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Abstract

This thesis addresses theoretical and practical questions arising in connection
with multivariate, marked, linear Hawkes processes.

On the theoretical side, the following two main topics are discussed: the
calculation of moment measures; and the existence and uniqueness of station-
ary solutions. Two different representations of Hawkes processes are used to
answer these problems. First, a Hawkes process is constructed as a recursive
Poisson cluster process. This reveals the underlying treelike structure and is
used to derive the moment measures. Second, a Hawkes process is defined as
the solution to a thinning problem and the associated minimal solution is intro-
duced. Afterwards continuations are defined and their coupling properties are
analyzed. These results serve as a basis for answering the questions of existence
and uniqueness of the aforementioned thinning problem.

The formulation and proof of these statements requires several results from
point process theory, some of which have to be extended first. Notable related
topics that are discussed are: translation-invariant measures and their corre-
sponding reduced versions; an extended notion of delta-functions and their use-
fulness in proving decompositions of moment measures; a concise construction
of Poisson cluster fields and the proof of associated moment measure formulas;
the formulation of the self-similarity structure of Hawkes processes; a general
definition of strong solutions; and finally a general notion of hazard rates and
its relation to intrinsic intensity functions.

On the practical side, issues that come up during the implementation of
parameter estimation and simulation algorithms are addressed: the parame-
terization of a reasonably large family of Hawkes processes which is suitable
for numerical calculations; the derivation of algorithms which perform the cal-
culations in a numerically efficient way; concrete examples of Hawkes processes;
and an illustrative financial case study.
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Kurzfassung

Die vorliegende Doktorarbeit beschäftigt sich mit theoretischen und prakti-
schen Fragen, die im Zusammenhang mit multivariaten, markierten Hawkes
Prozessen auftauchen.

Auf der theoretischen Seite werden die folgenden zwei Themen behandelt:
Die Berechnung der Momentenmasse sowie die Frage nach der Existenz und
Eindeutigkeit von stationären Lösungen. Zu diesem Zweck werden zwei ver-
schiedene Repräsentationen eines Hawkesprozesses verwendet: Einerseits wird
erläutert, wie ein Hawkesprozess als rekursiver Poissonclusterprozess konstru-
iert werden kann. Diese Vorgehensweise verdeutlicht die zu Grunde liegende
Baumstruktur von Hawkesprozessen und führt schliesslich zur Berechnung der
Momentenmasse. Andererseits wird ein Hawkesprozess als Lösung eines be-
stimmten Verdünnungsproblems charakterisiert. Entsprechend wird eine zu-
gehörige minimale Lösung dieses Problems definiert, sowie sogenannte Fort-
setzungslösungen eingeführt. Desweiteren werden die Koppelungseigenschaften
zweier Fortsetzungslösungen untersucht. Schliesslich werden diese Resultate
verwendet, um die oben erwähnte Frage nach der Existenz und Eindeutigkeit
zu beantworten.

Die Formulierung all dieser Aussagen und deren Beweise basiert auf ver-
schiedenen Resultaten aus der Punktprozesstheorie, welche für den gegebenen
Zweck angepasst und erweitert werden. Dies trifft insbesondere auf folgende
Resultate zu: Translationsinvariante Masse und deren reduzierte Versionen;
eine Erweiterung von Kronecker’s Delta-Funktion und deren Nutzen in der
Herleitung von Zerlegungen von Momentenmassen; eine kompakte Definition
von Poissonclusterfeldern und zugehörige Formeln für die Momentenmasse; die
Selbstähnlichkeitsstruktur von Hawkesprozessen; eine allgemeingültige Defini-
tion von starken Lösungen und schliesslich eine erweiterte Definition einer Ha-
zardrate und der Zusammenhang mit intrinsischen Intensitäsfunktionen.
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Auf der angewandten Seite werden folgende Themen betrachtet, welche bei
der Implementation von Parameterschätz- und Simulationsalgorithmen von
Relevanz sind: Die Auswahl einer angemessen umfassenden Teilfamilie von
Hawkesprozessen, welche geeignet ist für numerische Berechnungen; die Her-
leitung von numerisch effizienten Algorithmen; sowie ein Fallbeispiel aus dem
Finanzmarkt zur Illustration.
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Chapter 1

Introduction

This thesis is concerned with theoretical questions that arise in the theory
of multivariate, marked, linear Hawkes processes. It addresses among other
issues the following two main topics: the calculation of second order moment
measures; the existence and uniqueness of stationary solutions of the aforemen-
tioned class of point processes. A secondary, practical aim that lead towards
this thesis was the development of flexible software for simulation and estima-
tion of Hawkes processes.

Organization of the Thesis. After an introductory chapter; the five main
chapters can be roughly split in two groups. Chapters 1–4 analyze Hawkes
processes using their representation as recursive Poisson cluster processes. In
contrast, Chapter 5 uses the theory of intensity processes, so that other aspects
of Hawkes processes can be described. For the calculation of moment measures,
the first point of view turns out to be the appropriate choice. The representa-
tion in terms of intensity processes however is more suitable for certain practical
activities such as parameter estimation with the maximum likelihood method.

The six chapters contain the following material:

• This first chapter starts with a historical overview and gives many refer-
ences. The references serve as a pointer to other results which are related
to the material of the thesis. The second section introduces Hawkes pro-
cesses in an informal way and the remainder focuses on application and
numerical issues concerning Hawkes processes.

• The second chapter introduces point configurations, analyzes translation-
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invariant measures and discusses several decompositions of product mea-
sures.

• The third chapter defines point processes, introduces cluster processes
and derives moment measure formulas for general cluster processes as
well as Poisson cluster processes.

• The fourth chapter defines Hawkes processes and several related pro-
cesses. As a preparation for the next chapter, decompositions for product
measures of Hawkes processes are derived.

• The fifth chapter uses the previous results to derive explicit and implicit
formulas for the first and second order moment measures of Hawkes pro-
cesses.

• The sixth chapter introduces canonical probability spaces, intensity mea-
sures and Hawkes intensity functions. This formalism is then used to
give an alternative definition of a Hawkes process as a strong solution of
a thinning problem. The issues of existence, uniqueness and stability of
such solutions are then addressed.

As one can see from the list of contents, the statements are not kept together
with their proofs. Instead, the proofs are collected at the end of each chapter,
since they are sometimes quite long and would unnecessarily disturb the flow
of the presentation. I hope the thesis is more readable using this somewhat
unconventional layout.

Contributions. The thesis is built mainly on material from the book [DVJ03]
and on a series of papers initiated by Pierre Brèmaud. Results that are new,
partially new, or reformulations of previous results are scattered throughout
the thesis and cannot be located in a single theorem. Each chapter starts with
a short overview, a detailed list of references and a list of results that cannot
be found readily in this form in the literature, at least to my knowledge. These
introductions at the beginning of each chapter contain more specific details
than I want to give here.

Hawkes processes are very versatile processes, not only from a practical
point of view but also from a theoretical one. Some of the techniques used
to analyze Hawkes processes are applicable in more general settings than is
first apparent. To demonstrate the usefulness of some of these techniques, I
often present them in a more general form than would be necessary for the
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development of later results. This hopefully means that these techniques can
be appreciated as results of independent interest. I give a short list of some of
the results that I think may be interesting:

Chapter 1. The introductory chapter is not simply a summary but contains
some material that cannot be found in the main part of the thesis. It is supposed
to be a self-contained exposition giving the information which is relevant for
empirical applications. Moreover, I give specific examples of Hawkes processes
and list relevant numerical algorithms. Since I spent a considerable time with
implementing algorithms for Hawkes processes, I included some of the hard
learned lessons in the form of suitable parameterizations and algorithms. This
means that the numerical algorithms are well-tested and ready for use.

Chapter 2. Notable results in Chapter 2 are Definition 2.13 and Theo-
rem 2.14, which explain how one can isolate the one-dimensional symmetry
of translation-invariant measures. Definition 2.28 gives an extended notion of
delta-functions, and this allows one to give an alternative Definition 2.36 of fac-
torial products of point configurations. Ordered partitions in Definition 2.24
and the associated decomposition of Theorem 2.32 allow one to write a ordinary
product of point configuration as a sum of factorial products, see Theorem 2.42.
It would be tedious to prove this result without an appropriate notation.

Chapter 3. Definition 3.9 of an extended event space allows one to enumer-
ate the points of a point process in a consistent way, independent of the actual
number of points; see Definition 3.12. The construction of a cluster family in
Definition 3.19 is based on a family of generating clusters, see Definition 3.17,
which are shifted appropriately. Theorem 3.22 gives a very convenient for-
mula for expectations of an integral where the integrator is a factorial product
measure. Using factorial decomposition from the first chapter, this leads to
compact, but non-trivial moment measure formulas, see e.g. Equation (3.7).
These formulas are more general than required later, but I left them in this
form since they are useful in their own right.

Chapter 4. The third chapter introduces Hawkes processes and related point
processes. The main challenge is not of mathematical nature but lies in find-
ing a suitable, consistent notation for the large variety of processes derived
from Hawkes processes. Proposition 4.14 and Corollary 4.22 formulate the self-
similarity properties of a Hawkes process. Lemma 4.24 contains a series of
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decompositions of product measures, which are needed for the next chapter.
The reasoning behind these decomposition is explained at the beginning of that
chapter.

Chapter 5. This is the last chapter in which Hawkes processes are considered
from the point of view of recursive Poisson cluster processes. The main result
is Theorem 5.4 for the second order moment measures of a Hawkes process.
It gives compact formulas for these moment measures using the notation from
Definition 4.9, which is related to multivariate convolutions.

Chapter 6. The last chapter starts with several definitions concerning mea-
surable sets on point configuration spaces. Definitions 6.2 and 6.4 give non-
standard, but equivalent definitions of predictable σ-algebra and predictable
processes. Definition 6.12 differentiates between two different versions of unpre-
dictable marks. The notion of an intrinsic intensity function in Definition 6.13
formalizes an idea which can be found implicitly in the literature. The useful-
ness of this definition can be seen e.g. in Corollary 6.40. Definition 6.33 of a
strong solution is formulated without taking reference to Hawkes processes to
point out that the same definition could be used also in the context of other
point processes. Definition 6.38 introduces an extended notion of a hazard rate,
which is then used to calculate the extinction probability in Proposition 6.39.
Definition 6.46 describes in detail the construction of a stationary solution and
calls the resulting process the minimal solution. Continuations, which are intro-
duced in Definition 6.35, are a useful tool for some of the proofs but are also of
interest if one deals with asymptotic simulation algorithms. Propositions 6.50
and 6.52 show that continuations are closely related to strong solutions and
minimal solutions. The uniqueness of strong solutions is shown by splitting the
probability space as explained in Definition 6.53. The method that is used to
prove the uniqueness in Theorem 6.55 could also be used if the process were
defined on an arbitrary probability space instead of a canonical probability
space.
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1.1 A Short History of Hawkes Processes

I give a short overview of the history of Hawkes processes and illustrate with a
few examples how Hawkes processes have been applied in quite different areas.
Because they are so versatile, Hawkes processes have successfully been used in
such diverse fields as seismology, epidemiology, neurophysiology and network
modeling. A very rich source of theoretical results as well as concrete examples
of Hawkes processes and their applications can be found in the book [DVJ03].

Origin of Hawkes Processes. In the seventies, an interesting new point
process model was introduced. It implemented the idea that is variously
known as self-excitement, self-excitation or self-similarity. Clearly, the con-
cept of branching and self-exciting behavior was not new. Indeed, processes
with such characteristics had already been treated in [Ker64]. But what was
missing was a concrete, tractable point process model with a self-exciting be-
havior. The search for a model for earthquake occurrences inspired Hawkes
in his paper [Haw71] to consider self-exciting point process models. He gave
a first precise definition of such a model. From then on, this type of process
would commonly be known as a Hawkes process.

There are several equivalent ways of defining Hawkes processes. Originally,
they were described based on the intensity process. Moreover, the fact that a
Hawkes process has an underlying branching structure gives some additional
insight. It is immediately clear that the branching coefficient ρ of the underlying
branching process is important for the overall behavior of the process. But even
without calling ρ the branching coefficient, Hawkes found in his paper [Haw71]
the sufficient condition for existence, which is ρ < 1. This first paper mentions
also some possible applications, such as epidemics or neuronal networks, and
this turned out to be quite an accurate prediction. But it took some time until
the first serious applications of Hawkes processes appeared, initiated by Ogata
in seismology with his paper [Oga88] and related papers.

Sometime later, relations to other types of processes were discovered. The
connection to Poisson cluster processes and to branching processes was worked
out in the paper [HO74]. This observation allowed the authors to use results
from the Galton-Watson theory, which lead to the interpretation of ρ as the
branching coefficient. In the same paper, the authors also derive an implicit
equation for the probability generating functional. An interesting special case
occurs if the transfer function, sometimes also called the density function, is
an exponential function. This special case was further analyzed in [Oak75]. It
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turns out that under this assumption, a Hawkes process is actually a continuous
time Markov process. This allows one to derive explicit expressions for the
distributions of counts and intervals that can otherwise only be described in
implicit form.

Further Progress. Already in his first paper, Hawkes briefly discussed the
multivariate case. Parallel to new developments for univariate Hawkes pro-
cesses, all relevant results were carried over to the multivariate case. In [Ada75],
the probability generating functional, the distribution of the forward recurrence
time and the distribution of the cluster length were extended to the multivariate
case.

For a short time, there was some hope that Hawkes processes might play
the same role as autoregressive time series in discrete time. One hoped that
one could approximate the spectrum of arbitrary point process with a suitably
chosen Hawkes process. But this hope was soon disappointed, since the spectral
measure of a Hawkes process can not be chosen general enough for this purpose.

Nevertheless, because of the flexibility of Hawkes processes, this idea was
pursued further in the paper [OA82]. The authors consider the case where the
transfer function is a linear combination of Laguerre polynomials. In this case,
the associated spectral measure has a particularly simple form. This idea was
then empirically applied to earthquake catalogues in the paper [OAK82].

Relation to Branching Processes. There is also a different way of looking
at a Hawkes process. If one ignores the location of the event, i.e. if one ignores
the time dimension, a Hawkes process is simply a branching process. In other
words, the events are related to each other in the way as ancestors and offspring
are related to each other. As a mental picture, one can think of one or sev-
eral trees, where each node corresponds to one of the events. The root nodes
corresponds to immigrants and the branches correspond to the descendants of
immigrants.

The fact that a Hawkes process has an underlying branching process allows
one to use standard results from the theory of branching processes. Considering
for example a univariate Hawkes process without marks, then the distribution
of the cluster size can be calculated.

Otter-Dwass Theorem. The so-called Otter-Dwass formula is a recurrence
relation for the distribution of the total number of events. It was first discovered
in [Dwa69]. It can be applied in the case of a univariate Hawkes process without
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marks and one can show that the total progeny has a so-called Borel-Tanner
distribution, see [Tan53] or Section 7.2.2 of [NLJ05]. More about the general
theory of branching-processes can be found in [Jag75].

An alternative proof for the Otter-Dwass formula was given in [Boy71],
which uses an argument based on formal power series. Underlying is a certain
functional equation for the moment generating function of the total number of
events. Originally, this functional equation was found by [Goo49] and [Ott49],
see also [Fel68].

Multivariate Extension of Otter-Dwass. In the multivariate case the
situation is unfortunately not as pleasant. [Ott48] showed that the problem
of finding the distribution of the total progeny in the univariate case can be
reformulated as the solution of a certain functional equation. This functional
equation can then be solved using Lagrange expansion. Later on, Lagrange
expansion was generalized to the multivariate case by [Goo60]. This paper also
mentions the connection to multivariate branching processes.

Independent of the advances in the theory of branching processes, [CS72]
defined a new family of probability distribution, which they called the Lagrange
distributions. Since both use the same mathematical tools, it is not surpris-
ing that there is an intimate connection between Lagrange distributions and
branching processes. This connection was pointed out once more in [Goo75].

More about the family of Lagrangian probability distribution can be found
in the book [CF06].

Parameter Estimation. Over the following years, Hawkes processes re-
ceived more and more attention, especially in the context of seismology. Early
development can be found in the papers [VJ75] and [Ada76]. One problem
that arose was the lack of an efficient method for parameter estimation. For
the first empirical applications, the parameters were estimated using spectral
analysis techniques. But this method was considered less and less satisfactory.

What is now considered the classical maximum likelihood method for point
processes was first described in the paper [Rub72], and applied to Hawkes pro-
cesses in the papers [VJ78] and [Oza79]. In the accompanying paper [VJO82],
the authors use the maximum likelihood method and analyze a catalogue of
earthquake data. The properties of the maximum likelihood estimator was
analyzed in [Oga78]. Since the computational power at that time was not suf-
ficient for real-world data sets, the numerical parameter estimation remained
difficult.
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Advancement Within the Scope of Seismology. Hawkes processes did
not get much attention for some time afterwards. But they were considered
again in the paper [Oga88] as one candidate model among others for the pre-
diction of earthquakes. In this paper, different models were compared with the
help of residual analysis and Hawkes processes turned out to be superior to
alternative models at that time. The specific Hawkes process used by Ogata is
known today as the ETAS (Epidemic Type Aftershock-Sequences) model.

More and more extensions of the original specification of a Hawkes process
were proposed. To this day, extensions of the original ETAS model are one
of the standard tools in seismology. Basically, all these models belong to the
family of Hawkes processes. A good review of the early evolvement of the
Hawkes process in the context of seismology can be found in [UOM95] and
[Oga99].

Ogata’s Modified Thinning Algorithm. At a first glance, it seems easy
to simulate a Hawkes process. Since a Hawkes process can be defined via its
stochastic intensity process, the following observation leads automatically to
a simulation procedure: Assume the past of a Hawkes process is known up
to a given time, say t. Then the Hawkes process behaves as it were a Poisson
process, at least in the short time period after time t until the first event occurs.

This leads to a straight forward simulation method which is not specific to
Hawkes processes. At least theoretically, this method can be used to simulate
all point process models which are defined by their stochastic intensity process.

This simulation algorithm and its theoretical foundation go back to a thin-
ning procedure given [LS79]. The general idea is to construct a Hawkes process
as the stochastic thinning of a homogeneous Poisson process according to the
intensity process. In the context of Hawkes processes, this simulation method
was first used in [Oga81]. This algorithm is sometimes called Ogata’s modified
thinning algorithm. Later on, it was extended to the multivariate case and to
space-time Hawkes processes in [MVJ92] and [Oga98].

For practical applications, this is still the standard algorithm. A more
comprehensive description can be found in the book [DVJ03].

Simulation of Stationary Hawkes Process. Often one wants to simulate
the stationary version of the process in a finite time window. Unfortunately,
the standard method for the simulation method described above does not work
in this case, as the past of the process is not know and cannot be simulated,
at least not completely.
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If one ignores the past of the process and simply starts to simulate the
process at some given time, one speaks about an approximate simulation. In
this case, one is actually simulating a transient version and not the stationary
version of the process. But if one simulates for a long enough time interval, the
so-called burn-in period, then the transient version converges to the stationary
one. This is a consequence of the stability properties, which are described be-
low. Since the deviation between the transient and stationary process becomes
negligible, this simulation method is good enough for practical applications.

Perfect Simulation. A simulation method which directly simulates the sta-
tionary version without approximation is a so-called perfect simulation method.
The idea is to incorporate somehow the effect of past observations without ac-
tually simulating the past of the process. In the context of point processes, this
type of simulation method has first been described in [BK02].

The idea is to use a so called coupling from the past algorithm. The original
idea goes has been developed for Markov chains and goes back to [PW96], see
also [FT98].

A coupling from the past method for a univariate Hawkes process was first
given in [MR05] This paper also explains that the general coupling from the
past method is not good enough. An additional problem specific to Hawkes
processes arises, but this can be solved using what the authors call a dominated
coupling from the past algorithm. This extended version of the original coupling
from the past algorithm has first been described in [KM00].

Once an exact simulation algorithm had been established, it was possible
to compare the performance of the approximate simulation algorithm. In the
paper [MR06], various measures for the deviation of the approximate from the
exact simulation algorithm are given.

Development of Theoretical Foundation. The theoretical foundation of
Hawkes processes was lifted to a higher level by a series of papers initiated by
Pierre Brémaud. The first important paper in the series is [BM96], where suf-
ficient conditions for the existence of stationary versions were given. Actually,
the more general case of non-linear Hawkes processes was considered. In the
precursor work [BM94] by the same authors, similar techniques had been used,
but not in the context of Hawkes processes.

This paper also discusses the conditions under which a non-stationary ver-
sion converges to an associated stationary version. One of the essential ideas in
the proof is an iterative procedure in the spirit of the proof of Picard’s existence
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theorem for ordinary differential equations. Actually, the same technique had
already been used by [Ker64] to derive similar results, long before the mod-
ern formulation of point process theory. Moreover, some results concerning
multivariate Hawkes processes were given.

The existence and stability results were then extended in [Mas98] to the
multivariate case and to the case of marked Hawkes processes. Some more pa-
pers followed, which extended the theoretical foundation further. An important
step was also the calculation of the spectral measures in [BM02].

An interesting situation occurs if the branching coefficient is exactly one,
i.e. if the branching process is critical. In [BM01], it was shown that it is
possible to construct Hawkes processes in this critical domain. Such a process
is in some sense self-sustaining, i.e. it does not need new immigrants arriving
over time any more.

For approximate simulation methods it is important to have a rough es-
timate of how large the burn-in period should be. Therefore, one needs to
know more about the rate of convergence of a transient Hawkes process to its
stationary version. In the univariate case, bounds for the rate of convergence
were derived in [BNT02]. The results were then extended in [Tor02] to more
general processes, including multivariate Hawkes processes.

More Abstract Notions of Self-Excitement. The concept of self-excite-
ment was considered from a more abstract point of view in [KS96]. The authors
define self-exciting behavior as an abstract property of the stochastic intensity
process which defines the point process. This more general class of positively
self-exciting point processes also contains Hawkes processes.

In the paper [VJ05], a class of self-similar measures is introduced and an-
alyzed. But self-similarity is a concept defined for random measures and has
a-priori nothing to do with self-excitement. But it was shown in this paper
that a subset of Hawkes processes are also self-similar.

Applications in Network Modeling. Hawkes processes, especially non-
linear Hawkes processes, define quite a large class of point processes models.
It is therefore no surprise that several classical models can be reinterpreted as
Hawkes processes, sometimes with a few modifications. A list of such models
can be found in the paper [Mas98], For example the loss network model studied
by [Kel85] and [FY96] is actually a non-linear Hawkes process. Moreover, this
paper proposes Hawkes processes for the description of spontaneously excitable
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random media. Another area where Hawkes processes might be used are neural
networks. A suitable specification of a Hawkes process is given in [BM96].

Applications in Finance. If one wants to model stochastic processes in
finance with Hawkes processes, there is an additional difficulty, that people
using Hawkes processes in seismology and other areas of science did not come
across. In seismology, one has the advantage that the theoretical foundation of
geophysics gives some strong directions of how one should choose the parame-
terizing functions of a Hawkes process. But as this is not the case for financial
data, one first has to gain some experience about suitable choices of Hawkes
processes.

Empirical comparisons suggest that Hawkes processes have some of the typ-
ical characteristics of financial time series. Financial data have been analyzed
using Hawkes processes e.g. in the papers [CDDM05] and [Bow07]. In the book
[MFE05], self-exciting processes are used for the calculation of conditional risk
measures, such as the Value-at-Risk.

Hawkes processes have also been used in connection with risk processes, that
is to model the surplus process of an insurance portfolio. Some first results were
obtained in [AA06]. The authors derived a Cramér-Lundberg approximation
of the ruin probability and other asymptotic estimates. Actually, the paper
considers only shot noise Cox processes, and not a Hawkes process. But the
results were extended to Hawkes processes in [ST08].

Applications in Credit Default Modeling. Another area of finance where
Hawkes processes have been considered is credit default modeling. Hawkes
processes have been proposed as models for the arrival of company defaults in
a bond portfolio, starting with the papers [GT05] and [GG05].

A important observation is also the fact that Hawkes processes of Markov
type, i.e. Hawkes processes with exponential transfer functions, are actually
affine jump-diffusion processes. This relation was described first in [EGG07].
With the help of the theory of affine jump-diffusions, one can then analyze
price processes related to certain credit derivatives.

Pricing formulas in the context of affine jump-diffusion processes have been
derived in [DPS00]. These processes have the advantage that analytical formu-
las for Laplace and Fourier transforms can be found. This leads to analytical
solutions for various pricing problems.
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1.2 Hawkes Processes Informally

This section gives a short introduction to Hawkes processes and discusses some
of the main notions. The focus will be on a specific class of multivariate,
marked Hawkes processes and associated algorithms. It is not the purpose of
this chapter to prove results nor to introduce the definitions in a rigorous way.
Instead the concepts are presented intuitively.

The targeted audience for this introduction is therefore anyone who wants
to have a quick overview of what Hawkes processes are all about and how they
could be used in practice, without entering into technical details. The following
definitions, propositions and theorems are all stated in an informal way, but I
give references to the rigorous formulation in the main part of the thesis.

There are basically two ways how one can define and represent Hawkes
processes; and each one has its advantages and disadvantages. This thesis
covers both of them: Firstly, a Hawkes process can be constructed as a recursive
Poisson cluster process, see Chapter 4. Secondly, it can be defined in terms of
its intensity function, see Chapter 6. In this first chapter I will only consider the
latter representation, i.e. I will give an informal definition of Hawkes processes
using intensity processes.

Classification of Hawkes Models. There is no generally accepted defi-
nition of a Hawkes process. The original definition given by Hawkes in his
paper [Haw71] is quite specific. Today, one usually calls a far larger class of
point process models Hawkes processes. This thesis treats only linear Hawkes
processes, see Definitions 4.20 and 6.19. But one can also define more general,
non-linear Hawkes processes.

An additional distinction can be made whether the Hawkes process is uni-
variate or multivariate or whether it is unmarked or marked. A mark is an addi-
tional value attached to each of the points and carries some information about
this point. In this introduction I consider the case of multivariate, marked
Hawkes processes and assume for simplicity that the marks are real numbers.

It is clear that if one wants to go the full way and finally implement algo-
rithms for Hawkes processes, one has to restrict oneself to a reasonable subfam-
ily of all possible Hawkes process models. This is the reason why I consider in
this introduction not the most general case of multivariate Hawkes processes.
But the subset of Hawkes processes defined below is still large enough for the
majority of serious empirical applications.
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Parameterization and Parameter Domain. I will consider only Hawkes
processes whose transfer functions are separable in some specific way. A simi-
lar, but less restrictive condition is also discussed in the main part of the thesis;
see Definition 6.25. One can easily find different parameterizations of a given
Hawkes intensity function, which all lead to exactly the same Hawkes process.
From a theoretical point of view this does not matter, but for numerical pro-
cedures it can make a big difference. Let me explain in a few words what sort
of problems an inappropriate parameterization can bring.

As it is the case for all non-trivial models, the model parameter vector, say
θ, cannot be arbitrarily but has to lie in some set of valid values, say D ⊆ Rn.
The set D consists of all parameter values where the model is well-defined.
For Hawkes processes, the restrictions on the parameters are fortunately quite
tractable. The precise results can be found in Chapter 6, but I will give a
summary below.

Even though these conditions are mathematical fairly simple, they are not
trivial. It is clear that choosing a parameter vector θ that lies outside of D
leads most likely to meaningless or absurd results. It is also clear that if θ is
inside D but close to the boundary, the same numerical problems may occur,
even though the parameter vector is valid from a mathematical point of view.

Assume one wants to estimate the parameters of a Hawkes model given
some data using a standard numerical minimization algorithms. It is then
important that the restrictions on θ are as simple as possible, since otherwise
it is difficult to prevent the minimization algorithm from moving outside the
domain of valid parameter values D. For the same reason, the range of valid
values for one parameter should depend on as few other parameters as possible.

Hawkes processes with separable transfer functions are especially suitable
for numerical implementation. This is the reason why I restrict myself in this
introduction to these functions. What this actually means is explained in
Definition 1.9 below.

What Does Multivariate Mean?. The term multivariate point process can
mean two different things. To avoid any misunderstanding, I will call the two
types of multivariate point processes genuine and pseudo multivariate point
processes. An informal definition is:

1.1 Definition (Multivariate point process). In both cases, let d ≥ 1 be
the number of components. Assume the points are indexed over some countable
set I .

13



Figure 1.1: Genuine multivariate point process

(1) Genuine multivariate point process. The events are triples of the form
(ti, di, xi), where ti ∈ R, di ∈ {1, . . . , d} and xi ∈ R, for i ∈ I . The three
components have the interpretation:

ti : time,

di : component index,

xi : mark value.

Consider the i-th event, which occurred at time ti: The component index
di looks like it is another mark in addition to xi. But this would be the
wrong interpretation. Instead, the component index di assigns the event
ti to the component di.

(2) Pseudo multivariate point process. The events are given by tuples of the
form (ti, xi,1, . . . , xi,d), where xi,j ∈ R, for i ∈ I , j ∈ {1, . . . , d}. The
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Figure 1.2: Pseudo multivariate point process

components have the interpretation:

ti : time,

xi,j : j-component of the vector-valued mark xi.

Consider again the i-th event, which occurred at time ti: This time, there
is no component information di and conceptually one may think that the
event ti lies in component one. On the other hand, there are d mark
values xi,j , which define a mark vector xi := (xi,1, . . . , xi,d). ♦

The difference between a genuine and a pseudo multivariate point process is
also illustrated in the Figures 1.1 and 1.2. Both times, a realization of a three-
dimensional point process is displayed.

Note that Definition 1.1 is an informal definition. Compare this with the
formal Definitions 2.33 and 3.4. Indeed, there are some technical conditions
that need to be mentioned: Clearly, the time and mark values need to be
random variables, i.e. they need to be measurable functions defined on some
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probability space. Moreover, the point process should not be “explosive”, i.e.
there should be no subsequence, say (ki)i≥1 ⊆ I , such that the limit limi→∞ tki
exists. In order to exclude processes of this type, one usually assumes that the
point process is locally-finite, i.e. that in every bounded time interval there are
only finitely many points. Moreover, a Hawkes process is always a simple point
process. This means that no two points occur at the same time, i.e. there are
no multiple points. Hence, one always has tk 6= tl, for k 6= l,

At the moment it does not matter what the set I is. But when I discuss
concrete algorithms later, it is better to have a specific set. Since I is count-
able, one can always assume that I := Z. In this case, assume that the points
are ordered in the obvious way, i.e. that tk < tl, if k < l.

Event Spaces. From a mathematical point of view, a pseudo multivariate
point process is actually a univariate point process with mark space Rd. When
I give the rigorous definition of point configurations in the Chapter 2, I will
not distinguish between genuine and pseudo multivariate processes. Instead, I
will introduce the more general concept of event spaces and mark spaces.

A pseudo multivariate process is then point process with event space E := R
and mark space X := Rd. On the other hand, a genuine multivariate pro-
cess is a point process with event space E := (R, . . . ,R) and mark space
X := (R, . . . ,R). I mention event and mark spaces only to point out that
the distinction between genuine and pseudo multivariate point processes can
be avoided if one uses a more abstract notion of point processes.

In this introduction I will not use more abstract concepts and I therefore
always distinguish between genuine and pseudo multivariate point processes.
This also means that I have to give separate definitions, once for the genuine
case and once for the pseudo multivariate case.

Analogy to Time Series. A short remark for the reader who is more fa-
miliar with multivariate time series than with multivariate point processes:

1.2 Remark (Alternative interpretation). A univariate, marked point
process is in some sense a time series with random, unevenly spaced time
intervals. Similarly, a pseudo multivariate point process is in some sense a
multivariate time series with unevenly spaced events in time. On the other
hand, a genuine multivariate point process is conceptually something else and
one cannot easily find an analogy in terms of time series. ♦
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Integral Notation. In dealing with point processes it is common to use
integral notation to express sums over all events of the point process. The
deeper reason for this notation is the fact that a point process is actually a
random measure, see Definitions 3.1 and 3.4. The following notation treats
only the case of a univariate point process, but the extension to a multivariate
one is trivial:

1.3 Notation (Integral notation). Let (ti, xi) be an enumeration of all
events of N , where i lies in some countable set I . The usual notation for the
sum over all events is:∫

R×R
f(t, x)N(dt× dx) ≡

∑
i∈I

f(ti, xi),

where f is some arbitrary function such that the sum is well-defined. ♦

Hawkes Intensity Function. As explained, one can define a Hawkes process
either as a recursive Poisson cluster process, or one can define a Hawkes process
by specifying its intensity function. In this introduction, I will only look at the
second representation. The reason is that in order to calculate the likelihood
function one needs the intensity process, and therefore this is the suitable
representation if one wants to fit a Hawkes model to a set of empirical data.

In Chapter 6 so-called transfer functions are introduced, see Definition 6.19.
I will not give the definition of transfer functions here, since in this first chapter
I consider only a special case of transfer functions, so-called separable transfer
functions, see Definition 6.25. To avoid technical notions, I directly define the
Hawkes intensity process using decay and impact functions, see Definition 1.9
below.

Immigration Intensity. Before I give the definition of the Hawkes intensity
function, I introduce and explain all the relevant pieces in turn. The immigra-
tion intensities are just constants, but what is important is their interpretation:
Every event of a Hawkes process is either an immigrant or a descendant. The
immigration intensities govern the frequency at which new immigrants arrive
in each of the components:

1.4 Definition (Immigration intensity). Let d ≥ 1 be the number of com-
ponents. Depending on the version of multivariate Hawkes process, assume the
following constants are given:

(1) Genuine multivariate. Let ηj ≥ 0, for j ∈ {1, . . . , d}.
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(2) Pseudo multivariate. Let η ≥ 0.

The parameters above are called the immigration intensities. ♦

Decay Function. A Hawkes process is characterized by the following prop-
erty: Whenever an event occurs, the intensity is increased for some time, i.e.
events arrive at a higher frequency. This increase causes secondary events,
which are called descendants. How fast this effect decays in time is governed
by the so-called decay functions:

1.5 Definition (Decay function). Assume an event has occurred at time
s ∈ R and fix some t > s. Let ∆t := t− s denote the time lag. The functions
wj , w given below are called the decay functions:

(1) Genuine multivariate. Let wj , for j ∈ {1, . . . , d}, be functions of the
form:

wj : R+ → R+.

Interpretation: If there is an event at time s, the intensity of component
j at time t is increased proportional to wj(∆t).

(2) Pseudo multivariate. Let w be a function of the form:

w : R+ → R+.

Interpretation: If there is an event at time s, the intensity at time t is
increased proportional to w(∆t). ♦

Note that the intensity is not increased by the amount w(∆t), but only by a
value proportional to w(∆t). This becomes clear if one looks at Definition 1.9,
since w(∆t) appears as multiplicative factor in the definition of the intensity
function. When numerical algorithms are discussed later, the functions given
in the next definition will be quite convenient:

1.6 Definition (Related functions). Let wj=1,...,d and w be decay func-
tions, as in Definition 1.5.

(i) Cumulative decay function. Define for j ∈ {1, . . . , d} and t ≥ 0 the
functions:

w̄j(t) :=
∫ t

0

wj(s)ds and w̄(t) :=
∫ t

0

w(s)ds.
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The first part refers to the genuine multivariate case and the second part
to the pseudo multivariate case.

(ii) Quantile function. Let ε > 0, usually a very small number. In the
genuine case, define for all j ∈ {1, . . . , d} the quantile qj > 0 such that
the following equation is satisfied:∫ ∞

qj

wj(t)dt = ε.

In the pseudo multivariate case, take w instead of wj and define q > 0
correspondingly. ♦

Impact Function. The amount by which the intensity increases after an
event does not only depend on the time lag but also on the mark value of
the triggering event. The influence of the mark value is governed by the im-
pact functions. The impact functions describe again only the relative effect of
an event, since they appear as a multiplicative factor in the definition of the
intensity function.

1.7 Definition (Impact function). The functions gk given below are called
the impact functions:

(1) Genuine multivariate. Let gk, for k ∈ {1, . . . , d}, be a family of mea-
surable functions of the form gk : R → R+. Interpretation: Assume the
triggering event is in component di and has mark value xi. The intensity
of all other components is then increased proportional to gdi(xi).

(2) Pseudo multivariate. The family of impact function gk=1,...,d is defined
in the same way as above; but the interpretation is different: Assume the
triggering event has the vector-valued mark xi ∈ Rd. The intensity is
then increased proportional to

∏d
k=1 gk(xi,k). ♦

Note that in the genuine case, there are d impact functions but only one mark
value xi. One always takes the impact function gdi corresponding to the com-
ponent di of the triggering event. This emphasizes once more the fundamental
difference between the genuine and the pseudo multivariate case.

1.8 Definition (Branching coefficients). The parameters ϑjk, ϑ given be-
low are called the branching coefficients and the matrixQ is called the branching
matrix :
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(1) Genuine multivariate. Let ϑjk ≥ 0 be constants, for j, k ∈ {1, . . . , d},
and define the matrix:

Q :=
(
ϑjk; j, k ∈ {1, . . . , d}

)
.

Interpretation: Given that there is an event in component k, the intensity
of component j is increased proportional to ϑjk.

(2) Pseudo multivariate. Let ϑ ≥ 0 be a constant, and for consistency with
the previous case, define the 1×1-matrix Q := ϑ. Interpretation: Every
event increases the intensity by an amount proportional to ϑ. ♦

Now all required ingredients have been introduced and I can finally define the
Hawkes intensity function. A rigorous definition of an intensity process is given
in Definition 6.10 and Remark 6.11. But roughly speaking, the intensity value
λ(t) at time t measures the probability that an event occurs in the infinitesimal
time interval [t, t+ dt).

1.9 Definition (Hawkes intensity process). Let d ≥ 1 be the number of
components.

(1) Genuine multivariate. Let wj , gk, ηj and ϑjk be as in the definitions
above. Define for j ∈ {1, . . . , d} and t ∈ R the family of Hawkes intensity
processes by:

λj(t) := ηj +
d∑
k=1

ϑjk

∫
(−∞,t)×R

wj(t− s)gk(x)Nk(ds× dx). (1.1)

(2) Pseudo multivariate. Let w, gk, η and ϑ be as in the definitions above.
Define for t ∈ R the Hawkes intensity process by:

λ(t) := η + ϑ

∫
(−∞,t)×Rd

w(t− s)
[ d∏
k=1

gk(xk)
]
N(ds× dx). (1.2)

♦

Note that a genuine multivariate Hawkes process has d intensity processes,
whereas a pseudo multivariate Hawkes processes has only one intensity process.
Once more, this indicates that the two versions are quite different.

1.10 Remark (Hawkes intensity process). The following comments refer
to the genuine case but apply to the pseudo case as well:

(i) The functions wj , gk and the parameter ϑjk are determined only up to
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multiplication by a constant. Below additional normalizing conditions
are introduced, so that in the end all terms are uniquely determined.

(ii) The case where one has a mixture of marked and unmarked components
is included in this specification for the Hawkes intensity. Indeed, assume
component k ∈ {1, . . . , d} has no marks. Then define the void impact
function:

gk := 1.

With this impact function, the unmarked component k can be treated as
if it were a marked component. The void impact function is introduced
only for notational convenience in order to treat all components in a
unified way. ♦

Mark Distribution. The intensity process given above is the so-called time-
intensity process. It describes only the dynamics of the ground process, i.e.
the process without the marks. For a full specification of a marked point
process, one needs to know the so-called time-space-intensity process. For the
theoretical background, see Definitions 6.9, 6.10 and 6.19.

At this point, it is not necessary to introduce another theoretical concept.
Indeed, the Hawkes processes I consider here have marks which are independent
of the past of the process. In other words, the mark distribution is not influ-
enced by previous events and stays always the same. It is therefore enough to
specify the mark distribution, and then the complete dynamics of the Hawkes
process are defined.

1.11 Definition (Mark distribution). Let fj , for j ∈ {1, . . . , d}, be prob-
ability densities on R, the so-called mark densities.

(1) Genuine multivariate. Given that there is an event in component j at
time t, the mark X associated to this event is independent of the past of
the process and has distribution:

X ∼ fj .

(2) Pseudo multivariate. Given that there is an event t, the vector-valued
markX ∈ Rd is obtained as follows: The components Xj are independent
of each other and also independent of the past of the process and the
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distribution of X is given by:

X =
(
X1, . . . , Xd

)
, where Xj ∼ fj . ♦

Note that in both cases there are d mark densities fj , but the way they appear
in the definition is quite different.

As explained in Remark 1.10, one needs additional assumptions if one wants
the branching coefficients ϑjk to be uniquely determined. To this end, I assume
that the decay functions wj and the impact functions gk always satisfy the
following conditions:

1.12 Convention (Normalizing conditions). In the genuine multivariate
case, assume that the following two normalizing conditions are satisfied:∫ ∞

0

wj(t)dt = 1 and
∫ ∞
−∞

gk(x)fk(x)dx = 1,

for all j, k ∈ {1, . . . , d}. In the pseudo multivariate case, replace wj by w. ♦

Let me explain the reasoning behind these normalizing conditions:

1.13 Remark (Advantages and disadvantages). The normalizing condi-
tions are specifically designed such that the parameters ϑjk correspond to the
branching coefficients of the underlying branching process. This is the reason
why ϑjk are called the branching coefficients in the first place. Without these
normalizing conditions, the parameters ϑjk could not be interpreted in this
way. There are advantages and disadvantages that come with these normaliz-
ing conditions:

(i) The big advantage is that the branching coefficients ϑjk appear explicitly
as parameters in the model. As explained below, the branching coef-
ficients determining whether the Hawkes model is well-defined or not.
Without these normalizing conditions, the branching coefficients would
be non-trivial functions of the model parameters.

(ii) There is also a disadvantage: Assume fk is the mark distribution of com-
ponent k. Then the associated impact function gk needs to be specifically
adapted such that the normalizing condition is satisfied. Especially for
numerical implementation, this means a lot of additional work; but the
benefits of this parameterization by far outweigh the disadvantages. ♦
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To get a better understanding of what these normalizing conditions imply in
a concrete situation, have a look at the list of examples of distributions and
impact functions given in Section 1.3 below.

Hawkes Process. I give in Chapter 6 a precise definition of a Hawkes pro-
cess. Actually, I will consider so-called strong solutions of a certain thinning
equation. A Hawkes process is then defined as the solution to this thinning
equation, see Definition 6.33. It is easier to derive theoretical properties if the
Hawkes process is defined on a specific probability space, which I called the
canonical probability space, see Definitions 6.3, 6.28 and 6.30.

For the purposes of this chapter, the underlying probability space is not
important, and I therefore define a Hawkes process directly with the help of
the associated Hawkes intensity process. See also Definition 6.10 for a precise
definition of an intensity process.

1.14 Definition (Hawkes process). Let (Ω,F ,P) be a probability space.

(1) Genuine multivariate. Let N be a genuine multivariate point process
as in the first part of Definition 1.1. Assume each component Nk, k ∈
{1, . . . , d} has intensity λk, as given in Equation (1.1).

(2) Pseudo multivariate. Let N be a pseudo multivariate point process as in
the second part of Definition 1.1. Assume N has intensity λ as given in
Equation (1.2).

In this case, N is called a Hawkes process. ♦

As already mentioned, the branching coefficients ϑjk determine whether the
Hawkes model is well-defined or not. The regularity conditions I give below
rely on the spectral radius of the branching matrix Q:

1.15 Definition (Spectral radius). Let Q be a d×d-matrix and denote the
spectrum of Q by Λ(Q). The spectrum is the set of all (in general complex-
valued) eigenvalues of Q. The spectral radius is then defined as:

Spr(Q) := max
{
|λ| : λ ∈ Λ(Q)

}
. ♦

Since the branching coefficients ϑjk are explicit model parameters, it is easy
to determine whether the model is well-defined or not. The next theorem is a
reformulation of Theorem 6.55:

1.16 Theorem (Regularity condition, informal). In order for a Hawkes
model to be well-defined, the following conditions need to be satisfied:
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(i) The branching matrix satisfies:

Spr(Q) < 1.

(ii) The decay functions satisfy, for all j ∈ {1, . . . , d}:∫ ∞
0

twj(t)dt <∞.

In case of a pseudo multivariate model take w instead of wj . ♦

Likelihood Function. The standard way to estimate the parameters of a
Hawkes process model is to maximize the likelihood function. In order to
define the likelihood function, one first has to fix an observation period D, i.e.
the time interval during which the data has been collected. I will always use
the observation period D := [T∗, T ∗], for fixed times T∗ < T ∗.

The compensator will be useful for the calculation of the likelihood function.
Recall Definition 1.6 of the cumulative decay functions w̄j and w̄:

1.17 Definition (Compensator). For all t ∈ D define in the genuine and
pseudo multivariate case:

Λj(t) :=
∫ t

T∗

λj(s)ds and Λ(t) :=
∫ t

T∗

λ(s)ds.

This is the general definition. For a Hawkes process one obtains:

(1) Genuine multivariate. For j ∈ {1, . . . , d} and t ∈ [T∗, T ∗]:

Λj(t) =
d∑
k=1

ϑjk

∫
(−∞,t)×R

[
w̄j(t− u)− w̄j(T∗ − u)

]
gk(x)Nk(du× dx)

+ ηj(t− T∗),

where the convention is used that w̄j(t) = 0, if t < 0.

(2) Pseudo multivariate. For t ∈ [T∗, T ∗]:

Λ(t) = ϑ

∫
(−∞,t)×R

[
w̄(t− u)− w̄(T∗ − u)

][ d∏
k=1

gk(xk)
]
N(du× dx)

+ η(t− T∗),
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where the convention is used that w̄(t) = 0, if t < 0. ♦

The general definition of the likelihood function of a point process is given
in Definition 6.16. The likelihood function for a Hawkes process is derived in
Proposition 6.27. It is a function of the model parameters, θ say, and the n
observed events. The vector θ is the concatenation of the parameters of the
decay and impact functions, the branching coefficients and the parameters of
the mark distributions. Moreover, the likelihood depends on the choice of the
observation period D. In summary, the likelihood is a function of the following
form, for the two versions of multivariate Hawkes processes:

LD,n

(
θ; (ti, di, xi)i=1,...,n

)
and LD,n

(
θ; (ti, xi,1, . . . , xi,d)i=1,...,n

)
.

To avoid cluttering the notation, I write from now on simply L.

1.18 Proposition (Hawkes likelihood). Let N be a Hawkes process and
assume one has observed N in the time interval D = [T∗, T ∗].

(1) Genuine multivariate. The log-likelihood is given by:

logL =
d∑
j=1

∫
[T∗,T∗]×R

log λj(t)Nj(dt× dx)

+
d∑
j=1

∫
[T∗,T∗]×R

log fj(x)Nj(dt× dx)−
d∑
j=1

Λj(T ∗).

(2) Pseudo multivariate. The log-likelihood is given by:

logL =
∫

[T∗,T∗]×Rd
log λ(t)N(dt× dx)

+
d∑
k=1

∫
[T∗,T∗]×Rd

log fk(xk)N(dt× dx)− Λ(T ∗). ♦

Consider the integrals above: Note that the integrands in these integrals either
depend on t or on the mark values x or xk, but not on both. This becomes
relevant later, when I discuss numerical algorithms for the calculation of the
likelihood function.

Residual Process. Once one has fitted a Hawkes model to some given data,
one usually wants to assess how good the model fits the data. A standard
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method to check the goodness-of-fit is to consider the so-called residual process.
One basically obtains the residual process as follows: Assume the estimated
Hawkes model is correct; in other words, assume that the data have been
generated by this Hawkes model. Moreover, assume one is able to somehow
exactly calculate the intensity process. Then transform the point process in
time and space according to the estimated model, as indicated in the next
definition. The resulting point process is then the residual process.

Note that it is not possible to calculate the intensity process exactly in
practice, since one can observe the Hawkes process only during a finite time
interval but the intensity process is a function of the infinite past of the process.
For the following construction, use the notation given in Definition 1.1:

1.19 Definition (Residual process). Assume one has observed n events of
a Hawkes process in the time interval D. Depending on the type of the process,
apply the following transformation:

(1) Genuine multivariate. The residual process is given by the following time
and space transformed point process:

(τ1, d1, χ1), . . . , (τn, dn, χn).

Note that this is again a d-dimensional, genuine point process. The pair
(τi, χi), for 1 ≤ i ≤ n, is obtained as follows:

τi := Λdi(ti) and χi := Fdi(ti),

where Fj is the cumulative distribution function associated to the mark
density fj , see Definition 1.11.

(2) Pseudo multivariate. This time, the residual process is of the form:

(τ1, χ1,1, . . . , χ1,d), . . . , (τn, χn,1, . . . , χn,d).

The residual process is again of the same class as the original process,
i.e. it is a d-dimensional, pseudo multivariate point process. The tuples
(τi, χi,1, . . . , χi,d) are calculated according to:

τi := Λ(ti), χi,1 := F1(xi,1), . . . , χi,d := Fd(xi,d). ♦

The next theorem states that given the model is correct, the residual process is a
Poisson process with iid standard uniformly distributed marks. This statement
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goes back to [Wat64], [Mey71] and [Pap72]. Modern formulations are given in
Theorem T16 of Section II.6 of [Bré81] and in Theorem 7.4.I of [DVJ03].

One could formulate the following theorem for the same observation period
[T∗, T ∗] that has been used for the likelihood function. But the theorem is easier
to formulate if one assumes, at least conceptually, that the observation period
is the unbounded interval [T∗,∞). Loosely speaking, if one takes the interval
[T∗, T ∗], one observes only a finite number of points. The residual process has
then also a finite number of points and can therefore not be a Poisson process
on R+. Indeed, the residual process would be a truncated Poisson process. To
avoid this complication, I take instead the infinite time interval [T∗,∞):

1.20 Theorem (Random time change, informal). Take a Hawkes process
with strictly positive immigration intensities, i.e. assume that ηj , η > 0; see
Definition 1.4. Moreover, assume that the mark distributions Fj are absolutely
continuous.

(1) Genuine multivariate. Assume the compensator processes Λj are known.
Define the residual process in the same way as in the first part of Defini-
tion 1.19, but this time assume the observation period is [T∗,∞). Then
define the residual process:

(τ1, d1, χ1), (τ2, d2, χ2), . . . .

Let R denote be the representation of this sequence as a random measure.
Then the projections Rj(dt×R), for j ∈ {1, . . . , d}, are independent stan-
dard Poisson processes on R+×R. Moreover, the marks are independent
of Rj(dt× R) and are iid uniformly distributed on [0, 1].

(2) Pseudo multivariate. Assume the compensator process Λ is known and
the observation period is [T∗,∞). Define the time transformed point
process R, consisting of the sequence of events:

(τ1, χ1,1, . . . , χ1,d), (τ2, χ2,1, . . . , χ2,d), . . . .

Then the projection R(dt×Rd) is a standard Poisson process on R+×Rd
and the marks χi := (χi,1, . . . , χi,d) are independent of R(dt × Rd) and
iid uniformly distributed on [0, 1]d ⊆ Rd. ♦

The projections Rj(dt×R) and R(dt×Rd) are sometimes also called the ground
processes, see Section 6.4 in [DVJ03].

The above theorem can be used to assess the goodness-of-fit of a Hawkes
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model. If the Hawkes model is inappropriate the residual process is not a Pois-
son process and one should be able to detect this. At least, the residual process
can be analyzed graphically to detect deviations from the Poisson assumption.
Moreover, statistical tests can be used to quantify this deviation, which then
leads to a classical goodness-of-fit test statistic.

Simulation. Let me finish this short exposition of Hawkes processes with
the discussion of a simulation algorithm. I will only look at the genuine mul-
tivariate case. The corresponding algorithm for the pseudo multivariate case
is easier, since one basically can use the simulation algorithm for a univariate
Hawkes process. The presented algorithm is a multivariate extension of Algo-
rithm 7.5.IV in [DVJ03], where it is called Ogata’s modified thinning algorithm.

The simulation algorithm consist of two loops: The inner loop determines
for every component a candidate event and the outer loop selects among the
candidate events the next true event. I explain below the workings of the two
loops.

Inner Loop. The inner loops starts off directly after a new event has been
generated, say at time t in component j. It determines a sequence τ1, . . . , τd
of potentially new events, each τk belonging to component k, and returns this
sequence to the outer loop. The outer loop then selects exactly one of these d
potential events and nominates it as the new event, say at time τ in component
r. Indeed, it defines τ := min{τ1, . . . , τd} and sets r such that τ = τr. The
outer loop then discards all other events τk 6= τr and starts the inner loop
afresh.

To understand why there are two stages, one has to look more closely at
how the inner loop determines a candidate event. Conceptually, the inner
loop samples simultaneously an event for each component, since it is not yet
clear in which component the next event will lie. The true next event is then
determined by the rule “the first one wins”.

Two-Stage Rejection Sampling. Let me explain this idea from another
perspective: Assume the inner loop is sampling a candidate event for compo-
nent k ∈ {1, . . . , d}. Clearly, whenever an event occurs in one of the other
components l 6= k, this also affects the intensity process of component k. But
unfortunately, at this stage in the algorithm it is not yet known in which com-
ponent the next event will occur.
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Since the inner loop somehow has to make an assumption about the other
components, it simply pretends that there are no events in the other compo-
nents. Notice that this assumption is indeed valid in the time interval (t, τr),
i.e. until the first event τr occurs, but becomes invalid after time τr.

Now assume the inner loop generates a new event in component k at time
τk. If another event has occurred in the mean time, i.e. if τl < τk for l 6= k,
then the assumption under which τk has been generated has become wrong,
and in consequence the event τk is invalid. But if on the other hand τk is the
first event, i.e. if τk < τl for all l 6= k, the assumption that there are no events
in (t, τk) is justified and τk is a valid event.

It is now the task of the outer loop to sort out the invalid events generated
by the inner loop. The outer loop simply compares all the potential events
generated by the inner loop and rejects all of them except the first one. Hence,
the true next event is τ := min{τ1, . . . , τd}.

