
ETH Library

Visualization framework for
information graphs
an incremental approach

Master Thesis

Author(s):
Bichler, Patrick

Publication date:
2002

Permanent link:
https://doi.org/10.3929/ethz-a-004311985

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004311985
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Visualization Framework for Information Graphs
an Incremental Approach

Diploma Work by Patrick Bichler

February 2002

Department of Computer Science, Database Research Group
Swiss Federal Institute of Technology (ETH) Zurich

Supervision: Kai Jauslin, Dr. Roger Weber
Professor: Prof. Dr. Hans-Jörg Schek

To my daugther Lenya

I would like to thank the many people who have helped me on the path towards

this diploma work during and before my time at ETH. Especially, the acknowledgment

to Kai Jauslin and Roger Weber for providing data, advice and support.

III

Abstract

The research in information visualization brings a wide variety of di�erent visualiza-

tion techniques. But there is no integrated solution which makes it possible to use

these visualizations on di�erent data sources. We developed a general framework

for the visualization of huge graphs by an incremental exploration. In each step we

generate a logical frame containing a well de�ned region of the whole information

graph.

The interface between the data providers and the visualization algorithm is

realized by the construction of an information graph. An information graph is a

general model to describe relationships in information spaces and is generated by

neighborhood queries on the data sources.

Our application 'InfoGraph' is an implementation using this framework with sev-

eral visualizations and data sources.

Keywords: information visualization, graph drawing, incremental ap-

proach, framework, clustered graphs, navigation/interaction, three-dimensional,

focus+context, clustering, Java3D

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Incremental Approach . 2

2 Terminology 3

2.1 Information . 3

2.2 Graph Theory . 4

2.3 Information Space . 6

2.4 Information Graph . 6

2.5 Visualization . 7

2.6 Framework . 8

3 Related Work 9

3.1 Clustered Graphs . 9

3.2 Visualizations . 11

3.3 Focus+Context . 16

3.4 Interaction/Navigation . 18

3.5 Animation . 18

4 Concept 21

4.1 Link to ETHWorld Infrastructure . 21

4.2 Data Sources . 22

4.3 Routing Agent, Data Storage . 26

4.4 Visualizations . 27

4.5 Navigation . 28

4.6 Interaction . 28

4.7 Animation . 28

4.8 Distortions . 29

4.9 Transformations . 29

4.10 Use Cases . 30

4.11 System Architecture . 30

VI CONTENTS

4.12 Summary . 31

5 Implementation 35

5.1 Introduction . 35

5.2 Application . 36

5.3 Information Graph . 39

5.4 Data Sources . 41

5.5 Data Storage . 49

5.6 Routing Agent . 49

5.7 Transformations . 50

5.8 Visualizations . 50

5.9 Distortions . 58

5.10 Interactions . 61

5.11 Java3D . 62

5.12 Summary . 64

6 Conclusion 65

6.1 Discussion . 65

6.2 Future Work . 66

A Bibliography 67

A.1 Related Work . 67

A.2 Resources . 70

B Class Diagram 73

C Task Description 75

Chapter 1

Introduction

1.1 Motivation

Information visualization has a wide range of applications in the design of user in-

terfaces, information or content management, data warehousing and scienti�c data

visualization, and numerous other �elds.

�The growing amount of data and information leads to the creation of

virtual environments. We can only make sense of it all if we provide

suitable interfaces and aids.� [3]

The research in information visualization brings a wide variety of di�erent visu-

alization techniques in each data domain to aid comprehension of these complex

connections. But there is no integrated solution which makes it possible to use

these visualizations on di�erent data sources. Therefore we aim to develop a general

framework for many data sources and visualizations.

We need a standardized scheme to access data sources for integrating several types

of them. We try to represent the information structure and the inter-relationship

of items in an information graph and discuss the advantages of this attempt. Thus

the information is �rst expressed as a graph and then a layout algorithm is used to

create a visual representation of this graph.

We discuss the needs and problems of such a framework and implement it as a

proof of concept. Our goal is not to invent yet another visualization technique, but

to build an integrated framework.

2 CHAPTER 1. INTRODUCTION

1.2 Incremental Approach

To reach the goal of a generalized framework we will model the structure of a

data source by an information graph and take an incremental approach to visualize

parts of the graph. So in each step we just look at a slight portion of the available

information and therefore we can reduce the complexity in layouting. Figure 1.1

shows three possible extracts from an information graph. We attempt to layout these

frames with di�erent visualizations and provide functions to explore the whole graph.

Figure 1.1: Incremental Approach

The implementation of such a framework has to meet the criteria of being fast, nice

looking, user friendly and �exible. It would not be possible to meet all of these de-

mands, but it is practicable to build a general framework for large and semi-structured

data sources with the ability to calculate nice looking screen representations in short

time.

Chapter 2

Terminology

Before beginning to describe the related work in the �eld of information visualization,

we have to de�ne several terms for the better understanding of this work and to

provide a uniform source language.

2.1 Information

The �rst de�nitions are about data, information and knowledge, because we have a

lot of data sources storing the fundamental components of our information society.

These data pieces are combined and stored with additional information about their

relationships. This leads to the de�nition of information. In conjunction with the

human being we can de�ne knowledge. The de�nitions are taken from [28] and

translated.

Data Facts and illustrations of reality, called data, are the fundamental

components of information science. These character chains are unstruc-

tured and independent of any context.

Information Information is the arrangement of data into meaningful

structures. They mark objective content and are subjectively perceptible

and usable.

4 CHAPTER 2. TERMINOLOGY

Knowledge Knowledge is based on data and information, but is, in

contrast to them, independent of a person. It comprises theoretical dis-

coveries well as practical ways of acting. Knowledge stands for the to-

tality of discoveries and abilities which is put into play by individuals to

solve problems. It is developed from the processing of information by

the integration of information into the context of experience. Therefore,

knowledge is extremely subjective.

Finally, the data access to a collection of data pieces is de�ned:

Data Source A data source is in our context an accumulation of elec-

tronicly available facts, typically from a certain domain and with uniform

data access methods. It is the provider of data objects with a well known

interface for querying.

2.2 Graph Theory

2.2.1 Graphs

Graph A graph is a pair (V, E), where V is the set of vertices and E the

set of edges. An edge is a couple of vertices u, v with u and v contained

in V.

Not all graphs are simple. Sometimes a pair of vertices is connected by multiple

edges yielding a multigraph. At times, vertices are even connected to themselves by

edges called loop, yielding a pseudograph. Finally, edges can also be given a direction

yielding a directed graph (or digraph).

In this work we will consider all the graphs ro be simple, meaning there exist

neither multiple edges nor self-loops. We de�ne n as the size of the graph (=number

of vertices), and the degree of a vertex is the number of edges that are incident with

it.

2.2 GRAPH THEORY 5

2.2.2 Weighted Graphs

Often it is desirable to attach information to the vertices or edges. These graphs are

called weighted graphs. The pieces of information attached to the vertices and edges

are called weights, capacities, attributes, or labels depending on the context within

which they are used.

2.2.3 Connected Graphs

A graph is connected if there is a path connecting every pair of vertices. Otherwise

it can be divided into connected components (disjoint connected subgraphs).

2.2.4 Tree, Spanning Tree

Tree A tree is a connected, acyclic graph.

The spanning tree of a graph G is a subgraph T of G which is a tree and satis�es spanning tree
|E(T)|=|V(G)| - 1 and |V(G)| = |V(T)|.

2.2.5 Clustering

Clustering Clustering is the automatic grouping of `close' vertices,

where `close' can be de�ned by geometric distance or graph-theoretic

distances. So in general, a cluster is de�ned as a set of similar objects.

2.2.6 Clustered Graphs

Clustered Graph A clustered graph C = (G, T) consists of an undi-

rected graph G = (V, E) and a rooted tree T such that the leaves of T

are exactly the vertices of G. Each node v of T represents a cluster of

vertices of G consisting of the leaves of the subtree rooted at v. The tree

T describes an inclusion relation between clusters; it is the cluster tree

of C. [10]

The clustering mechanism can be used to model hierarchies, classi�cations and

categorization of the data objects in the data source. There are two kinds of

6 CHAPTER 2. TERMINOLOGY

clustering approaches. Semantic clustering uses the knowledge of the data domainSemantic
clustering to de�ne the similarity of data objects, whereas Structural clustering only needs the

Structural
clustering

structure of the information graph for building the clusters.

In several applications, the user has to de�ne clusters even if he doesn't know

about anything about clustering or clusters. For example we store �les onto the

hard disk in a tree structure of folders. Thus the �les will be divided into several

groups. That is exactly what a clustering algorithm would do. Therefore we call this

a natural clustering.natural
clustering

Natural clustering is used to simplify the graph or to store additional information

about the structure in the graph. Alternatively, clustering algorithms can be used to

generate a dynamic partitioning of the entities.

For large and complicated relational structures, it is useful to introduce a hierarchy

of abstractions above the elementary relationships between nodes. One model for such

abstractions is called CIgraph. [30] More information about CIgraphs can be found

in section 3.1.

2.3 Information Space

Information Space An information space is a collection of data objects

generated and edited by several application programs with unique access

patterns. The relations between data objects are calculated by similarity

measurements or user de�ned associations.

2.4 Information Graph

We combine the concept of a clustered graph with an information space to get the

de�nition of an information graph.

Information Graph An information graph is a clustered graph, where

the vertices are the entities in the information space, edges represent

similarities among them and the hierarchy of abstractions is a natural

or dynamic clustering of vertices. The nodes are weighted with respect

to their importance in the information space and the edges as similarity

values normalized to]0,1]. (`0' is de�ned as high similarity and strong

importance.)

2.5 VISUALIZATION 7

There is one special vertex. The vertex which represents the starting point is

called center object in the information graph. This object is initially placed at the center object
center of the virtual environment.

2.5 Visualization

No particular geometry is associated with an information graph. A visualization

algorithm is the projection of the information space or information graph to a

virtual environment. This means the placement of the objects and therefore the

calculation of coordinates in this virtual room. The goal is to �nd an arrangement

such that the picture is easy to understand and �ts into the viewing area of

the display device. [38] There is a wide range of di�erent visualizations mainly for

speci�c applications or data sources. In chapter 4.2 we present di�erent types of them.

2.5.1 Graph Layout

The graph layout is a specialized visualization algorithm which can be applied to

graphs. This methods are subject of the research in graph drawing. �The problems to graph drawing
achieve a good layout are to minimize edge crossings and the display of symmetries

existing in the graph. Furthermore, edges should have as few bends as possible, and

the deviation on their lengths should be small. The area used for drawing should be

as small as possible, while the vertices and edges should be evenly distributed in the

area. Connected vertices should be close to each other.� [15] In the following chapter

we describe several approaches for graph layouts.

2.5.2 Information Visualization

We de�ne the term information visualization to be an extension of graph layouting.

The short term for it is `visualization'.

Information Visualization Information Visualization is de�ned as the

visualization and navigation of abstract data structures. [22]

In our context, the abstract data structure will be an information graph.

Level of Detail A level of detail (LOD) function assigns to each entity

in the information space the amount of additional information which

should be drawn in the visualization with respect to its position and the

view point.

8 CHAPTER 2. TERMINOLOGY

The calculation of this function can take the distance from the viewpoint, the

position in the drawing or other parameters as input. It can in�uence the visibility,

scaling or the whole representation of an information object.

2.5.3 Signs

Sign A sign is the representation of an entity in the information space,

drawn at the position calculated by the visualization.

Applying this de�nition to an information graph, it is the representation of a vertex

drawn at the position calculated. These signs can be images, thumbnails, geometric

�gures or strings and can be in�uenced by a LOD function.

2.5.4 Brushing

To each object in the information space there has to be assigned a unique id for the

system to distinguish it from others and a marking which is called brushing in the

context of information visualization. If we look at the �lesystem as data source, the

location (host + path + name) can be used as id and the name for the brushing.

Brushing Brushing is the annotation of entries in the information space

with a typical expression or keywords.

In the spatial arrangement the brushing is shown near the data object with respect

to the level of detail.

2.6 Framework

What is an object-oriented framework? A short answer is: A framework is a set

of related classes which can be specialized and/or instantiated to implement an

application or subsystem. It is a kind of class library but also de�nes a generic design.

