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Abstract

This thesis studies the reconstruction and generation of oriented matroids. Oriented ma-
troids are a combinatorial abstraction of discrete geometric objects such as point con-
figurations or hyperplane arrangements. Both problems, reconstruction and generation,
address fundamental questions of representing and constructing (classes of) oriented ma-
troids. The representations which are discussed in this thesis are based on graphs that are
defined by the oriented matroids, namely tope graphs and cocircuit graphs. The first part
of this thesis studies properties of these graphs and the question as to what extent oriented
matroids are determined by these graphs. In the second part, these graph representations
are used for the design of generation methods which produce complete lists of oriented
matroids of given number of elements and given rank. These generation methods are used
in the third part for the construction of a catalog of oriented matroids and of complete
listings of the combinatorial types of point configurations and hyperplane arrangements.

The reconstruction problem is the problem of whether an oriented matroid can be re-
constructed from some representation of it, which is here the tope graph and the cocir-
cuit graph. It is known that tope graphs determine oriented matroids up to isomorphism.
However, there is no simple graph theoretical characterization of tope graphs of oriented
matroids. We strengthen the known properties of tope graphs and prove that for every
elementf the topes that are not bounded byinduce a connected subgraph in the tope
graph. This property is later used for the design of generation methods that are based on
tope graphs.

On the contrary to the tope graph case, it is known that cocircuit graphs do not determine
isomorphism classes of oriented matroids. However, if every vertex is labeled by its sup-
porting hyperplane, oriented matroids can be reconstructed up to reorientation. We present
a simple algorithm which gives a constructive proof for this result. Furthermore, we ex-
tend the known results and show that the isomorphism classmf@amoriented matroid

is determined by its cocircuit graph. In addition, we present polynomial algorithms which
provide a constructive proof to this result, and it is shown that the correctness of the input
of the algorithms can be verified in polynomial time.

The generation problem asks for methods for listing all oriented matroids of given car-
dinality of the ground set and given rank. The known generation methods have been
designed primarily for uniform oriented matroids in rank 3 or 4. Our methods are based
on tope graph and cocircuit graph representations and generate all isomorphism classes
of oriented matroids, including non-uniform ones in arbitrary rank. The generation ap-
proach incrementally extends oriented matroids by adding single elements. These single
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element extensions are studied in terms of localizations of graphs, which are signatures
on the vertex sets that characterize single element extensions.

The first two generation methods are based on tope graphs. These methods make use of the
properties of tope graphs studied earlier in this thesis, especially of the new connectedness
property. The first method is a reverse search method for the generation of generalized
localizations in the tope graph. In the second method graph automorphisms are used
to reduce the amount of isomorphic single element extensions. Furthermore we discuss
technigues which reduce multiple extension of the same oriented matroid from different
minors.

Two algorithms based on cocircuit graph representations are designed similarly to those
based on tope graphs. However, all these first four generation methods lack efficiency,
and a reason for this is that they do not use a good characterization of localizations. Due
to a result of Las Vergnas, localizations of cocircuit graphs can be characterized by sign
patterns on the coline cycles in the cocircuit graph. This allows us to design a fifth method
which is efficient in practice. This method is a backtracking algorithm which enumerates
all sign patterns of coline cycles that are feasible in terms of the characterization. It
turns out that the method is similar to a method of Bokowski and Guedes de Oliveira
for the uniform case. Our method is more general as it is capable to handle all oriented
matroids in arbitrary rank, including non-uniform oriented matroids. Furthermore it uses
an efficient data structure and a new dynamic ordering in the backtrack procedure.

The generation methods are used for the construction of a catalog of oriented matroids.
This catalog is organized using basis orientations of oriented matroids. We discuss some
properties of the catalog and a method to generate the catalog. The catalog of ori-
ented matroids can be used to find complete listings of combinatorial types of point
configurations and hyperplane arrangements. We study these listing problems and dis-
cuss solution methods. Furthermore we show by an example the potential of these
complete listings in resolving geometric conjectures. The listings of oriented matroids,
point configurations, and hyperplane arrangements can be accessed via the Internet on
http://www.om.math.ethz.ch



Zusammenfassung

Diese Dissertation behandelt die Rekonstruktion und Erzeugung von Orientierten Matro-
iden. Orientierte Matroide sind eine kombinatorische Abstraktion von diskreten, geome-
trischen Objekten wie z. B. Punktkonfigurationen oder Hyperebenenarrangements. Bei-
de Probleme, Rekonstruktion und Erzeugung, stellen fundamentale Frageidieder
Darstellung und Herstellung von (Klassen von) Orientierten Matroiden. Die Darstellun-
gen, welche in dieser Dissertation diskutiert werden, basieren auf Graphen, die durch
die Orientierten Matroide definiert werderamlich Tope-Graphen und Kokreis-Graphen.

Der erste Teil dieser Dissertation untersucht Eigenschaften dieser Graphen und die Fra-
ge, wie weit Orientierte Matroide durch diese Graphen bestimmt werden. Im zweiten Tell
werden diese durch Graphen gegebenen Darstellungedid Entwicklung von Erzeu-
gungsmethoden verwendet, welche valigtige Listen von Orientierten Matroiden mit
einer gegebenen Anzahl von Elementen und gegebenem Rang herstellen. Diese Erzeu-
gungsmethoden werden im dritten Teil verwendetdie Erstellung eines Kataloges von
Orientierten Matroiden und von voltdigen Auflistungen der kombinatorischen Typen
von Punktkonfigurationen und Hyperebenenarrangements.

Das Rekonstruktionsproblem ist gegeben durch die Frage, ob ein Orientiertes Matroid von
einer gewissen Darstellung von ihm wiederhergestellt werden kann; die hier betrachteten
Darstellungen sind der Tope-Graph und der Kokreis-Graph. Es ist bekannt, dass Tope-
Graphen Orientierte Matroide bis auf Isomorphie bestimmen. Allerdings gibt es keine
einfache, graphentheoretische Charakterisierung der Tope-Graphen von Orientierten Ma-
troiden. Wir erweitern die bekannten Eigenschaften von Tope-Graphen und beweisen,
dass @i jedes Element die durchf nicht begrenzten Tope im Tope-Graphen einen zu-
sammenhigenden Untergraphen induzieren. Diese Eigenschaft wateispir die Ent-
wicklung von Erzeugungsmethoden verwendet, welche auf Tope-Graphen basiert sind.

Im Gegensatz zum Tope-Graphen bestimmt der Kokreis-Graph die Isomorphieklasse ei-
nes Orientierten Matroids nicht. Wenn aber jeder Knoten mit detzByperebene mar-

kiert wird, kann das Orientierte Matroid bis auf Reorientierung rekonstruiert werden. Wir
stellen einen einfachen Algorithmus vor, der dieses Ergebnis konstruktiv beweist. Ausser-
dem erweitern wir die bekannten Resultate und zeigen, dass die Isomorphieklasse eines
uniformenQOrientierten Matroids durch den Kokreis-Graphen bestimmt ist. Zudem stellen
wir polynomiale Algorithmen vor, welche einen konstruktiven Beweis dieses Ergebnisses
bieten, und es wird gezeigt, dass die Eingabe der Algorithmen in polynomialer Zeit auf
Korrektheituberpuift werden kann.

Das Erzeugungsproblem verlangt nach Methoden zur Auflistung aller Orientierten Ma-
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troide von gegebener Kardinattder Grundmenge und gegebenem Rang. Die bekann-
ten Erzeugungsmethoden wurden haagidich fir uniforme Orientierte Matroide im
Rang 3 oder 4 entwickelt. Unsere Methoden basieren auf Darstellungen durch Tope-
Graphen und Kokreis-Graphen und erzeugen alle Isomorphieklassen von Orientierten
Matroiden, einschliesslich nicht-uniformer in beliebigem Rang. Der Erzeugungsansatz
erweitert schrittweise Orientierte Matroide durch Hinmyn einzelner Elemente. Diese
1-Element-Erweiterungen werden anhand von Lokalisierungen von Graphen untersucht,
welches Signaturen auf der Knotenmenge sind, welche 1-Element-Erweiterungen charak-
terisieren.

Die ersten beiden Erzeugungsmethoden basieren auf Tope-Graphen. Diese Methoden ma-
chen Gebrauch von den Eigenschaften von Tope-Graphen, die vorher in dieser Disserta-
tion untersucht wurden, besonders von der neuen Zusammenhangseigenschatft. Die erste
Methode ist eine Umkehrsuchmethode tlie Erzeugung von verallgemeinerten Loka-
lisierungen im Tope-Graphen. In der zweiten Methode werden Graphenautomorphismen
verwendet, um die Menge von isomorphen 1-Element-Erweiterungen zu reduzieren. Wei-
ter diskutieren wir Techniken, welche das mehrfache Erzeugen des gleichen Orientierten
Matroids von verschiedenen Minoren vermindern.

Basierend auf Darstellungen mittels Kokreis-Graphen werden zwei Algorithmen ent-
wickelt, &hnlich jenen, die auf Tope-Graphen basieren. Diese ersten vier Erzeugungs-
methoden sind jedoch alle wenig leisturagsfj, und ein Grund daf'liegt darin, dass sie
keine gute Charakterisierung von Lokalisierungen verwenden. Infolge eines Ergebnisses
von Las Vergnas &rinen Lokalisierungen von Kokreis-Graphen charakterisiert werden
durch Vorzeichenmuster auf den Kolinien-Kreisen im Kokreis-Graph. Dies erlaubt uns,
eine tinfte Methode zu entwickeln, welche in der Anwendung effizient ist. Diese Metho-
de ist ein Rickverfolgungs-Algorithmus, welcher alle Vorzeichenmuster von Kolinien-
Kreisen enumeriert, die zagsig sind im Sinne der Charakterisierung. Es stellt sich heraus,
dass die Methodaltinlich ist zu einer Methode von Bokowski und Guedes de Olivaira f~
den uniformen Fall. Unsere Methode ist allgemeiner, da sie alle Orientierten Matroide in
beliebigem Rang behandeln kann, einschliesslich nicht-uniformer Orientierter Matroide.
Zudem benutzt sie eine effiziente Datenstruktur und eine neue dynamische Reihenfolge
im Ruckverfolgungs-Verfahren.

Die Erzeugungsmethoden werdem diie Erstellung eines Kataloges von Orientierten Ma-
troiden verwendet. Dieser Katalog wird mittels Basisorientierungen von Orientierten Ma-
troiden organisiert. Wir diskutieren einige Eigenschaften des Kataloges und eine Methode
fur die Erzeugung des Kataloges. Der Katalog von Orientierten Matroiden kann verwen-
det werden, um vollstidige Auflistungen der kombinatorischen Typen von Punktkonfi-
gurationen und Hyperebenenarrangements zu finden. Wir untersuchen diese Auflistungs-
probleme und diskutierendsungsmethoden. Weiter zeigen wir mit einem Beispiel das
Potential dieser vollstidigen Auflistungen im aSen von geometrischen Vermutungen.

Die Auflistungen von Orientierten Matroiden, Punktkonfigurationen und Hyperebenen-
arrangements sind im Internet amgjlich unterhttp://www.om.math.ethz.ch
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Motivation and Overview

Introduction

Oriented matroids are a natural mathematical notion which may be viewed as a combi-
natorial abstraction of real hyperplane arrangements, convex polytopes, or point config-
urations in the Euclidean space. The notion of oriented matroids was introduced in the
late seventies independently by Bland and Las Vergnas [BLV78] and by Folkman and
Lawrence [FL78]. There are several different (but equivalent) axiom systems and repre-
sentations of oriented matroids, and the theory of oriented matroids has connections and
applications to many areas of mathematics. These areas include combinatorics, discrete
and computational geometry, optimization, and graph theory.

We illustrate oriented matroids in the following by sphere arrangements. A more detailed
introduction to oriented matroids is given in Chapter 0. For a most comprehensive pre-
sentation of the theory of oriented matroids we refer to the monographooh&j Las
Vergnas, Sturmfels, White, and Ziegler [BLVS9)].

A finite sphere arrangemest= {S | e € E} in the Euclidean spadgd+! is a collection

of (d — 1)-dimensional unit spheres on tiedimensional unit spherg&®, where every
sphere& is oriented (i.e. has & side and a— side). Figure 1 shows an example for
d = 2 with |E| = 4 spheres; in the following we will refer to this example several times.

Figure 1: Sphere arrangement



4 MOTIVATION AND OVERVIEW

The sphere arrangemefiinduces a cell comples on S%. For every poin on ¥ we
define asign vector Xe {—, +, 0}F by settingXe = 0 if x is on &, otherwiseXe = +

(or Xe = —) if x is on the+ side (or— side, respectively) o&. For example, the point
Ain Figure 1 is associated to the sign vect@ 0 — +), and a point in the (relative
interior of) regionBC D is mapped ta + + + +). We call these sign vectoc®vectors
and denote the set of all covectors By Obviously there is a one-to-one correspondence
between the cells itK and the covectors itF. Furthermore the facial relationship in
JK can be recognized iff: for covectorsX,Y € ¥, X corresponds to a subface of the
face corresponding t¥ if and only if Xe # 0 implies Xe = Ye for all e € E. By this,

K and F have the same face poset. We ¢&ll ¥) the oriented matroid defined b
Whereass and.KX are a geometric objects, the corresponding oriented matiid ) is
purely combinatorial, reflecting the relative positions of the cells in the comflenly.

In general, oriented matroids are defined by axioms#orNot every oriented matroid
has a realization by a sphere arrangement, but every oriented matroid can be represented
by a topological sphere arrangement ([FL78, Man82], see also Chapter 0).

For the study of combinatorial objects, an axiomatic foundation as in the theory of ori-
ented matroids is a crucial advantage, as compared to direct work on geometric realiza-
tions where such a foundation is missing. By their axioms, oriented matroids have poly-
nomial characterizations; on the other hand iNR-hard to decide whether an oriented
matroid has a realization (by a sphere arrangement) or noe@@nSho91], i.e., there is

no polynomial characterization of the combinatorial structure (in the sense of an oriented
matroid) of a sphere arrangement unl®s= NP. Furthermore, there are methods to
decide whether an oriented matroid is realizable or not which work satisfactory for small
instances [RG92].

In addition to the existence of axioms, the finiteness of oriented matroids can guarantee
the completeness of investigations. For given dimension and number of spheres there
exists an infinite number of sphere arrangements, whereas there are only finitely many
combinatorial types of such arrangements, i.e., there is only a finite number of different
face posets of oriented matroids. Many combinatorial problems are so difficult that often
the most promising way is the enumeration of all possible cases. For combinatorial prob-
lems which arise from geometry and have an abstraction in terms of oriented matroids
the enumeration of all cases is, in principle, possible because of the finiteness and the
axiomatic foundation of oriented matroids. The following two examples may illustrate
the importance of methods for the generation of oriented matroids.

The geometric realization of triangulated 2-manifolds is the problem whether some given
triangulated (topological) 2-manifold has a polyhedral embeddiRyFinn other words,

for a list of triangles om vertices which describe an abstract 2-complex, the problem

is to decide whether there are coordinates for the vertices such that the triangles in the
list correspond to non-intersecting facets of a geometric 2-manifold. For 2-manifolds of
genusg = O (i.e., spheres) the problem is decidable because of Steinitz’'s theorem: the
2-manifold is realizable if and only if the graph defined by the adjacency of the vertices

is planar and 3-connected. For 2-manifolds of gegus 0 (spheres withg handles)

the problem was posed by Grbaum (Exercise 3 of Section 13.2 in [Bi7]) and is wide

open; only certain smaller instances are decided. A remarkable progress has been recently
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made by Bokowski and Guedes de Oliveira [BGdOO00] who proved by enumeration of
oriented matroids that there is no realization of a certain 2-manifoldm#thl2 vertices
which has genug = 6. For a more detailed survey on polyhedral 2-manifolds see Section
A.7 in [BLVST99].

The order type of a point configuration, as introduced by Goodman and Pollack [GP83],
is the combinatorial type described by all the relative positions in a finite set of points
in the Euclidean space. Many problems in combinatorial geometry are stated in terms
of point configurations, and there have been early attempts to list all order types, or all
combinatorial types of related structures such as hyperplane arrangements. However,
these listings could consider only very small cases, configurations of at most 5 points
in [GP80a] or (projective) hyperplane arrangements of at most 6 hyperplanesir2]ir-
Furthermore the completeness of the listings was not always clear (e.g., in an eatrlier list
of all arrangements of at most 6 hyperplanes in Section 18.1 afg@rone case was
missing). Often the listing was restricted to some special, non-degenerate c&ses in
Recently there has been a considerable progress in the enumeration of non-degenerate
order types of point configurations in the Euclidean plane by Aichholzer et al. [AAKO1],

by this establishing the first data base of all non-degenerate order typesf@0d points

in R2. This data base has been contructed by generation of certain representations of
oriented matroids which have been realized by coordinates as far as possible, where the
completeness of the listing has been guaranteed by known realizability results from the
literature (e.g., see [Bok93]). Applications of the order type data base to several problems
in computational and combinatorial geometry [AKO1] has shown the usefulness of such
listings.

Problems and Goals

A main goal of this thesis is to investigate and develop methods which generate complete
listings of oriented matroids of given size. Techniques for listing oriented matroids for
smalln = |E| andd have been studied, among others, by Bokowski, Sturmfels, and
Guedes de Oliveira (e.g., [BS87, BS89, BGdOO0Q]). However, it seems that the meth-
ods are designed primarily for the case of uniform oriented matroids and low dimen-
sion d = 2 ord = 3). Uniform oriented matroids are those which correspond to non-
degenerate (pseudo-)sphere arrangements, i.e., the spheres are assumed to be in general
position (see Figure 2). Our goal is to find methods which work for general oriented
matroids in arbitrary dimension, including non-uniform oriented matroids.

Many questions which can be solved when having a complete list of oriented matroids
only depend on the isomorphism class, which is the equivalence class under reorientation
and relabeling of the elements. An illustration of isomorphism classes are arrangements
of unoriented and unlabeled spheres (as showed in Figure 2). Important combinatorial
properties such as the face poset only depend on the isomorphism class, even more, the
face poset determines the isomorphism class. However, the face poset is a rather compli-
cated and very redundant structure and hence not well suited for practical purposes. It will
be sufficient to use only parts of the face poset, namely two graphs which are defined by
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Figure 2: Sphere arrangements of non-uniform and uniform oriented matroids

the face poset, the so-callempe graphand thecocircuit graph These graphs will serve

as a base of rather simple and compact representations of isomorphism classes of oriented
matroids and will be helpful for the design of methods that solve the problem which we
posed above: the generation of isomorphism classes of arbitrary oriented matroids.

Consider again thé-dimensional sphere arrangeménwith corresponding cell complex

K and oriented matroidd = (E, ) as introduced above. The cells of maximal dimen-
siond — 1 in KX are calledregionsand the corresponding covectorsfntopes Two
regions are calleddjacentf they have a commond — 2)-dimensional face, and this is

the case if and only if the corresponding topéandY disagree in exactly one sign. This
defines an adjacency notion for topes and by this a graph whose vertices correspond to
topes, which is called thepe graptof the oriented matroid. Figure 3 shows the cell com-
plex with two adjacent region8 B D and BC D, which correspond to the adjacent topes
(++—+) and(+ + + +), and the tope graph of the corresponding oriented matroid.

Figure 3: Adjacent regions in sphere arrangement and tope graph
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It is known that the tope graph determines the whole face poset [BEZ90]. This motivates
to use tope graphs as a representation of isomorphism classes. This brings up two prob-
lems: to reconstruct an oriented matroid for a given tope graph, and to decide whether a
given graph is the tope graph of some oriented matroid or not. For example, it is known
that every tope graph is bipartite and embeddable in some hypercube, but this is not a
characterization. It is a goal of the thesis to review known results, to extend them, and
to discuss algorithmic solutions for these reconstruction and characterization problems.
These investigations will enable us to design algorithms for the generation of tope graphs
of oriented matroids, hence for the generation of oriented matroids up to isomorphism.

A second graph which is defined by the face poset istioércuit graph Consider again

the sphere arrangemef#itas introduced above. The cells of minimal dimension (i.e., the
O-dimensional cells) inK are the vertices of a graph whose edges correspond to the 1-
dimensional cells inX, i.e., two vertices are adjacent if they are the two endpoints of a
1-dimensional cell inX. In short, this graph is the 1-skeleton&f. In the oriented ma-

troid M = (E, ) defined by4, the covectors which correspond to 0-dimensional cells
are calleccocircuits The adjacency for cocircuits corresponding to the one of vertices in
K is defined by the facial relationship of covectors as defined above. In the example from
above consider two cocircuits, sap + 0 +) and(4+ 0 0 0), which correspond to the
verticesB andD in the sphere arrangement. These cocircuits are adjacent since they are
the only two proper subfaces 6% + 0 +) € ¥, which corresponds to the fad&D in

K. The adjacency relation of cocircuits definesdbeircuit graphof an oriented matroid

(see also Figure 4). Cocircuit graphs are quite different from tope graphs, e.g., a cocircuit

Figure 4. Sphere arrangement and cocircuit graph

graph is not bipartite fod > 2. Furthermore, it is known that cocircuit graphs do not
characterize the face poset [CFGdOOQ0]. Nevertheless, when some information is added to
the graph, such as vertex labels which indicate for every verteg set of spheres which
containv, the face poset can be reconstructed. It is a goal of this thesis to investigate cocir-
cuit graphs and the corresponding reconstruction and characterization problems. Similar
to tope graphs we will investigate algorithmic solutions for these problems, and it will
turn out that cocircuit graphs can be used as a base for the design of efficient generation
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algorithms of oriented matroids.

The goal to find methods for the generation of oriented matroids up to isomorphism
has lead to the consideration of graph representations, namely tope graphs and cocir-
cuit graphs. The better these graph representations are understood and characterized, the
better they can be used for generation methods. On the other hand, from a more intrinsic
point of view, our understanding of tope graphs and cocircuit graphs will profit from the
investigation of algorithms for reconstruction and generation of oriented matroids.

Main Results

Part | of this thesis discusses the reconstruction and characterization problems of tope
graphs and cocircuit graphs, whereas Part 1l is devoted to generation methods. Part Il
will show some applications, namely the construction of a catalog of oriented matroids
and of complete listings of combinatorial types of point configurations, polytopes, and
hyperplane arrangements. For an overview of the dependencies of the chapters see also
the structure diagram on page Xix.

Chapter Ointroduces the theory of oriented matroids, presenting the notation, several
axiom systems and results from the theory of oriented matroids which are used in this
thesis. Although there are no new results in this chapter, the presentation and also most of
the proofs have been written for the purpose of introducing the basic material of the thesis,
which also caused a selection of the known results and a discussion from a personal point
of view. Later chapters will depend on Chapter 0 and refer to it whenever necessary.

Part| Reconstruction and Characterization Problems

Chapter 1discusses tope graphs of oriented matroids. We define tope graphs in Sec-
tion 1.1 and address the two main problems considered in Chapter 1, the characterization
problem and the reconstruction problem of tope graphs. The characterization problem is
the problem to decide whether a given graph is the tope graph of some oriented matroid.
The reconstruction problem is the problem to find for a given tope gé&pim oriented
matroid M such thatG is the tope graph ofd. The investigation of these problems is
organized as follows.

Section 1.2 reviews some properties of tope graphs which are known from the literature
[FH93] which state that tope graphs can be embedded in some higher-dimensional hyper-
cube such that distances in the tope graph and in the hypercube coincide. These properties
are not sufficient to characterize tope graphs of oriented matroids; in fact, no characteri-
zation of tope graphs is known which can be verified in the graph in polynomial time.

A first main result of this thesis is a connectedness (or separability) property established
in Section 1.3. Consider again the example introduced above, and choose an arbitrary
elementf, say f = 4. The sphere arrangemefitan be constructed by insertii®y as

a new sphere i \ f := {S, $, S3}. The regions of§ are obtained from the regions
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in 8\ f by dividing some regions, thosrit by S, into two new regions; the remaining
regions stay unchanged, we call theseutregions. Figure 5 shows the uncut regions for
f = 4. Correspondingly, we call a tope anuncut topeif the sign vector+ X, which

Figure 5: Uncut regions in sphere arrangemednt{ 4)

is obtained fromX be reversing the sign i, is not a tope. We proof that if there exist
uncut topes for some givehthen the subgraph induced in the tope graph by uncut topes
has exactly two connected components. Stated differently, the new eldnsepiarates

the uncut topes in two connected parts which correspond te-thed the+ side of f.

The proof of this connectedness property uses nontrivial inductive arguments and results
from oriented matroid programming, which is an abstraction of linear programming. The
property can be verified easily for a given tope graph (without knowledge of topes as sign
vectors) and is independent from the known properties of tope graphs as we show by an
example. Still, the new result does not lead to a graph theoretical characterization of tope
graphs of oriented matroids, as we can give another example which satisfies the known
tope graph properties (including the connectedness for every eleiént is not a tope

graph of an oriented matroid.

Section 1.4 discusses the reconstruction problem for tope graphs which can be solved by
a simple algorithm of Cordovil and Fukuda [CF93]. This algorithm makes it possible to
characterize tope graphs of oriented matroids by use of an algorithmic characterization
of tope sets, which is discussed in the last three sections of Chapter 1. The problem to
decide whether a given s@t of sign vectors is the tope set of some oriented matroid

is solved in three steps. A first algorithm due to Fukuda, Saito, and Tamura [FST91]
constructs (in polynomial time) frofi” a set of sign vector® such that if7" is a set of

topes thenD is the corresponding set of cocircuits. In a second £6p tested to be the

set of cocircuits of some oriented matroid, which is possible in polynomial time using the
cocircuit axioms of oriented matroids. Finally, we present an algorithm which constructs
the set of tope§ ™’ from the cocircuitsD. If 7 is the set of topes of some oriented matroid
then7 = 7/, otherwise the method recognizes that this is not the case. The algorithm for
the construction of topes from cocircuits is proved to be polynomial in the sizes of input
and output; this extended notion of polynomiality [Fuk96, FukOOa, Fuk01] is used since
the number of topes can be exponential in the number of cocircuits.
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Chapter 2discusses the reconstruction and characterization problems concerning cocir-
cuit graphs. An example of Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO00] shows
that the cocircuit graph of an oriented matroid does not characterize the face poset. How-
ever, the question remained open for cocircuit graphs of uniform oriented matroids (which
we will simply call uniform cocircuit graphy and positive answers are possible when
some information about the oriented matroid is added to the cocircuit graph, as we dis-
cuss in the following using the notion of labels. We define three types of labels:

e An OM-label(oriented matroid label) of a cocircuit graph is a méghat associates
every vertex in the cocircuit graph to its corresponding cocircuit. In the example
presented above, the vert€xis mapped ta(C) = (0 + + 0).

e An OM-label £ induces arM-label (matroid label)L which carries the underlying
matroid information only, i.e.l. maps every vertex to the set of elements which
correspond to 0 signs i (v). We write this definition a& (v) := £(v)° for every
vertexv. In the example from above;(C) = (0 + + 0) inducesL (C) = {1, 4}.

e An M-label induces a\P-label(antipode label) by mapping every vertexo the
so-calledantipodev of v which is characterized bl (v) = L) andv # v. In the
example of above, the vert€xis mapped to its antipode.

In addition to labels there is the notion obline cyclesn cocircuit graphs which play

an important role for reconstruction and also later for generation methods. In a sphere
arrangement a coline cycle is the subgraph induced in the cocircuit graph by the 1-
dimensional intersection of a number of spheres. In our examp& each coline cycle

is trivially given by the edges belonging to one sphere. In the M-labeled cocircuit graph
of an oriented matroid a coline cycle is the subgraph induced by the edges having same
M-label, where the M-label of an edge is defined as the intersection of the vertex labels of
the two end points; in fact, a coline cycle is always a cycle in the cocircuit graph. Figure 6
shows the M-labeled cocircuit graph and indicates the coline cycles.

Figure 6: Coline cycles in M-labeled cocircuit graph
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As aresult of Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO00] the M-labeled cocir-
cuit graph determines the oriented matroid up to reorientation. We present in Section 2.2
a simple algorithm for the orientation reconstruction from an M-labeled cocircuit graph.
The idea is based on a connectedness property [CFGdOO00] which is similar to that dis-
cussed above for tope graphs: letbe an arbitrary element and consider the subgraph
G(f) induced in the cocircuit graph by the vertiaeor which f is notinL (v); then two
verticesv, w are connected i () if and only if L(v) = L(w) # 0 for any OM-label

L that induced..

As one of the major results in this thesis we prove that the cocircuit grapbrof@mori-

ented matroid determines its isomorphism class. This strengthens the known result that the
isomorphism class is determined by an AP-labeled uniform cocircuit graph [CFGdOO0Q].
We prove the known and the new result providing (polynomial) algorithms which recon-
struct the isomorphism class in several steps. The reconstruction of an oriented matroid
from a given M-labeled cocircuit graph has been considered above. Section 2.3 presents
two algorithms, one for the reconstruction of an M-label of a uniform cocircuit graph
from the set of colines cycles, a second which finds the set of colines cycles from an
AP-label. In Section 2.4 we show how an AP-label of a given uniform cocircuit graph
can be constructed in polynomial time. A first important result is that an AP-label of a
uniform cocircuit graph is determined by only two pairs of antipodal vertices which are
known to be on a common coline cycle. The main theorem states that the AP-label of
a uniform cocircuit grapl@ is determined byG up to graph automorphisms. The proof

of this theorem considers the automorphism group(&utand is based on the previous
reconstruction results of Chapter 2.

