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Figure 1: Left: Face model captured using a seven camera studio setup; Center: capture systems; Right: Face model captured using
consumer binocular-stereo camera. Facial geometry in all figures is best viewed in the electronic version.

Abstract

This technical report describes a passive stereo system for captur-
ing the 3D geometry of a face in a single-shot under standard light
sources. The system is low-cost and easy to deploy. Results are
sub-millimeter accurate and commensurate with those from state-
of-the-art systems based on active lighting, and the models meet the
quality requirements of a demanding domain like the movie indus-
try. Recovered models are shown for captures from both high-end
cameras in a studio setting and from a consumer binocular-stereo
camera, demonstrating scalability across a spectrum of camera de-
ployments, and showing the potential for 3D face modeling to move
beyond the professional arena and into the emerging consumer mar-
ket in stereoscopic photography.

Our primary technical contribution is a modification of standard
stereo refinement methods to capture pore-scale geometry, using a
qualitative approach that produces visually realistic results. The
second technical contribution is a calibration method suited to
face capture systems. The systemic contribution includes multi-
ple demonstrations of system robustness and quality. These include
capture in a studio setup, capture off a consumer binocular-stereo
camera, scanning of faces of varying gender and ethnicity and age,
capture of highly-transient facial expression, and scanning a physi-
cal mask to provide ground-truth validation.

CR Categories: I.3.2 [Computer Graphics]: Graphics
Systems—Stand-alone systems; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture I.4.1 [Image Processing and Computer Vision]: Digiti-
zation and Image Capture

1 Introduction

1.1 Motivation

Capturing a high-quality model of a human face is of interest in
multiple domains - for the movie and games industries, in medicine,
to provide more natural user-interfaces, and for archival purposes.
A key application is the synthesis of a desired sequence of speech
and facial expression under arbitrary lighting. This problem has
motivated striking results in rendering [Donner and Jensen 2006;

Donner et al. 2008], in performance-driven facial animation [Hyne-
man et al. 2005; Alexander et al. 2009], and in physics-based ani-
mation [Sifakis et al. 2005]. However, reproducing realistic human
faces is still a challenge for computer graphics because humans are
sensitive to facial appearance and quickly sense any anomalies in
3D geometry or dynamics.

This technical report is concerned with the capture of 3D geome-
try of the face. The current method of choice for this task is an
active system based on laser, structured light or gradient-based il-
lumination. Active light brings robustness because it effectively
augments an object surface with known information. On the other
hand, it requires special-purpose hardware and often employs time-
multiplexing. Polarization-based methods further constrain deploy-
ment to a single camera at a fixed viewpoint. Contrast this with pas-
sive stereo vision, which has the potential to be an extremely ver-
satile modality for constructing 3D models - it captures in a single
shot, readily adapts to different arrangements and numbers of cam-
eras with no constraint on camera position, seamlessly integrates
3D data captured over multiple distances and at different scales in
a scene, captures texture that is intrinsically registered with the re-
covered 3D data, and uses commodity hardware. However, in the
past, the reliability and accuracy of passive stereo have fallen short
of what is available from active systems, and it has not been used
for capturing high-quality face models.

This technical report presents a passive stereo vision system that
computes the 3D geometry of the face with reliability and accuracy
on a par with a laser scanner or a structured light system. We intro-
duce an image-based embossing technique to capture mesoscopic
facial geometry1, so that the quality of synthesized faces from our
system equals that achieved with gradient-based illumination. In
practical terms, we equal the performance of active systems while
attaining the advantages of passive stereo already listed, particularly
capture in a single shot under standard light sources, low-cost, and
ease-of-deployment. To demonstrate the robustness of the system,
we show results for faces of varying gender, ethnicity and age. To
demonstrate versatility, we show face models captured off a studio
setup and off a consumer binocular-stereo camera, with the latter
result suggesting that 3D face scanning is poised to move beyond

1We use the term mesoscopic for geometry at the scale of pores and fine
wrinkles, and macroscopic for overall 3D shape of the face.
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the professional arena and become a practical application on the
desktop.

1.2 Related Work

The best current techniques for capturing geometry of a human face
are active. The domain grew from original work on stereo capture
of a face augmented with skin markings [Parke 1974]. A survey
of the area is given in [Pighin and Lewis 2005]. More recent work
begins with a hybrid system that combines a recovered depth map
and recovered surface normals to generate a model [Nehab et al.
2005]. This technique has been utilized for faces in [Weyrich et al.
2006], and in [Ma et al. 2007] which presented a system for acquir-
ing high-quality surface normals using polarized gradient-based il-
lumination to generate high-resolution 3D reconstructions. Further
work includes a hybrid system of structured light and stereo [Weise
et al. 2007], and the application of the technique to facial expression
transfer in [Weise et al. 2009]. Recent work on single shot photo-
metric stereo is described in [Hernandez et al. 2008]. A hybrid
system of active light and augmented skin markings is the basis for
the current state-of-the-art example of creating a photoreal human
face in [Alexander et al. 2009].

Turning to non-active techniques, Section 2 of this technical re-
port describes stereo matching and generation of a 3D mesh. We
build on established techniques described in the survey paper [Seitz
et al. 2006], and also take inspiration from [Furukawa and Ponce
2007]. Commercial solutions [DI3D 2009] as well as concurrent
work by [Bradley et al. 2010] are also applying MVS to the domain
of face scanning. The main difference to our system lies in the re-
finement formulation described in Section 3. Our starting point is
the established approach of refining recovered 3D data based on a
data-driven photo-consistency term and a surface-smoothing term,
which has been a subject of research ranging from [Scharstein and
Szeliski 1996] to [Woodford et al. 2008]. Our work differs in
the use of a second-order anisotropic formulation of the smooth-
ing term, and we argue that it is particularly suited to faces.