Thinning procedure. Let me now explain the inner loop in more detail:
Since the inner loop simply assumes that the other components contain no
events after time t, one can calculate the intensity process λk after time t.
Actually one can calculate the so-called hazard rate, which I denote by λ+

k ,
Simply speaking, the hazard rate is the intensity process under the additional,
artificial assumption that there are no events after time t. I write “artificial”
since the point process usually has events afterwards, and it is therefore not
an assumption in a strict sense. See also Definition 6.38, for a more precise
definition of hazard rates.

Now assume one has calculated the hazard rate λ+
k . It is then quite simple

to generate the next event. Basically one needs to generate an inhomogeneous
Poisson process with hazard rate λ+

k , and then take the first event. The inner
loop does this by constructing a thinning of a homogeneous Poisson process.
But there is one problem one has to address: A straight-forward thinning
procedure could become very inefficient, since the intensity could decrease to
zero very fast, and hence a large number of trial events would be rejected.

Adaptive Thinning. The algorithm solves this efficiency problem as follows:
It assumes the hazard rate is monotonically decreasing after time t. It starts
with a homogeneous Poisson process with constant intensity λ := λ+

k (t). Then
the first event of this homogeneous Poisson is generated, say at time s, and
the algorithm checks whether it belongs to the thinned process or not. In case
it does, this event becomes the candidate event τk. Otherwise, the algorithm
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takes a new homogeneous Poisson process, this time with constant intensity
λ := λ+

k (s). This procedure is repeated until a valid point is found.

Burn-In Period. For simplicity, the algorithm I present below starts at time
t0 := 0 and assumes an empty initial state, see also Definition 6.34. This
means the algorithm starts with no points defined initially; but one could easily
change that. If the regularity conditions from Theorem 1.16 are satisfied, then
the simulated Hawkes process converges in a strong sense to an associated
stationary Hawkes process. The details of this convergence are explained in
Proposition 6.52, and especially Theorem 6.55 and its proof.

This implies that the first few events generated by this simulation algorithm
should not be used. In other words, one has to let the algorithm run for some
time, the so-called burn-in period, before one uses the generated events.

1.21 Algorithm (Simulation). Consider a d-dimensional, genuine multivari-
ate Hawkes process. The notation λj(t) for the intensity process used so far is
not suitable for the description of this algorithm, since it might not always be
clear which points are used to calculate the intensity. To specify exactly which
points are included in the calculation, I use the following notation:

λj(t|n) ≡ λj
(
t
∣∣∣(t1, d1, x1), . . . , (tn, dn, xn)

)
.

This means that the intensity at time t is calculated assuming the n events
given above define the past of the process.

(I ) Outer loop initialization. Define t0 := 0, but this is not yet counted as
an event.

(II ) Outer loop iteration. The iteration variable is n and iterates through
n ≥ 1. First start the inner loop:

(i) Inner loop initialization. Define for j ∈ {1, . . . , d} the values:

τn,j,0 := tn−1.

Note that the intensity process t 7→ λj(t) is left-continuous with
right-hand side limits. Hence, the following right-hand limit is well-
defined:

λn,j,0 := λj(tn−1−|n− 1) ≡ lim
t↘tn−1

λj(t|n− 1).
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Note that the event at time tn−1 increases the intensity in the open
interval (tn−1,∞). In other words, the intensity is not yet influenced
by this event exactly at time tn−1. This explains why one has to
take the right-hand limit, since otherwise event number n−1 would
not be taken into account.

(ii) Inner loop iteration. The iteration variable is r and iterates through
r ≥ 1. Sample a standard exponential random variable En,j,l and
define:

τn,j,r := τn,j,r−1 + En,j,r/λn,j,r−1, λn,j,r := λj(τn,j,r|n− 1).

Note that λj(·|n−1) by definition is the intensity based on the first
n−1 points sampled so far. Since τn,j,r does not correspond to any
of these points, one does not need to take the right-hand limit as
before. Actually, the intensity is continuous at τn,j,r, so it does not
matter. Now sample a standard uniform random variable Un,j,l and
define:

un,j,r := Un,j,rλn,j,r−1.

Check the condition un,j,r ≤ λn,j,r, and if so stop the iteration.

(iii) Inner loop finalization. When the iteration has terminated, define:

τn,j := τn,j,r.

Then continue in the outer loop.

Back in the outer loop, define the pair (tn, dn) as follows:

tn := minj∈{1,...,d} τn,j , dn := arg minj∈{1,...,d} τn,j .

Now sample a random variable Xn,dn with distribution Fdn and define:

xn := Xn,dn .

The following triple defines a new event:

Add the triple (tn, dn, xn) to the output of the algorithm.

Check some terminal condition, e.g. check whether the number n of events
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generated so far is sufficient. Otherwise continue with the iteration in the
outer iteration, now for n+ 1 instead of n. ♦

Note that an actual implementation has to consider some more details: E.g. it
is necessary to make sure that none of the two loops repeats infinitely, which
could happen if the Hawkes model is not well-defined.

1.3 Examples of Hawkes Processes

So far I gave only the definition and described the properties and interpretation
of the decay functions, impact functions and mark distributions. It is now
time to give some concrete examples. Clearly, the following list cannot be
complete. Instead it mentions some of the more obvious functions one could
take. One can obtain already quite many Hawkes models if one considers all
possible combinations of decay functions, mark distributions and associated
impact functions.

Decay Functions. For simplicity, I consider only the genuine multivariate
case. In the pseudo multivariate case, omit the index j in the following def-
initions. Let j ∈ {1, . . . , d} be the component index. Note that both decay
functions given below satisfy the normalizing condition from Convention 1.12.

Exponential Decay Function. Let αj > 0 be parameters and define for
t ≥ 0 the exponential decay function:

wj(t) = αj exp{−αjt}.

Associated to the decay functions are the cumulative decay functions w̄j and
the quantile functions qj , see Definition 1.6. For the exponential decay function
they are given by:

w̄j(t) = 1− exp{−αjt} and qj = − ln(ε)
αj

,

where ε > 0 is some fixed value.

1.22 Remark. The exponential decay function has an important property: A
Hawkes process with exponential decay functions is actually a Markov process if
one includes the intensity as part of the state of the process. As a consequence,
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there exists a more efficient algorithm for the calculation of the intensity pro-
cess. This is especially important for the numerical calculation of the intensity
process, which is discussed in the next section. Hence, if one has no specific
preferences, one should preferably take an exponential decay function. ♦

Power Decay Function. Let αj > 2 and βj > 0 be parameters and define
for t ≥ 0 the power decay function:

wj(t) =
(αj − 1)βj
(1 + βjt)αj

.

Note that the restriction α > 2 is required such that the second condition of
Theorem 1.16 is satisfied, i.e. such that

∫∞
0
twj(t)dt <∞ holds. The associated

cumulative decay functions w̄j and the quantile functions qj , for a constant
ε > 0, are given by:

w̄j(t) = 1− (1 + βjt)1−αj and qj =
1
βj

[
exp
{
−(αj − 1)−1 ln ε

}
− 1
]
.

As a historical side remark, the ETAS model for earthquake modeling uses a
power decay function. See the original definition of the ETAS model given in
Section 2.1 of the paper [Oga88]. In the context of earthquake modeling, the
decay function is called Omori’s Law and is defined as:

w̃(t) :=
K

(t+ c)p
.

where K, c and p are some parameters. Note that Omori’s Law does not
satisfy the normalizing condition from Convention 1.12. It is therefore not a
decay function in the sense used so far; and this explains the notation w̃.

One-Sided Mark Distributions. Below follows a list of common distribu-
tions which may be useful in a practical application. Since the impact functions
differ for one-sided and two-sided distributions, I split the distributions in two
groups and start with the one-sided ones.

Recall from Convention 1.12 that the impact functions need to be adapted to
the corresponding distribution. Since the integral in the normalizing condition
has to be finite, one cannot take any pair of distribution and impact function.
I will focus only on a few standard types of impact functions, although one
could think also of more complicated ones:
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1.23 Definition (One-sided impact functions). Let α, β, γ ≥ 0.

(1) Non-normalized. Consider the following three functions:

g̃(x) = α+ βx+ γx2, g̃(x) = xα, g̃(x) = exp{αx}.

In the first case assume that at least one of α, β, γ is strictly positive;
and in the other two cases assume α > 0. Note that these functions are
not impact functions, since they do not satisfy the normalizing condition
given in Convention 1.12. Hence, one could call them non-normalized
impact functions and this is the reason why the notation g̃ has been
used.

(2) Normalized. Now assume X has some distribution f , see also Defini-
tion 1.11. Then define the impact functions:

g(x) =
α+ βx+ γx2

α+ β E[X] + γ E[X2]
, g(x) =

xα

E[Xα]
, g(x) =

exp{αx}
E
[
exp{αX}

] .
These impact functions are now the normalized versions. Clearly, whether
a certain impact function is compatible with a given distribution f de-
pends on whether the associated moments are finite or not.

(3) Degenerate impact function. As a degenerate case one can always take
the void impact function g(x) = 1, which simply ignores the marks, see
also Remark 1.10. ♦

Note that the normalized impact functions depend not only on the three pa-
rameters α, β, γ, but implicitly also on the parameters of the distribution of X.
This becomes clear if one looks at the examples given below.

Special Functions. Some of the distributions and impact functions that
follow below contain special mathematical functions. For completeness, I list
them with their definitions:

1.24 Definition (Special functions). The definitions for the following spe-
cial functions can be found e.g. in the book [AS64].

(i) The error function is defined for x ≥ 0 by:

erf(x) =
2√
π

∫ x

0

e−t
2
dt.
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It is related as follows to the cumulative distribution function Φ of a
standard normal distribution:

Φ(x) =
1
2

(
1 + erf

{ x√
2

})
and erf(x) = 2Φ

(
x
√

2
)
− 1.

See Equations 7.1.1 and 7.1.22 of [AS64].

(ii) The gamma function and lower incomplete gamma function are defined
for κ > 0 and x ≥ 0 by:

Γ(κ) =
∫ ∞

0

tκ−1e−tdt, γ(κ, x) =
∫ x

0

tκ−1e−tdt.

See Equations 6.1.1 and 6.5.2 in [AS64].

(iii) Gauss’ hypergeometric function is defined as:

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt.

See Equations 15.1.1 and 15.3.1 in [AS64]. For the exact domain where
this function is defined, see the same reference. ♦

For all impact functions that follow below, assume the three parameters α, β, γ
lie in the appropriate range, as specified in Definition 1.23.

Exponential Distribution. The exponential distribution is defined on the
half line (0,∞) and has one parameter λ > 0. The density and cumulative
distribution function are:

fλ(x) = λ exp{−λx} and Fλ(x) = 1− exp{−λx}.

The first two and higher order moments are:

E[X] =
1
λ
, E[X2] =

2
λ2
, E[Xα] =

Γ(α+ 1)
λα

.

Two suitable impact functions are:

g(x) =
λ2

αλ2 + βλ+ 2γ
(
α+ βx+ γx2

)
, g(x) =

λα

Γ(α+ 1)
xα.
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Gamma Distribution. The gamma distribution is defined on the half line
(0,∞) and has two parameters η > 0 and σ > 0. The density and cumulative
distribution function are:

fη,σ(x) = xη−1 exp{−x/σ}
Γ(η)ση

and Fη,σ(x) =
γ(η, x/σ)

Γ(η)
.

The first two and higher order moments are:

E[X] = ησ, E[X2] = η(η + 1)σ2, E[Xα] =
σαΓ(η + α)

Γ(η)
.

Two suitable impact functions are:

g(x) =
α+ βx+ γx2

α+ βησ + γη(η + 1)σ2
, g(x) =

Γ(η)
Γ(η + α)σα

xα.

Inverse Gamma Distribution. The inverse gamma distribution is defined
on the half line (0,∞) and has two parameters η > 0 and σ > 0. The density
and cumulative distribution function are:

fη,σ(x) =
ση

Γ(η)
x−η−1 exp

{−σ
x

}
and Fη,σ(x) =

γ(η, σ/x)
Γ(η)

,

where γ is the lower incomplete gamma function, see Definition 1.24. A finite
first moment requires η > 1 and a finite second moment requires η > 2. In this
case, the first two moments are:

E[X] =
σ

η − 1
and E[X2] =

σ2

(η − 1)(η − 2)
.

Under the restriction that η > 2, a suitable impact function is:

g(x) =
(η − 1)(η − 2)

α(2− 3η + η2) + β(−2σ + ησ) + γσ2
(α+ βx+ γx2).

Log-normal Distribution. The log-normal distribution is defined on the
half line (0,∞) and has two parameters µ ∈ R and σ > 0. The density and
cumulative distribution function are:

fµ,σ(x) =
1

xσ
√

2π
exp
{−(lnx− µ)2

2σ2

}
, Fµ,σ(x) =

1
2

+
1
2

erf
{ lnx− µ

σ
√

2

}
,
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where erf is the error function, see Definition 1.24. The first two and higher
order moments are:

E[X] = exp
{
µ+

σ2

2

}
, E[X2] = exp

{
2µ+ 2σ2

}
,

E[Xα] = exp
{
αµ+

α2σ2

2

}
.

Two suitable impact functions are:

g(x) =
α+ βx+ γx2

α+ β exp{µ+ σ2/2}+ γ exp{2µ+ 2σ2}
,

g(x) = exp
{
−2αµ+ α2σ2

2

}
xα.

Pareto Distribution. The Pareto distribution is defined on the half line
[0,∞) and has two parameters µ > 0 and ρ > 0. The density and cumulative
distribution function are:

fµ,ρ(x) =
ρµρ

(x+ µ)ρ+1
and Fµ,ρ(x) = 1−

( µ

x+ µ

)ρ
.

A finite first moment requires ρ > 1 and finite second moment requires ρ > 2.
In this case, the first two moments are:

E[X] =
µ

(ρ− 1)
and E[X2] =

2µ2

(ρ− 1)(ρ− 2)
.

Under the restriction that ρ > 2, a suitable impact function is:

g(x) =
(ρ− 1)(ρ− 2)

α(ρ− 1)(ρ− 2) + βµ(ρ− 2) + 2γµ2
(α+ βx+ γx2).

Rayleigh Distribution. The Rayleigh distribution is defined on the half line
(0,∞) and has one parameter σ > 0. The density and cumulative distribution
function are:

fσ(x) =
x

σ2
exp
{
− x2

2σ2

}
and Fσ(x) = 1− exp

{−x2

2σ2

}
.

The first two and higher order moments are:

E[X] = σ
√
π/2, E[X2] = 2σ2, E[Xα] = σα2α/2Γ(1 + α/2).
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The moment generating function is:

E
[
exp{αX}

]
= 1 + σα

√
π/2 exp

{σ2α2

2

}[
erf
(σα√

2

)
+ 1
]
.

Three suitable impact functions are:

g(x) =
α+ βx+ γx2

α+ βσ
√
π/2 + 2γσ2

, g(x) =
xα

σα2α/2Γ(1 + α/2)
,

g(x) =
exp{αx}

1 + σα
√
π/2 exp{σ2α2/2}

[
erf
(
σα
/√

2
)

+ 1
] .

Weibull Distribution. The Weibull distribution is defined on the half line
(0,∞) and has two parameters κ > 0 and σ > 0. The density and cumulative
distribution function are:

fκ,σ(x) =
κ

σ

(x
σ

)κ−1

exp
{
−
(x
σ

)κ}
, Fκ,σ(x) = 1− e−(x/σ)κ .

The first two and higher order moments are:

E[X] = σΓ
(

1 +
1
κ

)
, E[X2] = σ2Γ

(
1 +

2
κ

)
, E[Xα] = σαΓ

(
1 +

α

κ

)
.

Two suitable impact functions are:

g(x) =
α+ βx+ γx2

α+ βσΓ
(
1 + 1

κ

)
+ γσ2Γ

(
1 + 2

κ

) , g(x) =
xα

σαΓ
(
1 + α

κ

) .
Two-sided Mark Distributions. Two-sided distributions are defined on
the real line R instead on the half-line (0,∞). This time, I consider only the
polynomial and exponential impact function, since for the distributions given
below a power impact function would lead to intractable formulas. Moreover,
the polynomial and exponential impact function are slightly altered to account
for negative mark values:

1.25 Definition (Two-sided impact functions). Let α, β, γ ≥ 0.

(1) Non-normalized. Consider the following three functions:

g̃(x) = α+ β|x|+ γx2, g̃(x) = exp{α|x|}.

Since these functions do not necessarily satisfy the normalizing condi-
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tion given in Convention 1.12, one could call them again non-normalized
impact functions.

(2) Normalized. Now assume X has distribution f and define the normalized
impact functions by:

g(x) =
α+ β|x|+ γx2

α+ β E[|X|] + γ E[X2]
, g(x) =

exp{α|x|}
E
[
exp{α|X|}

] . ♦

The same remarks apply as in the one-sided case: Note that the impact func-
tions do not only depend on the explicit parameters α, β, γ, but also implicitly
on the parameters of the associated distribution. Also recall that one can al-
ways take the void impact function g(x) = 1, which simply ignores the marks.

Centered Normal Distribution. The normal distribution is defined on the
whole real line R and has one parameter σ > 0. The density and cumulative
distribution function are:

fσ(x) =
1

σ
√

2π
exp
{
− x2

2σ2

}
, Fσ(x) =

1
2

(
1 + erf

{ x

σ
√

2

})
,

where erf is the error function. The first two moments of |X| are:

E[|X|] = σ
√

2π−1 and E[X2] = σ2.

The moment generating function of |X| is:

E
[
exp{α|X|}

]
= exp

{
1
2α

2σ2
}(

1 + erf
{ασ√

2

})
.

Two suitable impact functions are:

g(x) =
α+ β|x|+ γx2

α+ βσ
√

2π−1 + γσ2
, g(x) =

exp
{
−α2σ2/2 + α|x|

}
1 + erf

(
ασ
/√

2
) .
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Student t Distribution. The Student t distribution is defined on the real
line R has one parameter ν > 0. The density and cumulative distribution are:

fν(x) =
Γ
(

1
2 (ν + 1)

)
Γ
(

1
2ν
)√
νπ

(
1 + x2/ν

)−(ν+1)/2
,

Fν(x) =
1
2

+ xΓ
(ν + 1

2

)
2F1

(
1
2 ,

ν+1
2 , 3

2 ,−
x2

ν

)
√
πνΓ

(
ν
2

) ,

where 2F1 is Gauss’ hypergeometric function, see Definition 1.24. A finite first
moment requires ν > 1 and a finite second moment requires ν > 2. In this
case, the first two moments of |X| are:

E[|X|] =
√
ν/π

Γ
(

1
2 (ν − 1)

)
Γ
(

1
2ν
) and E[X2] =

ν

ν − 2
.

Under the restriction that ν > 2, a suitable impact function is:

g(x) =
√
πνΓ

(
1
2ν
)

+
√
ν(ν − 2)Γ

(
1
2 (ν − 1)

)
√
π(ν − 2)Γ

(
1
2ν
) (

α+ β|x|+ γx2
)
.

1.4 Numerical Algorithms

This section discusses numerical algorithms for the maximum likelihood param-
eter estimation and the simulation of Hawkes processes. Since these algorithms
are meant to be used in real world applications, care has been taken to choose
efficient algorithms.

Often it is numerically more efficient to calculate only an approximation for
some expression. The algorithms below calculate only approximations to the
intensity and compensator processes. But the deviation from the exact value
can be chosen to be as small as possible, so that one still obtains accurate
results. Moreover, recall that it is not even theoretically possible to calculate
all processes exactly. E.g. the intensity process is defined as a function of the
infinite past, but one is obviously only able to observe a finite time period. See
also Remark 6.18, which explains the difference between the realized and the
observed point process.

In consequence, there are usually two formulas for some expression: An
exact one and an approximation. To remain mathematically correct, I make a
clear notational distinction between these two:
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1.26 Notation (Theoretical vs. empirical values). Let z be some ob-
served quantity. The following notational distinction is made:

z: observed value, ẑ: estimated or approximated value. ♦

The above notation agrees with the usual notation for an estimated value used
in statistics. Recall that the observation period is D := [T∗, T ∗], and the
observed point process is given by the sequence of events (t1, . . . , tn), see Def-
inition 1.1. By assumption, the time points ti are strictly increasing. I will
always represent the observed point process using this notation.

Likelihood Function. The likelihood function for the two cases of Hawkes
processes are given in Proposition 1.18. This subsection explain how the dif-
ferent parts of the likelihood function can be calculated efficiently.

1.27 Algorithm (Hawkes likelihood). Assume one has observed a Hawkes
process on D and the points are represented as in Definition 1.1.

(1) Genuine multivariate. Define the following estimator:

log L̂ =
n∑

m=1

log λ̂dm(tm) +
n∑

m=1

log fdm(xm)−
d∑
j=1

Λ̂j(T ∗).

(2) Pseudo multivariate. Define the following estimator:

log L̂ =
n∑

m=1

log λ̂(tm) +
n∑

m=1

d∑
k=1

log fk(xm)− Λ̂(T ∗). ♦

Intensity Process. Without any changes, the algorithm for the calculation
of the intensity process would have quadratic complexity, i.e. the computational
time would increase at the order of n2, where n is the number of observed events.
To avoid this, the sum in the following algorithm is truncated and only the first
few terms are calculated. The parameter ε is used to adjust the precision of
this approximation.

1.28 Algorithm (Intensity process). The following algorithms can be used
to calculate the intensity processes approximatively:

(1) Genuine multivariate. According to Definition 1.6, one can assume that
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wj(∆t) ≈ 0, for ∆t > qj . This leads to the approximation:

λ̂j(t) = ηj +
d∑
k=1

ϑjk

∫
[t−qj ,t)×R

wj(t− s)gk(x)Nk(ds× dx).

For the calculation of the likelihood function, one needs to know the
following values, see Algorithm 1.27:

λ̂d1(t1), . . . , λ̂dn(tn).

Given the observed Hawkes process, one therefore has to calculate for
1 ≤ i ≤ n and j := di the values:

λ̂j(ti) = ηj +
i−1∑
m=1

1{ti−tm≤qj}ϑj,dmwj(ti − tm)gdm(xm).

One remark concerning the indicator 1{ti−tm≤qj}: An implementation of
this function does not really calculate this indicator function. Instead,
start the summation at m := i − 1 and continue with the summation
backwards as long as (ti − tm) ≤ qj is true. As soon as this condition
becomes false, stop the summation.

(2) Pseudo multivariate. According to Algorithm 1.27, for the calculation of
the likelihood function one needs to know the following values:

λ̂(t1), . . . , λ̂(td).

With the same reasoning as in the genuine case, these values can be
approximated by:

λ̂(ti) = η + ϑ

i−1∑
m=1

1{ti−tm≤q}w(ti − tm)
[ d∏
k=1

gk(xk,m)
]
. ♦

For exponential decay functions, the intensity processes can be calculated more
efficiently using a recursive scheme:

1.29 Algorithm (Exponential decay function). If the decay functions are
exponential, use the following algorithm instead of Algorithm 1.28:

(1) Genuine multivariate. Assume the decay functions are exponential func-
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tions of the form:

wj(t) := αj exp{−αjt}.

Assume the values λj(r) are known, for some r ∈ R. Then one has for
all t > r that:

λj(t) = ηj +
d∑
k=1

ϑjk

∫
(−∞,t)×R

αje
−αj(t−s)gk(x)Nk(ds× dx)

= ηj + e−αj(t−r)
d∑
k=1

ϑjk

∫
(−∞,r)×R

αje
−αj(r−s)gk(x)Nk(ds× dx)

+
d∑
k=1

ϑjk

∫
[r,t)×R

αje
−αj(t−s)gk(x)Nk(ds× dx)

= ηj + e−αj(t−r)
[
λj(r)− ηj

]
+

d∑
k=1

ϑjk

∫
[r,t)×R

αje
−αj(t−s)gk(x)Nk(ds× dx).

Assume now one has observed a Hawkes process on D. The initial values
λj(t1) are not known and need to be estimated. To this end, define for
j ∈ {1, . . . , d} the values:

λ̂j(t1) = ηj .

Then calculate for all 2 ≤ i ≤ n and 1 ≤ j ≤ d the values:

λ̂j(ti) = ηj + e−αj(ti−ti−1)
[
λj(ti−i)− ηj

]
+ ϑj,di−1αje

−αj(ti−ti−1)gdi−1(xi−1).

Note that in order to calculate the likelihood function, one only needs
the values λ̂di(ti), see Algorithm 1.27. This algorithm however has to
calculate all values λ̂j(ti), due to the recursive nature of the procedure.

(2) Pseudo multivariate. Assume the decay function is given by:

w(t) := α exp{−αt}.

Now assume the value λ(r) is known for some r ∈ R. Then one has for
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all t > r that:

λ(t) = η + e−α(t−r)[λ(r)− η
]

+ ϑ

∫
[r,t)×R

αe−α(t−s)
[ d∏
k=1

gk(xk)
]
N(ds× dx).

This leads to the following recursive procedure. The first value of the
intensity process is estimated by:

λ̂(t1) = η.

Then calculate for all 2 ≤ i ≤ n the values:

λ̂(ti) = η+e−α(ti−ti−1)
[
λ̂(ti−i)−η

]
+ϑαe−α(ti−ti−1)

d∏
k=1

gk(xk,i−1). ♦

For the calculation of the likelihood function one additionally needs to know
the compensator values, see Algorithm 1.27. The next algorithm shows how
the values Λj(T ∗), Λ(T ∗) can be calculated efficiently:

1.30 Algorithm (Compensator for likelihood calculation). The follow-
ing algorithms calculate the compensator values at the terminal time T ∗ ap-
proximatively:

(1) Genuine multivariate. The value that needs to be calculated is:

Λj(T ∗) = ηj(T ∗−T∗) +
d∑
k=1

ϑjk

∫
(−∞,T∗)×R

w̄j(T ∗−s)gk(x)Nk(ds×dx).

Now use the approximation w̄j(∆t) ≈ 1, for ∆t > qj . Substituting this
above leads to:

Λ̂j(T ∗) = ηj(T ∗ − T∗) +
d∑
k=1

ϑjk

∫
(−∞,T∗−qj)×R

gk(x)Nk(ds× dx)

+
d∑
k=1

ϑjk

∫
[T∗−qj ,T∗)×R

w̄j(T ∗ − s)gk(x)Nk(ds× dx).

Now assume one has a observed a Hawkes process on D, using the no-
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tation from Definition 1.1. The above expression can now be written
as:

Λ̂j(T ∗) = ηj(T ∗ − T∗) +
n∑

m=1

1{T∗−tm≤qj}ϑj,dmw̄j(T
∗ − tm)gdm(xm)

+
n∑

m=1

1{T∗−tm>qj}ϑj,dmgdm(xm).

As before, an implementation does not actually need to calculate the two
indicator functions. Instead, it starts the summation at m := n and
counts backwards until (T ∗ − tm) > qj becomes true. At that point, it
assumes w̄j(T ∗ − tm) = 1 and continues with the summation.

(2) Pseudo multivariate. With the same reasoning as in the genuine multi-
variate case, one obtains:

Λ̂(T ∗) = η(T ∗ − T∗) + ϑ

n∑
m=1

1(qj ,∞)(T ∗ − tm)w̄(T ∗ − tm)
[ d∏
k=1

gk(xk,m)
]

+ ϑ

n∑
m=1

1(0,qj ](T
∗ − tm)

[ d∏
k=1

gk(xk,m)
]
.

Concerning the indicator functions, the same remark as above applies. ♦

For the calculation of the residual process, one basically needs to calculate
the compensator values, see Definition 1.19. One could now simply take the
above algorithm and calculate the compensator values at the times ti instead
at the terminal time T ∗. But this would be rather inefficient. The following
algorithm is more suitable if one wants to calculate all compensator values at
all time points and not only at the terminal time..

For the following algorithm it is more convenient if one only has one quantile
to deal with instead of d different quantiles, see Definition 1.6. To this end,
define in the genuine multivariate case q := max{q1, . . . , qd}.

1.31 Algorithm (Residual process). Assume one has observed a Hawkes
process on D.

(1) Genuine multivariate. Using the same type of approximation as in the
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first part of Algorithm 1.30, one obtains:

Λj(ti) = ηj(ti − T∗) +
i−1∑
m=1

1{ti−tm≤q}ϑj,dmw̄j(ti − tm)gdm(xm)

+
i−1∑
m=1

1{ti−tm>q}ϑj,dmgdm(xm).

This formula has to be evaluated for all 1 ≤ i ≤ n. As one can see, the
product in the second sum remains the same for all m. To avoid that this
term is calculated repeatedly, define a sequence of intermediate values:

Θ1(t0), . . . ,Θd(t0), . . . ,Θ1(t1), . . . ,Θd(t1), . . . ,Θ1(tn), . . . ,Θd(tn).

This sequence is calculated recursively, where one starts with:

Θ1(t0) = 0, . . . ,Θd(t0) = 0.

Then calculate for all 1 ≤ i ≤ n and all 1 ≤ j ≤ d the values:

Θj(ti) = Θj(ti−1) + ϑj,digdi(xi).

The values Λj(ti) can now be calculated as follows: Fix some ti and take
m0 such that (ti − tm0) ≤ q < (ti − tm0−1). Since the sequence ti=1,...,n

is ordered and strictly increasing, one can always find such an index m0.
Then calculate:

Λj(ti) = ηj(ti − T∗) +
i−1∑

m=m0

ϑj,dmw̄j(ti − tm)gdm(xm) + Θj(tm0−1).

(2) Pseudo multivariate. Using the same approximation as in the genuine
multivariate case, one obtains:

Λ(ti) = η(ti − T∗) + ϑ

i−1∑
m=1

1{ti−tm≤q}w̄(ti − tm)
[ d∏
k=1

gk(xk,m)
]

+ ϑ

i−1∑
m=1

1{ti−tm>q}

[ d∏
k=1

gk(xk,m)
]
.
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Again calculate first a sequence of intermediate values:

Θ(t0), Θ(t1), . . . ,Θ(tn).

This sequence is calculated recursively, where one starts with:

Θ(t0) = 0.

The remaining values are calculated for 1 ≤ i ≤ n according to:

Θ(ti) = Θ(ti−1) + ϑ

d∏
k=1

gk(xk,i).

The values Λj(ti) can now be calculated as follows: Fix some ti and
choose m0 such that (ti − tm0) ≤ q < (ti − tm0−1), as before. Then
calculate:

Λ(ti) = η(ti − T∗) + ϑ

i−1∑
m=m0

w̄(ti − tm)
[ d∏
k=1

gk(xk,m)
]

+ Θ(tm0−1). ♦
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1.5 An Illustrative Case Study

In this section we apply a Hawkes model to financial data and discuss some
of the practical issues. The following exposition is not an exhaustive analysis
but serves more as an illustration of the theory developed. In an actual study,
one has to take more care about how the data are prepared and what kind of
Hawkes process is selected.

The Data. We consider daily closing values from the Dow Jones Industrial
Average from 1985 to 2005. There is an important point we need to discuss
first: This data set is a time series, as most other financial data too, and not
a point process. The “events” occur at a deterministic rate of exactly one per
day, except for weekends and holidays. It would therefore almost certainly lead
to nonsensical results if we fitted a Hawkes model directly to this time series.
Hence, the raw data is not suitable for further analysis.

We are going to look at extreme values only, and one might motivate this as
follows: The market reacts to a variety of external events, which in turn show up
in the Dow Jones Index as smaller or bigger value changes. One can now make
the simplifying assumption that the majority of small price changes is some sort
of noise, whereas only a minority of bigger price changes is caused by relevant
external events. It is then plausible that these bigger price changes contain
most of the relevant information for future price changes. This motivates to
look at extreme values only.

Extracting Extreme Values. For simplicity, we consider values that are
above or below two thresholds. In other words, we remove all values in between
these two thresholds from the data set. If we then subtract the correspond-
ing thresholds from these values, we obtain the exceedances. Note that this
procedure introduces “gaps” into the time series. The time intervals between
the events are no longer of fixed length. The transformation is illustrated in
Figure 1.3. The lower and upper thresholds are chosen such that there are in
each case 10% of the data beyond the threshold. In other words, the lower and
upper thresholds are the empirical 10% and 90% quantiles.

Note that a fixed threshold may be over simplistic. We consider a period
of 20 years and one should not assume that the time series is stationary over
this long time period. Price changes that are considered as extreme in one
year may be considered as quite ordinary in another year. Therefore, it would
probably be better to take a threshold that varies over time. This issue will
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Figure 1.3: Dow Jones Industrial Average from 1985 to 2005

not be pursued further here.

Specification of a Hawkes Model. As explained earlier, it is more conve-
nient for practical applications to take separable transfer functions. Since we
want to demonstrate some practical issues, we are going to choose a Hawkes
model that is convenient in a pedagogical sense and not necessarily the optimal
choice.

Clearly, the Dow Jones Index is a one-dimensional time series. But the
number of components of the data set and the number of components of the
Hawkes process do not need to coincide. Hence, we do not necessarily need to
take a univariate Hawkes model to describe this data. This means that there
are many more Hawkes models that can potentially be used. To emphasize
this point, we choose specifically a two-dimensional Hawkes model. The first
component describes the negative returns and the second component describes
the positive returns. In terms of Definition 1.1, we are therefore speaking about
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a genuine multivariate Hawkes process.

We now specify the Hawkes model used in detail. Every two-dimensional
genuine Hawkes model has the following parameters: The two immigration
intensities η1, η2 and the four branching coefficients ϑ11, ϑ12, ϑ21, ϑ22; see
Definitions 1.4 and 1.8.

Recall the Definition 1.5, where we have introduce decay functions. A two-
dimensional genuine multivariate Hawkes process has two decay functions w1,
w2. For simplicity we use the same decay function w for both components.
We take the exponential function w(t) = α exp{−αt}. See also Remark 1.22
that explains why this decay function should be preferred if one has no other
preferences.

As mark distribution we choose a Pareto distribution. Each component has
its own mark distribution, see Definition 1.11. Hence, let us assume that the
negative and positive exceedances both are Pareto distributed, each component
with its own set of parameters. We take the parameterization from Section 1.3,
which is:

fj(x) =
ρjµ

ρj
j

(x+ µj)ρj+1
.

Finally we need to select a suitable impact function; see Definition 1.7. We
take two linear impact functions g1, g2, one for each of the two components.
From Section 1.3 we obtain that the linear impact function corresponding to a
Pareto distribution is:

gj(x) =
(ρj − 1)(ρj − 2)

φj(ρj − 1)(ρj − 2) + ψjµj(ρj − 2)
(φj + ψjx).

Note that we have removed the quadratic term and renamed the parameters.
In summary, the specified Hawkes model has the following 15 parameters:

η1, η2, ϑ11, ϑ12, ϑ21, ϑ22, α, ρ1, ρ2, µ1, µ2, φ1, φ2, ψ1, ψ2.

Parameter Estimates. We estimate these parameters using the maximum
likelihood method. The likelihood function is given in Proposition 1.18. The
parameters are estimated using a numerical minimization algorithm. For the
chosen data set we obtain the following parameter estimates, rounded to a
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Figure 1.4: Estimated intensity processes

reasonable number of digits:

η1 = 0.021 η2 = 0.029 ϑ11 = 0.61 ϑ12 = 0.16 ϑ21 = 0.60 ϑ22 = 0.061

α = 0.015 ρ1 = 5.6 ρ2 = 7.2 µ1 = 3.6 µ2 = 4.2

φ1 = 0.47 φ2 = 1.1 ψ1 = 0.22 ψ2 = 0.0

We do not give any error bounds for these parameters, as they are not relevant
for the discussion below.

First Inspection of Parameter Estimates. The first question we need to
answer is whether these parameters specify a well-defined Hawkes model or not.
This depends on the following parameters, which specify the global structure
of the Hawkes process: The immigration intensities η1, η2 and the branching
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coefficients ϑ11, ϑ12, ϑ21, ϑ22. Consider first the branching matrix:

Q =
(

0.61 0.16
0.60 0.06

)
.

The branching matrix Q describes the mean number of “children” of an event.
For example, an event in component 2 has in the mean Q12 = 0.16 children in
component 1.

Spectral Radius. An important characteristic of a Hawkes model is the
spectral radius of its branching matrix, see Definition 1.15. For the above pa-
rameters, one obtains Spr(Q) = 0.744. Since Spr(Q) < 1, the Hawkes model is
indeed well-defined. Clearly, one needs to be aware that there is some uncer-
tainty associated with the estimate for Spr(Q). Hence, it might be very well
possible that Spr(Q) ≥ 1 within some error bounds. Note that the degenerate
case where Q = O2 would mean that the Hawkes process is actually a Poisson
process. (O2 is the 2× 2-matrix consisting of zeroes.)

Mean Number of Descendants. The branching matrix gives only the num-
ber of direct descendants. The following matrix gives the number of all descen-
dants in all generations:

(12 −Q)−1 − 12 =
(

2.40 0.57
2.18 0.43

)
.

Note that (12−Q)−1 counts the number of descendants including the originat-
ing event. Hence one has to subtract the identity matrix 12. Consider again a
concrete example: The numbers above tell us that every event in component 2
has in the mean 0.57 descendants in component 1. Descendants include all
directly or indirectly caused events of the root event.

Mean Intensity. Finally we calculate the mean intensity of the two compo-
nents. Recall that η1, η2 describe the intensities of the immigrants. Define the
vector η := (η1, η2)ᵀ. The mean intensity of the Hawkes process is given by:

(12 −Q)−1η =
(

0.0873
0.0871

)
.

The two values are almost identical. This is indeed expected, since there are
the same amount of negative exceedances than there are positive exceedances.
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Hence, the mean intensities should be close to each other.

Estimated Intensity Processes. To obtain a first visual idea of the es-
timated Hawkes process, we consider the estimated intensity processes. The
two intensity processes are plotted in Figure 1.4. Note that the processes are
almost identical. Again this is not a coincidence, since the two components are
strongly influenced by each other.

Goodness-of-Fit Analysis. There are many ways of graphically assessing
the goodness-of-fit of the estimated model. The plots we show here are all based
on the residual process, see Definition 1.19. Since we have a two-dimensional
Hawkes process, there are two residual processes. If the chosen model is ap-
propriate, the residual processes should be two independent compound Poisson
processes. One could call the residual processes also the declustered processes.
One expects that the events are spread out evenly over the time interval, and
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there should be no clusters any more.

There is not a unique, best way how one can check whether a given process
is a Poisson process. But there are some obvious methods one can use. A
Poisson process has several characterizing properties and we may check them
in turn.

Barcode Plot. We look only at the ground processes of the residual pro-
cesses, i.e. the residual processes without their marks. The marks can easily
disturb the plots more than they are helping. Consider the plot in Figure 1.5,
which one could call a barcode plot, for its obvious appearance. The first panel
shows the original data set. A vertical bar is drawn for every event, irrespec-
tive of the corresponding mark. To distinguish between negative and positive
returns, two different shades of gray are used. The second panel shows the
residual process. Again, vertical bars are drawn for each event and different
shades of gray are used for two components.

The residual processes are both defined on their own time scale. Moreover
they are different from the time scale of the original process. Hence, we need
to adapt the different time scales in order to compare the original process with
his two residual processes. To this end, the time scales of the original process
and the two residual processes are all normalized to the unit interval.

It is difficult to assess by eye whether the residual processes are indeed
Poisson processes. It might look like the residual processes still exhibit some
clustering. To get a better idea of how much irregularities one should expect in
a Poisson process, the third panel shows a genuine Poisson process. It has been
generated using the estimated mean intensities for the two residual processes.

The purpose of the barcode plot can therefore be summarized as follows: If
the model chosen is appropriate, one should see a clear difference between the
first and the second panel in terms of clustering. At the same time, the second
panel should not exhibit more clustering than the third panel does.

Durations. The lengths of the time intervals between the events are called
the durations. Since the residual processes should be Poisson processes with
unit intensity, one expects that the durations are exponentially distributed with
parameter one. We check this property next. Consider the two Q-Q-plots in
Figure 1.6, one for each component of the residual process. The theoretical
quantiles are plotted on the horizontal axis and the empirical quantiles on the
vertical axis. The left Q-Q-plot refers to the residual process associated with
the negative returns and the right hand side refers to the positive returns.
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Figure 1.6: Q-Q-plot for durations

Residual Process. Recall the following characterizing property of a Poisson
process: Conditioned on the number of events, the location of the events is
uniformly distributed in the observation interval. We can check this property
again with a Q-Q-plot. To this end, we scale the time domain of the residual
processes to the unit interval. Assume therefore without loss of generality that
the events of both residual processes are given by a sequence ti=1,...,n, where
t0 = 0 and tn = 1.

Note that the quantile function of the standard uniform distribution is the
identity function. The Q-Q-plot is therefore the plot consisting of the points
( in , ti), for i = 1, . . . , n, where ti is the i-th event. If one interchanges the
horizontal and vertical axis, one obtains a plot consisting of the points (ti, in ).
But this is simply the rescaled counting function C. Recall that the counting
function in this case is defined as C(t) :=

∑n
i=1 1{ti≤t}, for t ∈ [0, 1]. The plot

of the function t 7→ 1
nN(t) is shown in Figure 1.7, again for the negative and

positive returns separately.
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Residual Process

Figure 1.7: Counting function of residual process

Kolmogorov-Smirnov-Test. The counting function C is the also the base
of a statistical test. Indeed, the Kolmogorov-Smirnov-Test is based on the
value of the maximal deviation from the diagonal dn := supt∈[0,1]|C(t) − t|.
This connection to the Kolmogorov-Smirnov statistic allows us to add error
bounds to the plot. The two pairs of dashed lines correspond to the 95% and
99% error bounds.

We can also perform a formal Kolmogorov-Smirnov-Test using the test
statistic dn from above. For the first component of the residual process, which
refers to the negative returns, we obtain dn = 0.0496 with associated p-value
8.9%. For the second component we obtain dn = 0.0392 with associated p-
value 28.5%. Hence, neither component rejects the null hypothesis on a 5%
confidence level.
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Chapter 2

Counting Measures

This chapter is not directly related to Hawkes processes. Instead, it introduces a
few elementary concepts, most notably reduced measures, point configurations
and an extended notion of Kronecker’s delta function. The presented definitions
and related results are a preparation for the next chapter which deals with
higher order moment measures of point processes.

2.1 Motivation and Objectives

The book [DVJ03] has served as a general source for this chapter. The following
lines give an overview over the approach chosen and explain in what sense the
presentation differs and extends the material from the mentioned reference.

Reduced Measures. The first part deals with reduced measures, see Defini-
tion 2.13. Reduced measures appear naturally if one looks at moment measures
of stationary point processes. The main idea behind reduced measures is to
isolate the one-dimensional symmetry of a translation-invariant measure, see
Definition 2.9. Basically, a translation-invariant measure can be represented as
the product measure of the reduced measure and the Lebesgue measure. The
precise statement is formulated in Theorem 2.14.

The reason why reduced measures are useful, and even needed, is explained
in Section 8.1 of [DVJ03]. The authors look at translation-invariant measures
from the more general perspective of measures on topological groups. In this
setting, translation-invariant measures satisfy an invariance property under a
group of transformation. One can then use some of the powerful results from
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the theory of measures on topological groups. More about this theory can be
found in Appendix A2.7 of the above reference. The main result is a factoriza-
tion theorem, see Lemma A2.7.II and Lemma A2.7.III. For further background
one can consult also [Bou63] or [Kri74], Section 2.6.2 about disintegration of
invariant measures under a group of transformations.

I decided not to embed translation-invariant measures in the more general
theory of measures on topological groups. Instead, I give a direct, self-contained
proof of the factorization result, see Theorem 2.14, using only elementary math-
ematics. In this way, the abstract theory of measures on topological groups can
be avoided, and a explicit definition can be given, see Definition 2.13.

Factorial Product Measures. The next part of this chapter deals with
so-called factorial products of point configurations. Although the idea behind
factorial products is quite simple, a formal definition is not that accessible. In
[DVJ03], factorial products are first defined on a specific family of rectangular
sets, where factorial products of the number of points are taken. And in a
second step, these partially defined measures are then extended to factorial
product measures. For details consult Section 5.4 and Proposition 5.4.I in
[DVJ03].

Results concerning factorial product measures are essentially combinatorial
statements. Moreover, there is an inherent relation between factorial products
and partitions of sets of the form {1, . . . , n}. That partitions of this form can be
quite helpful if one deals with moment measures has already been observed by
[Kri74], see especially Section 2.6.4 therein. This means that factorial product
measures exhibit a certain underlying complexity that can not be avoided and
one has to deal with sometimes complicated expressions.

I present an alternative definition for factorial product measures: The idea is
to define an extended notion of Kronecker’s delta-function, see Definition 2.28.
Moreover, to exhibit the relation to partitions more explicitly, I introduce a
second extension of Kronecker’s delta-function, see Definition 2.29. Using this
notation, results concerning factorial product measures can then be formulated
in compact form.

I think this approach offers an interesting alternative. To my knowledge,
delta-functions of the kind introduced here have not been used systematically
in the context of point processes. The notation chosen has the advantage
that combinatorial statements can now be formulated in standard algebraic
notation, see e.g. the decomposition given in Theorem 2.32.
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Decomposition of Product Measures. The last part of this chapter ap-
plies the results concerning the delta-functions in the context of point configu-
rations in order to derive a series of decomposition formulas, see Corollary 2.41,
Theorem 2.42 and Corollary 2.43. These decompositions become important as
soon as one is dealing with moment measures of point processes, the reason be-
ing that factorial moment measures are often easier to deal with than ordinary
product measures. Point processes and moment measures are the topic of the
next chapter.

2.2 Event Spaces

We call the space in which the points of a point process lie the event space.
Often the event space is simply R and is interpreted as the time line. If one has
a marked point process, that is each of the events has a mark attached to it,
then these marks lie in a different space, the so-called mark space. This section
defines these two spaces and points out in which way they differ.

We will use below several times disjoint unions. For completeness, recall
the following standard definition. Note that the actual representation of the
disjoint union is not relevant. Important is only that a disjoint union strictly
distinguishes between elements from different sets. Clearly, one could think of
other, conceptually equivalent definitions:

2.1 Definition (Disjoint union). Let X1, . . . ,Xd be a family of arbitrary
sets. The disjoint union of this family is defined as:

X1 t . . . tXd :=
{

(j, x) ∈ {1, . . . , d} ×
d⋃
k=1

Xk : x ∈Xj

}
. ♦

The next three definitions introduce event, mark and state spaces. The defi-
nitions are almost identical. But since these spaces are not used in the same
way, it is justified to given them separate names.

The event space is the space where the points live, most often this is the
time axis. The mark space contains additional values which are attached to
these points. If one combines the event space and the mark space, one obtains
the state space. An event is completely described once its location in the state
space is known.

There are several reasons why we introduce a specific notation for event
spaces. One reason is that we want that the notation for event and mark
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spaces is compatible. Another explanation is given in Remark 2.10.

2.2 Definition (Event space). Let “t” denote the disjoint union.

(1) Let e ≥ 1 be an integer and define the one-dimensional univariate event
space by E := Re.

(2) Let e = (e1, . . . , ed) be an index vector, where ej ≥ 1 for j ∈ {1, . . . , d}
and define the component spaces Ej := Rej . The multivariate event space
E is then defined by:

E := E1 t . . . t Ed.

We sometimes call E also the combined event space, if we refer specifically
to this disjoint union. ♦

It is important to note that the multivariate event space E is the disjoint union
and not the Cartesian product of the component spaces Ej . It is not uncommon
that some of the component spaces Xj coincide, and hence the disjoint union
is indeed needed.

2.3 Definition (Mark space). See the remark following this definition for
more about regularity conditions.

(i) Univariate mark space. Let X be an arbitrary, measurable space. It is
called a mark space if it is used in connection with marked point config-
urations.

(ii) Multivariate event space. Let Xj , for 1 ≤ j ≤ d, be univariate mark
spaces. Define the disjoint union

X := X1 t . . . t Xd.

Sometimes, when we specifically refer to this disjoint union, we call X
also the combined mark space. ♦

Note that one cannot define point processes on arbitrary spaces. This means
that the underlying event space needs to satisfy some mild technical conditions.
Since we use only Euclidean spaces as event spaces, no further conditions are
required.

2.4 Remark (Regularity conditions). The following comments explain
the minimal assumptions one has to impose on the event and mark spaces:
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(i) Regularity conditions for event spaces. There are several of minimal as-
sumptions for event spaces: If one only wants to define a Poisson pro-
cess on some space, the event space E has to be at least a measurable
space. See the Poisson process existence theorem by Kingman and Mecke,
Proposition 10.4 in [Kal97].

If one wants to define more general processes on E, more regular
spaces are required. For example a Cox process cannot be defined on
an arbitrary space measurable space, see the existence theorem for Cox
processes, Proposition 10.5 in [Kal97].

There are two standard regularity assumptions one can find in the
literature: A common assumption is that X is a complete, separable
metric space. This is the assumption made throughout the book [DVJ03].
Another common assumption is that X is a locally compact, second-
countable Hausdorff space. This assumption is made in the book [Kal97].

Note that we define all point processes on the event space E, which is
by definition of the form Re. Hence, the event spaces used in this thesis
satisfy certainly the minimal requirements.

(ii) Regularity conditions for mark spaces. What regularity conditions the
mark spaces have to satisfy depends on their exact use. In our case, we
do not define any sort of point processes on the mark spaces. Hence,
we do not need to impose any regularity conditions on the mark spaces,
except that they are measurable spaces.

The above considerations show that the mark spaces can be very
general spaces. Hence, obvious choices as e.g. X := Rn or X := Nn are
certainly valid. ♦

Before we define point configurations, we want once more to clarify the differ-
ence between event and mark spaces. These two spaces are very closely related
and it might seem easier to combine these two spaces and to define only one
space, the so-called state space. Every point would then takes a value from this
state space. But as we see later, especially when one deals with simple point
configurations, it is important to clearly distinguish between the event mark
and the mark space.

For completeness, we mention the notion of a state space anyhow, although
we will not deal with state spaces, and always distinguish between event and
mark spaces.

2.5 Remark (State space). Let E, X and Ej , Xj be event and mark spaces
as in Definitions 2.2 and 2.3.
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(1) Univariate state space. Define Y := E×X. Consider a point configuration
of E with marks in X. Then every point of this point configuration can
be identified with a unique element from Y.

(2a) Multivariate state space. The following space has the same interpretation
as in the univariate case:

Y := Y1 t . . . t Yd = (E1 × X1) t . . . t (Ed × Xd).

(2b) Common event space. Consider the special case where all event spaces
coincide, i.e. Ei = Ej , for all i, j. In this case, the above disjoint union
can also be written as:

Y = E×X = E× (X1 t . . . t Xd). ♦

Usually the event space is R and interpreted as time. In the multivariate case,
this means that E := E1 = . . . = Ed = R. Hence, the case where all event
spaces coincide, as in the last part above, is not an exception but the standard
situation.

Some Notation. We will often deal with Cartesian products of the compo-
nent spaces Ej . To this end, we introduce the following notation:

2.6 Notation (Index vector). Let E be d-dimensional event space. Take
a vector j ∈ {1, . . . , d}n, which in this context is called an index vector. Then
define:

E(j) := Ej1 × . . .× Ejn . ♦

Note that the univariate and multivariate event spaces are all based on the real
line R. Hence, we will often use the Lebesgue measure:

2.7 Notation (Lebesgue measure). Let λRm denote the Lebesgue measure
on Rm. ♦

For readability, we will not always mention measurability conditions, but nev-
ertheless assume they are satisfied. Hence, we follow the convention:

2.8 Convention (Measurability of sets). Let E be any of the spaces in-
troduced above, i.e. let E be one of the spaces E, E or X, X; or even a Cartesian
product of one of these spaces. Always assume that:
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(i) Measurability of sets. Whenever we take a subset E ⊆ E , we will implic-
itly assume that E is measurable with respect to the Borel-σ-algebra on
E .

(ii) Measurability of functions. Whenever we take a function f on E , we will
implicitly assume that f is measurable with respect to the Borel-σ-algebra
on E . ♦

Signed Measures. Before we deal with translation-invariant measures, let
us restate some common definitions:

2.9 Definition (Properties of signed measures). Let E be a univariate
event space.

(i) A signed measure µ on En is called locally-finite, if µ+(E) < ∞ and
µ−(E) <∞, for all bounded E ⊆ En.

(ii) A signed measure µ on En is called finite, if both, the positive part
µ+(En) <∞ and the negative part µ−(En) <∞, are finite.

(iii) A locally-finite, signed measure µ on En is called translation-invariant if
for all bounded E ⊆ E of the form E := E1 × . . .× En with Ek ⊆ E and
all z ∈ E:

µ
(
{E1 + z} × . . .× {En + z}

)
= µ(E1 × . . .× En).

(iv) A locally-finite, signed measure µ on En is called symmetric if for all
families {E1, . . . , En} of bounded sets and all permutations π of the set
{1, . . . , n} of the form {σ(1), . . . , σ(n)} one has:

µ(E1 × . . .× En) = µ(Eσ(1) × . . .× Eσ(n)). ♦

Note that in last two parts of the above definition, one has to assume that the
sets Ek are bounded, since the measures are only locally-finite.

Let us give a short explanation why the notation E for an event space
is used, instead of simply writing Rm: The reason is that one can represent
Rm = En = (Re)n in different ways. Two obvious choices are:

e := 1, n := m or e := m, n := 1.

Clearly, in both cases one obtains En = Rm, but as we show in the next remark,
they are not equivalent:
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2.10 Remark (Reasoning behind event spaces). Let us demonstrate that
the notions of translation-invariance and symmetry do not coincide in these two
cases:

(1) Case e := 1, n := m. Clearly, one has E = R and En = Rm. We check
what translation-invariance and symmetry mean in this situation:

(i) Translation-invariance. A measure µ on En is a translation-invariant if
and only if

µ
(
{E1 + z} × . . .× {Em + z}

)
= µ(E1 × . . .× Em),

for all Ek ⊆ E = R and z ∈ E = R. Hence, µ is invariant under shifts
along the “diagonal” of the Euclidean space Rm.

(ii) Symmetry. Now assume µ is a symmetric measure on En. Then for all
permutations {Eσ(1), . . . , Eσ(n)} of a sequence of bounded sets Ek ⊆ E =
R, where 1 ≤ k ≤ n:

µ(E1 × . . .× En) = µ(Eσ(1) × . . .× Eσ(n)).