We discuss in Section 2.5 how the correctness of the input of our algorithms can be
checked in polynomial time. This solves the characterization problem for cocircuit graphs
of uniform oriented matroids and for M-labeled cocircuit graphs algorithmically (i.e., we
do not give a direct graph theoretical characterization).

The results of Chapter 2 are also related to Perles’s conjecture which says that the
1-skeleton of a simplel-dimensional polytope determines its face poset; this conjec-
ture was first proved by Blind and Mani-Levitska [BML87] and then constructively by
Kalai [Kal88]. If an oriented matroid is realizable, the cell compJgxformed by ¥ is
isomorphic to the face poset of the dual of a zonotope (zonotopes are polytopes which are
projections of higher-dimensional hypercubes), i.e., the present work extends the discus-
sion of Perles’s conjecture to a class of non-simple polytopes. Joswig [Jos00] conjectured
that every cubical polytope (i.e., evefy — 1)-dimensional face is isomorphic to a hyper-
cube) can be reconstructed from its dual graph; our result proves this conjecture for the
special case of cubical zonotopes up to graph isomorphism. In other words, the face poset
of every cubical zonotope is uniquely determined by its dual graph up to isomorphism.

Part Il Generation Methods

Chapter 3introduces the generation problem of oriented matroids and presents an incre-
mental method for the generation of isomorphism classes. In this incremental method



12 MOTIVATION AND OVERVIEW

oriented matroids are generated by single element extensions, i.e., oriented matroids are
extended to new oriented matroids by introducing one element after the other. This ap-
proach is the one also used in former methods [BS87, BS89, BGdOO00]. New is that we
use tope graphs and cocircuit graphs and that all oriented matroids in arbitrary dimension
are considered. Single element extensions are represented in tope graphs and cocircuit
graphs by signatures on the vertex sets, so-cdtlealizations Consider again the ex-
ample of above. The sphere arrangemégrg obtained from$ \ f as a single element
extension by addin; . This defines localizations of the vertex sets of the tope graph and
cocircuit graph off \ f as follows. In the tope graph, every vertex which corresponds to
aregion that is divided by into two new regions is labeled by a 0 sign, the other vertices

by a— or + sign according to whether the corresponding regions are o e+ side

of f. In the cocircuit graph, every vertex takes-a+, or 0 sign according to whether it

is on the— or + side of f or contained inf. Figure 7 shows the localizations in the tope
graph and cocircuit graph &f \ f for the above example anfd= 4.

AB

Figure 7: Localizations of tope graph and cocircuit graph

Chapter 4presents generation methods that are based on tope graphs. Section 4.1 dis-
cusses the strong relation between automorphisms of tope graphs and isomorphisms in
oriented matroids and presents an algorithm for testing isomorphisms of tope graphs. Sec-
tion 4.2 gives a formal definition of localizations of tope graphs and discusses the relation
to single element extensions and properties of localizations. We use the connectedness of
uncut topes from Chapter 1 to prove that for any tope gi@pmnd localizatioro of G

the subgraph its induced by the vertices with o (v) = — is connected. This property

is essential for the design of two algorithms in Sections 4.3 and 4.4 for the generation of
localizations. Both methods generate a superset of localizations, so\wakédocaliza-

tions every weak localization can be tested for being a localizations using the characteri-
zation algorithms from Chapter 1. The first algorithm is a reverse search method [AF96]
which generates every weak localization once without repetition. The second algorithm
incorporates isomorphism tests in order to reduce the amount of enumeration as we are
only interested in generating oriented matroids up to isomorphism. Both methods are new
methods for the generation of oriented matroids and not similar to any of the known meth-
ods. However, they turn out to be of limited use in practice. It seems that the absence of
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a good characterization of localizations in tope graphs causes these methods to become
inefficient as the number of elements increases. Hence these methods will not be used for
the generation of oriented matroids in practice.

Chapter 5presents generation methods based on the cocircuit graph of oriented matroids.
In contrast to tope graphs, cocircuit graphs do not characterize isomorphism classes of
oriented matroids. However, the results of Chapter 2 show that an M-labeled cocircuit
graph, whose M-label is considered up to relabeling, characterizes the isomorphism class
of the corresponding oriented matroid. This representation is useful in Section 5.1 where
we discuss the relation between automorphisms of cocircuit graphs and isomorphisms of
oriented matroids and where we present an algorithm for testing isomorphisms of cocir-
cuit graphs. Section 5.2 formally defines localizations of cocircuit graphs and discusses
the relation to single element extensions. The connectedness result which was already
helpful for the orientation reconstruction in Chapter 2 is used for designing two genera-
tion algorithms based on cocircuit graphs which are similar to those for tope graphs in
Chapter 4. The signatures produced by these algorithms form a superset of all localiza-
tions of a cocircuit graph, which are characterized by the following result of Las Vergnas
[LV78b]: a signature is a localization of a cocircuit graph (given with a set of coline cy-
cles) if and only if for every coline cycle the induced signature is of one of the three types
given in Figure 8. This characterization is used in Section 5.4 for the design of an effi-

+ _ + _
+ _ + _
+ _ + _
+ _ + _
0 +
Type | Type Il Type llI

Figure 8: Signatures on coline cycles induced by a localization

cient generation method. This method is basically a backtracking algorithm which fixes
signatures on coline cycles one after the other, where all possibilities according to the
above characterization are considered as long as there is no conflict with previously fixed
patterns of coline cycles. It turned out that our method is similar to a method of Bokowski
and Guedes de Oliveira [BGdOOQO] for the uniform case. However, our method is more
general as it is capable to handle all oriented matroids in arbitrary rank, including non-
uniform oriented matroids. Furthermore, our method introduces two new concepts which
are important for practical efficiency. First, the backtracking algorithm ushsamic
orderingof the coline cycles in order to reduce the amount of enumeration. Second, the
algorithm uses aoline adjacency matriwhich reflects the mutual intersection of coline
cycles; by this the amount of time spent for one step in the backtracking method becomes
very small. Computational experiments show that our method generates only relatively
few infeasible situations where a partial assignment of patterns to coline cycles cannot be
completed to a localization, which finally explains its practical efficiency.
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Part Il Applications

Chapter 6presents a catalog of oriented matroids up to isomorphism whose computation
is based on the methods presented earlier in this thesis. We discuss the organization of the
catalog which uses basis orientations (chirotopes) for the encoding of the representative of
every isomorphism class. Furthermore a method is presented which generates the catalog.
Finally we give an overview of the results, also indicating CPU time usage and memory
usage. We consider this catalog to be a major step forward as it is the first such catalog
which includes not only uniform oriented matroids but all cases in arbitrary dimension.

Chapter 7discusses how the catalog of oriented matroids from Chapter 6 can be used
for the generation of complete listings of the combinatorial types of point configurations,
so-calledorder typeqdGP83]. Figure 9 shows an example of such a list; see Figures 7.4
and 7.5 for the analogous listings with 5 and 6 points. These listings are the first such

Figure 9: The 3 order types with 4 non-collinear point®h

listings which also include degenerate point configurations. We use these listings for an
alternative proof of the classifications of polytopesuy6r, AS84, AS85] and show their
potential in resolving geometric conjectures.

Chapter 8considers the problem of generating all combinatorial types of hyperplane ar-
rangements, which we calissection typesFigure 10 shows an example of such a list;

N N

AN A%

Figure 10: The 3 dissection types with 3 non-parallel hyperplangs in

for arrangements with of more lines see Figures 8.3 and 8.4. We give complete listings
which again are first of this kind as they include all degenerate cases. We consider these
listings to be an interesting source for future investigations.

The catalogs of oriented matroids, point configurations, and hyperplane arrangements are
available online omttp://www.om.math.ethz.ch



What's in a name?
ROMEO AND JULIET (2,2)

Chapter 0

An Introduction to Oriented Matroids

0.1 A First Tour of Oriented Matroids

Oriented matroidsan be viewed as an axiomatic combinatorial abstraction of geometric
structures such as real hyperplane arrangements, convex polytopes, or point configura-
tions in the Euclidean space. This abstraction reflects properties like linear dependencies,
facial relationship, convexity, duality, and optimization issues, and by this oriented ma-
troids have become an indispensable tool in discrete and computational geometry. Fur-
thermore, the theory of oriented matroids has connections and applications to many areas
of mathematics. A most comprehensive presentation can be found in the monograph of
Bjorner, Las Vergnas, Sturmfels, White, and Ziegler [BI\8S]. For the present thesis

the introduction of the following pages will be sufficient. Readers who are already famil-
iar with oriented matroids may read this chapter in parts; later chapters will refer to this
Chapter O.

We start this first tour of oriented matroids with a look at tfzene The notion “matroid”
was first used by Whitney [Whi35], created from “matrix” by adding the suffix “-oid”,
hence meaning “resembling of a matrix” or “having the form of a matrix”. Let us consider
the following matrix:

001 -1
A= 100 O
111 1

There are several ways to see the matroid structure definédd Bne way is to consider
the four column vectors

0 0 1 -1
Al=| 1], A=]0],A3=]| 0], Au= 0
1 1 1 1

as vectors ifR3 and study their linear (in-)dependence as follows: the linear subspace
generated byAsz and A4 containsA,, but notAg; in other words A; is linear independent
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from { Az, A4}, but notA,. We call the index s€2, 3, 4} aclosed subsair aflat. The set
A of all flats, in the case of our example

A= 1{0,{1}, {2}, (3}, (4, (1,2}, {1, 3}, {1, 4}, {2,3,4}, {1, 2,3, 4}},

defines a matroid (see also Section 0.3). For everyflat different from the full index
setE := {1, 2, 3, 4} the subspace spanned by the veciyse € X, is contained in some
2-dimensional subspad#y of R3. This hyperplanéix can be chosen such thag € Hy

if and only if e € X (in general there are many choices fé%). ObviouslyHx can be
described by a normal vectare R3. Thene e X if and only if x and A are orthogonal.
If we definey? := {e| ye = 0} for a vectory, then the above considerations lead to

A= {(ATx)? | x € R®

(note thatE corresponds tx being the zero vector). This description4f i.e., of the
matroid, is easily extended to amientedabstraction of the spacial dependencie\of
..., A4 For every hyperplane, i.e., for everye RS, we also consider foAgx # 0
whetherAlx < 0 or AIx > 0, i.e., whether sigilAlx) = — or signAlx) = +.
Defining sign vectors sigly) componentwise, the set of sign vectors

F(A) = {sign(ATx) | x € R3}

gives a description of all these “oriented dependencies” of the column vectéis\ok

call (E, ¥ (A)) the oriented matroid defined by ad a sign vector it (A) a covector

For the example of the matrik given above, Table 0.1 shows the complete list of cov-
ectors inF (A), grouped together by dimension of the linear subspaces defined by the
corresponding flats.

| Dimension0 || Dimension1 || Dimension2 || Dim.3 |
++—+|-——+-|lo+-+]0-+-|[00-+]00+-]|[0000O
—+—+|+—-+—||0——+| 0++—||0+0+|0-0-
+——+|—++-||+0—+|-0+-|/0++0|0--0
———+|+++-||-0-+|+0+—-||+000[-000
t+++|————||0+++| 0———
—+++|+-———||++0+| ——0—

—+0+|+-0-

+++0|-—-0

—+4+0|+--0

Table 0.1: List of covectors itF (A)

Instead of studying the relative positions of the vect@gsw.r.t. oriented hyperplanes
which are defined by normal vectoxse R3, we consider now theentral hyperplane
arrangementHs, ..., Hs} defined by takingAe as the normal vector dfle for e € E.
Each hyperplanél, is oriented, where\. points to the+ side. Then every point € R3
defines a sign vectoX e {—, +, 0}F by its relative position in the arrangement, i.e.,
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Xe = 0 if x is contained inHe, Xe = + if X is on the+ side of He, and Xe¢ = —
otherwise. ObviouslyXe = sign(Al x), and the set of all sign vectors obtained in this
way is exactly the sef (A) of covectors as defined above.

Before we illustrate sets of covectors lige(A) further using other geometrical models,
we have closer look at the properties®fA). It is obvious that forx being the zero
vector,0 := (0 ... 0) = sign(ATx) € F(A). Furthermore, replacing any by —x
shows thatX € # (A) implies—X € £ (A), where— X denotes the sign vector obtained
by reversing all signs in the obvious way. Slightly more advanced, we may consider
linear combinations of vectors, y. For arbitrary smalk considerz := x + ¢y and the
corresponding sign vectodé := sign(ATx), Y := sign(ATy), andZ := sign(AT z), then
foree E

Sign(ATx)e = Xe if Xe # 0,

o T o T T —
Ze = SIgN(A" 2)e = SIgN(A X + €A Y)e = { sign(ATy)e = Ye otherwise

This proves that foiX, Y € F (A) also the sign vectoZ = X o Y belongs toF (A),
where we defin&Z := X oY by Ze = Xe if Xe # 0 andZe = Y, otherwise. We call
X oY thecompositiorof X andY. Finally consider two vectors, y which are separated
by (at least) one hyperplandg, i.e., Xe = —Ye # 0 for the corresponding two sign
vectorsX, Y € ¥. We say thae separates X and #nd denote by (X, Y) the set of all
elements which separad¢andY. Let z denote the intersection point &f; and the line
connectingk andy. Then the corresponding sign vectr:= sign(ATz) € 4 satisfies
Ze = 0andZ; = (XoY) s for all non-separating elements Let us list all the properties
which we found satisfied b := £ (A):

(FO) 0 e ¥.
(F1) If X € ¥ thenalso-X € F.
(F2) If X,Y € ¥ thenalsoX oY € F.

(F3) If X,Y € ¥ ande € D(X,Y) then there existZ € ¥ such thatZ = 0 and
Zi = (XoY)sforall f € E\D(X,Y).

In the theory of oriented matroids the properties (FO) to (F3) play the rad&ioms An
oriented matroids defined as a paitt = (E, ¥) of a finite setE and# < {—, +, 0}F

which satisfies (FO) to (F3). The notion of oriented matroids was introduced in the
late seventies independently by Bland and Las Vergnas [BLV78] and by Folkman and
Lawrence [FL78]. In fact, there are several equivalent axiom systems of oriented ma-
troids some of which we will introduce in the following sections.

An immediate question is whether all oriented matroids (as defined by (FO) to (F3)) have a
realization(as given by a matriA or a central hyperplane arrangement). The answer was
found to be that this is not the case, and it is known that the problem to decide whether
an oriented matroid is realizable (also calletear) or not isNP-hard [Mng88, Sho91].

As the axioms of oriented matroids can be checked in polynomial time, there is not poly-
nomial characterization of realizable oriented matroids unfess NP. By this, the
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abstraction of oriented matroids is of great importance also for the study of the realizable
cases. Furthermore, the realization problem is decidable and there are practical methods
which work satisfactory for smaller instances, at least in the uniform case [RG92].

Will see in the following how oriented matroids can be illustrated using a geometric (or
topological) model. The intersection of a central hyperplane arrangefienite € E}

with the unit ball centered at origin definessphere arrangemenf = {S. | e € E},

where again every sphegis oriented (as induced by the corresponding hyperpk)e

The sphere arrangement defined by the above example is illustrated in Figure 0.1. The

Figure 0.1: Sphere arrangement

sphere arrangemedtinduces a cell complesC on the unit spher&”. Every pointx on

¥ defines a sign vectoX € {—, +, 0}E by Xe = 0 if x is on &, otherwiseXe = +

(or Xe = —) if x is on the+ side (or— side, respectively) o&; let ¥ (8) denote the

set of all these sign vectors. It is not difficult to see thaf ifs induced by a central
hyperplane arrangement defined by a ma#ias above, therF(8) = F(A) \ {0}

Hence sphere arrangements give again an illustration of sets of cov&atayor £ (4§).

More general, gseudosphere arrangemefit= {& | e € E} in the Euclidean space

R9+1 s a collection ofid — 1)-dimensional topological spheres on thelimensional unit
spheres?, where every spherg& is oriented (i.e.S has a+ side and a- side) and the
intersection properties of the topological spheres are as in a (linear) sphere arrangement,
e.g., the intersection of any number of spheres is again a sphere and the intersection of an
arbitrary collection of closed sides is either a sphere or a ball (for details see Definition
5.1.3 in [BLVS™99]). As for (linear) sphere arrangements, a pseudosphere arrangement
4 induces a cell compleX’ and a set of sign vectots (§) which satisfies (FO) to (F3).

The so-calledopological Representation TheorefiFolkman and Lawrence [FL78] and

its simplification by Mandel [Man82] assure that also the converse is true: For every set
F of sign vectors which satisfies (FO) to (F3), there exists a pseudosphere arrangement
such that (8) = # \ {0}. We illustrate in Figure 0.2 how a pseudosphere arrangement
may look (again for the same set of covectors as above).



0.1 A HRST TOUR OFORIENTED MATROIDS 19

Figure 0.2: Pseudosphere arrangement

Sphere arrangements (or pseudosphere arrangements) of corresponding cell cofiplexes
are very helpful illustrations of many considerations concerning oriented matroids. Ob-
viously there is a one-to-one correspondence between the céllsaimd the sign vectors
in £ (8). We list this correspondence for our example in Table 0.2 (see Figure 0.2 for the
naming of the cells). The relationship of faces in the cell comgtegan be read easily

| Dimension0 || Dimension 1 | Dimension 2 |
Aloo—+||Al00+—||AB|0+—+|AB|0—+—||ABD|++—+| ABD| ——+—
B|0+0+||B|0-0—-||AC|0——+||AC|0++—||ABD|—+—+ | ABD| +—+—
C|0++0||C|0——0||AD|+0—+|[AD|-0+—||ACD|+——+|ACD| —++—
D|+000|D|-000||AD|-0~+|AD|+0+—||ACD|~——+||ACD| +++—
BC|0+++|BC|0———||BCD|++++||BCD| ————
BD|++0+|[BD|-—0—||BCD|—4++|BCD|4+———
BD|-+0+|BD|+-0—
CD|+++0|CD|-—-0
CD|-++0|CD|+--0

Table 0.2: Faces and corresponding sign vectors

from the sign patterns itF: e.g., we see tha@AB is a face of AB D since all nonzero
signs of( 0 + — +) are the same 6+ + — +), the covectors corresponding B and
ABD. This gives rise to the following definition: For two covectofsY € ¥ we say
that X is a face of Yor X conforms to denoted byX < Y) if Xe # 0 impliesXe = Ye.
The setF ordered by the facial relatios, with the zero vectod as smallest element and
an additional artificial greatest elementforms a lattice# , the so-calledig face lattice
(see Figure 0.3). The big face latti#e coincides with the face lattice of the cell complex
K, and if we define rankX) by the height of a fac in ¥, then rankX) — 1 equals the
dimension of the corresponding facetdn

The big face lattice® can be considered as a representation ottmbinatorial typeof
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Figure 0.3: The big face lattic€

K or the corresponding oriented matroid. Renamingétabeling the elements ok, or
reorientingthe elements, i.e., interchangirgand— side, does not affect the face lattice.
This remains true if we consider the notilabelingin a more general sense than usual:
elements, f which are identical (i.e.Xe = Xt for all X € ¥) can be replaced by one
representing element, or similarly elements can be doubled; furthermore one may delete
(or introduce) elementswhich are constantly O (i.eXe = O for all X € #). We will see

later (in Chapter 1) that the big face lattice is sufficient to reconstruct an oriented matroid
up to labeling and orientation. In formal language, relabeling of an oriented matroid
M defines itgelabeling clasd.C(M), reorientation itgeorientation clasOC(M), and
relabeling and reorientation iisomorphism clas$C(.M). Two oriented matroids are
isomorphic if and only if they have the same face lattices.

We have seen that matrices define not only matroids but also oriented matroids, and from
this we developed geometric interpretations and models such as central hyperplane ar-
rangements and sphere arrangements, which stand for realizable oriented matroids. Fur-
thermore, every oriented matroid can be represented by some pseudosphere arrangement.
There are more geometric objects such as point configurations or affine hyperplane ar-
rangements (see also the last two chapters of this thesis) whose combinatorial abstractions
lead to (realizable) oriented matroids. In fact, in the history of oriented matroids such ob-
jects which we used for illustration or as a representation of oriented matroids were the
starting point and the motivation for the definition and investigation of axioms systems
such as the covector axioms (F0) to (F3). These investigations have shown that many
of the objects of study have mutual interpretations under which axiom systems become
equivalent. By this, seemingly different objects have been found to be part of one theory,
which we callthe theory of oriented matroidsNe will develop in the following some
aspects of this theory, also showing several axiom systems and their equivalence.
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0.2 Covector Axioms

The combinatorial abstractions of the geometric examples in the previous Section 0.1
showed a number of elementary properties. In this section we take such elementary prop-
erties as the set of axioms of the theory of oriented matroids which will be developed
in the following. The axioms which we use in this section for the definition of oriented
matroids have been studied jointly by Edmonds, Fukuda, and Mandel [Fuk82, Man82]
which proved their equivalence with the cocircuit axioms [BLV78]. We have chosen the
other direction and will introduce cocircuit axioms later (see Section 0.6).

Let E denote a finite set, e.gg = {1, 2, ..., n}. We callE the ground seande € E an
element In the examples of Section 0.1 these elements correspond to the hyperplanes in
central hyperplane arrangements or spheres in sphere arrangements. As before, a vector
X e {—, +, 0}F is calleda sign vectoon E; we may not mention the ground g&tif it is
determined from the context, e.g., we denot®by (0 0 --- 0) € {0}F the sign vector

with all signs equal to zero. F® < E we denote byXs the sign vector if—, +, 0}S
obtained fromX by (Xg)e := Xefor e € S, and similarlyX\ Sdenotes the subvector &f

onE\ S. We will write X\ efor X\ {e} etc. where convenient. Theegative— X of a sign
vector X is defined by(— X)e := —Xe for e € E, where—(—+ 0) = (+— 0). For

S C E let5 X denote the sign vector di with (s X)s = —Xsand(gX) \ S= X\ S.

The supportof a sign vectotX € {—, +, O}F is the setX := {e € E | Xe # 0}, and its
complementX?® := {e € E | Xe = 0} is called thezero supporbf X. Furthermore call

the setsX™ := {e € E| Xe = +} and X~ := {e € E | Xe = —} the positive support

and thenegative supportrespectively. For two sign vectods andY on E we define the
compositiorof X andY (denoted byX o Y) as before by

[ Xe if Xe#0,
(XOY)G'_{Ye otherwise
so,eg(———+++000)o(-+0—-+0—-+0)=(———+++-—+0).

Note that the composition is associative, i.e(X oY) o Z = X o (Y o Z), but not
symmetric:X oY =Y o Xifandonlyif D(X,Y) :={ee€ E | Xe = —Ye # 0} = ¢; for
ee D(X,Y), we say thaiX and Y disagree in er e separates X and.Y

The following definition of an oriented matroid was already given in Section 0.1:

0.2.1 Definition (Covector Axioms of Oriented Matroids) An oriented matroidM is a
pair (E, ¥) of a finite setE and a setF C {—, +, 0}F of sign vectors (calledovector}
for which the followingcovector axiomgFO0) to (F3) are valid:

(FO) 0e ¥.
(F1) If X € F then—X € ¥. (symmetry)
(F2) If X, Y € FthenXoY € F. (composition)

(F3) ForallX,Y € ¥ ande e D(X,Y)
there exist<Z € ¥ such that
Ze = 0and
Zi = (XoY)sforall f € E\ D(X,Y). (covector elimination)



22 AN INTRODUCTION TOORIENTED MATROIDS

The facial relationship (e.g., in sphere arrangements) is abstracted as follows: For two sign
vectorsX, Y € {—, +, 0}F we say thatX conforms to Yor X is a face of Y, denoted by

X <Y, if Xg # 0impliesXe = Ye, €.9.,(0 + — 0) conforms to( 0 + — +) but not to

(0 + + +); in addition we writeX < Y if X <Y andX #Y.

The covector elimination axiom (F3) can be replaced by weaker and stronger variants.
Actually, there are many such variations of the axioms known from the literature, and
they are very helpful for the proofs of the statements which follow later. Our formulations
(F3¥) and (F®) follow Fukuda [Fuk82, Fuk00b] and are also closely related to the so-
calledY -approximation of YMan82] (see also Proposition 3.7.10 in [BLYS9]) and to

the strong vector eliminatiofBLV78, Man82] (see also Theorem 3.7.5 in [BLVS9]),
respectively.

0.2.2 Proposition Let ¥ C {—, +, O}F be a set of sign vectors satisfyi(ig0), (F1), and
(F2). Then the three statemerfis3), (F3°), and(F3¥) are equivalent, where

(F¥) ForallX,Y € F and@ # SC D(X,Y)
there exise € SandZ € # such that

Ze =0and
Zs < Xsand
Zi = (XoY)sforall f € E\D(X,Y). (conformal elimination)

and

(F3¥) ForallX,Y € £ andee D(X,Y)andf € X\ D(X,Y)
there existZ € # such that

Ze =0and
Zs = X¢ and
Zg € {Xg,Yg, 0} forallg € E. (weak elimination)

Proof Let # < {—, +, 0}F be a set of sign vectors satisfying (F0), (F1), and (F2). We
will show (F3)= (F3) = (F3") = (F3), where the implication (F3= (F3") is obvious
with S = {e}.

Assume that (F3) is satisfied and show{F3.etbeX,Y € F andy # S C D(X,Y)
and prove the claim by induction d8|: For |S| = 1, (F¥) follows directly from (F3).
For the inductive step assurfe > 1 and that (F9 is satisfied for alll £ S € D(X, Y)
with |S| < |S|. Choose ang € Sand setS := S\ e. By induction there exist&’ € ¥
such thatZy, < Xg andZ; = (XoY)¢ forall f € E\ D(X,Y). If e ¢ D(X, Z)
thenZ := Z’ is sufficient to prove (F3. Otherwise apply (F3) tX, Z’, ande: There
existsZ € ¥ suchthatZe = 0andZ; = (X o Z')¢ forall f € E\ D(X, Z). Remark
that Zs < Xs follows by Ze = 0 < Xe andZg = Xg (sinceZg =< Xg implies
S C E\ D(X, Z'), thereforeZg = (X o Z')g = Xg, where the last equality follows
fromS € D(X,Y) € X). Finally, f € E\ D(X,Y) implies thatZ; = (X oY)y,
therefore alsdf € E\ D(X, Z')andZ¢ = (X0 Z')f = (XoY)s.

Assume that (F3) is satisfied and show (F3). Letb€Y € £ ande e D := D(X,Y).
Forall f € X\ Dletbezf e ¥ such thatzd = OandZ]f — X andforallg € E
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is Zg € {Xg, Yg, 0}. Similarly for f € Y\ D letbeZ" ¢ # such thatZd = 0 and
2! =Yt andZg € {Xg, Y. 0} forall g € E. LetZ € & denote a covector which is the

composition (in some arbitrary order) of all thedé andZ'; if X € D andY < D then
X = =Y andZ := 0Ois sufficient. ObviouslyZe = 0. Consideg € E\ D andf € X\D.
If Zg # (XoY)gthenzg = 0. Similarly for f € Y\ D, if Z§ # (XoY)qthenZg = 0.
Forg e XUY\ D thisimpliesZg = Z§ = Xg = (XoY)g0r Zg = Z§ = Yg = (XoY)q.
Forge X°NY°%we concludezg =0forall f e X\ D andZ(; =0forall f € Y\ D,
henceZg = (XoY)g=0forallg e E\ D. u

0.3 Matroids

We have started the first tour of oriented matroids in Section 0.1 with matroids, which can

be viewed as an abstraction of linear dependencies of vectors. This section introduces ax-
ioms of matroids and discusses fundamental notions such as independent sets, bases, and
rank in matroids. It will be straightforward to extend these notions to the context of ori-
ented matroids as every oriented matroid defines a matroid when omitting the orientations
of signs. A more comprehensive introduction to matroids can be found in the monographs

of Welsh [Wel76] and Oxley [OxI92].

0.3.1 Definition (Matroid Flat Axioms) A matroid M is a pair(E, ) of a finite setE
and a set4 C 2F of subsets of (calledflatsor closed sefsfor which the followingflat
axioms(M1) to (M3) are valid:

(M1) E € A.
(M2) If X,Y € AthenXNY € A. (intersection)
(M3) ForallX,Y € A,ec E\ (XUY),andf € X\Y

there existZ € A suchthaee Z, f ¢ Z,andXNY C Z. (exchange)

The matroid flat axioms are satisfied by any sé@s defined by matrice&in Section 0.1:
a flat X € 4 is a subset of column indices of a given matAxsuch that the subspace
spanned by the column vectofg, e € X, does not contain angs with f & X.