Framework A framework is a reusable design expressed as a set of

abstract classes and the way their instances collaborate. It is a reusable

design for all or part of a software system. By de�nition, a framework

is an object-oriented design. It does not have to be implemented in an

object-oriented language, though it usually is. The framework provides

a context for the components in the library to be reused. [25]

Chapter 3

Related Work

We have a look at other publications concerning subjects related to this work. First

we discuss clustered graphs as structure for an information graph, visualizations

in two or three dimensions for general graphs or trees and how to improve the

algorithms for large graphs. Further we look at the incremental approach and several

focus+context concepts. Finally there are certain publications about navigation and

interaction in virtual environments.

3.1 Clustered Graphs

There have been several attempts to model clustered graphs. A comparison of them

is made by Lai and Eades. [46]

Higraph Harel presents Higraphs for the representation of complex relations. They

involve multi-level blobs that can enclose or intersect each other. The blobs are

similar to clusters in our context but the clustering is not forced to be a tree

structure. �Higraphs are suited for a wide array of applications to databases,

knowledge representation, and, most notably, the behavioral speci�cation of

complex concurrent systems using the Higraph-based language of statecharts�

[21] (see Figure: 3.1)

Compound Digraph Sugiyama and Misue present compound digraphs. The com-

pound digraph is an extension of the directed graph with a set V of primitive

nodes, a set F of frames with a nesting relation I � (V [F) � (V [F) and a

set of primitive edges E � (V [F) � (V [F). Since no frame can be nested

into a primitive node or into itself, the nesting relation can be seen as a tree

T = (V [F; I) with f 2 F as inner nodes and v 2 V as leaves. [43] (see Figure:

3.2)

10 CHAPTER 3. RELATED WORK

CIgraph (Compound graphs with Integrated layout functions) The CIgraph de�ni-

tion corresponds to our de�nition of a clustered graph. Additionally it is allowed

to add layout functions to each cluster for the presentation in a virtual envi-

ronment. �The aim of a CIgraph is to represent combinatorial relationships and

attach layout functions to each node in the hierarchy; in this way, any algorithm

aimed at classical graphs is available for compound graphs and di�erent parts

of the hierarchy can use di�erent algorithms.� [30] (see Figure: 3.3)

We took the main ideas from these

concepts to de�ne an information graph

(see 2.4). In the context of information

visualization we want to de�ne the

blobs or frames as results of a clustering

algorithm or a categorization speci�ed

by the user. Therefore we named them

data cubes. The assigned layouting

functions in the CIgraph would be too

confusing for the user, thus we take one

visualization algorithm for each logical

frame we generate during the exploration

of the graph. And drawing of blobs,

which can intersect in arbitrary ways,

will be very di�cult to realize. [46]

Figure 3.1: Higraph [46]

Figure 3.2: Compound Digraph [46]

Figure 3.3: CIgraph [46]

3.2 VISUALIZATIONS 11

3.2 Visualizations

3.2.1 Graph Drawing

Graph drawing is very popular, because it can be applied to a wide range of

engineering activities. For example in network design, physics, chemistry, tra�c

planning, biology, production planning. Often these pictures are drawn manually

and the resulting image shows the underlying relationships among the considered

objects. [17] [13] The basic graph drawing problem can be described as: �Given a set

of vertices with a set of edges (relations), calculate the position of the nodes and the

curve to be drawn for each edge.� [22]

3.2.1.1 Drawing Clustered Graphs

Higres stands for a �visualization system for clustered graphs and graph algorithms�

[31]. It is a visualization tool and editor for attributed clustered graphs combined

with the execution and animation of graph algorithms. The algorithms executed by

Higres are implemented in external modules, such that the user can create modules

supporting the wished semantics.

Another method to draw clustered graphs was introduced by Eades and Feng in

the paper �Drawing Clustered Graphs on an Orthogonal Grid� [12]. They present an

algorithm which produces planar drawings of clustered graphs with the constraint of

orthogonal grid rectangular cluster drawings. This constraint appears in applications

like VLSI circuit design and diagrammatic interfaces for relational information

systems, where the graph is mapped onto a grid with edges drawn as sequence of

horizontal and vertical segments, vertices on the grid plots and region boundaries for

clusters as rectangles.

3.2.1.2 Force-Directed Algorithms

In this approach to visualizing graphs, we take a physical system of springs and

optimize an energy function over this model. The �rst algorithms published by

Quinn and Breur [40] named �force-directed placement algorithm� and the equivalent

spring embedder model of Eades [11] start with a random embedding of the graph

in the virtual environment. These concepts can easily be applied to each undirected

graph.

Some examples of algorithms in this �eld of research are the algorithm of

Fruchterman and Reingold [16], the algorithm by Kamada and Kawai [26], the

simulated annealing approach of Davidson and Harel [9], the Tunkelang incremental

algorithm [45] and the graph embedder GEM by Frick et al.[15] These �ve methods

were compared by Brandenburg, Himsolt and Rohrer [2] with the result that each of

these algorithms has its advantages and disadvantages, but all of them are usable.

12 CHAPTER 3. RELATED WORK

3.2.1.3 Force-Directed Algorithms with Constraints

The spring algorithm can be implemented with mechanical constraints such that the

vertices have to lie on simple 3D surfaces. The inclusion of such mechanical constraints

on the system can improve the readability of the layout and is described in [38].

3.2.1.4 Self-Organizing Graphs

�Self-organizing graphs are a novel approach to graph layout based on a competitive

learning algorithm. This method is an extension of self-organization strategies known

from unsupervised neural networks, namely from Kohonen's self-organizing map.�

[34] The arrangement function is equivalent to force-directed algorithms. One of the

main di�erences is the approximation for the displacement vectors in each round

of computation. In the self-organizing graph algorithm the optimization problem

is the byproduct of a stochastic self-organization process, whereas in force-directed

methods an energy minimization is calculated.

3.2.2 Three Dimensional Visualizations

The drawing in three dimensions has been studied by several persons. We just looked

at the most important visualizations. In [29] Kumar and Fowler discuss the extension

of the spring-force model from two to three dimensions. �The simplest approach is to

generalize classical 2D layout algorithms for 3D. [...] Most force-directed methods are

also described in dimension independent terms, which allows them to be generalized

to 3D. [...] In spite of their apparent simplicity, displaying graphs can also introduce

new problems. Objects can occlude one another and it is also di�cult to choose the

best `view' in space.� [22] To weaken this problematic nature, transparency can be

used to avoid occluded objects. And changing the point of view can minimize the

edge-crossings.

The application designer gains more space by using the third dimension and also

real world metaphors can be considered for visualizations: Perspective Wall [32],

Web Book [5]. But in general, the three-dimensional algorithms are quite di�erent

from those in two dimensions, because the representation is viewed through a single

point perspective projection. [6] This a�ects the integration of signs within the

3D-drawing. The application developer has to carefully think about showing images

and texts on a plane or as texture.

In the literature we can �nd the term 2.5D visualization, where the visualization

arranges the items in two dimensions and the third direction is used for meta

information (e.g. brushing). Examples: landscape visualizations - since they are

built by interpolation of two-dimensional geometric constellations, 2.5D Model of

Cugini, Laskowski and Sebrechts [8]

3.2 VISUALIZATIONS 13

3.2.3 Tree Drawing

If the information graph to be visualized is a tree, the layouting algorithm can be

more complicated because of the reduced graph complexity. Creating aesthetically

pleasing drawings is possible in polynomial time. [44]

3.2.3.1 Planar Tree Drawing

Planar Tree Drawing methods take the tree structure and calculate coordinates

in two directions. The paper by Herman, Melancon and Marshall [22] shows four

variants of them. These algorithms point out the hierarchical structure in the graph.

Figure 3.4: Planar Tree Drawing Algorithms
from left to right: H-Tree Layout, Radial View, Balloon View, TreeMap [22]

3.2.3.2 ConeTree

ConeTrees were �rst described in [20] as a three-dimensional extension to the more

familiar 2D hierarchical tree structures. Cone Trees show the root node at the top of

the screen and place the child nodes at equal distances along the base of a cone and

will be repeated recursively.

Carrière and Kazman [7] extended this algorithm with a bottom-up estimation

process which calculates an optimal radius for each cone based on the space which

is used by the sub-cones. The resulting ConeTree layout is shown in �gure 3.5. The

same idea of a bottom-up estimation process is used by Munzner for the Hyperbolic

Tree.

14 CHAPTER 3. RELATED WORK

Figure 3.5: Extended ConeTree Visualization [7]

3.2.3.3 Hyperbolic Tree

Tamara Munzer [36] worked out many ideas about the interactive visualization of large

graphs and networks. Very well known is the 3D-visualization of Hyperbolic Quasi-

Hierarchical Graphs and the implementation called H3 Viewer (see �gure 3.6). An

improvement is the handling of very large graphs with rendering at a guaranteed frame

rate independently of the graph size. The di�erence between the H3 algorithm by

Munzner and the previous work in distortion-based graph drawing is the consideration

of navigation and layout in the 3D hyperbolic space. This idea was taken by the

Cooperative Association for Internet Data Analysis (CAIDA) into the Walrus - Graph

Visualization Tool [4]. It uses the hyperbolic geometry for visualizing large directed

graphs, where large is in the order of a million nodes, and about as many links in the

domain of network topology graphs.

3.2.4 FastMap - a Clustering Algorithm

�A Fast Algorithm for Indexing, Data-Mining and Visualization of Traditional and

Multimedia Datasets� [14] - The input to this clustering algorithm is a distance

matrix between all data objects in the data source. These distances were calculated

by k-dimensional feature extraction functions and are mapped to a point in the

k-dimensional space. By projections the dimensionality is reduced untill the coor-

dinates are two- or three-dimensional vectors. For the information visualization we

can take these coordinates, because the resulting distances among the objects show

the relationship between them.

3.2 VISUALIZATIONS 15

Figure 3.6: Hyperbolic Tree [36]

3.2.5 Drawing Large Graphs

Imagine a graph with thousands of nodes an edges. None of the force-directed algo-

rithms can handle this amount of data, because of there complexity in calculating

the attractive and repulsive forces. Even the drawing becomes impractical because

of the screen resolution, or the user cannot recognize the relationships in the mess.

There are several approaches to avoid these problems: Fish-Eye views show an area

of interest enlarged and detailed while showing the surrounding regions smaller. [42]

The Fish-Eye concept is also part of the Focus + Context method we describe in

the next section. Multi-level views allow the user to see large graphs at multiple

abstraction levels. Finally we can take an incremental approach and showing only a

slight portion of the whole graph in each step.

The paper `Fast Multi-Dimensional Algorithm for Drawing Large Graphs' [18]

describes all these problems and suggests a vertex �ltration to reduce the complexity

and combines it with an intelligent initial placement of the vertices. The algorithm

can even be extended to calculate positions in a k-dimensional environment. Gajer,

Goodrich and Kobourov [18] stated that the drawings are nicer in 3D if the calcu-

lation is made for four dimensions and the result is projected into the 3D-coordinates.

3.2.6 Incremental Layouts

An alternative to �t an entire graph into one view is to provide interactive exploration

of subregions of the graph. �The advantage of such an incremental approach is that,

at any given time, the subgraph to be shown on the screen may be limited in size,

hence the layout and interaction times may not be critical any more.� [22] [23] [35]

16 CHAPTER 3. RELATED WORK

Here, subgraphs can be layouted in short time, interaction will be faster and not

the whole graph has to be fetched. In several cases, it is not even possible to get all

data objects from the data source (e.g. www, dynamic content).

Figure 3.7: Exploration of a Huge Graph [22]

But there are some problems to be solved. We have to answer the following

questions, because the user only sees a small extract from the whole information

graph: How to create new logical frames? What is the in�uence in the navigation?

How to animate the transition between two frames? These questions have to be

answered by a developer for each application during the conception of the system.

3.3 Focus+Context

The term �focus+context� has been used to describe a technique where the user can

focus on some detail without losing the context.

3.3.1 Fish-eye Distortion

�A �sh-eye camera lens is a very wide angle lens that magni�es nearby objects while

shrinking distant objects. It is a valuable tool for seeing both `local detail' and

`global context' simultaneously.� [42] This idea can be adapted to any visualization

algorithm. The distortion creates a mapping from the original coordinates to

distorted ones, which will be presented to the user. This enlarges the area of interest

and shows the environment with less information, which is the basic idea of all

distortion models. These concepts are summarized in [22] [39]. Several di�erent

mechanisms can be used to implement the �sh-eye lens e�ect. It is not in general

necessary to construct an explicit lens model, rather the e�ect can be achieved

through simple geometric transformations. Such a mechanism can be found in [42].