(2) Case e := m, n := 1. Clearly, one has E = En = Rm. Again we check
what translation-invariance and symmetry mean in this situation:

(i) Translation-invariance. A measure µ on En is a translation-invariant if
and only if

µ(E + z) = µ(E), for all E ⊆ Rm and z ∈ E = Rm.

In other words, µ is invariant under all shifts of the Euclidean space Rm.
Since only multiples of the Lebesgue measure have this property, µ is
therefore a multiple of the Lebesgue measure.

(ii) Symmetry. By definition, µ is symmetric on E if and only if

µ(E) = µ(Eσ(1)), for all E ⊆ Rm,

for all permutations π ≡ {σ(1)} of the set {1}. As there is only one such
permutation, this condition is trivially satisfied for any measure µ. ♦

In summary, depending on the exact definition of En, one obtains different
notions of translation-invariance and symmetry.
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2.11 Remark (Convention). In the remainder of this chapter, we implicitly
assume the following:

(i) Whenever we take a measure µ, we assume it is either non-signed and
locally-finite or alternatively it is signed and finite.

(ii) Whenever we take a function f , we implicitly assume f is bounded if
we integrate f with respect to a finite, signed measure, and we assume
f non-negative if we integrate f with respect to a locally-finite, signed
measure. ♦

Note that the second assumption is not really a restriction. It only guarantees
that integrals of the form

∫
E f(x)µ(dx) are always well-defined. In the case

where f is non-negative and µ is a non-signed measure, the integral can in fact
be +∞, but we consider this case also as acceptable and well-defined.

2.3 Translation Invariance

In this section, we analyze some properties of translation-invariant measures.
The main result is the representation in Theorem 2.14, where the relation
between translation-invariant measures and the so-called reduced measures is
established.

2.12 Definition (Linear transformations). Let E be an event space and
take some 1 ≤ k ≤ n.

(1) Projections and embeddings. Define the linear mappings:

I〈k〉 : En−1 7→ En I〈k〉(y) := (y1, y2, . . . , yk−1, 0, yk, . . . , yn−1),

(·)〈k〉 : En 7→ En−1 x〈k〉 := (x1, . . . , xk−1, xk+1, . . . , xn).

(2) Shear of the Euclidean space. Define the linear mappings En 7→ En:

σ〈k〉(y, z) := I〈k〉(y) + z1n, for y ∈ En−1 and z ∈ E,

τ 〈k〉(x) :=
(
x〈k〉 − xk1n−1, xk

)
, for x ∈ En,

where 1n is a vector consisting of ones, of length n. ♦

The above functions have the following interpretation: I〈k〉 takes a vector y ∈
En−1 and inserts a 0 at position k, whereas (·)〈k〉 takes a vector x ∈ En and
removes the k-th component. Moreover, σ〈k〉 shifts the space En along its
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hyper-diagonal by the amount z. In the same way, τ 〈k〉 shifts the space En in
the opposite direction. As a consequence, τ 〈k〉 is the inverse of σ〈k〉.

The following definition is motivated by Proposition 8.1.I in [DVJ03]. Let
D ⊆ E be a fixed set with λE(D) = 1. The actual choice of D is not relevant;
indeed the unit cube in E would do.

2.13 Definition (Reduced measure). Let µ be a translation-invariant mea-
sure on En and 1 ≤ k ≤ d. The k-th reduced measure µ̆〈k〉 is a locally-finite
measure on En−1 and is defined by:

µ̆〈k〉(B) :=
∫

En

[
1B×D ◦ τ 〈k〉

]
(x)µ(dx)

:=
∫

En
1B×D

(
x〈k〉 − xk1n−1, xk

)
µ(dx),

(2.1)

for bounded sets B ⊆ En−1. ♦

The above definition may seem rather abstract. It is however difficult to give
an intuitive definition for the reduced measure µ̆ without loosing mathematical
correctness. Loosely speaking, a translation-invariant measure µ on En satisfies
a one-dimensional symmetry. Therefore it should be possible to capture the
full information content of µ on the lower-dimensional space En−1; and this is
what the measure µ̆ does.

The following theorem is the main reason why one considers reduced mea-
sures, in the first place. It explains how one can isolate the one-dimensional
symmetry of a translation-invariant measure. Note that it is a special case of
Lemma A2.7.III in [DVJ03], however we will give a self-contained proof.

2.14 Theorem (Reduction formulas). Let E be an event space and µ a
translation-invariant measure on En. For two functions f , g on En, one has:∫

En
f(x)µ(dx) =

∫
E

∫
En−1

[f ◦ σ〈k〉](y, z)µ̆〈k〉(dy)dz, (2.2)∫
En

[g ◦ τ 〈k〉](x)µ(dx) =
∫

E

∫
En−1

g(y, z)µ̆〈k〉(dy)dz. (2.3)
♦

Recall that the definition of the reduced measure µ̆〈k〉, see Equation (2.1),
depends a-priori on the set D. But with the above theorem one can easily show
that the definition is a-posteriori independent of D:
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2.15 Corollary (Consistency of definition). Take a translation-invariant
measure µ on En and fix some 1 ≤ k ≤ d. Let D1,D2 ⊆ E be two sets with
λE(D1) = λE(D2) = 1. Now denote with µ̆1

〈k〉 the reduction with respect to
D1 and with µ̆2

〈k〉 the reduction with respect to D2. Then

µ̆
〈k〉
1 = µ̆

〈k〉
2 .

Hence, the definition of the reduced measure is independent of the choice of
the set D. ♦

Note that we anticipated this result in Definition 2.13 and used from the be-
ginning on the notation µ̆〈k〉, where no distinction on the set D is made. The
above corollary justifies this notation.

2.16 Proposition (Properties of reduced measures). Let E be a univari-
ate event space.

(1) Linearity. Let µ1, µ2 be translation-invariant measures on En and take
α1, α2 ∈ R. Then, for all 1 ≤ k ≤ n:[

α1µ̆1 + α2µ̆2

]〈k〉 = α1µ̆
〈k〉
1 + α2µ̆

〈k〉
2 .

(2) Anti-symmetry in two dimensions. Let µ be a translation-invariant mea-
sure on E2. Then

µ̆〈1〉(dy) = µ̆〈2〉(−dy).

(3) Density of reduced measure. Let µ be a translation-invariant measure on
En. Assume it has the density m with respect to the Lebesgue measure
λEn . Then, for all 1 ≤ k ≤ n, the reduced measure µ̆〈k〉 has the density

m̆〈k〉(y) :=
∫

D
[m ◦ σ〈k〉](y, z)dz.

Moreover, for (y, z) ∈ En−1 × E, one has:

m̆〈k〉(y) = [m ◦ σ〈k〉](y, z), almost everywhere,

with respect to the Lebesgue measure. ♦

Since the last equation above does not necessarily hold for all z ∈ E, it cannot
be used as a definition for m̆〈k〉. Indeed, this is the reason why the definition
of m̆〈k〉 contains an integral over the unit interval D.

67



2.4 Symmetric Measures

As we have seen in the previous section, for a general translation-invariant
measure µ on En there exist n different reduced measures. But if the measure
µ is additionally symmetric, all reduced measures coincide and one has to deal
only with a single reduced measure, which is then called the reduced measure.
This is the content of the next proposition:

2.17 Proposition (Reduction of symmetric measures). Let µ be a sym-
metric, translation-invariant measure on En. Then the reduced measures coin-
cide, that is µ̆〈k〉 = µ̆〈l〉, for all 1 ≤ k, l ≤ n. Hence, there is only one reduced
measure, which is denoted by µ̆ ≡ µ̆〈k〉. ♦

In the case of a symmetric measure µ, some of the previous statements can be
formulated in a more compact form. To this end, identify an element x ∈ En
with the pair (x̌, xn) from the space En−1 × E:

2.18 Remark (Alternative definitions). Let µ be a symmetric, transla-
tion invariant measure on En. An equivalent definition for µ̆ is:

µ̆(B) =
∫

D
µ(B + xn × dxn) =

∫
En
1B×D(x̌− xn, xn)µ(dx̌× dxn),

for bounded sets B ⊆ En−1. If additionally µ has the density m, then µ̆ has
the density

m̆(y) =
∫

D
m(y + z, z)dz, for y ∈ En−1. ♦

The reduction formulas can also be restated in a more compact form:

2.19 Corollary (Reduction formulas in the symmetric case). Let µ be
a symmetric, translation invariant measure on En. For two functions f , g on
En one has: ∫

En
f(x)µ(dx) =

∫
E

∫
En−1

f(y + z, z)µ̆(dy)dz, (2.4)∫
En
g(x̌− xn, xn)µ(dx̌× dxn) =

∫
E

∫
En−1

g(y, z)µ̆(dy)dz. (2.5)
♦

One can write the transformation formulas also in a more intuitive way, as we
show next. The disadvantage is that the following notation is less suitable for
formal calculations:
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2.20 Remark (Interpretation & intuitive notation). Let µ be a sym-
metric, translation-invariant measure on En.

(1) Transformation formulas in terms of sets. For two sets E ⊆ En−1, F ⊆ E,
one has:

µ(E × F ) =
∫
E×F

µ(dx× dy) =
∫
E×F

µ̆(dx− y)dy,

µ̆(E)λE(F ) =
∫
E×F

µ̆(dx)dy =
∫
E×F

µ(dx− y × dy).

(2) Transformation formulas in terms of differentials. In terms of differen-
tials, the above two equations can be written as:

µ(dx× dy) = µ̆(dx− y)dy, µ̆(dx)dy = µ(dx− y × dy). ♦

Next, we consider some special cases of translation-invariant measures and
determine their reduced counterparts:

2.21 Proposition (Reduction of Lebesgue measures). Let E be a uni-
variate event space.

(1) Lebesgue measure on the Euclidean space. Consider the Lebesgue measure
on En:

µ1(dx) := λEn(dx).

The reduced measure is again the Lebesgue measure, i.e.:

µ̆1(dy) = λEn−1(dy). (2.6)

(2) Lebesgue measure on the diagonal. Let δnz , for z ∈ En, denote the Dirac-
measure on En, i.e. the measure with unit mass at the point z. Consider
the measure

µ2(dx) :=
∫

E
δ(z,...,z)(dx)dz,

on En. The reduced measure is:

µ̆2(dy) = δn−1
0 (dy). (2.7)

♦
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When we analyze moment measures of Hawkes processes, integrals of a similar
form as in the definition of reduced measures will appear. But this time, the
underlying measure ν is not translation-invariant. It is nevertheless convenient
to introduce a symbol for this type of reduction, in analogy to the reduced
measure:

2.22 Definition (Pseudo-reduction of symmetric measures). Let ν be
a finite (not necessarily translation-invariant), symmetric measure on En. De-
fine the pseudo-reduced measure ν̊ by:

ν̊(B) :=
∫

E
ν(B + xn × dxn) =

∫
En
1B(x̌− xn)ν(dx̌× dxn),

for bounded sets B ⊆ En−1. ♦

Note that in contrast to the reduced measure µ̆, the integration domain is E
and not the unit cube D. Also note that ν has additionally to be symmetric,
whereas for the regular reduced measure, µ does not need to be symmetric.

When we deal with moment measures of Hawkes processes, translation-
invariant measures with a special form will show up. In the next proposition,
we take a closer look at some of these special cases:

2.23 Proposition (Reduction of derived measures). Let E be a univari-
ate event space.

(1) Multivariate underlying measure. Let ν1 be a finite, symmetric measure
on En. Define the translation-invariant measure µ1 on En by:

µ1(dx) :=
∫

E
ν1(dx− w)dw.

The associated reduced measure is

µ̆1(dy) = ν̊1(dy). (2.8)

(2) Product of univariate underlying measures. Let ν2 be a finite, symmetric
measure on E. Define the translation-invariant measure µ2 on En by:

µ2(dx) :=
n∏
k=1

[∫
E
ν2(dxk − wk)dwk

]
.
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The associated reduced measure is

µ̆2(dy) =
[
ν2(E)

]n
dy. (2.9)

♦

2.5 Partitions and Delta-Functions

In the next definition, we introduce ordered partitions and three different ways
to represent them: As a family P of sets; as a function ϕ; and as a vector p.

2.24 Definition (Ordered partitions). The following three representations
of a partition of the set {1, . . . , n} will be used interchangeably. The ordering
of the sets is part of the definition, hence they are called ordered partitions.

(i) Family of sets. If P is a partition of {1, . . . , n}, then there exists an
m ≥ 1, such that one has the representation:

P = {S1, . . . , Sm}, where each Sr ⊆ {1, . . . , n}.

(ii) Index function. Let P be a partition as in the first part. Define for
i = 1, . . . , n the function ϕ by:

ϕ(i) := r, where r is such that i ∈ Sr.

In other words, ϕ assigns element i to the set Sϕ(i). Hence, P can
equivalently be represented as a function of the form:

ϕ : {1, . . . , n} → {1, . . . ,m}.

If ϕ is given, then the notation Pϕ is used to denote this partition.

(iii) Index vector. Let P be a partition and ϕ its representation as an index
function. Define the associated index vector

p :=
(
ϕ(1), . . . , ϕ(n)

)
∈ {0, . . . ,m}n.

In other words, pi = r if and only if i ∈ Sr, for all i = 1, . . . , n. If the
vector p is given, the associated partition is denoted by Pp . ♦

In case that either ϕ or p are used to define a partition, we call Pϕ or Pp the
induced partition. We add some more useful notation related to partitions:
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2.25 Notation (Partitions). The following notation refers always to or-
dered partitions:

(1) Size of a partition. The number of sets of a partition is called its size.
Hence, for a partition P = {S1, . . . , Sm}, one writes |P| = m.

(2) Family of all partitions. Let Pn denote all ordered partitions of {1, . . . , n}
and let Pn

m denote all ordered partitions of size m of {1, . . . , n}, i.e.:

Pn
m :=

{
P ∈ Pn : |P| = m

}
.

(3) Refinements. For two partitions P,Q ∈ Pn we say Q is a refinement of
P if all sets of P can be written as a union of sets in Q. In this case,
the notation Q �P is used. ♦

The following remark focuses on the index function ϕ but is true also for an
index vector p:

2.26 Remark (Induced Partition). Take an index function ϕ and consider
the induced ordered partition Pϕ. Clearly, for general ϕ, the mapping

ϕ : {1, . . . , n} → {1, . . . ,m}.

does not need to be surjective. As a consequence, the size m̃ := |Pϕ| can be
strictly smaller than m. If it happens that m̃ < m, one can always choose an
equivalent index function ϕ̃, i.e. an index function ϕ̃ with Pϕ̃ = Pϕ, such that

ϕ : {1, . . . , n} → {1, . . . , m̃}.

Hence, one can assume without loss of generality that m̃ = m. ♦

Next we introduce some notation that helps to deal with sub-vectors and other
manipulations of the components of vectors. We will use this notation for all
vector-like objects for which it makes sense to refer to single components.

2.27 Notation (Index notation for vectors). Let Ek, for 1 ≤ k ≤ d, be
a sequence of univariate event spaces. Consider the product space

Ej1 × . . .× Ejn , where jk ∈ {1, . . . , d}, for 1 ≤ k ≤ n.

Take an element y from this product space, i.e.

y = (y1, . . . , yn), where yk ∈ Ejk , for 1 ≤ k ≤ n,
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and introduce the following notation:

(i) Let S ⊆ {1, . . . , n} be given and assume that:

yi = yj , for all i, j ∈ S.

In terms of delta functions, see Definition 2.28, this condition is equivalent
to δ(|S|)(yS) = 1. Now choose an arbitrary (which one is irrelevant) i ∈ S
and define:

yS := yi.

(ii) Let S ⊆ {1, . . . , n}, where S = {i1, . . . , im}, for some m ≥ 1, be given.
Then define the vector:

yS := (yi1 , . . . , yim).

(iii) Let P ∈ Pn
m be given and assume that:

yi = yj , for all i, j ∈ Sr, all 1 ≤ r ≤ m.

In terms of delta-functions, this condition is equivalent to δ(|Sr|)(ySr ) = 1,
all 1 ≤ r ≤ m. Then define the vector:

yP := (yS1 , . . . , ySm).

(iv) Let j ∈ {1, . . . , d}m be given and define the vector:

y(j) := (yj1 , . . . , yjm). ♦

It should be emphasized that yS and yP are only well-defined in a specific
context, i.e. only if y satisfies the corresponding condition. Also note that in
the definition of yS , one always has ij 6= ik, for j 6= k. But in the definition of
y(j) it can happen that jk = jl, for j 6= k. Moreover, yS is a scalar but yS is a
vector.

For the next definition recall Notation 2.27:

2.28 Definition (Delta functions). Let E be a univariate and E be a mul-
tivariate event space.
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(1a) Univariate ordinary delta function. For x ∈ En define:

δ(n)(x) =
∏
k,l

1{xk=xl} =

{
1 if xk = xl for all 1 ≤ k, l ≤ n,
0 otherwise.

(1b) Multivariate ordinary delta function. For j ∈ {1, . . . , d}n and y ∈ E(j)

define:

δ(n)(j,y) :=
∏
k,l

1{jk=jl,yk=yl} = δ(n)(j)δ(n)(y).

(2a) Univariate factorial delta function. For x ∈ En define:

δ[n](x) =
∏
k 6=l

1{xk 6=xl} =

{
1 if xk 6= xl for all 1 ≤ k < l ≤ n,
0 otherwise.

(2b) Multivariate factorial delta function. For j ∈ {1, . . . , d}n and y ∈ E(j)

define:

δ[n](j,y) :=
∏
k 6=l

1{(jk,yk) 6=(jl,yl)} = 1− δ(n)(j,y). ♦

As an extension of the above delta-functions, we consider the case where we
have given an ordered partition and the components are only compared on the
sets of this partition:

2.29 Definition (Delta functions linked to partitions). Let E be a uni-
variate and E be a multivariate event space.

(1) Ordinary partition delta function. For a partition P ∈ Pn
m define:

δ(P)(x) :=
m∏
r=1

δ(|Sr|)(xSr ).

For j ∈ {1, . . . , d}n, a vector y ∈ E(j) and a partition P ∈ Pn
m define:

δ(P)(j,y) =
m∏
r=1

δ(|Sr|)(jSr ,ySr )

=

{
1 if jk = jl, yk = yl, for all k, l ∈ Sr, for all r,

0 otherwise.

74



(2) Factorial partition delta function. For a partition P ∈ Pn
m define:

δ[P](x) := δ[m](xP)δ(P)(x) = δ[m](xS1 , . . . , xSm)
m∏
r=1

δ(|Sr|)(xSr )

For j ∈ {1, . . . , d}n, a vector y ∈ E(j) and a partition P ∈ Pn
m define:

δ[P](j,y) = δ[m](jP ,yP)δ(P)(j,y)

= δ[m]
(

(jS1 , yS1), . . . , (jSm , ySm)
) m∏
r=1

[
δ(|Sr|)(jSr )δ

(|Sr|)(ySr )
]

=


1

{
jk = jl and yk = yl, for k, l ∈ Sr, for all r,

jk 6= jl or yk 6= yl, for k ∈ Sr, l ∈ Ss, for all r 6= s,

0 otherwise.

♦

2.30 Remark (Interpretation). The delta-functions given in the above def-
inition can be interpreted as follows:

(1) Ordinary partition delta function. δ(P)(x) indicates whether all com-
ponent values xk are identical in each of the groups Sr of the partition.
δ(P)(j,y) indicates whether all component indexes jk and the component
values yk are identical in each of the groups of the partition.

(2) Factorial partition delta function. δ[P](x) indicates whether in each
group Sr all component values xk are identical and component values
from two different groups are distinct. δ[P](j,y) indicates whether in
each group Sr the component indexes jk and component values xk are
identical and components from two different groups are distinct. ♦

There is a convenient way to formulate the fact that a partition Q is a refine-
ment of another partition P:

2.31 Remark (Refinements and index vectors). Let P,Q ∈ Pn be two
ordered partitions and assume p ∈ {1, . . . , n}n is the vector representation of
P, i.e. P = Pp. Then:

Q �Pp ⇐⇒ δ(Q)(p) = 1. (2.10)
♦

The following theorem is the main result of this section. It is the reason why
delta-functions have been introduced, in the first place.
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2.32 Theorem (Delta-function decomposition). Take a univariate event
space E and a multivariate event space E.

(1) Univariate decomposition. For all x ∈ En:

1 =
∑

P∈Pn

δ[P](x) =
n∑

m=1

∑
P∈Pn

m

δ[P](x). (2.11)

(2) Multivariate decomposition. For all j ∈ {1, . . . , d}n and y ∈ E(j):

1 =
∑

P∈Pn

δ[P](j,y) =
∑

P�Pj

δ[P](j,y). (2.12)
♦

As soon as one deals with higher order moment measures of point processes,
factorial product measures are often easier to handle than ordinary product
measures. Formulas of the kind given above allow one to decompose ordinary
moment measures into factorial moment measures. This will be explained in
more detail in the next chapter.

2.6 Point Configurations

The next definition is borrowed from Section 6.1 in [DVJ03]. The natural
topology on the point configuration space will be introduced in Chapter 3. As
long as only fixed, i.e. deterministic point configurations are considered, the
topology is not relevant, but it will become important as soon as one considers
stochastic point configurations, i.e. point processes.

The general case of multivariate, marked point configurations is introduced
stepwise. Note that throughout, we exclusively consider simple point configura-
tions and do not bother to introduce notation for general point configurations.
We start with the case of univariate, unmarked point configurations and extend
the definition stepwise:

2.33 Definition (Point configuration). Let E, E be event spaces and X,
X be a mark spaces, see Definitions 2.2 and 2.3.

(1a) Univariate, unmarked point configurations. Let N (E) denote the family
of all locally-finite, simple counting measures on E. A counting measure
ν is simple if and only if:

ν({u}) ∈ {0, 1}, for all u ∈ E.
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(1b) Univariate, marked point configurations. Let N (E × X) be all simple
point configurations on E× X. Then define:

NX(E) :=
{
ν ∈ N (E× X) : ν(du× X) ∈ N (E)

}
.

The notation ν(du × X) refers to the projection of ν onto its first com-
ponent, and is called the ground process. Hence, a point configuration
from NX(E) has a locally-finite, simple ground process. In consequence,
NX(E) is in general a strict subset of N (E× X).

(2) Multivariate point configurations. A multivariate point configuration is a
vector of univariate point configurations. Define the space

NX(E) :=
{(
ν(1), . . . , ν(d)

)
: ν(j) ∈ NXj (Ej), j ∈ {1, . . . , d}

}
. ♦

We will always use the definition above for the space of simple, multivariate
point configurations. But one could also give the following stricter definition
of simple, multivariate point configurations:

2.34 Remark (Common event space). Consider the same situation as in
the multivariate part of Definition 2.33. But this time, assume that not only
the ground processes ν(j)(du×Xj) are simple, but also the joint ground process∑d
j=1 ν

(j)(du× Xj). This leads to the definition:

NX(E) :=
{
ν ∈ NX(E) :

d∑
j=1

ν(j)(du× Xj) ∈ N (E)
}
.

Note that NX(E) is in general a true subset of NX(E). ♦

It might not be obvious why there are two versions of multivariate point con-
figurations. To clarify this, consider the following example:

2.35 Remark (Weak and strong simplicity). Assume all event spaces co-
incide and assume for simplicity that Ej := R, for all j ∈ {1, . . . , d}. One should
interpret R as the time axis. The difference between NX(E) and NX(E) can
now be explained as follows:

(i) Separate event spaces. Take some ν ∈ NX(E) and fix a time t ∈ R. Since
each component ν(j) is a simple point configuration, ν(j) has at most one
point at time t. But it is not excluded that several components have
an event at time t. This shows that although ν consists of simple point
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configurations, if one considers all components simultaneously, ν is not
any more simple.

(ii) Common event spaces. This time take some ν ∈ NX(E) and fix again
a time t ∈ R. As before, each component ν(j) has at most one point at
time t. But this time, at most one component can have a point at time
t. This means that if one considers all components simultaneously, ν is
still simple.

One could call point configurations from these two spaces also simple in a weak
sense and simple in a strong sense. ♦

2.36 Definition (Product measures). In the univariate case let ν ∈ N (E)
and in the multivariate case let ν ∈ N (E).

(1) Univariate product measure. For n ≥ 1 define the ordinary product
measure ν(n) and the factorial product measure ν[n] by:

ν(n)(dx) :=
n∏
k=1

ν(dxk), ν[n](dx) := δ[n](x)ν(n)(dx).

Note that ν(n), ν[n] ∈ N (En).

(2) Multivariate product measure. Let n ≥ 1 and j ∈ {1, . . . , d}n. Define the
ordinary product measure ν(j) and the factorial product measure ν[j] by:

ν(j)(dy) :=
n∏
k=1

ν(jk)(dyk), ν[j](dy) := δ[n](j,y)ν(j)(dy).

Note that ν(j), ν[j] ∈ N (E(j)). ♦

Under certain conditions, a higher order factorial product measure can be writ-
ten as a product of lower order factorial product measures. This is the content
of the next proposition:

2.37 Proposition (Separation of product measures). Let E be a univari-
ate and E ≡ (E1, . . . ,Ed) be a multivariate event space. Take a sequence of
integers n1, . . . , nd ≥ 1 and define n :=

∑d
k=1 nk.

(1) Take a sequence of sets of the form:

A1,1, . . . , A1,n1 . . . Ad,1, . . . , Ad,nd ,
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where Ak,i ⊆ E, all 1 ≤ i ≤ nk, 1 ≤ k ≤ d. Furthermore, assume

Ak,i ∩Bl,j = ∅, for all 1 ≤ i ≤ nk, 1 ≤ j ≤ nl, if k 6= l.

Then, for a point configuration ν ∈ N (E), one has:

ν[n]
( d×
k=1

nk×
i=1

Ak,i

)
=

d∏
k=1

ν[nk]
( nk×
i=1

Ak,i

)
. (2.13)

(2) Define for all 1 ≤ k ≤ d the index vectors

jk := (k, . . . , k), where jk ∈ {1, . . . , d}nk .

Let j := (j1 · · · jd) denote the concatenation of the sequence jk=1,...,d.
Then, for a point configuration ν ∈ N (E(j)), one has:

ν[j](dy) = ν[j1···jd](dy1 × . . .× dyd) =
d∏
k=1

ν[jk](dyk). (2.14)
♦

It is possible to enforce the condition on the index vector j given in the second
part above with a suitable delta-function. This leads to the following equivalent
way to write the second part above:

2.38 Remark (Special case of separation formula). Assume the index
vector j is of the form j = (j1, . . . , jn), for scalars jk ∈ {1, . . . , d}. Then:

δ[n](j)ν[j](dy) = δ[n](j)ν(j)(dy). ♦

2.39 Theorem (Complete decay of product measures). Let E be a uni-
variate and E ≡ (E1, . . . ,Ed) be a multivariate event space. Fix an integer
n ≥ 1.

(1) Univariate case. For a function g on E one has:∫
En
g(xi)δ(n)(x)ν(n)(dx) =

∫
E
g(x)ν(dx), (2.15)

where 1 ≤ i ≤ n is arbitrary.
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(2) Multivariate case. For j ∈ {1, . . . , d}n and a function g on Ej one has:∫
E(j)

g(yi)δ(n)(j,y)ν(j)(dy) = δ(n)(j)
∫

Ej
g(y)ν(j)(dy), (2.16)

where 1 ≤ i ≤ n is arbitrary and j := ji. ♦

Note that δ(n)(j) = 1 if and only if j is of the form j = (j, . . . , j). Indeed, one
could have simply assumed that j = (j, . . . , j) in the second part of the above
theorem. But the way it is formulated, the formula can be used in all other
cases too, and this without case distinction.

Sometimes the formulas in the above theorem appear under a slightly differ-
ent disguise. Since this might not always be obvious, we state these alternative
versions, too:

2.40 Remark. Let E be a univariate and E ≡ (E1, . . . ,Ed) be a multivariate
event space and fix an integer n ≥ 1. For a function f on En one has:∫

En
f(x)δ(n)(x)ν(n)(dx) =

∫
E
f(x, . . . , x)ν(dx).

For j ∈ {1, . . . , d}n and a function g on Enj one has:∫
E(j)

f(x)δ(n)(j,y)ν(j)(dy) = δ(n)(j)
∫

Ej
f(x, . . . , x)ν(j)(dx). ♦

2.41 Corollary (Partial decay of product measures). In the univariate
case, let ν be a point configuration on E, P ∈ Pn

m and p be the vector repre-
sentation of P.

In the multivariate case, let j ∈ {1, . . . , d}n, Pj be the associated partition,
P �Pj be a refinement, p be the vector representation of P and ν be a point
configuration on E.

(1) First version, univariate case. For a function g on Em one has:∫
En
g(yP)δ(P)(y)ν(n)(dy) =

∫
Em

g(x)ν(m)(dx),∫
En
g(yP)δ[P](y)ν(n)(dy) =

∫
Em

g(x)ν[m](dx).
(2.17)
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(2) First version, multivariate case. For a function g on E(jP) one has:∫
E(j)

g(yP)δ(P)(j,y)ν(j)(dy) =
∫
E(jP)

g(x)ν(jP)(dx),∫
E(j)

g(yP)δ[P](j,y)ν(j)(dy) =
∫
E(jP)

g(x)ν[jP ](dx).
(2.18)

(3) Second version, univariate case. For a function f on En one has:∫
En
f(y)δ(P)(y)ν(n)(dy) =

∫
Em

f(x(p))ν(m)(dx),∫
En
f(y)δ[P](y)ν(n)(dy) =

∫
Em

f(x(p))ν[m](dx).
(2.19)

(4) Second version, multivariate case. For a function f on E(j) one has:∫
E(j)

f(y)δ(P)(j,y)ν(j)(dy) =
∫
E(jP)

f(x(p))ν(jP)(dx),∫
E(j)

f(y)δ[P](j,y)ν(j)(dy) =
∫
E(jP)

f(x(p))ν[jP ](dx).
(2.20)
♦

The above formulas are used to prove the next theorem. This theorem is
motivated by Section 5.4 in [DVJ03], especially by the subsection Exercises
and Complements, but as formulated below, it is more general:

2.42 Theorem (Factorial decomposition). In the univariate case let ν ∈
N (E) and in the multivariate case let ν ∈ N (E). Fix an integer n ≥ 1.

(1) Factorial decomposition. In the univariate case, let f be a function on
En. In the multivariate case, let j ∈ {1, . . . , d}n and f be a function on
E(j). Then:∫

En
f(x)ν(n)(dx) =

n∑
m=1

∑
P∈Pn

m

∫
Em

f(x(p))ν[m](dx),

∫
E(j)

f(y)ν(j)(dy) =
∑

P�Pj

∫
E(jP)

f(y(p))ν[jP ](dy).
(2.21)

(2) Symmetric, factorial decomposition. In the univariate case, let fk be a
sequence of functions on E, for 1 ≤ k ≤ n. In the multivariate case, let
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j ∈ {1, . . . , d}n and fk be a sequence of functions on Ejk . Then:

∫
En

[ n∏
k=1

fk(xk)
]
ν(n)(dx) =

n∑
m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

[∏
i∈Sr

fi(xr)
]
ν[m](dx),

∫
E(j)

[ n∏
k=1

fk(yk)
]
ν(j)(dy) =

∑
P�Pj

∫
E(jP)

|P|∏
r=1

[∏
i∈Sr

fi(yr)
]
ν[jP ](dy).

(2.22)
♦

In the next corollary, we consider two special cases of the above decomposition
formulas: First we evaluate the n-fold product measure on a set of the form
A1 × . . .×An; and then we take a closer look at the special case n = 2.

2.43 Corollary (Common special cases). Let E be a univariate and E ≡
(E1, . . . ,Ed) be a multivariate event space.

(1) Factorial decomposition for sets. Fix an integer n ≥ 1. In the univariate
case, let Ak ⊆ E , for 1 ≤ k ≤ n. In the multivariate case, let j ∈
{1, . . . , d}n and Ak ⊆ Ejk , for 1 ≤ k ≤ n. Then:

ν(n)(A1 × . . .×An) =
n∑

m=1

∑
P∈Pn

m

ν[m]
( ⋂
i∈S1

Ai × . . .×
⋂
i∈Sm

Ai

)
,

ν(j)(A1 × . . .×An) =
n∑

m=1

∑
P∈Pn

m,P�Pj

ν[jP ]
( ⋂
i∈S1

Ai × . . .×
⋂
i∈Sm

Ai

)
.

(2) Two dimensional special case. In the univariate case, let f be a function
on E2. In the multivariate case, let 1 ≤ i, j ≤ d and f be a function on
E(ij). Then:∫

E2
f(y)ν(2)(dy) =

∫
E
f(y)ν[2](dy) +

∫
E
f(y, y)ν(dy),∫

E(ij)
f(y)ν(ij)(dy) =

∫
E(ij)

f(y)ν[ij](dy) + δij

∫
E(i)

f(y, y)ν(i)(dy). ♦
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Proofs for Chapter 2

Let us state two obvious properties of the linear transformations σ〈k〉 and τ 〈k〉:

2.44 Lemma (Isometric transformations). For all 1 ≤ k ≤ n one has that:

(1) Invertibility. σ〈k〉 and τ 〈k〉 are inverse functions of each other, i.e.:

τ 〈k〉 ◦ σ〈k〉 = σ〈k〉 ◦ τ 〈k〉 = idEn .

(2) Isometry. For the determinants of the Jacobi matrices of σ〈k〉 and τ 〈k〉

one has:

det
(σ〈k〉(y, z)
∂(y, z)

)
= det

(τ 〈k〉(x)
∂x

)
= 1. ♦

The above lemma shows that σ〈k〉 and τ 〈k〉 are space preserving transformations
of En. This fact will be used for parameter substitutions in integrals over En.

Proof (Lemma 2.44): Fix some 1 ≤ k ≤ n.

(1a) Invertibility of σ. For y ∈ En−1 and z ∈ E one has:[
τ 〈k〉 ◦ σ〈k〉

]
(y, z) = τ 〈k〉

(
I〈k〉(y) + z1n

)
= τ 〈k〉

(
I〈k〉(y)

)
+ τ 〈k〉

(
z1n

)
=
([

I〈k〉(y)
]〈k〉 − [I〈k〉(y)

]
k
1n−1,

[
I〈k〉(y)

]
k

)
+
(

[z1n]〈k〉 − [z1n]k1n−1, [z1n]k
)

= (y, 0) + (z1n−1 − z1n−1, z) = (y, z).

(1b) Invertibility of τ . Let ek denote the k-th unit vector in En. Note that

I〈k〉(x〈k〉) = x− xkek, as well as I〈k〉(xk1n−1) = xk1n − xkek.
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Therefore, τ 〈k〉 is invertible, since:[
σ〈k〉 ◦ τ 〈k〉

]
(x) = σ〈k〉

(
x〈k〉 − xk1n−1, xk

)
= σ〈k〉(x〈k〉, 0)− σ〈k〉(xk1n−1, 0) + σ〈k〉(0, xk)

= I〈k〉(x〈k〉)− I〈k〉(xk1n−1) + xk1n
= (x− xkek)− (xk1n − xkek) + xk1n = x.

(2) Isometry. The statement is only shown for τ 〈n〉. By symmetry, the result
then also holds for all other 1 ≤ k ≤ n. First note that

τ 〈n〉(x) = (x〈n〉 − xn1n−1, xn)

= (x1 − xn, x2 − xn, . . . , xn−1 − xn, xn).

Therefore, the Jacobi matrix of τ 〈n〉 and its determinant are:

∂τ 〈n〉(x)
∂x

=


1 −1

. . .
...

1 −1
1

 , det
(∂τ 〈n〉(x)

∂x

)
= 1.

The statement for σ〈n〉 follows, since σ〈n〉 is the inverse of τ 〈n〉.

Proof (Theorem 2.14): The following fact is used below: Since σ〈k〉 and
τ 〈k〉 are volume preserving bijections, for any two functions f , g on En one has:∫

En
f(x)dx =

∫
En

[
f ◦ σ〈k〉

]
(y, z)dy dz,∫

En
g(y, z)dy dz =

∫
En

[
g ◦ τ 〈k〉

]
(x)dx.

Now fix some 1 ≤ k ≤ n.

(i) First transformation formula. Take A ⊆ En−1, B ⊆ E and let f be of
the form:

f(x) := 1A(x〈k〉)1B(xk).
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Due to
[
I〈k〉(y)

]〈k〉 = y and
[
I〈k〉(y)

]
k

= 0, one obtains:

[
f ◦ σ〈k〉

]
(y, z) = f

(
I〈k〉(y) + z1n

)
= 1A

([
I〈k〉(y) + z1n

]〈k〉)1B
([

I〈k〉(y) + z1n
]
k

)
= 1A(y + z1n−1)1B(z).

Now start with the right hand side of Equation (2.2):∫
E

∫
En−1

[f ◦ σ〈k〉](y, z)µ̆〈k〉(dy)dz

=
∫

E
1B(z)

[∫
En−1

1A(y + z1n−1)µ̆〈k〉(dy)
]
dz

=
∫

E
1B(z)

[
µ̆〈k〉(A− z1n−1)

]
dz.

Note that {A − z1n−1} denotes the set A shifted by (−z1n−1). Substi-
tuting the definition of µ̆〈k〉 yields:

(. . .) =
∫

E
1B(z)

[∫
En

[
1(A−z1n−1)×D ◦ τ 〈k〉

]
(x)µ(dx)

]
dz

=
∫

E
1B(z)

[∫
En
1A×D

(
x〈k〉 − xk1n−1 + z1n−1, xk

)
µ(dx)

]
dz

=
∫

En
1D(xk)

[ ∫
E
1A

(
x〈k〉 − xk1n−1 + z1n−1

)
1B(z)dz

]
µ(dx).

After substituting z � (z + xk) in the inner integral, one gets:

(. . .) =
∫

En
1D(xk)

[∫
E
1A

(
x〈k〉 + z1n−1

)
1B(xk + z)dz

]
µ(dx)

=
∫

E

[∫
En
1A

(
x〈k〉 + z1n−1

)
1B(xk + z)1D(xk)µ(dx)

]
dz.

Since µ is translation-invariant, the measure µ(dx) and its shifted version
µ(dx+1nz) are identical. Hence, one may substitute x � (x−1nz) and
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then obtains:

(. . .) =
∫

E

[∫
En
1A(x〈k〉)1B(xk)1D(xk − z)µ(dx)

]
dz

=
∫

En
1A(x〈k〉)1B(xk)

[∫
E
1D(xk − z)dz

]
µ(dx)

=
∫

En
1A(x〈k〉)1B(xk)µ(dx) =

∫
En
f(x)µ(dx).

In the one but last equality the fact that D is a unit cube has been used.
The statement for general functions f now follows by approximation with
elementary functions and monotone convergence.

(ii) Second transformation formula. The second formula follows immediately
from the first one. To this end, define f(x) :=

[
g ◦ τ 〈k〉

]
(x). Now substi-

tute this function into the first transformation formula and use that[
f ◦ σ〈k〉

]
(x) =

[
g ◦ τ 〈k〉 ◦ σ〈k〉

]
(x) = g(x).

Proof (Corollary 2.15): Let D ⊆ E be a third set with λE(D) = 1. For
arbitrary B ⊆ En−1 define:

g(y, z) := 1B(y)1D(z),

where y ∈ En−1 and z ∈ E. Due to Equation (2.3), one has:

µ̆
〈k〉
1 (B) = µ̆

〈k〉
1 (B)

∫
E
1D(z)dz =

∫
E
1D(z)

[∫
En−1

1B(y)µ̆〈k〉1 (dy)
]
dz

=
∫

E

∫
En−1

g(y, z)µ̆〈k〉1 (dy) =
∫

En
[g ◦ τ 〈k〉](x)µ(dx).

Note that the right hand side is independent of the choice of D1. Hence, the
same result is obtained if the calculation is made for µ̆2

〈k〉 instead of µ̆1
〈k〉.

Therefore, as claimed:

µ̆
〈k〉
1 (B) =

∫
En

[g ◦ τ 〈k〉](x)µ(dx) = µ̆
〈k〉
2 (B).

Proof (Proposition 2.16): Let E be an event space and fix some n ≥ 1.

(1) Linearity. The linearity of the reduction operation follows from the lin-
earity of σ〈k〉 and τ 〈k〉.
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(2) Anti-symmetry in two dimensions. By assumption, µ is invariant under
simultaneous shifts of all components. A transformation of this type is
given by the following mapping from E2 onto itself:

x1 7→ x1 + (x2 − x1) = x2, x2 7→ x2 + (x2 − x1) = 2x2 − x1.

Therefore, for all functions f on E2:∫
E2
f(x1, x2)µ(dx1 × dx2) =

∫
E2
f(x2, 2x2 − x1)µ(dx1 × dx2).

Applying this formula for f(x1, x2) := 1B×D(x2 − x1, x1) gives:

µ̆〈1〉(B) =
∫

D
µ(dx1 ×B + x1) =

∫
E2
1B×D(x2 − x1, x1)µ(dx)

=
∫

E2
1B×D

(
(2x2 − x1)− x2, x2

)
µ(dx)

=
∫

E2
1{−B}×D(x1 − x2, x2)µ(dx)

=
∫

D
µ(−B + x2 × dx2) = µ̆〈2〉(−B),

for all sets B ⊆ E, and this proves the claim.

(3a) Density of reduced measure. Take some A ⊆ En−1. We need to show that
the following expression is equal to µ̆(A):∫

En−1
1A(y)m̆〈k〉(y)dy

=
∫

En−1
1A(y)

[∫
E
1D(z)[m ◦ σ〈k〉](y, z)dz

]
dy

=
∫

En−1×E
1A×D(y, z)[m ◦ σ〈k〉](y, z)dy dz.

Now apply the mass-preserving substitution x � τ 〈k〉(x) ≡ (y, z) and
use that σ〈k〉 ◦ τ 〈k〉 = idEn . Hence:

(. . .) =
∫

En

[
1A×D ◦ τ 〈k〉

]
(x)m(x)dx =

∫
En

[
1A×D ◦ τ 〈k〉

]
(x)µ(dx)
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Next apply Equation (2.3) for g(y, z) := 1A×D(y, z). This leads to

(. . .) =
∫

E

∫
En−1

1A×D(y, z)µ̆〈k〉(dy)dz =
∫

En−1
1A(y)µ̆〈k〉(dy).

And this shows that m̆〈k〉 is indeed the density of the measure µ̆〈k〉.

(3b) Relation to sheared density. Repeat the previous calculation, but take
now a general set B ⊆ E instead of D. This leads to∫

En
1A×B(y, z)[m ◦ σ〈k〉](y, z)dy dz =

∫
En
1A×B(y, z)µ̆〈k〉(dy)dz.

Therefore (m ◦ σ〈k〉) is a density for the measure µ̆〈k〉(dy)dz. But since
m̆〈k〉 is also a density, it must hold that:

[m ◦ σ〈k〉](y, z) = m̆〈k〉(y), for almost all (y, z) ∈ En−1 × E,

with respect to the Lebesgue measure.

Proof (Proposition 2.17): Consider the substitution that switches the po-
sitions of xk and xl of a vector x ∈ En, i.e. the substitution given by(

x1, . . . , xk, . . . , xl, . . . , xn
)

�
(
x1, . . . , xl, . . . , xk, . . . , xn

)
,

for any two 1 ≤ k, l ≤ d. Note that if one switches the positions of xk and xl in
the expression τ 〈k〉(x), this leads to the change τ 〈k〉(x) � τ 〈l〉(x). Now take
some set B ⊆ En−1. Since µ is a symmetric measure on En, it is invariant with
respect to this substitution, and this shows:

µ̆〈k〉(B) =
∫

En

[
1B×D ◦ τ 〈k〉

]
(x)µ(dx)

=
∫

En

[
1B×D ◦ τ 〈l〉

]
(x)µ(dx) = µ̆〈l〉(B).

Proof (Remark 2.18): As all reduced measures are identical, one may choose
without loss of generality the one with index k := n.

(i) The first statement is a reformulation of the definition of the n-th reduced
measure.

(ii) We need to check that m̆ as defined in Remark 2.18 is the density of µ̆.
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Let B ⊆ En−1 and first note that:

µ̆(B) =
∫

D
µ(B + xn × dxn) =

∫
En

[
1B×D ◦ τ 〈n〉

]
(x)µ(dx)

=
∫

En

[
1B×D ◦ τ 〈n〉

]
(x)m(x)dx.

After applying the measure-preserving substitution (y, z) � σ〈n〉(y, z),
one obtains:∫

En

[
1B×D ◦ τ 〈n〉

]
(x)m(x)dx

=
∫

En
1B×D(y, z)

[
m ◦ σ〈n〉

]
(y, z)dydz

=
∫

En
1B×D(y, z)m(y + z, z)dydz

=
∫

En−1
1B(y)

[∫
D
m(y + z, z)dz

]
dy =

∫
B

m̆(y)dy.

And this shows that m̆ is indeed the intensity of µ̆.

Proof (Corollary 2.19): Since all reduced measures coincide, one may con-
sider without loss of generality the n-th reduced measure. The two trans-
formation formulas for the symmetric case are then simply reformulations of
Equations (2.2) and (2.3).

Proof (Proposition 2.21): Note that in both cases, the measures are sym-
metric and therefore one may take without loss of generality the n-th reduced
measure.

(1) Reduced Lebesgue measure. Since (y, x) 7→ σ〈n〉(y, x) is mass-preserving,
one has for B ⊆ En−1 that:

λ̆En(B) =
∫

En

[
1B×D ◦ τ 〈n〉

]
(x)dx =

∫
E

[
1B×D ◦ τ 〈n〉

](
σ〈n〉(y, z)

)
dydz

=
∫

En
1B×D(y, z)dydz =

∫
En−1

1B(y)dy = λEn−1(B).

(2) Reduced Lebesgue measure on the diagonal. First note that for a function
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f on En one has:∫
En
f(x)µ2(dx) =

∫
En
f(x)

[∫
E
δ(z,...,z)(dx)dz

]
=
∫

En×E
f(x)δ(z,...,z)(dx)dz

=
∫

E

[∫
En
f(x)δ(z,...,z)(dx)

]
dz =

∫
E
f(z, . . . , z)dz.

Now choose f(x) := [1B×D ◦ τ 〈n〉](x). Since τ 〈n〉(z, . . . , z) = (0n−1, z),
where 0n−1 ∈ En−1 is the zero-vector, the claim follows from:

µ̆(B) =
∫

D
µ(B + xn × dxn) =

∫
En

[
1B×D ◦ τ 〈n〉

]
(x)µ(dx)

=
∫

E

[
1B×D ◦ τ 〈n〉

]
(z, . . . , z)dz =

∫
E
1B×D(0n−1, z)dz

= 1B(0n−1)
∫

E
1D(z)dz = 1B(0n−1) = δn−1

0 (B).

Proof (Proposition 2.23): Recall the definitions of the regular reduction
given in Definition 2.13 and of the pseudo-reduction given in Definition 2.22.

(1) Multivariate underlying measure. For all x ∈ En, let x ≡ (x̌, xn) denote
the concatenation of the two components x̌ ∈ En−1 and xn ∈ E. Then,
for a set B ⊆ En−1 one has:

µ̆1(B) =
∫

En

[
1B×D ◦ τ 〈n〉

]
(x)µ1(dx)

=
∫

En
1B×D(x̌− xn, xn)µ1(dx̌× dxn)

=
∫

En
1B×D(x̌− xn, xn)

[∫
E
ν1

(
[dx̌− w]× [dxn − w]

)
dw
]

=
∫

En+1
1B×D(x̌− xn, xn)ν1

(
[dx̌− w]× [dxn − w]

)
dw.
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Now substitute x̌ � x̌+ w and xn � xn + w, such that:

(. . .) =
∫

En+1
1B×D(x̌− xn, xn + w)ν1(dx̌× dxn)dw

=
∫

En
1B(x̌− xn)

[∫
E
1D(xn + w)dw

]
ν1(dx̌× dxn)

=
∫

En
1B(x̌− xn)ν1(dx̌× dxn) = ν̊1(B).

(2) Product of univariate underlying measures. We first show that µ2 is a
multiple of the Lebesgue measure λEn on En: For a sequence of sets
Ak ⊆ E, where 1 ≤ k ≤ n, one has:

µ2

( n×
k=1

Ak

)
=

n∏
k=1

∫
E
ν2(Ak − wk)dwk =

n∏
k=1

[
ν2(E)λE(Ak)

]
=
[
ν2(E)

]n
λEn

( n×
k=1

Ak

)
.

Therefore µ2(dx) =
[
ν2(E)

]n
dx. But the reduction of the Lebesgue mea-

sure on En is given in Equation (2.6). Due to the linearity of the reduction
operation, one obtains as claimed:

µ̆2(dy) =
[
ν2(E)

]n
dy.

Proof (Theorem 2.32): Recall that the factorial δ-functions are defined by:

δ[P](x) = δ[m](xP)δ(P)(x), δ[P](j,y) = δ[m](jP ,yP)δ(P)(j,y),

for P ∈ Pn
m, see also Definition 2.29.

(1) Univariate decomposition. Take some P ∈ Pn with size |P| = m.
Clearly, δ[P](x) = 1 if and only if both δ[m](xP) = 1 and δ(P)(x) = 1.
Recall that for x ∈ En one has:

δ[m](xP) = 1 ⇐⇒ xk = xl, all k, l ∈ Sr,

δ(P)(x) = 1 ⇐⇒ xk 6= xl, all k ∈ Sp, l ∈ Sq,

for all 1 ≤ r ≤ m and all 1 ≤ p 6= q ≤ m. This shows that δ[P](x) = 1 if
and only if the components of x coincide for indexes that lie in the same
set Sr and differ for indexes that lie in different sets Sp, Sq, for p 6= q.
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For given x ∈ En, there is exactly one partition, say Q ∈ Pn, which
groups together all components of x with the same values. Hence, one
can find a partition Q such that:

δ[Q](x) = 1 and δ[P](x) = 0, for all P ∈ Pn : P 6= Q.

Therefore, the sum over all partitions is one, as claimed.

(2) Multivariate decomposition. The first equality is shown in the same way
as in the univariate case. It remains to check the second equality:

The second equality follows if one can show that δ[P](j,y) = 0, for all
P ∈ Pn which are not refinements of Pj . But due to Equation (2.10),
if P is not a refinement of Pj , then δ(P)(j) = 0, such that:

δ[P](j,y) = δ[m](jP ,yP)δ(P)(j,y)

= δ[m](jP ,yP)δ(P)(j)δ(P)(y) = 0,

where m := |P|.

Proof (Proposition 2.37): By definition, the sequence of sets (Ak,i) con-
sists of the d groups

A1,1, . . . , A1,n1 . . . Ad,1, . . . , Ad,nd .

In the same way as the sequence (Ak,i) has been grouped, one can split a vector
x ∈ En up in the form:

x = (x1, . . . ,xd), where xk ∈ Enk , for 1 ≤ k ≤ d.

In the multivariate case, one can find an analogue decomposition of a vector
y ∈ E(j) that parallels the decomposition of j:

y = (y1, . . . ,yd), where yk ∈ E(jk), for 1 ≤ k ≤ d.
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(1) First note that

ν[n]
( d×
k=1

nk×
i=1

Ak,i

)
=
∫

En

[ d∏
k=1

nk∏
i=1

1Ak,i(xk,i)
]
ν[n](dx)

=
∫

En

[ d∏
k=1

nk∏
i=1

1Ak,i(xk,i)
]
δ[n](x)ν(n)(dx). (2.23)

Recall that δ[n](x) = 1 if and only if all components of x are distinct. In
terms of the sub-vectors xk, one can rewrite the delta-function as:

δ[n](x) =
[ d∏
k 6=l

(nk,nl)∏
i,j

δ[2](xk,i, xl,j)
][ d∏
k=1

∏
i 6=j

δ[2](xk,i,k,j )
]
.

For convenience, define:

Ξ(x) :=
d∏
k=1

nk∏
i=1

1Ak,i(xk,i).

Now assume x ∈ En is such that Ξ(x) = 1. In other words, xk,i ∈ Ak,i,
for all k, i. Take k 6= l and since Ak,i ∩ Al,j = ∅, it must hold that
xk,i 6= xl,j , and this means that δ[2](xk,i, xl,j) = 1. Therefore, for x with
Ξ(x) = 1, one finds

δ[n](x) =
d∏
k=1

∏
i6=j

δ[2](xk,i,k,j ) =
d∏
k=1

δ[nk](xk).

It is now clear that the following equation holds for all x ∈ En, even if x
is such that Ξ(x) = 0:

Ξ(x)δ[n](x) = Ξ(x)
d∏
k=1

δ[nk](xk).
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Substituting this in Equation (2.23) gives:

ν[n]
( d×
k=1

nk×
i=1

Ak,i

)
=
∫

En
Ξ(x)δ[n](x)ν(n)(dx)

=
∫

En
Ξ(x)

[ d∏
k=1

δ[nk](xk)
]
ν(n)(dx)

=
d∏
k=1

∫
Enk

[ nk∏
i=1

1Ak,i(xk,i)
]
δ[nk](xk)ν(nk)(dxk)

=
d∏
k=1

ν[nk]
( nk×
i=1

Ak,i

)
.

(2) According to the definition of δ[n](j,y), and since jk = (k, . . . , k), one
has:

δ[n](j,y) = δ[n]
(

(j1, . . . , jd), (y1, . . . ,yd)
)

=
d∏
k=1

δ[nk](jk,yk).

The statement now follows with:

ν[j](dy) = δ[n](j,y)ν(j)(dy) =
[ d∏
k=1

δ[nk](jk,yk)
][ d∏
k=1

ν(jk)(dyk)
]

=
d∏
k=1

[
δ[nk](jk,yk)ν(jk)(dyk)

]
=

d∏
k=1

ν[jk](dyk).

2.45 Lemma (Equivalent formulations of simplicity). Let E be an event space
and ν a point configuration on E which does not need to be simple, i.e. ν
not necessarily lies in the space N(E). Then the following statements are
equivalent:

(1) ν ∈ N (E), i.e. ν is simple.