The study of the relation of oriented matroids and their underlying matroids is as old as
the notion of oriented matroids (e.g., see [FL78]):

0.3.2 Proposition Let M = (E, ¥) be an oriented matroid. ThefE, {X°| X € F}) is
a matroid.

Proof Let.M = (E, ) be an oriented matroid and sét:= {X°| X € #}. Itis obvious
that (M1) and (M2) follow directly from (FO) and (F2). In order to show (M3) let be
X,Y e F such that there existe E \ (XU Y% andf € X%\ Y. We can assume that
Xe = —Ye # 0 (otherwise replac¥ by —Y), soee D(X,Y)andf € E\ D(X, Y). By
(F3) there existZ € F such thatZe = 0 andZg = (X o Y)gforallg € E\ D(X,Y),
especiallyZs = (XoY); = Y; # 0andX° N Y® c z% This shows thaZ® e
satisfies the flat axiom (M3) fox?, YO, e, and f. n
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0.3.3 Definition (Underlying Matroid) Let M = (E, ) be an oriented matroid and set
A = {X9| X € F}. Then we call the matroidE, +) the underlying matroid ofy(,
denoted bym.

A matroid is callecbrientableif it is the underlying matroid of an oriented matroid. There
exist matroids which are not orientable, and the question whether a matroid is orientable
or not isNP-complete [RG99]; for details we refer to Sections 6.6 and 7.9 of [BLYS.

The first fundamental notion of the theory of matroids isspanoperation. For matroids

as introduced in Section 0.1, where a given ma#tidefines a set of flatg, the span of a
some subseb C E of column indices is the set of indices whose corresponding column
vectors are contained in the subspace spanned by the vectors accorfling to

0.3.4 Definition (Span) Let M = (E, 4) be a matroid an® C E a subset oE. The set

span, (S) := ﬂ X
X e A
SCc X

is calledthe span of S in M Usually, if M is defined from the context, we writ® for
spany, (S).

0.3.5Lemmalet M = (E, 4) be a matroid and & E. Then

(i) Se A, (flat)
(i) Scs, (hull)
(i) S=S, and (closure)
(v) SC Rforal SCRCE. (monotonicity)

Proof Let M = (E, 4) be a matroid. Properties (i) and (ii) follow by definition, where
for (i) also the matroid intersection axiom (M2) is important. For (iii) observe that by (i)
and the definition follows € S, where (ii) impliesS C S. Finally considelS € R C E:

If X e 4 satisfiesR € X then alsaS € X, hence by definitiors € R. n

The definition of the span operation can be used for the definitiomdependent seend
basesf matroids. Again, using the relation of matrices and matroids as discussed before,
independent sets and bases of column vectors nicely illustrate the corresponding notions
in matroids.

0.3.6 Definition (Independent Sets, Based)et M = (E, ) be a matroid. Asef C E
is calledindependenor an independent set of M S\ e # Sfor all e € S. For any set
S C E we call asubseB C S a basis of & B is a maximal independent subset®fA
basis ofE is also calledh basis of M and the set of all bases df is denoted byB.

0.3.7 LemmalLet M = (E, 4) be a matroid and & E.
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(i) Sisanindependent setof M if and onlBif e € S\ eforallee S.

(i) Sis anindependent set of M if and only if for every & there exists X A such
that S\eC X F e.

(i) Every subset of an independent set is independent.

(iv) Let S be anindependent setand & \ S. Then 3 e is independent if and only if
edgS.

(v) For Se 4 and B an independent subset of S, B is a basis of S if and dBlyifS.

(vi) There exist_s a basis B & such that BC S. For any SC T C E there exists a
basis Bof T suchthatBC B'C T.

Proof For (i) considerS C E ande € S. The monotonicity of the span operator (see
Lemma 0.3.5) implieS\ e C S, and furthermore € S\ ewould imply S < S\ eand
henceS = S\ e. Therefore the claim follows by the definition of an independent set.
For (ii) consider (i) and the definition of an independent setS it independent then
X := S\ e is sufficient; otherwise&S\ e = S for somee e S, which contradicts the
existence oiX € A suchthatS\eC X F e.
For (iii) considerR C S, whereSis an independent set M. Using (i) and Lemma 0.3.5,
R\ec S\ec S\ eforeveryee S,soR\eC R\ eforeveryee RC S, i.e.,,Ris
independent.
For the proof of (iv) letS be independent anele E\ S. If e € SthenSUe = S(see
Lemma 0.3.5 and the definition of the span), i®!) e is not independent. Otherwise
e ¢ S. Show thatSU eis independent, i.e(SUe)\ f € Sue\ f forall f € SUe.
Obviously this is true forf = e, so considerf € S. Because off ¢ S\ f we can apply
(M3)to X := S, Y :=S\ f, e andf: There exist&Z € A suchthae e Z, f ¢ Z, and
XNY =S\ f c Z. Thisimplies(Sue)\ f € Z ¥ f and by this the claim.
Assume thaS € A4 andB C Sis an independent set. By Lemma 0.B5C S = S.
(iv) implies thatB be can be extended withifato a larger independent set if and only if
S\ B # @, which proves (v).
The proof of (vi) follows by use of (iv): SeB® := ¢ C S. If BO = Sthen isB° a basis of
SasBis obviously independent. Otherwi® < S, so we can seB' := B°Ue c Sfor
somee € S\ BY; Blisindependent by (iv). IB1 = Sthen isB?! a basis ofS. Otherwise
repeat the same argument: foe 1,2, ... setB'*1 .= B' Ue C Sforanye € S\ Bi;
obviously this process has to stop for some | S|, thenB! = SandB := B is a basis of
S. If S# T we extendB in the same way to a basi of T, and obviouslyB € B’ C T.

|

In the proof of Lemma 0.3.7 (vi) a basis of a &t E was constructed incrementally

by extending an independent sub&tof S by an arbitrary elemerg € S\ Bi. Such
methods which incrementally construct a “solution” by augmenting a “partial solution”,
namely by adding any element which satisfies some (simple) criterion, are getiedly
methodslt is remarkable that problems which allow greedy methods can be characterized
as having a matroid structure.
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The following basis exchange property is important for the basis cardinality theorem,
which will us allow to define the rank of a flat, furthermore it introduces an adjacency re-
lation of bases and the corresponding operation to move from one basis to a neighboring
basis, which is called pivot operation Basis adjacency is not only important in proofs
(e.g., when we consider basis orientations in Section 0.9) but also for the degn of
oting algorithms(e.g., see [Bla77, Fuk82, FFL99]) as in the context of oriented matroid
programming (Section 0.8).

0.3.8 Proposition (Basis Exchange PropertylLet M = (E, 4A) be a matroid, Xe 4,
and B, B’ bases of X. Then: Foralle B\ B’ there exists fe B’\ B suchthatB\e)U f
is a basis of X.

Proof Let M = (E, 4) be a matroidX € 4, B, B’ bases ofX, ande € B\ B’. Remark
thate ¢ B\ e (see Lemma 0.3.7) anB’ ¢ B\ e (otherwiseX = B' € B\e ¥ e, a
contradiction), hence there existse B’ \ (B \ e). We will show that(B\ e) U f is a
basis ofX. By Lemma 0.3.7 (iv) igB \ e) U f independent, so it remains to show that
(B\ e) U f spansX. For this it is sufficient to show thae X’ := (B \ e) U f because
thenB € X' and(B\e)U f € Ximply X = B € X' C X, i.e., X’ = X. Assume

e & X'. Apply the flat exchange axiom (M3) t§’, Y := B\e, eec E\ (X' UY), and

f € X"\ Y: There exist&Z € A suchthaee Z, f ¢ Z,andX'NY =B\ e C Z. But
thenB C Z, which leads to the contradiction =B € Z ¥ f. n

0.3.9 Theorem (Basis Cardinality) Let M = (E, A) be a matroid and X 4. All bases
of X have the same cardinality.

Proof Let M = (E, 4) be a matroid andX € . For any based3, B’ of X set
d(B, B’) :=|B\ B’| +|B’\ B|. Let B, B’ be bases oK. If d(B, B’) = 0 thenB = B/,
so|B| = |B’|. If d(B, B’) > 0thenB # B’, and (after possibly interchangigjand B’)
there exist® € B\ B’. By the basis exchange propertyBs:= (B \ ) U f a basis of
X for somef e B’\ B, and by constructionB| = |B| andd(B, B") = d(B, B) — 2.
ReplacingB by B and repeating the above arguments (at mBstimes), we find a se-
guence of bases of all of which have cardinalityB| where the last basis is equal B,
which provegB| = |B/|. [

0.3.10 Definition (Rank in Matroids) Let M = (E, 4) be a matroid anK € A. The

uniquely determined cardinality of a basis %fis calledthe rank of X in M written as
ranky (X). We call ranKM) := ranky (E) the rank of M In addition we define for
S C E the rank of S in Moy ranky (S) := ranky (S).

Note that by definition rani(4) = 0.

0.3.11 Corollary Eet M = (E, 4) be a matroid and §§ T C E. The length¢ of
a maximal chainS =: X° ¢ X1 c ... € Xf := T with pairwise different sets
X0 X1 ..., Xt e Aist =ranky(T) — ranky(S).

Proof The claim is trivially true ifS = T, so assumé # T. ConsiderX'~1, X! € 4
with X'~ G X'. Itis sufficient to show that ramk(X') —ranky (X' ~1) > 1 if and only if
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there existZ € 4 such thatx'~* G Z ¢ X'. Let beB a basis ofX' %, and choose any
ee X"\ X'~1, then by Lemma 0. 3.7 (|v) iB Uean independent set. Th&hU e ¢ X if
and only if ranlm(X') — ranky (X'~1) > 1, and thenXi—1 CZ:=BUe& X On the
other hand, if there exis@ € 4 such thatx' —1 GZ§ X then by LemmaO 3.7 (viB
can be extended to a ba8sof Z, which also can be extended to a baBfsof X', hence
ranky (X') — ranky (X'=1) > 1. n

The largest non-trivial flats, i.e., flats which are maximal4n, {E}, are those of rank

r — 1, wherer := rank(M). For matroids defined by matrices of full rank, these flats
correspond to subspacesk# which have dimensiod — 1; this motivates to call these
flatshyperplanesThe name otolinesis used for the flats of rank — 2:

0.3.12 Definition (Hyperplanes, Colines)Let M = (E, ) be a matroid, furthermore
setr := rank(M). The flats of rank — 1 are calledhe hyperplanes of Mthe flats of
rankr — 2 the colines of M The set of hyperplanes of a matroid is denotedty

We introduce in the following another axiomatic system for matroids based on hyper-
planes. These hyperplane axioms will be needed in the proof of Theorem 5.2.4.

0.3.13 Definition (Hyperplane Axioms) Let E be a finite set and? < 2F a set of sub-
sets ofE. We call # a set of hyperplanegand only if the followinghyperplane axioms
(H1) and (H2) are valid:

(H1) If X,Y € # suchthatX C Y thenX =Y. (support)

(H2) ForallX,Y € # with X #Y andee E \ (XUY)
there exist&Z € # such that
eecZandXNY C Z. (hyperplane exchange)

0.3.14 Proposition A set# C 2F satisfies the hyperplane axiortt$1) and (H2) if and
only if it is the set of hyperplanes of a matroid.

Proof We first show that the hyperplane exchange axiom (H2) can be replaced by the
following stronger version:

(H2®) ForallX,Y e #,ec E\ (XUY)andf € X\Y
there existZ € # such that
ec”Z, f¢gZ andXNY C Z. (strong hyperplane exchange)

For this assume that there exi6tY € #,ec E\ (XUY),andf € X\Y such that there
isnoZ e #withee Z, f ¢ Z,andX NY C Z; chooseX andY such thafX NY]|is
maximal. By (H2) there existX’ € # suchthat € X’ andX NY C X’, but according
to the above assumptioh € X'. If Y \ X € X’ thenY C X’ and by (H1)Y = X/, in
contradiction tof € X"\ Y, so there existg € Y \ (X U X). Furthermoree € X"\ X,
and asf € XN X' impliesXNY & XN X'; by the maximality of X N Y| there exists
Y' e #suchthag e Y,eg Y, andXN X CY'.Nowee E\(YUY'), feXnX
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impliesf € Y'\'Y,andbyg ¢ XNY S YNY' > gand the maximality argument there
existsZ’ € # suchthaee Z', f g Z',andXNY C YNY' C Z/, acontradiction. This
proves that the strong hyperplane exchange)i42satisfied by any set of hyperplanes.
Let # < 2F be a set satisfying (H1) and (H2), hence also{H®2Ve set

A= {XtnonXfe>1 X esforalli e(l,..., )} U(E)

and show thatE, +) is a matroid, then obviously with¢ as its set of hyperplanes. (M1)
and (M2) are satisfied by definition. LetbeY € A,ee E\ (XUY)andf € X Y.
Clearly X # E andY # E. By definition there exisKX', Y € # suchthatX € X' 3 e
andY C Y! ¥ f.If ee YI thenZ := Y! is sufficient for (M3), otherwise by € X'\Y!
and (H2) there exist& € # suchthaee Z, f ¢ Z, andXNY < X' nY! € Z, which

proves (M3).
It is not difficult to see that the hyperplane axioms are satisfied by the set of hyperplanes
J¢ of a matroidM, as# is the set of maximal sets iM different fromE. [ |

We conclude this section by introducing an important notion which characterizes a special
class of oriented matroids which corresponds to non-degeneracy in geometry:

0.3.15 Definition (Uniform Matroid, Uniform Oriented Matroid) A matroid M is
called uniform if the set of hyperplanes df1 is the set of all(rank(M) — 1)-subsets
of E. An oriented matroid is calledniformif its underlying matroid is uniform.

Note that in a uniform matroidM a setH < E is a hyperplane oM if and only if

|[H| = rank(M) — 1. This is much stronger than the property in general matroids which
says that every hyperplane contains at least(@®hk— 1 elements. Uniform matroids of
rankr can also be characterized as matroids wih > r and some subs& C E is
independent if and only ifS| < r; equivalently, a matroid of rank is uniform if the set

B of bases is the set of altsubsets oE. Note that in the original paper of Bland and Las
Vergnas [BLV78] uniform matroids have been calfegk and in Folkman and Lawrence
[FL78] uniform oriented matroids have been caltahpleoriented matroids; we will use
the notionsimpledifferently (see Definition 1.1.3).

0.4 Minors

This section introduces minors of matroids and oriented matroids and the fundamental
operations ofleletionandcontractionby which minors are constructed. In the case of a
matroid defined by a matriA as introduced in Section 0.1 these operations have intuitive
geometric explanations. A deletion minor is obtained by simply deleting some of the col-
umn vectors of the matrix. In a sphere arrangement the deletion operation corresponds to
the deletion of spheres. The contraction operation is less trivial as it includes a projection
to the orthogonal space of the column vectors which are deleted. In a sphere arrangement
the contraction minor is the (lower dimensional) sphere arrangement in the intersection of
the spheres chosen to contract on. Later (in Chapters 4 and 5) we will discuss the question



0.4 MINORS 29

of how oriented matroids can be extended. Sloppily speaking this is an operation in the
opposite direction of constructing minors, and not surprisingly the study of minors is of
great importance for the extension problem. The constructions of matroids such as minors
and extensions are presented in more detail by Brylawski in Chapter 7 of [Whi86].

The formal definitions of deletion and contraction are as follows:

0.4.1 Definition (Deletion and Contraction Minors) Let M = (E, 4) be a matroid and
R C E. We define theleletion minor of M w.r.t. Ro be the pair

M\ R:=(E\ R, 4A\R), whereA \ R:={X\ R| X € A},
and thecontraction minor of M w.r.t. Ro be the pair
M/R:= (E\ R, A/R), whereA/R:={X\ R| X € AandR C X}.

Let M = (E, ¥) be an oriented matroid arfd € E. We define theleletion minor ofmM
w.r.t. Rto be the pair

M\ R:=(E\R,F\R), where¥ \ R:={X\ R| X € ¥},
and thecontraction minor ofM w.r.t. Rto be the pair

M/R:= (E\ R, £/R), whereF /R:= {X\ R| X € ¥ andR < X°}.

Note that by definition the operations of deletion and contraction commute, i.e., for any
matroid M = (E, 4) and disjoint setR, S € E holds: (M \ R)/)S = (M/9 \ R;
analogously, the same is true for oriented matroiisUsually we will omit parentheses
and writeM \ R/Sfor (M \ R)/Setc.

It is straightforward to prove the following

0.4.2 Proposition Deletion minors and contraction minors of matroids (oriented ma-
troids) are matroids (oriented matroids, respectively). The underlying matroid of an ori-
ented matroid minor is the corresponding minor of the underlying matroid:
M\R=M\RandM/R = M/R.

The rest of this section considers the rank of deletion and contraction minors and of flats
(or covectors) in minors. These consideration concerning rank are very important in many
inductive proofs.

Again it is helpful to remember sphere arrangements for an illustration§ beta sphere
arrangement ilRd andS, R C E sets of indices of some of the spheregsinThe state-
ment of the following lemma then translates as follows: If the spherésane deleted,
the rank spanned by the spheresSiy R remains the same. However, if we contract to
the spheres iR, the rank spanned by the projection of the sphere&\imR is determined
by the difference of ranks corresponding3@ R andR.

0.4.3Lemmalet M = (E, 4) be a matroid, RS C E. Then:
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(i) ranky\r(S\ R) =ranku(S\ R).
(i) rankm/Rr(S\ R) = ranky (SU R) — ranku (R).

Proof (i) Let B € S\ Rbe a basis of spgp(S\ R) in M (cf. Lemma 0.3.7 (vi)). We
show thatB is a basis of spajp r(S\ R) in M \ R. B is independent itM, hence
(by Lemma 0.3.7 (ii)) for ale € B there exist&Z € 4 suchthatB\ e C Z ¥ eand
alsoB\eC Z\ R#esinceB C E \ R. Thisis equivalent to: for ak € B there
existsZ’ € A\ RsuchthatB\ e C Z’' ¥ e, soB is independent iiM \ R. On
the other hand spg(B) = span,(S\ R) implies that for allZ € A4 with B € Z
alsoS\ RC Z, hence forallz’ € A\ Rwith B € Z" alsoS\ R C Z’, therefore

span,\r(B) = spany\r(S\ R.

(i) Let B’ € Rbe a basis of spgp(R) andB < SU R a basis of spap(SU R) in M
such thatB’ < B (cf. Lemma 0.3.7 (vi)); remark thé8 \ B’ € E\ B’ = E\ R,
We show thatB \ B’ is a basis of spap,r(S\ R) in M/R. B is independent in
M, hence (by Lemma 0.3.7 (ii)) for al € B\ B’ there existZ € 4 such that
B CB\eC Z Feandalso(B\ (BBUe)UR C Z ¥ esinceB’ C Z
impliesR C Z. This is equivalent to: for akk € B\ B’ there exist&Z’ € A/R
such thattB\ B) \ e € Z' # e, soB\ B’ is independent itM/R. On the other
hand spa (B) = span,(SU R) implies that for allZ € A with R € Z and
B C ZalsoSURC Z, hence forallZ € A withRC ZandB\ B’ C Z also
SUR C Z, by thisforallZ’ € A/Rwith B\ B’ € Z’ alsoS\ R C Z’ and therefore

spany,r(B \ B') = span,,r(S\ R). u

Now it is straightforward to determine the rank of the minors:

0.4.4 Corollary Let M = (E, 4A) be a matroid, RC E. Then:

() rank(M \ R) =ranky(E \ R).
(i) rank(M/R) = rankM) — ranky (R).

In the illustrations of oriented matroids it is very natural to considedihensiorof sub-

spaces spanned by vectors or of faces in sphere arrangements. For example, a region of
highest dimension in a sphere arrangemeiitdrhas dimensiod — 1; in the correspond-

ing oriented matroid, this region is represented by a covector with maximal support, and
the corresponding flat has rank 0 in the underlying matroid. It is convenient to define the
rank of covectors and the dimension of oriented matroids as follows:

0.4.5 Definition (Rank and Dimension in Oriented Matroids) Let M = (E, ) be an
oriented matroid.The rank ofM, written as rankM), is the rank of the underlying ma-
troid. For a covectoiX € F we define rank (X) := rank(.M) — rankﬂ(xo) to bethe
rank of X in.M. Thedimensiorequals rank-1, i.e., dim(.M) := rank(.M) — 1 and, for
X e F, dimy (X) := ranky (X) — 1.



0.4 MINORS 31

By the above definition, the dimension of a covector equals the dimension of the corre-
sponding face in a sphere arrangement (cf. Sections 0.1 and 0.7).

We extend the results concerning rank of matroid minors to oriented matroids:

0.4.6 Corollary LetM = (E, ¥) be an oriented matroid, B E, X € . Then:

(i) rank(sM \ R) = ranky (E \ R).

(i) rank(M/R) = rank(.M) — ranky (R).
(i) rank,nr(X \ R) = rank(M \ R) — ranky (X°\ R).
(iv) ranky/r(X \ R) = ranky(X), provided that RS X0,

Proof

(iii) ranksr(X \ R) = rank(M \ R) —ranky\ r((X \ R)?)
= rank(M \ R) — rankyn r(X%\ R) = rank(M \ R) — ranky (X°\ R).

(iv) ranky/r(X\ R) =rankM/R) — rankM_/R((X \ RY
= rank(M) — ranky (R) — ranky ,r(X%\ R)
= rank(M) — ranky (R) — (ranky (X° U R) — ranky (R))
= rank(M) — ranky (X° U R) = rank(M) — ranky (X°) = ranky(X). n

Of special importance are minors w.r.t. a single element. We distinguish elements with
special properties w.r.t. deletion and contraction, namely so-chilgas and coloops

Loops are elements which “never affect”. they are contained in every flat. In the case of
matroids defined by matrices the column vector corresponding to a loop is simply the zero
vector. Hence, deleting a loop or contracting to a loop does not change anything. Coloops
are elements which “always affect”. the rank of a collection of elements increases or
decreases whenever a coloop is added or deleted, respectively. In the case of matroids
defined by matrices the column vector corresponding to a coloop has the property that all
other vectors are contained in a proper subspace not containing the coloop vector. In a
sphere arrangement a coloop corresponds to a sphere such that all other spheres intersect
in a common point which is not on the coloop sphere. Loops and coloops are related by
duality (see Section 0.5).

0.4.7 Definition (Loop and Coloop) Let M = (E, A) be a matroid ané € E. We call
ealoop of Mif e € X for all X € A. We calle acoloop of Mif E \ e € 4. Let
M = (E, F) be an oriented matroid arele E. We calle aloop (coloop) ofM if eis a
loop (coloop, respectively) oM. If M or M is determined from the context we will not
mentionM or M and simply saye is a loopor e is a coloop

We will extend the notion of loops later to arbitrary sets of sign vectors.

The following results concerning single element deletion and contraction minors follow
from the general case discussed above:
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0.4.8 Corollary Let M = (E, 4A) be a matroid, es E, and SC E. Then:

rank(M) if e is not a coloop

(I) rank(M \e) = rankl\/l(E \ e = { rank(M) — 1 otherwise

rank(M) if e isaloop

(i) rank(M/e) = rank M) — ranky (e) = { rankM) — 1 otherwise

ranky (S) if span,(S\ e) = span, (S,

(iii) rankwm\e(S\e) = ranku (S\e) = { ranky (S) — 1 otherwise

. . _ | ranku (9 if e is aloop
(iv) rankwv/e(S\ €) = ranky(SUe) — ranky (e) = { ranky (S) — 1 otherwise

provided that e S.

0.4.9 Corollary LetM = (E, ) be an oriented matroid, e E, X € #. Then:

rank(.M) if e is not a coloop

(i) rank(# \ €) = ranky (E \ &) = { rank.M) — 1 otherwise

rank(.M) if e is a loop

(i) rank(M/€) = rank(M) — ranky (€) = { rank(M) — 1 otherwise

ranky (X) + 1 if e not a coloop andspan, (X% \ e) # X°,
(iii) ranke(X\& = § ranky(X) —1 if e a coloop andspan, (X°\ &) = X°,
rank (X) otherwise

(iv) rankye(X \ €) = ranky(X), provided that % = 0.

Proof (i) rank ne(X \ € =rank(M \ e) — rankﬁ(xO \ e), where
__ | rank(Mm) if eis not a coloop
rankiAM \ e) = { rank.M) — 1 otherwise
ranky (X°) if span, (X°\e) = X°,
ranky (X% — 1 otherwise
which implies the claim. [ ]

and rank, (X°\ e) = {

0.5 Duality

Duality is one of the outstanding notions in the theory of oriented matroids. However,
in the present thesis duality does not play an important role; actually only few of the
later results need duality. Nevertheless, for completeness we give in the following a short
introduction to some basic notions and results of duality.

Before the definitions in terms of oriented matroids are given, consider (orthogonal) du-
ality in real vector spaces. Two vectorsy € RY are orthogonal if their scalar product
> i Xiyi equals to zero. An obvious property of orthogonal veckongis that ifx;y; > 0
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for somei thenxjy; < O for somej # i. This property characterizes orthogonal spaces
for sign vectors:

0.5.1 Definition (Orthogonal, Dual) Let E be a non-empty finite set. Two sign vectors
X,Y € {—, +, 0}F on E are calledorthogonal(denoted byX x Y) if either X N Y = ¢

or there aree, f € X NY such thatXe = Ye and X = —Y;. Theorthogonal spacéor
dual spacgof a set¥ of sign vectors ork is the set

Fr={Xe{-, +0F| XxYforalY e F}.

As explained above, if two vectors y € RY are orthogonal then also the corresponding
sign vectors sigfx), signy). Furthermore sigfV/)* = sign(V 1) for any linear subspace
V and its orthogonal spadé’, where sigiV) := {signx) | x € V} (this is not obvious,
but we do not discuss a proof here).

For a sign vectotX C {—, +, 0}E we write X < 0 if Xe € {—, 0} for all e € E, and
similarly X > 0 if —X < 0. Furthermore, we writX < OorX > 0if X <0orX >0

and all signs are different from 0, respectively. The same notation is extended to single
signs (e.g.Xe > O is equivalent toXg = +).

The following duality results are mainly due to Bland and Las Vergnas [BLV78]. The
presentation follows basically Fukuda [FukOOb].

0.5.2 Lemma Let (E, #) be an oriented matroid, K E. Then(¥ \ R)* = ¥*/R and
(F/R*=F*\ R.

Proof (¥ \ R* = #*/Rand(F/R)* D F*\ R are satisfied by alfF c {—, +, 0}F,
which can be proved easily. For the proof(&/R)* € #* \ R we will need (F1) and
(F3). It is sufficient to discuss the cadge| = 1 since then by induction fgRR| > 1 and
anyr € R follows

(F/R* = (F/(R\1)/D)* = (F/(R\r)*\r =(F*\(R\r)\r=F"\R

So assum® = {r} for somer € E. LetbeY € (¥ /r)*, we will showY € F*\r. Set

F= = {XeF| X =0},

F> = (XeF|Xy+ >0 Xy- <0, X% > 0},

F< = [XeF|Xy+>0,Xy- <0, X <0},

FE = {Xe F|thereexist, j € Y \r suchthatX; = Y;, Xj = —Yj}.

Consider a sign vectof’ C {—, +, 0}F such that’ \ r = Y; we will show thatY’ ¢ F*
for an appropriate choice of € {—, +, 0}, which provesy € F*\ r. Itis obvious that
Y e (F7)* andY’ € (F*)* independent from the choice ¥f. If X € F \ (F=UF )
thenX € F7 UF=~or—-X € £~ U F=, and by (F1) it is sufficient to prove that
X e F7 U F = implies X % Y’ for an appropriate choice of € {—, +, 0} (which will
be independent oX, of course). IfF = = ¢ then by (F1)Xy # O for all X € £~ since
otherwise—X € =, and it is sufficient to se¥, = —. If ¥~ = ¢ then similarly it is
sufficient to sety; = +. Assume for the rest of the proof th&t> # ¢ andF < # 0.
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ConsiderX € £~ and X’ € #=. By (F3) there existZ’ € ¥ such thatZ = 0 and
Z/ = (XoX))j foralli € E\D(X, X). ObviouslyY € E\D(X, X") and henc&{,, >0
andZ{_ < 0. Furthermor&Z := Z'\r € ¥ /r impIiesZ Y, and henceXy = X{, = 0.
ThIS istrue forallX ¢ £~ andX’' € ¥, i.e,, ={Xe¥F| Xy =0, X; > 0} and

={XeF|Xy=0 X <0}, hence itis sufﬁment to séf/ = [ ]

The following result can be viewed as a generalization of the Farkas’ Lemma (e.g., see
Section 7.3 in [Sch86]) to oriented matroids. We formulate it here as a 3-painting property:

0.5.3 Proposition (3-Painting [BLV78, BLV79]) Let (E, ¥) be an oriented matroid,
and let RUG UW = E be a partition of E (i.e., R G = J etc.) andre R. One
might think of the partition as a coloring of the elements: R, G, and W then stand for red,
green, and white, respectively. Then exactly on@ @ind(ii) holds, where

(i) there exists X ¥ suchthat X > 0, Xgr > 0, Xg <0;

(ii) there exists Ye #*suchthatY > 0,Yr>0,Ys <0, Yw =0.