3.3 FOCUS+CONTEXT 17

3.3.2 3D Distortion

In a perspective framework the two-dimensional surface can be placed on a plane.

As in the 2.5D visualizations, the third dimension can be used for the focus+context

view. The surface will be manipulated such that the focal region is raised.[6]

In general three-dimensional layouts the methods can be adapted to a spatial dis-

tortion in x/y/z coordinates by applying the distortion function to all dimensions.

On the other side, �the 3D visualization provides focus and context through the op-

eration of linear perspective. Objects seen in the foreground have more detail than

those further away. By changing the viewpoint, the foreground, and hence the focus,

can be changed.� [39]

3.3.3 Elision

�Elision is a technique where parts of the structure are hidden until they are needed.

Typically, this is achieved through collapsing a node that contains a sub-graph into a

single node`.� [39] This method is very useful in the case of clustered graphs, because

entire sub-graphs can be collapsed.

3.3.4 Multiple Windows

Several visualization systems use more than one window - one to give an overview

and the other for the details. [39] [1] A system implementation has to consider about

the content synchronization for each user interaction, such that the user never loses

the orientation. This corresponds to the level of detail concept by showing providing

two levels in separated windows.

3.3.5 Hyperbolic Layout

The hyperbolic geometry is a natural way to produce a focus+context representation.

This approach allows to map the in�nite Euclidean space into a �nite disk so that

the objects near the center is enlarged and near the periphery they are shrinked.

�Second, we can allocate the same amount of room for each of the nodes in a

tree while still avoiding collisions because there is an exponential amount of room

available in hyperbolic space.� [36] Thus the hyperbolic space provides in�nite space

for the drawing of large graphs and a projection in a �nite part of the Euclidean space.

18 CHAPTER 3. RELATED WORK

3.4 Interaction/Navigation

Interactive navigation consists of changing either the viewpoint, the positions of ob-

jects in a scene or the fetching of new data. We present the available concepts for

these issues.

3.4.1 Zoom and Pan

Zooming is easy to implement with graph visualization in mind by simply adjusting

the size of the visible objects in the screen representation. We can �nd two types of

zooming. [22] Geometric zooming provides a blow up of the graph content; semantic

zooming means that the information content changes and more details are shown

when getting closer to a particular region of the graph. The problem is not the

zooming operation itself, but rather to assign an appropriate level of detail.

Panning is a translation in the virtual environment to bring a certain area of

interest in front of the eye position and only a part of the data objects is visible

through the viewing window. A well-known problem of zooming is that if one zooms on

a focus, all contextual information is lost. This can be resolved by using focus+context

techniques as described earlier in this chapter.

3.4.2 Exploration

Considering the navigation of an incremental visualization method, the exploration

of the graph and therefore the updating of the current window is also a kind of user

interaction. In virtually any system, this kind of navigation is supported by menu

buttons and checkboxes to make choices, de�ne queries or set further properties of

the visualization till the user gets what he looks for.

3.4.3 Rotation

In three dimensions the user can additionally change the point of view by rotation.

This operation is quite useful to get an overview of the main structure of the visual

encoding.

3.5 Animation

Animations may reduce the cognitive e�ort of the user in recognizing changes in the

information graph or the structure of the layout by keeping the mental map. [10]

There are several types of animation.

3.5 ANIMATION 19

3.5.1 Animated Addition and Deletion

When a vertex is deleted or added to the abridgment, animated shrinking or growing

can be used to help the user identify nodes that are appearing or disappearing.

3.5.2 Animated Translation and Scaling

Depending on the focal point, the distortion function recalculates the size and posi-

tion of the entities. The transition can be animated in an information visualization

system. �Viewers have a much easier time retaining their mental model of an object

if changes to its structure or its position are shown as smooth transitions instead of

discrete jumps.� [19]

The interactive exploration of a graph with the radial layout described by Yee,

Fisher, Dhamija and Hearst [47] shows a concept for the animated transition to a

new layout changing the center of interest.

3.5.3 Animated Cluster Opening/Closing

This is the extension of the elision techniques with an animation to provide a smooth

transition from one state to another.

3.5.4 Camera animation

Camera animation moves the whole drawing. It can be used, for example, to move

speci�c nodes of interest to the center of the screen.

20 CHAPTER 3. RELATED WORK

Chapter 4

Concept

In this chapter we describe our concept for an incremental visualization system. The

main idea behind this framework is the representation of a small portion of the infor-

mation graph in each drawing. By changing this logical view, we will fetch another

part of the graph. Each section of this chapter is illustrated with the �lesystem and

an image database as examples. For the presentation of the subjects concerning vi-

sualizations we used the spring-force algorithm (3.2.1.2) and the ConeTree (3.2.3.2)

concepts.

4.1 Link to ETHWorld Infrastructure

The ETHWorld infrastructure provides several data sources for which we implement a

generic framework to visualize all kinds of data available. The goal is to have a spatial

representation of the data in a three-dimensional space. The data sources deliver an

information graph describing the similarity of entries in the information space or the

search results to a query. This system can be used for ergonomical and social studies.

The ETHWorld infrastructure will be the main source of data. Additionally other

data sources like search engines should be wrapped into our visualization framework.

Figure 4.1: Link to ETHWorld Infrastructure

22 CHAPTER 4. CONCEPT

4.2 Data Sources

As de�ned in the �rst chapter, the data source can be structured independently

from the domain as an information graph. We consider the graph to be undirected.

Each piece of information is represented by an object in the data source and has

an unique object identi�cation. These data objects can be divided into three types.

First there is the data unit as re�ection of entities in the information space (e.g.data unit
picture, URL, database entry). All data units have a marking which can be used for

the brushing and an URL pointing to the subject itself. Secondly we de�ne a datadata cube
cube as a cluster of data units. This grouping is the semantic clustering within the

data source. The data cubes build a hierarchical structuring of the data units which

can be described with a tree (e.g. yahoo directory, folders of �le system). Finally

the data query is an imaginary object standing for the initial query to the data source.data query

To completely describe an information graph, we need to have edges between the

data objects representing their relationship (e.g. image similarity, www linkage). To

each link a metric value can be assigned standing for the strength of the relationship.

For generality this value has to be normalized to the interval]0,1] (`0' corresponds to

near and `1' to far away).

Even the query generation, domain speci�c transformations, the available

similarity features and the sign to plot data objects depend on the data domain.

We describe the needs in section 4.2.3. The representation of data objects in

the visualization is a method to plot themselves. We plan the optional assignment

of a scene graph node to each data object. This is the representation displayed as sign.

example
�lesystem image database

data units �les images

data cubes folders

similarity hierarchy image features

signs if �le is image: textured cubes

textured sphere with image

4.2.1 Data Access

In our concept of the incremental information visualization we carefully had to think

about the data access. These methods have to ful�ll our claim to generality with

respect to several visualizations and data sources. It wouldn't make sense to retrieve

more data objects than necessary because the querying can be a performance bot-

tleneck. For these reasons we decided to plan `neighborhood queries ' for each dataneighborhood
queries object. The whole range of possible access patterns is shown in the �gure 4.2.

4.2 DATA SOURCES 23

Figure 4.2: Data Access Methods

For each data source, these access methods have to be de�ned independently.

The di�culty is that queries should have individual parameters depending to the

data domain. So we'd like to implement a class called query and a query interface. query
query interfaceThese classes are extended for each data source with respect to their semantic and

the system engineer has the ability to prepare di�erent methods for searching. (see

4.2.3)

In the query interface, there are options encoded for which the user should

specify the parameters. Then the system creates a query with these values. To

fetch the necessary data objects the data source has to recursively perform several

neighborhood queries with di�erent observation points in the graph. The resulting

graphs are composed to a complete graph by the routing agent. (see 4.3)

example
�lesystem image database

similar to data cubes �les, sub-folders,

parent folder

similar to data units comprised folder images

query features/options path similarity features

of image database

4.2.2 Types of Information Graphs

Each data source is modelled by an information graph. But depending on the internal

structure, the resulting graph can be more or less connected. For our purpose, we

choose among three alternatives: ordered list, tree, network. With the following list
tree
network

questions we decide which kind of information graph is available.

24 CHAPTER 4. CONCEPT

If there are hierarchical structures in the data source, these always have to

build the data cubes. Doing so gives us the possibility to assign the interactions

`fold' and `unfold' (see 4.6) to each data cube. Afterwards we look at the available

neighborhood to de�ne the structure of the resulting information graph. The type of

an information graph can be evaluated by the answers to the following questions.

Network Is there one of the following relations in the data source: related cubes,

related units from cubes or units, parent cube of a unit? If yes we must take

the type `network'.

Tree If only the parent and child relation of a cube is provided and units are only

contained in one cube, then the type has to be chosen as `tree'.

List If none of this methods is available, we have an ordered `list'.

example
�lesystem image database

data unit related units
p

related cubes

parent cubes
p

data cube related units

related cubes

parent cube
p

(only one)

child cube
p

contained units
p

resulting type of graph tree network

4.2.3 Data Agents

The data agents transform the knowledge of applications to information graphs.

Mainly the data source doesn't provide the data in the demanded way. So we

must have a converter. The data agents take queries for the data source, map the

data access method to internal functions and send back the results well formed in

an information graph. A data agent has to answer a simple question: What are

the data objects in the direct neighborhood of a vertex in the information graph?

This information is encoded in a small information graph containing a vertex

for the requested point and all neighbors connected with an outgoing associa-

tion. This association shows with its assigned measurement the similarity to the

querying point. For generality this value also has to be normalized to the interval]0,1].

Figure 4.3 shows a possible information graph to the query for `c:/documents'. It

contains the subfolders `project' and `readings' with a similarity value of 0.5 and the

�le `content.xml' also with the same measurement. We de�ne that the parent folder

is also in the information graph, but give a similarity value of 1.0, standing for far

away.

4.2 DATA SOURCES 25

Figure 4.3: Example: Data Access in the Filesystem

Query In the query class we specify the routing type as `count' or `radius'. In

the counting mode, the routing agent should fetch data till the number of

data objects is reached and if `radius' is de�ned, data objects are collected

till the distance from the starting point in the information graph reaches

the value of the parameter `Radius'. The query has to be extended for each

data source with properties and functions so that the data agent can perform it.

Query Interface and Similarity Features The query interface is a panel with the

querying options corresponding to the data source. It also contains the input

controls to specify the parameters in the extended query.

Observation Point A query is sent several times to the data agent to recursively

fetch the data objects in the information graph. In each iteration, the observa-

tion point is set. This is the vertex from which to perform the neighborhood

query.

Signs To each data object, the data agent can add a sign which is a Java3D scene

graph node. This sign is drawn by the visualization. If none is speci�ed, the

visualization takes a standardized sign.

example
�lesystem image database

routing type radius count

similarity features hierarchy eg. texture, histogram, color

observation point path object id

signs folders: wired cube textured cube with image

�les: wired sphere,

textured if an image

26 CHAPTER 4. CONCEPT

4.3 Routing Agent, Data Storage

The data storage is the container where the query results from the data agent are

collected. To �ll this container, we need a routing agent which sends the queries

to the data agent and collects the resulting data objects. The answer to a query

describes a small part of the information graph and has to be integrated into the

data storage. So the routing agent incrementally builds the desired information graph.

Incremental visualizations show the environment of the data object currently

observed. Because of speed and overview criteria the radius of data objects in the

context has to be limited. We de�ne the radius of neighborhood as the weighted sum

from the centric object to another object on the shortest path. Looking at search

engines as data sources, there isn't a radius to calculate. Instead of this mechanism

we can limit the data objects in the response.

The whole graph in the data storage will be taken by the visualization and

rendered in the virtual environment. If there are some transformations, these will

be applied to the information graph. Because of our incremental approach we must

build an event model to tell the transformations or visualizations about changes in

the data storage. We distinguish between the following events:

events

Start Routing This event indicates the the routing agent starts with a new query to

fetch the graph. All objects are marked in the data storage as not visited.

Add Vertex If the routing agent has found a vertex which is not yet in the data

storage, this event can be used to incrementally add the data objects in the

virtual environment.

