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Zusammenfassung

In der hier vorgelegten Arbeit wird über Experimente berichtet, in denen mit
ultrakalten fermionischen Atomen in optischen Gittern das Hubbardmodell er-
forscht wird.

Die Kontrolle der Modellparameter, insbesondere der Tunnelstärke und der
Wechselwirkung, eröffnet den Zugang zumRegime starker Korrelationen. Hier
kommt es infolge der abstossenden Wechselwirkung zum Übergang vomMetall
zum Isolator. Das Mott-isolierende Verhalten des Kerns der Wolke kann anhand
dreier Merkmale identifiziert werden: die Doppelbesetzung von Gitterplätzen
ist stark unterdrückt, der Kern wird zunehmend inkompressibel, und es bildet
sich eine charakteristische Mode aus, die der Anregung von Doppelbesetzungen
mit wohldefinierter Energie entspricht.

Durch den Vergleich präziser Messungen der Doppelbesetzung mit numeri-
schen Resultaten über einen grossen Bereich verschieden starker Wechselwir-
kung und Gitterfüllung kann ein Mass für die Entropie des Systems im Git-
ter entwickelt werden. Sowohl die Hochtemperaturentwicklung des Hamilton-
Operators, wie auch die dynamische Molekularfeldtheorie (DMFT) stimmen
mit den experimentellen Beobachtungen überein. Der Einfluss systematischer
Fehler auf die beobachtete Entropie kann mittels einer umfassenden Analyse
der Kalibration derModellparameter eingegrenzt werden. ImMott-isolierenden
Zentrum der Wolke beträgt die Entropie pro Teilchen das Doppelte der kriti-
schen Entropie in der antiferromagnetischen Phase.

Die niedrige Temperatur ultrakalter Quantengase macht die intrinsischen En-
ergieskalen experimentell zugänglich und ermöglicht es, dynamische Prozesse
zu untersuchen. Da die Bewegung der atomaren Wolke nach einer Auslenkung
zeitlich aufgelöst werden kann, liefert sie Einblicke in das Verhalten auf der Skala
der kinetischen Energie und Aufschluss über die Transporteigenschaften. Wäh-
rend nicht-wechselwirkende Wolken schwach gedämpft in der Falle schwin-
gen, wird diese Oszillation mit zunehmender Anziehung zwischen den Ato-
men durch die Bildung lokalisierter Paare unterdrückt. Aufgrund der stark re-
duzierten Tunnelrate dieser Paare wird aus der Schwingung eine langsame, re-
laxationsartige Driftbewegung. Die Modifikation der Wechselwirkung in Echt-
zeit während der Evolution erlaubt die dynamische Kontrolle des Transportver-
haltens.

Anhand von Doppelbesetzungen mit Wechselwirkungsenergien, die weit hö-
her sind als die Bewegungsenergie, wird der Zerfall hochenergetische Anre-
gungen untersucht. Die durch Gittermodulation induzierten Doppelbesetzun-
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gen zerfallen auf Zeitskalen, die über mehrere Grössenordnungen variieren und
stark von der Tunnelrate undWechselwirkung abhängen. In Einheiten der Tun-
nelzeit skaliert die Lebensdauer exponentiell mit dem Verhältnis von Wechsel-
wirkungsenergie zu Bandbreite. Der Zerfallsprozess wird von simultanen Viel-
körperstössen höherer Ordnung mit einzelnen Fermionen dominiert.
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Abstract

In this thesis the Hubbard model is explored with ultracold fermionic atoms in
an optical lattice.

Access to the strongly correlated regime of repulsive interaction and the
metal-insulator transition is gained by exploiting the control over tunneling
and interaction energy. The emergence of a Mott-insulating core is identified
by three features: the strong suppression of doubly occupied lattice sites, a
vanishing core compressibility, and the emergence of an excitation mode at the
on-site interaction energy corresponding to the creation of double occupancies.

The entropy of the system is determined by comparing accurate measure-
ments of the equilibrium double occupancy with theoretical calculations over a
wide range of parameters. Both, the high-temperature series expansion of the
Hubbard model and dynamical mean-field theory, are in quantitative agreement
with the experimental data. A comprehensive analysis of all systematic errors
confirms the reliability of the entropy determination. In the Mott-insulating
center of the atomic cloud we obtain an entropy per atom which is about twice
as large as the critical entropy of the antiferromagnetic phase.

The small energy scales in quantum gases make the intrinsic dynamics exper-
imentally accessible. The kinetic energy scale and the mass transport proper-
ties are explored by resolving the center of mass motion of the atoms after dis-
placement. With increasingly strong attractive interactions the weakly damped
oscillations, most pronounced for the half-filled non-interacting case, turn into
a slow relaxational drift due to the formation of localized pairs with a reduced
tunneling rate. By tuning the interaction strength during the evolution, the
transport behavior can be controlled dynamically.

To access the regime of high energy excitations, double occupancies with a
repulsive interaction energy much larger than the kinetic energy are studied.
In the equilibrium state of suppressed double occupancy, additional excitations
are created by lattice modulation and their subsequent decay is monitored over
time. Themeasured absolute lifetime of double occupancies covers two orders of
magnitude and in units of the tunneling time it is found to depend exponentially
on the ratio of on-site interaction energy to kinetic energy. The dominant
mechanism for the relaxation is a simultaneous many-body process involving
several single fermions as scattering partners.
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1 Introduction

New solid materials with intriguing mechanical, electrical, optical, and thermo-
dynamical properties are at the center of many important advances in technol-
ogy. However, the understanding of their macroscopic features is a challenge
since they emerge as a result of complex quantum many-body behavior at the
microscopic scale. For example, several physical principles govern the move-
ment and the interaction of electrons in matter and their combination leads to
distinct material classes such as insulators, semiconductors, metals, and super-
conductors.

Solid state physics has succeeded in extracting the fundamental physical prin-
ciples responsible for many of these effects. The principles have then been incor-
porated into models that provide insight into the workings of the interaction in
electron gases in the context of Fermi liquid theory [1] or the Bardeen-Cooper-
Schrieffer mechanism of low temperature superconductivity [2], for example.
Many solid state models, however, are exceedingly hard to analyze due to the
large number of particles involved. Despite reducing the description to a small
subset of physical effects, these simple models frequently pose big challenges and
can not even be treated numerically.

Experiments with ultracold atoms can approach the framework of solid state
theory from a different angle. In 1998 a conceptual link was established [3] be-
tween atoms in an optical lattice and a solid state model for interacting bosonic
particles on a crystalline surface [4]. It is now clear that several important model
Hamiltonians can in principle be realized accurately using optical lattices and
alkali atoms [5]. Answers to long-standing questions of solid state physics can
hence be found experimentally. This approach has been termed quantum simu-
lation [6, 7].

An important candidate among these conceptually simple but numerically
challenging models is the one proposed by J. Hubbard in 1963 for the behavior
of electrons in certain types of solids. It interpolates between two other ap-
proximative models: the free gas description for weakly interacting electrons in
wide energy bands on one hand and the fully atomistic description of strongly
correlated and thus localized electrons on the other hand. Hubbard’s approach
connects “the ordinary band model and the atomic model” [8] in a “highly
oversimplified” [9] way. His choice to include just two processes is one of the
simplest treatments of the peculiar interplay of kinetic and interaction energy in
interacting fermions on a lattice, as outlined in chapter 2.
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Despite the apparent simplicity the Hubbard model acquires broad applica-
bility as well as a peculiar complexity. It encompasses the physics of models
like the Heisenberg or the t-J Hamiltonian which emerge as its limiting cases.
The Hubbard model is also widely considered a promising contender to capture
the fundamentals of high temperature superconductivity [10], an effect that was
discovered more than 20 years ago in the cuprates [11]. The advocacy of this
position is manifest [12] as is the condensed matter community’s tendency to
declare a lack of consensus and to “justify … yet another implausible conjecture
as to some aspect of the phenomenon” [13].

While already Hubbard’s paper offers several approaches to shed light on lim-
iting cases of his model, almost 50 years of intense research by significant parts of
the condensed matter community leave many questions unanswered [14]. The
nature of the ground-state of the two- and three-dimensional Hubbard model
remains elusive — even on a qualitative level.

While theoretical physics struggles to implement and understand the Hubbard
model using numeric and analytic methods, important progress has been made
with ultracold atoms. A landmark result was the observation of the superfluid to
Mott insulator transition using bosonic atoms trapped in an optical lattice [15].
Yet it is the fermionic character combined with repulsive interactions which
provides the fundamental link to the questions in strongly correlated electron
systems.

Ultracold atoms can be manipulated and trapped using light forces. This
effect has lead to the realization of the periodic potential of a crystalline lattice
using the interference pattern of laser beams. Due to the small temperatures,
the atoms can be loaded into the lowest energy band of such an optical lattice.
Exploiting the external control over the intensity of the beams, the tunneling
rate between the sites can be tuned. Moreover, the back-action of the atoms
on the light potential is negligible and the lattice does not source or sink energy
as is the case in many solid materials. This decoupling of lattice and atomic
degrees of freedom is a prerequisite of the Hubbard model where a static lattice
is assumed.

Collisions among the atoms in ultracold quantum gases provide the tools to
implement an analog to the Coulomb repulsion between electrons. Often, the
scattering can be treated as a contact interaction potential. Such a δ-shaped tun-
able interaction is the optimal tool to simulate the on-site interaction of elec-
trons in a lattice as it has the shortest possible range and hence reduces parasitic
off-site interactions which are not part of the Hubbard model. Feshbach reso-
nances, which are controlled via the magnetic field, give access to the regimes of
attractive, vanishing, or repulsive interactions. Combining the physics of optical
lattices and Feshbach resonances, the Hubbard Hamiltonian can be constructed
for fermionic atoms with tunable parameters that are derived from microscopic
principles, as detailed in chapter 3.
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Within the context of the three-dimensional Fermi-Hubbard model, research
has so far focused on the non-interacting and attractively interacting cases [16,
17, 18, 19]. Other experimental studies of the equilibrium properties have been
concerned with exotic non-Hubbard effects such as the influence of reduced di-
mensionality [20, 21], p-wave scattering [22], mixtures of bosonic and fermionic
atoms [23, 24, 25, 26], or physics beyond the single-band description [27]. The
observation of the strongly correlated phases in the regime of repulsive interac-
tions, which provide the link to electron systems, was an unresolved challenge.

In order to gain access to the repulsive Fermi-Hubbard model and to perform
quantitative experimental simulations, probes have to be developed, that signal
the state of the system in the lattice. Measures for the density, that are sensitive to
fluctuations or thermal excitations, or a scheme to determine the temperature in
the lattice, for example, could not be demonstrated so far. Furthermore, samples
of ultracold quantum gases are confined in a trap in contrast to homogeneous
systems. This leads to a coexistence of different phases and requires observables
that can distinguish among them. Additionally, the parameters of the model
need to be calibrated independently and with sufficient accuracy to facilitate
comparison with theoretical predictions.

In this thesis we implement the repulsive Hubbard model with ultracold
fermionic Potassium atoms in a three-dimensional optical lattice and study its
metallic and insulating phases both in equilibrium and out-of-equilibrium. The
properties of the apparatus and some experimental techniques are reviewed in
chapter 4. The work presented in this thesis was carried out in collabora-
tion with Niels Strohmaier, Kenneth Günter, Daniel Greif, Thomas Uehlinger,
Yosuke Takasu, Michael Köhl, Leticia Tarruell, and Henning Moritz.

In chapter 5 we report on the first observation of the characteristic signature
of strong correlations, the Mott-insulating phase, where insulating behavior and
incompressibility emerge not as a result of a filled lattice but rather due to local-
ization by repulsion. The direct control of the interaction strength allows com-
paring the Mott-insulating and the non-interacting regime without changing
other parameters such as filling or tunneling energy. The double occupation
of lattice sites is identified as a characteristic excitation in the Mott-insulating
phase and used to develop a measure for the compressibility of a trapped inho-
mogeneous system that is insensitive to the influence of metallic edges.

In order to investigate the role of the harmonic confinement on the nature
of thermal excitations, the two regimes of thermal creation and thermal disso-
ciation of double occupancies are identified in chapter 6. While the former is
a natural consequence of large repulsive interaction in a homogeneous system,
the later is unique to a trapped system. Here, the combination of the density of
states in the trap and the resulting temperature behavior of the chemical poten-
tial favors the depletion of doubly occupied states despite the associated release
of repulsive interaction energy.
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By developing and implementing improved calibration methods, the model
parameters can be determined with an accuracy that is suitable for quantitative
comparison with theoretical models. The calibration of the interaction strength
leads to an improvement in the knowledge of the Feshbach resonance parame-
ters. Since mutually independent methods are employed for calibration, they
permit a comprehensive error analysis and yield systematic bounds for the ex-
perimental observables and the derived quantities. By combining measurements
of the double occupancy in a wide range of interaction strengths and fillings with
two different ab initio numerical methods, a novel measure for the entropy and
the temperature in the lattice is developed. This determination of temperature
and Hubbard parameters leads to the first quantitative simulation of the repul-
sive Fermi-Hubbard model with ultracold atoms and provides insight into the
microscopic properties of the system. In particular, the unequal entropy distrib-
ution in the trap and the intriguing buffering effect of low density metallic shells
can be identified.

Current experiments intend to decrease the temperature in the lattice to
observe the antiferromagnetically (AFM) ordered phase which is considered
the next step towards quantum simulation of the Hubbard model. The
AFM emerges below the Néel temperature where virtual tunneling mediates
a Heisenberg-like spin interaction between neighboring sites and leads to
long-range order with alternating magnetization. The results presented in
chapter 6 determine the position of the present experimental parameters in the
phase diagram. In order to locate the antiferromagnetic phase boundary, new
numerical data on the critical temperature and entropy at the point of optimal
interaction are supplied. Combining the current experimental parameters with
the data of the critical point, a measure of the proximity to quantum magnetism
is provided showing that the local entropy in the lattice is a factor of two above
the critical entropy.

In the second group of experiments we leave behind the regime of thermal
equilibrium and observe the dynamics of mass transport and high-energy ex-
citations. The study of charge transport and excitations in electronic systems
has received much attention in solid state physics as it determines the conduc-
tive behavior and many electronic properties of the material. For example, the
metal-insulator phase transition could be triggered using femtosecond electro-
magnetic pulses and its ultrafast dynamics could be resolved [28]. In cold atom
experiments, the small energies associated with the low temperature lead to a
reduction of the intrinsic timescales and a slow-down of the dynamics com-
pared to solid matter. As a result, the parameters can be altered or quenched at
a high rate. This opens up the possibility of exploring “ultrafast” physics where
excitations are created and monitored quasi-instantaneously.

While previous studies of the dynamics of fermionic atoms in optical lattices
have focused on one-dimensional geometries [29, 30], the transport properties
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of an interacting Fermi gas in the three-dimensional optical lattice are explored
in chapter 7. The center of mass dynamics of the atoms after a sudden dis-
placement of the trap minimum is monitored for different interaction strengths
and lattice fillings. While dipole oscillations are observed for a non-interacting
cloud, the different effective masses in the optical lattice and the localized states
in the trap perimeter lead to a rapid dephasing even in the absence of colli-
sions. With increasingly strong attractive interactions the damped oscillations
turn into a slow relaxational drift due to the formation of localized pairs with a
strongly reduced pair tunneling rate. Tuning the interaction strength during the
evolution allows us to dynamically control the transport behavior and to switch
between oscillatory and drift motion.

In the experiments described in chapter 8, the large range of the Hubbard
parameters and the good time resolution are used to investigate the decay of
highly excited states in the Fermi-Hubbard model. Starting in the equilibrium
state of a repulsively interacting system, double occupancies are induced quasi-
instantaneously and their lifetime is determined. It varies over two orders of
magnitude and exhibits a strong dependence on both kinetic and interaction
energy. In order to derive a universal scaling, we scan tunneling and interaction
and show that the lifetime scales exponentially with the ratio of on-site repulsion
to kinetic energy. The interpretation in terms of virtual many-body scattering
with single fermions is corroborated by a diagrammatic analysis that confirms
the observed scaling exponent.

The dynamics of excitations in optical lattices are important for the under-
standing of the preparation of states with ultracold atoms. If a change in pa-
rameters requires the decay of excitations or mass transport, the rate of change
must be reduced to prevent heating. The results presented here impose limits
on the speed of adiabatic parameter sweeps.

The results pave the way for further studies of the Mott insulator and the
crossover between insulating and metallic behavior, including spin ordering and,
ultimately, the question of d-wave superfluidity [5, 31]. Future avenues in the
exploration of new many-body Hamiltonians can be found by adapting experi-
mental methods developed in atom physics that are conceptually orthogonal to
traditional solid state experiments. The detailed control over the lattice potential
should allow the study of mesoscopic lattice systems and the crossover between
exactly solvable quantum systems of a few sites and large systems in the thermo-
dynamic limit. A further promising field are polar molecules in Hubbard-like
systems [32, 33] where long-range interactions can lead to supersolid behavior.
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2 A brief introduction to the Hubbard model

The Hamiltonian

The Hubbard model includes just three fundamental processes that govern the
behavior of the electrons: they move, they interact, and they have a fermionic
spin.

HFH = −t ∑
σ,⟨ij⟩

c†iσ cjσ +U∑
i
ni↑ni↓. (2.1)

The Hamiltonian is a sum of the tunneling term that drives the hopping
of fermions between neighboring sites ⟨ij⟩ with an amplitude t and the in-
teraction term with an on-site energy U. Figure 2.1 sketches these processes.
The operators ciσ and c

†
iσ act on the occupation basis with site index i and spin

σ =↑, ↓. They obey the fermionic commutation rules, [c†iσ , cjσ′] = δijδσσ′ and

[c†iσ , c
†
jσ′] = [ciσ , cjσ′] = 0.

.
. .

.t

.

.. .

.U

Figure 2.1: Sketch of the quantum mechanical processes described by the Hubbard Hamil-
tonian. The tunneling term drives hopping between neighboring sites with an amplitude
t and corresponds to the kinetic energy that delocalizes the particles over the lattice. The
on-site repulsion U counteracts the delocalization and favors non-overlapping wavefunc-
tions that are localized on individual lattice sites.

The double well

Already the analysis of the smallest non-trivial problem, a system of two sites,
is sufficient to derive the basic physics contained in the Hubbard model such as
bandwidth, double occupancy, and antiferromagnetism. The problem is analo-
gous to the electron configurations of the Hydrogen molecule [34, 35].

As the Hamiltonian conserves the overall particle number per spin it can be
solved separately on each subspace of a given total number of spin-ups and spin-
downs. Four of the 16 states that comprise the complete Hilbert space, belong
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Figure 2.2: Eigenenergies and double occu-
pancy in the half-filled two-site Hubbard
model. The four eigenstates are: the de-
localized singly occupied triplet E0 = 0,
D0 = 0 (dotted), the doubly occupied sin-
glet E1 = U,D1 = 1 (dashed), and the mixed
singlet E2,3, D2,3 (solid curves).

to the sector with one spin-up and one spin-down fermion: ∣↑↓, 0⟩, ∣↑, ↓⟩, ∣↓, ↑⟩,
and ∣0, ↑↓⟩. The Hamiltonian in matrix form restricted to this subspace is:

HFH =
⎛
⎜⎜⎜
⎝

U −t −t 0
−t 0 0 −t
−t 0 0 −t
0 −t −t U

⎞
⎟⎟⎟
⎠
. (2.2)

The eigenvalues (also depicted in Figure 2.2) and eigenvectors are:

• E0 = 0 for the singly occupied spin triplet ∣↑, ↓⟩ − ∣↓, ↑⟩,

• E1 = U for the spin singlet superposition of the two doubly occupied states
∣↑↓, 0⟩ − ∣0, ↑↓⟩, and

• E2,3 = U/2 ±
√
(U/2)2 + (2t)2 for the two other singlets that mix the two

different occupancies,

2t(∣↑↓, 0⟩ + ∣0, ↑↓⟩) + (U/2 ∓
√
(U/2)2 + (2t)2)(∣↑, ↓⟩ + ∣↓, ↑⟩).

The normalization prefactors of the different eigenvectors have been omitted
for brevity. The terms singlet and triplet refer to the symmetry of the spin
wavefunction.

For vanishing interactions, U = 0, the last two states reproduce the bandwidth
4t of the Bloch band in the corresponding infinite system. Each Fermion is
symmetrically or antisymmetrically delocalized over the lattice. corresponding
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to minimal or maximal momentum. The probability of finding a site doubly
occupied in these two states is

D2,3 =
1

1 + (U/4t ±
√
(U/4t)2 + 1)

2 . (2.3)

The energetically lower one of the two states is the ground state. For large
negative U it is highly doubly occupied with energy U − 4t2/U. For strong
repulsion and large positive U it is a localized antiferromagnetic singlet. Its
eigenenergy −4t2/U < 0 reveals the energy scale of the Heisenberg exchange
interaction. It is a characteristic quantity for the antiferromagnetically ordered
ground state of the positive-U infinite Hubbard model at half filling.

The two triplet eigenstates of the spin-polarized ferromagnetic occupation
manifolds ∣↑, ↑⟩ and ∣↓, ↓⟩ have zero energy and are thus disfavored against the
antiferromagnetic singlet state which has a strictly negative energy.

Such a detailed analytic treatment of the generic Hubbard model without the
use of approximations is limited to a handful of particles and sites. Already for
four sites, the basis contains the 44 = 256 elements shown in Figure 2.3. The
commonly available computational power limits the maximum size of a system
to about four-by-four sites for exact diagonalization. Here the basis already
contains more than a billion elements.

The phase diagram

A rough sketch of the alleged phases in the three-dimensional Hubbard model
with repulsive interactions is presented in Figure 2.4 and discussed in the follow-
ing. The other side of the phase diagram where the particles interact attractively
is known to contain superfluid BCS-like phases. These are reviewed in [36].

The regime of antiferromagnetism has been described most accurately with
quantum Monte-Carlo (QMC) [37, 38] and dynamical mean field theoretical
(DMFT) methods [39]. Antiferromagnetic behavior relies on both strong hop-
ping and strong correlations and emerges when bandwidth and interaction are of
comparable size. Correctly predicting the phase boundary in a numerical analy-
sis is considered a benchmark problem due to the difficulty of treating both parts
of the Hamiltonian correctly and simultaneously. While the antiferromagnetic
phase boundary is the only quantity that can be considered known to a certain
extent, the question as to whether a phase transition between the Fermi liq-
uid and Mott insulator is masked by the Antiferromagnet remains unanswered.
Such a phase transition could be observed if magnetism is explicitly excluded by
geometric frustration.

The situation becomes even more complex away from half filling when the
particle-hole symmetry is broken by doping the system. Evidence indicates the
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Figure 2.3: The basis states of the four-site Hubbard model. On a two-by-two square
plaquette each of the four sites has four possible occupations: empty, spin up ↑, spin down
↓, and doubly occupied ↑↓. The Hilbert space is spanned by these 44 = 256 configurations.

possibility that at some doping the system could develop a ground state with a
d-wave symmetric wavefunction [40] and superfluid behavior.

10



.

.

.n = 1

.Fe
rm

il
iq
ui
d .Mott insulator

.AF insulator
.

.U/6t
.

.T/t

.

.U > 0

.Fermi liquid

.d-wave

.M
ot
t/
A
F
in
su
la
to
r

.
.n − 1.

.T/t

Figure 2.4: Schematic phase diagram of the Hubbard model. In the interaction-
temperature plane (left) and in the doping-temperature plane (right) the different widely
postulated and expected phases of the three dimensional Hubbard model can be identified.
The antiferromagnetic phase boundary at n = 1 in the T/U plane has only recently been
explored numerically. In the repulsive regime U > 0, a d-wave symmetric state at some
dopings n−1 is believed to be located close to the antiferromagnetic insulator. The shapes
of the phase boundaries in the doped case remain hypothetical.
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3 Constructing the Hubbard model for fermionic atoms

Some of the ingredients and necessary steps to perform a quantum simulation of
the Hubbard model with ultracold fermionic atoms are described in this chap-
ter. First, the physics of ultracold Fermi gases in harmonic traps and their ma-
nipulation using optical potentials is reviewed. Then, the use of optical lattices
as well as the interaction between ultracold atoms in free space and in the lattice
is analyzed. A central aspect is the microscopic derivation of the Hamiltonian
and all the parameters from first principles [41, 42]. Finally, some numerical
approaches that allow simulation of the system in certain limiting regimes are
presented.

Fermi gases

A corner stone of quantum mechanics is the non-classical behavior of indistin-
guishable particles. In general, the many-body wavefunction of an ensemble of
identical particles always obeys the quantum statistics of the spin of the parti-
cles. This spin statistics theorem by Pauli [43] assigns a well defined symmetry
to the wavefunction. The wavefunction of particles with a bosonic integer spin
is symmetric under the exchange of any two particles while in an ensemble of
fermionic particles with half-integer spin the exchange of any two particles in-
verts the sign of the wavefunction. These statistical rules are not a postulate but
can be derived within the more fundamental framework of relativistic quantum
field theory [44, 45].

The various phenomena arising from the quantum statistics of indistinguish-
able particles are closely related to their wave-like attributes. The de Broglie
relation associates a wavelength λ to a particle with momentum p via Planck’s
constant h:

λ = h/p. (3.1)

As is commonly shown in wave mechanics and optics, phenomena like dif-
fraction, interference and wave-like effects involve scales, particle distances, and
structures d of the order of the wavelength or smaller,

d ≲ λ. (3.2)

In thermal equilibrium a temperature can be associated with the ensemble and
the average momentum of a particle depends only on the mass m and the tem-
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perature T via Boltzmann’s constant kB,

p ∼
√
mkBT. (3.3)

From these estimates, a boundary between classical mechanics and quantum
mechanics can be expected to be located roughly at

mkBT ∼ n2/3h2 (3.4)

where n1/3 = d is the average density of particles in the ensemble. The regime
of quantum mechanics where the left hand side of Equation 3.4 is smaller than
the right hand side, appears unreachable when the variables and constants are
expressed in SI units where h ∼ 10−33 kgm2 s−1. Only low temperatures, light
particles and high densities can allow the observation of quantummechanical ef-
fects in matter. Yet there are common systems that are deep within this regime
of quantum degeneracy: electrons in solids generally resemble such a quantum
degenerate state already at temperatures far above room temperature owing to
their light mass and high density. Due to their large mass, atomic ensembles at
typical densities of liquids and solids, however, are usually not quantum degen-
erate even at low temperatures of a few Kelvin. A notable exception here are
the various quantum liquids and solids of the light isotopes of Helium, 4He and
3He.

When bringing a gaseous atomic ensemble into the regime of quantum de-
generacy the density has to be kept low enough to prevent the aggregation into
molecules and clusters and ultimately to suppress the tendency of the ensem-
ble to form a liquid or solid. The sample is frequently a million times thinner
than air and consequently quantum degeneracy only sets in at extremely cold
temperatures, typically in the range of 10−7K.

