
ETH Library

Extended link visualization with
DHTML: The Web as an open
hypermedia system

Report

Author(s):
Oberholzer, Glenn; Wilde, Erik

Publication date:
2002-01

Permanent link:
https://doi.org/10.3929/ethz-a-004284580

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 125

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004284580
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Extended Link Visualization with DHTML:

The Web as an Open Hypermedia System

Glenn Oberholzer and Erik Wilde
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology, Zürich

TIK Report 125
January 2002

Abstract

The World Wide Web is by far the most successful hypermedia system, its name often
being used synonymously for the Internet. However, it is based on a rather restricted hy-
permedia model with limited linking functionality. Even though underlying systems may
provide a richer data model, there is still the question of how to present this informa-
tion in a Web-based interface in an easily understandable way. Assuming an underlying
system similar to Topic Maps, which allows storing, managing, and categorizing meta
data and links, we propose a presentation of extended links. We try to provide a usable
way for users to handle the additional functionality. The mechanism is based on already
available technologies like DHTML. It is one facet of our approach to make the Web more
interconnected and to work towards a more richly and openly linked Web.

Keywords:

Electronic publishing (020), Graphic design (029), Hypermedia (036), Internet (045), World
Wide Web (084), XLink, Linkbases, DHTML

1 Introduction

Compared to many other hypermedia systems [24,11,16], the linking capabilities of the World
Wide Web are rather limited. It only makes use of a few concepts of hypermedia. In recent
years, however, new recommendations issued by the W3C like XML [3], XLink [10], and
XPointer [9], or ISO/IEC’s Topic Maps [19] have tried to overcome this shortcoming. Due to
the popularity of the Web, efforts have to be made to integrate and improve the current system
with more sophisticated hypermedia concepts. More sophisticated hypermedia systems are in
great demand, due to the growing amount of information provided by the Internet, and thus
the growing need to be able to navigate the Web more easily.

This paper gives a short introduction of extended link functionalities and discusses possible
ways of displaying these augmented links to the user. The paper primarily focuses on a
solution that is already feasible with today’s technology using DHTML.

An HTML link is defined as follows [29]: “A link is the connection from one Web resource
to another.” The main implications of that definition are that

• a link has exactly one source and one destination,

• its activation (for example by clicking on its graphical representation) initiates a traver-
sal at the source which leads to the destination, and

• it establishes a relationship between the source and the destination.

Additionally, an HTML link is always embedded into the document, it is explicit and
pre-computed [1]. Hypermedia research however suggests broader and more general link
functionality. Namely n-ary links (linking more than two locations), separation of link and
content, and annotations, are mentioned and implemented in existing systems [16,21,7,5,2], as
described in Section 2. A more elaborate link model would not only increase the capabilities
of the Web as a hypermedia system, the usability of the Web would also be improved. The
main improvements from a user point of view are:

• Educated choices

Right now, users are left with little or no feedback as to where a link is taking them.
Including annotations and/or showing the type of relationship with destination resources
enables the user to make an informed decision.

• More and better choices

Multi-ended n-ary links give users the choice of where they want to go, as opposed to
a single destination. This reduces the amount of time and traffic caused by searching
through unrelated information.

• Link quality

When links are stored separately from the content document, they can be more easily
maintained and controlled. Broken links, a common problem in today’s fast changing
Web, can be avoided more easily.

• 3rd party links

Links which are maintained separately may be used to associate information in a way
which would probably not be supported by the content’s original provider, such as
linking statements in product descriptions with resources containing critical remarks
about these statements.

The very flexible and powerful XML framework provides the foundation for several initia-
tives which are trying to implement the above mentioned improved functionality. XLink [10]
and XPointer [9] are W3C specifications that enable a better way of linking XML content.