(2) For all functions f on E:∫
E
f(x)ν(dx) =

∫
E
f(x)ν({x})ν(dx).
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(3) For all n ≥ 1 and 1 ≤ i ≤ n and all functions g on E:∫
En
g(xi)δ(n)(x)ν(n)(dx) =

∫
E
g(x)ν(dx). (2.24)

♦

Proof (Lemma 2.45): Let χE denote the counting measure on E, that is let
χE(A) := card(A) be the number of elements in A ⊆ E.

(1→2) Note first that for any point measure ν on E:

ν(dx) = ν({x})χE(dx).

Since ν is simple by assumption, one has ν({x}) ∈ {0, 1}, for all x ∈ E,
which is equivalent to ν({x}) =

[
ν({x})

]2. Hence, for a function f on E:∫
E
f(x)ν(dx) =

∫
E
f(x)ν({x})χE(dx) =

∫
E
f(x)

[
ν({x})

]2
χE(dx)

=
∫

E
f(x)ν({x})ν(dx).

(2→3) Prove by induction: First note that the statement is trivial for n = 1.
Now assume the statement has already been shown for some n ≥ 1. Use
the notation x ≡ (x̌, xn), for x ∈ En and x̌ ∈ En−1, xn ∈ E. Then, for
all 1 ≤ i ≤ n, one has:∫

En+1
g(xi)δ(n+1)(x)ν(n+1)(dx)

=
∫

En×E
g(x̌i)δ(n+1)(x̌, xn+1)ν(n)(dx̌)ν(dxn+1)

=
∫

E

[∫
En
g(x̌i)δ(2)(xn+1, x̌i)δ(n)(x̌)ν(n)(dx̌)

]
ν(dxn+1).

Now with the induction assumption applied to g(x̌i)δ(2)(xn+1, x̌i), one
gets:

(. . .) =
∫

E

[∫
E
g(z)δ(2)(xn+1, z)ν(dz)

]
ν(dxn+1)

=
∫

E
g(xn+1)ν({xn+1})ν(dxn+1) =

∫
E
g(xn+1)ν(dxn+1).

(3→1) Fix some z ∈ E and define g(x) := δ(2)(z, x). Then, due to the assump-
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tion applied for the case n = 2, one can see that:

ν({z}) =
∫

E
δ(2)(z, x)ν(dx) =

∫
E2
δ(2)(z, x1)δ(2)(x1, x2)ν(2)(dx)

=
∫

E2
1{(z,z)}(x1, x2)ν(2)(dx) = ν(2)

(
{(z, z)}

)
=
[
ν({z})

]2
.

This shows that ν({z}) ∈ {0, 1}, i.e. ν is simple.

Proof (Theorem 2.39): The univariate formula is Equation (2.24), so there
is nothing to prove. It remains to show the multivariate case:

Assume without loss of generality that δ(n)(j) = 1, since otherwise both
sides vanish. But δ(n)(j) = 1 implies that j is of the form j = (j, . . . , j),
such that δ(n)(j,y) = δ(n)(y). Moreover, E(j) = Enj and ν(j) = [ν(j)]n. The
multivariate case now follows due to Equation (2.15) with:∫

E(j)
g(yi)δ(n)(j,y)ν(j)(dy) =

∫
Enj
g(yi)δ(n)(y)[ν(j)]n(dy)

=
∫

Ej
g(y)ν(j)(dy) = δ(n)(j)

∫
Ej
g(y)ν(j)(dy).

Proof (Remark 2.40): For the same reason as in the proof of Theorem 2.39,
we only need to check the univariate case. If one defines g(x) := f(x, . . . , x), one
obviously has f(x)δ(n)(x) = g(xi)δ(n)(x), for all 1 ≤ i ≤ n. By Equation (2.15)
it then follows:∫

En
f(x)δ(n)(x)ν(n)(dx) =

∫
En
g(xi)δ(n)(x)ν(n)(dx) =

∫
E
g(x)ν(dx)

=
∫

E
f(x, . . . , x)ν(dx).

For the proof of Corollary 2.41, we need an intermediate result that allows us
to switch between what we have called the first and the second version. This
is the content of the following lemma:

2.46 Lemma (Conversion between first and second version). Let n ≥ 1.

(1) Univariate conversion. Let P ∈ Pn
m and p the vector representation of

P. Then for every function f on En there exists a function g on Em,
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such that:

δ(P)(y)f(y) = δ(P)(y)g(yP) and g(x) = f(x(p)). (2.25)

(2) Multivariate conversion. Let j ∈ {1, . . . , d}n, P �Pj a refinement and
f a function on E(j). Then there exists a function g on E(jP) such that
Equation (2.25) is satisfied. ♦

Proof (Lemma 2.46): As the univariate case is a special case of the multi-
variate one, we only show the latter:

We show the statement only for functions of the form f(y) =
∏n
i=k fk(yk),

where fk are functions Ejk . The general result then follows by approximation
and monotone convergence.

(i) First equality. Assume P is of the form P = {S1, . . . , Sm}. Define:

gr(xr) :=
∏
i∈Sr

fi(xr), g(x) :=
m∏
r=1

gr(xr).

Let y ∈ E(j) be such that δ(P)(y) = 1. Then yi = yj , for all i, j ∈ Sr, all
1 ≤ r ≤ m, so that one can write ySr := yi, see also Notation 2.27. The
first equality now follows from:

f(y) =
n∏
k=1

fk(yk) =
[ m∏
r=1

∏
i∈Sr

fi(yi)
]

=
[ m∏
r=1

∏
i∈Sr

fi(ySr )
]

=
[ m∏
r=1

gr(ySr )
]

= g(yS1 , . . . , ySr ) = g(yP).

(ii) Second equality. Let p be the vector representation of P. Because i ∈ Sr
if and only if pi = r, one has:

g(x) =
[ m∏
r=1

∏
i∈Sr

fi(xr)
]

=
[ m∏
r=1

∏
i∈Sr

fi(xpi)
]

=
[ n∏
k=1

fk(xpk)
]

= f
(
xp1 , . . . , xpn

)
= f(x(p)).

Proof (Corollary 2.41): Recall that an ordered partition P ∈ Pn
m with

corresponding sets {S1, . . . , Sm} can alternatively be represented as an index
vector p ∈ {1, . . . ,m}n, see Definition 2.24.

97



(1a) First univariate version, ordinary measure. The statement is only shown
for functions of the form g(x) =

∏m
k=1 gr(xr), where gr are defined on E.

The general case then follows by approximation and monotone conver-
gence. Hence, one has in a first step:∫

En
g(yP)δ(P)(y)ν(n)(dy)

=
∫

En

[ m∏
r=1

gr(ySr )
][ m∏
r=1

δ(|Sr|)(ySr )
][ m∏
r=1

ν(|Sr|)(dySr )
]

=
m∏
r=1

[∫
E|Sr|

gr(ySr )δ
(|Sr|)(ySr )ν

(|Sr|)(dySr )
]
.

Applying Equation (2.15), one gets:

(. . .) =
m∏
r=1

[∫
E
gr(xr)ν(dxr)

]
=
∫

Em
g(x)ν(m)(dx).

(1b) First univariate version, factorial measure. Recall that one has by defi-
nition δ[P](y) = δ(P)(y)δ[m](yP). Hence:∫

En
g(yP)δ[P](y)ν(n)(dy) =

∫
En
g(yP)δ(P)(y)δ[m](yP)ν(n)(dy)

=
∫

En

[
g(yP)δ[m](yP)

]
δ(P)(y)ν(n)(dy).

Applying the first part of Equation (2.17), one gets:

(. . .) =
∫

Em

[
g(x)δ[m](x)

]
ν(m)(dx) =

∫
Em

g(x)ν[m](dx).

(2a) First multivariate version, ordinary measure. The statement is only
shown for functions of the form g(x) =

∏m
r=1 gr(xr), where gr are de-

fined on E[jP ]r = EjSr . The general case then follows by approximation
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and monotone convergence. Hence, one has in a first step:∫
E(j)

g(yP)δ(P)(j,y)ν(j)(dy)

=
∫
E(j)

[ m∏
r=1

gr(ySr )
][ m∏
r=1

δ(|Sr|)(jSr ,ySr )
][ m∏
r=1

ν(jSr )(dySr )
]

=
m∏
r=1

[∫
EjSr

gr(ySr )δ
(|Sr|)(jSr ,ySr )ν

(jSr )(dySr )
]
.

Applying Equation (2.16), one gets:

(. . .) =
m∏
r=1

[
δ(|P|)(jSr )

∫
EjSr

gr(xr)ν(jSr )(dxr)
]

=
∫
E(jP)

g(x)ν(jP)(dx).

Since P is a refinement of Pj , the components of the vector jSr are all
identical. In consequence, δ(|P|)(jSr ) = 1, and this was used in the last
equality above.

(2b) First multivariate version, factorial measure. In a first step note that:∫
E(j)

g(yP)δ[P](j,y)ν(j)(dy)

=
∫
E(j)

[
g(yP)δ[m](jP ,yP)

]
δ(P)(j,y)ν(j)(dy).

Applying the first part of Equation (2.18), one gets:

(. . .) =
∫
E(jP)

[
g(x)δ[m](jP ,x)

]
ν(jP)(dx) =

∫
E(jP)

g(x)ν[jP ](dx).

(3a) Second univariate version, ordinary measure. Due to the first part of
Equation (2.25), one can find a function g on Em such that∫

En
f(y)δ(P)(y)ν(n)(dy) =

∫
En
g(yP)δ(P)(y)ν(n)(dy).

Applying now the first part of Equation (2.17) and the second part of
Equation (2.25), one gets:

(. . .) =
∫

Em
g(x)ν(m)(dx) =

∫
Em

f(x(p))ν(m)(dx).
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(3b) Second univariate version, factorial measure. This follows in the same
way as in the univariate case: First replace f with a function g, due to
Equation (2.25), and then apply Equation (2.17).

(4a) Second multivariate second version, ordinary measure. Due to the first
part of Equation (2.25), one can find a function g on Em such that for all
y ∈ En one has δ(P)(y)f(y) = δ(P)(y)g(yP). Hence:

δ(P)(j,y)f(y) = δ(P)(j)
[
δ(P)(y)f(y)

]
= δ(P)(j)

[
δ(P)(y)g(yP)

]
= δ(P)(j,y)g(yP).

Together with the first part of Equation (2.18), the claim follows from:∫
E(j)

f(y)δ(P)(j,y)ν(j)(dy) =
∫
E(j)

g(yP)δ(P)(j,y)ν(j)(dy)

=
∫
E(jP)

g(x)ν(jP)(dx) =
∫
E(jP)

f(x(p))ν(jP)(dx).

(4b) Second multivariate version, factorial measure. This is shown in the same
way as the statement above but using the second part of Equation (2.18)
instead.

Proof (Theorem 2.42): Recall that an ordered partition P ∈ Pn
m of size

m can be represented equivalently as a sequence of sets {S1, . . . , Sm} or as an
index vector p ∈ {1, . . . ,m}n, see Definition 2.24.

(1a) Univariate, factorial decomposition. With the decomposition form Equa-
tion (2.11), one has:∫

En
f(x)ν(n)(dx) =

n∑
m=1

∑
P∈Pn

m

∫
En
f(x)δ[P](x)ν(n)(dx).

Due to the second part of Equation (2.19), the statement now follows
with

(. . .) =
n∑

m=1

∑
P∈Pn

m

∫
Em

f(x(p))ν[m](dx).

(1b) Multivariate, factorial decomposition. In the same way as above, use the
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decomposition form Equation (2.12). One then gets in a first step:∫
E(j)

f(y)ν(j)(dy) =
∑

P�Pj

∫
E(j)

f(y)δ[P](j,y)ν(j)(dy).

Due to the second part of Equation (2.20), the statement then follows
with:

(. . .) =
∑

P�Pj

∫
E(jP)

f(y(p))ν[jP ](dy).

(2a) Univariate, symmetric, factorial decomposition. Define first f(x) :=∏n
k=1 fk(xk). Then, due to the univariate version of Equation (2.21),

one gets:∫
En

[ n∏
k=1

fk(xk)
]
ν(n)(dx) =

∫
En
f(x)ν(n)(dx)

=
n∑

m=1

∑
P∈Pn

m

∫
Em

f(x(p))ν[m](dx).

Now fix a partition P ∈ Pn
m and denote its associated vector representa-

tion with p. Since x(p) = (xp1 , . . . , xpn), for x ∈ En, the k-th component
is [x(p)]k = xpk . Hence:

f(x(p)) =
n∏
k=1

fk

(
[x(p)]k

)
=

n∏
k=1

fk(xpk).

Assume the partition P is of the form P = {S1, . . . , Sm}. Recall that
the index vector p is characterized by the property that pi = r holds if
and only if i ∈ Sr. Therefore:

f(x(p)) =
n∏
k=1

fk(xpk) =
m∏
r=1

∏
i∈Sr

fi(xpi) =
m∏
r=1

∏
i∈Sr

fi(xr).

After substitution of this expression in the calculation above, the claim
follows.

(2b) Multivariate, symmetric, factorial decomposition. As in the univariate
case, define f(y) :=

∏n
k=1 fk(yk) and then apply the multivariate version
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of Equation (2.21). The remaining steps of the proof then follow along
the same lines as in the univariate case.

Proof (Corollary 2.43): Both statements are only shown for the multi-
variate case, since the proof for the univariate case is almost identical.

(1) Factorial decomposition for sets. Take a sequence of sets Ak ⊆ Ejk ,
1 ≤ k ≤ n, and define the functions fk(yk) := 1Ak(yk). Due to the
multivariate version of Equation (2.22), one has:

ν(j)(A1 × . . .×An) =
∫
E(j)

[ n∏
k=1

fk(yk)
]
ν(j)(dy)

=
∑

P�Pj

∫
E(jP)

|P|∏
r=1

[∏
i∈Sr

fi(yr)
]
ν[jP ](dy).

Clearly, Pn is the same as the union of all Pn
m, for 1 ≤ m ≤ n. Hence,

the previous expression becomes:

(. . .) =
n∑

m=1

∑
P∈Pn

m,P�Pj

∫
E(jP)

[ m∏
r=1

1{
⋂
i∈Sr Ai}

(yr)
]
ν[jP ](dy)

=
n∑

m=1

∑
P∈Pn

m,P�Pj

ν[jP ]
( ⋂
i∈S1

Ai × . . .×
⋂
i∈Sm

Ai

)
.

(2) Two dimensional special case. Let 1 ≤ i, j ≤ d and define the index vector
k := (ij). According to the multivariate version of Equation (2.21), one
has:∫

E(ij)
f(y)ν(ij)(dy) =

∑
P�Pk

∫
E(kP)

f(y(p))ν[kP ](dy), (2.26)

where p is the vector representation of P. Note that, depending on the
values of i, j, Pk is equal to:

Pk =

{
Q1 if i 6= j,

Q2 if i = j,
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where the two partitions Q1 and Q2 of {1, 2} are defined as:

Q1 :=
{
{1}, {2}

}
and Q2 :=

{
{1, 2}

}
.

Next determine the family of all refinements {P : P �Pk}. One needs
to distinguish between the same two cases as above:

{P : P �Pk} =

{
{Q1} if i 6= j, i.e. if Pk = Q1,

{Q1,Q2} if i = j, i.e. if Pk = Q2.

Continuing with Equation (2.26), one gets:∫
E(ij)

f(y)ν(ij)(dy) = δi 6=j
∑

P�Pk

∫
E(kP)

f(y(p))ν[kP ](dy)

+ δi=j
∑

P�Pk

∫
E(kP)

f(y(p))ν[kP ](dy)

= δi 6=j
∑

P∈{Q1}

∫
E(kP)

f(y(p))ν[kP ](dy)

+ δi=j
∑

P∈{Q1,Q2}

∫
E(kP)

f(y(p))ν[kP ](dy).

Next determine kP for all possible choices of P:

If i 6= j: kQ1 = k,

If i = j: kQ1 = k and kQ2 = (i).

Moreover, the vector representations of Q1 and Q2 are

p1 := (1, 2) and p2 := (1, 1)

Therefore:∫
E(ij)

f(y)ν(ij)(dy) = δi 6=j

∫
E(k)

f(y(p1))ν[k](dy)

+ δi=j

∫
E(k)

f(y(p1))ν[k](dy) + δi=j

∫
E(i)

f(y(p2))ν[i](dy).
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Note that one has for y ∈ E and y ∈ E2:

y(p1) = y and y(p2) = (y, y).

Substituting this above gives:∫
E(ij)

f(y)ν(ij)(dy) = δi 6=j

∫
E(k)

f(y)ν[k](dy)

+ δi=j

∫
E(k)

f(y)ν[k](dy) + δi=j

∫
E(i)

f(y, y)ν[i](dy)

=
∫

E(k)
f(y)ν[k](dy) + δi=j

∫
E(i)

f(y, y)ν[i](dy).

If one uses that ν[i] = ν(i), the statement follows, since for the first order
measures the ordinary and factorial product measures coincide.
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Chapter 3

Point Processes

This chapter introduces point configuration spaces and point processes, which
are random variables with values in a point configuration space. Then, as a
first step towards the definition of Hawkes processes, so-called cluster processes
are defined and formulas for their moment measures are derived.

3.1 Motivation and Objectives

The content and notation of this chapter is based mainly on Section 6.3 in
[DVJ03]. I give a short outline of and explain the reasoning behind the chosen
approach.

Cluster Fields. One has essentially two possibilities if one wants to define
what are usually called cluster fields or cluster families: Either one restricts
oneself to random measures and their distributions alone, i.e. one does not use
an underlying probability space. This is the approach taken e.g. in the book
[MKM78]. It has the advantage that one does not need to embed the cluster
field as a stochastic object in an underlying probability space.

Cluster Families. The alternative approach is to construct a measurable
family of point processes {K(·|y); y ∈ E}. This approach has the big advantage
that each cluster process N( ·|y) can be treated as a random variable, although
it takes values not in R but in a point configuration space. Results can then
be derived using standard notation and calculus from probability theory. But
it has also a disadvantage: One first needs to specify what the underlying
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probability space is and then one needs to give a sensible definition of a cluster
family.

Cluster Fields vs. Cluster Families. The difference between the two ap-
proaches can be illustrated with the following trivial example: Assume one has
two independent random variables X and Y and one is interested in the sum
X + Y . If the two random variables are defined on an underlying probability,
one can naturally speak about the distribution of the sum X + Y , which is
given by the convolution FX ∗ FY . But on the other hand, if one is not using
an underlying probability space one can only use the distributions FX and FY
as building blocks. It is then not possible to speak about the sum of the two
random variables but only about the convolution FX ∗ FY .

In the end, both approaches mean the same thing and lead to the same
results, only the point of view is different. Let me emphasize that the above
example is only an illustration and should demonstrate the implications that
the two different approaches entail. If one is actually dealing with point pro-
cesses and distributions thereof, the situation is far less trivial.

It appears to be better if one defines clusters in terms of a family K(·|y)y∈E
of cluster processes instead of only to calculate with distributions. Unfortu-
nately, there is a small technical problem one cannot simply ignore: Assume for
simplicity E := R, then a cluster family is a family of point processes K( ·|y)y∈R.
In other words, for each y ∈ R, there is an associated cluster process K( ·|y).
Let us call such a family a full cluster family, since it defines a cluster for every
y ∈ E. Clearly, one is now speaking of an uncountable number of random vari-
ables, and some of the usual problems come with this: For example it is not
clear whether the mapping y 7→ N(A|y) is a measurable function on the space
R×Ω, for a given bounded A ⊆ R. Without such elementary guarantees, it is
impossible to build a reasonable theory.

Full Cluster Fields. Assume one has given a center process, say L, which
describes the center points, i.e. the random set of points y ∈ E for which
a cluster K( ·|y) should be generated. Assume such a center point is given
by the random variable Yi. If K( ·|y)y∈E were a full cluster field, as described
above, one could now substitute y � Yi and obtain K( ·|Yi), but the mentioned
measurability problems would then arrive.

Sparse Cluster Fields. To avoid the above mentioned problems, I decided
to take a different road: Instead of first defining a full cluster family and then

106



substituting the center points, I directly define a sparse cluster family of the
form K( ·|Yi). See Definition 3.19 for the exact definition, but the idea is as
follows: The cluster family K(·|y)y∈E is not defined as a separate entity but
only in conjunction with the center process L. In fact, K(·|y) is defined for all
y ∈ E, but only if y is chosen as one of the points of L, i.e. only if y = Yi, there
is actually an associated cluster. For all other y, the cluster K( ·|y) is simply
an empty point process. This explains why I call it a sparse cluster field.

To implement the above idea, a couple of steps are needed. First of all,
a suitable notation needs to be found. In Remark 3.10 and Remark 3.11 and
Definition 3.12 it is explained how one can enumerate the points of a point
process irrespective of the actual number of point there are. In a next step,
so-called generating clusters are introduced and then shifted according to the
center points of L, see Definition 3.17. Finally, the cluster family is defined
by selecting the correct shifted cluster, see Definition 3.19 for a more formal
description.

The construction explained above makes one simplifying assumption, namely
that all clusters have the same distribution. This allows us to construct the clus-
ters by simply shifting the sequence of generating clusters, see Definition 3.17.
But the same construction could also be made in a more general setting, where
the cluster distribution depends on the location of the center point y. In this
case, one would have to construct the cluster, actually the underlying probabil-
ity space, using Kolmogorov’s Extension Theorem or the Theorem of Ionescu-
Tulcea.

3.2 Point Configuration Spaces

Consider the case of a point process on the half line R+. There are several
ways of presenting such a point process:

(i) Enumerate the points and describe the point process as a sequence (Tk)k≥1

of increasing random variables.

(ii) Consider the counting process Xt := N([0, t]), for t ≥ 0, i.e. the process
that counts the number of points in the interval [0, t].

(iii) Interpret the point process as random measures, i.e. as a random variable
with values in some point configuration space.

In this thesis, we almost always adopt the last version and treat a point process
as a random measure. Recall Definition 2.33 of the point configuration space
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N (E). The next definition treats only the univariate case. The extension to
the multivariate case is trivial:

3.1 Definition (Measurable point configuration space). Let E := Re,
for an integer e ≥ 1, be a univariate event space.

(1) Let C ⊆ E be a bounded set. The projection πC is a function on N (E)
and defined as:

πC : N (E)→ N0, πC(ν) := ν(C). (3.1)

(2) Let n ≥ 1 and C = {C1, . . . , Cn} be a family of bounded sets Ck ⊆ E.
For a vector r ≡ (r1, . . . , rn) with components rk ∈ N0 define the cylinder
set CC ,r generated by (C , r) by:

CC ,r :=
{
ν ∈ N (E) :

n⋂
k=1

πCk(ν) = rk

}
. (3.2)

Note that CC ,r ⊆ N (E). Moreover, for all ν ∈ N (E) one has:

ν ∈ CC ,r ⇔ ν(Ck) = rk, all 1 ≤ k ≤ n.

(3) For n ≥ 1 and a family of sets C = {C1, . . . , Cn} as above, define:

πC := (πC1 , . . . , πCn).

Hence, πC is a vector-valued function with values in N0 × . . .× N0. It is
called the finite dimensional projection with respect to the family C . ♦

Note that in the definition above, one has to assume that the sets Ck are
bounded, so that all projections ν(Ck) are finite.

In order to define random point measures, we need more structure on the
point configuration space N (E). To this end, we enrich N (E) with a topology
T(E) and define the natural σ-algebra F(E):

3.2 Definition (Topology and σ-algebra). Let E = Re be a univariate
event space.

(1) The topology of vague convergence T(E) on N (E) is the topology gener-
ated by all functions of the form:

N (E)→ R+, where ν 7→
∫

E
f(x)ν(dx),
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where f is a continuous function on E with compact support.

(2) The natural σ-algebra F(E) is the smallest σ-algebra such that all projec-
tions of the form given in Equation (3.1) are measurable. In other words,
define:

F(E) := σ
{
πC : C ⊆ E, bounded and measurable

}
.

Equivalently, the natural σ-algebra F(E) can be defined as:

F(E) := B
(
T(E)

)
.

Hence, F(E) is the Borel-σ-algebra generated by the topology T(E). ♦

Note that the functions f in the definition of the topology T(E) need to have
compact support, since otherwise the integral might not be finite.

In summary, the above definitions lead to a well-defined measurable space
N (E) equipped with σ-algebra F(E).

3.3 Convention. Whenever we deal with the point configuration space N (E),
we will always use the associated natural σ-algebra F(E). Moreover, when we
write A ⊆ N (E), we actually mean A ∈ F(E), i.e. we implicitly assume that A

is a measurable set. ♦

The next definition treats only the univariate case. The extension to the mul-
tivariate case is trivial. Since F(E) is generated by the family of all projections
πC : N (E)→ N0, for bounded sets C ⊆ E, one can give two equivalent defini-
tions of a point process:

3.4 Definition (Point process). Let N (E) with σ-algebra F(E) denote the
measurable point configuration space on E and assume (Ω,F ,P) is a probability
space. The following two definitions for a point process are equivalent:

(i) A function N on Ω with values in N (E) is a point process if and only if
it is measurable with respect to F and F(E).

(ii) A function N on Ω with values in N (E) is a point process if and only
if all real-valued functions of the form πC ◦ N ≡ N(C) are measurable
with respect to the Borel-σ-algebra B(R), for all bounded, measurable
sets C ⊆ E. ♦
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3.5 Definition (Distribution of a point process). Let N be a point pro-
cess with values in N (E). The distribution, say ΦN , of N is the image proba-
bility measure induced by N on the measurable space N (E). In other words,
the distribution ΦN is defined by:

ΦN (A) := P
[
N−1(A)

]
= P

[{
ω ∈ Ω : N(ω) ∈ A

}]
,

where A ⊆ N (E). ♦

Note that the family of cylinder sets, see Equation (3.2), is an intersection stable
generator for the σ-algebra F(E). Hence, one only needs to know all finite-
dimensional distributions of a point process N , in order to uniquely determine
its distribution:

3.6 Remark (Finite-dimensional distributions). The distribution ΦN of
a point process N is uniquely determined if for all n ≥ 1, the distributions of
all n-dimensional random variables of the following form are known:

πC ◦N ≡
(
N(C1), . . . , N(Cn)

)
,

where C = {C1, . . . , Cn} and bounded Ck ⊆ E, for 1 ≤ k ≤ n. An alternative
way to look at this statement is as follows: Let Φ be a point process distribution
and N be a point process. Then N has distribution Φ if and only if for all n ≥ 1,
all families of sets C = {C1, . . . , Cn} and all vectors r ∈ Nn0 it holds that:

P
[
N(C1) = r1, . . . , N(Cn) = rn

]
= Φ

(
CC ,r

)
.

For the definition of CC ,r see Equation (3.2). ♦

The following definition of moment measures is based on the Definition 2.36 of
product measures:

3.7 Definition (Moment measure). Let (Ω,F ,P) be a probability space
and N either a univariate point process with values in N (E) or a multivariate
point process with values in N (E). Furthermore, let j ∈ {1, . . . , d}n.

(1) The ordinary moment measure of order n in the univariate and multi-
variate case are defined by:

M
(n)
N (dx) := E

[
N (n)(dx)

]
, M

(j)
N (dy) := E

[
N (j)(dy)

]
.
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(2) The factorial moment measure of order n in the univariate and multi-
variate case are defined by:

M
[n]
N (dx) := E

[
N [n](dx)

]
, M

[j]
N (dy) := E

[
N [j](dy)

]
. ♦

Related to factorial moment measures is the following elementary definition. It
is taken from Section 5.2 in [DVJ03]:

3.8 Definition (Falling factorial). Let r, n ≥ 0 be two integers. The falling
factorial of order n, sometimes also called the factorial power of order n, is de-
fined as:

r[0] := 1, r[n] := r(r − 1) · . . . · (r − n+ 1), for n ≥ 1.

Especially, r[n] = 0 whenever n > r. ♦

In order to enumerate the points of a point process irrespective of the actual
number of total points, we need to introduce some more notation:

3.9 Definition (Extended state space). Let E = Re be a univariate event
space and assume ∅ /∈ E is an arbitrary auxiliary point. Define the extended
event space Ē by:

Ē := E ∪ {∅}. ♦

The auxiliary point ∅ allows us to use a consistent notation, independent of
whether a point configuration ν has a finite or infinite number of points. The
following remark serves as a preparation for Remark 3.11:

3.10 Remark (Enumeration of point configurations). Let ν∗ be a fi-
nite and ν∞ be a countably infinite point configuration in N (E), i.e. as-
sume that ν∗(E) = n and ν∞(E) = ∞. Clearly, one can then take a vector
(x1, . . . , xn) and a sequence (y1, y2, . . .) with values in E such that:

ν∗(dz) =
n∑
i=1

δxi(dz), ν∞(dz) =
∞∑
i=1

δyi(dz). ♦

The same idea can now be applied to a point process. If N is a point process
with N(E) points, we can represent N either as a random point configuration
of the form ν∗ or of the form ν∞. This leads to the following non-deterministic
version of the above representation:
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3.11 Remark (Enumeration of point processes). Let N be a point pro-
cesses with values in N (E). For each n ≥ 1, there exists a vector (Yn,1, . . . , Yn,n)
and a sequence (Y∞,1, Y∞,2, . . .) of random variables with values in E such that:

N(dz) =
∞∑
n=1

[
1{N(E)=n}

n∑
i=1

δYn,i(dz)
]

+ 1{N(E)=∞}

∞∑
i=1

δY∞,i(dz). ♦

Obviously this is a fairly complicated way to write the point processN . It would
be convenient to use always the same sequence, say (Ȳ1, Ȳ2, . . .), independently
of the number N(E) of points. This is the reason why we introduce the extended
enumeration sequence (Ȳn)n≥1 next:

3.12 Definition (Extended enumeration). Let N be a point process and
(Yn,k), (Y∞,k) be the sequences of random variables given in Remark 3.11.
Define the extended enumeration (Ȳn)n≥1 by:

Ȳn :=


∅ N(E) < n,

YN(E),n N(E) ≥ n and N(E) <∞,
Y∞,n N(E) =∞.

Equivalently, one can define Ȳn also by:

Ȳn := 1{N(E)<n}∅ + 1{N(E)≥n,N(E)<∞}YN(E),n + 1{N(E)=∞}Y∞,n,

for n ≥ 1. ♦

The sequence (Ȳn)n≥1 allows us to represent the point process N in a consistent
way as an enumeration without using indicator functions. Indeed, one has now
the more compact representation:

N(dz) =
∞∑
n=0

δȲn(dz).

This relies on the following observation: Since ∅ lies outside of E, it can never
happen that ∅ ∈ A, for sets A ⊆ E. Hence, if there are N(E) = n points, then
Ȳn+k = ∅, for k ≥ 1, and so δȲn+k

(A) = 0. In this way, the artificial events ∅
vanish and we actually only sum over the n original events.

For the same reason that we have introduced ∅ to denote an event that
cannot be achieved in the event space E, we now introduce a point configuration
that is not part of the point configuration space N (E):
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3.13 Definition (Void point configuration). Let ν∅ be some (which one
is irrelevant) fixed point configuration which is impossible to achieve on E. The
following definition would do:

ν∅(dz) := δ∅(dz). ♦

We can treat ν∅ as a void or non-existent point configuration. To end this sec-
tion, let us clarify the notation concerning shifted sets of point configurations:

3.14 Notation (Shifted point configurations). Let A ⊆ N (E) and y ∈
E. The following shorter notation is used to refer to a set of shifted point
configurations:

{A− y} := {ν − y : ν ∈ A},

where a single point configuration ν is shifted according to:

(ν − y)(dz) := ν(dz − y).

In case one considers point configurations on the extended configuration space
N (Ē) instead, one needs to define for consistency additionally:

(∅− y) := ∅, for all y ∈ E. ♦

3.3 Point Process Clusters

In this section we look not only at one point process but at a whole family of
point processes. At least conceptually, the idea is that every point of the event
space has an associated point process. We call this point the center and the
point process the associated cluster, and the union of all clusters the cluster
swarm. In a first step we introduce the necessary notation:

3.15 Definition (Cluster kernel). Let ΦL,ΦK be two point process dis-
tributions for point processes with values in N (E), i.e. distributions on the
measurable space N (E) equipped with the natural σ-algebra F(E). Call ΦL
the cluster center distribution and ΦK the cluster distribution.

Now define the cluster kernel ΦK(B|y) by:

ΦK(B|y) := ΦK(B− y), if y ∈ E, ΦK(B|∅) := δν∅(B),
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where y ∈ Ē, B ⊆ N (Ē). The family ΦK( ·|y)y∈E of measures then constitutes
a probability kernel. ♦

We did not mention this explicitly in the above definition, but it is clear that
ΦL and ΦK can be extended in the natural way to N (Ē) by assigning zero
probability to all point configurations containing the auxiliary point ∅. For
simplicity, we identify the extended distributions with the original distributions
and call them by a small abuse of notation again ΦL and ΦK .

The above definition is one of the reasons why we have introduced the void
point configuration ν∅. It allows us to give a consistent definition of the cluster
kernel ΦK(B|y), whether there is actually an event at the given location y or
not. This can be summarized as follows:

3.16 Remark (Void center point). According to the above definition:

ΦK
(
N (E)

∣∣∅) = 0.

This has the obvious interpretation: If there is no cluster center at y, i.e. if
y = ∅, then there is no cluster associated to this point either. ♦

In a next step, we construct what we call a cluster family. The construction is
done in two steps: First we take a point process L, whose points Yi will serve
as the cluster centers. Then, given a concrete realization of L, we construct
for each of the center points Yi a randomly shifted cluster (Ji +Yi). Moreover,
this construction is performed in a way that all shifted clusters (Ji + Yi) are
conditionally independent, given the center process L. We are going to call the
collection of all shifted clusters (Ji + Yi) a cluster family :

3.17 Definition (Cluster process). Let ΦL, ΦK be given and define the
cluster kernel ΦK(B|y)y∈E as in Definition 3.15. Assume (Ω,F ,P) is a prob-
ability space rich enough such that the following stochastic objects can be
defined:

(1) Center process. Let L be a point process with distribution ΦL and
(Y1, Y2, . . .) be an enumeration of the points of L, where Yi ∈ Ē = E∪∅,
for i ≥ 1. The points Yi≥1 will serve as cluster centers.

(2) Family of generating cluster. Assume (J1, J2, . . .) is a sequence of inde-
pendent and identically distributed point processes with distribution ΦK .
Furthermore, assume L and the sequence Ji≥1 are independent. In other
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words, the family {L, Ji≥1} is distributed according to:

P
[
L ∈ A, J1 ∈ B1, . . . , Jn ∈ Bn

]
= ΦL(A)

n∏
i=1

ΦK(Bi),

for sets A,Bi ⊆ N (E) of point configurations, for all n ≥ 1. Then Ji≥1

is called the family of generating clusters.

(3) Family of shifted clusters. Consider now the family (Ji+Yi)i≥1 of shifted
point processes. In order to treat also the case where Yi = ∅, define:

[Ji + Yi](dz) =

{
Ji(dz − Yi) if Yi 6= ∅,

ν∅ if Yi = ∅,

for all i ≥ 1. ♦

The shifted point process (Ji+Yi) in the above definition should be interpreted
as a cluster with center in Yi. But note that Yi does not need to be a center in
a geometrical sense.

Let us point out that this definition is consistent in the sense that the
shifted point process Ji + y is distributed according to ΦK(·|y). This allows
us to describe the distribution of the shifted clusters (Ji + Yi) with the help of
the cluster kernel ΦK( ·| ·). Indeed, we have the following:

3.18 Proposition (Conditional independence). Let n ≥ 1 and take a se-
quence of sets of point configurations Bi ⊆ N (E), for i ≥ 1. The family of
randomly displaced clusters (Ji + Yi)i≥1 has the joint conditional distribution:

P
[ n⋂
i=1

(Ji + Yi) ∈ Bi

∣∣∣L] =
n∏
i=1

ΦK(Bi|Yi), (3.3)

for all n ≥ 1. ♦

Consider in the above proposition the case where Yi = ∅, for some i ≥ 1. We
then have Ji + Yi = ν∅ /∈ Bi. Hence, ΦK(Bi|Yi) = ΦK(Bi|∅) = 0 for all
Bi ⊆ N (E). Therefore, Equation (3.3) holds even in the case where Yi = ∅.
This coincides with the interpretation that Yi = ∅ implies that there is no i-th
point, i.e. L has less than i points.

The construction above leads to the family (Ji + Yi)i≥1 of randomly dis-
placed clusters, but this is only an intermediate step. In a next step we build
upon this sequence and define a cluster swarm K( ·|y)y∈E, which contains all
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these clusters in a unified form. This allows us to use a more compact notation
and, more importantly, we do not need to enumerate the single clusters any
more:

3.19 Definition (Cluster family). Assume L is a cluster center process
with enumeration Yi≥1 and Ji≥1 is a family of generating cluster, as in Defini-
tion 3.17.

(1) The cluster family K( ·| ·) with clusters Ji≥1 and centers Yi≥1 is defined
as:

K(dz|y) :=
∞∑
i=1

1{Yi=y}[Ji + Yi](dz),

for y ∈ E. Hence, K(dz|y)y∈E is a family of point processes with values
in N (E).

Now consider the superposition of all clusters in the swarm:

(2) The compound cluster process generated by the cluster family K(dz|y)y∈E
and directed by the center process L is defined as:

N(dz) :=
∫

E
K(dz|y)L(dy). ♦

Consider again the definition of a cluster family: Assume there are n := L(E)
cluster centers. Then one has Yi = ∅, for all i ≥ n, and therefore 1{Yi=y} = 0,
for all i ≥ n. This is due to the fact that ∅ 6= y, for all y ∈ E. Hence, the
cluster family could also be defined as:

K(dz|y) :=
L(E)∑
i=1

1{Yi=y}[Ji + Yi](dz),

Moreover, one can easily check that N is the indeed the superposition of all
displaced clusters (Ji + Yi). Therefore, N could also be written as the sum:

N(dz) =
L(E)∑
i=1

[Ji + Yi](dz).

The definition of a compound cluster process suggests that K(dz|y) is evaluated
for all possible center points y ∈ E. But this is not the case: Indeed, since the
integral is with respect to the center process L, the variable y takes only values
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out of the sequence (Y1, Y2, . . .). Nevertheless, there is no harm in thinking
that K(dz|y) is an independent point process for every y ∈ E.

As a consequence of the above considerations, it is clear that the cluster
family K(dz|y)y∈E can only be used in combination with its directing process
L. It cannot exist as a self-contained entity.

Simple Cluster Process. By definition, each cluster is a simple point pro-
cess. But we need a slightly stronger assumption: We impose the condition
that not only each cluster but also the cluster process N :=

∫
K(dz|y)L(dy),

i.e. the superposition of all clusters, is a simple point process. This condition
is automatically satisfied in the following common case:

3.20 Remark (Absolutely continuous distributions). Let Yi≥1 be an
enumeration of the points of L and Wi≥1,l≥1 an enumeration of the points of
the generating clusters Ji. Assume the random variables Yi≥1,Wi≥1,l≥1 have
an absolutely continuous distribution on E. Then, since they are independent
by assumption, one has:

P[U 6= V ] = 1, for U 6= V ∈
{
Yi,Wi,k, (Yi +Wi,k), for i, k ≥ 1

}
.

Hence, two different random variables from the set above take distinct values
with probability one. ♦

Note that the above situation is very similar to the one in Definition 2.33 and
Remark 2.35, where we have introduced a weaker and a stronger notion of
simple, multivariate point configurations.

Formulas for Moment Measures. Next we introduce some notation that
simplifies the calculation with cluster processes:

3.21 Notation (Moment measures and clusters). Let K(dz|y)y∈E be a
cluster family directed by a center process L(dy) and consider the compound
cluster process N(dz) =

∫
K(dz|y)L(dy).

(i) Moments of clusters. We use the following symbols to denote the moment
measures of a compound cluster process or a cluster process with center
y ∈ E:

MN (dz) := E
[
N(dz)

]
, MK(dz|y) := E

[
K(dz|y)

]
.
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(ii) Cluster notation. Sometimes it is more convenient to refer to a cluster
process K(·|y) without using the cumbersome notation ( ·). To this end,
the following notation is used:

Ky := K(·|y). (3.4)
♦

For simplicity, we consider only the univariate case in the next theorem. The
multivariate case is a trivial extension:

3.22 Theorem (Factorial products of center process). Assume (Ky)y∈E
is a cluster family directed by a center process L. Furthermore, assume the
assumption in Remark 3.20 is satisfied.

(1) Functions. Let n ≥ 1 and ψk, for 1 ≤ k ≤ n, be a sequence of non-
negative functions on N (E). Assume J is a point process with distribu-
tion ΦK , i.e. assume J has the same distribution as a cluster with center
in 0 ∈ E. Then:

E
[∫

En

n∏
k=1

ψk(Kyk)L[n](dy)
]

=
∫

En

n∏
k=1

E
[
ψk(J + yk)

]
M

[n]
L (dy). (3.5)

(2) Kernels. Let n ≥ 1 and m1, . . . ,mn be a sequence of integers with mk ≥
1. Denote their sum by m :=

∑n
k=1mk. Assume γk(ν, dzk) is a kernel,

where ν ∈ N (E) and zk ∈ Emk . Define the measure Γ on the space Em
by:

Γ
( n×
k=1

dzk

)
=
∫

En

n∏
k=1

γk(Kyk , dzk)L[n](dy).

Then, for the associated moment measure MΓ one has:

MΓ

( n×
k=1

dzk

)
=
∫

En

n∏
k=1

E
[
γk(J + yk, dzk)

]
M

[n]
L (dy). (3.6)

(3) Moments. Consider the compound cluster process N :=
∫
KyL(dy). The
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ordinary and factorial moment measures of N are:

M
(n)
N (dz) =

n∑
m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

M
(|Sr|)
K (dzSr |yr)M

[m]
L (dy),

M
[n]
N (dz) =

n∑
m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

M
[|Sr|]
K (dzSr |yr)M

[m]
L (dy).

(3.7)
♦

As soon as we are going to deal with second order moment measures of Hawkes
processes, we will apply the formulas given above in the special case n = 2.
Thus, let us take a closer look at this special case:

3.23 Corollary (First and second order moments). Let Ky∈E be a clus-
ter family on the univariate event space E, directed by a center process L(dy).

(1) Assume γ(ν, dz) is a kernel, where ν ∈ N (E) and z ∈ En. Define the
two random measures Γ1 and Γ2 by:

Γ1(dz) =
∫

E
γ(Ky, dz)L(dy),

Γ2(dz1 × dz2) =
∫

E2
γ(Ky1 , dz1)γ(Ky2 , dz2)L[2](dy).

The moment measures of these two random measures are:

MΓ1(dz) =
∫

E
E
[
γ(Ky, dz)

]
E
[
L(dy)

]
,

MΓ2(dz1 × dz2) =
∫

E2
E
[
γ(Ky1 , dz1)

]
E
[
γ(Ky2 , dz2)

]
E
[
L[2](dy)

]
.

(3.8)

(2) Consider the two point processes Γ1 and Γ2 given by:

Γ1(dz) =
∫

E
Ky(dz)L(dy), Γ2(dz) =

∫
E2
Ky1(dz1)Ky2(dz2)L[2](dy).

The corresponding moment measures of Γ1 and Γ2 are:

E
[
Γ1(dz)

]
=
∫

E
E
[
Ky(dz)

]
E
[
L(dy)

]
,

E
[
Γ2(dz)

]
=
∫

E2
E
[
Ky1(dz1)

]
E
[
Ky2(dz2)

]
E
[
L[2](dy)

]
.

(3.9)
♦
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3.4 Poisson Processes

The Poisson process is a fundamental building block in the construction of
Hawkes processes. For the time being, we consider a general multivariate event
space E = (E1, . . . ,Ed), where the components Ej can all be different. For de-
tails, see Definition 2.2. But later, as soon as we deal with Hawkes processes, we
will only be interested in multivariate event spaces of the form E = (E, . . . ,E),
i.e. we will assume that all component spaces coincide.

3.24 Definition (Poisson process). Let (Ω,F ,P) be a probability space,
E be a univariate and E a multivariate event space.

(1) Univariate Poisson process. Let H be a locally-finite measure on E,
which is called the mean measure. Assume a point process N with values
in N (E) satisfies the conditions:

(i) The random variable N(A) is Poisson distributed with mean H(A),
for all bounded sets A ⊆ E.

(ii) For all n ≥ 1 and all sequences of disjoint sets Ak ⊆ E, where
1 ≤ k ≤ n, the family of random variables N(A1), . . . , N(An) is
independent.

Then N is called a univariate Poisson process with mean measure H.

(2) Multivariate Poisson process. Let H ≡ (H1, . . . ,Hd) be a family of
locally-finite measures, where each Hk is defined on Ek. This family of
measures is called the family of mean measures. Assume a point process
N with values in N (E) satisfies the conditions:

(i) The random variable N (k)(A) is Poisson distributed with mean
Hk(A), for all bounded sets A ⊆ Ek, for all 1 ≤ k ≤ n.

(ii) Let (jk, Ak) be pairs of indexes jk ∈ {1 . . . , d} and bounded sets
Ak ⊆ Ejk , where 1 ≤ k ≤ n. Assume that either jk 6= jl or
otherwise Ak ∩Al = ∅ holds for all k 6= l. For all sequences (jk, Ak)
of this form, the family of random variables

N (j1)(A1), . . . , N (jn)(An)

is independent.

Then N is called a multivariate Poisson process with mean measure fam-
ily H. ♦
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3.25 Proposition (Moment measures of Poisson processes). In the uni-
variate case let N be a Poisson process with values in N (E) and mean measure
H. In the multivariate case let N be a Poisson process with values in N (E)
and mean measure family H ≡ (H1, . . . ,Hd). Furthermore let j ∈ {1, . . . , d}n.

(1) The ordinary moment measures of order n in the two cases are:

M
(n)
N

( n×
k=1

Ak

)
=

n∑
m=1

∑
P∈Pn

m

m∏
r=1

H
( ⋂
i∈Sr

Ai

)
,

M
(j)
N

( n×
k=1

Ak

)
=

∑
P�Pj

H(jP)

(|P|
×
r=1

⋂
i∈Sr

Ai

)
.

(2) The factorial moment measures of order n in the two cases are:

M
[n]
N

( n×
k=1

Ak

)
= H(n)

( n×
k=1

Ak

)
, M

[j]
N

( n×
k=1

Ak

)
= H(j)

( n×
k=1

Ak

)
.

(3.10)

The above statements hold for all bounded sets Ak, i.e. in the univariate case
Ak ⊆ E, all 1 ≤ k ≤ n, and in the multivariate case Ak ⊆ Ejk , all 1 ≤ k ≤ n.♦

Recall that in Definition 3.19, we did not impose any assumptions on the cluster
distribution. But in the case of a Hawkes process, the clusters have a Poisson
distribution. Thus, we will now analyze this special case in detail. Recall also
the notation introduced in Equation (3.4).

We consider only the univariate case. The multivariate case is a trivial
extension.

3.26 Definition (Poisson cluster family). Let L be an arbitrary center
process with values in N (E) and let H be a mean measure, i.e. a locally-finite
measure on the space E. Define first the translation-covariant family of mean
measures on E by:

Hy(dz) ≡ H(dz|y) := H(dz − y),

for all y ∈ E. Next define the cluster kernel ΦK by:

ΦK(B|y) = PoissonE[Hy](B),

for B ⊆ N (E) and y ∈ E. In other words, ΦK( ·|y) is the Poisson distribution
on E with mean measure Hy, where y ∈ E is the center of the cluster. Finally
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assume Ky∈E is a cluster family with distribution ΦK , directed by the center
process L. The family Ky∈E is then called a Poisson cluster family. Clearly, due
to the specific choice of the cluster kernel ΦK , the clusters Ky are conditionally
independent Poisson processes given the center process L. ♦

Note that for the definition of a Poisson cluster family, we do not assume that
the center process L is a Poisson process. We only assume that the clusters
Ky∈E have a Poisson distribution.

Let us formulate the following special case of the univariate version of Equa-
tion (3.10):

3.27 Remark (Factorial moments of a Poisson process). If J is a uni-
variate Poisson process on the event space E with mean measure H, the first
two factorial moment measures are:

MJ(dz) = H(dz),

M
[2]
J (dz) = MJ(dz1)MJ(dz2) = H(dz1)H(dz2).

(3.11)
♦

It is of interest to see whether and how the general moment measure formulas
given in Theorem 3.22 simplify in the presence of Poisson distributions. In-
deed, we can distinguish three cases: Either the center process; the generating
clusters; or both have a Poisson distribution:

3.28 Corollary (Clusters that are Poisson distributed). Let Ky∈E be a
cluster family directed by a center process L(dy).

(i) General swarm directed by a Poisson process. If the center process L is
a Poisson process with mean measure G, then MN

[2](dz) equals∫
E
M

[2]
K (dz|y)G(dy) +

∫
E
MK(dz1|y)G(dy)

∫
E
MK(dz2|y)G(dy).

(ii) Poisson swarm directed by a general center process. If the cluster family
Ky∈E has a Poisson distribution with mean measure Hy, then MN

[2](dz)
equals∫

E
H(dz1|y)H(dz2|y)ML(dy) +

∫
E2
H(dz2|y1)H(dz2|y2)M [2]

L (dy).

(iii) Poisson swarm directed by a Poisson process. If the cluster family Ky∈E
has a Poisson distribution with mean measure Hy and the center process

122



L is a Poisson process with mean measure G, then MN
[2](dz) equals∫

E
H(dz1|y)H(dz2|y)G(dy) +

∫
E
H(dz1|y)G(dy)

∫
E
H(dz2|y)G(dy). ♦

We now look at another special case, namely we consider the case where the
cluster center process L is a homogeneous Poisson process. Recall that a point
process is homogenous if its distribution is translation-invariant with respect
to shifts of the event space E. It turns out that in this situation the compound
cluster process N is also homogeneous:

3.29 Corollary (Homogeneous center process). Assume both Ky∈E and
L have a Poisson distribution. Additionally assume that the center process L is
a homogeneous Poisson process with mean measure λE, the Lebesgue measure
on E. Then one has:

M
[2]
N (dz) =

∫
E
H(dz1|y)H(dz2|y)dy +

[
H(E)

]2
λE2(dz). ♦

Note that if L is a homogeneous Poisson process on E, then its mean measure
must be of the form αλE, for some constant α ≥ 0. Therefore, the assumption
that L has the mean measure λE is in fact not a restriction.
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Proofs for Chapter 3

For the next lemma, let the assumption given in Remark 3.20 be satisfied.

3.30 Lemma (Intermediate result for factorial decomposition). LetK(dz|y)y∈E
be a cluster family directed by a center process L(dy). Let P ∈ Pn

m be a par-
tition of the set {1, . . . , n} and assume that P = {S1, . . . , Sm}. Then, for all
y, z ∈ Em, one has:

δ[m](y)δ[n](z)
m∏
r=1

K(|Sr|)(dzSr |yr) = δ[m](y)
m∏
r=1

K [|Sr|](dzSr |yr). (3.12)
♦

Proof (Lemma 3.30): Let Yi≥1 be an enumeration of L and Wi≥1,l≥1 an
enumeration of Ji, see also Remark 3.20 concerning this notation. Now let f
be a function on E. One has the following relationship between an integral and
a sum:∫

E
f(z)K(dz|y) =

∑
i,k

f(Yi +Wi,k)1{Yi=y}. (3.13)

As on other occasions, we will adopt the notation:

Y (i) ≡ (Yi1 , . . . , Yim), W (i,k) ≡ (Wi1,k1 , . . . ,Wim,km),

whenever i,k ∈ Nm.

(i) Let i ∈ Nm and p 6= q. Since the union of all events forms a simple point
process, see Remark 3.20, one has the following implications:

ip 6= iq ⇔ Yip 6= Yiq ⇒ Yip +Wip,kp 6= Yiq +Wiq,kq .

The equivalence on the left hand side can be expressed as δ[m](i) =
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δ[m](Y (i)), and the implication on the right hand side as:

δ[m](Y (i)) = 1 ⇒ δ[m](Y (i) +W (i,k)) = 1. (3.14)

(ii) Let y ∈ Em be such that δ[m](y) = 1. We claim that:

δ[m](z)
m∏
r=1

K(dzr|yr) =
m∏
r=1

K(dzr|yr). (3.15)

This statement is shown as follows: Let f be a function Em. Due to
(3.13), the following integral can be written as a sum:∫

Em
f(z)δ[m](z)

m∏
r=1

K(dzr|yr)

=
∑

i1,...,im

∑
k1,...,km

f(Y (i) +W (i,k))δ[m](Y (i) +W (i,k))1{Y (i)=y}.

One clearly has the implication:

1{Y (i)=y} = 1 ⇒ δ[m](Y (i)) = δ[m](y) = 1.

Now, according to (3.14), this shows that:

1{Y (i)=y} = 1 ⇒ δ[m](Y (i) +W (i,k)) = 1.

As a consequence, the δ[m]-function in the sum above can be left out:∫
Em

f(z)δ[m](z)
m∏
r=1

K(dzr|yr) =
∑

i,k∈Nm
f(Y (i) +W (i,k))1{Y (i)=y}

=
∫

Em
f(z)

m∏
r=1

K(dzr|yr).

Since this equality is satisfied for all functions f , Equation (3.15) follows.

(iii) Now let y ∈ Em such that δ[m](y) = 1. Moreover, let i ∈ {1, . . . , d}m be
such that ir ∈ Sr. We claim the following:

δ[m](z(i))
m∏
r=1

K(|Sr|)(dzSr |yr) =
m∏
r=1

K(|Sr|)(dzSr |yr). (3.16)
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This follows from:

δ[m](z(i))
m∏
r=1

K(|Sr|)(dzSr |yr) = δ[m](zi1 , . . . , zim)
m∏
r=1

∏
j∈Sr

K(dzj |yr)

= δ[m](zi1 , . . . , zim)
m∏
r=1

[
K(dzir |yr)

∏
j∈Sr,j 6=ir

K(dzj |yr)
]

=
[
δ[m](zi1 , . . . , zim)

m∏
r=1

K(dzir |yr)
][ m∏
r=1

∏
j∈Sr,j 6=ir

K(dzj |yr)
]
.