Proof It is clear by the definition of orthogonality that (i) and (ii) can not be satisfied at
the same time. Assume that (i) is not satisfied, we prove (ii), firsGoe . We will
need for the proof only axioms (F1) and (F2).

If for all X € # there exist, ] € Rsuch thatX; = 4 and X; = — then defineY by
Ye = + if e € RandYe = 0 otherwise. Thery proves that (ii) is valid. Otherwise (F1)
implies thatR := {X € ¥ | Xr > 0} # . Choose an)X’ € R such thatX}; is maximal,
by (F2) this means thafr € X forall X € R. As (i) is not satisfied and by assumption
G = ¢, X/ = 0. DefineY by Yo = + if e € R\ X andYe = 0 otherwise. Obviously
Y > 0,YRr > 0, andYy = O; it remains to proveﬁat € F*. LetbeX e F.If Xe R
thenXNY = ¢, henceX x Y. If X ¢ RandX NY # #, then there exist, j € R\ Xi
with X; = + andXj = — (if no suchi, j exist then by (F2)X’ o X or X’ o (—X) belongs
to R, contradicting the maximality oX ) this provesX x Y.

Observe that for alb C E the setg ¥ := {g X | X € ¥} also satisfies (F1) and (F2),
furthermore(s ¥)* = 5(F)*. The proof for generab follows then from the proof for
(E, ) wheref = 5¥,f =r,R=RUG,W =W, andG = ¢. n

A stronger formulation of the 3-painting property is the following well-known variation:

0.5.4 Proposition (4-Painting [BLV78, BLV79]) Let (E, #) be a an oriented matroid,
and let RUGU BUW = E be a patrtition of E (the additional set B might be thought of
as the set of elements colored in black) and R. Then exactly one ¢ and(ii) holds,
where

() there exists X # suchthat X > 0, Xr >0, Xg <0, Xg =0;

(ii) there exists Ye #*suchthatY > 0,Yr>0,Ys <0, Yw =0.
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Proof It is obvious that not (i) and (ii) are satisfied at the same time. Assume that (i)
does not hold, then there is ' € #/B such thatX; > 0, Xy > 0, andX; < 0.

By Farkas’ Lemma (i.e., Proposition 0.5.3) applied to the oriented ma6i@ there
existsY’ € (¥/B)* such thaty > 0,Y; > 0,Y; < 0,Yy, = 0, and by Lemma 0.5.2
(F/B)* = F*\ B, hence there existé € F* such thaty” = Y \ B, which shows that

(i) is satisfied. [ |

0.5.5LemmaletbeF C {—,+,0},Y € F*and ec Y such thatsY € £*. Then also
Y e F*whereY\e=Y\eand ¥ =0.

Proof Letbe# C {—,+,0}F, Y € #* ande € Y such thatsY € F*. DefineY’ by
Y'\e=Y\eandY; = 0. LetbeX € F. By definition ofY, Y € F*, eitherXNY = ¢,
in which caseX N Y’ = ¢ and henceX x Y’, or there exisg, h,i, ] € X NY such that

Xg = Ygand Xy = —Yh andXj = gY; andXj = —(gY)j. Because oé € D(Y,¢Y)
it is not possible thay = i = eorh = j = e, hence there aré € {g,i} \ e and
j"ef{h,j} \esuch thatXj; =Y/, and X = —Yj’/, which provesX x Y’. This holds for
everyX € ¥, which provesy’ € F*. ]

0.5.6 Theorem (Dual Oriented Matroid [BLV78]) Let (E, ) be an oriented matroid.
Then(E, %) is also an oriented matroid.

Proof Let (E, ) be an oriented matroid and consider the dual sg&¢e Obviously

0 € F*, furthermore the symmetry in the definition of orthogonality implies that (F1)
holds forF*.

For (F2) consideY, Y’ € £*,thenX x Y implies X N Y = ¢ or that there exist elements
e, f e XNY € XN (YooY such thatXe = Ye and X; = —Yi; In the latter case
follows X x (Y o Y) from Ye = (Y o Y)e andYs = (Y o Y)¢. In the first case, i.e.,
XNY = ¢, we similarly consider the implications o % Y': eitherX N Y’ = @ which
implies X N (YoY’) = @, or there exise, f ¢ XNY < XN (YoY) such that
Xe=Y,=(YoY)eandXs = —=Y; = —(Y o Y')¢, which in both cases proves that
Xx(YoVY).

It remains to show that (F3) is satisfied BY. LetbeY, Y’ € F*ande € D := D(Y, Y’).
We have to show that there exisfse F* such thatZe = 0 andZ; = (Y o Y')¢ for

all f € E\ D; when we defineS := D\ eandY := Y o Y/, this is equivalent to
Y\ D € F*/e\' S = (F \ e/9* (the last equality follows by Lemma 0.5. 2). Let be
X € ¥ suchthatX \ D € ¥\ e/S i.e., Xs = 0. We have to show thaiX \ D)*(Y\ D).
ObviouslyX x Y and X « Y’ imply X x Y, and because ofs = Oalso(X \ S) % (Y \ 9),
and similarly(X \ S) * ((Y/ oY)\ S). SinceY \ D = (Y oY) \ D, Lemma 0.5.5 implies
that(X \ D) % (Y \ D). n

0.5.7 Definition (Dual Oriented Matroid) Let M = (E, ¥) be an oriented matroid.
Then we call the oriented matroid* := (E, #*) the dual ofm.

0.5.8 Proposition (Dual of Dual [BLV78]) M** = M for every oriented matroiou .

Proof Let M = (E, ¥) be an oriented matroid. The proof f6f C F** is trivial. We
showF** C ¥ by induction omn = |E|. If n = 0 then¥ = F* = {0}, where0 is the
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zero vector with empty ground set.nf= 1then¥ = {(0)} andF™* = {(—), (+), (0)}
or vice versa. Therefor& = F** forn < 1. Assumen > 2. Let beX € F**; show
X e . 1f X0 ¢ choosee € X2, then by Lemma 0.5.2 and induction

X\ee F*/e=(F*\e)*=(F/e)" = F/e
ThenX e F. OtherwiseX® = @. For everye € E holds, similarly as above,
X\ee F*\e=(F'/e)* =(F\e" =F \e

LetbeX’ € # suchthatX’\ e= X\ e. If X; = XethenX' = X € . If X; = 0 then
letfor f € E\ebeX” € F suchthatX”\ f = X\ f. ThenX' o X" = X € &. Finally,
if Xiz = —Xe, the sign vector, X' € #** only differ ine € D(X, X’), which implies
by Lemma 0.5.5 thaK” defined byX” \ e = X \ eand X7 = 0 also is in¥**. Then
X" € F (see above), hencé¢’ o (—X') = X € F. [

In Definition 0.4.7 we have defined loops and coloops. The name of a coloop is motivated
by the following fact, where the prefix “co-" stands for “dual’:

0.5.9 LemmaletM = (E, ¥) be an oriented matroid and e E. Then e is a loop of
M if and only if e is a coloop of the duali*.

Proof eis a loop ofM if and only if Xe = O for all X € ¥. By definition of the dual
space, there i¥ € F* whereY \ e = OandYe # 0. Hencee is a coloop ofM*. The
reverse direction is also very simple. [ |

The previous results lead to the following:

0.5.10 Corollary LetM = (E, ) be an oriented matroid. Then the rank of the dual is
determined byank(M*) = |E| — rank(:M).

Proof The proofis by inductionon := |E|. If n = 0 then ranktM) = 0 = rank(:M*). If

n > Olete € E. We assume by induction that raiii( \ e)*) = |E \ €] —rank(:M \ e); by
Lemma 0.5.2 this is equivalent to raik \ e) + rank(.M*/e) = |E| — 1. We consider the
two cases that is a coloop ofM or not; in either case, the combination of Lemma 0.5.9
and Corollary 0.4.9 (i) and (ii) leads to raflk) +rank.mM*) —1 = |E| — 1, which implies
the claim. [ |

Our approach for proving the result of Corollary 0.5.10 is rather unusual, normally it is a
corollary of the following fact:

0.5.11 PropositionLet M = (E, ¥) be an oriented matroid. A set B E is a basis of
M ifand only if E\ B is a basis ofm*.

Proof Setn := |E| andr := rank(.M) = rank:M). Let B C E be a basis oM, hence
|B| = r. By Corollary 0.5.10 rankM™*) = rank:M*) = n —r, hence it is sufficient to
show rank(E \ B) = n —r. By Corollary 0.4.6 (i) ranj (E \ B) = rank.M* \ B),
and by Lemma 0.5.2 rait(* \ B) = rank((.M/B)*). Then Corollary 0.5.10 implies
rank((M/B)*) = |E \ B| — rankM/B) = n —r since rankt/B) = 0 asB is a basis
of M (see also Corollary 0.4.6 (ii)). L8 € E be such thak \ B is a basis ofM*. By
the above result i8 = E \ (E \ B) a basis oftM** = M (cf. Proposition 0.5.8). |
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0.6 Cocircuits

We have a first look at cocircuits, the minimal covectors w«.in & \ 0. In an ori-

ented matroid defined by a sphere arrangement as introduced in Section 0.1, cocircuits
correspond to cells of dimension 0. We show several properties of cocircuits, especially
that the set of cocircuits determines the set of covectors, and that sets of cocircuits can
be characterized by axioms, i.e., there are cocircuit axioms which are equivalent to the
covector axioms of oriented matroids.

0.6.1 Definition (Cocircuits) For an oriented matroidd = (E, ¥) we call
D:=min(F\0) ={V e F|forall X e F\OsuchthatX <V is X =V}

the set ofcocircuitsof M.

Many of the following results come from (at least similar) results in [BLV78]:

0.6.2 Lemma Let M = (E, ¥) be an oriented matroid, X ¥, and ec X. There exists
a cocircuit V € D of M such that V< X and \& = Xe.

Proof Let M = (E, ¥) be an oriented matroid{ € #, ande € X. Consider the set
F :={Y € F]Y < XandYe = Xe} which is not empty sinc&X € . We have to
show thatf contains a cocircuit. Le¥ € # be minimal w.r.t. the conformal relation
<, i.e., thereis ndf € £ with Y < V. We show thalV ¢ D leads to a contradiction.
Assume that there exisW/ € ¥ \ Owith W < V < X. Because of the minimality of
V in £ we concludeW, = 0. Remark thaD (V, —W) = W # @, therefore conformal
elimination (F3) w.r.t. V, —W, andD := D(V, —W) implies that there exist € D
andZ € ¥ suchthatZz; = 0,Zp < Vp,andZ\ D = (V o (—W)) \ D. From this
follows Z < V (otherwise there existg € E \ D such that 0% Zg # Vg, henceVy =0
andZg = —Wy # 0, in contradiction toNy < V), Z # V (sinceZs = 0 # V¢) and
Ze = Xe (because oV = 0is Ze = (V o (—W))e = Ve = Xe # 0). But Z contradicts
the minimality ofV in &, which completes the proof. |

0.6.3 Proposition (Conformal Decomposition [BLV78])Let M = (E, ) be an ori-
ented matroid. Every covector X ¥ \ 0 has a representation of the form

X =V%oVZ20...0V"

where each Vis a cocircuit of M conforming to X, i.e., Ve D and V' < X for all
i €{1,...,¢}; thereis always such a conformal decomposition of X With|X].

Proof Let M = (E, ¥) be an oriented matroid and € & \ 0. By Lemma 0.6.2 there
exists for everye € X a cocircuitV® € D such thatv® < X andV{ = Xe. Obviously it
is sufficient to sefV1, V2, ..., Vf} ;= {V®|ee X}. n

0.6.4 Corollary (Cocircuits Determine Covectors) The setdD of cocircuits of an ori-
ented matroidM = (E, ) determines the set of covectors by

F={X|X=VoV2c...0ViforV' € D suchthatV < X, ¢ > 1} U {0}.
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Proof The covector composition axiom (F2) makes sure that every composition of cocir-
cuits is in¥, on the other hand conformal decomposition (Proposition 0.6.3) proves that
every covector (excel® can be generated by composition of cocircitswith V' < X.

|

0.6.5 Definition (Cocircuit Axioms) Let E be a finite set andd C {—, +, 0}E a set of
sign vectors ore. We say thatD is a set of cocircuit$f and only if the followingcocircuit
axioms(CO0) to (C3) are valid:

(CO)0¢ D.
(C1) If X e Dthen—X € D. (symmetry)

(C2) If X,Y € D suchthatX C YthenX =Y or X =-Y. (minimality of support)

(C3) ForallX,Y € D with X # —Y ande € D(X,Y)
there exist&Z € O such that
Ze =0and
Zi € {X¢,Ys,0}forall f € E. (cocircuit elimination)

0.6.6 Proposition (Strong Cocircuit Elimination [BLV78, FL78]) Let £ be a set of
sign vectors on E satisfyin@0), (C1), and(C2). Then(C3)is equivalent to

(C3®) ForallX,Y e Dandee D(X,Y)andf € X\ D(X,Y)
there existZ € D such that

Ze =0and

Z¢ = Xt and

Zg € {Xg, Yg, 0} forallg € E. (strong cocircuit elimination)
Proof We refer to the proof of Theorem 3.2.5 in [BLVS9]. ]

The above set of cocircuit axioms of oriented matroids are usually taken as the defining
set of axioms of oriented matroids (as it was the case in the original work of Bland and
Las Vergnas [BLV78]). We have chosen the covector axioms for the definition of oriented
matroids. The study of covector axioms is mainly due to Edmonds, Fukuda, and Mandel
(see [Fuk82, Man82]).

0.6.7 Proposition A setD of sign vectors satisfies the cocircuit axio(@9) to (C3) if
and only if it is the set of cocircuits of an oriented matroid.

Proof Let O be a set of cocircuits of an oriented matr@id, ), and we show that
(CO) to (C3) are satisfied. (CO) follows by definition and (C1) from the symmet#y. if
For (C2) consideiX,Y € & € F with X C Y. If D(X,Y) = #thenX <Y, and
by definition X = Y. If D(X,Y) # @ then by conformal elimination (F3there exist
eec D :=D(Y,X)andZ € F suchthatZe = 0 andZp < Yp andZs = (Y o X)¢
forall f e E\D. By X € YandZ. = 0 # Ye follows Z < Y, henceZ = 0. Then
X\D=Y\D=0,s0X =-Y. (C3) finally follows from (F3).



0.6 CoCIRCUITS 39

Let D be a set of cocircuits, i.ed) satisfies (C0O) to (C3). Defing according to Corol-
lary 0.6.4. We show thaf satisfies the covector axioms (FO) to (F3), i€, ) is
an oriented matroid whose set of cocircuits obviouslydis (FO) and (F1) follow by
definition and the symmetry i®. In order to show (F2) we prove that is equal to

F={(X|X=VoV2c...0ViforV' e D, ¢> 1)U {0}.

ObviouslyF € #. LetbeX e F, we show thatX ¢ F leads to a contradiction, hence
F C F. AssumeX ¢ F, henceX # 0, i.e., X is of the formX = V1o ... 0 V¢ for
Vi € D and some > 1. Obviously there exist&’ € #\0such thatX’ < X, and we can
choose such X’ with maximal|X'|; then X’ < X. For the smallest € {1, ..., £} with
Vi ¢ X'is X' < Xo V' = X, hence we can choose soivies D with X’ < X' oV < X
such thatD(V, X)|is minimal. If D(V, X) = #ithenV < X and henceX’ < X'oV € F,
contradicting the maximality ofX’|. So there exist € D(V, X) € X'andf € V \ X..
By definition of # there existW' € D with W' < X’ andX’ = Wlo ... o WK for
somek > 1, and there € D(V, W!) for someW!. By the strong cocircuit elimination
(C3) (see Proposition 0.6.6) applied ¥ W/, e, and f € V \ D(V, W}) there exists
V' € D such thatVy = 0 andV; = Vs andVé € {Vg,Wd,O} forall g € E, so
D(V’, X) € D(V, X) \ g, but sinceX” < X' o V' < X this contradicts the minimality
of |ID(V, X)|. For (F3) it is sufficient to prove (F3 (see Proposition 0.2.2). Let be
X, Ye F,ee D(X,Y),andf € X\ D(X,Y). By definition there exist¥ € O such
thatVs = Xt andV < X. If Ve = 0 then this proves (F3, otherwiseVe = Xe. Again
by definition, there exist§/ € D such thaWe = Yo andW < Y. Apply (CF) to V, W,
e,andf € V\ D(V,W): There existZ € D C F suchthatZze =0, Zs = Vi = Xy,
and for allg € Eis Zg € {Vg, Wy, 0} € {Xg, Yy, O}. [ ]

We introduce in the following a stronger elimination axiom which will be used in Chap-
ter 5 for the discussion of single element extensions.

0.6.8 Definition (Modular) Let D be a set of sign vectors such tHxt° | X € D} is the
set of hyperplanes of a matroM. Then we callX, Y € £ modular in Mif X°NY%is a
coline (i.e., rank; (X° N Y%) = rank M) — 2).

The above definition e.g., applies to sets of cocircuits.

0.6.9 Proposition (Modular Cocircuit Elimination [LV78b, LV84]) A set D of sign
vectors is a set of cocircuits if and only iK® | X € D} is the set of hyperplanes of
a matroid M andD satisfies the cocircuit axion{€0), (C1), (C2), and

(C3M Forall X,Y € D which are modularin M and & D(X, Y)
there exists Z= O such that
Ze=0and
Zi € {X¢,Ys,0}forall f € E. (modular cocircuit elimination)

Proof It is clear that (C3) implies (CB). Let D be a set of sign vectors di which
satisfies (C0), (C1), (C2), and (€} and in addition assume thgX® | X e D} is the
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set of hyperplanes of a matroM. If rank(M) = 1 then (C3) is trivially fulfilled, and

if rank(M) = 2 then every two cocircuits with distinct support are modulaMinhence
assume raniM) > 3, so alsgE| > 3. The proof that (C3) holds is by induction on the
cardinality| E| of the ground set. Fag € E set

p0o . [ X\ gl X e D suchthat spap(X°\ g) # X% if gis a coloop ofM,
| {(X\g]|X e Dsuchthat spap(X°\ g) = X% otherwise

andD/g := {Xg\g| X € DsuchthatXg = 0}. Observe that the zero supports of
DO\9 andD/g are the sets of hyperplanes i\ g and M /g, respectively (see Corol-
lary 0.4.9 (iii) and (iv)); so ifD is a set of cocircuits the\9 andD /g are the sets of
cocircuits of the deletion and contraction minors wg.t.

We show now thatD \9 and$ /g satisfy (C0), (C1), (C2), and (3, hence by induction
also (C3). SinceD\9 = D/gif g is a coloop ofM (note that then there is a cocircuit
X e O with X = {g} what implies by (C2)Yg = OforallY € © \ {X, —X}), the
only nontrivial case is the proof tha\9 satisfies (C) wheng is not a coloop. Let be
X, Y e D9 modular inM \ g ande € D(X’, Y’). Let X, Y be the unique sign vectors
in O such thatX \ g = X" andY \ g = Y’; uniqueness is implied by (C2X andY are
modular inM if and only if spar, (X°NY%)\ g) = X°NYO (Corollary 0.4.9 (iii)), which
is clear unlesg € X°NY?, but thenX®NY? must be a coline since otherwise there exists
H € M suchthatk®nY® S H S X% henceg € Hand(X°NY%)\g < H\g S X%\ g
contradicts thaX’, Y’ are modular inM \ g. Therefore areX andY modular inM and

e € D(X,Y), and by (C8") there existZ € D such thatZe = 0 andZ; € {X;, Y;, 0}
forall f € E, especiallyX®n Y% c z9 Remark that spap(z°\ g) = Z° (otherwise
ge Z2%andz®\ g € M is a coline which is identical t&X° N Y° because oX° N Y? =
span, (X°NY%\ g) < span,(Z°\g) = Zz°\ g, in contradiction taz® > e ¢ X°NYO).
SoZ\ g e DY, which is sufficient to show (CB) for D9,

LetbeX,Y € D with X # —Y ande € D(X,Y). Remark that ranM) > 3 implies
|XO > ranky (X% = rank M) — 1 > 2 and similarly|Y°| > 2. If X UY # E then for
g e X°nY%find Z' € D/g such thatz, = 0 andZ; € {Xt, Y, 0} forall f € E\ g.
ThenzZ € D with Z \ g = Z' is sufficient to prove (C3). Otherwise we can assume

~ XUY =E.

Let beg € X. If gis a coloop ofM thenX® = E \ g (sinceX® € E\ g is a hyperplane),
and thenX U Y = E impliesY? = {g}, a contradiction taY°| > 2. So,g is not a coloop
of M, andg € X implies X \ g € H\9. This and symmetry ixX andY proves that
~X\ge D\ forallge X,and Y\ ge D\ forallg e Y.

Letbeg € (XNY)\e henceX' := X\ gandY := Y\ gin D9, which is a set
of cocircuits. AsX’ # —Y" ande € D(X’, Y’), one can apply cocircuit elimination to
X', Y’, ande: There existZ’ € H\? such thatz, = 0 andZ; e {X}, Y}, 0} for all

f e E\Qg. LetbeZ € D suchthatz\ g = Z'. ThenZe = 0 andZ; € {Xj, Y5, 0}
forall f € E\ g. If forsomeg € (XNY) \ eone findsZg € {Xy, Yy, 0} then (C3) is
satisfied. Otherwis&q & {Xg, Yg, 0} forallg e (XN Y) \ ehence

~ D(X,Y) = {e}.

Let beg € XO C Y. Since| X% > 2 there existsf € X\ g. X \ f # 0is a covector in
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the oriented matroid defined l®\?, so by Lemma 0.6.2 there exisxé € D9 such
that X’ < X\ f andX, = Xe. As showed abovey’ := Y \ g € HD\9. By cocircuit
elimination inD\9 applied toX’, Y/, ande there existZ’ € H"9 such thaz, = 0 and
Zt e {Xt,Y;, 0 forall f € E\g. LetbeZ € D suchthatZ \ g = Z'. ThenZe =0
andZ: € {X¢,Ys,0}forall f € E\ g, and because d(X,Y) ={e}isZ; < Xo¥Y
forall f € E\ g. EitherZ is sufficient to prove (C3), oZ4 & {Xg, Yy, 0} = {Yg, O} and
henceg € D(X oY, Z). If this case occurs for atj € X° then

~ for all g € XO there exists Z D suchthat Z2=0and D(X oY, Z) = {g}.

Letbeg € X% andZ e D such thatZe = 0 andD(X o Y, Z) = {g}. f YN Z0 = ¢

let beh € YO C Z. Again, as before, there exisis € D such thatZe = 0 and
D(XoY,Z)={h}. AsZ = —Z would imply Z = {g, h} andY® N z% = YO\ g # ¢,

we can assum@ # —Z. By cocircuit elimination inD /e applied toZ \ e, Z \ e, and
h and lifting the resulting vector, there exists € O such thatZ, = 0, Z{ = 0, and
Zt e {Zs, Z¢,0} for all f € E, which impliesZ’; € {Xt,Y¢,0} forall f € E\g.

Either Z’ proves (C3), oerq & {Xg, Yg, 0} = {Yg,0} andD(X o Y, Z) = {g}, and then
setZ := Z' € D, henceZe =0,D(X oY, Z) = {g}, andY° N Z° = {h} # ¢.

Let beh € YO z0 Apply cocircuit elimination inD/hto Y \ h, Z \ h, andg and
lift the resulting vector taD: There existsy’ € D such thatyy = 0, Yy = 0, and
Y: € {Ys, Z¢, 0 forall f € E, henceY; € {X¢, Y¢,0} forall f € E\ e. EitherYg=0
which completes the proof, of] # 0, i.e.,Yi = Ye. Then apply cocircuit elimination in
D/gto X\ g, Y\ g, ande and lift the resulting vector t@: There existZ’ € D such
thatZé =0, Zg =0, andZ € {X¢, Y;, 0} forall f € E, which finally proves (C3). m

0.7 Topes and the Big Face Lattice

This section introduces topes, the maximal covectofS.iW.r.t. a sphere arrangement as
introduced in Section 0.1, topes correspond to regions of maximal dimension. We discuss
the facial relationship of the covectors, resulting in the definition of the (big) face lattice,
and prove important properties of this face lattice. The namingpEsfollows Edmonds,
Fukuda, and Mandel (see [Fuk82, Man82]).

0.7.1 Definition (Topes) For an oriented matroid( = (E, ) we call
T :=maxF) ={T € F |forall X € F suchthafl < XisT = X}
the set oftopesof M.

An obvious characterization of topes (within a set of covectors) is the following:

0.7.2 Lemma A covector Xe F is a tope if and only if R is the set of loops ol(.

Proof Let M = (E, ¥) be an oriented matroid and € ¥. Let E? denote the set of
loops of M. ObviouslyE®? < XO. If E® G X°letbeg € X%\ E®andY € ¥ such that
Yg # 0. ThenX < X oY, henceX is not a tope. On the other hand Xf € ¥ is not a
tope then its zero support is obviously not equaEfd [ |
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The following is an unpublished result of Mandel (see Theorem 1.1. in [Cor85a, Cor85b]),
where our proof is similar to one in [FukOOb]:

0.7.3 Proposition (Topes Determine Covectorsyhe set7 of topes of an oriented ma-
troid M = (E, ) determines the set of covectors by

F={Xe{— +0F| XoTeTforalT e T).

Proof Let (E, ) be an oriented matroid ari its tope set. IfX € ¥ then (F2) implies
XoT € F forevery topel € 7, and by Lemma 0.7.2 we conclude théb T € 7.

For the other direction considet € {—, +, 0}F with the property thaX o T € 7 for all
T € 7; we have to show thaX € ¥. We will prove thatX o Y € F forall Y € F; the
proof is by induction on(X o Y)?|, and the claim finally will follow for|(X o Y)°| = | X9
sincethenXoY = X € F.

Consider firstY € # with |(X o Y)9| minimal: LetZ € 7 be any tope withy < Z, then
the minimality of|(X o Y)?| impliesX oY = X0 Z € ¥.

For the inductive step considat € F with [(X o Y)% not minimal and assume that
XoZ e ¥ forall Z e F with |(XoY)?| > |(X02Z)?. Itis clear that there exis® €
with [(X o Y)?| > [(X 0 Z)% andX oY < X0 Z,ie., XoY < XoZ € F; we can
assume that there is i@ € ¥ suchthatX oY < X o Z" < X o Z. Composition of
Y € FandZ € F givesY o Z € F with [(X o Y)? > [(X 0 2)% > |(XoY 0 2)7,
henceW' := XoY oZ e F and similaryW~ := XoY o (=Z) € F. From
XoY < XoYo Zfollows D := D(W",W™) # ¢, and by conformal elimination
applied toW™, W—, and D there existe € D andW < ¥ such thatWe = 0 and
Wp < W3 andWi = (WF o W™) = W{ forall f € E\ D, henceW < W*. Remark
(for the first and last equality of what follows) th{tC E\ D andX oY < X o Z:

XoW=W=<W"r"=XoYoZ=XoZ.

Furthermoree € (X% U W9 \ Z0 implies X o W < X o Z. On the other hand it is
easy to see thak o Y < X o W, and finally the above assumption @implies that
XoY=XoW=We¥. [

The following investigations of covectors and their facial relationship have been presented
explicitly in [Fuk82, Man82] and partially or implicitly in [FL78, LV80].

We extend the notion of a loop to arbitrary sets of signs vectors and define the notion of
parallel elements:

0.7.4 Definition (Loop, Parallel) Let ¥ be a set of sign vectors on a finite ground et
An elemente € E is calleda loop of # if Xe = 0forall X € #. Two element®, f € E
are calledparallel elements of if either Xe = Xt forall X € & or Xe = —X; for all
X € ¥ . Parallelness is an equivalence relation and definegatadlel classes of .

Note that for oriented matroids the new definition of a loop falls together with the former
one in the following sense: iM = (E, ¥) is an oriented matroid with set of cocircuits
D and set of tope§’, then all the following statements ferc E are equivalenteis a

loop of M, eis a loop of ¥, eis a loop ofD, eis a loop of7. Parallel classes can be
characterized in oriented matroids as follows:
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0.7.5 Lemma Let (E, ¥) be an oriented matroid. Two elementsfec E are parallel
elements ofF if and only if there exists no X F such that exactly one of@nd Xz is
equal to0.