XLink extends HTML linking functionality and first efforts have been made to provide a
framework on how to apply styles to XLinks [33]. As of today, however, major browsers do not
support XLink properly (only a small subset of XLink, the simple links, which only provide
HTML-like linking features, are supported in the newest revisions of the major browsers).
Therefore, displaying extended links in regular browsers today requires the help of existing
technologies like DHTML. However, the concepts discussed in this paper can also be imple-
mented in XLink-enabled browsers in the future.

In order to implement and manage the new link types, several approaches can be used.
One of them might be a data model like XLinkbase. The XLinkbase model will be explained
in more detail in Section 3 and is used in examples throughout this paper.

In terms of visualizing the new link concept, the authors have come up with an interface
using standard components and technology of a Web browser and reusing known GUI widgets.
This is important, because the key to get the user to use a new functionality is acceptance,
which is achieved by providing good usability [26]. Additionally, learnability as one of the
important components of usability [25] is greatly improved by presenting known concepts to
the user.

Related work on hypermedia systems and visualizations on the Web are discussed in the
following section. After explaining the philosophy behind XLinkbase as a possible underlying
hypermedia system, the paper introduces the rationale used in the implementation of the
prototypical Web interface. Section 5 discusses the actual implementation and technical
details. The paper concludes by addressing open issues and possible future projects.

2 Related Work

Various open hypermedia systems have been adapted to the World Wide Web. Following, a
number of systems that bring together Open Hypermedia System (OHS) [27] concepts and
the Web are presented. The focus is put primarily on the way links are represented on the
Web. While the selection certainly is not exhaustive, it showcases important initiatives.

Grønbæk [14] suggests a format called Open Hypermedia Interchange Format (OHIF),
which is similar to XLink, but features a richer data model. The Webvise interface and
WebDAV server allow the publishing of OHIF sites. The Webvise client extracts the meta
data stored in a document and displays it in a separate application window. Alternatively, a
proxy server can be used to include additional links and display annotations in a JavaScript
pop-up [15]. This specific service has been discontinued. Multi-ended links are possible in
the system, yet the Webvise client is needed.

HyperWave [21] is a second generation Web system enabling a more structured organiza-
tion and visualization of Web content. However, there is no direct way to create multi-ended
links. The interface is transparent to the user. The user does not realize that the underlying
system is HyperWave; the presentation of links is in traditional HTML syntax.

Both previously described systems store their links separate from the content. So does
Webcosm [8, 16], which has been developed at the University of Southampton and is now
commercialized in Portal Maximizer1. Portal Maximizer organizes information in “themes”.
It also injects external links into documents when they are requested. The one-to-many
functionality of links is implemented by showing a list of links on a new page when clicking
on a link (in our opinion a disruptive technique).

A commercial Topic Map visualization is implemented in Ontopia’s Topic Map Navigator2.
The approach there is different however, as the navigation is always in the Topic Map linking
to external sites. Ontopia uses a frame-based HTML approach for displaying related links.
Another commercial provider of a similar product is empolis with their k42 knowledge server
and the X2X link server3. The empolis k42/X2X architecture is similar to XLinkbase and

1See http://www.activenavigation.com/
2See http://www.ontopia.net/
3See http://www.empolis.com/

http://www.activenavigation.com/
http://www.ontopia.net/
http://www.empolis.com/

XLinkbase
 to XLink

XLinkbase
 to DHTML

XSLT

XSLT

XLinkbase

Web ServerXLinkbase Server

XLinkbase
Client

XLink
Browser

HTML
Browser

Figure 1: Architecture of the XLinkbase Server

could be used to implement DHTML link visualization, but to our knowledge no such attempts
have been made so far.

The link visualization proposed in this paper differs from the first two systems mentioned
above, as it is not necessarily relying on any client side applications and still provides the full
benefits of multi-ended linking and external linkbases. By using DHTML, it also gives the
user the possibility to have a one-click interface to extended links. There is a close integration
into the browser, and also into the way Web content is viewed today.

Also, extended links can be included into any page and navigation. It is therefore not
limited to the representation of the Topic Map, as implemented in Ontopia.