Update Vertex The event `update vertex' is used when the routing agent fetches a

data object which already is in the data storage. This includes the situation

when changes in associations occur or the sign is changed.

Remove Vertex This event indicates that a data object has been removed from the

data storage, the transformation and the visualization have to be informed.

Clear All objects are removed in the data storage.

Set Center Object This usually occurs when a new query is launched. Then the

visualization typically has to recalculate the spatial layout.

End Routing Now the routing agent has reached the radius or counting limitation

and the whole graph is available. All data objects which were not visited are

deleted now in the data storage.

4.4 VISUALIZATIONS 27

4.4 Visualizations

A visualization algorithm is the projection of the information space or information

graph to a virtual environment. This means the placement of the objects and

therefore the calculation of coordinates in this virtual room. We want to support

visualizations with one connected component and the center node placed in the root

of the spatial environment.

The introduction of a hierarchy of abstractions makes the graph drawing problem

far more di�cult, but gives further possibilities to assist the comprehension of

the structures in the graph. As in the data sources, each visualization has special

demands with respect to the data. The visualization has to specify which data

structures can be displayed based on its layouting possibilities.

example
ConeTree spring-force algorithm

supported type tree network

For the framework we have to think about standard functions for all visualizations

to simplify an implementation. The most important functions are the creation of

objects in the scene graph for the rendering, to place them at the calculated

coordinates and the implementation of a 3D-Library.

4.4.1 Signs

If the data agent doesn't assign a sign to the data objects, the visualization has to

plot standard representations for data cubes and units.

4.4.2 3D-Library

In all tasks of the implementation we need components from a 3D-Library. It will be

much easier if the main functions are available in a library. Thus the programmer

doesn't have to care about the details of the 3D-Library. The most important

components are lines, signs, lighting and the texts for brushing. Another thing to

take serious is the behavior for navigating, rotating and select objects in the concept

of `focus+context' (further information: 4.5, 5.11.2).

28 CHAPTER 4. CONCEPT

4.5 Navigation

For the navigation in the virtual environment, we want to provide the zooming

and rotation functionality. This goes very well with three-dimensional visualization

and is very intuitive to make use of it. Further the focus+context concept is

implemented. So the viewer can navigate the graph by selecting nodes to become

the focal node. Afterwards the spatial layout is rearranged with the selected node

in the center and the other objects are distorted in the space. The description of

distortions can be found in 4.8. Supplementary a visualization has to gain control

of the navigationbehavior. For the implementation of special navigation oppor-

tunities, the framework contains callback functions: mouseOver, mouseOut or clicked.mouseOver
mouseOut

clicked

4.6 Interaction

An interaction is an operation assigned to a data object. The list of interactions will

be shown by clicking on the sign in the virtual environment and the user can select

one of them. The visualization framework provides some generic interactions like

`open', `fold' and `unfold'.

The function open takes the subject-URL of the data object and passes it to theopen
standard browser. A speciality of clustered graphs is the built-in tree structure. This

can be used to fold and unfold recursively all children of a data cube. The advantagefold
unfold of this elision technique is the hiding of uninteresting regions of the information

graph and the simpli�cation with fewer objects.

The other interactions are executed by the data agent itself. An important

function is `new query' to change the visible part of the information graph. Even

other possibilities can be realized by an interaction, like feedback-driven similarity

features.

4.7 Animation

For a visualization it can be necessary to implement animations for a smooth

transition between two sights. This can be useful during the incremental building of

the screen representation to show at each moment the data available till then. We

call this animation morphing. Each visualization should implement this function.morphing
Further animations can be the rotation of all children in the ConeTree, animated

scaling and translation or camera animations like �y-through. The framework

provides a class animation which can be added to a visualization and is activatable

at runtime. So the visualization algorithm can execute the necessary operations.

4.8 DISTORTIONS 29

4.8 Distortions

The distortion is the manipulation of object positions independently of the visual-

ization and is part of the focus+context concept. The underlying distortion function

maps the original coordinates to new ones. This function enlarges objects near the

focal region and moves the other objects towards the borderland. The distortion

value is a factor regulating the amount of change. A distortion function maps the

interval [0,1] to [0,1].

4.9 Transformations

The possibilities to combine data sources and visualizations are limited by the types

of information graphs they support. Mainly for search results with no inter-unit

similarity the presented visualizations wouldn't be applicable. Therefore we introduce

transformation methods for the generated graph.

Figure 4.4: Layered Scheme of Transformations

The transformation methods in Fig. 4.4 make it possible to present the data with

more visualizations. Converting from one structure to another always goes hand in

hand with a loss of precision. It is obvious that a tree can be visualized with an

algorithm for a general graph. Therefore we support natural transformations. On

the other hand several transformation methods can be applied to an information

graph independently of its domain. These methods are in the layer of generic

transformations. Finally each data source and the application which generated the

data has a kind of semantic knowledge about the information graph. The methods

30 CHAPTER 4. CONCEPT

in the layer of application transformations are de�ned by the data source at runtime.

A transformation is described by an input and an output type of information

graph. The available transformations are those of the data agent including the

natural and generic transformations supported by the framework.

Some examples how to use transformations:
� clustering

� minimal spanning trees

� �ltration

� node duplication for a pseudo-tree structure

� path�nder network

With these transformations we are able to have a wide range of possibilities to

present the data. Now the system can �nd paths from the original graph layout to

other structures. Each matching visualization can be presented to the user.

4.10 Use Cases

The use case diagram 4.5 shows the operations to be performed after a user interaction.

4.11 System Architecture

We aim to implement an application with several components to be loaded as

plug-ins. These dynamic classes are visualizations, transformations, distortions and

data agents. The application is divided in three layers. One for the data handling,

the representation layer with the generation of a 3D scene graph and the application

layer containing the user interface. An overview of the architecture is given in Fig. 4.6.

4.11.1 Plug-Ins and Properties

The system needs a properties �le containing a list of all dynamic classes and other

system settings. For the �rst implementation it is su�cient to have four lists stored

as XML document in the �lesystem. The client can request these lists and select one

of the plug-ins, which is loaded afterwards by the classloader.

4.11.2 User Interface

In designing the user interface we will try to respect six rules developed by Nigay and

Vernier [37].

4.12 SUMMARY 31

R1: The representational systems must be easy to change(direct access).

R2: Temporal continuity must be guaranteed while changing the representational

systems in order to provide visual continuity. The user should not be lost in

the space because she/he switched from one representational system to another

one.

R3: The representational system used to present the focus of interaction must be

precise and not rely on a distortion function.

R4: If it is not possible to present the whole information space using one precise and

global representational system, two representational systems can be combined,

one being (partial, precise) and one (global, vague).

R5: If two representational systems are combined to present the information space,

spatial continuity must be guaranteed between the two representations in order

to provide visual continuity.

R6: The navigational tools must be uniform along the user interface (reusability of

the navigation tools).

4.12 Summary

We have de�ned a general framework for the visualization of information graphs. We

started with modeling data sources as information graphs and specifying the access

to the data sources with neighborhood queries. The considerations about clustered

graphs gave many ideas on how an information graph can be modeled. With this

abstract interface we are ready to think about the visualizations. Some of them use

trees or networks as input and the output is the arrangement of the nodes in the

information graph onto a virtual environment.

Our platform is able to contain every kind of visualizations. This is possible be-

cause of the three-dimensional representation, the event model for the communication

during the incremental approach to fetch data from the sources. An implementation

has to point out the performance reachable by an application following our approach.

In each screen of the visualization we see a well de�ned part of the whole graph.

This is done by the de�nition of a query on the data source and the number of

vertices in the neighborhood related to the query. Looking at the navigation issues,

we de�ned a event mechanism allowing the data source to provide any interactions.

One special kind of interaction is the fetching of a new portion of the graph by

setting a new query point. The transition from one logical frame to another can be

animated to keep the mental map.

32 CHAPTER 4. CONCEPT

Figure 4.5: Use Cases

4.12 SUMMARY 33

Figure 4.6: Architecture of the Framework (with its three layers)

34 CHAPTER 4. CONCEPT

Chapter 5

Implementation

In this chapter we describe the specialities of the implementation and give a developer

an overview which tasks have to be done in writing extensions or new components

to our framework. We also use the same examples as in the previous chapters to

continue the illustration of the concepts. You can �nd introductions in almost each

section describing the tasks to be done during an implementation.

5.1 Introduction

The current version of the information visualization framework is developed in

Java, using a Windows2000 workstation, the Java3D and JAI-libraries for the three-

dimensional visualization and image preparation for textures. More information

about the libraries and infrastructure can be read in 5.2.3. The system has also

been tested on RedHat Linux 6.2 using the Java3D implementation by BlackDown [B].

Now look at the scheme 5.1 of the data �ow in the system. This will be the

foundation of our explanations in this chapter.

Figure 5.1: Data Flow in the Information Visualization Framework

36 CHAPTER 5. IMPLEMENTATION

The underlying packages of the framework look like this:

packages
description

infograph.* all framework classes

infograph.agents.* collection of implemented data agents

infograph.visualizations.* all implemented visualizations

infograph.transformations.* all implemented transformations

infograph.distortions.* all available and implemented distortions

infograph.j3d.* support libraries (Java3D)

5.2 Application

We implemented a system called `InfoGraph' in Java and several plug-ins to the

framework during this work.

5.2.1 User Interface

The user interface of our application consists of three components. First there is the

canvas for the visualizations, then the panel for the buttons and third the panel with

the query interface and the selection of animations. (see 5.2 and 5.3)

Figure 5.2: Screenshot: User Interface

5.2 APPLICATION 37

Figure 5.3: Screenshot: User Interface with Querying Options of a Filesystem

5.2.2 Properties

During the start of the application we read an XML-�le with all paths used in the

system. (e.g background image, capturing output path, o�ine-version of BiblioNet)

Also the names of available plug-ins are de�ned with this �le. Thus its very easy to

add and change visualizations, data sources, transformations and distortions in the

system. The �le should look like this to be recognized:

<InfoGraphProperties>

<backgroundImage>

D:/cvshome/All4U/InfoGraph/Background0.jpg

</backgroundImage>

<BiblionetzBaseURL>

file:///D:/Bibliothek/

</BiblionetzBaseURL>

<ImageDBBaseURL>

http://dalmatiner.ethz.ch/isearch/bin/ImageSimilarity.tcl

</ImageDBBaseURL>

<CapturingOutputPath>

c:/temp/

</CapturingOutputPath>

<Visualizations>

<Visualization>

ConeTree

</Visualization>

<Visualization>

38 CHAPTER 5. IMPLEMENTATION

SpringForce

</Visualization>

</Visualizations>

<DataAgents>

DataAgent>

FilesystemAgent

</DataAgent>

<DataAgent>

ImageDBAgent

</DataAgent>

</DataAgents>

<Distortions>

<Distortion>

RadialDistortion

</Distortion>

<Distortion>

OrthogonalDistortion

</Distortion>

</Distortions>

</InfoGraphProperties>

5.2.3 Installation

For the installation of the framework and the application InfoGraph, certain Java

libraries have to be installed. The Java3D extension of the virtual machine has to

installed with the setup available at SUN [G]. If Java3D should be executed on Linux

systems, the implementation by BlackDown [B] can be taken. We need two other

libraries: JAI (Java Advanced Imaging) for the manipulation of images and JDOM

for the reading and parsing of XML-�les.

libraries
name version description reference

Java2 SDK 1:3:0_02 Java Enterprise Edition Platform [G]
Java3D 1:2:1_03 Java 3D API for 3D graphics [H]
JAI 1:1:1 Java Advanced Imaging API [F]
JDOM Beta 7 Java Simple API for XML (SAX) and [D]

the Document Object Model (DOM)

The command line to run InfoGraph must have the following structure:

java -Xmx256mb -classpath $CLASSPATH infograph.Infograph

./properties.xml

Ensure that the classpath contains all libraries stated above and that the correct

path of the properties �le is given. The parameter Xmx de�nes the amount of memory

5.3 INFORMATION GRAPH 39

allocated for the virtual machine. On a linux system we additionally have to specify

the location of the Java3D library with the option:

-Djava.library.path=/usr/java/j2re1.3.0/jre/lib/i386

Otherwise the Java3D extension cannot be found and activated.