Proof If for some X € ¥ exactly one ofXe and X¢ is equal to O there and f are not
parallel by definition. On the other hand, consigeand f that are not parallel, hence
either there existX € # such that exactly one ofe and X is equal to O (which would
prove the claim) or there exigt, Y € & such thatXe = X5 # 0 andYe = —Y; # 0.
After possibly interchanging and f we can assum&e = —Ye # 0 andXs = Y¢ # 0.
By weak elimination (F3) there existZ € ¥ such thatZe = 0 andZ; = Xt # O,
which proves the claim. [ |

The next lemma is the base of the investigation of the facial relationship in connection
with the rank of covectors:

0.7.6 Lemma Let (E, ) be an oriented matroid and X € ¥ such that X< Y. Then
the following three statements are equivalent:

(i) X%\ Y?a parallel class ofF / Y°.
(ii) rank (Y) — ranky (X) = 1.
(i) Thereisno Ze F with X < Z < Y.

Proof We proof the equivalence of the negated statements.

If S:= X%\ YCis not a parallel class of / Y° then by Lemma 0.7.5 there existf € S
andZ € ¥ such thaty® c Z9% and exactly one o and Z¢ is equal to 0. But then
X% 2 X%N Z% 2 YO, hence 1< ranky (X®) — ranky (Y®) = rank(Y) — ranky (X).

If rank 4 (Y) — ranky (X) > 1 then by Lemma 0.3.7 (vi) every bad#sof Y° in M can
be augmented bg € X°\ Y° such thatB U e is an independent subset %P, and then
X% 2 BUe 2 YO. There exist&Z € # such thatz® = BUe. SetZ' := XoZ € ¥,
thenX < Z’ and(Z’)° = BUe. If D := D(Y, Z') = ¢ thenZ’ < Y, which proves
the negation of (iii). Otherwis® # ¢, and we can apply conformal elimination @3
toY, Z/, andD: there existe € D andZ € ¥ such thatZe = 0, Zp < Yp and
Z\D=(YoZ)\D.Then(Z)° 2> Y%impliesZ\ D =Y\ DandbyD C Y\ X also
X < X o Z <Y, which proves that (iii) is not valid.

If there existsZ € F with X < Z < Y then there exise, f € S := X%\ Y? with
ec 2% ¥ f, and by Lemma 0.7.5 iS not a parallel class of / Y°. m

Before we investigate the face lattice of an oriented matroid we state the following so-
calledreorientation propertyr shelling propertyof tope sets:

0.7.7 Corollary Let (E, ) be an oriented matroid ant@ its set of topes. Then for all
X,Y e 7 with X # Y there exists a parallel classS D(X, Y) such thats X € 7.
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Proof Let be X,Y e 7 such thatX # Y. Let E® denote the set of loops of(. By
Lemma 0.7.2X = X = E\ EY soD(X,Y) # #. We apply conformal elimination to
X,Y,andD := D(X,Y): there existZ € ¥ such thatZ = 0 for somee € D and
Zp < Xp,andZ\D=(XoY)\D=X\D =Y\ D. We assume that is maximal
w.r.t. < with that property. TherZ < X andS:= z°%\ X° = X\ Z € D. Furthermore
there is noZ’ € F with Z < Z’ < X. By Lemma 0.7.6 isS a parallel class of /E°,
hence off’, and obviouslyZ o (=X) =ZoY =5X e T. [

We consider in the following the poset formed by covectors and the conformal relation
<. We have seen in Section 0.1 that a sphere arrangement and the corresponding oriented
matroid have the same face posets. If an artificial greatest eldneatded to the set of
covectors then the relatior defines a lattice (for an illustration see Figure 0.3):

0.7.8Lemmalet M = (E,F) be an oriented matroid. The partially ordered set
FM) = (F,x)isa Iattice,Awhere‘F = F U {1} and < is the conformal relation
extended by X 1forall X €

Proof Let M = (E, ¥) be an oriented matroiq and, <) be the partially ordered set
as defined apove. Consider any faceésy € F. We have to show the existence of
supX,Y) e Fandinf(X,Y) € ¥

(i) There exists a smallest element §¥pY) € ¥ such thatX < sup X, Y) and
Y <supX,Y): If X <YorY =< XthensupX Y) = Y orsugX,Y) = X,
respectively. Otherwis& andY are not comparable, therefoke Y € F \ {0}. If
D(X,Y) =0thensupX,Y)=XoY =Y o X € F, otherwise supX, Y) = 1L

(i) There exists a greatest element(XfY) € ¥ such that infX,Y) < X and
inf(X,Y) <Y:If X<YorY < Xtheninf(X,Y) = Xorinf(X,Y) =Y, respec-
tively. OtherwiseX andY are not comparable, therefoXe Y € # \ {0}. Consider
the (finite) set of lower bound&z?, ...,z = {Z € ¥ |Z < XandZ < Y},
which is non-empty as it contails Then ini X, Y) = Z1o...0Z¢ € # (note that
the order of theZ' does not affect the result of the composition). ]

0.7.9 Definition (The Big Face Lattice) For an oriented matroidd = (E, ¥) we call
the lattice® (M) = (£, <)Adef|ned in Lemma 0.7.8he face lattice ofM (also calledhe
big face lattice oitmM), and ¥ is calledthe set of faces of(.

We define rank (1) := rank(.M) + 1.

The following result says that the big face lattice of an oriented matsoits a graded
lattice (of length rankM) + 1); this is also called the Jordan-Dedekind chain property.

0.7.10 Theorem (Rank Equals Height in Face Lattice [FL78, LV80])In the face lat-
tice £ (M) of an oriented matroidit = (E, ), the height of any Xe ¥ is uniquely
determined as it equals the rank of X.hd.
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Proof ConsiderX,Y e ¥ with the property thatX < Y and there is n& € ¥ such
that X < Z < Y. We show ranf(Y) — ranky (X) = 1; this is sufficient to prove the
claim, as by definition rank(0) = rank(M) — rank (E) = rank(.M) — rank.M) = 0.
ForY # 1 the claim follows from Lemma 0.7.6. IY = 1 then X is a tope, hence
is X0 the set of loops ofM (see also Lemma 0.7.2) and therefore @(1)(0) = 0and
ranky (Y) — ranky (X) = (rank(M) + 1) — (rank(M) — 0) = 1. [ ]

0.7.11 Corollary (Rank and Dimension of Cocircuits and Topes)A covector Xe F

is a cocircuit if and only ifranky (X) = 1, or, equivalentlydim(X) = 0. The set of

zero supports of cocircuits is the set of hyperplanes of the underlying matroid. X is a tope
if and only ifrank (X) = rank(.M), or, equivalentlydim y (X) = dim(M).

0.7.12 Definition (¢i, i-Face, f;) Given an oriented matroid( = (E, #), we call for
i € {-1,...,dim(M)} a sign vector in

Fi={XeF|dmy(X)=i}

ani-face and we seff; := | ¥;| for the number of-faces.

Obviously alwaysf_; = 1; furthermorefy = |D| and fg = ||, whered = dim(M).

0.7.13 Theorem (Diamond Property [FL78, LV80]) Let M = (E, ¥) be an oriented
matroid and XY € ¥ such that X< Y andrank,(Y) — ranky (X) = 2. Then there
exist exactly two covectorstzz? e # with the property X< Z' <Y fori e {1, 2}.

The diamond property is called like that because of the diamond-like shape formed by
X, Z1, Z2,Y in the face lattice (see Figure 0.4).

Figure 0.4: Diamond property

Proof of Theorem 0.7.13ConsiderX,Y € ¥ such thatX < Y and rank(Y) —
ranky (X) = 2. By Theorem 0.7.10 there exisfs= Z! ¢ ¥ suchthatX < Z < Y,
which is a maximal chain. Obviously, Z € ¥, and by Lemma 0.7.6 i := X%\ Z%a
parallel class ofF / Z°.

If Y = 1thenZ is a tope and the question is how many togésatisfyX < Z': sinceS

is a parallel class of /Z° and hence off asZ? is the set of loops of, Z! := Z and

Z2 := X o (=Z) € F are the only two topes with this property (note that (F1) and (F2)
are needed foEZ? € 7).

If Y # 1then (by Lemma 0.7.6°\ YV is a parallel class of/Y?. By conformal
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elimination (F3) applied toY, —Z, andS = X%\ z% c D(Y, —-Z) = Z there exist

e c SandZ € ¥ such thatZe = 0 andZs < YsandZ; = (Y o (—2))s for all

f € E\ D(Y,—Z) = Z9 ReplacingZ by X o Z does not affect these properties since
X =D(Y,—2)\'S. ThenX < Z < Y (remark thatz® \ Y® € Z) andZ # Z. Since
Y0 c 7% ande € 29N S, whereSiis a parallel class of /Y?, Lemma 0.7.5 implies
Zs = 0, hencex® c 79U 70. Assume thaX < W < Y for someW e F. Then there
existse € X%\ YO such thaWy = 0, hencee’ € (Z°U 29\ YO. Sincez®\ Y? and
Z9\ YO are parallel classes ¢f /Y% andY? € WO, Lemma 0.7.5 implieg® < WO or
7% c WP, henceZ = WorZ = W. n

It is not difficult to see the following:

0.7.14 Lemma (Oriented Matroids of Rank 1 and 0) The face lattice of an oriented
matroid (E, #) of rank 1 has exactly the form of a diamond, where=)0, Z1 = —Z2,
and Y = 1. The face lattice of an oriented matroid of rank 0 only consist ef1.

0.8 Oriented Matroid Programming

Oriented matroid programming is the abstraction of linear programming in the setting
of oriented matroids. The original work of Bland [Bla77] discusses oriented matroid
programming in terms of dual pairs of oriented matroids, the primal presentation which
we give in the following is due to Fukuda [Fuk82]. Our introduction is very short, for
more details see Chapter 10 in [BLYS9] and the references cited in this section. We
will need oriented matroid programming in the proof of Theorem 1.3.1.

Remember that for a sign vectér C {—, +, 0}E we write X > 0if Xe € {+, 0} for all
e € E, and similarlyX < 0 if —X > 0. The same notation is also used for single signs
(e.9.,Xe > 0).

0.8.1 Definition (Oriented Matroid Program) Let M = (E, ¥) be an oriented matroid
and f, g € E two distinct elements. LeX, Z be sign vectors ok.

e X s calledfeasibleif X ¢ £ andX \ f > 0andXy = +.
e Zis calledadirectionif Z € ¥ andZy4 = 0.
e Z is calledan unbounded directioif Z is a direction,Z \ f > 0, andZs = +.

e For a feasibleX, we callZ an augmenting direction for X Z is a direction with
(Xo2Z)\ f>0andZs = +.

e X is calledoptimalif X is feasible and there is no augmenting directionXor

The oriented matroid progranODMP(M, g, ) is the problem to find an optimal sign
vector X.
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0.8.2 Definition Let M = (E, ¥) be an oriented matroidanidg € E, f # g. Consider
P = OMP(M, g, ). P is calledfeasibleif there exists a feasiblX for 4, unbounded
if & is feasible and there exists an unbounded directiosPfoandoptimalif there exists
an optimalX for 2. If 2 is not feasible ther is calledinfeasible

0.8.3 Lemma (OMP Induction) LetM = (E, ) be an oriented matroid and, § € E,
f # g. ConsiderP := OMP(M, g, f) and e e E \ {f, g}, and define the oriented
matroid programs? \ e := OMP(M \ e, g, f) and® /e := OMP(M /e, g, ). Then:

() If 2\ e optimal and? /e optimal then” optimal.
(i) If 2\ e optimal and? /e infeasible the optimal or infeasible.
(i) If 2 \ e unbounded and /e optimal then” unbounded or optimal.
(iv) If 2 \ e unbounded and /e infeasible thei® unbounded or infeasible.

Proof (i) Let X € # be such thaX \ eis an optimal solution of? \ e, and letX € ¥
be such thaiX \ e is an optimal solution of? /e, henceXe = 0. Assume thaiX
is not an optimal solution of”. If Xe > 0 thenX is feasible, so there exists an
augmenting directio € ¥ for X, but then isZ \ e an augmenting direction for
X\ &, in contradiction to the optimality ok \ efor /> \ e. HenceXe = —. Apply

covector elimination (F3) te-X, X, andg. There existZ € F such thatZg =0
andZp = ((—X) o X), for everyh € E\ D(—X, X), especiallyZyo > 0,Z40 <0,
andZe = +. The optimality ofX \ e implies thatZs < 0. Assume thak is not
an optimal solution of?. Then there exist€ € ¥ such thatZy = 0, Z¢ = +,
Zzo > 0,andZe = + (because oKe = 0 and the optimality oK for 2 /). Apply
covector elimination (F3) te-Z, Z, ande. There exist¥ € ¥ such thatZe = 0,
Zg=0,Z40 > 0,andZ¢ = +, in contradiction to the optimality ok \ e for /e,

(i) Let X € & be such thak \ eis an optimal solution of” \ e but not of %, hence
Xe = —asin (i). Assume thaP /eis infeasible, but nof, i.e., there existX € F
such thath +, X\ f > 0, andXe = +. Apply covector elimination (F3) tX,
X, ande. There existZ € ¥ suchthatZe =0,Z\ f > 0, Zg = +. This implies
that /eis feasible, a contradiction.

(i) Let Z € ¥ be suchthaZy = 0, Z¢ = +,andZ \ e > 0. Let X € ¥ be such
that X \ e is an optimal solution ofP /e, so Xg = +, X\ f > 0, andXe = O.
Assume that? is not unbounded and not optimal. Théa = —, and there exists
Z' € ¥ such thatZ} = +, Zg = 0, andZ{, > 0. Furthermore, the optimality
of #/eimplies Z; # 0, hencez; = +. Apply covector elimination (F3) t@, Z’,
ande. There existZ €  such thatZe = 0, Zg = 0, Z = +, andZyo > 0, a
contradiction to the optimality oX for £ /e.

(v) Let Z € ¥ be suchthaZyg = 0, Z¢ = +, andZ \ e > 0. Assume thatP is
not unbounded, hencé. = —. If P is feasible then there exis¥ € ¥ such that
Xg =+andX\ f > 0. As# /eis infeasible Xe = 4. Apply covector elimination
(F3) toZ, X, ande. There exist< such thatZe = 0, Zg = +,andZ \ f > 0, a
contradiction to the assumption th&/e is infeasible. |
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The following theorem is closely related to the duality theorem of oriented matroid pro-
gramming [Law75, Bla77]. The primal presentation as given here follows [Fuk82].

0.8.4 Theorem (Fundamental Theorem of OMP)Every oriented matroid program
P = (M, g, ) is exactly one of optimal, unbounded, or infeasible.

Proof The proof is by induction onE| and mainly based on the OMP induction (see
Lemma 0.8.3). FofE| = 2isE = {f, g}. Assume tha#” is feasible but not unbounded:
there existsX € # such thatXqg = +, and there is n& € ¥ such thatZg = 0 and
Z: = +. Therefore X is an optimal solution forP.

AssumelE| > 2. Choose ang € E \ {f, g}. By induction we assume that \ e and

P /e both are one of optimal, unbounded, or infeasible. Observe tlat\ie infeasible
then also? and /e. Furthermore, it? /e unbounded then als® and# \ e. Together
with the inductive result of Lemma 0.8.3 this implies in all cases #& one of optimal,
unbounded, or infeasible:

P/e
optimal | unbounded | infeasible
optimal optimal or
optimal Lemrﬁao 8.3 (i) (not possible) infeasible
e Lemma 0.8.3 (ii)
unbounded or unbounded or
& \ e unbounded optimal unbounded infeasible
Lemma 0.8.3 (iii) Lemma 0.8.3 (iv)
infeasible (not possible) | (not possible) infeasible

0.9 Basis Orientations and Chirotopes

This section introduces basis orientations and chirotopes. We will use chirotopes for a
compact encoding of oriented matroids in Chapter 6. Chirotopes can be characterized by
so-called Grassmann+RiKer relations (see Definition 3.5.3 in [BLVS9]) which gives

again another equivalent set of axioms of oriented matroids (we do not discuss this).

0.9.1 Definition (Ordered Sets)Let Sbe a finite set. We writé€S) for some fixed (linear)
order of the elements i8. If 7 is a permutation ots thenz (S) denotes the ordered set
obtained from(S) by reordering the elements accordingitoFor elemente € S, f ¢ S

we denote byS: e — f) the ordered set obtained fro(®) whene is replaced byf at

the same position, keeping the relative ordering of the other elements. Fof afdetite

sets defin€s) := {(S)| S € 4} to be the set of all ordered sets obtained by fixing an order
(in every possible way) for alb € §.
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A basis orientation is the sign of an abstract determinant of a basis: Consider a matrix
A of full column rank and a subs@ of the column index set which corresponds to a
basis of A. The determinant of the corresponding submatrixAaft non-zero, i.e., has
sign— or +. The determinant is defined for a specific ordering of the basis vectors, and a
permutationt of the columns irB will multiply the sign of the determinant with sign),

which is the sign of the permutation defined in the usual way (the sign of identity is

and by any transposition of two elements the sign is reversed). In this sense, the sign of
the determinant is an alternating function. For the following we use the arithmetic of signs
whichis defined byt - + = — - —=+and+ - —=— -+ = —.

0.9.2 LemmaletM = (E, ¥) be an oriented matroid ané its set of cocircuits. For
every basis Be 8 and every e B there exist exactly two cocircuits, X X € £ such
that B\ e € X% then X # 0.

Proof Use the definition of bases, and cocircuit axiom (C2). [ |

0.9.3 Definition (Fundamental Cocircuit) Let M = (E, ) be an oriented matroid and
D its set of cocircuits. For a basB € 8 ande € B we call the cocircuitX € D
determined byB \ e € X%andXe = + the fundamental cocircuit of¢ w.r.t. B and eand
denote it byX (B, e).

0.9.4 Definition (Basis Orientation of an Oriented Matroid) Let M = (E, ) be an
oriented matroid and its set of cocircuits. LetB be the set of bases of the underlying
matroid.M. Amapy : (8) — {—, +} is calleda basis orientation of\( if

(BO) y is alternating, i.e.x (B) = sign(w) - x (x(B)) for all (B) € (8) and all permu-
tationsz of B,

(B1) forall(B) e (B),ee B, f g BsuchthaB\ eU f € B,
x(B:e— f)=Xe- X5 - x(B), whereX = X(B, e) € D is the fundamental
cocircuit w.r.t.B ande (or, equivalently, its negative).

0.9.5 Theorem (Las Vergnas [LV75, LV78a])Every oriented matroid has exactly two
basis orientationg and —y.

Proof The proof follows essentially Lawrence [Law82], but does not use any duality
arguments; instead we use cocircuit elimination. The proof is by inductigiEpnThe
case|E| = r is trivial as there is only one basis. Assumtg > r. Let Be Bbea
basis of.M and sety (B) := +. We have to prove that this determinesn a unique and
consistent way. Choose amye E \ B and considerM \ a. Sincea ¢ B, a is not a
coloop of M, and by Corollary 0.4.9 (i) rar \ a) = rank(.M). Furthermore, the set
of bases ofM \ a is the set of those bas&of M for whicha ¢ B. By induction, there
exists a unique basis orientatign for M \ a with x'(B) = +. We sety(B) := x/(B)
for all ordered basegB) of E which do not contaira. Let (B) be an ordered basis
of .M that containg and X := X(B, a) the fundamental cocircuit w.r.B anda. Set
x(B):= Xa- Xe- x(B:a— e) for somee € X\ a (note thatX \ a # ¢ sincea is not

a coloop,B \ aU eis a basis, and the definition gf( B) is independent from the choice
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of e sincey satisfies (B1) for all ordered bases®Bfwhich do not contaira). By this, x

is defined for all ordered bases Bf and y satisfies (BO) by induction and by the way of
the definition for the ordered sets which contain

It remains to prove (B1) foe, f € E,e # f. Ifa = eora = f then (B1) follows
from the definition ofy. Assume for the following # a and f # a. Consider a basis
B e 8suchthata € B,ec B, f ¢ B,andB\ eU f € 8. We have to show that
x(B:e— f)= Xe- X5 x(B), whereX = X(B, e).

In thefirst case f¢ span, (B \ a). ThenisB \ auU f a basis, and by definition

x(B) = X3 . x¥ . y(B:a— f)for X2 = X(B, a),
x(B:a—> f:e—>a = X§° X3 x(B:a— f)for X*®=X(B\eU f, a).

By cocircuit elimination (C3) applied tX2f, —X2€ anda there existsX®’ € D such
that XS = 0 andxﬁf € {Xfﬁl‘f, —X@e 0} forall h € E, henceB \ e € X®" and therefore
Xef = £X(B,e) and X&' = —X2¢ and X?f = X?f. In combination this leads to

xB:e— f)=—x(B:a— f:e— a) = Xx&". X?f - x(B), which proves the claim
in the first case.

In thesecond case & sparny, (B \ a). SetY := X(B, a) € D, thenY¢ = 0. Choose any
geY\athenB\auge B8andB\ {a, e} U{f, g} € 8. Similar to the first case, we
compose the replacement@® :e — f)=(B:a—>g:e— f : g — a)anduse
again cocircuit elimination (once anand once org) to prove the claim. We leave the
details to the reader. [ |

0.9.6 Definition (Chirotope) Let M = (E, ¥) be an oriented matroid. Set= |E| and

r := rank(.M). We call{y, —x} the chirotope ofM if x is a map defined on all ordered
subsetg'S) of E with cardinalityr such thaty, restricted to the set of ordered bases of
M, 1S a basis orientation of( andx (S) = 0 if Sis not a basis of\(.

0.9.7 Proposition Let M = (E, #) be an oriented matroid of rank r. The chirotope of
M (together with E and r) determine#.

Proof Let x be one of the two maps in the chirotope 0. The set of base® of
M is determined as the set ofsubsetsB of E for which x(B) # 0. A sign vector
X e {—,+,0}F is a cocircuit ofM if and only if there exists a basB € B and an
elemente € B suchthatB \ e) € X° X¢# 0, andX; = Xe- x(B)- x(B:e— f)for
all f ¢ B. |

For the rest of this section we consider the chirotope of the dual of an oriented matroid.
Let M = (E, ¥) be an oriented matroid anfl a basis ofM. By Proposition 0.5.11,

N := E\Bis abasis of the dualt*. Lete € Bandf € N, and consider the fundamental
cocircuit X = X(B, e) € ¥ and the so-calletbndamental circuit Y= Y(N, f) € F*

which is characterized b \ f < Y% andY; = + (consider Lemma 0.9.2 foi(*). By
definition, X = Y, furthermoreX NY C {e, f} andXe = Yt = +, henceXs = —VYe. Let

x andx * be basis orientations of( and.M*, respectively. Then,

which is the dual form of (B1). This leads to the following simple rule for the computation
of the chirotope of the dual from the primal:
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0.9.8 Lemma LetM = (E, ) be an oriented matroid ang one of the two maps in the
chirotope ofM. Consider a fixed order of E. Then, one of the two maps in the chirotope
of M* is determined by

x"(N) = sign(r (B, N)) - x(B),

where(B) = (b1, ...,b) and(N) = (br1, ..., b,) are ordered bases oi( and M*,
respectively, where N= E \ B, andx (B, N) is the permutation to sortby, ..., bp)
according to the fixed order of E.

Proof Note thaty*(N) # 0 if and only if N is a basis ofM*, which is the case if and
only if B = E\ N is a basis oM (see Proposition 0.5.11), hence if and only {iB) # 0
for any order ofB.

Let x* be such thaj*(N) = sign(z(B, N)) - x(B) for all ordered base&B) and (N)
of M and M*, respectively, wherd&l = E \ B. We have to show that*, restricted to
the set of ordered bases £f*, is a basis orientation of(*. Let (B) = (by, ..., by) and
(N) = (br 41, ..., bn) be ordered bases gt andM*, respectively, such thid = E \ B.
Considere € Band f € N. By assumption oy * and property (B1) o,

x*(N: f —>e) = —sign@(B,N))-x(B:e— f)
= —sign(m(B, N)) - Xe- Xt - x(B)
—Xe - X5 - x*(N),

whereX = X(B, e). This is a necessary condition gtf (see above), and it determines
x* up to negative, which implies the claim. [ |
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Chapter 1

Topes and Tope Graphs

1.1 Introduction and Problem Statements

Chapter 1 investigates topes and tope graphs of oriented matroids and their relation to
covectors and the big face lattice of oriented matroids. The two main problems consid-
ered in this chapter are tlalaracterization problenand thereconstruction problenof

tope graphs. Partially we review known results from [FH93] and [FST91]. The main ex-
tensions of these results are the separability of uncut topes (see Theorem 1.3.1) and the
reconstruction algorithms of faces and topes from cocircuits.

We first define some basic notions w.r.t. graphs, after this we introduce tope graphs, ad-
dress the problems discussed in this chapter, and give an overview of Chapter 1.

A graph G= (V(G), E(G)) is a pair of a finite set ofertices MG) and a set oedges

E(G) that are represented as unordered pairs of vertices, i.e., all edges are undirected. For
a connected grap® we will denote bydg (v, w) the (combinatorial) distance between

two verticesv, w € V(G) (i.e., the minimal number of edges in a path connectiragd

w) and by diangG) the diameter of5 (i.e., the maximal distanads (v, w) in G).

Two graphsG, G’ are calledsomorphicif there exists a bijection : V(G) — V(G')
such that{¢ (v), ¢ (w)} € E(G’) if and only if {v, w} € E(G). Then we calk a graph
isomorphism If G = G/, then we callp a graph automorphisipthe set of all automor-
phisms is denoted by AUB). If the vertices ofG are not labeled, then we usually identify
graphs that are isomorphic, e.g., we say thand G are equalif they are isomorphic.

The first class of graphs, which we discuss in this chapter, are the tope graphs of oriented
matroids. In a pseudosphere arrangement (see Section 0.1) topes correspond to regions of
maximal dimensiord, and two topes are adjacent if they have a comruba 1)-face.

The following definition of tope graphs also applies to sets of sign vectors which are not
tope sets of oriented matroids, which will be important for further investigations:

1.1.1 Definition (Tope Graph) Let (E, 7) be a pair of a finite seE and7” € {—, +, 0}
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such that all sign vectors i have the same suppofihe tope graph ofE, 7) is a graph
G with exactly |7 | vertices that can be associated by a bijectibn V(G) — 7 such
that{x, y} is an edge irE(G) if and only if the set of separating elemei@$.L (x), L(Y))

Is a parallel class of . If 7 is the tope set of an oriented matrald we also callG the

tope graph oM.

We will call a bijection.£ : V(G) — T like in Definition 1.1.1 arassociating bijection

An example of an oriented matroid (illustrated by a pseudosphere arrangement) and its
tope graph is given in Figure 1.1.

Figure 1.1: Adjacent regions in pseudosphere arrangement and tope graph

For oriented matroidsE, %) the above definition of a tope graph falls together with the
explanation given before: the parallel classes of the top€ set the same as the parallel
classes off, and for X, Y € 7 there exists ad — 1)-faceZ € ¥ such thatZ < X
andZ < Y ifand only if Z is of the formZ \ D := X\ D =Y\ D andZp = Ofor

D = D(X,Y) being a parallel class of . This can be proved by covector elimination
and observing Lemma 0.7.6 (for more a more general result which includes this case see
Lemma 1.5.6). Hence, the tope graph of an oriented mati®idF) with set of topes

T is a graphG with exactly fy = |77| vertices that can be associated by a bijection
L : V(G) — T tothe elements df” such that{x, y} is an edge irE(G) if and only if
L(X) andL(y) have a common lower neighbor in the face lattiéedenotes the number
of faces of dimensiomn). There is a one-to-one correspondencédf 1)-dimensional
faces and the edges @, hencefy_1 = |[E(G)]|.

We have introduced relabeling, reorientation, and isomorphism of oriented matroids in
Section 0.1. We define these notions in a more formal way again, by this also extending
them to arbitrary sets of sign vectors. Remember the definition of loops and parallel
elements in Definition 0.7.4.
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1.1.2 Definition (Relabeling, Reorientation, Isomorphism)Let ¥ be a set of sign vec-
tors on a finite ground sdf. A relabeling of # is a set of sign vectorg”’ on a finite
ground setE’ such that there is a bijectigh : £ — F’ and a bijection) between the
parallel classes of non-loop elementsfofand ' such thatXe = ¢ (X)e forall X € &

and alle € E, € € E’ wheree, € are not loops off and¥”’, respectively, and the parallel
classes ok and€’ are associated by. A reorientation of¥ is a set of sign vectors of
the form{s X | X € ¥} for someS C E, whereg X is the sign vector obtained from

X by reversing the signs of all elements$n We also call the map which transforr&#s

into a relabeling (or reorientation) a relabeling (or reorientation, respectively). A set of
sign vectors¥’ is calledisomorphic toF if £’ can be obtained fron¥ by relabeling
(first) and reorientation. Amsomorphism off” is a map which transform$ into a set
which is isomorphic tdf. Reorientation, relabeling, and isomorphism define equivalence
relations for sets of sign vectors. For a pair= (E, ) of a finite ground seE and a

set of sign vectors ok these relations define itelabeling clasd.C(.M), reorientation
classOC(M), andisomorphism clasEC(M).

