. If, for example, all the oligonucleotides would al-
most always hybridize, the resulting fingerprints would not be very useful since
they would provide only little information about the target DNA. Of course,
it is true for all oligonucleotide selection algorithms that the resulting oligonu-
cleotides should maximize the information gained from microarray experiments
with those oligonucleotides, but the big difference is that we introduce a measure
to express the information content as a numeric value.

The resulting fingerprints can be used for example for classification. Ideally,
the fingerprint for a particular target DNA is unique. If we do not have any
information about the target DNA, then the only way to obtain a unique fin-
gerprint would be to sequence the whole target DNA. This is why we have to
restrict ourselves to a class or family of DNA. To choose suitable oligonucleotides
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we use a number of so-called training sequences which should be similar to the
target DNA that will later be examined. The aforementioned information mea-
sure uses a concept from information theory which will be introduced in the
next section.

5.2 The Concept of Entropy

Entropy is one of the fundamental concepts introduced by Shannon in his revo-
lutionary paper [Sha48] in 1948 which transformed information theory to what
it is today. The concept of information is too broad to be captured by a sin-
gle definition. However, for any probability distribution we define a quantity
called entropy which has many properties that agree with the intuitive notion of
what a measure of information should be. The entropy can also be seen as the
amount of uncertainty or disorder. It shares many properties with the concept
of entropy in thermodynamics.

Let X be a discrete random variable with alphabet X and probability mass
function pX(x) = Pr {X = x} , x ∈ X .

Definition (Entropy) The entropy H(X) of a discrete random variable X is
defined by

H(X) = −
∑

x∈X

pX(x) log2 pX(x)

We also write H(pX) or simply H(p) for the above quantity. Since we take log
to the base 2 the entropy is expressed in bits. Note that H(X) ≥ 0. We use the
convention that 0 log 0 = 0 which is justified by continuity since x logx → 0 as
x → 0. Thus adding terms of zero probability does not change the entropy.

Let

X =







0 with probability 1
2

1 with probability 1
2

The entropy H(X) is 1. Now compare this to the following random variable.

Y =







0 with probability 1

1 with probability 0

So Y is just always zero and H(Y ) = 0. It is intuitive that a sequence where
the ones and zeros appear with equal probability has more information content
than just a sequence of zeros. In fact, with an alphabet of size two, the case
where both symbols appear with probability 1

2 maximizes the entropy. This
can be further generalized to alphabets with n symbols. Also in these cases,
the random variable where all the symbols of the alphabet are equiprobable
maximizes the entropy.

For our purpose, the alphabet of X will consist of all possible fingerprints.
Thus if we have k oligonucleotides, the size |X | of the alphabet is 2k. For
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example, say we want to use five oligonucleotides. Hence,

X =































00000, 00001, 00010, 00011, 00100, 00101,
00110, 00111, 01000, 01001, 01010, 01011,
01100, 01101, 01110, 01111, 10000, 10001,
10010, 10011, 10100, 10101, 10110, 10111,
11000, 11001, 11010, 11011, 11100, 11101,
11110, 11111

which are simply all possible binary sequences of length five. X represents
outcomes of microarray experiments. As mentioned before, H(X) is maximized
when all elements of the alphabet are equiprobable, hence we have to choose
the oligonucleotides in such a way that every fingerprint is equally likely when
we perform a microarray experiment.

One could argue that even without the concept of entropy, it would seem
sensible to choose the oligonucleotides in that way. This might be true, but it
is a convincing mathematical explanation for the choice which otherwise would
seem rather unfounded.

5.3 Algorithm

5.3.1 Introduction and Rationale

Our algorithm follows the ideas presented in [HSS+00] where one can also find
a more detailed analysis on the quality of the resulting oligonucleotides but it
contains only little information on how an implementation could be done.