5.3 Information Graph

5.3.1 Data Objects

An information graph consists of data objects as vertices and each vertex has a

vector with references to its neighbors. Each data object has a unique id and the

subject-URL pointing to the entity in the data source. Further each object has a

text for the brushing.

For each data agent it should be possible to add signs to data objects. If none is

speci�ed the visualization will add a standard sign. The methods `setRepresentation' setRepresentation
should be used to add signs to data objects. This should not be mixed up with

the variable `sceneGraphObject ', which is only used by the visualization to hold sceneGraphObject
the current visible sign. This is also true for the variables `label' and `position'. A

visualization algorithm often has to store additional information for each data object.

Therefore we can assign an arbitrary Java-object to each data object.

There are two types of links to other data objects to distinguish. The vector

`associations ' contains all associations to the neighbors of an object with a measure associations
for the similarity. The second vector is called `outgoings ' which is a subset of outgoings
`associations'. In this vector we only have the associations which we have taken

during the routing. How this works is written in 5.6.

5.3.2 Different Data Objects

The information visualization framework knows three types of data objects. The

data units, data cubes and data queries are the extension of a general data object

(see 5.4 for the class diagram). For two reasons we distinguish di�erent types of

data objects. It gives the possibility to present them with di�erent signs in the

visualization and to add special functions. So the visualization can plot signs based

on the type.

For the data cubes we provide the functions fold and unfold, meaning the hiding

of all data objects contained in the data cube. These function calls are propagated

recursively to all objects contained in the data cube and in each step of the recursion

there is a call of the fold/unfold method in the visualization. Thus the drawing can

40 CHAPTER 5. IMPLEMENTATION

be adapted. Additionally the data units are weighted by a value in the interval of

]0,1] to show the importance of the unit with respect to all others. In the context of

a �lesystem this can be for example the �lesize or the access frequency.

Figure 5.4: Part of the Class Diagram showing the Different Data Objects

5.3.3 Implementation of an Information Graph

With the data object above we can implement an information graph simply as set of

data objects, because each object knows about its neighborhood. We need functions

for the calculation of distances in the graph between two data objects and meth-

ods to set/get the center object of the information graph. This data object should

be placed by a visualization at (0,0,0) and can be used to traverse the whole graph fast.

5.4 DATA SOURCES 41

5.4 Data Sources

For each data source, we have to implement the abstract class called info-

graph.DataAgent. The implementation of data agents are packaged into info-

graph.dataagents.*. To show how this can be done, we describe the data agents

implemented in our application.

The main functionality for a data agent is the evaluation of a query. The result

is an information graph with the query object as center object and the query results

linked by an outgoing association. For each new routing cycle it starts with a query,

where the observation point is not set. Afterwards the routing agent recursively

fetches the neighborhood of the query by sending the same query with an observation

point set. The data agent then has to deliver the vertices similar to this special point.

You can �nd an example of this in the examples in section 5.4.1.

public abstract Graph evaluateQuery(Query q)

Because of the internal structure, we must have a mechanism to specify individual

querying options. Therefore each implementation of a data agent has to extend the

classes infograph.Query and infograph.QueryInterface. The query interface is a panel

displayed for the input speci�cation by the user. So we have to add the GUI elements

for this de�nition. (e.g. scrollbars, �elds, options) When the user has �nished with

the preparation of the query, the query interface generates with the input of the user

a query, which typically is an extension of the class infograph.Query. This extension

is necessary because of the individual querying options for a data source. Further the

data agent method to execute an interaction has to be implemented:

public abstract void executeInteraction(Interaction interaction,

RoutingAgent rA)

How to implement a data agent?

� de�ne the querying by implementing the class infograph.Query

and its evaluation in the data agent.

� design a query interface as extension of infograph.QueryInterface

and set the GUI elements on the panel from this class.

� add application speci�c transformations to the data agent

� to each data object: add interactions and implement their execu-

tion

� add data agent to properties.xml

42 CHAPTER 5. IMPLEMENTATION

5.4.1 Filesystem

The neighborhood queries in the �lesystem are very simple to describe and to

implement. Corresponding to the de�nition of an information graph, we take the

hierarchy of folders as the tree of data cubes. Thus if the query points to a folder, the

neighborhood is de�ned by the child folders (data cubes), the �les in the folder (data

units) and the parent folder (data cube). Because there is no similarity measurement

available in the data source we de�ne the values to be 0.5 and 1.0 as shown in �gure

5.5. These values are chosen for the following reason. The default value is 0.5 for

our association and the value 1.0 for the parent folder shows that the path upwards

in the �lesystem is of lower interest.

First we have to extend the class infograph.Query to hold the path requested

by the user as starting point of our search. Therefore we have to add the methods

`setFilename' and `getFilename'. When the data agent receives a query object, it

can read the requested path. In the context of the �lesystem, routing should be

limited by a radius which is computed as the sum of association measurements on

the shortest path from the root object. Thus the query interface is not complicated

as shown in �gure 5.9. There is a text �eld for the starting path of the desired view

and the radius as limitation of the data fetching. Finally, we have to look at the

signs and interactions for the data objects. The sign, which is the representation of

the object in the virtual environment, can be the default de�ned by the visualization

except for data units (�les) standing for an image. This image is wrapped as texture

on the surface of a sphere. So it's very easy to see images among the other �les. For

each data object we additionally add an interaction to begin a new query with the

current object as starting point.

Figure 5.5: Example of a Data Source: Filesystem

5.4 DATA SOURCES 43

Figure 5.6: Filesystem in ConeTree with Tex-
tured Spheres for Images

Figure 5.7: Filesystem in Balloon2D with Radial
Distortion (same data set as in 5.6)

Figure 5.8: Filesystem in Radial3D with Hyper-
bolic Distortion

Figure 5.9: Query Interface for the Filesystem
Agent

44 CHAPTER 5. IMPLEMENTATION

5.4.2 BiblioNet

BiblioNet is a collection of books, persons, notes and thoughts developed by Beat

Doebeli [A]. It contains summaries and explanations about the topics: books, per-

sons, subjects, terms, questions and statements. The entries within the BiblioNet are

linked by their inter-relationship. The system is currently a set of static html-pages

generated by an MS Access database for the administration.

For our information visualization system we implemented a data agent looking at

the persons, books and terms in the BiblioNet. For some of the entries, there is an

image of the person or the cover of the book associated. We combine these results

with queries on the Amazon data collection.

Figure 5.10: Example of a Data Source: BiblioNet

Our data agent starts with a full-text search over books, persons and terms

and generates the answer for the �rst query with these search results. In the next

iteration of routing we get the pages of one entry in the BiblioNet and follow the

links. All linked entries are de�ned to be the neighborhood of an entry. With this

example we additionally want to explain the application speci�c transformations.

Our data agent has a transformation called `Only Books and Persons' acting as a

�lter to add only entries of this types to the data storage and because of that to the

visualization.

5.4 DATA SOURCES 45

Figure 5.11: BiblioNet in Spring-Force Visualiza-
tion

Figure 5.12: Search Results of Query ‘zurich’ vi-
sualized with Radial2D

Figure 5.13: BiblioNet on the Query ‘Mind Map’
in SOG Visualization

Figure 5.14: Google Search extended with Re-
verse Linkage (Query: ‘zurich’)

46 CHAPTER 5. IMPLEMENTATION

5.4.3 Search Results

A very simple data source are the search engines all over the internet. Our �rst

implementation of a data agent is an interface to the Swiss search engine `search.ch'

[E]. The extension of the class infograph.Query has to hold the keywords and de�ne

the number of results to be fetched from the search engine. To see the order of

the search results we weight the outgoing associations from the query with a linear

descending value.

To make it more useful we added more information to the search results. Our

second implementation is based on Google (www.google.com) where we used the

possibility to query for pages linking another. So we �rst request for the search results

to some keywords and parse the resulting URL's. In the following rounds of routing

we ask for each URL the pages with a link to it. Thus the resulting information

graph can be of the type `network'. The advantage of such a visualization is to

enable the user to recognize the relationships of search results based on their linkage.

5.4.4 XML-Files

Another kind of data source we look at is an XML-�le. These semi-structured

�les are per de�nition built in a tree-like construction. The bene�t resulting from

the visualization of an XML-�le is to have an overview in a three-dimensional en-

vironment which allows to recognize similar groups of nodes and the overall structure.

We implemented the data agent using JDOM for the reading and parsing of

XML-�les. Each data object is determined by the �lename and an XPath-like

expression. The di�culty to implement this agent was that in an XML-�le it

is allowed to have more than one node with the same name in one level of the

document. Because of that we numbered the children of a node. Now we are

able to exactly locate a node in the XML-tree structure. As de�ned before

we have to assign a data cube object to each node of a tree in the data source.

In the example of XML-�les each node is a data cube and the attributes are data units.

5.4 DATA SOURCES 47

Figure 5.15: Linkage started from
‘www.ethz.ch’ (visualization: SOG)

Figure 5.16: Properties-File (XML) of our System
(visualization: Balloon2D)

Figure 5.17: Linkage started from
‘www.ethz.ch’ (visualization: Spring-Force)

48 CHAPTER 5. IMPLEMENTATION

5.4.5 Web Linkage

Very similar to the idea of showing the reverse linkage in the case of search engines,

it is interesting to present the structure of the world wide web based on the outgoing

links within html pages. The information graph resulting from our data agent can

be a large network with each URL as a single node. Therefore we only take the �rst

n links from each page. The parameter n can be de�ned in the query interface to

the linkage data agent. We present one example in Figure 5.15. It is the reachable

region of the internet starting from `www.ethz.ch' rendered by the self-organizing

graph algorithm.

5.4.6 Image Database

The Database Research Group has developed an image database which provides

similarity searching using di�erent features. A feature, for instance, color moments,

summarizes the contents of an image. More information about this project can be

found at [C]. For this data source we can calculate a similarity value for each pair of

images and thus we receive a complete network (proximity matrix). For most of the

visualizations this is too much information because of the complexity. But in this

case the algorithm `FastMap' (3.2.4, 5.8.9) can be used. For a good representation

in three-dimensional visualizations we project the images as textures on the surface

of boxes. Thus the image is visible from every direction.

Figure 5.18: Sample Pictures of Image Database ‘Chariot’ drawn with FastMap

5.5 DATA STORAGE 49

5.5 Data Storage

The data storage is an extension of our information graph with additional functions

for the 3D visualization. The instantiation of a new data storage forces the creation of

a new 3D canvas. The function `setVisualization' is then used to bind a visualization setVisualization
to this canvas. This is �nished by the call to `initVisualization', where the navigation initVisualization
behavior and the initial scene graph of the visualization is set to the canvas. The

functions `addVertex', `setCenterObject', `remove', `startRouting', `endRouting' and

`clear' are called by the routing agent through a transformation. This immediately

e�ects the graph and by the event model the visualization. We implemented this

event model through method calls in the visualization and transformation. To avoid

a big overhead with unnecessary method calls, the event subscription is made with

boolean �ags.

Example: If the routing agent �nds a new vertex, it sends this data object

through a transformation and then to the data storage. Here the data object is

added to the information graph and if the visualization has registered the add event,

the corresponding event is thrown.

5.6 Routing Agent

The routing agent implements a second thread, because the fetching of data should

be interruptable by the user.

We describe once more the concept of routing and here with more details. The

term `routing' means the data fetching of all linked data objects in a well de�ned

region. This region is de�ned by a starting point and a radius, whereas the

radius can be chosen as the sum of association weights from this point or a num-

ber of objects. Now we present the pseudo-code for the main loop in the routing agent.

Algorithm Routing

(� precondition: data storage, data agent and transformation assigned �)
1. transformation.startRouting()

2. priority queue P

3. if query.getObservationPoint() 6= null

4. then put observation point to P

5. else put dummy object to P

6. while P 6= ; and not stopped by user

7. do let q be the �rst element of P

8. query.setObservationPoint(q)

9. graph G = dataAgent.evaluateQuery(query)

10. let c be the center object of G

11. for i 1 to jc:getOutgoings()j
12. do a association[i]

13. if a:sink() � DataStorage

14. then convert a to a regular association

50 CHAPTER 5. IMPLEMENTATION

15. (* because association is not followed, but should be vis-

ible in graph *)

16. else if radius or count not greater than threshold

17. then add a:sink() to P

18. else remove a from c

19. transformation.addVertex(c)

20. transformation.endRouting()

5.7 Transformations

The transformations are the �lter between the routing agent and the data storage.