Applying Equation (3.15), one gets:

(. . .) =
[ m∏
r=1

K(dzir |yr)
][ m∏
r=1

∏
j∈Sr,j 6=ir

K(dzj |yr)
]

=
m∏
r=1

K(|Sr|)(dzSr |yr).

(iv) Adopt the notation z(i) := (zi1 , . . . , zim). Recall that δ[m](z) = 1 if and
only if all components of z are distinct. Let the partition P consist of
the sets {S1, . . . , Sm}. One can express δ[m](z) in the following form, see
also Notation 2.27:

δ[m](z) =
[ m∏
r=1

δ[|Sr|](zSr )
][ ∏
i1∈S1

. . .
∏

im∈Sm

δ[m](z(i))
]
.

Assume now w.l.o.g. that δ[m](y) = 1, because otherwise Equation (3.12)
is trivially satisfied. Substituting the above expression for δ[m](z), one
obtains:

δ[m](y)δ[n](z)
m∏
r=1

K(|Sr|)(dzSr |yr)

=
[ m∏
r=1

δ[|Sr|](zSr )
][ ∏
i1∈S1

. . .
∏

im∈Sm

δ[m](z(i))
] m∏
r=1

K(|Sr|)(dzSr |yr).

Since δ[m](y) = 1 has been assumed, one can now apply (3.16) once
for every delta-function δ[m](z(i)) in the product. Hence, the statement
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follows with:

(. . .) =
[ m∏
r=1

δ[|Sr|](zSr )
] m∏
r=1

K(|Sr|)(dzSr |yr)

=
m∏
r=1

[
δ[|Sr|](zSr )K

(|Sr|)(dzSr |yr)
]

= δ[m](y)
m∏
r=1

K [|Sr|](dzSr |yr).

In the last equality δ[m](y) = 1 has been used.

3.31 Lemma (Factorial decomposition of products). Let Ky∈E be a cluster fam-
ily directed by a center process L. Consider the compound cluster process
N =

∫
KyL(dy). For all n ≥ 1 one has:

N (n)(dz) =
n∑

m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

K(|Sr|)(dzSr |yr)L[m](dy),

N [n](dz) =
n∑

m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

K [|Sr|](dzSr |yr)L[m](dy).

(3.17)
♦

Proof (Lemma 3.31): The proof uses the results of Lemma 3.30 and is a
simple application of the more general results given in Theorem 2.42.

(i) Ordinary product measure. First note that:

N (n)(dz) =
n∏
k=1

[∫
E
K(dzk|yk)L(dyk)

]
=
∫

En

[ n∏
k=1

K(dzk|yk)
]
L(n)(dy).

Next define fk(xk) := K(dzk|xk), for 1 ≤ k ≤ n, and apply the univariate
version of (2.22):

(. . .) =
n∑

m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

[∏
i∈Sr

K(dzi|yr)
]
L[m](dy)

=
n∑

m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

K(|Sr|)(dzSr |yr)L[m](dy).

(ii) Factorial product measure. According to the definition of the factorial
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moment measure:

N [n](dz) = δ[n](z)N (n)(dz)

= δ[n](z)
n∑

m=1

∑
P∈Pn

m

∫
Em

[ m∏
r=1

K(|Sr|)(dzSr |yr)
]
L[m](dy).

Since δ[m](y) =
[
δ[m](y)

]2, one has by definition of L[m] that:

L[m](dy) = δ[m](y)L(n)(dy) =
[
δ[m](y)

]2
L(n)(dy)

= δ[m](y)
[
δ[m](y)L(n)(dy)

]
= δ[m](y)L[m](dy).

Applying this equation twice below, the claimed decomposition follows
due to (3.12) with:

N [n](dz) =
n∑

m=1

∑
P∈Pn

m

∫
Em

[
δ[m](y)δ[n](z)

m∏
r=1

K(|Sr|)(dzSr |yr)
]
L[m](dy)

=
n∑

m=1

∑
P∈Pn

m

∫
Em

[
δ[m](y)

m∏
r=1

K [|Sr|](dzSr |yr)
]
L[m](dy)

=
n∑

m=1

∑
P∈Pn

m

∫
Em

[ m∏
r=1

K [|Sr|](dzSr |yr)
]
L[m](dy).

Proof (Theorem 3.22): Let Ji≥1 be the sequence of generating clusters and
Yi≥1 be an enumeration of the points of the center process L, see Defini-
tion 3.17.

(1) Functions. It suffices to show the equation for functions of the form
ψk(ν) := 1Ak(ν), where Ak ⊆ N (E). First note that:

E
[∫

En

n∏
k=1

ψk(Kyk)L[n](dy)
]

= E
[∫

En

n∏
k=1

1Ak(Kyk)δ[n](y)L(n)(dy)
]

= E
[ ∑
i1,...,in

n∏
k=1

1Ak(Jik + Yik)δ[n](Yi1 , . . . , Yin)
]
,

where the sum is taken over all ik ≥ 1. Since L is a simple point process,
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Yip = Yiq if and only if ip = iq. Hence, the above expression becomes:

(. . .) = E
[ ∑
i1,...,in

n∏
k=1

1Ak(Jik + Yik)δ[n](i1, . . . , in)
]
.

Next observe that the sum only needs to be taken for tuples (i1, . . . , in)
with distinct indexes, since otherwise the δ[n]-function vanishes. Hence,
due to (3.3), one has for the previous expression:

(. . .) =
∑

i1,...,in
ik 6=il,k 6=l

E
[ n∏
k=1

1Ak(Jik + Yik)
]

=
∑

i1,...,in
ik 6=il,k 6=l

P
[ n⋂
k=1

(Jik + Yik) ∈ Ak

]
=

∑
i1,...,in
ik 6=il,k 6=l

E
[ n∏
k=1

ΦK(Ak|Yik)
]
.

Adding again the δ[n]-function, this can be written as:

(. . .) = E
[ ∑
i1,...,in

δ[n](Yi1 , . . . , Yin)
n∏
k=1

ΦK(Ak|Yik)
]

= E
[∫

En

n∏
k=1

ΦK(Ak|yk)δ[n](y)L(n)(dy)
]
.

Since δ[n](y)L(n)(dy) = L[n](dy), the claim follows with:

(. . .) =
∫

En

[ n∏
k=1

ΦK(Ak|yk)
]
M

[n]
L (dy)

=
∫

En

[ n∏
k=1

E
[
1Ak(J + yk)

]]
M

[n]
L (dy)

=
∫

En

n∏
k=1

E
[
ψk(J + yk)

]
M

[n]
L (dy).

(2) Kernels. It suffices to show for a sequence Bk ⊆ Emk , where 1 ≤ k ≤ n,
that:

E
[∫

En

n∏
k=1

γk(Kyk , Bk)L[n](dy)
]

=
∫

En

n∏
k=1

E
[
γk(J + yk, Bk)

]
M

[n]
L (dy).
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But the above equality follows due to (3.5), if one defines ψk(ν) :=
γk(ν,Bk), for 1 ≤ k ≤ n.

(3) Moments. We prove only the equation for the ordinary moment mea-
sure. The formula for the factorial moment measure follows along the
same lines. Taking the expectation on both sides of the first part of
Equation (3.17), one has:

M
(n)
N (dz) =

n∑
m=1

∑
P∈Pn

m

E
[∫

Em

m∏
r=1

K(|Sr|)(dzSr |yr)L[m](dy)
]
,

=
n∑

m=1

∑
P∈Pn

m

E
[∫

Em

m∏
r=1

γr(Kyr , dzSr )L
[m](dy)

]
,

if one defines the kernels γr, for 1 ≤ r ≤ m, by:

γr(ν, dzSr ) := ν(|Sr|)(dzSr ), for ν ∈ N (E) and zSr ∈ E|Sr|.

Since (J + yr) is a cluster with center in yr, the associated moment
measure is MK( ·|yr). This shows:

E
[
γr(J + yr, dzSr )

]
= E

[
(J + yr)(|Sr|)(dzSr )

]
= M

(|Sr|)
K (dzSr |yr).

Due to (3.6), the statement now follows with:

M
(n)
N (dz) =

n∑
m=1

∑
P∈Pn

m

∫
Em

m∏
r=1

E
[
γr(J + yr, dzSr )

]
M

[m]
L (dy)

=
n∑

m=1

∑
P∈Pn

m

∫
Em

n∏
r=1

M
(|Sr|)
K (dzSr |yr)M

[m]
L (dy).

Proof (Corollary 3.23): The first statement is a special case of Equa-
tion (3.6) and the second statement follows from the first one if one chooses
the kernel γ(Ky, dz) := Ky(dz).

For the next lemma, recall Definition 3.8 for the falling factorial r[n], where
r, n ≥ 0 are integers.

3.32 Lemma (Factorial moments of a Poisson distribution). Let n ≥ 0.
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(1) Poisson random variable. For a Poisson random variable X with mean
λ > 0, one has:

E
[
X [n]

]
= E

[
X(X − 1)(X − 2) · . . . · (X − n+ 1)

]
= λn. (3.18)

This value is called the n-th factorial moment of X.

(2) Poisson process. Let E be a univariate event space and N a Poisson
process on E with locally-finite mean measure H. For any bounded set
A ⊆ E one has:

E
[
N [n](A× . . .×A)

]
= E

[
N(A)[n]

]
=
[
H(A)

]n
. (3.19)

♦

Note that N [n] refers to the factorial product measure, see Definition 2.36,
whereas N(A)[n] is the n-th falling factorial of the integer N(A), see Defini-
tion 3.8.

Proof (Lemma 3.32): The first statement is a well-know fact about the Pois-
son distribution, see e.g. Section 5.2 in [DVJ03]. It remains to show the second
statement, where the two equations are treated in turn:

(i) First equation. Let ν ∈ N (E) and assume m := ν(A). Moreover, let
(y1, . . . , ym) be an enumeration of these m points. Since ν is simple,
yk 6= yl if and only if k 6= l. Using that ν[n](dx) = δ[n](x)ν(n)(dx), one
obtains:

ν[n](A× . . .×A) =
∫

En

n∏
k=1

[
1A(xk)

]
δ[n](x)ν(n)(dx)

=
∑

i1,...,in

δ[n](yi1 , . . . , yin) =
∑

i1,...,in

δ[n](i1, . . . , in),

where the sum is taken over all 1 ≤ ik ≤ m. According to the definition,
δ[n](i1, . . . , in) = 1 holds if and only if (i1, . . . , in) is a vector without any
duplicated components. Since there are exactly m[n] tuples (i1, . . . , in)
with distinct elements ik ∈ {1, . . . ,m}, it follows that:

ν[n](A× . . .×A) = m[n] = ν(A)[n].

Now substitute N instead of ν and the first equality follows.

(ii) Second equation. Because N(A) has a Poisson distribution with mean
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H(A), the second equality follows with (3.18).

The following proof treats only the multivariate version. The univariate case
is treated along the same lines:

Proof (Proposition 3.25): The formulas for the ordinary moment mea-
sures are based on the ones for the factorial moment measures. Thus, the proof
of the second statement logically precedes the proof of the first statement:

(1) Ordinary moment measures. In a first step, apply the multivariate version
of (2.22), such that:

M
(j)
N

( n×
k=1

Ak

)
= E

[∫
E(j)

n∏
k=1

1Ak(yk)N (j)(dy)
]

= E
[ ∑

P�Pj

∫
E(jP)

|P|∏
r=1

[∏
i∈Sr

1Ai(yr)
]
N [jP ](dy)

]
.

Due to Fubini’s theorem and the multivariate version of (3.10):

(. . .) =
∑

P�Pj

∫
E(jP)

|P|∏
r=1

[∏
i∈Sr

1Ai(yr)
]
M

[jP ]
N (dy)

=
∑

P�Pj

∫
E(jP)

|P|∏
r=1

1{
⋂
i∈Sr Ai}

(yr)M
[jP ]
N (dy)

=
∑

P�Pj

M
[jP ]
N

(|P|×
r=1

⋂
i∈Sr

Ai

)
=

∑
P�Pj

H(jP)
(|P|×
r=1

⋂
i∈Sr

Ai

)
.

(2) Factorial moment measures. Let j ∈ {1, . . . , d}n and assume that Ai ⊆
Eji , for 1 ≤ i ≤ n.

(i) First reduction. By reordering the components of j, one can assume
w.l.o.g. that j is of the form:

j = (1, . . . , 1 , 2, . . . , 2 . . . d, . . . , d) = (j1, . . . , jd),

where jk = (k, . . . , k) is a vector of length nk and n =
∑d
k=1 nk. In

the same way as j has been reordered and grouped, arrange now the
sequence Ai=1,...,n in d groups. Assume after reordering and relabeling,
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the sequence Ai=1,...,n is of the form:

B1,1, . . . , B1,n1 . . . Bk,1, . . . , B1,nk . . . Bd,1, . . . , B1,nd

where Bk,i ⊆ Ek, for 1 ≤ i ≤ nk and 1 ≤ k ≤ n. In the calculation below,
apply (2.14) and use that different components of N are independent:

M [j]
( n×
i=1

Ai

)
= M [j1···jd]

( d×
k=1

nk×
i=1

Bk,i

)
= E

[
N [j1···jd]

( d×
k=1

nk×
i=1

Bk,i

)]
= E

[ d∏
k=1

N [jk]
( nk×
i=1

Bk,i

)]
=

d∏
k=1

E
[
N [jk]

( nk×
i=1

Bk,i

)]
(3.20)

(ii) Second reduction. Now fix 1 ≤ k ≤ d and concentrate on the sequence
Bk,1, . . . , Bk,nk only. Note that one can write every product of the form
Bk,1× . . .×Bk,nk as the union of products B̃k,1× . . .× B̃k,nk , where B̃k,i
and B̃k,j , for i 6= j, are either identical or disjoint. Hence, assume w.l.o.g.
that the sequence Bk,i=1,...,nk satisfies:

Bk,i = Bk,j or Bk,i ∩Bk,j = ∅, if i 6= j.

Once more, reorder and group the sequence (Bk,i): Assume there are rk
mutually disjoint sets Ck,l, for 1 ≤ l ≤ rk, such that the sequence (Bk,i)
is after reordering and relabeling of the form:

Ck,1, . . . , Ck,1 . . . Ck,l, . . . , Ck,l . . . Ck,rk , . . . , Ck,rk

Letmk,l be the length of each group Ck,l, . . . , Ck,l, so that nk =
∑rk
l=1mk,l.

In the same way as the sequence Bk,i=1,...,nk has been reordered, arrange
jk into rk groups:

jk = (jk,1, . . . , jk,rk), where jk,l = (k, . . . , k) with length mk,l.

Now continue with Equation (3.20) and use (2.13). Writing N instead of
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N (k) for readability, one gets:

E
[
N [jk]

( nk×
i=1

Bk,i

)]
= E

[
N [nk]

( nk×
i=1

Bk,i

)]
= E

[
N [nk]

( rk×
l=1

C
mk,l
k,l

)]
= E

[
N [nk]

( rk×
l=1

C
mk,l
k,l

)]
= E

[
N [nk]

( rk×
l=1
×
mk,l

Ck,l

)]
= E

[ rk∏
l=1

N [mk,l]
(×
mk,l

Ck,l

)]
= E

[ rk∏
l=1

N [mk,l](Cmk,lk,l )
]
.

Since Ck,l are pairwise disjoint, N(Ck,i) and N(Ck,j) are independent,
for i 6= j. Hence, N [mk,i](Ck,imk,i) and N [mk,j ](Ck,jmk,j ) are also inde-
pendent, for i 6= j. Due to (3.19), one now obtains:

E
[
N [jk]

( nk×
i=1

Bk,i

)]
=

rk∏
l=1

E
[
N [mk,l](Cmk,lk,l )

]
=

rk∏
l=1

[
Hk(Ck,l)

]mk,l .
(3.21)

(iii) Final step. Finally, take Equation (3.20), and due to (3.21), the statement
follows with:

M [j]
( n×
i=1

Ai

)
=

d∏
k=1

E
[
N [jk]

( nk×
i=1

Bk,i

)]
=

d∏
k=1

rk∏
l=1

[
Hk(Ck,l)

]mk,l
=

d∏
k=1

rk∏
l=1

H(jk,l)
(
C
mk,l
k,l

)
=

d∏
k=1

H(jk)
( rk×
l=1

C
mk,l
k,l

)
=

d∏
k=1

H(jk)
( nk×
i=1

Bk,i

)
= H(j)

( n×
i=1

Ai

)
.

Proof (Corollary 3.28): Let n = 2 and consider the following special case
of (3.7):

M
[2]
N (dz) =

∫
E
M

[2]
K (dz|y)ML(dy) +

∫
E2
MK(dz1|y1)MK(dz2|y2)M [2]

L (dy).

(3.22)

It remains to specialize the above equation in the three cases:

(i) General family directed by a Poisson process. If L is a Poisson process
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with mean measure G, then:

ML(dy) = G(dy), M
[2]
L (dy) = G(dy1)G(dy2).

Now substitute this in (3.22).

(ii) Poisson family directed by a general center process. If Ky∈E is a Poisson
cluster family with mean measure family Hy∈E, then:

MK(dz|y) = H(dz|y), M
[2]
K (dz|y) = H(dz1|y)H(dz2|y).

Again substitute this in (3.22).

(iii) Poisson cluster family directed by a Poisson process. This is the combi-
nation of the previous two special cases. Hence, the statement follows,
after substitution of the four above equalities in (3.22).

Proof (Corollary 3.29): If L is a homogeneous Poisson process with mean
measure λE, then:

ML(dy) = dy and M
[2]
L (dy) = dy.

Substituting this in (3.22) yields:

M
[2]
N (dz) =

∫
E
H(dz1|y)H(dz2|y)dy +

∫
E
H(dz1|y)dy

∫
E
H(dz2|y)dy.

For any bounded set A ⊆ E note that:∫
E
H(A|y)dy =

∫
E

[∫
E
1A(z)H(dz − y)

]
dy =

∫
E

[∫
E
1A(z + y)H(dz)

]
dy

=
∫

E

[∫
E
1A(z + y)dy

]
H(dz) =

∫
E
λE(A)H(dz) = H(E)λE(A).

Therefore
∫

E H(dz|y)dy = H(E)λE(dz), and after substitution in the above
equation, the claim follows:

M
[2]
N (dz) =

∫
E
H(dz1|y)H(dz2|y)dy +

[
H(E)

]2
λE(dz1)λE(dz2).
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Chapter 4

Hawkes Processes

There are two conceptually different ways how a Hawkes process can be de-
fined and each one has its advantages and disadvantages. In this chapter, we
describe a Hawkes process as a recursive Poisson cluster process. The advan-
tage of this approach is that the results from the previous chapter concerning
Poisson cluster families can directly be applied. Hence, this representation is
especially suitable to derive the first and second order moment measures. The
corresponding results are the topic of the next chapter.

The other common way to describe a Hawkes process is in terms of intensity
processes. Chapter 6 is dedicated to that approach. As we will see, specifying
a Hawkes process in terms of its intensity process has also its advantages, e.g.
if one wants to calculate its likelihood function.

In summary, one can look at Hawkes processes from different perspectives,
either within the framework of Poisson cluster processes or within the theory
of intensity processes. Each point of view brings with it its own set of powerful
tools. I think it is a nice feature of Hawkes processes, that techniques from
different areas can be used to analyze them; but one has to take the appropriate
representation for the question at hand.

4.1 Motivation and Objectives

I will define Hawkes processes in several steps: First I define Hawkes trees,
which are basically Hawkes processes with one fixed, deterministic immigrant.
This definition is motivated by Section 6.3 of [DVJ03]. But in contrast to
this reference, I will put more emphasis on the construction of the underlying
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stochastic objects.

A Hawkes tree is obtained with the following recursive procedure: Assume
there are finitely many random center points, say (X1, . . . , Xn). Take a se-
quence of iid Poisson processes (KX1 , . . . ,KXn), where KXk has mean measure
HXk . The measures Hx∈E are called transfer measures. Then take the union of
all events in the sequence (KX1 , . . . ,KXn) and repeat the recursive procedure
until there are no new points, i.e. until n = 0. Finally, collect all points. If one
starts with n = 1, X1 = 0, the above construction yields a Hawkes tree.

Conceptually, one can assume that for every possible location x ∈ E there is
an associated independent Poisson processesKx. The sequence (KX1 , . . . ,KXn)
of Poisson processes is then obtained by selecting the clusters associated to the
center points (X1, . . . , Xn).

One of the purposes of the previous chapter was to explain in detail how
one can select a countable sequence of clusters with random indexes out of
a conceptually uncountably infinite family of independent clusters. At first,
it might seem that one has to construct the underlying probability space by
successive conditioning. But one of the nice consequences is that one only
needs an iid sequence of point processes, which I call the driving process, see
Remark 4.12.

Decomposition Formulas. The last part of this chapter serves as a prepa-
ration for the next chapter. Specifically, the decomposition formulas given in
Lemma 4.24 will be used again later. Let me quickly explain the purpose of
these somewhat obscure formulas:

In order to calculate moment measures of Hawkes processes, one basically
needs to calculate the expectation of integrals of the form

∫ ∏n
k=1KykL

(n)(dy).
Unfortunately, since the events of L are not independent, this is in general not
trivial. But if the integral is of the form

∫ ∏n
k=1KykL

[n](dy), then some sort of
distributivity law for the expectation applies; the precise formulation is given
in Theorem 3.22.

Hence, the notational small difference between L(n) and L[n] makes a big
difference if expectations need to be calculated. The main idea is now to
decompose the second order product measures of a Hawkes process in such
a way that only integrals with an integrator of the form L[n](dy) appears.
Decompositions that satisfy this requirement are given in Lemma 4.24.

138



4.2 Cluster Kernels

We first summarize some well-known facts from linear algebra:

4.1 Definition (Matrix norms). Consider the space Rd×d of real-valued,
d× d-dimensional matrices.

(i) A matrix norm ‖ · ‖ is a vector norm on the space Rd×d, i.e. a real-valued
function on Rd×d with the following three properties: For all matrices
A,B ∈ Rd×d and all α ∈ R it holds that: ‖A‖ ≥ 0; ‖A‖ = 0 if and only
if A = 0. Moreover, ‖αA‖ = |α|‖A‖ and ‖A+B‖ ≤ ‖A‖+ ‖B‖.

(ii) A vector-norm ‖ · ‖ on the space Rd×d of square matrices is called sub-
multiplicative if it satisfies:

‖AB‖ ≤ ‖A‖ · ‖B‖, for all A,B ∈ Rd×d.

(iii) Let | · | be a vector-norm on Rd. The operator-norm ‖ · ‖∗ induced by
| · | is the matrix-norm defined by:

‖A‖∗ := sup
{
|Av|/|v| : v ∈ Rd,v 6= 0

},
for A ∈ Rd×d. The operator-norm ‖ · ‖∗ is always sub-multiplicative. ♦

In order to analyze geometric convergence of matrices the following definition
is very useful. For a text book treatment of the spectral radius see also Defini-
tion 10.10 in [Rud91] or Definition 5.6.8 in [HJ85].

4.2 Definition (Spectral radius). Let A ∈ Rd×d be a matrix and order the
d eigenvalues of A according to:

|λ1| ≥ |λ2| ≥ . . . ≥ |λd|.

Note that λk ∈ C, in general. Define the spectrum Λ(A) by:

Λ(A) :=
{
λk; k = 1, . . . d

}
.

The spectral radius Spr(A) is then defined as:

Spr(A) := max
{
|λ| : λ ∈ Λ(A)

}
= |λ1|.

The spectral radius is a sub-multiplicative matrix-norm. ♦
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Later, we deal with the branching matrix Q of a Hawkes process, which has non-
negative components. The following specific property of non-negative matrices
will not be used later on, but is still mentioned for completeness:

4.3 Remark. Assume A is a d×d-matrix with non-negative components. As a
consequence of the Perron-Frobenius theory, it holds that: The sequence λ1,...,d

in Definition 4.2 can be reordered such that:

λ1 ≥ 0.

In other words, A has a non-negative eigenvalue that is as least as large as the
absolute value of any other eigenvalue. ♦

Proof: The Perron-Frobenius Theorem is usually formulated for matrices
with positive components, but there is a corresponding extension to non-
negative matrices. See Theorem 3 in Section XIII.3 of [Gan74] or Theorem 4.2
in Section I.1.4 of [Min88] or also Theorem 8.3.1 in [HJ85].

The next proposition shows that any sub-multiplicative matrix norm and the
spectral radius are related:

4.4 Proposition (Gelfand’s formula). Let ‖ · ‖ be a sub-multiplicative ma-
trix norm on Rd×d. Then, for all A ∈ Rd×d, one has:

Spr(A) = lim
n→∞

(
‖An‖

)1/n
, ♦

Proof: See Theorem 10.13 in [Rud91] or Corollary 5.6.14 in [HJ85].

Let us make some remarks about the convergence of a sequence of matrices:

4.5 Remark (Convergence of matrices). Fix a matrix norm ‖·‖ on Rd×d
and consider a sequence of matrices (An)n≥1 and some other matrix A. The
canonical definition of convergence is:

lim
n→∞

An = A ⇐⇒ lim
n→∞

‖An −A‖ = 0.

It is important to note that the choice of the matrix norm ‖ · ‖ is irrelevant,
since on a finite-dimensional vector space all norms are equivalent. In other
words, if ‖ · ‖1 and ‖ · ‖2 are two vector norms on Rd×d, then:

lim
n→∞

‖An −A‖1 = 0 ⇐⇒ lim
n→∞

‖An −A‖2 = 0.
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As a consequence, one can give the following equivalent definition for conver-
gence: For a sequence of matrices (An)n≥1 and some other matrix A one has:

lim
n→∞

An = A ⇐⇒ lim
n→∞

(An)ij = Aij , for all 1 ≤ i, j ≤ n.

Hence, the sequence (An)n≥1 converges to A if and only if all components An,ij
converge to Aij . ♦

A consequence of Gelfand’s formula is the following convergence criterium:

4.6 Remark (Geometric convergence). Let A be a matrix in Rd×d and
consider the sequence A1, A2, . . . of n-fold products of A. Then:

Spr(A) < 1 ⇐⇒ lim
n→∞

An → Od,

where Od denotes the matrix consisting of zeros. Consider now the sequence
Sn =

∑n
k=0A

k, for n ≥ 0, where by convention A0 := 1d. Then, under the
assumption that Spr(A) < 1, the sequence (Sn)n≥0 is convergent and the limit
is given by:

lim
n→∞

Sn =
∞∑
k=0

Ak = (1d −A)−1.

The fact that (1d −A) is invertible is part of this statement. ♦

Proof: The first part of the above remark corresponds to Theorem 5.6.12
in [HJ85]. The second part corresponds to Corollary 5.6.16 and the exercise
following this corollary in the same reference.

4.7 Definition (Transfer measure matrix). Let E be a univariate event
space and Hij be a family of finite measures on E, for 1 ≤ i, j ≤ d.

(i) For brevity of notation, introduce the matrix H of measures:

H :=
{
Hij , for 1 ≤ i, j ≤ d

}
.

Moreover, define the matrix of shifted measures Hy by:

Hy(dz) := H(dz − y), Hjk,y(dz) := Hjk(dz − y),

for all y ∈ E. The left hand side is in matrix notation; the right hand
side in component-wise notation.
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(ii) Define the identity matrix 1 and the shifted identity matrix 1y by:

1ij(dz) := δijδ0(dz) and [1y]ij(dz) := δijδy(dz),

for all y ∈ E. ♦

Next we introduce the notion of multivariate convolutions. Note that the
identity matrix 1 is the unit-element, i.e. one has 1 ∗ H = H and similarly
1y ∗H = Hy, for every matrix H of measures.

4.8 Definition (Multidimensional convolution). Let G and H be two ma-
trices of measures. The convolution G∗H is again a matrix of measures, where
the (j, k)-th component, for 1 ≤ j, k ≤ n, is defined as:

[G ∗H]jk(dz) :=
d∑

m=1

∫
E
Gjm(dy)Hmk(dz − y)

:=
d∑

m=1

∫
E
Gjm(dz − y)Hmk(dy),

Moreover, define recursively the n-th convolution of H with itself by:

H∗0 := 1 and H∗n := H ∗H∗(n−1). ♦

Later on, H will be the family of transfer measures of a Hawkes process. Closely
related to the transfer measure matrix are the so-called associated cluster ker-
nels and the branching matrix :

4.9 Definition (Cluster kernel). Let H be a matrix of finite measures.

(i) The exclusive U− and inclusive U+ cluster kernels generated by H are:

U+ :=
∞∑
n=0

H∗n and U− :=
∞∑
n=1

H∗n. (4.1)

Let y ∈ E be given. In the same way as for the matrix H, define the
shifted versions of the two cluster kernels by:

U+
y (dz) := U+(dz − y), U−y (dz) := U−(dz − y),

(ii) Define the branching matrix Q associated to the measure matrix H by:

Qjk = Hjk(E), (4.2)
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for 1 ≤ j, k ≤ d. Hence, Q is a d × d-matrix and has non-negative
components. ♦

Note that without further assumptions, the two cluster kernels U− and U+ are
not necessarily finite measures. But there is a simple sufficient condition:

4.10 Proposition (Some formulas for cluster kernels). Let H be a ma-
trix of finite measures and U− and U+ be the associated cluster kernels. The
following statements are given at the same time in matrix notation and in
component-wise notation:

(1) The additive relation between U− and U+ is given by:

1y + U−y = U+
y , δjkδy(dz) + U−jk,y(dz) = U+

jk,y(dz). (4.3)

The multiplicative relation between U− and U+ is given by:

U+ ∗Hy = U−y ,
d∑
k=1

∫
E
U+
jk,x(dz)Hkm,y(dx) = U−jm,y(dz). (4.4)

(2) Assume that Spr(Q) < 1. Then U− and U+ are finite and one has for
their total masses:

U+(E) = (1d −Q)−1, U−(E) = (1d −Q)−1 − 1d. (4.5)
♦

4.3 Univariate Hawkes Processes

We could directly give the definition of a multivariate Hawkes process. But
it is more convenient to introduce the definitions and notations first in the
univariate case and then to extend them to the multivariate case. Thus, take
a univariate event space E. We first define so-called Hawkes trees:

4.11 Definition (Univariate Hawkes tree). Let (Ω,F ,P) be a probabil-
ity space. Moreover, let H be a finite measure on E and Hy∈E be the associated
family of shifted measures. Let ΦK,y be the family of Poisson distributions on
N (E) with mean measures Hy.

The construction of a Hawkes tree starts with the root node and then adds
the descendant generations in an inductive procedure:
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(i) The process of generation 0 consists of only one event, the root node at
location 0 ∈ E:

L0|0(dz) := δ0(dz).

Assume, in the sense of an induction over n, the following processes have already
been defined for some (n− 1) ≥ 0:

(ii) Let Kn(dz|x)x∈E be a cluster family with distribution ΦK+x, directed by
the center process Ln−1|0(dz).

(iii) Define the point process Ln|0 with values in N (E) by:

Ln|0(dz) :=
∫

E
Kn(dz|x)Ln−1|0(dx). (4.6)

The process Ln|0 contains all descendants of generation n.

Repeat the above procedure for all n ≥ 0, so that one obtains a sequence
(Ln|0)n≥0 of point processes. A Hawkes tree is now the superposition of all
these processes. In fact, we define the following two versions of a Hawkes tree:

(iv) One distinguishes between the exclusive tree, which does not contain the
root node, and the inclusive tree, which does contain the root node:

N−|0 :=
∞∑
r=1

Lr|0 and N+
|0 :=

∞∑
r=0

Lr|0. ♦

Note that in the above procedure, one has to extend the probability space
if necessary, in order to accommodate the cluster family Kn(dz|x). But this
extension is not based on a sequential conditioning procedure in the sense of
Ionesu-Tulcea’s Theorem. Indeed, all that the construction needs is an iid
sequence of point processes, from which the cluster families and thus the gen-
eration processes can be constructed. One could therefore call this underlying
sequence the driving process. Let us explain this in more detail:

4.12 Remark (Driving process). Assume one has already constructed the
process Ln−1|0. In order to define the process Ln|0, the following ingredients
are needed:

(i) Generating clusters of generation n. A sequence (Jn,i)i≥1 of independent
and identically-distributed point processes with distribution ΦK , inde-
pendent of all other probabilistic objects defined so far.
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(ii) Cluster swarm of generation n. With (Jn,i)i≥1 one can now construct
a cluster family Kn(dz|x), as explained in Definition 3.17. This cluster
family is constructed by random displacement of the generating clusters
Jn,i and involves no other stochastic objects.

In summary, we see that the only random object needed to define a Hawkes
process is the double-sequence (Jn,i)n≥1,i≥1 of independent and identically-
distributed generating clusters. This justifies that we call the family (Jn,i) the
underlying driving process. ♦

One should note that N|0− and N|0
+ are not necessarily locally-finite, i.e. the

realizations do not need to lie in the space N (E) of locally-finite point config-
urations. In consequence, N± are not point processes in the sense used so far.
But later will give sufficient conditions, so that this construction leads indeed
to well-defined point processes.

Often we are not interested in the full Hawkes tree but in a subtree starting
at some given node. The formal definition of a subtree is very similar to the
definition of the full tree. And in the same way as for the full Hawkes tree,
the definition is again a recursive procedure. But this time we do not need to
extend the probability space and add in each iteration an independent cluster
family. Instead we reuse the same cluster family Kn,x that has been used
in the definition of a full Hawkes tree, since otherwise we would only get an
independent copy of the subtree.

4.13 Definition (Univariate Hawkes subtree). Fix a generation n0 ≥ 0
and the location of the root node y ∈ E.

(i) Define the root process Ln0|n0 of the subtree originating in generation n0

at location y by:

Ln0|n0(dz|y) := δy(dz). (4.7)

In the same way as in Definition 4.11, the generation processes are constructed
by induction. Hence, assume the process Ln−1|n0 has already been defined, for
some (n− 1) ≥ n0, and continue with:

(ii) Define the process of descendants of order n of the subtree originating in
generation n0 at location y by:

Ln|n0(dz|y) :=
∫

E
Kn(dz|x)Ln−1|n0(dx|y). (4.8)
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(iii) Define the exclusive and inclusive subtrees N|n0
− and N|n0

+ originating
in generation n0 at location y by:

N−|n0
(dz|y) :=

∞∑
r=n0+1

Lr|n0(dz|y), N+
|n0

(dz|y) :=
∞∑

r=n0

Lr|n0(dz|y).

(4.9)
♦

Note that the origin of a Hawkes subtree is a fixed location y ∈ E and not one of
the nodes of the Hawkes tree. In this regard, Hawkes subtrees are comparable
to cluster families: The originating node of the subtrees N|n0

− and N|n0
+ has to

be one of the nodes of the generation processes Ln|0. In fact, we will see below
that the subtree processes are only used in situations where y is the integration
variable with respect to Ln|0.

The next property is related to the recursive construction of Hawkes trees
and one could call it a self-similarity property. Loosely speaking, it says that
each branch of a Hawkes tree is again a complete Hawkes tree, conditioned on
the location of its root node.

4.14 Proposition (Self-similarity of Hawkes trees). Let the Hawkes tree
N and the subtrees N(·|y)y∈E be given as specified in Definition 4.11 and
Definition 4.13.

(1) Complete tree. For all n2 ≥ n1 one has:∫
E
Ln2|n1(dz|x)Ln1|0(dx) = Ln2|0(dz),∫
E
N+
|n1

(dz|x)Ln1|0(dx) =
∞∑

r=n1

Lr|0(dz).
(4.10)

(2) Subtree. For all n2 ≥ n1 ≥ n0 one has:∫
E
Ln2|n1(dz|x)Ln1|n0(dx|y) = Ln2|n0(dz|y),∫
E
N+
|n1

(dz|x)Ln1|n0(dx|y) =
∞∑

r=n1

Lr|n0(dz|y).
(4.11)
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(3) Self-similarity. For all n0 ≥ 0 one has:

N−|0 (dz) =
∫

E
N+
|1 (dz|x)K1(dx|0),

N−|n0
(dz|y) =

∫
E
N+
|n0+1(dz|x)Ln0+1|n0(dx|y).

(4.12)
♦

The formulas (4.10) show how the generation processes and subtrees of a com-
plete Hawkes tree are related to each other. Similarly, the formulas (4.11)
describe the same relations, but this time for subtrees. Finally, the formu-
las (4.12) show how higher order subtrees can be aggregated to obtain lower
order subtrees.

Now we come to the definition of a Hawkes process itself. Basically, a
Hawkes process consists of an immigration process such that each event, which
we call an immigrant, generates a Hawkes tree and the Hawkes process is then
the superposition of all these trees:

The original definition goes back to [Haw71], from where Hawkes processes
obtained their name. The following definition is more general and is mainly
motivated by [DVJ03], see Example 6.3(c), Example 6.4(c), Example 7.2(b)
and Example 8.3(c).

4.15 Definition (Univariate Hawkes process). Let H be a finite and G

be a locally-finite measure on E. Assume (Ω,F ,P) is a probability space such
that one can define the following objects:

(i) Let J be an inhomogeneous Poisson process on E with mean measure G.

Now consider the following cluster family directed by J :

(ii) Let N|0+(dz|x) be a family of Hawkes trees directed by the immigration
process J(dx).

The Hawkes process is now defined as:

N(dz) :=
∫

E
N+
|0 (dz|x)J(dx). ♦

A remark about the naming: There is not an established naming scheme for
the two measures G and H describing a Hawkes process. In the literature
one can find the following notation, depending on the context in which the
Hawkes process is used: The measure H is often called the offspring measure,
infectivity measure, decay measure or the transfer measure. The measure G
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is often called the immigration measure but in many applications one simply
takes the Lebesgue measure on E. Correspondingly, J is called the immigration
process and its members the immigrants.

As it was already the case for Hawkes trees, without further assumptions,
the Hawkes process as defined above is not necessarily a locally-finite point
process. But we will see later that if the Hawkes trees are well-defined then so
is the associated Hawkes process.

4.16 Remark (Construction of a Hawkes process). Let us clarify two
points concerning the above construction:

(1) Construction of a family of Hawkes trees. One can define the family
N|0

+(dz|x) of Hawkes trees in the same way as one defines a cluster
family: Start with a sequence (Ni+)i≥1 of iid point processes with the
same distribution as the Hawkes tree N|0+ with root node in 0 ∈ E. Then
construct the cluster family N|0+(dz|x) by shifting each of the generating
clusters Ni+ according to the points of the immigration process J(dx).
This leads to a family of Hawkes trees N|0+(dz|x)x∈E directed by J(dx).
See Definition 3.17 for the details of this construction.

(2) Definition in terms of exclusive Hawkes trees. The choice to use inclusive
Hawkes trees N+ is quite arbitrary. Indeed, one can also take the ex-
clusive Hawkes trees N− instead. This leads to the following equivalent
representation of a Hawkes process:

N(dz) := J(dz) +
∫

E
N−|0 (dz|x)J(dx). ♦

4.4 Multivariate Hawkes Processes

We now turn to the multivariate case. Unfortunately, the notation becomes
more cumbersome, as there are now d component processes and not only one.
This is the reason why we first considered only the univariate case.

4.17 Remark (Event spaces for Hawkes processes). In the univariate
case, the event space is simply E := Re. Recall that a general multivariate
event space is of the form E := {E1, . . . ,Ed}, see also Definition 2.2. But if
we want to define a multivariate Hawkes process, we cannot take a general
multivariate event space E. The reason is that nodes from one component are
used as center points of clusters in other components. Thus, all nodes have to
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lie in the same event space. This means that all component event spaces Ej
must coincide. ♦

From now on assume the multivariate event space is of the form E := {E, . . . ,E}.
The construction of a Hawkes process in the multivariate case follows along the
same lines as in the univariate case. In the next definition we repeat the same
construction as in Definition 4.11, but without the detailed description of the
single steps:

4.18 Definition (Multivariate Hawkes tree). Let (Ω,F ,P) be a proba-
bility space and E := {E, . . . ,E} be a multivariate event space with a multi-
variate family of finite transfer measures H.

(i) Fix some 1 ≤ m ≤ d. The root generation process L0|0 is defined as:

L
(j)
0|0:m(dz) := δjmδ0(dz),

for all 1 ≤ j ≤ d. Hence, the root node of the Hawkes tree lies at location
0 ∈ E in component m.

(ii) Let Kn|k
(j)(dz|x) be cluster family with a Poisson distribution with mean

measure Hjk,x, for all 1 ≤ j, k ≤ d. Define recursively for n ≥ 1 the
generation process of order n by:

L
(j)
n|0:m(dz) :=

d∑
k=1

∫
E
K

(j)
n|k(dz|x)L(k)

n−1|0:m(dx). (4.13)

(iii) Define the exclusive and inclusive Hawkes trees by:

N
−(j)
|0:m :=

∞∑
n=1

L
(j)
n|0:m and N

+(j)
|0:m :=

∞∑
n=0

L
(j)
n|0:m, (4.14)

for all 1 ≤ j ≤ d. ♦

Note that in the multivariate case, the origin of a Hawkes tree is determined
by the pair (m, y), where y is the root location and m is the root component
index.

As in the univariate case, we define also subtrees. To this end, one needs
to fix a triple (n0, k, y) indicating the origin of the subtree. The root node of
the subtree is then at location y, in component k, in generation n0.

4.19 Definition (Multivariate Hawkes subtree). Fix a generation n0 ≥
0, a component index 1 ≤ k ≤ d and a location y ∈ E.
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(i) Define the root generation Ln0|n0 of the subtree by:

L
(j)
n0|n0:k(dz|y) := δjkδy(dz).

(ii) Define the generation processes Ln|n0 recursively for (n− 1) ≥ n0 by:

L
(j)
n|n0:k(dz|y) :=

d∑
l=1

∫
E
K

(j)
n|l (dz|x)L(l)

n−1|n0:k(dx|y).

(iii) Define the exclusive and inclusive subtrees by:

N
−(j)
|n0:k :=

∞∑
n=n0+1

L
(j)
n|n0:k and N

+(j)
|n0:k :=

∞∑
n=n0

L
(j)
n|n0:k. ♦

The definition of a Hawkes process in the multivariate case is analogous to the
univariate one:

4.20 Definition (Multivariate Hawkes process). Let G be a vector of
locally-finite measures and H a matrix of finite measures on E. Assume (Ω,F ,P)
is a probability space on which are defined the following stochastic objects:

(i) Assume J (m) is a family of independent Poisson processes with mean
measures Gm, for 1 ≤ m ≤ d. The vector of measures G is called the
immigration intensities and the processes J (m) the immigration processes.

(ii) Assume N+(j)
|0:m (dz|x) is a cluster family of multivariate Hawkes trees gen-

erated by the transfer measures H and directed by the immigration pro-
cesses J (m)(dx), for all 1 ≤ j ≤ d.

(iii) The Hawkes process can now be defined based either on the inclusive
Hawkes trees N+ or based on the exclusive Hawkes trees N−. The two
equivalent representations are:

N (j)(dz) :=
d∑

m=1

∫
E
N

+(j)
|0:m (dz|x)J (m)(dx)

:= J (j)(dz) +
d∑

m=1

∫
E
N
−(j)
|0:m (dz|x)J (m)(dx),

(4.15)

where 1 ≤ j ≤ d. ♦
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Some of the formulas in the following sections will be quite cumbersome. We
therefore use a more compact notation, where we take the freedom to omit
indexes if they can be deduced from the context:

4.21 Notation (Compact version). Sometimes, the generation index does
not influence the distribution of a given process. As soon as we deal with
moment measures, only distributions are relevant, so that the additional index
specifying the generation does not matter at all. Moreover, it is often clear
from the context, which generation is meant. This justifies that we leave out
the generation index in some situations. We use the following two styles of
notation interchangeably:

K
(j)
k,y(dz) ≡ K(j)

n|k(dz|y), N
±(j)
k,y (dz) ≡ N±(j)

|n0:k(dz|y).

Let us clarify the notation we use for Hawkes trees and Hawkes processes,
and how one can easily distinguish between the two: Note that we distinguish
between exclusive Hawkes trees N− and inclusive Hawkes trees N+, but there
is only one version of a Hawkes process. Hence, if one of the symbols + or −
is present, then one knows it is a Hawkes tree and otherwise it is a Hawkes
process. ♦

The following corollary is a reformulation of results from the univariate case,
now adapted to the multivariate case:

4.22 Corollary (Self-similarity structure of trees). Consider a multivari-
ate Hawkes tree, as specified in Definition 4.18.

(1) Two consecutive generation processes are related by:

L
(j)
n|m(dz) =

d∑
k=1

∫
E
K

(j)
k,x(dz)L(k)

n−1|m(dx). (4.16)

(2) A subtree is related to the subtrees of its children by:

N−(j)
m,y (dz) =

d∑
k=1

∫
E
N

+(j)
k,x (dz)K(k)

m,y(dx). (4.17)
♦
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4.5 Some Intermediate Results

The lengthy expressions given below will appear repeatedly. We introduce some
placeholders for these expressions, so we can refer to them more easily later on.
In all what follows, we always assume A,B ⊆ E are two bounded sets.

4.23 Definition (Placeholders for product measures). Consider a mul-
tivariate Hawkes process and the associated generation processes and subtree
processes. For given 1 ≤ i, j ≤ d and A,B ⊆ E define the placeholders:

(1a) Υδδ:L :=
∞∑
n=0

δij

∫
E
δy(A)δy(B)L(i)

n|m(dy).

(1b) ΥδN−:L :=
∞∑
n=0

∫
E
δy(A)N−(j)

i,y (B)L(i)
n|m(dy).

(1c) ΥN−δ:L :=
∞∑
n=0

∫
E
δy(B)N−(i)

j,y (A)L(j)
n|m(dy).

(1d) ΥN+N+:[K]:L :=
∞∑
n=0

d∑
r,k,l=1

∫
E3
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)L(r)

n|m(dx).

(2a) Υδδ := δijmδ0(A)δ0(B).

(2b) Υδδ:N− := δij

∫
E
δy(A)δy(B)N−(i)

m (dy).

(2c) Υδ|N+:K := δimδ0(A)
d∑
k=1

∫
E
N

+(j)
k,y (B)K(k)

m (dy).

(2d) ΥN+:K|δ := δjmδ0(B)
d∑
k=1

∫
E
N

+(i)
k,y (A)K(k)

m (dy).

(2e) Υ(N+):K :=
d∑
k=1

∫
E
N

+(ij)
k,y (A×B)K(k)

m (dy).

(2f ) Υ[N+]:K :=
d∑
k=1

∫
E
N

+[ij]
k,y (A×B)K(k)

m (dy).
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(2g) ΥN+N+:[K] :=
d∑

k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
m (dy).

(3a) Υ(N+):J :=
d∑
k=1

∫
E
N

+(ij)
k,x (A×B)J (k)(dx).

(3b) Υ[N+]:J :=
d∑
k=1

∫
E
N

+[ij]
k,x (A×B)J (k)(dx).

(3c) ΥN+N+:[J] :=
d∑

k,l=1

∫
E2
N

+(i)
k,x1

(A)N+(j)
l,x2

(B)J [kl](dx).

(3d) Υδδ:(N+):J :=
d∑
k=1

∫
E3
δy1(A)δy2(B)δ(2)(ij,y)N+(ij)

k,x (dy)J (k)(dx). ♦

The following decompositions are used later to derive the second order moment
measures of a Hawkes process. In the case of a Hawkes tree there are actually
two representation, which we call the explicit and the implicit representation:

4.24 Lemma (Second order product measures). Consider a multivariate Hawkes
tree and assume it is well-defined. Then the second order product measures
can be decomposed as follows:

(1) The explicit representations for a Hawkes tree are given by:

N+(ij)
m (A×B) = Υδδ:L + ΥδN−:L + ΥN−δ:L + ΥN+N+:[K]:L,

N+[ij]
m (A×B) = ΥδN−:L + ΥN−δ:L + ΥN+N+:[K]:L.

(4.18)

(2) The implicit representations for a Hawkes tree are given by:

N+(ij)
m (A×B) = Υδδ + Υδ|N+:K + ΥN+:K|δ + Υ(N+):K + ΥN+N+:[K],

N+[ij]
m (A×B) = Υδ|N+:K + ΥN+:K|δ + Υ[N+]:K + ΥN+N+:[K]. (4.19)

(3) The representations for a Hawkes process are given by:

N (ij)(A×B) = Υ(N+):J + ΥN+N+:[J],

N [ij](A×B) = Υ[N+]:J + ΥN+N+:[J].
(4.20)
♦
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Proofs for Chapter 4

Recall that according to Notation 4.21, we do not always mention explicitly the
root node location and write Ln|0(dz) instead of Ln|0(dz|0), since the root node
is always at 0 ∈ E. The same applies for N|0(dz|0), so that we write N|0(dz)
instead.

Proof (Proposition 4.14): This is a direct consequence of Definition 4.13.

(1) Complete tree. Both statements are special cases of (4.11) if one takes
n0 := 0 and y := 0.

(2a) Subtree, first equation. Let n1 ≥ n0. The statement is shown by in-
duction over n2. Consider first the base case n2 = n1: By definition,
Ln2|n1(dz|x) = Ln1|n1(dz|x) = δx(dz), and since Ln1|n0 is a simple pro-
cess, one finds:∫

E
Ln2|n1(dz|x)Ln1|n0(dx|y) =

∫
E
δx(dz)Ln1|n0(dx|y)

= Ln1|n0(dz|y) = Ln2|n0(dz|y).

Now assume the statement has already been shown for some (n2−1) ≥ n1.
Then, due to Equation (4.8):∫

E
Ln2|n1(dz|x)Ln1|n0(dx|y)

=
∫

E

[∫
E
Kn2(dz|w)Ln2−1|n1(dw|x)

]
Ln1|n0(dx|y)

=
∫

E
Kn2(dz|w)

[∫
E
Ln2−1|n1|k(dw|x)Ln1|n0(dx|y)

]
.

If one now applies the induction assumption and then Equation (4.8), the
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induction step follows with:

(. . .) =
∫

E
Kn2(dz|w)Ln2−1|n0(dw|y) = Ln2|n0(dz|y).

(2b) Subtree, second equation. This follows due to (4.9) and (4.11) by:∫
E
N+
|n1

(dz|x)Ln1|n0(dx|y) =
∫

E

[ ∞∑
r=n1

Lr|n1(dz|x)
]
Ln1|n0(dx|y)

=
∞∑

r=n1

∫
E
Lr|n1(dz|x)Ln1|n0(dx|y) =

∞∑
r=n1

Lr|n0(dz|y).

(3a) Self-similarity, first equation. The first equation follows if one takes n0 :=
0 and y := 0 in the second part of (4.12).

(3b) Self-similarity, second equation. If one takes n1 := (n0 + 1) and n2 := r

in the first part of (4.11), one obtains:∫
E
Lr|n0+1(dz|x)Ln0+1|n0(dx|y) = Lr|n0(dz|y).

Now, according to the definition of N|n− and Nl|n
+, one has:

N−|n0
(dz|y) =

∞∑
r=n0+1

Lr|n0(dz|y)

=
∞∑

r=n0+1

[∫
E
Lr|n0+1(dz|x)Ln0+1|n0(dx|y)

]
=
∫

E

[ ∞∑
r=n0+1

Lr|n0+1(dz|x)
]
Ln0+1|n0(dx|y)

=
∫

E
N+
|n0+1(dz|x)Ln0+1|n0(dx|y).

Proof (Corollary 4.22): The first equation follows from (4.13), where the
compact Notation 4.21 is used. The second equation is the multivariate version
of the first part of (4.12), again in compact notation.
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Product Measures

The proof of Lemma 4.24 is given in three parts, each one corresponding to
one of the three parts of the lemma.

Explicit Representations for Hawkes Trees

In this section, we prove the first part of Lemma 4.24. Before we give the proof,
we illustrate what lies behind this decomposition. We sketch the proof only in
the univariate case:

4.25 Remark (Sketch of proof). In this sketch, we write expressions like
a ∈ N , with a slight abuse of notation. This is supposed to mean that a is a
point of N , i.e. N({a}) = 1. Fix two sets A,B ⊆ E and consider for n ≥ 0 the
following point process (in informal notation):

Jn(A×B) :=
{

(a× b) ∈ A×B : ∃y ∈ Ln : (a× b) ∈ N+(2)
y

}
.

Hence, Jn contains all pairs (a× b) that have a common ancestor in generation
n. The following three observations are important:

(i) The sequence Jn≥0 is decreasing. To see this, take some (a× b) ∈ Jn+1.
Then both nodes a, b have an common ancestor in generation n+ 1, say
y ∈ Ln+1. Clearly, every parent of y, say x ∈ Ln, is then also an ancestor
of both a and b. Thus (a× b) ∈ Jn, so that Jn+1 ≤ Jn.

(ii) The sequence Jn≥0 converges to zero: This is also clear, since the Hawkes
tree is well-defined, it has only finitely many nodes. Hence, there are only
finitely many generations, which implies that Jm = 0, for m large enough.

(iii) By definition, a Hawkes tree has only one root node, which is at location 0.
Since the root node process is L0, one has L0 = {0}, in informal notation.
Hence, all pairs (a, b) have the node y := 0 as a common ancestor. This
shows N+ = J0.

The above considerations imply that N+ can be written as the following tele-
scoping series:

N+(2)(A×B) =
∞∑
n=0

[
Jn(A×B)− Jn+1(A×B)

]
=
∞∑
n=0

Ĵn(A×B),
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where Ĵn := Jn − Jn+1, for n ≥ 0. Since Jn≥0 is a decreasing sequence, Ĵn is
indeed non-negative, i.e. a point process. If one now expresses Ĵn in explicit
form using the generation processes Ln and the subtree processes N−y and N+

y ,
the stated decomposition follows.

We will not do this here, since it is done in full generality in the proof below.
Note that in the actual proof, the processes Jn are defined more rigorously and
the intuitive statements given above are shown formally. Especially, we will
use again standard point process notation, which leads to more cumbersome
formulas but is certainly more precise. ♦

4.26 Lemma (Intermediate result for explicit decomposition). Consider a mul-
tivariate Hawkes process as specified in Definition 4.18.