As before, we interpret the random variable X as outcomes of microarray
experiments and the values that X can take on are all possible outcomes, i.e.
all possible oligonucleotide fingerprints for the given number of oligonucleotides.
Hence the number of oligonucleotides has to be fixed in advance. But how can
we know the distribution of the fingerprints obtained from the experiments?
Of course, we cannot. What we do is that we restrict ourselves to a class of
target DNA with similar characteristics. For example we can restrict ourselves
to DNA from a particular organism. Then we have to choose a number of
training sequences from that organism. Herwig et al. did this in [HSS+00] for
both human and rodent sequences. For this purpose, they chose 6000 human
and 6000 rodent cDNA sequences at random from the GenBank database and
used them as training sequences.

Once appropriate training sequences have been determined, the oligonu-
cleotides are chosen in such a way that the resulting fingerprints of the training
sets have maximal information content (i.e. entropy) as defined further above.
Now if we would have an infinite amount of time or computational resources we
could do the following: As already mentioned, we first have to fix the number
of oligonucleotides we want to choose. Suppose we would like to choose 200
oligonucleotides. Furthermore, we suppose that we use a training set of 500
sequences where each sequence has length 1000. All in all this results in

500 · 1000 · 2 = 1′000′000 bases

in the training sequences. We have to multiply by two because we also have to
consider the reverse complements. Since we take the candidate oligonucleotides
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from the training sequences, we would have about 1’000’000 candidate oligonu-
cleotides to choose from. Actually, the real number would be smaller since we
cannot take oligonucleotides from the sequence ends and because there are most
probably duplicates. For simplicity, let us be conservative and say that we have
200’000 candidate oligonucleotides (that means that we only take 20%!) from
which we have to choose the 200 best ones. So this means that we have

200′000!

(200′000− 200)!

possibilities for the set of 200 oligonucleotides. And for each set of oligonu-
cleotides we would have to compute the 500 fingerprints of the training se-
quences and the corresponding entropy. Obviously, this is not possible within a
reasonable amount of time.

In order to reduce the running time we introduce two simplifications:

• We introduce two preselection steps to reduce the number of candidate
oligonucleotides. One removes oligonucleotides from the candidate pool
based on GC content and complexity. We will define later on how we
evaluate the complexity of an oligonucleotide. The second step only retains
the most frequent oligonucleotides.

• We only choose one oligonucleotide at a time instead of evaluating all of
them in parallel. This means that we first choose one oligonucleotide and
then fix it while we look for the second. Once those two are chosen we look
for the third oligonucleotide and so forth until we have the desired number
of oligonucleotides or if each training sequence has a unique fingerprint. If
the latter is the case, we say that these oligonucleotides create a complete
partitioning of the training set.

In the following subsections we will look at each of these steps in detail.

5.3.2 Preselection I: GC Content and Complexity

We will only consider oligonucleotides which have a minimal number of G or C.
The reason is that GC base pairs are more stable than AT base pairs. We could
also look at the melting temperature because high GC content results in higher
melting temperatures, but since the number of candidate oligonucleotides can
be very high, we use the simpler and faster way of just looking at the GC content
instead of trying to predict the melting temperature.

Obviously an oligonucleotide which just consists for example of C would be a
rather bad choice. In order to remove such oligonucleotides with low complexity,
we introduce a complexity measure and then only retain the oligonucleotides
which exceed a certain user-supplied complexity threshold.

Definition (Oligonucleotide Complexity) The complexity of an oligonucleotide
is computed according to the entropy of the dimer composition of the oligonu-
cleotide. From an oligonucleotide of length l we can extract l − 1 dimers. The
entropy is maximal when each dimer is unique in the oligonucleotide. In that
case the entropy is equal to log2(l− 1). The complexity is normalized so that it
is in range between 0 and 1.
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Consider the following example: Say we want to compute the complexity of
the oligonucleotide TACGACAC. This octamer can be split up into the following
dimers: TA, AC, CG, GA, AC, CA, AC. Hence the complexity is:

−pTAlog2pTA − pAC log2pAC − pCGlog2pCG − pGAlog2pGA − pCAlog2pCA

log2(l − 1)

=
− 4

7 log2
1
7 − 3

7 log2
3
7

log27
= 0.7580

Similarly, the complexity for TTGACTAA and TATATATA is 1.0 and 0.3509
respectively. The complexity threshold can be chosen by the user, we use 0.5 as
a default value.