The proposed system combines the simplicity of the Web with the power of an underlying
OHS architecture.

3 An Example for an OHS — XLinkbase

Generally speaking, the interface introduced in this paper can be adapted to display extended
links of most OHS systems, especially if they store information semantically connected. How-
ever, it has been primarily designed and implemented for the XLinkbase system. The under-
lying model is therefore shortly explained to illustrate the background of the work.

The overall concept of the XLinkbase system is that of an OHS architecture, with a
database of information about resources (which are not part of the database) that can be
accessed and presented with a variety of clients. Currently, three major types of clients have
been be identified (see Figure 1), which are

• a special XLinkbase client (implemented as a COM component embedded into the
Internet Explorer) providing a powerful graphical visualization of XLinkbase data as
well as supporting its maintenance and manipulation,

• XLink-capable browsers (unfortunately, not yet available), which could display XML
documents with embedded XLinks generated from XLinkbase data,

• and regular HTML browsers, which are supported by transforming XLinkbase data into
HTML or DHTML, depending on the requirements. Possible implementations include

– a simple HTML interface that allows the navigation through XLinkbase content
using basic HTML linking4, and

– applications which query the XLinkbase and then generate hypermedia content as
required, that can be accessed via any browser providing current state-of-the-art
DHTML functionality5.

Furthermore, the (D)HTML browsers could be supported by either using pre-computed
link information, or having it generated on demand (this issue is discussed in more detail
in Section 5.1).

It is important to recognize that XLinkbase is specifically designed to support direct
navigation through the link data through the first two types of clients, as well as providing
the foundation for content management systems for automatically generating rich hypermedia
for use with regular (D)HTML browsers.

In the following sections, the XLinkbase system is described in greater detail. A short
overview of the system’s server-side is provided, followed by describing clients, in particular
a Web-based implementation.

3.1 XLinkbase Server

The categorization of meta data about resources has a very long tradition, ranging from early
library catalogs over standardized concepts for thesauri [18, 17] to the latest development
in this area, W3C’s Resource Description Framework (RDF) [20, 4] and the ISO/IEC Topic
Maps standard [19] as well as its XML variant XML Topic Maps (XTM) [28]. While we
think that Topic Maps provide a very useful foundation for describing meta data, we also
think that there are some areas where Topic Maps are less than ideal. In particular, among
the well-known weaknesses of Topic Maps [30], two issues were most important for us:

• The ability to have a consistent and well-designed hierarchy of topics.

Topic Maps support topic types, but do so in an inconsistent way, because (1) a topic
is not required to have a type, and (2) there is no built-in mechanism for associating
topic types themselves (no defined subtype mechanism).

• A system for defining constraints for topics and associations.

Topic Maps do not make any assumptions about the facets of a topic or the topics being
associated by an association, and while this freedom in some scenarios may be useful,
it often is too lax and encourages the creation of poorly structured Topic Maps.

Based on these observations, we have created a data model which is similar to Topic Maps,
but avoids their disadvantages. Taking this data model as the foundation, we have further-
more specified an operational model, which defines the operations which can be executed
on XLinkbase data. The XLinkbase server is an implementation of a system that maintains
XLinkbase data and processes XLinkbase operations. In the context of this paper, the most

4See http://wildesweb.com/glossary/ for a working example.
5When XLink/XPointer-enabled browsers become available, it can easily be adapted to them by generating

XLinks rather than DHTML from XLinkbase data.

http://wildesweb.com/glossary/

important property of the server is its ability to apply XSLT transformations to the results
of queries into XLinkbase data.