We present an extension to traditional stereo refinement in our
method for modeling mesoscopic geometry of the face in Section 3.
The data-driven and smoothing terms are augmented with a third
term that uses image texture to drive the qualitative recovery of
mesoscopic geometry, and we thereby capture fine modulations of
the geometry that are irrecoverable using stereo disparity alone. Al-
though unrelated to our method, shape recipes are instructive on the
relationship between image data and shape data [Torralba and Free-
man 2003]. Other works concerned with fine-scale detail are the
mesh optimization in [Hiep et al. 2009], the modeling in [Golovin-
skiy et al. 2006; Bickel et al. 2008], and extraction of mesostructure
from diffuse ambient occlusion [Bickel et al. 2007] or specularity
in [Chen et al. 2006]. Our method is similar in spirit to [Glen-
cross et al. 2008] which describes qualitative recovery of 3D infor-
mation for bas-relief surfaces but the technical approaches are dif-
ferent, and Glencross’s system being self-contained while we are
proposing an extension within the existing framework of stereo re-
finement.

Turning to the area of camera calibration, there is a body of theory
available in a standard text such as [Hartley and Zisserman 2000].
Our calibration contribution is practical, not theoretical, and de-
scribed in Section 2.1.

1.3 Contributions

This technical report makes a systemic contribution and two tech-
nical contributions. The systemic contribution is to demonstrate a
state-of-the-art passive stereo vision system for face scanning, and

to argue that past weaknesses have been overcome to yield a tech-
nology that is single-shot, low-cost, easy to deploy, and has impact
in two areas. Firstly in the area of professional capture of high-
quality face models, we argue that passive stereo is on an equal
footing with active systems. Secondly in the emerging area of con-
sumer stereo photography, we show that face scanning can be ac-
complished using a consumer binocular-stereo camera, indicating
that the technology is ready to expand beyond the professional do-
main. Moving to our technical contributions, the primary contri-
bution is the modeling of mesoscopic geometry in Section 3.3, and
the second contribution is the calibration method in Section 2.1.
We also describe extensions to generic stereo refinement methods
in Sections 3.1 and 3.2 that tailor the processing to faces.

2 Face Scanning

This section describes the end-to-end system as shown in Fig-
ure 2. Camera calibration is a pre-processing stage and is described
in Section 2.1. The run-time system begins with pairwise stereo
matching, and uses a pyramidal approach in which results at lower-
resolutions guide the matching at higher-resolutions as described in
Section 2.3. At each layer of the pyramid, matches are computed at
pixel level to give dense matches across the face, and the matches
are used to generate a 3D mesh as described in Section 2.4. The
mesh is refined using a modification of the traditional approach, in
which photo-consistency and smoothing terms are augmented with
a novel term that captures fine detail at the pore-level. This is de-
scribed in Section 3. An excellent overview and categorization of
MVS is found in [Seitz et al. 2006];

2.1 Calibration

The theoretical foundation of camera calibration is well established,
and our focus has been on the practical matter of achieving a
straightforward and reliable calibration for a face-capture system.
The method requires a small number of views, typically one to three
views, of a sphere augmented with fiducials as shown in Figure 3.
Each fiducial is a double circle. The center points of the circles
provide the correspondences between cameras, as well as provid-
ing a known metric distance DF that can be used to set scale. The
fiducials are not used to provide known 3D coordinates - hence the
sphere need not be perfect, and the fiducials can be placed by hand
with arbitrary distribution. Fiducials were printed on sticky paper,
and the slight distortion in fixing a flat sticker to a spherical surface
was not found to be a problem.

The approach has the following advantages. Firstly it is suited
to face capture because a calibration sphere that is approximately
head-sized and placed at the intended position of the subject is
therefore well-placed for the cameras. The sphere need not lie com-
pletely within the camera images so there is no fine-tune position-
ing. Unlike a calibration plane, a sphere has no preferred direc-
tion in space, making it appropriate for a setup in which circum-
positioned cameras are directed inward towards an object of inter-
est. Unlike an LED-based calibration, the method requires only a
small number of views and provides sub-pixel accurate features.
Finally, the calibration sphere occupies the same workspace as the
subject’s head in the run-time system. Thus, we ensure that cal-
ibration data is collected - and the calibration is therefore well-
estimated - in exactly the same workspace as will be used at run-
time.

Calibration is fully automatic. The algorithm is

• Segment out the sphere in each image using cues of back-
ground subtraction and known sphere color. We use the same
algorithm as for matting the face (see Section 2.2);
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Figure 2: The proposed system - The subject is captured with multiple cameras. This figure shows a four-camera setup, but the system can
incorporate an arbitrary number of cameras.

Figure 3: Fiducials are placed randomly on the calibration sphere.
A fiducial consists of two checkerboard circles with red dots at their
centers. The fiducial defines a known distance DF .

• Fit an ellipse to the silhouette of the segmented sphere. Ignore
the area outside the ellipse in the remainder.

• Detect the circles via spots of known color at their centers.
Compute the center positions to sub-pixel accuracy using
function findCornerSubPix in [Intel 2001].