5.3.3 Preselection II: Frequency

Since mostly only oligonucleotides which occur frequently in the training se-
quences result in useful partitions, the second preselection step we introduce
only retains the most frequent oligonucleotides. The number of retained oligonu-
cleotides is user-choosable and we use a default value of 2000. We build a table
of all the remaining candidate oligonucleotides from the first preselection with
their number of occurrences in the training sequences. We then sort the table
by the number of occurrences such that the most frequent candidate oligonu-
cleotide is at the top. We then just cut off the list such that we only have the
desired number of oligonucleotides left.

5.3.4 Core Selection Algorithm

We first build a suffix array for each training sequence as defined in chapter 3
on page 19 onwards. To find the nth oligonucleotide we perform the following
steps:

• For each remaining candidate oligonucleotide (that means all the oligonu-
cleotides from the preselection minus the n − 1 oligonucleotides that we
already chose) we compute the entropy of the fingerprint that would result
using this oligonucleotide and the n − 1 oligonucleotides already chosen.
To compute the entropy we first have to find all the training sequences
where there is a match with the current candidate oligonucleotide. To do
this efficiently, we use the suffix arrays we have built, in particular the bck

and lcp data structures.

• We choose the oligonucleotide which resulted in the most partitions. If
there are multiple oligonucleotides which create this number of partitions,
we choose the one which yields the highest entropy as the nth oligonu-
cleotide and we start over until we have found the desired number of
oligonucleotides.

Consider the following example. Say we have the following ten training se-
quences:
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1) CTTTACTCGCGCGTTGGAGA 6) GCGCTCCAACGCATAACTTT

2) ATACAATAGTGCGGCTCTGT 7) CGCCAGAAGATAGATAGAAT

3) TCCTTATGAAGTCAACAATT 8) GTGTAAGAAACTGTAATATA

4) CGCTGGGACTTGCGGCGACT 9) ATAATGAACTTCGGCGAGTC

5) CATCGTGGTCTCTGTCATTA 10) GTGGAGTTTTTGTTGCATTA

Since we also have to consider the reverse complements, we have the following:

1) CTTTACTCGCGCGTTGGAGA TCTCCAACGCGCGAGTAAAG

2) ATACAATAGTGCGGCTCTGT ACAGAGCCGCACTATTGTAT

3) TCCTTATGAAGTCAACAATT AATTGTTGACTTCATAAGGA

4) CGCTGGGACTTGCGGCGACT AGTCGCCGCAAGTCCCAGCG

5) CATCGTGGTCTCTGTCATTA TAATGACAGAGACCACGATG

6) GCGCTCCAACGCATAACTTT AAAGTTATGCGTTGGAGCGC

7) CGCCAGAAGATAGATAGAAT ATTCTATCTATCTTCTGGCG

8) GTGTAAGAAACTGTAATATA TATATTACAGTTTCTTACAC

9) ATAATGAACTTCGGCGAGTC GACTCGCCGAAGTTCATTAT

10) GTGGAGTTTTTGTTGCATTA TAATGCAACAAAAACTCCAC

Let us suppose we are looking for five oligonucleotides of length four. We will
skip the two preselection steps and just suppose that we got the following 40
candidates oligonucleotides out of the preselection:

CGCG, GTTG, CAAC, AGTC, GACT, ACTC, TCGC, GCGC,

TGGA, GGAG, CTCC, TCCA, GCGA, GAGT, TGCG, CGGC,

TCTG, CTGT, ACAG, CAGA, GCCG, CGCA, GAAG, CTTC,

GGCG, CGCC, GCGC, CTCG, CGTT, TTGG, GAGA, TCTC,

CCAA, AACG, ACGC, CGAG, GCTC, CTCT, AGAG, GAGC

In the first step, we look for the first oligonucleotide which firstly maximizes
the number of partitions and secondly maximizes the entropy. Obviously with
only one oligonucleotide, the maximum number of partitions is two and the
only two cases which would result in a single partition are when a candidate
oligonucleotide either occurs in all or none of the training sequences. Also the
theoretical maximum entropy is

−
1

2
log2

1

2
−

1

2
log2

1

2
= −log2

1

2
= 1

which is the case when the candidate oligonucleotide creates two partitions of
equal size (in this case of size five since we have a total of ten training sequences).
This simply means that an optimal partitioning would be an oligonucleotide that
matches with five of the training sequences and does not occur in the other five
training sequences.