Each object which should be added to the data storage has to pass a transformation.

For the easiest case, no transformation to apply, we extended the abstract class

infograph.Transformation to `zeroTransformation'. Here the events addVertex,zeroTransformation
setCenterObject, startRouting and endRouting, which have to be implemented for a

transformation, are implemented to pass data objects immediately to the data storage.

The natural transformations can be applied to some graph types to convert them

into another type without changing the structure. One example is the visualization

of a tree as general network. In contrast to the `zeroTransformation' the output

type of the transformation is set. The data objects are still passed through without

any changes. We also implemented a general transformation which takes a general

network and removes all associations from the data objects except the outgoing ones.

Thus we can see the paths taken in the routing to fetch the whole information graph.

We called this transformation `spanning tree'. The resulting information graph isspanning tree
a tree and hides all the non-tree links as introduced by Munzner in the Hyperbolic

Tree visualization. [36]

For some applications it could be necessary to temporarily store all objects in

the current logical view before the �rst vertex can be added to the data storage.

Then we can add an object cache to the transformation and keep all objects. In the

`endRouting' event all objects can be added to the data storage.

5.8 Visualizations

At long last we present the description of the visualizations. In the abstract class

infograph.Visualization we can �nd the abstract methods to be implemented for

all the events described in 4.3. Further there is a boolean �ag for each event a

visualization can set to activate the method calls. Some of the functions used by

each implementation are in this class for the construction of the screen representation.

The construction of a scene graph is the main task for the visualization. The

�rst step of the construction is made by the data storage initialization with the

instantiation of the 3D canvas and the navigation behavior. The result of the

5.8 VISUALIZATIONS 51

initialization is a new scene graph, which can be completed by the visualization.

The second part of the construction is to build an initial screen (lighting, rotation

of the environment, background, etc.) for the visualization. Since the Java3D scene

graph is a tree, we have to keep references to several points in it. One of these

references is the `rootTransformation' . That's the transformation group of the root
Transformation�rst transformation in the scene graph and this is also the �rst node in the scene

graph constructed by the visualization. Typically we use it for the rotation of the

environment. To this node we can add any Java3D objects.

After the building of the initial screen we must have a node in the scene graph

to add the signs of our data objects. This should be the leaf of the scene graph up

till now. Therefore our initialization has to keep a reference to this `initialLeaf '. initialLeaf
Now we are ready to add signs for each data object. This is normally done in the

implementation of the method `addVertex'. As we know from the data agents some

of the data objects can have a prede�ned sign. To all others we must add a default

object. For each data object we once have to call the function `createPosition' of the

abstract class visualization. There we create a new BranchGroup and add to this a

TransformationGroup. The BranchGroup is used to add the sign to the `initialLeaf'

and the TransformationGroup keeps the translation in the spatial arrangement for

the position. Finally the sign is added to the TransformationGroup.

If the visualization has to change the position of a data object we should call

the method `setPosition', because the this method handle everything concerning

the distortion which will be described later. The construction of the spatial ar-

rangement is done by the implementation of the methods corresponding to the events.

How to implement a new visualization?

� implement infograph.Visualization:

� construct a scene graph for the initial screen (lighting, rotation of

the environment, background, etc.)

� implement methods for each event

� implement methods for the interactions (mouseOver, mouseOut,

runAction, mouseClicked)

� implement methods for folding and unfolding

� implement the function `changeDistortion' (e.g. for the reposition-

ing of visible edges)

� add the visualization to properties.xml

52 CHAPTER 5. IMPLEMENTATION

5.8.1 Brushing

Another task for the visualization class is the management of labels for the brushing.

We decide to implement a level of detail brushing, meaning that objects near thelevel of detail
eye position are labeled and the others are not. This is part of our focus+context

approach and is supported by the Java3D LevelOfDetail-Behavior. This behavior

consists of a switch group with an array of distances. Depending on the distance from

the eye position to the data object this behavior select the suitable representation

from the switch group. There is one function called 'labelingFunction' doing this. AlabelingFunction
visualization can call this function with an integer value to select the action.

labeling
1 create a new label

2 update the position of the label

3 remove the label

4 attach the label to the scene graph ! set visible

5 detach the label ! hide

6 set non transparent

7 set transparent

8 show permanent

9 show corresponding to level of detail

For the labels we use a transparent three-dimensional text combined with an

OrientedShape3D object. The transparency is used so that nothing in the drawing

is completely covered by the labels and the oriented shape is always aligned to the

viewing plate and therefore always readable.

Figure 5.19: Brushing with Level of Detail Behavior during Zooming

5.8.2 Animations

Our framework can keep a list of animations for each visualization. When the user

de�nes a new query, he can also activate these animations. A visualization plug-

in can check if the user has activated an animation and change the drawing adequately.

5.8 VISUALIZATIONS 53

For each visualization we want to have three typical animations. Thus morphing, morphing
keyboard navigation and brushing are added by default to all visualizations. The keyboard navigation

brushingbrushing is implemented in the `labelingFunction' described in the previous section

and the keyboard navigation is supported by Java3D and can easily be added during

the initialization of the visualization. The morphing functionality is special to our

incremental approach, meaning the animated change from one to another logical

frame. The visualization has to be able to present at each time the available data

and integrate new objects dynamically in the past arrangement. So a visualization

has to provide two running modes. One for the situation that morphing is activated

and another without. The second situation is much easier because the calculation

of positions can be done for all objects at the same time, whereas the incremental

building has to run often.

5.8.3 ConeTree

The ConeTree places the center of the information graph at the root of the virtual

environment and, recursively, all the children at equal distances along the base of a

cone. In our implementation we don't take the equal distances but we multiply this

distance with the weight of the association. So we can show the similarity of objects

by the distance to the parent node.

For the default sign of the data objects we took transparent objects so that

even if they are covered, they are visible. We added an animation to our ConeTree

visualization taking the callback function `mouseOver' for the rotation of the

children. Thus it's easy to explore the graph by rotating the part of nodes the user

is interested in. Figure 5.21 shows the rotation of a subgraph and the changes in the

focus+context sense.

Figure 5.20: ConeTree applied to Filesystem

54 CHAPTER 5. IMPLEMENTATION

Figure 5.21: ConeTree - Rotation of Objects

5.8.4 Spring-Force Model

We also implemented a modi�ed version of the force-directed algorithm GEM by

Frick et al. [15] The spring forces are adapted by taking all objects from the data

storage. For each data object we have to do the calculation of the attraction forces

for each associated object, and to all others, the repulsive forces. The cumulative

impulse is taken for the repositioning of the data object. This calculation is done

in the method `endRouting' if the morphing is not activated, otherwise in regular

intervals after the insertion of new objects.

In the spring-force algorithm we add an animation called `lines' to activate the

drawing of lines along the edges. This is useful for simpli�caton if the information

graph is very dense. Figure 5.23 shows two examples of the BiblioNet once with lines

and once without them. Other examples of the algorithm are the Figures 5.14, 5.17.

Figure 5.22: Spring-Force Algorithm applied to the Filesystem

5.8 VISUALIZATIONS 55

Figure 5.23: Spring-Force Algorithm with the animation ‘lines’ (data source:
BiblioNet)

5.8.5 Radial Layout 2D

The radial visualizations are quite simple to implement, but provide a nice looking

tree drawing. It's necessary to have two iterations over all objects to calculate this

representation. The �rst run is for the recursive calculation of the children in each

node. Thus we are able to estimate the space used for all children in traversing the

tree. In the second step we calculate the positions for the data objects by doing a

breadth �rst search and keeping the angle which is used up to now. The position can

be calculated by this angle and the radius which corresponds to the distance from the

center object in the information graph.

Figure 5.24: Radial2D distortion-free and with Focus set in RadialDistortion

56 CHAPTER 5. IMPLEMENTATION

5.8.6 Radial Layout 3D

This algorithm is very similar to the Radial2D visualization because it is an extension

of it to three dimensions. We also need the two iterations over all data objects and

estimate the space used to place all items in a sphere. For the calculation of the

positions we looked at the implementation of the HyperbolicTree [36], because the

radial three-dimensional arrangement is the base of the other algorithm. In the

HyperbolicTree this arrangement is calculated in the hyperbolic space and projected

to the Euclidean.

Figure 5.25: Radial3D distortion-free and with Focus set in RadialDistortion

5.8.7 Balloon Layout 2D

The last visualization of this type and methodology is the Balloon2D. The procedure

for the calculation is similar again to the Radial2D, but the placement of children

is not in a straight line from the center. They are arranged in a circle around the

parent node, which is similar to the ConeTree implementation. Thus the di�erence

to a ConeTree is the estimation process for required space. This kind of calculation

is described by Carrière and Kazman in detail [7].

5.8.8 Self-Organizing Graphs

The drawings produced by the Self-Organizing Graph (SOG) algorithm are quite

similar to those produces by the force-directed method, but the calculation is

completely di�erent. The SOG is a clustering algorithm based on self-organizing

maps (SOM).

5.8 VISUALIZATIONS 57

Figure 5.26: Balloon2D distortion-free and with Focus set in RadialDistortion

�Self-organizing graphs are a novel approach to graph layout based on a competi-

tive learning algorithm. This method is an extension of self-organization strategies

known from unsupervised neural networks, namely from Kohonen's self-organizing

map.� [34]

Each iteration of the calculation process takes a random point in the three-

dimensional space and looks for the nearest data object. With a breadth �rst search

we calculate for each item, in the neighborhood of this data object, an attractive

translation to this random point with decreasing e�ect for the more distant objects.

5.8.9 FastMap

The FastMap algorithm was developed for the clustering of data objects based on a

similarity matrix for complete information graphs. In our framework we also allow

not so dense graphs, and the description of the information graph is not available by

a proximity matrix (distance matrix). Therefore, the �rst step in the FastMap algo-

rithm is to construct such a proximity matrix, which is very simple for a data source

providing a complete graph, but more di�cult for example for a tree structure. In

this case we �ll the matrix with the association weights available in the information

graph and all other distances with a large random value. This little randomization

is necessary, because otherwise the FastMap algorithm often maps two data objects

to the same point. The FastMap algorithm can run for two or three dimensional co-

ordinates and we implemented an animation to activate the two-dimensional variant.

The implementation of the core clustering algorithm in Java was done by Kai Jauslin.

58 CHAPTER 5. IMPLEMENTATION

Figure 5.27: FastMap Algorithm applied to Image Database

5.9 Distortions

The distortions, as described in the chapter 4, are rearrangement functions indepen-

dent from any visualization to support the focus+context approach. We implemented

a set of distortions. A distortion consists of a change in the position and size of

the visible signs. These two operations are automatically performed by the main

visualization and the distortion classes. A system developer only has to care about

the drawing of all additional elements like lines or boxes to place them onto the

distorted position. The visualization can get the distorted and non-distorted posi-

tion for each data object by calling `getDistortedPosition(obj)' and `getPosition(obj)'.

Each implementation of a distortion function has to respect two parameters: the

distortion value, which can be changed by the user for the amount of distortion, and

the focus point to plot this item in the root of the environment.

5.9.1 Radial / Fish-eye

The radial distortion, also called Fish-eye distortion, is described in detail by [27].

It scales the distance from the focus point while keeping the direction. For each

position we �rst have to calculate a translated point corresponding to the translation

from the original position of the focus point to the root.

5.9 DISTORTIONS 59

Figure 5.28: Example without Distortion

Distortion function for all directions:

f(x) =
(distortionFactor + 1) � x
distortionFactor � x+ 1

(5.1)

Scaling function:

s(x) = 8 � (1� f(
position:length()

distortionRadius
)) + 1 (5.2)

Figure 5.29: Radial Distortion with Factors 3 and 6

60 CHAPTER 5. IMPLEMENTATION

5.9.2 Orthogonal

The orthogonal distortion [27] takes a cube instead of the sphere projection we can

�nd in the radial distortion. Each dimension is taken separately and the distortion

function applied to it. The formulas are equivalent to the ones in the radial distortion.

Figure 5.30: Orthogonal Distortion with Factors 3 and 6

5.9.3 TanH Distortion

Alternatively to the distortion function in the radial distortion we can choose the tanh

function. The distortion function then looks like this:

f(x) = tanh(
distortionFactor

2:0d
� x) (5.3)

Figure 5.31: Series of Drawings with TanHDistortion for different Distortion
Values

5.10 INTERACTIONS 61

5.9.4 Plane Distortion

If we ignore one of the three dimensions, we get a simple projection to a plane.