• Set up an approximately Euclidean coordinate frame with the
origin at the center of the calibration sphere by using (a) a
rough estimate of camera focal length plus (b) the known met-
ric dimension of the sphere.

• Compute the 3D coordinates of the detected circle centers in
this coordinate frame, Each fiducial thereby generates one 3D
triangular facet with vertices at the sphere center and the fidu-
cial’s two circle centers.

• Match the 3D triangular facets between pairs of cameras us-
ing RANSAC [Hartley and Zisserman 2000]. Note that a sin-
gle putative match is sufficient to compute a rotation between
two cameras in the approximately-euclidean frame, while the
translation has been factored out by the choice of sphere cen-
ter as the origin. Thus the sample size for the RANSAC sam-
pling is one.

• Use the computed correspondences between pairs of cameras
to construct correspondences across all cameras.

• Discard the approximately-euclidean frame, and use the com-
puted correspondences as input to the calibration system
at [Svoboda ] to determine camera intrinsics and extrinsics
up to unknown scale.

• Set the scale of the computed coordinate frame using the
known distance DF .

• Define a 3D ’capture-zone’ as the intersection of the camera
viewing frustums, to delimit the active region within which
3D processing will be done at run-time.

2.2 Image Preprocessing

The images are retrieved in 12 bit RAW format from the cameras
and converted to floating point RGB images. After de-Bayering
using VNG [Chang et al. 1999], the images are subsampled once
by a factor of two due to the Bayer-pattern. Subsampling reduces
the data size and attenuates sensor noise. A mask is automatically
generated using cues of color hue and saturation. The reasoning is
that in the chosen setup the face of our subject forms the biggest
connected patch of color with high saturation. For this, the image
is first transformed to HSV color space and the binary maskM is
then computed as

M(x, y) =

(
1 S(x, y)

`
π − |H(x, y)− c|α

´
/π > β

0 otherwise
,

where c denotes the hue of human skin, the norm |.|α the abso-
lute angular difference[0, π], H the hue [0, 2π[ and S the saturation
[0, 1]. The domain of the threshold β is [0, 1] and we use β = 0.2
in all our examples. Only the largest connected region in M is
retained and holes in this region are filled up.

The images are finally reduced to grayscale by retaining only the
green channel.

2.3 Pairwise Stereo-Reconstruction

In this section we describe the individual steps of our stereo recon-
struction. Matching is done pairwise between neighboring cam-
eras2, and at pixel level to establish dense matches across the face.
For a given camera-pair, the first step is to rectify the images to ob-
tain row-aligned epipolar geometry. An image pyramid is generated
for each rectified image by factor-of-two subsampling using Gaus-
sian convolution. The image resolution at the lowest-resolution
layer of the pyramid is chosen to be around 150 × 150 pixels, but
this is approximate and the criteria is simply that the major facial
features are still visible.

2Pairing of cameras in a multi-camera system is done manually, although
it would be straightforward to automate if needed.
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Each layer of the pyramid is then processed as follows: First,
matches are computed for all pixels as described in Section 2.3.1.
Next, we check smoothness, uniqueness and ordering constraints
for each pixel (see Section 2.3.2). Pixels that do not fulfill
these constraints are re-matched using a limited search area (Sec-
tion 2.3.1). The limited search area ensures that smoothness and
ordering constraints hold on the re-matched pixels. The uniqueness
constraint however needs to be enforced once more. The dispar-
ity maps are then refined. An in-depth description is deferred to
Section 3.1, since it is an instantiation of the refinement formula-
tion introduced in Section 3. Finally, the uniqueness constraint is
enforced again.

Matching starts at the lowest-resolution layer of the pyramid. The
resulting disparity map provides input to the the next higher layer,
where it is used to constrain the search area for matching, and so on
up to the highest-resolution layer of the pyramid. As demonstrated
in Figure 4, this leads to a hierarchical refinement of the reconstruc-
tion over the layers of the pyramid.

Figure 4: Reconstructions of a stereo-pair at 4 different layers of
the pyramid starting from the coarsest layer `4 (160px × 160px).
The dimensions double at each layer up to the highest resolution
layer `1 (1280px × 1280px).

2.3.1 Pixel Matching

Following the taxonomy of [Scharstein and Szeliski 2002], the sys-
tem employs a winner-take-all block-matching algorithm using nor-
malized cross-correlation (NCC) as matching cost over a square
window (3x3). Matching is performed along the epipolar line only.
Pixel p in image I is matched against all pixels in image J within
a given search area and the best match is retained. The disparity
at p is computed to sub-pixel accuracy by computing NCC values
for p against the matching pixel q and its two neighbors in image
J , fitting a polynomial of degree three, and finding the position in
image J where it is at minimum.

Matching is performed twice per layer. The initial matching com-
putes putative matches for all pixels using the disparity estimates of
the preceding layer (or the ’capture-zone’ if no preceding guesses
are present) to constrain the search area. Next, we check for each
pixel smoothness, uniqueness and ordering constraints (see Sec-
tion 2.3.2). Pixels that do not fulfill these constraints are re-matched
using the disparity estimates of the neighboring pixels that fulfilled
the constraints to limit the search area.

2.3.2 Constraints

The system can make use of constraints that hold for human faces in
the given setting. Pixels in image I are matched against image J ,
and vice-versa from image J to image I. Acceptance of a match
at pixel p in image I is subject to three constraints -

• Smoothness Constraint - computed disparity at p is consis-
tent with neighbors in a surrounding window. In our imple-
mentation this is achieved by enforcing that more than half of
all neighbors in a 3×3 neighborhood differ by a disparity less
than one pixel.