The ideal harmonically trapped Fermi gas

To review the thermodynamics of a trapped ideal Fermi gas, we restrict our-
selves to a harmonic trap. This approximation applies to most experimental sit-
uations where the typical kinetic energies of the ultracold atomic gas are kept
much smaller than the trap depth to suppress atom loss. The sample is therefore
confined to a small region around the trap minimum where the potential is a
nearly harmonic function of the three spatial directions x = (x, y,z),

V(x) = 1
2
m (ω2

xx
2 + ω2

yy
2 + ω2

zz
2) . (3.5)

The steepness of the potential in the three directions is parametrized by the
trapping frequencies ωx,y,z. The characteristic mean trapping frequency is ω =
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(ωxωyωz)1/3. The Hamiltonian for the potential of Equation 3.5 is a three-
dimensional harmonic oscillator.

The quantummechanical eigenstates of a single particle are products of Gauss-
Hermite functions with the quantum numbers n = (nx, ny, nz) and the eigenen-
ergies

En = (
1
2
+ nx) h̷ωx + (

1
2
+ ny) h̷ωy + (

1
2
+ nz) h̷ωz. (3.6)

The approximation of a locally constant density (LDA) is invoked [46, 47] to
derive the desired quantities from the many-body system. It assumes that in an
environment around each point x the system can be described as a homogeneous
system in the grand canonical ensemble. The local properties such as density or
specific entropy are then determined via the global parameters temperature T
and chemical potential μ. The chemical potential is shifted to μLDA(x) = μ−V(x)
to account for the spatially varying trapping potential. In most experiments, the
temperature exceeds the energy level spacing of the harmonic oscillator at the
chemical potential by far, and the discrete energies En can be replaced by a
smooth density of states if kBT≫ 1/ρ(μ) with [48]

ρ(E) = E2

2(h̷ω)3
. (3.7)

The probability that a state at an energy E is occupied by a particle is given by
the Fermi distribution function

n(E) = 1
e(E−μ)/kBT + 1

. (3.8)

It is unity for states deep in the Fermi sea with energies much smaller than the
chemical potential and vanishes for energies much above the chemical potential.
The width of the Fermi edge at E ∼ μ is determined by the temperature.

All information about the system is now contained in the grand canonical
potential and its derivatives,

Ω = kBT
∞

∫
0

ρ(E) ln(1 − n(E))dE = − 1
6(h̷ω)3

∞

∫
0

E3

e(E−μ)/kBT + 1
dE. (3.9)

The inverse temperature and the characteristic energy scale of the trap are ab-
breviated by

β = 1
kBT

, A = (h̷ω)−3. (3.10)

The integral that appears in the grand canonical potential belongs to the class
of complete Fermi-Dirac integrals,

Fs(x) =
1

Γ(1 + s)

∞

∫
0

ts

et−x + 1
dt, (3.11)

15



which can be expressed in terms of an analytic continuation of the polylogarithm
Lis(z) = ∑k z

k/ks,

− Lis+1(−z) =
1

Γ(1 + s)

∞

∫
0

ts

et/z + 1
dt. (3.12)

The polylogarithm has a convenient recursive relation between its derivatives:

∂
∂μ

Lis (eμ) = Lis−1 (eμ) . (3.13)

From the grand canonical potential the physical quantities of the system can
be extracted as partial derivatives keeping the other parameters constant [49].
One obtains for the particle number and the entropy:

Ω = −Aβ−4 F3(βμ) = Aβ−4 Li4 (−eβμ) (3.14)

N = − ∂
∂μ
∣
T,ω

Ω =
∞

∫
0

ρ(E)n(E)dE = −Aβ−3 Li3 (−eβμ) (3.15)

S = − ∂
∂T
∣
μ,ω

Ω = Aβ−2μLi3 (−eβμ) − 4Aβ−3 Li4 (−eβμ) (3.16)

Experimentally, it is the particle number rather than the chemical potential
that is adjusted and measured directly. The temperature can be measured di-
rectly by releasing the gas from a harmonic trap and recording and analyzing the
kinetic energy of the atoms in time of flight images. To derive the chemical
potential from the measured atom number and temperature, Equation 3.15 is
solved numerically with respect to μ.

While the entropy is — strictly speaking — an extensive property of the full
system, it is more conveniently expressed as an average entropy per particle,

s = S
N
= −βμ + 4

Li4(−eβμ)
Li3(−eβμ)

. (3.17)

For low temperatures the entropy and the particle number can be expanded
in powers of 1/βμ using the Sommerfeld expansion,

∞

∫
0

En

eβ(E−μ) + 1
dE = μn+1 ( 1

n + 1
+ π2n

6
(βμ)−2 +O(βμ)−4) . (3.18)

The full numerical solutions for s(T/TF) and μ(T/TF)/TF along with the first
non-vanishing corrections to the T = 0 results are shown in Figure 3.1. Close
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Figure 3.1: The relation between temperature T, specific entropy s, and chemical potential
μ in the local density approximation for a degenerate Fermi gas in a three-dimensional
harmonic trap. In the deeply degenerate regime the temperature in units of the Fermi
temperature T/TF and the entropy per particle s = S/N (setting kB = 1) are proportional:
T/TF ≈ s/π2. Already at T/TF = 0. 5, the deviation from this linear term of the Sommer-
feld expansion amounts to more than 20%. At T = 0, the chemical potential μ equals the
Fermi energy. It decreases for finite temperature as the density of states is quadratic and
therefore always higher above the Fermi energy than below it.

to T = 0 the specific entropy is proportional to the temperature in units of the
Fermi temperature with a proportionality factor π2 ≈ 10. The chemical potential
equals the Fermi energy at T = 0 and decreases quadratically with temperature.

Entropy and particle number are both constant under all transformations of
the system that are thermodynamically adiabatic and lossless. They can be re-
garded as invariants and will provide the input to a determination of temperature
and chemical potential when loading the fermionic atoms from the harmonic
trap into an optical lattice.

Optical potentials

In the physics of ultracold atoms and molecules different aspects of their interac-
tion with light have been used in the past. The earliest ideas were probably those
by Letokhov published in 1968 [50, 51] who proposed to use a standing light
wave to narrow the Doppler width of lines in atomic spectra. More recently
and more prominently, the dissipative forces in near resonant electromagnetic
field have allowed to cool and trap atoms at extremely low temperatures [52].
Lately, the conservative forces and potentials of light beams have received a lot
of interest. Here, potentials with a depth proportional to the intensity of the
electromagnetic field and varying shapes are now routinely used to trap and ma-
nipulate quantum gases [53]. The potential landscapes can be shaped on scales
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of the optical wavelength using standard optical elements such as microscopes,
holographic techniques, or optical masks.

Moreover, if several laser beams are brought to interference, the potential due
to their fringe pattern can be treated analogously to the periodic potential of
crystalline lattice structures [54]. With the use of a fermionic quantum gas, a
system resembling an interacting electron gas can be created in a well controlled
way. The parameters of this optical crystal, however, can be adjusted much more
freely and dynamically compared to solid materials. Fundamental models from
solid state theory can be tested and simulated with fermionic atoms in optical
lattices in a fully synthetic fashion.

The dipole force

The first successful experiments to trap atoms in mostly conservative potentials
were performed by Steven Chu and collaborators in 1986 [55]. After cooling
the atomic samples to 240 μK using the dissipative forces in a near resonant
optical molasses setup, several hundred atoms could be trapped in a single tightly
focused Gaussian laser beam that was detuned some 104 linewidths below the
atomic resonance. Far off-resonant dipole traps (FORT) like Chu’s have since
become a workhorse in trapping and cooling atoms. Subsequently, bosonic
alkali atoms were cooled evaporatively to achieve Bose-Einstein condensation
[56] and the regime of quantum degeneracy was explored with fermionic atoms
[57]. Far off-resonant optical traps are independent of the magnetic state of the
atoms and can therefore be employed for atoms in states that are inaccessible
using magnetic traps. The independence from magnetic fields is particularly
welcome since the latter can then be used exclusively to alter and adjust the
interaction between the atoms via magnetic Feshbach resonances. Evaporation
and manipulation in optical traps can also be frequently achieved much more
rapidly than in magnetic traps due to the larger densities and larger scattering
rates.

The effect of a far-detuned monochromatic electromagnetic field on a two-
level atom is most easily explained in the dressed-state picture [58]. Its experi-
mental details and different methods of application are discussed in [53].

Neglecting spontaneous emission of photons, the Hamiltonian of the light-
atom system is written as

H = H0 +Hdip =
h̷
2
( −δL Ω1(x)
Ω1(x) δL

) . (3.19)

It acts on the basis of the two unperturbed states ∣g,N⟩ and ∣e,N − 1⟩ which
correspond to the atom in the ground state with N photons in the light field
and the exited atom with one photon less in the field. All other states with
more or less excitations are discarded in the rotating wave approximation. If the
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Figure 3.2: Energies of the two dressed
atomic states in a Gaussian shaped laser
beam. The laser is far red-detuned by δL <
0.

energy difference between ground and excited state of the atom is denoted as ω0,
the laser beam is detuned by δL so that its frequency becomes ωL = ω0 + δL. The
zero of the energy scale is chosen to lie symmetrically between the two states
resulting in ⟨g,N∣H0 ∣g,N⟩ = −h̷δL/2 and ⟨e,N − 1∣H0 ∣e,N − 1⟩ = +h̷δL/2 for the
unperturbed Hamiltonian. The original states are perturbed and coupled by the
electric dipole-field interaction Hdip = −d ⋅ E(x) with the electric field operator
E(x) and the dipole operator d = er. The atoms typically possess no static dipole
moment but receive an induced one due to the electric field d ∝ E. The off-
diagonal elements of the coupling Hamiltonian are the Rabi energies h̷Ω1(x) =
2∣ ⟨e,N∣Hdip(x) ∣g,N − 1⟩ ∣. The two eigenvectors of the complete Hamiltonian
H are

∣1⟩ = sin θ(x) ∣g,N⟩ + cos θ(x) ∣e,N − 1⟩ (3.20)

∣2⟩ = cos θ(x) ∣g,N⟩ − sin θ(x) ∣e,N − 1⟩ (3.21)

where tan2θ(x) = −Ω1(x)/δL is the mixing angle and

E1,2(x) = ∓h̷Ω(x) = ∓h̷
√
Ω1(x)2 + δ2L (3.22)

are the energies of the two mixed — or dressed — states. The shift relative to
the bare state is the so-called ac-Stark shift or light-shift. The two energies are
schematically plotted in Figure 3.2 for a Gaussian laser beam.

If the laser can be far-detuned such that δL ≫ Ω1, the spontaneous emission
due to the admixture of the upper state can be neglected and the energy shift of
the ground state can be written as a conservative potential proportional to the
light intensity:

Vdip(x) ≈
h̷Ω1(x)2

2δL
= 3πc2Γ
2ω3

0δL
I(x) (3.23)

where Γ = ω3
L/3πε0h̷c3∣ ⟨e∣d ∣g⟩ ∣2 is the decay rate of the excited state, c is the

speed of light and I(x) = 2ε0c∣E(x)∣2 is the local light intensity, and ε0 is the
dielectric constant. The dipole potential thus has the same sign as δL and acts
as an attractive potential for red detuning and as a repulsive potential for blue
detuning.
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Scattering and heating

The treatment of the heating rate due to spontaneous emission is slightly more
complex. If there are no intensity gradients and the condition of far detuning
δL ≫ Ω1 is fulfilled, the scattering rate of an atom is given by [53]:

Γsc(x) ≈
3πc2Γ2

2h̷ω3
0δ

2
L
I(x) (3.24)

which is inversely proportional to the square of the detuning. Spontaneous
emission leads to decoherence and due to the recoil energy to a continously
increasing temperature of the sample. The scaling behavior is frequently ex-
ploited to reduce the heating to negligible values. If the potential depth Vdip is
kept constant by increasing the intensity while the laser is simultaneously farther
detuned, the scattering rate drops as the inverse of the detuning.

Naively one would expect configurations using blue detuned laser light for
trapping of atoms to be preferable over red detuning. The repulsive potential
should lead to less heating since the atoms reside close to the intensity minima
instead of close to the intensity maxima. The scattering rate of Equation 3.24
would then be minimal. A more thorough treatment of the heating in optical
potentials also includes the gradient of the intensity and the electric field and
the resulting micromotion of the atom [59, 58, 60]. The surprising result is that
heating due to large intensities in the maxima and heating due to micromotion
and large field gradients in the minima add up to the same rate independent of
the detuning.

Blue detuned potentials have an additional disadvantage. They have the ten-
dency to photoassociate atoms to molecules. The corresponding release of large
amounts of kinetic energy causes heating and loss of atoms. Red detuned light
can only photoassociate atoms if it is resonant with an allowed transition to a
bound electronically excited state [61, 62]. It is therefore relatively easy to select
a wavelength where no transition is resonant [63]. Blue detuned light, however,
can couple close atom pairs to unbound electronically excited molecular states
which form a continuum. The only way to circumvent this effect is to choose
a wavelength where the Franck-Condon factor of the transition is small [64].

Dipole potentials can be superimposed to create almost arbitrary potentials.
The most common configuration is a set of non-interfering red-detuned trap-
ping beams to confine the atomic sample in space and a set of interfering lattice
beams to impose a periodic potential onto the atoms. If the frequency differ-
ence between two beams is larger than any kinetic energy scale and not resonant
with a two-photon transition to another state, the interference terms need not
be considered and the potentials are simply additive.
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Dipole traps

The experiments described in the subsequent chapters make use of a crossed
beam FORT consisting of two focused Gaussian beams with their waists at the
position of the atoms. Their frequency difference amounts to several 100MHz.
The two beams are orthogonal and propagate horizontally in the x and y direc-
tion respectively and lead to a maximum potential depth of VTx and VTy. Their
shape is given by the 1/e2 intensity waists wh and wv in the horizontal and vertical
direction, respectively. Since the waists are much larger than the wavelength,
the Rayleigh range is much larger than the size of the atomic cloud and the
shape change of the beams along their propagation direction can be neglected.
Together with the gravitational potential the two beams form a potential

VT(x, y,z) = −VTx exp(−2
y2

w2
h

− 2 z
2

w2
v
) −VTy exp(−2

x2

w2
h

− 2 z
2

w2
v
) +mgz. (3.25)

The gravitational potential pulls the atoms downwards and leads to a sag in
their equilibrium position with respect to the intensity maximum. For deep
traps where the sag is small compared to the waist the new equilibrium posi-
tion lies at z0 ≈ −mgw2

v/4(VTx +VTy). Around the equilibrium position x, y,z =
0, 0,z0 the potential can be approximated by a three-dimensional harmonic os-
cillator

VT(x, y,z) ≈
1
2
m (ω2

Txx
2 + ω2

Tyy
2 + ω2

Tz(z − z0)2) (3.26)

with the oscillator frequencies

ω2
Tx =

4VTy exp(−2z20/w2
v)

w2
hm

, (3.27)

ω2
Ty = 4VTx exp(−2z20/w2

v)
w2
hm

, and (3.28)

ω2
Tz =

4(VTx +VTy)(1 − 4z20/w2
v) exp(−2z20/w2

v)
w2
vm

. (3.29)

Optical lattices

If two counterpropagating far-detuned laser beams with the same polarization
are focused onto the atoms, the resulting potential is a cos2-shaped lattice along
the longitudinal propagation direction with the transverse Gaussian envelope of
the original beams. The periodicity of the lattice is determined by the wave-
length via k = 2π/λ. Three sets of pairwise counterpropagating beams produce
a three-dimensional lattice. The potential is simply the sum of the three con-
tributions. To suppress the effects of cross interference between the beams, the
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frequencies of the three pairs are chosen to be sufficiently different.

VL(x, y,z) = −VLx exp(−2
y2 + z2

w2
L
) cos2(kx)

−VLy exp(−2
x2 + z2

w2
L
) cos2(ky)

−VLz exp(−2
x2 + y2

w2
L
) cos2(kz)

(3.30)

Here VL[x,y,z] denotes the attractive potential of each pair.
By tuning the three potential depths independently one can create situations

where the atoms are strongly confined to two dimensional pancakes or even one-
dimensional tubes if the intensities in one or two of the three directions are much
higher than in the others. These reduced geometries are known to yield rich
physics as they strongly modify the single particle density of states. Indeed, the
Berezinskii-Kosterlitz-Thouless transition and the absence of long range order
[65, 66, 67] has been observed in two dimensional Bose gases [68, 69].

If the three pairs of lattice beams are superimposed onto the dipole trap, their
envelope contributes to the trapping frequencies and — in the case of red de-
tuning — increases it. However, the ground state energy of the harmonic oscil-
lator on each site being proportional to the square root of the potential reduces
this increase again [70]. The trapping frequency of a three-dimensional lattice
with VL = VL[x,y,z] is

ω2
L =

4VL − 2
√
ErVL

w2
Lm

, (3.31)

where Er = h̷2k2/2m is the recoil energy, the characteristic energy scale associated
with the scattering of a photon with momentum h̷k by an atom with mass m.
The trapping frequencies of FORT and lattice add in quadrature according to

ω2
[x,y,z] = ω2

T[x,y,z] + ω2
L. (3.32)

The effect of a combination of FORT, lattice and gravity on the single particle
states is depicted in Figure 3.3. In typical experiments with a lattice depth of 5Er
the effect of the lattice potential dominates the structure of the single particle
states at low energies. The states in the lowest band extend over many sites and
are delocalized over the trap. States with higher energy that reach far from the
center of the trap can become localized due to the steep confinement [20, 71].
These localized states are due to a combination of to the increasing localization
of the single particle states of a harmonic oscillator and the band gap in the
lattice. The description of a purely homogeneous lattice without the effect of
the confining potential follows in the next sections.
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Figure 3.3: Single particle states of a 40K atom in a one-dimensional lattice (λ = 1064nm)
with harmonic confinement. Details of the first few states at low energies and the center of
the trap are shown in the bottom row. The left plot corresponds to a VL = 5Er deep lattice
and a Gaussian confinement with ω/2π = 120Hz. The combined potential of lattice and
trap is shown in gray. The probability density of every third state offset by the state’s energy
is shown in red. The band structure can be seen as well as the increasing localization of the
states to the sides of the potential. The middle plot shows a deep VL = 20Er lattice where
all states are localized within a few sites. The right plot demonstrates the situation where
gravity induces a linearly increasing potential which leads to a sag in the trap minimum, a
decreased localization for states at the bottom and an increased localization for top states.

23



The Mathieu lattice

The Schrödinger equation for the wavefunction φ of a particle with mass m in a
three-dimensional homogeneous lattice with a potential depth per direction of
VL is

Eφ = (− h̷
2

2m
∇2 +V)φ, where (3.33)

V = VL(cos2(kx) + cos2(ky) + cos2(kz)). (3.34)

The differential equation is separable in the three spatial directions and can be
brought into the form of the Mathieu equation which has many applications in
physics and mathematics [72, 73]:

x̃, ỹ, z̃ = kx, ky, kz (3.35)

q = VL/4Er (3.36)

v = (E − 1
2
VL) /Er (3.37)

−d
2φ
dx̃2
+ 2v cos(2x̃)φ = aφ, (3.38)

where the recoil energy Er = h̷2k2/2m is the characteristic energy scale of the
problem. The solutions of the Mathieu equation form energy bands that are
separated by band gaps.

The lowest energy of each band is designated by an(v) and the top energy of
each band by bn+1(v). All energies within each band are eigenenergies and are
shown in Figure 3.4 as shaded areas. In a one-dimensional lattice a true band
gap emerges at any finite lattice depth. In a three-dimensional band structure,
however, the maximum energy in the lowest band is 3b1(v) while the lowest
energy in the first exited band is 2a0(v)+ a1(v) and the two lowest band overlap
if v < 0. 559. The condition for a true band gap in 3D is therefore VL > 2. 24Er.
Scattering between two particles could also transfer one scattering partner across
the band gap into a higher band. This interband scattering is energetically for-
bidden as soon as the maximum energy of two paticles in the lowest band 6b1(v)
is lower than the minimum energy of two particles with one of them in a higher
band, 3a0(v) + [2a0(v) + a1(v)], which is the case for VL > 3. 74Er [74].

Band structure

The spatially periodic potential of a far-detuned standing light wave calls for the
treatment of the atom’s Hamiltonian in terms of Bloch-waves and band struc-
tures. Here the case of a general non-separable, two-dimensional, monochro-
matic lattice potential is considered. This configuration occurs in experiments
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Figure 3.4: Energy bands and gaps of the Mathieu lattice. The one dimensional cosine
shaped lattice potential of Equation 3.34 has solutions with real energy in the gray shaded
areas. The lattice potential with depth VL leads to a splitting of the initially continuous free
space energy spectrum into bands. The dashed line at VL = 2. 24Er marks the minimum
lattice depth necessary to develop a true band gap between the lowest two bands in a
three-dimensional lattice. The dotted line at VL = 3. 74Er is the minimum depth required
to prevent two-body scattering in the lowest band from promoting one of the scattering
partners to a higher band.

where two beams from different orthogonal directions interfere and result in a
diagonal standing wave.

V = Vx cos2(kx′) +Vy cos2(ky′)

+V′x cos2(kx′ + θ/2)

+ 2
√
VxVy cosφ cos(kx′) cos(ky′).

(3.39)

Vx and Vy are the potentials of two standing waves in the x′ and y′ directions,
respectively. Their cross interference term ∝ 2

√
VxVy depends on the phase

relation between the four beams, φ. Additionally, a standing wave V′x along the
x′ direction is included. It has a spatial offset θ/2k and is made non interfering

25



with the other two standing waves either by choosing a large frequency offset
or by adjusting its polarization orthogonally to the other beams.

One can now transform into a coordinate system

x = x′ + y′

y = y′ − x′
(3.40)

that is rotated by 90° and enlarged by a factor of
√
2. Furthermore one can drop

all spatially constant terms in the lattice potential as these only correspond to an
energy offset. Employing the trigonometric identity 2 cos(a + b) cos(a − b) =
cos(2a) + cos(2b) to decompose the interference term ∝

√
VxVy leads to:

2V = Vx cos(kx − ky) +Vy cos(kx + ky)
+V′x cos(kx − ky + θ)

+ 2
√
VxVy cosφ(cos(kx) + cos(ky)).

(3.41)

Decomposing the potential into its Fourier components, the potential in mo-
mentum space becomes:

4Ṽ = (Vx +V′xe±iθ)δ±k,∓k
+Vyδ±k,±k

+ 2
√
VxVy cosφ(δ±k,0 + δ0,±k),

(3.42)

where δa,b = δ(px − a)δ(py − b) is the Dirac delta function.
The potential Ṽ therefore couples any free-space state with momentum p =

(px, py) to the 16 other states, (px ± k, py), (px, py ± k), (px ± k, py ± k), and (px ±
k, py ∓ k). The single particle Hamiltonian in momentum space thus consists of
the diagonal elements p′2/2m = p2/m and the 16 off-diagonal elements of Ṽ:

H =∑
p

⎛
⎝
p2

m
c†p +

1
4
((Vx +V′xe±iθ)c†p±(k,−k) +Vyc

†
p±(k,k))

+ 1
2

√
VxVy cosφ(c†p±(k,0) + c

†
p±(0,k))

⎞
⎠
cp.

(3.43)

The summation is performed over a discrete set of momenta corresponding to
a finite lattice.

The momentum p (setting h̷ = 1 here and in the following) is now writ-
ten as the sum of an integer number of lattice momenta jk = (jxk, jyk) and the
fractional part q = (qx, qy) with ∣qx∣, ∣qy∣ < k/2: p = jk + q. The Hamiltonian is
then block diagonal and its eigenvalue problem can be solved in each q sector
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independently. This description is equivalent to the Bloch theorem that states
that any eigenstate φ(x, y) of a 2π/k-periodic Hamiltonian H is the product of
a 2π/k-periodic function u(x, y) and a plane wave eiqxx+iqyy carrying the remain-
ing fractional momentum component. Since q is unique up to a multiple of
k it is the the so-called quasimomentum of the state in the lattice. Due to its
periodicity, u can be written as a Fourier series:

unq(x, y) = unq(x + 2π/k, y) = unq(x, y + 2π/k)

=∑
j
vnqje

ikj⋅x. (3.44)

With
φnq(x, y) = e

iq⋅xunq(x, y), (3.45)

the eigenvalue problem restricted to a q subspace is

Hφnq = Enqφnq (3.46)

which is solved to obtain Enq and the eigenvectors vnqj. The band index n
enumerates the solutions for a given q with increasing Enq.

To visualize and discuss the eigenstates of a lattice one frequently resorts to
a diagram of the band structure where the energy Enq is shown as a function
of q as in Figure 3.5. The detailed spatial structure of the individual wavefunc-
tions φnq(x, y), however, often does not convey much additional information.
Their properties can be deduced from the quasimomentum which determines
the fractional momentum, the proximity to states in other bands which deter-
mines the amount of admixture of higher lattice momenta and the band index
which determines the spatial symmetry of the wavefunction.

In the leftmost panel of Figure 3.5 the situation of a regular λ/2 lattice with
V′x = 5Er, Vx = 0, and Vy = 5Er is shown in the view of the smaller and rotated
Brillouin zone. The eigenenergies in the first few Bloch bands are shown along
a triangular path through the Brillouin zone, see Figure 3.6. One observes that
the lowest two bands are degenerate along the complete edge of the Brillouin
zone, from the X point to the M point. In the enlarged and rotated Brillouin
zone of the original coordinates, there is just one band while in the smaller
Brillouin zone the triangular corners are folded back in such a way that for
example the state with q′ = (k, k) in the lowest band in the original coordinates
of the large Brillouin zone is the same as the q = (0, 0) state in the second
band of the small zone. The nearly complete symmetry between the lowest
two bands around the line of degeneracy at the zone edge is also known as the
perfect nesting condition where Eq = −Eq+(k,k) up to a constant: the dispersion
relation of particles in the upper band and holes in the filled lower band is the
same.
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Figure 3.5: Band structure of a two-dimensional lattice. The eigenenergies along a trian-
gular path (Figure 3.6) through the Brillouin zone are plotted for the lattice potential of
Equation 3.39. The parameters of the potential for all four panels are Vy = 5Er, φ = 0,
θ = π, while from left to right the potential of the non-interfering x lattice V′x is succes-
sively transferred to the interfering Vx lattice. The density of states is shown in on the
right of each band structure diagram.

The lattice spatial periodicity doubles and the degeneracy between the two
lowest bands is lifted when the potential V′x is decreased while the interfering
potential Vx is increased, second to fourth plot in Figure 3.5. Increasing Vx leads
to a separation of the upper half of the lowest band which then merges into the
manifold of excited orbitals.