Relabeling and hence isomorphism allows the introduction and deletion of parallel ele-
ments and loops. If all loops and redundant parallel elements are deleted, one obtains an
isomorphic set of sign vectors without loops such that all parallel classes contain only one
element:

1.1.3 Definition (Simple, Simplification) Let & be a set of sign vectors on a finite
ground sekE. ¥ is calledsimpleif there are no loops and no parallel elemenis f. An
oriented matroid E, ¥) is calledsimpleif # is simple.A simplification off" is a simple
set of sign vectors which is isomorphic ¥o.

By the definition of tope graphs, it follows:

1.1.4 Lemma The tope graph of a sét is equal to the tope graph of any simplification
of 7. More general, the tope graphs of any isomorphic sets of sign vectors are equal.

The above lemma states that the discussion of tope graphs may be restricted to simple sets
T ; this will not affect the generality of the results.

The present chapter mainly concerns the following two problems:
Characterization Problem: Given a graph G,
decide whether G is the tope graph of some oriented matroid.
Reconstruction Problem: Given a tope graph G of some oriented matroid,

find an oriented matroid/ such that G is the tope graph of.

Our investigations concern algorithmic solutions and their complexities. For our com-
plexity analyses we assume that every elementary operation (such as an addition or com-
parison of single elements) can be computed in constant time.
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Whereas the reconstruction problem can be solved in polynomial time by a simple algo-
rithm (see Section 1.4), the answer to the characterization problem is not that easy. In
terms of graphs, there is no polynomial characterization of tope graphs of oriented ma-
troids (unless rank is at most 3, see [FH93]), however, there exist algorithms which solve
the characterization problem by the way of construction of sign vectors (see Section 1.7).
We give in the following a more detailed overview of the results presented in this chapter.

In Section 1.2 we will discuss some basic properties of tope sets and tope graphs, intro-
ducing L1-systems and acycloids which are generalizations of the tope sets of oriented
matroids. Tope graphs af!-systems and acycloids are well studied and have good char-
acterizations (e.g., see [Djo73, FH93]).

We will prove a new separability property of tope graphs of oriented matroids in Sec-

tion 1.3. This separability property, which can be checked easily, is not valid for general
L1-systems or acycloids, however, it is also not sufficient to characterize tope graphs of
oriented matroids. Nevertheless, the separability property will be helpful again in Chap-
ter 4 for the developement of algorithms for the generation of oriented matroids.

In Section 1.4 we use properties from Section 1.2 to design a simple algorithm which
reconstructs tope sets of oriented matroids (or, more general, acycloids) from a given tope
graph. This orientation reconstruction is unique up to isomorphism, which also proves
that the tope graph of an oriented matroid characterizes its isomorphism class. This also
implies that the big face lattice of an oriented matroid characterizes its isomorphism class:
Tope graphs (or face lattices) of oriented matroids are representations of the isomorphism
classes of oriented matroids.

The known characterizations of tope sets of oriented matroids (e.g., see [BC87, Han90,
dS95]) do not lead to algorithms which check in polynomial time whether a given set
of sign vectors is the tope set of an oriented matroid. The same is true for tope graphs
of oriented matroids: there is no direct (graph theoretical) characterization which can be
checked in polynomial time (of course, the characterization problems of tope sets and tope
graphs are connected by the polynomial orientation reconstruction). However, as a result
of Fukuda, Saito, and Tamura [FST91], tope sets can be characterized in polynomial time
using algorithms which reconstruct faces from tope sets. We present such algorithms in
Section 1.5, present in Section 1.6 algorithms for the reconstruction of faces and topes
from cocircuits, and combine all these in Section 1.7 for an algorithm which characterizes
tope sets of oriented matroids in polynomial time.

1.2 Properties of Topes Graphs

We discuss in this section some basic properties of tope graphs of oriented matroids.
These are the properties of the tope graphs of so-cafteslystems and acycloids which
generalize tope sets of oriented matroids [Tom84, Han90, Han93].

1.2.1 Definition (L1-System, Acycloid [Tom84]) A pair (E, 7) of a finite setE and a
set7 C {—, +}F is calledan L!-systeralsoL-embeddable systérif
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(A1) forall X,Y € 7 such thatX # Y there exise € D(X,Y)andZ € 7 such that
Ze=—XeandZ\e= X\e. (reorientation)

If in addition to the reorientation property also
(A2) if X e T then—X € T, (symmetry)

then we call(E, 7) an acycloid(or simple acycloijl

A basic observation is the following [Han90]:

1.2.2 LemmaLet (E, ) be a simple oriented matroid arid its tope set. TheqE, 7)
is an acycloid.

Proof Since there are no loops, the set of topes satisfies {—, +}F. As (E, #) is
simple, (Al) is the same as the reorientation property of tope sets of oriented matroids (see
Corollary 0.7.7). The symmetry (A2) is obviously implied by the symmetry of covectors
(F1). [ |

The following is a very important characterization of edges in tope graph$-efstems
(and hence oriented matroids) [FH93]:

1.2.3Lemmalf (E, 7) is an Ll-system and G its tope graph with associating bijection
£:V(G) — T,then EHG) = {{x, y} | ID(L(X), L(¥)| = 1}.

Proof The claim follows directly from the definition of a tope graph and the fact tHat
systems are simple, i.e., all parallel classes contain exactly one element. [ |

The above lemma is used to prove the following important property of tope graphs of
L1-systems [FH93], which states that these graphs can be embedded isometrically in
some (higher-dimensional) hypercube, where isometrically means that distances in the
tope graph are the same as in the hypercube:

1.2.4 Proposition If (E, 7) is an L!-system and G its tope graph with associating bijec-
tionL : V(G) — T,then & (X, y) = |D(L(X), L(Yy))| forall x,y € V(G).

Proof Let (E, 7) be anL!-systemG its tope graph, and’ : V(G) — 7 an associating
bijection. We prove the claim by induction ¢B (L(X), L(Y))|. |D(L(X), L(Y))| =0
clearly impliesx = y. For|D(L(X), £(y))| = 1 the claim follows from Lemma 1.2.3.
Forx,y € V(G) setX := L(x) andY := L(y), and assum¢D (X, Y)| > 1. Since
X # Y, there exise € D(X,Y)andZ € 7 such thatZe = —XcandZ \e= X\ e.
There isz € V(G) such thatZ = L£(z). Obviously|D(X, Z)|] = 1 and|D(Z,Y)| =
ID(X,Y)|—1,sodg(x,z) = 1 and by inductiorg(z, y) = |[D(X, Y)| — 1. This implies
de(X,y) < dc(X,2) +dc(z,y) = |ID(X, Y)|. On the other hand Lemma 1.2.3 implies
de(x,y) > [D(X, Y)l. n
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1.2.5 Corollary ([FH93]) For every vertex in the tope graph G of an acycloid there
exists a unique vertexe V (G) such that & (v, v) = diam(G).

Proof Let £ : V(G) — 7 < {—, +}F be an associating bijection. By definition of an
acycloid—L(v) € 7. Letv € V(G) be determined by (v) = —L(v). By Propo-
sition 1.2.4,dg (v, v) = |E| is the maximal distance between any vertice&irand is
attained if and only if the vertices correspond to negative sign vectdrs in |

1.2.6 Definition (Antipode) Let G be the tope graph of an acycloid and V (G). We
call the vertex € V (G) determined byls (v, v) = diam(G) the antipode ob in G.

Lemma 1.2.3 says that for every edgey} in the tope grapl@ of an L1-system(E, 7),

where some associating bijectigh: V(G) — 7 is given, there is an elemeai E such
that.L(x) = L(y). We introduce the notion of agdge clas$or the collection of edges

which corresponds to the same element. It will turn out that edge classes are independent
from L.

1.2.7 Definition (Edge Clas€®; C(v, w)) Let (E, 7) be anL!-system and5 its tope
graph with associating bijectiasi : V(G) — 7. Fore € E we definethe edge class of
e by

E®:= {{v, w} € E(G) | D(£L(v), L(w)) = {e}}.

For an edgdv, w} € E(G) we define
Cv,w) :={xe V(G |dg(X, v) < dc(X, w)}.

It is obvious that edge classes partition the set of edges. For an illustration see Figure 1.1,
where edges of the same edge class are parallel. These edge classes are defined by the
graphG itself, independent fromx (this result is essentially based on work of Djokovi”
[Djo73)):

1.2.8 LemmaLet G be the tope graph of anltsystem(E, 7) and £ : V(G) — T
an associating bijection, furthermore lgt, w} € E(G) be an arbitrary edge in G, say
{v, w} € E®for some e E. Then

Cw, w) ={x e V(G) | L(X)e = L(v)e}

and
E®={{v,w'} € E(G)|v' € C(v, w) andw’ € C(w, v)}.

Proof SetV := L(v), W := £L(w), andX := L(x) for somex € V(G). By Propo-
sition 1.2.4,dg(x,v) = |D(X,V)| anddg(X, w) = |D(X, W)|, hencedg (X, v) <
de (X, w) if and only if [ID(X, V)| < |D(X, W)|, which is because ob(V, W) = {e}
equivalent toXe = Ve = —Wk. This proves thax € C(v, w) if and only if Xg = Ve.
SetV’' = L), W = L(w') for some{v',w'} € E(G). Asv € C(v,w) and
w' € C(w,v) is equivalent toVy, = Ve andW; = W, D(V, W) = {e} implies
eec D(V/, W), hencgv’, w'} € E€. Onthe other hand, & e D(V’, W), then (after pos-
sibly interchanging/’ andW’, which does not change the edge sificew’} = {w’, v'})
Vg = Ve andW; = We, hencev’ € C(v, w) andw’ € C(w, v). [
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We illustrate the results of this section for the case of oriented matroids of rank 2 (di-
mension 1). This case will be important for several later considerations in this thesis, for
example for the characterization of oriented matroids of rank 2 in Corollary 1.4.4.

1.2.9 Proposition (Tope Graph of Oriented Matroid of Rank 2) The tope graph of an
oriented matroid E, #) of rank 2 is a cycle of even lengn’, where riis the number of
parallel classes it /E?, where E is the set of loops.

Figure 1.2 shows an example of an oriented matroid of rank 2 and its tope graph, where
the gray lines indicate a corresponding central arrangement of lines (i.e., the intersection
of these lines with the unit sphe® induces a 1-dimensional sphere arrangement which
realizes the oriented matroid).

Figure 1.2: Tope graph of an oriented matroid of rank 2

Proof of Proposition 1.2.9 Let M be an oriented matroid of rank 2, and associate the
topes to the vertices of the tope graplof M by an associating bijectias : V(G) — T

as in Definition 1.1.1. rankM) = 2 obviously implie0 ¢ 7, and by the symmetry of
covectors (F1) @ = |7 | for some integen’ > 0. The edges o6 correspond to the
cocircuits of the oriented matroid. The diamond property 0.7.13 implies that the degree of
every vertex is 2. This implies th& consists of a set of cycles, and by Proposition 1.2.4

G is connected, i.eG has the form of a cycle of lengtm2 where them’ = diam(G) =

|E’| for E’ being the ground set of any simplification.sf. By definition,|E’| equals the
number of parallel classes of non-loop elements. ]

In tope graphs of oriented matroids of rank 2 every edge class contains two edges which
are have opposite positions in the cycle.

1.3 Separability of Uncut Topes

In this section we strengthen the results of Section 1.2 and prove a new property of tope
graphs of oriented matroids which can be checked easily from the graph and which will
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be helpful later for the design of generation algorithms. Examples will show that not all
tope graphs of acycloids satisfy the stronger property, but also that it does not characterize
tope graphs of oriented matroids.

We will state our results first in terms of sign vectors and then in terms of tope graphs.
LetM = (E, ¥) be a simple oriented matroid with tope §etand define for an arbitrary
elementf € E

T~ = {ZeT|Zt=—-and+Z ¢ T},
7 = {ZeT|Zi=+and+Z ¢ T},
70 = (ZeT|+Z2e7T),

where+Z is the sign vector obtained froi by reversing the sign of elemeft We will
say that the topes iim — and7 + arenot cut by for simplyuncut The motivation for this
name comes from considering sphere arrangements and the deletionshinér If the
sphereS; is inserted in the arrangement accordingito, f, then some of the regions of
the minor remain unchanged, some an¢by S; into two new regions. The topes i~
and 7+ correspond to regions which remain uncut (either on-ther on the+ side of
St), the topes i ¥ correspond to regions obtained by a cut.

We will show that the vertices ift ~ (and, by symmetry, similarly the verticesdn™) are
connected in the sense of adjacency in tope graphs:

1.3.1 TheoremLetM = (E, ¥) be a simple oriented matroid with tope $€t Choose
an arbitrary element fe E. For any two topes XY € T~ there exists a sequence
X =20 ..,Z=Y suchthat Ze 7~ fori € {0,...,k} and|D(Z'~1, Z')| = 1 for
ie{l, ..., Kk}

Before we prove this connectedness property we give some remarks. First, we show in
Figure 1.3 an example for the analog@inecase where the connectedness in the sense

of Theorem 1.3.1 is not valid (in the example the gray regions are tihdaees not cut

by the new hyperplané, and obviouslyX andY are not connected on the side of ).

In order to see the connectedness in the sense of Theorem 1.3.1, the line arrangement has
to be embedded on the front side of a sphere with a corresponding extension to the back
side; the uncut regions then become connected through the back part of the sphere (see
also case (i) in Figure 1.6).

An immediate consequence of Theorem 1.3.1 is the separability of uncut topes (note that
because of Lemma 1.2.8 the edge class&3 afe defined bys itself, without associating
bijection£):

1.3.2 Corollary Let G be the tope graph of an oriented matroid antl € E(G) an edge
class. Denote by ¥the set of vertices incident to some edge i fhen the subgraph of
G induced by the vertices (%) \ V° has either no or exactly two connected components.

Proof There exists a simple oriented matrof such thaiG is the tope graph oM with
associating bijectioet : V(G) — 7 < {—, +}E. By the definition of edge classes there
existsf € E such thatf mapsV0 t07%=(Z ¢ T1+ZeT) fT\T7°#@then
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Figure 1.3: Example for non-connectedness in the affine case

Theorem 1.3.1implies that there are exactly two connected components in the subgraph of
G induced by the vertice¥ (G) \ V9, one corresponding t0 ~, the other corresponding
to T+, n

The result of Corollary 1.3.2 implies that if there exist uncut topes then they are separated
by the topes which are cut in-apart and at part as they belong t6 — and7 *; the only
ambiguity is the orientation of the corresponding elememthich definesE .

1.3.3 Definition (Separable Tope Graph)Let G be the tope graph of aln’-system and
Ef an edge class i6. We say thaG is separable w.r.t. £ (or, if an associating bijection
is given such thaf < E defines the edge clags’, G is separable w.r.t. ¥if the separa-
bility holds for this edge clask ': the subgraph o6 induced by the vertice¥ (G) \ V°
has either no or exactly two connected components, wii€rdenotes the set of vertices
incident to some edge iB f. We callG separabléf G is separable w.r.t. all edge classes.

We present two examples which show that not all tope graphs of acycloids are separable
(see Figure 1.4), but also that not all separable tope graphs of acycloids are tope graphs of
oriented matroids (see Figure 1.5). Both examples have a groumt=setl, 2, 3, 4, 5}.

The tope graph in Figure 1.4 is separable only w.r.t. element 1 but not separable w.r.t. 2,
3, 4, or 5, which can be seen by inspection. The acycloid in Figure 1.5 is not an oriented
matroid, but its tope graph is separable. Again, separability is not difficult to see, but the
proof that the acycloid is not an oriented matroid is not obvious. Actually the example
has been found by computer support. A formal proof can be found by use of the method
for the construction of faces from a tope set (see Section 1.5).

We give a sketch of the proof of Theorem 1.3.1. Consider two regioasdY which are

not cut by the element and are on the same side bf say the— side. There exists an
elementg € E \ f that boundsX and does not separa¥andY; if we considerg as an
infinity elementwe may callX an unbounded region. There are two cases to consider:
() Y is also an unbounded region and {¥i)is not an unbounded region. The two cases
are illustrated in Figure 1.6 showing the side of f only; note that case (i), restricted
to affine space (i.e., to the side ofg), is exactly the example of Figure 1.3. In case
(i) we consider the contraction w.rg.and use a non-trivial inductive argument to prove
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—+++-

+-——+

Figure 1.4: Acycloid whose tope graph is not separable

that X andY are connected in the sense of Theorem 1.3.1. In case (ii) we shoW that
connected in the sense of Theorem 1.3.1 to an unbounded régiahich is known to be
connected toX because of case (i). The unbounded regiois found using an oriented
matroid program (see Definition 0.8.1) which has an optimal solutioriThe solution

U defines an unbounded cone (hatched with white lines in Figure 1.6) which contains
regions that are all connected in the sense of Theorem 1.3.1.

Proof of Theorem 1.3.1 The proof is by induction on the rank oft. For some small
rankr, sayr < 2, the proof is obviously true (for the case of rank= 2 see also
Proposition 1.2.9). Conside® with rank(:M) > 3. If 7~ = @ then the claim is trivially
true, so assum&~ # ¢. Let X,Y € T—. ThenX; = Y; = — implies X # -Y,
and by the reorientation property (A1) (cf. Lemma 1.2.2) applieX tand —Y there is
ge D(X,=Y)=E\D(X,Y)suchthaty X € 7. X € 7~ impliesg # f. Obviously
Xg = Yg # 0, and without loss of generality assuig = Yy = +.

(i) If gY € 7: Consider the contraction minau /g (i.e., the contraction o/ to faces
which containg in the zero support) which is a (not necessarily simple) oriented
matroid whose rank is raii() — 1 (see Corollary 0.4.9 (ii)). Denote byl a
simplification of M /g where the parallel class containirfgis represented by .
Note thatX \ g € M/gandY \ g € M/g, and denote byX andY their images in
M, thenX,Y € T, where7 ~ is defined forM as7 ~ for .M. By induction, there
exists a sequencé = U°, ... UK = Y in 7~ such thaiDU'~1, U")| = 1 for
i €{1,...,k}. Consider e {O, ,k}: U' € 7~ implies that there exidtl' € 7
such that)} = + andgU' € whereU' is the image ob)' \ g in M furthermore
Ut = — and at most one ofU' and{fg U'isinT,ie. atleast one dd' and

gUisin 7-. We definel’ := U' if U" € 7, otherwiseU' := U € 7.
SlnceUO = X andUX =Y, it remains to show thdt)’~1 andU' are connected
within 7~ foralli € {1, ..., k} in the sense of the claim.
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Figure 1.5: Acycloid which is not an oriented matroid but whose tope graph is separable
g
— |+
X
f
— |+
Y
Case (i) Case (ii)

Figure 1.6: The two cases in the proof of Theorem 1.3.1

Considen € {1, e K}. By Proposition 1.2.4, there e_xist two seq_uentiéfsl =
VO ...,ve = UlandgU't = WO, ... Wi = gU! with ID(VI~L V]| =
ID(W!I=L, Wl =1forallj € {1,...,d}, whered = |[DU'~1, U")|. If at least

one of the two sequences foe {1, ..., k} lies entirely in7 —, the claim follows by
combining all these sequencesiiim. Assume that for somiee {1, ..., k} neither
of the two sequences is entirely in—, i.e., there exiss, t € {0, ..., d} such that

V' :=+VS e 7 andW := +W!' € 7. Covector elimination (F3) applied 1/,
W', andg implies that there exist& € # such thatZq = 0 andZe = (V' o W')e
fore g D(V',W), i.e.,Ze = V{ = W/ fore ¢ D(V', W), especiallyZ; = +.
Note thatD := D(U'~%, U') is a parallel class oM /g, s0Zp = 0, Zp = U5%, or
Zp = U}, and withD(V/, W) € D U {g} it follows thatZ o U'~1 = U1 e T
orZoU' =+U' e 7, a contradiction.
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(i) If gY & T: We show thaty is connected withirf™~ in the sense of the claim
to someY’ € 7~ for which4Y’ € 7; then the claim follows from (i). Without
loss of generality assumé = + for alle € E \ {f} (reorientation does not af-
fect connectedness withini—). Consider the oriented matroid program, g, f),
see Definition 0.8.1. Sinc¥ is feasible for(.M, g, f), and since no unbounded
augmenting directiorz e ¥ exists (otherwiseZ oY = +Y e 7, a contra-
diction), Theorem 0.8.4 implies that there exists an optimal solutios ¥ for
(M, g, f); note thatU \ f > 0,Ug = +, andU¢ < O (sinceUs = + implies

UoY =Y € T). SetV := -UoY e 7. By Proposition 1.2.4, there ex-
ists a sequenc¥ = WO, ..., W9 = V e 7 such that D(W 1, W)| = 1 for

i e {1,...,d}, whered = [D(Y, V)|. SinceYy = + andVyg = —Ug = —, there
existsk € {1, ...,d} such that\Né = +fori <k andwg = —. SetY’ := Wk,
theng Y’ = WK € 7, and it remains to show th&¥' € 7~ fori e {1,...,k — 1}.
AssumeWw! g 7~ forsomei € {1,...,k — 1}, i.e., there exist¥V' € T such that

W'\ f =W\ f andW;} = +. Apply covector elimination (F3) t&/’, —U, andg:
There exist&Z’ € £ such thathq =0andZ; = (W o —-U)cforeg D(W', —U),
especiallyZ; = +, and, for alle # f with Ue = 0, Ve = Ye = +, so alsoW; = +
andZ, =W, = +, i.e.,Z’ is an augmenting direction fd#, in contradiction to the
optimality of U. [ |

1.4 Orientation Reconstruction

We discuss now how one can find from a tope graph the underlying acycloid up to iso-
morphism. The results of Section 1.2 lead to an algorithtiy @ OIDORIENTATIONRE-
CONSTRUCTION(see Pseudo-Code 1.1) which efficiently reconstructs the sign vectors of
an acycloid from a tope graph (almost the same algorithm is also given in [CF93] in the
proof of Theorem 4.1).

1.4.1 Proposition ([CF93]) The algorithm AcCYCLOIDORIENTATIONRECONSTRUG

TION constructs an acycloid™ = {£(v) | v € V(G)} C {—, +}F such that G is the
tope graph of7” with associating bijectiont in time O(n - |V(G)| - |[E(G)|), where
n = diam(G) = |E|. 7 is unique up to labeling and orientation of the elements in E.

For an oriented matroid, the complexity oEACLOIDORIENTATIONRECONSTRUCTION
isO(n- fq- fg_1),asfqg = |V(G)|and fg_1 = |E(G)|.

Proof of Proposition 1.4.1 Considerx € V(G) and its antipod&, which is determined
by dg(v,v) = diam(G) =: n (see Corollary 1.2.5). By Proposition 1.2X4,andX
correspond to negative sign vectors in the acycloid, $8y) = X = (+...+) and

LX) = =X = (—...—) for X € {—,+}F with E = {1,...,n} (we are free to
label the elements arbitrarily, also to choose some initial orientatiorXjorLet x =
X%, x1, ..., x" = X be a shortest path connectirgandX. Because of Proposition 1.2.4,

ID(L(x®), L(X))| = efor e € E, and as we still are free to permuiearbitrarily, we
can setL(x®)f = + if f > eandL(x®)f = — otherwise. By this all.t(x®) are
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Input: A graphG which is tope graph of some acycloid.
Output: For everyv e V(G) a sign vector£L(v) € {—,+}F, where
E={1,...,n}withn=diamG).

begin ACYCLOIDORIENTATIONRECONSTRUCTIONG);
choose any € V(G) and determin& € V (G);

choose any shortest path= X0 xt . ... x"=Xx connectingk andx;
for everye e {1, ..., n} and everyw € V(G) do
if dg(v, X¢ 1) < dg (v, x®) then
L(W)e =+
else
L(V)e = —
endif
endfor;

return L(v) forallv
end ACYCLOIDORIENTATIONRECONSTRUCTION

Pseudo-Code 1.1: Algorithm@yCcLOIDORIENTATIONRECONSTRUCTION

defined, and we will see that this determines also all remaidiqg for v € V(G).
Letv € V(G). Then for a correct associating bijectigh v € C(x®~1, x®) if and only if
L(v)e = L(X*1)e = + (see Lemma 1.2.8). For the complexity note that the computation
of distances or shortest paths between given vertices costs not moi@ tHa()|). m=

It was first proved by Bjrner, Edelman, and Ziegler [BEZ90] that the tope graph deter-
mines an oriented matroid up to isomorphism. This results now follows from the recon-
struction algorithm:

1.4.2 Corollary The tope graph of an acycloid determines the acycloid up to isomor-
phism. As simple oriented matroids are acycloids, the same result is true for tope graphs
of oriented matroids.

1.4.3 Corollary The big face lattice of an oriented matroil determines its isomor-
phism clas3C(M).

Proof Note that the tope graph oft is determined by the big face lattice. ]

1.4.4 Corollary (Oriented Matroids of Rank 2) Let M = (E, #) be an oriented ma-
troid of rank 2, and let hbe the number of parallel classes #i/E°, where E is

the set of loops of«. ThenM is isomorphic to(E’, £') with E' = {1,...,n’} and

F'={0}U D' UT’, where the set of cocircuit®’ contains the2n’ sign vectors Xand

— X', where X = signi — j) fori, j e {1,...,n'}, and the set of topes’ contains
the 2n’ sign vectors Y and —Y', where ¥ = —ifi < jand Y] = + otherwise for
i,jef{l...,n}.
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Proof By Proposition 1.2.9 is the tope graghof (E, #) a cycle of length &, and so
is also the tope graph afE, #’). Hence, by Corollary 1.4.2E, ¥) and (E, ¥') are
isomorphic. It is not difficult to see thaE’, ') is an oriented matroid. An illustration is
found in Figure 1.2. [ |

1.5 Face Reconstruction from Topes

This section first contains some of the results on the number of faces from Section 2 of
Fukuda, Saito, Tamura [FST91], with some minor extensions. We will use the notion of
faces in place of covectors as we consider their mutual facial relation and their position
w.r.t. the face lattice of the oriented matroid. Furthermore, we show an algorithm from
[FST91] which constructs the set of all oriented matroid fagesom the set of tope§”

in time O(n3 fdz), wheren is the cardinality of the ground s&tand fy = |7°|. Remember

that for a given oriented matroidE, ) andi € {—1, ..., d}, # denotes set of faces of
dimension in & (which we calli-faces) andf; = | |.

The main result used in the following is

1.5.1 Theorem ([FST91])Let M be an oriented matroid of dimension:e dim(M).
Then f < (%) fa foralli € {0, ..., d}.

Proof See Theorem 1.1in [FST91]. [ |

1.5.2 Corollary ([FST91]) For any oriented matroid of dimension d holdspf< fg.

Finally we need a lower bound on the number of topes in an oriented matroid:

1.5.3 Lemma For any oriented matroid« of dimension d holdgd+1 < fy.

The above lower bound is better than the one given in [FST91], whi(ﬁb is fq for any
i €{0,...,d}.

Proof of Lemma 1.5.3 Let M = (E, ¥) be an oriented matroid of dimensidni.e., of
rankr = d + 1. Ifr = Othen 2*+1 = 1 = f4; assume for the following > 1. Let

B be a basis ok, so|B| = r. As B is an independent set, it does not contain loops.
Consider the deletion mina#(’ := M \ (E \ B), an oriented matroid with ground set
B. By Corollary 0.4.6 (i), rankM’) = ranky(B) = r. If X is a cocircuit inM" then
rank,.(X) = 1 (see Corollary 0.7.11), and by definition rg_nkxo) =r — 1, but then
IX%| = r — 1. As for every elemerg € E which is not a loop there exists a cocircuit
X such thake € X (cf. Lemma 0.6.2), the set of cocircuits #t’ is the set of the 2sign
vectorsX € {—, +, 0}B such that X°| = r — 1. Let7’ denote the tope set of’, then
Corollary 0.6.4 implies thaf’ = {—, +}B. It is obvious that for everZ’ € 7' there
existsZ € 7 such thatz’ = Zg, thereford 7’| = 2" = 29+1 < |7| = fq. n

1.5.4 Corollary ([FST91]) For any oriented matroidi holds|#| < |7|?, whereT is
the set of topes o#t(.
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Proof Setd := dim(M) and apply Theorem 1.5.1 and Lemma 1.5.3 (note that by defini-
tion T # 0):

d d
d
[Fl=1+) fi<l+) (i)fd =1+ 207 < 2T < T
i=0 i=0 -

1.5.5 Lemma Let (E, ) be an oriented matroid and X ¥ . Then the parallel classes
of #/X%and F (X) := {Z € ¥ | Z = X} are the same.

Proof # /X% is a set of covectors whose set of tope&ieX). |

The key lemma is the following characterizations of lower faces, which is also used in
[FST91]. We add a proof which is basically a consequence of Lemma 0.7.6.

1.5.6 LemmaLet (E, ) be an oriented matroid of dimension:e dim(.M). For any
i €{0,...,d—1}, Z € % if and only if there exist XY € %1 such that X=Y and
D := D(X,Y)isaparallelclass ofF (X) :={Z € ¥ | Z = X}and Z\ D = X\ D and
Zp =0.