The XLinkbase server is implemented based on Enterprise JavaBeans (EJB), which makes
it possible to easily add scalability and distributed operation of XLinkbase servers. XLink-
base JavaBeans communicate by exchanging messages containing XML, and on receipt of a
request a special dispatching JavaBean computes a path which a request has to take, and
then forwards the request to the first JavaBean on this path. The path may contain many
JavaBeans, which all provide a special functionality (access control, logging, notifying exter-
nal applications). On the back end, the request is transformed into a query language for
the actual data storage (SQL in our first prototype), and the XLinkbase data is retrieved
from the DBMS. On the way back through the XLinkbase server, more JavaBeans may pro-
cess the data, the most important being JavaBeans applying XSLT style sheets to transform
the XLinkbase data to other representations. We currently provide style sheets for simple
HTML, for DHTML as presented in this paper, and for an alternative Scalable Vector Graph-
ics (SVG) [12] representation, which currently requires a special SVG plug-in to be installed
in the browser.

3.2 XLinkbase Clients

As mentioned above, the most important design goal of XLinkbase is to implement a system
that on the one hand provides a powerful and easy-to-use graphical representation through
a native client, while on the other hand being able to support more restricted but also more
deployed technologies for leveraging XLinkbase data. This model is shown in Figure 1.

We have implemented an XLinkbase client which is implemented as a Windows COM
component, and can be easily integrated into Microsoft’s Internet Explorer6. This interface
is limited to Windows platforms only and can also only be used with Internet Explorer, but
makes it possible to integrate XLinkbase content with normal Web content and other data
being available through COM components.

However, the topic of this paper is a more widely available technology, and this is supported
through XLinkbase data being transformed into DHTML. Using this approach, we make little
assumptions about the client’s functionality, and XLinkbase content can easily be viewed
using a standard Web browser on any platform, provided it supports DHTML (which means
HTML, CSS, DOM, and JavaScript). In the following section, we explain the motivation of
this design.

4 Extended Link Visualization

Extended link functionality is new to most users of the Web. A special challenge therefore lays
in making those concepts known to and accessible for users. A new feature is only accepted by
users when it is easy to use and builds on already known concepts. It is also well-know that
users are very reluctant (or not capable) to install programs on their computers [26]. Even
installing a plug-in can be a serious obstacle for inexperienced computer users. Since the Web
is used by the general public, new functionality requiring new software components will only

6It is displayed in a separate window in the same way as IE’s “History” feature. The client also offers a
complete interface for controlling the visualization and performing XLinkbase operations.

Figure 2: Interface Design of the Prototype

be successful if either the installation mechanism is fool proof, or the software components
are delivered pre-configured in the browser.

We therefore reason that for the Web, a Web-based solution, building on existing technol-
ogy, known metaphors, and accepted user interface widgets, should be provided (while still
making more sophisticated interfaces available through native clients).

A functionality similar to multi-noded links already exist in the average-user’s computer
world: Menus. Here also, users can make several choices under one main point. Depending
on the choice they take, they will reach a different destination.

Several different kinds of menus exist [6]. One of particular interest is the context menu
used in all kinds of software. The context menu offers actions specific to a chosen part of the
application/screen. Depending on the object the user invokes the context menu on, different
menus appear next to the object.

Since this is a already known paradigm, it can be used to visualize extended link data.
Difficulties are that the menu used for extended links is not actually a context menu offering
different actions. There is just one action (linking) and different choices (the different target
destinations). Also, we need cascading menus, further stretching the metaphor. However, we
believe that this visualization is still intuitively clear to the user. In order to distinguish it
from the regular context menus, it is invoked pressing a dedicated icon on the page. This icon
visually shows the presence of a more elaborate functionality. Further, we limit the menu to
two levels, similar to a regular menu structure, in order to lessen the user’s mental burden [6].

The obvious advantages of a context-style menu are that (1) it saves precious screen real
estate, (2) it displays the choices for the object adjacent to it (which establishes the mental
connection between objects and choices), (3) it does not disturb the layout of the page, (4)
it is a known GUI element, and (5) it can easily accommodate the target destinations.

The rationale behind the organization of the information and choices in the menus are
described in the following section.

5 Implementation of an Interface

In the following sections, we discuss the technical aspects of the interface, as well as the
specifics of our implemented version.