The density of states of a two dimensional lattice frequently exhibits a van
Hove singularity or divergence at the center of the band. This singularity
stems from the convolution of the two singularities at the band edges of a one-
dimensional lattice. In three dimensions the singularities convolve into a plateau
in the center of the band.

In a three-dimensional configuration each (qx, qy) has an additional band
structure in z direction leading to multiple energy bands around each (qx, qy)
quasimomentum solution. In a shallow lattice each of these z bands is wide and
the band gaps are small leading to an overlap of the final x, y,z bands. Interaction
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.
.Γ

.X

.M Figure 3.6: Triangular trace through the
Brillouin zone. The path starts at the Γ
point at q = (0, 0) in the center, passes
through the midpoint of the x edge at
(k/2, 0) (the X point), proceeds along that
edge to M point in the (k/2, k/2) corner,
and diagonally back to Γ.

between particles can then mix the x, y bands more easily. In order to protect
the band gaps in the x, y plane, deep lattices in z direction are required.

Wannier functions

A new basis is constructed for each band to link the description in terms of
delocalized quasimomentum states to localized states that are suitable for the site
occupation basis of the Hubbard model. The delocalized wavefunctions φnq(x)
of a given band n are transformed into a set of localized Wannier wavefunctions
wnj(x):

wnj(x) =
1
k

k/2

∬
−k/2

φnq(x)e
−iq⋅(x−xj) dqxdqy, (3.47)

φnq(x) =
1
k
∑
jx,jy

wnj(x)eiq⋅(x−xj). (3.48)

The Wannier functions are ortho-normal by construction,

∞

∬
−∞

wnj(x, y)w∗nl(x, y)dxdy = δjx lx δjy ly , (3.49)

and are uniquely identified by the site they are localized at,

wnj(x) = wn(x − xj). (3.50)

It is easily overlooked that this definition is ambiguous as long as the arbitrary
phase of each of the eigenfunctions φnq is not determined in the summation.
The wnj are maximally localized if and only if they are symmetric in the even
and antisymmetric in the odd bands and decay exponentially. In one dimension
this can be enforced by choosing the vnqj to be all real for the bands where n is
even and all imaginary for the odd bands. Additionally, they need to be summed
as a smooth function of q [75, 76]. TheWannier functions of the first three bands
of a one-dimensional lattice are shown in Figure 3.7 for different lattice depths.
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Figure 3.7: The maximally localized Wannier wavefunctions for the first three bands n =
0, 1, 2 (solid, dashed, dotted) and lattice depths of VL = 1, 5, 10ER (top to bottom) of
a one-dimensional sinusoidal lattice. In the three graphs the probability density of the
Wannier functions wn(x)w∗n (x) is depicted as a function of the distance from their origin.
The Wannier functions have n + 1 zeros per site according to their symmetry and band
index and show an exponential decay with increasing distance from their origin. The
off-site lobes of the wavefunction are not centered on lattice sites but shifted outwards.
In the higher bands the wavefunctions are increasingly delocalized and are also much less
affected by changes of the lattice depth.
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Tunneling

The tunneling in an optical lattice can now be derived in position space in
second quantization. Using the fermionic field operators ψσ(x) the Hamiltonian
for kinetic energy and lattice potential V(x) becomes:

Hkin = ∑
σ=↑,↓
∫ ψ†

σ(x)(−
h̷2

2m
∇2 +V(x)) ψσ(x)dx (3.51)

The field operators ψσ(x) can be expanded in terms of the Wannier functions
of the Bloch bands:

ψσ(x) =∑
nj
wnj(x)cσnj (3.52)

The tunneling by j sites in the band with index n can be parametrized by the
tunneling matrix element tnj,

tnj = −∫ w∗n0(x)(−
h̷2

2m
∇2 +V(x))wnj(x)dx. (3.53)

The Wannier functions are Fourier integrals over the Bloch functions of a band.
Again the Bloch functions φnq(x) are the eigenvectors of the Hamiltonian H =
−h̷2∇2/2m+V(x)with energy Enq. The tunneling matrix element tnj is therefore
simply the Fourier transform of the band structure evaluated at the tunneling
vector j:

tnj = −
1
k2

k/2

∬
−k/2

Enqe
iq⋅j dqxdqy. (3.54)

From the Fourier transform one can readily conclude that tunneling is small in
flat bands and that the tunneling between neighboring sites where j = (±1, 0) or
j = (0,±1) dominates if the band is mostly cosine shaped. In the case of a purely
cosine shaped band in one dimension, the nearest neighbor tunneling matrix
element is simply a quarter of the bandwidth: a factor of two from the peak-
to-peak value of the cosine and a another factor of two from the decomposition
cos q = 1

2(exp(iq) + exp(−iq)).
If the temperature, interaction energy, and chemical potential are much

smaller than the energy of the second Bloch band, only the lowest Bloch band
is relevant. If additionally, the band is sufficiently cosine shaped, as is the case
for deep lattices, only the tunneling between adjacent sites in the lowest band
remains and one can take t = t0j with j ∈ [(±1, 0), (0,±1)].

The band structure and the tunneling need to be viewed together with the
interaction between the atoms which both depend on the lattice depth. The
ratio between on-site interaction energy and tunneling is the Hubbard parameter
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cal lattice. The characteristic length ζ cor-
responds to the radius where the trapping
potential V(r) equals half the bandwidth 6t.

which will be analyzed in a later section. This Hubbard parameter in the lowest
band is shown for a broad range of lattice depths in Figure 3.14.

The one-dimensional dispersion relation Enq can be used to assign effective
masses to the quasimomentum states q by locally approximating the dispersion
as a parabola. In analogy to the case of free particles where

E(p) = p2

2m
, (3.55)

one defines in the lattice

m∗n (q) =
h̷2

∂2

∂q2En(q)
. (3.56)

Since narrow and flat bands have a smaller curvature compared to the free space
dispersion, the effective mass is increased leading to slower dynamics.

Characteristic filling

In a trapped cold atom system, the inhomogeneity of the trapping potential
introduces a new energy scale mω2d2/2 where d = λ/2 is the distance between
two lattice sites. It can be expected that for systems where the atom number and
the number of occupied lattice sites are large, a scaling law exists. The quantity
denoting the size of the system, namely the total atom number N, should be
expressed in terms of a characteristic atom numberN0 so that their ratio uniquely
identifies the physics in a trapped system independent of the absolute values of
confinement, bandwidth, and chemical potential [77, 78].

To construct this scaling in three dimensions, a characteristic length scale ζ is
defined as the distance from the center of the cloud where the trapping potential
energy equals half the bandwidth of the lowest Bloch band.

1
2
mω2ζ2d2 = 6t. (3.57)

32



This construction is shown in Figure 3.8. A sphere with a radius of ζ contains
N0 sites,

N0 =
4π
3

ζ3 = 4π
3
( 12t
mω2d2

)
3/2
= 25
√
3π ( t

mω2d2
)
3/2

(3.58)

Distributing N0 atoms per spin component on these N0 sites yields — at zero
temperature and no interactions — a density of close to one particle per site and
spin in the center of the trap. The characteristic density is then defined as

ρ = N
2N0

(3.59)

where N is the total particle number of atoms in both spin components in a
balanced spin mixture. A characteristic density ρ = 1 closely corresponds to
filling the lowest Bloch band at T = 0.

Under the local density assumption of a large number of sites, three quantities,
namely the temperature in units of the tunneling T/t, the interaction in units
of the half band width U/6t, and the characteristic density ρ are sufficient to
characterize the system. They fully determine the different phases that emerge
in each trap region as well as their relative size.

Slight variations of this definition can be found in the literature. The original
definition was coined with one-dimensional systems in mind and leads to a
different scaling in bandwidth and confinement. Other authors do not use a
characteristic density but rather a characteristic trapping potential strength [64]
or omit the factor of 4π/3 [79].

The noninteracting trapped system

Having derived the formalism to describe the harmonic confinement in a dipole
trap as well as the tunneling in the lowest band of the lattice, the Hubbard
Hamiltonian in a trap without interaction can be written as:

HU=0 = −t ∑
σ,⟨ij⟩

c†iσ cjσ +∑
i
Vi(ni↑ + ni↓). (3.60)

This Hamiltonian can be solved numerically. It is separable in the three spatial
directions and the many body state can be constructed from the single particle
wavefunctions [80].

The results of such a complete, exact diagonalization of systems with up to
N = 600 × 103 atoms on 1003 sites are shown in Figure 3.9. The double oc-
cupancy defined as the fraction of atoms residing on doubly occupied sites is
chosen as an observable. This quantity is experimentally well accessible and can
be measured with high accuracy both in the regime of large filling and cor-
respondingly large double occupancy as well as small fillings and small double
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Figure 3.9: Double occupancy of a non-interacting harmonically trapped Fermi gas in an
optical lattice. In universal units, the double occupancy depends only on the characteristic
filling ρ = N/2N0 and temperature T/TF. Typical experimental parameters for 40K are: a
lattice with a spacing of d = 532nm, a lattice depth of 7Er, a tunneling rate of t/h = 174Hz
and a mean trapping frequency of ω/2π = 70. 2Hz. The characteristic atom number is
then N0 ≈ 31 × 103.

occupancy. Since the double occupancy depends sensitively on temperature in
many experimentally relevant regimes, it can be used as a thermometer for the
temperature in the lattice which is otherwise difficult to deduce.

Interactions between ultracold atoms

The behavior of an ideal non-interacting quantum gas in an optical lattice is fully
described by the single particle states and their quantum statistics. The phase-
space distribution is obtained by filling the single particle states according to
temperature and chemical potential. Intriguing complex quantum many-body
states appear only by virtue of the interaction between the particles which leads
to nontrivial correlations. In cold atomic systems these interactions can be pre-
cisely controlled by accessing Feshbach scattering resonances. These resonances
were originally developed as a description for nuclear interactions [81]. They
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teratomic scattering potential. In the limit
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and higher channels. Only s-wave scatter-
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are now routinely used to prepare and explore interacting cold atomic systems
[82, 83, 84, 85, 86]. Recently, the use of Feshbach resonances has also enabled
ultracold chemistry with full control over the quantum state using heteronuclear
alkali molecules in the ground state [87].

Scattering at low energies

The interaction of two atoms at low energies is a textbook example of pure
quantum mechanical scattering theory [88]. In dilute atomic samples it suffices
to describe the two-body interaction in the spherically symmetric interaction
potential V(r). The two-body scattering wavefunction in spherical coordinates
(r, θ,φ) is expressed in terms of the Legendre polynomials Pl(cos θ) of order
l ∈ {0, 1, . . .} and the radial wavefunction ul(r)/r. The Schrödinger equation for
the radial part of the scattering problem becomes

h̷2

2m
( ∂

2

∂r2
+ k2) ul(r) = Veff(r). (3.61)

Here the potential V(r) is replaced by an effective potential

Veff(r) = V(r) +
h̷2l2(l + 1)

2mr2
(3.62)

which includes a centrifugal barrier for the higher angular momenta l > 0.
The barrier suppresses these channels at low energies k→ 0 (Figure 3.10) and,

at sufficiently low temperatures, only the isotropic s-wave scattering remains
relevant. Additionally, for indistinguishable scattering partners, the symmetry
of the scattering wavefunctions needs to be considered. Fermions of equal spin
can only assume a symmetric spin wavefunction. The spatial wavefunction must
therefore be antisymmetric which is the case for all odd angular momenta l: spin
polarized Fermions do not interact in s-wave collisions at low temperatures.
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For l = 0 and large interatomic distances r ≫ r0 much larger than the range
r0 of the potential V(r), Equation 3.61 can be simplified to read u′′0 (r) = 0 and
therefore u0(r) ∝ r − a. Here a denotes the s-wave scattering length which
determines the intercept of the asymptotic scattering wavefunction.

The s-wave scattering amplitude [89, 90] for small energies is f0(k) = −1/(a
−1+

ik +O(k2)). Using the optical theorem one obtains from the scattering length
a scattering cross section

σ0 =
4π
k
Im f0(k) =

4πa2

1 + a2k2
. (3.63)

Interatomic potentials

The notion of ultracold atomic gases is a thermodynamic paradox since, already at
room temperature, the equilibrium phase for an alkali metal is the solid phase.
Only the extremely low densities prevent three-body and higher order recom-
binative processes from forming clusters and releasing the binding energy in
the form of kinetic energy [91]. The distances in a fermionic atomic quan-
tum gas are on the order of the inverse Fermi wavevector k−1F and typically sev-
eral hundred nm. At these large distances the interaction between two neutral
alkali atoms is attractive and of the van der Waals or London dispersion type
V(r) = −C6/r6 with a characteristic length scale of β6 = (C6m/h̷2)1/4. In typical
experiments one can assume kFβ6 ≪ 1 [47]. The two-body scattering state is
then determined solely by the behavior at large distances and the many-body
behavior is only determined by the scattering amplitude [92]. Only for very
steep potentials such as deep optical lattices with a short site distance, the scat-
tering is not described anymore by this zero-range limit where ∣a−1 + ik∣/k2 is
much smaller then the effective range of the interaction potential. If kFβ6 ≪ 1
holds, the generally very complicated interatomic potential can be replaced by
a zero-range pseudopotential operator [49]

Vpseudo(r) = gδ(r)
∂
∂r
r (3.64)

where ∂
∂r r regularizes the potential by removing 1/r divergences of the wave-

function for r → 0. The interaction parameter g is directly proportional to the
scattering length

g = 4πh̷2

m
a. (3.65)

The pseudopotential allows treatment in the Born approximation and allows the
interaction in many-body systems to be described as a mean field if kF∣a∣≪ 1.
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Feshbach resonances

Feshbach resonances have become a workhorse in experiments with ultracold
atoms for several reasons. They are relatively easy to use as they can be tuned
externally via a magnetic field [93, 85], using radio frequency [94] techniques, or
by optical means [95, 96, 61]. Since many of them can be accessed in a nearly
loss-free fashion, they provide intriguing adiabatic paths between completely
different quantum many-body systems. Their use has for example enabled the
observation of the crossover between BCS and BEC type superfluidity where
attractively interacting Fermions are adiabatically and continuously converted
into repulsively interacting Bosons [97, 98, 99].

In optical lattices, Feshbach resonances are frequently used to control the on-
site interaction U and consequently the Hubbard parameter U/6t. Furthermore,
the conversion of atom pairs or double occupancies into molecules either adia-
batically via magnetic field sweeps or quasi-instantaneously via radio frequency
(rf) pulses is used as a probe for the density correlations of the many body state
[100].

Feshbach resonances arise from the electronic spin-spin coupling during the
collision of two atoms, as shown in Figure 3.11. Two atoms in the hyperfine
states ∣F1,mF1⟩ and ∣F2,mF2⟩ collide in the so-called open channel. Here F is
the total hyperfine angular momentum and mF1,2 denotes its projection onto the
magnetic field axis. The incoming channel is open since the collision energy is
slightly above the continuum threshold. The spin-spin coupling leads to an ad-
mixture of other states that conserve the total spinMF = mF1+mF2. Theses other
state configurations ∣F′1,m′F1⟩, ∣F′2,m′F2⟩ generally can have different interaction
potentials and also a differing magnetic moment Δμ. The scattering becomes
resonant if the magnetic field is adjusted to a value Bres where some bound state
in the ∣F′1,m′F1⟩, ∣F′2,m′F2⟩ interatomic potential — the closed channel — coin-
cides in energy with the collision state near the continuum threshold of the open
channel. The coupling leads to a virtual population of this bound state in the
closed channel. The detuning from this resonance is given by h̷δ = Δμ(B−Bres).

The emergence or disappearance of a bound state in a scattering problem
generally leads to a divergence of the scattering length around the point where
the bound state joins the continuum of unbound states. The same effect is
known from the basic single channel scattering problem of an attractive well
(Figure 3.12).

In the proximity of an s-wave scattering resonance, the magnetic field depen-
dence of the scattering length is generically described by [83, 101]

a(B) = abg (1 −
ΔB

B − B0
) , (3.66)
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Figure 3.11: Feshbach resonance due to coupling between two collisional channels. The
differing magnetic moments of the closed and open channel allow the energies to be tuned
relative to each other. For vanishing detuning h̷δ → 0 this leads to resonant coupling
between atoms colliding in the open channel and the bound state in the closed channel.
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Figure 3.12: Positive and negative scattering lengths in an attractive potential. The s-wave
scattering length a is the intercept of the radial scattering wavefunction u(r) which for
large distances behaves as u(r) ∝ r − a. As the attractive potential gets deeper, a → −∞. If
a new bound state lies just at the threshold of zero binding energy, the scattering length
diverges. Approaching the resonance from the other side where the binding strength is
decreased by an increasingly shallow potential, a→∞.

where abg is the background scattering length far away from the resonance. It is
determined by the highest lying vibrational state of the open channel interaction
potential. The position of the resonance B0 does not exactly coincide with the
crossing of the bound state Bres and the dissociation threshold [102]. It is shifted
from Bres due to the significant coupling to the highest lying bound state of the
entrance channel potential. The width of the resonance ΔB is determined by
the effective range of the scattering potential reff and the background scattering
length via ΔB = 2h̷2/(mreffabgΔμ) [47].
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The resonances are classified in broad and narrow Feshbach resonances. Reso-
nances are called broad if the maximum admixture of the closed channel bound
state is kept low by the proximity to the anticrossing with the highest bound
state in the entrance channel. If the maximum admixture of the closed channel
is significant, the resonance is narrow. In terms of length scales a resonance is
considered wide if the effective range of the interaction potential is comparable
or smaller than the true van der Waals length scale β6. Broad resonances can
be successfully modeled using a single-channel approach, narrow resonances re-
quire two- [84] or even multi-channel models [103]. Wide resonances are gen-
erally preferable from an experimental viewpoint as they offer easier magnetic
field control and simple theoretical modeling.

The region around a Feshbach resonance allows access to several different
regimes with fascinating physics: On the side of negative scattering length no
two-body bound state exists without confinement, but pairs can form via the
BCS mechanism and at low temperatures the system of fermionic atoms ex-
hibits superfluidity [104]. By sweeping the magnetic field in such a way that the
scattering length diverges to −∞, the scattering pairs are adiabatically bound to
molecules. In the regime where a→ ±∞ the character of the superfluidity cor-
responds to resonance superfluidity [105]. The region where ∣kFa∣ ≫ 1 is espe-
cially interesting as it corresponds to a crossover phase where the only remain-
ing length scale is the interatomic distance or equivalently the inverse Fermi
momentum, as can be seen in the cross section of Equation 3.63. In this uni-
tarity limit the system behaves in a thermodynamically universal way [106] and
can be modeled analogously to neutron stars or quark-gluon plasmas. On the
side of positive scattering length fermionic atoms are weakly bound to bosonic
molecules and can Bose condense. The system then exhibits BEC type super-
fluidity. Fermionic atoms in this bound state are very stable as the size of the
Feshbach molecule is large and the constituents see each other as independent
fermions which suppresses three-body decay by Pauli blocking [107]. Close to
the resonance on the BEC side the binding energy of the molecule is given by
the Wigner formula [88]

Eb = −
h̷2

ma2
. (3.67)

Far away from the resonance, for smaller values of a, the long-range van derWaals
tail and the anticrossing with the highest bound state of the entrance channel
need to be taken into account [101, 108].

Interactions in optical lattices

At low temperatures and correspondingly low energies only the interatomic s-
wave scattering contributes significantly to the interaction and it can be modeled
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as a contact pseudopotential, Equation 3.64, which is proportional to the s-
wave scattering length of the atoms. In an optical lattice, the pseudopotential
approximation requires that harmonic oscillator length on a lattice site aho =√
h̷/mωsite is much smaller than the van der Waals length β6. The wavefunction

in very deep optical lattices can become confined to small length scales where
the requirements for the asymptotic regime are violated [109].

Using the expansion of the field operator in terms of Wannier functions of
Equation 3.52, the many-body Hamiltonian for the interaction W(x) of two
particles in an optical lattice becomes:

Hint =
g
2 ∫

ψ†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)dx

= g
2
∑
m,n,o,p
i,j,k,l

c†↑mic
†
↓njc↓okc↑pl ∫ w∗mi(x)w∗nj(x)wok(x)wpl(x)dx.

(3.68)

If the off-site interaction terms where i, j,k, l are not all equal are small com-
pared to the other energy scales in the model, they can be neglected. The
remaining terms are all on-site and can be written as

Hint,on-site = ∑
m,n,o,p

i

Umnopc
†
↑mic

†
↓nic↓oic↑pi (3.69)

Umnop = g
2 ∫

w∗m(x)w∗n (x)wo(x)wp(x)dx. (3.70)

The interaction terms can be grouped in two classes: those that are diagonal in
the basis of the Wannier functions in different Bloch bands Umnnm and those that
couple different bands Umnop with m ≠ p or n ≠ o.

If the Wannier functions can be approximated as 3D harmonic oscillator lev-
els, the problem of two interacting particles can be solved analytically for a regu-
larized contact interaction pseudopotential [110]. The resulting coupling of the
harmonic oscillator levels (Figure 3.13) has also been observed experimentally
[17].

All terms apart from U0000 can be omitted for scattering lengths much smaller
than the harmonic oscillator length, and the on-site interaction becomes pro-
portional to the overlap integral in the lowest band. Setting U = U0000, the
dominant term of Equation 3.70 represents the interaction term in the Hub-
bard Hamiltonian.

Hint =
g
2 ∫

w0(x)4 dx∑
i
c†↑ic

†
↓ic↓ic↑i

= U∑
i
n↑in↓i

(3.71)
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Figure 3.13: Energy levels of two interacting particles in a harmonic oscillator (solid).
While for non-interacting particles the energies are located at 2n+ 3/2 (dashed), on reso-
nance they become 2n+1/2 (dotted), on every resonance crossing the harmonic oscillators
levels are adiabatically shifted to their adjacent levels. Below the lowest oscillator level, a
true bound state exists which is independent of the confinement.

We furthermore take the nearest neighbor tunneling t = t0 (1,0) from Equa-
tion 3.53 as the kinetic energy term and obtain the single band Hubbard model.

Hkin = t ∑
⟨ij⟩,σ

c†σjc
†
σi Hint = U∑

i
n↑in↓i (3.72)

H = Hkin +Hint (3.73)

The typical Hubbard parameters U/6t and the limits of the applicability [111,
112, 3] of the assumptions that have been made so far are analyzed in Figure 3.14.

In order to describe the system for large scattering lengths where the assump-
tion of negligible coupling to higher bands ceases to be correct, different ap-
proaches have been proposed, see Figure 3.15. One can expand the optical lat-
tice potential around the site’s center and treat the two-body scattering problem
in a purely harmonic oscillator [110]. This method already fails to describe the
regime of low scattering length where the single-band U would still be correct
since the Wannier function of the lowest band is significantly larger than the
analytic harmonic oscillator obtained from the expansion. The approach must
therefore systematically overestimate the interaction energy. If one takes the dis-
tance of the two lowest bands to be the harmonic oscillator energy, the low-a
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Figure 3.14: Applying the Hubbard model to ultracold atoms in an optical lattice. The
plot shows the contours of constant Hubbard parameter U/6t versus the experimental
parameters of lattice depth V and scattering length a. The scattering length is given in
units of the site distance d (bottom axis) and the Bohr radius a0 (top). The regime where
the straight forward description in terms of only the single-band tunneling t and single-
band on-site interaction U ceases to be applicable is shaded in gray. Here one of several
parasitic processes may become relevant. If U > 0. 1Δ (solid line), where Δ is the band gap,
the onsite interaction can possibly cause a coupling to the Wannier functions in higher
bands. If td > 0. 1t (dashed), then density-assisted hopping which corresponds to terms
such as tdc

†
↑ic

†
↓i+1c↓ic↑i plays a role. The area with U1 > 0. 1t (bounded by the dotted line)

corresponds to the regime where direct nearest neighbor interaction becomes sizable.
Finally, the bandwidth should be much smaller than the band gap 12t < 0. 1Δ (dash-dotted
line) to prevent thermal excitations to higher bands.

behavior is correctly reproduced and for larger scattering lengths, one observes
a reduction of the interaction energy due to the coupling to higher bands. One
can also diagonalize the full on-site interaction Hamiltonian of Equation 3.70 for
two particles. This particular approach reproduces the low-a behavior and leads
to a more drastic reduction of the interaction energy compared to the harmonic
oscillator approach due to the flatter potential for higher energies. Coming from
another angle, one can also choose U in such a way that the low-energy scatter-
ing behavior instead of the bound states are correctly reproduced [42]. Here the
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Figure 3.15: Comparison of different large-a approaches. For a V = 12Er lattice with a
site spacing of d = λ/2 = 532nm the on-site interaction energy for 40K is calculated using
different methods. The solid line shows the widely used approximation U = U0000. The
dash-dotted and dotted lines show the result for the harmonic oscillator as in Figure 3.13,
once for the analytic oscillator frequency (upper dash-dotted) and once for the band sep-
aration as oscillator frequency (dotted). The dashed line is a numeric diagonalization of
the interaction in the Wannier basis and the lower dash-dotted curve represents a recent
result for the low-energy scattering behavior in the Hubbard model.

reduction of the interaction energy is most severe but the high-energy bound
state can not be treated.

The high temperature series

The atomic limit

One of the cases where the Hubbard model can be solved perturbatively is the
limit of high temperatures T ≫ t [113, 114, 115]. In this limit, a good starting
point is the description of a single site in the grand canonical ensemble. The
site is embedded in a bath that determines a temperature T = 1/β (setting kB = 1)
and a chemical potential μ. The tunneling is the process that connects a site to
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its neighbors and serves to exchange energy (T) and particles (μ). It mediates
coherence over several lattice sites only at low temperatures. With increasing
temperature, the effect of the coherent tunneling is limited to small distances
and a description in terms of local processes is valid.

The high temperature series is an expansion around the atomic limit t = 0 in
powers of t/T. From the grand canonical partition function for the Hubbard
Hamiltonian H

Z = Trexp(−βH), (3.74)

the grand canonical potential Ω is obtained:

Ω = − ln(Z)
β

. (3.75)

It is derived to yields thermodynamic quantities such as the particle number N,
the entropy S, the double occupancy D, and the energy E:

N = −∂Ω
∂μ

, S = − ∂Ω
∂T

, D = ∂Ω
∂U

, E = Ω +TS + μN. (3.76)

For a single isolated site the Hubbard Hamiltonian reduces to H0 = Un↑n↓ −
μ(n↑ + n↓) and the partition function is the trace over the Boltzmann factors of
the four possible states ∣0⟩ , ∣↑⟩ , ∣↓⟩, and ∣↑↓⟩:

Z0 = 1 + 2 exp(βμ) + exp(2βμ − βU)

= 1 + 2z + z2u
(3.77)

with the fugacity z = exp(βμ) and u = exp(−βU). The extension to k sites in
the atomic limit with H0 = ∑iUni↑ni↓ +∑i μ(ni↑ + ni↓) can be done directly: the
partition function becomes Zk

0 and the potential is kΩ0 = −k lnZ0/β.