• Uniqueness Constraint - the matching needs to be bijective:
if p in image I matches to q in image J then q must also
match to p. To take different foreshortening into account we
tolerate a disparity mismatch of up to one pixel in our imple-
mentation.

• Ordering Constraint - computed disparity at p does not ex-
ceed the disparity of its right-neighbor pixel by more than one
pixel.

2.4 Meshing

Each camera-pair in Section 2.3 produces one disparity map, which
is used to compute a corresponding array of 3D points and a cor-
responding array of surface normals. Since we estimate a dense
disparity map, the normals are computed using finite differences
on the points. 3D points and surface normals are collected across
all camera pairs. Outliers are removed using a simplified approach
of [Merrell et al. 2007]. If two 3D points project onto the same
pixel in a given camera view, both with normals facing towards that
camera, and without an intermediate point with normal facing away
from the camera, then the associated topology is incorrect, and the
3D point with the higher matching error is rejected (see Figure 5
for visualization). The resulting set of 3D points and normals is in-
put to a Poisson surface reconstruction [Kazhdan et al. 2006]. The
output is a triangular mesh, each vertex consisting of a 3D point
plus surface normal. This mesh is then refined as described in Sec-
tion 3.2.

A

B

A

B

C

V1 V2
V1 V2

S S

Figure 5: Outlier filtering - Left: Point A is in conflict with Point
B, since both project to the same point in V2 and since no surface S
can match this constellation. The point with higher matching error
will be rejected. Right: Point A does not conflict with Point B, since
the constellation can be explained by a valid surface S due to Point
C.

3 Refinement

This section describes the refinement method that was utilized in
Section 2. The refinement is a linear combination of two terms:
a photometric consistency term dp that favors solutions with high
NCC and a surface consistency term ds that favors smooth solu-
tions. These terms are balanced both by a user-specified smooth-
ness parameter ws and a data-driven parameter wp, which ensures
that the photometric term has greatest weight in regions with good
feature localization. The refinement is performed both on the dis-
parity map and later on the surface and we will discuss the individ-
ual realizations in Sections 3.1 and 3.2, resp. Both refinements are
implemented as iterative processes. In practice they were found to
preserve the volume and to converge quickly to the desired solu-
tion. Figure 6 shows the convergence for the disparity refinement.
Since the convergence is close to exponential at the beginning, we
terminate the refinement before convergence is reached to strike a
balance between quality and computational effort. This is espe-
cially valuable for lower-resolution layers of the disparity pyramid,
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since the next higher layer is going to refine the disparities anyway
and we therefore need only to eliminate the gross errors.

3.1 Disparity Map Refinement

Sub-pixel disparity values are updated in every iteration as a linear
combination of dp and ds, where dp is an adjustment in the direc-
tion of improved photometric-consistency, and ds is an adjustment
in the direction of improved surface-consistency. Individual steps
are -

Compute dp - Given current pixel p in image I and its match q in
image J , compute the NCC of p with q − 1, q, q + 1 where the
offsets indicate the left- and right-neighbors of q. We use NCC =
(1 − NCC)/2, which resembles an error function ranging from 0
(no error) to 1 (complete dissimilarity). The respective NCCs are
labeled ξ−1, ξ0, ξ+1 and dp is calculated as

dp =

8><>:
p− q − 0.5 ξ−1 < ξ0, ξ+1

p− q + 0.5
(ξ−1−ξ+1)

ξ−1+ξ+1−2ξ0
ξ0 < ξ−1, ξ+1

p− q + 0.5 ξ+1 < ξ−1, ξ0

Compute ds - The formulation of surface-consistency has been de-
signed for human faces, where disparity varies smoothly with just a
few (extreme) depth discontinuities. These discontinuities suggest
the use of anisotropic kernels [Robert and Deriche 1996], which
adapt to the local gradient to avoid smoothening across boundaries.
For human faces however, regions of high gradient are mostly due
to different foreshortening of the camera pairs and smoothening
should not be attenuated within these regions. Following [Wood-
ford et al. 2008] we employ second-order properties, but use them
within an anisotropic formulation over a two dimensional domain.
The equation is discretized as

ds =
wx(dx−1,y + dx+1,y) + wy(dx,y−1 + dx,y+1)

2(wx + wy)
(1)

where wx = exp(− (|dx−1,y − dx,y| − |dx+1,y − dx,y|)2).
These weights render the harmonic equation anisotropic, reducing
smoothing across depth discontinuities.

Compute d′ - The equation is d′ = (wpdp + wsds) / (wp + ws),
where ws is a user-specified smoothness parameter and wp is

wp =

8><>:
ξ0 − ξ−1 ξ−1 < ξ0, ξ+1

0.5(ξ−1 + ξ+1 − 2ξ0) ξ0 < ξ−1, ξ+1

ξ0 − ξ+1 ξ+1 < ξ−1, ξ0

Thus the photometric term has greatest weight in textured areas of
the image where the image data is most informative about feature
localization.

The refinement is terminated after a predefined number of iterations
(40 for the lower-resolution layers and 180 for highest layer). See
Figure 6 for justification.