Going back to our example, we find that all the 40 candidate oligonucleotides
create two partitions. So we will just pick the one with the highest entropy.
There are two candidate oligonucleotides, GTTG and CAAC which yield an en-
tropy of 0.970951 which is the maximum. So we can just pick any of those
two, we pick GTTG because it occurs before the other one. This oligonucleotide
occurs in sequence 1, 3, 6 and 10. Therefore we have a probability of 2

5 that
we have a match with this oligonucleotide if we use sequences similar to the
training sequences. Or, to put it in a different way, this oligonucleotide creates
a partitioning with two partitions, one consists of the sequences 1, 3, 6 and 10
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and the other partition consists of the remaining training sequences, which are
2, 4, 5, 7, 8 and 9. The entropy of 0.970951 is thus obtained by computing the
following:

−
2

5
log2

2

5
−

3

5
log2

3

5
= 0.970951

Now that we have fixed the first oligonucleotide, we can start looking for the sec-
ond one. Again we look for the oligonucleotide which maximizes the number of
partitions, but together with the first oligonucleotide we already chose and still
use the entropy as a secondary selection criterion. The candidate oligonucleotide
set consists of the oligonucleotides we obtained from the preselection process mi-
nus the first oligonucleotide we chose, i.e. GTTG. Obviously the minimal number
of partitions we will get is two, since even if the second oligonucleotide does not
introduce any additional partitions, we still have the two partitions introduced
by the first oligonucleotide. Examination of the 39 candidate oligonucleotides
shows that 16 of them yield four partitions while the other result in three or
two partitions. A look at the entropies shows that the maximum is 1.846439, 8
of the 16 oligonucleotides attain this value: AGTC, GACT, TCGC, GCGA, TGCG,

CGCA, GAAG and CTTC. Again we just choose the first one: AGTC. The theoretical
maximum entropy for two oligonucleotides is:

−log2

1

4
= 2

As before, the actual maximum entropy attained is below the theoretical max-
imum. With the two oligonucleotides chosen so far, we can have four possible
fingerprints (resulting in the four partitions): 00 01 10 and 11. With the train-
ing sequences, these fingerprints occur 4, 2, 3 and 1 times respectively. Hence
the entropy can be computed like this:

−
2

5
log2

2

5
−

1

5
log2

1

5
−

3

10
log2

3

10
−

1

10
log2

1

10
= 1.846439

It should be noted that in this particular case, it would have been impossible to
attain the maximal theoretical entropy. This is because the maximal entropy
can only be attained if the partitions are of equal size. Here we have four
partitions and ten training sequences, hence the partition size would have to be
2.5 which is of course not possible. Even though normally a much larger number
of training sequences is used, it is the case that the theoretical maximum is only
attained very seldomly and with increasing number of oligonucleotides, the gap
between theoretical and actual entropy is widening quickly.

We repeat the same steps we have done for the first two oligonucleotides
until we have the desired number of oligonucleotides. In our example, in the
third step there is a notable difference to the first two steps: The number of
partitions or distinctive fingerprints is seven, therefore not only the entropy is
below the theoretical maximum but also the number of partitions. The theo-
retical maximum number of partitions is simply 2k where k is the number of
oligonucleotides. The number of partitions is equal to the number of fingerprints
which is a binary sequence of length k.