The series expansion

The tunneling termW = t∑⟨ij⟩ c
†
j ci prevents this factorization but it can be treated

perturbatively for 0 < t≪ T by writing [49]

Z = Trexp(−βH0 − βW)

= Z0 +Z0

∞
∑
j=1
(−1)j

β

∫
0

τ1

∫
0

⋯
τj−1

∫
0

⟨W̃(τ1)W̃(τ2)⋯W̃(τj)⟩0 dτj⋯dτ2 dτ1.
(3.78)

Here the interaction representation for W is used,

W̃(τ) = exp(τH0)W exp(−τH0), (3.79)
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and the expectation value of an operator A is evaluated in the unperturbed
Hamiltonian,

⟨A⟩0 = Tr[exp(−βH0)A]/Z0. (3.80)

By applying the expansion of Equation 3.78 in the grand canonical potential of
Equation 3.75, the perturbative contributions to Ω can be grouped by powers
of βt/Z0,

Ω = −k
β
lnZ0 −

k
β

∞
∑
l=1
( βt
Z0
)
l

Xl. (3.81)

Second order

The first non-vanishing term in this series is X2 and corresponds to hopping to a
neighboring site and back. In a simple cubic lattice only the m = 6 neighboring
sites can be reached by this tunneling order and only by a single path resulting
in a single hopping diagram to be evaluated. The trace in Equation 3.80 is
performed over the 4 ⋅ 4 = 16 states ∣ψ2⟩ of two neighboring sites yielding the
following contributions ⟨ψ2∣ W̃(τ1)W̃(τ2) ∣ψ2⟩0 to X2:

∣ψ2⟩ = ∣ni↑ni↓, nj↑nj↓⟩ ⟨ψ2∣ W̃(τ1)W̃(τ2) ∣ψ2⟩0
∣0, 0⟩ 1 ⋅ 0 ⋅ z0u0

∣↑↓, ↑↓⟩ 1 ⋅ 0 ⋅ z4u2

∣↑, ↑⟩ , ∣↓, ↓⟩ 2 ⋅ 0 ⋅ z2u0

∣↑, 0⟩ , ∣↓, 0⟩ , ∣0, ↑⟩ , ∣0, ↓⟩ 4 ⋅ 1 ⋅ z1u0

∣↑↓, ↑⟩ , ∣↑↓, ↓⟩ , ∣↑, ↑↓⟩ , ∣↓, ↑↓⟩ 4 ⋅ 1 ⋅ z3u1

∣↑, ↓⟩ , ∣↓, ↑⟩ 2 ⋅ 2 ⋅ z2u0 exp(−U(τ2 − τ1))
∣↑↓, 0⟩ , ∣0, ↑↓⟩ 2 ⋅ 2 ⋅ z2u1 exp(U(τ2 − τ1))

Each contribution is the number of configurations in the left column times the
number of tunneling processes possible in each configuration multiplied by the
respective expectation value. Each site adds m/2 new bonds and hence, up to
second order, the grand canonical potential is

Ω2 = −
k
β
lnZ0 −

k
β
( βt
Z0
)
2

m(z + z3u + 2z2 1 − u
βU
) . (3.82)

Higher orders

Graph theoretical approaches are frequently used to determine the hopping and
interaction diagrams for higher orders in the perturbative expansion as well as
the respective configurations and their contributions [113]. Since the number
of configurations for each diagram of order l increases approximately as 4l and
the number of diagrams also grows exponentially, the task becomes exceedingly
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Figure 3.16: Regimes of convergence and divergence of the high temperature series for
U/6t = 2. 5. The figure shows the color coded density error of the high temperature series
in tenth order compared to dynamical mean field theory (DMFT). The parameter space
is spanned by the chemical potential μ and the inverse temperature β = 1/T. Both axes are
rescaled by 6t.

complex. The second order contains only four terms, but in fourth order there
are already 29 terms and, for the tenth order, some 1000 terms need to be
analyzed.

It can be expected from the structure of the high temperature expansion in
Equation 3.81 that for βt > 1 (that is T < t) the series will not converge as the
terms (βt)l grow exponentially. The respective coefficients of each additional
order Xl do not have alternating signs nor do they decay faster than (βt)l grows.
The series indeed diverges as depicted in Figure 3.16 where expansion orders up
to l = 10 are compared. The divergence signals the vicinity to a phase transition
where the tunneling can not be treated perturbatively anymore but dominates
the physics. This phase transition is the Néel transition where a combination
of tunneling and on-site repulsion mediate an exchange interaction between
neighboring alternating spins. The high temperature expansion cannot yield
insight in this regime but nevertheless remains well-behaved up to temperatures
close to TNéel. Additionally, the expansion has been used very successfully in
the regime of T > t as a tool to calibrate and verify other numerical approaches.
These new techniques like diagrammatic determinant Monte Carlo [38] aim to
reach deep into the ultracold strongly correlated phases.
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Imbalance and inhomogeneity

The preceding calculation can be extended to include further effects. A mag-
netic field or a spin imbalance both correspond to separate and unequal chemi-
cal potentials for the two spin components: μ(n↑ +n↓) is replaced by μ↑n↑ + μ↓n↓.
Additionally, a locally inhomogeneous system can be represented by a site de-
pendent energy shift εi and terms of the form ∑i εi(ni↑ + ni↓) in the Hamilton-
ian [116]. As long as the magnitude of the inhomogeneity is smaller than the
temperature, the behavior of the system is not altered.

The high temperature phase diagram

Above the Néel transition, the high temperature series is able to capture all
metallic, band-insulating, and Mott-insulating physics. At finite temperature
and in the absence of long-range magnetic or charge order no symmetry is
broken in the Fermi-Hubbard model and therefore no phase transition exists.
The different phases are separated by crossover regimes where the observables
change smoothly.

Figure 3.17 covers the regimes of strongly attractive to strongly repulsive in-
teractions and fillings from an empty lattice to a band insulator. There are three
insulating regimes, namely the empty lattice, the Mott insulator, and the band
insulator which are separated by four different metallic transition regions. The
universal line of half filling N ≡ 1 is located at the diagonal of each plot where
μ = U/2. It is independent of the temperature and a characteristic feature of the
intrinsically particle-hole symmetric Hamiltonian.

At low chemical potential μ/6t ∼ −3≪ U the system is an empty band insula-
tor (BI). Large negative U ∼ 2μ, however, lowers the energy of the doubly oc-
cupied state below the chemical potential and leads to a band insulator of double
occupancies. The crossover between the empty lattice and the band insulator
at μ ∼ U/2 describes a metal of double occupancies and takes place without any
intermediate regime of singly occupied sites. While this crossover exhibits the
largest fluctuations in density in the complete phase diagram, only two states —
the empty and the double occupied — are relevant and the maximum entropy
per site is S = log 2 ≈ 0. 7.

As soon as doubly occupied states become energetically disfavored due to
repulsive interactions, U/6t ≫ 1, sites are first singly occupied. The transition
from an empty lattice to single occupancy takes place via a metallic state μ ∼ 0
where the three states empty, spin-up and spin-down are equally likely. Here
the entropy per site can become as large as S = log 3 ≈ 1. 1. At large repulsive
interaction T ≪ U and sufficiently high chemical potential T ≪ μ ≪ U all sites
are singly occupied. Although the band is only half filled, the system becomes
Mott insulating (MI) exclusively due to the repulsive interaction and charge
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Figure 3.17: The phase diagram of the Hubbard model at T/t = 2. 5. The phase space
is parametrized by the on-site interaction U/6t and the chemical potential μ/6t. From
top left to bottom right: the density N in particles per site, the probability of the site
being doubly occupied D, the variance of the density varN, and the entropy per site S.
The high-temperature expansion up to second order has been used to obtain the phase
diagram. The line of half filling μ = U/2 is indicated as a dashed line and μ = 0 and U = 0
as dotted lines respectively.

fluctuations vanish. Only the spin degree of freedom remains and a site can
accommodate S = log 2 ≈ 0. 7 of entropy. Increasing the chemical potential
further to μ ∼ U permits sites to become doubly occupied at first resulting in
a metal of double occupancies on top of a Mott insulator and then in a band
insulator for μ≫ U.

In the center of the phase diagram at μ ∼ 0 and U ∼ 0 resides the region of
largest entropy where all four possible occupation states for a site have the same
energy and Boltzmann factor and are thus equally likely.

The width of the four metallic regions depends on the number of states that
are accessed. In terms of the chemical potential, the empty-to-band-insulator
transition at negative U is the narrowest while the empty-to-Mott-insulator and
Mott-insulator-to-band-insulator transitions for repulsive interactions are about
12t wide. At U = 0 the direct transition from an empty to a full band without an
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insulating intermediate phase is the widest. The width of the metallic regimes in
terms of the chemical potential increases with bandwidth and with temperature.

Local density approximation

The high-temperature series describes clusters of sites that grow in size with
increasing order of the expansion. The atomic limit only describes a single site
while the second order describes already a bond of two sites. This property can
be exploited with the local density approximation (LDA) to model a complete
finite system with a slowly varying inhomogeneous trapping potential. Each site
is subject to the global temperature and to a chemical potential that is shifted by
the local trapping potential.

Ti = T, μi = μ −Vi, (3.83)

The series is evaluated for each i and, by summing over all the site indices i, the
properties of the complete system are obtained:

Ntot =∑
i
Ni, Stot =∑

i
Si, Dtot =∑

i
Di. (3.84)

If the discrete sums are now replaced by integrals, their evaluation becomes
numerically stable and can be subjected to the optimizations that are imple-
mented in various numerical integration methods. These algorithms determine
the integrals to a given accuracy by choosing a suitable set of representative
samples of the integrand without the need to evaluate the integrand at all sites.

Since the sites are only distinguished by their local trapping potential, the
integrals over space can be rewritten as integrals over the chemical potential using
the density of sites. There are M = 4/3πj3 sites within a sphere of radius j, and
the trapping potential at the surface of the sphere is V = γj2 where γ = 1

8mω
2λ2.

The density of sites at a potential energy V is therefore:

ρ(V) = dM
dV
= 2π
√

V
γ3

(3.85)

and the global observables of the finite system become integrals over the LDA-
observables, for example N(μ):

Ntot =
∞

∫
0

N(μ −V)ρ(V)dV (3.86)

In experimental realizations, temperature T and global chemical potential μ
are often unknown because the system is finite and isolated from any particle or
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energy bath. Only the total atom number Nexp and the total entropy Sexp are
given or conveniently measurable. The two non-linear integral equations

Ntot(T, μ) = Nexp, (3.87)

Stot(T, μ) = Sexp (3.88)

are solved simultaneously for T and μ using a suitable multi-dimensional iterative
numerical algorithm.

The LDA breaks down at low temperatures where the site-to-site energy
offsets within a cluster of given expansion order become comparable to the
temperature. In this case the local inhomogeneity within a cluster can be taken
into account [116]. This becomes increasingly complex and if the extent of
long-range order reaches an appreciable fraction of the system size, the cluster
and hence the order of the expansion must be chosen large enough to contain
these correlations ultimately leading to a single cluster for the complete system.

Coexistence of different phases

In the local density approximation the local chemical potential assumes all values
from −∞ up to the maximum in the trap center. This leads to a coexistence
of all phases that are possible under these conditions of temperature, bandwidth
and interaction. The cloud thus exhibits a rich structure of different phases in
spatially separated regions. The observables density, double occupancy, holes,
compressibility and entropy for a typical experimental cloud are visualized in
Figure 3.18. Each observable is visualized in one of the four octants that are
slightly offset outwards for clarity. The cloud is anisotropic due to the steeper
confinement in vertical z direction than in the two horizontal directions. It
is an oblate ellispoid with an aspect ratio of 1/3. The total atom number and
repulsive interaction strength are chosen such that all five phases are expressed.
From outer to inner shell they are the empty insulator, the metal in the lower
Hubbard band, the Mott insulator, the metal in the upper band and the band
insulator of double occupancies. All phases are separated by crossovers and can
be clearly identified by their characteristic signatures in the observables.

In the top left shaded octant the atomic density indicates the strictly increas-
ing density from outside to inside with shells of approximately constant N = 1
and N = 2. These shells are also clearly identified in the density of double oc-
cupancies in the top right shaded region. The three insulating phases lead to a
vanishing compressibility and a density that is constant over a certain spatially
extended region. The compressibility is largest in the metallic transition regions
that are located between the insulators. Contrary to the compressibility, the
entropy differs from zero also in the Mott insulator due to the remaining spin
entropy. From the distribution of compressibility and entropy one can expect
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Figure 3.18: High temperature series simulation of a trapped Mott-insulating system. The
cloud is an oblate spheroid with the z-axis in the vertical direction. The parameters are
μ/6t = 6 in the center, T/t = 2. 5, and U/6t = 4. Different observables are visualized in
four octants of the ellipsoidal cloud. The local value of the observable is encoded in the
opacity. The octants are formed by cuts along planes perpendicular to the horizontal x and
vertical z axes and have been moved outward slightly for clarity. In the top left the density
is encoded. It exhibits a light colored Mott insulator and a opaque doubly occupied core.
In the top right, the density of only the double occupancies is rendered. The bottom
two cut-outs show the compressibility (in the left) and the entropy per site (in the right
octant).

that there is always at least one highly compressible and entropy-rich metallic
shell. In a preview for the following chapters, it is worth noting that this shell
limits the lowest observable total compressibilities but also acts as a buffer that
sinks entropy away from e. g. the Mott-insulating shell.
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4 The experimental apparatus

The apparatus used to achieve the experimental results presented in this thesis
has continuously evolved since the start of its construction in 2001. It was ex-
tended and modified in several stages to allow different effects to be explored.
Initially the apparatus was used to perform some of the first experiments with
low-dimensional Bose gases [117] and Bose gases in optical lattices [118, 119].
This stage of the experimental setup is described in [120]. After extending the
apparatus to also allow cooling of fermionic Potassium [121, 122] the exper-
iment was the first to load Fermi gases in 3D optical lattices and allowed ex-
ploration of the physics of low-dimensions [22], interaction [16], confinement
[123], Feshbach molecules [18, 17], and Bose-Fermi mixtures [23]. Through-
out the course of this thesis the experiment has been improved to allow for a
clean implementation of the Hubbard model with fermionic atoms [63].

Many experimental details have already been accurately presented in the pre-
ceding references and especially in the various theses. This chapter will only
briefly review the apparatus and focus on changes and new experimental tech-
niques.

The experimental components are conveniently separated on two optical ta-
bles. On one table the laser sources and electronics are mounted which are
needed to generate the optical frequencies for cooling, trapping, manipulating,
and imaging the atoms as well as to form the optical potentials. The laser sources
include external cavity diode lasers and tapered amplifiers with custom mechan-
ical, optical, and electronic design [124], as well as various solid state lasers. The
lasers are stabilized using frequency modulation spectroscopy [125] or by stabi-
lizing the beat frequency of two lasers [126]. The light is fed through optical
fibers to the second table supporting the front-end beam shaping, detection,
stabilization, and imaging optics, as well as the vacuum chamber and magnetic
field coils. The cameras for recording images of the atomic clouds are located
close to the experimental chamber. The separation permits a compact experi-
mental setup, easy access to the different parts, and quick replacement of laser
systems. It also allows acoustic decoupling of the two tables.

The experimental cycle

In ultracold atom experiments, the final detection step is usually destructive as
gaining a sufficient amount of information from the sample comes at the price of
a significant increase of entropy and temperature. After the cooling, preparation,
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Figure 4.1: Timing sequence of an experimental cycle and sketch of the vacuum chamber.
The experimental cycle starts in the MOT chamber where the atoms are collected. The
atom cloud is then transported through a differential pumping tube. The main part of
the experiment takes place in the glass cell in where the atoms are cooled to quantum
degeneracy and loaded into the optical lattice.

manipulation, and finally imaging, a sample must be prepared anew. This ex-
perimental cycle is therefore repeated continuously while the experimental pa-
rameters are varied from cycle to cycle. As drifts and hysteresis effects can lead
to unwanted variations during the thermalization of the experimental setup, the
cycle is also repeated when there are no pending parameter sets. The experi-
mental sequence is timed and controlled by a software infrastructure developed
in our research group [120].

The time sequence of the cycle and a schematic representation of the vac-
uum components of the apparatus are shown in Figure 4.1. Each cycle starts
by cooling and trapping fermionic 40K and bosonic 87Rb in a magneto-optical
trap (MOT) from background vapor pressure. In the MOT region the resid-
ual gas pressure is about 10−8mbar and collisions with background gas atoms
and molecules would prevent reaching quantum degeneracy. The clouds are
therefore transported through a differential pumping region into an ultra high
vacuum glass cell at about 10−11mbar. Here the 87Rb cloud is cooled by forced
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evaporation in a Quadrupole-Ioffe (QUIC trap). The 40K cloud is cooled sym-
pathetically by thermal contact via collisions. Both clouds reach quantum de-
generacy before the bosonic cloud is discarded. The fermionic cloud is then
loaded into a crossed beam dipole trap (FORT) and evaporatively cooled down
to the desired temperature and atom number. Subsequently, the optical lattice
potential is slowly turned on. After the experiment has been performed, several
absorption images are taken and the cycle is repeated.

Magneto optical trap

Two atom sources provide the required background vapor pressure to load the
40K and the 87Rb MOT in approximately 10 seconds. At 50°C, the equilib-
rium vapor pressure of Potassium is 4 × 10−7mbar while that of Rubidium is
3 × 10−7mbar at 20°C. Both sources are ampules with some of the element in
solid form and are heated independently to control the background vapor pres-
sure. The 40K source has been enriched from 0.012% natural abundancy to
approximately 7%.

The first stage in the preparation of the quantum degenerate Fermi gas, con-
sists of collecting and laser-cooling the atoms [127]. In the three-dimensional
magneto-optical trap dissipative light forces due to the combination of Doppler
and Zeeman effects are used to collect and laser-cool both species [128, 129,
130]. During the first 10 s only 40K is collected using the optical transitions
shown in Figure 4.2 [131]. In the last few seconds also 87Rb is collected result-
ing in clouds of several 109 atoms of both species. Sub-Doppler cooling of the
87Rb in an optical molasses configuration [132] is followed by optical pump-
ing of the 40K to the ∣F = 9/2,mF = 9/2⟩ state and 87Rb to the ∣F = 2,mF = 2⟩
state. Both states are low field seekers and can hence be loaded into a magnetic
quadrupole trap.

Magnetic transport

By cross-fading the quadrupole field sequentially between several spatially sep-
arated coil pairs, the magnetic field zero and with it the two clouds are trans-
ported from the MOT chamber through the differential pumping tube around
a corner and into the glass cell [133].

Quadrupole-Ioffe trap

The magnetic field configuration is subsequently modified by turning on a Ioffe
coil which transforms the pure quadrupole trap into a QUIC trap [134] to pre-
vent losses at high densities due to Majorana spin flips [135, 136].
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Figure 4.2: Level scheme and cooling transitions for 40K and 87Rb. During the MOT
phase the main cooling is performed on the indicated transitions while driving the two
repumping transitions recycles atoms that were excited off-resonantly to other levels. The
D2 lines have a width of Γ/2π = 6. 04MHz for 40K and 5. 75HMz for 87Rb respectively.
All hyperfine level splittings are given in MHz.

Both clouds are in thermal contact due to the large attractive scattering length
for collisions between 87Rb and 40K. In order to cool both, it is sufficient to se-
lectively remove the high energy 87Rb atoms from the trap and to let the system
rethermalize at lower atom number and lower temperature. The evaporation
is performed by spin-flipping 87Rb from the trapped ∣F = 2,mF = 2⟩ state to the
anti-trapped ∣F = 1,mF = 1⟩ state using a microwave transition. The frequency
is generated using a computer controlled direct digital synthesizer (DDS) devel-
oped in our group [137]. In the outer trap regions, atoms in the ∣F = 1,mF = 1⟩
state are parasitically transferred by the microwave to the ∣F = 2,mF = 1⟩ and
∣F = 1,mF = −1⟩ states which are also trapped and lead to loss of 40K. These two
states are statically evaporated out of the trap by an additional pair of constant
microwave frequencies.
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wavelength λT = 826. 05 nm
horizontal waist wh = 150 µm
horizontal waist wv = 50 µm
typical final total absolute trap depth VT ≈ 8Er ≈ kB × 3 µK
typical gravitational sag z0 ≈ −11 µm
typical final trap depth with gravity ΔVT ≈ 2. 4Er ≈ kB × 0. 5 µK
typical final trap frequencies (measured) ωT(x,y,z)/2π = (35, 23, 123)Hz
typical mean trap frequency ωT/2π = 46Hz

Table 4.1: Dipole trap (FORT) parameters. The two beams propagate horizontally in the
x and y direction. The typical final parameters correspond to an evaporation down to
about 36mW per beam and depend on final power as well as on the alignment. The
small waist in vertical direction allows for an easier compensation of gravity and leads to a
correspondingly smaller sag.

In the last stages of the microwave evaporation, the Rubidium is completely
removed from the trap and up to 5×106 fermions in the ∣F = 9/2,mF = 9/2⟩ state
at temperatures of T/TF = 0. 2 to 0.5 remain.

Dipole trap

A focused pair of far red-detuned laser beams crossing at the position of the
atoms is gradually turned on and the sample is transferred into this FORT by
subsequently turning off the QUIC trap. The trap is characterized by the pa-
rameters listed in Table 4.1. The trapping frequencies in the FORT are de-
termined by exciting the cloud with a short kick using either the trap itself or
the magnetic field in some direction. A measurement of the oscillation period
directly yields the trap frequency.

To evaporate the fermionic cloud, the spin-polarized pure mF = 9/2 sample
from the magnetic trap is not suitable for two reasons: the mF = 9/2 state is not
the ground state and spin-changing collisions could lead to heating and losses.
Additionally, spin-polarized fermions do not interact in s-wave collisions at low
temperatures and will therefore not rethermalize during the evaporation. For
this reason, the cloud is first transferred to the mF = −9/2 state in the F = 9/2
manifold using a low-field rf Landau-Zener sweep [138] across the complete hy-
perfine manifold. Subsequently, the magnetic field is ramped to higher values of
approximately 220G where the quadratic Zeeman shift allows selective address-
ing of certain mF → mF ± 1 transitions by lifting their degeneracy. The cloud is
then depolarized using several fast Landau-Zener sweeps across the transition to
mF = −7/2. Collisions and inhomogeneities are needed to destroy the coherence
during the incomplete sweeps and to achieve a balanced mixture.

The F = 9/2 hyperfine manifold of 40K contains two broad Feshbach reso-
nances for the mF = −9/2,−7/2 and mF = −9/2,−5/2 state configurations that are
used in this work. The positions have been obtained from literature [139, 140]
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configuration position B0 width ΔB
mF = −9/2,−7/2 202.10(7) G 7.5(1) G
mF = −9/2,−5/2 224.21(5) G 7.6(1) G

Table 4.2: Feshbach resonance parameters used in this work. The table lists position and
width of two Feshbach resonances in the F = 9/2 hyperfine manifold of 40K. The back-
ground scattering length is abg = 174a0.

.
.B (G)

.a/a0

.−9/2,−7/2 .−9/2,−5/2

.174

.500

.-500

.202.1 .224.2

Figure 4.3: The scattering length in the vicinity of the two Feshbach resonances used in
this thesis.

while the width was determined within the course of thesis [141] using Bloch
oscillations [142]. Their parameters are given in Table 4.2 and a plot of the
scattering length in the magnetic field region of interest is shown in Figure 4.3.

These Feshbach resonances are used in different contexts. During evaporation
in the dipole trap the proximity to the mF = −9/2,−7/2 resonance at 202.1G
is used to boost the thermalization of the mixture and between the two spin
components. The collision cross section is increased by approaching the reso-
nance from the high field side where the scattering length is large and negative.
At a scattering length of −1700 a0 the atoms are able to rethermalize continu-
ously. Evaporation in the dipole trap is then achieved by lowering the trapping
potential and letting the hot atoms escape downwards over the potential bar-
rier downwards. The beam powers are decreased in a two-step linear ramp to
reach the desired atom number and temperature, and then increased again to
stop further loss of atoms.

In order to prepare repulsively interacting atomic samples, the mF =
−9/2,−7/2 Feshbach resonance cannot simply be crossed from the high field
side as this would instead lead to molecules. Instead, the mF = −9/2,−5/2
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Figure 4.4: Typical absorption image of
about 250 × 103 atoms after evaporation
and release from the dipole trap and 20ms
time-of-flight. The temperature obtained
from the momentum distribution is T/TF =
0. 13.

resonance is used to access repulsive interactions. The mF = −7/2 atoms are
transferred to the mF = −5/2 state with a Landau-Zener sweep. The sweep
is performed by a linear magnetic field ramp at constant rf frequency in the
window between the two s-wave resonances.

By changing the ramp speed and the final trap depth, we can adjust the atom
number between 20×103 and 400×103. The temperature in units of the Fermi
temperature can be chosen to lie between 0. 08TF for the coldest clouds and
about 1TF for the hottest clouds.

Optical lattice

Three mutually perpendicular pairs of retro-reflected laser beams form the op-
tical lattice. The lattice beams are combined with the imaging and with the
FORT beams on the two horizontal axes as sketched in Figure 4.5. On the ver-
tical axis only the imaging light is superimposed onto the lattice beam. Collinear
propagation of imaging, FORT, and lattice allows for easy alignment of the
beams due to the permanent availability of a camera in every direction.

Similar to the FORT beam power, the lattice beam power is controlled in an
analog proportional-integral-derivative control loop and the setpoint is provided
by an analog output channel from the computer control [121]. Custom shot
noise limited photodetectors [143, 144] with a bandwidth above 10MHz receive
about 1% of the trapping light and provide the sensing input to the control loop.
Acousto-optical modulators are driven to stabilize the detected light power.