5.1 Technical Discussion

As discussed above, the additional functionality is implemented by relying as little as possible
on cutting-edge technology. We therefore developed a DHTML interface only requiring Java-
Script on the client side. Also, in order to accommodate users with alternate viewing devices

.js.js .html

Formatting
Script

HTML
File

Data
Arrays

Figure 3: Files for extended Link Functionality

(PDAs, mobile phones, . . .) that do not support JavaScript, we have ensured the existence
of a way to not only navigate through the information in a traditional way, but also to be
able to benefit from the extended functionality of extended linking. This is accomplished by
enabling access to an HTML version of the information. To ensure maximum adaptivity to
different environments, we have built several modules to be combined easily. The idea is to
have three types of files (see Figure 3): One source file with the extended links embedded.
This is a standard HTML file which includes several JavaScript Files. For one there are the
computational and formatting files that produce the pop-up menus. Also required are data
files that contain the actual menu content. Each data file contains an array of links.

There are three main use cases for the interface we will discuss. Basically, the key factors
lay in how often the linkbase changes, and how much the owner of the linkbase wants clients
to access and use the resources (see also Figure 1):

1. Linkbase hardly updated, mostly static information

In this case, we want to minimize the workload of the server. All the resources are stored
in pre-calculated JavaScript files that once downloaded work entirely on the client side.
The scripts are downloaded only once, when the HTML file is requested. This way,
users are ensured an instant feedback to all their actions on the page, once it has been
loaded. Whenever the data changes, the resource arrays are recalculated and stored on
the server, so users must reload the page to get the updated data.

2. Linkbase very frequently updated

If the linkbase is changed frequently and it is crucial that the clients always have the
latest information (eg, financial market data information), then recalculating all the
arrays for all changes is not very economical. Rather, the arrays are calculated on
demand, whenever there is a request. To achieve this, a CGI script is executed on the
server whenever the page is loaded, updating all arrays relevant to the page to the latest
information in the Linkbase before they are downloaded to the client. This of course
requires more performance on the server side the heavier the traffic is. Also, additional
delay might push the limit on the amount of time the user has to wait. This solution
has to return the page within about 10 seconds to be accepted by users [25,32].

3. Very Large Number of Links on one Page

The problem of performance is even more severe if the HTML file includes a large

number of links. The overhead is extremely high, as probably only one link will be
followed, several may be examined, making the other updated arrays oblivious. A way
to cut down on the computational overhead is to load and update the array on demand,
that is, when the link is clicked. This lowers the overhead and download time required
substantially. However, the time-delays accompanying this form of interaction can be
substantial. The user expects an immediate reaction to a click on a menu (as it occurs
on other electronic systems), and could be irritated by the lack of immediate feedback
on the screen. Therefore, a good feedback mechanism has to be put in place. We
recommend this technique only in situations where bandwidth as well as delay are not
a problem (eg, fast LANs).

5.2 The Implemented Version

To answer the question on how to present the linking information contained in an linkbase,
we have to look at it from a users point of view. Basically, what users expect from the
extended link functionality is that they can reach the most appropriate resource from their
current location following a link. We therefore need to provide a view of the relevant part
of the linkbase. This, however, is not trivial. The problem is that the linkbase server does
not know what the users want. So we can either ask the users to state their goals or pref-
erences, as implemented in various systems (for example the COOL link model [23]) or the
creator/machine assumes the scope of interest and relevance using for example weighted arcs.
In order not to overwhelm the user with choices, the system should not present the user with
more than 7 choices per menu or sub-menu [13]. This is to ensure a fast navigation with low
cognitive load for the user considering the 7±2 rule of cognitive psychology [22].

5.2.1 Choosing Data to Display

Generally speaking, the interface can display all sorts of information from different OHS.
Depending on the system, different data will be displayed. Key requisite and common de-
nominator of extended links is that the choices are semantically related to the origin.