3.2 Surface Refinement

The surface refinement differs from the disparity map refinement in
that we need to refine in continuous 3-space. To keep computation
tractable we restrict the refinement to along the normal direction
n at X and define a refinement resolution δ (usually 0.1 mm). The
normals are not changed during the refinement. This again results in
a discrete one-dimensional refinement and we proceed analogously

Figure 6: Convergence of the refinement over the first 1000 itera-
tions at layer `1 using ws = 0.005. The images in the back show
samples of the surface at iterations 0,1,5,10,100 and 1000, resp.
The initial convergence is close to exponential (note the log scale
for the iteration axis) and as can be seen from the samples the qual-
ity does not change noticeably between iterations 100 and 1000. We
thus stop the refinement at iteration 180.

to Section 3.1 by iterating over all points and computing updates for
X as a linear combination of Xp and Xs, where Xp is an adjust-
ment in the direction of improved photometric-consistency, and Xs

is an adjustment in the direction of improved surface-consistency.
Individual steps are -

Compute Xp - Generate the points X−δ = X − δn and X+δ =
X + δn. Define as reference view the visible camera with the least
foreshortened view of X. Measure a photo-consistency error for
a point by taking the NCC between a 3x3 patch centered at the
projection in the reference image and the corresponding patches in
all other images where the patch is visible. Compute δp analogously
to dp given error values ξ−δ, ξ0 and ξ+δ for X−δ , X0 and X+δ ,
resp.

Compute Xs - The surface-consistency estimate Xs is computed
using mean-curvature flow [Meyer et al. 2003].

Compute X′ - Compute X′ = (wpXp+wsXs)/(wp+ws) where
wp and ws are the same as in Section 3.1.

3.3 Modeling Mesoscopic Geometry

The refinement in Section 3.2 results in surface geometry that is
smooth across skin pores and fine wrinkles, because the disparity
change across such a feature is too small to detect3. The result is
flatness and lack of realism in synthesized views of the face. On the
other hand, visual inspection shows the obvious presence of pores
and fine wrinkles in the images. This is due to the fact that light re-
flected by a diffuse surface is related to the integral of the incoming
light. In small concavities, such as pores, part of the incoming light
is blocked and the point thus appears darker. This fact has been
exploited by various authors (e.g. [Glencross et al. 2008]) to infer
local geometry variation. In this section we propose a method to
embed this observation into our surface refinement framework. It
is qualitative, and the geometry that is recovered is not metrically
correct. However, modulation of the macroscopic geometry with
fine-scale features does produce a significant improvement in the
perceived quality of reconstructed face geometry.

3.3.1 Computing Mesoscopic Values

For the mesoscopic augmentation we are only interested in features
that are too small to be recovered by the stereo algorithm while still

3This is a function of image resolution, not a limitation of the algorithm.
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Figure 7: This figure demonstrates the effect of the mesoscopic-
consistency term. The captured image (a) is filtered to extract the
mesoscopic detail (b). In (c), the Poisson-reconstructed surface is
shown. The refinement described in Section 3.2 already enhances
the coarse geometry (d), but only the mesoscopic formulation is
capable of reproducing the fine-scale details (e).

being visible in the captured images. We call these features meso-
scopic features. A first step is to extract the mesoscopic features
from the images using a high-pass filter. The filter is implemented
as a Difference of Gaussians (DoG) using the original and a low-
pass filtered version of the image. The applied low-pass filter is
a Gaussian N (0, σ). This Gaussian is defined on the surface and
projected into the views to account for perspective [Zwicker et al.
2002]. The standard deviation σ can either be defined directly on
the surface knowing the size of the mesoscopic features or in the im-
age domain and then propagated to the surface. Defining σ based
on the image domain is more general, since the mesoscopic scale
is relative to the projected size of the features in the image domain.
The following derivation of σ is thus given in the image domain but
its application to the surface is straight-forward.

If a feature covers only a few pixels, potentially less than the match-
ing window, then the stereo reconstruction cannot match parts of
the feature to reconstruct it. We thus choose the lowest spatial fre-
quency of a feature (e.g. pore) that exactly covers the matching
window m as the cutting frequency fcut = 1/2m. Higher spatial
frequencies should be retained while the lower ones should be (de-
creasingly) attenuated. Since we use a Gaussian as low-pass filter,
this is the case when the cutting frequency equals fcut = nσF with
n ≈ 1.5. The variance in the frequency domain is then given as
σ2
F = (fcut/n)2 and can be converted to the variance σ2

f in the
spatial domain using the uncertainty principle for Gaussians

σ2
f =

1

4σ2
F

and thus
σf = nm. (2)

Given the proposed values n = 1.5 and m = 3, the standard de-
viation is σf ≈ 4.5 pixels. These computations are performed for
the camera in which the projected features cover the least pixels
(usually the camera with lowest resolution) and propagated to the
surface of the subject as σ.

Using the projection of the previously defined Gaussian N (0, σ),
we compute mesoscopic values µ for all points X

µ(X) =

P
c∈V αc (Ic(x)− [NΣc ⊗ Ic] (x))P

c∈V αc
, (3)

where V denotes the set of visible cameras, Σc the covariance ma-
trix of the projection of the Gaussian N (0, σ) into camera c, and
the weighting term αc is the cosine of the foreshortening angle ob-
served at camera c.