(1) Auxiliary process. For n ≥ 0 define the processes:

J+(ij)
n (A×B) :=

d∑
k=1

∫
E
N

+(ij)
k,y (A×B)L(k)

n|m(dy), (4.21)

for A ⊆ Ei, B ⊆ Ej and all 1 ≤ i, j ≤ d. Since L0|m
(k)(dz) = δkmδ0(dz),

one has J0
+(ij) = Nm

+(ij).

One has now the following two decompositions:

(i) The first decomposition is:

J+(ij)
n (A×B) = δij

∫
E
δy(A)δy(B)L(i)

n|m(dy)

+
∫

E
δy(A)N−(j)

i,y (B)L(i)
n|m(dy) +

∫
E
δy(B)N−(i)

j,y (A)L(j)
n|m(dy)

+
d∑
k=1

∫
E
N
−(i)
k,y (A)N−(j)

k,y (B)L(k)
n|m(dy). (4.22)

(ii) The second decomposition is:

J
+(ij)
n+1 (A×B) =

d∑
r=1

∫
E
N−(i)
r,x (A)N−(j)

r,x (B)L(r)
n|m(dx)

−
d∑

r,k,l=1

∫
E3
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)L(r)

n|m(dx). (4.23)
♦
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Proof (Lemma 4.26): We will use the results from Corollary 4.22.

(i) Since N+(ij)(dy) = N+(i)(dy1)N+(j)(dy2), and due to (4.14), the first
decomposition follows with:

J+(ij)
n (A×B) =

d∑
k=1

∫
E
N

+(i)
k,y (A)N+(j)

k,y (B)L(k)
n|m(dy)

=
d∑
k=1

∫
E

[
δikδy(A) +N

−(i)
k,y (A)

][
δjkδy(B) +N

−(j)
k,y (B)

]
L

(k)
n|m(dy)

= δij

∫
E
δy(A)δy(B)L(i)

n|m(dy) +
∫

E
δy(A)N−(j)

i,y (B)L(i)
n|m(dy)

+
∫

E
δy(B)N−(i)

j,y (A)L(j)
n|m(dy)

+
d∑
k=1

∫
E
N
−(i)
k,y (A)N−(j)

k,y (B)L(k)
n|m(dy).

(ii) Due to (4.16), one has in a first step:

J
+(ij)
n+1 (A×B) =

d∑
k=1

∫
E
N

+(ij)
k,y (A×B)L(k)

n+1|m(dy)

=
d∑
k=1

∫
E3
N

+(ij)
k,y (A×B)

[ d∑
r=1

∫
E
K(k)
r,x (dy)L(r)

n|m(dx)
]

=
d∑

r,k=1

∫
E2
N

+(ij)
k,y (A×B)K(k)

r,x (dy)L(r)
n|m(dx).

Next apply Equation (2.16) and use that δ(2)(kl, y1y2) = 1 if and only if
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δ(2)(y1y2) = 1 and δ(2)(kl) = 1. Hence:

K(k)
r,x (dy1) = δ(2)(kk)K(k)

r,x (dy1) =
∫

E
δ(2)(kk, y1y2)K(kk)

r,x (dy1 × dy2)

=
∫

E

d∑
l=1

δ(2)(kl, y1y2)K(kl)
r,x (dy1 × dy2)

=
d∑

r,k=1

∫
E2
N

+(ij)
k,y1

(A×B)
[ d∑
l=1

∫
E
δ(2)(kl,y)K(kl)

r,x (dy)
]
L

(r)
n|m(dx)

=
d∑

r,k,l=1

∫
E3
δ(2)(kl,y)N+(i)

k,y1
(A)N+(j)

l,y2
(B)K(kl)

r,x (dy)L(r)
n|m(dx).

Since δ(2)(kl,y) = 1− δ[2](kl,y), it now follows that:

K(k)
r,x (dy1) =

d∑
r,k,l=1

∫
E3
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K(kl)
r,x (dy)L(r)

n|m(dx)

−
d∑

r,k,l=1

∫
E3
δ[2](kl,y)N+(i)

k,y1
(A)N+(j)

l,y2
(B)K(kl)

r,x (dy)L(r)
n|m(dx).

Now use that

K(kl)(dy) = K(k)(dy1)K(l)(dy2), δ[2](kl,y)K(kl)
r,x (dy) = K [kl]

r,x (dy),

so that the above expression becomes:

K(k)
r,x (dy1) =

d∑
r=1

∫
E

[ d∑
k=1

∫
E
N

+(i)
k,y1

(A)K(k)
r,x (dy1)

]
[ d∑
l=1

∫
E
N

+(j)
l,y2

(B)K(l)
r,x(dy2)

]
L

(r)
n|m(dx)

−
d∑

r,k,l=1

∫
E3
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)L(r)

n|m(dx).
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Due to (4.17), the claim follows now with:

K(k)
r,x (dy1) =

d∑
r=1

∫
E
N−(i)
r,x (A)N−(j)

r,x (B)L(r)
n|m(dx)

−
d∑

r,k,l=1

∫
E3
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)L(r)

n|m(dx).

Proof (Lemma 4.24): This is the first part of the proof of Lemma 4.24, see
also Remark 4.25 for a sketch.

(i) Ordinary product measure. Let Jn+(ij) be as in Equation (4.21) and define
for n ≥ 0:

Ĵ+(ij)
n := J+(ij)

n − J+(ij)
n+1 .

Now substitute (4.22) and (4.23), so that:

Ĵ+(ij)
n (A×B) = J+(ij)

n (A×B)− J+(ij)
n+1 (A×B)

= δij

∫
E
δy(A)δy(B)L(i)

n|m(dy) +
∫

E
δy(A)N−(j)

i,y (B)L(i)
n|m(dy)

+
∫

E
δy(B)N−(i)

j,y (A)L(j)
n|m(dy)

+
d∑

r,k,l=1

∫
E3
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)L(r)

n|m(dx).

This shows that Ĵn is indeed non-negative. Therefore, according to the
definition, Jn+(ij) is a decreasing sequence. Next, fix n ≥ 0 and write
Nm

+(ij) as a telescoping series:

N+(ij)
m = J

+(ij)
0 =

[
J

+(ij)
0 − J+(ij)

n

]
+ J+(ij)

n =
n−1∑
r=0

Ĵ+(ij)
r + J+(ij)

n .

Since the Hawkes tree is by assumption well-defined, all realizations are
locally-finite point configurations. Hence, the limit limn→∞ Jn

+(ij) van-
ishes on every bounded set, so that:

N+(ij)
m (A×B) = lim

n→∞

[n−1∑
r=0

Ĵ+(ij)
r − J+(ij)

n

]
=
∞∑
r=0

Ĵ+(ij)
r (A×B).
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The decomposition of the ordinary product measure follows if one replaces
Ĵn with the explicit expression from above.

(ii) Factorial product measure. Due to Equation (2.16) and Definition 4.18,
one has in a first step:∫

A×B
δ(2)(ij,y)N+(ij)

m (dy) =
∫

E2
1{A∩B}(y1)δ(2)(ij,y)N+(ij)

m (dy)

= δij

∫
E
1{A∩B}(y)N+(i)(dy) = δij

∫
E
δy(A)δy(B)N+(i)

m (dy)

= δij

∫
E
δy(A)δy(B)

[ ∞∑
n=0

L
(i)
n|m(dy)

]
= Υδδ:L.

Due to δ[2] = 1− δ(2), one finds for the factorial product measure:

N+[ij]
m (A×B) =

∫
A×B

δ[2](ij,y)N+(ij)
m (dy)

=
∫
A×B

N+(ij)
m (dy)−

∫
A×B

δ(2)(ij,y)N+(ij)
m (dy).

Now apply the first part of Equation (4.18) and replace the second integral
with Υδδ:L, so that:

N+[ij]
m (A×B) =

[
Υδδ:L+ΥδN−:L+ΥN−δ:L+ΥN+N+:[K]:L

]
−Υδδ:L.

Implicit Representations for Hawkes Trees

Proof (Lemma 4.24): This is the second part of the proof of Lemma 4.24.

(i) Ordinary product measure. Due to the relation between the inclusive and
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exclusive Hawkes tree and with Equation (4.17) one has:

N+(ij)
m (A×B) = N+(i)

m (A)N+(j)
m (B)

=
[
δimδ0(A) +

d∑
k=1

∫
E
N

+(j)
k,y1

(A)K(k)
m (dy1)

]
[
δjmδ0(B) +

d∑
l=1

∫
E
N

+(j)
l,y2

(B)K(l)
m (dy2)

]
= δijmδ0(A)δ0(B) + δimδ0(A)

d∑
l=1

∫
E
N

+(j)
l,y2

(B)K(l)
m (dy2)

+ δjmδ0(B)
d∑
k=1

∫
E
N

+(i)
k,y1

(A)K(k)
m (dy1)

+
d∑

k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K(kl)
m (dy).

One can now identify three of the placeholders from Definition 4.23, so
that the previous expression becomes:

N+(ij)
m (A×B) = Υδδ + Υδ|N+:K + ΥN+:K|δ

+
d∑

k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K(kl)
m (dy).

It remains to show that the last term is equal to Υ(N+):K + ΥN+N+:[K].
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But since 1 = δ(2) + δ[2], and with Equation (2.16), this follows from:

d∑
k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K(kl)
m (dy)

=
d∑

k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)δ(2)(kl,y)K(kl)
m (dy)

+
d∑

k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)δ[2](kl,y)K(kl)
m (dy)

=
d∑
k=1

∫
E
N

+(i)
k,y (A)N+(j)

k,y (B)K(k)
m (dy)

+
d∑

k,l=1

∫
E
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
m (dy)

= Υ(N+):K + ΥN+N+:[K].

(ii) Factorial product measure. According to the definition of the factorial
product measure, the fact that δ[2] = 1−δ(2), and due to Equation (2.16),
one has:

N+[ij]
m (A×B) =

∫
E2
δy1(A)δy2(B)δ[2](ij,y)N+(ij)

m (dy)

=
∫

E2
δy1(A)δy2(B)N+(ij)

m (dy)

−
∫

E2
δy1(A)δy2(B)δ(2)(ij,y)N+(ij)

m (dy)

= N+(ij)
m (A×B)− δij

∫
E
δy(A)δy(B)N+(i)

m (dy)

= N+(ij)
m (A×B)− δij

∫
E
δy(A)δy(B)

[
δimδ0(dy) +N−(i)

m (dy)
]
.

Next one can identify the placeholders Υδδ and Υδδ:N− , and due to first
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part of Equation (4.19), the above expression becomes:

N+[ij]
m (A×B) = N+(ij)

m (A×B)− δijmδ0(A)δ0(B)

− δij
∫

E
δy(A)δy(B)N−(i)

m (dy)

= N+(ij)
m (A×B)−Υδδ −Υδδ:N−

=
[
Υδδ + Υδ|N+:K + ΥN+:K|δ + Υ(N+):K + ΥN+N+:[K]

]
−Υδδ −Υδδ:N−

= Υδ|N+:K + ΥN+:K|δ + ΥN+N+:[K] + Υ(N+):K −Υδδ:N− .

(4.24)

Except for the last two terms, this decomposition coincides with the
claimed formula. Hence, we need to decompose the last term once more:
Due to (4.17) and (2.16), one obtains:

Υδδ:N− = δij

∫
E
δy(A)δy(B)N−(i)

m (dy)

= δij

∫
E
δy(A)δy(B)

[ d∑
k=1

∫
E
N

+(i)
k,x (dy)K(k)

m (dx)
]

=
d∑
k=1

∫
E

[
δij

∫
E
δy(A)δy(B)N+(i)

k,x (dy)
]
K(k)
m (dx)

=
d∑
k=1

∫
E

[∫
E2
δ(2)(ij,y)δy1(A)δy2(B)N+(ij)

k,x (dy)
]
K(k)
m (dx).

Using that δ(2)(ij,y) = 1− δ[2](ij,y), and according to the definition of
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the factorial product measure, the above expression becomes:

Υδδ:N− =
d∑
k=1

∫
E3

[
1− δ[2](ij,y)

]
δy1(A)δy2(B)N+(ij)

k,x (dy)K(k)
m (dx)

=
d∑
k=1

∫
E

[∫
E2
δy1(A)δy2(B)N+(ij)

k,x (dy)
]
K(k)
m (dx)

−
d∑
k=1

∫
E

[∫
E2
δ[2](ij,y)δy1(A)δy2(B)N+(ij)

k,x (dy)
]
K(k)
m (dx)

=
d∑
k=1

∫
E
N

+(ij)
k,x (A×B)K(k)

m (dx)−
d∑
k=1

∫
E
N

+[ij]
k,x (A×B)K(k)

m (dx)

= Υ(N+):K −Υ[N+]:K .

The claimed formula follows, if one substitutes this expression for Υδδ:N−

in (4.24).

Representations for Hawkes Processes

Proof (Lemma 4.24): This is the third part of the proof of Lemma 4.24.

(i) Ordinary product measure. According to (4.15), and with 1 = δ(2) + δ[2],
one finds:

N (ij)(A×B) = N (i)(A)N (j)(B)

=
[ d∑
k=1

∫
E
N

+(i)
k,x1

(A)J (k)(dx1)
][ d∑
l=1

∫
E
N

+(j)
l,x2

(B)J (l)(dx2)
]

=
d∑

k,l=1

∫
E2
N

+(i)
k,x1

(A)N+(j)
l,x2

(B)J (kl)(dx)

=
d∑

k,l=1

∫
E
N

+(i)
k,x1

(A)N+(j)
l,x2

(B)δ(2)(kl,x)J (kl)(dx)

+
d∑

k,l=1

∫
E2
N

+(i)
k,x1

(A)N+(j)
l,x2

(B)δ[2](kl,x)J (kl)(dx).
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The claim now follows, due to (2.16), with:

N (ij)(A×B) =
d∑
k=1

∫
E
N

+(ij)
k,x (A×B)J (k)(dx)

+
d∑

k,l=1

∫
E2
N

+(i)
k,x1

(A)N+(j)
l,x2

(B)J [kl](dx)

= Υ(N+):J + ΥN+N+:[J].

(ii) Factorial product measure. Due to 1− δ(2) = δ[2] and with the definition
of the factorial product measure, one finds:

Υ(N+):J −Υδδ:(N+):J =
d∑
k=1

∫
E3
δy1(A)δy2(B)N+(ij)

k,x (dy)J (k)(dx)

−
d∑
k=1

∫
E3
δy1(A)δy2(B)δ(2)(ij,y)N+(ij)

k,x (dy)J (k)(dx)

=
d∑
k=1

∫
E3
δy1(A)δy2(B)

[
1− δ(2)(ij,y)

]
N

+(ij)
k,x (dy)J (k)(dx)

=
d∑
k=1

∫
E3
δy1(A)δy2(B)N+[ij]

k,x (dy)J (k)(dx)

=
d∑
k=1

∫
E
N

+[ij]
k,x (A×B)J (k)(dx) = Υ[N+]:J . (4.25)
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Use once more δ[2] = 1− δ(2) and apply (4.15), so that:

N [ij](A×B) =
∫

E2
δy1(A)δy2(B)δ[2](ij,y)N (ij)(dy)

=
∫

E2
δy1(A)δy2(B)N (ij)(dy)

−
∫

E2
δy1(A)δy2(B)δ(2)(ij,y)N (ij)(dy)

= N (ij)(A×B)

−
d∑
k=1

∫
E3
δy1(A)δy2(B)δ(2)(ij,y)N+(ij)

k,x (dy)J (k)(dx)

= N (ij)(A×B)−Υδδ:(N+):J .

Now with the first part of Equation (4.20) and the intermediate result
from (4.25), the claim follows with:

N [ij](A×B) = Υ(N+):J + ΥN+N+:[J] −Υδδ:(N+):J

= Υ[N+]:J + ΥN+N+:[J].
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Chapter 5

Moment Measures

In this chapter, we calculate the first and second order moment measures of a
Hawkes process. From now on we always assume that the branching matrix
Q satisfies Spr(Q) < 1, see Definition 4.2. This condition implies that the
first order moment measures are finite, and therefore the Hawkes process is
well-defined.

5.1 Motivation and Objectives

Without a doubt, the calculation of the moment measures of a Hawkes process
is a tedious undertaking, even if it is basically a straight-forward procedure.
The first order moment measures can be obtained quite easily. The second
order moment measures require much more work and it gets already difficult
to present the calculation in a readable form. For the third order moment
measures, let alone higher order measures, one would quite likely hit the limit
of what can be presented in text form. This explains also why, to my knowledge,
only first and second order moment measures of Hawkes processes are discussed
in the literature.

As a very helpful reference for this chapter has served the book [DVJ03]. It
touches in several places second order moment measures of Hawkes processes,
see especially Exercise 5.5.7 and Example 8.3(c). Some of the results given
there are stated without proofs, the reason most likely being space considera-
tions. I will give in this chapter a complete derivation of the moment measures
of a Hawkes process of the first two orders. In Theorem 5.4, explicit and im-
plicit equations for the second order moment measures of a Hawkes process are
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presented. The corresponding reduced versions are given in Theorem 5.7.

Markov Renewal Equations. Let me explain in a few words the purpose
behind this chapter, as it may not be obvious what all these lengthy calculations
are useful for. The presentation given here deviates in a few points from the
one in [DVJ03]. I want to point out that there is a close connection between
moment measures of Hawkes processes and Markov renewal equations. I will
not make this connection explicit, since all results can be derived without using
the theory of Markov renewal equations. The similarity to renewal equations
however influences the presentation considerably. This can be seen from the
frequent use of convolutions. This also explains why I called the measure in
Definition 4.9 a cluster kernel. Using this notation, one can give quite compact,
explicit as well as implicit equations for the moment measures of a Hawkes
process.

The results in this chapter could be derived more easily using Fourier trans-
form techniques. I think however that the approach chosen has some advan-
tages: If one has become familiar with the notation, the results obtained usually
have quite intuitive interpretations. If nothing else, the approach chosen hope-
fully gives some insight into the stochastic dependence of the location of the
nodes of a Hawkes process. I sometimes added a few captions that should give
a hint of how the corresponding expression can be interpreted.

The ground work for this chapter has already been laid in Chapter 3 where
Poisson cluster processes have been discussed and corresponding formulas for
the moment measures have been derived. As already explained in the intro-
duction to the previous chapter, the trick is to find a suitable decomposition
such that these moment measure formulas can be applied. I gave such a de-
composition in Lemma 4.24 of the previous chapter.

Marked vs. Unmarked Hawkes Processes. All results are given for the
case of an unmarked, multivariate Hawkes process. The calculations for the
univariate and the multivariate case are very similar, and therefore I consider di-
rectly the more general situation of a multivariate Hawkes process. For marked
Hawkes processes however, the situation is different: In general, the given re-
sults can not be extended to marked Hawkes processes, not even in the uni-
variate case.

If one wanted to deal with marked Hawkes processes, basically the same
techniques could be used. The trick would be to consider an extended event
space, Ē say, and incorporate the marks in this space. One could then show
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that the marked Hawkes process is equivalent to an unmarked Hawkes process
on this extended event space Ē. So it seems that all results could be carried
over from the unmarked to the marked case. But there is one problem: On this
extended event space, the transfer measures matrices Hy∈Ē, see Definition 4.7,
are not any more shifted versions of each other. This implies that the calcula-
tions could not any more be done using convolutions and therefore one would
get stuck sooner or later with terms that cannot be simplified further.

This is the reason why I consider the case of unmarked Hawkes processes
only, since only in this case it is possible to carry out the calculations with the
convenient notation based on transfer measures matrices and cluster kernels.

Independent Marks. As an aside, if one has a marked Hawkes process
with iid marks, then the moment measure formulas can be derived trivially
from the formulas for the unmarked case, see Proposition 6.4.IV in [DVJ03] for
the univariate case and Example 8.3(d) for the multivariate case. These results
are true in general and not specific to Hawkes processes.

5.2 First Order Moment Measures

The first order moment measures of a Hawkes process are easy to calculate.
We will use the following formulas later for the derivation of the second order
moment measures:

5.1 Proposition (First order moment measures). Consider a multivari-
ate Hawkes process and its associated Hawkes trees and generation processes.

(1) Generation process. The first order moment measures of the generation
process of order n are given by:

M
(j)
n|m(dz) := E

[
L

(j)
n|m(dz)

]
= H∗njm(dz), M

(j)
n|m(E) = Qnjm. (5.1)

(2) Hawkes tree. The first order moment measures of the Hawkes tree are
given by:

M+(j)
m (dz) := E

[
N+(j)
m (dz)

]
= U+

jm(dz), M+(j)
m (E) = (1d −Q)−1

jm.

(5.2)

(3) Hawkes process. Assume that the immigration intensity G is a locally-
finite measure on Ed. Then one has for the first order moment measures
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of the Hawkes process:

M (j)(dz) =
[
U+ ∗G

]
j
(dz).

Now assume that G(dx) = ηdx, for a constant η ≥ 0, i.e. the immigra-
tion intensity is a multiple of the Lebesgue measure on Ed. Then:

M (j)(dz) =
[
(1d −Q)−1η

]
j
λE(dz). ♦

5.2 Notation (Moment measures of subtrees). In correspondence with
the notation used so far, let us introduce the following symbols for the moment
measures of subtrees:

M
+(j)
k,y (dz) := E

[
N

+(j)
k,y (dz)

]
, M

+(ij)
k,y (dz) := E

[
N

+(ij)
k,y (dz)

]
. (5.3)

We use the analog notation for the factorial instead of the ordinary moment
measure. ♦

The distribution of a Hawkes subtree is closely related to the distribution of
the complete tree. This leads to the following results concerning the first order
moment measures of a Hawkes subtree:

5.3 Corollary (First order moment measures of subtrees). Consider a
Hawkes tree N with associated subtrees Ny∈E. The moment measures of the
complete tree and its subtrees are related by:

M
+(j)
k,y (dz) = M

+(j)
k (dz − y), M

+(ij)
k,y (dz) = M

+(ij)
k (dz − y). (5.4)

Moreover, the following explicit expressions can be found:

M
+(j)
k,y (dz) = U+

jk,y(dz), M
+(j)
k,y (E) = (1d −Q)−1

jk . (5.5)
♦

5.3 Second Order Moment Measures

In Lemma 4.24, we have derived two decompositions of the product measures
of a Hawkes tree, which we have called the explicit and implicit version. Corre-
spondingly, there are two different representations for the second order moment
measures of a Hawkes tree:

172



5.4 Theorem (Second order moment measures). Assume the second or-
der moment measures are finite.

(1) Explicit representation for Hawkes trees. The second order moment mea-
sures are given by:

M+(ij)
m (A×B) =

d∑
r=1

∫
E
U+
ir,y(A)U+

jr,y(B)U+
rm(dy),

M+[ij]
m (A×B) =

∫
E
δy(A)U−ji,y(B)U+

im(dy) +
∫

E
δy(B)U−ij,y(A)U+

jm(dy)

+
d∑
r=1

∫
E
U−ir,y(A)U−jr,y(B)U+

rm(dy). (5.6)

Based on the self-similarity structure of a Hawkes tree, the second order mo-
ment measures of a Hawkes tree can be represented in a second way:

(2) Implicit representations for Hawkes trees. The second order moment mea-
sures of a Hawkes tree solve the following implicit equations:

M+(ij)
m (A×B) =

d∑
k=1

∫
E
M

+(ij)
k,y (A×B)Hkm(dy) + U+

im(A)U+
jm(B),

M+[ij]
m (A×B) =

d∑
k=1

∫
E
M

+[ij]
k,y (A×B)Hkm(dy) + δimδ0(A)U−jm(B)

+ δjmδ0(B)U−im(A) + U−im(A)U−jm(B). (5.7)

For a Hawkes process, not a tree, there is only one representation for the
moment measures:

(3) Representation for Hawkes processes. The second order moment measures

173



of a Hawkes process are given by:

M (ij)(A×B) =
d∑
k=1

∫
E
M

+(ij)
k,x (A×B)Gk(dx)

+
[ d∑
k=1

∫
E
U+
ik,x1

(A)Gk(dx1)
][ d∑
l=1

∫
E
U+
jl,x2

(B)Gl(dx2)
]
,

M [ij](A×B) =
d∑
k=1

∫
E
M

+[ij]
k,x (A×B)Gk(dx) (5.8)

+
[ d∑
k=1

∫
E
U+
ik,x1

(A)Gk(dx1)
][ d∑
l=1

∫
E
U+
jl,x2

(B)Gl(dx2)
]
. ♦

5.5 Remark (Second order moment measures). The following facts can
be observed concerning the second order moment measures:

(1) Implicit representation. Obviously, the implicit formulas given in the sec-
ond part above need first to be solved in order to obtain the second order
moment measures. This is also the reason why we call this the implicit
representation. One can easily check that the implicit and explicit rep-
resentations are equivalent. Even so, we mention the implicit versions
because they reflect nicely the self-similarity structure of a Hawkes tree.

(2) Non-symmetric expressions. Since the expressions are not symmetric in
the indexes i and j, they are not symmetric with respect to the sets A
and B. Also note that in the univariate case, the second order moment
measures are clearly symmetric.

(3) Non-translation invariant measures. The second order moment measures
are not translation-invariant. This is important, as we want to calculate
the reduced versions of these measures. ♦

5.4 Reduced Moment Measures

Since the second order moment measures are not translation-invariant, we can
only calculate the pseudo-reduced measures and not the regular reduced mea-
sures, see Definition 2.22 for the details.
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5.6 Remark (Univariate and multivariate case). Let us for a moment
go back to the theory of reduced measures from Chapter 2. We have seen that
a non-symmetric measure µ has d different reduced measures µ〈k〉, 1 ≤ k ≤ d,
and moreover the formulas tend to be more cumbersome.

Since the second order moment measures are only symmetric in the uni-
variate case, we restrict the following exposure to the univariate case. This
simplifies the calculation by a great deal, as we do not need to distinguish
between the different versions of reduced measures. Once one has found the
formulas for the moment measures in the univariate case, one could extend
them easily to the multivariate case. ♦

5.7 Theorem (Reduced second order moment measures). Assume the
second order moment measures are finite.

(1) Explicit representation for Hawkes trees. The pseudo-reduced second or-
der moment measures of a Hawkes tree are given by:

M̊+(2)(A) = (1−Q)−1

∫
E
U+(A+ w)U+(dw),

M̊+[2](A) = (1−Q)−1U−(−A) + (1−Q)−1U−(A)

+ (1−Q)−1

∫
E
U−(A+ w)U−(dw).

(2) Implicit representation for Hawkes trees. The pseudo-reduced second
order moment measures of a Hawkes tree solve the following implicit
equations:

M̊+(2)(A) = QM̊+(2)(A) +
∫

E
U+(A+ w)U+(dw),

M̊+[2](A) = QM̊+[2](A) + U−(−A) + U−(A) +
∫

E
U−(A+ w)U−(dw).

For Hawkes trees we have taken the pseudo-reduction of the moment measures,
but for Hawkes processes we calculate the regular reduction:

(3) Representation for Hawkes processes. Assume the immigration mea-
sureG is homogeneous, i.e. assume without loss of generality thatG(dx) =
dx. In this case, the reduced second order moment measures of a Hawkes
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process are:

M̆ (2)(A) = M̊+(2)(A) + (1d −Q)−2λE(A),

M̆ [2](A) = M̊+[2](A) + (1d −Q)−2λE(A). ♦

5.5 Some Intermediate Results

To better present the overall structure of the proofs, we formulate some of
the intermediate steps as separate Lemmas. Recall that the decompositions in
Lemma 4.24 are expressed in terms of the placeholders given in Definition 4.23.
In order to calculate the second order moment measures, one basically needs
to calculate the expectations of these placeholders:

5.8 Lemma (Expectation of placeholders). Let 1 ≤ i, j ≤ d and A,B ⊆ E. Be-
low we list the expectations of the placeholders from Definition 4.23. For later
use, we introduce again placeholders for the resulting expressions:

(1a) Υδδ:U+ := E[Υδδ:L] = δij

∫
E
δy(A)δy(B)U+

im(dy).

(1b) ΥδU−:U+ := E[ΥδN−:L] =
∫

E
δy(A)U−ji,y(B)U+

im(dy).

(1c) ΥU−δ:U+ := E[ΥN−δ:L] =
∫

E
δy(B)U−ij,y(A)U+

jm(dy).

(1d) ΥU−U−:U+ := E[ΥN+N+:[K]:L] =
d∑
r=1

∫
E
U−ir,y(A)U−jr,y(B)U+

rm(dy).

(1d) ΥU+U+:U+ :=
d∑
r=1

∫
E
U+
ir,y(A)U+

jr,y(B)U+
rm(dy).

(2a) ΥδU− := E[Υδ|N+:K ] = δimδ0(A)U−jm(B).

(2b) ΥU−δ := E[ΥN+:K|δ] = δjmδ0(B)U−im(A).
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(2c) Υ(M+):H := E[Υ(N+):K ] =
d∑
k=1

∫
E
M

+(ij)
k,y (A×B)Hkm(dy).

(2d) Υ[M+]:H := E[Υ[N+]:K ] =
d∑
k=1

∫
E
M

+[ij]
k,y (A×B)Hkm(dy).

(2e) ΥU−U− := E[ΥN+N+:[K]] = U−im(A)U−jm(B).

(2f ) ΥU+U+ := U+
im(A)U+

jm(B).

(3a) Υ(M+):G := E[Υ(N+):J ] =
d∑
k=1

∫
E
M

+(ij)
k,x (A×B)Gk(dx).

(3b) Υ[M+]:G := E[Υ[N+]:J ] =
d∑
k=1

∫
E
M

+[ij]
k,x (A×B)Gk(dx).

(3c) ΥU+:G|U+:G := E[ΥN+N+:[J]]

=
[ d∑
k=1

∫
E
U+
ik,x1

(A)Gk(dx1)
][ d∑
l=1

∫
E
U+
jl,x2

(B)Gl(dx2)
]
. ♦

As a next preparation for the proof of the moment formulas, we reformulate
Theorem 5.4 in terms of the placeholders given above:

5.9 Lemma (Reformulation of moment measure formulas). The following three
statements are equivalent to the three statements given in Theorem 5.4:

(1) Explicit representation for Hawkes trees. The two Equations (5.6) are
equivalent to:

M+(ij)
m (A×B) = ΥU+U+:U+ ,

M+[ij]
m (A×B) = ΥδU−:U+ + ΥU−δ:U+ + ΥU−U−:U+ .

(5.9)

(2) Implicit representations for Hawkes trees. The two Equations (5.7) are
equivalent to:

M+(ij)
m (A×B) = Υ(M+):H + ΥU+U+ ,

M+[ij]
m (A×B) = Υ[M+]:H + ΥδU− + ΥU−δ + ΥU−U− .

(5.10)

177



(3) Representation for Hawkes processes. The two Equations (5.8) are equiv-
alent to:

M (ij)(A×B) = Υ(M+):G + ΥU+:G|U+:G,

M [ij](A×B) = Υ[M+]:G + ΥU+:G|U+:G.
(5.11)
♦

In order to calculate the reduced moment measures one basically needs to
calculate the reduced versions of the corresponding placeholders. One should
be careful not to confuse the regular reduction µ̆ and the pseudo-reduction µ̊

of a measure µ in the next lemma:

5.10 Lemma (Reductions of placeholders). Let 1 ≤ i, j ≤ d and A,B ⊆ E. The
pseudo-reductions of the placeholders from Lemma 5.8 are given by:

(1a) Υ̊δU−:U+ + Υ̊U−δ:U+ = (1−Q)−1U−(−A) + (1−Q)−1U−(A).

(1b) Υ̊U−U−:U+ = (1−Q)−1

∫
E
U−(A+ w)U−(dw).

(1c) Υ̊U+U+:U+ = (1−Q)−1

∫
E
U+(A+ w)U+(dw).

(2a) Υ̊δU− + Υ̊U−δ = U−(−A) + U−(A).

(2b) Υ̊(M+):H = QM̊+(2)(A).

(2c) Υ̊[M+]:H = QM̊+[2](A).

(2d) Υ̊U−U− =
∫

E
U−(A+ w)U−(dw).

(2e) Υ̊U+U+ =
∫

E
U+(A+ w)U+(dw).

For the next three placeholders, assume that the immigration intensity is the
Lebesgue measure G(dx) = dx. This time, the regular reduction and not the
pseudo-reduction is calculated:
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(3a) Ῠ(M+):G = M̊+(2)(A).

(3b) Ῠ[M+]:G = M̊+[2](A).

(3c) ῨU+:G|U+:G = (1d −Q)−2λE(A). ♦
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Proofs for Chapter 5

The proofs of this chapter are quite long. They are therefore sometimes split
up in several parts.

First Order Moment Measures

Proof (Proposition 5.1): This is the first part of the proof, concerning the
first order moment measure of a generation process.

(i) Moment measure. We show this by induction: The base case n = 0
follows from:

M
(j)
0|m(dz) = E

[
L

(j)
0|m(dz)

]
= E

[
δjmδ0(dz)

]
= δjmδ0(dz) = H∗0jm(dz).

Now assume Mn−1|m
(j) = H∗n−1

jm has already been shown for (n−1) ≥ 0.
Then, due to (4.16), one finds:

M
(j)
n|m(dz) = E

[
L

(j)
n|m(dz)

]
= E

[ d∑
k=1

∫
E
K

(j)
k,y(dz)L(k)

n−1|m(dy)
]
.

Note that the first order moment measures of Ky are given by the family
Hy. Since K and L are conditionally independent, the first part of (3.9)
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applies. Together with the induction assumption, this shows that:

M
(j)
n|m(dz) =

d∑
k=1

∫
E

E
[
K

(j)
k,y(dz)

]
E
[
L

(k)
n−1|m(dy)

]
=

d∑
k=1

∫
E
Hjk,y(dz)M (k)

n−1|m(dy) =
d∑
k=1

∫
E
Hjk,y(dz)H∗n−1

km (dy)

=
d∑
k=1

[
Hjk ∗H∗n−1

km

]
(dz) = H∗njm(dz).

(ii) Total mass. We show this by induction: The base case n = 0 follows
from:

M
(j)
0|m(E) = H∗0jm(E) = δjmδ0(E) = δjm = Q0

jm.

Now assume H∗n−1
jm (E) = Qn−1

jm has already been shown for (n− 1) ≥ 0.
Due to the first part of (5.1), and the fact that Hjk,y(E) = Hjk(E− y) =
Hjk(E), the statement follows with:

M
(j)
n|m(E) = H∗njm(E) =

d∑
k=1

∫
E
Hjk,y(E)H∗n−1

km (dy)

=
d∑
k=1

∫
E
Hjk(E)H∗n−1

km (dy) =
d∑
k=1

Hjk(E)
∫

E
H∗n−1
km (dy)

=
d∑
k=1

[
Hjk(E)H∗n−1

km (E)
]

=
d∑
k=1

QjkQ
n−1
km = Qnjm.

Proof (Proposition 5.1): This is second part of the proof, concerning the
first order moment measure of a Hawkes tree.

(i) Moment measure. First apply Equations (4.14) and (5.1). Using the
definition of U+, see Equation (4.1), the claim follows with:

M+(j)
m (dz) = E

[
N+(j)
m (dz)

]
= E

[ ∞∑
n=0

L
(j)
n|m(dz)

]
=
∞∑
n=0

M
(j)
n|m(dz)

=
∞∑
n=0

H∗njm(dz) =
[ ∞∑
n=0

H∗n
]
jm

(dz) = U+
jm(dz).
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(ii) Total mass. Since by assumption Spr(Q) < 1, one can apply Equa-
tion (4.5), which shows that U+ is finite with total mass (1d − Q)−1.
Hence:

M+(j)
m (E) = U+

jm(E) =
[
(1d −Q)−1

]
jm

= (1d −Q)−1
jm.

Proof (Proposition 5.1): This is third part of the proof, concerning the
first order moment measure of a Hawkes process.

(i) General immigration intensity. Use first Equation (4.15), and then, since
N+ and J are conditionally independent, apply the first part of Equa-
tion (3.9). Finally, due to Equation (5.2), the claim follows with:

M (j)(dz) = E
[
N (j)(dz)

]
= E

[ d∑
m=1

∫
E
N+(j)
m,x (dz)J (m)(dx)

]
=

d∑
m=1

∫
E

E
[
N+(j)
m,x (dz)

]
E
[
J (m)(dx)

]
=

d∑
m=1

∫
E
M+(j)
m,x (dz)Gm(dx)

=
d∑

m=1

∫
E
U+
jm,x(dz)Gm(dx) =

[
U+ ∗G

]
j
(dz).

(ii) Stationary immigration intensity. Assume now that the immigration in-
tensity is Gm(dx) = ηmdx, for constants ηm ≥ 0, 1 ≤ m ≤ d. Since
Ujm,x

+(dz) = Ujm
+(dz − x), and with the above calculation, one has:

M (j)(A) =
d∑

m=1

∫
E
U+
jm,x(A)ηmdx =

d∑
m=1

ηm

∫
E
U+
jm(A− x)dx. (5.12)

The integral can be rewritten as:∫
E
U+
jm(A− x)dx =

∫
E

[∫
E
δz(A)U+

jm(dz − x)
]
dx

=
∫

E

[∫
E
δz+x(A)U+

jm(dz)
]
dx =

∫
E

[∫
E
δx(A− z)dx

]
U+
jm(dz)

=
∫

E

[∫
E
δx(A)dx

]
U+
jm(dz) =

∫
E
λE(A)U+

jm(dz).

Substituting this into (5.12) and then applying the first part of (4.5), one
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obtains, as claimed:

M (j)(A) =
d∑

m=1

ηm

∫
E
λE(A)U+

jm(dz) =
d∑

m=1

ηm

[∫
E
U+
jm(dz)

]
λE(A)

=
[ d∑
m=1

(1d −Q)−1
jmηm

]
λE(A) =

[
(1d −Q)−1η

]
j
λE(A).

Proof (Corollary 5.3): By construction, the subtree Nk,y with root node
at y ∈ E has the same distribution as the complete tree Nk, except that the
subtree Nk,y is shifted by the amount y.

(i) The moment measures Mk,y and Mk are related in the same way as Nk,y
and Nk are. Hence, Mk,y coincides with Mk, except that it is shifted by
y, as claimed.

(ii) From the first part, and due to (5.2), one knows that:

M
+(j)
k,y (dz) = M

+(j)
k (dz − y) = U+

jk(dz − y) = U+
jk,y(dz).

Since U+
jk,y(dz) = U+

jk(dz − y), the second equality follows with:

M
+(j)
k,y (E) = U+

jk,y(E) = U+
jk(E− y) = U+

jk(E) = (1d −Q)−1
jk .

Second Order Moment Measures

Proof (Lemma 5.8): This is the first part of the proof, concerning the ex-
plicit representation.

(1a) Relationship between an event and its duplicate. Since E[Ln|m(i)] = H∗nim,
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see Equation (5.1), the statement follows with:

E
[
Υδδ:L(A×B)

]
= E

[ ∞∑
n=0

δij

∫
E
δy(A)δy(B)L(i)

n|m(dy)
]

=
∞∑
n=0

δij

∫
E
δy(A)δy(B) E

[
L

(i)
n|m(dy)

]
= δij

∫
E
δy(A)δy(B)

[ ∞∑
n=0

H∗nim(dy)
]

= δij

∫
E
δy(A)δy(B)U+

im(dy) = Υδδ:U+(A×B).

(1b) Relationship between an event and its descendants. Since N− and L are
conditionally independent, the first part of Equation (3.9) applies. Thus:

E
[
ΥδN−:L(A×B)

]
= E

[ ∞∑
n=0

∫
E
δy(A)N−(j)

i,y (B)L(i)
n|m(dy)

]
=
∞∑
n=0

∫
E
δy(A) E

[
N
−(j)
i,y (B)

]
E
[
L

(i)
n|m(dy)

]
.

Next use the first part of Equation (5.1) and the first part of Equa-
tion (5.5), but for the exclusive instead of the inclusive version of the
subtree. The statement now follows with:

(. . .) =
∫

E
δy(A)U−ji,y(B)

[ ∞∑
n=0

H∗nim(dy)
]

=
∫

E
δy(A)U−ji,y(B)U+

im(dy) = ΥδU−:U+(A×B).

(1c) Relationship between the descendants and their ancestor. The calculation
for ΥδN−:L is almost the same as for ΥN−δ:L. Therefore:

E
[
ΥN−δ:L(A×B)

]
=
∫

E
δy(B)U−ij,y(A)U+

jm(dy) = ΥU−δ:U+(A×B).

(1d) Relationship between the two families of two different children of an event.
Since the inner integral below is conditionally independent of L, one can
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apply the first part of Equation (3.8), so that:

E
[
ΥN+N+:[K]:L(A×B)

]
= E

[ ∞∑
n=0

d∑
r,k,l=1

∫
E

[∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)

]
L

(r)
n|m(dx)

]

=
∞∑
n=0

d∑
r,k,l=1

∫
E

E
[∫

E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)

]
E
[
L

(r)
n|m(dx)

]
.

From (5.1) one knows that E[Ln|m(r)] = H∗nrm, and this shows that:

∞∑
n=0

E
[
L

(r)
n|m(dx)

]
=
∞∑
n=0

H∗nrm(dx) = U+
rm(dx).

Substituting this in the expression above gives:

E
[
ΥN+N+:[K]:L(A×B)

]
(5.13)

=
d∑
r=1

∫
E

d∑
k,l=1

E
[∫

E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)

]
U+
rm(dx).

Note that the integral below is of the form
∫
Ky1Ky2L

[2](dy), so that the
second part of Equation (3.9) applies. Moreover, since Kr,x is a Poisson
process, one knows from the multivariate version of Equation (3.11) that
E
[
K [kl](dy)

]
= E

[
K(k)(dy1)

]
E
[
K(l)(dy2)

]
. Together, this shows that:

d∑
k,l=1

E
[∫

E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)

]

=
d∑
k,l

∫
E2

E
[
N

+(i)
k,y1

(A)
]
E
[
N

+(j)
l,y2

(B)
]
E
[
K [kl]
r,x (dy)

]
=

d∑
k,l=1

∫
E2

E
[
N

+(i)
k,y1

(A)
]
E
[
N

+(j)
l,y2

(B)
]
E
[
K(k)
r,x (dy1)

]
E
[
K(l)
r,x(dy2)

]
.

Now use that E[Kr,x
(j)] = Hjr,x, and due to Equation (5.5), one knows
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that E[Nm,y+(j)] = Ujm,y
+. Together with Equation (4.4), this yields:

d∑
k,l=1

E
[∫

E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
r,x (dy)

]

=
d∑

k,l=1

∫
E2
U+
ik,y1

(A)U+
jl,y2

(B)Hkr,x(dy1)Hlr,x(dy2)

=
[ d∑
k=1

∫
E
U+
ik,y1

(A)Hkr,x(dy1)
][ d∑
l=1

∫
E
U+
jl,y2

(B)Hlr,x(dy2)
]

= U−ir,x(A)U−jr,x(B).

After substituting this in (5.13), the statement follows with:

E
[
ΥN+N+:[K]:L(A×B)

]
=

d∑
r=1

∫
E
U−ir,x(A)U−jr,x(B)U+

rm(dx)

= ΥU−U−:U+(A×B).

Proof (Lemma 5.8): This is the second part of the proof, concerning the
implicit representation.

(2a) Relationship between the root node and the family of its children. Since
N+
y and K are conditionally independent, one can apply the first part

of Equation (3.9). Due to Equation (5.5), one knows that E[Nk,y+(j)] =
U+
jk,y and since K is a Poisson process with mean measure family H, one

has E[Km
(k)] = Hkm. Together with Equation (4.4), the claim follows

with:

E
[
Υδ|N+:K(A×B)

]
= E

[
δimδ0(A)

d∑
k=1

∫
E
N

+(j)
k,y (B)K(k)

m (dy)
]

= δimδ0(A)
d∑
k=1

∫
E

E
[
N

+(j)
k,y (B)

]
E
[
K(k)
m (dy)

]
= δimδ0(A)

d∑
k=1

∫
E
U+
jk,y(B)Hkm(dy)

= δimδ0(A)
[
U+ ∗H

]
jm

(B) = δimδ0(A)U−jm(B) = ΥδU−(A×B).

(2b) Relationship between the family of the children and their generating root
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node. The calculation for ΥN+:K|δ is almost the same as for Υδ|N+:K , so
that:

E
[
ΥN+:K|δ(A×B)

]
= E

[
δjmδ0(B)

d∑
k=1

∫
E
N

+(i)
k,y (A)K(k)

m (dy)
]

= δjmδ0(B)U−im(A) = ΥU−δ(A×B).

(2c) Relationship among family members including duplicates of the children
of the root node. Since the integral below is of the form

∫
NyK(dy), and

Ny and K are conditionally independent, one can apply the first part of
Equation (3.8), so that:

E
[
Υ(N+):K(A×B)

]
= E

[∫
E
N

+(ij)
k,y (A×B)K(k)

m (dy)
]

=
∫

E
E
[
N

+(ij)
k,y (A×B)

]
E
[
K(k)
m (dy)

]
.

Now due to Equation (5.3), and using the fact that E[Km
(k)] = Hkm, one

finds for the above expression:

(. . .) =
d∑
k=1

∫
E
M

+(ij)
k,y (A×B)Hkm(dy) = Υ(M+):H(A×B).

(2d) Relationship among different family members of the children of the root
node. This calculation is almost identical to the previous one, except that
there is a factorial instead of an ordinary product measure. Therefore:

E
[
Υ[N+]:K(A×B)

]
= E

[∫
E
N

+[ij]
k,y (A×B)K(k)

m (dy)
]

=
d∑
k=1

∫
E
M

+[ij]
k,y (A×B)Hkm(dy) = Υ[M+]:H(A×B).

(2e) Relationship between two families of two different children of the root
node. Since the integral below is of the form

∫
Ny1Ny2K

[kl](dy) and Ny
and K are conditionally independent, the second part of Equation (3.9)
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applies, and one has:

E
[
ΥN+N+:[K](A×B)

]
= E

[ d∑
k,l=1

∫
E2
N

+(i)
k,y1

(A)N+(j)
l,y2

(B)K [kl]
m (dy)

]

=
d∑

k,l=1

∫
E2

E
[
N

+(i)
k,y1

(A)
]
E
[
N

+(j)
l,y2

(B)
]
E
[
K [kl]
m (dy)

]
.

The first two expectations are given in (5.5). Moreover, since K is a Pois-
son process, one has E

[
K [kl](dy)

]
= E

[
Hkm(dy1)

]
E
[
Hlm(dy2)

]
. Finally

apply two times Equation (4.4), and the claim follows with:

E
[
ΥN+N+:[K](A×B)

]
=

d∑
k,l=1

∫
E2
U+
ik,y1

(A)U+
jl,y2

(B)Hkm(dy1)Hlm(dy2)

=
[ d∑
k=1

∫
E
U+
ik,y1

(A)Hkm(dy1)
][ d∑
l=1

∫
E
U+
jl,y2

(B)Hlm(dy2)
]

= U−im(A)U−jm(B) = ΥU−U−(A×B).

Proof (Lemma 5.8): This is the third part of the proof, concerning the rep-
resentation for a Hawkes process.

(3a) Relationship between any two events inside the same tree. First apply the
first part of Equation (3.8) and then use that J is a Poisson process with
mean measure family G. The statement follows with:

E
[
Υ(N+):J

]
= E

[ d∑
k=1

∫
E
N

+(ij)
k,x (A×B)J (k)(dx)

]
=

d∑
k=1

∫
E

E
[
N

+(ij)
k,x (A×B)

]
E
[
J (k)(dx)

]
=

d∑
k=1

∫
E
M

+(ij)
k,x (A×B)Gk(dx) = Υ(M+):G.

(3b) Relationship between two different events inside the same tree. The cal-
culation for Υ[N+]:J is almost the same as for Υ(N+):J , except that there
is a factorial instead of an ordinary product measure.
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(3c) Relationship between two events from two different trees. Due to the
second part of Equation (3.9), one gets in a first step:

E
[
ΥN+N+:[J]

]
= E

[ d∑
k,l=1

∫
E2
N

+(i)
k,x1

(A)N+(j)
l,x2

(B)J [kl](dx)
]

=
d∑

k,l=1

∫
E2

E
[
N

+(i)
k,x1

(A)
]
E
[
N

+(j)
l,x2

(B)
]
E
[
J [kl](dx)

]
.

Since E
[
J [kl](dx)

]
= MJ

[kl](dx) = Gk(dx1)Gl(dx2), and due to Equa-
tion (5.5), the claim now follows with:

E
[
ΥN+N+:[J]

]
=

d∑
k,l=1

∫
E2
M

+(i)
k,x1

(A)M+(j)
l,x2

(B)Gk(dx1)Gl(dx2)

=
[ d∑
k=1

∫
E
U+
ik,x1

(A)Gk(dx1)
][ d∑
l=1

∫
E
U+
jl,x2

(B)Gl(dx2)
]

= ΥU+:G|U+:G.

Proof (Theorem 5.4): This is the first part of the proof, concerning the
explicit representation.

(i) Ordinary moment measure. Start with the decomposition of N+
m given

in (4.18) and take expectations on both sides. Then, due to Lemma 5.8,
one finds:

M+(ij)
m (A×B) = E

[
Υδδ:L + ΥδN−:L + ΥN−δ:L + ΥN+N+:[K]:L

]
= Υδδ:U+ + ΥδU−:U+ + ΥU−δ:U+ + ΥU−U−:U+ .

Replace the placeholders with their definitions, and apply (4.3) twice, so
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that:

M+(ij)
m (A×B) = δij

∫
E
δy(A)δy(B)U+

im(dy) +
∫

E
δy(A)U−ji,y(B)U+

im(dy)

+
∫

E
δy(B)U−ij,y(A)U+

jm(dy) +
d∑
r=1

∫
E
U−ir,y(A)U−jr,y(B)U+

rm(dy)

=
d∑
r=1

∫
E

[
δirδy(A) + U−ir,y(A)

][
δjrδy(B) + U−jr,y(B)

]
U+
rm(dy)

=
d∑
r=1

∫
E
U+
ir,y(A)U+

jr,y(B)U+
rm(dy) = ΥU+U+:U+ .

(ii) Factorial moment measure. This time start with the second decomposi-
tion given in (4.18). Take expectations on both sides and use Lemma 5.8,
so that:

M+[ij]
m (A×B) = E

[
ΥδN−:L + ΥN−δ:L + ΥN+N+:[K]:L

]
= ΥδU−:U+ + ΥU−δ:U+ + ΥU−U−:U+ .

After substitution of the placeholders, the claimed formula follows.

Proof (Theorem 5.4): This is the second part of the proof, concerning the
implicit representation.

(i) Ordinary moment measure. Start with the decomposition of N+(ij) from
the first part of (4.19) and take expectations on both sides. Due to
Lemma 5.8, one has in a first step:

M+(ij)
m (A×B) = E

[
Υδδ + Υδ|N+:K + ΥN+:K|δ + Υ(N+):K + ΥN+N+:[K]

]
= Υδδ + ΥδU− + ΥU−δ + Υ(M+):H + ΥU−U−

= Υ(M+):H +
[
Υδδ + ΥδU− + ΥU−δ + ΥU−U−

]
.

It remains to show that the last four terms are equal to ΥU+U+ . But
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with the help of (4.3), this follows from:

Υδδ + ΥδU− + ΥU−δ + ΥU−U−

= δijmδ0(A)δ0(B) + δimδ0(A)U−jm(B)

+ δjmδ0(B)U−im(A) + U−im(A)U−jm(B)

=
[
δimδ0(A) + U−jm(A)

][
δjmδ0(B) + U−im(B)

]
= U+

im(A)U+
jm(B) = ΥU+U+ .

In summary one has:

M+(ij)
m (A×B) = Υ(M+):H + ΥU+U+ .

The claim follows if one substitutes the definitions of the placeholders.

(ii) Factorial moment measure. This time start with the second part of (4.19)
and again take expectations on both sides. Due to Lemma 5.8, one finds:

M+[ij]
m (A×B) = E

[
Υδ|N+:K + ΥN+:K|δ + Υ[N+]:K + ΥN+N+:[K]

]
= ΥδU− + ΥU−δ + Υ[M+]:H + ΥU−U− .

The claim follows if one substitutes the definitions of the placeholders.

Proof (Theorem 5.4): This is the third part of the proof, concerning a
Hawkes process.

(i) Ordinary moment measure. Start with the first part of (4.20) and take ex-
pectations on both sides. The claimed formula follows due to Lemma 5.8
with:

M (ij)(A×B) = E
[
Υ(N+):J + ΥN+N+:[J]

]
= Υ(M+):G + ΥU+:G|U+:G.

(ii) Factorial moment measure. This time take the second part of (4.20).
Again due to Lemma 5.8, the claim follows with:

M [ij](A×B) = E
[
Υ[N+]:J + ΥN+N+:[J]

]
= Υ[M+]:G + ΥU+:G|U+:G.

Proof (Lemma 5.9): There is nothing to prove. We simply need to substitute
the placeholders from Lemma 5.8 and check whether we indeed get the claimed
equations.
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Reduced Moment Measures

From now on we will restrict ourselves to univariate Hawkes processes, see also
Remark 5.6. Recall the Definition 2.22 of the pseudo-reduction µ̊ of a finite,
symmetric measure µ on En.

Proof (Lemma 5.10): This is the first part of the proof, concerning the ex-
plicit representation.

(1a) Relationship between an event and its descendants. Note that neither
ΥδU−:U+ nor ΥU−δ:U+ is symmetric, but the sum of the two is symmetric.
If we treat the pair as a unit, we do not have to distinguish between
different versions of reduced measures. Now consider first the expression:∫

E
ΥδU−:U+(A+ w × dw) =

∫
E2
δy(A+ w)U−y (dw)U+(dy)

=
∫

E

[∫
E
δy(A+ w)U−y (dw)

]
U+(dy) =

∫
E

[∫
y−A

U−y (dw)
]
U+(dy).

Due to (4.5), one obtains the intermediate result:∫
E

ΥδU−:U+(A+ w × dw) =
∫

E
U−y (y −A)U+(dy)

=
∫

E
U−(−A)U+(dy) = U−(−A)U+(E) = (1−Q)−1U−(−A).