Since the bandwidth of the computer’s analog output board is above 1MHz
and much larger than the sampling rate of typically 80 kHz the control signal
contains a significant amount of alias frequencies when changed in time. The-
ses alias frequencies need to be suppressed to prevent feed-through onto the
beam intensities and possible excitation of the atoms. A custom active analog
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Figure 4.5:Optical setup for dipole trap, lattice, and imaging beams. Imaging, FORT, and
lattice beams are extracted from optical fibers, collimated, and shaped. They are combined
with dichroic mirrors and focused onto the atoms. Behind the vacuum chamber, spurious
reflections of the FORT are suppressed by extracting it with a polarizing beam splitter.
The lattice beam is retro-reflected and the imaging beam is directed onto a CCD camera.
Mutual interference among FORT and lattice beams from different axes are averaged out
by frequency differences of several 40MHz.

wavelength λ = 1064nm
beam waists w(x,y,z) = (160, 180, 180) µm
maximum lattice depth per axis V0 ≈ 40Er
typical total trap frequencies ω(x,y,z)/2π = (49, 53, 133)Hz

Table 4.3: Properties of the optical lattice. Some parameters depend on beam power,
alignment, and the overlap of the beams. For a lattice depth of 7Er the final trap frequencies
due to FORT and lattice are given. The envelope of the lattice beams increases the
trapping frequencies of the dipole trap especially in the horizontal directions.

fourth-order Chebychev filter in Sallen-Key topology with a corner frequency
of 11 kHz attenuates the first alias frequencies at 30 kHz by more than 40 dB.

The optical lattice is characterized by the properties given in Table 4.3. The
crucial parameters lattice depth and trapping frequency depend on several align-
ment parameters and can not bet inferred from the beam shape and power with
sufficient accuracy.

Two of several possible methods are cross-validated [145] to determine the
lattice depth. Both methods use a 87Rb BEC as its momentum distribution is
narrower. Using the first method, a small intensity modulation is added to the
lattice beam intensity. The modulation drives transitions between the different
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Bloch bands [146] and the resonance for the transfer from the lowest to the first
excited even band is located. From this transition frequency, the band structure
and the absolute lattice depth are inferred. The alternative method is to subject
the BEC to a lattice potential for a very short time in such a way that the atoms
are not displaced in the lattice [147]. This regime corresponds to Raman-Nath
diffraction in the context of Kapitza-Dirac scattering. The probability to diffract
an atom into the p = 2nh̷k momentum state is

Pn = J2n(z), z = 1
h̷ ∫

V(t)dt (4.1)

where Jn(z) is the Bessel function of order n and V(t) is the temporal shape
of the lattice potential. By recording both the diffraction probabilities and the
temporal shapes of the intensity pulses, the lattice depth can be determined to
an estimated accuracy of 3%.

For a measurement of the total combined trap frequency of dipole trap and
3D lattice, dipole oscillations are unsuitable due to the effect of the lattice on
the oscillation frequency. The effective mass strongly depends on the quasimo-
mentum and would lead to different oscillation frequencies that dephase quickly
[148, 149] and prevent an accurate determination of the trap parameters. After
measuring the oscillation frequencies in the pure dipole trap ωT(x,y,z), we there-
fore measure for each 1D standing wave i = x, y,z the two transverse oscillation
frequencies ωij. The total trap frequencies ω(x,y,z) are then given as e. g.

ω2
x = ω2

Tx + (ω2
yx − ω2

Tx) + (ω2
zx − ω2

Tx) = ω2
yx + ω2

zx − ω2
Tx. (4.2)

This method allows the observation of many oscillation periods and automati-
cally accounts for effects of beam alignment.

Before ramping up the optical lattice potential, the final scattering length is
adjusted. Interaction-induced transitions between different many-body states
in the lattice often require mass transport which has been shown to be slow
for strong interactions [150, 149, 151, 152]. Consequently, a globally adiabatic
change of the scattering length in the lattice would require too much time.

The lattice is ramped up smoothly within 100-200ms to prevent excitations
within the band and into higher bands. As the density of states changes signifi-
cantly, the process must require collisions between the atoms. The need for mass
redistribution can also be seen in the single particle states in Figure 3.3 in the
previous chapter. As soon as a state reaches the band edge, it becomes expelled
from the trap center and localizes in the perimeter. It can therefore be expected
that on one hand loading non-interacting clouds into the lattice requires long
loading times due to the suppression of collisions. On the other hand, as soon
as atoms become localized due to strong interactions, redistribution is slowed
down again. In general, the process of loading an ultracold interacting sample

61



into an optical lattice in a finite time can not be adiabatic and the details have
by no means been completely understood.

Imaging

The experimental cycle ends with imaging the atoms. If the magnetic
field is kept high then it is preferable to use the cycling σ−-transition
∣F = 9/2,mF = −9/2⟩ → ∣F′ = 11/2,m′F = −11/2⟩. At low field, the imaging
transition ∣F = 9/2⟩ → ∣F′ = 11/2⟩ corresponds to “isotropic” polarization
[153]. The imaging can be performed in situ in the trap or after release and
time-of-flight. Before releasing the atoms, a scattering length is accessed where
interactions are minimal and all potentials are ramped down quickly. For
vanishing interaction and instantaneous release the spatial atom distribution
after long time-of-flight represents a direct image of the original momentum
distribution. Interactions — especially during the first stage of expansion when
the density is still high — complicate the picture. Absorption images are
generally taken in the low saturation regime.

Experimental techniques

High intensity strong saturation imaging

Quantitative imaging of ultracold atom clouds often suffers from several sys-
tematic error sources. Some of these are the not precisely known probe beam
polarization, population of the different Zeeman levels in the electronic ground
state, and the detailed structure of the excited state. By exploiting the saturation
non-linearity, the absorption imaging can be calibrated [154].

The scattering rate of a two-level atom in the presence of monochromatic
imaging probe light with intensity I and a detuning Δ from the atomic resonance
is given by:

Rsc =
Γ
2

I/Isat
1 + 4(Δ/Γ)2 + I/Isat

, Isat =
πhc
3λ3τ

(4.3)

where τ = 1/Γ is the radiative lifetime of the excited state, Γ is the linewidth, and
Isat is the saturation intensity. For the 40K D2 line, lifetime and saturation inten-
sity are accurately known [155, 156]: τ = 26. 37(5)ns, Isat = 1. 750(3)mW/cm2.

The scattering and the saturation can also be expressed in terms of an
intensity-dependent scattering cross section,

σ(I) = σ0
1 + 4(Δ/Γ)2 + I/Isat

, σ0 =
3λ2

2π
. (4.4)

If the imaging probe beam passes through an atomic sample with density distri-
bution n(z) along the propagation direction of the imaging light, the differential
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absorption is given by Beer’s law,

dI = −n(z)σ(I)Idz. (4.5)

The departure from this two-level description due to the uncertainties men-
tioned above can be modeled by a decreased effective intensity αI1 = I with α < 1
or equivalently an increased saturation intensity Isat, 1/α = Isat. The absorption
becomes

dI1 = −n(z)σ(αI1)αI1dz. (4.6)

After reordering the terms, both sides can be integrated in the usual way:

σ0 ∫ n(z)dz = −
Iatoms

∫
Ibright

1 + 4(Δ/Γ)2

αI1
+ 1
Isat

dI1

= 1 + 4(Δ/Γ)2

α
ln(

Ibright
Iatoms

) +
Ibright − Iatoms

Isat
.

(4.7)

The two intensities Iatoms and Ibright are the limits of the intensity integral. They
are obtained in each absorption imaging cycle after correction by the back-
ground image I′dark,

Iatoms = I′atoms − I′dark,
Ibright = I′bright − I′dark.

(4.8)

To determine the two unknown quantities, namely the column density
σ0 ∫ n(z)dz and the correction factor α, several images are taken for different
intensities under otherwise identical conditions. A linear regression between
ln(Ibright/Iatoms) and (Ibright − Iatoms)/Isat is performed. The detuning Δ can either
be measured independently or ignored. In this case its effect is treated as to be
simply included in α.

It is important to note that the correction factor α and the detuning Δ are
both taken to be universal and spatially as well as intensity independent. While
a variation of α along the directions perpendicular to the imaging integration
axis z can be accounted for by a pixel-dependent α(x, y), several other effects ap-
pear more problematic. If the light is non-monochromatic or contains different
polarizations that are absorbed differently or not at all, α or a hypothetical aver-
aged Δ will change along the integration direction. Similarly, if the probe light
intensity is varied and the pulse time is not changed accordingly to maintain a
constant amount of scattered light, the detuning due to an average Doppler shift
varies both with imaging intensity and along the integration direction. Optical
pumping effects that lead to strong variation and non-universal evolution of the
populations in the different states can equally alter the absorption in a non-trivial
way. All these effects can lead to a break-down of the above analysis.
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Compared to low-saturation absorption imaging, where ln(Ibright/Iatoms) ≫
(Ibright − Iatoms)/Isat, high-intensity strong saturation imaging depends on good
knowledge of absolute intensities. We determine them by explicit calibration of
a photodiode that records the shape of the imaging pulse. However, the method
does not require any estimate of α. While commonly α = 1 and low-saturation
are assumed, we observe that typical values in our experiments are α = 0. 7 which
would correspond to a 30% underestimation of the atom number if it was not
taken into account.

Scattering length calibration

The first experimental characterizations of the Feshbach resonances used in this
work were performed in harmonic traps [157]. In such a setup, the position
of a Feshbach resonance B0 can be accurately determined from the conversion
point of atoms to molecules [158, 159, 160]. The transition region of this con-
version is usually sufficiently narrow to allows locating the resonance center
within 0. 05G. The resonance width ΔB is much less accurately known. The
width is determined by measuring the transition frequency between Zeeman
levels and extracting the mean field shift. From the difference of the mean
field shift in the initial state near resonance and the final state where the mean
field shift is small, the scattering length and consequently the resonance width
are determined [139, 161]. This method is limited by the knowledge of the
atomic density in the trap and by the rather broad rf resonance. The reported
widths are ΔB = 7. 8(6)G for the mF = −9/2,−7/2 resonance and 9.7(6) G for
the mF = −9/2,−5/2 resonance. The systematic uncertainty due to the impre-
cision in the density is quoted to be another 50%. These uncertainties in the
resonance widths directly limit the knowledge of the scattering length and the
on-site interaction energy U in the Hubbard model.

A powerful method to characterize a Feshbach resonance is the observation of
Bloch oscillations in the lattice. If non-interacting atoms with quasimomentum
states q are subjected to a constant force F = q̇, their oscillation is confined to
the first Brillouin zone due to the anticrossing of the dispersion at the band
edge and the corresponding periodicity of the quasimomentum. At vanishing
interaction these oscillations can be sustained for many thousand cycles [142].
A small amount of interactions, however, already leads to collisions and to the
dephasing of oscillations of different atoms.

It is necessary to limit the filling in the band since the fermionic nature of the
atoms would otherwise lead to a complete occupation of the entire Brillouin
zone and hence prevent the observation of Bloch oscillations. In order to locate
the zero crossing, the atoms are allowed to oscillate for up to 750ms so that
after the oscillation they are left either at the band edge or at the band center.
Choosing a final position at the band edge corresponds to the largest root mean
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Figure 4.6: Suppressed dephasing of Bloch oscillations at the zero crossing of the scattering
length. In the mF = −9/2,−5/2 (left) and mF = −9/2,−7/2 (right) mixtures the root-
mean-square momentum width qrms in units of camera pixels exhibits a characteristic dip
when interactions vanish at the zero crossing of the scattering length.

square momentum spread for a = 0 while a final position in the band center
corresponds to the smallest rms momentum. In the subsequent time-of-flight
expansion, the quasimomentum distribution is mapped to position and finally
recorded in an absorption image. Using the known values for the resonance
position B0 and the background scattering length abg, we fit a gaussian dip to
the rms momentum width:

qrms(B) = q0 + Δq exp(−
1
2
(
abg
Δa
)
2

(1 − ΔB
B − B0

)
2

) . (4.9)

The four remaining parameters are determined by the fit: q0 the rms momentum
for dephased oscillations, Δq the maximum change in rms momentum without
interactions, Δa the width of the low dephasing region around a = 0, and ΔB
the width of the Feshbach resonance. An example of such a dephasing mea-
surement is reproduced in Figure 4.6. We obtain a width of 7.5(1) G for the
mF = −9/2,−7/2 resonance at 202.1G and 7.6(1) G for the mF = −9/2,−5/2
resonance at 224.21(5) G. The accuracy is limited by the magnetic field calibra-
tion, the uncertainty in the resonance position, and the width of the dip. These
experiments represent the first observation of Bloch oscillations of interacting
Fermions.

Thermometry in the dipole trap

Two different approaches have turned out to be suitable to determine the tem-
perature in the dipole trap. On one hand, the momentum distribution and
its sharp Fermi edge can serve as a thermometer for weakly interacting Fermi
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gases [162]. The phase space density, on the other hand, is also intimately re-
lated to the temperature and can be inferred from the efficiency in adiabatically
associating Feshbach molecules [163].

By fitting the momentum distribution after time-of-flight to absorption im-
ages such as Figure 4.4, the fugacity z and the corresponding temperature can
be obtained. We employ this method predominantly in the case of mF = −9/2
spin-polarized gases, for mixtures at small interactions and for high-field imag-
ing of the mF = −9/2 spin component. In the mF = −9/2,−7/2 mixture on the
right side of the Feshbach resonance, we routinely achieve temperatures between
0. 05TF and 0. 1TF in terms of the Fermi temperature TF. This configuration
is also advantageous as the scattering length can be driven to zero on the right
side of the resonance. In the mF = −9/2,−5/2 mixture on the left side of the
resonance, the temperature is slightly higher at about 0. 1 to 0. 15TF. Here the
scattering length is always above the background scattering length. The mini-
mal amount of interactions present on the left side of the resonance changes the
apparent temperature by less than 3% of the Fermi temperature.

The momentum distribution of highly degenerate Fermions in time-of-flight
is typically more difficult to analyze than the momentum distribution of Bosons.
While non-interacting Bosons approach a very small rms momentum which is
only limited by the harmonic oscillator ground state, in a fermionic gas even in
the absolute ground state, momenta as large as the Fermi momentum are occu-
pied. Detecting the small excess momentum which corresponds to departures
from T = 0 is therefore much easier in Bosons than in Fermions due to the large
background momentum of the Fermi gas. Very small occupation changes at the
Fermi edge need to be detected reliably. A least squares fit to the momentum
distribution of degenerate Fermions in time-of-flight absorption images is espe-
cially sensitive to the sharpness of the edges of the cloud which are furthermore
of low optical density.

A Monte-Carlo simulation was performed to assess the influence of technical
noise on the reliability of the temperature determination. The results are repro-
duced in Figure 4.7 and show that certain types of technical imperfections are
highly detrimental while others are benign. Smoothing of the image that could
be due to imperfect focusing leads to a systematic increase of the apparent tem-
perature. This is expected since it broadens the Fermi edge. Its error, however,
is systematically underestimated by the fit. Noise on the pixel length scale which
is smaller than the edge width is rather benign and is also correctly accounted for
by the fit’s uncertainty in the temperature. A typical source of pixel scale noise
is the electronic readout and dark current noise or the photon shot noise in the
imaging beam. Multiplicative noise on larger length scales of about a third of
the cloud radius is dangerous. Its influence is frequently underestimated as it is
not accounted for by the uncertainty of the fit result and can lead to a systematic
error in the obtained temperature. Optical fringes in the imaging light being
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Figure 4.7: Sensitivity of the temperature determination in time-of-flight to noise sources
and imprecisions. An absorption image of an ultracold fermionic atom cloud is synthe-
sized with known parameters corresponding to typical experimental conditions (top right
panel). Four different parametric noise sources and the blurring due to imperfections in
the imaging could lead to departures (line in each plot) from the actual temperature of
T/TF = 0. 136. The standard deviation of the fit results is shown as a gray corridor and
the mean fit error of the apparent temperature as dashed lines. The different sources of
imperfections are from top left to bottom right: (a) a gaussian blurring of the image on
vayring length scales, (b) spatially uncorrelated additive noise where each pixel receives a
random shift, (b) multiplicative noise, (c) 3.5% additive noise with varying length scale,
(d) 7% multiplicative noise with varying length scale. The additive noise is scaled by the
maximum density signal in the image in the center of the cloud. All length scales are given
in units of the cloud radius.
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difficult to remove are typically of this size. In the case of 3.5% additive or 7%
multiplicative noise they lead to an error of 0. 05TF in the temperature.

The formation of molecules can be used as an alternative thermometry
method on the attractive side of the Feshbach resonance. A good measure
for the phase space density can be obtained by ramping across the resonance
and thereby associating atom pairs to molecules. If the ramp is adiabatic,
atoms within a phase space volume of δrδp < γh are associated. The rest
remains unpaired. Here γ parametrizes the pairing and is comparable to unity
[163]. In order to associate the atoms, the magnetic field is adiabatically swept
from the attractive side of the resonance at 202.8G to the molecular side at
200.8G adiabatically in 5ms. The molecules are then bound deeper and made
non-absorbing for the imaging light by fully switching off the magnetic field
and imaging the remaining atoms. A conservative lower estimate for the total
paired fraction is obtained by comparing the number of unpaired atoms with
images where the molecules were dissociated adiabatically before imaging.
From at least three such image pairs we infer the fraction of molecules that
were formed. We routinely achieve molecule fractions of about 85% which
correspond to temperatures below 0. 1TF.

Double occupancy

The double occupancy is a sensitive indicator for the properties of a Fermion
sample in an optical lattice. It can be directly related to the amount of ther-
mal excitations for non-interacting [80] as well as for correlated systems [79].
Additionally, at low temperatures where antiferromagnetic order is expected to
set in, the double occupancy signals the redistribution of entropy from the spin
configuration to the charge correlation [111]. A reliable experimental protocol
to detect double occupancies enables access to these properties. In this section,
our implementation of two methods is presented.

A straight forward approach is to slightly adapt the thermometry method in
the dipole trap which was described in the previous section. A mF = −9/2,−7/2
spin mixture is prepared at a scattering length on the right side of the Feshbach
resonance. Then, atoms on lattice sites that are occupied with an mF = −9/2
and an mF = −7/2 atom are converted into molecules. The remaining atoms as
well as the total atom number are counted in two realizations of the experiment.
The adiabaticity condition that needs to be met to form molecules with near
unit efficiency requires ramp times of several milli-seconds. As this is already
comparable to the tunneling rate in typical lattices, a redistribution of atoms
during the ramp across the Feshbach resonance has to be prevented. This sup-
pression of tunneling is achieved by quickly increasing the lattice depth to some
30Er within 500µs. The deeper lattice potential leads to a strong localization
of the atomic wavefunctions and to a reduction of the tunneling rate to below
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Figure 4.8: Cooling, lattice loading, and
freezing procedure. The time dependence
of the potential depths of the QUIC trap
(dotted), the FORT (dashed), and the op-
tical lattice (solid) are shown schematically
(not to scale).

2Hz which is much longer than the experimental timescale. The ramp speed is
chosen low enough to prevent the excitation of atoms into higher bands where
they would not bind. Subsequently, atom pairs on doubly occupied sites can be
adiabatically converted into molecules. A timing sketch of the evolution of the
potential depths is provided in Figure 4.8.

This method of measuring the double occupancy is experimentally disfavored
for two reasons: It requires two consecutive experimental cycles per data point
and is therefore sensitive to atom number drifts. Furthermore, resolving small
double occupancies corresponds to detecting changes in the number of unpaired
atoms. As this is a small signal on a large background, it suffers from noise.

The second method we have implemented is significantly more versatile. It is
effective on the attractive side of the resonances as well as on the repulsive side
and relies on rf transitions [17] between molecular states on one resonance and
repulsive states on the other.

The scheme is depicted in Figure 4.9. In the window between the two s-wave
Feshbach resonances at 202G and 224G we prepare either a mF = −9/2,−5/2
mixture on the low field side of their Feshbach resonance with repulsive inter-
actions and a > abg or a mF = −9/2,−7/2 mixture on the high-field branch of the
resonance with a < abg. The mixture is loaded into the lattice and the desired ex-
periment is performed. To determine the double occupancy, the atomic density
distribution is stabilized by increasing the lattice depth to 30Er as for the adiabatic
molecule formation. Then a magnetic field of 201. 3G on the low field side of
the mF = −9/2,−7/2 resonance is accessed. In the case of a mF = −9/2,−7/2
mixture, atoms on doubly occupied sites are converted into molecules during
this ramp. Their binding energy amounts to δν−7/2 ≈ −110kHz. At this point,
atoms in the other mixture have a weakly repulsive scattering length and a pos-
itive interaction energy of δν−5/2 ∼ 10kHz. The bare transition frequency of an
atom on a singly occupied site between the Zeeman levels mF = −7/2 and −5/2
amounts to νsingle = 47. 072MHz at this magnetic field. On a doubly occupied
site the transition is shifted to νdouble = νsingle − δν−7/2 + δν−5/2.

By driving a rf π pulse with a frequency of νdouble in the mF = −9/2,−7/2
(mF = −9/2,−5/2) mixture, the mF = −7/2 (−5/2) atoms on doubly occupied
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Figure 4.9: On-site energy in an optical lattice and rf spectroscopy. In the two spin mix-
tures, the interaction energy of an atom pair on a lattice site depends on magnetic field
and spin configuration. The energy difference between the bound state on the left side
of the mF = −9/2,−7/2 resonance (solid) and the weakly repulsive unbound state on the
left side of the mF = −9/2,−5/2 resonance (dashed) allows selectively addressing double
occupancies with rf pulses (coiled).
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Figure 4.10: Radio frequency spectrum of
an interacting mF = −9/2,−5/2 Fermi mix-
ture in the lattice. The left peak corre-
sponds to singly occupied sites and a π-pulse
time of 35 µs while the right peak has been
recorded for a π-pulse duration of 130µs on
the transition frequency of doubly occupied
sites.

sites are selectively transferred to the mF = −5/2 (−7/2) state. After the pulse,
the molecules are dissociated again by ramping to the right side of the Feshbach
resonance. Alternatively, we drive the νsingle transition and flip the −7/2 (−5/2)
atoms on singly occupied sites. The mF = −9/2 component is not altered and
serves as a reference to confirm the total atom number N−9/2 = N−7/2 + N−5/2
which is conserved throughout the rf spectroscopy. For our experimental con-
ditions a π pulse for the spin flip takes 130µs on doubly occupied sites and 35µs
on singly occupied sites due to the different Franck-Condon factors. The en-
velopes of the rf pulses are electronically shaped to limit their bandwidth. A
comparison of the two rf spectroscopy peaks of the transition on singly and
doubly occupied sites is provided in Figure 4.10.

70



.

.

.−7/2

.doublons

.−5/2

.singles

.mF = −9/2

.control

Figure 4.11: Absorption image after dou-
blon rf spectroscopy, Stern-Gerlach spin
separation and time-of-flight.

After the rf spectroscopy, the optical lattice and magnetic field are ramped
down in 10ms. Then, the FORT is turned off and the three spin components
expand during 6ms time-of-flight. Using a magnetic field gradient during the
first 2ms, the three components receive different additional accelerations de-
pending on their spin, analogous to the Stern-Gerlach experiment.

Figure 4.11 shows a typical absorption image of a cloud released from the
lattice. The system was initially a repulsively interacting mF = −9/2,−5/2 mix-
ture with a double occupancy of about 10%. The three spin components can
be clearly identified. They correspond to the −9/2 total atom number control
population, the −7/2 component which were −5/2 atoms on doubly occupied
sites, and finally the unaltered −5/2 atoms on singly occupied sites. The mag-
netic field and the gradient during the time-of-flight point both along the hor-
izontal direction. Due to the relatively short time-of-flight ttof ∼ 1/ω, the shape
of the clouds reflects a mixture of both, the horizontally elongated ellipsoidal
spatial shape of the cloud in the trap and the square momentum shape of the
first Brillouin zone.

Due to a reproducible change of the imaging beam profile between the atomic
absorption image and the subsequent reference image without atoms, residual
structures are present in the density profiles. These are reduced by repeating the
entire experiment without loading atoms and subtracting the obtained residual
density distribution from the atomic density distribution. The number of atoms
NmF per spin component mF is determined from the 2D column density by
simultaneously fitting the sum of three quartic terms
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)
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)
4

, 0
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(4.10)

with identical widths wx,y and mutual distances. This permits accurate detection
of atom numbers down to 200 atoms per spin state. We have validated the
absolute accuracy of the fits against integration of the density. The fraction D
of atoms residing on doubly occupied sites is defined as

D = 2Nm′F
/N (4.11)
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where N = N−9/2 + N−7/2 + N−5/2 and m′F = −5/2 (−7/2) for samples initially
containing atoms in the −7/2 (−5/2) states, respectively.

We calibrated this method against adiabatic molecule formation for double
occupancies near 60% and found good agreement to within 10%. Therefore,
rf spectroscopy is now the method of choice for precision measurements of the
double occupancy. It allows accurate determination of total atom number as
well as single and double occupancy in a single shot, making it insensitive to
drifts. Rf spectroscopy allows for a significant reduction of the error of double
occupancy down to 1% since it is a zero-background technique both for very
high and very low double occupancy. The development of this technique was
essential for the experiments presented the subsequent chapters.
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5 Exploring the Mott insulator

In a solid material strong interactions between the electrons can lead to surprising
properties. A prime example is the Mott insulator, where the suppression of
conductivity is a result of interactions and not the consequence of a filled Bloch
band [165]. The proximity to the Mott-insulating phase in fermionic systems is
the origin for many intriguing phenomena in condensed matter physics [166],
most notably high-temperature superconductivity [40]. Therefore, it is highly
desirable to use the novel experimental tools developed in atomic physics to
access this regime. The previous chapters have shown that the Hubbard model
[8], which encompasses the essential physics of the Mott insulator, also applies to
quantum gases trapped in an optical lattice [3]. However, the Mott-insulating
regime could initially only be reached with a gas of bosons [15], lacking the
rich and peculiar nature of fermions. This chapter reports on the formation
of a Mott insulator of a repulsively interacting two-component Fermi gas in an
optical lattice.

Different experimental approaches are chosen to detect three characteristic
features of a Mott-insulating phase:

• Under the influence of strong repulsion the double occupancy of sites with
both a spin-up atom and a spin-down atom is suppressed to extremely
small values compared to the non-interacting case.

• The compressibility of the system is strongly reduced. Even as a response
to a large increase in chemical potential, the system does not react with
an increase of the density and the maximum occupancy remains close to
unity.

• In the excitation spectrum, a new gapped mode emerges at the on-site
interaction energy. It is clearly separated from the energy scales of the
lowest Bloch band. The mode corresponds to the selective excitation of
double occupancies.

The metal insulator transition in a trap

The Hubbard model assumes a single static energy band for the electrons and on-
site interactions. Spin-up and spin-down fermions are moving on a lattice and

Parts of this chapter have been published in [164]
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interact when occupying the same lattice site. According to the Pauli principle,
in the lowest Bloch band, fermionic particles with equal spin cannot occupy the
same site. The consequence of strong repulsive interactions is that also fermions
in different spin states tend to avoid each other. In the case of a half filled band
the particles get localized and an incompressible state with one fermion per site
forms. Since no symmetry is broken, the transition between the metallic and the
Mott-insulating regime at finite temperature exhibits a smooth crossover rather
than a sharp phase transition at well defined parameters.