Exactly this is done by the plane distortion. The advantage in taking this projection

as distortion is that not every visualization has to implement it and the user can

switch between a three- and two-dimensional drawing.

5.9.5 Hyperbolic Distortion

The hyperbolic distortion is used by many visualization systems because it provides

a natural focus+context representation. The geometry of a hyperbolic space is well

described in [33] and also the projection from it to an Euclidean space.

Our distortion takes the original positions of the data objects as they were in a

hyperbolic space and projects these coordinates to Euclidean. This is done by taking

the point in 3D, extending it to 4D with 1 as fourth coordinate and then projecting

it back to three dimensions.

Figure 5.32: Hyperbolic Distortion and Radial3D Visualization with Focus Point

5.10 Interactions

We can add interactions to each data object by the data agent. By default the

framework adds to all data object the interaction `open'. If the open interaction is

triggered by the user, the system starts the browser and calls the subject-URL of the

data object. Additionally, to all data cubes the interactions `fold' and `unfold' are

added and executed by the system itself.

62 CHAPTER 5. IMPLEMENTATION

An interaction contains a name and a query. The name is used for the di�er-

entiation. A typical interaction is `new query' which should be added to each data

object for the data fetching started at this vertex in the information graph. The

execution of the interaction has to be done by the data agent, because it may require

knowledge of the source application. The support of interactions is included in the

navigation behavior. It detects the clicks on signs and propagates this event to the

system for the presentation of the list of interactions.

5.11 Java3D

The current version of Java3D, provided by Sun Microsystems [H] in Version 1.2,

has many features which are necessary to implement a visualization system. This

API is an application programming interface used for writing three-dimensional

graphic applications and applets. The creation and manipulation of 3D geometry

and rendering for very large worlds is the goal of this Java library. Java 3D has

implementations in DirectX and in OpenGL, and was designed for high performance

and a rich set of features. To run Java3D properly, install Java3D as extension to an

existing Java Runtime Environment. If the application has to run as applet in the

browser, the extension also has to be made to the Java Virtual Machine used by the

browser.

typical characteristics:
� scene graph-based API

� high-resolution coordinates

� write once, run anywhere

� object-oriented programming

� internet capabilities

� browser plug-in

There are other visualization systems using Java3D: Walrus [4], Tron3D [49], Web-

based 3D interface for product data management [24].

5.11.1 Rendering in 3D

The Java3D rendering model provides three major modes: immediate mode, retained

mode, and compiled-retained mode. The immediate mode allows maximum �exibility.immediate mode
The programmer directly in�uences the drawing without constructing a scene graph.

Java3D can perform only localized optimizations. The retained mode provides aretained mode
substantial increase in rendering speed, while all objects de�ned in the scene graph

are accessible and manipulable. The changes in the scene graph are instantly visible.

Compiled-retained mode allows Java3D to perform an arbitrarily complex seriesCompiled-
retained mode of optimizations and ensures high graphics rendering speed. The programmer can

request that Java3D compile an object or a scene graph. Once it is compiled, the

programmer has minimal access to the internal structure.

5.11 JAVA3D 63

For our incremental approach it is necessary that changes in the scene graph are

rendered immediately, the retained mode suits best. In the implementation we must

have a `sleeping ' function for the interruption of the visualization thread due to the sleeping
cooperative multithreading in Java. In the mean time the Java3D threads can render

the representation.

5.11.2 Java3D Library

The Java3D Library is used for the construction of Java3D objects for data agents

and visualizations. The signs we provide are spheres, boxes, cubes and tetrahedrons

and several appearances (wired, solid lit, lighting, transparent, textured and combi-

nations of that). For the use of textures we have to modify the image to be quadratic

and the size to be a power of 2. Therefore we use Java Advanced Imaging to crop a

part of the image meeting these demands. Very often a visualization needs lines for

the drawing of associations. We integrated a function doing this by specifying the

distorted position of two vertices. The labeling function has to create text objects

with the brushing string of a data object. The generation function we integrated

can also be used for the creation of text signs. Almost every visualization has to

add lighting e�ects to the scene graph. To do it quickly there is a standard lighting

available in the Java3D library. And also the keyboard navigation is suitable for

most visualizations. It uses arrow keys and `PageUp'/`PageDown' for zooming and

moving the representation in the virtual environment.

5.11.3 JAI Image Reader

The Image Reader is used by the algorithm which calculates the modi�ed images

for textures. It can take most of the well known image formats and generate a

Bu�eredImage. This image can be used for doing the manipulation.

5.11.4 Capturing

For the illustration of this work we had to take a lot of screenshots. There are two

possibilities documented doing this task. The rendered image in the 3D canvas can

be read into a raster of image point and stored as a JPEG-File. The resolution then

is limited by the size of the canvas, which usually isn't good enough. The o�screen offscreen
rendering is published in the Java3D speci�cation for the re-rendering of a scene rendering
graph to an o�screen canvas. In the demos coming along with Java3D we found an

example how to use this functionality and integrated this o�screen rendering. But

there is a catch to it. The size of the picture is limited by the real screen resolution.

It does not make sense to render the image to a bigger canvas because the part

outside of the supported region will appear blank.

64 CHAPTER 5. IMPLEMENTATION

5.12 Summary

Our work focuses on the design of a framework for 3D visualizations for large

information spaces. The limitation to a small portion of a huge information graph

gives the possibility to use complex and well studied visualization algorithms. On the

other hand, the framework has to be extendable and very general for the integration

of any visualization. During the implementation we had to think about the modeling

of an information graph, a general mechanism to fetch data for di�erent data sources

and to prepare it for a visualization algorithm.

The use of Java3D as three-dimensional library was a good decision because the

implementation was straight forward and all of our ideas are realized. Additionally

it's now very easy to add new data sources or visualizations as plug-ins and to do

experiments with them.

The resulting graph drawings are aesthetical and assist the viewer in under-

standing the big picture and relationships among data objects. The focus+context

method helps comprehension. Here we want to mention the level of detail brushing,

the transparency used and the distortion functions. Combining these elements with

the navigation functionality to rotate and zoom gives a very natural way for the

exploration of an information graph.

Chapter 6

Conclusion

The information visualization framework realized in our work can be used for the ex-

ploration of data sources and visualizations. The combination of a three-dimensional

visualization to several data sources shows the usability of the layouting algorithm in

a data domain. On the other hand, we are able to compare di�erent representations

of the same data set.

6.1 Discussion

Our goal was to create a framework for the three-dimensional visualization of

information spaces with open interfaces for the �exible extension. During this

work we implemented several data agents and visualizations which can be loaded

dynamically into our application for doing experiments and ergonomic studies. The

features of our implementation are the use of neighborhood queries for data fetching,

the incremental building of screen representations and the morphing between two

logical frames. Apart from these realized functions, we o�er a �exible and open

information visualization framework for three-dimensional drawings. This generality

cannot be found in any other work.

An interactive visualization aids comprehension by using the visual capabilities of

people. The advantage of such a system is the gained speed for the collection of data

and information. The user expects a preparation of data and relations combined with

a nice looking representation. But the knowledge behind the prepared structures has

to be generated by the user himself. Thus such a system only can be the interface to

huge data collections.

The system lacks a little bit of performance during the fetching of data, because

the querying is cost intensive. The main delay is data delivery and calculation

in the data source (e.g. networking time, database or second storage access,

searching, cpu time). This bottleneck in our system could be reduced with a caching

mechanism such that the same query never has to be performed twice by a data agent.

66 CHAPTER 6. CONCLUSION

Another bottleneck is the the memory consumption of our Java application.

The construction and rendering of a large scene graph on the one hand, and the

generation of data objects on the other hand are responsible for it. From time to time

it likewise is the reason for crashes of the Java virtual machine. We tried to reduce

the memory usage by the de�nition of class variables used as temporary object during

the calculation in visualization components. The improvement in speed is remarkable.

Nevertheless we were surprised by the speed gained by our implementation in spite

of the usage of transparency, textured shapes, animations and complex layouting func-

tions. This is possible because of the hardware support in rendering of the drawings.

Java3D uses DirectX or OpenGL and therefore it is quite fast on all operating system

we tested. Especially for two reasons, the framework cannot be used in a productive

environment till now: The delay switching from one logical frame to another takes

too long and the the user has to know the data sources. It should be possible to

implement a system which combines all available data sources by the de�nition of

similarities among the entities. Thus we can hide the origin of an entity.

6.2 Future Work

This work is a good foundation for usability and user studies showing the acceptance

of our incremental approach and the navigation issues. We can imagine more

visualizations (e.g. TreeMap, Multi-Level algorithms, clustering algorithms) and

data agents (e.g. email repository, discussion group, document management systems,

music database) to be implemented. Likewise the integration of other transfor-

mations (minimal spanning tree, path�nder network). A second line of thought is

the integration of all data sources into one huge data collection with similarities

among all entities. Then we can exchange the cost intensive neighborhood queries

with better alternatives and the generality of this framework can be reduced by the

elimination of transformations and the di�erent types of information graphs.

The interaction with the application can be improved by smooth animations be-

tween two logical frames or higher parallelization in data fetching and the visualiza-

tions. This can reduce the delay of a frame switch. For most of the visualizations it is

possible that more than one data object is placed at the same position in the drawing.

These overlaps can be reduced by a displacement of some data objects. This function

can be implemented independently from the visualizations as the distortions are.

Appendix A

Bibliography

A.1 Related Work

[1] J. Hollan B. Bederson. Pad++: A zooming graphical interface for exploring

alternative interface physics. In ACM UIST Proceedings, pages 17�26. ACM

Press, 1994.

[2] Franz-Josef Brandenburg, Michael Himsholt, and Christoph Rohrer. An experi-

mental comparison of force-directed and randomized graph drawing algorithms.

In Graph Drawing, pages 76�87, 1995.

[3] D. Brodbeck. Die Welt der Infoskope. In GDI-IMPULS, pages 52�59, 2001.

[4] CAIDA. Walrus - graph visualization tool.

http://www.caida.org/tools/visualization/walrus/index.xml.

[5] Stuart K. Card, George G. Robertson, and William York. The webbook and the

web forager: An information workspace for the world-wide web. In CHI, page

111, 1996.

[6] M.S.T. Carpendale, M. Tigges, and D.J. Cowperthwaite. Bringing the advantages

of 3d distortion viewing into focus.

http://citeseer.nj.nec.com/246949.html.

[7] Jeromy Carriere. Interacting with huge hierarchies: Beyond cone trees.

http://citeseer.nj.nec.com/article/ere95interacting.html.

[8] John Cugini, Sharon Laskowski, and Marc Sebrechts. Design of 3-d visualization

of search results: Evolution and evaluation. citeseer.nj.nec.com/323698.html.

[9] Ron Davidson and David Harel. Drawing graphics nicely using simulated an-

nealing. ACM Transactions on Graphics, 15(4):301�331, 1996.

[10] P. Eades and M. Huang. Navigating clustered graphs using force-directed meth-

ods. In Journal of Graph Algorithms and Applications, volume 4, pages 157�181,

2000.

68 APPENDIX A. BIBLIOGRAPHY

[11] Peter Eades. A heuristic for graph drawing. In D. S. Meek and G. H. J. van

Rees, editors, Proc. 13th Manitoba Conf. Numerical Mathematics and Comput-

ing, Winnipeg, Canada, 29 �1 1983. Utilitas Mathematica Publishing.

[12] Peter Eades and Qing-Wen Feng. Drawing clustered graphs on an orthogonal

grid. In Proceedings of the 5th International Symposium on Graph Drawing, GD

'97, pages 146�157, 1997.

[13] Peter Eades and Roberto Tamassia. Algorithms for drawing graphs: An anno-

tated bibliography. Technical Report CS-89-09, 1988.

[14] Christos Faloutsos and King-Ip Lin. FastMap: A fast algorithm for index-

ing, data-mining and visualization of traditional and multimedia datasets. In

Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995

ACM SIGMOD International Conference on Management of Data, pages 163�

174, San Jose, California, 22-25 1995.