3.3.2 Mesoscopic Augmentation

The next steps are based on the assumption that variation in meso-
scopic intensity is linked to variation of the geometry. For human

Figure 8: This figure shows part of a forehead on the left and a
zoomed-in patch on the right. Note that the mesoscopic augmenta-
tion adds high-frequency details such as pores, while coarser fea-
tures, such as the spot showed on the right, usually do not influence
the geometry, since they usually do not contain very high spatial
frequencies.

skin we found that this is mostly the case. Spatially bigger skin
features tend to be smooth and are thus filtered out as shown in Fig-
ure 8. The idea is thus to adapt the local high-frequency geometry
of the mesh to the mesoscopic field µ (Y) for a point Y on the
surface. The geometry should locally form a concavity whenever
µ (Y) decreases and a convexity when it increases. We can thus
write d

dY
GXµ (Y) = d

dY
fµ (µ (Y)) where fµ is a function that

relates mesoscopic variation to geometric variation. The local ge-
ometryGXµ (Y) for a patch shown in Figure 9 is expressed relative
to the point Xµ as 〈Y −Xµ,n〉 for a point Y in the neighborhood
of Xµ, which denotes the desired estimate of X. Given the current
estimate X0 we can write Xµ = X0 + δn.

n

Y

X0

Xµ

Figure 9: The solid line represents the current surface estimate
while the dotted line indicates the true surface. The local geometry
GXµ for a point Xµ is defined as 〈Y −Xµ,n〉 for all points in the
neighborhood. This also includes the point itself GXµ (Xµ) = 0
and the current estimate GXµ (X0) = δ given that Xµ = X0 +
δn. Note that Xµ is the desired position, while X0 is its current
estimate.

Using finite differences to approximate the differentials leads to

GXµ (Y)−GXµ (Xµ)

‖Y −Xµ‖
=
fµ (µ(Y))− fµ (µ(Xµ))

‖Y −Xµ‖
. (4)

After expanding GXµ and simplifying the equation becomes

〈Y −Xµ,n〉−〈Xµ −Xµ,n〉 = fµ (µ(Y))−fµ (µ(Xµ)) . (5)

As fµ we choose the multiplication with a user defined parameter
η - the embossing strength. Using the fact that Xµ = X0 + δn and
the assumption that the mesoscopic field remains constant along n,
we find

〈Y −X0 − δn,n〉 = η (µ(Y)− µ(X0)) (6)

which can be rearranged to

δ = η (µ(X0)− µ(Y))− 〈X0 −Y,n〉 . (7)

6
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Intuitively, this function states that the point needs to change along
the normal proportional to the difference of the mesoscopic and
geometric gradients. Since we are using the full geometry on the
one hand but only the high-frequency content of the shading on the
other, this function smoothens the mesh. To avoid this effect, we
empirically modify equation 7 to become

δ = η (µ(X0)− µ(Y))

„
1− |< X0 −Y,n >|

‖X0 −Y‖

«
. (8)

This equation has the property that the correctional factor δ is at-
tenuated when there is no or little high-frequency content in the
image and it is even further attenuated whenever the geometric gra-
dient is large (see Figure 10). This reduces the impact of the meso-
scopic term on high-frequency features that can be reconstructed by
the MVS, such as hair. On the other hand, the correctional factor
reaches its maximum when the mesoscopic gradient is large and
the geometric gradient small - augmenting flat surfaces with high-
frequency detail. An alternative approach would be to use a high-
pass filter on the geometry as well. This however increases com-
putational cost substantially, since the filter needs to be applied at
every iteration step, and high-frequency detail reconstructed by the
MVS would be submersed.
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Figure 10: Comparison of the correctional factor δ - analytic
derivation (left) and the empirically modified version (right). The
modified version has the property that the correctional factor δ is
attenuated when there is no or little high-frequency content in the
image and it is even further attenuated whenever the geometric gra-
dient is large. This reduces the impact of the mesoscopic term on
high-frequency features that can be reconstructed by the MVS, such
as hair. On the other hand, the correctional factor reaches its maxi-
mum when the mesoscopic gradient is large and the geometric gra-
dient small - augmenting flat surfaces with high-frequency detail.

The correctional factors are then integrated over a region of support
R (the 1-ring in our implementation) as

δµ =

P
i∈R wiδiP
i∈R wi

, (9)

where the weights are computed by a radial basis function such as
wi = exp(−‖X−Xi‖).

The update of the 3D point now uses all three adjusted points Xp,
Xs and Xµ to compute X′ = (wpXp + wsXs + wµXµ)/(wp +
ws + wµ). The weights wp and ws are the same as in Section 3.2
and wµ is defined as

wµ = ρ
3ξ0

δ(ξ−δ + ξ0 + ξ+δ)
, (10)

with ρ being a user specified term that controls the influence of the
mesoscopic term. Figure 7 shows an example of how the meso-
scopic term enriches the results. To emphasize the simplicity of

the refinement we provide pseudocode in Algorithm 1. The algo-
rithms for the refinements described in Sections 3.1 and 3.2 are
very similar and of less complexity, since the mesoscopic term is
not present. The function computes the position update X′ for X
using the normal n. The parameters and their typical values are:
resolution δ = 0.05 in mm, surface smoothness ws = 0.03, meso-
scopic weight ρ = 0.07 and embossing strength η = 0.2.