To finish our example, the remaining three oligonucleotides would be TGCG,

GAGA and TCTG. At the end, the five oligonucleotides we have found result in
10 partitions (theoretical maximum 32) and the entropy is 3.321928 (theoreti-
cal maximum 5). Observe that the theoretical maximal entropy is simply the
number of oligonucleotides.
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Chapter 6

Running Time

Considerations

6.1 Introduction

Because we use a number of different algorithms and because of the numerous
parameters, it would be relatively difficult to perform a detailed complexity
analysis. Since some parts of the implementation are written in interpreted
DARWIN code and other parts in much faster precompiled C code, the results of
a complexity analysis would give relatively little information about the running
time of the oligonucleotide selection process in reality. We will therefore restrict
ourselves to a number of time measurements to give a rough idea how long it
actually takes in reality to determine the oligonucleotides.

All the measurements in the following sections have been performed on a
Linux machine with two Pentium III 800 MHz CPUs, 512 MB of RAM and
Linux Kernel 2.4.20. Since DARWIN does not make much use of the second
CPU and there were other processes running in the background, all the results
cannot be more than a approximate guideline.

6.2 Oligonucleotide Selection with Suffix Arrays

For the oligonucleotide selection with suffix arrays we performed two test series.
For both series we used the default values, i.e. q = 8, probe length=20, LCFS
width=10, self complementarity threshold=0.4 and 5 oligonucleotides per mas-
ter sequence. Furthermore, we used all the input sequences as master sequences.
In the first test series we used 50 randomly generated input sequences with the
same length each. Figure 6.1 shows the measured running times. The second
series used 100 input sequences, again all of them master sequences. It can be
easily seen that the running times increase quickly with growing input data, in
the case of 50 sequences of 10’000 base pairs (which results in a total input size
of 500’000 base pairs) it already takes almost 10 hours. In the second series
with 100 input sequences of length 5000 (total length also 500’000 base pairs)
the running time is more than 14 hours.

Unfortunately we were not able to get to run other publicly available im-
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plementations because of software incompatibilities. For yeast, Li and Stormo
mention a running time of 92 hours to select five oligonucleotides of length 50 for
each gene or ORF in [LS01]. They do not mention what kind of machine they
used. In [KS02], Kaderali and Schliep report a running time of just about one
hour to select oligonucleotides with lengths between 19 and 21 for 58 sequences
of average length of 9300 nucleotides. They used a Compaq Tru64 machine
with four DEC Alpha EV6.7 CPUs each operating at 667 MHz. This would be
considerably faster than our implementation, one reason is certainly that their
implementation is completely written in C/C++. In our implementation, very
little time is needed to construct the suffix arrays but most of the time (more
than 80%) is used to perform the searches afterwards, which is implemented in
DARWIN code. A reimplementation of those parts in C would result in a major
speed gain.

6.3 Oligonucleotide Fingerprinting

For the fingerprinting algorithm we also ran two test series with default values,
one with 500 training sequences of length 50, the other one with the same
number of training sequences of length 500. Figure 6.2 shows the measured
running times. For the test run with sequences of length 50, the time needed
for the preselection was 2005s and the total time to find the 20 oligonucleotides
was 3969s. For the training sequences of length 500 the preselection took 7451s
and the total time was 11626s. It is quite surprising that the computation
time for the oligonucleotides does increase only so slowly because with every
additional oligonucleotide the number of fingerprints that need to be considered
doubles. It is maybe a sign that there is still too much overhead and only a
small fraction of the time is used to do the actual computations.
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Figure 6.1: Time measurements for oligonucleotide selection with suffix arrays

Figure 6.2: Time measurements for oligonucleotide selection for fingerprinting
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Chapter 7

Discussion and Conclusion

7.1 Points for Improvements

• With the advent of widespread availability of technologies that make mi-
croarray experiments very cheap and easy such as the fabrication of mi-
croarrays using ink-jet printing (see [Hug01]), it is not acceptable to wait
for several hours or even days to compute the oligonucleotides. Hence
the performance still needs to be improved. Firstly this can be done by
identifying the performance bottlenecks in the DARWIN code and then
by reimplementing those code parts in C. Secondly also the algorithms
itself need to become more efficient.

• The oligonucleotide fingerprinting algorithm does not use melting tem-
perature prediction. Instead a simple preselection based on GC content
is used. It might be worthwhile to determine the performance penalty of
using melting temperature prediction instead.