Using XLinkbase as an example, the selection of the data to be displayed is highly con-
figurable according to the specific demands and needs of the linkbase. We only discuss one
possible solution which in our opinion will be feasible in most cases. It is based on several
filter mechanisms and criteria. Firstly, we draw a radius of one association around the current
topic (see Figure 4). This has the disadvantage of limiting the user’s horizon, yet having more
than one level of menus normally confuses the user [6]. Simply restricting the radius, how-
ever, might not be a good enough filter if a topic is associated with hundreds of other topics.
Therefore other means have to be put in place. The creator of the page can use self-defined
filters to display a tailored view of the information. This also allows the display of different
views according to context. For example, one association type might be the preferred one in
a certain context, hence the topics connected to it are privileged. Even an exclusive use of
one association is possible. If no filters are defined, the system uses defaults. The creator of
topics can also assign weights to the arcs connecting the topics. This information is used in a
second stage to further specify the data displayed. If no weights are assigned and/or there are
still too many items to display, the user has the possibility to view the HTML representation
of the relevant part of the linkbase.

Legend:
topic
role
association

Figure 4: The radius visible to the user

5.2.2 The Link

A standard XLinkbase link in an DHTML interface looks like this:

H. Potter
<a href="/xlbmap.cgi?harrypotter"

onClick="createMenu(’HarryPotter’);return false;">

An XLinkbase link consists of two parts. Firstly, the link pointing to the most relevant
resource is hard coded into the page on creation or request. This link is a regular HTML
link. Users not being able to view the page with the enhanced functionality (alternative
access devices, older browsers, JavaScript turned off) will still be able to navigate through
the system. Also, this link serves as a trail mark for people not interested in the advanced,
more complicated mechanism. The link is determined by the creator or the system comparing
weights of arches choosing a “good link”.

The second part is a linked image. This visually indicates to the user that there is more
and non-standard information available. Users not having JavaScript functionality built in
their access device are presented an additional page showing an HTML representation of the
relevant part of the linkbase. Is JavaScript available, a menu pops up next to the icon showing
the extended link content.

5.2.3 The Menu

The menu is displaying the various target resources to a link. Based on the underlying
technology, the menu can either be just a plain list of resources or — in a Topic Map based
environment — show associations and the associated resources.

The cascading nature of the menu lets the user traverse via the associations to the re-
sources. The display of the association instead of just a series of links lets the user see the
context in which the resource is valid. Therefore, the user has a better information base on
which to decide. An example for an XLinkbase menu is depicted in Figure 2.

The resources are normally ordered alphabetically. This is because ordering something
alphabetically is one of three precise mechanisms to order information [31]. The system’s
logic will therefore be intuitively clear to the user. Alternatively, if weights are used in the
linkbase, the ordering can also occur according to the weights of each arc. However, this has
to be communicated to the users for them to understand the ordering. In XLinkbase, the last
item in the association menu points to an HTML representation of the topic in focus. This
item is also used when there is too much information available to use the menu GUI.

Since we have two different types of references (internal references to other topics in the
XLinkbase and references to external information), we need to visually distinguish the two
types. This also to meet the users’ expectation of what to find when following a link [6]. We
do this by showing an appropriate icon in front of the resource (either ‘ex’ternal or ‘t’opic).

6 Challenges and Future Work

The implemented version as presented here is a big step towards a better linking model for
the Web. However, there are still a few limitations and constraints:

• Filtering mechanisms

If there is a large number of associations for a particular topic, the system has to filter
the possibilities to find the most relevant information. This is possible by weighting
the arcs (as described in Section 5.2.1), yet requires extra effort on the creator side.
Even then, some choices have to be eliminated for the sake of a lean navigation. Filter
mechanisms have to be found to ensure the best possible solution.

Additional comfort and usability of the system could also be added by letting the system
decide on a context basis or by evaluating the users’ preferences and goals what links
to display.

While filtering has to be performed primarily in the underlying system, it nevertheless is
an important issue to consider when thinking about a usable representation of extended
links.