Algorithm 1 −X′ = refinePointMesoscopic(X,n, δ, ws, ρ, η)
- NCC(X,n) computes the normalized cross correlation of a surface
patch at X with normal n by projecting it into all visible images
- κ̄ denotes the mean curvature
ξ−δ = (1− NCC(X− δn,n))/2
ξ0 = (1− NCC(X,n))/2
ξ+δ = (1− NCC(X + δn,n))/2
if ξ−δ < ξ+δ, ξ0 then
δp = −0.5δ
wp = (ξ0 − ξ−δ)/δ

else if ξ+δ < ξ−δ, ξ0 then
δp = 0.5δ
wp = (ξ0 − ξ+δ)/δ

else
δp = 0.5(ξ−δ − ξ+δ)/(ξ−δ + ξ+δ − 2ξ0)δ
wp = 0.5(ξ−δ + ξ+δ − 2ξ0)/δ

end if
δs = −κ̄n

δµ = η
P
i∈R exp(−‖X−Xi‖)(µ(X)−µ(Xi))(1−|〈X−Xi,n〉|/‖X−Xi‖)P

i∈R exp(−‖X−Xi‖)

wµ = 3ρξ0/δ(ξ−δ + ξ0 + ξ+δ)
X′ = X + (wpδp + wsδs + wµδµ)/(wp + ws + wµ)n

4 Results

4.1 Capture Process

Results were obtained using two capture systems - a studio setup
and a consumer binocular-stereo camera (see Figure 1). The stu-
dio setup consists of seven cameras arranged around the subject.
Neighboring camera pairs subtend an angle of about 20◦ at the head
and the outermost cameras subtend an angle of about 110◦. There
are two Canon 500D cameras on each side, and three Canon 5D
cameras that are arranged in a triangle and dedicated to the frontal
view of the face. The cameras were synchronizable to 0.1 seconds,
which is sufficient for static subjects, but not for capture of transient
facial expression. We handle this by working in a darkened room,
sending a signal to all cameras to open their apertures for two sec-
onds and triggering the external flash with a one second delay. The
cameras in the studio setup were manual-focus, and they were refo-
cused and the calibration repeated for each new subject. The con-
sumer stereo camera that we used is the Fuji Real 3D W1 shown in
Figure 1. It has a stereo baseline of 77mm, and probably marks the
appearance of a new market in consumer stereo photography. The
auto-focus of the Fuji could not be disabled. This meant that the
calibration parameters must have changed in the interval between
capturing the calibration sphere and capturing the face, but this did
not cause any obvious degradation of the results4. For both sys-
tems, images were down-sampled once due to the Bayer color-filter
pattern before input to the software.

The compute time, from image input to output of a 3D model, takes

4In fact, this was a beneficial side-effect of the calibration method that
the surface of the calibration sphere coincides with the subsequent position
of the surface of the face, so auto-focus does not much change camera pa-
rameters.
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Figure 11: Recovered models and synthesized views, for viewpoints different from the original camera images, across subjects of varying
appearance. Our focus has been on skin, and it may be that the hair and specular components - like the eyes, teeth and tongue - benefit from
custom algorithms. But the 3D reconstruction is reasonable across all these parts.

around 20 minutes5. This is for software that has had no optimiza-
tion or parallelization yet, and we believe that we can reduce com-
pute time to a few minutes and possibly further. A related matter of
practical usefulness is that the stereo matching is pyramidal and it is
straightforward to quickly generate models at the lower-resolution
layers for preview and checking. Model generation takes a few sec-
onds at the lowest-resolution (150x150 pixel) layer for example.

4.2 Robustness

The presented system has only very few parameters that require
user adjustment. The most important ones are the smoothness pa-
rameterws (Sections 3.1 and 3.2), the mesoscopic influence ρ (Sec-
tion 3.3) as well as the mesoscopic embossing strength η (Sec-
tion 3.3). This is an important property of the system, since there
is little or no hand-tuning required for individual subjects. All sub-
jects in this technical report have been computed using the same
parameters, except for subjects with darker skin where the smooth-
ness parameter ws was increased slightly to adjust for the lower
signal-to-noise ratio. Furthermore, the parameters are stable since
a small change in parameter space leads to a small change in the
resulting solution as demonstrated in Figure 12 for the smoothness
parameter.

Figure 12: The influence of the smoothness parameter ws on the
disparity map. The figure shows the results after 180 iterations. The
parameter is stable and well behaved.

4.3 Quantitative Evaluation

This section contains results for a physical mask of known ground-
truth. The mask was created by taking a plaster-cast of a face, scan-
ning with laser, and printing on an Object Connex 500 3D printer.
Figure 13 shows the mask which is half a face, not a full face, due
to an unwanted limitation at the time of our experiments. Error is

5Compute times with the seven-camera studio setup and the Fuji binoc-
ular camera were similar, The reason is that the Fuji images are noisier and
the refinements in Section 3 took longer, counteracting the effect of fewer
cameras.

measured as perpendicular distance between the registered ground-
truth model and recovered model. The errors are listed in Table 1
and their distribution is shown in Figure 13. For comparison, the
physical resolution of the 3D printer is 0.042 mm. The error statis-
tics include regions like the nostrils (scale∼ 5 mm), where the algo-
rithm did not reconstruct because the nostril interior is invisible in
the images. Thus, the errors are an over-estimate in the sense that
they include this source, but removal would have invalidated the
objectivity of the result. Figure 14 provides a visual comparison
of the ground-truth and recovered models. The details in the re-
covered model are slightly less defined but recovery of mesoscopic
geometry is substantially correct.