• Especially in the fingerprinting algorithm it would be useful to have the
option to exclude certain hyper-abundant sequences from consideration.
Pesole et al. have showed the advantages of this in the context of designing
PCR primer pairs in [PLG+98].

7.2 Closing Remarks

We have reached our goal of implementing an algorithm in Darwin that selects
oligonucleotides which can be directly used in microarray experiments. We chose
two different approaches which apply to different kinds of microarray experi-
ments. Unfortunately, it was not possible to test the resulting oligonucleotides
in real-world microarray experiments. It is very difficult to assess the quality
of the selected oligonucleotides without actually using them in the laboratory
because the selection algorithms are based on certain models and assumptions.
If we would try to simulate a microarray experiment using a computer, then
again it would be necessary to model the hybridization process. Of course, if we
would base this model on the same assumptions that we made for the oligonu-
cleotide selection algorithms then obviously the oligonucleotides selected by the
algorithm would be “perfect” since they are both based on the same model. So
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the only reliable way to assess the quality of the oligonucleotides really seems to
perform the experiments and then use the results to improve the algorithm and
repeat the procedure until the actual and expected results only differ marginally.



Appendix A

Source Code Organization

A.1 Overview

The source code is organized in the following subdirectories:

ExtCallsSupport

FindPartition

LCFStatistics

MeltingTemperature

Preselection

PreselectionFrequency

SelfComplementarity

SuffixArray

Toolbox

UnspecificityArray

We will discuss the contents of the root directory and each subdirectory file by
file in the following sections.

A.2 Root Directory

A.2.1 500x100.fasta

Randomly generated FASTA file with 500 sequences, each of length 100 nu-
cleotides.

A.2.2 50x500.fasta

Randomly generated FASTA file with 50 sequences, each of length 500 nu-
cleotides.

A.2.3 fasta-gen.c

This small command-line utility can be used to generate FASTA files of any
size. Invoke without parameters to get information about all available options.
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A.2.4 main.drw

This is the top-level DARWIN source code file. It contains code to load all other
necessary files.

A.2.5 Makefile

This is the top-level makefile. To compile all C source code files in the root
directory and in the subdirectories, invoke make all. To remove all binaries
and intermediate files, invoke make clean.

A.2.6 OligoSelectFP.drw

Contains the main oligonucleotide selection function for fingerprinting.

A.2.7 OligoSelectSA.drw

Contains the main oligonucleotide selection function for the selection based on
suffix arrays.

A.2.8 test.drw

Contains the test function which runs all available test routines.

A.3 ExtCallsSupport Directory

A.3.1 extcalls.c and extcalls.h

Those two files have been taken from the DARWIN source code tree. They
contain support code to use external functions in DARWIN.

A.3.2 Makefile

This makefile compiles all C source code files in this directory.

A.3.3 WordSize.c

This file has been taken from the DARWIN source code tree. It is a small
command-line utility which generates the WordSize.h file which is needed to
use external functions in DARWIN.

A.4 FindPartition Directory

A.4.1 FindPartition.drw

Given a number of training sequences, the FindPartition function in this file
chooses oligonucleotides such that they create an optimal partitioning of the
training sequences.
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A.5 LCFStatistics Directory

A.5.1 LCFStatistics.drw

The LCFStatistics function in this file computes the LCF statistics matrix.

A.5.2 LCFStatisticsTest.drw

This file contains test routines to verify the correctness of the LCFStatistics

function.

A.6 MeltingTemperature Directory

A.6.1 PredictTm.drw

Contains the melting temperature prediction function.

A.6.2 PredictTmArray.drw

Computes the melting temperatures of an array of sequences. Uses the PredictTm
function to perform the actual prediction.

A.6.3 TmNNParameters.drw

Contains the parameters for the nearest-neighbor melting temperature predic-
tion model.

A.7 Preselection Directory

A.7.1 Makefile

This makefile compiles all C source code files in this directory.

A.7.2 Preselection.c

Performs a preselection of candidate oligonucleotides based on GC content and
complexity. Used by the oligonucleotide fingerprinting algorithm.