Proof Let (E, ¥) be an oriented matroid, := dim(-M), andi € {0, ...,d — 1}. Let for
XeFbeFX):={ZeF|Z=X}

Assume that there exist,Y € F 1 suchthatX = Y andD := D(X,Y) # @ is a
parallel class ofF (X). Apply conformal elimination toX, Y, andD: There existe € D
andZ € ¥ suchthaZe = 0,Zp < Xp,andZ\D = (XoY)\D = X\ D. ThenZ < X
and0 = Zp sinceD is a parallel class of / X° (because of Lemma 1.5.%, ¢ #/X°,
and Lemma 0.7.5). AD = Z°\ X° Lemma 0.7.6 implieZ € % .

LetZ € . Asi < dthere existX € ;1 such thatz < X. SetY := Z o (—X), then
X =YandY € F.1,and forD := D(X,Y) follows Z\ D = X\ D andZp = 0. By
Lemma 0.7.6D is a parallel class aof / X°, hence by Lemma 1.5.5 also a parallel class
of ¥ (X). [ ]

The above lemma immediately leads to an algorith@mwWERFACES (see Pseudo-
Code 1.2) which returns for everye {0,...,d — 1} and inputw := ¥;,1 the set of
lower faces¥;. This algorithm is the key subroutine for the face enumeration algorithm
FACEENUMERATION (see Pseudo-Code 1.3) which returns for input= %y the list
(F_1, ..., Fq) ordered by dimension. Our presentation follows essentially [FST91], with
one difference which makes the complexity analysis easier. we change théoirmop

of the algorithm such that evedy € W; and every parallel clas® of W; is considered,
where in the original algorithm pairs, Y € ‘W; are considered which are then tested for
D (X, Y) being a parallel class d#;. The computation of parallel classes of a set of sign
vectors of same support is easy when omitting loops and reorienting suchtthat +)

is one of the sign vectors being considered.

1.5.7 Theorem ([FST91])Let (E, ) be an oriented matroid with tope sgt. The al-
gorithm FACEENUMERATION started with inputWg := 7 returns(¥_1, ..., #q), i.e.,

the algorithm enumerates all faces #1 ordered by dimension. There exist implementa-
tions such that the algorithm has a complexity (measured by the number of elementary
operations) of at most > fdz), where n is the cardinality of the ground set E.
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Input: A set of sign vectorsy C {—, +, 0}E.
Output: A set of sign vectorsV’ C {—, +, 0}E.

begin LOWERFACES(W);
partition W into classesW; of sign vectors having the same support;
W = ;
for every'w;j do
compute the collection of parallel classesf;
for everyX e 'W; and every parallel cladd of ‘W; do
if Xp # 0andg X € W;j then
W :=WU{Z|Z\D=X\DandZp =0}
endif
endfor
endfor;
return ‘W’
end LOWERFACES.

Pseudo-Code 1.2: AlgorithmdwERFACES

Input: A set of sign vector§¥p C {—, +, O}F.
Output: An ordered listW_j, ..., Wo) of sets of sign vector®; C {—, +, 0}F

for somej.

begin FACEENUMERATION(Wp);
i :=0;
while W_; # {0} andW_; # ¥ do
W_i_1 := LOWERFACES(W_;);
i=i+1
endwhile;
return (W_, ..., Wo)
end FACEENUMERATION.

Pseudo-Code 1.3: AlgorithmAEEENUMERATION
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Proof We do not give a detailed analysis (for this see [FST91]). The algoritiomv-L
ERFACES has a complexity of at mod(n® f; 1) to enumerateF; from %1 if the sign
vectors are sorted appropriately. This leads to an overall complexitysfoe ENUMER-

ATION of O(n®|#|) which is at mos{n3 fdz) because of Corollary 1.5.4 (note that if the
algorithm is extended such that it stops with failure message if the number of sign vectors
collected exceedsﬁd2 then the polynomial complexity is also valid for inpiit which is

not the tope set of an oriented matroid). ]

1.6 Construction of Covectors and Topes from Cocircuits

In the previous section we have described a polynomial algorithm for the construction
of covectors (and hence also cocircuits) from topes. In this section we discuss how to
construct sets of covectots or topesy from a given set of cocircuit® in polyno-

mial time, measured in input and output [&| and |7 | are usually not polynomial in

|D|. By this we use an extended notion of polynomiality which has been introduced by
Fukuda [Fuk96, Fuk00a, Fuk01]. Our construction methods of this section complete the
presentation in [FST91] where such algorithms have not been presented but have been
implicitly assumed to exist. We suppose that such algorithms may have been developed
by the authors of [FST91] without stating it.

We present two algorithms,d&VECTORFROMCOCIRCUITS (see Pseudo-Code 1.4) and
ToPEFROMCOCIRCUITS (see Pseudo-Code 1.5) which are similar, both are based on
the fact that every covector has a representation by conformal decompositon (see Propo-
sition 0.6.3). We use in the algorithms the data structureatdnced binary treegalso
calledAVL-treegAVL62, Knu73]) which allow to store data such that the operations of
insertion, finding, and deletion all cost a number of operations which is logarithmic in the
number of entries currently stored in the tree.

1.6.1 Proposition The algorithmCovECTORFROMCOCIRCUITS constructs the set of
covectors¥ from the set of cocircuit® in time O(n? fo|  |), where § = |D| and n is
the cardinality of the ground set E of the oriented matroid.

Proof The correctness of algorithmad¥eECTORFROMCOCIRCUITS is quite obvious.
Note that all covectors are added to the $géw exactly once. The compexity analysis
uses the trivial fact thgt¥'| < 3", so log; |#| < n. Thewhile-loop is executed for every
Y in & once, where every execution costs at m0sh? fo) as we use a balanced binary
tree (i.e., the find and insert operations are @th log | |), soO(n?)). This leads to an
overall complexity ofO(n? fo| ). n

For the algorithm ®PEFFROMCoOCIRCUITSWe modify COVECTORFROMCOCIRCUITS
such that only topes are returned. This is easy skee ¥ is a tope if and only ifX° is
the set of loops (see Lemma 0.7.2).

1.6.2 Proposition The algorithmToPEFROMCOCIRCUITS constructs the set of topes
7 from the set of cocircuit® in time O(n?fof2), where § = |D|, fy = |7, and
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Input: The ground se€ and the setdD < {—, +, 0}F of cocircuits of some
oriented matroid.

Output: The set¥ C {—, +, 0}E of covectors of the oriented matroid defined
by D.

begin COVECTORFROMCOCIRCUITYE, D);
F :={0}; (¥ is a balanced binary tree)
Fnew := {0};
while ?hew?é ¢ do
take anyY from Fnewand remove it fronFnew;
for all X € O do

Z:=XoY,;
if Z ¢ ¥ theninsertZ in £ and addZ to Fnewendif
endfor
endwhile;
return &

end COVECTORFROMCOCIRCUITS

Pseudo-Code 1.4: Algorithm@&ECTORFROMCOCIRCUITS

n is the cardinality of the ground set E of the oriented matroid. Because 6f ffy
(Corollary 1.5.2) the complexity is not higher thant3 fd?’).

Proof The proof is similar to the one concerning algorithroMECTORFROMCOCIR-
culTs. The complexity is agai®(n? fo| # |), which is because of Corollary 1.5.4 at most
O(n?fof2). n

1.7 Algorithmic Characterization of Tope Sets

We consider in this section the characterization problem of tope sets and tope graphs of
oriented matroids. We present polynomial algorithms which solve these characterization
problems.

1.7.1 Proposition ([FST91]) There exists an algorithm which decides whether a given
set7 C {—, +, O}F is the set of topes of an oriented matroid or not. The complexity is
bounded by @3 {2 +n?f3), where n=|E| and § = |T|.

Proof Consider a sef” C {—, +, 0}F of sign vectors. Seh := |E|. With the face
enumeration algorithmA€EENUMERATION from Section 1.5 we can construct in time
o(nd fdz) alist(w_j, ..., Wp) such thatw_j_, is the set of cocircuits corresponding to

T if T is the set of topes of an oriented matroid (cf. Theorem 1.5.7). If the algorithm
exceeds the limit off  sign vectors thef™ is not the tope set of an oriented matroid: the
algorithms stops and reports this. S@t:= W_j 1, if |[D] > fgq then we stopT is not
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Input: The ground se€ and the setd < {—, +, 0}F of cocircuits of some
oriented matroid.
Output: The seti” C {—, +, 0}E of topes of the oriented matroid defined By

begin TOPEFROMCOCIRCUITYE, D);
if & = @ then return {0} = {0}F

else
F :={0}; (¥ is a balanced binary tree)
Frew := {0};
T =10
E0:= N X%

XedD
while ?’new# ¢ do

take anyY from Fnewand remove it fronFnew;
for all X € O do
Z:=XoY,;
if Z¢ ¥ then
insertZ in ;
if Z0 = E%thenaddZ to 7 elseaddZ to Fnew endif
endif
endfor
endwhile;
return 5
endif
end TOPEFFROMCOCIRCUITS

Pseudo-Code 1.5: AlgorithmdPEFROMCOCIRCUITS

tope set of an oriented matroid, see Corollary 1.5.2). Otherwise teg fine cocircuit
axioms in timeO(n?|D ), which is at mosO(n? f3). If the cocircuit axioms are valid
for D, it remains to test whethér is the tope set generated frafh under composition,
which can be done in tim®(n? fd3) using the algorithm ®PEFFROMCOCIRCUITS (See
Pseudo-Code 1.5 and Proposition 1.6.2). [ |

By combination of the result from Proposition 1.7.1 and the algorithm for the orientation
reconstruction from Section 1.4, there exists a polynomial algorithm which characterizes
tope graphs of oriented matroids. In practice, before this polynomial algorithm is used,
the known properties of tope graphs (especially also the new separability property of
Corollary 1.3.2) are checked, which reduces the amount of computation considerably.

1.7.2 Corollary ([FST91]) Tope graphs of oriented matroids can be characterized in
polynomial time: there exists an algorithm which decides for any (connected) graph G in
time bounded by @32 + n?f3) whether G is the tope graph of an oriented matroid or
not, where here = diam(G) and {j = |V (G)]|.
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Proof Consider a grapfs, setn := diam(G) and fy := |V (G)| (if G is not connected it

is not the tope graph of an oriented matroid). Using algorithtty @LOIDORIENTATION-
RECONSTRUCTION(see Pseudo-Code 1.1) a §ebf sign vectors can be constructed in
time of at mostO(n - |V (G)|3) such that7 is a set of topes if5 is the tope graph of
an oriented matroid (cf. Proposition 1.4.1 and note {f&iG)| < |V (G)|%; if Acy-
CLOIDORIENTATIONRECONSTRUCTION fails, e.g., if no antipodal vertex is founé

was not tope graph of an oriented matroid). By Proposition 177.dan be tested in time
O(n*f2+n2f3) for being a set of topes of an oriented matroid, and finally it is obviously
possible without increase of the order of complexity to test wheBher the tope graph

of 7. [ ]
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Chapter 2

Cocircuits and Cocircuit Graphs

2.1 Introduction and Problem Statements

We discuss in this chapter reconstruction and characterization problems concerning the
cocircuit graph of an oriented matroid. The starting point of our work has been an article
of Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO00] which we obtained as a preprint
in 1998, and our goal was to extend their work, mainly by adding algorithmic solutions
with complexity analyses to their results. We describe our results in this chapter (see also
[BFFO1)).

In this section we introduce basic definitions such as cocircuit graphs and graph labels and
formulate the problems considered in this chapter. We relate our work to the mentioned
work of [CFGdOO0O0] and other related work.

We have introduced graphs in Section 1.1 as pa@irs- (V(G), E(G)) of a vertex set

V(G) and an edge s (G), where every edge is represented as an unordered pair of
vertices. Again, where appropriate we will identify any two graphs that are isomorphic.
The cocircuit graph of an oriented matrodd = (E, D) is the 1-skeleton oft(, which

is a graph because of the diamond property of oriented matroids (Theorem 0.7.13): For
every covectoiX € F with ranky (X) = 2, there exist exactly two cocircuits, W € D
suchthaD <V < Xand0 < W < X. V andW correspond to verticas w € V(G) and

X =V o W to the edgdv, w} € E(G). The number of vertices @& equals the number

of cocircuits of M, and the number of edges &f equals the number of 1-dimensional
faces ofM: |V (G)| = |D| = foand|E(G)| = f1. More formally, we define:

2.1.1 Definition (Cocircuit Graph) Let M = (E, ) be an oriented matroid and the
set of cocircuits ofM. Thecocircuit graph ofM is a graphs with fo = |D| vertices such
that there exists a bijectiat : V(G) — D for which {v, w} is an edge IrE(G) if and
onlyif, for V := £L(v) andW := L(w), VoW = WoV (or, equivalentlyD (V, W) = ¢)
andV andW are the only cocircuits conforming o W. We will call a grapha cocircuit
graphif it is the cocircuit graph of some oriented matroid.
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We will call a bijection£ : V(G) — D like in Definition 2.1.1 arassociating bijection

Considering a finite pseudosphere arrangeest {S: | e € E} in the Euclidean space

RI+1 as introduced in Section 0.1 and the corresponding oriented maittdide cocircuit

graph ofM is the 1-skeleton of the cell comple on S¥ induced byS$. An illustration

of an oriented matroid by a pseudosphere arrangement and the corresponding cocircuit
graph is shown in Figure 2.1.

Figure 2.1: Pseudosphere arrangement and cocircuit graph

Compared to the set of covectdFs the cocircuit graph is a compact and simple structure
(e.g., the numbeffy of cocircuits is not larger than the numbgrof faces of any other

fixed dimension > 0, see Theorem 1.5.1). Itis a natural to ask, to what extend an ori-
ented matroid is determined by its cocircuit graph, e.g., whether the cocircuit graph of an
oriented matroidM determines the isomorphism class(#) of M, i.e., (equivalently,

see Corollary 1.4.3) the face lattice #f. The general answer to the latter question is
negative as Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO0O0] presented two non-
isomorphic oriented matroids of rank 4 which have isomorphic cocircuit graphs; for rank
at most 3 they gave an affirmative answer. However, the question remained open for co-
circuit graphs of uniform oriented matroids (which we will simply aatiform cocircuit
graphg, and positive answers are possible when some information about the oriented ma-
troid is added to the cocircuit graph, as we discuss in the following using the notion of
labels.

A label of a graph ({or, short,a graph labe) is a mapL defined on the vertex s&t(G),
and we callL (v) the label ofv € V(G) (and, shorta vertex labéel. We will consider the
following three types of labels of cocircuit graphs:

2.1.2 Definition (OM-Label) For a graphG and an oriented matroid( we call a label
L of G the OM-label (oriented matroid label) of G w.ti( if G is the cocircuit graph of
M and every vertex is labeled by the cocircuit associatedutowe call a labell of a
graphG an OM-label of Gif £ is the OM-label oiG w.r.t. some oriented matroid.
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Obviously is an oriented matroid explicitly given by its OM-labeled cocircuit graph. If
we omit orientations, we obtain a labeling by the underlying matroid:

2.1.3 Definition (M-Label) For an OM-labelf of a graphG we call a labelL of G the
M-label (matroid label) of G induced by if every vertexv is labeled by the zero support
£L(v)% we call a labelL of a graphG an M-label of Gif L is the M-label ofG induced
by some OM-label 0.

The labels of two vertices given by an M-label are the same if and only if they correspond
to negative cocircuits; we call such vertiGagipodesor an antipodal pair and define:

2.1.4 Definition (AP-Label) For an M-labelL of a graphG we call a labelA of G the

AP-label (antipode label) of G induced byilevery vertexv is mapped to thantipode

A(v) = v of v which is the unique vertex € V(G) \ {v} such thatL(v) = L(v); for a

graphG we call a label ofG an AP-label of Gf it is the AP-label ofG induced by some
M-label of G.

We will consider the following reconstruction problems:

OM-Labeling Problem: Given a cocircuit graph G with M-label L,
find an OM-label£ of G such that L is the M-label of G induced iy

M-Labeling Problem: Given a cocircuit graph G with AP-label A,
find an M-label L of G such that A is the AP-label of G induced by L.

AP-Labeling Problem: Given a cocircuit graph G (without label),
find an AP-label of G.

We survey in the following the known results concerning these labeling problems, includ-
ing the results presented in this chapter; see also Figure 2.2 for a corresponding illustration
(an arc marked b¥ indicates that the reconstruction is not possible in general, as the ex-
ample in [CFGdOO00] shows).

T

G+ OM-label = G+ M-label = G+AP-label = G

up to reorient. up toisomorph.  up to AutG)
- 7

~ 7

~ 7
for uniformoriented matroids

Figure 2.2: Diagram of reconstruction problems and results

The OM-labeling problerhas always a solution which is unique up to reorientation, which
was proved in [CFGdOO00]. We will give a slightly simpler proof in Section 2.2 and
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present a simple algorithm for the construction of the OM-label with a running time of
O((fo + f1)n), wheren = |E| is the cardinality of the ground set. For our complexity
analyses we assume that every elementary operation (such as an addition or comparison
of single elements) can be computed in constant time.

The M-labeling problenthas in general no solution which is unique up to isomorphism,
as can be seen from the mentioned example in [CFGdOO00]. However, if the rank of the
oriented matroid is at most 3 or if the oriented matroid is uniform, the M-label is deter-
mined (up to isomorphism) by the AP-labeled cocircuit graph, which was also proved in
[CFGdOO00]. We discuss the uniform case in Section 2.3 and present an algorithm which
solves the problem i®©(fop - f1) elementary steps; similar to the proofs in [CFGdOO00],
we consider in the construction the so-caltadine cyclesof the cocircuit graph and a
distance notion defined on the coline cycles.

The AP-labeling problerwill turn out to be the most difficult of all three problems. We
show in Section 2.4 that in the uniform case AP-labels can be reconstructed in polynomial
time from the given graph up to graph automorphisms. This implies that the isomorphism
class of a uniform oriented matroit is determined by its cocircuit graph. It is still open
whether there is a unique AP-label, and also the non-uniform case remains open (except
for rank at most 3, which was also discussed in [CFGdOO00]).

Strongly related to the reconstruction problems is the question whether and how cocircuit
graphs (with or without labels) can be characterized:

Characterization Problem: Decide whether a given graph (without or with label) is a
cocircuit graph.

We discuss in Section 2.5 how the correctness of the input of our algorithms can be
checked in polynomial time. This solves the characterization problem for cocircuit graphs
of uniform oriented matroids and for M-labeled cocircuit graphs algorithmically (i.e., we
do not give a direct graph theoretical characterization). When(snk= 3, the cocircuit
graphG of M is planar and has a unique dual, which is the tope graph ¢€f. Chap-

ter 1); the polynomial characterization of tope graphs for (k= 3 [FH93] leads to a
polynomial characterization for rank 3 cocircuit graphs.

2.2 Orientation Reconstruction from Matroid Label

We consider the OM-labeling problem for a given M-labeled cocircuit g@pif some
oriented matroidM. Remark that for oriented matroids of rank O or 1 the problem is
trivial (cf. Lemma 0.7.14): In rank O there is no cocircuit at all, and the cocircuit graph is
the empty graph; in rank 1 there are exactly two cocircdiend—Z, the cocircuit graph
consists of two points and no edge. Let us assume in the following thatyénk 2.
Then the ground seE of M is determined by the given M-labé&l as the union of all
vertex labeld. (v).
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Before we start with the general case, we consider the case of rank 2 which can be char-
acterized easily (see also Figure 2.3):

2.2.1 Lemma A graph G is the M-labeled cocircuit graph of an oriented matroid of rank
2 if and only if

e G is acycle of even length and

e two distinct vertices, w € V(G) have the same vertex label if and only idndw
have maximal distance in G and

¢ the intersection of any two different vertex labels is always the same (namely the set
of loops).

Proof It is not difficult to see that compared to tope graphs the roles of cocircuits and
edges interchange, i.e., the vertices in a rank 2 tope graph become the edges in the corre-
sponding cocircuit graph and vice versa. As rank 2 tope graphs are cycles of even length,
S0 are cocircuit graphs of rank 2 oriented matroids. The characterization of oriented ma-
troids of rank 2 in Corollary 1.4.4 implies the remaining claims. [ |

Figure 2.3: Cocircuit graph of an oriented matroid of rank 2

Let G be the cocircuit graph of an oriented matroid, with associating bijectiorC :
V(G) - D. As explained above, an ed@e w} € E(G) corresponds to a 1-facé of

M which is determined by = £(v) o £L(w). The zero support a 1-face is called coline.
For example, the coline which correspondsgiow} is Z° = £(v)° N L£(w)°.

2.2.2 Definition (Coline of an Edge)Let G be a cocircuit graph of an oriented matroid
of rank at least 2 wittM-label L. For an edgégv, w} € E(G) we callU := L(v) N L(w)
the coline offv, w} and say thatv, w} corresponds to U

2.2.3 Lemma Let G be the M-labeled cocircuit graph of an oriented matroid of rank at
least 2. The edges in G which correspond to the same coline form a cycle in G.
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Proof Let M be an oriented matroid of rank at least2the cocircuit graph ofi(, andL

the M-label ofG w.r.t. M. Consider any colin® and the contraction mine#(/U to that
coline, which is an oriented matroid of rank 2 (cf. Corollary 0.4.6 (ii)). It is not difficult to
see that the subgraph @ induced by the verticeswith U C L (v) is the cocircuit graph

of M/U (i.e., a cycle of even length, see Lemma 2.2.1) and the edges of this induced
subgraph are the edges@whose coline idJ. [ |

2.2.4 Definition (Coline Cycle) Let G be theM-labeled cocircuit graph of an oriented
matroid of rank at least 2, and let be a coline. The cycle(U) formed by the edges
corresponding to coling is calledthe coline cycle of U

Compared to the work of [CFGdOO00] we present a slightly simplified proof for the claim
that the reorientation class Q) is determined byG andL, and the proof is directly
used for a simple polynomial algorithm OMBELFROMML ABEL that solves the OM-
labeling problem. The key argument is given by the following proposition:

2.2.5 Proposition Let £ be an OM-label of G and L the M-label of G induced gy
and for any non-loop & E let G(e) be the subgraph of G induced by the verticesith
e ¢ L(v). Then there are exactly two connected componentsef, @nd any two vertices
v andw belong to the same connected component if and oatyife = L(w)e # 0.

A proof of Proposition 2.2.5 was given in [CFGdOO00], in the proof of Theorem 2.3. Our
proof is based on the same ideas. The following property of hyperplanes in a matroid (see
Section 0.3) is needed:

2.2.6 Lemma Let(E, 4A) be a matroid of rank > 2 with groung set E and set of fIa'Es
and set# of hyperplanes. For any two different hyperplanesHHe #¢ such that HY H
is not a coline and any € E \ (H U H) there exists a hyperplane’H # such that

(i) e¢ H,
(i) H N H'isacoline, and
(i) HNH S H NH.

Proof LetU be a coline such thad N H S UG H, and letU be the intersection of all
hyperplanes containing and somef H \U If Ug U, thenU is a hyperplane and
every hyperplane containing and somef H\Uis equal taJ, by thisU c U = H
andU C H n H, a contradiction. We concludg = U, and sinces ¢ U there exists a
hyperplaneH’ containingd and somef € H\U such thae ¢ H’. The claim follows for
H’, observing thaf € H'\ H (remarkf ¢ U D HNH,sof ¢ HyandHNH' =U.m

Proof of Proposition 2.2.5 Let v andw be vertices inG(e). If L(v)e = —L(w)e, then
the definition of a cocircuit graph implies that on any path@rfrom v to w there is
a vertexu with £(u)e = 0, i.e.,v andw are not connected iG(e). Let us assume
L(v)e = L(w)e # 0. The claim follows when we show thatand w are connected
in G(e). If L(v) = L(w) then by cocircuit axiom (C2) = w, otherwise we apply
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(possibly repeatedly) Lemma 2.2.6: There exists a finite sequence of hyperplanes:
Ho, H1, ..., Hk := L(w) such thae ¢ H; for alli € {0, ...k} andU; := Hi_1 N H; isa
coline for alli € {1, ...k}. By cocircuit axiom (C2), there exists for evarg {0, ..., k}

a unique vertex; such thatL (vj) = H; and£L(vj)e = L(v)e. We show that for all
i €{1,...,k}the verticesj_1 andv; are connected i (e): Bothv;_; andv; are on the
coline cyclec(U;) of Ui in G, and sinceL(vi_1)e = £L(vj)e there is a (unique) path on
c(Uj) fromvj_1 to v in G(e). [ ]

The property of an M-labeled cocircuit graghwhich is stated in Proposition 2.2.5 leads
directly to a simple algorithm which solves the OM-labeling problem for rank at least
2. For every elemene € E determine the two connected components of the subgraph
G(e) of G induced by the vertices with e ¢ L(v), and assign a sign to all vertices

in one component, a sign to the vertices in the other component, 0 to the remaining
vertices. A more formal description of this algorithm OM&ELFROMML ABEL is given

by Pseudo-Code 2.1.

Input: A cocircuit graphG with M-label L.
Output: An OM-label £ of G such thatL is the M-label ofG induced by.L.

begin OMLABELFROMML ABEL(G,L);
E:= U L(;
veV(G)
forall e E do
G(e) := the subgraph o6 induced by{v € V(G) |e & L(v)};
if G(e) is emptythen
forall v € V(G) do L(v)e := 0 endfor
else
let w be any vertex irG(e);
forall v e V(G) do

0 ifeelL(v),
L()e:=1 + ifegL(v)andvisconnectedta in G(e),
— otherwise
endfor
endif
endfor;
return £

end OMLABELFROMML ABEL.

Pseudo-Code 2.1: Algorithm ONMABELFROMML ABEL

2.2.7 Theorem Given as input a cocircuit graph G with M-label L, then the algorithm
OMLABELFROMML ABEL terminates with correct output after at most(@p + f1)n)
elementary arithmetic operations, wherg £ |V(G)|, f1 = |[E(G)|, n = |E|. The
orientation is unique up to reorientation.
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Proof The correctness of the algorithm OMBELFROMML ABEL and the uniqueness
of the OM-label up to reorientation follow from Proposition 2.2.5. For the complexity
observe that for every of theelements irkE the induced subgrap&(e) and its connected
components can be computedxt fo + f1) (e.g., by a breadth-first-search technique).

2.2.8 Corollary ([CFGdOO0Q]) The reorientation class of an oriented matroid is deter-
mined by its M-labeled cocircuit graph.

2.3 Reconstruction of Uniform Matroid Labels from An-
tipodes

We discuss in this section the M-labeling problem where the given ggaptthe cocircuit
graph of some uniform oriented matroid and where an AP-l&bafl G is given. Without
loss of generality our concern we will be to find an M-label®fvhich is induced by a
uniform oriented matroid. Note that for oriented matroids of rank O or 1 the M-labeling
problem is trivial, and we can assume for the following that a4k > 2. We present

a polynomial algorithm MIaBELFROMAPLABEL which computes an M-labdl of G
such thatA is the AP-label of5 induced byL. By this we extend the result of [CFGdOOQ00]
which states that such an M-label is unique up to isomorphism on the ground set, which is
the union of the vertex labels. Note that for the algorithm ABELFROMAPLABEL no
information like M, E, or rank M) is given; we will only useG, the given AP-labeling

A : v —~ v, and the information tha# is uniform. This uniformity implies many
structural properties:

2.3.1LemmalLet M = (E,¥) be a uniform oriented matroid with n= |E| and
r .= rank(.M) > 2. Then:

(i) Every subset of - 1 elements is a hyperplane, and every subset-efxelements
is a coline.

(i) All coline cycles have length- (n —r + 2).

(i) The coline cycles of any two different colines &hd U, have a common vertex if
and only if{lU; \ Uz| = 1.

Proof The claims follow quite directly from the uniformity of(. Observe that a vertex
v is on the cycle of a colin® if and only if the hyperplane associatedudas the form
U U {e} for somee € E \ U. [ ]

2.3.2 Definition (Distance of Coline Cycles) et M = (E, ¥) be a uniform oriented
matroid,G its cocircuit graph with OM-label, L the M-label ofG induced by.L, and

vo € V(G) an arbitrary vertex. For a coling € E we call|U \ L(vo)| the distance of U
to vg and alsahe distance of the coline cycle of U .

The distance of a coline cycle is also defined by the cocircuit graph and the coline cycles
(i.e., without hyperplanes and colines):
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2.3.3 Corollary ([CFGdOO0Q]) The coline cycles of distance O#g are the coline cycles
through vg, the coline cycles of distance 1 are those which intersect a coline cycle of
distance 0 but do not meeg; inductively the coline cycles of distancetkl are exactly
those that intersect at least one coline cycle of distance k but which are not of distance k.

The following lemma states an important property of coline cycles:

2.3.4 Lemma ([CFGdOOQQ]) Let M = (E, ) be a uniform oriented matroid, = |E]|,
andr :=rank(.M) > 2. Let p be a pathh = vg, v1, v2, ..., vi—_1, v = v in the cocircuit
graph G ofM connecting an antipodal paiw, v). Then p is a shortest path in G from
tovifandonly ift=n—r + 2, and then there exists a coline @ E such thafvj_1, v}
is an edge on the coline cycle of U for al&i {1, ..., t}.