[15] Arne K. Frick, H. Mehldau, and A. Ludwig. A fast adaptive layout algorithm

for undirected graphs. In Roberto Tamassia and Ioannis G. Tollis, editors, Proc.

DIMACS Int. Work. Graph Drawing, GD, pages 388�403, Berlin, Germany, 10-

12 1994. Springer-Verlag.

[16] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-

directed placement. Software - Practice and Experience, 21(11):1129�1164, 1991.

[17] R. Tamassia G. Di Battista, P. Eades and I. G. Tollis. Graph Drawing: Algorithms

for the Visualization of Graphs. Prentice Hall, 1999.

[18] P. Gajer, M. Goodrich, and S. Kobourov. A fast multi-dimensional algorithm for

drawing large graphs.

http://citeseer.nj.nec.com/gajer00fast.html, 2000. Submitted to GD '2000.

[19] Stuart K. Card George G. Robertson and Jock D. Mackinlay. Information visu-

alization using 3d interactive animation. In Communications of the ACM, pages

57�71, 1993.

[20] J.D. Mackinlay G.G. Robertson and S. Card. Cone trees: Animated 3d visu-

alizations of hierarchical information. In Proceedings of the ACM SIGCHI '91

Conference on Human Factors in Computing Systems, pages 189�194, 1994.

[21] David Harel. On visual formalisms. In Janice Glasgow, N. Hari Narayanan, and

B. Chandrasekaran, editors, Diagrammatic Reasoning, pages 235�271. The MIT

Press, Cambridge, Massachusetts, 1995.

[22] Ivan Herman, Guy Melancon, and M. Scott Marshall. Graph visualization and

navigation in information visualization: A survey. IEEE Transactions on Visu-

alization and Computer Graphics, 6(1):24�43, 2000.

[23] M.L. Huang and P. Eades. A fully animated interactive system for clustering and

navigating huge graphs. In Proceedings of the 6th Symposium on Graph Drawing

GD '98, pages 374�383. Springer Verlag, 1998.

[24] Chunrong Yuan Jin Sun. Wed-based 3d interface for

product data management. http://www.informatik.fernuni-

hagen.de/import/pi5/veroe�entlichung/VIIP/paper.pdf.

A.1 RELATED WORK 69

[25] Ralph E. Johnson. Frameworks.

http://st-www.cs.uiuc.edu/users/johnson/frameworks.html.

[26] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.

Information Processing Letters, 31(1):7�15, 1989.

[27] T. Keahey and E. Robertson. Techniques for non-linear magni�cation transfor-

mations. In Proceedings to Information Visualization Symposium. IEEE '96, 10

1996.

[28] S. Koruna. lecture notes in knowledge management. Swiss Federal Institute of

Technologie, Zurich, 1999.

[29] A. Kumar and R. Fowler. A spring modeling algorithm to position nodes of an

undirected graph in three dimensions. Technical report, Department of Computer

Science, University of Texas - Pan American, 1997.

[30] Wei Lai and Peter Eades. A graph model which supports �exible layout function.

Technical Report 96-15, Department of Mathematics and Computing, University

of Southern Queensland, Australia and Department of Computer Science, Uni-

versity Newcastle, Australia, Callaghan 2308, Australia, 1996.

http://citeseer.nj.nec.com/189844.html.

[31] Ivan A. Lisitsyn and Victor N. Kasyanov. Higres - visualization system for

clustered graphs and graph algorithms. In Proceedings of the 7th International

Symposium on Graph Drawing, GD '99, pages 82�89, 1999.

[32] J. Mackinlay, G. Robertson, and S. Card. The perspective wall: Detail and

context smoothly integrated. In In Proceedings of CHI '91, New Orleans, LA,

pages 173�179, 1991.

[33] Charlie Gunn Mark Phillips. Visualizing hyperbolic space: Unusual uses of 4 x 4

matrices. Technical report, The National Science and Technology Research Cen-

ter for Computation and Visualization of Geometric Structures (The Geometry

Center), 1991.

[34] Bernd Meyer. Self-organizing graphs - a neural network perspective of graph

layout. In Proceedings of the 6th Symposium on Graph Drawing GD '98, pages

246�262. Springer Verlag, 1998.

[35] P. Eades M.L. Huang and R.F. Cohen. Web OFDAV - navigating and visualizing

the web on-line with animated context swapping. In Proceedings of the 7th World

Wide Web Conference, pages 636�638. Elsevier Science, 1998.

[36] Tamara Munzner. Interactive visualization of large graphs and networks. Mas-

ter's thesis, 2000.

[37] L. Nigay and F. Vernier. Design method of interaction techniques for large

information spaces. In Proceedings of AVI'98 (Aquila, May 1998). ACM Press,

1998.

[38] Diethelm Ironi Ostry. Some three-dimensional graph drawing algorithms. Mas-

ter's thesis, 1996.

http://citeseer.nj.nec.com/ostry96some.html.

70 APPENDIX A. BIBLIOGRAPHY

[39] Greg Parker, Glenn Franck, and Colin Ware. Visualization of large nested graphs

in 3d: Navigation and interaction. Journal of Visual Languages and Computing,

9(3):299�317, 1998.

[40] N. Quinn and M. Breur. A force directed component placement procedure for

printed circuit boards. IEEE Trans. Circuits and Systems, CAS-26(6):377�388,

1979.

[41] Tom Roxborough and Arunabha Sen. Graph clustering using multiway ratio cut.

In Proceedings of the 5th International Symposium on Graph Drawing, GD '97,

pages 291�296, 1997.

[42] Manojit Sarkar and Marc H. Brown. Graphical �sheye views of graphs. In

Penny Bauersfeld, John Bennett, and Gene Lynch, editors, Human Factors in

Computing Systems, CHI'92 Conference Proceedings: Striking A Balance, pages

83�91. ACM Press, Mai 1992.

[43] K. Sugiyama and K. Misue. Visualization of structural information: Automatic

drawing of compound digraphs. IEEE Trans. Systems, Man and Cybernetics,

21(4):876�892, 1991.

[44] Kenneth J. Supowit and Edward M. Reingold. The complexity of drawing trees

nicely, 1983.

[45] Daniel Tunkelang. A Practical Approach to Drawing Undirected Graphs. Tech-

nical Report CMU-CS-94-161, Pittsburgh, PA, June 1994.

[46] Y. Zhang W. Lai, M. Huang and M. Toleman. Web graph displays by de�ning

visible and invisible subsets. In Proceedings of AusWeb99 - the Fifth Australian

Web Conference, pages 207�218, April 1999.

[47] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, and Marti Hearst. Animated

exploration of graphs with radial layout.

http://citeseer.nj.nec.com/yee01animated.html.

[48] P. Young. Three dimensional information visualisation. Technical Report 12/96,

1996.

[49] Markus Zehnder. Tron3d - a game implemented in java3d.

http://www.markuszehnder.ch/projects/tron3d/tron3d.html.

A.2 Resources

A BiblioNet

http://beat.doebe.li/bibliothek

B BlackDown. Java3D for Linux

http://www.blackdown.org/java-linux/jdk1.2-status/java-3d-status.html

C Chariot - the Image Database of the Database Research Group

http://simluant.ethz.ch/Chariot/

A.2 RESOURCES 71

D JDOM

http://www.jdom.org/

E search.ch - search engine

http://www.search.ch

F Sun Microsystems Inc. JAI

http://java.sun.com/products/java-media/jai/iio.html

G Sun Microsystems Inc. Java2 SDK 1.3

http://java.sun.com/j2ee/sdk1.3/index.html

H Sun Microsystems Inc. Java3D

http://java.sun.com/products/java-media/3D/index.html

72 APPENDIX A. BIBLIOGRAPHY

Appendix B

Class Diagram

74 APPENDIX B. CLASS DIAGRAM

Appendix C

Task Description

Diplomarbeit: Framework zur Visualisierung von Infor-
mationsgraphen

Professor Prof. Dr. H.-J. Schek

Student Patrick Bichler

Assistent Kai Jauslin

Beginn 29. Oktober 2001

Abgabe 28. Februar 2002

Motivation, Hintergrund

Die Menge elektronisch verarbeiteter Informationen nimmt stetig zu, die grundlegen-

den Methoden zu deren Verwaltung aber haben sich in den letzten Jahren nicht gross

geändert. Einzelne Programme dienen der Bearbeitung und Verwaltung spezi�scher

Informationstypen und -mengen. Der Austausch und die Verknüpfung von Informa-

tionen ist dadurch stark erschwert.

Das Ziel des All4U � Dynamic Collaborative Information Spaces Projektes, welches

im Rahmen von ETH World durchgeführt wird, ist die Entwicklung einer integri-

erenden Software zur Visualisierung, Organisation, Navigation und Kommunikation

von Informationen. Dabei bleibt die eigentliche Bearbeitung den bestehenden Pro-

grammen überlassen. Anstatt auf �x vorgegebene Informationsstrukturen kann der

Benutzer eine Informations�Basismenge dynamisch visualisieren. Diese dynamische

Visualisierung berücksichtigt z.B. Aspekte wie die Ähnlichkeit von Informationen.

Aufgabenstellung

Die Beziehungen zwischen Informationen können mittels eines Graphen modelliert

werden. Die in dieser Diplomarbeit zu bearbeitenden Fragen gliedern sich in die

76 APPENDIX C. TASK DESCRIPTION

untenstehend aufgeführten Problembereiche. Die aus der Theorie gewonnenen Erken-

ntnisse sollen in ein Framework umgesetzt werden, wobei der Schwerpunkt der Diplo-

marbeit auf der praktischen Implementierung der Visualisierungsmethoden gesetzt

ist.

� Modellierung von Informationsgraphen

Wie lassen sich Einheiten von Information, deren Struktur und Beziehungen

untereinander (Meta�Information) allgemein beschreiben, so dass sie später auf

einfache Art visualisiert werden kann? Wie kann diese Beschreibung sinnvoll an

eine Frontend�Software übermittelt werden? Welche Probleme entstehen dabei

für sehr grossen Graphen (z.B. Linkstruktur im Web, Citation Mapping)?

� Visualisierung

Für die Visualisierung hierarchischer Graphen (Bäume) existieren in der Liter-

atur eine Reihe von interessanten Methoden, wie z.B. Hyperbolic Trees 2D/3D,

Cone Trees. Wie geeignet sind diese für die Darstellung von Informations-

graphen? Wo liegen die Probleme (auch in Bezug auf Performance)? Was für

Methoden existieren für allgemeine Graphen?

� Interaktion und Navigation

Die Visualisierung dient dem Benutzer als Navigations�Frontend. Wie kann das

System auch bei grossen Graphen e�zient auf Benutzeranfragen reagieren (z.B.

di�erentielle Übertragung)?

Aus diesen Problemstellungen sollen u.a. folgende Resultate erarbeitet werden:

� Protokoll zur dynamischen Kommunikation von Informationsgraphen

Schnittstelle zum Visualisierungs�Frontend. Wie und was wird von der Visu-

alisierung benötigt, in welcher Form könnte die Übertragung statt�nden (z.B.

Client/Server, Streaming). Im Speziellen soll der Fall betrachtet werden, wo

Thumbnails als Meta�Daten (Grösse abhängig vom Zoomfaktor der Visual-

isierung) über das Netz transportiert werden müssen.

� Framework zur Visualisierung von Informationsgraphen

Die theoretischen Erkenntnisse sollen in einem prototypischen Framework

umgesetzt werden. Dieses soll möglichst o�en und �exibel für neue Visual-

isierungsarten sein. Performance ist auf dieser Stufe erwünscht, aber nicht

Schwerpunkt.

� Implementierung verschiedener Visualisierungen

Als Beispiel für das erarbeitete Konzept sollen im Framework zwei bis drei

Visualisierungsmethoden implementiert werden.

� Einfache Navigation (Zoom & Switch)

Der Benutzer soll die Möglichkeit haben, in die gegebene Visualisierung

hineinzuzoomen und im Graph zu navigieren (Kontextwechsel).

Ziel und Schwerpunkt der Arbeit ist die exemplarische Verwirklichung der

Konzepte zur Visualisierung an einem Prototyp�Framework. Die Aspekte Per-

formance und Navigation sind in dieser Arbeit nicht zentral. Die Verfügbarkeit

von Informationsgraphen und benötigten (d.h. in dieser Arbeit de�nierten) Meta�

Informationen soll vorausgesetzt werden.