A.7.3 Preselection.drw

DARWIN placeholder function which calls the C version of the function.

A.8 PreselectionFrequency Directory

A.8.1 PreselectionFrequency.drw

Performs a preselection of candidate oligonucleotides based on frequency. Used
by the oligonucleotide fingerprinting algorithm.



56 APPENDIX A. SOURCE CODE ORGANIZATION

A.8.2 PreselectionFrequencyTest.drw

This file contains test routines to verify the correctness of the PreselectionFrequency
function.

A.9 SelfComplementarity Directory

A.9.1 DropSelfComplementary.drw

The DropSelfComplementary function takes a set of candidate oligonucleotides
and uses the SelfComplementarity function to remove candidates which are
self-complementary.

A.9.2 Makefile

This makefile compiles all C source code files in this directory.

A.9.3 SelfComplementarity.c

Takes a single candidate oligonucleotide and determines if it is self-complementary
or not.

A.9.4 SelfComplementarity.drw

DARWIN placeholder function which calls the C version of the function.

A.9.5 SelfComplementarityTest.drw

This file contains test routines to verify the correctness of the SelfComplementarity
function.

A.10 SuffixArray Directory

A.10.1 BucketArray.c and BucketArray.h

Contains the C function to construct bucket arrays.

A.10.2 EnhancedSuffixArray.c

Returns an enhanced suffix array of the input sequence.

A.10.3 EnhancedSuffixArray.drw

DARWIN placeholder function which calls the C version of the function.

A.10.4 LCPArray.c and LCPArray.h

Computes the longest common prefix array given an input sequence and a suffix
array.
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A.10.5 Makefile

This makefile compiles all C source code files in this directory.

A.10.6 SuffixArrayTest.drw

This file contains test routines to verify the correctness of the EnhancedSuffixArray
function.

A.10.7 SuffixSort.c and SuffixSort.h

Constructs the suffix array from a sequence.

A.11 Toolbox Directory

A.11.1 Makefile

This makefile compiles all C source code files in this directory.

A.11.2 ReadFasta.c

Reads a FASTA file.

A.11.3 ReadFasta.drw

DARWIN placeholder function which calls the C version of the function.

A.11.4 Toolbox.drw

Contains various small helper functions.

A.12 UnspecificityArray Directory

A.12.1 UnspecificityArray.drw

Computes the unspecificity array for a set of candidate oligonucleotides. Used
for the selection algorithm based of suffix arrays.

A.13 Implementation Remarks

Most of the functions that are implemented in C have first been written in
DARWIN code. The test routines proved to be a useful tool to ensure that
the behavior of the C and the DARWIN version is equivalent. All development
work has been done under Linux 2.4.20. We used DARWIN version 3.0 from
July 2003. The C source code has been successfully tested with the GNU C
Compiler version 2.95.2 and 3.3.
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Appendix B

Usage Guide

B.1 Compilation

Type the shell command

make all

in the top-level source code directory to compile all C source code. To remove
all intermediate and binary files type

make clean

In order to only compile or clean the files in a single subdirectory, use the same
commands in that subdirectory. Note that you need to compile the C source
code before you can use the functions in DARWIN.

B.2 Execution in DARWIN

You have to start DARWIN from the top-level source code directory, otherwise
DARWIN will not find the source code files. To load all necessary files, type the
following two DARWIN commands:

ReadProgram (’main.drw’);

load();

This should result in the following output:

Darwin: Sequence Searching Facility

Version 3.0, July 2003

(c) E.T.H. Zurich

> ReadProgram (’main.drw’);

> load();

bytes alloc=131048, time=0.020

--- Loading FindPartition/FindPartition.drw

--- FindPartition/FindPartition.drw done

--- Loading LCFStatistics/LCFStatistics.drw

--- LCFStatistics/LCFStatistics.drw done

--- Loading LCFStatistics/LCFStatisticsTest.drw
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--- LCFStatistics/LCFStatisticsTest.drw done