In optical lattice experiments the presence of an underlying harmonic trap-
ping potential has an important influence on the observable physics. Let us
first consider a zero temperature Fermi gas prepared in an equal mixture of
two non-interacting spin components. All available single particle quantum
states will be filled up to the Fermi energy and, for a sufficiently large num-
ber of trapped atoms, a band insulating region with two atoms per site appears
in the trap center, surrounded by a metallic shell with decreasing filling, see
Figure 5.1. An important quantity to characterize the state of the system is the
fraction D = 2∑i ⟨n↑in↓i⟩ /N of atoms residing on lattice sites which are occu-
pied by two atoms, one from each component. For the non-interacting case
this double occupancy should increase in a continuous fashion with the number
N = ∑i ⟨n↑i + n↓i⟩ of atoms in the trap.

A very different scenario can be anticipated for a gas with increasingly strong
repulsive interactions. A Mott insulator will appear, at first in those regions of
the trap where the local filling is approximately one atom per site. For very
strong repulsion the entire center of the trap contains a Mott insulating phase
and double occupancy is suppressed, see Figure 5.1. Since the Mott-insulating
region is incompressible [39, 167], the suppression of double occupancy should
be robust against a tightening of the trapping potential, or equivalently, against an
increase in the number of trapped atoms. However, once the chemical potential
μ reaches a level where double occupation of sites becomes favorable, a metallic
phase appears in the center and the double occupancy increases accordingly. The
energy spectrum in theMott-insulating phase is gapped, with a finite energy cost
required to bring two atoms onto the same lattice site. This energy has to be
large compared to the temperature in order to keep the number of thermally
excited doubly occupied sites small. Thermally excited holes in the center are
suppressed by the chemical potential μ.

Experimental methods

Our experiment is performed with a quantum degenerate gas of fermionic 40K
atoms, prepared in a balanced mixture of two magnetic sublevels of the F =
9/2 hyperfine manifold. The Feshbach resonances allow us to tune the s-wave
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Figure 5.1: Energy spectrum of a Fermi gas in an optical lattice with an underlying con-
fining potential. In the non-interacting case (left) the curvature of the lowest Bloch band
reflects the harmonic confinement. At zero temperature all states up to the chemical po-
tential μ are filled with atoms of both spin states. In the Mott-insulating limit (right) the
energy cost for creating doubly occupied sites greatly exceeds the temperature T and the
kinetic energy parametrized by J, giving rise to a gap of order U. The energy spectrum of
single particle excitations is then depicted by two Hubbard bands. Doubly occupied sites
correspond to atoms in the upper Hubbard band.

scattering length between a = 240(4)a0 and 810(40)a0 as well as to prepare non-
interacting samples. The two-component Fermi gas is subjected to the potential
of a three-dimensional optical lattice of simple cubic symmetry. The lattice
potential depth V0 is chosen between 6. 5 and 12ER. The system is described by
the Hubbard Hamiltonian. In this chapter the nearest neighbor tunneling matrix
element is parametrized by J and not by t owing to the historical provenance of
Mott physics with ultracold atoms from Bosonic systems [4, 3]. The quotient
U/6J which characterizes the ratio between interaction and kinetic energy can
be tuned from zero to a maximum value of 30.

Preparation

After sympathetic cooling with 87Rb, 2×106 fermionic 40K atoms are transferred
into a dipole trap. Initially, a balanced spin mixture of atoms in the ∣mF⟩ = ∣−9/2⟩
and ∣−7/2⟩ states is prepared and evaporatively cooled at a magnetic bias field of
203.06G. Using this mixture we realize non-interacting samples with a scatter-
ing length of a = 0(10)a0. Repulsive interactions are obtained by transferring
the atoms in the ∣−7/2⟩ state to the ∣−5/2⟩ state during the evaporation, thus
cooling and preparing a spin mixture of atoms in ∣−9/2⟩ and ∣−5/2⟩ states, close
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to a Feshbach resonance at 224.21G [159]. After tuning the scattering length
to the desired value we load the atoms into the lowest Bloch band of the opti-
cal lattice by increasing the intensity of three retroreflected laser beams within
200ms using a spline ramp. For a given scattering length and lattice depth J and
U are inferred from the Wannier functions including the interaction induced
coupling to the second Bloch band. The latter leads to corrections of up to 15%
with respect to the single band model.

Temperature

The temperature is measured in the harmonic dipole trap before ramping up
the lattice and after a subsequent reversed ramp back into the dipole trap. The
highest temperatures measured before and after ramping are Ti = 0. 15TF and
Tf = 0. 24TF, respectively. Since we expect non-adiabatic heating to occur dur-
ing the lattice ramp up as well as during ramp down, we use the mean value
of 0. 195TF as a realistic estimate. The reported temperatures represent upper
limits, since we have achieved temperatures down to 0. 08TF in the dipole trap
prior to loading.

Radio-frequency spectroscopy

In order to characterize the state of the Fermi gas in the optical lattice, we use
rf spectroscopy to measure the fraction D of atoms residing on doubly occupied
sites with a precision of down to 1%. By increasing the depth of the optical
lattice to 30ER in 0.5ms tunneling is suppressed. In the next step, we shift the
energy of atoms on doubly occupied sites by approaching a Feshbach resonance.
The magnetic field is tuned to 201.28G, where a molecular state for a ∣−9/2⟩,
∣−7/2⟩ pair with binding energy h × 99(1)kHz and a weakly interacting state
for a ∣−9/2⟩, ∣−5/2⟩ pair exist [17]. This enables us to specifically address only
atoms on doubly occupied sites by using a radio frequency pulse to transfer one
of the spin components to a third, previously unpopulated magnetic sublevel.
The radio-frequency π-pulse dissociates (associates) pairs and changes the spin
state of those ∣−7/2⟩ (∣−5/2⟩) atoms that share a site with a ∣−9/2⟩ atom. Finally
the magnetic field is increased to 202.80G dissociating any molecules and the
lattice potential is ramped down in 10ms. All confining potentials are switched
off and the homogeneous magnetic bias field is replaced by a magnetic gradient
field, thus spatially separating the spin states. After 6ms of time-of-flight all
three clouds are imaged simultaneously and the atom numbers in the three spin
components are determined.

We estimate the relative systematic error for the total number N of atoms in
all spin components to be less than 20%. The ∣−9/2⟩, ∣−5/2⟩ mixture shows an
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Figure 5.2: Double occupancy in the non-interacting and Mott-insulating regime. (a)
A significant increase of the double occupancy with atom number is observed in the
non-interacting regime (empty circles) whereas on entering the Mott-insulating regime
the double occupancy is suppressed (filled circles). The corresponding onsite interaction
strengths are U/h = 0(80)Hz and U/h = 5. 0(6)kHz. (b) In the Mott-insulating regime
the double occupancy is strongly suppressed. It starts to increase for large atom numbers
indicating the formation of a metallic region of double occupancies on a Mott-insulating
background in the trap center. The curves represent the theoretical expectation for D in
the atomic limit. Values and error bars are the mean and the standard deviation of 4 to 8
identical measurements.

offset of 0.5% in D due to ∣−7/2⟩ atoms remaining from the initial spin transfer
during evaporation.

Due to inelastic collisions we lose at most 4.8(6)% of the atoms during the
preparation of the Mott-insulating state for the parameters above, where the
losses are expected to be highest. The inelastic decay time for atoms on doubly
occupied sites exceeds 850ms, which is significantly longer than the relevant
experimental timescale.

Suppression of double occupancy

The double occupancy as a function of total atom number is plotted in Fig-
ure 5.2a, where the non-interacting situation is compared to the case of strong
repulsive interactions. The former shows the expected rapid increase of double
occupancy with atom number. A strikingly different behavior is observed in the
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strongly repulsive regime with U ≫ J,T, μ, where a Mott insulator is expected.
The double occupancy is strongly reduced to values systematically below 2% for
small atom numbers. This is direct evidence for the suppression of fluctuations
in the occupation number and for the localization of the atoms.

Compressibility

The compressibility κ = ∂n/∂μ is a clear indicator for Mott-insulating behavior in
a homogeneous system. It vanishes if the chemical potential is located between
the two Hubbard bands, μ = U/2, see Figure 5.3. Changes in the chemical po-
tentials do not allow holes nor double occupancies to enter the system as μ≫ 6J
and μ≪ U − 6J. The density is constant over a wide range. In a trapped system
however, there are always large regions of low local chemical potential in the
perimeter of the cloud where the density is low and the compressibility is dom-
inated solely by the hole compressibility in the lower Hubbard band. Averaging
the compressibility over the entire cloud therefore washes out all signatures of a
Mott insulating core due to the constant large compressibility of the edges [116].

An alternative measure that has been proposed as an indicator for incompress-
ibility is the cloud radius [64] which is the root mean square of the distance from
the cloud center averaged over the density R2 = ∑i r

2 ⟨n↑i + n↓i⟩ /N. Similar to
the total compressibility, the cloud radius is also bound to be dominated by edge
effects in regions that are irrelevant to Mott-insulating behavior of the core. It
can therefore only show weak signs of an incompressible core.

In order to experimentally investigate the compressibility on entering the
Mott-insulating regime we determine how the double occupancy changes with
increasing atom number. From these data we develop a robust measure for the
compressibility that is insensitive to edge effects.

In the trapped system we define the number of doubly occupied sites D′ =
∑i ⟨n↑in↓i⟩ = DN/2 and the core compressibility κC analogously to the total com-
pressibility κ

κC =
1
N
∂D′

∂μ
= 1
N
∑
i
κCi (5.1)

κ = 1
N
∂N
∂μ
= 1
N
∑
i
κi. (5.2)

In a homogeneous system, the core compressibility can be shown to be iden-
tical to the actual compressibility if the chemical potential is above the lower
Hubbard band [116], see also Figure 5.3. However, it is insensitive to low
chemical potentials and even vanishes entirely if the density is below half filling.
This makes the quantity an excellent probe for the compressibility of the core
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Figure 5.3: Comparison of core compressibility κC0 and compressibility κ0 in a homoge-
neous system for T/6J = 3 in second order high temperature series. The subscript (⋅)0
indicates the reference to the homogeneous system. To characterize the compressibility of
a trapped Fermi gas in an optical lattice, the core compressibility NκC = ∂D′/∂μ is much
better suited than the compressibilityNκ = ∂N/∂μ. It effectively excludes the contribution
of the otherwise dominant regions of small chemical potential in the perimeter while still
equaling the actual compressibility in the core where μ ≫ 6J.

region in a trapped system, since it excludes the influence of to the low density
edges of the system.

Compressibility and core compressibility are related by the ratio

κC
κ
= ∂D′

∂μ
∂μ
∂N
= ∂D′

∂N
. (5.3)

This core compressibility ratio is experimentally advantageous as it does not re-
quire knowledge of the chemical potential and can be measured directly and
accurately. It inherits the features of the core compressibility: when averaging
over the different chemical potentials present in the system, the κC deviates only
from zero as soon as the upper Hubbard band contributes to the total compress-
ibility and starts to become filled. The total compressibility κ stays large and ap-
proximately constant independent of the interaction strength and the presence
of a Mott core.
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Figure 5.4: The transition to an incompressible sample. Upon changing U, two regimes
can be distinguished by the slope ∂D/∂N. For vanishing interaction the large initial slope
signals the filling of the Bloch band. Increasing U reduces the double occupancy. For
U/h ≳ 5kHz a change in atom number can no longer change the double occupancy. The
compressibility ∂D/∂N is obtained from a least squares fit of D(N) = (∂D/∂N)N +D0 to
data such as those shown in Figure 5.2, with atom numbers in the interval from 25 × 103
to 8×104. Error bars denote the confidence interval of the fit. The expected slope in the
atomic limit is illustrated with a line for a lattice depth of 12ER and T = 0. 28TF.

In terms of the fraction of atoms on doubly occupied sites D = 2D′/N, the
core compressibility ratio is

∂D
∂N
= 2
N
∂D′

∂N
− D

′

N2 =
2κC
Nκ
− D
2N

. (5.4)

The last term is negligible as long as the double occupancy is small. A vanish-
ing slope ∂D/∂N is thus equivalent to a vanishing core compressibility and is
evidence of a Mott-insulating phase in the center of the trap.

We estimate the filling in the trap center for the non-interacting case from
the measured double occupancy [80]. It significantly exceeds one atom per site,
⟨n⟩ = 1. 4 for N = 5 × 104, V0 = 7ER and a temperature T of 30% of the Fermi
temperature TF. Consequently, already for vanishing interaction, the chemical
potential is large enough to permit the use of the core compressibility ratio,
μ≫ 6J. Finite interactions can only increase the chemical potential.
We extract the slope ∂D/∂N from curves such as shown in Figure 5.2. It

is displayed in Figure 5.4 for a wide range of interaction strengths. The data
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shows that we access two regimes: For small onsite interaction energies U the
slope ∂D/∂N is positive and the system is compressible. Yet for U/h > 5kHz
the measured compressibility vanishes. This indicates that we have entered the
Mott insulating regime. It implies a large central region with a filling reduced
to one atom per site, surrounded by a metallic region with lower filling.

The atomic limit

Further insight is gained by comparing our measurements with the theoretical
values of ∂D/∂N calculated in the atomic limit [168] of the Hubbard model,
including confinement and finite temperature. In this limit the kinetic energy
is neglected by setting the tunneling matrix element J to zero.

We calculate the temperature in the lattice by assuming that this entropy is
the same as the entropy determined from temperature measurements in the di-
pole trap. The fits in Figure 5.2b involve U as determined by modulation spec-
troscopy (see the following section, U/h = 4. 7(1)kHz and 6. 1(1)kHz) since
band structure calculations disagree with the measured value by up to 30% for
the largest scattering lengths.

We find good agreement between theory (line in Figure 5.4) and experimen-
tal data for U ≫ 6J, where the atomic limit is accurate. For the calculation we
have assumed a temperature of T = 0. 28TF, which is deduced from the entropy
in the dipole trap. For zero temperature the slope ∂D/∂N would vanish as soon
as U becomes larger than the chemical potential μ, which is h × 2. 7 kHz for
N = 8× 104 atoms and a lattice potential of V0 = 12ER. Both our measurements
and the model at finite temperature show a finite compressibility extending be-
yond U/h = 2. 7kHz, which can be attributed to thermal excitations. For the
largest interaction U/h = 8. 1 kHz the amount of thermal excitations is charac-
terized by T = 0. 11U/kB = 0. 28TF corresponding to 3% vacancies in the trap
center. The vanishing slope ∂D/∂N at this filling implies incompressibility of
the core. The obtained ratio T/U is comparable to estimates for the bosonic
Mott insulator [169].

In the strongly repulsive regime, the measured compressibility should vanish
if μ < U. For atom numbers corresponding to higher chemical potentials a
metallic phase will appear in the trap center and the double occupancy will
increase. We observe this characteristic behavior [170] which is a consequence
of the presence of a Mott insulator, see Figure 5.2b. The data agree well with
the predictions of the Hubbard model in the atomic limit (lines in Figure 5.2b).
The free parameters in the theory curves, the temperature and a constant offset
inD, are determined by a least squares fit to the data. The fits yield temperatures
of 0. 2(1)TF. However, the accuracy is limited due to the high sensitivity to the
energy gap and the harmonic confinement. The constant offset in D accounts

81



for the finite double occupancy in the ground state caused by second order
tunneling processes as well as a systematic offset of 0.5% stemming from technical
imperfections in the initial preparation of the spin mixture.

Excitations in the Mott-insulating regime

An important feature of a Mott insulator is the energy gap in the excitation spec-
trum. The lowest lying excitations are particle-hole excitations centered at an
energy U. The actual gap in the energy spectrum is reduced with respect to this
value due to the width of the energy bands experienced by particles and holes
[171]. A suitable technique for probing this excitation spectrum is to measure
the response of the quantum gas in the optical lattice to a modulation of the lat-
tice depth [118, 172, 173]: we apply 50 cycles of sinusoidal intensity modulation
of all three lattice beams with an amplitude of 10%. The response is quantified
by recording the double occupancy after the modulation as a function of mod-
ulation frequency. With increasing interactions we observe the emergence of a
gapped mode in the excitation spectrum (Figure 5.5). For small values of U/6J,
the double occupancy is not affected by the modulation of the lattice depth
independent of the frequency. For large values of U/6J in the Mott-insulating
regime a distinct peak appears for modulation frequencies ν near U/h.

Furthermore, the area w under the excitation curve is shown in Figure 5.5d.
It is determined from the spectrum according to

w =∑
i
Δν [D(νi) −

1
2
(D(200Hz) +D(700Hz))] , (5.5)

where D(νi) is the measured double occupancy at frequencies νi which are
evenly spaced in steps of Δν = 500Hz. The area is plotted in units of the band
width 12J/h. It is a measure for the width and the weight of the excitation mode
and increases with interaction strength before it saturates at large values of U/6J.

Conclusion

The presented approach to the physics of the repulsive Fermi-Hubbard model is
completely different and complementary to that encountered in solid-state sys-
tems, and provides a new avenue to one of the predominant concepts in con-
densed matter physics. In these first experiments we have found clear evidence
for the formation of a Mott insulator of fermionic atoms in the optical lattice.
We set limits for the deviation from unity filling in the Mott insulator by directly
measuring the residual double occupancy and by deducing the number of holes
from a realistic estimate of the temperature. The temperature is found to be small
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Figure 5.5: Emergence of a gapped mode. With increasing interaction (blue, green, red)
the response to modulation of the lattice depth shows the appearance of a gapped mode.
The weight of this peak grows with U/6J and saturates. All modulation spectra were
obtained with 32(2) × 103 atoms. The weight of the peak is shown in the bottom right
panel. The first four data points are taken for a lattice depth of 6. 5ER, the next at 7, 8
and 10ER, from left to right, respectively. The lines serve as a guide to the eye. Values and
error bars are the mean and standard deviation of 4 to 8 measurements under the same
conditions.

compared to the onsite interaction energy and the Fermi temperature. In addi-
tion, we have obtained good quantitative agreement with the Hubbard model
in the atomic limit for a wide range of parameters. In further investigations of
e.g. the energy spectra, the high resolution achieved may give direct insights into
the width of Hubbard bands [171], and the level of anti-ferromagnetic ordering
[112, 172] in the system. As presented in the following chapters the techniques
developed in these experiments provide access to the details of the emergence
and the lifetime of excitations.
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6 Approaching quantum magnetism

Recent experiments [164, 64] including those presented in the preceeding chap-
ter have demonstrated that the strongly correlated regime of the repulsive Fermi-
Hubbard model is experimentally accessible. In these experiments the emer-
gence of a Mott-insulating state which is a prime example for these strong cor-
relations has been observed.

In the next step towards the quantum simulation of the Fermi-Hubbard
model the main challenge is a further reduction in temperature. Here the lack
of a quantitative thermometry method in the lattice is a key obstacle. Differ-
ent thermometry methods have recently been demonstrated for strongly cor-
related bosonic systems where the momentum distribution is a very sensitive
probe. The temperature in the lattice could be inferred from a comparison of
time-of-flight data with quantum Monte-Carlo simulations [174]. In another
experiment the width of the boundary of two spin polarized clouds [175] was
observed in analogy to domain walls in ferromagnetic materials [176]. In the
fermionic case, previous methods to determine the temperature could be used
only in limiting regimes of the Hubbard model, namely the non-interacting
[80, 149] and zero-tunneling [164, 116] regimes. However, intermediate in-
teractions are most interesting for quantum simulation of the Fermi-Hubbard
model and no reliable thermometry method has been available up to now.

This chapter reports on a quantitative simulation of the Fermi-Hubbard
model using cold atoms. The level of precision of the experiment enables us
to determine the entropy and the temperature of the system, and thereby to
quantify the approach to the low temperature phases of the Hubbard model in
the regime of intermediate interactions.

The entropy of the system is determined by comparing accurate measure-
ments of the equilibrium double occupancy with theoretical calculations over a
wide range of parameters. In both the metallic and Mott-insulating regimes the
double occupancy provides direct access to thermal excitations. We describe
the crossover from thermal creation of double occupancies to thermal depletion
which is unique to a trapped system. The variability of the double occupancy
with respect to temperature allows the entropy of the system to be inferred di-
rectly by comparison with two ab-initio theoretical methods. We determine all
other quantities entering the analysis separately and with methods that are inde-
pendent of the double occupancy measurement and can assess the reliability of
the entropy determination in a comprehensive analysis of all systematic errors.

Parts of this chapter have been published in [79]
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Experimental methods

Spin mixture and atom number

To obtain a quantum degenerate Fermi gas we adhere to the procedure described
in previous chapters. A balanced spin mixture of 40K atoms in the mF = −9/2
and −5/2 magnetic sublevels of the F = 9/2 hyperfine manifold is evaporatively
cooled in a crossed beam optical dipole trap, with less than 1. 2% of the atoms
remaining in the mF = −7/2 state. We prepare Fermi gases with total atom
numbers between N = 30 × 103 and 300 × 103. The atom number is calibrated
using strong saturation imaging [154] at high magnetic field, with a remaining
systematic error ∼ 10%.

Lattice

The optical lattice potential is then ramped up in 0.2 s. Its depth of 7Er is deter-
mined from Raman-Nath diffraction of 87Rb and confirmed by resonant exci-
tation of atoms to higher bands [145]. In the lowest Bloch band the tunneling
matrix element is t/h = 174(30)Hz. From transverse oscillations in the standing
wave potentials of each lattice beam and the dipole trap we extract overall har-
monic trapping frequencies of ω[x,y,z]/2π = [49. 4(9), 52. 6(6), 133. 0(10)]Hz
and a geometric mean of ω/2π = 70. 1(5)Hz. The characteristic filling is
ρ = N/2N0 [167], where

N0 =
4π
3
( 12t
mω2d2

)
3/2

. (6.1)

Interactions

We tune the interaction between the atoms by adjusting the scattering length in
the proximity of the mF = −9/2,−5/2 s-wave Feshbach resonance before loading
into the lattice. To determine the scattering length, the width of the resonance
was measured by using the suppressed dephasing of Bloch oscillations [142] to
locate the zero crossing of the scattering length. We obtain a width of the
resonance of 7. 5(1)G which deviates from previous results [139] where the
mean field energy was measured.

We infer the on-site interaction energy U from the scattering length and the
Wannier function in the lowest Bloch band [3]. This ab initio U is experimen-
tally validated using resonant excitation of double occupancies by lattice modu-
lation. We cover the range from weak repulsion in the metallic regime to strong
repulsion with a Mott-insulating core using scattering lengths between 200a0
and 650a0. We choose values of the Hubbard parameter U/6t = 1. 4(2), 2. 4(4),
3. 2(5) and 4. 1(7).
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Temperature

Due to the lattice loading process, beam intensity noise, and spontaneous emis-
sion, the atoms heat up during preparation. Before loading into the lattice, the
temperature in the dipole trap is around 0. 13TF independent of the atom num-
ber as determined from the momentum distribution after time-of-flight. This
corresponds to an entropy per atom of s = S/N ≈ 1. 3. Since the system is iso-
lated from the environment, the temperature changes significantly even when
adiabatically loading into the lattice. The entropy, however only changes due to
non-adiabatic processes. Therefore we can find a typical upper limit of the spe-
cific entropy in the lattice by reversing the loading sequence and subsequently
measuring the temperature after releasing the atoms from the dipole trap. Here
we obtain s < 2. 5.

Double occupancy measurement

After loading the atoms into the lattice we determine the double occupancy. A
sudden increase of the lattice depth suppresses further tunneling. The fraction
of atoms on doubly occupied lattice sites D is then obtained by combining RF
spectroscopy, Stern-Gerlach separation of the spin components and absorption
imaging. The independently determined offset due to the imperfection of the
initial spin mixture is accounted for at this point in the analysis. From long term
reproducibility and comparison with the adiabatic formation of molecules via
magnetic field sweeps we conclude that the relative systematic uncertainty of
the double occupancy measurement is 10%.

Lattice thermometry

Due to the harmonic trapping potential, the temperature behavior of the dou-
ble occupancy can be markedly different from that of homogeneous systems
[80, 177]. In a homogeneous Hubbard system with repulsive interactions and
no magnetic order, the double occupancy always increases with temperature.
However, in a harmonically trapped system an increase in temperature allows
the atoms to reach outer regions of the trap, in turn reducing the density in the
central region: in this case thermal excitations do not populate doubly occupied
states but rather deplete them through the decrease of the density.

The regimes depicted in Figure 6.1 demonstrate the competition between
thermal activation and the effect of the trapping potential on the double oc-
cupancy as a function of filling and entropy. The experimental data is com-
pared with theoretical results to extract the entropy. The curves in Figure 6.1
correspond to the best fitting entropy and its experimental bounds.
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Figure 6.1: Double occupancy: experiment versus theory. Points and error bars are the
mean and standard deviation of at least three experimental runs. The solid curve in each
panel is the best fit of the second order high-temperature series to the experimental data
and yields specific entropies of s = 2. 2(2), 2. 0(5), 1. 9(4), 1. 6(4) for the different inter-
actions strengths of U/6t = 1. 4(2), 2. 4(4), 3. 2(5), 4. 1(7). Curves for s = 1. 3 (dashed)
and 2. 5 (dotted) represent the interval of specific entropy measured before and after the
ramping of the lattice.

We apply the high-temperature series expansion [113] as well as single-site
dynamical mean-field theory (DMFT) [39] with a continuous time quantum
Monte Carlo solver [178]. In the experimentally relevant regime we find the
high-temperature series and DMFT to be in agreement to within 0. 2%. For
simplicity, the theoretical curves shown in this Letter are therefore generated
using the second order high-temperature series unless stated otherwise. The
entropy is determined from a one-parameter least-squares fit of the high-
temperature series D(s, ρi) to the experimental data points Di weighting them
according to their statistical errors σDi. The fit minimizes

χ2 =∑
i
(D(s, ρi) −Di)2/σ2Di. (6.2)

The series is able to accurately reproduce the measured double occupancy for all
shown interaction strengths. We find deviations of the experimental data only at
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the lowest fillings at low repulsion, indicating that for very small atom numbers
and weak interaction the cooling and loading procedure may fail to produce a
constant entropy per atom.

The size and direction of the corridors between initial and final entropy in
the dipole trap has implications for the usefulness of the double occupancy when
performing thermometry. In Figure 6.1a the behavior for low repulsion U/6t =
1. 4 is shown. With increasing filling the system transforms from a dilute gas to
an increasingly dense metal with high double occupancy. In this case the effect
of the trapping potential dominates and D decreases with increasing entropy.
Due to its large ∣∂D/∂s∣, the regime well suited for thermometry.

At intermediate repulsion strengths in Figure 6.1b and c, double occupancies
become increasingly suppressed and ∣∂D/∂s∣ decreases. The derivative ∂D/∂s
changes sign at a certain filling for each interaction strength. These points mark
the crossover to thermal suppression of double occupancies. If ∂D/∂s vanishes,
the theory becomes parameter-free to first order and can be used to further
determine other calibration factors, e.g., the characteristic filling.