Proof Let L be the M-label induced by the OM-label Gfw.r.t. M. Obviously there are
2-(r — 1) different paths from to v of lengthn —r + 2 that are defined by thre— 1 coline
cycles throughy andv. On the other hand, gt be a path from to v, and letJ C E be
the set of elements that belong to some but not all labels of the vetticesp. Since by
uniformity |L(vi—1) \ L(vj)| = 1 for each edgévi_1, vi} on p, L(v) = L(v) implies that
the cardinality|J| is a lower bound for the length ¢f. CertainlyE \ L(v) € J,andifp
does not follow only one coline, thgh (v) N J| > 2, i.e., then the length g is at least
[E\L)|+2=n—-r1+3. [ |

The algorithmic idea is first to detect the coline cycles of the cocircuit graph with an algo-
rithm LISTCOLINECYCLES with input and output as specified in Pseudo-Code 2.2, and
then to use these coline cycles to construct an M-label with an algorithmadLFROM-
COLINECYCLES (see Pseudo-Code 2.3); the two steps could be done in parallel, but for
clarity and since there is no loss w.r.t. complexity we present the algorithme¥L-
FROMAPLABEL divided into this two parts (cf. Pseudo-Code 2.4).

Input: A cocircuit graphG with AP-label A, andvg € V (G).

Output: A list S of all coline cycles ofG such that every coline cycle € S
is given as a list of the vertices anin an order as they are adjacentgnand
such thatSis ordered with increasing coline distance to vettgxand among the
coline cycles of distance 1 those come first which intersect the first coline cycle
in S.

Pseudo-Code 2.2: Input and Output SpecificationISfrTCOLINECYCLES

Input: A list Sas specified as output o $TCOLINECYCLES.
Output: An M-label L of the graphG given by S.

Pseudo-Code 2.3: Input and Output Specification ofAdEL FROMCOLINECYCLES

It is not difficult to design an algorithm ISTCOLINECYCLES as specified in Pseudo-
Code 2.2 which runs in time of at mo§&i( fo f1), where as befordg = |V(G)| and



84 CocCIRCUITS AND COCIRCUIT GRAPHS

Input: A cocircuit graphG with AP-label A.
Output: An M-label L of G such thatA is the AP-label ofG induced byL .

begin ML ABELFROMAPLABEL(G, A);
Choose any vertex € V(G);
S:= LISTCOLINECYCLES(G, A, vp);
return MLABELFROMCOLINECYCLES(S)
end MLABELFROMAPLABEL.

Pseudo-Code 2.4: Algorithm MABELFROMAPLABEL

f1 = |E(G)|: it is sufficient to visit all antipodal pairs with increasing coline distance
to v, to determine for each pajp, v) the 2r — 1) shortest paths betweenandv, and

to combine two such paths to a coline cycle when they contain antipodal vertices (cf.
Lemma 2.3.4).

The key ideas of algorithm MABELFROMCOLINECYCLES are an initialization of the
labels as far as the freedom of isomorphism allows, and then the propagation of the labels
observing necessary conditions; finally the coline cycle connectivity will be used to prove
that the construction of the M-label has been complete. The necessary conditions for
propagation and the coline cycle connectivity are stated in the following lemma:

2.3.5 Lemma Consider the cocircuit graph G of a uniform oriented matroid, an M-label
L of G, and the coline cycles in G given by L.

() If v andw are vertices on a common coline cycle ¢ and not antipodals, then the
intersection L(c) of all labels of vertices on c is equal to(i) N L (w).

(i) If v is a vertex on two different coline cycles ¢y, then L(v) = L(c1) U L(cp).

(i) Ona coline cycle of distancek 1to vg there are exactl@- (k+ 1) vertices that are
on at least one coline cycle of distance-K; every of these vertices is on exactly k
coline cycles of distance 1.

Proof All claims follow from the definition of an M-label and the uniformity af; see
also Lemma 2.3.1. [ |

For an M-labelL, we call for a coline cycle the setl (c) as introduced in Lemma 2.3.5
the label of ¢ We discuss now initialization and propagation of the labels in the construc-
tion of an M-label by algorithm MRBELFROMCOLINECYCLES. Consider a sef as
returned by algorithm ISTCOLINECYCLES.

Initialization. We can easily determime:= rank(.M) andn := |E| from S, since every
vertex appears on exactly-1 coline cycles and every coline cycle has lengtim2r +2).
Using the freedom of isomorphism we initialitgvg) := {1,...,r — 1}, and of course
L (vo) := L(vp), and the labels of the remaining &1 — r + 1) vertices on the first coline
cycleinSaresettdl,...,r —2}U{j}for j € {r,...n}, where antipodal vertices take
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the same label. Hence the label of the first coline cycl8is set to{1,...r — 2}; we
are still free to initialize the labels of the remaining coline cydesf distance O (i.e., the
coline cycles at a positione {2...,r —1}in S by L(g) := {1,...r =1} \ {i — 1}
(i.e., we initialize the label of every vertaxon ¢ that is different fromvg andvg by
L(v) := L(G)).

Propagation. In the order of listS, i.e., with increasing distance to vertey and starting
with the first coline cycle of distance 1 (this coline cycle is at positiom S) we do the
following for every coline cycle:

1. We determine the labé&l(c) as follows:

e If cis of distance 1 and intersects the first coline cycleSjrthe only two
distinct labels already initialized anhave the form{1,...,r — 2} U {j} for
jef{r,...nfandL(¢) ={1,...r =1} \ {i — 1} fori € {2...,r — 1}; the
label mustthen bé&(c) :={1,....,r =2} \ {i —1}U{j}.

e If cis of distance 1 and does not intersect the first coline cyc& then there
are two distinct labels already initialized on the coline cycighich have the
form{l,....r =1\ {i1—1}uU{jland{l,...,r — 1} \ {io — 1} U {j} for
i1,i2 € {2,...r =1} withi1 #i2andj € {r,...n}; the label must then be
their intersection, i.el.(c) :={1,...,r =1} \{i1 — 1} \{i2— 1} U{j}.

e If cis of distancek > 2, then we choose any two among the- 1 labels
already initialized ort; these labels are already determinedkby 2 vertices
of distancek — 1, hencel (c) is equal to the intersection of these two labels.

2. We addL (c) to L(v) for every vertexv on the coline cyclelL (v) := L(v) U L(C);
for the first time we seL(v) := L(c), and after the next change will(v) be
a (r — 1)-subset ofE, i.e., L(v) is then a complete vertex label and will not be
changed further.

Initialization and propagation describe the algorithm MIELFROMCOLINECYCLES,
hence also the algorithm MABELFROMAPLABEL is now complete (see Pseudo-
Code 2.4).

2.3.6 TheoremIf G is the cocircuit graph of a uniform oriented matroigt with
rank.M) > 2 and A an AP-label of G, then the algorithMiL ABELFROMAPLABEL
terminates with correct output in time (@ f1), where § = |V(G)| and fi = |[E(G)]|.
The M-label L constructed byiL ABELFROMAPLABEL is unique up to isomorphism on
the ground set.

Proof Let M = (E, D) be a uniform oriented matroiah, := |E|, r := rank(M) > 2;

in addition we set := (rfz) for the number of colines and denote Bythe cocircuit
graph of M. We have already seen that with ingatand A the algorithm determines

all labels correctly and—up to isomorphism—uniquely because of the properties stated
in Lemma 2.3.5 (note that in the special case (aik = 2, the labels are complete
after initialization of the first coline cycle). The complexity ofdTCOLINECYCLES was
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stated to beO( fo f1), and we will show that the complexity of MABELFROMCOLINE-
CycLEs is of orderO( fy) + O(r - u), which is also at mosO( fo f1) becausen > r
implies fo =2(,",) > 2(,",) = 2r and fy = 2u(n —r +2) > 4u, hencefo f; > 8ru. In
ML ABELFROMCOLINECYCLES We visit every vertex in every coline cycle not more than
some constant number of times (from thé&¢f,) operations). We modify the label of
every vertex at most twice, and since we can keep labels sorted we&{egdperations
for one modification, which leads to a total numbeffor) = O( f1) operations for all
label modifications. Finally we need for every of the&oline cyclesO(r) computations

to find its label. n

2.4 Antipodes in Uniform Cocircuit Graphs

In this section we discuss how to solve the M-labeling problem for a cocircuit géaph

of a uniform.mM without AP-label, by this strengthening the result of the previous section.

Again we will not consider M-labels that are not induced by a uniform oriented matroid.

We first discuss how to construct an M-label when the labels of only two antipodal pairs
on a common coline are given:

2.4.1 TheoremIf G is the cocircuit graph of a uniform oriented matroid and there

are two different antipodal pairs labeled in G which are known to be on a common coline
cycle, then one can construct an M-label L of G in timefgX1), where § = |V (G)|

and i, = |E(G)|, and the AP-label of G induced by L is uniquely determined by G and
the two given antipodal pairs.

Proof Let v,v andw, w be two different antipodal pairs i@ that are on a common
coline cyclec. As for the label construction in the previous section= rank(.M) and the
cardinalityn of the ground set of( can be easily found from the degree@ — 1) of a
vertex and the distance—r + 2 of an antipodal pair. LeE be a set of cardinality. We

know that for any M-labelL of G with ground setE the vertex labeld (v) = L(v) and

L(w) = L(w) are(r —1)-subsets oE andL(c) = L(v)NL(w) isan(r —2)-subset ofg,
hencelL (v) = L(c)U{e,} andL(w) = L(c)U{e,} fore,, e, € E\ L(c), wheree, # e,.

There are 2 (r — 1) shortest paths betweenandv, each corresponding to one half of a
coline cycle (see Lemma 2.3.4), and the same holds fandw; we have to detect which
paths belong to the same coline cycle. It is easy to find the shortest paths belonging to the
coline cyclec which contains the given antipodal pairs. Two shortest paths not belonging
to ¢, say p1 betweerw andv and p2 betweernw andw, belong to coline cycles; andcy

with labelsL(c;) = L(v)\{e1} andL(c2) = L(w)\{ex} for somees, & € L(c), and since
L(c1)\L(co) = {ey, e} \{e1}, the pathg; and p, have a common vertex (amtersection
vertey if and only if e = e (cf. Lemma 2.3.1 (iii)); the label of the intersection vertex
isL(c) U{e,, ey} \ {e1}. Itis easy to see that there are exactly(2 — 2) intersection
vertices (namely — 2 antipodal pairs) with labels(c) U {e,, e,} \ {g} for g € L(c),

and hence any two intersection vertices are on a common coline cycle with a label of
the formL(c) U {e,, &,} \ {&, €j}. Therefore the distance of two intersection vertices

in G is less or equal tm — r + 2 with equality if and only if they are antipodals; by
this we can identify shortest paths belonging to the same coline cycle. Hence we can
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determine all coline cycles of distance Ou@nd with the same technique for the rest of
G, extending the labeling as in the algorithm W&keL FROMCOLINECYCLES. Also the
complexity discussion is similar to the discussion above, it is sufficient to count all costs
for computing shortest paths and identifying antipodal intersection vertices correctly (for
every of thefg vertices there are total costs Of f1)). [ ]

Theorem 2.4.1 implies:

2.4.2 Corollary There is an algorithm which solves the M-labeling problem for a given
cocircuit graph G of a uniform oriented matroitk = (E, £) without AP-label in time
O(fg fin?), where b = [V(G)|, f1 = |E(G)|, n= |E|.

Proof For a choice of two pairs of vertice®, v) and (w, w) from G, we construct a
label L of G as in the proof of Theorem 2.4.1 (this might fail, thenv) and(w, w) are
not two antipodal pairs); iL. is an M-label ofG (we can check this in tim@(f(f’nz),
see Theorem 2.5.1), we stop, otherwisev) and(w, w) are not two antipodal pairs and
we start over with other pairs. Obviously it is sufficient to check pairs where} and
{v, w} are edges il and one edge is fix, i.e., there are at mOstf1) pairs to check. m

It remains to discuss whether the M-labels of a gr&plhat is the cocircuit graph of

a uniform oriented matroid are all isomorphic, i.e., whether for any two M-labels
V(G) — 2F andL : V(G) — 2F there exists a bijectiop : E — E such that_ = ¢L.

We will prove this up to graph automorphism in Theorem 2.4.4, using Theorem 2.4.1 and
the following Lemma 2.4.3:

2.4.3 Lemma Let G be the cocircuit graph of a uniform oriented matroitl = (E, D)
with rank(M) = 2 or rank(.M) = 3, andv, w € V(G). The distance from to w in G is
at most|E| — rank(:M) + 2 with equality if and only iy andw are antipodals.

Proof Let .£ be an OM-label ofG w.r.t. M, and setV := .L(v) andW := £L(w). We
assume tha¥ andW are not on a common coline and therefore @vlk = 3, otherwise

the claim is obviously correct. Without loss of generality we assumeBhat{1, ..., n},

VO = (1,2}, 3 e WO andW; = W, = V3 = +. We consider foi € | := {1, 2, 3}

the colines{i} and their coline cycles;. Fori < | let X! be the cocircuit defined by

Xi = + and X'j = 0forj e 1\ {i}, then the vertex; corresponding toX' is on the
intersection otj andcy for {j, k} = I \ {i} (especiallyp = x3). Denote byp; the shorter

of the two paths om; betweenx; andxx, where{j, k} = | \ {i}. Then the uniorp of

the pathsp;, p2, ps forms a cycle inG, and a vertexy € V(G) is on p if and only if
L) € {0, +}\ ({0} U{+}"). Asv andw are onp, it is sufficient to prove that the
length of p is less than &h — 1). We show that there are at mosin2— 3) verticesy

on p different fromxz, X2, andxs: Such a vertex is characterized by:(y)e = 0 for
somee € E\ | andL(y); = O for somei e |, and thent(y)j = +, L(y)kx = + for
{j,k} = 1'\{i}. Assume that for somee E\I there exist all three vertices, i.e., there exist
three cocircuits ifD whose signs corresponding tp2, 3, eare(0 ++ 0),(+ 0+ 0),
and(+ + 0 0); then the cocircuit axiom (C3) applied to the first and the negative of the
second implies a contradiction to axiom (C2) for the third cocircuit. Therefore there exist
for everye € E \ | at most two verticey on p with £(y)e = 0. |
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The following theorem is based on a idea of Babson [BFF01]. We denqgte lfy after
o) the concatenation of maps o and byr —! the inverse of a bijection.

2.4.4 Theorem Let G be the cocircuit graph of a uniform oriented matraidand L and
L M-labels of G. Then there exists a graph automorphissAut(G) such that Lg and
L are isomorphic, i.eq Lg = L for some permutation.

Proof Let L and L be M-labels ofG, and denote the induced AP-labels Byand A,
respectively. Remark thaa~1 = A e Aut(G) and A1 = A € Aut(G). Since for any

g € Aut(G) the AP-label induced by g is g~*Ag and because of Theorem 2.3.6, it is
sufficient to findg € Aut(G) such thatg™ 1Ag = A. As Aut(G) is finite, the order of
AA € Aut(G) is finite. If the order ofAAis odd, say R + 1 for a nonnegative integér
theng := (AAX is sufficient. We will show that the order &A cannot be even.

We show thai AA)? = 1 impliesAA = 1 (hence the order oA A cannot be 2). LeE
denote the ground set bf and as usual := |E| andr := rank(.M). Assumg AA)2 = 1,
then the AP-labels induced HyA andL are equal, so, by Theorem 2.316A andL are
isomorphic, i.e., there exists a permutatmru)f the elements ifE such thatrL = LA.
AsnrL = 7LA = LAA = L impliesz?2 = 1, the orbits ofr must all have order 1 or 2,
so we can choose a unibhC E of these orbitswithU| =r —2 or|U| =r —3. Consider
the subgraplGy of G induced by the vertex s&t(Gy) := {v € V(G) |U C L(v)}.
Remark thaV (Gy) is closed undeA by definition and also closed undérbecause of
LA = 7L and7(U) = U. Gy is the cocircuit graph of a uniform oriented matroid
contraction minor with rank’ :=r — |U| € {2,3} andn’ := n — |U| elements in the
ground set, so Lemma 2.4.3 implies that for every vertex V (Gy) there is a unique
vertexv € V(Gy) such that the distance (By fromv tovis atleasty —r’'+2 = n—r +2.
On the other hand — r + 2 is the distance i between a vertex and A(v) (and also
betweerv and A(v)), and the distance in the subgraphy cannot be smaller. Therefore
A(v) = A(v) =7 for v € V(Gy), so, by Theorem 2.4.14 = A.

Assume that the order dfAis 2k for an integek > 1. If k = 2k’ setl := L(AAX 1A,
if k = 2k’ + 1 setl := L(AAX. Let A denote the AP-label induced by the M-label
L, then in either casd A = (AA, hence(AA)2 = 1. Thus by the previous case
(AA)" AA = 1, contradicting the assumption that the ordeAd$is 2k. [ |

2.4.5 Corollary The isomorphism class of a uniform oriented matroid is determined by
its cocircuit graph.

Proof The proof follows from Corollary 2.2.8 and Theorem 2.4.4. ietand M be two
uniform oriented matroids which both have the same cocircuit graph, i.e., there exists a
graph isomorphisnp : G — G between the cocircuit grap® of M and the cocircuit
graphG of M. Let .£ and.£ denote OM-labels o5 and G w.r.t. M and M and L

and L the M-labels induced by and ., respectively. By Theorem 2.4.4 there exists

g € Aut(G) such thatLg andL¢ are isomorphic. Then Corollary 2.2.8 implies thag
and.L¢ are isomorphic, which is equivalent to say thiétand.M are isomorphic. |
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2.5 Characterization of Cocircuit Graphs

We discuss in this section the characterization problem for cocircuit graphs of uniform ori-
ented matroids and of any M-labeled cocircuit graphs. We have presented in the previous
sections polynomial algorithms for the corresponding M-labeling and the OM-labeling
problems. These algorithms did not check the correctness of the input. In this section
we add input checks to the above algorithms and use them for the design of polynomial
algorithms that solve the characterization problems of M-labeled cocircuit graphs and of
(unlabeled) uniform cocircuit graphs.

Note that the algorithms for the M-labeling of cocircuit graphs of uniform oriented ma-
troids and for the OM-labeling of M-labeled cocircuit graphs may run into problems if
their input is not correct. If such a problem is detected on run time, it will cause the al-
gorithm to abort (we say then, the algorithails), otherwise the algorithm will terminate
with some output. In neither case will the complexity of the algorithms be affected. If
an algorithm fails, we know that its input was not correct, otherwise the output of the
algorithm will be used to decide whether the input was correct or not.

We discuss first the algorithmic characterization of M-labeled cocircuit graphs.

2.5.1 Theorem Let G be a graph with label L. V(G) — 2E. There exists an algorithm
which decides whether G is a cocircuit graph with M-label L or not, and this algorithm
runs in time Q f$n?), where § = [V(G)| and n:= |E|.

Proof First we use the algorithm OMABELFROMML ABEL in order to obtain a label

L of G. Then we check the cocircuit axioms (CO0) to (C3) for the set of all vertex labels
L(v); if not all axioms are valid, we know that the inpGtandL was not correct, i.e.,

we can stop and report thét is not a cocircuit graph with M-labdl. If (CO) to (C3)

are valid, we construct the cocircuit gra@y: of the oriented matroid defined hg and
compareG , with the input graplG. If G andG_ are the same (with vertices identified

as they associate to the same cocircuits), thes a cocircuit graph with M-labdl, oth-
erwise not. It remains to discuss the complexity of the above characterization algorithm;
as we do not use any sophisticated data structure, our complexity result may be improved
further. With f; = |E(G)|, we have a complexity oO((fo + f1)n) for OMLABEL-
FROMML ABEL in order to computel; we check the cocircuit axioms which is trivially
possible inO( fé”nz) elementary arithmetic steps. If all axioms are valid we construct the
cocircuit graphG_ from £ which can be done i©O( fo3n) elementary arithmetic steps

as follows: The vertex set @b, is the same as foB. For every vertex € V(Gg) we
determine inO(fOZn) steps all adjacent vertices by first collectingalle V(G_,) for

which D(L(v), £(w)) = @, then taking as the adjacent verticesvadhosew for which

(£L(v) o L(w))? is maximal among all such sets withfrom the collection. The compari-

son of G » andG can be done together with the constructiorigf. Obviously the overall
complexity is bounded b (( fo + f1)n) + O( f03n2), where the later term is dominating
because of; < f2. n

We discuss now the algorithmic characterization of unlabeled cocircuit graphs of uniform
oriented matroids.
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2.5.2 Proposition Let G be a graph. There exists an algorithm which decides whether G
is the cocircuit graph of some uniform oriented matrokl ) or not, and this algorithm
runs in time Q 3 fin?), where § = [V(G)|, f, = |[E(G)|, and n= |E|.

Proof First we use the algorithm described in Section 2.4 in order to obtain allabel

G and to decide whethés is a cocircuit graph with M-label.. This is possible in time
O(fé” fin?). It remains to check whethes is the cocircuit graph of someniform ori-
ented matroid. For this we simply check whettigi= 2(, ") and whether all labels (v)
have cardinality — 1, wherer is determined from a vertex degree (e.g., see initialization
of algorithm MLABELFROMCOLINECYCLES). |

2.6 Open Problems

We discuss in this section some open problems that are closely related to the results of the
present chapter. We concentrate on the case of uniform cocircuit graphs.

We have proved that the pairs of antipodal vertices are determined by the cocircuit graph
of a uniform oriented matroid up to graph isomorphism, butit is an open question whether
they are uniquely determined by the graph:

Open Problem 1: Does there exist a uniform cocircuit graph G with AP-labels A and
A such that A A?

We know that in the uniform case the distance between two antipodal vertices is
|[E| — rank(:M) + 2 and that there are exactlyrank(.M) — 1) edge-disjoint shortest
paths between them. We do not know whether this property is enough to characterize the
antipodal pairs; if it is sufficient, we can detect the negative of a cocircuit quite easily
(remember that one can compute efficiently ramlk and|E| from |V (G)| and|E(G)|):

Open Problem 2: Does there exist a cocircuit graph G of a uniform oriented matroid
M with r := rank(:M) > 2 and AP-label A and, w € V (G) such thatw # A(v)
and & (v, w) = n—r + 2, where n= |E| and r = rank(.M) are determined by G?

Open Problem 3: Does there exist a cocircuit graph G of a uniform oriented matroid
M with r := rank(:M) > 2 and AP-label A and, w € V (G) such thatw # A(v)
and there are exactl2(r — 1) edge-disjoint shortest paths betwaeandw?

Itis also an open question whether antipodal pairs are characterized as farthest@airs in
i.e., whether the distance between two verticendw in G is equal to the diameter if
and only ifv = w. Itis easy to see that this is not true for non-uniform oriented matroids.

Open Problem 4: Does there exist a cocircuit graph G of a uniform oriented matroid
M with AP-label A and € V(G) such that & (v, A(v)) # diam(G), or such that
dc (v, w) = diam(G) for somew # A(v)?
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Finally it is an open problem whether the diameter of a cocircuit graph is bounded linearly
inn=|E]|:

Open Problem 5: Does there exist a constant k such that for every cocircuit graph G of
an oriented matroid = (E, ) holdsdiam(G) < k- |E|?

We can show the following quadratic bound on the diameter of a uniform cocircuit graph:

2.6.1 Proposition Let M = (E, ¥) be a uniform oriented matroid and G its cocircuit
graph. Note that r= rank(.M) and n= |E| are determined by G. The diameter of G is
bounded by

min(r —2,n—r) n—r —k
diam(G — 2 _ 1).
lamG) <n—r +2+ kZ:; (L 5 J—i— )

Proof The proof is mainly based on Lemma 2.3.5 (iii). Fix any vertgx V(G). The
maximum distance of any coline cycle @is bounded by — 2 (since|lU| =r — 2 for
any colineU) andn —r + 1 (sincelU \ L(vg)| < |E\ L(vg)] = n—r + 1). Acoline
cycle contains & —r + 2) vertices, hence Lemma 2.3.5 (iii) implies that every vertex on
a coline cycle of distance —r 4 1 is on a coline cycle of distance— r. Consider some
vertexv € V(G). The above arguments imply that there is a coline cgabé distance

kK < min(r — 2, n —r) which containg. If k = 0 then obvioushdg (v, v) <n—r + 2.

If k > 1 we show thab is connected to some vertex which is contained on a coline
cycle of distancé — 1 with dg (v, v/) < L”‘rz_kj + 1, which implies the claim. We can
find suchv’ onc, sincec contains 2k + 1) vertices on at least one coline cycle of distance
k—1 and hence@ —r —k) vertices different from and its antipod@ which do not have
this property (see Lemma 2.3.5 (iii)). As every pair of antipodes is contained in the same
coline cycles, the minimum distance oto av’ which lies on a coline cycle of distance
k — 1is at most "=5=K | + 1. n

The above bound is tight in the special (and trivial) cases thete2 orr = |E|. Fur-
thermore a similar proof extends the bound to some quadratic bound for cocircuit graphs
of general oriented matroids.






Gen
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PERICLES, PRINCE OFTYRE (3,3)

Chapter 3

Generation of Oriented Matroids and
Isomorphism Classes

3.1 Introduction

The present chapter introduces the generation problem of oriented matroids, the funda-
mental question of constructing all oriented matroids of some givemsifehe ground
setE and rankr:

Oriented Matroid Generation Problem: Given integersn andr,
generate all oriented matroid#( = (E, ) with n = |E| and r = rank(:M).

If we assume some canonical way to label the elementsEsay{1, 2, ..., n}, the ori-
ented matroid generation problem is finite: Obviousty| < 3" and hence there are not
more than £" oriented matroids with elements; furthermore any set of sign vectors can
be checked in polynomial time whether it is the set of covectors of an oriented matroid of
rankr. However, for methods of theoretical and practical interest we will have to exploit
the properties of oriented matroids much more.

The generation problem is motivated by several questions in discrete geometry which all
are very hard to resolve, such as classification of combinatorial types of point configura-
tions, polytopes, hyperplane arrangements, or realizability problems concerning abstract
combinatorial manifolds. Having a classification of combinatorial types makes it possi-
ble to test conjectures against this complete set of problem instances. On the other hand,
the study of methods for efficiently generating oriented matroids leads to new results for
oriented matroid representations.

Techniques for listing oriented matroids for smatndr were studied, among others, by
Bokowski, Sturmfels, and Guedes de Oliveira (e.g., [BS87, BS89, BGdOO00]) using the
chirotope axioms of oriented matroids. They also showed by successful applications to
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geometric embeddability problems the usefulness of oriented matroid generation. How-
ever, it seems that the methods are designed primarily for the case of uniform oriented
matroids. Our approach is based on graph theoretical representations of oriented matroids
(tope graphs and cocircuit graphs), and we will discuss methods which work for general
oriented matroids (especially also non-uniform oriented matroids). One of our methods
can be considered as a more general variant of an algorithm of Bokowski and Guedes de
Oliveira [BGdOO0Q] in a dual setting; however, our representation leads to implementa-
tions which are able to handle easily any single element extension in general rank, for
non-uniform and uniform oriented matroids as well.

Many questions which can be solved when having a complete list of oriented matroids
for givenr andn only depend on the isomorphism class, e.g., questions concerning the
face lattice of an oriented matroid. Furthermore, other classes of oriented matroids (like
reorientation classes) are usually obtained rather easily from the isomorphism classes.
This motivates to generate isomorphism classes first and then finer classifications in a
separate step. Finally, we will see that the methods for generating oriented matroids can
be restricted quite naturally to generation of isomorphism classes only. Hence, we will
concentrate on the generation of isomorphism classes:

Isomorphism Class Generation Problem:Given integers n and r,
generate all oriented matroids( = (E, ) with n = |E| and r = rank(:M) up to
isomorphism, i.e., generate one representative from every isomorphism class where
the representative is assumed to be simple.

With our restriction to simple oriented matroids the problem becomes well-defined as then
n = |E| is the number of parallel classes (of non-loop elements) which is an invariant of
the isomorphism class.

Before we introduce a general, incremental method for the generation of isomorphism
classes of oriented matroids in Section 3.3 and the underlying representations by graphs
(see Section 3.4), we consider the role of duality in the context of oriented matroid gener-
ation and some special cases where duality is very helpful.

3.2 Duality and the Generation of Isomorphism Classes

This section discusses the duality of oriented matroids in relation to the generation of
isomorphism classes. The key observation is that all oriented matroids on a grolthd set
and rankr can be obtained by dualization from a complete list of oriented matroids on
and rank|E| — r (see Corollary 0.5.10); the computation of the dual can be assumed to
be easy (cf. Lemma 0.9.8). Essentially it is sufficient to generate only one of the two lists
of oriented matroids. However, for the generation of isomorphism classes the dualization
approach is not that straightforward, as we will discuss in the following.

3.2.1 Definition (Co-parallel, Co-simple)Let M = (E, ¥) be an oriented matroid.
Two elements, f € E are calledco-parall