--- Loading MeltingTemperature/TmNNParameters.drw

--- MeltingTemperature/TmNNParameters.drw done

--- Loading MeltingTemperature/PredictTm.drw

--- MeltingTemperature/PredictTm.drw done

--- Loading MeltingTemperature/PredictTmArray.drw

--- MeltingTemperature/PredictTmArray.drw done

--- Loading Preselection/Preselection.drw

--- Preselection/Preselection.drw done

--- Loading PreselectionFrequency/PreselectionFrequency.drw

--- PreselectionFrequency/PreselectionFrequency.drw done

--- Loading PreselectionFrequency/PreselectionFrequencyTest.drw

--- PreselectionFrequency/PreselectionFrequencyTest.drw done

--- Loading SelfComplementarity/SelfComplementarity.drw

--- SelfComplementarity/SelfComplementarity.drw done

--- Loading SelfComplementarity/SelfComplementarityTest.drw

--- SelfComplementarity/SelfComplementarityTest.drw done

--- Loading SelfComplementarity/DropSelfComplementary.drw

--- SelfComplementarity/DropSelfComplementary.drw done

--- Loading SuffixArray/EnhancedSuffixArray.drw

--- SuffixArray/EnhancedSuffixArray.drw done

--- Loading SuffixArray/SuffixArrayTest.drw

--- SuffixArray/SuffixArrayTest.drw done

--- Loading Toolbox/ReadFasta.drw

--- Toolbox/ReadFasta.drw done

--- Loading Toolbox/Toolbox.drw

--- Toolbox/Toolbox.drw done

--- Loading UnspecificityArray/UnspecificityArray.drw

--- UnspecificityArray/UnspecificityArray.drw done

--- Loading OligoSelectSA.drw

--- OligoSelectSA.drw done

--- Loading OligoSelectFP.drw

--- OligoSelectFP.drw done

--- Loading test.drw

--- test.drw done

To make sure everything works correctly, run the test routines by typing

test();

You should get the following output:

> test();

Performing tests...

--- start unit test: SuffixArray

Building enhanced suffix array (n=15)

1 passed

2 passed

3 passed

4 passed

5 passed
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6 passed

--- end unit test: SuffixArray

--- start unit test: LCFStatistics

Building enhanced suffix array (n=15)

Building enhanced suffix array (n=27)

Building enhanced suffix array (n=32)

Building LCF profile of master sequence (sequence m=1, length=15)

LCF profile done

Computing LCF statistics from LCF profile

LCF statistics done

1 passed

2 passed

3 passed

--- end unit test: LCFStatistics

--- start unit test: SelfComplementary

1 passed

2 passed

3 passed

Checking 30 oligos for self-complementarity

Dropped 8 out of 30 oligos

Checking 30 oligos for self-complementarity

Dropped 8 out of 30 oligos

4 passed

Checking 30 oligos for self-complementarity

Dropped 8 out of 30 oligos

5 passed

--- end unit test: SelfComplementary

--- start unit test: PreselectionFrequency

Building enhanced suffix array (n=20)

Building enhanced suffix array (n=20)

Building enhanced suffix array (n=20)

Beginning preselection of oligos based on frequencies

Processing training sequence 1 out of 3

Processing training sequence 2 out of 3

Processing training sequence 3 out of 3

Retained 8 oligos, max occurences: 3, min: 2

Preselection of oligos based on frequencies done

1 passed

2 passed

--- end unit test: PreselectionFrequency

Now that all files are loaded correctly, you can start the oligonucleotide selection
process by typing

OligoSelectSA();

for the suffix array algorithm and

OligoSelectFP();

for the fingerprinting algorithm. When the selection is done, the results are writ-
ten to the file Result-OligoSelectSA.prb and Result-OligoSelectFP.prb
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respectively. Various status and progress information is displayed during the
computations. Note that both of these functions do not take any parameters. If
you want to change the parameters, you need to edit the OligoSelectSA.drw

and OligoSelectFP.drw files directly. All the parameters are defined at the
beginning of those two files. If you have changed either of those two files, you
need to type

load();

in DARWIN again, otherwise the changes will be ignored.
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Appendix C

Formulation of Thesis

Objectives
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Appendix D

Planning
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Measured Running Times
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