• User Testing

The interface has not been tested systematically by users yet. Since we are introducing
a new concept for presenting linking information, the reactions of users to the new
functionality would be interesting for the acceptance of our approach in the general
public, and valuable data could be extracted to incrementally improve the interface.

While we currently focus on DHTML-based link display, our long-term focus is to also
support more sophisticated linking mechanisms, which will become available in the next
years [34]. We think that the experiences with our DHTML implementation of complex links
will be extremely valuable for creating useful XLinks.

Future XLink/XPointer-enabled browsers probably will support XLinks natively, and
while it is not yet clear how they will present XLinks, it is clear that designing an uncluttered

and usable interface for the complex linking facilities supported by XLink is a challenge. We
hope that our work is a first step towards this goal.

However, when implementing an XLink/XPointer-enabled interface, even more challenges
lie ahead, like the issue of properly presenting transcluded content, and the issue of being able
to distinguish between internal and external links, which we did not address in this paper.

7 Conclusions

Our work shows that the easy-to-understand and easy-to-use visualization of data from a
complex hypermedia system can be challenging. However, we believe that the linkbase-
assisted generation of more complex links than today’s HTML links is the future, and while
we provide a tool-set for the smooth transition to this new generation of links, the ultimate
goal is to generate XLink from XLinkbase data instead of DHTML. However, it will take a
least a couple of years until XLink/XPointer-enabled browsers will dominate the market, and
until this time, there still is a need for visualizing extended links in using today’s browser
technology.

Acknowledgements

We would like to thank the XLinkbase project team, in particular Yves Langisch and
Manfred Meyer for working on the server implementation, and Simon Künzli and Peter
Zberg for implementing the native client as well as working on the SVG presentation.

For the visual representation of the links in our first prototype, we adapted Peter Be-
lesis’ Hiermenus JavaScript Code7.

References

[1] Kenneth M. Anderson. Integrating Open Hypermedia Systems with the World Wide Web.
In Proceedings of the 1997 ACM Conference on Hypertext, pages 157–166, Southampton, UK,
April 1997. ACM Press.

[2] Michael Bieber, Fabio Vitali, Helen Ashman, V. Balasubramanian, and Harri
Oinas-Kukkonen. Fourth Generation Hypermedia: Some Missing Links for the World Wide
Web. International Journal on Human Computer Studies, 47(1):31–65, July 1997.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). World Wide Web Consortium, REC-xml-20001006,
October 2000.

[4] Dan Brickley and R. V. Guha. Resource Description Framework (RDF) Schema Specifi-
cation. World Wide Web Consortium, Candidate Recommendation CR-rdf-schema-20000327,
March 2000.

[5] Leslie A. Carr, David C. De Roure, Hugh C. Davis, and Wendy Hall. Implementing
an Open Link Service for the World Wide Web. World Wide Web Journal, 1(2):61–71, 1998.

[6] Alan Cooper. About Face: The Essentials of User Interface Design. IDG, Boston, Mas-
sachusetts, August 1995.

[7] Hugh C. Davis. To Embed or Not to Embed. Communications of the ACM, 38(8):108–109,
August 1995.

7Freely available at http://www.webreference.com/

http://www.webreference.com/

[8] Hugh C. Davis, Wendy Hall, Ian Heath, Gary J. Hill, and Robert J. Wilkins. To-
wards an Integrated Information Environment with Open Hypermedia Systems. In Proceedings
of the Fourth ACM Conference on Hypertext, pages 181–190, Milano, Italy, November 1992.
ACM Press.

[9] Steven J. DeRose, Eve Maler, and Ron Daniel. XML Pointer Language (XPointer)
Version 1.0. World Wide Web Consortium, Candidate Recommendation CR-xptr-20010911,
September 2001.

[10] Steven J. DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink)
Version 1.0. World Wide Web Consortium, Recommendation REC-xlink-20010627, June 2001.