Figure 6.1d shows data for clouds in the Mott insulating regime. It exhibits
a pronounced plateau of suppressed double occupancy at intermediate fillings
owing to a vanishing core compressibility, a characteristic signature of a Mott-
insulating core. Large filling can increase the chemical potential to values com-
parable with U and thus create double occupancy. In this regime the thermal
activation of double occupancies dominates over the thermal decrease of density
due to the trapping potential. If ∂D/∂s > 0 a large fraction of particles resides in
the Mott-insulating core. Here the chemical potential is high enough to prevent
holes from entering the center and additionally the density of states is sufficiently
gapped to allow only few thermally excited double occupancies.

The rate of change of the double occupancy with average entropy is explored
in Figure 6.2 for an entropy of s = 1. 6 and all relevant characteristic fillings
and repulsive interactions. The two regimes of dominant thermal activation
of double occupancy (red) and depletion (green) can be distinguished. The
magnitude of the response to changes in entropy grows with filling due to the
increasing relative size of the doubly occupied or Mott-insulating region. In the
regime of large U and small filling numerical imprecision leads to an unphysical
slightly negative ∂D/∂s ∼ −0. 001.

Error budget

We now consider the errors of the parameters and measurements to assess the
absolute reliability of the present method in determining the entropy. Table 6.1
lists the contributions. The sensitivity of the least squares fit to variation of the
respective parameter shows the sign of the influence as well as the magnitude.
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Figure 6.2: Sensitivity of the double occupancy to changes in specific entropy. The plot
shows the change in double occupancy with changing entropy ∂D/∂s for different char-
acteristic fillings ρ and interaction strengths U/6t and s = 1. 6. The simulation is based on
the high temperature series expansion up to second order.

U/6t 1. 4 2. 4 3. 2 4. 1
δt∂sfit/∂t −0. 01 0. 01 −0. 11 −0. 08

δU∂sfit/∂U ∼ 0 −0. 04 0. 07 0. 09
δω∂sfit/∂ω 0. 01 0. 07 −0. 07 −0. 07
δN∂sfit/∂N 0. 06 0. 30 −0. 32 −0. 32
δD∂sfit/∂D −0. 16 −0. 30 0. 13 0. 13

σs 0. 01 0. 12 0. 18 0. 07
total s 2. 2(2) 2. 0(5) 1. 9(4) 1. 6(4)

Table 6.1: Error budget of the entropy determination. The table lists the sensitivity of
the fit ∂sfit/∂(⋅) to the changes in the system’s parameters scaled by their systematic errors
δ(⋅). For a positive contribution an increase in the parameter would lead to an increase in
the apparent entropy. The contributions are added in quadrature to the fit error estimate
σ2s = 2(∂

2χ2/∂s2)−1 to obtain the total uncertainty of the entropy.

The total relative uncertainties are below 25% for all four interaction strengths
which confirms the validity of the determined entropies. It is apparent that
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Figure 6.3: Properties of experimental regimes and validity of theoretical methods. Panels
a, b, and c show the central density n0, central compressibility κ0 and temperature T
reached in the corresponding Hubbard model as a function of characteristic filling ρ for
the parameters of Figure 6.1. The dash-dash-dotted (dash-dot-dotted) curve in panel c
corresponds to the temperature for s = 1. 3 (s = 2. 5) without lattice and interaction but the
same atom number and trapping frequency as in the lattice. Panel d: agreement between
high-temperature series (HTS: second order dotted line, sixth order dash-dotted, tenth
order dashed line) and DMFT (solid line) for U/6t = 2. 5 and ρ = 2 as a function of
temperature in the lattice T/6t. For low temperatures T ≲ t the series starts to diverge.

the systematic errors dominate and that especially the atom number and double
occupancy calibrations are critical. The observed increase of the specific entropy
with decreasing interaction can be explained by an interaction-dependent global
adiabaticity of the preparation [179] or by a combination of systematic errors in
N and D.

In-trap properties and validity of numerical methods

Several unique properties of trapped repulsively interacting Fermi-Hubbard sys-
tems can be derived from the theoretical description. Figure 6.3a and b show
the central density n0 and compressibility κ0 = ∂n0/∂μ versus characteristic filling
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Figure 6.4: Density of states in the homoge-
neous non-interacting 3D Hubbard model.

for the interaction strengths and specific entropies of Figure 6.1. The plateau in
n0 and the reduction of κ0 for U/6t = 4. 1 are signatures of the Mott insulating
regime [177].

To compare the compressibility in the Mott-insulating regime with that of the
ground state in the Hubbard model without interaction, we derive the density
of states. In the cosine-shaped band structure E(qx, qy, qz) of the lowest band,
with the quasimomenta qx, qy, qz in the first Brillouin zone, −π < qi < π, we have
for the number of states up to an energy E:

E(qx, qy, qz) = 6t − 2t cos(qx) − 2t cos(qy) − 2t cos(qy) (6.3)

N(E) = 1
4π3

π

∫
−π

π

∫
−π

π

∫
−π

Θ(E − E(qx, qy, qz))dqz dqy dqx. (6.4)

where Θ(x) is the Heaviside step function. Using abbreviated units, t = 1 and
e = ∣E/t − 6∣/2, the density of states can be expressed in terms of the complete
elliptic integral of the first kind F(m) [180]:

κU=0(e) =
1
π3

min(1,2−e)

∫
max(−1,−2−e)

F(1 − (e + a)
2

4
) 1√

1 − a2
da (6.5)

F(m) =
π/2

∫
0

1√
1 −m sin2 b

db. (6.6)

In the center of the band at half filling μ = 6t, the density of single particle
states and equally the compressibility of the ground state are κU=0 ≈ 1. 69/6t.
Compared to this value, the compressibility in the center of the trap at the
largest interaction is suppressed by a factor of 50 to values as low as κ0 ≈ 0. 03/6t.

The entropy as determined above needs to be related to a temperature to
allow for comparison with models of homogeneous systems. Figure 6.3c shows
this temperature in units of the half bandwidth as a function of characteristic
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Figure 6.5: Density and entropy distribution in the trap. For the interaction strengths and
entropies of Figure 6.1 the density ni (upward) and entropy si (downward) per site i at a
characteristic filling of ρ = 1. 5 in a spherically symmetric system are shown. The buffering
effect of the low-density shell around the Mott-insulating core becomes clearly visible for
U/6t = 4. 1. There, the entropy reaches values of about twice the critical entropy of the
Heisenberg model sH ≈ ln 2/2.

filling. The behavior is similar to that of a Fermi gas in a harmonic trap where
the temperature at constant specific entropy increases with the atom number.
Figure 6.3c facilitates such a comparison of the temperature in the lattice with
the temperature of a non-interacting gas at the same entropy and atom number
in a dipole trap. The lattice temperatures which systematically have an entropy
of s ≥ 1. 6 approach the dipole trap temperature that corresponds to s = 1. 3.
This indicates the possibility of adiabatic cooling.

At the lowest fillings of ρ = 1 the temperature in the lattice even approaches the
energy scale of the tunneling T ∼ t. At these low temperatures the results of high-
temperature series and DMFT start to deviate considerably, see Figure 6.3d.
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Density and entropy distribution

In a finite trapped system, antiferromagnetic order requires two conditions to
be met: It can only be established in regions of sufficiently constant atom den-
sity and low specific entropy. The experimental situation with respect to those
conditions is depicted in Figure 6.5 for a characteristic filling of ρ = 1. 5 and
the same parameters as those shown in Figure 6.1. The upward axes show the
spatial density distribution. At low repulsive interaction (a-b) the system has a
density above one in the center which corresponds to a significant doping. In
panel c, double occupancies and holes compensate in the center and lead to
an average density close to unity which then starts to deviate a few sites away
from the center. Only for the largest repulsion d, the Mott-insulating core is
robust against the confining potential over the central 20 sites. Here the density
changes by less than 1%.

The entropy per site is shown on the downward axes in Figure 6.5. It is
highest in regions of the trap where the density is most variable. For small
interaction strengths it reaches values close to the maximum of si = ln 4 in some
regions. For large repulsion the sites in the perimeter of the cloud where ni ∼ 2/3
carry most of the entropy. This can be understood in the atomic limit at large
U. At ni = 2/3 each site has three equally likely states and can accommodate
si = ln 3 of entropy. The Mott-insulating core can only absorb ln 2 of spin
entropy. Mean-field theory of the Heisenberg model predicts this to coincide
with the entropy at its critical point. However, quantum fluctuations lower
the entropy at the Néel temperature where magnetic long-range order sets in
to about sH ≈ ln 2/2 ≈ 0. 35 [111]. We have verified numerically that for the
Heisenberg model with exchange coupling J the entropy is s = 0. 338(5) at
TNéel/J = 0. 946(1) [181, 182] by integrating the energy, S = ∫ dE/T. Integration
from above or below the Néel temperature agree. Additionally, we performed
a new study of the Hubbard model using a diagrammatic determinant Monte
Carlo method [183]. For U/t = 8, the critical temperature is TNéel/t = 0. 325(7)
[37], and the critical entropy sNéel = 0. 345(45). This differs from other mean-
field calculation including fluctuation corrections [184] and is a factor of two
less than the experimental results presented here.

Conclusion

In the study presented here, we have demonstrated the versatility of the double
occupancy in quantifying the state of the system and the applicability of both
high-temperature series and dynamical mean field theory to obtain quantitative
agreement with the experimental data. The achieved level of accuracy permits
an experimental determination of the parameters needed to identify quantum
magnetism of ultracold fermions in optical lattices, most importantly tempera-
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ture and entropy. Using the theoretical models we have gained insight into the
effects of the trapping potential on the distribution of entropy and density which
lead to drastic differences and new regimes compared to the homogeneous case.

The details of the thermodynamic processes during the loading pose further
interesting questions. An analysis of the fundamental and dominant contribu-
tions to diabatic heating during the loading could allow a significant reduction
of the observed increase in entropy. Important steps to reduce the temperature
in the lattice may lie in the possibility of adiabatic cooling due to the altered
density of states.
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7 Controlling transport by interaction

The study of conductivity in solids has led to the discovery of fundamental phe-
nomena in condensed matter physics and to a wealth of knowledge on elec-
tronic phases. Intriguing quantum many-body phenomena such as supercon-
ductivity and the quantum Hall effect manifest themselves in their character-
istic electronic transport properties. Moreover, the ability to manipulate con-
ductivity has found numerous applications in technology, most prominently in
semiconductors, where transport is controlled by electric biasing. Other ways
to modify the conductivity in a material include adjusting temperature, pressure
or magnetic field.

A gas of ultracold interacting fermionic atoms exposed to the potential of an
optical lattice offers a new approach to study and control transport while pro-
viding a direct link to fundamental models in condensed matter physics. While
the tunable interaction in these gases has been used to study fermionic super-
fluidity in the strongly interacting regime [185], it has so far not been applied
to investigate transport phenomena in optical lattices. In previous experiments
the transport of non-interacting fermionic atoms and the effect of a bosonic
admixture mediating interactions were studied in one-dimensional optical lat-
tices [30, 29]. Furthermore, the dynamics of Bose gases in a three-dimensional
optical lattice was investigated experimentally [150, 186, 118] and theoretically
[187, 188, 189, 190].

Introduction

In this chapter we study the transport properties of a two-component 40K cloud
trapped inside a three-dimensional optical lattice with underlying harmonic
confinement. We monitor the center of mass motion of the atomic cloud af-
ter a sudden displacement of the trap minimum. The regimes of vanishing,
weakly attractive and strongly attractive interactions are accessed by exploiting a
Feshbach resonance to tune the scattering length for low energy collisions be-
tween the two atomic components. The atom number is adjusted so that at the
trap center the lowest energy band is either filled or half-filled. For these para-
meters the system can be regarded as a realization of the attractive single-band
Fermi-Hubbard model [191] with additional harmonic confinement. A Mott-

Parts of this chapter have been published in [149]
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Figure 7.1: Dynamic control of transport by tuning the collisional interaction. The graph
shows the center of mass motion of a two-component Fermi gas of 2. 9(3) × 104 atoms
in a lattice of 5Er depth. At t = 0, the equilibrium position of the underlying harmonic
trap is displaced vertically. After 9ms of evolution without interaction (●), the magnetic
field is changed linearly in 1ms so that the interaction is strongly attractive (○) for 10ms.
Then the magnetic field is changed to its original value again within 0.5ms (●). The two
non-interacting cases ● are each fit by a damped cosine and an offset, while the evolution
with attractive interaction ○ is fit by an exponential decay and an offset. Error bars denote
the standard deviation of at least four measurements.

insulating phase of pairs as discussed in the context of the multi-band Hubbard
model [192, 186] is not expected.

The strong influence of the interactions on the transport is illustrated in Fig-
ure 7.1. An atomic cloud is prepared in the optical lattice at half filling and
brought into non-equilibrium by displacing the trap minimum. The initially
non-interacting cloud performs a weakly damped oscillatory motion in the con-
fining potential. By temporarily switching on the attractive interaction, a con-
trolled interruption of this oscillation is achieved.

Experimental methods

Preparation

We prepare a cloud of 40K atoms in an equal mixture of the hyperfine substates
mF = −9/2,−7/2. After evaporative cooling we obtain 4× 104 (3× 105) atoms at
temperatures below T/TF = 0. 20 (0. 25) in the dipole trap with final trapping
frequencies of (ωx,ωy,ωz) = 2π × (35, 23, 120)Hz, where TF is the Fermi tem-
perature. Next, the degenerate Fermi gas is subjected to the additional periodic
potential of a three-dimensional optical lattice with a depth of 5Er. To load the
atoms into the lowest Bloch band of the optical lattice, we increase the intensity
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Figure 7.2: Mapping the cloud center of
mass position in the lattice and dipole trap
to momentum. The mass transport drives
the evolution in the lattice for some time
t. The lattice is then ramped down quickly
and the cloud is allowed to oscillate in the
pure dipole trap for a quarter of the oscilla-
tion period. This maps center of mass po-
sition to center of mass momentum. Dur-
ing time-of-flight, the cloud momentum is
mapped again to position on the absorption
image.

of the lattice beams using a spline ramp with a duration of 100ms at a scattering
length of a = 50a0, where a0 is the Bohr radius.

Observing transport

The gas is brought into a non-equilibrium position by increasing the beam in-
tensities of the underlying dipole trap, which shifts the trap minimum by up to
2.5 µm in the vertical z-direction. Since this displacement is smaller than our
imaging resolution, we map the center of mass position of the atomic cloud to
momentum space. For this purpose we switch off the optical lattice and let the
cloud oscillate in the remaining harmonic dipole trap for a quarter period [150],
see Figure 7.2.

After free expansion, we obtain the momentum distribution of the cloud from
absorption imaging, determine the center of mass momentum using a Gaussian
fit and infer the original displacement z of the cloud in the trap. Oscillations
of the cloud size are not observed since the horizontal and vertical trapping
frequencies are only increased by about 4% and 12%, respectively. Also, Bloch
oscillations can be neglected for our small displacement since even for large
fillings only few atoms gain sufficient energy to reach the band edge [193]. The
energy deposited in the system by the trap displacement is estimated to increase
the temperature in the lattice by an amount of 0. 05TF.
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Attractive interactions

Prior to the displacement of the trap the magnetic field is gradually ramped
to final values between 210G and 202.95G within 50ms, yielding an s-wave
scattering length ranging from 0 to −1500a0. This corresponds to an effective
interaction strength U/J between 0 and -24.

The results of transport measurements for three interaction strengths and two
different fillings are shown in Figure 7.3. We fit the function

z(t) = zosc cos(2πft) exp(−βt) + zexp exp(−Γt) + z0 (7.1)

to the data. For the half filled case, 3. 6(4) × 104 atoms are prepared corre-
sponding to 0. 46(5) atoms per lattice site and spin state at the center of a non-
interacting cloud.

In order to calculate the central filling and double occupancy the Hamiltonian
for an isotropic non-interacting system with the same mean trapping frequency
was diagonalized numerically on up to 923 sites at a temperature of 0. 27TF [80].

In the case of high filling, the samples contain 2. 7(3) × 105 atoms and form
a large band insulating core. The filling factor of the Bloch band is position-
dependent due to the inhomogeneous density profile of the trapped gas. The
cases of zero, moderate and strong interaction are discussed hereafter.

In the non-interacting case with half filling we observe damped dipole os-
cillations (Figure 7.3(a) ○). This damping of the center of mass motion can be
attributed to the fact that the fermions in different quasi-momentum states pos-
sess different effective masses, resulting in a spectrum of oscillation frequencies.
Furthermore, the total trapping potential is slightly anharmonic causing a de-
phasing also observed in the pure dipole trap. The system with high filling (Fig-
ure 7.3(a) ●) is characterized by a very slow relaxation towards the equilibrium
position: The band insulating core suppresses center of mass motion and a large
number of atoms occupy localized states [78, 194, 71, 29]. These single particle
eigenstates exist at a distance zloc from the center of the trap where the poten-
tial energy due to the harmonic confinement is larger than the bandwidth, i. e.
mω2

zz
2
loc/2 > 4J. Consequently, the motion through the center is energetically

prohibited. However, the atoms can still oscillate within the outer regions of the
cloud. Even in the half filled case a small fraction of atoms is localized, which
explains the small offset observed in the center of mass position after the decay
of the oscillations (Figure 7.3(a) ○).

The evolution of a non-interacting Fer gas can be simulated by exact diag-
onalization the Hubbard Hamiltonian in the trap. The evolution for parame-
ters comparable with those of Figure 7.3(a) ○ is sketched in Figure 7.4. The
low-filling case exhibits the dephasing that is also observed experimentally. The
different effective masses lead to a reduced oscillation frequency compared with
the free case and additionally to a periodic increase of the cloud size. In the
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Figure 7.3: Evolution of the center of mass position for different interaction strengths and
fillings. The circles ○ (●) denote samples in the half filled (band insulating) regime. For
each data point the position of the cloud with and without displacement was compared
to eliminate long term drifts. The error bars denote the standard deviation of at least 4
measurements.

large filling case also localized states and states with negative effective mass are
occupied. The center of mass evolution of each initial single particle eigenstate
is depicted in the lower panel. The different oscillation frequencies, the inverted
oscillation of the states with negative effective mass and the confined oscillation
of localized states can be clearly identified.

For moderate attractive interaction and half filling, the damping of the di-
pole oscillations becomes more pronounced (Figure 7.3(b) ○). The damping
rate β increases from 80(17) Hz in the non-interacting case to 140(37) Hz at
U/J = −2. 4. As the interaction strength is increased beyond U/J < −3. 5, the
oscillations vanish entirely. The sample with high filling (Figure 7.3(b) ●) re-
laxes faster towards equilibrium than in the non-interacting case, which can be
attributed to umklapp processes [195].
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Figure 7.4: Transport oscillations of a non-interacting Fermi gas in an optical lattice. For
similar parameters as in Figure 7.3(a) the evolution of the cloud has been simulated by exact
diagonalization. The top panel shows the center-of-mass position in the low filling (solid)
and large filling (dotted) case as well as the change in the clouds’ root-mean-square size
(dash-dotted and dash-dot-dotted for the two fillings respectively). The center-of-mass
evolution of the individual single particle eigenstates are depicted in the bottom panel.
Their occupation in the case of large filling is encoded in the opacity of the respective
curve. Positions are given in units of the lattice spacing d = λ/2 = 532nm and oscillation
times in inverse vertical trapping frequencies 2π/ωz ≈ 7. 7ms.

In the strongly interacting case, a very slow relaxation is observed for both
fillings (Figure 7.3(c)]. The transport in this regime is governed by the dynamics
of local fermionic pairs. In the limit of low atomic densities bound pairs form
for U/J < −7. 9 [196, 17]. These pairs tunnel to adjacent sites via a second order
process with an amplitude Jeff = 2J

2/U. This effective tunneling is obtained by
considering a ground state where all atoms form pairs and by treating the tunnel-
ing term proportional to J as a perturbation in the Hubbard Hamiltonian [191].
Accordingly, the tunneling rate of pairs is reduced with increasing interaction as
compared to bare atoms. Besides, the energy offset between neighboring sites
due to the harmonic confinement reduces the tunneling probability. For these
reasons we expect the relaxation time to become longer for stronger interac-
tions. This is supported by the data in Figure 7.5, which shows a clear decrease
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Figure 7.5: Relaxation rate Γ as a function of interaction strength. The data points and
error bars are fit results to center of mass evolutions of 3. 8(4)×104 atoms. The empirical
power law hΓ = CJ(J/U)ν with ν = 1. 61(3) and C = 2. 95(17) fits the data well. The inset
shows the dependence of the relaxation rate on the atom number.

of the relaxation rate Γ for growing attractive interaction. The data is well fit
by the empirical power law Γ/J ∝ (U/J)−1.61. A quantitative understanding of
this behavior is challenging due to the coexistence of bare atoms and local pairs
which act as hardcore bosons in the lattice.

Pair formation

Further insight into the physics of local pairs is gained by probing the double
occupancy in the lattice for various interaction strengths without displacing the
trap. For this purpose, we prepare the system at half filling as before and set the
desired interaction within 50ms by changing the value of the magnetic field.
Then the lattice depth is abruptly increased from 5Er to 30Er in order to suppress
further tunneling. By subsequently ramping the magnetic field from 203.26G to
201.23G within 5ms, weakly bound Feshbach molecules are formed on those
sites which are doubly occupied. We determine the number of atoms remaining
after the molecule formation and compare it with the atom number which is
obtained after dissociation of the molecules by applying the inverse magnetic
field ramp. This yields the molecular fraction displayed in Figure 7.6, showing
a strong dependence on the interaction strength: While for the non-interacting
system the detected fraction is 18%, it increases up to 60% for strongly attractive
interactions.

For the non-interacting gas the double occupancy in the lattice is solely de-
termined by the number of trapped atoms and their temperature. The detected
fraction of 18% is consistent with the temperature in the lattice of 0. 27(2)TF,
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Figure 7.6: The fraction of molecules formed in the optical lattice increases with attractive
interaction, demonstrating a higher number of doubly occupied lattice sites. Error bars
denote the statistical errors of at least 4 measurements. The line serves as a guide to the
eye.

which we determined in a separate measurement with 2. 7× 105 atoms yielding
a molecular fraction of 46(2)%. This temperature, even though measured in an
ideal gas, suggests that the gas remains above the critical temperature for super-
fluidity also for strong interactions. Numerical calculations for a homogeneous
interacting system show a considerable temperature dependence of the double
occupancy [197]. We therefore expect that the temperature of the interacting
gas can be deduced from the measured double occupancy.

The increase of the molecular fraction with rising attractive interactions pro-
vides strong evidence for the formation of local pairs. In accordance with
numerical calculations for the attractive Hubbard model at finite temperature
[36] the number of doubly occupied sites increases already for weak attraction
and even in a regime where no bound state exists in the two-body problem
(U/J > −7. 9). Pair formation in the many-body regime is expected to start at a
value of U/J ≈ −2.

For strong attractive interactions, U/J < −7. 9, the number of doubly occupied
sites saturates. This is in accordance with the fact that the pairs are well localized
on single lattice sites and can be regarded as hardcore bosons. An increase in
molecular fraction due to an attraction-induced shrinking of the cloud, which
would result in a higher average density, is not substantiated by the following
measurements: When tuning the interaction strengths we could not detect a
change in the size of the trapped atom cloud with our measurement accuracy of
10%. Furthermore, the same increase in molecular fraction is found if the attrac-
tive interaction is turned on within only one tunneling time. This demonstrates
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that we observe local pairing rather than a redistribution of the trapped atoms
on a larger scale.

Conclusion

In conclusion, we have found that the transport of an attractively interacting
Fermi gas in a 3D optical lattice is strongly influenced by the formation of lo-
cal pairs. In the future, studying the oscillation frequency below the superfluid
transition temperature could serve to characterize the BCS-BEC crossover [198].
Extending these studies to the repulsive Fermi-Hubbard model may provide a
tool to further explore quantum phases such as the fermionic Mott insulator.
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8 Observing elastic doublon decay

Understanding the far-from-equilibrium dynamics of strongly correlated sys-
tems is a highly challenging task. Even the identification of the basic processes
involved and the associated time scales is nontrivial when the system cannot be
described by weakly interacting excitations or quasiparticles. In these systems,
dynamics may couple states with widely different energies making the descrip-
tion in terms of a restricted set of low energy states as in the Fermi liquid theory
impossible. Some progress has been made for one-dimensional systems, where
it is often possible to obtain exact solutions for the eigenstates of the Hamilton-
ian. The absence of thermalization in one-dimensional Bose systems has been
predicted [200, 201, 202] and observed [203] in cold atomic gases. However,
these studies are hard to generalize to higher dimensions.

The main difficulty in analyzing non-equilibrium dynamics in the setting
of condensed matter experiments is the strong coupling to the environment,
which introduces extrinsic relaxation mechanisms and renders the controlled
preparation and relaxation of far-from-equilibrium initial states a challenging
task. By contrast, the nearly perfect isolation of many-body systems realized
with ultracold atoms makes them a perfect candidate for studying the intrinsic
dynamics of strongly correlated systems. In the setting of ultracold atoms it
is possible to prepare a well-controlled initial state, evolve it under the action
of a precisely defined microscopic Hamiltonian, and monitor the effects of the
characteristic relaxation process [204].

This chapter reports on an investigation of the relaxation of artificially created
highly excited states in the repulsive Fermi-Hubbard model with ultracold atom
systems. Due to the negligible coupling to an external environment, we are able
to carry out a direct comparison of experiment and theory. The interpretation of
these results shows the importance of high-order scattering processes in bridging
the energy gap between low- and high-energy excitations and how they can lead
to exponentially slow thermalization.

This problem appears in diverse contexts like multiphonon decay of exci-
tons in semiconductors [205], pump-probe experiments [206] and dynamics of
resonances in nuclear matter [207].

Similar excitations are also probed in experiments that combine ultrashort
laser or soft x-ray pulses with solid state systems [28, 208, 209]. In these systems,
phase transitions emerge due to the creation of high energy excitations. The
details, however are frequently challenging to analyze as the lattice degrees of

Parts of this chapter have been published in [141, 199]
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Figure 8.1: Stability of highly excited states in the single-band Hubbard model. Doubly
occupied lattice sites are protected against decay by the on-site interaction energy U. The
average kinetic energy of a single particle in a periodic potential is half the bandwidth 6J.
Thus the relaxation of excitations requires several scattering partners to maintain energy
conservation.

freedom can play a dominant role and alter the physics of the electronic degrees
of freedom.