Average [mm] Median [mm] Angular [◦]
PMVS 0.132± 0.19 0.096 6.989± 7.97
W/o Meso 0.092± 0.13 0.070 8.690± 7.69
With Meso 0.088± 0.12 0.067 5.675± 6.03

Table 1: Absolute error values for the ground-truth experiment de-
scribed in Section 4.3. The angular error measures the angular
difference of the normals. The refinement with mesoscopic term is
superior in all cases. We included a comparison to PMVS [Fu-
rukawa and Ponce 2007] for completeness, however we want to
point out that their method is a general-purpose MVS, while ours is
tailored to face-reconstruction.

Figure 13: (a) Physical mask of known ground-truth; (b) Recov-
ered model color-coded by error; (c) Distribution of the signed ab-
solute error between the ground-truth and the registered recovered
model.

Measured errors are not directly applicable to real faces because
the surface reflectance of the face mask is different from human
skin, with reduced specularity for example, but the results are in-
formative to first-order. These experiments have also suggested an

8
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Figure 14: Top: rendering of the physical mask; Center: image of
the physical mask; Bottom: rendering of the recovered model.

interesting possibility for future work - latest-generation 3D print-
ers have sophisticated material handling, and it might be possible to
print a mask whose reflectance properties are a better approxima-
tion to skin.

4.4 Qualitative Evaluation

Figure 11 shows results for a variety of subjects of varying gen-
der, ethnicity, age, and facial expression. A few more examples
are shown in higher resolution at the end of the report. Figures 15
and 16 show a reconstruction under varying illumination and view-
point, resp. Figure 17 demonstrates high-fidelity reconstruction for
a subject with geometric variation in the skin at a range of scales.
Figure 18 shows both the subtle deformations of mesoscopic detail
in distorted areas as well as their consistency in regions that do not
undergo deformation. Figure 19 shows results for a subject with
dark-colored skin.

Figure 15: Model lit from the left, front and right side.

Figure 16: Different views of a model with fixed illumination.

Figure 20 shows models recovered for highly-transient facial ex-
pression. The subject slapped his own cheek causing a fast-moving
shock-wave across the face. As discussed in Section 4.1, our cur-
rent studio setup is not capable of continuous capture, and the fig-
ure is showing results for multiple captures at different times, not

Figure 17: Recovered model for a face with geometric variation in
the skin at a range of scales.

a single shock-wave. The results illustrate the advantage of single-
shot capture - a time-multiplexed system would require specialized
high-speed hardware and high light-levels for this case.

Figure 21 shows results for capture from the Fuji camera. Image
capture with the Fuji under normal ambient light yielded very noisy
images, most likely due to the relatively small 1/2.3 inch sensor
size. Doing the capture with a bright diffuse light source solved this
problem and yielded the required image quality. The face model
has less coverage than with the studio setup, because this is a small
baseline stereo camera taking a frontal view.

5 Discussion

Robustness: We used two contrasting capture systems, the first a
studio setup with seven prosumer SLR cameras plus indirect light-
ing, and the second a consumer binocular-stereo camera. This illus-
trates system behavior on a spectrum ranging from careful capture
of high-quality images to point-and-shoot capture of lower-quality
images with lens distortion. It further illustrates system behavior on
the spectrum of varying camera configuration, ranging from cam-
eras all around the front hemisphere of the head to binocular stereo
with a small baseline. Both capture methods yield good quality
face models, providing evidence that our calibration method and
run-time system are robust to changing camera configuration and
changing image characteristics. We have built face models for
around twenty different subjects at this stage, with multiple cap-
tures for some of the subjects. Our system works on all captures,
without the need to tune the software for individual cases.

Current Limitations: Specularity on the face is a problem when
doing capture under direct lighting, occurring for example when
the tip of the nose reflects a bright light source. Specular areas typ-
ically distort the mesh. Ways to deal with this include preventing it
from happening in the first place by using indirect lighting or cross-
polarization, or post-processing to explicitly detect the affected area
and create a plausible reconstruction.
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Figure 20: Top: Images of a subject slapping himself and causing a shock-wave in the face. Bottom: the respective reconstructions.

Figure 18: Recovered models of a subject for two different expres-
sions.

Figure 19: Recovered model for a face with dark-colored skin.

6 Conclusions and Future Work

The best current methods to obtain high-quality face models use
active light, and they offer reliability and accuracy. For example,
laser is noted for its ability to produce point measurements of sub-
millimeter accuracy, while gradient-based illumination has the abil-
ity to accentuate detail and enhance recovery of fine-scale 3D ge-
ometry. However active methods impose constraints such as the
need for special-purpose hardware, for subjects to be still, or for
projected light that is intrusive due to high-brightness or strobing.

In contrast, passive stereo vision uses single-shot capture under
standard light sources. And commodity cameras now routinely
have the image resolution to reveal individual skin pores, so that

Figure 21: Left: Images from the Fuji binocular-stereo camera.
Center: the recovered model. Right: Close-up of a region around
the eye.

faces provide the kind of dense evenly-distributed texture that is
perfect for stereo matching and 3D reconstruction. This report
has demonstrated the capabilities of a state-of-the-art passive stereo
system for face scanning. It competes with active systems in re-
liability and quality for high-end applications, but it is low-cost,
and versatile enough to work off a consumer stereo camera. We
demonstrated an augmented type of stereo refinement to qualita-
tively recover pore-scale geometry and yield improved visual real-
ism in synthesized faces. Our current system is in snapshot mode,
but leads naturally on to future work on image sequences. In con-
clusion, we believe that this work demonstrates that passive stereo
has matured into a robust technology for capturing models of the
face, and that its advantages will support new types of deployment.
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