[11] Doug Engelbart. The Augmented Knowledge Workshop. In Adele Goldberg, editor,
History of Personal Workstations, pages 187–236. ACM Press, New York, August 1988.

[12] Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification. World Wide Web Consor-
tium, Recommendation REC-SVG-20010904, September 2001.

[13] Wilbert O. Galitz. The Essential Guide to User Interface Design: An Introduction to GUI
Design Principles and Techniques. John Wiley & Sons, Chichester, England, December 1996.

[14] Kaj Grønbæk, Lennert Sloth, and Niels Olof Bouvin. Open Hypermedia as User
Controlled Meta Data for the Web. In Proceedings of the Nineth International World Wide
Web Conference, pages 553–566, Amsterdam, Netherlands, May 2000. Elsevier.

[15] Kaj Grønbæk, Lennert Sloth, and Peter Ørbæk. Webvise: Browser and Proxy Support
for Open Hypermedia Structuring Mechanisms on the World Wide Web. In Proceedings of the
Eighth International World Wide Web Conference, pages 253–267, Toronto, Canada, May 1999.
Elsevier.

[16] Wendy Hall, Hugh C. Davis, and Gerard Hutchings. Rethinking Hypermedia: The
Microcosm Approach. Kluwer Academic Publishers, Boston, Massachusetts, May 1996.

[17] International Organization for Standardization. Documentation — Guidelines for the
Establishment and Development of Multilingual Thesauri. ISO 5964, 1985.

[18] International Organization for Standardization. Documentation — Guidelines for the
Establishment and Development of Monolingual Thesauri. ISO 2788, 1986.

[19] International Organization for Standardization. Information technology — SGML
Applications — Topic Maps. ISO/IEC 13250, 2000.

[20] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syn-
tax Specification. World Wide Web Consortium, Recommendation REC-rdf-syntax-19990222,
February 1999.

[21] Hermann Maurer. HyperWave — The Next Generation Web Solution. Addison-Wesley,
Reading, Massachusetts, 1996.

[22] George A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. The Psychological Review, 63(2):81–97, March 1956.

[23] Michael Miller and L. Jay Wantz. Computed Web Links: The COOL Link Model. In
Peter Brusilovsky, Alfred Kobsa, and Julita Vassileva, editors, Adaptive Hypertext
and Hypermedia. Kluwer Academic Publishers, Pittsburgh, Pennsylvania, June 1998.

[24] Theodor Holm Nelson. Literary Machines. Mindful Press, Sausalito, California, 1982.

[25] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers, San Francisco, Califor-
nia, October 1994.

[26] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders, Indianapo-
lis, Indiana, November 1999.

[27] Peter J. Nürnberg and John J. Leggett. A Vision for Open Hypermedia Systems. Journal
of Digital Information, 1(2), 1997.

[28] Steve Pepper and Graham Moore. XML Topic Maps (XTM) 1.0. TopicMaps.Org Specifi-
cation xtm1-20010806, August 2001.

[29] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification. World Wide
Web Consortium, Recommendation REC-html401-19991224, December 1999.

[30] Hans Holger Rath. Topic Maps: Templates, Topology, and Type Hierarchies. Markup
Languages: Theory & Practice, 2(1):45–64, 2000.

[31] Louis Rosenfeld and Peter Morville. Information Architecture for the World Wide Web.
O’Reilly & Associates, Sebastopol, California, March 1998.

[32] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The Movable Filter as a User Interface
Tool. In CHI ’94: Proceedings of the ACM Conference on Human Factors and Computing
Systems, pages 306–312, Boston, Massachusetts, April 1994. ACM Press.

[33] Norman Walsh. XML Linking and Style. World Wide Web Consortium, Note NOTE-xml-
link-style-20010605, June 2001.

[34] Erik Wilde and David Lowe. XML, XLink, and XPointer: A Practical Guide to Web
Hyperlinking and Transclusion. Addison-Wesley, Reading, Massachusetts, to be published in
2002.