Introduction

In the experiment, we study the time evolution of doubly occupied lattice sites
(doublons). In the context of a dilute Bose-Hubbard system isolated repulsively
bound pairs have been experimentally identified and studied [210]. In this chap-
ter the tunneling matrix element is denoted by J instead of t as has been common
practice.

We report on the observation of elastic decay of artificially created doublons
into single particles. The doublons are found to live longer as the interactions
become stronger. More specifically their lifetime increases exponentially with
the ratio of on-site interaction to kinetic energy in the lowest Bloch band U/6J.
We argue that a doublon, having an excess energy U, decays in a scattering
process involving several single fermions, see also Figure 8.1. Since each of these
scattering partners can only absorb an average energy of 6J, the number of virtual
states involved in the simultaneous many-body process is U/6J. Hence the decay
is exponentially suppressed for increasing U/6J. We find good agreement with
diagrammatic calculations where the strongly correlated nature of the underlying
state is crucial in obtaining the correct value of the scaling exponent.
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Experimental methods

Preparation

The experimental sequence used to produce quantum degenerate Fermi gases
has been described in detail the previous chapters. We prepare a balanced spin
mixture of 50(5) × 103 40K atoms at temperatures below 15% of the Fermi
temperature TF. The confinement is given by a dipole trap with trapping fre-
quencies ω[x,y,z]/2π = [35, 23, 120]Hz. Using Feshbach resonances in either the
mF = −9/2,−7/2 or mF = −9/2,−5/2 mixture, the interaction strength is tuned
in the range 98a0 to 131a0 or 374a0 to 672a0.

After adjusting the scattering length to the desired value, we add a three-
dimensional cubic optical lattice. The lattice depth is increased in 200ms to
final values between 6. 5Er and 12. 5Er. The statistical and systematic errors
in the on-site interaction strength U and the nearest-neighbor tunneling J are
dominated by the lattice calibration and the accuracies in width and position of
the two Feshbach resonances. Depending on U and J the accessible final regimes
from metallic to Mott-insulating phases with an equilibrium double occupancy
Nd0 below 15%.

Excitation, decay, and detection

The preparation of the system is followed by a sinusoidal modulation of the
lattice depth with an amplitude of 10% and frequency close to U/h. This causes
an increase of the double occupancy ΔNd to values up to 35% [172, 211, 212].

After the modulation the system is in a non-equilibrium state, which we let
evolve freely at the initial lattice depth and interaction strength for up to 4 s. This
is followed by a sudden increase of the lattice depth to 30Er which prevents fur-
ther tunneling. We then measure the amount of atoms residing on doubly and
singly occupied sites Nd and Ns by encoding the double occupancy into a pre-
viously unpopulated spin state using rf spectroscopy. Combining Stern-Gerlach
separation and absorption imaging allows us to determine the population of all
three spin components and to obtain single occupancy ns = Ns/Ntot, double oc-
cupancy nd = Nd/Ntot, and total atom number Ntot = Ns +Nd simultaneously in
a single run.

Evaluation

We repeat the experiment for a range of different times of free evolution and
record the total atom number as well as the single and double occupancy, see
Figure 8.2. The double occupancy is found to decay exponentially in time,
while losses are observed on longer timescales. These losses lead to a reduction
of the total atom number. To extract the doublon lifetime we model the decay
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Figure 8.2: Time evolution of double occupancy, single occupancy and total atom number
for two different ratios U/6J (round and triangular symbols). In the upper row, the sys-
tem was previously excited via lattice modulation. The bottom row shows the reference
measurement for the determination of the residual dynamics. The round data points were
recorded using a mF = −9/2,−7/2 spin mixture with U/h = 1. 4 kHz and J/h = 70Hz,
whereas the triangular data points show a −9/2,−5/2 mixture with U/h = 3. 2 kHz and
J/h = 100Hz. The solid lines are simultaneous fits of the integrated population equations
8.1. The total atom numbers are scaled to their initial values. Single occupancy and dou-
ble occupancy are the fraction of atoms residing on sites of the respective type. Due to
different detection efficiencies for hyperfine states the sum of double and single occupancy
can be higher than one. Error bars denote the statistical error of at least four measurements
for the same parameters.

by a set of coupled rate equations:

ΔṄd = −( 1
τD
+ 1

τinel
+ 1

τloss
) ΔNd,

Ṅd0 = −( 1
τinel
+ 1

τloss
)Nd0, (8.1)

Ṅs = 1
τD

ΔNd −
1

τloss
Ns.

Here, the dot denotes the time derivative. The three time constants parametrize
three independent local decay processes differing in the type of site they affect:

• The lifetime of doublons τD describes a population flow from doubly oc-
cupied to singly occupied lattice sites visible as a fast decay of the dou-
ble occupancy within 0.01-1 s and a synchronous increase of the single
occpuancy. This process conserves the total atom number.
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Figure 8.3: Doublon lifetime as a function of U and J. The circles show the fit results to
datasets as shown in Figure 8.2, obtained with a −9/2,−7/2 spin mixture while the trian-
gular data points correspond to the −9/2,−5/2 mixture. Error bars denote the confidence
intervals of the lifetime fits and the statistical errors in U and J.

• The loss time constant τloss corresponds to atom losses affecting both dou-
bly and singly occupied site types in the same manner. This process is only
observed in a change of the total atom number and not in the occupancy
fractions. Collisions with hot atoms from the background vapor pressure
could in part be responsible for this loss.

• Doubly occupied sites are generally subject to enhanced two-body losses
due to the s-wave Feshbach resonance or due to coupling to a p-wave res-
onance channel. We summarize these additional inelastic losses on doubly
occupied sites by τinel. The loss is visible as a simultaneous decay of both
the total atom number and double occupancy.

Changes of the decay times during the decay and other higher order terms in
the rate equations are not included.

We integrate Equation 8.1 and fit the resulting system of time-dependent
population equations to the time evolution of single and double occupancy as
well as to the total atom number. To further reduce the coupling of the different
decay rates, we assert that the two loss processes must identically affect a reference
data set where no additional double occupancies have been created by lattice
modulation. We record this reference data set time-interleaved with the actual
decay data. Since the modulation does not change the losses, this procedure
removes the influence of τinel and τloss, allowing for a reliable determination of
the doublon lifetime τD. The model and the observation are found to agree
very well within experimental uncertainties, as shown in Figure 8.2.
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Figure 8.4: Semilog plot of doublon lifetime τD versus U/6J. The lifetime is extracted
from datasets as shown in Figure 8.2. Solid and hollow circles denote the (−9/2,−5/2)
and (−9/2,−7/2) spin mixture respectively, while the dashed line shows the theoretical
result at half filling. The solid line is a fit of Equation 8.2 to the experimental data,
yielding α = 0. 82(8), whereas for the theory curve the asymptotic slope at large U/6J
is αtheo = 0. 80. The shaded corridor was obtained by varying the filling factor in the
calculation by 30%. The inset shows the parameters used to realize the different values
of U/6J. Error bars denote the confidence intervals of the lifetime fits and the statistical
errors in U/6J. The systematic errors in U/6J and τD/(h/J) are estimated to be 30% and
25%, respectively.

Doublon lifetimes

Wemeasure this doublon lifetime for various tunneling and interaction strengths,
covering a parameter range where J and U each differ by more than a factor of
four. The determined absolute lifetimes vary over two orders of magnitude, as
shown in Figure 8.3. Furthermore, the lifetime clearly does not depend on the
tunneling energy or the interaction energy alone.

The lifetime in units of the tunneling time is plotted logarithmically versus the
ratio U/6J in Figure 8.4. The data is well described by an exponential function:

τD
h/J
= C exp(αU

6J
) . (8.2)

The scaling exponent α is found to be α = 0. 82(8) with C = 1. 6(9) and we
find fair agreement with our numerical model of the doublon lifetime which is
outlined below.
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Figure 8.5: Jackknife resampling analysis of
the scaling exponent. By performing the
regression analysis on reduced data sets that
each exclude a single lifetime measurement,
a histogram of values for α is obtained.

The Pearson correlation coefficient R = 0. 87 indicates a predominantly linear
relationship between U/6J and the logarithm of the lifetime. The residual scatter
of the data in Figure 8.4 as well as the apparent systematic deviation of some data
points from the expected exponential warrant further statistical analysis.

We first assess the sample bias due to outliers by performing a jackknife re-
sampling analysis [213, 214] of the lifetime data. From the original parent set
of n samples of the lifetime, n new sets of size n − 1 are generated by remov-
ing each single data point once. For each of the sets, the regression analysis
is performed resulting in a distribution of values for α, see Figure 8.5. The
sample with the largest bias is the one at the largest U/6J. Removing this data
point from the set results in a significant shift of the apparent scaling exponent
to α′ = 0. 91(11). The remaining values for α corresponding to excluding the
other samples appear normally distributed with standard deviation of σ′α = 0. 017
which is much smaller than the error estimate obtained from the residuals of the
regression. This analysis supports the assertion that the rightmost data point in
Figure 8.4 is an outlier. The data point indeed corresponds to one of the largest
lifetimes in both absolute and relative units and could therefore be influenced
by other effects beyond those described here. Additionally, for large U/6J losses
are expected to mask the observation of very long lifetimes.

The systematic deviation of the data for the two spin mixtures seems to indi-
cate that the data show physics beyond the one-parameter exponential of Equa-
tion 8.2. Separate fits to the two spin mixtures yield values of α−9/2,−5/2 =
0. 75(10), C−9/2,−5/2 = 2. 5(9) and α−9/2,−7/2 = 1. 00(14), C−9/2,−7/2 = 0. 5(2).
The slight offset between the two spin mixtures could be due to the fact that
the absolute values for U and J differ significantly between the −9/2,−5/2 and
the −9/2,−7/2 mixture. Whilst the ratio between interaction energy and ki-
netic energy U/6J, which dominates the dynamics, lies in the same range, the
absolute values also matter in an inhomogeneous system. For the (−9/2,−7/2)
mixture the higher ratio of chemical potential to on-site interaction is expected
to lead to a higher filling in the trap center and consequently to a higher equi-
librium double occupancy Nd0 than for the (−9/2,−5/2)mixture. It is conceiv-
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able that this difference modifies the dynamics of doublon creation and doublon
relaxation.

In additional measurements we have examined the dependence of the dou-
blon lifetime on the additionally created double occupancy ΔNd and on the total
atom number N. In the former case, we reduced the lattice modulation ampli-
tude from 10% to 5%, resulting in ΔNd = 9% instead of ΔNd = 18%, while keep-
ing all other parameters constant with U/6J = 4. 5. The measured lifetimes agree
within the error bars, they are τD,5% = 77(25) × h/J and τD,10% = 58(10) × h/J,
respectively. In the latter case, we prepared two otherwise identical samples at
U/6J = 3. 4 with N = 49(7) × 103 atoms and with N = 26(4) × 103 atoms, re-
spectively, yielding τD,49k = 11(2)× h/J and τD,26k = 19(2)× h/J. Both tests show
that, although there is a dependence on the total density and on the doublon
density, these effects are small compared to the dominant scaling with U/6J.

In the following we argue that this exponential scaling of the doublon lifetime
originates from a high order scattering process involving several single atoms as
scattering partners. In the preparation of the non-equilibrium state by lattice
modulation, we create holes as well as doublons in the bulk and thus drive the
system into a compressible state. An isolated doublon has an energy U, which
it must transfer to other excitations in order to decay. In the compressible state
the most relevant excitations are metallic with a typical energy scale of only 6J.
Thus a doublon must scatter with several fermions. The number of scattering
partners is on the order of n = U/6J. The matrix element M for the decay rate
Γ may be estimated via perturbation theory

M ∼ J
6J
× J
2 × 6J

× ⋅ ⋅ ⋅ × J
n × 6J

(8.3)

h/J
τD
∝ Γ
J
∝M2. (8.4)

Using Stirling’s formula, we then find the same scaling behavior as in Equa-
tion 8.2. Here α is a parameter on the order of unity and depends at most
logarithmically on U/6J.

A model for the doublon lifetime

In our experiments, the doublons and holes are created at finite density by dri-
ving the system with optical lattice modulations. The relaxation of the system
to equilibrium involves two phases with two very different time scales. The
first timescale is associated with the relaxation of holes and doublons to a state
of quasi-equilibrium without the decay of doublons. This fast relaxation to
their metastable states takes place within the upper and lower Hubbard bands
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respectively. The second timescale, which is the focus of this paper, is associ-
ated with the decay of doublons into kinetic excitations. We expect that the
second timescale is much slower than the first.

Before constructing a model for doublon decay, we determine the dominant
mechanism of decay. In the experiments, lattice modulation created 15-35%
double occupancies. Assuming an initially half-filled system, this corresponds
to a large additional density of holes created in the system. At these hole densi-
ties, the kinetic energy assisted decay scaling as ∼ exp(−U/J) is much faster than
the spin fluctuation or doublon-doublon collision assisted decay which scale as
∼ exp(−U2/J2). Further, the population of higher bands can be excluded, since
U is always smaller than half the band gap. We also note that as the difference
between U and the chemical potential is always positive, confinement assisted
decay of doublons near the edge of the cloud is unlikely, as the accessible con-
finement energy is not very large, and the doublon tunneling rate is very small.
Finally, a homogeneous compressible background is justified since most of the
doublons are created in the central region of the trap, where the filling is high-
est, and decay at most within a few sites of where they are produced. The es-
timated travel distance for a random walk during the decay process is not more
than

√
τDJ/h ≲ 10 sites, which is less than the cloud radius.

We consider the decay of an isolated doublon moving in the homogeneous
background of a compressible state of equilibrated single Fermions. The com-
plete Hamiltonian of the system may be written as H = Hpf +Hd +Hfd, where
Hpf describes the background fermions, Hd is the on-site energy of doublons
and Hfd is the interaction of the doublon with the background fermions.

The strong Hubbard repulsion between the fermions leads to the concept of
projection, where two fermions are forbidden from occupying the same site. In
this case, the fermions can only hop in the presence of a hole on a neighboring
site and are governed by the Hamiltonian

Hpf = −J ∑
⟨ij⟩,σ
(1 − nīσ)c†iσ cjσ(1 − nj̄σ), (8.5)

where c†iσ and ciσ are the fermion creation and annihilation operators and ni,σ is
the number operator for fermions with spin σ. The spin opposite to σ is denoted
by σ̄. Expanding out this Hamiltonian we obtain Hpf = Hf +Hp, with

Hf = −J ∑
⟨ij⟩,σ

c†iσ cjσ − μ∑
i,σ
c†iσ ciσ , (8.6)

Hp = J ∑
⟨ij⟩,σ
(nīσ c†iσ cjσ + c

†
iσ cjσnj̄σ), (8.7)

where Hf describes the free Fermi sea and Hp describes the interaction induced
by the projection and can be thought of as a process in which a fermion scatters
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(a) (b)

Figure 8.6: The double lines represent doublon propagators, and the single lines fermion
propagators. (a) Typical doublon propagator diagram showing the creation of particle-
hole pairs by both the doublon and the projected fermions as well as annihilation of the
doublon into a pair of single fermions. (b) Typical example for a neglected diagram type.

off the Fermi sea and creates a particle-hole pair. We assume that the system
is close to half filling with a chemical potential μ = 0, but we confirmed that
the result is not very sensitive to the precise value of the filling as shown by the
shaded region in Figure 8.4. We neglect the term nīσ c

†
iσ cjσnj̄σ in Hp after ensuring

that it leads to negligibly small corrections to the doublon decay rate.
We now consider the propagation and decay of a doublon in the background

state of the projected Fermi sea. The on-site energy of the doublon is Hd =
U∑i d

†
i di , where d

† is a doublon creation operator. The doublon-fermion in-
teraction Hfd is given by

Hfd = J∑
⟨ij⟩
∑
σ
(d†i di + d

†
j dj + d

†
j di )c

†
iσ cjσ + di (c

†
i↑c

†
j↓ − c

†
i↓c

†
j↑) + h.c., (8.8)

where the terms describe: projecting out configurations with a doublon and
a fermion on the same site (first and second term), hopping of doublons with
back-flow of fermions (third term), and interconversion between a pair of single
fermions and a doublon (last term).

We now see that there are two different processes by which the doublon can
lose energy. It can create a large number of particle-hole pairs (through the first
terms in Hfd), each with an energy of on the order 6J, or it can create a high
energy particle-hole pair (through Hfd), which is itself unstable and decays into
a shower of particle-hole pairs (through the action of Hp). The last process is
the result of strong interaction between the fermions and must be taken into
account in order to obtain an accurate estimate of the doublon lifetime.

Our strategy for determining the doublon lifetime is to compute the dou-
blon self-energy Σ (ω) diagrammatically [199] and obtain the decay rate from
Im Σ (U), the imaginary part of the self-energy at ω = U. We proceed by first
obtaining the Green’s function for the projected Fermi sea (Hf+Hp) using a dia-
grammatic perturbation theory. Next, we use this Green’s function in a resum-
mation procedure to obtain Σ (ω). These steps can be treated as independent
when the doublon density is small, as the presence of the doublons does not
change the background fermion Green’s functions. Throughout, we follow the
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principle of maximizing the number of particle-hole pairs (see Figure 8.6a) at
each order of perturbation theory. We do miss the class of diagrams in which
interactions between fermions cannot be described by a fermion self-energy
(see Figure 8.6b). We carry out our calculations in the zero temperature for-
malism. However, since we are looking at high energy processes (ω ∼ U), finite
temperatures will not have a large effect on the results as long as T ≤ U.

Our theoretical analysis was constructed to capture the scaling parameter of
the doublon lifetime at large U/6J, as it relies on generating a large number
of particle-hole pairs. In this regime the theoretically computed value of the
scaling exponent is αtheo = 0. 80 close to half filling, which agrees well with
the experimentally obtained value α = 0. 82(8). The theory breaks down for
small U/6J, leading to disagreement between experiment and theory in this
regime (see Figure 8.4). Although the theory is not designed to predict the
pre-exponential factor C, we find reasonable agreement between theory and
experiment.

Conclusion

The exponentially long lifetime of double occupancies has implications for the
simulation of strongly correlated lattice models with ultracold atoms as it poses
adiabaticity constraints on the sweep rates for the system parameters.

In addition, the long lifetime of the doublons also leads to the possibility of
preparing and observing metastable states with finite density of doublons. An
intriguing scenario is observing η-pairing of doublons and holes [215].

Finally, we point out that similar phenomena may be relevant to the issues of
equilibration in the Bosonic Hubbard model. In recent experiments the equili-
bration of the density distribution of Bosonic atoms in a two dimensional optical
lattice has been observed [151]. As the system relaxes towards equilibrium, the
center of the trap heats up, which requires the increase in the number of dou-
blons. The slow relaxation timescale observed in these experiments may reflect
the dual problem to the one discussed in this chapter: slow rate of formation of
doublons from a state containing only singly occupied sites and holes.
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9 Outlook

The difficulty of describing the equilibrium state of a correlated condensed mat-
ter system is, for a large part, due to the complexity associated with handling
the many-body wavefunction explicitly. Similar to the equilibrium, also the
full non-equilibrium dynamics — as in the previous chapter — involve com-
plex many-particle processes and are thus challenging to describe.

However, a full microscopically detailed description is frequently not required
and it is more useful to work in terms of the macroscopically observable behav-
ior rather than the particular wavefunction. The classical example of such an
approach is the magnetic susceptibility χ = ∂M/∂H. It describes how a system
changes its magnetizationMwhen the magnetic fieldH changes. Here, the field
is treated as a disturbance and the magnetization as the linear response. Within
this linear response theory, the properties close to thermal equilibrium are de-
scribed in terms of expectation values of observable quantities. The dynamics
emerge as perturbative effects, leading to a significant reduction in analytical and
numerical complexity.

If new quantum many-body phases are realized in experiments with ultracold
atoms, the complete wavefunction will most probably not be observable. Equip-
ping the experiments with probes that can be understood within the framework
of linear response theory is therefore a major goal. Several probes to identify for
example an antiferromagnetically ordered phase have been proposed. Superlat-
tices, that rely on dynamically modifying the lattice potential to separate, bias,
and merge lattice sites [216, 217], could provide access to spin correlations. Yet
their applicability is limited to short-range effects. Noise correlations, where the
atom shot noise in absorption images is detected [218, 219, 220, 19], can resolve
long-range correlations but the signal is unfortunately very small. Finally, Bragg
scattering [221] can provide access to magnetic order and to the dispersion rela-
tion. The latter approach is in close analogy to neutron scattering in solid state
experiments and also a prime example for linear response but it needs access to
the system under specific scattering angles.

This chapter provides an outlook on developing a new linear response probe
for strongly correlated quantum gases in optical lattices. In the previous chapters,
the double occupancy response of the system to a strong lattice modulation was
observed in the regime of saturation. There, as a result of the modulation,
the system’s properties change drastically. For example, the number of holes
increases, which in turn leads to a strong modification of the decay of double
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occupancies. Since the system is highly excited, the view on the equilibrium
state is obstructed.

We now explore the real-time build-up of double occupancies for short and
weak lattice modulation close to equilibrium. If the system remains within lin-
ear response, the probe provides the link to numerical predictions on spin sus-
ceptibility and could be used as a sensitive thermometer in the lattice. The
theoretical analysis and classification of this perturbation have stimulated differ-
ent hypotheses [212, 211, 222, 172] but the question whether it can be treated
within linear response theory has not been answered. It is also unclear experi-
mentally whether the modulation strength can be reduced enough to remain in
the regime of linear response.

The preparation of the system is according to the description in the previous
chapters. We load about N = 50 × 103 atoms in a mF = −9/2,−5/2 mixture into
the three-dimensional optical lattice with simple cubic symmetry and a depth
between 5Er and 10Er. After letting the atoms thermalize for a short time,
the depth of the three lattice beams V is modulated for a time period τ with a
modulation amplitude δV. The lattice depth is then quickly increased to 30Er
in 200-500 µs to freeze further dynamics or decay of excitations. Subsequently,
the double occupancy is determined using rf-spectroscopy.

The modulation leads to three kinds of dynamics of the double occupancy in
the different regimes of modulation time.

In the top panel of Figure 9.1 the behavior on short timescales of a few mod-
ulation cycles is depicted. To obtain a good signal on these short timescales,
the modulation amplitude of the potential depth is large, δV/V = 0. 2. The sys-
tem exhibits a non-dissipative oscillatory as well as linearly increasing response.
The oscillations with the same frequency as the driving force can be viewed in
analogy to a driven damped harmonic oscillator. Since 1/ν ≈ 250µs is already
comparable to the freezing time, the time resolution is limited and the absolute
magnitude and phase of the oscillations are expected to be modified by the lat-
tice freezing. However, the relative amplitudes and phases for different modu-
lation frequencies can be extracted and compared reliably. The phase and am-
plitude behavior of the oscillations exhibit the typical resonance step and peak,
respectively.

The underlying linear increase of the double occupancy signals dissipative
dynamics and extends over some 20 modulation cycles (second panel in Fig-
ure 9.1). We extract the slope R = (h/t)(∂D/∂τ) by performing a linear regres-
sion on the data in this non-saturated regime. It is proportional to the energy
dissipation rate and, within linear response, should be quadratic in the driving
force.

The system exhibits saturation of the increase of the double occupancy only
for long modulation times, τ ≳ 40h/U, as shown in the bottom panel in Fig-
ure 9.1. In the regime of saturation, the increasingly fast spontaneous decay
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Figure 9.1: Three different regimes of the
real-time dynamics of double occupancy
build-up. In the three panels the fraction
of atoms on doubly occupied sites is shown
versus the modulation time for resonant
modulation ν = U/h. In the top panel a
large modulation of δV/V = 0. 2 was cho-
sen to show the coherent oscillations of the
double occupancy on the time scale of the
interaction energy U. The second panel
demonstrates the linear increase of double
occupancy for δV/V = 0. 1 and intermedi-
ate modulation times. In the bottom panel
the saturation regime is depicted. All pan-
els correspond to a Hubbard parameter of
U/6t = 4. 1, a lattice depth s = 7Er and about
N = 50×103 particles. The modulation fre-
quency is close to U/h. Data points and er-
rorbars are the mean and standard deviation
of at least three realizations of the experi-
ment for the same parameters.

of the excitations and the stimulated deexcitation by the modulation lead to a
non-linearity and finally, for large times the rates of creation and decay cancel.

The dissipation rate for different modulation frequencies in the proximity of
the ν = U/h resonance is depicted in the top panel in Figure 9.2. Since, the
modulation couples a singly occupied state with energy E to a doubly occupied
state with energy E+ hν, the dissipation rate should be proportional to the con-
volution of the density of states in the lower and upper Hubbard bands [171].
Their overlap is maximal at resonance where ν = U/h and decreases until the
bands do not overlap anymore. Approximating the density of states as rectangu-
lar, the dissipation rate should have triangular shape. Unfortunately, due to the
scatter of the data points, the detailed shape can not yet be extracted from the
data.

To analyze the scaling of the response with the modulation amplitude, we
record many dissipation curves for different modulation frequencies and for dif-
ferent modulation amplitudes ranging from δV/V = 0. 04 to 0.15. For each
modulation amplitude, the area under the spectral peak is integrated, A = ∫ Rdν,
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Figure 9.2: Top panel: spectrum of the
double occupancy production rate R =
(h/t)(∂D/∂τ) for δV/V = 0. 1 and different
modulation frequencies around the ν = U/h
resonance. The errorbars are the uncer-
tainty estimate of the linear regressions. A
triangular curve (dashed) as well as a Gauss-
ian peak (solid) are fit to the data. For the
bottom panel, several spectra for different
modulation amplitudes have been recorded.
The area under the peak is integrated, A =
∫ Rdν, and plotted versus the modulation
amplitude on a doubly logarithmic scale.
Errorbars denote the uncertainty of the area
integration.

and plotted against the modulation amplitude in the bottom panel of Figure 9.2.
The integrated response A obeys a scaling law

A = A0 (
δV
V
)
a

(9.1)

with A0 = 27(13)kHz and a = 2. 0(2). The good agreement with A∝ (δV/V)2
indicates that lattice modulation leads to a linear response over a wide range
of modulation strengths as long as the modulation time is not too long and no
saturation is observed.

Equipped with this linear response probe, its dependence on certain para-
meters can now be explored. As lattice modulation only couples antiferromag-
netic singlet bonds with configurations like ↑ − ↓ to double occupancies ↑↓ − 0,
the doublon production rate directly reveals the singlet probability in the sys-
tem. This singlet probability depends, among other parameters, sensitively on
the temperature. In the Mott-insulating regime, where half the bonds are oc-
cupied by a singlet, the doublon production rate should therefore decrease with
increasing temperature as the density decreases. Upon approaching the antifer-
romagnetically ordered state, it should increase further and signal the emergence
of spin order [111].

Experimental effort is underway to create a lattice thermometer from this
linear response probe and to characterize its dependence on other parameters
like bandwidth, interaction energy, characteristic filling and confinement.
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