In the same way, one obtains a second intermediate result:∫
E

ΥU−δ:U+(A+ w × dw) =
∫

E2
δy(dw)U−y (A+ w)U+(dy)

=
∫

E

[∫
E
δy(dw)U−y (A+ w)

]
U+(dy) =

∫
E
U−y (A+ y)U+(dy)

=
∫

E
U−(A)U+(dy) = U−(A)U+(E) = (1−Q)−1U−(A).

Due to these two equations, one now finds:

[
Υ̊δU−:U+ + Υ̊U−δ:U+

]
(A) =

∫
E

[
ΥδU−:U+ + ΥU−δ:U+

]
(A+ w × dw)

=
∫

E
ΥδU−:U+(A+ w × dw) +

∫
E

ΥU−δ:U+(A+ w × dw)

= (1−Q)−1U−(−A) + (1−Q)−1U−(A).
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(1b) Relationship between events not related to each other in direct line. Recall
that by definition U+

y (dw) = U+(dw − y). Due to (4.5) one knows that
U+(E) = (1−Q)−1, so that:

Υ̊U−U−:U+(A) =
∫

E
ΥU−U−:U+(A+ w × dw)

=
∫

E2
U−y (A+ w)U−y (dw)U+(dy)

=
∫

E

[∫
E
U−(A+ w − y)U−(dw − y)

]
U+(dy)

=
∫

E

[∫
E
U−(A+ w)U−(dw)

]
U+(dy)

=
[∫

E
U+(dy)

][∫
E
U−(A+ w)U−(dw)

]
= (1−Q)−1

∫
E
U−(A+ w)U−(dw).

(1c) Relationship between any event and all others, including its duplicate.
The measure ΥU+U+:U+ can be treated in the same way as ΥU−U−:U+

and a similar calculation shows that:

Υ̊U+U+:U+(A) =
∫

E2
U+
y (A+ w)U+

y (dw)U+(dy)

= (1−Q)−1

∫
E
U+(A+ w)U+(dw).

Proof (Lemma 5.10): This is the second part of the proof, concerning the
implicit representation.

(2a) Relationship between the root node and the family of its children, in both
directions. We prefer again to treat ΥδU−:U+ and ΥU−δ:U+ as a unit,
since the sum of the two measures is symmetric. Hence:

[
Υ̊δU− + Υ̊U−δ

]
(A) =

∫
E

ΥδU−(A+ w × dw) +
∫

E
ΥU−δ(A+ w × dw)

=
∫

E
δ0(A+ w)U−(dw) +

∫
E
δ0(dw)U−(A+ w)

= U−(−A) + U−(A).

(2b) Relationship among family members including duplicates of the children
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of the root node. From (5.4) one knows that My
+(2)(dz) = M+(2)(dz−y),

and due to (4.2) one has H(E) = Q, so that:

Υ̊(M+):H(A) =
∫

E
Υ(M+):H(A+ w × dw)

=
∫

E

[∫
E
M+(2)
y (A+ w × dw)

]
H(dy)

=
∫

E

[∫
E
M+(2)(A+ w − y × dw − y)

]
H(dy)

=
∫

E

[∫
E
M+(2)(A+ w × dw)

]
H(dy)

=
∫

E
M̊+(2)(A)H(dy) = QM̊+(2)(A).

(2c) Relationship among different family members of the children of the root
node. This is the same calculation as above, except for a factorial instead
of an ordinary product moment measure:

Υ̊[M+]:H(A) =
∫

E2
M+[2]
y (A+ w × dw)H(dy) = QM̊+[2](A).

(2d) Relationship between two families of two different children of the root
node, the root node exclusive. This expression cannot be simplified much
and one obtains:

Υ̊U−U−(A) =
∫

E
ΥU−U−(A+ w × dw) =

∫
E
U−(A+ w)U−(dw).

(2e) Relationship between two families of two different children of the root
node, the root node inclusive. This follows in the same way as the previous
statement.

Proof (Lemma 5.10): This is the third part of the proof, concerning a Hawkes
process. Recall that now G(dx) = dx.

(3a) Relationship between any two events inside the same tree. First note that:

Υ(M+):G(dz) =
∫

E
M+(2)
x (dz)dx =

∫
E
M+(2)(dz − x)dx.
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This integral is of the same form as in (2.8), so that:

Ῠ(M+):G = M̊+(2)(A).

(3b) Relationship between two different events inside the same tree. This is
almost the same calculation, except for a factorial instead of an ordinary
moment measure.

(3c) Relationship between two events from two different trees. Note in a first
step that:

ΥU+:G|U+:G(dz) =
[∫

E
U+
x1

(dz1)dx1

][∫
E
U+
x2

(dz2)dx2

]
=

2∏
r=1

[∫
E
U+
xr (dzr)dxr

]
=

2∏
r=1

[∫
E
U+(dzr − xr)dxr

]
.

This expression is of the same form as in (2.9), which shows that:

ῨU+:G|U+:G =
[
U+(E)

]2
λE(A) = (1d −Q)−2λE(A).

Proof (Theorem 5.7): Most of the required calculation has already been
done in Lemma 5.10.

(1) Explicit representation for Hawkes trees. Take the decompositions from
Equation (5.9) and apply the pseudo-reduction operation on both sides:

M̊+(2)(A) = Υ̊U+U+:U+ ,

M̊+[2](A) = Υ̊δU−:U+ + Υ̊U−δ:U+ + Υ̊U−U−:U+ .

Now replace the placeholders with the expressions given in Lemma 5.10.

(2) Implicit representation for Hawkes trees. This time take the decompo-
sitions from Equation (5.10). Then take again the pseudo-reduction on
both sides, so that:

M̊+(2)(A) = Υ̊(M+):H + Υ̊U+U+ ,

M̊+[2](A) = Υ̊[M+]:H + Υ̊δU− + Υ̊U−δ + Υ̊U−U− .

Again substitute the placeholders with the explicit expressions.

(3) Representation for Hawkes processes. Take the univariate versions of
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Equation (5.11) and then take the regular reduction on both sides:

M̆ (2)(A) = Ῠ(M+):G + ῨU+:G|U+:G,

M̆ [2](A) = Ῠ[M+]:G + ῨU+:G|U+:G.

Now replace the placeholders with their definitions.
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Chapter 6

Intensities

This chapter is more or less independent of the previous ones and the state-
ments and proofs are self-contained. It should therefore be possible to read
this chapter independently of the others. As the title suggests, the main topic
concerns intensity processes and how they can be used to define Hawkes pro-
cesses. Although we have already defined Hawkes processes, it is well worth
giving an alternative definition using intensity processes. Because one can only
reasonably define intensity processes if there is some sort of time dimension,
we will assume from now on that the event space is E := R.

6.1 Motivation and Objectives

The results given in this chapter are based strongly on a series of papers written
by Brémaud, Massoulié and Torrisi. Notably, these are the papers [BM96],
[Mas98], [BNT02] and [Tor02], check also the bibliography. Additionally, some
standard results are taken from the book [DVJ03].

The knowledgable reader might not find too much that is surprising in the
following lines. In some sense, the material presented here is even less general
than the results given in the aforementioned papers. But I would still like to
point out a few differences and additions to the existing literature and also
explain the reason for my approach.

In writing this chapter, it was my intent to work out a few of the concepts
more clearly. By breaking up some of the original proofs, the main ideas can
hopefully be better appreciated.
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Point Configuration Spaces. In dealing with point processes, one is quickly
confronted with the abstract definitions of point configuration spaces. I wanted
to use an approach as simple as possible, but still powerful enough so that all
the given results can be stated rigourously and in full generality.

Usually, the predictable σ-algebra is defined based on continuous or left-
continuous processes. But there is the well-known fact that if a filtration is
generated by a point process, an alternative, direct and intuitive characteri-
zation of predictable processes exists. The price one has to pay is that this
convenient characterization of predictability brakes down one if one would take
a general filtration.

I decided to define from the beginning on a canonical probability space. It
is used all over, with a few exceptions, as the underlying probability space.
This has a few advantages: Because the driving process is a point process,
the natural filtration on the canonical probability space inherits all the nice
properties mentioned above. This allows to give more compact, and more
intuitively clear definitions, see e.g. the definition of an intensity process in
Definition 6.9.

The canonical probability space is actually a point configurations space,
which implies that elementary events ω are point configurations. To empha-
size the special nature of the elementary events from the canonical probability
space, I call them $, instead of ω. But more importantly, $ can and will be
interpreted as the underlying driving process. It is then a matter of choosing
an appropriate canonical probability space, which is rich enough, so that all
required stochastic objects can be constructed.

The mentioned characterization of predictable processes can be found in
the book [Bré81]. The papers [Jac75] and [Las93] have also served as a rich,
informative source.

Intensities Processes. I make a distinction between the standard intensity
function, see Definition 6.9, and what I call the intrinsic intensity function, see
Definition 6.13. Basically, an intrinsic intensity function γ is a function such
that λ(t|$) = γ(t|N), where N is a point process and λ is the intensity process
of N .

I will usually explicitly mention the driving process and write λ(t|$) for
the intensity process, instead of only λ(t). For this reason, I often speak about
a function and not a process, although this is a matter of taste. It has also
the advantage that the notation becomes more regular: The intensity functions
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λ(t|$) are then of the same form as the intrinsic intensity functions, which are
of the form γ(t|ν).

Note that in a general setting, the intensity process λ and the intrinsic
intensity function γ would be quite different objects. But the chosen approach
hopefully helps to shed some light onto the similarities. One should also point
out that intrinsic intensity functions are not specific to Hawkes processes.

The definition of Hawkes processes is split up into two parts: Firstly, the
definition of the intrinsic Hawkes intensity function is given. For simplicity, I
call it the Hawkes intensity function, see Definition 6.19. Secondly, a Hawkes
process is defined as the solution of a thinning problem. Basically, a Hawkes
process is a point process N which satisfies the implicit Equation (6.9), see
Definition 6.33.

The definition in two steps has a couple of advantages: It is possible to
look at the Hawkes intensity function separately, without even having to use
a probability space. Indeed, the probability measure is only introduced in
Definition 6.28, when the thinning part of the definition comes into play.

This approach differentiates between a first deterministic part and a second
probabilistic part of the definition. It should also be noted that the thinning
construction, and especially the implicit Equation (6.9), are not specific to
Hawkes processes. Indeed, a quite general class of point processes could be
defined in the same way.

Initial States and Continuations. In [BNT02] and [Tor02], the rate of
convergence of a transient, i.e. non-stationary, Hawkes process with some initial
condition is analyzed. In these papers, the idea of a what I call a continuation
appears indirectly. A formal definition is given in Definition 6.35. Note that an
initial state, given in Definition 6.34, is a deterministic point configuration, and
this deviates slightly from what is called a initial condition in the references
above.

I give a precise definition of an initial condition and its continuation for three
reasons: Firstly, the definition of a continuation parallels the one of a strong
solution very nicely and a couple of almost trivial, but interesting relations
between the two concepts can be found. Secondly, the proof of uniqueness of a
strong solution, Theorem 6.55, actually relies on uniqueness of continuations,
Corollary 6.51. By introducing the notion of a continuation, this step of the
proof can be examined separately. Thirdly, if one wants to analyze the speed
of convergence to equilibrium, continuations are what one essentially is looking
at, see the coupling result in Proposition 6.52
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As can be seen in the paper [Tor02], if one deals with Hawkes processes,
a lot of calculations involve convolutions of matrix-valued functions. By using
convolution notation consequently, quite compact results can be obtained, as
e.g. in Equation (6.12). I also wanted to avoid complications in another way:
Whenever possible, I prefer an explicit equation to an implicit equation. E.g.
the first moment measure densities in Propositions 6.47 and 6.48 are derived
without the need to solve a Markov renewal equation.

Hazard Rates. For the proof of Proposition 6.43, a result concerning condi-
tional extinction probabilities is required. The starting point was Lemma 1 in
[BM96]. But my aim was to avoid the use of the cutoff operator that appears
in there. Instead I introduced what I call a hazard rate, see Definition 6.38,
to clarify the idea behind this result, which goes back to [Jac75]. Clearly, the
notion of a hazard rate is not new, but the definitions I am aware of are not as
general as the one used in Definition 6.38 and Corollary 6.40.

6.2 Canonical Spaces

To explain the concepts more clearly, we restrict ourselves to the situation
where we have a univariate point process without marks, i.e. a point process
with values in N (R). The general case is similar.

6.1 Definition (Restrictions and projections). LetD ⊆ R and fix a point
configuration ν ∈ N (R). The restriction νD, which is a point configuration in
N (D), is

νD(dt) := ν(dt ∩D).

The projection πD is the function

πD : N (R)→ N0, πD(ν) := ν(D). ♦

The following definition is equivalent to Definition 3.1, but it should help clar-
ify the role of the projection operator πD. Recall that we stick to the following
convention: Whenever we say we take a subset of R, we actually mean a mea-
surable subset.

6.2 Definition (Canonical filtration). On the space N (R), define the σ-
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algebras:

F := σ
{
πD, D ⊆ R

}
and Ft := σ

{
πD, D ⊆ (−∞, t]

}
,

for t ∈ R. The associated filtration is F• := (Ft)t∈R.

Consider now the space N× R. The predictable σ-algebra P is defined on
this space and given by

P := σ
{

Ft ⊗B(t,∞), t ∈ R
}
.

Clearly, P is a sub-σ-algebra of F⊗B(R). ♦

More about the Borel-σ-algebra on a measure space and the associated Pro-
horov metric on the space of finite measures can be found in Appendix 2 of
[DVJ03]. Compare also the above definition with Proposition A2.5.IV in this
reference.

For the following definition, take a space Y of the form Y := X×R+, where
X := Re is a mark space. The space Y has the interpretation of an extended
mark space, where R+ is used in for a thinning procedure given later.

Whenever we speak about a canonical probability space we refer to a prob-
ability space of the following form:

6.3 Definition (Canonical measurable space). The canonical measurable
space consists of the triple (N,F,F•), where one has the sample space N :=
NY(R), the associated σ-algebra F, and the filtration F•.

The elements of the sample space N are denoted by $, that is

$ : N→ N, $ := idN, $ 7→ $. ♦

One can think of $ as a driving process, from which other processes are con-
structed: The symbol $ is used to remind one that the sample events are not
arbitrary sample events but point configurations.

The idea of a driving process can be found e.g. in section 3 of [BM96].
Because the driving process is all that is needed in the following exposition,
we decided to introduce at this point the canonical probability space. This
simplifies some of the definitions given later.

In the definition above, no associated probability measure P is specified. P
will be defined later, when the thinning procedure becomes relevant.
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6.4 Definition (Processes on canonical space). Assume N is a canonical
measurable space with driving process $.

(1) Stochastic process on canonical space. Assume H is a function of the form

H : N× R→ R.

Then H is called a stochastic process if it is measurable with respect to
the σ-algebra F ⊗B(R). It is called predictable if it is measurable with
respect to the σ-algebra P.

The following is equivalent to the above definition: A stochastic pro-
cess H on N is predictable if and only if for all t ∈ R:

Ht is Ft−-measurable.

(2) Point process on canonical space. A function N of the form

N : N→ N (R)

is called a point process if it is measurable with respect to the canonical
σ-algebras on the two spaces. ♦

Note that we do not define predictable point processes, as such processes would
rarely make sense.

The above definition of predictability is not the usual one found in the lit-
erature. For the standard definition see e.g. Definition D4 in Section I.3 of
[Bré81]. But here we are working with the canonical filtration, which is the
internal history of a point process. The predictable σ-algebra generated by
the internal history has especially nice properties. As one of the convenient
consequences, predictable processes can be directly characterized, see e.g. Ex-
ercise E4 in Section III.2 or Theorem T34 in Section A2.3 of [Bré81].

We use this specific definition of predictability, since it is less abstract and
more intuitive. The price one pays is that it cannot be generalized to arbitrary
filtrations. See also Section 1 of [Las93], where the same characterization is
used.

Next, we consider a filtration generated by some point process, i.e. not
necessarily the canonical filtration. Note that this filtration is therefore still an
internal history. We extend the notions of measurability and predictability to
this case, but make use of the previous definition for the case of a canonical
filtration. This leads to the following compact definition:
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6.5 Definition (Induced filtration). Let N be a point process defined on
the canonical probability space N with values in N (R).

(1) Induced σ-algebra. The σ-algebra FN and the element FN
t of the filtra-

tion FN
• are given by

FN := N−1(F) and FN
t := N−1(Ft).

We define the induced filtration by FN
• := (FN

t )t∈R.

(2) Induced predictable σ-algebra. The predictable σ-algebra PN is defined
on the space N× R and is a sub-σ-algebra of the form

PN := σ
{

FN
t ⊗B(t,∞), t ∈ R

}
, PN ⊆ FN ⊗B(R). ♦

Since the two notions canonical and induced will appear often, let us clar-
ify their exact meaning: We use the term canonical whenever we want to
emphasize that the measurability is considered with respect to the canonical
measurable space N and its driving process $.

Similarly, we use the term induced to emphasize the measurability is con-
sidered with respect to the filtration induced by some point process N .

6.6 Definition (Induced measurability). Let N be a canonical probability
space equipped with a point process N with values in some point configuration
space N (R). As explained, N generates the induced filtration FN

• .

Let X be an arbitrary stochastic process on N. Instead of canonical mea-
surable and canonical predictable, one defines the following extension of these
two notions. We say that X is:

N -measurable ⇔ FN ⊗B(R)-measurable,

N -predictable ⇔ PN -measurable. ♦

Based on this definition, one obtains the following characterization: Assume L
is a point process on N. Then L is N -measurable, or even N -predictable, if and
only if the associated counting process

H(t) := N
(
(−∞, t]

)
, where t ∈ R,

is N -measurable, or even N -predictable.

So far, only univariate point processes without marks were treated. But the
definitions above extend easily to the case of multivariate and marked point
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processes. We demonstrate this for the predictable σ-algebra PN ; the idea
should then become clear:

6.7 Remark (Predictable σ-algebra, revisited). Consider some canon-
ical probability space N.

(1) Marked point process. Let N be a marked point process with values in
NX(R), for some univariate mark space X.

The idea is to consider the projections NR×X(dt) := N(dt ×X), for
arbitrary sets X ⊆ X. The induced predictable σ-algebra PN is then
defined as

PN := σ
{

PK , for all K := NR×X with X ⊆ X
}
.

(2) Multivariate point process. Let N be a multivariate marked point process
with values in NX(R), where X is some multivariate mark space. In the
same way as above, the induced predicable σ-algebra PN is given by

PN := σ
{

PK , for all K := N (j) with 1 ≤ j ≤ d
}
.

N (j) denotes the j-th component process of N . ♦

6.8 Definition (Intensity kernel). Let NY(R) be a canonical probability
space with driving process $. Assume λ(dt|$) is a family of measures on R,
indexed with a parameter $ from the space NY(R).

We say λ is a locally-finite, predictable sub-probability kernel, or in short an
intensity kernel, if λ satisfies the following three conditions:

(1) It is a kernel in the sense that

(1) λ(·|$) is a locally-finite measure on R, for all $ ∈ NY(R).

(2) $ 7→ λ(E|$) is an F-measurable function, for all E ⊆ R.

(2) It is a sub-probability, i.e. it satisfies

λ({t}|$) ≤ 1, for all t ∈ R and $ ∈ NY(R).

(3) It is predictable with respect to the filtration F• in the following sense:
For all t ∈ R it holds that

λ(E|$) = λ(E|$(−∞,t)), for all E ⊆ (−∞, t]. ♦
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The above definition is essentially taken from Section 1 of [Las93], but some
additional conditions have been left out, as we are exclusively dealing with
locally-finite, simple point processes.

We have given the definition of an intensity kernel only in the case of a
univariate point process. In the same way as before, the extension to the
general case is trivial.

6.9 Definition (Intensity measure). Let N := NY(R) be a univariate ca-
nonical measurable space with driving process $ and let X be some mark
space.

(1) Base measure. Let µX be a measure on X. If µX is used in the sense given
below, then it is called a base measure.

(2) Density of intensity kernel. Let λ(dt× dx|$) be an intensity kernel and
assume we can decompose it according to

λ(dt× dx|$) = λ(t, x|$)µX(dx)dt = f(x|t,$)λ(t|$)µX(dx)dt. (6.1)

Then λ(t, x|$) is called the time-space-intensity function, λ(t|$) the
time-intensity function and f(x|t,$) the conditional mark density.

(3) Normalizing condition. If λ(dt × dx|$) has a decomposition as above,
it is obviously not unique. Hence, we always assume that f(x|t,$) is a
probability density in the parameter x, i.e. we assume for all t and $:∫

X
f(x|t,$)µX(dx) = 1. ♦

6.10 Definition (Intensity process). Let N := NY(R) be a univariate ca-
nonical measurable space with driving process $ and let N be a point process
with values in NX(R), for some mark space X.

Assume λ is an intensity kernel with decomposition as in Equation (6.1).
Then the following statements are equivalent:

(1) For all t ∈ R and E ⊆ (t,∞), X ⊆ X it holds that

E
[∫
E×X

N(dt× dx)
∣∣∣ Ft]

= E
[∫
E×X

f(x|t,$)λ(t|$)µX(dx)dt
∣∣∣ Ft].
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(2) For all non-negative, predictable processes H on N it holds that

E
[∫

R×X
H(t, x|$)N(dt× dx)

]
= E

[∫
R×X

H(t, x|$)f(x|t,$)λ(t|$)µX(dx)dt
]
. ♦

The above definition of the intensity process can be found e.g. in Section 1
of [BM96]; see also Definition D7 in Section II.3 of [Bré81]. Actually, what
we have defined above is the so-called predictable intensity process. We will
only deal with predictable intensity processes, but this is not a restriction at
all. It follows from Theorem T13 in Section II.4 of [Bré81] that whenever one
has a general intensity process one can find a predictable intensity process.
Moreover, predictable intensity processes are unique in some specific sense, see
Theorem T12 in Section II.4 of [Bré81].

So far, we have only considered the univariate case. But again, the multi-
variate case is a trivial extension. Let us clarify the relation between univariate
and multivariate intensity functions: Recall that a multivariate point process
can be identified with a univariate one in the following sense: If one has a pair
y ≡ (j, x), for some x ∈ Xj , one can consider it as an element of the combined
mark space y ∈ X.

6.11 Remark (Multivariate intensity function). Let X ≡ {X1, . . .Xd}
be a multivariate mark space.

Assume λj(t, x|$), for 1 ≤ j ≤ d, is a family of univariate intensity functions
as in Equation (6.1) with decomposition

λj(t, x|$) = fj(x|t,$)λj(t|$), (6.2)

so that fj(x|t,$) are probability densities on Xj . We say λj=1 ...,d is a multivari-
ate family of intensity functions if the characterizing property in Definition 6.10
is satisfied for each component j = 1, . . . , d.

It is possible to interpret this family of intensity functions in two ways:
Either as vector-valued intensity function on the multivariate mark space, or
as a scalar-valued intensity function on the combined mark space X.

To perform this transition, we need some notation:

(1) Change from multivariate to univariate representation. Assume we start
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with a multivariate family of intensity functions λj(t, x|$). Then define:

λ∗(t|$) :=
d∑
j=1

λj(t|$), f∗(j, x|t,$) := p∗(j|t,$)fj(x|t,$),

p∗(j|t,$) :=
λj(t|$)
λ∗(t|$)

, λ∗(t, j, x|$) := f∗(j, x|t,$)λ∗(t|$).

As a consequence, we have the properties

d∑
j=1

p∗(j|t,$) = 1,
d∑
j=1

∫
Xj
f∗(j, x|t,$)µXj (dx) = 1.

It is then clear that λ∗(t, j, x|$) = λj(t, x|$) and λ∗(t, j, x|$) is an
intensity function on R×X with decomposition

λ∗(t, j, x|$) = f∗(j, x|t,$)λ∗(t|$).

For the other direction:

(2) Change from univariate to multivariate representation. Let λ∗(t, j, x|$)
be an intensity function on the space R×X with decomposition

λ∗(t, j, x|$) = f∗(j, x|t,$)λ∗(t|$).

Then define for all 1 ≤ j ≤ d the functions

p∗(j|t,$) :=
∫

Xj
f∗(j, x|t,$)µXj (dx), λj(t|$) := p∗(j|t,$)λ∗(t|$),

fj(x|t,$) :=
f∗(j, x|t,$)
p∗(j|t,$)

, λj(t, x|$) := fj(x|t,$)λj(t|$).

One can now easily check that λj(t, x|$) = λ∗(t, j, x|$) and λj is again
a multivariate family of intensity functions on the spaces R× Xj . ♦

The above expressions have some nice interpretations: λ∗(t|$) is the infinites-
imal probability that an event occurs in the time interval (t, t+ dt], p∗(j|t,$)
is the probability that the event lies in component j, given that there is an
event at time t, and f∗(j, x|t,$) is the probability density that the event is in
component j at location x, given that there is an event at time t.
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As a summary, we have shown that a multivariate family of intensity func-
tions can be considered also as a univariate intensity function, but one has to
take a higher dimensional mark space.

6.12 Definition (Classification of multivariate intensity functions).

Fix a multivariate mark space X and let λj(t, x|$) be a multivariate family of
intensity functions which can be decomposed according to Equation (6.2).

(1) λ is stationary or translation-covariant if it satisfies the two equivalent
conditions:

λj(t, x|$) = λj(t+ h, x|$ + h) or λj(t+ h, x|$) = λj(t, x|$ − h),

for all t, h ∈ R, x ∈ Xj , $ ∈ N and all 1 ≤ j ≤ d. In this case, define:

fj(x|$) := fj(x|h,$ + h) and λj($) := λj(h|$ + h),

for all t ∈ R, where h ∈ R can be chosen arbitrarily. Then the general
form of a stationary intensity function is:

λj(t, x|$) = fj(x|$ − t)λj($ − t).

The next property describes whether the mark distribution is independent of
the past of the process. We distinguish between a weaker and a stronger ver-
sion:

(2) λ has componentwise unpredictable marks if the densities fj(x|t,$) are
independent of $. In this case, the intensity function is of the general
form:

λj(t, x|$) = fj(x|t)λj(t|$).

For the next definition, recall the definition of p∗ given in Remark 6.11:

(3) λ has completely unpredictable marks, if both, fj(x|t,$) and p∗(j|t,$),
are independent of $. In this case, the general form of the intensity
function is:

λj(t, x|$) = fj(x|t)p∗(j|t)λ∗(t|$) = f∗(j, x|t)λ∗(t|$).

Note that in a univariate setting the above two definitions collapse and one
simply speaks about unpredictable marks. ♦
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The terminology for unpredictable mark distributions has been taken from Def-
inition 6.4.III in [DVJ03]. The definition given above is slightly more general,
since it distinguishes between componentwise and completely unpredictable
marks.

Often, the intensity function depends only on the past of the associated
point process. In this case, it is more convenient to consider the so-called in-
trinsic intensity function. We treat only the univariate case, since the extension
to the multivariate case is trivial.

6.13 Definition (Intrinsic intensity function). Let N := NX×R+(R) be
a univariate canonical measurable space and assume N a point process with
values in NX(R). Further, let λ be the predictable intensity function of N and
assume there exists an PX(R)-predictable function γ(t|ν), for ν ∈ NX(R), such
that

λ(t|$) = γ(t|N),

for all t ∈ R. Then γ is called the intrinsic intensity function of N . ♦

As far as we know, the notion of an intrinsic intensity function is not used in
the literature. But we think the idea behind it justifies this name.

For the next definition, the time character of the event space E is irrelevant.
This means that E = Re can again be a general event space and does not need
to be R.

We define the Janossy measure only in the case of a point process with
values in N (E). The general case is then very similar.

6.14 Definition (Local Janossy measure). Let (Ω,F ,P) be a probability
space and N a point process with values in N (E).

(1) Local Janossy measure. For an integer n ≥ 1 and a bounded set D ⊆ E,
the local Janossy measure on D of order n is defined as:

JnD(A) := E
[
N [n](A), N(D) = n

]
, for sets A ⊆ Dn.

Here N [n] denotes the factorial product measure of order n, see also
Definition 2.36. By convention, the Janossy measure of order 0 is defined
as J0

D := P
[
N(D) = 0

]
.

(2) Local Janossy density. Assume that all local Janossy measures JnD are
absolutely continuous with respect to the Lebesgue measure on En. The
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densities are then denoted by jnD(x1, . . . , xn) and are called the local
Janossy densities. That is

JnD(dx1 × . . .× dxn) = jnD(x1, . . . , xn) dx1 · . . . · dxn. ♦

Note that there is also a global Janossy measure. But for our purposes, we will
only need the definition of the local version.

The following notion of exclusion probabilities and the relation to Janossy
measures can be found in Section 5.3, specifically Equation (5.3.11), in [DVJ03]:
Recall the definition of the falling factorial r[n], given in Definition 3.8.

6.15 Definition (Exclusion probabilities). Let D ⊆ E be a bounded set
and {A1, . . . , Am} a partition of D. Moreover, let n be an integer with decom-
position n =

∑m
k=1 nk, for nk ≥ 0. Then:

JnD
(
An1

1 × . . .×Anmm
)

= E
[
N(A1)[n1] · . . . ·N(Am)[nm], N(D) = n

]
= n1! · . . . · nm! · P

[
N(A1) = n1, . . . , N(Am) = nm

]
. ♦

The following expression for the likelihood function can be found in Defini-
tion 7.1.II and Proposition 7.3.III in [DVJ03]:

6.16 Definition (Likelihood function). Fix a multivariate mark space X
and consider the associated point configuration space NX(R). Moreover, let
D ⊆ R be a bounded set. Let {γj ; 1 ≤ j ≤ d} be a multivariate family of
intrinsic intensity functions. The likelihood function LD relative to D is

logLD(ν) =
d∑
j=1

∫
D×Xj

log γj(t, x|ν)ν(j)(dt× dx)

−
d∑
j=1

∫
D×Xj

γj(t, x|ν)µXj (dx)dt,

(6.3)

where ν ∈ NX(R). ♦

Note that the likelihood function is a local property and depends on the set D,
in the same way as the local Janossy density does.

It turns out that the likelihood function and the Janossy densities are very
closely related. Again for simplicity, we only consider the case where ν ∈ N (D)
is a univariate point configuration without marks:
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6.17 Remark (Connection with Janossy densities). Assume ν(D) =: n
and enumerate these n events with the vector {t1, . . . , tn}. Then

LD(ν) = jnD(ti, . . . , tn). ♦

Note that there is an inherent problem if one wants to calculate the likelihood
in an actual application. Assume we can observe the point process only during
the finite time interval D. Then the likelihood LD(ν) is in general not the
same as the likelihood LD(νD) of the restricted point configuration νD. Let us
explain this in more detail:

6.18 Remark (Observed & realized). Let (Ω,F ,P) be a probability space
and N a point process with values in NX(R). Obviously, the following distinc-
tion has to be made:

(1) Realized configuration. If ω ∈ Ω is the realized state of the world, the
realized point configuration is ν := N(ω).

(2) Observed configuration. Because we are only able to observe the time
interval D, the observed configuration is the truncation νD := ND×X(ω).
Note that νD is an element of NX(D).

Clearly, one has to expect that ν 6= νD, so in general

LD(ν) 6= LD(νD).

Hence, the fact that there is an index D in LD does not mean events outside
of the observation period D are not relevant. ♦

Next we introduce the intrinsic Hawkes intensity function. It consists of two
components, the immigration intensity and the transfer-functions, which spec-
ify the self- and mutual-excitation behavior of the Hawkes process:

6.19 Definition (Hawkes intrinsic intensity function). LetX be a mul-
tivariate mark space. A Hawkes process, or better its associated intensity func-
tion, is specified by the following three elements, where the indexes run over
j, k ∈ {1, . . . , d}:
(1) Immigration intensity. A family ηj of locally-finite, non-negative func-

tions, defined on R. They are called the immigration intensities and
specify the intensity at which new events arrive over time.

(2) Transfer function. A family hjk(t, x) of continuous in t, non-negative
functions, defined for t > 0 and x ∈ Xk. This family is called the family
of transfer functions.
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(3) Mark distribution. A family fj of probability densities on the mark spaces
Xj . They are called the mark distributions.

Now let ν ∈ NX(R) be a point configuration:

(1) The Hawkes excitation functions βj and Hawkes intensity functions αj
are defined as

βj(t|ν) :=
d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)ν(k)(ds× dx),

αj(t|ν) := ηj(t) + βj(t|ν),

(6.4)

for all 1 ≤ j ≤ d and t ∈ R. These two parts represent the immigration
part and a the self-excitation part of the Hawkes process.

Note that αj(t|ν) are only the time-intensity functions of a Hawkes process,
see also Definition 6.9. But in order to specify the full dynamics of a Hawkes
process, one needs to know the time-space-intensity functions αj(t, x|ν):

(2) The time-space Hawkes intensity functions and intensity measures are
defined as

αj(t, x|ν) = fj(x)αj(t|ν), αj(dt× dx|ν) = fj(x)αj(t|ν)µXj (dx)dt. ♦

Compare the definition of the time-space Hawkes intensity functions with the
general formulation of an intensity measure given in Equation (6.1).

In Definition 6.33, we give the exact definition of a Hawkes process, what
we then call a strong solution. But if we assume for a moment that N is
a univariate Hawkes process, then the intensity process is given by λ(t) :=
α(t|N). This means that the intensity process does not depend directly on the
underlying driving process $, but only on the history of the Hawkes process N
itself. According to Definition 6.13, the Hawkes intensity function is therefore
an intrinsic intensity.

Let us now check on some other properties of the Hawkes intensity function:

6.20 Remark (Properties of the Hawkes Intensity). According to the
classification scheme in Definition 6.12, one observes that:

(1) Stationary intensity function. The Hawkes excitation functions βj are
stationary, i.e. for all t, h ∈ R and ν ∈ NX(R) the following equality is
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satisfied:

βj(t+ h|ν) = βj(t|ν − h).

One can easily check this:

βj(t+ h|ν) =
d∑
k=1

∫
(−∞,t+h)×Xk

hjk(t+ h− s, x)ν(k)(ds× dx)

=
d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)ν(k)(ds+ h× dx)

=
d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)[ν(k) − h](ds× dx) = βj(t|ν − h).

As a consequence, the self-excitation part given by the family βj is homogeneous
in time. This shows that the functions βj(ν) := βj(h|ν + h), for an arbitrary
h ∈ R, contain enough information to reconstruct the functions βj(t|ν).

Note that in general only the Hawkes excitation functions βj are station-
ary. If additionally, the immigration intensities ηj are constants, then also the
intensity functions αj are stationary. In this case, the Hawkes process is a
stationary process, if one can show its existence.

(2) Component-wise unpredictable marks. In the case of a Hawkes process,
the conditional mark distributions are of the form fj(x), i.e. they do not
dependent on the parameters t and ν. If one considers Definition 6.12,
this shows that a Hawkes process has time-homogeneous, component-wise
unpredictable conditional mark distributions. ♦

In the above definition, we give an explicit expression for the Hawkes excitation
functions βj . But one could specify βj also in a more abstract way, as follows:
For simplicity, only the univariate case is considered.

6.21 Remark (Alternative characterization). Assume β(t|ν), for t ∈
R and ν ∈ NX(R), is a non-negative function with the following three proper-
ties:

(1) It is stationary, i.e. β(t|ν) = β(0|ν − t) =: β(ν − t).
(2) It is linear in ν, i.e. β(aν + bκ) = aβ(ν) + bβ(κ),

(3) It is continuous in ν, i.e. if νn → ν converges weakly in N (R), then
limn→∞ β(νn) = β(ν).
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One can now easily check that all functions β which satisfy these three prop-
erties must be of the form of a Hawkes excitation function. ♦

For many calculations related to theoretical properties of Hawkes processes,
one does not need to know the transfer functions hjk(t, x), but it is enough if
one knows what we call the averaged transfer functions Hjk(t). The reason for
this is that Hawkes processes have component-wise unpredictable marks, and
this allows us to integrate out the space parameter x ∈ Xj in many calculations.

6.22 Definition (Averaged transfer functions). Let X be a multivariate
mark space with base measures µXj and β a multivariate family of Hawkes
excitation functions. For all t > 0 and 1 ≤ j, k ≤ d define the functions

Hjk(t) :=
∫

Xk
hjk(t, x)fk(x)µXk(dx). (6.5)

♦

Note that Hjk(t) is an expected value in the following sense: If X is an Xk-
valued random variable with distribution fk(x)µXk(dx) then

Hjk(t) = E
[
hjk(t,X)

]
.

The averaged transfer functions Hjk often occur in vector- and matrix-valued
convolutions. It is therefore convenient to introduce a matrix H, that comprises
all averaged transfer functions.

6.23 Definition (Transfer function matrix). Let β be a vector-valued
Hawkes excitation function. Define for t > 0 the matrix-valued function H
with values in Rd×d+ by:

H(t) :=
{
Hjk(t), for 1 ≤ j, k ≤ d

}
. ♦

The global properties of a Hawkes process depend crucially on the branching
behavior, which is related to the total mass of the transfer functions hjk, and
as a consequence, to the total mass of the averaged transfer functions Hjk. To
capture the branching behavior of a Hawkes excitement function β, one has to
look at the so-called branching matrix Q:

6.24 Definition (Branching matrix). Let β be a multivariate family of
Hawkes excitation functions. Define the d× d-dimensional matrix Q with non-
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negative components

Qjk :=
∫

R+

Hjk(t)dt =
∫

R+×Xk
hjk(t, x)fk(x)µXk(dx)dt (6.6)

for 1 ≤ j, k ≤ d. ♦

Separation of Transfer Function. Often, the transfer functions hjk are a
product of two functions that depend only on t and x, respectively. In this
case, there exists a very convenient representation of hjk that allows one to
read off the branching coefficients Qjk directly.

The assumption, that the Hawkes intensity function is of this form is not
uncommon. The same decomposition is used e.g. in Example 7.6(c) and Ex-
ample 7.3(b) in [DVJ03].

6.25 Definition (Separation of transfer function). Let hjk be a family
of transfer functions and fj be a family of densities with respect to the base
measures µXj on the mark spaces Xj .

Assume there are coefficients ϑjk and functions wjk and gjk such that the
transfer functions hjk are of the form

hjk(t, x) = ϑjkwjk(t)gjk(x).

In order to determine the three functions above uniquely, we need to impose
two additional conditions:∫

R+

wjk(t)dt = 1,
∫

Xk
gjk(x)fk(x)µXk(dx) = 1.

Then the components of the branching matrix are given by Qjk = ϑjk. More-
over, the averaged transfer functions are Hjk = wjk. ♦

The three components of this decomposition have the interpretation:

(1) The decay functions wjk control how fast the effect of an event decays in
time.

(2) The impact functions gjk control how strong the effect is, given that the
event has the mark x ∈ Xk.

Note that both, the decay and the impact functions, only specify the relative
impact of an event. This is due to the normalizing conditions given above. The
absolute impact of an event is governed by the branching matrix.
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(3) The branching coefficients ϑjk control in absolute terms, how much a
given event is going to increase the intensity process.

Note that the normalizing conditions are not chosen arbitrarily. Only under
these conditions one can interpret the decay functions, impact functions and
the branching coefficients as explained above.

Likelihood Function. In order to express the likelihood function in a more
compact form, we first define what we call the cumulative transfer functions
h̄jk:

6.26 Definition (Cumulative transfer functions). Let α be a multivari-
ate family of Hawkes intensity functions as given in Equation (6.4). For
1 ≤ j, k ≤ d and x ∈ Xk define the cumulative transfer functions by

h̄jk(t, x) :=
∫ t

0

hjk(s, x)ds, if t > 0, and h̄jk(t, x) := 0, if t ≤ 0. (6.7)
♦

Note that the cumulative transfer functions h̄jk should not be confused with
the averaged transfer functions Hjk defined earlier.

6.27 Proposition (Hawkes likelihood function). Let α be a multivariate
family of Hawkes intensity functions and let the cumulative transfer functions
h̄jk be as in Equation (6.7).

Assume T∗ < T ∗ and let the observation domain be D := [T∗, T ∗]. For all
realization ν ∈ NX(R) one has

logL[T∗,T∗](ν) =
d∑
j=1

∫
[T∗,T∗]

logαj(s|ν)ν(j)(ds× Xj)

+
d∑
j=1

∫
Xj

log fj(x)ν(j)([T∗, T ∗]× dx)−
d∑
j=1

∫ T∗

T∗

ηj(s)ds

−
d∑

j,k=1

∫
(−∞,T∗)×Xk

[
h̄jk(T ∗ − s, x)− h̄jk(T∗ − s, x)

]
ν(k)(ds× dx). ♦

Recall from Remark 6.18 the distinction between the realized and the observed
point configuration. If one can only observe the truncated point configuration
νD, one could e.g. calculate the value logLD(νD) and use this as an approxima-
tion to the actual logarithmic likelihood logLD(ν). But this is more a problem

218



of parameter estimation than a problem concerning the likelihood function it-
self.

6.3 Strong Solutions

Next, we construct a Hawkes process as a thinning of the underlying driving
process $. But first we need to deal with the canonical probability measure P,
which has not yet been defined in Definition 6.3. We will now add this missing
piece. We first define the canonical probability space in the univariate case and
then we extend the definition to the multivariate case:

6.28 Definition (Univariate canonical space). Assume X is a univariate
mark space and T ⊆ R a time interval, possibly unbounded. Furthermore, let
µX be the base measure on the mark space X and f be a probability density
on X with respect to this measure.

(1) Canonical space and driving process. Consider the extended mark space
Y := X × R+. The associated canonical measurable space and its σ-
algebra are

N := NX×R+(T ) and F := FX×R+(T ).

Recall that the driving process $ is the identity function on the space N.

(2) Distribution of the driving process. Let P be the probability measure on
N, so that $ is a compound Poisson process with the following charac-
teristics:

(a) The process $(dt × X × dz) is a Poisson process on R+ × T with
mean measure dt× dz.

(b) The marks $(t × dx × z) have distribution f(x)µX(dx) and are
independent of the ground process $(dt×X×dz) and independent
of each other.

Note that P is uniquely determined by these two properties. ♦

We give an equivalent definition of the canonical probability measure P. Instead
of defining the driving process $ as a compound Poisson process we could also
proceed as follows:

6.29 Remark (Equivalent Definition). The distribution P of the driving
process is so that $ is a Poisson process on the space T ×X×R+ with mean
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measure

µT ×R+×X(dt× dx× dz) := f(x)µX(dx)dt dz. ♦

The extension to the multivariate case is now straightforward:

6.30 Definition (Multivariate canonical space). Let T ⊆ R be a time
interval, X be a multivariate mark space, µXj the base measures on Xj and fj
probability densities on Xj .

(1) Canonical space and driving process. The multivariate canonical proba-
bility space is N := NX×R+(T ). Consequently, the driving process $
has components $(j) with values in Nj := NXj×R+(T ).

(2) Distribution of the driving process. The canonical probability measure
P is so that the components $(j) are independent and have the same
distribution as in the univariate case. ♦

In the multivariate case, there is a weaker and a stronger version of the notion
of a simple process. We call the weaker version component-wise simpleness and
the stronger version overall simpleness. It is important to note that our driving
process satisfies the stronger version:

6.31 Remark (Simpleness of Driving Process). Take a realization $(j)

of the j-th component of the driving process.

(1) The driving process is component-wise simple because for each time point
t ∈ R, the projection $(j)(t×dx×dz) restricted to the set {t}×Xj×R+

has at most one event in the space Xj×R+. This is clear by the definition
of a compound Poisson process.

(2) The driving process is also overall simple: If one fixes some t ∈ T then
even the projection

∑d
j=1$

(j)(t× dx× dz) consists of at most one event
in the space {t}×X×R+. This means that for a fixed time point t there
is at most one component that contains an event. ♦

These two properties of the driving process $ are a consequence of the fact
that a Poisson process in the plane R2 never has multiple points with the same
first or second coordinate. Hence, if (x1, y1) and (x2, y2) are two points of a
Poisson process in R2, then x1 6= x2 and y1 6= y2, with probability one.

For the following definition, we restrict ourselves to the univariate case, as
the multivariate case is a trivial extension:

220



6.32 Definition (Thinning). Let X be a univariate mark space with mark
density f and T ⊆ R the time domain. Moreover, let N := NX×R+(T ) be the
associated univariate canonical probability space.

(1) Thinning with respect to intensity. Let λ be a non-negative, predictable
stochastic process. The thinning Θ of $ with respect to λ is

Θ$[λ](E ×X) :=
∫
E×R+

1{z≤λ(t|$)}$(dt×X × dz), (6.8)

where E ⊆ T , X ⊆ X are two sets and $ ∈ N is the driving process.

Hence, the thinning Θ$[λ] is a point process with values in NX(T ). Now recall
the definition of an intrinsic intensity function, given in Definition 6.13.

(2) Thinning with respect to intrinsic intensity. Assume the intensity process
λ is defined in terms of an intrinsic intensity function γ, associated with
some point process N . In this case, the thinning is of the form

Θ$

[
γ(·|N)

]
(E ×X) :=

∫
E×R+

1{z≤γ(t|N)}$(dt×X × dz). ♦

The notion of a strong solution in the context of Hawkes processes appears first
in [Mas98], see Equation (1). Instead of the Hawkes intrinsic intensity function,
one could obviously take any other intrinsic intensity function as well.

We give the definition of a strong solution only in the univariate case. The
definition in the multivariate case is a trivial extension:

6.33 Definition (Strong solution). Let N be a univariate canonical space
and α a Hawkes intensity function.

(1) Formulation with thinning operator. Let N be a predictable point process
on the canonical space with values in NX(R). Then N is called a strong
solution if it satisfies, for all E ⊆ R and X ⊆ X:

Θ$

[
α( ·|N)

]
(E ×X) = N(E ×X).

Instead of using the abstract thinning operator Θ, one can write the condition
also in explicit form:

(2) Formulation without thinning operator. A point process N is a strong
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solution if and only if, for all sets E ⊆ R and X ⊆ X:

N(E ×X) =
∫
E×R+

1{z≤α(t|N)}$(dt×X × dz). (6.9)
♦

For the next two definitions of initial states and continuations we restrict the
time domain: Let χ ∈ R be a fixed time and consider the time domain T :=
(χ,∞). The canonical probability space is then N+ := NX×R+

(
(χ,∞)

)
. To

emphasize that the time domain is only a half-line, we use the symbol N+

instead of N.

Before we can define a continuation, we need first something that can be
continued, which is the so-called initial state. Again, we only consider the
univariate case:

6.34 Definition (Initial state). Let χ ∈ R be a fixed time and N+ the
associated canonical space on the (χ,∞). Furthermore, let α be a Hawkes
intensity function.

(1) An initial state is a point configuration ν− ∈ NX
(
(−∞, χ]

)
. One should

interpret ν− as the past of a point process N , that has already been
observed.

A special case of an initial state is the empty or void initial state:

(2) We use the following two symbols for empty point configurations, i.e. point
configurations without any events:

∅− ∈ NX
(
(−∞, χ]

)
and ∅ ∈ NX(R). ♦

The notion of an initial state is also used in the papers [BM96], [Mas98],
[BNT02] and [Tor02]. Our definition deviates slightly, as an initial state is as-
sumed to be deterministic, although we will see in the proof of Theorem 6.55,
that this is not really a restriction.

A continuation is essentially a point process whose past up to time χ coin-
cides with ν− and its future after time χ follows the dynamics determined by
the Hawkes intensity function α. The precise definition is:

6.35 Definition (Continuation). Let N+ be a point process on N+ with
values in NX

(
(χ,∞)

)
and N̂ := ν− +N+ be the superposition of ν− and N+.

(1) Formulation with thinning operator. If the following thinning relation
is satisfied for all sets E+ ⊆ (χ,∞) and X ⊆ X, then N+ is called a
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continuation of ν−:

N̂(E+ ×X) = Θ$+

[
α( ·|N̂)

]
(E+ ×X).

One can formulate this condition also in a less abstract form:

(2) Formulation without thinning operator. A point process N+ on N+ is a
continuation of ν− if and only if

N̂(E+ ×X) =
∫
E+×R+

1{z≤α(t|N̂)}$+(dt×X × dz),

for all sets E+ ⊆ (χ,∞) and X ⊆ X. ♦

Below we will discuss the relationship between continuations with different
initial states and different immigration intensities. In order to avoid confusion,
we introduce a corresponding notation:

6.36 Notation (Continuation triple). Let ν− be an initial state and η

an immigration intensity. If N+ is a continuation of ν− with respect to the
intensity process α(t|N̂) := η(t) + β(t|N̂), we say that

(ν−, η,N+)

is a continuation triple, where N̂ := ν− +N+. Note that we did not include β
in this triple, since we assume it is fixed. ♦

If we compare the definition of a continuation with the one for a strong solution,
we see many similarities: Basically, a continuation satisfies the same condition
as a strong solution, but only on the time interval (χ,∞). We will work out
this connection in more detail later.

The following important theorem states that the thinning procedure creates
a point process with the expected intensity:

6.37 Theorem (Thinning). Let X be a univariate mark space with mark
space density f and T ⊆ R be a time interval. We consider the univariate
canonical probability space N := NX×R+(T ).

Assume λ is a non-negative, locally-integrable, predictable process. Then
the thinning N = Θ$[λ] of $ with respect to λ is a locally-finite point pro-
cess, adapted to the canonical filtration. Moreover, the intensity process and
intensity measure of N are given by

λ(t, x|$) = f(x)λ(t|$), Λ(dt× dx|$) = f(x)λ(t|$)µX(dx)dt. ♦
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Proof: See Lemma 3 in [BM96]. The theorem goes back to [Ker64] and
[LS79].

6.4 Hazard Rate

6.38 Definition (Hazard rate). Let X be a multivariate mark space and
N := NX×R+(R) the associated multivariate canonical probability space with
driving process $.

Assume the following is given: Let N be an adapted point process with val-
ues in NX(R) and let λj(t, x|$) be the predictable time-space-intensity func-
tions of N . Additionally assume that the marks are component-wise unpre-
dictable, i.e. the intensity functions are of the form

λj(t, x|$) = fj(x)λj(t|$).

Then we define:

(1) Exact hazard rate. Let λ+(s, t|$) be a vector-valued function defined for
all t > s and $ ∈N and assume that for all s ∈ R the function

($, t) 7→ λ+(s, t|$) is Fs ⊗B(s,∞)-measurable.

We call λ+ the hazard rate of N , if for all t > s:

λ(t|$) = λ+(s, t|$) on the set
{
$ : N(s, t)[$] = 0

}
. (6.10)

Note that the hazard rate, if it exists, does not need to be unique.

(2) Upper bound for hazard rate. Assume λ̃
+

(s, t|$) is a function of the
same type and satisfies the same measurability condition as the hazard
rate λ+. We call λ̃

+
an upper bound for the hazard rate if for all t > s:

λ(t|$) ≤ λ̃
+

(s, t|$) on the set
{
$ : N(s, t)[$] = 0

}
. ♦

Note that we need the upper bound λ̃
+

only in cases where we cannot find
the exact hazard rate λ+. The upper bound then still allows us to apply the
proposition below:

The next statement is based on Lemma 1 in [BM96], but has been refor-
mulated and extended: Firstly, a separate concept of a hazard rate function is
introduced, whereas in the original statement, the intrinsic intensity function is
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used, although it is not called like this. Secondly, the statement is generalized
to the case where only an upper bound is available. This will be helpful in
the proof of Proposition 6.43, because there the hazard rate of the difference
process L is not known.

6.39 Proposition (Extinction probability). Consider the multivariate ca-
nonical space N := NX×R+(R) and let N be a point process with values in
NX(R).

(1) Exact hazard rate. If λ+ is the hazard rate of N , then for all t > s:

P
[
N
(
(s, t)×X

)
= 0

∣∣∣ Fs] = exp
{
−

d∑
j=1

∫ t

s

λ+
j (s, u|$)du

}
.

(2) Upper bound for hazard rate. If λ̃
+

is an upper bound for the hazard
rate, then for all t > s:

P
[
N
(
(s, t)×X

)
= 0

∣∣∣ Fs] ≥ exp
{
−

d∑
j=1

∫ t

s

λ̃+
j (s, u|$)du

}
.

Note that in both cases, the terms on the right-hand side are Fs-measurable.♦

There is a common situation where we can easily find a hazard rate for
some given point process. The idea is based on the so-called intrinsic hazard
rate. The difference between the general hazard rate and the intrinsic hazard
rate is the same as between the intensity function and the intrinsic intensity
function, see Definition 6.13. We only consider the univariate case:

6.40 Corollary (Intrinsic hazard rate). Consider the univariate canonical
space N := NX×R+(R) and assume N is a point process with values in NX(R).

(1) Exact hazard rate. Assume N has the intrinsic intensity function γ, i.e.
the intensity of N satisfies λ(t|$) = γ(t|N). Then the hazard rate of N
is

λ+(s, t|$) := γ
(
t
∣∣N |(−∞,s]).

Assume one cannot find the intrinsic intensity function γ of N , but one has at
least an upper bound γ̃ for the intrinsic intensity function of N :

(2) Upper bound for hazard rate. Assume there is an PX(R)-predictable func-
tion γ̃ such that the intensity of N is bounded from above by λ(t|$) ≤
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γ̃(t|N). Then an upper bound for the hazard rate is given by

λ̃+(s, t|$) := γ̃
(
t
∣∣N |(−∞,s]). ♦

Next we give the obvious, but important notion of a difference process:

6.41 Definition (Difference process). Let K and N be two point pro-
cesses with values in N (R), i.e. two univariate, point processes without marks.

The difference process between K and N is denoted by L := |K − N |. A
more formal definition of L is

L(E) =
∫
E

[
1−N(t)

]
K(dt) +

∫
E

[
1−K(t)

]
N(dt),

for sets E ⊆ R. ♦

Thus, the difference process contains all events of the difference set between
the events of two point processes. Note that L is again a simple point process.

Since we will construct couplings on the canonical space N+, which is de-
fined on the half-line (χ,∞), it will be convenient to consider not only the
coupling time but also the truncated coupling time:

6.42 Definition (Coupling time). Let K and N be two point processes
with values in N (R).

(1) Truncated coupling time. Let χ ∈ R be a fixed time. The truncated
coupling time Tχ between K and N on the time interval [χ,∞) is

Tχ := inf
t≥χ

{
K|(t,∞) = N |(t,∞)

}
= inf
t≥χ

{
L|(t,∞) = 0

}
. (6.11)

By convention, one sets Tχ := χ in case the sets on the right-hand side
are empty.

(2) Coupling time. To define the coupling time T between K and N , one
takes the infimum over the whole real line instead, i.e. one defines

T := T−∞. ♦

Note that Tχ and T are random times, but in general not stopping times.

The following statement is motivated by a similar result of Proposition 2.1
in [Tor02]:
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6.43 Proposition (Coupling). Consider a multivariate mark space X with
associated configuration space NX(R). Let K and N be two strong solutions
for the two Hawkes intensity functions

αK(t|ν) := ηK(t) + β(t|ν), αN (t|ν) := ηN (t) + β(t|ν).

Note that the immigration intensities ηK and ηN are different but the Hawkes
excitation functions βK = βN =: β coincide. Then:

(1) Bound on coupling time, finer version. For all t ∈ R one has

P[T ≤ t] = P
[
K(j)|(t,∞)×Xj = N (j)|(t,∞)×Xj ; j = 1, . . . , d

]
≥ exp

{
−

d∑
j=1

∫ ∞
t

gj(u) +
[
H ∗ 1(−∞,t]mL

]
j
(u)du

}
, (6.12)

where g(t) := |ηK(t) − ηN (t)|, for t ∈ R, and mL is the density of the
first order moment measure of the difference process L := |K −N |.

Now assume the first order moment density mL is not known. In this case,
one can still find a lower bound for P[T ≤ t]:

(2) Bound on coupling time, cruder version. The above inequality remains
correct, if one substitutes

mL(t) ≤mK(t) +mN (t),

where mK and mN are the first order moment measures densities of K
and N . ♦

6.5 Minimal Solutions

In this section, a specific strong solution is construct, which is called the min-
imal solution. This notion is not used in the literature, at least not in the
context of Hawkes processes, but it is justified by the construction presented
below.

At the moment, we cannot yet prove the uniqueness of strong solutions in
full generality. But it will turn out later that under suitable conditions strong
solutions are unique, see Theorem 6.55. As a consequence, the minimal solution
is then actually the unique strong solution.
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The construction of the minimal solution involves several intermediate point
processes and before we start with the construction we give a short overview:

6.44 Remark (Notation concerning minimal solution). The construc-
tion is based on incremental and cumulative processes and to distinguish be-
tween them we use the following notation:

(1) Incremental processes. For each generation n ≥ 0, the process N̂n cor-
responds to the events of the n-th generation. The associated intensity
process is λ̂n. By convention, the first generation is generation 0, which
represents the immigrants.

(2) Cumulative processes. Once one has constructed all generations up to
order n, one can define the cumulative process containing all events up
to and including generation n. This cumulative process is denoted by Nn
and the corresponding intensity process by λn. ♦

The following construction is taken from the proof of Theorem 4 in [BM96]:

6.45 Definition (Construction of minimal solution). Assume one has
the Hawkes intensity function α(t|ν) = η(t) + β(t|ν). The minimal solution is
constructed inductively by:

(0) Define first the intensity process λ−1(t) := 0, for all t ∈ R.

Next define recursively for n ≥ 0 the following three objects:

(1) The cumulative intensity process λn is

λn(t) := η(t) +
n∑

m=1

λ̂m(t), (6.13)

for all t ∈ R. By convention, one sets λ0(t) := η(t).

(2) The incremental process N̂n is the thinning of the driving process $ in
the layer between λn−1 and λn, i.e.

N̂ (j)
n (E ×X) :=

∫
E×R+

1{λn−1,j(t)<z≤λn,j(t)}$
(j)(dt×X × dz), (6.14)

for all E ⊆ R, X ⊆ Xj and 1 ≤ j ≤ d.

(3) The incremental intensity process λ̂n+1 of the next generation is

λ̂n+1(t) := β(t|N̂n)
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for all t ∈ R. The recursion now continues with n+ 1 in the first step. ♦

6.46 Definition (Minimal solution). Let α be a Hawkes intensity func-
tion and define the incremental processes N̂n as in Definition 6.45.

(1) The minimal solution N∞ is

N (j)
∞ (E ×X) :=

∞∑
n=0

N̂ (j)
n (E ×X),

for sets E ⊆ R and X ⊆ X.

(2) The intensity process λ∞ of the minimal solution is

λ∞(t) := lim
n→∞

λn(t) = η(t) +
∞∑
n=1

λ̂n(t),

for all t ∈ R. ♦

Note that without further assumptions, it is not clear, whether N∞ is a point
process, i.e. for the time being it is not clear whether N∞ is a locally-finite
point measure.

Later we will give sufficient conditions so that N∞ and λ∞ become locally-
finite processes. The process N∞ will then become our candidate for a strong
solution. But even without any further assumptions, we can already now state
some useful facts:

6.47 Proposition (Properties of minimal solution). Let α be a Hawkes
intensity function and N∞ and λ∞ be the associated minimal solution and its
intensity process, as given in Definition 6.46.

(1) First moment measure. The density m∞ of the first order moment mea-
sure of N∞ is

m∞(t) =
∞∑
n=0

[H∗n ∗ η](t) = [U+ ∗ η](t), (6.15)

for all t ∈ R.

(2) Thinning property. The limit N∞ is a adapted to the canonical filtration.
Moreover, N∞ is a thinning of $ with respect to the intensity process
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α(t|N∞). In other words, N∞ satisfies the thinning condition of a strong
solution from Equation (6.9), which states that

N (j)
∞ (E ×X) =

∫
E×R+

1{z≤αj(t|N∞)}$
(j)(dt×X × dz). (6.16)

Moreover, the intensity process satisfies λ∞(t) = α(t|N∞), all t ∈ R. ♦

Next we consider two simultaneous minimal solutions:

6.48 Proposition (Pair of minimal solutions). Let β be a Hawkes exci-
tation function and ηK and ηN be two immigration intensities. Define the two
Hawkes intensity functions

αK := ηK + β and αN := ηN + β.

Assume K∞ and N∞ are the associated minimal solutions. Then the first order
moment measure of the difference process L∞ := |K∞ −N∞| satisfies

mL∞(t) ≤
[
U+ ∗ |ηK − ηN |

]
(t), (6.17)

for all t ∈ R. ♦

6.49 Theorem (Existence of minimal solution). Let α = η + β be a
Hawkes intensity function and Q the associated branching matrix, see Equa-
tion (6.6). Assume the immigration intensity η is bounded and the branching
matrix satisfies Spr(Q) < 1. Then the minimal solution N∞ as given in Defi-
nition 6.46 is a strong solution.

Take the same Hawkes excitation function β as above and assume now
that ηK and ηN are be two bounded immigration intensities. Denote the
corresponding minimal solutions with K∞ and N∞. Then the coupling time
between the two minimal solutions satisfies:

P[T ≤ t] ≥ exp
{
−

d∑
j=1

∫ ∞
t

[
U+ ∗ |ηK − ηN |

]
j
(u)du

}
, (6.18)

for all t ∈ R. ♦
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6.6 Construction of Continuations

The aim of this section is to show that continuations are unique, given some
conditions are satisfied. However, before we can tackle this problem, we need
to have a closer look at Definition 6.35. Because continuations and strong
solutions are formally closely related, it is not surprising that one can be con-
structed from the other. This is the content of the next proposition.

For simplicity, we only consider point processes without marks. The general
case is a trivial extension.

6.50 Proposition (Relation to strong solutions). Let χ ∈ R be a fixed
time and consider the canonical probability space N+ := NX×R+

(
(χ,∞)

)
.

Assume β is a Hawkes excitation function.

(1) Equivalence relation between continuations. Let ν− be an initial state
on (−∞, χ] and η+ and η̂+ be two immigration intensities on (χ,∞).
Assume η+ and η̂+ are related by

η̂+(t) = η+(t) + β(t|ν−), η+(t) = η̂+(t)− β(t|ν−).

for all t ∈ R. Then, if one of the following triples is a continuation triple,
then so is the other:

(ν−,η+, N+) continuation triple

⇐⇒ (∅−, η̂+, N+) continuation triple (6.19)

(2) Relation to strong solutions. Let η+ be an immigration intensity on
(χ,∞). Define the extension of η+ to the real line by

η(t) = 1(χ,∞)(t)η+(t),

for t ∈ R. Then, for a point process N+ on the time interval (χ,∞):

(∅−,η+, N+) continuation triple ⇐⇒ (η, N+) strong solution.

(6.20)
♦

We call the process η̂+ given above the augmented immigration intensity.

6.51 Corollary (Uniqueness of continuations). Let β be a Hawkes exci-
tation function, ν− an initial state on (−∞, χ] and η+ an immigration intensity
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on (χ,∞).

(1) Relation to strong solution. Define the augmented immigration intensity
extended to the real line by

η̂(t) := 1(χ,∞)(t)
[
η+(t) + β(t|ν−)

]
(6.21)

and let N+ be a point process on the time interval (χ,∞). Then:

(ν−,η+, N+) continuation triple ⇔ (η̂, N+) strong solution.

(6.22)

(2) Uniqueness. There is at most one continuation N+ of the pair (ν−,η+),
that is if

(ν−,η+, N+) and (ν−,η+, Ñ+)

are two continuation triples, then N+ = Ñ+. ♦

6.52 Proposition (Construction of continuation). Let χ ∈ R be a fixed
time and β be a Hawkes excitation function.

(1) Construction of continuation. Assume ν− is an initial state on (−∞, χ]
and η+ an immigration intensity on (χ,∞). Let η̂ be the augmented im-
migration intensity, extended to the real line, as given in Equation (6.21).
Now assume the minimal solution N∞ generated by η̂ exists. Then the
continuation triple(

ν−,η+, N∞,+
)
, N∞,+ := N∞|(χ,∞), (6.23)

is the unique continuation of the pair (ν−,η+).

(2) Coupling with two initial conditions. Let κ− and ν− be two initial states
on (−∞, χ] and η+ an immigration intensity on (χ,∞). Denote by η̂κ
and η̂ν the associated augmented immigration intensities, extended to the
real line, as given in Equation (6.21). Assume the corresponding minimal
solutions K∞ and N∞ exist, so that one has the two continuation triples

(κ−,η+,K∞,+) and (ν−,η+, N∞,+).
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Then the coupling time between K∞,+ and N∞,+ satisfies

P[T ≤ t] ≥ exp
{
−

d∑
j=1

∫ ∞
t

[
U+ ∗ gκ−,ν−

]
j
(u)du

}
, (6.24)

all t ∈ R, where gκ−,ν−(t) := 1(χ,∞)(t)
∣∣β(t|κ−)− β(t|ν−)

∣∣, for t ∈ R. ♦

6.7 Existence and Uniqueness

Before we give the main result concerning the uniqueness of strong solutions,
let us introduce some further notation concerning the canonical probability
space. We intend to split the canonical probability space into two parts, where
the first part comprises all events up to time χ and the second part all events
after time χ.

Although the following definition is not needed for the formulation of The-
orem 6.55 below, it is needed in the proof. We only consider the case of a
univariate point processes without marks. The extension to the general case is
trivial.

6.53 Definition (Splitting of canonical probability space). Let χ ∈ R
be a fixed time. Let $ be the driving process on the univariate canonical
probability space N := NR+(R). Consider the two time intervals

T− := (−∞, χ] and T+ := (χ,∞).

The point configuration space can be split up according to:

NR+(R) = NR+(T−)×NR+(T+), R = T− ∪T+.

As a consequence, one can decompose the canonical probability space (N,F,P)
according to:

N = N− ×N+, F = F− ⊗ F+, P = P− ⊗ P+. ♦

The above definition shows that a configuration $ ∈ N of the driving process
can be written as the pair ($−, $+), where $− ∈ N− describes the events up
to time χ and $+ ∈ N+ describes the events after time χ.
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6.54 Remark (Independence of the two parts). Since the driving pro-
cess $ is a Poisson process on the space R×R+, the two components $− and
$+ are two independent Poisson processes with realizations in the two point
configuration spaces

$− ∈ NR+(T−), $+ ∈ NR+(T+).

This shows that P can indeed be written as a product probability measure. ♦

The next theorem combines results from Section 1 and Appendix A in [Tor02].
Recall also the definition of the averaged transfer functions Hjk given in Equa-
tion (6.5) and the definition of the branching matrix Q given in Equation (6.6).

6.55 Theorem (Uniqueness of strong solutions). Let α = η + β be a
Hawkes intensity function with immigration intensity η and excitation function
β. Assume the following two conditions are satisfied:

(1) The branching matrix Q satisfies Spr(Q) < 1.

(2) The averaged transfer functions satisfy for all 1 ≤ j, k ≤ d:∫ ∞
0

tHjk(t)dt <∞.

If K and N are two strong solutions with bounded first order moment measure
densities, then K and N coincide with probability one. ♦
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Proofs for Chapter 6

Proof (Proposition 6.27): The likelihood function, see Equation (6.3), is
the difference of two integrals. We calculate these two integrals in turn:

(i) First integral. Since αj(t, x|ν) = fj(x)αj(t|ν),∫
D×Xj

logαj(t, x|ν)ν(j)(dt× dx)

=
∫
D×Xj

log
[
fj(x)αj(t|ν)

]
ν(j)(dt× dx)

=
∫
D

logαj(t|ν)ν(j)(dt× Xj) +
∫

Xj
log fj(x)ν(j)(D × dx).

ν(j)(dt×Xj) is the projection of ν(j) onto the first component. Similarly,
ν(j)(D× dx) is the projection onto the second component. Now use that
D = [T∗, T ∗], and the first part follows.

(ii) Second integral. It remains to deal with the second integral. Note that∫
Xj fj(x)µXj (dx) = 1, since fj is a probability density on the space Xj .

Hence∫
D×Xj

αj(t, x|ν)µXj (dx)dt =
∫
D×Xj

fj(x)αj(t|ν)µXj (dx)dt

=
∫
D

αj(t|ν)
[∫

Xj
fj(x)µXj (dx)

]
dt =

∫
D

αj(t|ν)dt

=
∫
D

[
ηj(t) + βj(t|ν)

]
dt

=
∫
D

ηj(t)dt+
∫
D

[ d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)ν(k)(ds× dx)
]
dt.
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The first term is one of the terms in the claimed formula. It remains to
decompose the second integral. If one omits the sum, one has:∫

D

[∫
(−∞,t)×Xk

hjk(t− s, x)ν(k)(ds× dx)
]
dt

=
∫

R2×Xk
1(−∞,t)×D(s, t)hjk(t− s, x)ν(k)(ds× dx)dt.

Using that D = [T∗, T ∗] and defining r := (t− s), one has:

1(−∞,t)×D(s, t) = 1(0,+∞)(r)1[T∗−s,T∗−s](r).

Also note that∫ ∞
0

1(a,b)(r)hjk(r, x)dr = h̄jk(b, x)− h̄jk(a, x), for any a < b.

This is even true for negative a and b, because by definition h̄jk(r, x) = 0,
whenever r < 0. Hence:∫

R2×Xk
1(−∞,t)×D(s, t)hjk(t− s, x)ν(k)(ds× dx)dt

=
∫

R×Xk

[∫ ∞
0

1[T∗−s,T∗−s](r)hjk(r, x)dr
]
ν(k)(ds× dx)

=
∫

R×Xk

[
h̄jk(T ∗ − s, x)− h̄jk(T∗ − s, x)

]
ν(k)(ds× dx).

Finally, one can replace the integration domain R with (−∞, T ∗), since
outside this set the integrand vanishes.

Recall that a process has stationary and component-wise unpredictable marks
if its time-space intensity function is of the form λj(t, x|$) = fj(x)λj(t|$).

6.56 Lemma (Properties of Hawkes excitation function). Let β be a multivari-
ate Hawkes excitation function. For two point configurations κ and ν in NX(R),
one has:∣∣β(t|κ)− β(t|ν)

∣∣ ≤ β(t∣∣|κ− ν|). (6.25)

Now let fj be densities on Xj . Assume N is a predictable point process with
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multivariate family of intensity functions
{
λj , j = 1, . . . , d

}
such that

λj(t, x|$) = fj(x)λj(t|$),

and let mN be the density of the first order moment measure. Then

E
[
β(t|N)

]
= [H ∗mN ](t). (6.26)

♦

Proof (Lemma 6.56): Recall the definition of the Hawkes excitation func-
tion β, given in Equation (6.4).

(i) The first part follows from

βj(t|κ)− βj(t|ν) =
d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)κ(k)(ds× dx)

−
d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)ν(k)(ds× dx)

=
d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)
[
κ(k)(ds× dx)− ν(k)(ds× dx)

]
≤

d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)
∣∣κ(k) − ν(k)

∣∣(ds× dx)

= βj
(
t
∣∣|κ− ν|).

(ii) By assumption, the intensity measure of N (k) is

Λk(ds× dx) = λk(t, x|$)µXk(dx)ds = fk(x)λk(t|$)µXk(dx)ds.

Due to the fundamental property of the intensity measure, and the defi-
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nition of the functions Hjk, see Equation (6.5), we have

E
[
βj(t|N)

]
= E

[ d∑
k=1

∫
(−∞,t)×Xk

hjk(t− s, x)N (k)(ds× dx)
]

=
d∑
k=1

E
[∫

(−∞,t)×Xk
hjk(t− s, x)fk(x)λk(s|$)µXk(dx)ds

]
= E

[∫
(−∞,t)

{∫
Xk
hjk(t− s, x)fk(x)µXk(dx)

}
λk(s|$)ds

]
= E

[∫ t

−∞
Hjk(t− s)λk(s|$)ds

]
=
∫ t

−∞
Hjk(t− s) E

[
λk(s|$)

]
ds.

Recall that E[λk(s|$)] = mN,k(s). By rewriting the integral as a multi-
variate convolution, the statement follows from

E
[
βj(t|N)

]
=

d∑
k=1

∫ t

−∞
Hjk(t− s)mN,k(s)ds = [H ∗mN ]j(t).

Proof (Proposition 6.39): Let N be a point process with values in NX(R),
with vector-valued intensity function λ.

(1) Exact hazard rate. In a first step we consider only the case where N takes
values in N (R), i.e. it is a univariate point process without marks.

(i) Fix s ∈ R. Note that for ν ∈ N (R) one has∫
(s,t)

1{ν(s,u)=0}ν(du) = 1{ν(s,t)≥1}.

We are going to use the short notation ν(s, t) ≡ ν
(
(s, t)

)
. Replacing now

ν with N , one has as a first intermediate result

1{N(s,t)=0} = 1−
∫

(s,t)

1{N(s,u)=0}N(du).

Since N(s, u) is Fu−-measurable, the processes H(u) := N(s, u) and
G(u) := 1{N(s,u)=0} are predictable, see also Definition 6.4. Hence, one
has by the fundamental property of the intensity function, see Defini-
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tion 6.10, as a second intermediate result

E
[∫

(s,t)

1{N(s,u)=0}N(du)
∣∣∣Fs] = E

[∫ t

s

1{N(s,u)=0}λ(u|$)du
∣∣∣Fs].

Combining now the two above results gives:

P
[
N(s, t) = 0

∣∣Fs] = E
[
1−

∫
(s,t)

1{N(s,u)=0}N(du)
∣∣∣Fs]

= 1− E
[∫ t

s

1{N(s,u)=0}λ(u|$)du
∣∣∣Fs]. (6.27)

Since λ+ is a hazard rate, we get, due to Equation (6.10), that

P
[
N(s, t) = 0

∣∣Fs] = 1− E
[∫ t

s

1{N(s,u)=0}λ
+(s, u|$)du

∣∣∣Fs]
= 1−

∫ t

s

E
[
1{N(s,u)=0}λ

+(s, u|$)
∣∣∣Fs]du

= 1−
∫ t

s

E
[
1{N(s,u)=0}

∣∣∣Fs]λ+(s, u|$)du.

We have used that λ+(s, u|$) is Fs-measurable, for all u > s. In sum-
mary, we have the integral equation:

P
[
N(s, t) = 0

∣∣Fs] = 1−
∫ t

s

P
[
N(s, u) = 0

∣∣Fs]λ+(s, u|$)du. (6.28)

This equation for the function t 7→ P
[
N(s, t) = 0

∣∣Fs] can be rewritten as
an ordinary differential equation. Its unique solution is

P
[
N(s, t) = 0

∣∣Fs] = exp
{
−
∫ t

s

λ+(s, u|$)du
}
. (6.29)

(ii) In the general case, let N be a multivariate point process with values
in NX(R). For more details about the two processes N∗ and λ∗, see
Remark 6.11:

N∗(dt) :=
d∑
j=1

N (j)(dt× Xj), λ∗(t|$) :=
d∑
j=1

λj(t|$).
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Moreover, define λ+
∗ (s, t|$) :=

∑d
j=1 λ

+
j (s, t|$). Then

λ∗(t|$) = λ+
∗ (s, t|$) on the set

{
$ : N(s, t)[$] = 0

}
.

Now apply Equation (6.29) for the process N∗, so that

P
[ d⋂
j=1

N (j)
(
(s, t)× Xj

)
= 0
∣∣∣Fs] = P

[
N∗
(
(s, t)

)
= 0
∣∣∣Fs]

= exp
{
−
∫ t

s

λ+
∗ (s, u|$)du

}
= exp

{
−

d∑
j=1

∫ t

s

λ+
j (s, u|$)du

}
.

(2) Upper bound for hazard rate. We state a special case Gronwall’s lemma:
The proof can e.g. be found in the original papers [Gro19], [Bel43], or any
real analysis book. Let c be a constant and x, α two continuous functions
on (s,∞). Then any solution x of the inequality

x(t) ≤ c+
∫ t

s

α(u)x(u)du

satisfies

x(t) ≤ c exp
{∫ t

s

α(u)du
}
. (6.30)

(i) We first treat the special case where N is a univariate point process
without marks. Hence let λ+(s, t|$) be an upper bound for the hazard
rate. The proof is identical up to Equation (6.27). From there continue
with

P
[
N(s, t) = 0

∣∣Fs] = 1− E
[∫ t

s

1{N(s,u)=0}λ(u|$)du
∣∣∣Fs]

≥ 1− E
[∫ t

s

1{N(s,u)=0}λ̃
+(s, u|$)du

∣∣∣Fs].
Again continue in the same way as in the first part, but use this time the
upper bound for the hazard rate. Instead of Equation (6.28), one now
finds:

P
[
N(s, t) = 0

∣∣Fs] ≥ 1−
∫ t

s

P
[
N(s, u) = 0

∣∣Fs]λ̃+(s, u|$)du.
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Now set y(s, t) := P
[
N(s, t) = 0

∣∣Fs], such that

y(s, t) ≥ 1−
∫ t

s

y(s, u)λ̃+(s, u|$)du.

Here the similarity with the first part of the proof ends and one has to
continue in a different way. First fix some s ∈ R and define x(s, t) :=
−y(s, t), so that

x(s, t) ≤ (−1) +
∫ t

s

[
−λ̃+(s, u|$)

]
x(s, u)du.

Due to Gronwall’s lemma, especially Equation (6.30), one finds

x(s, t) ≤ (−1) exp
{∫ t

s

[
−λ̃+(s, u|$)

]
du
}
.

In terms of y(s, t), this implies

P
[
N(s, t) = 0

∣∣Fs] = y(s, t) = −x(s, t) ≥ exp
{
−
∫ t

s

λ̃+(s, u|$)du
}
.

(ii) In the same way as in the first part, the statement can now be extended
to the general case where N is a multivariate, marked point process.

Proof (Corollary 6.40): Define λ+(s, t|$) := γ(t|N |(−∞,s]), as suggested,
and similarly λ̃+.

(1) Exact hazard rate. Because γ is an intrinsic intensity function, and every
intrinsic intensity function is by definition PX(R)-predictable, we have
γ(t|ν) = γ(t|ν|(−∞,t)). We need to check Equation (6.10). But given that
{N(s, t) = 0}, this follows from

λ(t|$) = γ(t|N) = γ(t|N |(−∞,t)) = γ
(
t
∣∣N |(−∞,s] +N |(s,t)

)
= γ(t|N |(−∞,s]) = λ+(s, t|$).

(2) Upper bound for hazard rate. The proof is almost identical to the first
part.

Proof (Proposition 6.43): Let K and N be two strong solutions associ-
ated with the Hawkes intensity functions αK = ηK + β and αN = ηN + β.
Furthermore, let L := |K −N | denote the difference process.
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(1) Bound on coupling time, finer version. Consider the two intensity pro-
cesses λK(t) := αK(t|K) and λN (t) := αN (t|N). Because K and N are
strong solutions, they are thinnings of $ with respect to λK and λN ,
respectively. The difference process L is therefore again a thinning given
by

L(j)(E ×X) =
∫
E×R+

1{ζ−j (t)<z<ζ−j (t)}$
(j)(dt×X × dz),

where the thinning is with respect to the layer between the two bounds

ζ−(t) := min
{
λK(t),λN (t)

}
, ζ+(t) := max

{
λK(t),λN (t)

}
.

Due to Theorem 6.37, the difference process L has intensity process

λL(t) = ζ+(t)− ζ−(t) =
∣∣λK(t)− λN (t)

∣∣ =
∣∣αK(t|K)−αN (t|N)

∣∣
=
∣∣ηK(t) + β(t|K)− ηN (t)− β(t|N)

∣∣.
Define g(t) :=

∣∣ηK(t)− ηN (t)
∣∣ and use Equation (6.25), so that

λL(t) ≤
∣∣ηK(t)− ηN (t)

∣∣+
∣∣β(t|K)− β(t|N)

∣∣
≤ g(t) + β

(
t
∣∣|K −N |) = g(t) + β(t|L).

This inequality suggests the following definition for the intrinsic intensity
function γ̃, which will serve as an upper bound for the intensity process
λL, but only depends on the past of L:

γ̃(t|ν) := g(t) + β(t|ν), for ν ∈ NX(R).

Then γ̃ is an upper bound for λL in the sense that λL(t) ≤ γ̃(t|L). Since
γ̃ satisfies the required conditions of Corollary 6.40, an upper bound for
the hazard rate is given by

λ̃
+

(s, t) := γ̃
(
t
∣∣L|(−∞,s]) = g(t) + β

(
t
∣∣L|(−∞,s]).

Hence, due to Proposition 6.39, this shows

P
[
L(s, t) = 0

∣∣Fs] ≥ exp
{
−

d∑
j=1

∫ t

s

λ̃+
j (s, u)du

}
.
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For simplicity, we write L(s, t) instead of L
(
(s, t) × X

)
. This shows,

because of
{
L(s,∞) = 0

}
=
{
T ≤ s

}
and using bounded convergence,

that

P
[
T ≤ s

∣∣Fs] = P
[
L(s,∞) = 0

∣∣Fs] = lim
t→∞

P
[
L(s, t) = 0

∣∣Fs]
≥ lim
t→∞

exp
{
−

d∑
j=1

∫ t

s

λ̃+
j (s, u)du

}
= exp

{
−

d∑
j=1

∫ ∞
s

λ̃+
j (s, u)du

}
.

Now take the expectation on both sides. Then apply Jensen’s inequality,
Fubini’s theorem, and use the variable t instead of s. According to the
definition of λ̃j , one obtains:

P[T ≤ t] ≥ exp
{
−

d∑
j=1

∫ ∞
t

E
[
λ̃+
j (t, u)

]
du
}

= exp
{
−

d∑
j=1

∫ ∞
t

gj(u) + E
[
βj
(
u
∣∣L|(−∞,t])]du}.

Due to Equation (6.26), one knows

E
[
β
(
u
∣∣L|(−∞,t])] =

[
H ∗mL|(−∞,t]

]
(u) =

[
H ∗ 1(−∞,t]mL

]
(u).

Substitute this in the above inequality, and the claimed result follows.

(2) Bound on coupling time, cruder version. Since L = |K − N | ≤ K + N ,
the analog inequality holds for the densities of the first order moment
measures.

Proof (Proposition 6.47): Let N̂n, λ̂n be the incremental processes and
Nn, λn the associated cumulative processes.

(1) First moment measure. According to Equation (6.14), N̂n is the thinning
of the driving process $ in the layer between λn−1 and λn. With Equa-
tion (6.13) one obtains λn−λn−1 = λ̂n. Therefore, due to Theorem 6.37,
the space-time intensity processes of N̂n are

λ̂n,j(t, x) = fj(x)λ̂n,j(t),

for 1 ≤ j ≤ d. For the first order moment density m̂n of N̂n one has,
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using that fj is a probability density:

m̂n,j(t) = E
[∫

Xj
λ̂n,j(t, x)µXj (dx)

]
= E

[∫
Xj
λ̂n,j(t)fj(x)µXj (dx)

]
= E

[
λ̂n,j(t)

∫
Xj
fj(x)µXj (dx)

]
= E

[
λ̂n,j(t)

]
.

Now, due to Equation (6.26), one obtains a recursive formula for m̂n:

m̂n(t) = E
[
λ̂n(t)

]
= E

[
β(t|N̂n−1)

]
=
[
H ∗ m̂n−1

]
(t).

The initial value m̂0 of this recursion is

m̂0(t) = E
[
λ0(t)

]
= E

[
η(t)

]
= η(t).

This shows m̂n(t) = [H∗n ∗ η](t). The claim now follows with

m∞(t) = E
[
λ∞(t)

]
= E

[ ∞∑
n=0

λ̂n(t)
]

=
∞∑
n=0

E
[
λ̂n(t)

]
=
∞∑
n=0

m̂n(t)

=
∞∑
n=0

[H∗n ∗ η](t) =
[( ∞∑

n=0

H∗n
)
∗ η
]
(t) = [U+ ∗ η](t).

(2) Thinning property. Note that λ∞ satisfies λ∞(t) = limn→∞ λn(t). There-
fore, with monotone convergence:

N (j)
∞ (E ×X) =

∞∑
n=0

N̂ (j)
n (E ×X)

=
∞∑
n=0

∫
E×R+

1{λn−1,j(t)<z≤λn,j(t)}$
(j)(dt×X × dz)

= lim
n→∞

∫
E×R+

1{z≤λn,j(t)}$
(j)(dt×X × dz)

=
∫
E×R+

1{z≤λ∞,j(t)}$
(j)(dt×X × dz).

It remains to show λ∞(t) = α(t|N∞). But this follows, using monotone
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convergence, from

λ∞(t) = η(t) +
∞∑
n=1

λ̂n(t) = η(t) +
∞∑
n=1

β(t|N̂n−1) = η(t) + β
(
t
∣∣∣ ∞∑
n=1

N̂n−1

)
= η(t) + β

(
t
∣∣∣ ∞∑
n=0

N̂n

)
= η(t) + β(t|N∞) = α(t|N∞).

Proof (Proposition 6.48): Let ηK , ηN be two immigration intensities and
K∞, N∞ the associated minimal solutions.

(i) Difference process. Let Kn and Nn be the cumulative point processes
corresponding to the immigration intensities ηK and ηN , see the con-
struction in Definition 6.45. Now consider the difference processes Ln :=
|Kn −Nn|.

(ii) Thinning representation of difference process. Define the vector-valued
function g(t) :=

∣∣ηK(t)−ηN (t)
∣∣. According to the construction, Kn, Nn

have the associated intensity processes λKn , λNn , which are

λKn(t) = ηK(t) +
n∑

m=1

λ̂Km(t) = ηK(t) +
n∑

m=1

β(t|K̂m−1)

= ηK(t) + β
(
t
∣∣∣ n−1∑
m=0

K̂m

)
= ηK(t) + β(t|Kn−1),

and similarly for λNn . From the construction of Kn, Nn follows

L(j)
n (E ×X) =

∫
E×R

1{ζ−n,j(t)<z<ζ
+
n,j(t)}

$(j)(dt×X × dz),

where the thinning is taken in the layer between

ζ−n (t) := min
{
λKn(t),λNn(t)

}
, ζ+

n (t) := max
{
λKn(t),λNn(t)

}
.

Hence, by Theorem 6.37, the intensity process of Ln is

λLn(t) = ζ+
n (t)− ζ−n (t) =

∣∣λKn(t)− λNn(t)
∣∣

=
∣∣ηK(t) + β(t|Kn−1)− ηN (t)− β(t|Nn−1)

∣∣.
(iii) Moment measure of difference process. For the first order moment mea-
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sure density mLn of Ln one has

mLn(t) = E
[∣∣ηK(t) + β(t|Kn−1)− ηN (t)− β(t|Nn−1)

∣∣]
≤ E

[∣∣ηK(t)− ηN (t)
∣∣]+ E

[∣∣β(t|Kn−1)− β(t|Nn−1)
∣∣]

≤ g(t) + E
[
β
(
t
∣∣|Kn−1 −Nn−1|

)]
= g(t) + E

[
β(t|Ln−1)

]
.

Due to Equation (6.26), one has E
[
β(t|Ln−1)

]
= [H ∗mLn−1 ](t), and

therefore

mLn(t) ≤ g(t)+
[
H∗mLn−1

]
(t) ≤

n−1∑
m=0

[
H∗m ∗g

]
(t)+

[
H∗n ∗mL0

]
(t),

and for mL0 one obtains

mL0(t) = E
[∣∣λK0(t)− λN0(t)

∣∣] ≤ ∣∣ηK(t)− ηN (t)
∣∣ = g(t).

Combining these inequalities, one gets

mLn(t) ≤
n∑

m=0

[
H∗m ∗ g

]
(t) ≤

[ ∞∑
m=0

H∗m ∗ g
]
(t) =

[
U+ ∗ g

]
(t).

Note that λKn ≤ λK∞ and λNn ≤ λN∞ . Hence, using bounded conver-
gence, the statement follows with

mL∞(t) = E
[∣∣λK∞(t)− λN∞(t)

∣∣] = E
[∣∣∣ lim
n→∞

λKn(t)− lim
n→∞

λNn(t)
∣∣∣]

= E
[

lim
n→∞

∣∣λKn(t)− λNn(t)
∣∣] = lim

n→∞
E
[∣∣λKn(t)− λNn(t)

∣∣]
= lim
n→∞

mLn(t) ≤
[
U+ ∗ g

]
(t).

Proof (Theorem 6.49): Let α(t|ν) = η(t) + β(t|ν) be a Hawkes inten-
sity function and N∞ be the associated minimal solution as given in Defi-
nition 6.46.

(1) Existence of minimal solution. According to Equation (6.16), N∞ satis-
fies the thinning condition. It remains to show that N∞ is a locally-finite
point process. Now, due to Equation (6.15), the density of the first order
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moment measure m∞ of N∞ satisfies:

m∞,j(t) = [U+ ∗ η]j(t) =
d∑
k=1

∫
R
ηk(t− s)U+

jk(ds)

≤
d∑
k=1

[
supu∈R ηk(u)

] ∫
R
U+
jk(ds) =

d∑
k=1

[
supu∈R ηk(u)

]
U+
jk(R)

=
d∑
k=1

(1d −Q)−1
jk

[
supu∈R ηk(u)

]
.

By assumption, the immigration intensity η is bounded. Hence, one
obtains in vector notation:

m∞(t) ≤ (1d −Q)−1
[
supu∈R η(u)

]
.

But this is more than sufficient for N to be locally-finite. Indeed, we need
to show that N has only finitely many events in any bounded set E ⊆ R
with probability one. Without loss of generality, we can take an interval
of the form E = [a, b]. Then, for all X ⊆ Xj :

E
[
N (j)
∞ (E ×X)

]
≤ E

[
N (j)
∞ (E × Xj)

]
=
∫
E

m∞,j(t)dt =
∫ b

a

m∞,j(t)dt

≤ (b− a)
[
(1d −Q)−1 supu∈R η(u)

]
j
<∞.

Hence, N∞(j)(E × X) is finite, and therefore N is a locally-finite point
process, as claimed.

(2) Coupling of two minimal solutions. Consider the difference process L∞ :=
|K∞ − N∞|. Because K∞ and N∞ are both strong solutions, one can
apply Proposition 6.43. Hence, due to Equation (6.12):

P[T ≤ t] ≥ exp
{
−

d∑
j=1

∫ ∞
t

gj(u) +
[
H ∗ 1(−∞,t]mL∞

]
j
(u)du

}
,

where g(t) := |ηK(t) − ηN (t)|. On the other hand, mL∞ has already
been calculated in Equation (6.17). Therefore

mL∞(t) ≤
[
U+ ∗ |ηK − ηN |

]
(t) = [U+ ∗ g](t).
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Together with Equations (4.3) and (4.4), one now obtains:

g(u) +
[
H ∗ 1(−∞,t]mL∞

]
(u) ≤ g(u) +

[
H ∗mL∞

]
(u)

≤ g(u) +
[
H ∗ U+ ∗ g

]
(u) = g(u) +

[
U− ∗ g

]
(u)

=
[
(1+ U−) ∗ g

]
(u) =

[
U+ ∗ g

]
(u) =

[
U+ ∗ |ηK − ηN |

]
(u).

Substitute this in the integral above, and the claimed formula follows.

Proof (Proposition 6.50): To avoid lengthy expressions, we express thin-
nings with the thinning operator Θ$, see the definition in Equation (6.8).

(1) Equivalence relation between continuations. Recall that (ν−,η+, N+) is
a continuation triple if and only if for all sets E+ ⊆ (χ,∞) the following
is satisfied:

N(E+) = Θ$

[
β(·|N) + η+(·)

]
(E+), N := ν− +N+.

Conversely, (∅, η̂+, N+) is a continuation triple if and only if for all E+:

N+(E+) = Θ$

[
β(·|N+) + η̂+(·)

]
(E+).

(⇒) We need to show that if (ν−,η+, N+) is a continuation triple, then so is
(∅, η̂+, N+). But, because N̂ and N+ coincide on (χ,∞), one has for all
E+ ⊆ (χ,∞) that

N+(E+) = N(E+) = Θ$

[
β( ·|N) + η+( ·)

]
(E+)

= Θ$

[
β(·|ν−) + β( ·|N+) + η+(·)

]
(E+)

= Θ$

[
β(·|N+) + η̂+(·)

]
(E+).

(⇐) Conversely, assume (∅, η̂+, N+) is a continuation triple and we need to
show (ν−,η+, N+) is one too. Because N and N+ coincide on (χ,∞),
one has

N(E+) = N+(E+) = Θ$

[
β( ·|N+) + η̂+( ·)

]
(E+)

= Θ$

[
β(·|N+) + β(·|ν−) + η+( ·)

]
(E+)

= Θ$

[
β(·|N+ + ν−) + η+( ·)

]
(E+) = Θ$

[
β(·|N) + η+(·)

]
(E+).
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In the last equality, N+ + ν− = N was used.

(2) Relation to strong solutions. Recall that a pair (η, N+) is a strong solution
and (∅−,η+, N+) is a continuation triple if and only if the following two
corresponding equations are satisfied:

N+(E) = Θ$

[
α( ·|N+)

]
(E), N+(E+) = Θ$

[
α(·|N+)

]
(E+), (6.31)

for all sets E ⊆ R and E+ ⊆ (χ,∞). Because β is PX(R)-predictable,
β(t|ν) = β(t|ν|(−∞,t)), for all point configurations ν. And since for all
t ≤ χ one has N+|(−∞,t) = ∅, and η(t) = 0, one obtains

α(t|N+) = β(t|N+) + η(t) = β(t|N+) = β(t|N+|(−∞,t)) = β(t|∅) = 0.

Therefore, for all sets E− ⊆ (−∞, χ]:

Θ$

[
α(·|N+)

]
(E−) = Θ$[0](E−) = 0. (6.32)

(⇒) We need to show the first part of Equation (6.31), given that the second
part is satisfied. It suffices to show this for sets E− ⊆ (−∞, χ] and E+ ⊆
(χ,∞) separately: Due to Equation (6.32), one has for sets E− ⊆ (−∞, χ]
that

N+(E−) = ∅−(E−) = 0 = Θ$

[
α( ·|N+)

]
(E−).

And for sets E+ ⊆ (χ,∞) the equation is satisfied by assumption.

(⇐) This follows immediately, since the first part of Equation (6.31) implies
the second part.

Proof (Corollary 6.51): Let η̂+ be the augmented immigration intensity
and η̂ the extension of η̂+ to the real line.

(1) Continuation and strong solution. Combining the two equivalence rela-
tions from Equations (6.19) and (6.20), one has

(ν−,η+, N+) continuation ⇔ (∅−, η̂+, N+) continuation

⇔ (η̂, N+) strong solution.

And this is exactly the equivalence what needs to be shown.
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(2) Uniqueness of continuation. Assume (ν−,η+, N+) and (ν−,η+, Ñ+) are
two continuation triples. Then, according to the first part, the following
two pairs define strong solutions:

(η̂, N+) strong solution, (η̂, Ñ+) strong solution.

Recall the coupling result for strong solutions given in Equation (6.12).
Applying this result for t := χ gives

P[T ≤ χ] ≥ exp
{
−

d∑
j=1

∫ ∞
χ

∣∣η̂j(u)− η̂j(u)
∣∣+[H∗1(−∞,χ]mL

]
j
(u)du

}
.

Clearly, the first term in the integrand vanishes. It remains to calculate
the function 1(−∞,χ]mL. But K̂ and N̂ are by assumption continuations
of the same initial state ν−, i.e. they coincide on the time interval (−∞, χ],
so that

K|(−∞,χ] = N |(−∞,χ] = ν− and L|(−∞,χ] = ∅−.

This implies

1(−∞,χ](t)mL(t) = 0, and then
[
H ∗ 1(−∞,χ]mL

]
j
(u) = 0.

After substitution, this yields P[T ≤ χ] = 1. Hence, the two processes K
and N coincide on the interval (χ,∞). Therefore, K+ and N+ coincide
too, since they are the restrictions of K and N to this interval.

Proof (Proposition 6.52): Recall the sufficient conditions for the existence
of a minimal solution, see Theorem 6.49.

(1) Construction of continuation. Let N∞ be the minimal solution generated
by η̂. Since every minimal solution is a strong solution, the equivalence in
Equation (6.22) applies. Hence, (ν−,η+, N∞,+) is a continuation triple,
as claimed. The uniqueness of N∞,+ follows from the second part of
Corollary 6.51.

(2) Coupling with two initial conditions. Let K∞ and N∞ be the minimal
solutions corresponding to the immigration intensities η̂κ and η̂ν . For
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minimal solutions, Equation (6.18) applies. Therefore

P[T ≤ t] ≥ exp
{
−

d∑
j=1

∫ ∞
t

[
U+ ∗ |η̂κ − η̂ν |

]
j
(u)du

}
.

Moreover, one has∣∣η̂κ(t)− η̂ν(t)
∣∣ = 1(χ,∞)(t)

∣∣η+(t) + β(t|κ−)− η+(t)− β(t|ν−)
∣∣

= 1(χ,∞)(t)
∣∣β(t|κ−)− β(t|ν−)

∣∣.
Because K∞,+ and N∞,+ are the restrictions of K∞ and N∞ to the
interval (χ,∞), the same bound also holds for the coupling time between
these two processes.

6.57 Lemma (Conditional expectations on splitted canonical space). Let χ ∈ R
be a fixed time. Consider the univariate canonical space N := NR+(R) as
explained in Definition 6.53. Let E− and E+ be the expectations with respect
to the probability measures P− and P+ on the spaces N− and N+, respectively.
For a non-negative random variable f one has:

E
[
f($)

∣∣Fχ] = E+

[
f($−, $+)

]
. (6.33)

Note that the expectation E+ is defined with respect to ω+ ∈ N+ only and
does not affect ω− ∈ N−. ♦

Proof (Lemma 6.57): Because $− is $ restricted to (−∞, χ], one has Fχ =
F$− , where F$− is the σ-algebra generated by $−. Hence

E
[
f($)

∣∣Fχ] = E
[
f($−, $+)

∣∣F$−
]

= E
[
f($−, $+)

∣∣$−].
Now use the fact that $− and $+ are independent to obtain

E
[
f($−, $+)

∣∣$−] = E+

[
f($−, $+)

]
.

Proof (Theorem 6.55): Assume K and N are two strong solutions with
bounded first moment measure densities mK and mN . Recall the decomposi-
tion of the canonical probability space, given in Definition 6.53.

(i) Define the restrictions of K and N to the time intervals (−∞, χ] and
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(χ,∞) by:

K− := K|(−∞,χ], N− := N |(−∞,χ],

K+ := K|(χ,∞), N+ := N |(χ,∞).

Note that K− and N− are both F−-measurable and therefore depend only
on $− ∈ N−.

(ii) Below, we will be calculating on the probability space (N+,F+,P+). This
situation occurs if $− ∈ N− is fixed, since then only the second compo-
nent of $ ≡ ($−, $+) is random.

Hence fix some $− ∈ N−, so that the probability space is reduced
to the triple (N+,F+,P+). Then K−, N− are two deterministic point
configurations on the time interval (−∞, χ]. Moreover, K+, N+ are the
continuations of K−, N−, in the sense of Definition 6.35. In other words,
one has the two continuation triples:

(K−,η+,K+) and (N−,η+, N+).

According to Corollary 6.51, continuations are uniquely determined by
their initial state. Moreover, by Proposition 6.52, a continuation is the
same as a minimal solution if one takes the augmented immigration in-
tensity. Denote the corresponding minimal solutions by K∞,+, N∞,+,
see also Equation (6.23). As a consequence, the two continuation triples
above coincide with

(K−,η+,K∞,+) and (N−,η+, N∞,+). (6.34)

(iii) Consider now again the full probability space (N,F,P). Recall from Equa-
tion (6.11) that the truncated coupling time Tχ is defined as

Tχ := inf
{
t ≥ χ : K|(t,∞) = N |(t,∞)

}
.

Fix a time t ≥ χ. Clearly, if K and N couple before time t then so do
K+ and N+, and vice versa. Hence, due to Equation (6.33), one has:

P[T ≤ t] = P[Tχ ≤ t] = E
[
P
[
Tχ ≤ t

∣∣Fχ]] = E
[
P+

[
Tχ ≤ t

]]
. (6.35)

To calculate P+[Tχ ≤ t], recall from step (ii), that one can consider $−
as fixed. Hence, we are dealing with the two continuation triples from
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Equation (6.34). Therefore, according to Equation (6.24), one has:

P+

[
Tχ ≤ t

]
≥ exp

{
−

d∑
j=1

∫ ∞
t

[
U+ ∗ gχ

]
j
(s)ds

}
,

where gχ depends on K− and N− and is defined as

gχ(t) := 1(χ,∞)(t)
∣∣∣β(t|K−)− β(t|N−)

∣∣∣,
for t ∈ R. After substitution of P+

[
Tχ ≤ t

]
into Equation (6.35), and by

Jensen’s inequality, one obtains:

P[T ≤ t] ≥ E
[
exp
{
−

d∑
j=1

∫ ∞
t

[U+ ∗ gχ]j(s)ds
}]

≥ exp
{
−

d∑
j=1

∫ ∞
t

E
[
U+ ∗ gχ

]
j
(s)ds

}
. (6.36)

By Fubini’s theorem:∫ ∞
t

E
[
U+ ∗ gχ

]
j
(s)ds =

∫ ∞
t

E
[ d∑
k=1

∫ ∞
0

U+
jk(u)gχ,k(s− u)du

]
ds

=
d∑
k=1

∫ ∞
t

[∫ ∞
0

U+
jk(u) E

[
gχ,k(s− u)

]
du
]
ds

=
d∑
k=1

∫ ∞
t−χ

[∫ ∞
0

U+
jk(u) E

[
gχ,k(χ+ s− u)

]
du
]
ds. (6.37)

In the last equality, s � χ+s was substituted. According to the definition
of gχ(t), one has, in vector notation:

E
[
gχ(t)

]
= E

[
1(χ,∞)(t)

∣∣β(t|K−)− β(t|N−)
∣∣].

Let mχ be the first moment density of |K− − N−|. Then by Equa-
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tion (6.25) and (6.26), one obtains:

E
[
gχ(t)

]
= 1(χ,∞)(t) E

[∣∣β(t|K−)− β(t|N−)
∣∣]

≤ 1(χ,∞)(t) E
[
β
(
t
∣∣|K− −N−|)] ≤ 1(χ,∞)(t)

[
H ∗mχ

]
(t).

Since K− = K|(−∞,χ] and N− = N |(−∞,χ], this yields:

mχ(t) = 1(−∞,χ](t)m|K−−N−|(t) ≤ 1(−∞,χ](t)mK+N (t)

= 1(−∞,χ](t)
[
mK(t) +mN (t)

]
≤ 1(−∞,χ](t)m̄,

where the vector-valued constant m̄ is defined as:

m̄ := supu∈RmK(u) + supu∈RmN (u).

By assumption, K and N have bounded first moment measures mK and
mN , so that m̄ < ∞. Combine the previous results to obtain:

E
[
gχ(t)

]
≤ 1(χ,∞)

[
H ∗ 1(−∞,χ]m̄

]
(t).

(iv) In this step, we calculate a universal bound for E
[
gχ(t)

]
, which holds

uniformly for all χ. The candidate function is:

ψj(h) := 1(0,∞)(h)
d∑
k=1

m̄k

∫ ∞
h

Hjk(u)du, for h > 0.

We claim that E
[
gχ(t)

]
≤ ϕ(t− χ), for all t > χ. Indeed:

E
[
gχ,j(t)

]
≤
[
H ∗ 1(−∞,χ]m̄

]
j
(t) =

d∑
k=1

∫ ∞
0

Hjk(u)1(−∞,χ](t− u)m̄kdu

=
d∑
k=1

m̄k

∫
R
1[t−χ,∞)(u)Hjk(u)du = ψj(t− χ).
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(v) Continuing with Equation (6.37), one finds:

∫ ∞
t

E
[
U+ ∗ gχ

]
j
(s)ds ≤

d∑
k=1

∫ ∞
t−χ

[∫ ∞
0

U+
jk(u) E

[
gχ,k(χ+ s− u)

]
du
]
ds

=
∫ ∞
t−χ

[ d∑
k=1

∫ ∞
0

U+
jk(u)ψk(s− u)du

]
ds

∫ ∞
t−χ

[U+ ∗ψ]j(s)ds.

We have used that E
[
gχ(χ + s − u)

]
≤ ψ(s − u). Hence, due to Equa-

tion (6.36), one has for all t ≥ χ that:

P[T ≤ t] ≥ exp
{
−

d∑
j=1

∫ ∞
t−χ

[U+ ∗ψ]j(s)ds
}
. (6.38)

(vi) Next calculate:∫ ∞
0

ψk(h)dh =
∫ ∞

0

[ d∑
l=1

m̄l

∫ ∞
h

Hkl(u)du
]
dh

=
d∑
l=1

m̄l

∫ ∞
0

[∫ ∞
h

Hkl(u)du
]
dh =

d∑
l=1

m̄l

∫ ∞
0

[∫ u

0

Hkl(u)dh
]
du

=
d∑
l=1

m̄l

∫ ∞
0

uHkl(u)du.

Recall that for any two non-negative functions f , g on R+:∫ ∞
0

(f ∗ g)(s)ds =
[∫ ∞

0

f(w)dw
][∫ ∞

0

g(u)du
]
.

Therefore:∫ ∞
0

[U+ ∗ψ]j(s)ds ≤
d∑
k=1

[∫ ∞
0

U+
jk(h)dh

][∫ ∞
0

ψk(h)dh
]

=
d∑
k=1

[
(1d −Q)−1

jk

d∑
l=1

m̄l

∫ ∞
0

uHkl(u)du
]
<∞.

We have used that m̄ and
∫∞

0
uHkl(u)du are finite, according to the

assumptions.
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(vii) Finally, take the limit in Equation (6.38):

P[T ≤ t] ≥ lim
χ→−∞

exp
{
−

d∑
j=1

∫ ∞
t−χ

[U+ ∗ψ]j(s)ds
}

= exp
{
−

d∑
j=1

lim
h→∞

∫ ∞
h

[U+ ∗ψ]j(s)ds
}

= 1.

This shows that T = −∞, almost surely. Therefore, K and N are iden-
tical, except possibly on a set of probability zero.
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Conclusion

This thesis presents linear Hawkes processes in the style of a textbook giv-
ing more details than would be common in an academic article. This makes
the exposition self-contained and hopefully more accessible. It introduces and
describes in detail some of the techniques used to analyze Hawkes processes.
Often, these techniques are presented in a more abstract form than is strictly
necessary, without specifically referring to Hawkes processes. I hope this ex-
hibits their power more clearly.

Software for Hawkes Processes. Even though the material in the thesis is
largely theoretical, I constantly had the applicability of the theory in mind when
I wrote the thesis. This resulted in a software package I developed in parallel
to the theoretical work. The software is not part of my thesis, but it has still
contributed indirectly since implementing it has helped me to better understand
some aspects of Hawkes processes I would probably not have otherwise.

Implementing estimation and simulation procedures in the generality de-
scribed in the first chapter is much more involved than it would seem at first.
The introduction discusses some of the problems one encounters and points out
some remedies, but there are several more issues one has to deal with, which I
could not include in this thesis.

This thesis is exclusively concerned with linear Hawkes processes, but the
software I wrote can also cope with more general Hawkes processes, which are
not discussed here. It seems that certain non-linear extensions can be very
beneficial if fitted to financial data.

Further Research. Hawkes processes are a large class of point processes.
Indeed, one could consider Hawkes processes more as a framework than a class
of point processes. The only common feature is their self-exciting behavior but,
apart from that, the other characteristics can be chosen quite freely. Thus,
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if one needs to model a phenomenon that exhibits some sort of self-exciting
behavior, Hawkes processes are certainly a serious candidate model.

The theoretical foundation of Hawkes processes is certainly father developed
than empirical experience in using them. Hopefully there is more progress in
this direction in the future. On the theoretical side, time series models inspired
by Hawkes processes could be an interesting addition. The paper [BM96] in-
troduces a class of non-linear extensions to the classical Hawkes process. But
also other types of non-linear extensions could be conceived and may have in-
teresting features. As long as one is careful not to generalize linear Hawkes
processes too much, the techniques discussed in this thesis can most likely be
carried over and adapted in order to prove analogous results.
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